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PREFACE 
 
 
 
In this book the author shares his more than 45-years’ experience in the 
field of spacecraft manoeuvre determination in near-circular orbits. 
In the second half of the 70s, the ballistics center of the Keldysh Institute 
of Applied Mathematics in the USSR Academy of Sciences was assigned 
a task to solve the problem of manned and unmanned spacecraft ballistics 
and navigation support. The greatest challenge was to solve the multiple-
impulse rendezvous problem for these types of spacecraft and space 
stations.  

The author studied the literature available at the time concerning the 
rendezvous problem in order to find an analytical or numerical analytical 
solution but there was no answer to that question. As a rule, some 
cumbersome numerical solutions were used. 

Analytical and numerical analytical solutions presented in the works of 
J.-P. Marec and J.E. Prussing were only related to the nondegenerate 
rendezvous problem (Prussing studied the coplanar rendezvous problem 
on circular orbits). In addition, constraints on the impulse application 
moments and their orientation were not considered.  

Initially a numerical solution method was designed at the Keldysh 
Institute of Applied Mathematics in the USSR Academy of Sciences. This 
method was suitable for solving the problem but did not give an 
explanation as to why this or that solution had been chosen, which made it 
difficult to use in emergency situations. A numerical analytical method 
was designed in the early 80s. It was intended to solve degenerate 
coplanar and noncoplanar rendezvous problems in the classical statement 
with and without constraints. A geometric interpretation of impulses in the 
space of eccentricity vector components provided an opportunity to 
explain the nature of the found solution. A graphical user interface made it 
easy to select a new manoeuvring scheme in case of emergency situations. 
The method’s simplicity and reliability allowed it to be used on board 
spacecraft. Later, analytical solutions for coplanar and noncoplanar 
nondegenerate rendezvous were found. In the late 90s, a solution for 
rendezvous with significant initial right ascension of the ascending node 
(RAAN) deviation and long flight duration was found. Thus, the theory 
for optimal multiple-impulse rendezvous was fully developed.  
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The next step in the evolution of manoeuvring theory in the vicinity of 
circular orbits was the development of solution methods for coplanar and 
noncoplanar rendezvous and transfers using low-thrust engines in the 
2000s. The types of optimal solutions and their existence domains were 
defined. The parameters of these solutions were determined using simple 
analytical and numerical analytical algorithms.  

The almost fully developed theory of optimal manoeuvring on near-
circular orbits allowed the author to find numerical analytical solutions for 
all of the practical problems he faced during more than 45 years of work 
with real spacecraft. The solution time for these problems is significantly 
smaller in comparison with the time needed to solve the same problems 
using classical numerical methods. In addition, it became possible to 
explain the physical nature of the found solution. This was the answer to 
the question that the author had been searching for since the beginning of 
his work on the problem, which was a long time ago. 

The problems of coplanar and noncoplanar rendezvous of different 
duration, as well as the problems of deployment and maintaining the given 
configuration of satellite constellations, were solved. Lately, the primary 
focus has been shifted to space debris manoeuvring problems. 

In addition to the fact that this book contains the accumulated 
knowledge of solving complex practical problems, it will also be useful 
for young specialists making their first steps in the field of spacecraft 
manoeuvring. Each theoretical section ends with an example using the 
specified algorithms. The author’s lecturing experience in Bauman 
Moscow State Technical University (BMSTU) and the Academy of 
Engineering Faculty of the Peoples’ Friendship University of Russia 
(RUDN) shows that it will help students to better understand the material 
and to learn how to solve real nonsimplified problems. 

Those readers who have extensive experience in solving complex 
practical problems can be helped by learning new approaches to problem 
solutions and explanations of their nature. 
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INTRODUCTION 
 
 
 
Manoeuvres play an important role in the spacecraft flight process. A 
manoeuvre is a target driven alteration of spacecraft orbit parameters with 
the help of a propulsion system. Generally, manoeuvres help to change the 
orbit with the necessary precision, which allows the spacecraft to fulfill its 
mission. The important role of manoeuvres, as well as their variety and 
presence practically in each space mission, determines the attention that is 
paid to them in the literature on space flight mechanics.  

Released in 1969, F.W. Gobetz and J.R. Doll’s report (Doll and 
Gobetz 1969, 801–834) already encompassed more than 300 articles 
dedicated to the optimal spacecraft manoeuvring. At the present time, 
there are thousands of articles related to the topic, as well as dozens of 
monographs including notable works by V.V. Ivashkin (Ivashkin, 1975), 
K.B. Alexeev, G.G. Bebenin, V.A. Yaroshevsky (Alexeev, Bebenin, and 
Yaroshevsky, 1970), V.A. Egorov (Egorov, 1965), T.V. Solovyev, and 
E.V. Tarasov (Soloviev and Tarasov, 1973). D.F. Lawden’s work is 
considered to be the foundational one (Lawden, 1966). 

The problem of optimal manoeuvring parameter determination for 
spacecraft in near-circular orbits holds a special place in the theory of 
optimal manoeuvring. Firstly, these problems are of big practical interest 
as most of the real spacecraft operate in these orbits. Secondly, these 
problems are less complicated than those in the classical statement and 
they can sometimes be solved using analytical and numerical analytical 
methods. Naturally, lots of articles are dedicated to problems of this type. 
Their references will be given in successive chapters. The most noticeable 
are the monographs by J.-P. Marec (Marec, 1979); V.A. Ilyin and G.E. 
Kuzmak (Il'in and Kuzmak, 1976); and M.F. Reshetnev, A.A. Lebedev, 
V.A. Bartenev, M.N. Krasilshikov, V.A. Malyshev, and V.V. Malyshev 
(Bartenev, Krasilshikov, Lebedev, Malyshev et al., 1988). 

The necessary conditions of the strict local optimality of impulsive 
flybys in arbitrary and Newton’s gravity fields were obtained on the basis 
of the variation approach (Il'in and Kuzmak, 1976). The solution for the 
transfer problem (the flyby without time constraint) between the near-
circular orbits in the linearized statement and the solution for the 
rendezvous problem are given. A brief and sufficiently complete solution 
of the transfer problem in the noncoplanar near-circular orbits is given in 
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Edelbaum (1967, 66–73). In the work of Bartenev, Krasilshikov, Lebedev, 
Malyshev, et al. (1988), the problems of orbit determination and 
manoeuvring with high and low-thrust engines (mostly transfer problems) 
are considered. In J.-P. Marec’s monograph (Marec, 1979) major attention 
is paid to the nondegenerate rendezvous problem in near-circular orbits. A 
fundamental up-to-date review of articles on rendezvous problems can be 
found in Guojin, Jin, and Yazhong (2013, 1–11). 

The rendezvous problem consideration started in the mid-60s. Even 
now, the articles by J.E. Prussing are still cited (Prussing 1969, 928–935; 
Prussing 1970, 1221–1228). Prussing considered the two-spacecraft 
rendezvous in coplanar orbits with 1–3 revolutions duration. In the book 
by J.-P. Marec (Marec, 1979), research was conducted into the classic 
average duration noncoplanar rendezvous in near-circular orbits. It was 
shown which diapasons of orbit element values could be achieved while 
using different types of optimal nondegenerate solutions (reversed 
problem solutions). The difficulty in understanding the book’s material 
was one of the reasons why its ideas were not widely used. The algorithm 
for the rendezvous manoeuvre parameter determination corresponding to 
the nondegenerate hodograph of primer vector was introduced in Jones 
(1976, 55–90). 

In the 60s, the first spacecraft dockings were conducted. It turned out 
that additional constraints should be taken into account while solving 
practical problems: velocity impulse application time, its orientation and 
value, transfer orbit parameters, etc. The problem got far more complex in 
comparison with the classic one from the first theoretical articles. It 
became impossible to use the solutions from those articles. New effective 
numerical methods for solving practical problems were developed.  

Nowadays, three major approaches for solving complex multiple-
impulse spacecraft manoeuvring problems are mainly used. In the first 
case, the problem is divided into several simple problems. For example, 
the problem of manoeuvring within an orbit plane and the problem of orbit 
plane rotation are solved separately. The orbit plane rotation in this scheme 
is carried out by the single velocity impulse, which is applied on the orbit 
plane intersection line. Such a scheme1  was used for the rendezvous of 
Shuttle and the ISS in Fehse (2003, 441–449). A similar approach is used 
for guiding geostationary satellites (Bulynin 2008, 73–74), and satellites in a 
constellation (Rylov 1985, 691–714), (Bobronnikov, Fedorov, Krasilshikov, 
Malyshev et al. 2001, 43–45), etc. The advantage of the scheme is its 
simplicity and reliability, clarity of the physical nature of each of the 

 
1 “Shuttle Press Kit: STS-92”. Accessed March 25, 2007. 
http://www.shuttlepresskit.com/STS-92/ 
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manoeuvres, and the usage of simple spacecraft orientation systems. The 
disadvantage of the scheme is the excessive total delta-v expenditure on 
manoeuvres. 

In the second case, numerical methods are applied, allowing finding 
the optimal solution of the most complex multiple-impulse problems with 
different constraints. Numerical methods have been successfully used for 
decades for the rendezvous manoeuvre determination of “Soyuz” and 
“Progress” spacecraft with long-term orbital stations (Bazhinov and 
Yastrebov, 1978; Petrov 1985; Baranov 1986, 324–327). The articles by 
V.P. Gavrilov and E.V. Obuhov had a great influence on development of 
these methods (Gavrilov and Obukhov 1980, 163–172). Numerical 
methods allow finding the solutions with minimum total delta-v, which is 
sometimes crucial for the accomplishment of the mission. For example, 
the orbital module “Kvant” only docked on the “Mir” orbital station after 
the third attempt with almost depleted fuel tanks. If only one of three 
attempts had not been optimal, there would not have been a sufficient 
amount of fuel for docking. The simplex method is mostly used for 
manoeuvre parameter determination (Lidov 1971, 687–706; Lidov and 
Teslenko 1978, 112–141; Gavrilov and Obukhov 1980, 163–172; Gavrilov 
1995; Kolegov, 2007; Bakshiyan, El'yasberg, and Nazirov, 1980). The 
method was first used for the abovementioned purposes by M.L. Lidov.  

The disadvantage of all numerical methods is the absence of 
information on why we arrived at this or that type of solution and how the 
solution would alter with an initial condition change. It is especially 
critical in the case of emergency situations occurring during the flight 
when a new manoeuvring scheme with additional constraints is needed. 
Similar problems arise at the stage of development when the future 
manoeuvring scheme is being selected. Generally, it is easier to determine 
the manoeuvre parameters than the manoeuvring scheme. When choosing 
the scheme, we should determine the number of velocity impulses needed 
for an optimal solution, the intervals of manoeuvring and rendezvous 
duration. After that we can evaluate the manoeuvre parameters. We can 
name the cumbersomeness of the numerical methods as their disadvantage. 
This creates additional difficulties when using them on board a spacecraft. 
For another thing, numerical methods need a significant amount of 
computing time to solve problems. This factor appears to be a significant 
disadvantage when solving complex combined problems. Sometimes the 
solution of lots of conventional transfer and rendezvous problems are 
needed to obtain a complex optimal solution. The same problem appears 
when we use the space debris catalogue and need to calculate the 
parameters of thousands of manoeuvres.  
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The third approach to solving the rendezvous problem can often be 
found in articles from universities. This approach was first implemented in 
articles by P.M. Lion and M. Handelsman (Handelsman and Lion 1968, 
127–132) and D.J. Jezewski and H.L. Rozendaal (Jezewski and Rozendaal 
1968, 2160–2165). At the first stage of this method, the parameters of the 
two-impulse solution using Lambert’s problem are obtained. Then the 
primer vector hodograph for the found solution is analyzed. If necessary, 
additional velocity impulses are added for the optimal solution. With this 
technique and gradient optimization algorithms, multiple-impulse 
solutions for a two-body problem were obtained (Gross and Prussing 
1974, 885–889; Chiu and Prussing 1986, 17-22; Guzman, Hughes, and 
Mailhe 2003, 85–104). The most common and developed method of 
solving rendezvous problem is the use of Lambert’s problem (Ohotsimsky 
and Sikharulidze 1990; Battin 1966; Battin 1977, 707–713; Ermilov, 
Ivanova, and Panushin 1977; Dashkov and Kubasov 1979; Escobal 1970; 
Herrick 1978). We can distinguish as a separate group the solution of 
multiple-revolution for Lambert’s problem (Prussing 2000, 31–148; Shen 
and Tsiotras 2003, 50–61; Han and Xie 2004, 9–13) and the universal 
algorithms of its solution (Pitkin 1968, 270–27; Kriz 1976, 509–513; 
Sukhanov 1988, 483–491). Nowadays, the method for searching for an 
optimal multiple-impulse solution for the rendezvous problem based on 
Lambert’s problem is also widespread (Guo-Jin, Hai-Yang, Ya-Zhong, 
and Yong -Jun 2007, 946–952).  

Problems of orbital station manoeuvre parameter determination can be 
put in a special group, although, despite their peculiarity, they might be 
considered to be rendezvous problems. They are rather specific due to the 
long-time interval between the initial and terminal manoeuvres and 
multiple, often controversial, constraints on the parameters of the interim 
orbit. The basic research in this field was conducted by E.K. Melnikov 
(Melnikov 2004, 176–186; Melnikov 2009; Kolegov and Melnikov 1990, 
158–165).  

The purpose of this book is to introduce numerical analytical methods 
for solving multiple-impulse rendezvous problems in near-circular orbits 
to the reader. These methods combine the advantages of the first two 
methods. The methods are simple enough, as well as illustrative and 
reliable. By using them, we can obtain close-to-optimal solutions. This 
allows us to use the results obtained in the articles by G.E. Kuzmak, T.N. 
Edelbaum, and J.-P. Marec when solving actual practical problems. The 
suggested numerical analytical methods are several times quicker than the 
numerical methods and they also give an explanation as to why this or that 
optimal solution was obtained. They allow us to determine the existence 
domains of optimal solutions of different types. It is hard to determine 

 EBSCOhost - printed on 2/13/2023 10:43 PM via . All use subject to https://www.ebsco.com/terms-of-use



Introduction xiv 

these domains using numerical methods. It is especially important when 
we choose the manoeuvring scheme: how many velocity impulses should 
we use and on which manoeuvring intervals can they be applied? The 
found solutions give us a simple geometric interpretation which simplifies 
their explanation and allows the use of a graphic dialogue while solving 
the problem.  

Also, the basic problems of manoeuvring with low-thrust engines are 
considered. Special attention is paid to satellite constellation and satellite 
formation flying deployment and keeping. Problems of the determination 
of manoeuvres performed by an active space object, problems of space 
debris collision avoidance, problems of large space debris de-orbiting, and 
problems of the transfer of spacecraft to disposal orbit (DO) are 
considered. 

The structure of the book is arranged in accordance with the adopted 
classification of manoeuvres in near-circular orbits (Doll and Gobetz 
1969, 801–834). 

In the first chapter a solution of linearized equations of motion system 
in a cylinder coordinate frame is given. The statement of the optimal 
manoeuvre parameter determination problem in near-circular orbits and 
necessary optimal conditions are presented. The iterative procedure is 
explained. It allows the realization of terminal conditions with the necessary 
accuracy and with due regard to the noncentral gravitational field, 
atmosphere, and spacecraft propulsion system etc. The geometric 
interpretation of the impulse components’ influence on different orbit 
elements is given. The relative motion of two approaching spacecraft with 
different target vectors is depicted. It is shown that an impulse transversal 
component sum in every manoeuvring interval can be determined 
analytically with good precision during the spacecraft-orbital station 
rendezvous. The equations for the determination of optimal phase 
desynchronization diapason between the spacecraft and orbital station are 
given. The equations include options for shifting first interval manoeuvres 
to later revolutions and shifting the launch date. Further material is given 
in accordance with the adopted manoeuvre classification.  

In the second chapter, the problems of transfer between coplanar (three 
types of two-impulse solutions) and noncoplanar orbits (three types of 
two-impulse solutions and one type of three-impulse solution) are 
considered. The equations for the determination of the manoeuvre 
parameters of these solutions are given. A comparison between problem 
solutions in linearized and accurate statements is made. Equations for the 
impulse components of the optimal coplanar two-impulse solution for 
fixed impulse application angles are given. 
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In the third chapter, the coplanar rendezvous is considered. Three types 
of possible solutions, which correspond to the point, ellipse, and cycloid 
primer vector hodographs, are analyzed. The existence domains for three 
types of solutions are determined. The algorithms for the parameter 
determination of two-, three-, and four-impulse solutions for each type of 
possible primer vector hodographs are considered. Example cases are 
presented. It is shown that the total delta-v of the optimal Lambert’s 
problem solution might be two or even three times higher than the delta-v 
for an optimal three-impulse solution. The rendezvous problem with a 
constraint on transfer orbit altitude is considered. The impact of orbit 
determination errors and manoeuvre realization errors is analyzed. The 
procedure for the solution selection for the minimum influence of these 
errors is presented.  

In the fourth chapter, a universal algorithm for a four-impulse multiple-
revolution rendezvous in noncoplanar near-circular orbits manoeuvre 
parameter determination and a numerical analytical algorithm of long-
range guidance for Soyuz- and Progress-type spacecraft manoeuvre 
parameter determination are shown. The six-impulse solutions which 
correspond to the spiral hodograph of primer vector are analyzed. The 
equations for the determination of optimal impulse application angles for 
these solutions are presented. The numerical analytical algorithm for 
several dozen rendezvous manoeuvres determination is shown.  

There are lots of problems in practical work which are hard to solve 
without using numerical methods. This is why Chapter Five is dedicated to 
numerical methods. The numerical method, which was used over a 
number of years in the ballistics center of the Keldysh Institute of Applied 
Mathematics at the Russian Academy of Sciences for real spacecraft 
manoeuvre parameter determination, is also presented with selected 
examples.  

The ballistics center of the Keldysh Institute of Applied Mathematics 
at the Russian Academy of Sciences, whose creator and long-term head, 
E.L. Akim, was the corresponding member of the Russian Academy of 
Sciences, participated in ballistics navigation flight support for all major 
scientific spacecraft. The ballistics center played an important role in the 
ballistics navigation support of manned spacecraft. The author of this book 
took part in the determination of manoeuvre parameters of “Soyuz 19” 
(1974), “Soyuz 20” (1975, Apollo-Soyuz Test Project), and “Soyuz 22” 
(1976). Over a number of years (since 1978), the ballistics center has 
participated in ensuring the functioning of the orbital stations “Salut-6”, 
“Salut-7”, and “Mir”; in the activities connected with the deployment of 
the International Space Station (ISS); and the ballistic support of the 
“Buran” space system. As part of these activities, the author has calculated 
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the manoeuvre parameters of approximately 140 spacecraft of different 
types: “Soyuz”, “Soyuz-M”, “Soyuz-TM”, “Progress”, and “Progress-M”, 
as well as the orbital modules of “Kvant”, “Priroda”, “Spectre”, “Zvezda”, 
and the “Buran” space system, etc. Participation in the ballistics navigation 
support of these flights gave the opportunity to develop and test different 
methods of manoeuvre parameter determination, and to choose the 
simplest and most reliable ones with maximum adjustment to the 
peculiarities of the flight of real spacecraft. Since the methods presented in 
this book were designed for solving practical problems, they take into 
account the constraints on moments of impulse application, their 
magnitudes and orientation, and interim orbit altitude limits, as well as 
meet the strongest demands in terms of performance and reliability. 

Due to their advantages, the methods were chosen by CNES as a basis 
for their own method of calculating the manoeuvre parameters of 
rendezvous problem for the ATV approach to ISS (Carbonne, Chemama, 
Julien, Kudo et al. 2009, 1091–1106). 

Emergency situations occurring in orbit proved the necessity of the 
graphic dialogue, which rapidly reselects manoeuvring schemes with 
additional constraints caused by emergency situations. 

The first use of the graphical dialogue while solving the manoeuvring 
problem was described in the article by A.K. Platonov and R.K. Kazakova 
(Kazakova and Platonov 1976). Lambert’s solution was used for the 
manoeuvre determination. The book by Y.A. Zakharov gave the description 
of the graphic dialogue for the calculation of interorbital transfer with 
finite thrust. A transition to the solution of the problem with finite thrust 
from an impulsive solution was made by using nonlinear programming. 
Both graphical dialogues were developed at the stage of spacecraft flight 
design. 

The graphical dialogue description, which can be used at the stage of 
ballistics design and during the flight in emergency situations, including 
space debris collision avoidance, is described in the fifth chapter. Unlike 
the previous two dialogues, the solution analysis and its alteration take 
place in the space of eccentricity vector projections, and not in the space 
orbits themselves. 

It was assumed in the problems mentioned above that the burn duration 
is noticeably shorter than the orbit period. It allowed us to solve the 
problem in an impulsive statement and helped us to recalculate the engine 
regime parameter accurately with the help of an iterative procedure. Still, 
in a number of practical problems, the manoeuvre duration is comparable 
with the orbit period. For example, such a situation appears when orbital 
module big-sized manoeuvres are carried out with the use of docking and 
attitude thrusters. Another example is the usage of electric propulsion 
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engines. In these cases, impulsive approximation is not enough and special 
manoeuvre determination methods are needed. 

Problems of this type have a special place among optimal spacecraft 
manoeuvring problems. A number of articles are dedicated to them. 
Articles by the group of authors led by T.M Eneev and V.A. Egorov 
(Beletsky and Egorov 1964, 360–391; Akhmetshin, Efimov, Eneev, and 
Yegorov 2000, 279–305; Ermilov, Ivanova, and Panushin 1977; Akhmetshin, 
Beloglazov, Belousova, Efimov et al. 1985; Egorov, Grigoriev, and 
Ryzhov 2005), as well as articles by M.P. Zapletin and I.S. Grigoriev 
(Grigoriev, Zapletina, and Zapletin 2007, 758–762; Grigoriev and Zapletin 
2009, 1499–1513) can be mentioned. Several interesting monographs have 
been published (Grodzovski, Ivanov, and Tokarev 1966; Lebedev, 1968; 
Bartenev, Krasilshikov, Lebedev, Malyshev et al., 1988; Zakharov, 1984). 
Articles by M.S. Konstantinov (Konstantinov 1997) and V.G. Petukhov 
(Petukhov 2004, 250–268; Petukhov 2008, 219–232; Petukhov 2012, 249–
261) can also be noted. Due to the complexity of the problems in which 
manoeuvring is performed by low-thrust engines, they were traditionally 
solved by numerical methods with the use of Pontryagin’s maximum 
principle or by dividing the problem into simpler problems which have 
trivial solutions, just like the Shuttle manoeuvre calculations. In recent 
years, Y.P. Ulybyshev has successfully been using the method of inner 
point for long-duration manoeuvre problems (Sokolov and Ulybyshev 
1999, 95–100; Ulybyshev 2008, 135–147; Ulybyshev 2012, 403–418). 

The aspects of manoeuvring with limited thrust engines are described 
in Chapter 6. The algorithms of the transfer problem manoeuvre parameter 
determination on coplanar orbits with fixed orientation of engines in 
orbital and inertial coordinate frames and the algorithm of optimal engine 
orientation change determination are depicted. In the space of deviations 
of semimajor axis and eccentricity between final and initial orbits the 
areas with optimal engine orientation mentioned above are determined. 
The numerical analytical algorithm for the manoeuvre parameter 
determination for a noncoplanar transfer is shown. A coplanar rendezvous 
with manoeuvring on each revolution and on two separate intervals is 
considered.  

In the previous theoretical articles from the 60s and early 70s, no 
research was conducted in the field of spacecraft manoeuvring in satellite 
constellations, which play an important role in modern cosmonautics. 
Nowadays, lots of satellite constellations differ in terms of application, the 
number of satellites in a constellation, the types of orbits, and the relative 
satellites positions used. The most common are satellite constellations on 
near-circular orbits. The algorithms mentioned in the previous chapters 
might be used for the calculation of a spacecraft manoeuvre parameter in 
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satellite constellations. At the same time, the manoeuvres of such satellites 
have their own peculiarities.  

Dozens of publications have been dedicated to satellite constellations. 
At first, the satellite constellation configuration that can provide the 
necessary coverage of the Earth should be selected. In this field, the 
articles by G.V. Mozhaev (Mozhaev, 1968; Mozhaev 1972, 833–843; 
Mozhaev 1973, 59–68), J.G. Walker (Walker 1971, 369–384), B.P. Byrkov 
(Byrkov and Razoumny 1992, 62–68), Y.N. Razoumny (Razoumny 1993), 
E. Lansard (Frayssinhes, Lansard, and Palmade 1998, 555¬564), and V.K. 
Saulsky (Saulsky 2005, 34–51) can be noted. Recently, some articles by 
Y.N. Razoumny (Kozlov, Razoumny, and Razoumny 2015, 200–204; 
Kozlov, Razoumny, and Razoumny 2015, 196–199), and S.Y. Ylybyshev 
(Ulybyshev 2015, 311–¬322; Ulybyshev 2016, 1–11) concerning the 
multiple-tiered satellite constellations have been published. The satellites 
in these constellations move in circular orbits with different radii.  

Despite the variety of satellite constellations, there are two basic types 
of optimal manoeuvre problems: satellite constellation deployment and 
keeping.  

The first one is close to the classic rendezvous problem. Each satellite 
is considered separately. The satellite needs to be transferred to a specified 
point in the final orbit in a fixed period of time. In this case, the time of 
the satellite transfer to a specified point is not important and can be 
selected in a wide range unlike in the case of the manoeuvring problem, 
which is calculated when docking “Soyuz” or “Progress” to a long-term 
space station. It is connected with the search for a compromise solution 
between the transfer duration and the total delta-v expenditures. Total 
delta-v expenditures usually increase with the decrease of the transfer 
duration to a specific orbit point. Also, when dealing with low Earth 
orbits, we face a shift of RAAN even after the simplest satellite transfer 
along the orbit. And this needs to be corrected. This case is thoroughly 
examined in the first paragraph of Chapter 7. The algorithm of optimal 
impulse application angle selection and the algorithm of compromise 
rendezvous time selection are shown. 

The problem gets more complicated when the satellite operational orbit 
RAAN differs from the initial orbit RAAN by dozens of degrees. For 
example, such a situation occurs when a single launch vehicle injects 
several satellites in orbit and some of them need to be transferred to 
different operational planes or when a spare satellite needs to be 
transferred to another orbit plane in order to replace the malfunctioning 
one. The optimal one in terms of total delta-v costs satellite transfer needs 
significant time (several hundreds of revolutions). The problem of satellite 
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transfer from the circular orbit to a specific point of analogous circular 
orbit with a big RAAN difference is also shown in Chapter 7.  

It was shown that, with the increase of RAAN deviation, the total 
delta-v expenditures do not grow proportionally as might be expected. 
They alter in a fashion that corresponds to the sine-shaped fading law over 
the line corresponding to the expected proportionality. The magnitudes of 
these oscillations are noticeable within several degrees of variations of 
RAAN. In this case, the total delta-v expenditures for the compensation of 
a substantially bigger deviation of RAAN can be tens of percent less than 
the cost of the compensation for relatively small deviations. 

In general, it is necessary to have a universal manoeuvre parameter 
computing algorithm for a long-duration rendezvous when being transferred 
to the given point of the final orbit from an arbitrary injection orbit. This 
algorithm becomes more complicated when there is a big difference in 
RAAN between the initial and final orbits. 

It is impossible to solve this problem using the existing methods for 
short and medium duration rendezvous problems. In these methods, the 
influence of the Earth’s oblateness was omitted (Prussing 1969, 928–935; 
Prussing 1970, 1221–1228; Jones 1976, 55–90; Marec 1968; Marec, 1979) 
or accounted for using the iterative procedure (Petrov 1985; Bazhinov and 
Yastrebov, 1978; Gavrilov, Obukhov, Skoptsov, and Zaslavsky 1975; 
Baranov, Gundobin, Ivanov, Kapralov et al. 1992, 26–27) when obtaining 
the given tolerance of terminal conditions. The Earth’s oblateness can be 
used for the reduction of total delta-v expenditures in the problem of the 
satellite transfer to the given plane, whose RAAN differs from the initial 
one by several tens of degrees. 

In the available articles, the problems of the parameter determination 
of satellite transfer to another operational plane were hardly considered. 
The two problem solving methods for a rendezvous with big initial 
deviations of RAAN (Bollman, D'Amario, Lee, Roncoli et al. 1999; 
Breeden, Guinn, and Ocampo, 2001, 1–20) were presented at international 
conferences held by AIAA. The methods were demonstrated for the 
solution to rendezvous on Mars orbit. RAAN needed to be changed by 182 
degrees. The first one (Bollman, D'Amario, Lee, Roncoli et al. 1999), the 
NASA project, is similar to the Shuttle-to-ISS docking method. The 
correction of orbital elements in the orbital plane and orbital plane rotation 
are carried out separately. The solution obtained is not optimal (the total 
delta-v expenditures are 60% higher than the necessary ones). Due to the 
complexity of the problem, ten velocity impulses were used instead of five 
for NASA’s classical rendezvous problem solution. The second method 
(Breeden, Guinn, and Ocampo, 2001, 1–20) developed by JPL and the 
University of Texas is numerical. It obtains the optimal solution with three 
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velocity impulses, but the time needed to arrive at the solution is 
extremely long and a good initial guess is needed. It is hard to perform 
multiple solutions for the problem using these methods. 

In Chapter 7, a simple, reliable, and fast numerical analytical method 
for obtaining an optimal solution of such a type (Baranov and Baranov 
2009, 256–262) is given. It allows the formulation of the dependence of 
the consumption of the total delta-v on the duration of the flight with a 
single solution to the problem. Besides, the computational process is well 
illustrated. It is always clear why the optimal solution has its specific look 
and how it alters due to the change of initial conditions. It is possible to 
obtain solutions which can decrease the influence of manoeuvre realization 
errors. 

The given method was used for a number of situations including the 
solution to abovementioned rendezvous problem on Mars orbit, and the 
solution to the manoeuvre parameter problem while deploying satellite 
constellations (e.g., “Globalstar”) and satellite formation flying. The 
examples of manoeuvre parameter calculations for the initialization of a 
cluster for atmospheric tomography and for the satellite formation flying 
“Aqua Train” deployment are given. Due to the close positions of 
satellites in formation flying, significant attention must be paid to collision 
avoidance while calculating the manoeuvres for their deployment. This 
problem was considered in (Baranov, Boutonnet, Escudier, and Martinot 
2005, 913–920; Baranov, Boutonnet, Escudier, Matinot et al. 2003, 83–96; 
Baranov, Boutonnet, Escudier, and Martinot 2003). 

Special attention is also paid to the problem of keeping the given 
satellite constellation configuration, which has several significant differences 
from the satellite constellation deployment problem. Two strategies can be 
distinguished: absolute and relative keeping. In the absolute keeping 
regime, the motion of each satellite should comply with some given 
motion, which allows the manoeuvres for each satellite to be calculated 
separately from other satellites in the constellation (Chao and Schmitt 
1991; Baranov and Wang 2015, 68–83). In the relative keeping regime, 
the cooperative motion of all satellites in a constellation is ensured. It is 
significantly cheaper than the absolute regime because there is no need to 
correct orbit elements which practically alter in the same fashion 
repeatedly for all satellites in a constellation. For example, the semimajor 
axis reduces in practically the same fashion for all satellites due to 
atmospheric drag and does not need to be corrected. The only thing to do 
is to control the relative angular distances between the satellites which 
determine the satellite constellation configuration. Relative keeping is a 
more complicated problem as it is necessary to take into consideration the 
location of other constellation elements while calculating manoeuvres of 

 EBSCOhost - printed on 2/13/2023 10:43 PM via . All use subject to https://www.ebsco.com/terms-of-use



Spacecraft Manoeuvring in the Vicinity of a Near-Circular Orbit xxi 

the current satellite. In the articles by G.V. Mozhaev (Mozhaev 2001, 
634–647) and R.F. Murtasin (Murtazin 1998, 173–182), two keeping 
policies were considered and it was shown that relative keeping leads to a 
smaller number of manoeuvres needed and lesser total delta-v expenditures.  

The problem of manoeuvre parameter calculation in the relative regime 
of constellation keeping has been examined by a number of authors. A 
simplex method (Bernussou, Brousse, Dufour, Foliard et al. 1997; Bernussou, 
Dufour, and Lasserre 1996, 169–174; Fedorov, Malyshev 2001, 45–46) or 
the numerical solution of the Riccati equation (Ulybyshev 1998, 109–115) 
are usually used for its solution. In these cases, the system conditions are 
controlled after fixed and equal time gaps. It may be needed to perform 
some optimal orbit element corrections before or after one of these fixed 
moments, which is a disadvantage of both methods. Analytical solutions 
were suggested in some articles; however, it was agreed that the manoeuvres 
were performed in the initial (Mozhaev 2001, 634-–47) or in the initial 
and final moments of time (Murtazin 1998, 173–182). The constellation 
was not controlled in the intermediate moments. The numerical analytical 
method allows the manoeuvre parameters to be evaluated analytically; this 
ensures the necessary configuration keeping on the whole interval is given 
in Chapter 7. Taking into consideration the physical peculiarities of 
problems helps to decrease the number of manoeuvres used. The suggested 
geometrical interpretation of the maintenance process gives a comprehensive 
explanation of the nature of the optimal solution. Numerical solutions do 
not allow this. 

The development of methods for the deployment manoeuvre 
calculation and relative satellite constellation station keeping was carried 
out in the work initialized and supported by CNES. J.-P. Carrou, J.-P. 
Bertiasse, P. Legandre, J. Folliard, P. Brousse, J.P. Guster, and F. Dufour 
made great contributions in organizing this and other works. The 
development of the universal manoeuvre parameter determination method 
of satellite transfer to a specified point of orbit with several dozens of 
degrees RAAN deviation was made together with P. Labourdette (Baranov 
and Labourdette 2003, 130–142; Baranov and Labourdette 2002). 

Absolute keeping is used far more often and is considered in the last 
paragraphs of Chapter 8. The example contains the case of the absolute 
keeping of a microsatellite in the sun-synchronous orbit which fulfills 
Earth remote sensing problems.  

The satellite group absolute configuration initialization and its keeping 
during a considerable time interval were illustrated by the satellite 
formation flying “Tandem”. Much attention is paid to the collision 
avoidance problem when maintaining orbit. 
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Nowadays, the spacecraft safety problem during flight draws more and 
more attention due to increasing space debris collision hazards. Manoeuvring 
problems have an important place in the space debris problem. Chapter 9 
and 10 are dedicated to this issue. 

The four trends in space debris manoeuvre calculating problems can be 
distinguished. The first and second trends are considered in Chapter 9, and 
the third and fourth in Chapter 10. 

The first trend is the determination of manoeuvres which allow 
collisions with space debris to be avoided. Special collision avoidance 
manoeuvres are usually used. They are relatively simple. Their description 
is given in the beginning of Chapter 9. It would be more interesting to 
solve a more complicated problem like finding the solution to the 
rendezvous problem which will allow collisions on the phasing orbit (drift 
orbit) to be avoided. A safe orbit can be obtained by searching for 
magnitudes and times of velocity impulse applications on the first 
manoeuvring interval, and not by adding additional collision avoidance 
manoeuvres. A compromise solution can be obtained without a substantial 
increase of the fuel needed thanks to the abovementioned graphic dialogue 
with the problem.  

The second trend is to determine manoeuvres performed by an active 
space object. The assessment and future forecasting of such manoeuvres 
will allow modeling an active space object movement with higher accuracy 
and, hence, to avoid collisions with them. Single- and two-impulse 
manoeuvres were assessed. The two-impulse manoeuvre parameter 
determination algorithm reduces the problem solution time by several 
orders in comparison with Lambert’s solution, which is traditionally used 
for these purposes. The manoeuvre determination accuracy is also 
improved. Single- and two-impulse long duration manoeuvres were also 
assessed. The solution time was also decreased by several orders in 
comparison with traditional methods (Alfriend, Kamensky, Stepanyants, 
and Tuchin 2009, 3–22; Borovin, Stepanyantz, Tuchin, Tuchin et al. 
2012). The assessment algorithms of short and long duration single-
impulse manoeuvres with considerable errors in the determination of 
initial and, especially, final orbits were presented. In this case, the 
manoeuvre assessment helps to improve the final orbit accuracy (it is 
obtained by applying a calculated manoeuvre to the initial orbit) and thus 
helps us to increase the approach (of the protected spacecraft with the 
given object) determination accuracy. These algorithms can be used while 
assessing the impulses which occur during the setup of the given 
spacecraft orientation; this helps to increase the orbit forecast accuracy.  

Manoeuvre assessment problem statements and approaches to their 
solutions have been discussed with V.M. Agapov several times. 
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The third trend is the transfer of the decommissioned spacecraft into 
orbits where they cannot be dangerous for active space objects. For 
geostationary orbit spacecraft, this means a transfer into orbits with 
altitudes 250–350 km higher than regular geostationary orbits, while, for 
low Earth orbits, it is the transfer to orbits where the existence time is 
limited to 25 years. An orbit parameter determination algorithm was 
given, and this type of elliptical and circular orbits evolution was 
considered. The dependences of elements of orbits with reduced existence 
time against the time of their size and orientation adjustment, ballistic 
coefficients etc. were considered. 

The fourth trend is large space debris transfer (cross-section area is not 
less than 5 m2, final rocket stages, boosters) in orbits with a significantly 
reduced orbital lifetime which will not be dangerous to active space 
objects.  

There are lots of projects for space debris mitigation measures. The 
most effective ones are the two schemes in which one of the servicer 
spacecraft (space vehicle collector [SV-collector]) can remove several 
large space objects (LSO).  

The first scheme includes a successive flyby of several spacecraft with 
their collection or insertion in the exhaust sections of small spacecraft with 
their own autonomous control and enough fuel supply (thrust de-orbit kits 
[TDKs]) for braking and large space debris transfer to the disposal orbit 
(DO). The flyby is performed by an SV-collector and, when it is out of 
fuel and TDKs, it is refueled by a tanker spacecraft.  

The second scheme suggests the usage of one spacecraft which 
manoeuvres between the objects and provides their transfer to the DO. 
This scheme is less effective, but it performs the flyby faster. Both 
schemes are considered and compared in Chapter 10. 

Five groups of objects with close values of orbit inclinations were 
identified. The strategy of the flyby was chosen, and the compromise 
times of each flyby were found to meet the time constraints of the whole 
mission. The total delta-v expenditures on different flyby schemes were 
calculated and the most preferable schemes of each group flybys were 
chosen. It was determined which amount of fuel supply and the number of 
TDKs the SV-collector and tanker spacecraft should have. It was also 
estimated how many SV-collectors and tanker spacecraft were needed for 
the almost complete cleanup of all groups. 

Practically all the algorithms described were supported by example 
cases. This will allow readers who intend to use the algorithms from the 
book to check their own realizations. 

Solutions are given for the problems which can be met in practical 
work. In those solutions, terminal conditions were calculated with the set-
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up precision using the iteration procedure described in the first chapter, 
which takes into consideration all the necessary perturbations.  
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CHAPTER ONE 

PROBLEM STATEMENT:  
GENERAL SOLUTION SCHEME 

 
 
 

1.1. Spacecraft Equations of Motion 
 

A particular interest in manoeuvring in near-circular orbits can be 
explained by the fact that most real spacecraft orbits are in this class of 
orbits. The circular orbital velocity in a central gravitational field can be 
determined as: 

 

0
0 r

V , 

 
where 0r  = the circular orbital radius and = Earth’s gravitational 
constant (the product of the gravitational constant by mass of the attracting 
body, for Earth 235 /skm10  986028.3M  and for Earth’s radius 

km  371,6eR ). 
In practice, there are always some perturbations in real and circular 

orbits. 
The three main groups of perturbing factors can be distinguished as: 
1. Deviations in the initial conditions (by velocity, radius or angle) 

from the conditions which provide motion along the circular orbit; 
2. Additional external forces: the influence of the noncentrality of the 

gravitational field; atmospheric drag; attraction between bodies; solar 
radiation pressure; and the influence of the magnetic field, etc. 

3. Forces caused by the spacecraft’s propulsion system. 
These perturbations can significantly change the circularity of an orbit. 

However, in most practically significant cases, deviations from circular 
orbits are relatively small and linearized equations of motion can be used 
(at least as a starting point) when studying them. Here, we assume that a 
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circular orbit of radius 0r  is unperturbed, while the orbit under 
investigation is perturbed. 

1.1.1. Equations of Motion in a Cylindrical  
Coordinate Frame 

For the description of motion, we use a cylindrical coordinate frame 
zur ,,  (Fig. 1-1). Its origin O is situated as the center of attraction. Here, 

r  = the distance between the attraction center and the spacecraft’s 
projection on the unperturbed orbital plane; u  = the angle within the 
plane of the unperturbed orbit starting from an arbitrary initial Ox axis in 
the direction of the satellite’s movement; and z  = the distance between 
the unperturbed orbital plane and the satellite. The z  axis is perpendicular 
to the unperturbed orbital plane. It is aligned in such a manner that if one 
were to follow the direction of increasing z , the satellite would move in a 
clockwise fashion. It is suggested that the time reference starting point (t = 
0) is the moment when the satellite passes the point at which u = 0. 
 

z

x

y

S

W

T

V

Vr

Vt

Vz

r

u
O

 
 

Fig. 1-1. The cylindrical coordinate frame connected to a satellite 
position in orbit 

 
Here, we consider perturbing acceleration as summed acceleration 

caused by all forces except for the force produced by the central 
gravitational field ( 2/ rg ). In addition, let the projection of the 
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perturbing acceleration be in the direction of radius-vector r; the projection 
of the perturbing acceleration move along a normal line to the radius 
vector r  in the unperturbed orbital plane; and the projection of the 
perturbing acceleration on the z  axis be S, T, and W (Fig. 1-1), respectively. 
Keeping in mind that ratio rz /  is small, and neglecting the effects of the 
second order infinitesimal, one can obtain the satellite equations of motion 
relative to the introduced coordinate frame in Suslov (1946): 
 

.

),(1
,

2

2

r
z

gzW

ur
dt
d

r
T

urrgS

   (1-1) 

 

We will only investigate the case of the minor (with respect to the 
major acceleration g) perturbing accelerations S, T, and W, and minor 
(with respect to 0r  and 0V ) deviations from circular motion caused by 
perturbing accelerations. 

With accuracies of small quantities of the first order, the influence of 
deviations between the perturbed orbit and the unperturbed circular orbit in 
terms of the S, T, and W values can be omitted and these accelerations can 
be calculated as accelerations corresponding to the unperturbed orbit. This 
assumption allows us to solve the first two parts of Eq. 1-1 independently of 
the third equation, as the values S and T, with the accuracies of small 
quantities of the first order, are not affected by the lateral displacement z . 

Let rVr  and urVt  be the velocity vector projections on the 
radius vector and the normal line in the unperturbed orbital plane, 
respectively. By substituting these values in Eq. 1-1 we get: 
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   (1-2) 

 

This system of three differential equations with the unknown values 
tr VVr ,,  cannot be evaluated in a closed form with arbitrary values of the 

perturbing accelerations S and T. 
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1.1.2. Equations in Deviations from a Basic  
Circular Orbit 

For the approximate solution of Eq. 1-2, we will assume that the basic 
characteristics of the perturbed motion under consideration on the time 
interval of interest deviate little from the corresponding characteristics of 
the unperturbed circular motion. Let uVVr tr ,,,  be the deviations 
between the respective values of the perturbed and unperturbed orbits: 
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    (1-3) 

 
The first equation of Eq. 1-2 for the unperturbed orbit can be stated as: 
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     (1-4) 

 
Let us substitute Eq. 1-3 in Eq. 1-2 and subtract Eq. 1-4 from the first 

equation of 1-2. In this case, by using Eq. 1-4 and assuming the values 
tr VVr ,,  to be small (with accuracy of the first order of smallness), 

we get the following relationships (with accuracies of small quantities of 
the first order): 
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,0

,
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0
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0

2
00

rV
r

u
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TVV
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t

r
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tr

  (1-5) 

 
where 0  = the angular velocity of satellite motion along the unperturbed 
orbit, which can be found by: 

0

0
0 r

V
.    (1-6) 

 
We get the equation system of four linear differential equations with 

constant coefficients and a set of unknown variables uVVr tr ,,, .  
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In a similar manner, we get the equation for the deviations of lateral 
displacement: 

 
.2

0 Wzz     (1-7) 

1.1.3. Equations of the Motion System Solution 

The equation systems 1-5 and 1-7 have a solution that can be stated as 
follows (El’yasberg 1965): 
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The members of the equations under the integrals determine the 
influence of the perturbing forces, whereas the other members of the 
equations determine the influence of the minor initial perturbations on the 
current deviations of the orbit from the unperturbed circular orbit. For 
now, we will consider only the influence of the minor initial perturbations. 
The equations for them in dimensionless form can be found below: 
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 (1-9) 

 
Here, )6,...,2,1,( jikij  = dimensionless coefficients, which can be 

written as: 
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where t0  = the unperturbed value of the angle u. 
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1.2. Problem Statement 

1.2.1. Velocity Impulse Impact on Deviations in the Specific 
Point of an Orbit 

Orbit-changing impulse components ztr VVV ,,  can be treated as 
initial velocity deviations. Each impulse, applied at points with the angles 

),,...,1( Nii  causes deviations in the orbital elements at the specified 
point with the angle ,f which can be found using Eq. 1-9. The sum 
of these deviations caused by N impulses can be written as: 
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where 
iii ztr VVV ,,  = the radial, transversal, and lateral components of 

the i-th impulse respectively. 
From Eq. 1-10, one can obtain the impulse parameters, which will 

meet the terminal condition requirements of entering the target orbit if the 
deviations on the right side of the equations are treated as deviations 
between the target and the initial orbital parameters. These deviations can 
be given by: 

  

, , ,
000 tttrrrf VVVVVVrrr

ff
 

, , ,
000 zzzff VVVzzzuuu

f
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where the deviations between the circular and terminal orbits and the 
circular and initial orbits at the point f are given by the indexes “f” 
and “0”, respectively. 

Deviations from circular orbits derived in the cylindrical coordinate 
frame can be used in the most efficient fashion when solving the 
rendezvous of two spacecraft in the final manoeuvring interval; this is 
when the determination of their relative position and motion is most 
important. At this moment, the target point is usually not the spacecraft 
itself, but some point in its vicinity. This shift is determined by the so-
called “target vector”. For example, if an active spacecraft is situated on 
an internal orbit relative to a target spacecraft, then some small negative 
radial and transversal velocity deviations can be chosen (like 

km 5.0r , m/s 10tV , for instance). In this way we ensure a 
“bottom-up” approach, as the active spacecraft chases the target and 
approaches it from below. 

A scheme for the “bottom-up” approach is described in Fig. 1-2. The 
scheme presents the positions of the active spacecraft (named “ch”, the 
internal orbit) and the target spacecraft (named “tg”) in the moments of 
time 321 ,, ttt , preceding the rendezvous moment, and in the rendezvous 
moment rdvt . The line segments connect the spacecraft positions 
belonging to the same moments in time. The deviation km 5.0r  
ensures that no collision will occur, even if the autonomous approach 
hardware were to fail. 

 

 
 

Fig. 1-2. On-orbit spacecraft 
approaching process 

Fig.1-3. The coordinate frame 
used for the solution of the 

rendezvous 
problem  
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The change in the active spacecraft’s position from the inner to the 
outer orbit leads to the alteration of the signs of the specified deviations 
from the target point and reverses the approach scheme (the so-called 
“from-above” approach). 

1.2.2. Velocity Impulse Impact on Deviations of the Keplerian 
Orbital Elements 

It is more preferable in most cases to determine orbits by their 
elements. Let us introduce an Oxyz coordinate frame with the origin as the 
center of attraction; the Ox axis pointing to the point in which the 
deviations are evaluated (Fig. 1-3); and the Oy axis lying within the orbital 
plane. The connection between the deviations introduced earlier and the 
orbital elements can be given by the equation system from El’yasberg 
(1965): 

 

0

00
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V
V

e

V
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r
r

e

V
ra

r
y

t
x

t

,  (1-11) 

 
where a  = the semimajor axis; a  = its difference from 0r ; e  = orbital 
eccentricity; and yx ee ,  = eccentricity vector projections on the x and y 
axes. An eccentricity vector e  is a vector with magnitude e , which points 
to the orbital pericenter (Fig. 1-3). The orbital focus is the Earth’s center. 
The deviations can be evaluated at any point, but it is convenient to use 
the rendezvous point in the case of the rendezvous problem. 

Thus, for near-circular motion the dimensionless conditions of 
reaching the specified point in the target orbit can be described as follows: 

 

,cos2sin
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i
itiiri eVV   (1-12a) 
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N

i
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,2
1

aV
N

i
ti      (1-12c) 

,sin43cos12
1

tVV
N

i
iitiiri  (1-12d) 

,sin
1

zV
N

i
izi     (1-12e) 

N

i
zizi VV

1

,cos     (1-12f) 

 
where 00 coscos eee ffx , 00 sinsin eee ffy , 

00 /)( raaa f , )( 00 ttt f , 00 / rzz , 00 /VVV zz , 

0
* /VVV riri , 0

* /VVV titi , and 0
* /VVV zizi . 

 
Here, “f” and “0” = indexes corresponding to the target and initial 

orbits; 0, ee f  = the orbital eccentricities; 0, aa f  = the semimajor axes; 

0,f  = the angles between the direction towards the pericenter of the 
specified orbit and the direction towards the specified point on the target 
orbit (the Ox axis is the heading to this point); ft  = the time necessary for 
the transfer to this point; 0t  = the moment when the radius-vector 
projection on the target orbit (while moving along the initial orbit) appears 
to be situated on the beam that intersects the specified point; 0z  = the 
deviation of the spacecraft on the initial orbit from the target orbital plane 
at the moment 0t ; 

0zV = the lateral relative velocity at this moment; 00 ,V  
= the orbital and angular velocities of motion along the reference orbit 
with radius )( 00 farr ; N = the number of velocity impulses; i  = the 
angle of application of the i-th impulse, which is measured in the direction 
on the specified point towards the motion of the spacecraft; and 

*** ,, zitiri VVV  = the radial, transversal and lateral components of the i-th 
impulse, respectively. One should bear in mind that the angles i are 
negative, it being agreed that in the specified point 0f (this is one of 
the reasons why the minus sign is used in the 5th equation). 
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1.2.3. Optimization Problem Goals 

The manoeuvring intervals NFF ,...,1  for impulse applications are 
usually defined by the revolution number and the initial and terminal 
latitude arguments. There are constraints on the impulse application 
angles: 

 
,,...,11 NN FF    (1-13) 

 
where NFF ,...,1  = the specified manoeuvring intervals. 

Thus, the problem of finding the optimal manoeuvring parameters can 
be stated as follows: 

We determine izitiri VVV ,,,  ),...,1( Ni , ensuring the minimum 
V , which satisfies the constraints 1-12 and 1-13. 

 
N

i

N

i
zitirii VVVVV

1 1

222 .  

 
Not all of the aforementioned constraints can be used when speaking 

about the specified problem. 

1.2.4. Geometric Interpretation of the Velocity Impulse  

According to eqs. 1-12a and 1-12b, alteration of the orbital eccentricity 
vector through the application of the transversal component tiV  of the i-
th impulse on the plane yx ee ,  can be depicted as vector AB (Fig. 1-4). 
The magnitude of this vector is tiV2  and the angle between the vector 
and the xe  axis is i . The alteration caused by the radial component 

riV  is depicted by vector BK (Fig. 1-4). The magnitude of this vector is 

riV  and the angle between the vector and xe is i5.1 . It is apparent 
that vectors BK and AB are perpendicular to each other. Vector AK on 
plane yx ee ,  corresponds to an impulse and shows the alteration of the 
eccentricity vector after the application of an impulse with these radial and 
transversal components. The equations 1-12e and 1-12f demonstrate that 
vector A'K' with magnitude ziV  and angle i  to the zV axis corresponds 
to the lateral component of the i-th impulse on plane zVz ,  (Fig. 1-5). 
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Vti

Vri

ex

B

i

 
i

Vzi

Vz

-z

A'

K'

 
Fig. 1-4. Eccentricity vector 

alteration after impulse 
application 

Fig. 1-5. Deviation from the 
orbital plane due to lateral impulse 

component application 

Thus, the broken lines correspond to a multiple-impulse solution of the 
problem for the coordinates yx ee ,  and zVz , . Examples of such broken 
lines for the two-impulse solution with zero radial impulse components are 
presented in figs. 1-6 and 1-7. 
 

The angles ze , , which form the direction of optimal correction of 
the eccentricity vector deviation and the correction of the orbital plane 
deviation respectively, are marked in the figures. These angles can be 
given by: 

 

,
x

y
e e

e
tg    (1-14a) 

ey

K(exf,eyf)

B

A (ex0,ey0)
e

ey

ex

e
Vt1

Vt2

ex   
Fig. 1-6. Two-impulse alteration 

of the eccentricity vector 
Fig. 1-7. Two-impulse rotation 

of the orbital plane 
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,
z

z V
z

tg   (1-14b) 

 
The angle  is worthy of particular attention. It is the angular 

difference between the direction of optimal eccentricity vector deviation 
correction and the orbital plane deviation correction: 

 
,ze   (1-14c) 

 
i  = the minimum impulse (in dimensionless form) necessary for the 

alignment of the orbital planes. It can be evaluated as: 
 

.22
zVzi   (1-14d) 

1.2.5. Relative Orbit 

Equation 1-12 describes the orbital element deviations in the 
rendezvous point, but not the element values. This means that the transfer 
from the initial to the target elliptical orbits with parameters ),,( 000

aee yx  

and ),,( fyx aee
ff

 is formally equivalent to the transfer from the reference 

orbit with radius 0r  to the elliptical orbit with parameters 
),,( 0 araee yx , where ,

0xxx eee
f

 ,
0yyy eee

f
 and 

.0aaa f  Hereon, we assume that an elliptical orbit with such 
elements is relative. Furthermore, the transfer from point (0, 0) to point (

yx ee , ) in plane yx ee ,  will be depicted instead of the transfer from 

point ),(
00 yx ee  to point ).,(

ff yx ee  

1.3. Single Impulse Manoeuvres 

It is apparent that a single impulse transfer from the initial to the final 
orbit is possible only when the orbits osculate or intersect with each other. 
In other cases, only some of the elements of the target orbits can be shaped 
using single-impulse manoeuvres. 

The equation system 1-12 allows us to make some clear conclusions 
about the alterations of orbital elements due to a single impulse. 
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1.3.1. Semimajor Axis Correction 

A semimajor axis alteration occurs only due to the transversal 
component of the impulse and the variation value does not depend on the 
moment of application of the impulse. The radial component does not 
affect the semimajor axis. The transversal component can be found from 
Eq. 1-12c: 

 

.
2
1

aVt  

1.3.2. Eccentricity Correction 

Alteration to the eccentricity value occurs due to both components. 
The variation value depends strongly on the moment of application of the 
impulse. It is evident that the most effective way is to alter the eccentricity 
by applying the transversal impulse component at the pericenter )( e  
or the apocenter )( e  of the relative orbit. The transversal 
component can be found from Eq. 1-12a. The plus sign corresponds to the 
impulse applied at the pericenter and the minus sign corresponds to the 
impulse applied at the apocenter: 

 

,
2
1

eVt  

 

where .22
yx eee  Consequently, the signs of the eccentricity 

variation values will differ too. 
The radial component can also alter the eccentricity value. It is half as 

effective when used, but the semimajor axis remains unchanged. The 

impulse can be applied in eVre 2
 or 

.
2

eVre  

1.3.3. Single-Impulse Transfer 

If the orbits lie in one plane and intersect with each other, then it is 
possible to transfer from the initial orbit to the target one using a single 
impulse applied at one of the points of orbital intersection. As has already 
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been mentioned, the broken line corresponds to the problem solution on 
plane ., yx ee  It starts at the center of the coordinate frame (point A) and 
ends at point K, corresponding to the relative orbital eccentricity vector 
(Fig. 1-8). 

 

B

A
e

Vt a

Vr

ex, ey)

ey

ex

 
 

Fig. 1-8. Single-impulse transfer between intersecting orbits 
 

The broken line consists of two pieces as the solution involves both the 
transversal and radial components of the impulse. The transversal 
component can be found from Eq. 1-12c: .2/aVt  A circle with 
radius a (Fig. 1-8) will be the geometric locus of the points (on plane 

yx ee , ), which can be reached using this component, because the impulse 
application angle is not defined while the transversal component has a 
known value. As was mentioned before, the line segment corresponding to 
the radial component is perpendicular to the line segment corresponding to 
the transversal component. This means that the line segment that is 
tangential to the circle must correspond to the radial impulse component. 
It is necessary to form the given eccentricity vector (i.e. it is necessary to 
transfer from point A to point K using two components), which is why line 
segment BK should correspond to the radial component and line segment 
AB should correspond to the doubled transversal component (Fig. 1-8). 
Using the geometric solution of the problem, the radial component value 
and the angle of application  can be found: 

 

,22 aeVr  
,*

e  
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where ./sin * eVr  Then, the delta-v necessary for the transfer can 
be given as: 
 

.
4
3 22 aeV  

 
With the help of the radial component, point K can be reached only if it 

is outside the circle, i.e. AK>AB, which is equivalent to the condition 
.ae  However, on the other hand, the single-impulse solution exists 

only if the orbits intersect and, hence, the orbits intersect if the condition 
ae  is satisfied. Note that the equation for the impulse application 

angle in the single-impulse transfer to the target orbit can be used for the 
determination of the orbital intersection point. 

1.3.4. Orbital Plane Rotation 

As can be seen in Fig. 1-7, the orbital planes can also be aligned with 
the use of a single impulse, which can be applied at z : 

 
iVz  

 
or at z : 
 

iVz  
 

Here, zi,  can be found using eqs. 1-14d and 1-14b. It is evident that 
these impulses are applied on the line of the initial and target orbital 
intersection. 

The angle alteration i  can be determined without evaluating the 
deviations zVz,  if the angle  between the orbital planes is known: 

 

.
2

sin2i  

 
Most of cases in this book deal with the small angles between orbital 

planes. Thus, the equation can be simplified: 
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.i  
 

Taking into account the aforementioned simplification, i  can be 
treated as an angle between orbital planes.  and zu  ( zu  = the latitude 
argument of the impulse application point for the orbital plane alignment) 
can be determined using the initial orbital inclination 0i , the target orbital 
inclination fi , and the RAAN difference of these orbits : 

 
,cossinsincoscoscos 00 iiii ff  

.
sin

sinsin
sin f

z

i
u  

 
A particularly simple equation can be obtained if only one of the 

parameters needs to be corrected as i  or : 
 

0,0 zf uii  or 180  (equator), or 

90, zu  or 270 (orbital apex or vertex). 

1.3.5. Semimajor Axis Correction in the Case  
of an Elliptical Orbit 

Naturally, if only one of the orbital elements needs alteration, more 
accurate equations (in comparison to the equations for the near-circular 
motion) can be used. For example, the alteration of the semimajor axis for 
an elliptical orbit can be calculated as: 

 

,2 2

TV
Va

a  

 
where TV  = the tangential component of the velocity impulse and V = 
the velocity at the impulse application point. It can be easily seen that for 
optimal semimajor axis alteration, the impulse must be oriented 
tangentially, reaching its maximum at the orbital pericenter (the 
spacecraft’s velocity is at its maximum here). 
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The simple equations of linearized motion will be helpful in obtaining 
the analytical problem solution, in which several of the orbital elements 
need to be corrected simultaneously. 

1.4. Change in Orbital Size Due to the Application  
of a Velocity Impulse  

Let us depict the alteration of the orbital size and along-the-orbit shifts, 
which occur under the influence of various impulse components 
(El’yasberg 1965). 

1.4.1. Impact of the Radial Velocity Impulse Component  

In Fig. 1-9, the orbit after the application of the positive radial impulse 
component is pictured using dashed lines. The orbital pericenter is situated 
at point .5.10  The absolute values of radial deviations at the 
apocenter and pericenter are equal and can be evaluated as: 

  

.
0

0 V
V

rrr r   

 

 
Fig.1-9. Orbital size alteration after radial impulse component application 

 
In Fig. 1-10, one can see the shifts along the orbit during a revolution.  
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Fig.1-10. Along-the-orbit shift after radial impulse component application 
 

As we can see, the lag from the unperturbed motion appears to be at its 
maximum after half a revolution: 

 

,4
0V
V

u r  

 
but it becomes zero by the end of the revolution. This indicates the 
absence of a secular perturbation. 

 

 

 

Fig. 1-11a. Relative motion after 
radial impulse component 

application 

Fig.1-11b. Radial impulse component 
approach 

 
The results obtained can be used for representing the motion of an 

active spacecraft (or an object thrown away from a station) relative to the 
station. This motion can be easily described in an orbital coordinate frame 
with the origin at the station’s center of mass. The axis r  points along the 
radius-vector and the axis n  lies on the orbital plane and points in the 
direction of the spacecraft’s motion. 

The relative motion caused by the application of the positive radial 
impulse component can be seen in Fig. 1-11a. The positive radius 
deviation achieves its maximum after a quarter of a revolution. The along-
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the-orbit lag achieves its maximum after half a revolution. The deviation 
of the radius is zero at this point. A quarter of a revolution later, the radial 
deviation achieves its maximum negative value and the object returns to 
the initial point after a full revolution. 

Sometimes the difference in the radial velocity component can be used 
in the approach to a target spacecraft. For example, if an active spacecraft 
is inserted at a point in the target orbit behind the target spacecraft (point A 
in Fig. 1-11b), then, the active spacecraft approaches the target with the 
help of the application of the negative radial impulse component (we use 
only the lower halves of the ellipse in Fig. 1-11a) (Carbonne, Chemama, 
Julien, and Kudo et al. 2009, 1091-1106). This strategy has some 
advantages, for example, if the impulse is not located at point C (Fig. 1-
11b), the spacecraft can return to point B and continue its motion without 
the secular perturbation of position relative to the target spacecraft. The 
approach process can be continued as needed. 

1.4.2. Impact of the Transversal Velocity Impulse Component  

In Fig. 1-12, the orbit is plotted using a dashed line, which was 
obtained after the application of the positive transversal component. 

The orbital pericenter is at point ,00  and the radial deviation at 
the apocenter is: 
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Fig.1-12. Orbital alteration after 
transversal impulse component 

application 

Fig.1-13. Shift along the orbit after 
transversal impulse component 

application 
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The along-the-orbit shift is shown in Fig. 1-13. The shift is initially 
positive and reaches its maximum as: 

 

,4776.0
0V
V

u t  

 
when ,"35'2441  then, the shift decreases and after "32'0573  the 
unperturbed motion lag starts. 

Per revolution, the lag can be evaluated by: 
 

.6
0V
V

u t  

 
This means that, in fact, the spacecraft starts to move backwards with an 
average speed of tV3  after the velocity impulse application tV  is 
pointed forward. 

 
Fig.1-14. Relative motion after transversal impulse component application 

 
The relative motion, caused by the application of the positive 

transversal impulse component ( m/s 2tV , orbital radius 
km 700,60r ) is shown in Fig. 1-14. As we can see, an object thrown 

forward from the station will move forwards and up. It will continue 
moving up with a simultaneous backwards motion before descending and 
reaching the level of the station; however, it will now be behind the station 
(the same movement during the second revolution is shown by the dashed 
line). 
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Fig. 1-15. Relative motion of the “Soyuz” spacecraft while approaching 
the orbital station 

 
The theoretical movement of the “Soyuz” spacecraft relative to the 

orbital station after the last application of the velocity impulse (180º 
before the target point) is shown in Fig. 1-15. It is supposed that the 
deviation at the target point (the target vector) is .m/s 5.12tV  As we 
can see, the spacecraft chases the station at a range of angles from –180º to 
approximately –73º (it approaches the station from the bottom); then, the 
spacecraft slightly overruns it; during the last phase, the station chases the 
spacecraft (the angle range is from –41º to 0º). In fact, the autonomous 
rendezvous equipment starts working when the angle range reaches 100º 
and the real movement of the spacecraft will differ from the one shown in 
Fig. 1-15. 

1.4.3. Impact of the Lateral Velocity Impulse Component  

Figure 1-16 shows the influence of the lateral impulse component. 
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Fig. 1-16. Influence of the lateral impulse component 
 

As we can see, this leads to rotation in the orbital plane at angle: 
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.
0V

Vz  

 
Thus, the maximum deviation from the orbital plane will be: 

 

.
0

0 V

V
rz z  

 
As such, no along-the-orbit shift occurs. The relative motion consists 

of an oscillating motion along the z axis, which is perpendicular to the 
orbital plane. 

Let us undertake some training and use the results obtained for the 
solution of the problem given in the exams of the Moscow Institute of 
Physics and Technology. 

EXERCISE. Which direction should you avoid while shooting from a 
spacecraft in order not to be hit by your own bullets? 

SOLUTION. The bullets will hit the spacecraft if the period of their 
orbit is the same. The radial and lateral impulses do not change the orbital 
period in case of the near-circular motion and, hence, it is prohibited to 
shoot in the plane, which holds the radial vector and the vector 
perpendicular to the orbital plane. 

1.4.4. Orbital Element Change for Various Circular Orbital 
Radii 

Table 1-1 presents the orbital element alterations for circular orbits of 
various radii due to the application of a m/s 1  transversal impulse 
component (the first five elements) and a m/s 1  lateral impulse component 
(the last two elements). 

The orbital height above the Earth’s surface is given in the first 
column. The changes to the other elements are given in the following 
columns: a  = the semimajor axis alteration; e  = the eccentricity 
alteration; P  = the period alteration; U  = the along-the-orbit angular 
shift per revolution; L  = the along-the-orbit linear shift per revolution; 

 = the angle of orbital plane rotation; and z  = the maximum 
deviation from the orbital plane. 
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Table 1-1 
 

H km a km e P s U deg L km   deg z km 
200 1.689 0.000256 2.042 -0.138 -15.826 0.0073 0.844 
400 1.765 0.00026 2.166 -0.140 -16.589 0.0074 0.880 
800 1.924 0.00027 2.432 -0.143 -17.928 0.0077 0.968 

1,500 2.212 0.00028 2.930 -0.149 -20.465 0.0080 1.102 
10,000 6.635 0.00040 12.674 -0.218 -62.210 0.0114 3.274 
20,000 13.566 0.00051 32.887 -0.278 -127.899 0.0146 6.725 
36,000 27.428 0.00065 84.077 -0.351 -258.471 0.0186 13.704 

 
Some of the deviations are not listed in the table, but they can be easily 

evaluated with the help of these values. For instance, the maximum radial 
deviation is equal to the doubled semimajor axis deviation, etc. The 
deviations due to the application of the radial component can be easily 
evaluated with the use of the deviations caused by the transversal 
component. In addition to single-impulse manoeuvres, multiple-impulse 
ones can also be approximately calculated using this table. 

1.5. Manoeuvre Assessment and Initial Phase  
Range Selection 

1.5.1. Features of Soyuz Spacecraft Manoeuvres 

As an example, let us estimate the sum of transversal impulse 
components of the first and second manoeuvring intervals of the four-
impulse approach manoeuvre between the “Soyuz” spacecraft and an 
orbital station. The first manoeuvring interval is located on the third and 
fourth revolutions, while the second interval starts one revolution before 
the target point. The target point is set at the end of the 33rd revolution. 

Let us assume that, in the moment of the “Soyuz” spacecraft’s 
insertion, the station is 1970u  ahead (this range of angles is 
sometimes called the “initial phase” or simply “phase”). The “Soyuz” 
spacecraft’s orbit (initial orbit) has the heights km 192minh  and 

km 238maxh , while the station’s orbit (the target orbit) has the heights 
km 330minh  and .km 5.341maxh  

The average orbital radial difference is .km 75.120  As one can see 

from the table, a transversal impulse of magnitude m/s 4.71
69.1

75.120  is 
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needed to eliminate this difference. With the existing difference between 
the orbit’s semimajor axes, the angle range (the phase) will decrease to 

218.16734.71139.0197  due to the motion before the first 
manoeuvring interval, which is on the third revolution. The impact of a 
fixed impulse with magnitude m/s 2 , applied at the 17th revolution and 
serving the purpose of fixing first impulse realization errors in phase 
deviation, can be estimated as 892.3142139.0 , where 14 = the 
number of revolutions between the first manoeuvring interval and the 
fixed impulse application. Thus, in order to “catch” the station in 29 
revolutions, the phase difference should decrease by 

632.5
29

892.3218.167  per revolution. In order to satisfy this condition, 

the required semimajor axis difference must be equivalent to the 

transversal impulse with magnitude .m/s 52.40
139.0
632.5  The calculated 

value should be decreased by the target vector magnitude ( m/s 5.12 ) 
since this deviation is not compensated for by the burns. As a result, the 
sum of the transversal impulse components of the second manoeuvring 
interval will be .m/s 02.285.1252.40

IItV  The sum of the 
transversal impulse components of the first interval will be 

.m/s 88.2802.285.1224.71
It

V  An accurate analytical solution 
of the problem (see Example 1, Chapter 5) gives the following values: 

m/s 67.28
IItV , .m/s 1.32

It
V  As we can see, the phase condition 

allows us to determine the impulse values with good precision as the sums 
of the transversal impulse components of the second manoeuvring interval 
(calculated analytically and numerically) do not differ by much. The sums 
of the transversal impulse components of the first interval differ 
significantly. This can be explained by the omission of the notable 
influence of atmospheric drag on the spacecraft due to its relatively low 
orbit.  

Simple equations can be used to assess the influence of atmospheric 
drag on the spacecraft’s motion in a circular orbit. The atmospheric drag 
force is given by: 

 

,
2

2
rel

mxx
V

FcR  
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where xc  = the dimensionless atmospheric drag coefficient; mF  = the 
spacecraft’s cross-section (the maximum spacecraft section, perpendicular 
to the velocity vector of the flight relative to the atmosphere);  = the 
atmospheric density; and relV  = the absolute value of the flight velocity 
vector relative to the atmosphere. A spacecraft moving along a circular 
orbit suffers deceleration, which can be calculated using the following 
equation: 
 

,2

r
c

Vc
m
R

T x  

 

where 
m
Fc

c mx

2
 = the ballistic coefficient, which is refreshed during 

flight. Alterations to the height and period per revolution on a circular 
orbit can be found in El’yasberg (1965): 

 

.12

,4

2/5
2

2

rcP

rcr

 

 
The atmospheric density depends on many factors and there are 

different static and dynamical (including the influence of solar pressure) 
atmospheric models. 

We can use table 1-2 to assess the atmospheric influence (El’yasberg 
1965). The alterations of P  and r  for circular orbits versus different 
heights H above the Earth’s surface have been calculated for a spacecraft 
with the ballistic coefficient 1.0c  (the CIRA 1961 static atmospheric 
model was used). 

 
Table 1-2 

 
H km 150 200 250 300 350 

P s 11 2.4 7.0·10-1 2.3·10-1 8.7·10-2 
r km 9.2 2.0 5.8·10-1 1.9·10-1 7.1·10-2 

H km 400 500 600 700 800 
P s 3.7·10-2 8.6·10-3 2.7·10-3 9.6·10-4 3.8·10-4 

r km 3.0·10-2 7.1·10-3 2.1·10-3 7.6·10-4 3.0·10-4 
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The basic parameters of this atmospheric model (density, pressure, 
temperature, and molecular weight versus different heights) are listed in 
El’yasberg (1965). 

Using table 1-2, one can estimate the decrease in height for 33 
revolutions. Here, the average orbital height after the first manoeuvring 
interval is 265 km (corresponding to m/s 88.28

It
V ). The orbital radius 

decreases by 0.46 km per revolution for a spacecraft with the ballistic 
coefficient .1.0c  The “Soyuz” spacecraft has the approximate ballistic 
coefficient 0.039. As such, after 33 revolutions the height has decreased 

by .km 92.5
1.0

33039.046.0
r  In order to compensate for this loss in 

height, it is necessary to increase the sum of the transversal components 

for the first manoeuvring interval by .m/s 5.3
69.1
92.5  Thus, we get 

,m/s 38.325.388.28
It

V  which agrees well with the numerical 
result. 

1.5.2. Initial Phase Range at Launch Time 

The angular range between the spacecraft and the orbital station in the 
moment of the spacecraft’s orbital insertion u  (initial phase) has a 
significant influence on the delta-v expenditure distribution between the 
manoeuvring intervals. Let us assume that primary manoeuvring occurs at 
the beginning and the end of a flyby, lasting N revolutions. If the 
spacecraft did not manoeuvre at all, then the along-the-orbit dimensionless 
deviation at the rendezvous point would be: 

 

,
2
3* aNuu f  

 
where a  = the semimajor axis difference between the spacecraft and the 
orbital station and *u  = the initial phase, measured in fractions of a 

revolution (
2

* u
u ). To eliminate this deviation, the sum of the 

transversal impulse components of the first manoeuvring interval should 
be: 
 

 EBSCOhost - printed on 2/13/2023 10:43 PM via . All use subject to https://www.ebsco.com/terms-of-use



Chapter One 
 

 

28

.
32

1

,
2
33

*

*

N
u

aV

aNuVN

I

I

t

t

 

 
Hence, the sum of the transversal impulse components of the last 

manoeuvring interval will be: 
 

.
32

1 *

N
u

VaV
III tt  

Thus, the initial phase and rendezvous duration unambiguously define 
the sum of the transversal impulse components of the second manoeuvring 
interval and the lasting of the semimajor axis deviation will be eliminated 
by the manoeuvres of the first interval. 

In Fig. 1-17, 
IItV , as a function of *u , is depicted by the dashed 

line; 
ItV , as a function of *u , is depicted by the dash-dotted line; and 

total delta-v is depicted by the solid line. As a result, an optimal range of 

the initial phase values exists: ],,0[ **
muu  where .

2
3* aNum  The 

total delta-v is constant in this range and equals the minimum value 

.
2
1

aV  

 
 
 

 
 
 
 

 
 

Fig. 1-17. V as a function of the initial phase 
 

While selecting the initial phase, one should bear in mind that in the 
case of abnormal situations there must be the possibility of rescheduling 
the first manoeuvres to a back-up revolution. If the back-up manoeuvring 
interval is n revolutions behind the first interval, then the sums of the 

*
mu *u

*
lu *

ru

IItV

ItV

V

.5 a

V
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transversal impulse components of the first and second manoeuvring 
intervals can be found by: 

 

.
)(3)(22

,
)(3)(2

*

*

nN
u

nN
aNa

V

nN
u

nN
aN

V

II

I

t

t

 

 
With the increase in n, the sum of the manoeuvring transversal 

components in the first interval increases and the sum of the manoeuvring 
transversal components of the second interval decreases; 

ItV , however, 

should not exceed .
2
1

a  This condition helps us discover the left 

boundary of the allowed range *
lu : 

 

.
2
3* anul  

 
The 13th revolution used to be the backup revolution for the first 

“Soyuz” spacecraft. The first manoeuvring interval was on the 3rd and 4th 
revolutions, the second one was on the 32nd revolution, and docking 

occurred on the 33rd revolution. Thus, for this scheme .
3
1

Nn  The left 

boundary of the allowed range *
lu  shifts by the third part of the optimal 

range length to the right. 
We may encounter a situation where the spacecraft launch is 

rescheduled. For the “Soyuz” spacecraft, the backup launch date is usually 
scheduled two days later (after the scheduled revolutions). In this case, the 
initial phase increases if the station period is less than 90 minutes. The 
phase change *

stu  can be evaluated by: 
 

),(mod3* l
T
m

ust  

 
where m = the number of revolutions by which the launch date is shifted; 

,
2JE E  = Earth’s angular speed of movement; and 

2J  = the 

 EBSCOhost - printed on 2/13/2023 10:43 PM via . All use subject to https://www.ebsco.com/terms-of-use



Chapter One 
 

 

30

change rate of  accounting for the second gravitational field zonal 
harmonic. 

If the initial phase increases, the right boundary of the permitted range 
*
ru  should be shifted by *

stu  leftwards from *
mu  in order to maintain 

the phase inside the optimal range after the change in the launch date. 
In addition, there may be some restrictions on the acceptable values of 

the impulse sum of the second manoeuvring interval, which can also shift 
the right boundary of the allowed range leftwards. 

1.6. Optimality Conditions 

A single impulse is not enough if it is necessary to correct all the 
elements of the orbit. Two or more impulses are used in this case. The 
number of control parameters (4N, where N = the number of impulses) 
usually exceeds the number of constraints in the equation system 1-12. 
This can be changed if additional restrictions on impulse orientation 
and/or on the moments of their application are introduced. The problem of 
searching for the optimal solution appears. To find the solution, one can 
use the necessary optimality conditions from the primer vector theory 
(Lawden 1966). 

1.6.1. Equations of Motion in Dimensionless Form 

After the conversion of variable t to the independent angular variable 
, the equations of motion in dimensionless form for the mass point in 

the cylindrical coordinate frame (eqs. 1-5 and 1-7) will be as follows (Il’in 
and Kuzmak 1976): 

 

,~~
rV

d
rd    (1-15a) 

,~~
~

tVr
d

td   (1-15b) 

,~~
zV

d
zd    (1-15c) 
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~
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  (1-15d) 
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tr

t nV
d

Vd
  (1-15e) 
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z
z nz

d
Vd

  (1-15f) 

,
~

n
d

qd     (1-15g) 

 
Here, qVVVztr ztr

~,~,~,~,~,~,~  = the dimensionless variables; 

m
m

cq 0ln  = the characteristic velocity (c = the exhaust velocity; 0m and 

m = the initial and current masses; and ztr nnn ,,  and 222
ztr nnnn  

= the components of jet acceleration and its modulus divided by 
gravitational acceleration )( 0rg ). 

1.6.2. Co-state Equation System 

The co-state equation system for Eq. 1-15 will be as follows (Il’in and 
Kuzmak 1976): 

 

,tr
r ps

d
dp

   (1-16a) 

,0
d
dpt    (1-16b) 

,z
z s

d
dp

   (1-16c) 

,0
d

dpq    (1-16d) 

,rt
r ps

d
ds

   (1-16e) 

,2 tr
t ps

d
ds

   (1-16f) 

,z
z p

d
ds

   (1-16g) 

       
Here, the vector ),,( ztr ssss  and the velocity vector ),,( ztr VVVV  are 
conjugated vectors and ztr ppp ,,  and ztr ,,  are conjugated 
variables. 

 EBSCOhost - printed on 2/13/2023 10:43 PM via . All use subject to https://www.ebsco.com/terms-of-use



Chapter One 
 

 

32

The solution of this system can be given by: 
 

,3cossin2 6321rp  (1-17a) 
,6tp    (1-17b) 

,cossin 45zp   (1-17c) 
,1qp    (1-17d) 

,2sincos 632rs   (1-17e) 
,3cos2sin22 6321ts  (1-17f) 

,cossin 54zs    (1-17g) 
  

where 654321 ,,,,,  = arbitrary constants.  
The problem Hamiltonian can be written as: 

 

.)(
)()()2(]),[(

zzttrr

ztttrq

VpVrpVp

zsVsrVsnpH ns
(1-18) 

1.6.3. Necessary Optimality Conditions 

Let the primer vector be the vector function ),,,( ztr ssss  conjugated 
with the velocity vector. D. F. Lawden (1966) showed that the primer 
vector should not exceed a unity in the modulus while on the optimal 
trajectory; the impulses are applied at those moments when the primer 
vector is a unity in the modulus and the impulse vector and the primer 
vector are aligned in this point of the trajectory. This means that the 
primer vector hodograph of the optimal solution does not exceed the 
boundaries of the unit sphere (the spatial problem), or the boundaries of 
the unit circle (the flat problem). The optimal solution impulses are 
applied at those moments when the hodograph osculates with a sphere (a 
circle)—the inner impulses—or intersects it (the initial and the terminal 
moments of the flyby interval)—the two outer impulses. 

Hence, we only need the variables to conjugate the velocity vector. 
The labels ,,  are often used for these variables. Equations 1-17e to 
1-17g can be converted into a more convenient form (Edelbaum 1967, 66-
73): 

 

,2)sin( 60
2
3

2
2   (1-19a) 
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,3)cos(22 60
2
3

2
21  (1-19b) 

),cos()sin( 02
3

2
2

5342
02

3
2
2

5243 (1-19c) 

.
3

2
0tg    (1-19d) 

 
The impulse will be optimally oriented in the moment i if the 

conditions below are satisfied: 
 

).( );( );( i
i

z
i

i

t
i

i

r

V

V

V

V

V

V
iii    (1-20) 

 
The conditions 1-19 and 1-20 can be obtained using the Lagrange 

multiplier method. The Lagrange function L will consist of V  and Eq. 
1-12 multiplied by the Lagrange multipliers .,..., 61  After differentiation 
of L by ,,,

iii ztr VVV and equalizing the results of differentiation by 
zero, we get the conditions 1-20. 

Normally, eqs. 1-19a to 1-19d describe a spiral in the dimensions 
,,  or a cycloid on the plane .,  If ,06  the primer vector 

hodograph can degenerate to an ellipse, a circle, a line segment, or a point. 
Each hodograph type has a corresponding type of optimal solution. A new 
designation for the angle (  instead of ) is used for the conjugated 
variables. The primer vector hodograph type defines the possible types of 
optimal solution, and the problem’s peculiarities determine the concrete 
choice of the type of solution. 

The dependences between the primer vector modulus s and the time for 
the cases when the hodograph is an ellipse and when it is a one-and-half-
revolution long cycloid are given in Fig. 1-18. 
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Fig. 1-18. Primer vector modulus as a function of time for 
hodographs in the form: (a) ellipse; (b) cycloid 

1.7. General Solution Scheme 

The linearized equations of motion are used in the problem stated in 
section 1.2. The noncentrality of the gravitational field, the atmospheric 
influence, and velocity impulse durations are not taken into account. This 
leads to insufficient accuracy in the terminal conditions 1-12. An iterative 
scheme from the work of Bazhinov and Yastrebov (1978), Gavrilov, 
Obukhov, Skoptsov, and Zaslavsky (1975), and Petrov (1985) can be used 
to solve the problem with higher accuracy. The scheme consists of several 
steps: 

 
0. In the beginning, an “accurate” prediction of the spacecraft’s 

movement in the initial and terminal orbits to the rendezvous point using 
all the necessary perturbation models is made. Deviations between the 
initial and target orbit parameters are calculated. 

1. The next step involves solving the “approximate” problem. With the 
aforementioned simplifying assumptions, we determine the parameters of 
the impulses, shaping the “target” orbit. On the first iteration, the “target” 
orbit coincides with the terminal orbit. 

2. After this, using the calculated impulses and models of all necessary 
perturbations, an “accurate” prediction of the spacecraft’s movement is 
made and the parameters of the new orbit are found. 

3. The deviations between the new orbit and the corresponding 
parameters of the terminal orbit are calculated. 

4. If the deviations exceed tolerable limits, the “target” orbit 
parameters are changed to values of parameters with the summed up 
deviations and the next iteration is performed. 
  

1t 2t t

s

1t 2t t

s

3t 4t
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The procedure ends when the terminal conditions are satisfied. 
As a rule, numerical and/or analytically numerical integrations are 

used for “accurate” prediction. It is possible to use different prediction 
methods on different iterations, but the accuracy of the prediction should 
get higher with each successive iteration. 

The gravitational field’s noncentrality, and the atmospheric and solar 
radiation pressure influence, etc., are taken into account while performing 
numerical integration and the work of the spacecraft propulsion system is 
also modeled. Hence, despite the fact that the manoeuvring parameters are 
evaluated on each iteration with the use of simple models, the results of 
the iteration procedure ensure the acquisition of a solution with the desired 
precision. 

The flowchart of the iteration procedure is given below. We can see 
that use of this iteration procedure does not guarantee that the found 
solution is optimal. The search for an optimal solution has been carried out 
with some simplifying assumptions. Determination of a possible deviation 
from the optimal solution on the first iteration can be found in table 2-1 
(paragraph 2.1.6). However, firstly, the alteration of the terminal 
conditions of the problem during the iteration process and some special 
techniques (for example, the alteration of the order of the impulse 
application, see 2.1.6) allow us to get close to the real optimal solution. 
Secondly, during the solution of the real problem, the first priority takes 
the accuracy of adjustment of the given orbit as well as the reliability and 
the speed of the solution’s acquisition. This scheme gives all this to the 
user and it is acceptable to have a few percent difference between the 
found and the optimal solutions. In practice, the simplicity and reliability 
of the solution is sometimes worth a 40 % loss of total delta-v. 
Furthermore, the results demonstrate that the difference between the found 
solutions of real problems using this procedure and the solutions found 
using the cumbersome numerical methods hardly exceed 1 %. 
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Using the numerical methods without this iteration procedure, it is hard 

to provide the desired accuracy in the satisfaction of the terminal condition 
and strict minimization of total delta-v. Also, problems with the selection 
of the solution for the start of the minimization process and the search for 
the local minimum appear. High speed or reliability can be provided by 
this approach in the acquisition of the solution. 

The aforementioned explains why this iteration procedure is widely 
used in ballistic centers all over the country. 

Determination of the initial 0E  and terminal 

orbit elements fE  at the rendezvous point 

Initial deviation vector evaluation 
01 EE f  

Determination of the manoeuvring parameters  
),1(,,, NiVVV iztr iii

 for j  

Determination of the elements (in the 
rendezvous point) jE  of the shaped (by the 

manoeuvres) orbit 

Checking of the terminal condition satisfaction 

ijf ii
EE  

Deviation vector determination for the new 
iteration jfjj EE1  

Problem 
solved 

Yes 

No
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Reliability is the key feature of practical problem solving methods. 
This is why the convergence of the iterative procedure plays a primary 
role. 

This solution scheme is quite promising. The deviations between the 
orbit and the relative orbit can reach several hundred kilometers and the 
manoeuvre duration can reach 2-3 tens of degrees by the latitude 
argument, which is noticeably far from the initial impulse supposition. For 
the majority of practical problems, this procedure converges fast and with 
certainty. For example, it is enough to pass through the five iterations to 
get the manoeuvring parameters for the “Soyuz” and “Progress” 
spacecraft. However, when the omitted perturbations become considerable 
or the perturbation group starts to produce a more substantial effect, 
problems of convergence appear. In this case, some perturbations need to 
be taken into account. For example, the influence of the second harmonic 
of the gravitational field’s potential expansion and the long duration of 
spacecraft engine firing should be taken into account during manoeuvre 
parameter determination. There is also an option to use the techniques 
invented by the author. Drawing on 45 years of experience with actual 
projects, these can help ensure the required reliability and convergence 
speed for all the numerous practical problems. 

1.8. Main Types of Optimal Spacecraft Manoeuvring 
Problems 

The problem of the optimal near-circular orbital manoeuvring 
parameter search has been stated in general terms. Several types of 
problems, which have to be solved while supporting real spacecraft, can 
be distinguished. Naturally, each problem has its own solution. Even more 
simple solutions can be found for different well-known particular cases. 

Two basic types of spacecraft optimal manoeuvring problems in near-
circular orbits can be distinguished: 

 
I. The interorbital transfer problem, when the transfer time from the 

initial to the target orbit is not fixed (as a rule, two-impulse solutions). 
II. The rendezvous problem, when the transfer time to the given point 

in the terminal orbit is fixed (sometimes two-impulse solutions, but, as a 
rule, requiring multiple-impulse solutions (three or more)). 

 
Each of these types of problem has two manoeuvring subtypes: 
Coplanar manoeuvres (where the terminal and initial orbits lie in the 

same plane). 
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Non-coplanar manoeuvres (where the orbital planes do not coincide). 
Hence, there are four different types of problems for impulse 

manoeuvres. It should be noted that each of problems has three of four 
types of possible solutions. 

We have the same types of problems for manoeuvres performed by 
low-thrust engines, where the burning intervals take up considerable parts 
of the revolutions. 

Similar problems can be encountered while evaluating transfer 
manoeuvres between highly eccentric orbits. 

The described classification of manoeuvres can be found in the 
scheme. 

Those problems that correspond to the dashed arrows are not 
considered in this book. They deal with transfers when at least one orbit is 
highly eccentric. All the problems corresponding to the solid arrows are 
considered rather thoroughly. 

In this scheme, division by the eccentricity value 0.1 is nominal. In 
fact, as already mentioned, the iterative procedure converges with higher 
eccentricity values. 

Similarly, it is hard to accurately distinguish those problems that can 
be solved with the approximation of the impulse manoeuvres and those 
problems that can be solved by taking into account the real manoeuvre 
duration. 

The impulse manoeuvres of transfers between coplanar and non-
coplanar orbits are considered in Chapter 2. The rendezvous problems in 
the coplanar and non-coplanar orbits are examined in the 3rd and the 4th 
chapters. The 5th chapter presents the numerical methods for the solution 
of near-impulse rendezvous problems and finally manoeuvring with low-
thrust engines is considered in Chapter 6. 
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The problems enumerated in the first six chapters are used for the 
deployment and station-keeping (attitude control) of satellite constellations; 
manoeuvre determination for collision avoidance with space debris; and 
the assessment of manoeuvres performed by active space objects, as well 
as lots of others. Some of these problems are also mentioned in the 
presented scheme. 

The 7th chapter describes manoeuvring peculiarities while forming set 
configurations of satellite constellations and satellite formation flying. The 
problems in the general statement, as well as some particular cases like the 
alteration of a satellite’s position in a satellite constellation in circular 
orbits (including the transfer to a different operational plane), are 
considered. In the 8th chapter, problems of the absolute and relative 
station-keeping of a satellite constellation and formation flying are given. 
Manoeuvres for space debris collision avoidance, including solution 
alteration, helping to avoid collisions in the reference orbit, are considered 
in Chapter 9. The algorithms, which help us to estimate single and two-
impulse manoeuvres of small and big durations performed by active 
spacecraft, including cases when the terminal orbit is determined with 
considerable errors, are given. 

In the 10th chapter, spacecraft transfer to a disposal orbit is examined. 
The evolution of these types of orbits is considered. An examination of the 
problem of de-orbiting large-size space debris is given. The five compact 
groups of large-size space debris are distinguished and two schemes for 
the transfer of space debris to disposal orbits are considered. The quantity 
assessment of spacecraft, needed for the transfer of the majority of the 
elements of these groups, is also given. 
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2.1. Coplanar Transfers 

2.1.1. Problem Statement 

The lateral motion and time constraints are not taken into account during 
the transfer manoeuvre parameter determination. Thus, the conditions for 
the transfer to the desired orbit (Eq. 1-12) will be 

 
N

i
xitir eVV

ii
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,)cos2sin(  (2-1a) 

,)sin2cos(
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N

i
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ii
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i
t aV
i

    (2-1c) 

 
The problem of the optimal manoeuvre parameter determination for 

the transfer between the coplanar orbits can be stated as “find 
),...,1( ,, NiVV itr ii
, which ensure the minimum total delta-v 

 
N

i
tr ii

VVV
1

22  

 
with the constraints 2-1a–2-1c”.  

The problem solution does not depend on the time. Thus, 06  in the 
necessary optimality conditions 1-19a–1-19d. On the other hand, 

0 ,0 54 , due to the fact that these are coplanar manoeuvres. Hence, 
the equations for the primer vector will be 
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There are three types of possible solutions which satisfy the necessary 

optimal conditions: 
1. The primer vector hodograph on the plane ,  is and ellipse; the 

center of the ellipse belongs to the axis, but it is shifted from the center 
of the coordinate frame; the ellipse touches the unit circle at the point C 
(Fig. 2-1a) if the center is shifted to the right, or it touches the unit circle 
at the point B if the center of the ellipse is shifted towards the opposite 
direction;  

2. The primer vector hodograph turns to the point that coincides with 
the point of the intersection with the unit circle of the  axis; this is point 
B or point C; 

3. The primer vector hodograph is an ellipse with the center in the 
origin of the coordinate frame, which touches the unit circle at two points–
–B and C (Fig. 2-1b). 

 

B
C

A

(a)

.O B
C

A

(b)

 
 

Fig. 2-1. Primer vector hodograph for the coplanar transfer. 
 

Let us remember that the angles in Eq. 1-12 are negative, and the 
deviations are calculated at the rendezvous point. The deviations can be 
estimated in the arbitrary point of the orbit in the transfer case but, usually, 
they are estimated in the ascending node on the equator or on the apsidal 
line of the relative orbit. We can switch from negative angles, which are 
estimated in a clockwise manner from the chosen direction (for instance, 
from the node line), to impulse application moments, to positive angles, 
which are estimated in the reverse direction (that is not exactly right, but it 
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is more habitual). It means that, in the first case, when the deviations are 
estimated on the node line, the values of the angles i  will coincide with 
the latitude arguments of the impulse application points iu , which is 
rather convenient. In the second case, when the x axis coincides with the 
apsidal line of the relative orbit, eee xy  ,0 , and for the 
determination of the impulse magnitudes which are applied on the apsidal 
line of the relative orbit, it is enough to solve the equation system:  

 

.22

,22

21

21

aVV

eVV

tt

tt
 

 
The impulse magnitudes are found from this equation system: 

 

eaV

eaV

t

t

4
1
4
1

2

1

 

2.1.2. Coplanar Transfers between Osculating Orbits 

If 01  and ,02
3

2
2  the primer vector hodograph will be the 

ellipse, which has been shifted from the center of the coordinate frame. 
The ellipse would coincide with the unit circle on the plane ,  if the 

condition 122 2
3

2
21 (with 01 ), or 122 2

3
2
21

(with 01 ) is satisfied. The hodograph osculates with the circle in one 
point, which is situated on the axis ( 0 ,1 ). Thus, according to 
Eq. 1-20, the solution with one transversal impulse will be optimal. It is 
worth mentioning that the necessary conditions would be satisfied again 
after one revolution and two revolutions, etc.; hence, this impulse can be 
divided into the parts, which can be performed on different revolutions, 
but in the same location. The option of impulse division is available for all 
transfer problems, but the solutions with the minimum number of impulses 
have a higher priority. These solutions will be analyzed further.  

The found single-impulse solution is only feasible for transfers 
between osculating orbits. The magnitude of this impulse can be found 
from Eq. 2-1c 
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or from eqs. 2-1a and 2-1b 
  

.
2
1

,sin2
,cos2

eV

eV

eV

t

yt

xt

 

 
Thus, for the osculating orbits, .ae  
The paradoxical feature of the optimal solution of this type draws our 

attention. The specific solution, which is only true for osculating orbits, 
corresponds to the basic appearance of the primer vector hodograph (lots 
of ellipses exist, which osculate with the circle in one point). Most often in 
practical work the transfers between the intersecting and nonintersecting 
orbits correspond to the particular appearances of the primer vector 
hodograph (when it degenerates to the point or ellipse with the center in 
the reference frame origin). As will be shown in Chapter 6, this 
paradoxical feature disappears if one considers long-duration manoeuvres, 
and not impulsive ones.  

2.1.3. Coplanar Transfers between Nonintersecting Orbits: 
Coplanar Singular Solutions 

A primer vector hodograph degenerating to a point will belong to the 
unit circle, if .5.0 ,0 132  The point coordinates are (1, 0) or (-
1, 0); hence, the impulses are transversal ( 0

ir
V ). All impulses are 

accelerating ( 0
it

V ), if 1 , and decelerating ( 0
it

V ), if .1  
The hodograph does not depend on ; therefore, for this type of solution, 
it is not possible to determine the impulse application angles and their 
minimum number from the equations for the primer vector. Let these 
solutions be coplanar singular solutions (CSS) in accordance with the 
terminology introduced by Edelbaum for noncoplanar solutions.  

Since the signs of all transversal components coincide, solutions of this 
type are only possible for transfers between nonintersecting orbits for 
which the inequality ea  is true. It is known that, for transfers 
between the intersecting orbits, one of the impulses should be accelerating 
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and the other one decelerating. From Eq. 2-1c, one can determine the total 
delta-v of the manoeuvre 
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The solution does not depend on the angle , as there are lots of 

solutions of this type with an equal total delta-vs, but with the different 
application angles and impulse magnitudes.  

In order to find the solution parameters of this type, one of the impulse 
application angles can be fixed; for example, .11 f

 From eqs. 2-1a–2-

1c, one can determine the second impulse application angle 2  and the 
magnitudes of the transversal impulse components 

21
, tt VV  
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All other optimal transfer parameters can be found by choosing the 

most suitable magnitude .1 f
  

If we alter the angle 1 , then on the plane yx ee , the geometric locus, 
which corresponds to the eccentricity vector of the transfer orbit and was 
obtained after the first impulse application, will be the ellipse (Fig. 2-2) 
(Bushuev and Krasovski 1969, 48–-489). The solution which meets the 
additional constraints can be chosen from the set of solutions with equal 
total delta-vs. The additional constraints include the constraints on the 
transfer orbit eccentricity, and the constraints on the impulse magnitudes 
or the angles of their application, etc. For example, the curved line ADK 
with AD=DK corresponds to the solution with equal impulse magnitudes. 
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Fig. 2-2. Relative orbit eccentricity  

vector locus. 

 
Fig. 2-3. Hohmann’s transfer. 

 
Please note that the famous Hohmann’s transfer is the simplest 

particular case for this solution. Since the initial and the final orbits are 
circular for the Hohmann’s transfer, ,0eee yx  and, hence, 

. ,25.0 1221
aVV tt  An example of such a solution for

25.01  is depicted in Fig. 2-3. The line segment AB corresponds to 
the first impulse and the line segment BK corresponds to the second 
impulse. 

2.1.4. Coplanar Transfers between Intersecting Orbits: 
Coplanar Apsidal Solutions 

The ellipse with the center in the reference frame origin as the primer 
vector hodograph on the plane , corresponds to the optimal transfers 
between the intersecting orbits ( ae ). The ellipse osculates with the 
unit circle in the points (1, 0) and (-1, 0) (Fig. 2-1[b]). It is necessary that

0 ,
2
1

1
2
3

2
2  for such an osculation. Since 0 in both 

osculating points, the impulses of this solution will be transversal again (
0

ir
V ). The two-impulse solution will be optimal if the first impulse is 

braking (the left osculating point corresponds to it [ 1’) and the 
second impulse is accelerating (the right osculating point corresponds to it 
[ 1 ]). The impulse application angles 21,  differ from each other by 
half a revolution. 

For solutions with no radial impulse components, on the plane yx ee ,
the locus, which corresponds to the eccentricity vector of the transfer orbit 
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(obtained after the application of the first impulse), will be hyperbolic 
lines (Fig. 2-4a) (Bushuev and Krasovski 1969, 485–489). The impulse 
magnitudes and the angles of their application can be determined by 
Eq. 2-2, but one of the impulses will be braking. 
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e
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Fig. 2-4a. Relative orbit eccentricity 

vector locus. 

 
Fig. 2-4b. Transfer between 

intersecting orbits. 
 
The choice of the hyperbolic line is determined by the order of the 

accelerating and the braking impulse applications. Out of the obtained 
solutions, the optimal one will be the solution with line segments that 
correspond to the impulses directed along the symmetry line of the 
hyperbole ( BKVABV tt 21

2 ,2 [Fig. 2-4a]), i.e., the impulses are 
applied in the pericenter and the apocenter of the relative orbit. 

The impulse parameters (for the solution ABK) can be found by  
 

,
4
1

1
eaVt    (2-3a) 

,
4
1

2
eaVt    (2-3b) 

, , 21 ee    (2-3c) 
 

where e is determined by Eq. 1-14a. 
It is obvious that the order of the impulse application can be changed 
 

,
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The total delta-v value can be obtained by 

,
2

1

e
VV

N

i
ti

 

 
which does not depend on the impulse application order. 

Let us remember that if the single-impulse solution with the impulse in 
the point of the orbit intersection is used, the total delta-v expenditures can 
be determined by the following equation:  

 

.
4
3 22 aeV  

The comparison of two equations shows that the total delta-v of the 
single-impulsive manoeuvre is higher, because ae  for the 
intersecting orbits. 

Let us call the two-impulse solutions of this type coplanar apsidal 
solutions (CAS). 

2.1.5. Example 

Find the parameters of the impulse transfer between the orbits from 
Table 2-1.  

 
Table 2-1 

 
Elements Initial orbit Target orbit 

minH km 180 340 
maxH km 210 360 
prgu deg 20 150 

 
The basic constants are: km 0.371,6eR ; ./skm 10986028.3 235  
The semimajor axis and the orbit eccentricity can be given by 
 

.
2

 ,
2

minmaxminmax
a

HH
e

HH
Ra e  

 
The relative orbit is chosen as the drift orbit. The parameters of the 

relative orbit are shown below: 
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The semimajor axis deviation is calculated by 
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and the eccentricity vector: 
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The calculation results: 

km 0.721,6 ,km 0.566,6 ti aa , 00149.0 ,00228.0 ti ee ,  

02333.0 ,km 0.155* aa , 
.00344.0 ,00004.0 ,00344.0 eee yx  

The found eccentricity vectors and their difference vector are depicted 
in the below figure: 

 

 
 

It is needed to calculate the two nonintersecting orbit transfer 
parameters )( ea . The primer vector hodograph degenerates to the 
point and, hence, the two positive transversal impulses should be applied 
in order to obtain the optimal transfer. The apsidal solution, which is 
suitable for nonintersecting and intersecting orbits, is chosen from the set 
of the possible solutions which meet the constraint .22

21
aVV tt   
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The impulse application angles for this solution can be obtained by the 
following equations:  
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The calculation results: 624.1801 e (the quadrant of e should 

be controlled and it is determined by the signs of xe  and ye ), 

.6240.3602  
The impulses, which correspond to these angles, can be obtained with 

the use of eqs. 2-4a and 2-4b. 
The calculation results: .m/s 8327.51 ,m/s 5273.38

21 tt VV  

2.1.6. Comparison with the Results Obtained after the Problem 
Statement Refinement 

It should be noted that the statement that the total delta-v of the 
transfer between the intersecting orbits does not depend on the order of the 
accelerating and decelerating impulse application is only true for the 
linearized spacecraft equations of motion. It can be seen that the total 
manoeuvre delta-v would be a little bit different if one makes the 
manoeuvre parameters more accurate with the help of the iterative 
procedure from Chapter 1 in order to satisfy the terminal conditions with 
high accuracy. The same thing can be said about the transfers between the 
nonintersecting orbits but, here, the optimal transfer needs to be found 
among the set of transfers with the equal total delta-vs 2/aV  in the 
linearized statement. The theoretical results obtained for the optimal 
transfers between the elliptical orbits may help when choosing the genuine 
optimal manoeuvre (Ivashkin, 2012). 
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Fig. 2-5. Transfers between coaxial orbits: 

(a) intersecting orbits; (b) nonintersecting orbits. 
 
During the research into the transfers between the coplanar 

elliptical orbits, it was found that in the case of the transfer between the 
freely oriented orbits, the delta-v impulse expenditures will be minimal for 
the equally coaxial orbit orientation when the apsidal lines are directed 
along one line and the directions between the center of the attraction and 
the pericenter are equal ).( 0f The transfer along the curve of the 
half-ellipse, which connects the more distant apocenter with the other orbit 
pericenter, will be optimal (Figs. 2-5a and 2-5b).  

For the counter-axial intersecting orbits (the apsidal lines are aligned 
and the directions from the center of attraction to the pericenter are 
opposite), the transfer from the apocenter to the apocenter will be optimal 
(the curve 1T in Fig. 2-6a). If the counter-axial orbits do not intersect, the 
analogous transfer from the apocenter to the apocenter (the curve 1T in 
Fig. 2-6b) or the pericenter-to-pericenter transfer (the curve 2T in 
Fig. 2-6b) will be optimal. 

In order to assess the difference between the optimal and the 
nonoptimal solutions, we will calculate the total delta-v of the transfers on 
the curves 1T and 2T (Fig. 2-6a) for the case of counter-axial intersecting 
orbits with perigee km 200h  and apogee ,km 400h respectively. 
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Fig. 2-6. Transfers between counter-axial orbits: 

(a) intersecting orbits; (b) nonintersecting orbits. 
 

For the considered case of the counter-axial intersecting orbit solution, 
the energetic difference will be maximum. The semimajor axes, the 
eccentricities, and the focal parameters are 

 

km 5.669,6)1( ,015.0
2

,km 671,6
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The orbit perigee and apogee velocities are 

 

.m/s 795.614,7)015.01(756.730,71

,m/s 717.846,7)015.01(756.730,71

e
p

V

e
p

V

 

 
By using the equation for the semimajor axis alteration (see Section 

1.3.5)  
 

,2 2

TV
Va

a  

 
one can find the magnitude of the first impulse for the apocenter-to-
apocenter transfer 
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,m/s 81.58000,1
614795.7671,62
600,398100

2 221
1
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a
V T  

 
and for the pericenter-to-pericenter transfer 
 

.m/s 07.57000,1
846717.7671,62
600,398100

2 221
2

Va

a
V T  

 
On the first stage, we have a difference of m/s 74.1 for the same 

semimajor axis alteration, which comprises approximately 3% of the 
impulse magnitude. The transfer orbit semimajor axes noticeably differ for 
the transfer along the curve 1T km 771,61a  and for the transfer along the 
curve 2T .km 571,62a  Both transfer orbits are circular with the velocity 
of motion along the curve 1T is km/s 67259.71V and the velocity of 
motion along the curve 2T is .km/s 78848.72V  

Now, the magnitudes of the second impulses can be determined by 
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The total delta-v for the transfer along the curve 1T is

,m/s 46.11565.5681.581V while the total delta-v for the transfer 
along the curve 2T is .m/s 33.11626.5907.572V  Their difference is 
0.87 m/s, which comprises 0.75% of the total transfer delta-v. As can be 
seen, the difference in magnitudes of the particular impulses can reach up 
to several per cent, but the total delta-v of the transfers themselves differ 
slightly. By using the equations for the near-circular motion, we can 
obtain the impulse magnitudes, which are equal for both transfers: 

.m/s 936.57000,1
671,64
72988.7200

42,1 a
aV

V  

 
Thus, the total transfer delta-v is m/s 87.115V . Both magnitudes of 

impulses and the total delta-v of the solution, which were obtained with 
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the help of the equations for near-circular motion, are within the diapasons 
of the analogous variable magnitudes of the two exact solutions. 

The accuracy of forming of the given orbit, which was obtained with 
the use of equations for near-circular motion (for example, for the 
apocenter-to-apocenter transfer), can also be assessed. Due to the 
application of the first accelerating impulse of m/s 936.57    

 

km 02.197057936.0
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614795.7671,644 2
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2
V
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r  

 
the pericenter of orbits became higher by km 02.197 instead of the 
necessary km 200 . The braking impulse of the magnitude m/s 936.57 , 
which was performed at the opposite point, lowers the orbit apocenter 
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2,1
1

2
1 V
Va

r

  
by km 51.204 instead of the necessary km 200 . Thus, a considerable error 
when adjusting the orbit apocenter and pericenter exists, but the error of 
the semimajor axis is smaller by 2–3 times at only km 5.1 . It can be stated 
that the errors comprise 2–3% of the caused alteration of the 
corresponding values. They can be easily eliminated with the help of the 
iterative procedure from Chapter 1.  

The order of the impulse applications, which ensures the optimal 
solution is obtained, can be chosen for the analytical problem solution. 
The distances to the apocenters and pericenters for each orbit can be easily 
calculated because their orbit elements are known. The difference between 
the known 0,f  allows us to assess the proximity of orbit apsidal line 
orientation to the co-axial or the counter-axial orientation. Then the 
optimal solution is chosen out of the two possible solutions with the help 
of the aforementioned algorithm. The apsidal solutions can also be optimal 
for nonintersecting orbits. The curved lines ACK and APK correspond to 
them in Fig. 2-2. The parameters of these solutions are determined by Eq. 
2-4. If there is the option, it is better to obtain accurate solutions for both 
successions of the apsidal impulses with the help of the iterative procedure 
and then choose the optimal one.  

Table 2-2 shows the results of the analogous calculations for the 
different orbit heights and different height deviations in the pericenter and 
the apocenter. The results for the apocenter-to-apocenter and pericenter-
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to-pericenter flybys are listed in the first line of each cell; the results, 
which were obtained by the approximate equations and the relative error, 
are listed in the second line of each cell.  

 
Table 2-2 

 
H km h = 50 km h = 100 km h = 300 km 

300 57.832 58.049 115.47 116.34 - - 
57.937 0.0038 115.87 0.0075 - - 

600 54.143 54.388 108.11 108.89 322.62 329.66 
54.237 0.0036 108.47 0.0072 325.42 0.0218 

1,000 49.801 49.97 99.448 100.13 296.82 302.95 
49.883 0.0034 99.765 0.0068 299.3 0.0206 

1,500 45.136 45.28 90.142 90.716 269.11 274.3 
45.206 0.0032 90.412 0.0064 271.24 0.0193 

19,100 7.7617 7.7694 15.516 15.547 46.463 46.738 
7.7655 0.001 15.531 0.002 46.593 0.0059 

36,000 3.6183 3.6205 7.2346 7.2431 21.679 21.756 
3.6194 0.0006 7.2388 0.0012 21.716 0.0035 

 
Table 2-2 Continued 

 
H km h = 500 km h = 1,000 km 

300 - - - - 
- - - - 

600 - - - - 
- - - - 

1,000 492.98 510.16 - - 
498.83 0.0349 - - 

1,500 446.96 461.51 891.47 952.1 
452.06 0.0326 904.12 0.068 

19,100 77.309 78.072 154.06 157.13 
77.655 0.0099 155.31 0.0199 

36,000 36.093 36.307 72.008 72.864 
36.194 0.0059 72.388 0.0119 
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2.1.7. Solution with Fixed Velocity Impulse  
Application Angles 

In some cases, it is necessary to find a problem solution with fixed 
impulse application angles. Such a necessity occurs, for example, if there 
are constraints on the permitted manoeuvring intervals, and also when the 
transfer problem solution appears to be the part of the solution algorithm 
for the more complex rendezvous problem. 

The problem solution with the fixed impulse application angles is 
given in Gavrilov, Obukhov, Skoptsov, and Zaslavsky (1975). In this 
work, the equations for the transversal and radial impulse components for 
the minimum manoeuvre total delta-v are depicted. But they are given in 
the deviation of the coordinates and velocities at the point of the second 
impulse application, which is not convenient. It can be shown that the 
equation is true if one uses the results from the work of Gavrilov, 
Obukhov, Skoptsov, and Zaslavsky (1975):  
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By using this equation and the conditions for the transfer to the final 

orbit (Eq. 2-1), we can obtain the equations for the impulse components: 
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which will ensure the solution optimality. 
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2.2. Noncoplanar Transfers 

2.2.1. Problem Statement 

The problem of the optimal transfer between the noncoplanar orbits 
has been investigated in works by many authors including Kuzmak (Il'in 
and Kuzmak, 1976) and Marec (Marec, 1979). The fullest, the most 
compact, and the simplest solution to the problem was given by Edelbaum 
(1967, 66–73). However, it is necessary to note that there are no equations 
for the parameter determination of the third-type solution presented in this 
work (it is only mentioned that this type of solution exists). 

The final orbit transfer conditions for this problem can be written as 
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It is supposed here that the deviations are calculated in the coordinate 

frame with the x axis directed along the line of the orbit plane intersection. 
As a consequence, the right-hand side of Eq. 2-5d is equal to zero. 

It can be taken that i  is approximately the angle between the orbit 
planes, and its magnitude can be determined by Eq. 1-14d

.22
zVzi  The angle  between the line of orbit plane 

intersection and the relative orbit apsidal line is evaluated by Eq. 1-14c. 
Find the impulse parameters ),...,1( ,,, NiVVV iztr iii

 for the 
minimum total delta-v of the transfer  
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with the constraints 2-5a–2-5e. 

The equations for the primer vector for noncoplanar transfers are listed 
below: 
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Eqs. 2-6a–2-6d are ellipse equations in three-dimensional space. 
There are three primer vector hodograph configurations in the form of 

an ellipse, which allow the hodograph to have more than one maximum, 
and, hence, osculate with the unit circle in two or more points (Edelbaum 
1967, 66–73). The first configuration is the family of solutions with the 
center of ellipse in the reference frame origin (Fig. 2-7a). The two 
equivalent maximums are situated on the ellipse major axis and, hence, the 
distance between the impulse application angles is half a revolution.  

 

A

B

C

(a

 

B

C

A

(b

 

(c)

 
Fig. 2-7. Primer vector hodograph for noncoplanar transfer: 

a) nodal case; b) nondegenerate case; c) special case. 
 

The following equations describe this case, which is called the nodal 
case (NC): 
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,01     (2-7a) 
,12    (2-7b) 
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The second configuration, which holds the two identical primer vector 

maximums, corresponds to the case when the two points of an ellipse and 
its center belong to the axis and the ellipse center is shifted from the 
reference frame origin (Fig. 2-7b). This case, which was called the 
nondegenerate case (NDC), is presented by the following equations and 
inequalities:  
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The third configuration is the combination of the first two. The primer 

vector hodograph is a circle and the primer vector has the same magnitude 
in all orbit points (Fig. 2-7c). This singular case (SC) is described by the 
following equations, where the primer vector magnitude is unity: 
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,5342    (2-9b) 
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),cos( 0    (2-9e) 

).0 if( )sin(
2
3

0 i   (2-9f) 

         
By solving simultaneously eqs. 2-5a–2-5e, 1-18, and 2-7a–2-7c or 2-

8a–2-8f or 2-9a–2-9f. one can obtain the transfer impulse parameters, 
which correspond to one of the possible optimal solutions. 

The easiest way is to do it for the nodal case, where the impulse 
parameters can be obtained geometrically. 

2.2.2. Nodal Solution 

As always, let us depict the transfer on the plane ., yx ee Point K, as 
usual, corresponds to the relative orbit parameters. Due to the fact that the 
impulse application angles differ by half a revolution (Eq. 2-7b), the orbit 
planes can only be aligned if the impulses are applied in the moment of the 
orbit plane intersection; hence, the impulse application angles will be 0 or

.  Thus, line segments, which represent the transversal impulse 
components, will be parallel to the xe axis, and the line segments, which 
represent the radial impulse components, will be parallel to the ye axis 
(Fig. 2-8).  

 

B

A

Vt2

Vr2
D

Vt1

CL M
ex

ey
ex ey

Vr1

 
Fig. 2-8. Nodal solution 

 
Let us draw the circle of radius a  with the center in the reference 

frame origin. Let the xe axis-circle intersection point be L, and the point K 
projection on the xe axis be M. The magnitude of the transversal 
component of the first impulse can be found with the help of the following 
equation (the equality LC = CM should be satisfied):  
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The radial component magnitude can be found with the help of the 

following equation: 
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Point B, which corresponds to the eccentricity of the orbit and was 

obtained after the application of the first impulse, should belong to the line 
segment AK.  

After that, the transversal and the radial component magnitudes of the 
second impulse can be easily found:  
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The components of the same type have different signs, but the impulse 

application angles differ by ; this is why the vectors that depict the 
impulse components on the plane ,, yx ee  are pointed in the same direction. 

Similarly, we divide i  correction into two parts with the lateral 
impulse components:  

 

.
2

)(

,
2

)(

2

1

x

x
z

x

x
z

e
iea

V

e
iea

V

 

 
By knowing the impulse components, the transfer total delta-v can be 

obtained:  
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The found solution would meet the constraints of 2-7c, if point C is 
situated to the left of point M; hence, the condition,  

 
,22

xea  
 

which denotes that the solution is only possible for transfers between the 
intersecting orbits (the inequality ae  is true for this type of orbits), 
should be true. 

The primer vector should be maximum in the impulse application 
point; hence, the second condition can be written as 

 
.3 22 iey  

2.2.3. Nondegenerate Solution 

We have to solve the complex equation system 2-5a–2-5e, 1-18, and 2-
8a–2-8f for the nondegenerate case. The solution procedure, the equations 
for V , and the coefficients, 54321 ,,,, , can be found using the 
results from the work by Edelbaum: 
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With the knowledge of these coefficients, one can obtain 0  from 

Eq. 2-6d, and then, from Eq. 2-8d, the impulse application moments can 
be determined. The impulse orientation can be found from eqs. 2-6a–2-6d. 
By knowing ,V  the impulse magnitude distribution can be determined 
from Eq. 2-5c.  

The existence domain of the problem solutions is described by the 
following inequalities:  
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2.2.4. Singular Solution 

For the singular case with the help of the passage to the limit from the 
nondegenerate case, one can find the total delta-v  
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the existence domain  
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and the 0 magnitude  
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The initial equation system should be simplified in order to obtain the 

impulse magnitudes and their application angles. For this purpose, we will 
rotate the coordinate frame by the angle 0  from Eq. 2-10. Let the new 
projections of the eccentricity vector 

nn yx ee , be 
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Let us introduce the new variables, ,,,, sss yxa which are related with 

the variables ,,,
nn yx eea  by the following equations:  

 

.,
3
2 ),2(

3
2,

2
1

0nn ysxss eyeVxaa  

 
The equations for the terminal constraints will be  
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where iV = the magnitude of i-th impulse. 

The equation system 2-11 has fewer equations in comparison with Eq. 
2-5, since the two equations from Eq. 2-11 turned out to be linear 
combinations of the other equations and were excluded. Hence, the 
variable replacement was made. 
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The analytical solution for the parameters of the two-impulse solution 
cannot be obtained from a seemingly simple equation system: it can only 
be shown that it exists, which is why Edelbaum suggests using the three-
impulse solution. No concrete equations are presented because lots of 
three-impulse solutions exist. However, it is important to have the 
equations for the calculations and we will go into greater detail by 
showing one of the possible ways of obtaining one of these solutions.  

Assume that the angle of the first impulse application coincides with
),( 010  and that the angle of the second impulse application differs 

by half a revolution, i.e., .,0 21  Then, from eqs. 2-11c and 
2-11d, one can determine the application angle and the magnitude of the 
third impulse  
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Then the magnitudes of the first and the second impulses can be found 

from eqs. 2-11a and 2-11b:  
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The geometric interpretation of the solution is given in Fig. 2-9. Only 

the transversal components of the first two impulses are not zeros. The 
impulse application angles are ., 0201  The line segments AB 
and BC correspond to these impulses. 
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Fig. 2-9. Singular solution 
 

The third impulse lateral component is equal to ,i as it is the only 
impulse that changes the attitude of the orbit plane and, hence, its 
application angle is .03  The segment, which is parallel to the xe axis, 
corresponds to the transversal component of this impulse. The ratio of the 
radial and transversal components should have a magnitude which ensures 
the perpendicularity between line segment CK, which depicts the influence 
of the third impulse, and line segment AC.  

2.2.5. Solution Existence Domains 

This type of optimal solution, which corresponds to the particular 
deviations between the initial and the final orbits, can be found with the 
help of the following diagram: 

 

 
 

The existence domain areas of different type solutions depend on the 
deviations ieea yx ,,, . 
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The specific look and the locations of the existence domains for the 
different type solutions are depicted in Figs. 2-10a–2-10f. 
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Fig. 2-10. Different types of solution existence domain. 
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The close-ended contours correspond to various values of ,/ Vi  
which alter with the 0.05 step from the zero value (on the boundary of the 
figures) to the unity in the reference frame origin. Every figure has the 
caption with the difference between the angles e and z (Eq. 1-14) under 
them. In Fig. 2-10a, the node solution existence domain is the set of two 
triangles, the bases of which are the vertical boundaries of the quadrate, 
and the apexes of the triangles are situated in the reference frame origin. 

The existence domain of the nondegenerate solutions is the remaining 
two triangles with the bases as the horizontal boundaries of the quadrate 
and confluent apexes.  

In Fig. 2-10b, the singular solution existence domain appears near the 
vertical boundaries of the quadrate and the node solution occupies the 
triangle area, which adjoins to the singular solution area. The existence 
domain of the nondegenerate solutions occupies the rest of the figure.  

The nodal solution existence domain rapidly decreases with the 
e z (Figs. 2-10c–2-

10e); meanwhile, the singular solution’s existence domain increases. As a 
result, in Fig. 2-10f, the existence domain of the node solutions is 
completely absent. 

2.2.6. Optimal Solution without the Radial Velocity Impulse 
Components 

The solution with the zero radial impulse components was mentioned 
by Edelbaum but was never distinguished as a self-consistent type of 
optimal solution. The first figure in the set (Fig. 2-10) corresponds to it 

)0( ze ; hence, the point K in Fig. 2-8 belongs to the abscissa 
axis, and it means that the radial impulse components are equal to zero. It 
can be shown that the solution without the radial impulse components can 
be classified as the fourth possible type of optimal solution (Baranov 
2012, 141–151). 

Eqs. 1-17e–1-17g with 0632  can be presented as  
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The primer vector hodograph degenerates to the line segment, which is 
parallel to the axis and crosses the axis (Fig. 2-11, the line segment 
BC). The optimality conditions are satisfied, since the primer vector 
hodograph does not exceed the unit circle boundaries and osculates with it 
in the two points.  

A solution of this type cannot be classified as a particular case of the 
nondegenerate solution because Eq. 2-8e is violated and Eq. 2-8d cannot 
be used. This new solution will have 
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Such a solution exists if the relative orbit apsidal line 

coincides with the plane intersection line for the initial and the target 
orbits ).0,0,( yze e The impulse application angles differ by

).180(180 21 In Fig. 2-10a, this solution (not the nondegenerate 
solution) exists in the triangles with the horizontal bases. The 
nondegenerate solution occurs in these areas when the condition ze  
is violated, which is why it was the only mentioned solution in the 
description of the different types of solution existence domains.  

 
 

 
Fig. 2-11. Primer vector hodograph in the line segment form. 

 
It may seem that a solution of this type can be rarely met in practical 

work, as it is hard to imagine the case when the node and apsidal lines 
fully coincide with each other. However, this solution for the first 
manoeuvring interval is often part of the four-impulse solution for the 

C
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rendezvous manoeuvres of “Soyuz”- and “Progress”-type spacecraft and 
the orbital station. The existence conditions for this simple and optimal 
solution on the first interval can be created by the two impulses of the 
second manoeuvring interval.  

2.2.7. Manoeuvres without Radial Components:  
Universal Solution 

During the calculation of the spacecraft manoeuvres, we have to deal 
with the constraints on orientation and the moments of impulse 
application, and the parameters of the transfer orbit, etc. A prohibition on 
the use of the radial impulses can be often met.  

Let us consider the two-impulse transfer manoeuvre parameter 
determination procedure between the arbitrary noncoplanar orbits without 
radial impulse components (in the previous paragraph it was supposed that 
the apsidal line of the relative orbit coincides with line of the initial and 
the target orbit intersection). 

In this case, there are six unrestricted variables (the two angles of the 
impulse application, 21, , the four impulse components

2211
,,, ztzt VVVV ), and five constraints in the equality forms 2-5a–2-

5e. We can fix the value of one of the variables, for example, 
f11 , 

and determine the values of the variables 2,,
21 tt VV  with the help of 

eqs. 2-2a–2-2c, and then find the lateral impulse components from 
eqs. 2-5d and 2-5e: 
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Then it is enough to make the optimization by one variable 1 in order 

to find the optimal solution parameters. If there are no constraints on 
angles of the impulse application, the enumeration is carried out on the 
interval ].,0[  If the constraints are present, then 1 is enumerated in the 
permitted diapason and the solutions with ,2 which do not meet the 
imposed restrictions, will be excluded. 
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The close-to-optimal solution parameters can be found analytically 
among the solutions with zero radial impulse components. We will 
suppose that the impulse components of this solution are connected with 
each other via the equation:  

 

.
2

2

1

1

t

z

t

z

V

V

V

V
   (2-15) 

 
This demand is pretty natural, as the majority of the previously 

considered optimal solutions, which meet the necessary optimality 
conditions, have this attribute. 

We will call the solutions with the following characteristics universal: 
,0

21 rr VV  the transversal and lateral impulse components are 

connected with each other by Eq. 2-15, and .18021  They can be 
used either with or without the constraint on the usage of the radial 
impulse components. The geometric method can also be used for the 
universal solution parameter determination (Baranov 2008, 430–439).  

Let us suppose again that point K corresponds to the elements of the 
relative orbit on the plane yx ee ,  and the xe axis corresponds to the 
direction of the optimal orbit plane correction. Let us draw the line CM 
through the middle of line segment AK (through the point C). CM is 
parallel to the xe  axis (Fig. 2-12).  

Let us find point B on this line, which meets the constraints
,aBKAB if ea or ,aBKAB and if .ea  The curved 

line ABK will correspond to the solution of the flat problem
).2 ,2(

21 tt VBKVAB  Let us extend the line segment KB until it 

intersects with the xe axis (point L). Let us draw the line segment AL  

(AL = i ) on the xe axis and the line segment L B , which is parallel to the 
line segment LB.  

The line segments AB  and B L  have the same inclinations as the line 
segments AB and BK; hence, the curved line AB L  corresponds to the 
lateral deviation correction ( ,

1zVAB B L  =
2zV ). It can easily be 

seen that
BK

LB
AB
AB ''' ; hence, .

2

2

1

1

t

z

t

z

V

V

V

V
 Thus, a solution with the 

desired characteristics is found.  
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Fig. 2-12. Universal solution. 

 
By knowing the geometric interpretation, we can find, for example, the 

first impulse application angle of this solution (Baranov 2008, 430–439):  
 

,ctgctg1
2

tg

,                               
,                               

22

2
2

*
1

*
11

ea

a
a
e

ze (2-16) 

 
and then, with the help of eqs. 2-2a–2-2c, 2-14a, and 2-14b, we can obtain 
the other manoeuvre parameters.  

The numerical research showed that the total delta-v of this simplest 
solution is close enough to the total delta-v of the aforementioned optimal 
solutions, especially to the nondegenerate case solution. Thus, this 
analytical solution can be used for the solution of the majority of the 
practical noncoplanar optimal transfer problems. Furthermore, when the 
solution with the satisfied terminal conditions with the given tolerance is 
found with the help of iterative procedure, then sometimes the usage of the 
universal solution in the iterative procedure gives smaller total delta-v 
value in comparison with the usage of the optimal solution. Besides, in the 
complex problems from Chapter 7, the usage of the universal solution in 
the iterative procedure allows us to substantially reduce the number of 
iterations needed to obtain the given accuracy for the terminal condition 
satisfaction. 

It is obvious from this section that the impulse application order can be 
changed for every solution. Furthermore, the impulses can be divided into 
parts and these parts can be applied on different revolutions, but on the 
same latitude argument. This allows the reduction of, for example, the 

ey
K( ex, ey)
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impulse realization error magnitude. However, just like in the case of the 
coplanar transfers, it is necessary to remember that the statement about the 
arbitrary impulse application order is only fair in the linear approximation. 
If there is the option, it is better to obtain the accurate solutions for both 
successions of the impulses with the help of the iterative procedure and 
then choose the optimal one.  

2.2.8. Example 

Determine the parameters of noncoplanar impulse transfer for the 
parameters listed in Table 2-3: 

  
Table 2-3 

 
Elements Initial orbit Final orbit 

minH km 180 340 

maxH km 210 360 
prgu deg 20 150 
i deg 51.7 51.69 

deg 17.49 17.5 
 

The information about the orbit inclination and the RAANs was added 
to the first example solution in this chapter.  

The calculation results from the first example solution:
,00344.0 ,02333.0 xea .00345.0 ,00004.0 eey  

The evaluated RAANs and inclinations: .01.0 ,01.0 i  
By using the equations for the spherical triangle, one can find the angle 

between the orbit planes and the node line latitude argument :zu  
 

.sin
cos

sin
sin

i
itgu

ui
i

u

z

z

z

 

 
We get .1240.38 ,0127.0 zu  
Between the two possible optimal lateral correction angles one should 
choose the closest to :e  .8760.141180 zz u  
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The angle between the optimal eccentricity correction direction and the 
optimal lateral correction direction  is evaluated: 

.748.38876.141624.180ze  
It is necessary to keep in mind that all angles in the equations are in 
radians; the velocities and the other variables are dimensionless. 

By using Eq. 2-16, 
 

22

2
2

*
1 1
2 ea

a
ctgctg

a
e

tg  

 
we get *

1 = first impulse application angle, starting from the line
.004.34 , *

1conste  The angle 1  of the first impulse application 
starting from the x axis: .620.146 , 1

*
11 e  The transversal 

impulse components and the angle of the second impulse application are 
determined for the angle 1  using Eq. 2-2:  ,m/s 3461.50

1t
V  

.9030.315 ,m/s 0139.40 22t
V  

Then the magnitudes of the lateral impulse components are found with 
the use of eqs. 2-14a and 2-14b: ,m/s 7643.0 ,m/s 9616.0

21 zz VV  

where .zi
z
i  

The sum of the lateral components is .m/s 7259.1
21 zzz VVV  

The sum of all components is .m/s 37.90V  
The minimal possible expenditure on the orbit plane rotation (with node 
line correction) is .m/s 7185.10min

VVz  

The found solution is close to optimal, and zV practically coincides with
.

minzV  

The ratios’ equality is checked for control purposes .
2

2

1

1

t

z

t

z

V

V

V

V
 

The found values are .0191.0 ,0191.0
2

2

1

1

t

z

t

z

V

V

V

V
 

The ratios are equal; therefore, the found solution is correct. 
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CHAPTER THREE 

COPLANAR RENDEZVOUS  
 
 

3.1. Problem Statement 
 

Determine the manoeuvre parameters that ensure the flyby to the given 
point of the target orbit for a fixed time. 

The conditions of the transfer to a given point of the target orbit for a 
fixed time in the case of the coplanar rendezvous problem can be 
presented as follows: 

 

,)cos2sin(
1

x

N

i
itir eVV

ii
 (3-1a) 

N

i
yitir eVV

ii

1

,)sin2cos(  (3-1b) 

,2
1

N

i
t aV
i

    (3-1c) 

N

i
iitir tVV

ii

1

.))sin43()cos1(2(   (3-1d) 

 
The impulses are applied on two manoeuvring intervals. The first 

interval starts from the moment when the possibility to perform the 
manoeuvre occurs, while the second interval ends right before the 
rendezvous point. Each interval has the length of one revolution; the gap 
between the intervals is several revolutions. The division of the 
manoeuvring intervals into several revolutions has its advantages. In the 
case when the total rendezvous rdvV  exceeds the total transfer trfV  due 
to the considerable difference in the initial positions of spacecraft along 
the orbit, the long flight interval on the drift orbit significantly brings 

rdvV  closer to trfV . Besides, the possibilities of the orbit determination 
after the first manoeuvring interval and the second manoeuvre parameter 
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update (for the error compensation after the first impulse applications) 
appear. If necessary, additional burns, which correct errors in the orbit 
determination and the realization of the first impulses (a special 
manoeuvre to avoid colliding with space debris, can be added. In real 
missions, the manoeuvring intervals are separated from each other by a 
considerable number of revolutions. For example, for the “Soyuz” and 
“Progress” spacecraft, the first and the last manoeuvring intervals are 
separated by approximately 30 revolutions. There are more than 40 
revolutions for the “Shuttle” and several dozens of revolutions for the 
European ATV etc. The relatively short rendezvous scheme (the several 
revolution approach) which can be found in works by Murtazin (2012, 14–
2149; 2014, 162–175) also has its own advantages. It is mainly connected 
with the convenience of the cosmonaut habitability. However, the 
permitted phase diapason (the difference between the latitude arguments 
of the target spacecraft and the active spacecraft in the initial moment of 
the flyby) becomes extremely narrow, which adds significant constraints 
on the possible launch windows. Thus, the multiple-revolution rendezvous 
is preferable for automatic spacecraft, and both variants are possible for 
manned spacecraft. For manned spacecraft, the transition from the short 
scheme to the conventional multiple-revolution scheme is fulfilled in 
emergency situations.  

The impulse belonging to the given manoeuvring intervals can be 
presented as follows:  

 
,,...,,,..., 221111 2111

FFFF NNNN  (3-2) 
 

where 21, NN  = numbers of impulses on the first and the second 
manoeuvring intervals and ),( 21 NNN  21, FF = the first and the 
second manoeuvring intervals, respectively. 

The problem of the optimal coplanar rendezvous manoeuvre parameter 
determination can be stated as follows:  

Find the components ),,...,1(,, NiVV itr ii
 which ensure the 

minimal total manoeuvre :V  
 

N

i
tr ii

VVV
1

22  

 
with the constraints 3-1a–3-1d, 3-2.  

The equations for the primer vector are listed below: 
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,2)sin( 60
2
3

2
2   (3-3a) 

),(3)cos(22 060
2
3

2
21  (3-3b) 

,
3

2
0tg    (3-3c) 

or 
 

),2)(cos( 0 BA    (3-4a) 

),)(3)sin(2( 00 A
C

BA  (3-4b) 

,
3

2
0tg    (3-4c) 

 

where .2 , , 1
62

3
2
2 C

A
BA  

Normally, eqs. 3-4a and 3-4b in the plane ,  describe the cycloid. 
The cycloid form depends only on the constant B, while the constant A 
determines the hodograph scale. The closed loop of the cycloid disappears 
for .3/2B The cycloid turns into an ellipse with .0B  It degenerates 
to the point with .0 ,0 BA  Thus, three types of the optimal solutions 
are possible: 

A) The hodograph degenerates to the point; hence, just like for 
coplanar transfers, the impulses will only have transversal components

),0(  which will all be accelerating (if 1 ) or decelerating (if 
1). In the previous chapter, these solutions were designated as 

coplanar special solutions (CSS). 
B) The hodograph turns into an ellipse. Similar to coplanar transfers, 

the impulses only have transversal components ),0(  some of them are 
accelerating ( 1 ), while the rest of them are decelerating ( 1). 
The impulses are located on the apsidal line of the drift orbit. These 
solutions are called coplanar apsidal solutions (CAS). 

C) The hodograph is the cycloid. The impulses have radial components 
);0(  the impulses applied on the first manoeuvring interval are 

decelerating (the transversal components are negative [ 0 ]), and the 
impulses applied on the other interval are accelerating (the transversal 
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components are positive [ 0 ]). Let these solutions be coplanar 
nondegenerate solutions (CNS). 

In the first two cases, the total rendezvous problem rdvV  is equal to 
the total transfer problem trfV ),( trfrdv VV ; in the third case, 

.trfrdv VV   
The existence conditions for each of these three possible types of 

rendezvous problem solutions will be formulated in the fourth paragraph 
of this chapter.  

First, we will consider the parameter determination procedures for 
each type of solution. 

3.2. Rendezvous in Coplanar Nonintersecting Orbits:  
The Coplanar Singular Solution 

Solutions of this type exist when the rendezvous can be performed by 
the corresponding division of impulses (which are necessary for the 
transfer between orbits) between the first and the second manoeuvring 
intervals. For example, the active spacecraft is situated in the inner orbit, 
while the target spacecraft is situated in the outer orbit ahead of the active 
spacecraft (but not too far). The manoeuvres, which increase the orbit’s 
semimajor axis and change the eccentricity vector appropriately, are 
performed for the active spacecraft on the first interval. Then a process 
occurs which is usually called “phasing”. The active spacecraft stays in the 
inner orbit and gradually, revolution by revolution, approaches the target 
spacecraft. When it is practically under the target spacecraft, the 
manoeuvres on the second manoeuvring interval, which ensure the two 
spacecrafts’ rendezvous, are performed. If the active spacecraft was in the 
outer orbit, the target spacecraft should have been behind the active 
spacecraft in the initial moment of time. Then, similar to the previous 
case, the braking manoeuvres are performed, then the phasing stage 
follows, and finally the concluding braking manoeuvres are performed.  

The primer vector hodograph in the form of the point corresponds to 
the considered special solution CSS. The optimal solution to the 
rendezvous problem has impulses with only transversal components, 
which are all either accelerating or decelerating. The primer vector does 
not give any information about the impulse application angles. The total 
delta-v of such rendezvous manoeuvres coincides with the total delta-v of 
the transfer manoeuvres (the group of rendezvous manoeuvres is a 
particular case in the transfer manoeuvres group):  
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Two-, three-, and four-impulse solutions are considered. The solution 

parameter searching procedures for the various numbers of impulses differ 
from each other. Solutions with more than four impulses do not gradually 
differ from four-impulse solutions.  

3.2.1. The Two-Impulse Solution 

We will start the two-impulse solution parameter determination with 
the impulse assessment. Eq. 3-1d shows that, for the considered flybys 
with a duration of several revolutions the major influence on the time of 
the arrival to the rendezvous point is caused by the transversal component 
of the first impulse. This allows approximately determining its magnitude:  

 

,
3 10

*
1

t
Vt    (3-5) 

Where 10  = arbitrary point of the first interval permitted for the 
manoeuvring. Here, we used the fact that the length of the first 
manoeuvring interval is considerably smaller than the distance to the 
rendezvous point. We will further mark with asterisk the manoeuvre 
parameters for which the condition 3-1d is approximately satisfied. The 
geometric condition 3-5 indicates that, on the plane yx ee , , the point B 
(Fig. 3-1a), which corresponds to the drift orbit eccentricity vector (the 
orbit obtained after the application of the impulses of the first 
manoeuvring interval, also called the “phasing orbit”), should belong to 

the circle with the radius 
10

1 3
2 t

R  and the center in the point A, 

because the magnitude of the first impulse is known, but its application 
angle is still unknown. 
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Figure 3-1. Two-impulse solutions: 
(a) both impulses are transversal (b) second impulse has radial 

component 
 

That means that the line segments on the plane yx ee ,  with lengths of 
*
1

2 tV (plotted from the point A with various angles to the xe axis) 

correspond to the impulses with magnitudes *
1t

V  which were applied in 
the various points of the initial orbits. The geometric locus of the ends of 
these line segments will be a circle with the radius .1R   

It follows from eqs. 3-1c and 3-5 that  
 

,
32

1
10

*
2

t
aVt    (3-6) 

 
Thus, the point B must also belong to the circle of the radius 

10
2 3

2 t
aR  with a center in point K (Fig. 3-1a). It follows that it is 

necessary to transfer to point K with the second impulse of known 
magnitude ,*

2tV  but the application angle of this impulse is still 
unknown; hence, we can transfer to point K with the help of this impulse 
from an arbitrary point of a circle with the radius .2R  

The two-impulse solution with zero radial components exists if the 
circles intersect, i.e., the below conditions are satisfied: 

 
,21 eRR    (3-7a) 
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.21 eRR    (3-7b) 
 

The equality of the signs of the transversal impulse components of the 
first and the second manoeuvring intervals should be fulfilled in order to 
rank the found two-impulse solution as the CSS. The parameters of the 
orbits for this case will be determined in the fourth paragraph of this 
chapter. 

It is obvious that the intersections of the circles give the two two-
impulse solutions ABK and AB'K (Fig. 3-1a). The impulse application 
angles ,, *

2
*
1 in which the intersection of the circles occur can be found 

from eqs. 3-1a and 3-1b: 
 

,...),2,1,0( )sign1(
2
12 **
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where 
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In Eq. 3-8 the upper indexes correspond to the point B , and the lower 
indexes correspond to the point B. The constants 1n  and 2n are chosen in a 
way that the angles *

2
*
1 ,  would belong to the first and the second 

manoeuvring intervals, correspondingly. 
The found angle values can be used as the initial guess for the iterative 

procedure (Baranov 1989, 689–697), which determines the parameters of 
the manoeuvre, for which the condition 3-1d would be fulfilled with the 
given tolerance. 

On the consecutive iterations of this procedure, the magnitudes of the 
transversal impulse components **

21
, tt VV  are determined by eqs. 3-1c 

and 3-1d, where the impulse application angles *
2

*
1 ,  were calculated on 

the previous step. Then, with the help of Eq. 3-8, one can update the 
impulse application angle magnitudes. The calculations continue if the 
right and the left parts of Eq. 3-1d do not coincide with each other with the 
given tolerance for the found values of .,,, ***

2
*
1 21 tt VV   
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It can be shown that the procedure converges if the condition below is 
satisfied:  

 

,1
)(

2
)(tg

2
21

21

 

 
Hence, the intersection of the circles in the small vicinity of the line 

AK is not allowed but, in this area, simple apsidal solutions are optimal. 
Their parameters will be determined below. 

If the circles with radii 1R  and 2R do not intersect, then the two-
impulse transfer with zero radial components of both impulses is not 
possible. This is possible for nonintersecting orbits when one of the circles 
is located entirely inside of the other. For this problem, a manoeuvre with 
a nonzero radial component and with a lower (by magnitude) value than 
the transversal component will have the least total delta-v (Fig. 3-1b). The 
iterative procedure, which determining the parameters of such 
manoeuvres, is described in Baranov (1985). The total delta-v of these 
manoeuvres is greater than the minimal possible ,2/a . Therefore, if the 
circles do not intersect, then it is necessary to use three- or four-impulse 
manoeuvring schemes for obtaining the optimal solution.  

The aforementioned manoeuvre parameter determination method is 
quite convenient for the qualitative solution assessment. However, the 
researchers, who usually carry out this assessment, as a rule, have the orbit 
parameters in the first (before the first manoeuvring interval) moment of 
time, and not in the final one. With a rendezvous duration of several 
dozens of revolutions, the eccentricity vectors and the semimajor axes 
alter insignificantly, which is why one can use their deviations, which 
correspond to the initial moment of time, in the aforementioned equations. 
It is convenient to transit from t  to u  ( u  = difference in the angular 
positions between the target spacecraft and the active spacecraft in the 
initial moment of time [the initial phase]). Then, instead of *

1t
V , we can 

find the approximate value of *
2tV   

 

,
3 10
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2

u
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then the value of *
1t

V , and then the values of *
2

*
1 ,  etc. 

3.2.2. The Three-Impulse Solution 

In the analysis of three-impulse manoeuvres, we will assume that a 
single impulse is applied on the first manoeuvring interval. The variant 
with two impulses on the first interval can be evaluated in analogous 
fashion. It is reasonable to make the assumption that one impulse is 
applied on the first manoeuvring interval while the two other impulses are 
applied on the second manoeuvring interval. In the moment of manoeuvre 
parameter determination, an error in the orbital elements of the active and 
target spacecraft exists. The manoeuvres of the first interval will be 
fulfilled with errors as well. All these factors will lead to there being a 
difference between the active spacecraft’s real orbit and the estimated 
orbit before the second manoeuvring interval. This is why a single impulse 
will not be enough for the transfer to the final orbit and thus it is necessary 
to use two burns in this interval. 

 

 

 

Fig. 3-2. Three-impulse solutions: 
(a) basic solution (b) apsidal solution 

 
The magnitude of the transversal component of the first impulse can be 

approximately determined by Eq. 3-5, while the sum of the transversal 
impulse components of the second interval can be determined in the same 
fashion as Eq. 3-6: 
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We suppose that the circles with radii *
1 1

2 tVR  and 
IItVR 22  

intersect (Fig. 3-2a) and the signs *
1t

V  and 
IItV  coincide, which is 

possible for flybys between nonintersecting orbits with optimal values of 
t . 

For the existence of the CAS-type solutions considered, it is necessary 
for all the signs of the transversal impulse components of the second 
manoeuvring interval to coincide, which is possible with 

IIi tt VV * (i 

= 2, 3). The application angles of these impulses may be arbitrary and, 
hence, point C, which corresponds to the drift orbit eccentricity vector, 
should belong to the circle with radius 2R  and its center at point K (Fig. 
3-2a). This is connected to the fact that the transfer to point K on the 
second manoeuvring interval is fulfilled by a two-section curved line of 
length 

IItV2  (since the two impulses are applied on the second 
manoeuvring interval, the application angles may be arbitrary), not by the 
single line segment of length 

IItV2  (as in the two-impulse scheme with 
one impulse on the second manoeuvring interval). An example of such a 
line is the curved line CDK in Fig. 3-2a. Thus, point C can lie not only on 
the circle of radius ,2R but also inside it. In the meantime, it should belong 
to the circle with radius .1R  As such, point C should belong to the curve 
BB' of the circle with radius 1R  (Fig. 3-2a). The set of solutions, which 
differ by the application angles and the magnitudes of the second and third 
impulses, but have equal total delta-v magnitudes ,2/a  correspond to 
the position of point C on curve BB'. The three-impulse example solution 
is presented in Fig. 3-2a by the curved line ACDK. Point D, which 
corresponds to the orbital eccentricity vector (obtained after the 
application of the first impulse on the second manoeuvring interval), 
should belong to an ellipse with focus points C and K. The semimajor axis 
of this ellipse is equal to 

IItV (Fig. 3-2a). 
There are six variables (three transversal impulse components and 

three angles of their application) and four constraints in the equality forms 
in the considered three-impulse rendezvous problem. Additionally, if we 
fix the values of two out of the six variables, the values of the rest can be 
determined using eqs. 3-1a to 3-1d. 

Let us fix the application angles of the first and second impulses 
., 2211 ff
 A solution of the required type can be obtained if 
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),( 111 ebf
 is true, i.e. point C belongs to curve BB'. Naturally, 

f1  

and 
f2  should belong to the first and second manoeuvring intervals, 

respectively. Since 1  is fixed and *
1t

V  can be determined from Eq. 3-5, 
the position of point C is known (the drift orbit eccentricity vector is 
known). The last two impulses ensure a transfer without the time 
constraint on the second manoeuvring interval (the transfer from point C 
to point K). The application angle of the first of these impulses is fixed 
and, with the use of eqs. 2-2a to 2-2c, one can determine **

32
, tt VV  and 
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3  
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By using *
3

*** ,,,
321 ttt VVV  as the initial guess, we can evaluate the 

manoeuvre parameters that would satisfy condition 3-1d with the desired 
accuracy. For this purpose, let us put the fixed application angles and the 
found impulse parameters in the left part of Eq. 3-1d and determine .*t  
Then, we substitute t  to ):( ** tttttt  in Eq. 3-1d and 

repeat the calculations. The procedure ends when ,*tt  where  

= the accuracy of Eq. 3-1d. Since we have the outer iterative procedure 
(presented in Chapter 1), which ensures that all perturbations are taken 
into account, the accuracy of this iterative procedure, as a rule, should be 
by an order of magnitude more accurate than the fulfillment of the time 
condition in the outer procedure. 

The impulse application angle fixation is usually dictated by the flight 
conditions. If there are no constraints on the moments of impulse 
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application, then it is better to use the simplest solution for the sake of 
simplicity and reliability. The impulses of the simplest solution are applied 
on the apsidal line of the relative orbit (the apsidal solution). We can 
assume, for example, that the third impulse has the same application angle 

e  (Eq. 1-14a) on its revolution as the first impulse had on its revolution, 
and the application angle of the second impulse differs by 180º from the 
angle of application of the third impulse. The line segments AC, CD, and 
DK correspond to the impulses of such a solution in Fig. 3-2b. The angular 
values i  can easily be calculated if we know the impulse application 
angles on the revolution: 

 
,)(21 asasIe uNN   (3-11a) 

,)(22 asasIIe uNN  (3-11b) 
,)(23 asasIIe uNN   (3-11c) 

 
where asas uN ,  = the number of revolutions and the target point latitude 
argument and III NN ,  = the numbers of revolutions on which impulses of 
the first and the second manoeuvring intervals are applied, respectively. 

The transversal impulse component magnitudes can be evaluated from 
Eq. 3-1: 
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4
1

13 tt VeaV   (3-11f) 

 
where iiik 3sin4  (i = 1, 2, 3). 

Depending on the location of the second manoeuvring interval, there 
may be a solution with the reverse order of impulse application. The 
application angle of the first impulse of the second manoeuvring interval 
is ,e  and the second impulse is applied half a revolution later. 

It is important to note that, during the determination of the apsidal 
solution parameter, the concept of the rendezvous having a multiple-
revolution nature was not used. As such, the found analytical solution can 
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be used for the manoeuvre parameter determination of a rendezvous of 
arbitrary duration. 

We can use Eq. 3-11f, instead of Eq. 3-5, for the assessment of the first 
impulse magnitude. 

The considered solutions exist if the circles with radii 1R  and 2R
intersect, or the circle of radius 1R  is entirely situated inside the circle 
with radius .2R  If the opposite situation occurs, with the circle of radius 

2R  situated entirely inside the circle of radius ,1R  three-impulse CSS 
solutions exist only if two impulses are applied on the first manoeuvring 
interval. 

If one of the circles lies entirely inside the other and three-impulse 
CSS solutions exist, one can distinguish the four simplest three-impulse 
apsidal solutions from among them (if two of the three impulses can be 
placed on the first or on the second manoeuvring interval). The parameters 
of these solutions can be determined unambiguously from Eq. 3-1 as well. 
As shown in Chapter 2, the real (after the manoeuvre parameter update 
with the help of the iterative procedure from the first chapter) total delta-
vs of these solutions can differ. If the lengths of each of the permitted 
manoeuvring intervals do not exceed one revolution, only two possible 
apsidal solutions remain. 

3.2.3. Example 

Here, in considering the three-impulse rendezvous, one of the impulses 
is applied on the first manoeuvring interval and the other two impulses are 
applied on the second. The initial and target orbital elements are listed in 
the table. They are similar to the orbital elements from solution 2.1.5, but 
the information about the active and target spacecraft latitude arguments in 
the initial moment of time, the numbers of revolutions of both spacecraft 
for that moment inN0  and fN0 , and the numbers of revolutions for the 

rendezvous moment asiN  and astN , are added. The three variants are 
considered. They differ from each other by the target spacecraft’s location. 

 
 

Elements Initial orbit Target orbit 
minH km 180.0 340.0 
maxH km 210.0 360.0 
prgu deg 20.0 150.0 
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1u deg 60.0 5.0 
2u deg 60.0 210.0 

3u deg 60.0 355.0 

0N (initial revolution) 1 201 
asN (rendezvous revolution) 17 217 

 
The rendezvous point is at the beginning of the 17th revolution, i.e. 

0asu  is the target point latitude argument and 17asN  is the target 
point revolution number. The first manoeuvring interval is on the 1st 
revolution, while the second manoeuvring interval is on the 16th 
revolution. The manoeuvring scheme can be found in the figure. 

 

 

 
The simplest apsidal solution will be used. The angles ,i  which start 

from the target point, determine the impulse application moments: 
 

,)(21 asasIe uNN  
,)(22 asasIIe uNN  

,)(23 asasIIe uNN  
 

where III NN ,  = the numbers of revolutions on which the impulses of the 
first and second manoeuvring intervals are applied, respectively. 

In our case, .16,1 III NN  
The calculated results are: 

.1307.3,2723.6,3784.97 321  
The approximate value of the parameter t (the resynchronization of 

the arrival times at the rendezvous point of the active and target 
spacecraft) is evaluated. The revolution periods of the active and target 
spacecraft can be determined as: 
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The time of arrival of the spacecraft to the rendezvous point is: 

 

360
360

10
IN

inasiININ
u

NNTt  

 
(with a distance of 15 revolutions plus remaining for the completion of the 
full revolution during the motion from the initial point). 

The calculated results: . 54.836,83 stIN  
For the target spacecraft: 

 

360
36010

Fi
fasfFFi

u
NNTt  

 
it  can be determined as: .)( 0INFii ttt  

The exact it  value can be obtained with the help of numerical 
prediction of the rendezvous point for the active and target spacecraft 
orbits while accounting for all perturbations, just as in the practical 
problem solution. 

The transversal impulse component magnitudes can be determined 
from eqs. 3-11d to 3-11f, where iiik 3sin4  (i = 1, 2, 3), 

.348559.9,86044.18,0919.292 321 kkk  
 
The problem solution: 
1) 51KU  sTK  38.660,871  ) 84.823,3( 458352.41 st  

,m/s 0223.66 ,m/s 5273.38 ,m/s 8551.117
321 ttt VVV  

2) 2102KU  sTK  82.537,842  ) 2713.701( 8176375.02 st  
,m/s 7169.33 ,m/s 5273.38 ,m/s 1158.18

321 ttt VVV  

3) 3553KU  sTK  17.329,823  ) 37.507,1( 757502.13 st  
.m/s 2641.104 ,m/s 5273.38 ,m/s 4314.52

321 ttt VVV  
 

Conclusions: 
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1) In the first case, the target spacecraft “stays behind” the active 
spacecraft ( ,51KU  60IU ). In order to reduce this lag, it is 
necessary to gradually increase the spacecraft’s orbital semimajor axis 
(see the figure). This will allow the target spacecraft to “catch up” with the 
active spacecraft while moving along the orbit with a smaller period. The 
necessary drift orbit is obtained thanks to a highly-accelerating impulse 
and is plotted in the first figure with the dashed line. Then, with the help 
of the accelerating impulse performed on the second manoeuvring 
interval, an orbit that osculates with the target spacecraft orbit is formed. 
The last braking impulse completes the transfer to the target spacecraft’s 
orbit. Such a flyby is not optimal, as one of the impulses is decelerating 
and the flyby energetics are higher in comparison to the case when all the 
impulses are accelerating. On the other hand, it is impossible to implement 
the reverse scheme and let the active spacecraft “chase” the target 
spacecraft because the number of revolutions for the flyby is limited. 

2) In this case, the active spacecraft is behind the target spacecraft (
,2101KU  60IU ). The phase difference lies in the optimal range 

and, hence, all three impulses are accelerating. The optimal manoeuvre 
(the phasing orbit semimajor axis plotted with a dashed line in the second 
figure) lies between the semimajor axes of the initial and target orbits. 

3) In this case, the active spacecraft is far behind the target spacecraft (
,51KU  355IU ). In order to chase it down in the fixed number of 

revolutions, the active spacecraft orbital period needs to be decreased even 
more (see the figure below). As a result of this step, the required drift orbit 
appears (the dashed line in the third figure). The second and third impulses 
are accelerating and adjust the target orbit. 

 
   

1) 51KU  2) 2102KU  3) 3553KU  

3.2.4. The Four-Impulse Solution 

The use of the four-impulse scheme allows for two impulses on each 
manoeuvring interval and, thus, does not depend on the relative positions 
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of the circles with radii 1R  and 2R (it does not matter which of the circles 
will be inside the other). Besides, the presence of new free variables 
allows us to meet different and additional constraints on the manoeuvre 
parameters. 

Let us approximately assess the sum of the transversal impulse 
components of each manoeuvring interval in the same way as was done 
for the two and three-impulse manoeuvre solutions: 

 

,
3 10

**
21

t
VVV ttt I

  (3-12a) 

 

.
32 10

**
43

ta
VVV tttII

  (3-12b) 

 
Let us suppose that the circles, which have the radii 

ItVR 21  and 

,22 IItVR  intersect and the signs of ,
ItV  

IItV  coincide. In this 

case, the set of solutions with equal total manoeuvre delta-vs 2/a  
exists. Point C, which corresponds to the parameters of the drift orbits of 
such solutions, should belong to set G (the intersection of the circles with 
radii 1R  and ,2R  respectively (Fig. 3-3)). This is necessary for the sign 
equality of the transversal impulse components on each manoeuvring 
interval. The values of eight variables )4,...,1( , iV

iti  with four 
constraints are determined in the problem. As such, the four additional 
constraints should be added in order to solve the problem unambiguously. 
One should bear in mind that the obtained solution should remain a CSS-
type solution. For example, the three impulse application angles and the 
impulse magnitude ratio of one of the intervals can be fixed. Let us 
assume that, for example, ,11 f

 ,33 f
 ,44 f

 

.
43

3

tt

t

VV

V
m  The constraint on the impulse magnitude distribution on 

the second manoeuvring interval is often met in practical work during the 
manoeuvre parameter determination of the “Soyuz” and “Progress” 
spacecraft. 

Fixation of the impulse application angles on the second manoeuvring 
interval means that point C, which corresponds to the drift orbit 
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eccentricity vector, should belong to line segment LN' (Fig. 3-3a), and not 
to the entire circle with radius ,2R  for the second manoeuvring interval. 

 
 

 

Fig. 3-3. Four-impulse solutions: 
(a) general solution (b) typical “Soyuz”  

spacecraft solution 
 

In the meantime, point C should belong to the circle with radius ,1R  
and, hence, it should by all means belong to line segment LN. Since the 
ratio of the impulse magnitudes for the second manoeuvring interval is 
given and their sum is known (3-12b), then the magnitudes of these 
impulses **

43
 , tt VV  are known. Thus, the location of point C on line 

segment LN is known. 
The first two impulses ensure the transfer to point C without the time 

constraint. The application angle of one of the impulses is fixed and the 
impulse magnitudes and the application angle of the second impulse can 
be determined by the equations, which are similar to eqs. 3-10a to 3-10c, 
just as for the second manoeuvring interval of three-impulse transfers. The 
indexes should be replaced in eqs. 3-10a to 3-10c: “3” to “2” and “2” to 
“1”. The values aee yx

~,~,~  should be determined by the equations: 
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The curved line ABCDK corresponds to the found solution (Fig. 3-3a). 
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The values of ****
432

,,, tttt VVVV
I

 and *
2  are used as the initial 

guess for the iterative procedure, which is analogous to the procedure for 
the three-impulse problem and allows us to deal with constraint 3-1d with 
the desired tolerance. 

3.2.5. Peculiarities of the Manoeuvring Scheme for the Soyuz 
and Progress Spacecraft 

During the flight of the “Soyuz” spacecraft, the application angles of 
the last two impulses are fixed at one revolution and half a revolution 
before the rendezvous point. Thus, with the help of the impulses of the 
first manoeuvring interval, it is necessary to transfer to line segment LN, 
which is parallel to the abscissa axis (Fig. 3-3b). The constraint of 
approximate equality on the impulse of the last manoeuvring interval is 
often added. This means that point C, which corresponds to the 
eccentricity vector of the drift orbit, should be situated on line segment LN 
in the vicinity of point K, when line segment CD (the third impulse) is 
approximately equal to line segment DK (the fourth impulse). The 
application angle of one of the impulses of the first manoeuvring interval 
is often fixed in order to force the application of this impulse on the line of 
the orbital plane intersection of the “Soyuz” spacecraft and the orbital 
station. Thus, four constraints are added, which allow the unambiguous 
determination of the magnitudes of all impulses of the four-impulse 
coplanar rendezvous. The depiction in Fig. 3-3b corresponds to the real 
solution and the real relative position of the circles for the four-impulse 
problem, which is solved during ballistic support of the “Soyuz” 
spacecraft flight. 

The manoeuvring schemes, which had been used for the docking of the 
“Soyuz” and “Progress” spacecraft with the orbital station in the late 
1970s and the early 1980s, differed from the schemes that were used later. 
Indeed, a one-day docking scheme, rather than a two-day scheme, was 
used for the docking of the “Soyuz” spacecraft. The biggest discrepancy is 
found for the docking scheme of the “Progress” spacecraft, which was a 
two-day rendezvous scheme with considerable constraints on thrust engine 
orientation. 
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Fig. 3-4. Manoeuvring scheme of the first “Progress” spacecraft: 
(a) orientation setting and manoeuvre 

performance scheme 
(b) example solution for the first 

“Progress” spacecraft 
 

An orientation on the center of the Earth is set up with the help of the 
infrared vertical 22.5 minutes before the start of the estimated manoeuvre 
(Fig. 3-4a, point A). Then, 22.5 minutes later (Fig. 3-4a, point B), when 
the set orientation becomes close to the transversal, the first impulse is 
applied (it can be accelerating or decelerating). 45 minutes later, one more 
estimated earlier impulse is applied, which is also close to the transversal 
one (Fig. 3-4a, point C). In order to have two accelerating impulses, the 
thrust vector is rotated by 180º before ignition. 

The thrust engine orientation on the second manoeuvring interval can 
be set in the same fashion. Thus, the coplanar rendezvous problem is 
solved with the following constraint: the second impulse is performed 
approximately half a revolution after the first one and the fourth impulse is 
performed half a revolution after the third one. If the application angle of 
the third impulse is fixed (one revolution before the rendezvous point), 
then one free parameter stays—the application angle of the first impulse. 
By altering this angle, one can obtain solutions with the desired attributes. 
For example, we can obtain a solution with approximately equal 
magnitudes for the last two impulses (Fig. 3-4b). Such a solution can be 
found analytically or by enumerating the application angles of the first 
impulse and solving Eq. 3-1 with the fixed angles of application of the rest 
of the impulses. Thus, the solution of the four-impulse coplanar 
rendezvous problem can be found with the help of the simplest single-axis 
orientation to the center of the Earth. 
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3.2.6. The Apsidal Four-Impulse Solution 

Similar to the case of the three-impulse solution, if there are no 
constraints, it is better to use the simplest solution with the impulse 
application on the apsidal points of the relative orbit. However, unlike the 
case of the three-impulse solution, there will be options available in 
choosing the drift orbit eccentricity vector magnitude, i.e. point C can be 
anywhere on line segment LN (Fig. 3-5). 

 
 

Fig. 3-5. Four-Impulse apsidal solution 
 
In order to eliminate this uncertainty, it is necessary to choose point C 

in the middle of line segment LN. Then, the magnitudes of the two 
impulses, applied at points e  on their corresponding revolutions, will 
be equal and have the value ,8/ea  i.e. their sum will be equal to the 
impulse magnitude of the three-impulse solution applied in the same 
direction. The magnitudes of the two remaining impulses of the four-
impulse solution can be unambiguously determined from the last two 
equations of Eq. 3-1. The example of such a solution is depicted in Fig. 3-
5. 

Line segment AB corresponds to the first impulse (its application angle 
is e ); line segment BC corresponds to the second impulse (its application 
angle is e ); line segment CD corresponds to the third impulse (its 
application angle is e ); and line segment DK corresponds to the 
fourth impulse (its application angle is e ). In this case, when we speak 
about the impulse application angles, their positions on the corresponding 
revolution are implied. The position of point C on the line segment (and, 
hence, the eccentricity magnitude and the drift orbit focal parameter) can 
be chosen as well in order to provide the necessary drift orbital RAAN 
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evolution. This opportunity will be used in the second paragraph of 
Chapter 6. 

It is important to mention that, just as in the three-impulse case, during 
the determination of the apsidal solution, the parameter for the multiple-
revolution rendezvous was not used. The analytical solution found can be 
used for the manoeuvre parameter determination of a rendezvous with 
arbitrary duration. 

The real (after updating the manoeuvre parameters with the help of the 
iterative procedure) total delta-vs of the various apsidal solutions can 
differ. 

3.3. Rendezvous in Coplanar Intersecting Orbits:  
The Coplanar Apsidal Solution 

The coplanar apsidal solution (CAS) takes place if the circles, having 
radii 1R  and ,2R  do not intersect and neither circle lies inside the other, 
i.e. the condition eRR 21  is satisfied. This is possible for transfers 
between intersecting orbits with some values of ).( ut  The existence 
domains of different types of solutions will be discussed more thoroughly 
in the fourth paragraph of this chapter 

Let us consider three-impulse manoeuvres with two impulses applied 
on the second manoeuvring interval. All the impulses are applied on the 
relative orbital apsidal line and, hence, their application angles are known 
(eqs. 3-11a to 3-11c). Thus, using Eq. 3-1 we can unambiguously 
determine the impulse magnitudes. The equations for the apsidal three-
impulse solution from the previous section (eqs. 3-11d to 3-11f) are used 
for this purpose, but it is worth paying attention to the fact that 

2t
V  will 

be negative. The advantage of the apsidal solutions is that they offer an 
opportunity to use the same equations for both intersecting and 
nonintersecting orbits. Figure 3-6a presents the obtained solution. Line 
segment AB corresponds to the first burn; line segment BC corresponds to 
the second burn; and line segment CK corresponds to the third burn. It 
follows from eqs. 3-5 and 3-9 that ,1RAB  and .2RBCCK  

For four-impulse apsidal manoeuvres, the line segments, which 
correspond to the impulses, also belong to line segment AK, which 
connects the centers of the circles (Fig. 3-6b). Line segment AB 
corresponds to the first impulse; line segment BC corresponds to the 
second impulse; line segment CD corresponds to the third impulse; and 
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line segment DK corresponds to the fourth impulse. According to eqs. 3-
12a and 3-12b, ., 21 RCDDKRBCAB  

The exact values of the transversal component are determined from 
eqs. 3-1a to 3-1d. Since the number of the equations is smaller than the 
number of unknown variables, it is necessary to add one more constraint. 
For example, we may fix the position of point C on line segment EL, 
which corresponds to the drift orbit eccentricity vector, fix the ratio of the 
impulse magnitudes of one of the manoeuvring intervals, or apply any 
other analogous constraint; however, it is worth remembering that point C 
must always belong to line segment EL, which connects the nearest points 
of the circles. If there are no additional constraints, one can use the 
simplest solution with point C situated in the middle of line segment EL. 
Such a solution parameter determination procedure is described in the 
following paragraph. 
 

 
 

 
Fig. 3-6. Apsidal solutions: 

(a) three-impulse solution (b) four-impulse solution 
 

Depending on the order of the impulse applications, two possible 
three-impulse CAS solutions and four four-impulse apsidal solutions can 
be distinguished. If the length of each of the permitted manoeuvring 
intervals does not exceed one revolution, only one possible apsidal 
solution remains. Thus, in order to find the genuine optimal solution, 
which depends on the impulse application sequence, the length of each of 
the manoeuvring intervals should be one and a half revolutions. The length 
of one revolution for a manoeuvring interval is enough if we narrow our 
consideration with the linearized equations of motion, from which it 
follows that the impulse application sequence is not important. The real 
(after the manoeuvre parameter update with the help of the iterative 
procedure) total delta-v of the various apsidal solutions may differ. 

As in the case of nonintersecting orbits, during the apsidal solution, 
parameter determination using the concept of the multiple-revolution 
nature of the rendezvous was not used. The found analytical solution can 
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be used for the manoeuvre parameter determination of a rendezvous with 
arbitrary duration. 

3.4. Nondegenerate Coplanar Solution 

If there is a considerable initial difference between the spacecraft 
positions along the orbit, the total rendezvous rdvV  exceeds the total 
transfer ,trfV  and the nondegenerate solution will be optimal. For 
example, if the target spacecraft is situated too far ahead of the active 
spacecraft, which is situated on the inner orbit. As such, it will be 
necessary to reduce the semimajor axis in order to catch the target 
spacecraft during the phasing process and then increase the semimajor axis 
to the desired value with the help of the second manoeuvring interval 
impulses. For solutions of this type, we use accelerating impulses on one 
interval and braking impulses on the other. 

Coplanar nondegenerate solutions (CNS) exist if the circles with radii 
1R  and 2R  intersect in the case of a flyby between intersecting orbits, or 

where one of the circles lies entirely inside the other during a flyby 
between nonintersecting orbits. 

For the nondegenerate solution, the primer vector hodograph is a 
cycloid. The hodograph must be symmetrical relative to the axis 
(Prussing 1969, 928-935) in order to meet the required optimality 
conditions for the four-impulse flyby. Hence, the center of the coordinate 
frame should lie either in the middle between the closed loops of the 
hodograph (Fig. 3-7) (let us call such a solution a “first-type hodograph”) 
or on the axis of the closed loop (a “second-type hodograph”). 

 
 
 
 
 
 
 
 
 
 

 
Fig. 3-7. Primer vector hodograph for a coplanar rendezvous 
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The first-type hodograph exists if 2/ ,0 0 fbC  in eqs. 3-4a 
and 3-4, while the second-type hodograph exists if 

.2/ ,3 0 fbBAC  The angle b  corresponds to the start of 

the first manoeuvring interval (point A, Fig. 3-7), while f  corresponds to 
the end of the second manoeuvring interval (point D, Fig. 3-7). 

The constraints on the manoeuvring parameters follow from the 
solution symmetry: 
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)(

3

3

2

2   (3-16) 

 
Thus, for an optimal four-impulse solution, the first impulse should be 

applied at the beginning of the first manoeuvring interval ,1 b  and the 
last impulse should be applied at the end of the second manoeuvring 
interval ,4 f  the angle between the application moments of the first 
and second impulses is equal to the angle between the application 
moments of the third and fourth impulses (Eq. 3-14). The simple eqs. 3-15 
and 3-16 also connect the impulse orientations to each other. 

It follows from the symmetrical nature of the hodograph that, if the 
necessary optimality conditions are satisfied for the first and second 
impulses, they will also be satisfied for the third and fourth impulses. 

3.4.1. Parameter Determination for the Four-Impulse Solution 

Let us write down the intersection condition of the primer vector 
hodograph with the unit circle for the first impulse and the conditions of 
the osculation of the hodograph and the circle for the second impulse: 

 
,1)()( 1

2
1

2    (3-17) 
,1)()( 2

2
2

2    (3-18) 
,0)()()()( 2222   (3-19) 

., 1)()( 22
fb   (3-20) 
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Let  be .
2
1

2
1~, 1412 fb  Then, the 

equation system 3-17 to 3-19 can be written as: 
 

,1)~3~sin2()2~cos( 2222 BABA  (3-21) 

,1))~(3)~sin(2(

)2)~cos((
22

22

BA

BA
  (3-22) 

,0)3)~cos())(~(3

)~sin(2()~sin()2)~cos((

BB

B
 (3-23) 

     
where the upper indexes correspond to a hodograph of the first type and 
the lower indexes correspond to a hodograph of the second type. 

Deriving B, A from eqs. 3-21 and 3-22, and substituting them in Eq. 3-
23, yields the equation for the determination of  with fixed .~  This 
equation, for both hodographs of the first and second types, is written as: 

 

,0)~cos()~sin(3

)~cos()~(6

)~sin(4()~(9 2

B

B

  (3-24) 

     

where ,
2

1

B
B

B  

)).~sin(4)~cos()~(6(

))~(~(

))~cos(~)(cos~(4

))~sin()~(~sin~)(~(12

)),~(sin~)(sin~(3

))~(~)(~cos()~sin(3

22

2

22

22
1

B

B

 (3-25) 

 
The constant A can be determined from Eq. 3-21: 

 
.))~3~sin2()2~cos(( 2/122 BBA  (3-26) 
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Equation 3-24 is solved numerically. It can have up to 6 solutions, but 
some of them are eliminated due to Eq. 3-20. The correspondence to the 
hodographs of the first and/or the second type equation roots stays. 

By altering ~  and determining the corresponding ,  one can obtain 
the dependencies between the distance between the impulses of one 
manoeuvring interval  and the flyby interval length .~2  

These dependencies are depicted in Fig. 3-8. 
 

 
 

Fig. 3-8. Distances between impulses as a function of flyby duration 
 

The solid lines correspond to a hodograph of the first type and the 
dash-dot lines correspond to a hodograph of the second type. The 
continuous existence interval length of each of the solutions is .3  With 
the angular distance of the flyby nn 2,2 , the solutions of both types 
exist. On the intervals NN 4),1(43 , the solutions for a hodograph 
of the first type exist, while on the intervals 

)1(46),1(45 MM , the solutions for a hodograph of the 
second type exist. The first dependency plotted with dots, which 
corresponds to the hodograph “with one closed loop”, is an exception 
(Prussing 1969, 928-935). In the following discussion, the values of N and 
M will be used as the ordinal item of the continuous curves, corresponding 
to hodographs of the first and second types. 

The dependency )~(f  can be conveniently written as a function 
of two variables: ),,~( ** Nf  where ),1(42~~* N  

3,0~* . As depicted in Fig. 3-8, the dependencies are close to each 
other: the function *f  has a weak dependency on N and the alteration 

 on the interval 3,0  is determined mainly by the value .~*  Fig. 3-
9a presents the dependency between  and *~  for N = 5. Its difference 
from the dependencies, obtained for a large value of N, do not exceed 0.2º 

2
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on all intervals ,3,0  while the difference to the dependencies for smaller 
N is depicted in Fig. 3-9b. A similar situation occurs for dependencies 
obtained for the second-type hodograph. 

 

 
Fig. 3-9 (a). Angular distance 

between impulses as a function of 
flyby duration for N = 5 

 
Fig. 3-9 (b). Difference in angular 

distances between impulses vs. 
various values of N 

 
Besides the impulse application angles, the primer vector hodograph 

allows us to determine the impulse orientation. After evaluating  from 
Eq. 3-24, the constants A and B are determined with the help of eqs. 3-25 
and 3-26, ,  in the points 21,  are calculated. The dependencies 

between the pitches arctg  and *~  for the outer impulses are 

depicted in Fig. 3-10a. Similar dependencies for the inner impulses are 
depicted in Fig. 3-10b. 

According to the figure, the ratio /  is small for the inner impulses, 
and they can be assumed to be purely transversal. In the case of the outer 
impulses, it is necessary to account for their radial components. 
 

E  
E  

Fig. 3-10. Pitches of impulses as a function of flyby duration: 
(a) outer impulses                     (b) inner impulses 
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In order to quicken the optimal flyby parameter determination process, 

the dependencies *)~(  and )~( * , for hodographs of the first and 

second types, can be approximated with the analytical equations (Baranov 
and Terekhova 1995, 382-387). These equations should be both accurate 
and relatively simple. The function *)~(  can be approximated with the 
cubic parabola: 

 
.~)~()~( *2*3* dcba   (3-27) 

 
In the meantime, the dependency between  and N or M can be 

neglected due to the proximity of the curves to each other with various 
values for N and M. There is a common dependency of *~  for all curves, 
corresponding to the first-type hodograph. Its coefficients, a, b, c, and d, 
have been determined with the help of the least squares method: 

.0 ,74309.0 ,003475.0 ,00125.0 dcba  For the function, which 
corresponds to the second-type hodograph, the coefficients a, b, c, and d 
will have the following values: 

.0 ,74444.0 ,00302.0 ,001213.0 dcba   
For a hodograph “with one closed loop”: 

.52301.2 ,15557.1 ,11271.0 ,00575.0 dcba  
The difference between ,  obtained from Eq. 3-27, and ,  

obtained from Eq. 3-24, does not exceed 0.7º for the hodograph of the first 
type and 0.55º for the hodograph of the second type. The peculiar 
distribution of analytnum , as a function of *~  for 3N , is 
depicted in Fig. 3-11. 
 

  

 
Fig. 3-11. Discrepancy in the 

difference of the application angle for 
analytical and numerical solutions 

 
Fig. 3-12. Difference between impulse 

pitches for analytical and numerical 
solutions 
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Thus, a very simple and sufficiently accurate equation for the 
analytical determination of the impulse application angle of the optimal 
solution is found. 

For the analytical approximation of the function )~( *  for the outer 

impulses, we can use the equation: 
 

,~3~ )*~3(
**

feg
l   (3-28) 

 
where the coefficients l, g, and f depend on N (for the hodograph of the 
first type) or M (for the hodograph of the second type). For the hodographs 
of the first type: 

 
,1938393.03605805.0 2073523.0 Nel   (3-29a) 

,1037093.17413017.0 04167616.06305316.0 NN eeg  (3-29b) 
,55892376.01733134.0 0305692.0 Nef   (3-29c) 

 
and for the hodographs of the second type: 

 
,18542422.039946973.0 19462509.0 Mel   (3-30a) 

,0936807.190946358.0 03895865.05468307.0 MM eeg (3-30b) 
.48186975.024736464.0 259488.0 Mef   (3-30c) 

With equal values of N and M greater than 10, the values  for the 

hodographs of the first and the second types practically coincide. The 
dependence between the coefficients l, g, f, and N for the first-type 
hodograph can be described as: 

 
,0622614.02918171.0 05347094.0 Nel   (3-31a) 

,09475382.08709496.0 03271924.0 Neg   (3-31b) 
.7591687.00040646.00000574.0 2 NNf  (3-31c) 

 
The same equations can be used for the second-type hodograph, but 

the replacement of N by M is needed. 
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Equation 3-28 approximates )~( *  with good accuracy ( 1 %) for 

.22.2~0 *  The error increases with increasing ,~*  but on the 

interval 3~22.2 *  it does not exceed 10 % of  (for dependencies 

with N 50). The distribution of analytnum , as a function of 

*~  for 20N , is presented in Fig. 3-12, where ).(arctg  

With magnitudes of 50N  on the interval 45.2~0 * , the value 

)(arctg  does not exceed 0.1º and the maximum  on the interval 

3~45.2 *  does not exceed 3º. This allows us to assume that the 
outer impulses of the optimal solution for a flyby with a duration greater 
than 100 revolutions are purely transversal. The hodograph with “one 

closed loop”  as a function of *~  can be described with the equation: 

 

.)51334.9~06497.6~15557.1()~( 1*2**  (3-32) 

 
As such, with a fixed angular distance of transfer ,bf  the 

application and orientation angles of the impulses of the optimal four-
impulse manoeuvre can easily be found using eqs. 3-27 and 3-28. Then, 
using eqs. 3-1a to 3-1d, we can unambiguously determine the impulse 
magnitudes. If the signs of the transversal impulse components of one 
manoeuvring interval coincide, the solution will belong to the considered 
CNS class and will be locally optimal. 

It is worth mentioning that the simplification of the parameter 
determination process for the four-impulse nondegenerate rendezvous 
problem was attempted in the work of Alvarez and Carter (2000, 109-
117). The material in section 3.4.1 has previously been published in the 
work of Baranov and Terekhova (1993) and Baranov and Terekhova 
(1995, 382-387) (Russian and English versions). 
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3.4.2. Parameter Determination for the Two and Three-Impulse 
Solutions 

In order to find the globally optimal solution, it is necessary to find 
more two and three-impulse solutions that meet the necessary optimality 
constraints and compare the total delta-vs of these solutions. 

We can use the iterative procedures in paragraph 3.2 for the parameter 
determination of this type of solution. Since the pitches of the inner 
impulses are small, the intersection points of the circles with radii 1R  and 

2R  (only the signs of 
1t

V  and 
2t

V  are different) correspond to the two-
impulse solution as well. The parameter determination procedure for these 
solutions was described earlier. The start of the first manoeuvring interval 

lI1  and the end of the second manoeuvring interval 
rII3  (for the 

two impulses, the first one and the last one are applied at points where the 
cycloid intersects with the circle) are taken as the fixed angles of the 
impulse application for the three-impulse solution. Then, with the help of 
eqs. 3-11a to 3-11c, the magnitudes of the transversal impulse component 
and the application angle of the inner impulse 2  are determined. If three-
impulse solutions of this type exist, then the moment of osculation of the 
cycloid and the circle correspond to this angle. The manoeuvre parameters 
are updated with the help of the iterative procedure. 

The procedure of searching for the parameter solution with a single 
impulse applied on the boundary and the other two applied at points of the 
osculation of the cycloid with the circle is more complicated. On the 
interval in which two manoeuvres are applied, one of the impulses should 
also be applied on the outer boundary of the interval .

rII  Hence, the 
application moment of this impulse is known .3 rII  The application 
moment of the second impulse of this interval is chosen inside the interval 

.2 fII  The approximate value of the transversal impulse component of 

the first manoeuvring interval 
1t

V  can be determined by Eq. 3-5, or, 
more accurately, by Eq. 3-11e. After this the application angle of the first 
impulse 1  and the impulse magnitudes 

2t
V  and 

3t
V  are evaluated by 

eqs. 3-1a to 3-1c (Baranov 1985): 
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As always, the manoeuvre parameters are updated with the help of the 

iterative procedure in order to solve the fourth equation of Eq. 3-1 with the 
desired tolerance. After the manoeuvre parameter determination, the total 
delta-v solution is calculated. By varying the position of the second 
impulse on the manoeuvring interval, one can find the optimal solution of 
this type. The simple point enumeration from the corresponding 
manoeuvring interval with a constant step can be used for this purpose. 

3.4.3. Examples 

As an example of implementing the method mentioned above, let us 
consider the optimal manoeuvre parameter determination problem, which 
leads to the alteration of the spacecraft’s position on the circular orbit and 
the transfer to the set point for the fixed time (the orbital plane orientation 
alteration that occurs is not important here). The problem in this statement 
has been considered in the works of a number of authors. 

By using the aforementioned equations, we can analytically find the 
parameters of optimal four-impulse solutions. It is interesting to compare 
the total delta-vs of the obtained solutions with the total delta-vs of the 
two-impulse and the “rational” four-impulse manoeuvres in the works of 
Ivashkin and Raykunov (1991, 352-374) and Ivashkin and Raykunov 
(1994, 33-46). The inner impulses are half a revolution distant for the 
“rational” four-impulse manoeuvres. 

For this problem, .0aee yx  The angle *~  fully determines 

the nature of the optimal solution, t determines only the sums of the 
impulse magnitudes of the first and the second manoeuvring intervals (
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01.0t  was chosen for the calculations). The research was conducted 
using ,1N  and *~  was taken in the range .360,0  

It turned out that the optimal four-impulse solutions exist for 
.339,0~*  Figure 3-13 presents the appearances of the optimal 

solutions for various .~*  
 

 

  

Fig. 3-13. Optimal solutions for various transfer distances 
 

From Fig. 3-13, it follows that there are no optimal three-impulse 
solutions for the circular orbit change in position problem. It does not 
matter which are the first impulses to be used (to which the line segments 
AB and BC correspond), line segment CK should correspond to the third 
impulse, but the application angle of this impulse does not coincide with 
the possible optimal impulse application angles, to which the line 
segments CD and DK correspond (besides, the third base of the triangle 
would have to be equal to the sum of the other two, which is impossible). 

Table 3-1 gives the total delta-vs of the optimal )( optV  and the 

“rational” )( 4rV  four-impulse solutions, and also the total delta-vs of the 
two-impulse solutions )( 2V  and their ratio in percent. The “rational” 
scheme has equal impulses. The magnitudes of the outer impulses differ 
from the magnitudes of the inner impulses for the optimal scheme. 
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Table 3-1 
 

*~ deg optV   4rV   
4r

opt

V

V
 2V   

2V

Vopt  

5 1.060 2.065 51.35 1.070 99.1 
15 1.0598 1.698 54.10 1.113 95.22 
30 1.0594 1.819 58.24 1.242 77.88 
45 1.058 1.698 62.32 1.452 72.89 
60 1.0569 1.592 66.40 1.546 68.35 
90 1.0506 1.415 74.26 2.870 36.59 
120 1.050 1.273 82.46 6.400 16.41 
150 1.0385 1.158 89.72 47.780 2.12 
180 0.9857 1.061 92.90 5.000 19.72 
210 0.9389 0.979 95.86 2.52 37.26 
240 0.8745 0.9095 96.15 1.59 55.00 
270 0.7900 0.849 93.07 1.09 72.48 
300 0.6850 0.796 86.08 0.78 87.82 
330 0.5620 0,749 75.03 0.593 99.77 
338 0.5269 0.737 71.45 0.563 93.60 
355 - 0.714 - 0.5303 - 
360 - 0.796 - 0.5305 - 

 

With small )~
3
2(,~ **  is small as well. Hence, the first two 

impulses are applied at the beginning of the flyby and the last two 
impulses are applied at the flyby’s end. The total delta-v of the optimal 
scheme is close to the total delta-v of the two-impulse scheme. Due to the 
considerably longer duration of the motion along the drift orbit, we get a 
notable gain in total delta-v in comparison to the “rational” scheme. 

With the increase in ,~*  increases and, hence, the optimal solution 
total delta-vs get closer to the total delta-vs of the “rational” solutions, but 
the total delta-vs of the two-impulse solutions worsen considerably. 

With ,240~*  when ,180  the total delta-vs of the optimal and 
“rational” solutions practically coincide. With the further increase of 

,~*  keeps on increasing, but the total delta-vs of the optimal solutions 
become considerably smaller than the total delta-vs of the “rational” 
solutions due to the increase in the outer impulse magnitude and the 
decrease in the inner impulse magnitudes, once again. The total delta-vs of 
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the optimal solutions get closer to the total delta-vs of the two-impulse 
solutions. When *~  becomes equal to approximately 339º (the exact 
value depends on N), the magnitude of the inner impulses decreases to 
zero. The optimal four-impulse solution degenerates to a two-impulse 
solution. With a further increase in ,~*  the optimal-by-primer-vector 
four-impulse solutions cease to exist. For the interval ,360,339  a two-
impulse flyby is optimal. 

As can be seen from the table, the optimal four-impulse solution 
results in maximum profit with .60~*  With these angles, the optimal 
solution total delta-vs are more than 30 % smaller than the delta-vs of the 
“rational” or two-impulse solutions. 

With the increase in N, when the duration of presence on the drift orbit 
increases, the difference between the total delta-vs of the optimal and 
“rational” schemes decreases. For example, for 30~ ,10 *N , the total 
delta-v of the optimal scheme is only 5 % smaller than the total delta-v of 
the “rational” scheme. 

The change in position problem on the circular orbit draws our 
attention. It has been considered many times in the works of a number of 
authors and will continue to be considered in the future. It appears that the 
report by Trofimov (2014, 140-141) is one of the most recent. In this 
work, a comparison of the four-impulse and two-impulse solutions has 
been conducted. A similar comparison is listed in the last column of table 
3-1 in Baranov and Terekhova (1993). 

3.5. Existence Domains of Various Solution Types 

Analysis of the relative positions of the circles with radii 1R  and 2R  
and various values of u  (the difference of the angular positions of the 
target and active spacecraft in the initial moment of time (the initial 
phase)) can help us identify the existence domains of various solution 
types. 

3.5.1. Nonintersecting Orbits 

First of all, let us consider the variant when the orbits do not intersect. 
We will assume that ,0ye  ,0xe  and xea  for the sake of 
certainty. We suppose the target spacecraft, which is situated on the outer 
orbit, is behind the active spacecraft in the initial moment, i.e. ,0u  for 
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example, luu  (Fig. 3-14a). Then, it is necessary to apply impulses 
with the positive transversal components on the first manoeuvring interval 
with the sum value ,

ItV  which is greater than ,2/a  in order to 
transfer to the orbit with a semimajor axis greater than the target 
spacecraft orbit’s semimajor axis. This will allow the target spacecraft to 
catch up to the active spacecraft. Impulses with the sum value of 0

IItV  
should be applied on the final interval. 

The circle of radius 2R  is entirely located inside the circle of radius 

1R (Fig. 3-15a) for all .0u  In this figure, the large circle corresponds 
to the impulses of the first manoeuvring interval, while the smaller one 
corresponds to the impulses of the second manoeuvring interval; the signs 
of 

ItV  and 
IItV  are different and, thus, the nondegenerate solution 

(CNS) will be optimal. Since the circles do not intersect, only the three 
and four-impulse solutions are possible. The three-impulse solution is 
possible only with two burns on the first manoeuvring interval. 

The existence domains of various solution types and the number of 
possible-to-use impulses are depicted in Fig. 3-14a (Baranov 1989, 689-
697). The digit “2” in the brackets before the digit “3” means that two 
impulses of the three-impulse solution should be applied on the first 
manoeuvring interval. The digit “2” in the brackets after the digit “3” 
means that two impulses should be applied on the second manoeuvring 
interval. 

 
  

Fig. 3-14. Various type-solution existence domains: 
(a) nonintersecting orbits                (b) intersecting orbits 
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Fig. 3-15. Alteration of circle positions, corresponding to the sum of the 

transversal impulse components of the first and second manoeuvring 
intervals for nonintersecting orbits with alteration of the initial phase value 

 
If 0sluu  (hereafter, we will denote the moments when the 

radius of one of the circles is zero by the index “s” and we will denote the 
moments when the circles osculate by the index “t”). Then, we can 
transfer to the required point of the final orbit by the impulses of the first 
manoeuvring interval. Certainly, only the qualitative manoeuvring picture 
is considered and the flyby time to the final orbit is not accounted for. The 
positions of the circles in Fig. 3-15b correspond to this case. The radius of 
the second circle, decreasing with the increase in ,u  becomes zero at this 
moment. 

When ,tlsl uuu  the impulses on the first manoeuvring interval 
produce only a part of the necessary alteration of the semimajor axis, the 
rest is produced by the impulses of the second manoeuvring interval. The 
signs of 

ItV  and 
IItV  coincide and CSS solutions are available. After 

slu , the radius of the second circle increases with the increase in .u  
The circles, which correspond to u  from this interval, do not intersect 
and, thus, only three and four-impulse CSS solutions are possible (Fig. 3-
14a). The first manoeuvring interval should contain two impulses, just as 
in CNS solutions. The moment of the circles’ osculation )( tluu is 
depicted in Fig. 3-15c. 

The circles intersect on the interval ,trtl uuu  hence, the two, 
three, and four-impulse CSS solutions exist (Fig. 3-14a). The moment 
when the circles have equal radii )( muu  is depicted in Fig. 3-15d. 

With muu  the picture becomes symmetrically mirrored, i.e. the 
same types of solutions exist, but 

ItV  and 
IItV  change places. 

When ,sruu  the target spacecraft is situated too far ahead of the 
active spacecraft. Firstly, the semimajor axis of the active spacecraft 
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should be decreased in order to catch up to the target spacecraft during 
phasing; then, the semimajor axis can be increased up to the required 
value by the impulses of the second manoeuvring interval. For these 
values of u, the three or four-impulse nondegenerate CNS solutions will 
be optimal. 

The values of ,u  which lead to the alteration of the signs 
ItV  or 

IItV  and, correspondingly, to the change in the solution type, can be 
assessed. The sum of the transversal impulse components of the first 
manoeuvring interval 

ItV  changes its sign with ,0sluu  while the 
sum of the transversal impulse components of the second manoeuvring 
interval 

IItV , changes its sign with ,3 aNuu sr  where N = the 
number of revolutions from the beginning of the first manoeuvring 
interval up to the rendezvous point. 

The osculation of the circles for the case when the radius of the first 
circle is greater than the radius of the second (Fig. 3-15c), occurs with: 

 

),(
4
1

eaV
It    (3-33a) 

),(
4
1

eaV
IIt    (3-33b) 

 
Hence, 

).(
2
3

eaNutl    (3-34) 

 
The osculation of the circles in the case when the radius of the second 

orbit is greater than the radius of the first, occurs with: 
 

),(
4
1

eaV
It    (3-35a) 

).(
4
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eaV
IIt    (3-35b) 

 
Hence, 
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2
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3.5.2. Intersecting Orbits 

Figure 3-14b gives the dependencies between the values 
III tt VV ,  

and u  for the intersecting orbits. We also assume 0a  for certainty. 
The examples of the locations of the circles with radii 1R  and 2R  for 

the phase differences msltll uuuu ,,,  are depicted in Fig. 3-16. The 
ratio of the circle radii will be inverted for those moments of time that are 
symmetrical relative to .mu  

As can be seen from the figure, with tluu  and truu  the 
circles intersect (3-16a) and ,0

III tt VV  hence, the CNS-type solution 
will be optimal. Two, three, and four-impulse solutions are possible. 

With trtl uuu , the circles do not have common points and, 
thus, the three and four-impulse CAS solutions will be optimal. The 
calculation of the magnitudes trtl uu ,  is undertaken by the same 
equations, 3-34 and 3-36. The different type-solution existence domains 
and the number of burns, which can be used for the acquisition of the 
optimal solution, are listed in Fig. 3-14b. 

 

 

 
Fig. 3-16. Alteration of the circle locations, which correspond to the sum of 

the transversal impulse components of the first and second manoeuvring 
intervals for intersecting orbits with alteration of the initial phase 

 
Summing up this chapter, the following simplest algorithm for optimal 

solution parameter searching can be suggested. The magnitudes trtl uu ,  
can be found using eqs. 3-34 and 3-36. By comparing them to the 
magnitude of deviation by the phase u , we can determine which 
manoeuvring interval should have two impulses. The parameters of the 
apsidal three-impulse solution can be found unambiguously from eqs. 3-1a 
to 3-1d. If the obtained solution is of the CSS or CAS-type and fulfills the 
constraints on the moments of impulse application, then the problem is 
solved. Otherwise, the algorithms from the third paragraph of this chapter 
should be used in the search for the optimal solution. 
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3.6. Four-Impulse Nondegenerate Solution  
Existence Domains 

As has been already mentioned, the CNS solution exists if the circles 
of radii 1R  and 2R  have common points and the signs of 

ItV  and 
IItV  

do not coincide. It is obvious that the greater the area of the circles that is 
occupied by their intersection, the more different CNS solutions exist. The 
relative positions of the circles depend on the difference between the 
eccentricities ,e  determining the distance between their centers, and on 

a  and ,3/ 10t  determining the magnitudes of their radii. For the 
determination of the four-impulse nondegenerate solution existence 
domain, one can fix e  and investigate the dependency of the existence 
of the CNS from a  and ,3/ 10t  as only the relative area of the circles’ 
intersection is important. The research was conducted for .01.0e  The 
four-impulse CNS solution existence domains are depicted in figs. 3-17 
and 3-18 (Baranov and Terekhova 1993). 

As has already been noted, the major influence on the primer vector 
hodograph is caused by .~*  This variable, which is crucial for the existence of 
the CNS solution, is put on the x axis on all the graphs. The angle *~  alters in 
the range 0 to 360º. On this interval, solutions of both types exist in the range 
0 to 180º and the solution of one type exists in the range 180 to 360º (Fig. 3-7). 
It is more convenient to investigate the existence of the hodograph of one type 
(in this case, the second type) on the interval 0 to 540º. This is acceptable 
because the first-type hodograph versus *~  on the interval 0 to 180º 
practically coincides with the second-type hodograph versus *~ on the 
interval 360 to 540º. The primer vector hodograph depends weakly on N and 
the radii of the circles depend on N only by the ratio ,3/ 10t  allowing us to 
conduct an investigation into the constant value of ,10N  while the 
alteration of the ratio 103/t  is undertaken by changing .t  The values of 

t  are depicted in the upper right corner of each graph. The values of a  in 
the bottom of the figure belong to all graphs from the corresponding columns. 
The existence of CNS-type solutions strongly depends on the angle ,  which 
sets the orientation of the apsidal line relative to the direction on the 
rendezvous point. This angle is put on the y axis on graphs. 

Let us consider how the appearance of the CNS existence domain depends 
on t  and .a  Narrow S-like areas can be seen for small t  (the first figure 
in each column). This is connected to the smallness of the radius of the first 
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circle; it can be assumed that the major influence on the existence of the 
solution is due to the impulse locations of the second manoeuvring interval. 

 

 

 

  

    

   

a=0.011 a=0.015 a=0.019 
 

Fig. 3-17. Existence domains of four-impulse nondegenerate solutions for 
nonintersecting orbits 
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a=0.001 a=0.005 a=0.009 
 

Fig. 3-18. Existence domains of four-impulse nondegenerate solutions for 
intersecting orbits 
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Let us draw the solutions, which correspond to the different points 
from Fig. 3-17 (the point marked with the digits), on one figure (Fig. 
3-19). We will assume that the transfer is always fulfilled to one point 

).0,( xe  With this representation, the line segment corresponding to the 
last impulse turns out to be rotated by angle  relative to axis xe  (in 
reality, the line segment depicting this impulse is parallel to axis xe  and 
the line segment, which connects the reference frame origin with the point 

),,( yx ee  is rotated by angle ). 
 

 

 

Fig. 3-19. Four-impulse  
nondegenerate  

solutions for various  
values of angle  
with small t/3  

Fig. 3-20. Inclination  
angle between the focal radius 

and the main axis of the ellipse as 
a function of the angle between  

the radii 
 

The sums of the impulses of the last manoeuvring intervals of these 

solutions are approximately the same ).
32

1(
0

43
I

tt
t

aVV  The 

point of the line segment’s start, which depicts the third impulse, is close 
to the reference frame origin due to the smallness of the radius of the first 
circle. Thus, the end of this line segment lies in the vicinity of the ellipse 
with the points of focus )0,0(  and ).0,( xe  Hence, angle , as a function 
of angle  between the third and fourth impulses, is close to angle  
(the inclination angle between the focal radius 2r  and axis xe ) as a 
function of angle  (the angle between the focal radii of the ellipse). This 
function has a particular S-based appearance (Fig. 3-20). The appearance 
of the curved line depends on the parameters of the ellipse: the greater the 
magnitude of the semimajor axis with the constant distance between the 
focuses, the less curved the line is. The function )~( *  can be considered 
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as a complex function )).~(( *  Since the function )~( *  is close to 
the linear function (see figs. 3-8 and 3-27), the appearance of the curved 
line )~( *  is determined basically by the function ).(  Changes in the 
appearance of the CNS solution existence domains can be explained by 
the increase in a  (see Fig. 3-17). 

The smoothing of the curved line due to the increase in the radius of 
the second circle also occurs with the increase in ).const( at  In this 
case, the radius of the first circle increases, leading to an increase in the 
number of acceptable solutions due to greater uncertainty in the position 
of the left focus of the ellipse. It can be seen in Fig. 3-17 that the CNS 
existence domain area widens with the increase in .t  

The similar appearance and the dependency of a  and t  can be seen 
in the graphs for the variant ae  (Fig. 3-18). In this case, the 
impulses of the first manoeuvring interval have greater influence and must 
transfer point C to the area of the circles’ intersection. If this does not 
happen (as a rule it happens for small t  and 180 ), then the 
solutions, which are present on the graphs for ,ae  are not present on 
the graphs with .ae  

The common feature of the graphs in figs. 3-17 and 3-18 is the absence 
of solutions with small *~  and the absence of solutions with 360~*  
for big values of .t  

The absence of solutions with small *~  is evident because, due to the 
small , the four-impulse solutions do not differ much from the two-
impulse solutions. They exist only for transfers between the two points on 
the same circular orbit, or for transfers between the intersecting orbits in a 
narrow range of angles. 

With big magnitudes of ,3/ 10t  the radii of the circles considerably 

exceed the distance between their centers. With the flyby, the angles *~  
close to 2  magnitudes of the outer impulses considerably exceed the 
magnitudes of the inner impulses (Fig. 3-21a). Thus, the existence of CNS 
solutions depends on the relative orientation of the outer impulses. 
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Fig. 3-21. For solutions with angles in the flyby of *~  close to 2 , the 
values of the outer impulse solutions are considerably greater than the 

values of the inner impulses: 
(a) 2~* optimal solution; 

(b), (c) 2~* nonoptimal solutions. 

 
With 2~* , point B, being the end of the line segment and 

depicting the first impulse, is above the line segment depicting the last 
impulse. Since 240  in this case, the transfer from point B to point 
D is fulfilled by the inner impulses, which have the same signs of the 
transversal impulses as the outer impulses of the corresponding 
manoeuvring interval. These solutions are CNS-type solutions. If 

,2~*  then point B lies below line segment DK. In this case, either one 
(Fig. 3-21c) or both (Fig. 3-21b) transversal impulses have the signs of the 
transversal components; these do not coincide with the signs of the 
transversal components of the outer impulses, which correspond to the 
manoeuvring intervals, hence, these are not CNS-type solutions. 

As was previously mentioned, for this example, the solutions of the 
second type on the interval 360 to 540º correspond to the solutions of the 
first type on the interval 0 to 180º. It can be seen in the graphs that the 
solutions of both types do not exist simultaneously, not even for 
considerable values of ,3/t  when the existence domains of the second-
type CNS solutions practically fill the total area of 0 to 360º. 

3.7. Lambert’s Problem: Advantages and Disadvantages 
of the Two-Impulse Solution 

The solution of Lambert’s problem is a well-known and often-used 
method for the rendezvous solution (two-impulse manoeuvre parameter 
determination with fixed moments of impulse application). It is interesting 
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to compare its capabilities with the capabilities of the previously 
mentioned methods. In the fourth paragraph of this chapter, it was shown 
that an optimal two-impulse solution does not exist for all values of the 
initial phase deviation .u  Let us assess the magnitude of the difference 
between the total delta-v of the two-impulse solution and the total delta-v 
of the optimal three-impulse solution. 

Lambert’s problem has a trivial solution for near-circular motion. We 
have the equation system containing four linear equations (eqs. 3-1a to 3-
1d) with the four unknown variables 

2211
,,, trtr VVVV  (for the 

coplanar rendezvous) for the fixed impulse application moments 
., 2211 ff
 By solving this equation system and determining the 

values of the impulse components, one can find the total delta-v of the 
manoeuvres. By enumerating all of the possible combinations of 21,  a 
close-to-optimal rendezvous solution can be found. The more 
combinations 21,  we consider, the more accurate an optimal solution 
we get. 

Such a two-impulse rendezvous solution method has two advantages. 
Firstly, any constraints on the moments of impulse application can be 
satisfied. Secondly, this method is both reliable for a multiple-revolution 
rendezvous and for a small-duration rendezvous. However, there is a 
problem with the optimality of the found solution. Two-impulse solutions 
with total delta-vs that close to optimal (both impulses are practically 
transversal) exist only when the circles with radii 1R  and 2R  intersect. 
This intersection occurs for some CSS solutions for nonintersecting orbits 
and for the CNS-type solutions for intersecting orbits. 

A totally different situation occurs if the circles of radii 1R  and 2R  do 
not intersect. In this case, as mentioned before, optimal two-impulse 
solutions do not exist (both impulses of which are transversal) and, hence, 
Lambert’s problem will lead us to a nonoptimal solution with any number 
of the considered set of the points ., 21  

The difference between the total delta-v of the optimal three-impulse 
solution and the total delta-v of the two-impulse solution will be greater 
with an increase in the distance between the points of the circle. This can 
take place when ae  or .ea  For intersecting orbits, with an 
increase in the limit of the difference between e  and a , the two-
impulse manoeuvre will practically solve the problem with the sole help of 
the radial velocity components. In Fig. 3-22a, the curved line ABCK 
corresponds to the two-impulse manoeuvre and line segment BC 
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corresponds to the radial component of the first impulse. The optimal 
three-impulse manoeuvre (the CAS-type solution) only uses the 
transversal components and, hence, the total delta-v for the solution of 
Lambert’s problem )( eV  will be two times greater than the total 
delta-vs of the optimal three or four-impulse solutions ).2/( eV  

For nonintersecting orbits, the difference can get up to triple the value. 
The optimal manoeuvre from among the two-impulse manoeuvres is 
presented in Fig. 3-22b. 

 
 
 

 

Fig. 3-22. Lambert’s problem solution: 
(a) intersecting orbits (b) nonintersecting orbits 

 
The curved line ABDK corresponds to it. This is connected to the fact 

that a radial impulse component with magnitude aVV tr 12
2  

occurs. The total delta-v expenditure of the two-impulse manoeuvre can 

be estimated as ,
2
3

12
aVVV tr  and the three-impulse 

transversal manoeuvre has .
21

a
VV t  Such a variant occurs for 

solutions that correspond to the deviations of u  close to the values slu  
or sru  in Fig. 3-14a. 

3.8. Manoeuvres with Drift Orbit Altitude Constraints 

The previous paragraphs presented problems without any constraints 
on the orbital elements; however, in practical work one can meet problems 
with these constraints. Let us consider, for example, drift orbit 
manoeuvres that lie in the desired “ring” with the center as the center of 
attraction: 
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,maxmin rrrr ap    (3-37) 
 

where maxmin , rr  = the radii of the inner and outer ring circles and ap rr ,  = 
the radii of the drift orbit pericenter and apocenter, respectively. 

Constraints of this type can often be met while solving the rendezvous 
problem. For example, in order to catch up to the target spacecraft (which 
is far ahead), the active spacecraft needs to gradually decrease the period 
of its drift orbit. This may lead to a considerable decrease in the minimal 
orbit altitude and, hence, to a dangerous level of atmospheric deceleration. 
There are also other numerous grounds for the introduction of such 
constraints. 

Figure 3-23 gives the example of a flyby from an initial orbit (denoted 
by 0T ) to a target orbit (denoted by fT ), in which the constraint on the 

minimum altitude minr  is crucial for the drift orbit (denoted by the dashed 
line dT ). The following sequence has been carried out in order to catch the 
target spacecraft over a fixed time duration: application of the braking 
impulse ,

1t
V  transfer to the drift orbit, which osculates the circular orbit 

with the radius ,minr  and the application of the two impulses 
2t

V  and 

3t
V  on the last manoeuvring interval in order to transfer to the target 

orbit at the required point. 
Because of their importance, many publications have been dedicated to 

the solution of manoeuvring problems with altitude constraints on the drift 
orbit. The most fundamental results can be found in the work of Ivashkin 
(1975), in which the transfers between elliptical orbits were analyzed. The 
many peculiarities of multiple-revolution flybys between near-circular 
orbits have been considered in this work, which can be used for the 
acquisition of an analytical solution. 

 

 
Fig. 3-23. Flyby with constraint on drift orbit altitude 
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As mentioned before, condition 3-1d allows for the approximate 
assessment of the magnitude of the transversal impulse component sum of 
the first manoeuvring interval *

ItV  of the multiple-revolution flyby and, 
hence, approximately determining the magnitude of the drift orbit 
semimajor axis: 

 
,2 *

0 Itd Vaa  
 

where da  = the drift orbit semimajor axis; 0a  = the initial value of the 

active spacecraft orbit semimajor axis; and *
ItV  is determined by Eq.3-

12a. 
It is assumed that Eq. 3-1d is replaced with the approximate Eq. 3-12a 

for further analysis of the problem. The values of the optimal manoeuvring 
parameters (for which condition 3-1d will be fulfilled with the desired 
tolerance), as usual, can be carried out with the help of the iterative 
procedure. 

It is apparent that the problem stated previously has a solution, if: 
 

,maxmin rar d    (3-38) 
 

Otherwise the spacecraft will arrive at the rendezvous point at the fixed 
time, but without fulfilling one of the constraints (3-37). 

Since the semimajor axis of the drift orbit is known, the constraint on 
the eccentricity of the drift orbit is equivalent to constraint 3-37: 

 
,sd ee     (3-39a) 
,bd ee     (3-39b) 

where bsd eee ,,  = the drift orbit eccentricity; the eccentricity of the orbit 
with the semimajor axis ,da  which osculates with the lower boundary of 
the ring; and the eccentricity of the orbit with the semimajor axis ,da  
which osculates with the upper boundary of the ring, respectively. The 
magnitudes of bs ee ,  can be evaluated by: 

 

,min

d

d
s a

ra
e    (3-40a) 
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.max

d

d
b a

ar
e    (3-40b) 

  
The orientation of the orbit’s apsidal line is not important. We cannot 

increase the drift orbit eccentricity more than the lesser value of the 
magnitudes bs ee , , while maintaining the set value of the semimajor axis, 
because the orbit will exceed the boundaries of the restraining ring. 

Thus, it follows from inequalities 3-39a and 3-39b that the geometric 
locus on the plane yx ee ,  will be a circle with radius mR  (Fig. 3-24), 

which is equal to the smaller of the values bs ee ,  (Baranov 1985). The 
points from this geometric locus correspond to the acceptable values of the 
drift orbit eccentricity vector. The center of the circle is situated in the 
reference frame origin. 

Let us draw circles with radii *
2

*
1 2 ,2

III tt VRVR  ( *
IItV  is 

evaluated by Eq. 3-12b) with centers at point A ),(
00 yx ee and point K 

).,(
ff yx ee  Let us remember that point A corresponds to the eccentricity 

vector of the active spacecraft’s orbit and point K corresponds to the 
eccentricity vector of the target spacecraft’s orbit. In the case when set G 
in Fig. 3-24a (the set of the points of the intersection of the circles with 
radii 1R  and 2R ) has common points with the circle of radius ,mR  it is 
easy to point out the two, three, and four-impulse variants, for which the 
aforementioned points will correspond to the acceptable values of the drift 
orbit eccentricity vector, among the solutions, investigated in the previous 
paragraphs. This is point B for the two-impulse solution; curve BC for the 
three-impulse solution with the two impulses on the second manoeuvring 
interval; and area BCD for the four-impulse solution. Since the conditions 
3-39a and 3-39b are met for the found solutions, then condition 3-37 is 
satisfied too. The solution parameters are updated with the help of the 
aforementioned iterative procedures, which ensure the satisfaction of 
condition 3-1d with the desired tolerance. 
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Fig. 3-24. Relative positions of circles corresponding to the sum of the 
transversal impulse components of the first and second manoeuvring 
intervals and permitted values of the drift orbit eccentricity vector: 

(a) solutions with fulfillment of the constraint on the drift orbit altitude 
from among the conventional rendezvous problem solutions; 

(b) special solutions need to be searched for. 
 
The variant when the circles of radii 1R  and 2R  have common points 

(they intersect or one of them is inside the other) is mostly typical for 
problems in which it is necessary to account for constraints on the drift 
orbit altitude. As a rule, we have to account for constraints on altitude 
when the sums of the transversal impulse components of the first and 
second manoeuvring intervals have different signs (the presence of 
common points is a necessary condition for the circles of radii 1R  and 2R
). 

If the constraint on the altitude is severe ( da  is slightly different from 

minr  or maxr ), then the drift orbit eccentricity (the radius of circle mR ) 
will be small. If the initial and final orbits in this problem have relatively 
big eccentricity values, and the differences between their semimajor axes 
and the eccentricity vectors are small, then there may be no common 
points between the three circles (Fig. 3-24b). In this case, the four-impulse 
manoeuvre will be optimal and the curved line ABCDK corresponds to it 
(Fig. 3-24b). Point C, which corresponds to the drift orbit eccentricity 
vector, should belong to curve LM (curve LM is the part of the circle with 
radius ,mR  which is limited by line segments, connecting the centers of 
the circles with radii 1R  and 2R  with the reference frame origin). 

If the initial and final orbits intersect, then the variant is possible in 
which only the inner points of line segment E1E2 (Fig. 3-25) belong to the 
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circle with radius .mR  In this case, among the optimal solutions without 
accounting for the constraint (Eq. 3-37), only the four-impulse solutions, 
for which the points of line segment LN would correspond to the permitted 
values of the drift orbit eccentricity vectors, fulfill constraint 3-37. 

 
 

Fig. 3-25. Four-impulse solutions fulfilling the constraints on drift orbit 
altitude and existing among the optimal solutions 

 
When neither set G nor line segment E1E2 have common points with 

the circle of radius ,mR  the total delta-v of the acceptable solution will 
exceed the total delta-v of the solution, obtained without accounting for 
constraint 3-37. 

We can determine which points of the circle of radius mR  can 
correspond to the acceptable values of the drift orbit eccentricity vector, 
obtained after the optimal manoeuvring performance in this case.  

We now consider four-impulse manoeuvres. We assume that point C 
(Fig. 3-26), which corresponds to the drift orbit parameters, is the inner 
point of the circle with radius .mR  It does not belong to set P (which is the 
set of intersection points of the circles with radii mR  and 2R ). For such a 
manoeuvre, the value of minimal total delta-v is equal to 

).(5.0 CKACVc  The minimal expenditures for the transfer through 
the arbitrary point C', which belong to curve L1L2 (Fig. 3-26), are smaller 
than ,cV  since AC'+C'K<AC+CK. 

Among the manoeuvres to which points of set P correspond, the 
minimal expenditures will result in a manoeuvre that is closest to point A 
of set P. This point corresponds to the drift orbit parameters. For the case 
depicted in Fig. 3-26, point N will be such a point. The optimality of this 
solution follows from the statement that the total impulse delta-v of the 
second manoeuvring interval is equal to 25.0 R  for all points of set P and 
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the minimal impulse delta-v of the first manoeuvring interval is equal to 
the half the distance to point A. 

Thus, the point of circle with radius ,mR  which lies on curve L1N, 
corresponds to the optimal transfer. The positions of the points of this set 
can be set with angle d (Fig. 3-26). 

 
 

Fig. 3-26. Case when the altitude constraint changes optimal solution 
 

Through the minimization of total delta-v by ,d  one can find the drift 
orbit parameters. Then, with the help of the iterative procedure, one can 
find the optimal manoeuvre parameters, which fulfill constraint 3-1d with 
the desired accuracy. 

3.9. The Impact of Error in Performing the Manoeuvre  

Errors always arise in discovering the spacecraft’s orbital elements and 
there are always errors in the performance of manoeuvres during flight. 
Accounting and compensating for the influence of these errors is of great 
importance in a multiple-revolution rendezvous. The first priority is to 
take into account errors of a secular nature. The influence of these errors is 
usually investigated using the Monte Carlo or analogous methods. In some 
cases, it is possible to account for errors analytically for near-circular 
motion. 

Firstly, we will consider the influence of manoeuvre realization error. 
Inaccuracies in the moments of thrust engine ignition, errors in the 
magnitudes of the applied impulses, and errors in thruster orientation can 
all be highlighted.  
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Errors in the moments of starting the engine burn 0t  and/or finishing 
the engine burn ft , lead to the alteration of the moment of impulse 
application (in comparison to the modeled one), by the angle : 

 

,
2

0

T

tt f  

 
and to the magnitude alteration of this impulse by V : 

 

,
)( 0

t

ttV
V f  

 
Here, T = the orbital period; t  = the manoeuvre duration; and V = the 
impulse magnitude. 

Let us consider the influence of this error on the alteration of the 
eccentricity vector. On the plane ,, yx ee  the vector, corresponding to the 

impulse, is rotated by angle .  The vector length also alters by 
0

2
V

V  in 

the case of the transversal impulse. An error in impulse orientation also 
leads to the rotation of this vector (and to a small alteration of its 
magnitude). An error in the impulse magnitude leads to an additional 
alteration of vector length. 

Thus, during the realization of the first manoeuvre, for example, the 
three-impulse solution ABCK (one impulse is applied on the first 
manoeuvring interval), vector AB  (Fig. 3-27a) may correspond to the first 
impulse instead of the determined vector AB. Point B  belongs to an ellipse 
with its center at point B. If the error in the orientation of the thrust 
engines is considerable, then the semimajor axis of the ellipse is 
perpendicular to the line segment, which corresponds to the nominal value 
of the impulse (for example, the ellipse in Fig. 3-27a with point B as its 
center). If the error in the magnitude of the manoeuvre is considerable, 
then the semimajor axis of the ellipse is directed along the line segment, 
which corresponds to the nominal value of the impulse (the ellipse in Fig. 
3-27a with point D as its center). The error ellipse has such a position, for 
example, if there is an error in the moment of engine burn start or finish, 
or if these errors have different signs ).0( 0 ftt  
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3.9.1. Effects on CSS and CNS-Type Solutions 

Let us consider the influence of the impulse realization error on the 
first manoeuvring interval of CSS-type solutions. We need to remember 
that the problem has lots of three and four-impulse solutions of this type 
with equal total delta-vs. The curve of the circle corresponds to the 
acceptable drift orbit eccentricity vector values of the three-impulse 
solutions and the area of the intersection of the circles with radii 1R  and 

2R  corresponds to the acceptable values of the drift orbit eccentricity 
vector for four-impulse solutions. If the ellipse with the impulse 
realization errors of the first manoeuvring interval belongs to the circle 
with radius 2R and a center at point K, then, with the use of the impulses 
of the second manoeuvring interval, one can optimally transfer from an 
arbitrary point of the ellipse to point K. In the initial moment, if line 
segment AB corresponds to the impulse, and accounting for the realization 
error, we change it to line segment AB  (point B  does not belong to the 
circle with its center at point K (Fig. 3-27a)), then, the total manoeuvre 
delta-v expenditure of the second interval and, hence, of the flyby, will be 
greater than in the case where no accounting for errors has been 
conducted. 

In order to put the error ellipse inside the circle with its center at point 
K, the point, which corresponds to the drift orbit eccentricity vector, 
should be placed closer to point K. If only one impulse is used on the first 
manoeuvring interval, the opportunities for this are limited. For example, 
the case to which point D corresponds in Fig. 3-27b. In this example, if the 
impulses are to be performed exceeding the nominal value, then point D  
may be outside the limits of the circle with its center at point K. However, 
if two impulses are used on the first manoeuvring interval and point K is 
situated inside the circle of radius 1R  with its center in the reference frame 
origin, then point B, which corresponds to the drift orbit eccentricity 
vector, can be placed as close as possible to point K (Fig. 3-27b). The 
error ellipse will be situated at its maximum depth inside the circle with its 
center at point K. Strictly speaking, the error ellipse obtained after the 
realization of two impulses on one manoeuvring interval, will not take the 
form of the ellipse. However, it is preferable to put this figure (the 
superposition of the two ellipses) as deep as possible inside the circle with 
its center at point K. 
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Fig. 3-27. Influence of impulse errors applied on the first manoeuvring 
interval for CSS-type solutions 

 
If point B is situated right next to point K, then the impulses of the 

second interval will be equal in magnitude and their angles of application 
will differ by 180º. Such a solution is less sensitive to both manoeuvre 
realization errors in the first manoeuvring interval and errors in the second 
manoeuvring interval. 

During the evaluation of the four-impulse manoeuvres of the “Soyuz” 
spacecraft, the application angle of the third impulse is fixed one 
revolution before the rendezvous point, while the application angle of the 
fourth impulse is fixed half a revolution before the rendezvous point. The 
constraint that the impulses of the second manoeuvring interval should be 
approximately equal is often added. These constraints lead to a situation in 
which point B, which corresponds to the drift orbit eccentricity vector, is 
very close to point K. Thus, we get the aforementioned solution, which is 
the least sensitive one to manoeuvre realization errors for both intervals. 
Certainly, the additional constraint increases the total delta-v expenditure 
of the manoeuvres of the first interval on the orbital plane rotation; 
however, as will be shown in Chapter 4, when points B and K are very 
close, it becomes easier to correct the errors in the impulse lateral 
components on the second manoeuvring interval. 

As a matter of fact, it is not necessary to place point B, which 
corresponds to the drift orbit eccentricity vector, as close as possible to 
point K. Instead, the point B area of possible positions can be determined 
with a reasonable level of accuracy. Let us remember that for the multiple-
revolution rendezvous sum of the transversal impulses, the components of 
the first manoeuvring interval 

ItV  can be determined by Eq. 3-12a. If the 

maximum error )3(  in the orientation of the impulse max , and the 
maximum error )3(  in the magnitude of the impulse k  ( 01.0k
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corresponding to a possible error in the magnitude of the impulse of 1 %) 
are known, then the semimajor axis magnitudes of the error ellipse 

II tt VkbVa  ,sin max  can be determined. Let us denote c as the 

maximum of a and b. If point B belongs to the circle of radius cRR 2
'
2  

with its center at point K (the circle plotted by points in Fig. 3-27b), then 
the error ellipse will belong to the circle of radius 2R  with its center at 
point K and, hence, it will be possible to optimally transfer from the 
arbitrary point B  to point K with the help of the manoeuvres of the second 
interval. 

Errors in the impulse magnitudes influence not only the position of the 
point corresponding to the drift orbit eccentricity vector, but also the 
radius of the circle with its center at point K. If the real magnitude of the 
performed impulse manoeuvres on the first manoeuvring interval exceeds 
the estimated magnitudes by ,

ItVk  then, on the second manoeuvring 
interval, the magnitudes of the impulses should be smaller than the 
estimated ones by ,

ItVk  in order to ensure the necessary alteration of the 
semimajor axis. Thus, it is desirable to locate point B in the circle of radius 

bcRR 2
*
2  with its center at point K (the dashed circle in Fig. 3-27b), 

in order for the ellipse corresponding to the impulse errors of the first 
manoeuvring interval to be inside the circle of smaller radius. 

The apsidal solutions, the parameters of which are determined in the 
easiest fashion, are, at the same time, the solutions that are least sensitive 
to the errors of impulses of the first manoeuvring interval because they 
allow us to find the maximum approach between points B and K with a 
corresponding distribution of the impulse magnitudes of this interval. 

The solution starts with a comparison of the magnitudes 
ItV  and e  

(the length of line segment AK). If ,2 eV
It  then it is better to use one 

transversal impulse on the first manoeuvring interval. If ,2 eV
It  then 

two transversal impulses are used on the first manoeuvring interval. The 
magnitudes of these impulses are connected to each other by the equation 

,
2
2

1

2

eV

eV

V

V

I

I

t

t

t

t  which ensures the proximity of points B and K. The 

magnitudes of all the impulses can be found from eqs. 3-1a to 3-1d. 
The influence of the impulse realization errors on the alteration of the 

eccentricity vector has also been considered. However, their distribution 
on the correction of the semimajor axis is usually not that important. An 
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error in the moment of engine burn start and burn finish with the 
maintenance of the total duration of the manoeuvre does not lead to a 
deviation from the estimated semimajor axis alteration because it can be 
corrected equally effectively at any point of the orbit (for the linearized 
equations of motion). 

The small error in the orientation of the impulse also does not lead to a 
considerable alteration of the transversal component magnitude and thus 
to a considerable alteration of the semimajor axis. The basic contribution 
to the semimajor axis correction error is made by the error in the 
magnitude of the impulse. However, this error does not lead to an increase 
in the total delta-v of the manoeuvres for the CAS-type solutions, when 
the total delta-v of the rendezvous manoeuvres is equal to the total delta-v 
of the transfer manoeuvres between these orbits and the primer vector 
hodograph degenerates to the point. In this case, the error in the correction 
of the semimajor axis by the impulses of the first manoeuvring interval 
can be compensated with a corresponding alteration of the impulses of the 
second manoeuvring interval without any increase of the total delta-v for 
all manoeuvres. 

If the primer vector hodograph is cycloid (CNS-type solution), then the 
total delta-v of the rendezvous manoeuvres is greater than the total delta-v 
of the transfer manoeuvres between these orbits. In this case, the error in 
the correction of the semimajor axis by the impulses of the first 
manoeuvring interval may lead either to an increase in the total delta-v of 
the manoeuvres (if the alteration of the semimajor axis is greater than the 
estimated one), or to its decrease (if the alteration of the semimajor axis is 
smaller than the estimated one). However, in both cases, just like for the 
CSS-type solutions, this error in the semimajor axis alteration leads to an 
error in the time of arrival at the rendezvous point. 

For a multiple-revolution rendezvous, this error, caused by errors in 
the correction of the semimajor axis by the impulses of the first 
manoeuvring interval, is the most important one. 

The arrival at the rendezvous point time miss can be evaluated by the 
equation: 

 
,6

errItI VNt  

 
where 

errItV  = the error in the sum of the transversal components of the 

impulses of the first manoeuvring interval that caused the error in the 
semimajor axis correction. 

 EBSCOhost - printed on 2/13/2023 10:43 PM via . All use subject to https://www.ebsco.com/terms-of-use



Chapter Three 
 

134

It is impossible to eliminate this error by the necessary analogous 
alteration of the impulse magnitudes of the last manoeuvring interval 

errItII VV  without only altering the moments of the impulse 

application of this manoeuvring interval. The corresponding alteration of 
the impulse magnitudes gives the alteration of the time of the arrival at the 
rendezvous point, which does not exceed the value: 

 
.6 IIVt  

 
This error can be eliminated with the help of the alteration of the 

impulse application moments performed on the second manoeuvring 
interval. For the case when points B and K are close and, hence, the 
magnitudes of the third and fourth impulses are practically equal to each 
other ),(

43 tt VV  the alteration of the arrival time at the rendezvous 
point due to the alteration of the application angle of one of the impulses 
by ,ch  and the alteration of the application angle of another impulse of 
close magnitude, can be evaluated by the equation: 

 
,3

IItchII Vt  
 

where 
IItV = the sum of the transversal impulse components of the 

second manoeuvring interval. 
The maximum alteration of the application angle of one of the 

impulses does not exceed half a revolution (it is suggested that the length 
of the manoeuvring interval is approximately one revolution). Thus, the 
maximum alteration of the arrival time at the rendezvous point is given by: 

 
.3

IItII Vt  
 

As a rule, only small alterations of the impulse locations on the second 
manoeuvring interval can be done, narrowing the magnitude IIt  even 
further. 

If ,III tt  it is impossible to eliminate the error in the time of 
arrival at the rendezvous point by altering the moments of performing the 
manoeuvre in the second interval. 

In order to effectively eliminate the deviation in the time of arrival at 
the rendezvous point, caused by errors in the impulse realization of the 
first manoeuvring interval, additional manoeuvres are usually used. 
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For example, for the “Soyuz” spacecraft we can use an additional 
manoeuvre on the 17th revolution between the first manoeuvring interval 
on the 3rd-4th revolutions and the second interval on the 32nd revolution. 
During the parameter determination of the four-impulse manoeuvre on the 
3rd and 32nd revolutions, a transversal accelerating impulse with a fixed 
magnitude 2 m/s on the 17th revolution has been accounted for. The 
magnitude of this impulse should be twice as great (since the distance 
between this impulse and the rendezvous point is twice as small as the 
distance between this point and the first manoeuvring interval) as the 
maximum error in the magnitude of the sum of the impulses of the first 
manoeuvring interval .

errItV  After the determination of the orbit before 

the 17th revolution, the parameters of the three-impulse solution are 
determined: the first impulse is performed on the 17th revolution, while 
the second and third impulses are performed on the 32nd revolution. Thus, 
the updated magnitude of the additional impulse is calculated, which 
allows the compensation of errors in the first manoeuvring interval. If the 
first impulses were performed with an error towards increasing ,

errItV  

then the magnitude of the additional impulse will decrease by 
errItV2

after the update. If the first impulses were performed with a shortfall in the 
required magnitude, then the mid-impulse magnitude (additional) will be 
increased by double the magnitude of the error after the update. 

It is very important to correctly choose the magnitude of the mid-
impulse for this scheme. If we make it too big, then the sum of the 
transversal components of the first manoeuvring interval will decrease by 
half of its magnitude and these impulses contribute most to the necessary 
rotation of the orbital plane. Thus, the total delta-v of the manoeuvres will 
increase. If we make it too small, then, after the update its magnitude can 
become negative, which will also increase the total delta-v of the 
manoeuvres. 

The optimal magnitude of the mid-impulse is: 
 

,2
maxItmid VkV  

 
where 

maxItV = the maximum value of the sum of the transversal impulse 

components of the first manoeuvring interval. Its magnitude depends on 
the maximum possible difference between the semimajor axes of the 
initial and the target orbits, and on the initial phase *

Iu  (see section 
1.5.2). 
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In order to find the practically optimal and resistive to errors of the 
impulse realization solution, one can divide each of the impulses iV  by 

iVk)1(2  and iVk  (k = the maximum error in the magnitude of the 
impulse). The impulse iVk)1(  is applied on the primary revolution and 
the impulse iVk  is applied on the following revolution. The application 
point on the revolution and the orientation of the mid-impulse are 
analogous to the corresponding values of the basic impulse. Thus, for 
example, instead of a four-impulse solution we get an eight-impulse 
solution. The division is made after the solution of the approximate four-
impulse problem, while accounting for the influence of the division 
through the help of the iterative procedure from the first chapter, which 
ensures the fulfillment of the terminal conditions with the desired 
tolerance. With this scheme, even if the manoeuvre were to be fulfilled 
with the maximum error, leading to an increase in the given value, the 
additional manoeuvre can be omitted because it was already performed by 
this maximum error. If the primary manoeuvre were to be performed with 
the maximum error leading to a decrease in its value, the magnitude of the 
additional manoeuvre will be doubled. Such a scheme allows us to 
compensate for the errors of the basic manoeuvres and not spend 
additional fuel. If high accuracy is needed for the terminal orbit, for 
example, during satellite formation flying deployment, then we have to 
divide the additional impulses of the second manoeuvring interval with the 
same proportions (Baranov, Boutonnet, Escudier, and Martinot 2005, 913-
920). 

The parameters of the CNS-type solutions are determined 
unambiguously. If the error ellipse of the manoeuvres of the first interval, 
corresponding to this solution, belongs to the circle with its center at point 
K, then, with the help of the manoeuvres of the second interval, one can 
transfer to the final orbit without significant losses. If the ellipse 
considerably exceeds the limits of the circle, then it is worth solving it 
through the use of the CSS-type solution, but with different signs of the 
transversal components on the first and second manoeuvring intervals. 
Then the appropriate solution can be chosen from the set of solutions. This 
solution has impulses on the first manoeuvring interval, situated closer to 
the beginning of this interval (for a decrease in total delta-v expenditure), 
and the point, which corresponds to the eccentricity vector of the drift 
orbit, is situated closer to point K (for a decrease in the influence of the 
error). 
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3.9.2. Effects on the CAS-Type Solution 

Let us consider the influence of errors in manoeuvre realization on the 
total delta-v of CAS-type solutions. The vectors, which correspond to the 
impulses of these solutions, lie on the line segment that connects points A 
and K (Fig. 3-28). 

 

 
Fig. 3-28. Influence of impulse errors applied in the first manoeuvring 

interval on CAS-type solutions 
 

Point E corresponds to the drift orbit eccentricity vector of the three-
impulse solution (one manoeuvre is performed on the first interval), while 
point C (which belongs to line segment EL) corresponds to the drift orbit 
eccentricity vector of the four-impulse solution. These points are equal in 
terms of total delta-v expenditure-per-flyby, but the choice of the concrete 
location of point C exercises a substantial influence on the distribution of 
errors in the first and second manoeuvring intervals. The closer point C is 
to point E, the fewer errors there are in the first manoeuvring interval (as 
the magnitude of impulses of this interval decreases) and the greater the 
errors in the second manoeuvring interval. By placing point C in the 
middle of line segment AK, we get a solution with the maximum equal 
possible errors on the first and second manoeuvring intervals (Fig. 3-28). 
If we happen to choose point C so that the error ellipse of the first 
manoeuvring interval will not have common points with the circles of 
radii 1R  and ,2R  then the error in the magnitude of the manoeuvres of the 
first interval insignificantly increases the total delta-v expenditure in the 
second interval. If the errors of the second manoeuvring interval are not 
important, for example, because the equipment used for the autonomous 
approach can easily compensate for them, it is better to place point C 
closer to point E, but the error ellipse should not share common points 
with the circle of radius .1R  This will result in the decreased influence of 
the error in the orientation of the impulses of the first interval on the total 
delta-v of the manoeuvres of the second interval. 

It is harder to eliminate the error in the time of arrival at the 
rendezvous point, which adds error to the correction of the semimajor axis 
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by the manoeuvres of the first interval, for CAS-type solutions than for 
CSS-type solutions. The second interval impulse application angles belong 
to angle e  (Eq. 1-14a). We can only move the moment of velocity 
application by one revolution, which is not always allowed. A 
considerable shift in the moments of impulse application, necessary for the 
compensation of an error in the time of arrival at the rendezvous point, 
leads to a considerable increase in the total delta-v of the manoeuvres of 
the second interval. The use of one or several additional impulses may 
solve this inconvenience, but it is better to have them factored into the 
manoeuvring scheme in advance. 

In the multiple-revolution manoeuvring scheme, since the orbit is 
determined one more time before the fulfillment of the manoeuvres of the 
second manoeuvring interval and the magnitudes of the impulses are 
recalculated, the influence of the realization errors is basically calculated 
in the same fashion. Only the secular influence of the error in the 
magnitudes of the transversal components of the impulses is missing. 
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CHAPTER FOUR 

NONCOPLANAR RENDEZVOUS  
 
 
 

4.1. Problem Statement 
 

The conditions of the transfer to the given orbit for the noncoplanar 
rendezvous problem can be written as 

 
N

i
xitiiri eVV

1

,)cos2sin(   (4-1a) 

N

i
yitiiri eVV

1

,sin2cos   (4-1b) 

,2
1

aV
N

i
ti    (4-1c) 

,sin43cos12
1

tVV
N

i
iitiiri  (4-1d) 

,sin
1

N

i
izi zV    (4-1e) 

N

i
zizi VV

1

,cos    (4-1f) 

 
where the deviations are evaluated in the rendezvous point (the x-axis is 
directed towards the rendezvous point). 

Impulses, just like in the coplanar problem case, are applied on the two 
manoeuvring intervals, the length of each interval is one revolution, and 
the distance between the intervals is several revolutions long. 

The impulses belonging to the set of manoeuvring intervals can be 
stated as 

,, ... ,,, ... , 221111 2111
FFFF NNNN  (4-2) 
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where 21, NN = numbers of impulses on the first and the second 
manoeuvring interval, respectively ( 21 NNN ). 

Find the components izitiri VVV ,,, ( Ni , ... ,1 ), which ensure 
the minimal total manoeuvre delta-v with the constraints 4-1a -4-1f, 4-2: 

 
N

i

N

i
zitirii VVVVV

1 1

222  

 
The equations for the primer vector can be presented as 

 
,2sincos 632   (4-3a) 

,3cos2sin22 6321  (4-3b) 
,cossin 54    (4-3c) 

 
where 654321 ,,,,,  = arbitrary constants. 

Basically, Eq. 4-3 describes a helix. If 06 , the equations will 
describe an ellipse (a circle) or a line segment (point).  

When the primer vector hodograph is the helix ( 06 ), the 
rendezvous problem total delta-v rdvV exceeds the total delta-v of the 
transfer problem .trfV  Like for the coplanar rendezvous, in this case the 
impulses of one of the manoeuvring intervals will be braking, while the 
impulses of the other manoeuvring interval will be boosting. 

06 rdvV coincides with .trfV The impulses for the transfers 
between the noncoplanar orbits can be divided into parts and applied on 
the different manoeuvring intervals. The nature of the solution stays the 
same, but the time of arrival to the final orbit changes. The rendezvous 
problem can be solved by the appropriate selection of the velocity impulse 
division. 

The idea of the optimal transfer impulse division for getting the 
solution of the rendezvous problem is quite natural and was considered in 
the literature multiple times (Petrov 1985; Jones 1976, 55–90). However, 
the case when rdvV  exceeds trfV (for such solutions the primer vector 
hodograph is the helix) is not usually considered by the authors or another 
problem solution is suggested which does not imply the impulse division 
of the optimal transfer. It is necessary to notice that the traditional method 
of the transfer problem impulse division has its disadvantages. It cannot be 
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applied to the problem, in which the different constraints on the impulses 
of the first and the second manoeuvring intervals must be satisfied; it also 
cannot be used when the constraints on the drift orbit parameters must be 
satisfied etc. The methods from the works of Jones (1976, 55–90) and 
Marec (1968) cannot be applied for the solution to problems with such 
constraints either. 

Remembering the multiple-revolution nature of the considered 
problem, three calculation algorithms, which ensure that the necessary 
manoeuvring parameters are obtained, can be suggested. The first algorithm 
is also based on the solution of the transfer problem, but it appears to be 
more universal than the algorithms from Petrov (1985) and Jones (1976, 
55–90). This will be considered in the second section of this chapter. The 
second algorithm (where the transfer problem is also solved for each of the 
manoeuvring intervals) is based on the solution of the minimization 
problem for the drift orbit elements. The particular case of this algorithm, 
which is used for the calculation of long-range guidance manoeuvres, is 
considered in this chapter; the algorithm in general will be considered in 
Chapter 7. Besides, the optimal nondegenerate solution parameter 
determination algorithm ( 06 ), which is based on the usage of the 
necessary optimality conditions, is considered in this chapter. 

4.2. Universal Solution Algorithm for the Noncoplanar 
Rendezvous Problem Based on the Transfer Problem 

Solution 

4.2.1. Manoeuvre Parameter Determination 

Due to the multiple-revolution nature of the flyby, the coefficients of 
the transversal impulse components of the first manoeuvring interval 
exceed all of the rest coefficients in Eq. 4-1d multiple times, but they only 
slightly differ from each other. This allows an approximate assessment of 
the magnitude of the sum of these components (

ItV ): 
 

,
3 0

t
V

It     (4-4) 

 
where 0  = the angular distance between an arbitrary point of the first 
manoeuvring interval and the rendezvous point. Then the active spacecraft 

 EBSCOhost - printed on 2/13/2023 10:43 PM via . All use subject to https://www.ebsco.com/terms-of-use



Chapter Four 
 

 

142

orbit semimajor axis magnitude change by the impulses of the first 
manoeuvring interval can be approximately assessed: 

 
,2

ItI Va     (4-5) 
 

Also, the active spacecraft orbit semimajor axis magnitude change by the 
impulses of the second manoeuvring interval can be approximately 
assessed: 

 
.2

ItII Vaa    (4-6) 
  

Let a be .III aaa   
The solution of the optimal transfer between the orbits with the orbit 

element deviations zyx Vzee ,,,  and a  (instead of a ) can be 

used for the solution of the rendezvous problem. If aa (this case 
occurs when Ia and IIa  have the same sign), then the obtained in this 
fashion problem solution will be optimal because its total delta-v coincides 
with the total delta-v of the transfer problem (corresponds to the case with

06 ). If aa , the total delta-v of the found solution is greater 
than the total delta-v of the optimal solution, to which the primer vector 
hodograph in the shape of the helix corresponds, but the difference will be 
small for the multiple-revolution rendezvous. 

In order to find the magnitudes of impulses for the rendezvous problem 
solution, the impulses, which were calculated for the solution of the 

transfer problem, can be divided as the ratios
a
aI , 

a
aII for the first and 

second manoeuvring intervals, respectively (Baranov 2008, 430–439). For 
example, the four-impulse solution of the rendezvous problem with the 
components of the first impulse of the first manoeuvring interval, 

 

,,
1111 a

a
VV

a
a

VV I
zz

I
tt II

  (4-7) 

 
and the components of the second impulse of the first manoeuvring 
interval, 
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.,
2222 * a

a
VV

a
a

VV I
zz

I
tt II

  (4-8) 

 
can be obtained from the universal solution (US) to the transfer problem 
with the components 

2211
,,, ztzt VVVV (the curved lines ACK and 

AC K correspond to it in Fig. 4-1).  
Similarly, for the second manoeuvring interval: 

 

,,
1111 a

a
VV

a
a

VV II
zz

II
tt IIII

  (4-9) 

.,
2222 a

a
VV

a
a

VV II
zz

II
tt IIII

  (4-10) 

 
If the signs of Ia  and a coincide on the first manoeuvring 

interval, then on this interval the angles of the impulse application of the 
rendezvous problem coincide with the impulse application angles of the 
transfer problem while, in the contrary case, the angles differ by 180º. 
Similarly, the equality of signs IIa and a on the second manoeuvring 
interval is checked and the values of the impulse application angles for the 
rendezvous problem are determined. It is obvious that the revolutions, on 
which the impulse application angles are situated, should belong to the set 
manoeuvring intervals. 

4.2.2. Solution Existence Domains 

The point D (Fig. 4-1), which belongs to the line segment AK (first the 
variant of nonintersecting ea will be considered), will correspond 
to the eccentricity vector of the drift orbit of the found solution in the 
space yx ee , . 
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Fig. 4-1. Rendezvous problem 
solutions obtained from the transfer 

problem solution 
 

Fig. 4-2. Existence domains for the 
rendezvous problem solutions 

The curved line ABDEK corresponds to the transversal impulse 
components of this solution. If one alters the impulse application order on 
the first and the second manoeuvring intervals, three more kinds of curved 
lines – AB DE K, ABDE K, and AB DEK – can be obtained. These four 
solutions slightly differ between each other in the conditions of the long-
duration rendezvous but, for a small duration, the order of the impulse 
application matters. The opportunity to use different solutions may be 
handy from an aspect of keeping the moments of the impulse application 
in the permitted manoeuvring intervals. 

The existence domains of the rendezvous problem solutions, where the 
total delta-v rdvV of which coincides with the total delta-v of the transfer 

problem solution trfV ( aa ), coincide with the existence domains 
of the CSS and the CAS solutions of the corresponding coplanar 
rendezvous problem, where the deviations from the plane are not taken 
into account (depicted in Figs. 3-14a and 3-14b), in the space u (the 
initial phase). In the same way, the existence domains of the solutions, for 
which the expenditures on rdvV  exceed the expenditures on trfV  (

aa ), coincide with the existence domains of the CNS solutions 
(depicted in Figs. 3-14a and 3-14b) in the space u . 

The sum of the transversal impulse components of the first 
manoeuvring interval should be equal to 2/Ia for the approximated 
satisfaction of the condition 4-1d:  
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.
221

I
tt

a
VV  

 
However, the distribution of the magnitudes of the transversal impulse 

components within the limits of this sum can be arbitrary and not be 
limited to the distribution set by eqs. 4-6 and 4-7. Thus, the line segment 
MN (Fig. 4-1) corresponds to the possible values of the drift orbit 
eccentricity vector. The four-impulse solutions turn to three-impulse 
solutions at the points M and N, when only one impulse with the 
magnitude 2/IIa is applied on the second interval. The angle of 
application of this impulse coincides with the angle of application of the 
first impulse of the transfer problem universal solution for point M or the 
angle of application of the second impulse for point N. 

The lateral components should be distributed between the impulses in 
a fashion when the ratio between the lateral and the transversal 
components (the same as for the corresponding impulse in the transfer 
problem) will be preserved for every impulse.  

The proportional solution parameters are the easiest to find, even if, for 
instance, due to the constraints on the drift orbit eccentricity, a solution is 
needed where the point of the line segment MN is different from the point 
D (Fig. 4-1). 

The position of the line segment MN will be different for the various 
values of u ; it will move parallel to itself. For the values 

srsl uuu ,  (see Section 3.4), the parallelogram ACKC  will be the 
acceptable set for the drift orbit eccentricity vector values in the space

yx ee , . With sluu , the line segment MN degenerates to point K and, 

with sruu  the line segment MN degenerates to point A. 
When u  becomes greater than sru  and keeps on growing, or 

becomes lesser than slu  and keeps on decreasing, a starts growing 
(on the interval srsl uu , , which is constant). At the same time, the 
radii of both circles 1R  and 2R  start to grow, because Ia  and IIa , the 
signs of which do not coincide (as always, III aRaR 21 , ), grow. 
The line segment continues to correspond to the possible values of the 
drift orbit eccentricity vector with every concrete value of u , but its 
value will be greater than the value of the line segment, which corresponds 
to u  from the interval srsl uu ,  and intersects the same point of line 
segment AK. For the values sluu  and sruu , the acceptable set 
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for the values of the drift orbit eccentricity vector on the plane yx ee ,  will 
be the geometric figure (depicted in Fig. 4-2), which holds the 
parallelogram ACKC .  

The universal solution was used during the research on the existence 
domains as it was the simplest one (see paragraph 2.4), but the analogous 
picture can be obtained for the existence domains of solutions, as 
presented in the work of Edelbaum (1967, 66–73). 

Let us consider the variant when the orbits intersect and aa . In 
this case, the circles with the radii 1R  and 2R  on the plane yxee  do not 

intersect (Fig. 4-3). The curved lines ACK and AC K correspond to the 
universal solutions of the transfer problem, and the curved lines ABDEK, 
AB DE K, ABDE K, and AB DEK, correspond to the proportional solutions 
of the rendezvous problem. It was mentioned above that the signs of the 
transversal components of impulses do not coincide for the transfer 
between the intersecting orbit problem solution. Hence, for example, the 
solution AB DEK has 1R =AB -B D and 2R =EK-DE, and also MB =B D 
and DE=EN. 

Like in the nonintersecting orbits case, the transversal impulse 
component magnitude distribution of the first manoeuvring interval within 
the limits of the sum 4-10 can be arbitrary and not be limited to the 
distribution set by eqs. 4-6 and 4-7. Thus, the line segment MN 
corresponds to the possible values of the drift orbit eccentricity vector 
(Fig. 4-3). 

 
Fig. 4-3. Rendezvous problem solution for nonintersecting orbits. 

 
The four-impulse solution degenerates to the three-impulse solution at 

the points M and N. The solution, when only one impulse with the 
transversal component 2/Ia  and the application angle, which coincides 
with the application angle of the second impulse of the transfer problem 
universal solution, is applied on the first interval; this corresponds to point 
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M. The solution when one impulse with the transversal component 2/IIa
is applied on the second manoeuvring interval corresponds to point N. 

Like in the case of a rendezvous on nonintersecting orbits, the position 
of the line segment MN will alter with different values of u . The 
parallelogram ACKC  will be the acceptable set for the values of the drift 
orbit eccentricity vector on the plane yx ee ,  for the values of

srsl uuu , . With sluu , the line segment degenerates to point 
K, and, with sruu , the line segment degenerates to point A. When 

u  becomes greater than sru  and keeps on growing, a  also starts to 
grow (it was constant on the interval srsl uu , ). At the same time, the 
radii of both circles 1R  and 2R  start to grow, because Ia  and IIa , the 
signs of which do not coincide, grow. The line segment, which is situated 
to the left of the point K, continues to correspond to the possible values of 
the drift orbit eccentricity vector with every concrete value of u , but its 
value will be greater than the value of the line segment, which corresponds 
to u  from the interval srsl uu ,  and intersects the same point of the 
line segment AK. For the values sluu  and sruu , the acceptable 
set of the values of the drift orbit eccentricity vector on the plane yx ee ,  
will be the unlimited geometric figure, as depicted in Fig. 4-2.  

The existence domains of both solutions were investigated with the 
presumption that Eq. 4-1d was replaced by the approximate Eq. 4-10. It is 
good enough for understanding the appearance of these areas.  

The parameters of any solution from the permitted area can be updated 
with the help of the iterative procedure, which is analogous to the 
procedure from Chapter 3 (only value of Ia  changes). Equation 4-1d 
should be satisfied with the given accuracy. 

It is worth mentioning that the Lambert’s problem can be used for the 
determination of the manoeuvre parameters instead of the aforementioned 
iterative procedure, since it works effectively enough with the small 
duration of rendezvous. The magnitudes of the impulse components 

)2,1(,, iVVV
iii ztr  are determined from the equation system of the 

six linear equations with the six unknown variables 4-1a - 4.-1f with the 
fixed moments of the application of two impulses. The optimal solution is 
found by enumerating possible combinations of 21, . The usage of 
Lambert’s problem on the small manoeuvring intervals is quite reasonable, 
since it is hard to place more than two manoeuvres on these intervals. 
Besides, these two manoeuvres are often the part of the estimated earlier 
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four- or three-impulse manoeuvre. If it is not enough to use two impulses 
for the optimal solution of the problem and a three- or four-impulse 
manoeuvring scheme is needed, then the numerical method from the 
following chapter can be used for manoeuvre parameter determination. 

The searching procedure for the optimal multiple-revolution rendezvous 
problem solution becomes more difficult with the presence of the 
additional constraints on the angles of application, orientation, and 
magnitudes of impulses. Such constraints can often be found in practical 
problems. However, the geometric approach allows finding the optimal 
analytical solutions in these cases. The algorithm for the solution of this 
type of problem is described in the Section 4.4. 

4.2.3. Example 

The four-impulse rendezvous on the noncoplanar orbits is considered. 
The elements of the initial and target orbits are listed in table 4-1. They are 
analogous to the orbit elements from example 2.2.8, but the information 
about the active spacecraft and the target spacecraft latitude argument in 
the initial moment from example 3.2.3; the numbers of revolutions of both 
spacecraft on that moment 

i
N0  and 

k
N0 ; and the number of revolutions 

in the rendezvous moment 
iapN  and 

fapN  are added. The three variants 

with the different initial locations of the target spacecraft are considered.  
 

Table 4-1 
 

Orbit elements Initial orbit Target orbit 
minH km 180 340 
maxH km 210 360 
prgu deg 20 150 
i  deg 51.7 51.69 

 deg 17.49 17.5 
1u deg 60 5 

2u deg 60 210 

3u deg 60 355 
0N (initial revolution) 1 201 

apN (rendezvous revolution) 17 217 
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The rendezvous point coincides with the beginning of the 17th 
revolution. 

Let us assume that the manoeuvre sequence is generated on two 
intervals: the first and the last revolutions of flight. The two impulses, 
which have the transversal and the lateral components, are applied on each 
interval. 

 
The alteration of the semimajor axis on the first manoeuvring interval 

can be determined by the equation  
 

,2
ItI Va  
 

where 
1k
t

V i
t I

, 111 3sin4k . The values of itk ,1  were 

calculated in the example 3.2.3. 
The alteration of the semimajor axis on the second manoeuvring 

interval is III aaa . 

For 5
1Fu   

.0,0,007195977.0,03052705.0 IIIIII aaaa  
 

By using the first manoeuvres, the active spacecraft transfers to the 
orbit with the higher altitude in order to “get caught” by the target 
spacecraft, and by using manoeuvres of the second interval it lowers to the 
level of the target spacecraft. 

For 210
3Fu , when the phase difference lies in the optimal 

diapason, the signs of deviations are equal:  
 

.0,0,01773258.0,005598495.0 IIIIII aaaa  
 

All manoeuvres are accelerating. 
For 355

3Fu  
 

.0,0,03536497.0,0120339.0 IIIIII aaaa  
 
With the use of the first manoeuvres, the spacecraft transfers to the 

lower orbit in order to catch the target spacecraft. 
Let us denote: 
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.III aaa  
 

Let us determine the impulse components 
2121

,,, zztt VVVV  of the 

noncoplanar two-impulse transfer. We shall assume that the value a  is 
the change of the semimajor axis in the calculations of the transfer 
parameters. The angles of the impulse application can also be taken from 
the solution of the noncoplanar transfer. The parameters 

2121
,,, zztt VVVV  in the second case (with the equal signs of Ia  and

IIa ) coincide with the estimated parameters of the noncoplanar transfer 

problem (example 2.2.8), because aa . 
The distribution of the impulse components

2121
,,, zztt VVVV , 

which were calculated for the noncoplanar two-impulse transfer, is 
fulfilled in accordance with eqs. 4-7-4-10: 
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II
ZZ

II
tt
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IIII
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1) 5

1Fu  

)s 84.3823( 458352.4,s 38.87660,03772303.0 11
tTa F  

,m/s 1525.0,m/s 9467.12

,m/s 1758.0,m/s 9230.14

,m/s 6471.0,m/s 9230.54

,m/s 7458.0,m/s 3067.63

22

11

22

11

IIII

IIII

II

II

Zt

Zt

Zt

Zt

VV

VV

VV

VV

 

m/s 12.146V  
,3586.318,9271.144 21  
.3586.318,9271.144 43  
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In accordance with the aforementioned procedure, the braking impulse 
application angles are changed by the half a revolution: 

 
.3586.138,9271.324 43  

 
After the formal application of this procedure, when only the 

manoeuvre fulfillment necessity on one revolution was taken into account, 
the application angle of the third impulse becomes greater than the angle 
of application of the fourth impulse and the impulses must be switched. 

 
,9271.324,3586.138 43  

.m/s 1758.0,m/s 9230.14

,m/s 1525.0,m/s 9467.12

22

11

IIII

IIII

Zt

Zt

VV

VV
 

 
2) 210

2Fu  

)s 2713.701( 8176375.0,s 82.84537,02333108.0 22
tTa F  

,m/s 5809.0,m/s 4122.30

,m/s 7309.0,m/s 2651.38

,m/s 1834.0,m/s 6017.9

,m/s 2307.0,m/s 0810.12

22

11

22

11

IIII

IIII

II

II

Zt

Zt

Zt

Zt

VV

VV

VV

VV

 

m/s 37.90V  
,9030.315,6201.146 21  
.9030.315,6201.146 43  

3) 355
3Fu  

)s 37.1507( 757502.1, 17.82329,04739887.0 33
tsTa F  

,m/s 6055.0,m/s 6162.64

,m/s 6780.0,m/s 3506.72

,m/s 2307.0,m/s 6193.24

,m/s 2060.0,m/s 9874.21

22

11

22

11

IIII

IIII

II

II

Zt

Zt

Zt

Zt

VV

VV

VV

VV

 

m/s 58.183V  
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,3370.324,1202.139 21  
.1202.319,3370.144 43  

 
Here, the angles’ alteration of the braking impulses and the change of 

the application order of these impulses have already been accounted for.  
The solution of the problem for the second variant can be considered 

as an example of the work of the iterative procedure. 
 

2) 210
2Fu  

1st iteration 
)s 2713.701( 8176375.0t  Time used on iteration 

01773258.0 ,005598495.0 21 aa  

02333108.0a  
1st impulse 

)6201.146( 97196.97,2307577.0,08099.12 1 uVV zt  
2nd impulse 

)903.315( 01742.95,1834008.0,601689.9 2 uVV zt  
3rd impulse 

)6201.146( 724182.3,730898.0,26514.38 3 uVV zt  
4th impulse 

)903.315( 7696386.0,5809005.0,41223.30 4 uVV zt  
)s 2758.751( 8759396.0rt  real deviation by time 
)s 2713.701( 8176375.0nt  nominal deviation by time 

)s 00453.50( 05830208.0rnat ttt  miss by time on this 
iteration 

7593354.005830208.08176375.0atttt  deviation of 
time for the next iteration   

 
2nd iteration 

)s 2667.651( 7593354.0t  Time used on iteration 
01820245.0 ,005128624.0 21 aa  

02333108.0a  
1st impulse 

)6201.146( 97196.97,2113906.0,06706.11 1 uVV zt  
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2nd impulse 
)903.315( 01742.95,1680083.0,795837.8 2 uVV zt  

3rd impulse 
)6201.146( 724182.3,7502651.0,27907.39 3 uVV zt  

4th impulse 
)903.315( 7696386.0,596293.0,21808.31 4 uVV zt  

)s 3031.694( 8095131.0rt  real deviation by time 
)s 2713.701( 8176375.0nt  nominal deviation by time 

)s 968117.6( 00812438.0rnat ttt  miss by time on this 
iteration 

7674598.000812438.07593354.0atttt  deviation of 
time for the next iteration   

 
3rd iteration 

)s 2349.658( 7674598.0t  Time used on iteration 
01814758.0 ,005183497.0 21 aa  

1st impulse 
)6201.146( 97196.97,2136523.0,18547.11 1 uVV zt  

2nd impulse 
)903.315( 01742.95,1698059.0,889947.8 2 uVV zt  

3rd impulse 
)6201.146( 724182.3,7480033.0,16066.39 3 uVV zt  

4th impulse 
)903.315( 7696386.0,5944954.0,12397.31 4 uVV zt  

)s 9566.700( 8172706.0rt  real deviation by time 
)s 2713.701( 8176375.0nt  nominal deviation by time 

)s 314696.0( 0003669154.0rnat ttt  miss by time on this 
iteration 

7678267.00003669154.07674598.0atttt  deviation of 
time for the next iteration   

 
4th iteration 

)s 5495.658( 7678267.0t  Time used on iteration 
0181451.0 ,005185975.0 21 aa  
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1st impulse 
)6201.146( 97196.97,2137545.0,19082.11 1 uVV zt  

2nd impulse 
)903.315( 01742.95,169887.0,894197.8 2 uVV zt  

3rd impulse 
)6201.146( 724182.3,7479012.0,15532.39 3 uVV zt  

4th impulse 
)903.315( 7696386.0,5944142.0,11972.31 4 uVV zt  

)s 257.701( 8176209.0rt  real deviation by time 
)s 2713.701( 8176375.0nt  nominal deviation by time 

)s 01421238.0( 005657073.1 ettt rnat  miss by time on this 
iteration 

7678433.0005657073.17678267.0 ettt at  deviation 
of time for the next iteration   

 
5th iteration 

)s 5638.658( 7678433.0t  Time used on iteration 
01814499.0 ,005186087.0 21 aa  

1st impulse 
)6201.146( 97196.97,2137591.0,19106.11 1 uVV zt  

2nd impulse 
)903.315( 01742.95,1698907.0,894389.8 2 uVV zt  

3rd impulse 
)6201.146( 724182.3,7478966.0,15507.39 3 uVV zt  

4th impulse 
)903.315( 7696386.0,5944106.0,11953.31 4 uVV zt  

)s 2706.701( 8176368.0rt  real deviation by time 
)s 2713.701( 8176375.0nt  nominal deviation by time 

)s 0006418635.0( 007483718.7 ettt rnat  miss by time 
on this iteration 

The initial miss of 701.2713 s becomes 0.00064 s after five iterations, 
i.e., the error of the arrival in the rendezvous point is less than 3 m. 
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4.3. Nondegenerate Solution to the Noncoplanar  
Rendezvous Problem 

4.3.1. Numerical Calculation of the Optimal Six-Impulse 
Solution Parameters 

The nondegenerate solution ( 06 ), when the primer vector 
hodograph is the helix in the space ( ,, ), will now be considered. The 
six-impulse optimal manoeuvre exists with the particular parameters of 
this helix. The first impulse is applied in the beginning of the first allowed 
manoeuvring interval (the helix intersects the sphere in the initial moment 
of time 0 ). The second and the third impulses are applied inside the 
first revolution of the flight in the moment of the osculation of the helix 
and the sphere. The fourth and the fifth impulses are applied on the last 
revolution of the flight in the osculating points and the sixth impulse 
corresponds to the intersection with the sphere in the final moment of time

f . As it is shown in the work of Marec (1979), there is no other 
distribution of the impulses on revolutions. Thus, the first and the last 
impulses are maximally separated, which allows reducing the total delta-v 
expenditures on rendezvous, because the spacecraft stays maximally long 
in the drift orbit. 

The osculation of the helix and the sphere in the four inner points is 
possible if the following helix “symmetry” conditions are satisfied: 

 
).()0(),()0(),()0( fff  (4-11) 

 
Such “symmetrical” nature of the helix leads to the impulse application 

moment symmetry, i.e., 
 

., 4352 ff   (4-12) 
 

Thus, it is enough to find the application angles and the impulse 
orientation of one manoeuvring interval, as similar impulse parameters of 
the other interval can be found from eqs. 4-11 and 4-12. We have to know 
the values of the coefficients i  ( 6....1i ), which determine the position 
of the helix, in order to find these parameters.  

Eqs. 4-11 and 1-19 lead to the following equations: 
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322

ff

fff

ff

 (4-13) 

 
which allow reducing the number of the independent parameters of the 
helix to three.  

Let us remember that, according to Eq. 4-13, it can be concluded that 
the elements of the pairs 2  and 43,  and 15 ,  and 6  should be 
among these three parameters. Besides, the parameter 6  has the biggest 
influence on the helix behavior, which is why it is reasonable to include it 
in the list of the independent parameters. The variables 653 ,,  were 
chosen as the independent parameters of the helix.  

The search for the values 653 ,,  is fulfilled with the successive use 
of the two different programs (Baranov and Roldugin 2011). The only 
entry parameter is the length of the manoeuvring interval f .  

The successive usage of two programs allows fully determining the 
parameters of helix for each f , which osculates the sphere in the four 
internal points. 

Thus, the moments of impulse application and their orientation are 
determined by the fixed rendezvous duration. The dependencies between 
the alteration of these manoeuvre parameters and the rendezvous duration, 
which are rather interesting, can be plotted. 

4.3.2. Characteristics of the Optimal Six-Impulse Solution 

Fig. 4-4 holds the application moments of the second (lower row) 2  
and the third (upper row) 3  impulses versus the full length of the flyby 
interval. It is assumed that the first impulse is applied when 01 .  

It can be seen from the figure that the graphs are practically the same 
for various f . In order to assess this proximity, it is necessary to draw 
these dependencies on one figure, by omitting the integer part of the 
revolutions of the argument f  for each of the dependencies before the 
moments when the six-impulse solution begins to exist. 
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Fig. 4-4. Application moments of the second and the third impulses. 
 

Let us denote the angular part, which will be omitted, as . For the 
first dependencies 2  and 3  2  and for the second ones 3 , etc. 

For each of the dependencies the left part of f  (let us denote it as f ), 

belongs to the interval ]2,0[f . The solutions exist for ]4.1,9.0[f . 

Let us introduce the variable f5.0  and draw the dependencies 

between the application moments of the second ( 2 ) and the third ( 3 ) 

impulses and . Figs. 4-5 and 4-6 hold these dependencies, which are 
obtained by the second piece of software. The legends to each of the 
figures hold the information about the thrown-away length of the 
manoeuvring interval . 
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Fig. 4-5. Application moment of the second impulse. 
 

 
 

Fig. 4-6. Application moment of the third impulse. 
 

 EBSCOhost - printed on 2/13/2023 10:43 PM via . All use subject to https://www.ebsco.com/terms-of-use



Noncoplanar Rendezvous  
 

 

159

It can be seen from Figs. 4-5 and 4-6 that the dependencies between 
32 , , and  for the various  practically coincide. The discrepancies 

between the curves can be observed when  approaches the end of the 
nondegenerate six-impulse solution existence interval. It is connected with 
errors in the determination of the solution parameters, which increase with 
the degeneration of the helix into the ellipse and with the approach of  
to 0.7. The parameter 6  becomes zero in this case. The problem with the 

solution parameter determination for 7.0  still exists, but with such a 
rendezvous duration one can use the results of the previous paragraph, 
which holds the simple and reliable algorithm of the degenerate solution 
parameter search for the rendezvous problem, to which the hodograph in 
the form of ellipse corresponds. As can be seen from the graphs, the 
difference between the second and the third moments of impulse 
application is practically half a revolution 10 . That is why in the first 
approximation it can be assumed that the interval between the second and 
the third (and, hence, between the fourth and fifth) impulses can be half a 
revolution long.  

Figs. 4-7 and 4-8 hold the dependencies between the yaws of the first (
1 ) and the second ( 2 ) impulses and the angles . 

Both graphs demonstrate the same tendency in the alteration of yaws 
due to : the slow decrease of their magnitude. The value , just like in 
the previous graphs, is depicted in the legend. 

The yaws of the second and the third impulses have practically the 
same magnitudes, but have different signs, due to difference in the 
impulse application angles (they differ approximately by the half a 
revolution). The differences of their magnitudes mostly do not exceed 1 . 
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Fig. 4-7. Yaw of the first impulse. 
 

 
 

Fig. 4-8. Yaw of the second impulse. 
 

Let us consider the orientation of the impulses in the orbital plane. Fig. 
4-9 shows the pitches of the first impulse for the various durations of 
rendezvous (it is labeled near the type of line). 
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Fig. 4-9. Pitches of the first impulse. 
 

The graph shows that the pitches of impulses are small. For a 
rendezvous with a duration less or equal to 10 revolutions, the pitch angles 
do not exceed 1 ; a similar result was obtained for rendezvous in coplanar 
orbits. The same result was obtained for the second and the third impulse 
pitches. Thus, the impulses in the orbit plane can be assumed to be purely 
transversal in the first approximation. This supposition is highly accurate 
(approximately 1 ) if the rendezvous duration is longer than 10 
revolutions. 

4.3.3. Impulse Parameter Approximation with the Help  
of Analytical Functions 

The results obtained in the previous section allow finding the simple 
analytical equations for the determination of the optimal manoeuvre 
parameters. It was shown that the impulses within the orbit plane can be 
considered as purely transversal and the out-of-plane impulse orientation 
for the second and the third impulses are opposite. Thus, it is necessary to 
specify only four analytical functions, which approximate the dependencies 
between the application moments of the second and the third impulses (the 
problem can be simplified by assuming that they differ by half a 
revolution as a first guess) and the yaws of the first and the second 
impulses.  
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It can be seen from Figs. 4-5 and 4-6, that the application moments of 
the second ( 2 ) and the third ( 3 ) impulses do not practically depend on 
the flyby duration  (the integer part of the revolutions). Third-degree 
polynomials are used for the approximation of the dependencies )(2  
and )(3 : 

 

.6.1169.213

)(6.180)(9.35)(

,1.3179.1298

)(3.1382)(8.724)(

23
3

23
2

 (4-14) 

 
Let us remember that *  is measured in the fractions of the double 

revolution, while the moments of impulse application in Eq. 4-14 are 
measured in the fractions of revolution. In the first approximation, the 
dependency )(3  can be omitted and it can be said that

5.0)()( 23 .  

Basically, the error in approximation does not exceed 3  and, for 
dependencies with a small number of flyby revolutions, it sometimes gets 
close to 8  near the boundaries. Such accuracy is enough for the 
acquisition of an approximate solution. For example, during the use of the 
numerical methods (Baranov 2008), the step for the impulse application 
angle enumeration (during the solution of the four-impulse problem) is 
usually set to 6 . 

It can be seen from Figs. 4-7 and 4-8 that the yaws of the first and the 
second impulses depend on the overall flyby duration. We will use the 
polynomials of the third order for the approximation of their dependencies 
on , but the coefficients will not be constant, as their dependency from 

 can also be approximated by third order polynomials: 
 

,)()()(

,)()()(

01
2

2
3

32

01
2

2
3

31

bbbb

aaaa
  (4-15) 

 
where 

,39.1013441.124776.4448.0 23
3a  
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,44.1864097.212758.7580.0 23
2a  

,99.1100251.119096.4144.0 23
1a  

,89.211244.21969.708.0 23
0a  

,01.241831.65491.2223.0 23
3b  

,06.572627.111613.3839.0 23
2b  

,87.385414.61971.2021.0 23
1b  

.44.79837.11269.304.0 23
0b  

 
The approximation error is less than one degree, which is enough for 

the acquisition of an acceptable solution.  
Thus, with the knowledge of the rendezvous duration (the angular 

distance between the start of the first manoeuvring interval until the end of 
the second manoeuvring interval) for the six-impulse manoeuvres, the 
angles of impulse application and their orientation can be found with the 
use of the analytical equations obtained on the basis of the necessary 
optimality conditions. For the first manoeuvring interval, the moment of 
the application of the first impulse coincides with the beginning of this 
interval; the application moments of the second and the third impulses 
relatively to the first impulse are given by Eq. 4-14, the yaws of the first 
and the second impulses are given by Eq. 4-15, the yaw of the third 
impulse is opposite to the yaw of the second impulse, and the pitches of all 
impulses are equal to zero. According to eqs. 4-11 and 4-12, the impulse 
parameters of the second manoeuvring interval are “symmetrical” to the 
impulse parameters of the first interval. With the use of this information 
magnitudes of the impulses are determined from eqs. 4-1a–4-1f. 

4.3.4. Comparison of the Six-Impulse Solution with Lambert’s 
Problem Solution 

Let us compare the total delta-v expenditures, obtained with the use of 
the optimal six-impulse solution and the two-impulse solution. 

The two-impulse solution was chosen for the comparison because 
Lambert’s problem is often used for the rendezvous problem solution. The 
impulses of the two-impulse solution are situated on the first and last 
revolutions of the flyby. The possible moments of the impulse application 
on each of the manoeuvring intervals are enumerated and, for each pair of 
angles 21,  from eqs. 4-1a–4-1f, the six values

iii ztr VVV ,, , i (
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2,1i ) are determined. By comparing the sums of impulses for various 
pairs of 21, , the impulse application moments with minimal total delta-
v expenditures are found. 

The parameters of the six-impulse solutions are determined by 
eqs. 4-14 and 4-15, and eqs. 4-1a–4-1f. It is assumed that the third impulse 
is separated from the second one by half a revolution (similarly, the fourth 
and the fifth impulses are separated from each other by half a revolution), 
while the first and the sixth impulses are situated on the manoeuvring 
interval boundaries.  

It turned out that the six-impulse solution, which meets the optimality 
constraints, may not exist, even if the duration of rendezvous belongs to 
the existence intervals of six-impulse solutions (Fig. 4-4). According to 
the necessary optimality conditions, the nondegenerate six-impulse solution 
has the positive transversal impulse components on one manoeuvring 
intervals and the negative transversal impulse components on the other. 
However, by using the found moments of application and the orientations of 
impulses, sometimes one can obtain the solution with the different signs of 
the transversal impulse components of one manoeuvring interval.  

Let us consider an example: when both orbits are circular (
0yx ee ), the difference between the semimajor axes values is 

01.0a , the deviations between the passive spacecraft orbit plane and 
the active spacecraft orbit plane are 0001.0z , 0001.0zV , the 

active satellite is ahead of the passive one ( 50u in the rendezvous 
point), and the total duration of the flyby is 5 .  

By using eqs. 4-14 and 4-15, the six-impulse solution may be found for 
any flyby duration. The six-impulse solution is more efficient than the 
two-impulse solution with a duration of up to 33.0 . Such a duration 
lies outside of the optimal solution existence diapasons from Fig. 4-4. 
With 46.0 , a maximum gain which reaches up to 45% can be 
obtained. The gain decreases slowly with the decrease of  (with

38.0 ), i.e., on the boundary of optimal solution existence interval 
(according to the first piece of software) the gain is 41%. On interval 

]38.0,33.0[ , the necessary conditions are not satisfied (the helix 
cannot be put inside the sphere), but the signs of the transversal impulse 
components of one of the manoeuvring intervals coincide, just like it 
should be in the case of the optimal solution. The advantage of the found 
six-impulse solution can be confirmed by comparison with the two-
impulse solution.  
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4.3.5. Five-Impulse Manoeuvres 

Eqs. 4-14 and 4-15 can be used for the evaluation of five-impulse 
manoeuvres (Baranov and Roldugin 2012, 441–448). By increasing the 
duration of the flyby, the zero values of the first or last impulse can be 
obtained. The interval of the flyby will be greater than the given one but, 
in fact, due to the manoeuvring start from the second impulse (or end with 
the fifth impulse); the time of the flyby will meet the problem constraints. 
In the example considered above, the six-impulse solution with the 
practically zero first impulse exists when 469.0 . The second impulse 
(the first impulse in the five-impulse manoeuvre) is separated from the 
beginning of the interval with zero impulse of the flyby by 0.2 revolutions. 
In other words, this manoeuvring scheme corresponds to 369.0 . This 
uses either the six-impulse or the five-impulse (derived from the six-
impulse solution with 469.0 ) solutions on the interval

]469.0,369.0[ . In this case, the helix, which represents the nature of 
the primer vector hodograph, will start inside the unity sphere, but, 
nonetheless, it will meet the optimality conditions (4 oscillations and 1 
intersection). The length of the interval on which this solution can be used 
is determined by the distance to the first osculation point.  

Fig. 4-10 shows a graph of the total delta-v expenditures (in the 
dimensionless form) with the use of the six-, five-, and two-impulse 
manoeuvres. 

 
Fig. 4-10. Total delta-v expenditures with the use of six-, five-, and two-

impulse manoeuvres. 
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In Fig. 4-10, the six-impulse solution corresponds to the dashed line, 

the solution of Lambert’s problem corresponds to the dot-and-dash line, 
and the solid lines correspond to the five-impulse solutions. It can be seen 
that, with the values of close to 0.5, the six-impulse solution 
degenerates, but another five-impulse solution exists with 51.0 , 
which allows widening the diapason of , allowing a gain to be obtained 
in comparison with the two-impulse solution. With ]52.0,51.0[ , the 
six-impulse solution will not be optimal (the first manoeuvring interval 
contains the accelerating impulse), but it is still more profitable in 
comparison with the two-impulse solution. 

Tables 4-2–4-4 show the parameters of the six- and two-impulse 
solutions for various values of . 

The tables hold the transversal and the lateral components ( tV  and 

zV ) of the six-impulse solution of the first (I) and the second (II) 
manoeuvring intervals; the application moments of the second and the 
third impulses ( 2 and 3 ); the radial, the transversal, and the lateral 
components of the first and the second impulses of the two-impulse 
solution (

I
V2  and 

II
V2 ); the distance between the application moment 

of the corresponding impulse and the boundary of the flyby interval ( I  
and II ); and the total delta-v expenditures in both cases ( 6V  and 2V ).  

It can be seen from Table 4-4 that the five-impulse solution does not 
meet the necessary optimality conditions. Nonetheless, it allows obtaining 
the considerable gain in the total delta-v expenditures. 

Thus, usage of the five-impulse manoeuvres obtained from the six-
impulse manoeuvres finds a gain in the total delta-v expenditures and 
expands the existence domain of the optimal multiple-impulse solutions. 

It can be seen that, despite the fact that the optimal multiple-impulse 
solutions by no means always exist, the six- and five-impulse solutions 
obtain a considerable gain in the total delta-v expenditures in comparison 
with the solution to Lambert’s problem. 
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Table 4-2. Impulse parameters with 33.0 . 
 

ItV  0 0.0037 0.0049 0342.02  

IItV  -0.0003 -0.0033 0 5719.03  

IzV  0.0047 -0.0028 0.0037 0241.06V  

IIzV  -0.0003 0.0025 -0.004 0241.02V  

I
V2  0.0201 0.0089 -0.001 0I  

II
V2  0.0257 -0.0039 0 8488.0II  

 
Table 4-3. Impulse parameters with 38.0 . 

 
ItV  0.002 0.0017 0.0049 0462.02  

IItV  -0.0005 -0.0014 -0.0018 6166.03  

IzV  0.0019 -0.0006 0.0015 014.06V  

IIzV  -0.0001 0.0004 -0.0016 0239.02V  

I
V2  0.0072 0.0092 -0.0001 0I  

II
V2  0.0178 -0.0042 0.001 9443.0II  

 
Table 4-4. Impulse parameters with 469.0 . 

 
ItV  0 0.0029 0.0059 0342.02  

IItV  -0.0006 -0.0041 0.009 5719.03  

IzV  0.000001 -0.000018 0.000035 0145.06V  

IIzV  0.000003 0.000026 0.00014 0221.02V  

I
V2  -0.0227 0.0093 -0.0003 0I  

II
V2  0.028 -0.0043 0.003 1326.0II  
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4.4. Long-Range Guidance Manoeuvre Calculating 
Algorithm 

The long-range guidance manoeuvres have the aim of transferring the 
spacecraft to the given vicinity of the orbital station, in which the 
equipment of the autonomous approaching starts to work, which ensures 
the spacecraft can dock in the station (Petrov 1985). The statement of the 
long-range guidance manoeuvre evaluation problem differs considerably 
from the statement of the classic rendezvous problem (another functional, 
multiple constraints on impulses) but, even for the solution of such 
unconventional problem, one can use the algorithms from Chapter 3 and 
from the second paragraph of this chapter. 

4.4.1. Problem Statement 

To ensure terminal conditions with a high accuracy (necessary during 
the evaluation of the long-range guidance manoeuvres), the iterative 
scheme is used from the first chapter. This uses the relatively simple Eq. 
4-1 for the determination of the impulse parameters. 

During the evaluation of the four-impulse long-range guidance 
manoeuvres, it is assumed that impulses are applied on the two 
manoeuvring intervals, where the distance between them is not less than 
10 revolutions. The following constraints on the impulse angles on the 
first manoeuvring interval should be fulfilled: 

 
,, 2211    (4-16) 

 
where 21,  = given sets. Usually, they are continuous intervals, starting 
in the interval of 200º 220º of one revolution and finishing in the interval 
of 60º 80º of the next revolution. The application angles of the third and 
the fourth impulses are fixed on the last revolution of flight: 

 
ff 4433 ,    (4-17) 

 
As a rule, these impulses are applied one and a half revolution before 

the rendezvous point. 
The orientation of the last two impulses is fixed in order to maintain 

the satisfaction of condition 4-1d despite the errors in the thrust engines 
burns: 
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The penalty members are introduced for the first two impulses in the 

functional of the problem (Petrov 1985): 
 

,)()( 2222
iiiiiii ztrrttri VaaVaVakQ  

 
where kkaa itir ii

,sin43,cos22 , k  is the set 

coefficient ( 0k ), and  is the given maximum error in the impulse 
orientation. 

The problem can be stated as follows: find the values of
),...,1( ,,, NiVVV iztr iii

, which minimize the functional  
 

4

1

2

1

222

i i
iztr QVVVF

iii
 

 
with the constraints 4-1a–4-1f and 4-16–4-18. 

4.4.2. Solution Algorithm 

Let us introduce the additional constraint: 
 

,0
21 rr VV     (4-19) 

 
which simplifies the problem. Let us note that the obtained solution is 
close to optimal (as was shown in Chapter 3, the optimal multiple-
revolution solution, as a rule, has small or zero radial impulse 
components). 

The distance between the rendezvous point and the first manoeuvring 
interval notably exceeds the magnitudes of the intervals. This is why, as 
always, one can transit from Eq. 4-1d to the approximate equation, which 
determines the sum of the transversal impulse components of the first 
manoeuvring interval: 
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,
3 0

21

t
VVV ttt I

  (4-20) 

 
where 0  = some point of the first manoeuvring interval. The sum of the 
transversal components of the last two impulses can be determined from 
Eq. 4-1c:  

 

,
32 0

43

ta
VVV ttt II

  (4-21) 

 
On the plane yx ee , , the curved line ABCDK (Fig. 4-11), which starts 

at point A and ends at point K, corresponds to the four-impulse solution of 
eqs. 4-1a–4-1c with constraints 4-18 and 4-19.  

 

 
  
Fig. 4-11. Geometric interpretation of 

long-range guidance manoeuvres.  
 

Fig. 4-12. Drift orbit eccentricity 
vector corresponds to 

 line segment LN. 
 

During the mission planning, the initial phase difference u  between 
the orbital station and the active spacecraft is chosen in a way that the 
signs of the transversal components of all the impulses of the optimal 
solution will coincide (this is possible because the spacecraft deployment 
orbit always lies inside the station orbit). In this case, it follows from 
constraint 4-20 that point C, which corresponds to the drift orbit 
eccentricity vector, belongs to the circle of the radius 

ItVR 21  with 

the center in point A (Fig. 4-12). According to eqs. 4-17, 4-18, and 4-21, 
tpoint C should also belong to the line segment L'N (Fig. 4-12). In this 
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figure, L'L"=NN'=
IItV , KL" L'L", NN' N'K, L"K=

4

4

t
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t a

a
V

II
, KN'=

3

3

t

r
t a

a
V

II
. Thus, point C belongs to the line segment LN. The positions of 

L and N can be made more accurate with the help of the iterative 
procedure, which differs from the procedures described in Chapter 3, as it 
is necessary to take into account the radial components of impulses of the 
second manoeuvring interval. As can be seen from Fig. 4-12, the three-
impulse solution with one impulse on the first manoeuvring interval 
corresponds to point L. The unknown magnitudes of the transversal 
impulse components and the impulse application angle of the first 
manoeuvring interval can be easily found from eqs. 4-1a–4-1c and 4-20. If 
Eq. 4-1d cannot be satisfied with a given accuracy using the found 
manoeuvre parameters, the next iteration is carried out. Eq. 4-1d with the 
impulse application angle value of the first manoeuvring interval obtained 
on the previous iteration is used instead of Eq. 4-20 on the second and 
successive iterations. 

The parameters of the manoeuvre, to which point N corresponds, are 
determined in a similar way. It is also a three-impulse manoeuvre, since 
only the first impulse on the second manoeuvring interval is not equal to 
zero. There are five unknown variables in the problem: both the impulse 
application angles of the first interval and the transversal component 
magnitudes of the three impulses. Hence, the application angle of one of 
the impulses can be fixed and then the aforementioned iterative procedure 
can be used. 

Let us show that, when the position of the line segment LN is known, it 
is possible to determine the impulse application angles 1 and 2, where 
functional F is close to its minimal value. 

By analyzing the alteration of the sum 21 QQ  (which belongs to 
functional F), it can be shown that its minimum can be obtained if the 
application angle of at least one of the impulses of the first manoeuvring 
interval lies in the small vicinity of the node line, )( zi OG , where

,...)2,1( arctg kk
V
z

z
z . In this case, the total delta-v 

expenditures on the orbit plane adjustment are close to the minimum 
possible values: 

 
22

zz VzVi
m

   (4-22) 
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We will assume that the angles from set G belong to one of the 
intervals 1  or 2 . This is acceptable since the length of each of the 
permitted manoeuvring intervals exceeds half a revolution. 

Let us now determine the magnitude of the second impulse application 
angle of the first manoeuvring interval for the minimal total delta-v 

2

1

22

i
ztI ii

VVV ; the application angle of one of the impulses 

belongs to set G. In Fig. 4-13, the i-th burn is depicted with the interval 
with the projections 

it
V  and 

izV  on the axes tV  and zV , 

respectively. It is obvious that the curved line APM corresponds to 
2222
2211 ztztI VVVV . It follows from eqs. 4-20 and 4-22 

that the minimal possible value of IV  is 22
mI ztImm VVV . It can 

be obtained if 
2

2

1

1

t

z

t

z

V

V

V

V
 and 

mzzz VVV
21  (the line 

segment AE corresponds to such solution in Fig. 4-13). The necessary 
values of 

1zV  and 
2zV  can only be found if the application angles of 

both impulses of the first manoeuvring interval belong to set G (the 
impulses are applied on the line of the orbit plane’s intersection). This is 
the fourth type of optimal solution from Chapter 2 when the primer vector 
hodograph degenerates to the line segment. This type of solution exists if 
the line on plane yx ee ,  with the inclination z  to the abscissa axis 
intersects with the reference frame origin and with the line segment LN. If 
the line does not intersect with the line segment LN, then the orbit plane 
adjustment is fulfilled by the impulse with an application angle that 
belongs to set G (it is applied in the orbit plane intersection line). The 
magnitude of the lateral component of this impulse is 

mzV . For solutions 

of this type, IV  would be minimal when the transversal impulse 
component, which alters the orbit plane orientation, is maximum. For 
example, if the plane is rotated by the second impulse, then ADE<AD'E 
with DM'>D'M' (Fig. 4-13). 

It can be easily seen that, in order to have the maximum transversal 
impulse component, which rotates the orbit plane, it is necessary to have 
the line segment perpendicular to LN in the plane yx ee , , which 
corresponds to the other impulse of the first manoeuvring interval. The 
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application angle of this impulse should belong to the set

,...)2,1( 2
2

nnn , where
LN

LN

xx

yy

ee

ee
arctg ; 

NNLL yxyx eeee ,,,  = coordinates of the points L and N, respectively. 
 

 
 
 
 
 
 
 
 
 

 

 

 
Fig.4-13. Comparison of solutions  

for the total delta-vs. 

 
Fig.4-14. Application angles of the 
third and fourth impulses are not 

fixed. 
 

If signs of the transversal components do not coincide with each other 
or the angle n  does not belong to the permitted manoeuvring intervals 
4-16, then the optimal result will be the solution with the drift orbit, which 
corresponds with one of the ends of the line segment LN c. The boundaries 
of the line segment LN are determined with the condition that the impulse 
application angles of the first manoeuvring interval belong to the set 4-16. 

The total delta-v of the found solution V  was determined with the 
constraint 4-19 and the condition that the application angle of one of the 
impulses of the first manoeuvring interval belongs to set G, which is why 
it should be compared with mV  (the minimal possible total delta-v of the 
transfer to the given rendezvous point). If their difference is lesser than F 
(the permitted accuracy of determination of the minimum of the functional 
F), the problem is considered to be solved. 

In order to find mV , it is necessary to determine the total delta-v of 
the manoeuvre (the fixed point of the line segment LN corresponds to the 
drift orbit of this manoeuvre) and then, by varying the position of this 
point on the line segment LN, the value of mV  is determined. 
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The line, which intersects the points L and N, can be described by the 
equation ,xy bede   

where .,
LN

LN

LN

LN

LL
xx

yy

xx

yy
xy ee

ee
b

ee

ee
eed  

For this line, the minimal delta-v of the first manoeuvring interval 
ImV  as a function of xe  is given by 

 

,
))((4

)(
2
1)(

2

2222
222

xxz

tz
tzxIm

zebedV

VEV
VEVeV Im

Im
 

 
where 222 )( xx ebedE . 

The equation for the total delta-v of the transfers without the constraint 
on the time between the close and almost circular noncoplanar orbits from 
paragraph 2.2 (the nondegenerate case) was used here. 

The total delta-v of the impulses of the second manoeuvring interval 
VII as a function of ex is given by 

 

,)(
LN

L

LNL
xx

xx
IIIIIIxII ee

ee
VVVeV  

 

where 

2/122/12

4

4

3

3 1,1
t

r
tII

t

r
tII a

a
VV

a

a
VV

IINIIL
. 

By minimizing the total delta-v of the four-impulse manoeuvre 
)()( xIIxIm eVeVV  on the interval ],[

NL xx ee , one can determine 

mV . If FVV m , the solution may be considered to be solved. If 
this is not the case, the found solution is used as the first guess for the 
minimization of the functional F with the help of the polytope method 
from Himmelblau (1975) or with the help of the numerical methods from 
the next chapter.  

The algorithm is also applicable in cases when the impulse magnitudes 
are limited from below, or when it is needed to have approximately equal 
impulses of the second manoeuvring interval, etc. 
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Let us consider, for example, how the algorithm would change if the 
impulse application angles of the second manoeuvring interval are not 
fixed. In this case, they can be varied in order to minimize the magnitude 
of functional F. As was shown in Chapter 3, solutions with coinciding 
signs for the transversal components of all impulses exist, if the circles 
with the radii 1R  and 2R  intersect (Fig. 4-14). The points, which 
correspond to the drift orbit parameters of such solutions, should belong to 
set T, which holds the points from the area of the circle intersection. It is 
necessary to find the point which will ensure the minimal IV . 

If the line with the inclination angle z  to the axis xe  intersects the 
curve E1E2 (for example, the line AP  in Fig. 4-14), then, just like in the 
case for the fixed angles 43, , for any point of the line segment PP', one 
can obtain the minimal possible

mmII VV :  by choosing the variables 
ratio 

1zV  and 
2zV . The application angle of the third impulse is chosen 

arbitrarily, and the application angle of the fourth impulse is 
unambiguously connected with it and can be easily determined. 

If the straight line with the inclination angle z  does not intersect the 
curve E1E2 (for example, the straight-line AC  in Fig. 4-14), then point C 
needs to be found (AC should be maximum with the condition

IVCDAC ). It can be easily seen that, in order to ensure the 
maximum value of AC, point D should belong to the line segment CK 
(Fig. 4-14). 

The optimal acceptable transfer ACDK has one burn on the second 
manoeuvring interval. The application angle of this impulse can be 
evaluated by the following equation: 

 

,...),2,1(,2
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where 22
yx eee . 
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4.4.3. Examples 

Let us consider the solutions to the three problems as examples 
(Baranov 1990, 61–67). For the solution to problem 1, the velocity 
impulse application angles of the first manoeuvring interval belong to set 
G and are connected with each other by the equation 12  (the 
optimal position of the point C on the line segment LN is the point of its 
intersection with the line with the inclination angle z ). An additional 
constraint was introduced for the solution to problem 2: the second 
manoeuvring interval impulse magnitudes should be approximately equal 
(point C is situated in the middle of the line segment LN). The initial 
conditions of problem 2 practically coincide with the initial conditions of 
problem 1. For the solution to problem 3, only one of the impulse 
application angles of the first manoeuvring interval belongs to set G (it is 
necessary to find the optimal point on the line segment LN). 

The entry data and the solution results for the problems are listed in 
Tables 4-5–4-9. 

 
Table 4-5 

 
Problem ye  xe  a  t  z  zV  

1 -23.77 -22.88 108.83 -10,005.87 -12.23 0.36 
2 -23.75 -21.56 108.82 -10,003.41 -12.19 0.31 
3 -23.96 -22.41 109.06 -10,004.56 -12.05 0.40 

 
Table 4-6 

 

Problem 1  2  

11 rad 12 rad 21 rad 22 rad 
1 -85.217 -79.959 -85.217 -79.959 
2 -85.217 -79.959 -85.217 -79.959 
3 - 77.79 -73.449 -77.79 -73.449 
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Table 4-7 
 

Problem F V  pF  

1 75.63 57.35 75.68 
2 78.24 60.10 75.71 
3 74.39 57.72 74.04 

 
Table 4-8 

 
Problem 1  1r

V  
1t

V  
1zV  2  2rV  

1 83.282 0.23 28.36 -8.28 80.140 0.10 
2 83.736 0.33 26.38 0 80.136 0.09 
3 77.002 0.25 27.80 -12.06 73.449 0.19 

 
Table 4-8 Continued 

 
Problem 2t

V  
2zV  

3r
V  

3t
V  

4rV  
4t

V  

1 12.95 3.95 0.0 1.47 5.46 12.87 
2 12.06 12.19 0.0 7.75 2.97 7.01 
3 15.98 0.0 0.0 2.82 3.37 7.94 

 
Table 4-9 

 
Solution F V  1  2  1V  2V  3V  4V  

1 77.18 59.95 77.774 73.861 31.97 16.27 11.22 0.54 
2 76.21 59.64 77.062 73.861 28.62 19.33 0.54 11.16 
3 76.20 59.63 77.070 73.861 28.6l 19.33 0.64 11.05 
4 74.53 57.86 77.002 73.743 31.00 15.22 0.53 11.11 
5 74.39 57.72 77.002 73.449 30.30 15.99 2.82 8.62 
 

Table 4-5 holds the deviations between the initial and the final orbits. 
The dimensionless deviations were multiplied by m/s 771,70V , which 
corresponds to km 600,60r  for descriptive reasons. Table 4-6 shows the 
manoeuvring intervals, which are allowed for the application of the first 
two impulses (in radians, starting from the rendezvous point). The 
application angles of the third and the fourth impulses are fixed: 

3603 , 1804 . Table 4-7 shows the values of functional F and 
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V. The global minimum values of functional Fp, which were obtained 
with the help of a numerical algorithm, that uses the enumeration of the 
points from the sets 21, , are listed for the solution accuracy control. 
This algorithm is presented in Chapter 5. 

Table 4-8 shows the solution parameters for each problem. Table 4-9 
shows the solution results for all analyzed points of the sets 21,  for 
problem 3. 

Let us consider the solution results for all the problems. In the solution 
to problem 1, the impulse application angles of the first manoeuvring 
interval belong to set G and the transversal components of all impulses are 
positive. In this case, the found solution is globally optimal, which can be 
verified by cross-checking (see the last column of Table 4-7). The small 
discrepancy in favor of the analytical solution can be explained by the fact 
that during the numerical solution it is practically impossible to obtain the 
angles from set G. 

Sometimes we need to have approximately equal impulse magnitudes 
of the last manoeuvring interval when we are solving the problem. The 
suggested algorithm allows finding such solutions: we should use the 
iterative procedure, which is similar to the procedure from the previous 
chapter.  

During the process of the solution to the second problem, the 
coefficient )/(~

434 ttt VVVk , which determines the position of point 
C on the line segment LN, was chosen equal to 0.5. We should take 

4769.0~
k  in order to get equal magnitudes of the third and fourth 
impulses. During the solution to problem 1, the impulse application angles 
of the first manoeuvring interval are chosen on the node line and the other 
one is determined with the help of the iterative procedure. Only one of the 
angles of set G is acceptable: when the orbit plane is changed by the 
second impulse.  

It can be seen from Table 4-8 that the ratio between the lateral 
component of the second impulse and its magnitude in the solution to 
problem 2 considerably exceeds the analogous ratios in the solution to 
problem 1. Thanks to this, the total transfer delta-v increases and, hence, 
the magnitude of functional F for problem 2 also increasesThis conclusion 
verifies the results listed in Table 4-7.  

For solution to problem 3 with the application angles of both impulses 
of the first manoeuvring interval from set G, the signs of the transversal 
components do not coincide. In accordance with the aforementioned 
algorithm, it is assumed that only one angle belongs to set G, and the 
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application angle of the other impulse of the first manoeuvring interval 
should be determined.  

Only one point from set G ( 861.732 ) is suitable for the 
application of the second impulse of the first manoeuvring interval. With 
the help of the iterative procedure, one can determine the application angle 
of the first impulse, with which point N would correspond to the drift orbit 
parameters. Since the constraint on the minimal possible magnitude of the 
impulse is used, 

4t
V  is set to its minimal possible value of m/s 5.0 . The 

solution parameters are given in the first row of Table 4-9. The second 
row of the table shows the solution parameters; point L corresponds to the 
drift orbit eccentricity vector. After the determination of the position of the 
line segment LN, the optimal solution is found (the third row in Table 4-
9), which has the line segment on the plane yx ee , , which corresponds to 
the first impulse and is perpendicular to the line segment LN. 

Similarly, only one point from set G ( 002.771 ) is suitable for the 
application of the first impulse. The solution, which corresponds to point 
L, exists, and its parameters are presented in the fourth row of Table 4-9. 
The solution, where the drift orbit eccentricity vector corresponds to point 
N' ( m/s 5.0

4t
V ), and the solution, where the direction of the second 

impulse on the plane yx ee ,  is perpendicular to the line segment LN', are 
not acceptable since the angles from set G, which are used in them, do not 
belong to the permitted manoeuvring interval. The first acceptable angle 
will be 449.732 . This solution is written in the fifth row of Table 4-9. 
As was shown, the found solution in this case is optimal among the 
solutions with the application angle of the first impulse belonging to set G. 
The comparison between this solution and the third solution from Table 4-
9 shows that it is globally optimal, which is why its parameters are listed 
in Tables 4-7 and 4-8. 

The solution time is much smaller in comparison with the numerical 
algorithms from the works of Petrov (1985), Bazhinov and Yastrebov 
(1978), and Baranov (1986, 324–327). If the application angles of the third 
and the fourth impulses are not fixed, then the problem solution time in the 
presented algorithm does not change, and the numerical algorithms 
computing the time increase by dozens.  

Let us remember that, for illustrative purposes, all the dimensionless 
values in all of the Tables were multiplied by m/s 771,70V  (

km 600,60r ). 
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4.5. Comparison of the Solutions Used by NASA,  
the Russian Mission Control Center,  

and the Combined Solution 

A relatively simple manoeuvring scheme is often offered for the 
noncoplanar rendezvous solution. The circular orbit is formed by the two 
impulses of the first manoeuvring interval; the period of which ensures the 
necessary arrival time to the start of the second interval then, with the help 
of the impulses from the second interval, the transfer to the rendezvous 
point on the given orbit is ensured. The lateral impulse, which aligns the 
orbit planes, is applied on one of these intervals or on the drift revolution 
on the line of the orbit plane intersection. Such a manoeuvring scheme (we 
will call it “separate”) is attractive due to its simplicity, but it demands 
excessive total delta-v expenditures. Even manoeuvres in the orbit plane 
may not be optimal during the implementation of such a scheme. This 
scheme was used, for example, for the docking of Shuttle2 with the 
International Space Station (Fehse 2003, 441–449).  

Fig. 4-15 shows an example of when the usage of the circular drift 
orbit does not increase the total delta-v expenditures. The point with the 
coordinates (0, 0) should be in set G of the intersection of the circles with 
the radii 1R  and 2R  (let us remember that III aRaR 21 , ) for this 
purpose. The line segments AB, BC, CD, and DK correspond to the four 
impulses by means of which the rendezvous will be performed. However, 
if the small alteration of the relatively big eccentric vector magnitude (this 
case is depicted in Fig. 4-16) is needed, the flyby with the circular drift 
orbit may not be optimal. It can be easily seen that the length of the curved 
line ABCDK (Fig. 4-16), which corresponds to the total delta-v 
expenditures of the “separate” manoeuvring scheme, will be considerably 
greater than the sum of the radii 1R  and 2R , which correspond to the total 
delta-v expenditure of the optimal flyby between the coplanar orbits. 

 

 
2 “Shuttle Press Kit: STS-92”. Accessed March 25, 2007. 
http://www.shuttlepresskit.com/STS-92/. 
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Fig.4-15. Energy is the same for 
different manoeuvring schemes. 

 

 Fig.4-16. Energy differs dramatically 
from scheme to scheme. 

 
Fig. 4-17 compares the total delta-v expenditures with the accountancy 

of the expenditures on the orbit plane rotation. Let us suppose that we deal 
with the case depicted in Fig. 4-15 where the “separate” manoeuvring 
scheme has the same expenditures on the coplanar rendezvous as the 
optimal solution. The sum of the impulse transversal components of the 
first manoeuvring interval is

ItV , and the line segment AD corresponds to 
it (Fig. 4-17). The sum of the transversal impulse components of the 
second manoeuvring interval is equal to

IItV , and the line segment DN 
corresponds to it. The minimal expenditures on the orbit plane rotation are

mzV , and the line segment AL corresponds to them. The impulse that 
changes the orbit plane is situated between the second and the third 
manoeuvres in the orbit plane. Thus, the curved line ADPE corresponds to 
the “separate” manoeuvring scheme. The curved line APE (Fig. 4-17) 
corresponds to the manoeuvring scheme, which is used for the motion 
control of the “Soyuz” and the “Progress” spacecrafts, in which the 
impulses of the first manoeuvring interval have both transversal and lateral 
components and the impulses of the second interval have only transversal 
components. If the line with the inclination angle z  intersects the line 
segment LN (Fig. 4-12), then the point P belongs to the line segment LE 
(Fig. 4-17).  
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Fig. 4-17. Comparison of solution total delta-vs 

 
The line segment AM corresponds to the optimal solution, where the 

correction of the orbit plane position is fulfilled by all four burns, which 
have both transversal and lateral components; the line segment AO 
corresponds to the impulses of the first interval, while the line segment 
OM corresponds to the impulses of the second interval.  

It is obvious that the length of the curved line ADPE is greater than the 
length of the curved line APE and the length of the curved line APE is 
greater than the length of the line segment AM. With the decrease in the 
expenditures on rotation of the orbit plane (with the decrease of the length 
of the line segment DP), the difference in the total delta-v expenditures of 
all three types of the solution decreases.  

Since the time of the launch is usually chosen in a way that the active 
spacecraft occurs on the target spacecraft orbit plane, the total delta-v 
expenditures on the orbit plane rotation are considerably less than the 
expenditures on the alteration of, for example, the orbit semimajor axis. In 
these cases, all three types of the solution have a close total delta-vs. As it 
will be shown in Chapter 7, the total delta-v may differ considerably in 
more complex problems.  

4.6. Noncoplanar Rendezvous Achieved by Impulsive 
Manoeuvring Over a Longer Period of Time 

In the aforementioned problems, it was supposed that the manoeuvres 
were performed on the two separated manoeuvring intervals. There are 
several, revolutions between these intervals, which are prohibited for the 
impulse application. 
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The variants when the thrust engines have a relatively low thrust but 
when a flyby to the given point is needed to be fulfilled relatively quickly 
can be often met. In this case, it is necessary to manoeuvre on the big 
number of the successive revolutions; the number of revolutions that are 
prohibited for manoeuvring is relatively small and they are needed for the 
orbit parameter current update. It will be shown in this section that the 
solution method which applied in the first sections of this chapter is also 
applicable for this manoeuvring scheme. The magnitudes of all 
manoeuvres should be approximately the same; this would allow 
decreasing the total delta-v of the manoeuvres and using the impulsive 
approximation during the determination of these manoeuvres. 

4.6.1. Determining the Length of Subintervals 

The whole manoeuvring interval (the number of the revolutions 
permitted for manoeuvring is N) is divided into two subintervals ( 1N  and

2N ). Initially, it is assumed that the subintervals have equal lengths (
NNNNN 2121 , ) with an even N, and differ by one with an uneven 

N. The interval may be prohibited for the manoeuvring revolutions, which 
is why the numbers of revolutions on which the manoeuvring is allowed 
on the subintervals (we will denote them as 

j
NN i 21 ,  (

21 1,1 NjNi ), may not be in successive order. During the 
determination of the genuine values N1 and N2, several stages can be 
distinguished.  

Stage 1. The semimajor axis alteration on each of the subintervals is 
assessed with the help of the equation of time and the general semimajor 
axis alteration. 

Stage 2. The parameters of the two-impulse manoeuvre of the transfer 
between the orbits are determined (the five equations and the algorithms 
used can be taken from Chapter 2) with the assumption that the sum 
alteration of the semimajor axis on both subintervals is corrected; the 
members of the sum were calculated on the previous stage.  

Stage 3. Each of the two estimated manoeuvres are divided between 
the subintervals, proportionally to the alteration of the semimajor axes on 
the subintervals.  

Stage 4. At this stage, each of two manoeuvres of the subintervals is 
divided by the number of the revolutions on this subinterval. Thus, the two 
manoeuvres of the first manoeuvring subinterval are divided by 1N  on 
equal parts and applied on the different revolutions. Similarly, the 
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manoeuvres of the second manoeuvring subinterval are divided by 2N  on 
equal parts ( NNN 21 ). The equal duration of the manoeuvres on the 
revolutions is optimal for the small orbit element alteration.  

For example, if the magnitude of the manoeuvres on the revolution of 
the first subinterval considerably exceeds the magnitude of the 
manoeuvres on the revolution of the second subinterval, then the number 
of the manoeuvring revolutions on the first subinterval will be increased 
by 1, and the number of the manoeuvring revolutions on the second 
subinterval will be decreased by 1. The transition to the first stage of the 
calculation is carried out. The procedure ends when the ratio of impulse 
magnitudes becomes opposite, or when the interval decreases to one 
revolution. The variant with the lesser magnitude of the manoeuvres on 
the second interval should be chosen out of the two boundary cases. The 
results of this procedure are the values of 1N  and 2N . 

Each stage is thoroughly considered below. 
Stage 1. By using the equations for the time of the arrival to the 

rendezvous point and for the semimajor axis alteration, the sum 
magnitudes of the transversal components 

21
, tt VV  on the first and the 

second manoeuvring subintervals are assessed:  
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where apN  = number of rendezvous revolutions. 

Then the magnitude of the spacecraft orbit semimajor axis alteration 
by the manoeuvres on the first manoeuvring subinterval can be 
approximately assessed by 

 
,2

ItI Va  
 

and by the manoeuvres on the second manoeuvring subinterval: 
 

.2
ItII Vaa  

 
Stage 2. Similar to the way it was done in the first paragraph of this 

chapter, a variable III aaa  is introduced. The problem 
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solution to the optimal transfer between the orbits, where the deviations of 
the elements are the initial deviations zyx Vzee ,,,  ( a  is taken 
instead of a ), is found. Since the correction of the eccentricity vector 
component deviations yx ee ,  and zVz,  is fulfilled proportionally to 

the Ia  and IIa  correction, such a solution to the transfer problem will 
be optimal. 

The parameters 21 ,,,,,
2211 ztzt VVVV  of this transfer between 

the noncoplanar orbits can be determined with the help of the algorithm 
presented in the Section 2.2.7, for example. 

Stage 3. In order to find the magnitudes of the impulses which ensure 
the solution of the rendezvous problem, it is necessary to distribute the 
impulses, as estimated for the solution of the transfer problem, in the 
needed proportion. Similar to the way it was done in Section 4.1, the 

impulses are divided in the proportions
a
a

a
a III ,  for the first and the 

second subintervals, respectively. The four-impulse solution of the 
rendezvous problem is obtained after the division of each of the impulses 
into two parts. The impulse components of the first and the second 
manoeuvring subintervals can be found by eqs. 4-7-4-10 (Baranov 2008, 
430–439). 

Stage 4. Each of the manoeuvres of the first manoeuvring subinterval 
are divided on 1N  equal parts and applied on different revolutions; 
similarly, the two manoeuvres of the second manoeuvring subinterval are 
divided on 2N  equal parts. 

Then according to the aforementioned algorithm, the magnitudes of 
impulses on revolutions of the subintervals are compared and the decision 
about the alteration of the lengths of the subintervals and the return to the 
first stage is made.  

With the optimal initial phase, when III aa , the subinterval 
lengths are equal. If, for example, due to the big initial phase deviation, 
the decelerating manoeuvres 0Ia  and 0a  on the first subinterval 
are performed and, hence, III aa , then the length of the second 
subinterval will be considerably greater than the length of the first 
subinterval. If 0IIa , and 0a , then the length of the first subinterval 
will be considerably greater than the length of the second subinterval. 

The solution to the rendezvous problem with the impulses applied on 
the permitted for the manoeuvring revolutions is found after the 
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implementation of this iterative procedure. The impulse magnitudes, 
which are applied on one revolution, may differ, but the impulse 
magnitudes applied on different revolutions on the same latitude argument 
are approximately the same.  

Since the simplified equation system was solved, the necessary 
accuracy of the arrival time to the given point of the target orbit is 
provided with the help of the usual iterative procedure.  

If the manoeuvre duration of the found solution does not exceed 
approximately 40º by the latitude argument, the problem is solved; 
otherwise, the solution should be defined more accurately by switching 
from the impulsive case to the case with the low thrust during the transfer 
manoeuvre determination. The manoeuvre parameters can be made more 
accurate with the help of the iterative procedure from the first chapter. 

4.6.2. Example 

The multiple-impulse rendezvous on the noncoplanar orbits is solved. 
The elements of the initial and the target orbits are fully similar to the orbit 
elements from the example 4.2.3. Just like before, the three variants, 
which differ from each other by the initial location of the target spacecraft, 
are considered. It is assumed that the manoeuvring is performed on all 
revolutions of the flyby except the 8th and the 9th which is why the 
number of manoeuvres in all variants is 26. 

The calculation results: 
1) 5

1Fu  

The total delta-v of the manoeuvres: 322.930 m/s. 
The total delta-v of the coplanar components: 322.91 m/s. 
The total delta-v of the lateral components: 6.088 m/s. 
The first subinterval holds the revolutions from the 2nd to the 12th; the 

second subinterval holds the revolutions from the 13th to the 16th. The 
impulses on the first subinterval are accelerating, while the impulses on 
the second subinterval are braking (the initial phase is not optimal). 

The impulse parameters are listed below: impulse number, revolution, 
latitude argument of the impulse application, and its radial, transversal, 
and lateral components. 
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Impulse  Revolution u deg rdV m/s tdV m/s zdV m/s 
1 2 140.164 0.172 11.990 -0.176 
2 2 316.164 -0.161 11.232 -0.053 
3 3 140.164 0.173 12.103 -0.178 
4 3 316.164 -0.162 11.347 -0.053 
5 4 140.164 0.175 12.218 -0.179 
6 4 316.164 -0.164 11.464 -0.054 
7 5 140.164 0.177 12.337 -0.181 
8 5 316.164 -0.166 11.584 -0.054 
9 6 140.164 0.178 12.458 -0.183 

10 6 316.164 -0.168 11.707 -0.055 
11 7 140.164 0.180 12.582 -0.185 
12 7 316.164 -0.169 11.832 -0.055 
13 10 140.164 0.182 12.709 -0.187 
14 10 316.164 -0.171 11.960 -0.056 
15 11 140.164 0.184 12.839 -0.188 
16 11 316.164 -0.173 12.092 -0.057 
17 12 140.164 0.186 12.972 -0.190 
18 12 316.164 -0.175 12.227 -0.057 
19 13 136.164 0.108 -12.904 -0.096 
20 13 320.164 -0.115 -13.785 0.074 
21 14 136.164 0.107 -12.773 -0.095 
22 14 320.164 -0.114 -13.659 0.073 
23 15 136.164 0.106 -12.644 -0.094 
24 15 320.164 -0.113 -13.536 0.072 
25 16 136.164 0.105 -12.518 -0.093 
26 16 320.164 -0.112 -13.417 0.072 
 

2) 210
2Fu   

The total delta-v of the manoeuvres: 93.123 m/s. 
The total delta-v of the coplanar components: 93.101 m/s. 
The total delta-v of the lateral components: 1.778 m/s. 
The first subinterval holds the revolutions from the 2nd to the 7th, 

while the second subinterval holds the revolutions from the 10th to the 
16th (the 8th and the 9th revolutions are prohibited for manoeuvring). 
Both subintervals have accelerating impulses (the initial phase is optimal). 
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Impulse Revolution u deg rdV m/s tdV m/s zdV m/s 
1 2 144.046 0.003 0.327 -0.009 
2 2 312.046 -0.002 0.259 0.002 
3 3 144.046 0.003 0.327 -0.009 
4 3 312.046 -0.002 0.259 0.002 
5 4 144.046 0.003 0.327 -0.009 
6 4 312.046 -0.002 0.259 0.002 
7 5 144.046 0.003 0.327 -0.009 
8 5 312.046 -0.002 0.259 0.002 
9 6 144.046 0.003 0.327 -0.009 

10 6 312.046 -0.002 0.259 0.002 
11 7 144.046 0.003 0.327 -0.009 
12 7 312.046 -0.002 0.259 0.002 
13 10 144.046 0.066 7.008 -0.197 
14 10 312.046 -0.053 5.589 0.043 
15 11 144.046 0.066 7.040 -0.198 
16 11 312.046 -0.053 5.622 0.044 
17 12 144.046 0.067 7.072 -0.199 
18 12 312.046 -0.053 5.656 0.044 
19 13 144.046 0.067 7.105 -0.200 
20 13 312.046 -0.054 5.691 0.044 
21 14 144.046 0.067 7.138 -0.201 
22 14 312.046 -0.054 5.725 0.045 
23 15 144.046 0.067 7.172 -0.202 
24 15 312.046 -0.054 5.761 0.045 
25 16 144.046 0.068 7.206 -0.203 
26 16 312.046 -0.055 5.796 0.045 

 
3) 355

1Fu  
The total delta-v of the manoeuvres: 298.730 m/s. 
The total delta-v of the coplanar components: 298.71 m/s. 
The total delta-v of the lateral components: 3.199 m/s. 
The first subinterval holds the revolutions from the 2nd to the 6th, 

while the second subinterval holds the revolutions from the 7th to the 
16th. The first subinterval has braking impulses, while the second 
subinterval has accelerating impulses (the initial phase is not optimal). 
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Impulse Revolution u deg rdV m/s tdV m/s zdV m/s 
1 2 136.151 0.096 -10.084 0.052 
2 2 320.151 -0.103 -10.749 0.171 
3 3 136.151 0.096 -10.006 0.051 
4 3 320.151 -0.102 -10.674 0.170 
5 4 136.151 0.095 -9.931 0.051 
6 4 320.151 -0.101 -10.600 0.169 
7 5 136.151 0.094 -9.856 0.051 
8 5 320.151 -0.101 -10.527 0.168 
9 6 136.151 0.093 -9.783 0.050 

10 6 320.151 -0.100 -10.456 0.167 
11 7 140.151 0.117 12.223 -0.195 
12 7 316.151 -0.109 11.426 -0.059 
13 10 140.151 0.118 12.338 -0.197 
14 10 316.151 -0.110 11.544 -0.059 
15 11 140.151 0.119 12.457 -0.198 
16 11 316.151 -0.111 11.663 -0.060 
17 12 140.151 0.120 12.578 -0.200 
18 12 316.151 -0.113 11.786 -0.061 
19 13 140.151 0.121 12.702 -0.202 
20 13 316.151 -0.114 11.912 -0.061 
21 14 140.151 0.123 12.829 -0.204 
22 14 316.151 -0.115 12.040 -0.062 
23 15 140.151 0.124 12.960 -0.206 
24 15 316.151 -0.116 12.172 -0.063 
25 16 140.151 0.125 13.093 -0.209 
26 16 316.151 -0.118 12.307 -0.063 

 
It can be seen in the case of the optimal initial phase that the total 

delta-v expenditures are analogous to the expenditures for the case when 
the impulses are applied on the two separated intervals; however, the 
optimal phase interval is considerably narrower. With the nonoptimal 
initial phase (the variants 1 and 3), the total delta-v expenditures are much 
higher than when the impulses are applied on two separate intervals. For 
the first variant ( 5

1Fu ), it is 146.12 m/s and 322.930 m/s, respectively, 

and, for the third variant ( 355
1Fu ), it is 183.58 m/s and 298.730 m/s, 

respectively. 
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CHAPTER FIVE 

NUMERICAL METHODS  
 
 
 
The optimal manoeuvre parameter determination problem, which ensures 
the spacecraft rendezvous on close near-circular orbits with the help of the 
iterative procedure depicted in the first chapter, can be reduced to a 
mathematical programming problem. 

The analytical methods from the previous chapters and different 
numerical methods can be used for the solution of this problem. However, 
due to the considerable number of dimensions and constraints of various 
kinds, attempts using numerical methods lead to big computing time 
expenses. That is why it is necessary to bear in mind the peculiarities of 
the considered problems, which will help to speed up the optimization 
process. 

The numerical method from the works of Baranov (1986, 324–327), 
Baranov (2008), and Baranov, Gundobin, Ivanov, Kapralov et al. (1992, 
26–27), which has been successfully used for many years in the ballistic 
center of the Keldysh Institute of Applied Mathematics of rhe Russian 
Academy of Sciences for the manoeuvre determination of the “Soyuz” and 
“Progress” spacecrafts, as well as the “Kvant”, “Priroda” modules and 
others, is described in this chapter. The method is relatively simple and 
universal. It has the necessary performance characteristics and ensures the 
high reliability of the problem solution. 

5.1. Problem Statement and General Solution Method 

If the influence of the second term of the gravitational field expansion 
series ( 20c ) is taken into account, Eq. 1-12 will be rewritten as follows 
(Petrov 1985): 
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,m 6378140er 00 , ri  = inclination and radius of the relative orbit, and 

iu  = latitude arguments of the impulse application points. 
Please note, if the duration of rendezvous is small (less than or equal to 

several days), a simpler scheme can be used (Eq. 4-1). 
The angles of impulse applications should belong to the specified sets  

 
.,...,11 NN FF    (5-2) 

 
The sets iF  may be less than the revolution and/or contain the several 

separate intervals, as it was for the first “Progress” spacecraft. The 
constraints on the moments of the impulse application are connected with 
the Earth’s visibility zones and the structural aspects of the spacecraft, etc. 
Sometimes the impulse application angles are fixed. For instance, during 
the determination of the three- and four-impulse manoeuvres of the 
“Soyuz” and the “Progress” spacecrafts, it was supposed that the 
application angles of the third and fourth impulses were fixed on the 
revolution and half a revolution before the rendezvous point. 

The problem of searching for the optimal manoeuvre parameters can 
be stated as follows: determine ,

ir
V ,

it
V  ,

izV  i  ( Ni ,...,1 ) with 
the minimal functional  

 

 EBSCOhost - printed on 2/13/2023 10:43 PM via . All use subject to https://www.ebsco.com/terms-of-use



Chapter Five 
 

 

192

N

i
i

N

i
ztr QVVVW

iii

11

222  

 
and the constraints 5-1 and 5-2. 

The problem functional can encompass the terms iQ  together with V

. The terms iQ  account for the problem peculiarities. It is preferable to 
have iQ  as the convex functions of impulse components, like V . For 
example, as was already mentioned in Chapter 4, the functional for the 
“Soyuz” and the “Progress” spacecrafts will be (Petrov 1985): 
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Here, ,cos22 iri

a ,sin43 iti
a  ii kk  ( 0ik ) are 

the fixed coefficients, and  = the agreed maximum error in the 
impulse orientation. 

Unlike the impulse component space, in the space of the impulse 
application angle, functional W will have local minimums. Besides, the 
sets iF  might be rather complex. Consequently, the minimization process 
is usually fulfilled in two steps (Petrov 1985): firstly, the minimum of the 
functional is determined for each fixed },...,{ 1 N

T   
 

),(min)( VWW
V

m    (5-3) 

 
over the variables },,,...,,,{

111 NNN ztrztr
T VVVVVVV  and the 

constraints (Eq. 5-1). On the second step, the global minimum of the 
functional )(mW  over the variables },...,{ 1 N

T  is found by 
enumerating the points out of the acceptable impulse application set

NFFFF ...21 . 
It should be noted that the steps are carried out in turn, and not in a 

successive manner. A point is taken from set F. By applying the 
minimization in the space of the impulse components, mW  can be 
determined and then, after that, another point from set F is taken and the 
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corresponding mW  can be evaluated, etc. The process continues until the 
solution is found, which will be optimal in the space of the impulse 
components and in the space of the impulse application angles. 

Each stage of the problem solution will be considered thoroughly in 
the next two sections. 

The found solution is used in the iterative procedure from Chapter 1, 
which ensures the satisfaction of the terminal conditions with the given 
accuracy and by taking into account the atmosphere influence, the given 
number of the harmonics of the gravity field, and the burn duration, etc.  

5.2. Minimization with Involved Components  
of Velocity Impulses 

This minimization can be carried out by different methods, but the best 
option is to avoid it in the first place. For this purpose, the number of the 
used velocity components should be equal to the number of the system 
constraints accounted for in 5-1. If there is a need to account for the six 
equations of the equation system, the six impulse components will be 
used: four planar and two lateral. All six impulse components are used for 
the two-impulse problem. It is necessary to omit some of the impulse 
components for the three- and four impulse problems. As was shown in 
Chapter 3, it is necessary to omit the radial impulse components for the 
four-impulse problem. In this case, the values of the transversal impulse 
components can be determined from Eq. 5-1 unambiguously. In the case 
of the three-impulse problem, it is necessary to omit the radial impulse 
components, which are applied on one manoeuvring interval, and then the 
transversal components and the radial component of the impulse, which is 
applied on the corresponding manoeuvring interval, can be determined 
unambiguously from Eq. 5-1 as well. It is necessary to remember that the 
circle, which corresponds to the transversal components of the two 
impulses and is performed on a single manoeuvring interval (see 3.3), 
should not be inside the circle which corresponds to the transversal 
velocity component of the sole impulse on its interval. It is necessary to 
change the impulse distribution between the intervals if this situation 
occurs. 

The use of the aforementioned technique of reducing the number of the 
used components may lead to an increase of V  due to the lack of some 
radial components, but it is compensated by the simplicity and reliability 
of the obtained solution.  

It is a little bit more difficult to deal with the lateral components, as it 
is not clear which impulses should have these components for the better 
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result. It is recommended to use the lateral components for the impulses 
where it was agreed to not use the radial components in the three-impulse 
problem. For the four-impulse problem, it is necessary to use the lateral 
components of the impulses of the first manoeuvring interval. Thus, the 
simpler problem with practically no lateral components will be solved on 
the second manoeuvring interval (before the docking). If there is a need to 
decrease the total delta-v, the lateral impulse components should be used 
on the interval with the greater sum of the transversal components. In the 
case of a long rendezvous duration and big deviations of RAAN ( ), the 
usage of the lateral impulse components of the first manoeuvring interval 
is almost necessary (see Chapter 7), but it is better to use the lateral 
impulse components of both manoeuvring intervals. There is another 
simple option of choosing the optimal lateral impulse components. It will 
be given later in this text. 

If there is a need to find the optimal solution and more than two 
impulses are used, then minimization in the space of the impulse 
components is necessary. In order to simplify this, the linear constraints 5-
1 are used for the transition to the unconditional minimization in the space 
of the lesser number of dimensions during the search for )(mW . In this 
case, the dimensionality of the minimization space will be reduced by the 
number of  accounted for constraints in the form of equality. 

It is important to choose the impulse components as the independent 
variables. This is obvious for the impulse components, which lie in the 
orbital plane. The transversal components make a major contribution in 
the alteration of the orbit elements; their magnitudes alter gradually with 
the alteration of the impulse application angles, and the radial components 
are practically always equal to zero. Thus, it is better to use the radial 
components as independent variables and take their zero values as the 
starting point of the minimization process. This would allow gradually 
reducing the number of the minimization steps, which are needed for the 
minimum determination.  

It is harder to deal with the lateral impulse components because it is 
hard to distinguish a priori the ones that would make the least contribution 
in the minimization process and, hence, could be used as independent 
variables. However, if there is an option to alter the purpose of the 
independent lateral impulse components during the transition from one set 
of the impulse application angles to another, then there is an option to 
distinguish the less effective components.  

In the case of a long rendezvous duration, the most effective will be 
the lateral components with the impulse application angles close to 
equatorial, as the alteration of inclination causes the secular influence on 
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the alteration of the RAAN. Hence, it is better to use the impulse 
components with the application angles most distant from the equator as 
the independent variables.  

In the case of a relatively small rendezvous duration (the distance 
between the manoeuvring intervals does not exceed the several dozens of 
revolutions), the inclination correction does not noticeably affect the 
RAAN. In this case, the effectiveness of the lateral component only 
depends on the proximity of the impulse application angle to the optimal 
orbit plane correction angle z  (the orbit plane intersection line). In 
Fig. 5-1a, one can find the direction of the optimal orbit plane correction

z , the magnitude of the lateral deviation i (AK), which needs to be 

corrected ( 22
zVzi ), and the four angles of the impulse 

application 4321 ,,, . If only the lateral deviation correction is under 
consideration, the usage of the second and the third lateral components 
(the curved line ABK corresponds to this solution) will be more effective 
than the usage of the first and the fourth components, because the length 
of the curved line ADK corresponding to this solution is bigger than the 
length of the curved line ABK. Thus, it is optimal to use the lateral impulse 
components with the application angles mostly close to z  and lying on 
different sides from this direction (Baranov 2008).  

 

  
Fig. 5-1. Two-impulse correction of lateral deviation: 

(a) impulses are applied on  
different sides from node line; 

(b) impulses are applied  
on one side of node line. 

 
If the impulse application angles lie on one side from the direction z  

(Fig. 5-1b), then it is necessary to use the closest one and the most distant 
impulse components instead of the two closest ones. The curved line ABK 
in Fig. 5-1b corresponds to this solution. The curved line ADK 
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corresponds to the solution with the two other components. Its line length 
is obviously bigger than the length of the curved line ABK. Thus, the most 
effective components are determined. The rest are less effective, and they 
should be used as the independent variables during the minimization of the 
functional W. Their zero values are taken as the initial point of the 
minimization process. 

Using the same effectiveness assessment of the lateral components, it 
is possible to avoid the minimization in their space and leave the two most 
effective ones.  

One more conclusion from the above-mentioned examples may be 
handy. For the correction of the lateral deviations, it is more effective to 
use the sets of the impulse application angles with the angles that lie on 
the different sides from the direction z . 

During the flight support of a real spacecraft, it is necessary to solve 
the problems with different numbers of impulses and with different 
constraints, so the software should be universal enough. 

To ensure this utility along the minimization in the space of the 
impulse components, the following computing scheme is used.  

With the help of the matrix J, the deviation set is set, which needs to be 
corrected (from the full deviation vector , which is used in Eq. 5-1, one 
can turn to the vector with a smaller number of dimensions Jk  if 
needed). The impulse components kV , which will be used for the 
problem solution, are set in the corresponding scale with the help of the 
flags. The influence matrix kA  of these impulse components on the 
chosen deviations is formed. The constraints 5-1 can be described as 

 
.kkk VA     (5-4) 

 
Another scale holds the impulse components iV  which will be the 

independent variables in the space of which the optimization will take 
place. The rest of the components will be the depending variables dV  (

dik VVV ). 
The matrix kA  can be divided into the corresponding parts. Constraint 

5-4 will be as follows: 
 

.kddii VAVA    (5-5) 
   

From Eq. 5-5, one can find dV : 
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kid VAV    (5-6) 
   

where ,1
id AAA .1

kdk A  
Thus, the transition to the unconditional minimization W in the space 

of iV  occurs: 
 

).( iVWW  
 

The differential derivatives W for the independent variables, which are 
needed for minimization with the gradient methods, are computed with the 
use of the analogous scheme and the information from the same scales. Its 
basis is the derivatives (determined with the analytical equations) of all 
used impulse components.  

If only part of deviations ( k )are zeros, then the rest of the deviations 

( kp ) are added to the minimized functional as penalties 
 

N

i
p

T
p

N

i
iztr GQVVVW

iii

1 1

222 ,  

 
where G = set matrix. For example, an accurate transfer to the vicinity of 
the orbital station can be demanded, whereas the velocity deviations will 
not necessarily be zeros. They can be decreased by using the penalties. 
This situation occurs when the number of the used impulse components is 
less than the number of terminal constraints. 

It is worth mentioning that the conjugate gradient method should be 
used as the minimization method in the space of impulse components. Its 
effectiveness for the given class of problems is approximately 10% higher 
than the effectiveness of the steepest-descent method (Baranov 1982, 172–
179).  

5.3. Minimization with Involved Angles of Application  
of Velocity Impulses 

The minimization in the space of the impulse application angles (on set 
F) is more difficult, because the minimization area may contain several 
separate areas due to the presence of local minimums and due to the fact 
that the functional value is obtained as a result of the minimization in the 

 EBSCOhost - printed on 2/13/2023 10:43 PM via . All use subject to https://www.ebsco.com/terms-of-use



Chapter Five 
 

 

198

space of the impulse components. This is why it is difficult to use the 
effective numerical methods. Usually, the simple method of enumeration 
for the points from the permitted intervals is used, which allows finding 
the global minimum of the functional W, but it also requires considerable 
computation time. 

The desire to speed up the global minimum search process makes us 
search for the option to reduce the number of points F, for which the 
computation of mW  is made. Two methods could be used for this purpose. 
The first one is geometrical, which uses the results from Chapter 3 and 
allows us to quickly eliminate nonoptimal points. The second method is 
based on the determination of magnitude mW  from below. 

For the explanation of the first method (Baranov 2008), let us draw, as 
always, circles with the radii 1R  and 2R  (Fig. 5-2), which correspond to 
the sum of the transversal impulse components of the first and the second 
manoeuvring intervals. As was shown in Chapters 3 and 4, for the optimal 
solution of the multiple-revolution rendezvous problem, the point that 
corresponds to the eccentricity vector of the drift orbit should belong to 
area G (the intersection area of the circles, which have the radii 1R  and 

2R ). 
 

 
Fig. 5-2. Existence domains of optimal solutions for flybys between 

nonintersecting orbits. 
 

Thus, it is unnecessary to use the impulse application angles of the first 
manoeuvring interval, where the point corresponding to the drift orbit 
eccentricity vector will belong to area I. Similarly, it is unnecessary to use 
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the impulse application angles of the second manoeuvring interval, where 
the point corresponding to the drift orbit eccentricity vector will belong to 
area II. Area I is a semiplane, which was formed by the line that intersects 
the points C and B (CB is perpendicular to AK) and osculates with the 
circle in point K as its center. Area I does not contain area G (Fig. 5-2). 
Area II is a semiplane, which was formed by the line which intersects 
points D and E (DE is perpendicular to AK) and osculates with the circle 
with the center in point A. Area II does not contain area G.  

Thus, the point set from sets F is dropped if 
IeIe 21  and simultaneously 

,22 IeIe  or if IIe30  or 
23IIe  and simultaneously IIe40  or 
24IIe , where  

 

.arctg,arccos,arccos
2

1

1

2

x

y
eIII e

e

R
Re

R
Re  

 
One should bear in mind that the angles 4321 ,,,  are negative, 

which is why these angles should be increased by the value k2  in order 
to make them belong to the interval [ 2,0 ] before the verification of these 
constraints. 

The point set from space F is dropped if the impulse application angles 
of the first interval are situated above line AK, and the angles of the 
impulse application of the second interval lie beneath line AK or vice 
versa. With these transversal impulse application angles, the point which 
corresponds to the drift orbit eccentricity vector will also not belong to the 
area G.  

The solution example, which should be dropped by this criterion ( 
point C corresponds to the drift orbit eccentricity vector), can be found in 
Fig. 5-3. The line segments AB, BC, CD, and DK correspond to the 
impulses of this solution. The impulse application angles of the first 
interval 21,  lie above line AK, and the impulse application angles of the 
second interval 43,  lie below line AK. 
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Fig. 5-3. Example of a nonoptimal solution. 
 

Thus, for the existence of the optimal solution, the following 
conditions are not allowed: the simultaneous satisfaction of ,1e  

,2 e

and ,3e  24  or ,0 3  e4  or vice versa ,3e  
,4 e  and ,1e  22  or ,0 1  .2 e  

The other geometrical constructions can be used, which will reduce 
tset F with the help of the numerical optimization, but one should 
remember that the algorithm should be simple enough to maintain the 
advantage in the time over the computation of mW .  

If the circles do not intersect, the point corresponding to the drift orbit 
eccentricity vector should belong to area D (Fig. 5-4).  
 

 
 
 
 
 
 
 

 
 

 
Fig. 5-4. Existence domain of optimal solutions for flybys between 

intersecting orbits. 
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By using the algorithm analogous to the aforementioned, the big 
number of possible points from set F can be dropped during their 
enumeration for nonintersecting orbits.  

The second stage implies dropping the points from areas G or D, for 
which the solution of the coplanar rendezvous problem is optimal, but the 
expenditures on the orbital plane altitude correction are substantial. The 
algorithm from the work of Baranov (1986, 324–327) is used for the drop-
off of the points. It uses the assessment from below for the minimized 
functional W and L  subsequence for the enumeration of the points from 
set F (Levitan and Sobol 1976). The analytical assessment from below nW  
(with a much shorter computation time in comparison with the numerical 
determination of mW ) gradually reduces the total time for the problem 
solution. If the value nW  is bigger than the minimum value of the 
functional W, which was found by this moment, then the numerical search 
of the minimum in the space of the impulse components (the 
determination of mW ) for the given set of angles of impulse application 
may not be fulfilled.  

This procedure can be explained with the help of the example from 
Fig. 5-5. In this figure, the value of the functional mW  is plotted with a 
solid line, while the value of the assessment from below nW  is plotted 
with a dashed line. It is necessary to find the minimum of the functional 

mW  on the interval AF. Let us denote that the enumeration of points from 
the interval is carried out with a constant step from the point A to the point 
F. The value mW  will be calculated for all the points before point C. 
Starting with point C, the value of nW  will be bigger than the value of mW  
in point B, and all the points from interval CD will be omitted (the value 

mW  will not be computed for them).  
 
 
 
 
 
 
 
 
 

 
Fig. 5-5. Usage of below assessment of minimized functional. 
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The further enumeration will cause a drop in the points of the line 
segment EF in a similar fashion.  

If aa  (the definition of a  is given in the first paragraph of 
4th chapter), then the value  

 
,)( 22

ki zzn VVaW    (5-7) 

 
can be used for the assessment-from-below for nonintersecting orbits and 
the value 

 
,)( 22

ki zzn VVeW    (5-8) 

 
for the intersecting orbits, where a  = difference between the semimajor 
axes of the orbits and e  = module of the difference of the eccentricity 
vectors, and 

ki zz VV ,  = most effective lateral components of the 
impulses. The procedure for their determination was presented earlier. 
Otherwise, the major of values a  or e  will be used in the equations. 

The points of the L  subsequence were chosen for the enumeration 
of the points from set F because they use the capabilities of value nW  in 
the most efficient fashion. The great thing about the L  subsequence is 

that every n2  of its points are evenly spaced in the unit cube of the 
dimension N (Levitan and Sobol 1976). Set F can be fitted in the multiple-
dimensional rectangle ,...21 NLLLL  where iL  = line segment of the 

minimum length, which contains set iF . If n2  points of the L  
subsequence are taken then, from its characteristics, it follows that, for the 

i-th variable in every 
n
iL

2
 part of line segment iL , there will be the point 

of the L  subsequence. Thus, for every n, the points of the sequence are 
equally distributed along t line segment iL , and, with the increase of n, the 
density of the distribution also increases. 

The areas of existence of the local minimums can be easily determined 
because the consideration of the line segment has smaller and smaller 
steps each time and not a small constant step starting with its specific part 
of the line segment. Thus, the current value nW  will be compared with the 
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value of the functional W close to the global minimum, and the bigger 
number of points will be omitted. 

This option is shown in Fig. 5-6. Let us consider that, after viewing the 
first four points (they are labeled in the order that corresponds to the order 
of the L  subsequence), which are evenly distributed on the line 

segment AF, the minimum current value of the functional 
4mW  will appear 

to be in the fourth point. For the all subsequent points, the current value of 
nW  will be compared with 

4mW  and at least all the points from the line 
segments AB, CD, and EF will be omitted. 

If during the process of the subsequent enumeration one of the points 
will be in the vicinity of the global minimum (point M), this would not 
allow evaluating mW  for a bigger number of points. 

 

 
Fig. 5-6. Usage of L  series. 

 
There is one more way to quicken the process of the minimum search 

in the space of the impulse application angles. Let us consider the problem 
when the angles of application of the two last impulses are fixed. Then, 
with the help of the first two impulses, it is necessary to transfer to the line 
segment LN (Fig. 5-7). The AB line segment corresponds to the first 
impulse; BC corresponds to the second impulse. By altering the angle of 
application of the first impulse 1  and by determining the corresponding 
angle of application of the second impulse 2 , one can obtain 2  as a 
function of 1  for the flyby to the point N. In Fig. 5-8, this function is 
plotted with a solid line. Then the analogous function is obtained for the 
flyby to the point L. In Fig. 5-8, this function is plotted with a dotted line. 
The plotted functions are the boundaries of area G.  

The optimal angles of the impulse application for the correction of the 
lateral deviation belong to the set 
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,...),2,1(
0

kkzz  
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zarctg

0
 = angle between the axis x and the line of the orbit 

plane intersection); the dash-dotted lines in Fig. 5-8 correspond to these 
angles. If the lines intersect inside area G (point A and point B in Fig. 5-8), 
then the optimal solution exists with the angles of application for the first 
and the second impulses belonging to set z . This variant is possible when 

line AP is inclined by angle 
0z  to intersect the line segment LN in Fig. 

5-7. Thus, it is worth starting to search for the optimal impulse application 
angles from t angles 1  and 2 , which belong to set z . If such a solution 
exists, it is optimal. If a solution of this type does not exist, then solutions 
with only one of the angles ,, 12  that belong to set z  can be 
considered. After obtaining the close-to optimal solution, we can begin the 
search for the optimal solution on the whole possible space of the impulse 
application angles with the help of the aforementioned methods. 
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Fig. 5-7. Geometric locus of the 
eccentricity vector of the transfer 

orbit. 
 

Fig. 5-8. Existence domain of  
The optimal solutions. 

5.4. Graphical Dialog Exploitation 

The numerical method is quite universal, and in case the number of 
used impulse components coincides with the number of terminal 
constraints, it is also very fast and reliable. The important disadvantage of 
this method is the lack of explanation as to why this and only this solution 
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was obtained. Besides, it is impossible to determine the nature of its 
alteration with, for example, the alteration of the constraints set. It is hard 
to choose the manoeuvring scheme by only using numerical methods, i.e., 
it is hard to determine the minimal number of impulses which will be 
enough for the optimal problem solution, and in which places these 
impulses should be applied. The numerical methods are more suitable for 
the determination of the optimal manoeuvre parameters of the given 
manoeuvring scheme. 

The organization of the graphical dialog with the problem helps to 
eliminate these disadvantages. The first use of the graphical dialog was 
carried out by A.K. Platonov and P.K. Kazakova (Kazakova and Platonov 
1976) during the determination of the manoeuvring parameters for 
interplanetary transfers. It has proved its effectiveness. During the dialog 
process, the moments of impulse application were shown on screen for the 
initial and the target orbits. The manoeuvre parameters were determined 
by solving Lambert’s problem.  

The description of the graphical dialog for the interplanetary limited 
thrust transfer determination is given in the work by Yu.A. Zaharov 
(Zakharov, 1984). A transition from the impulse solution to the limited 
thrust problem solution is made with the help of nonlinear programming 
methods. The use of the graphical dialog was intended for during the 
spacecraft’s flight design stage and during the stage of choosing the 
spacecraft’s characteristics. 

The emergency situations which occurred in the orbit during the flight 
of the “Soyuz” and the “Progress”-type spacecrafts proved the necessity of 
the development of an effective graphical dialog with the problem, which 
would enable the ability to quickly choose new manoeuvring schemes that 
account for the additional constraints caused by emergency situations. 
Such a dialog was created in the ballistic center of the Institute of Applied 
Mathematics (Baranov, Gundobin, Ivanov, Kapralov et al. 1992, 26–27). 

As was already mentioned in the previous chapters, during the solution 
of the manoeuvre parameter determination problem for the transfer 
between close near-circular orbits, it is convenient to demonstrate the 
impulses on the eccentricity vector component plane. The curved line is 
plotted on screen. It corresponds to the impulses of the found solution with 
using the numerical method. Also, two circles are plotted which 
correspond to sum of the transversal impulse components of each 
manoeuvring interval. Thus, the illustration on screen is analogous to 
Figs. 3-3 and 4-12. The relative position of the four-piece curved line and 
the circles allows us to judge the robustness of the solution against the 
orbit determination errors and the errors of the impulse performance. This 
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depends on how deep the point that corresponds to the drift orbit 
eccentricity vector is situated inside the area of intersection of the circles 
G. How close the impulse angles, which belong to the first manoeuvring 
interval, to the angles of the optimal correction of the orbit plane (this 
direction is also shown on the screen), etc., can be estimated. There is an 
option of setting up the new angles of the impulse application graphically 
or numerically and returning to the problem for the determination of the 
new impulse magnitudes. Thus, the additional constraints on the 
application point and the impulse magnitudes can be accounted for, and 
the number of used impulses can be reduced, etc.  

The realization errors and/or the orientation of the impulses can be 
accounted for by drawing the corresponding ellipses with the centers at the 
ends of the vectors, which correspond to the impulses (Fig. 5-9). The 
errors in the thrust engine burns often lead to emergency situations, which 
is why they should be accounted for when choosing the manoeuvring 
scheme in such a situation. The constraint on the transfer orbit altitude can 
be accounted with the use of a graphical dialog (see Fig. 5-10). 

 

  
Fig. 5-9. Influence of impulse errors applied on the first manoeuvring 

interval for the CSS-type solution. 
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Fig. 5-10. Relative position of circles, which correspond to the sum of the 
transversal impulse components of the first and the second manoeuvring 

intervals, and the acceptable values of drift orbit eccentricity vector. 
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The call of the dialog occurs on the specified iterations. Its usage 
allows combining the capabilities of the numerical and analytical methods. 
The dialog is especially effective on the stage of the manoeuvring scheme 
selection and in case of emergency situations during the flight. If the flight 
is conducted normally and the predetermined and checked manoeuvring 
scheme is used, then only the numerical method can be used since only the 
optimal manoeuvre parameters must be determined. 

5.5. Examples 

The optimal manoeuvre parameter determination problems, which 
have been being solved in the ballistic center of the Keldysh Institute of 
Applied Mathematics of Russian Academy of Sciences during the 
navigational ballistic support of the flight of the “Soyuz TM-30” 
spacecraft, are considered in this section (Baranov 2008). 

In the moment of deployment of the “Soyuz Tm-30” spacecraft, the 
difference in the angular position of the spacecraft and the station (the 
phase difference) was .197u  

The four-impulse problem was solved before the first manoeuvring 
interval. It was supposed that the fixed impulse with the magnitude 2 m/s 
was applied on the 17th revolution. 

The initial data and the solution results for the four-impulse problem 
can be found in Example 5-1. The initial conditions of both spacecraft (in 
the Greenwich rotating reference frame) are listed in the first part of the 
example. The parameters of the dynamic atmosphere F and pa  and the 
number of the harmonics for the expansion of series for the Earth’s gravity 
potential, which will be accounted for during the numerical integration of 
the equations of motion, are set. The target point is set by the revolution 
number and the latitude argument. Also, the time of its approach to the 
passive spacecraft is listed. The target vector and the terminal conditions 
accuracies are specified. The diagonal element nonzero values of the 
matrices J and zJ  indicate the deviations of parameters for the correction.  

The second part of the example holds the allowed manoeuvring 
intervals for the impulse application (they are specified by the revolution 
number, and the latitude arguments of the left and the right boundaries) 
and the steps of the point enumeration from these intervals. Please note 
that the application angles of the third and fourth impulses are fixed one 
revolution and half a revolution before the rendezvous point. It is specified 
in the array ztr VVV  which impulse components can be used for the 
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problem solution (the first position corresponds to rV , the second to 

tV , the third to zV , “1” indicates that the component in the 
corresponding position should be used, and “0” indicates that is should not 
be used). The next line indicates which coordinate frame is used for the 
fixation of the thrust engine orientation during the realization of the 
corresponding manoeuvre (“0” for the inertial stabilization, “1” for the 
orbital stabilization). This information is separately listed for every 
impulse, because sometimes the thrust engine orientation on the different 
manoeuvring intervals can be fixed in the different coordinate frames. The 
constraints on the minimum and maximum impulse magnitudes and the 
minimum angular distance between them are also listed. The last line 
holds the values of the coefficients ik  for the functional W. 

The information about the fixed impulses is given in the third part of 
the example.  

The results of the manoeuvre parameter determination, which was 
obtained on the last iteration (the impulse components and the latitude 
arguments of its application points), are depicted in the fourth part. The 
number of the iterations for the problem solution, the values of the 
functional W, the total delta-v expenditures, the sums of the lateral 
impulse components, the total number of the considered points of the 
space F, and the number of dropped points due to the various criteria are 
given in the next line. 

The information about the manoeuvres obtained after the numerical 
integration is given in the fifth part. The time of the ignition and the 
duration of the thrust engine burn, as well as the magnitudes and the 
orientations of the impulses, are listed. Due to the fact that the orientation 
of the engine thrusters was fixed in the inertial coordinate frame, the time 
of the ignition and the orientation of the engine thrusters were chosen in a 
way that the estimated point of the impulse application was in the middle 
of the active interval and the thrust engine orientation in this moment was 
the same as the estimated impulse orientation. The presence of small 
negative pitches which are proportional to the impulse magnitudes can be 
explained by this, despite the fact that the radial impulse components were 
not used. This also explains that the latitude arguments of the moments of 
the thrust engine ignition (the last column) are slightly smaller than the 
estimated impulse application moments. Also, the deviations between the 
spacecraft and the station after the manoeuvre application can be found in 
this part of the example. 
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The elements of the orbital station orbit and the elements of active 
spacecraft orbit in initial moment and after each manoeuvre are given at 
the end of the example. 

 
Example 5-1 

 
 Orbital 

station Spacecraft Atmosphere parameters Gravity field 

Rev. 782 3 0F  =125.0    pa  = 12.0      Ngarm = 8 

Date 2000.04.06 2000.04.04 Target point: 

Time 85,139.26 104,719.62 rev.   latitude arg. 
deg 

date Time 

X , km 3.159596 5.570846 33.  344.80 2000. 
04.06   

90048.42

Y , km -4.262639 -3.503213 Target vector: 
Z , km -4.110163 0.0 R,  Vr,  Vn,  N,  Z,  Vz (km, m/s) 
Vx , km/s 6.286519 2.291193 0.0   0.0  -12.5   0.0  0.0  0.0 
Vy , km/s 1.022838 3.694669 accuracies: R,   Vr,   Vn,   N,   Z,   Vz

(km,m/s) 
Vz , km/s 3.774388 6.110578 0.100  0.050  0.050  0.500  0.100  0.050 
S 0.0390 0.0340 Diagonal matrices   J = 1. 1. 1. 1.    

Jz = 1. 1. 
 

Manoeuvring intervals 
Impulse number N 1 2 3 4 
Revolution of interval start 3 3 32 33 
Lat. argument of the left boundary, deg. 200.0 200.0 344.8 164.8 
Lat. argument of the right boundary, deg. 440.0 440.0 344.8 164.8 
Interval enumeration step, deg. 3.0 3.0 0. 0. 
Impulse components used (Vr Vt Vz) 011 011 010 010 
Engine stabilization type (0-inert., 1-orb.) 0 0 0 0 
Min. impulse velocity constraint, m/s 0.5 0.5 0.5 0.5 
Max. impulse velocity constraint, m/s 60.0 60.0 60.0 60.0 
Min. inter-impulse distance constraint, deg. 120.0 120.0 120.0 120.0 
Coefficient values ki 0.007 0.007 0.0 0.0 
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Fixed impulses: 
Impulse number N  Rev Latitude argument (U) dV m/s Yaw Pitch 
             3 17 344.8    2.0 0.0 0.0 

 
Approximate solution: impulse components and angles of their application 
Impulse number 1 2 3 4 

iii ztr dVdVdV  
0.0 

21.25 
-10.95 

0.0 
10.84  
5.47 

0.0 
6.29 
0.0 

0.0 
22.38 
0.0 

Revolution, latitude 
argument 

3.0;  
263.0 

3.0; 
437.0 

32.0;  
344.8 

33.0;  
164.8 

itN  = 5  W = 129.70  sumdV  = 64.71  zsumdV  = 16.42  allN  = 821   

dVN  = 134 
 

N date time dV yaw pitch T, s Rev Lat. 
argument 

1 2000.04.04 115,124.0 23.90 27.26 -1.94 56.6 3 261.06 
2 2000.04.04 123,445.1 12.14 333.20 -0.97 28.6 3 436.03 
3 2000.04.05 90,615.8 2.00 0.0 0.0 4.7 17 344.80 
4 2000.04.06 73,028.1 6.29 0.0 -0.49 14.7 32 344.31 
5 2000.04.06 81,501.2 22.38 0.0 -1.74 52.2 33 163.06 

 
Deviations from station: km, m/s 
R = -0.001 Vr = 0.008 Vn = -12.499 N = -0.046 Z= 0.0 Vz= 0.0 

 
Rev. U Hmin Umin Hmax Umax  I  e 
782 344.0 330.0 7.9 341.6 308.7 41.6 51.6687 117.6062 0.00082 
3 360.0 192.0 61.2 238.0 264.8 71.5 51.6920 130.1112 0.00369 
3 264.0 237.7 261.1 264.3 86.4 258.8 51.6391 129.7626 0.00135 
4 78.0 254.6 10.8 274.7 268.8 88.9 51.6315 129.5567 0.00022 

17 345.0 253.1 7.9 276.0 256.2 10.5 51.6690 123.9449 0.00152 
32 345.0 253.8 5.4 285.5 185.8 357.7 51.6675 117.9373 0.00311 
33 166.0 285.1 163.1 337.4 305.7 152.3 51.6688 117.7708 0.00447 

 
Target point 

altitude, km latitude, deg. longitude, deg. 
332.6 -11.9 332.4 

 
After the realization of the first two determined impulses on the third 

and fourth revolutions and after the orbit determination with the help of 
the measurements at the 13th–15th revolutions, the three-impulse problem 

 EBSCOhost - printed on 2/13/2023 10:43 PM via . All use subject to https://www.ebsco.com/terms-of-use



Numerical Methods  
 

 

211

is solved. Also, the manoeuvre parameters on the 17th revolution and in the 
last manoeuvring interval are determined. The usage of this initially fixed 
and then adjustable manoeuvre on the 17th revolution compensates for the 
errors of the manoeuvre realization of the first manoeuvring interval 
(primarily their influence on the arrival time to the rendezvous point). It is 
much harder to compensate for the deviation of this parameter with the 
manoeuvres on the last manoeuvring interval. The initial data for the 
solution of the three-impulse problem and the estimated manoeuvre 
parameters are given in Example 5-2. 

 
Example 5-2 

 
 Orbital 

station Spacecraft Atmosphere parameters   Gravity field 

Rev. 782 15 0F =125.0    pa = 12.0      Ngarm = 8 

Date 2000.04.06 2000.04.05 Target point: 

Time 85,137.89 44135.78 revolution latitude arg. 
deg 

date Time 

X , km 3.160009 3.866979 33.0 344.20 2000. 
04.06 

90037.94 

Y , km -4.262298 5.393846 Target vector: 
Z , km -4.110167 0.0 R,  Vr,  Vn,  N,  Z,  Vz (km, m/s) 

Vx, km/s 6.286416 -3.518402 0.0    0.0  -12.5   0.0  0.0    0.0 
Vy, km/s 1.023499 2.514312 accuracies: R,   Vr,   Vn,   N,   Z,   Vz  

(km,m/s) 
Vz, km/s 3.774374 6.081848 0.100   0.050   0.050   0.500   0.100   0.050 

S 0.390 0.31559 Diagonal matrices   J=1. 1. 1. 1.   Jz =1. 1. 
 

Manoeuvring intervals 
Impulse number N 1 2 3 
Revolution of interval start 17 32 33 
Lat. argument of the left boundary, deg. 164.0 344.2 164.2 
Lat. argument of the right boundary, deg. 410.0 344.2 164.2 
Interval enumeration step, deg. 1.0 0.0 0.0 
Impulse components used  (Vr Vt Vz) 011 010 010 
Engine stabilization type (0-inert., 1-orb.) 0 0 0 
Min. impulse velocity constraint, m/s 0.5 1.9 1.9 
Max. impulse velocity constraint, m/s 60.0 60.0 60.0 
Min. inter-impulse distance constraint, deg. 120.0 120.0 120.0 
Coefficient values  ki 0.007 0.0 0.0 

 

 EBSCOhost - printed on 2/13/2023 10:43 PM via . All use subject to https://www.ebsco.com/terms-of-use



Chapter Five 
 

 

212

Approximate solution: impulse components and angles of their application
Impulse number 1 2 3 

iii ztr dVdVdV  
0.0   
0.61   
0.0 

0.0   
7.87   
0.0 

0.0 
  21.47  

0.0 

Revolution, latitude argument (U) 17.0   
349.0 

32.0   
344.2 

33.0   
164.2 

Nit = 5     W = 29.95     dVsum = 29.95     dVzsum = 0.00     Nall = 248 
 

N Date Time dV Yaw Pitch T, s Rev. Latitude argument 
1 2000.04.05 90,737.9 0.608 0.0 0.11 1.4 17 348.95 
2 2000.04.06 73,014.9 7.868 0.0 -0.62 18.4 32 343.5 
3 2000.04.06 81,452.0 21.471 0.0 -1.66 49.9 33 162.54 

 
Deviations from the station: km, m/s 
R= 0.0 Vr= 0.0 Vn= -12.500 N= 0.0 Z= -0.402 Vz=0.052 

 
Rev. U Hmin Umin Hmax Umax  i  e 
782 344.2 329.6 7.9 341.5 308.7 41.93 51.6685 117.6067 0.00081 
15 0.0 257.5 160.9 274.7 271.3 45.32 51.6695 124.9542 0.00120 
17 349.0 255.8 13.3 275.4 270.3 29.49 51.6715 123.9506 0.00107 
32 344.8 256.9 4.9 285.5 135.3 357.44 51.6686 117.9417 0.00285 
33 165.9 285.1 165.9 337.3 305.0 152.20 51.6699 117.7753 0.00446 

 
Target point 

Altitude, km Latitude, deg. Longitude, deg. 
332.7 -12.4 332.1 

 
The two-impulse problem is solved after the application of the 

manoeuvre on the 17th revolution and the following orbit determination 
before the last manoeuvring interval on the 31st–32nd revolutions. The 
initial data for its solution and the determined manoeuvre parameters can 
be found in Example 5-3. 
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Example 5-3 
 

 Orbital 
station Spacecraft Atmosphere parameters   Gravity field 

Rev. 782 30 F0=125.0    ap= 12.0      Ngarm=8 

Date 2000.04.0
6 2000.04.06 Target point: 

Time 84,937.62 30,537.89 revolution latitude arg. 
deg 

date Time 

X, km 2.379805 2.004973 33.0 344.20 2000. 
04.06 

90,037.64 

Y, km -4.351406 6.325135 Target vector: 
Z , km -4.522517 0.0 R,  Vr,  Vn,  N,  Z,  Vz (km, m/s) 
Vx , km/s 6.709404 -4.125250 0.0     0.0  -14.54  0.0  0.17    0.0 
Vy , km/s 0.459303 1.300320 accuracies: R,   Vr,   Vn,   N,   Z,   Vz   

(km, m/s) 
Vz , km/s 3.089667 6.083085 0.100  0.050  0.050  0.500  0.100  0.050 
S 0.0390 0.031063 Diagonal matrices   J=1. 1. 1. 1.    

Jz =1. 1. 
 

Manoeuvring intervals 
Impulse number N 1 2 
Revolution of interval start 32 33 
Latitude argument of the left boundary, deg 284.2 104.2 
Latitude argument of the right boundary, deg 404.2 224.2 
Interval enumeration step, deg 3.0 3.0 
Impulse components used  (Vr Vt Vz) 111 111 
Engine stabilization type (0-inert., 1-orb.) 0 0 
Minimum impulse velocity constraint, m/s 0.5 0.5 
Maximum impulse velocity constraint, m/s 60.0 60.0 
Minimum inter-impulse distance constraint, deg. 120.0 120.0 
Coefficient values  ki 0.007 0.007 

 
Approximate solution: impulse components and angles of their application
Impulse number 1 2 
dVri  dVti  dVzi -2.15  5.78  -2.19 2.36  21.50  -2.29 
Revolution, latitude argument (U) 32   323.2 33   164.2 

itN  = 3   W= 29.17   sumdV  = 28.30   zsumdV  = 4.48   allN = 1410 
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N Date Time dV Yaw Pitch T, s Rev Latitude Argument 
1 2000.04.06 72,513.7 6.545 20.75 -19.15 15.3 32 323.20 
2 2000.04.06 81,518.6 21.753 6.09 6.24 50.6 33 164.20 

 
Deviations from the station: km, m/s 
R= -0.001 Vr= 0.001 Vn= -14.54 N= 0.002 Z= 0.170 Vz= 0.0 

 
Rev. U Hmin Umin Hmax Umax  i  e 
782 344.2 330.6 360.0 343.6 300.8 44.95 51.6680 117.6063 0.00078 
30 0.0 256.2 10.0 274.6 271.3 42.31 51.6707 118.9471 0.00134 
32 324.2 257.5 4.4 279.7 114.9 351.86 51.6715 117.9378 0.00166 
33 167.6 277.7 164.2 337.0 306.8 153.62 51.6683 117.7690 0.00506 

 
Target point 

altitude, km latitude, deg. longitude, deg. 
333.0 -12.4 332.12 

 
Let us illustrate the capabilities of the graphical dialog for the analysis 

and alteration of the obtained solution using the four-impulse problem 
from Example 5-1. 

Figure 5-11 shows the illustration that the operator sees on the monitor 
after the problem solution at the iteration with the set number (in this case 
after the fifth iteration). 
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Fig. 5-11. Optimal solution. Fig. 5-12. Solution with equalization 
of the third and the fourth impulses. 
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Since the application angles of the third and the fourth impulses are 
fixed on the angles  and 2  before the rendezvous point, the line 
segment LM (from which with the use of the impulses from the second 
manoeuvring interval the transfer to the final point K can be fulfilled) is 
parallel to the xe  axis and intersects point K. The dashed line corresponds 
to the direction of the orbit plane optimal correction. This line intersects 
point A and is inclined by z  to the xe  axis. The curved line ABCDK 
corresponds to the problem solution (the transversal impulse components). 

It can be seen that the dashed line intersects the line segment LM. As 
was shown in Section 4.2, the solution with the impulses of the first 
manoeuvring interval applied in the points of the orbit plane’s optimal 
correction will be optimal (on the line of the orbit plane intersection), and 
the magnitudes of the lateral components will be proportional to the 
magnitudes of the transversal impulse components. Indeed, for the 
solution from Example 5-1, which was obtained with the use of the 
numerical method, the modules of the ratios of the lateral impulse 
components to the transversal components for the first and the second 
impulses are almost equal and the line segments AB and BC, which 
correspond to the transversal impulse components, are close to the dashed 
line. The small deviation from the optimal analytical solution can be 
explained as follows: the enumeration of impulse application angles was 
carried out with 3º step, which is why it was impossible to find the exact 
optimal solution. The line segment CD corresponds to the third impulse 
interval and the line segment DK corresponds to the fourth interval. It can 
be easily seen that the impulses of the second interval (the line segments 
CD and DK) of the optimal solution differ from each other by magnitude. 
It can also be seen from the figure that, in order to obtain the solution with 
the almost equal impulses of the second manoeuvring interval, it is 
necessary to reduce the angle of the first impulse application. In this case, 
the line segment which corresponds to the first impulse will approach 
point K.  

There is the option of changing the impulse application angles and 
using the numerical method for the determination of the impulse 
magnitudes afterwards in the graphical dialog developed in the ballistic 
center of the Institute of Applied Mathematics. The angles of application 
of the first and second impulses, which ensured obtaining the solution with 
the desired characteristics were chosen using this option (Fig. 5-12). The 
impulse parameters for this solution and the angles of their application are 
given in Example 5-4. 
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Example 5-4 
 

Impulse number 1 2 3 4 

iii ztr VVV  : 0.0;  21.89; 
0.45 

0.0;  10.09;
16.72 

0.0;  14.11; 
0.0 

0.0;  14.95; 
0.0 

Revolution, latitude
argument: 3;  221.0 3;  440.0 32;  344.8 33;  164.8 

itN = 8; W = 70.49; sumdV  = 70.49; zsumdV  = 17.16 
 

For this solution, CD DK. The direction of the line segment, which 
depicts the second impulse, is close to the direction of the dashed line. 
Hence, this impulse is basically used for the orbit plane correction (this 
can also be seen by the magnitudes of the lateral impulse components). 
Since the expenditures on correction of the orbit plane are not distributed 
proportionally between the first and the second impulses, the total delta-v 
of the new solution is 5.8 m/s higher in comparison with Example 5-1, but 
the impulse magnitudes of the last interval are almost the same.   

The iterative procedure from Chapter 1 was used for the solution of all 
the aforementioned problems. The effectiveness of this procedure is 
clearly seen from the iteration data for the four-impulse problem from 
Example 5-5. The following information is printed successively: the 
number of the current iteration ( itN ); the sum deviation vector (SVD), 
which is used on this iteration in Eq. 5-1 for the manoeuvre parameter 
determination; the computed components of the impulses ( idV ( znr VVV ,,
)) on this iteration; the number of revolutions and the application angles of 
the impulses ( ii UN , ); and, after the manoeuvre realization, the deviations 
between the orbit elements of the spacecraft and the orbit elements of the 
station which were altered by the magnitude of the target vector (CD) 
were obtained. The sum deviation vector (SVD) has the dimension of m/s 
(the coordinate components of the deviation vector are multiplied by the 
angular velocity along the relative circular orbit). The sum deviation 
vector which is used on the first iteration coincides with the deviation 
vector between the uncorrected orbit of the spacecraft and the station orbit, 
which was depicted at the start of Example 5-5. In order to quicken the 
converging of the iterative procedure, the angles of the impulse 
application have been fixed, starting with the third iteration. As can be 
seen from the solution, the iterative procedure ensures the fulfillment of 
the terminal constraints rapidly and with a high accuracy (the deviations 
decrease by an order with each iteration).  
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Example 5-5 
 

CD initial deviations of spacecraft from station + target vector km, m/s  
R = -141.47  VR = -11.25 VN = 95.79  N = 17,538.6  Z = 2.635  VZ = 3.287 

itN  = 1   SVD:   162.504   11.250   -95.792   -20,146.397   3.026   3.287 

iii ztr VVV :  0.0  25.45  4.48    0.0  9.68  0.02    0.0  -0.77  0.0     
                  0.0  32.34  0.0 
Ni  Ui:                    3  302.0           3  440.0      32  344.8      33  164.8 
CD:  R = 15.48  VR = -25.47   VN  = -11.89  N = -1468.2  Z = -18.07   
         VZ  = -5.35 

 
itN  = 2   SVD:   144.713   36.728   -83.893   -18,459.880   -17.729    

                           -2.070 

iii ztr VVV : 0.0  25.58  -13.28    0.0 -6.47  4.58   0.0  5.84  0.0    
                 0.0  22.92  0.0 
Ni  Ui:                     3  263.0             3  437.0      32  344.8      33  164.8
CD:  R = -1.413   VR  = 17.47   VN  = 1.70   N = 3.443  Z = 1.231   
        VZ = 0.310 

 
itN  = 3   SVD:   146.336   19.253   -85.587   -18,463.836   -16.315 

                            -1.760 

iii ztr VVV : 0.0  21.12  -10.84   0.0  10.94  5.59   0.0  6.26  0.0    
                 0.0  22.41 0.0 
Ni  Ui:        3  263.0             3  437.0        32  344.8    33  164.8 
CD:  R = 0.170   VR = -0.408   VN = -0.207   N = 7.379    Z = 0.021  
         VZ = -0.007 

 
itN  = 4   SVD:   146.140   19.661   -85.380   -18,472.312   -16.291    

                           -1.767 

iii ztr VVV : 0.0  21.23  -10.91   0.0  10.84  5.48   0.0  6.29  0.0    
                 0.0  22.38 0.0 
Ni  Ui:        3  263.0             3  437.0       32  344.8     33  164.8 
CD:   R = 0.002    VR = -0.044    VN = 0.001    N = -0.597    Z = -0.010 
          VZ = -0.003 

 
itN  = 5   SVD:   146.138   19.705   -85.382   -18,471.626   -16.302 

                           -1.771 
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iii ztr VVV : 0.0  21.24  -10.94   0.0  10.83  5.47   0.0  6.29  0.0    
                 0.0  22.38 0.0 
Ni  Ui:       3  263.0              3  437.0       32  344.8    33  164.8 
CD:   R = -0.001    VR =  0.008    VN = 0.001    N = -0.046    Z = 0.0 
         VZ = 0.0 

5.6. The Iterative Procedure Taking into Account  
the Constraints on the Drift Orbit Altitude 

The aforementioned procedure can be effectively used for the drift 
orbit parameter constraint satisfaction and for many other purposes.  

Let us consider, for example, its usage for an accurate assessment of 
the constraint on the drift orbit altitude. 

Let us suppose that on the i-th iteration the problem has been being 
solved with the constraint that the altitude of the drift orbit h should be 
higher than the given value imh _ . The solution with the analytically found 

iah , which had met the constraint ( ima hh
i _ ), was determined. During 

the numerical integration of the motion equation system with the 
accountancy of the estimated impulses, the drift orbit altitude ih  is also 
estimated, which corresponds to this solution. The deviation between the 
altitude values determined with the help of the analytical method and the 
numerical integration ia hhh

i
 is determined. On the next 1i  

iteration, the value hhh im min1_  (where minh  = given minimal drift 
orbit altitude value) is used as the constraint on altitude. 

This technique allows the use of relatively simple equations for the 
drift orbit altitude determination and the meeting of the constraint for the 
altitude with the necessary accuracy. 

For the determination of the manoeuvre parameters which meet the 
altitude constraint imh _ , one can use the numerical analytical method 
from Section 3.6. If the numerical method is used for the problem solution 
and the number of constraints in the equality form coincides with the 
number of used impulse components, then the altitude constraint 
requirement satisfaction is checked for next solution. After the 
determination of the impulse components for the next point from set F, the 
constraint fulfillment ima hh

i _  is checked and, if the constraint is not 
met, the solution is dropped and, if it is met, the optimality of the found 
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solution is checked. If the obtained solution is better than the previous 
ones, it becomes the current optimal solution. 

The procedure which is analogous to the procedure of imh _  change is 
used during the problem solution, when only part of the terminal 
deviations is needed to make zeros ( k ); the other deviations ( p ) are 
added to minimize the functional as penalties. 

5.7. The Simplex Method for Manoeuvre Parameter 
Determination 

The simplex method is quite effective for the determination of the 
optimal manoeuvre parameters on near-circular orbits. The idea of the 
implementation of the simplex method for the manoeuvre parameter 
determination was proposed by M.L. Lidov (Lidov 1971, 687–706), and 
was later developed for manoeuvres with limited thrust in the work of 
M.L. Lidov and N.M. Teslenko (Lidov and Teslenko 1978, 112–141). The 
further development of this method in the works of V.P. Gavrilov and 
E.V. Obuhov (Petrov 1985), Gavrilov and Obukhov (1980, 163-172) 
allowed solving the problem with the fixed number of impulses. The 
software by V.P. Gavrilov and E.V. Obuhov has been used for years in the 
RSC “Energia” for the flight design of the “Soyuz” and the “Progress” 
spacecrafts. The Mission Control Center (Korolev, Moscow Region) had 
its own realization of the simplex method. It was realized in 1990 and has 
been used for many years for the manoeuvre determination of all 
spacecraft docking in the orbital station. R.R. Nazirov and B.T. Bakshiyan 
used the simplex method for the manoeuvre parameter determination of 
interplanetary transfers (Bakshiyan, El'yasberg, and Nazirov 1980; 
Nazirov and Timokhova 1993, 93–101).  

The next step made by A.V. Gavrilov (Gavrilov 1995; Gavrilov 2000) 
consisted in using the duality theory. This substantially reduced the 
solution time for the multiple-impulse problem on the stage of the impulse 
application angle enumeration. A comprehensive description of the 
simplex method application for the manoeuvring problem solution with 
the necessary examples was provided by G.A. Kolegov (Kolegov, 2007). 

The simplex method has a number of substantial advantages. It solves 
the problem with the arbitrary number of impulses and the arbitrary set of 
terminal constraints. It also easily accounts for the constraints on the 
impulse magnitudes and on the points of their application. The basic 
advantage of the simplex method is the problem solution speed in 
comparison with the gradient methods. 
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The disadvantage of the simplex method (and every numerical method) 
is the inability of find an explanation for the obtained solution. It is 
impossible to forecast how the solution will alter with the alteration of the 
problem conditions. The simplex method is hard to use for the manoeuvre 
parameter determination on board the spacecraft. 

During the multiple calculations for the ATV launch preparation, 
CNES had some problems with the convergence of the simplex method 
for the manoeuvre parameter determination. In these cases, the selection of 
control constants was needed for the complete problem solution. Due to 
this disadvantage in the simplex method, CNES opted for the simple and 
reliable method described in this chapter as the basic method for the 
determination of the ATV manoeuvre parameters (Carbonne, Chemama, 
Julien, Kudo et al. 2009, 1091–1106). Later, the realization of this method 
by CNES was used for the manoeuvre parameter determination for the 
deployment of the satellite formation flying “PRISM”. The simplex 
method with all its numerous advantages is used by CNES for solving 
research problems (Baranov and Labourdette 2001, 1–20).  

The further development of numerical methods for the manoeuvre 
parameter determination is connected with works by Yu.P. Ulybyshev. By 
using the inner circle method (Wright, 1997), he was able to spread this 
approach for the solution to low thrust and combined problems. In these 
problems, part of the manoeuvre is performed by the main thrusters (these 
are close to the impulsive manoeuvres), and the rest of the manoeuvres are 
performed by the docking and the orientation engines. The duration of the 
latter manoeuvres encompass the substantial part of the revolution. In the 
works by Yu.P. Ulybyshev, the lengthy active interval is modeled by tens 
of thousands of pseudo impulses (Ulybyshev 2016, 1-11), (Sokolov and 
Ulybyshev 1999, 95-100). 

There are other effective numerical methods for the optimal 
manoeuvre parameter determination on near-circular orbits. For example, 
the method developed by Yu.P. Pavlushevich. A method of the description 
can be found in the work of Bazhinov and Yastrebov (1978). This method 
has been used for many years (from 1972 till 1990) in the Mission Control 
Center for the manoeuvre parameter determination of the spacecraft, 
which is used to dock in the orbital station. 

The effective numerical methods for the rendezvous problem solution 
can not only be found in mission control centers, but also in universities 
(Guo-Jin, Hai-Yang, and Ya-Zhong 2007, 185–191). Lambert’s problem 
solution is often the basis for these methods (Chiu and Prussing 1986, 17–
22; Guo-Jin, Hai-Yang, Ya-Zhong, and Yong-Jun 2007, 946–952). 
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CHAPTER SIX 

MANOEUVRING WITH LOW-THRUST ENGINES 
 
 
 
As described in the previous paragraphs, when determining the 
manoeuvring parameters, it was supposed that the manoeuvres were being 
carried out by engines with infinite thrust. This assumption allowed us to 
model the manoeuvres as impulsive. However, real spacecraft engines 
always have limited thrust and thus the manoeuvres have restricted 
duration. If the manoeuvre duration is small in comparison to the period of 
the orbit, an approximation of the impulse can be treated as being 
sufficiently accurate. If the manoeuvre duration is several dozens of 
degrees long according to the latitude argument, and the impulse model is 
used for the determination of the manoeuvre parameters, one can only rely 
on the iterative procedure presented in Chapter 1. In some cases this 
procedure can provide the fulfillment of the terminal conditions even if the 
duration of the real manoeuvres reaches 45º according to the latitude 
argument. However, the maximum acceptable manoeuvre duration that 
ensures the convergence of the iterative procedure depends on the concrete 
problem and may be far less than 45º. For example, this situation occurs 
during the solution of the long duration rendezvous problem. In cases 
where the thrust engines are working during a considerable part of the 
revolution, the convergence of the iterative procedure breaks and the total 
delta-v expenditure differs gradually from the impulsive variant. In these 
cases it is necessary to account for the time of the thrust engine firing 
during the determination of the manoeuvre parameters. 

Sometimes, one may try to detach the impulse solution from the low-
thrust solution by orienting it on the engine thrust criterion. This may lead 
to incorrect conclusions. Engine division by the high and low thrust 
criteria is rather uncertain, as follows from the text below. 

The characteristics of different engines and their classification for high 
and low thrust have been thoroughly analyzed in the work of Yu. G. 
Sukhoi (2011): 

“In the work of Anonymous (2002) “Recommendation on Cataloging. 
Cataloging of Production for Federal State Needs. Supplies. List of 
Confirmed Titles. Russian State Standard” the low-thrust rocket liquid-
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fueled engine is designated as an engine with thrust of less than or equal to 
1600 N, which is used as the executive element of the control system for 
flying and descent vehicles. The work of Ivanov (2002) “Encyclopedia 
Russian Weaponry and Technology. XXI century” describes the 
applicable scope of a low-thrust rocket liquid-fueled engine for spacecraft. 
For example, the low-thrust rocket liquid-fueled engine (LTRLFE) 
11D428A – 16 (thrust = 130.5 N, thrust specific impulse = 290 s) is used 
for the transport spacecraft “Soyuz-TM”, “Progress-M”, and the “Zvezda” 
service module of the International Space Station. The low-thrust rocket 
engines (LTRE) 17D51 (thrust = 111 N, thrust specific impulse = 209 s), 
11D456 (thrust = 104 N, thrust specific impulse = 252 s), and 11D457 
(thrust = 54 N, thrust specific impulse = 254 s) are used on Earth orbit 
remote sensing satellites. LTRE 11D458 (thrust = 400 N) is used on the 
upper rocket stage “Briz”. LTRE 17D58E has the thrust 13.3 N. There are 
lots of different types of low-thrust rocket liquid-propellant engines with 
two-component and single-component fuel. LTRLFE with single-
component fuel (hydrogen peroxide and hydrazine) uses a catalyzer for 
fuel decomposition in addition to the fuel itself. A high-temperature gas, 
which produces thrust, is the result. The magnitude of the specific impulse 
is bigger for two-component engines in comparison to single-component 
ones. The thrust range for low-thrust single-component rocket liquid-
fueled engines is vast, ranging from fractions to hundreds of Newtons. 

Gas-jet systems (Belik, Belyaev, and Uvarov 1979) have their own 
range of division on the low-high-thrust scale. Compressed air (air, 
nitrogen, and argon) in the cylinders is used as the propellant. They are 
reliable and the simplest of all rocket micro-engines. Their disadvantages 
include the small specific impulse and decrease in thrust by the moment of 
fuel depletion. Low-thrust gas-jet systems, as a rule, have thrust of 0.1 to 1 
N, and high-thrust systems have thrust of up to 10 N. The ignition duration 
of a low-thrust gas-jet engine may be in the range of fractions of seconds 
to several hours. The ignition duration of a high-thrust gas-jet engine is 
usually limited to minutes. 

Electric jet systems are often suitable for geostationary spacecraft, 
since they allow operation with ultralow thrust for small orbital 
perturbation compensation. Electric jet engines (EJE) usually differ from 
the point of view of the generation of accelerated particles: electrostatic, 
electrothermal, electromagnetic, magnetodynamic, and impulsive 
(Kvasnikov, Latyshev, Ponomarev-Stepnoy et al., 2001; Gorshkov, 1999, 
56-58). Electrostatic engines are divided into ionic and plasmic forms. 
Impulse engines are based on the use of gas kinetic energy, which appears 
during solid body vaporization by the electrical charge. Liquids, gases, 
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and their mixture are used as the propellant in EJE. Recently, considerable 
results have been achieved in the development of stationary plasmic 
engines. Various Russian magnetoplasmodynamic engines of the SPD 
series with different nominal thrust values are known: SPD-35 – 0.01 N, 
SPD-50 – 0.02 N, SPD-60 – 0.03 N, SPD-70 – 0.04 N, SPD-100 – 0.083 
N, SPD-140 – up to 0.3 N, SPD-200 – up to 0.5 N, and SPD-290 – up to 
1.5 N. The SPD-35, SPD-50, and SPD-60 engines may be used for small 
spacecraft of mass 500-1,000 kg; SPD-70 and SPD-100 may be used for 
medium-sized spacecraft; while SPD-140 may be used for interorbital 
transportation and heavy geostationary satellite orbit correction. 

SPD-200 and SPD-290 engines are suitable for the orbital correction of 
various satellites, for solution of the deployment and transfer problem, and 
for use as components of upper stages. The specific impulse of these 
engines is 1500-2600 s. The summary thrust impulse for SPD-100 engines 
is approximately 2000 kN·s. SPD-60 engines have been mounted on 
“Meteor” satellites; SPD-70 has been mounted on “Geizer”, “Altair”, 
“Kupon”, and “Yamal-100” spacecraft; and SPD-100 has been mounted 
on “Express-A”, “Express-AM”, and “Gals” spacecraft (Gorshkov 1999, 
56-58). Xenon ionic electric jet engines are widely used abroad including: 
the “13 sm” (thrust = 0.018 N), the “30 sm” (thrust = 0.092 N), and the 
“25 sm” (thrust = 0.165 N). The specific impulse of these engines lies in 
the range of 2565-3800 s. The “13 sm” engines have been mounted on the 
“Panamsat-5”, “Panamsat-6B”, “Panamsat-9”, “Panamsat-5”, and 
“DirektTV 1R” spacecraft, among others; the “25 sm” engines have been 
mounted on the “Galaxy 11”, “Panamsat-1R”, and “Anik F1” spacecraft; 
the “30 sm” engines on “Deep Space 1” spacecraft. The electrothermal 
engines DEN-15 with ammonia as the propellant have been mounted on 
the “Meteor-3”, “Meteor-Priroda”, “Resurs-O”, and “Electro” spacecraft. 
The power of the ammonia engine is approximately 100-400 W, the 
nominal thrust = 0.05-0.3 N, the specific impulse = 100-270 s, and the 
summary thrust impulse reaches up to 500 kN·s. Other models of EJE (D-
38, D-55, D-100-1, D-100-2, X-40, T-100, T-160, and KM-45) with thrust 
of fractions of newtons and a specific impulse of 1300-4200 s are also 
known (Gorshkov 1999, 56-58; Belikov, Gorshkov, Muravlev, and 
Shagaida 2007). Electric jet systems allow for ignition durations ranging 
from several minutes to dozens of hours thanks to their low-thrust 
capabilities. Thrust can be conveniently divided into low (approximately 
0.5-100 N) and ultralow (0.01-0.5 N) from the middle geostationary orbit 
correction point of view, independently of the engine model used. This 
criterion is based on the capability/incapability of compensating for 
middle geostationary satellite weak orbital perturbations during the 
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maximum perturbations from the Sun and the Moon with a single ignition 
period”. 

6.1. Coplanar Low-Thrust Transfers 

For real spacecraft, the engine orientation during manoeuvre 
completion is always practically fixed in the orbital or the inertial 
coordinate frames. This circumstance leads us to necessarily consider both 
variants. Furthermore, the algorithm for the determination of the optimal 
orientation alteration law of the thrust vector in the general case is 
proposed. 

6.1.1. Thrust Vector Constant Orientation in an Orbital 
Coordinate Frame 

Let us consider the variant of fixing the transversal thrust engine 
orientation in the orbital coordinate frame. The case of primer vector 

degeneration into the point ( ,0 ,11 ,02
3

2
2 1or 

,1  (1-19)) corresponds to this orientation. This means that the 
transversal thrust vector orbital orientation can be optimal for the long 
intervals of the thrust engine burns. Just as in the impulsive case, the main 
result of such a manoeuvre is the alteration of the semimajor axis and, 
hence, the orientation of the thrust vector is optimal for transfers between 
nonintersecting orbits. 

In order to get closer to the impulsive solution, which is considered 
foundational, and obtain the optimal solution, the middle of the active 
interval should coincide with the impulse application point (Braude and 
Kuzmak 1969, 323-338). This assumption is fair, because the spacecraft 
mass changes insignificantly during fulfillment of a single manoeuvre and 
jet acceleration can be considered as the constant. In Fig. 6-1, the orbital 
arc AC ( ) corresponds to the active interval and point B is the impulse 
application point, which is situated on the apsidal line of the relative orbit. 
The impulse size is tV . Since point B is situated in the middle of the arc 
AC, alteration of the eccentricity vector during a long-duration manoeuvre 
will be in the same direction as in the impulsive case (to point B). 
However, the magnitude of the eccentricity vector alteration caused by the 
influence of the dimensionless velocity tV  ( 0/ VVV tt ), equally 
distributed on the interval of the latitude argument , will be smaller in 
comparison to its alteration e  caused by an impulse of the same 
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magnitude tV  (Fig. 6-1). This is connected to the fact that the more 
distant from the middle of the active interval part of the arc, on which the 
impulse tV  is realized, the more the direction of the performed alteration 
of the eccentricity vector e  (pointed to the center part of the arc) differs 
from the necessary direction to point B (Fig. 6-1). 
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Fig. 6-1. Constant 
orientation in the orbital 

coordinate frame 

Fig. 6-2. Constant 
orientation in the  
inertial coordinate 

frame 

Fig. 6-3. Optimal 
orientation for 

eccentricity alteration 

 
Considering that the arc AC is symmetrical relative to point B, the sum 

of the eccentricity vector is pointed to point B, but its magnitude is smaller 
in comparison to the impulse case. The alteration to the eccentricity 
caused by the dimensionless velocity tV , equally distributed along the 
latitude argument interval , can be evaluated as: 

 

,2
sin

4cos2
2/

2/

t
t Vd

V
e   (6-1) 

 
where  = the angle between the middle point of the active interval and 
the current point (Fig. 6-1). It follows from Eq. 6-1 that the increase in 
duration of the engine firing interval leads to a decrease in eccentricity 
alteration in comparison to the impulsive case. In table 6-1, one can see 
the eccentricity alteration decrease (in percent) in comparison to the 
impulsive case for different values of burn duration (the burn duration is 
measured, by the latitude argument, in degrees). 
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Table 6-1 
 

 deg 20 40 60 80 100 120 140 160 180 
e % 1.0 2.0 4.5 7.9 12.2 17.3 23.1 29.1 36.3 
 deg 200 220 240 260 280 300 320 340 360 

e % 43.6 51.0 58.6 66.2 73.7 80.9 87.8 94.1 100 
 

It is assumed that the spacecraft’s mass does not practically change 
during the single manoeuvre and the time t  that is needed for the 
alteration of the spacecraft’s velocity by the magnitude VV0  can be 
evaluated as: 

 
,0 VV

P
m

t    (6-2) 

 
where m = spacecraft mass and P = engine thrust. 

According to Eq. 6-2,  is proportional to V : 
 

,0 V
w

w
Vkt c   (6-3) 

 

where ,
0

0
0 r

V
,

0

2
0

w
w

Pr
mV

k c  cw  = the centripetal acceleration of the 

relative circular orbit and (
0

2
0

r
V

wc
), and w = the acceleration made by 

the thrust engines (
m
P

w ). 

With the help of Eq. 6-3, one can find the orbital eccentricity 
acceleration caused by the engine firing on the interval : 

 

.
2

sin4
cw

w
e   (6-4) 

 
The maximum eccentricity alteration that can be reached after a single 

firing is: 
 

,4
cw

w
e    (6-5) 
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The optimal value is . If the thrust orientation has the opposite 
direction on the other half of the revolution, the sum of the eccentricity 
alteration will be: 

 

.8~
cw

w
e    (6-6) 

 
The minimum revolution number en , which is needed for the 

correction of the eccentricity deviation e , should meet the constraint: 
 

.~e
e

n e
   (6-7) 

 
Considering that the alteration to the semimajor axis does not depend 

on the moment of application of the transversal impulse, but rather 
depends on the magnitude of this impulse tVa 2  (here, a  is the 
dimensionless value, as always), the alteration of the dimensionless 
semimajor axis after the firing of the thrust engine on the interval  can 
be found as: 

 

.2
cw
w

a    (6-8) 

 
The maximum semimajor axis alteration on the revolution when the 

thrust engine works for the whole revolution ( 2 ) is: 
 

.4~
cw
w

a  

 
The minimum number of revolutions an , which is necessary for the 

correction of the deviation of the semimajor axis a , should meet the 
constraint: 

 
.~a

a
n a

   (6-9) 
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The conditions of transfer to the given orbit can be found from the 
equation below. Each revolution contains two burns. The centers of the 
active intervals are situated on the apsidal line of the relative orbit: 

 

,22

,
2

sin4
2

sin4

21

21

wn
aw

wn
ew

c

c

  (6-10) 

 
where n = the number of revolutions on which the thrust engines work in 
the same fashion ( ea nnnn , ). The possible magnitudes of alteration 
of ea,  are defined more accurately in section 6.1.6. 

The values of 21 ,  can be found using Eq. 6-10: 
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  (6-11) 

 
If i  appears to be negative, the orientation of the thrust vector 

should correspond to the deceleration while performing the manoeuvre. 
If the condition for the transfer between the nonintersecting orbits is 

true: 
 

,

8
cos8

arcsin4
2

wn

aw
wn

ew
wn

aw

c

cc    (6-12) 

 
then the total delta-v expenditure for transfer with limited thrust is 
analogous to the expenditure of the impulsive solution and may be 
estimated as: 

 

.
2
a

V  

 

 EBSCOhost - printed on 2/13/2023 10:43 PM via . All use subject to https://www.ebsco.com/terms-of-use



Manoeuvring with Low-Thrust Engines 
 

 

229

The total delta-v expenditure for the transfer with limited thrust 
exceeds the expenditures of impulsive solutions in the case of transfers 
between intersecting orbits and transfers between nonintersecting orbits 
without fulfilling Eq. 6-12. These expenditures can be found by using the 
equation: 

 

.

8
cos8

arcsin4

wn

aw
wn

ew
w
nw

V
c

c

c
   (6-13) 

 
By increasing n, we can get closer to the impulse solution for the total 

delta-v point of view. 

6.1.2. Example 

It is necessary to determine the parameters for transfer between the 
orbits with the elements from table 2-1 for low-thrust engines. These 
initial conditions are analogous to the conditions in Example 2.1.5. 

 
Table 6-2 

 
Orbit elements Initial orbit Final orbit 

minH  km 180 340 
maxH  km 210 360 
prgu  deg 20 150 

 
It is important to know the spacecraft’s mass, kg 300m , and engine 

thrust, N 2.0P , in this problem. 
The centers of the thrust engine firing intervals 

cc 21 ,  are the 
locations of impulse application during an impulsive transfer (as evaluated 
in 2.1.5). The assessment of the minimum number of revolutions n for 
manoeuvring can be obtained from the second equation of Eq. 6-10. Only 
the assessment of the semimajor axis alteration will be used, as this 
alteration is bigger than the eccentricity alteration. 

We use the evident constraint that the angular interval of firing on a 
single revolution cannot exceed 2 : 
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.
4

2
221 w

aw
n

wn
aw cc  

 
Here, 2m/s 000667.0

m
P

w  = the acceleration caused by the thrust 

engines and 2

0

2
0 m/s 0.9

r
V

wc
 = the centripetal acceleration. We get n = 

25. We will add some spare revolutions to the final number of revolutions 
per manoeuvre in order to account for a possible pause between the 
manoeuvring revolutions and the inability to get the angles i  due to 
the discrepancy of the arcsine function argument and its range of 
definition. We thus assume n = 31.  

The angular duration of the thrust engine firing intervals can be 
evaluated by (6-11): 
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The calculation results are: ,624.1801c

 ,012.2261  

,m/s 92.69
1

c
t w

w
V  ,240.3602c

 ,069.662  

.m/s 44.20
2tV  

6.1.3. Thrust Vector Constant Orientation in the Inertial 
Coordinate Frame 

Let us consider the variant of the fixed thrust engine orientation in the 
inertial coordinate frame. In order to get closer to the impulsive solution, 
which is considered as the basis solution, the middle of the active interval 
should coincide with the impulse application point (in Fig. 6-2, the orbital 
arc AC also corresponds to the active interval and point B is the impulse 
application point). The thrust vector in the initial moment (point A) should 
be pointed in such a way that at the middle of the active interval (point B) 
it would be directed transversally. With these constraints met, the 
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alteration of the eccentricity vector will be in the same direction as in the 
impulsive case, but the magnitude of alteration itself will be smaller. The 
eccentricity alteration caused by the application of the dimensionless 
velocity V , which is equally distributed on the interval of the latitude 
argument , can be calculated with the help of the equation: 

 
2/

2/

),
2

sin
2
3()sinsincoscos2( Vd

V
e (6-14) 

 
where  = the angular magnitude of the active interval. According to 
Eq. 6-14, the eccentricity alteration is greater in comparison to the fixation 
of the orientation in the orbital coordinate frame. From table 6-3, one can 
see the decrease (in percent) of the eccentricity alteration in comparison to 
the impulsive case for the different values of the thrust engine firing 
angular duration. 

 
Table 6-3 

 
 deg 20 40 60 80 100 120 140 160 180 

e % 0.5 1.99 4.3 7.37 10.9 14.7 18.4 21.9 25.0 
 deg 200 220 240 260 280 300 320 340 360 

e  % 27.4 29.2 30.2 30.4 30.0 29.1 27.9 26.4 25.0 
 

Using Eq. 6-3, one can find the orbital eccentricity alteration for the 
interval of the thrust engine firing : 

 

.sin
22

3
cc w

w
w
w

e   (6-15) 

 
According to Eq. 6-15, the eccentricity vector alteration in the required 

direction is carried out during the whole revolution ( 2 ) with the 
fixed thrust vector orientation in the inertial coordinate frame. 

The maximum eccentricity alteration that can be gained after one 
revolution is: 

,3~
cw

w
e    (6-16) 
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The value will be 2 . 
The minimum number of revolutions en , needed for the correction of 

the eccentricity e , should meet the constraint: 
 

.~e

e
n e    (6-17) 

 
The semimajor axis alteration, caused by application of the relative 

velocity V , can be evaluated by: 
 

.2
sin

4cos2
2/

2/
Vd

V
a   (6-18) 

 
This equation is analogous to the eccentricity alteration equation for 

the fixed thrust engine orientation in the orbital coordinate frame.  
Using Eq. 6-3, one can get: 

 

.
2

sin4
cw
w

a    (6-19) 

 
The maximum semimajor axis alteration that can be gained after a 

single ignition is: 
 

,4*

cw
w

a    (6-20) 

 
The value will be  = . If the thrust vector orientation on the other 

half of the revolution is opposite, the sum of the semimajor axis alteration 
will be: 

 

.8~
cw

w
a     (6-21) 

 
The minimum number of revolutions na that are needed for the 

correction of the semimajor axis deviation a should meet the constraint: 
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.~a
a

n a
   (6-22) 

 
The transfer conditions for the given orbit can be found using the 

equation below. Each revolution contains two burns. The centers of the 
active intervals are situated on the apsidal line of the relative orbit and the 
thrust engine orientation is the opposite: 
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 (6-23) 

 
where n = the number of revolutions on which the thrust engine works in 
the same fashion ( ea nnnn , ). The values of 21 ,  can be 
numerically found from this equation system. 

6.1.4. Thrust Vector Optimal Orientation for Eccentricity 
Vector Alteration 

Let us determine the orientation of the thrust vector for the provision 
of the maximum change in eccentricity. We are only interested in the 
eccentricity here because we considered the semimajor axis alteration 
earlier—the thrust vector orientation must be transversal. 

The thrust vector orientation at this point of the orbit is determined by 
the angle , which counts from the perpendicular to the radius vector 

(Fig. 6-3). Then, after application of the impulse pV  (
0V

V
V p

p ) at 

the point  degrees far from the middle of the active interval (Fig. 6-3), 
the following alterations of the semimajor axis a and the eccentricity e (in 
the direction of point B) will occur: 

 

,sinsincoscos2)(
,sin,cos
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  (6-24) 

.cos2)( pV    (6-25) 
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According to Eq. 6-24, the maximum eccentricity alteration can be 
reached if: 

 
tg

2
1tg    (6-26) 

 
The same result can be obtained if one uses the required optimality 

conditions. The thrust vector orientation with 01  (Fig. 6-4), is 
determined by an equation that is similar to Eq. 6-26: 
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Fig. 6-4. Primer vector hodograph for k = 1, 1 = 0 

 
This thrust engine orientation, which corresponds to the primer vector 

hodograph in the form of an ellipse, meets all the optimality conditions. 
The ellipse is symmetrical relative to the axis . This form ensures 
maximum eccentricity alteration among all the optimal solutions. Let us 
remember that for the case of the optimal impulse transfers between the 
intersecting orbits, when the maximum eccentricity alteration is needed, 
we use the ellipse (with center in the coordinate frame origin) as the 
primer vector hodograph. The difference for the case of limited thrust lies 
in the fact that the primer vector hodograph determines the optimal 
orientation of the thrust engines not just in the two points where the ellipse 
and the unit circle osculate, but in all points of the ellipse outside the unit 
circle (Fig. 6-4). 

Hereafter, the thrust engine orientation determined by Eq. 6-26 will be 
termed “optimal by eccentricity”. 
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The equation for the eccentricity alteration in this point is given by: 
 

.cos31 2
pVe    (6-27) 

 
The alteration of the semimajor axis is calculated by: 
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a    (6-28) 

 

Remembering that ,d
w
w

d
V

V
c

p  the semimajor axis 

alteration caused by firings on the whole interval will be: 
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The elliptical integral of the second kind is the part of the equation for 

eccentricity alteration: 
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 (6-30) 

 
In tables 6-4 and 6-5, one can see decreases (percent) in the semimajor 

axis and the corresponding eccentricity alteration (obtained from eqs. 6-29 
and 6-30) in comparison to the impulse case for the different values of the 
angular duration of firing. 

 
 

Table 6-4 
 

deg 20 40 60 80 100 120 140 160 180 
a% 0 0.5 0.1 2.5 4.0 6.5 10.0 15.5 23.0 
deg 200 220 240 260 280 300 320 340 360 

a% 32.5 43.0 53.0 63.0 72.0 80.0 87.5 94.0 100.0 
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Table 6-5 
 

deg 20 40 60 80 100 120 140 160 180 
e% 0 1.5 3.5 6.0 9.0 12.5 16.0 19.5 23.0 
deg 200 220 240 260 280 300 320 340 360 

e% 25.5 27.7 28.2 28.5 28.0 27.0 25.5 24.2 23.0 

6.1.5. Comparison of the Effects Caused by Different Thrust 
Vector Orientations 

Figures 6-5 and 6-6 present graphs depicting the semimajor axis and 
eccentricity alteration plotted against the manoeuvre angular duration for 
the various types of thrust engine orientation. In the graphs, one can find 
the dependencies of the orbital orientation (solid line), the inertial 
orientation (dashed line), and the “optimal for eccentricity” orientation 
(dotted line). In order to remove the account of engine power and the 
orbital radius, the variables a

w
wc  and e

w
wc  are used instead of a  and 

e , which is why the magnitudes of the dimensionless semimajor axis 
and the eccentricity are greater than 1. In order to get the actual graphs for 

a specific problem, one should divide the values from these graphs by 
cw

w . 

As can be seen, the curves for the different types of orientation are 
close to each other for manoeuvre durations of less than or equal to 45 . 
The semimajor axis and eccentricity alterations are the same as the ones 
obtained with the equivalent impulse. This explains the effectiveness of 
the impulse solution for relatively small manoeuvre durations. 

 

 
Fig. 6-5. Effectiveness of  
semimajor axis correction 

 
Fig. 6-6. Effectiveness of  

eccentricity correction 
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It is important to note that the dependencies for the inertial orientation 
and “optimal by eccentricity” orientation are close to each other 
(especially for the eccentricity alteration). It can be seen in Fig. 6-6 that, 
starting from approximate 180 , the graphs of the inertial and the 
“optimal by the eccentricity” orientations go in parallel with good 
proximity to each other. This allows the use of the simpler but still 
effective inertial orientation instead of the challenging “optimal by 
eccentricity” orientation for cases of large eccentricity deviations. Due to 
the proximity of the eccentricity alteration for these types of orientation, 
one can use the approximate Eq. 6-31 (Baranov and Baranov 2010, 115-
116), rather than Eq. 6-30 for the “optimal by eccentricity” orientation. 

The error will not exceed 0.5 % for these cases: 
 

,),04.0sin
2
1

2
3(

cw
w

e  (6-31a) 

.,sin
2

54.1
cc w

w
w
w

e   (6-31b) 

6.1.6. Geometric Interpretation of Manoeuvres:  
Domains of Existence of the Observed Solutions 

The assessments of the domains of existence of the various solution 
types, used in the previous paragraphs of this chapter, are rather coarse 
and do not allow us to get the whole picture. It is preferable to specify the 
area boundaries in one dimension. Earlier, it was shown to be effective to 
use the plane yx ee ,  for the geometric interpretation of the manoeuvres. In 
this chapter, the ratio of the eccentricity alteration to the semimajor axis 
alteration is significant, not the direction of the eccentricity vector 
alteration (which is carried out along the apsidal line of the relative orbit). 
As such, it is necessary to use the coordinate frame, with the semimajor 
axis alteration marked on the abscissa axis and the eccentricity alteration 
marked on the ordinate axis. 

Let us consider the use of this plane for the impulse solution as an 
example. The positive transversal impulse tV  (vector OA corresponds 
to it in Fig. 6-7), which is applied at the relative orbit pericenter, causes 
the equal alteration of the orbital eccentricity and the semimajor axis tV2
. Vector OD corresponds to the negative impulse tV , which is applied at 
this point. Vector OB corresponds to the positive impulse, the moment of 
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application of which is half a revolution distant. Vector OC corresponds to 
the negative impulse, which is applied half a revolution later. 
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Fig. 6-7. Semimajor axis  
and eccentricity change by 

impulses 

Fig. 6-8. Semimajor axis  
and eccentricity change by  

low-thrust engines 
 
Let us consider the transfer to the orbit with deviations between the 

parameters of the initial and target orbits MM ea ,  (point M in Fig. 6-7) 
with the help of two transversal impulses ,,

21 tt VV  which are applied on 
the apsidal line of the relative orbit (

2tV  is applied at the relative orbit’s 
apocenter) and, additionally, MM ea  (the transfer between the 
nonintersecting orbits). The impulse magnitudes can be found from the 
equation system: 

 
,22

21 Mtt aVV  
.22

21 Mtt eVV  
 

The curved line OLM corresponds to this transfer on plane ea , . Both 
impulses are positive. 

The curved line OKN (the second impulse is negative) corresponds to 
the transfer between the intersecting orbits (for example, to point N (

NN ea )). 
It is possible to gain the limited eccentricity and semimajor axis 

alterations on the revolution when using the manoeuvres carried out by 
engines with limited steady thrust. Line OP P (Fig. 6-8) corresponds to the 
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orbital element alteration with the fixed transversal orientation of the 
thrust engines in the orbital coordinate frame. Point P  is reached after the 
thrust engine fires for half a revolution, while point P is reached after the 
thrust engine fires for a whole revolution. The equation depicting the 
curve OP P can be found using eqs. 6-4 and 6-8: 
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Line OKS corresponds to a constant orientation in the inertial 

coordinate frame. The equation depicting the curve OKS is derived from 
eqs. 6-15 and 6-19: 
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Line OS S corresponds to the close-to-previous orientation, ensuring 

maximum eccentricity alteration. Points S  and K correspond to the orbital 
element change for a half-revolution manoeuvre duration. Similarly, the 
analogous dependencies are presented in the other quadrants (Baranov, 
Baranov, and Razoumny 2010). 

In the second, third, and fourth quadrants one can find the signs “+”, “-
”, and “180º”. The plus sign shows the thrust orientation for the 
acceleration, the minus sign indicates braking, and the “180º” sign 
indicates that the influence of the manoeuvre, which has a middle 180º 
distant from the middle of the active interval (the influence of which is 
depicted in the first quadrant), is shown in the given quadrant. 

The orbital orientation of the thrust engines is optimal for reaching the 
points from the area, restricted with the line OP P and the abscissa axis 
(area I). The two manoeuvres should be performed on a single revolution. 
The middle parts of the manoeuvres are 180º distant from each other and 
the thrust engine orientation is the same for both manoeuvres. A part of 
line OP P corresponds to the first manoeuvre, while a part of line OP*P 
corresponds to the second manoeuvre. For example, the transfer to point 
M is carried out with the use of the trajectory OM M. The values of 

21 , , corresponding to the curves OM  and M M respectively, can 
be found using Eq. 6-11. 

The orientation of the thrust engines that ensures the maximum 
eccentricity alteration will be optimal if the transfer to the orbit (to which 
the point of the area, constrained by the ordinate axis and line OS S (area 
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II) corresponds, for example, point N) is needed. The constant orientation 
in the inertial coordinate frame is close to it from the point of view of the 
effectiveness of eccentricity correction, but it is a little bit less effective 
for the correction of the semimajor axis. The second fact is less important 
within the considered area and the “inertial” orientation is more preferable 
if simplicity of the orientation setting and maintenance is demanded. The 
trajectory ON N corresponds to the transfer to point N and the transfer is 
fulfilled with the help of two manoeuvres. A part of line OS S corresponds 
to the first manoeuvre, while a part of line OS*S corresponds to the second 
manoeuvre. The values 21 , , which correspond to the curves ON  
and N N respectively, can be found from Eq. 6-23 for the “inertial” 
orientation, or they can be found by using eqs. 6-29 and 6-31 for the 
“optimal by eccentricity” orientation. 

The orbital transfer, to which the point from area III corresponds, 
constrained by the lines OS S and OP P and the line that connects points S 
and P, can be carried out with the use of two manoeuvres on a revolution, 
the centers of which are 180º distant from each other. However, it is better 
to use the different types of thrust engine orientation for the fulfillment of 
these manoeuvres. The thrust vector orientation is fixed in the orbital 
coordinate frame for the application of the first manoeuvre and the thrust 
orientation is fixed in the inertial coordinate frame for the application of 
the other manoeuvre. The terms from eqs. 6-10 and 6-23 are included in 
the equations of the system for the parameter determination of such 
manoeuvres. 

In area III, it is possible to transfer to the required point with the use of 
the single optimal long-duration manoeuvre by changing angle  during 
the manoeuvre. Manoeuvres of this type are considered in the next 
paragraph. 

6.1.7. Existence Domains of Nondegenerate Solutions 
 in the Case of Optimal Thrust Orientation 

Cases in which the primer vector hodograph degenerates to a point and 
when it is in an ellipse (symmetrical to the  axis) have been considered. 
Let us investigate the optimal solutions that correspond to the other ellipse 
locations. The ellipses, increasing in size, which osculate with the unit 
circle and are located to its right, are shown in Fig. 6-9. 

 

 EBSCOhost - printed on 2/13/2023 10:43 PM via . All use subject to https://www.ebsco.com/terms-of-use



Manoeuvring with Low-Thrust Engines 
 

 

241

(a)

 

(b)

 

(c)

 

Fig. 6-9. Outer osculation of primer vector hodograph and unit circle 
 
With the increasing size of the ellipse, the ellipse variants (a, b, and c 

for example) in Fig. 6-9, corresponding to the curves on plane ea,  
(also designated a, b, c in Fig. 6-11), move away bit by bit from the curve 
OP P and get closer to the curve OL L, which restrains the area 
(designated IV) of this type of solutions existence. 

Similarly, with the increase in the dimensions of the ellipse, which has 
an inner osculation with the unit circle, variants (d, e, and f in Fig. 6-10, 
corresponding to the curves designated d, e, and f in Fig. 6-11) move away 
bit by bit from the curve OS S and fill the rest of area III. 

 

(d)

 

(e)

 

(f)

 
Fig. 6-10. Primer vector hodograph and unit circle inner osculation  

 
The existence domain of this type of solution is designated by the 

number V. The lines, which correspond to ellipses with big dimensions, 
also move towards the curve OL L, but the upwards curve, connected to 
the presence of the interval where 0, remains. The less that the part of 
the ellipse, belonging to the left semiplane, the closer the curved line to 
the curve OL L and the smaller the upwards curve is. 
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Fig. 6-11. The existence domains of different types of solutions  

 
The curve OL L, which divides the areas IV and V, can be evaluated 

approximately using the function (Baranov, Baranov, de Prado and 
Razumny 2011, 269-279): 

 
,67.90 ,068.1035.0003.0 23 aaaae  (6-32) 

 
The SEP curve is determined by the equations: 
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In order to use these results for the specific problem, one should switch 

from the true dimensionless deviations ea ,  to the variables ,, ea  
which are used in these equations: 
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The information concerning the boundary SEP is very important, as it 
allows the rather accurate assessment of the possibility of transferring 
between orbits with the use of a single manoeuvre per revolution (or 
whatever number of revolutions n will be necessary for the manoeuvring) 
without the direct calculation of the manoeuvre parameters. 

Corresponding to the arbitrary values 1,k , the curves on plane ea ,  
stay within the boundary limits of area III. This reminds us of the fact that 
with the use of the optimal thrust vector orientation, the points of areas I 
and II can be reached with only two burns. 

6.1.8. Parameter Determination of the Optimal Nondegenerate 
Solution 

Let us consider the manoeuvre parameters (duration and law of change 
for angle ) that ensure the given alterations of the orbital elements 0a  
and 0e . 

It follows from the necessary optimality conditions that 
 

,
)cos(2

sin
1 k
k

tg   (6-34) 

 
The cosine and the sine of angle  can be found by: 
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Using eqs. 6-35, 6-24, and 6-25 we obtain the following 

equations for the alterations of the semimajor axis and eccentricity: 
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The following algorithm for the determination of 1,k  and  is 

proposed (Baranov, Baranov, de Prado and Razumny 2011, 269-279). It is 
determined to which area the point ( 00 , ea ) belongs. If it is area I, then 

21 ,  can be found from Eq. 6-11. If it is area II, then 21 ,  can 
be found from Eq. 6-23, which is used in the case of the fixed thrust vector 
orientation in the inertial coordinate frame, or from eqs. 6-29 and 6-31 in 
the case of the optimal by eccentricity orientation. We are interested in the 
case when the point ( 00 , ea ) belongs to the areas IV or V. 

The search for a solution consists of the successive repetition of the 
three stages. In the first stage, a point from the dimension 1,k  is taken, 
which sets the location of the ellipse and the law of change for angle . 
This point can be rather accurately specified, as areas IV and V are 
preliminarily divided into known subareas. In the next stage,  is 
determined, which corresponds to the part of the ellipse outside the unit 
circle (Fig. 6-12). The ellipse now intersects the circle because the transfer 
to the inner point of areas IV and V is considered and, hence, the 
manoeuvring is fulfilled for the part of the revolution that corresponds to 
the part of the ellipse outside the circle. 

 

 
Fig. 6-12. Primer vector hodograph for points of area III 
 

The value found for  determines the limits of integration. At the 
third stage, the integrals 6-36 and 6-37 are calculated. The problem is 
solved if the determined values of cc ea ,  coincide with 00 , ea  with 
the desired accuracy. Otherwise, we return to the first stage, i.e. to a new 
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point from area 1,k  is taken. In the vicinity of the optimal solution, the 
steps of enumeration in area 1,k  and the integration step are decreased in 
order to provide the necessary accuracy for the problem’s solution. 

The problem of the deviations from area III can be solved with the use 
of two manoeuvres and the alteration of the thrust vector orientation, but 
the benefit of decreasing the number of manoeuvres will disappear and it 
is also a lot easier to realize the fixed orientation of the thrust engines (the 
alternative solution). 

The algorithm used to determine the parameters of the manoeuvre with 
the alteration to the thrust vector orientation described in this paragraph 
can also be used on the active interval of the upper stage for the 
determination of its thrust vector. 

6.1.9. Number of Revolutions with Activated Propulsion 

The minimum number of revolutions minn  needed for the flyby to a 
given orbit, can be found with the help of Eq. 6-33, to determine the outer 
boundary of area III. The deviations min0 / na  and min0 / ne  (point E 
corresponds to them in Fig. 6-13) should belong to area III. By increasing 
the number of revolutions n on which the manoeuvring is fulfilled and, 
hence, by shifting point E deeper into area OSP, the fuel expenditures for 
the flyby can be reduced. 
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Fig. 6-13. Semimajor axis and eccentricity alteration by  

different types of thrust engine orientation 
 

As can be seen in Fig. 6-13, with a manoeuvre duration of less than or 
approximately equal to 45º by the latitude argument, the lines, which 
correspond to all three considered thrust engine orientations, practically 
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coincide, and the total delta-v expenditure coincides with the expenditures 
in the impulsive case. This is one of the explanations for the good 
convergence of the iterative procedure with the impulse manoeuvre 
parameter determination in the impulsive statement and the manoeuvre 
duration that does not exceed 45º during manoeuvre modeling. 

In Fig. 6-13, area OKL correspond to the orbital elements that can be 
obtained with the help of these manoeuvres. Thus, it is not necessary to 
increase the number of flyby revolutions and decrease the manoeuvre 
duration to less than one-eighth of a revolution. The discrepancy in the 
impulsive solution for eccentricity alteration will be less than 10 % for all 
considered thrust engine orientations for a manoeuvre duration of less than 
or equal to 90º. The discrepancy in the semimajor axis alteration from the 
impulsive case with the “optimal by eccentricity” orientation will be less 
than 5 %, or less than 10 % for the inertial orientation. Thus, manoeuvres 
of durations ranging from 45º to 90º are effective enough. In Fig. 6-13, 
area KLL K  corresponds to the orbital elements, which can be obtained 
with the help of these manoeuvres. If the duration of the manoeuvre is half 
of a revolution, the discrepancy from the impulsive case for the 
eccentricity and the semimajor axis alteration (except for the orbital 
orientation) will be greater than 20 %. It is necessary to increase the 
number of manoeuvring intervals in order to transfer the goal-point from 
area K L SP to area OK L . In the general case, the choice of the number of 
revolutions n on which the spacecraft manoeuvres should allow us to find 
a compromise between the desire to reduce the time of the transfer to the 
given orbit (the decrease in n) and the desire to decrease the total delta-v 
expenditure (the increase in n). 

6.1.10. Distribution of Orbit Element Correction within Active 
Revolutions 

As discussed in the previous sections, equal alterations of the 
semimajor axis and the eccentricity should be performed on each n 
revolutions at which the thrust engines operate. The results in tables 6-1 to 
6-4 show that manoeuvre effectiveness decreases with an increase in their 
angular duration in a nonlinear fashion. This means that we can suppose 
that the angular manoeuvre duration on each revolution should be equal. 
Thus, the right terms in eqs. 6-10 and 6-23 for different manoeuvre 
revolutions should be equal to each other. 

Let us suppose that the number of revolutions n on which firing should 
occur is determined. Then, the average semimajor axis and eccentricity 
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alterations should be 
n
e

e
n
a

a nn , . Remembering that the angular 

duration of the manoeuvres on each revolution should be equal and using 
Eq. 6-6 one can obtain the alteration of the semimajor axis fa  for the 
last manoeuvring revolution: 

 

,
w

aw

w

aw fcnc fm    (6-38) 

 
where fm cc ww ,  = the centripetal accelerations for the middle and final 

manoeuvring revolutions, respectively. Let 0rrr f  be the difference 
between the average radii of the set and the initial orbits (the average 
radius is the radius of the circular orbit with the same period as the 
considered orbit). 

Then  
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0 fm rrr . Neglecting the values of the second order of 

smallness, one obtains: 
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The necessary semimajor axis alteration on the manoeuvring 

revolution with the number i can be determined by: 
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n
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r
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m
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The analogous equation can be obtained for the eccentricity alteration.  
The supposition about the equal angular duration of the manoeuvres is 

simple enough and, at the same time, more accurate than the supposition 
about the equal alteration of the orbital elements on each manoeuvring 
revolution. 
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 Egorov, Grigoriev, and Ryzhov (2005) determined, with the use of the 
numerical method, the linear dependency of the duration (by the angular 
duration) of the active intervals during the flybys between the distantly 
located circular orbits. 

6.2. Coplanar Low-Thrust Rendezvous 

6.2.1. Rendezvous in Coplanar Nonintersecting Orbits 

The apsidal solutions from the previous paragraph can be used for the 
solution of the rendezvous problem on coplanar orbits. It is supposed that 
the thrust engines allow the performance of all necessary manoeuvring on 
two intervals, the magnitudes of which gradually become smaller than the 
distances between them. Initially, it is supposed that the two manoeuvres 
are performed on each manoeuvring interval. 
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Fig. 6-14. Rendezvous on coplanar nonintersecting orbits 
 

Line segments AB, BC, CD, and DK (Fig. 6-14) contingently 
correspond to the four manoeuvres (it is not correct to say that line 
segment tV2  corresponds exactly to the manoeuvre). Point C corresponds 
to the drift orbit eccentricity vector. 

Each manoeuvre of the first manoeuvring interval can be divided into 
1m  equal parts, applied on different revolutions. Similarly, the 

manoeuvres of the second manoeuvring interval can be divided into 2m  

equal parts. 
In the impulsive case, if all solutions (for these solutions, the points of 

line segment EL (Fig. 6-14) correspond to the drift orbital eccentricity 
vectors) have equal total delta-v expenditures; then, for the case of the 
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limited thrust solution, the total delta-v may depend on the location of 
point C on line segment EL. Let x be the distance from point A to point C 
(AC = x), then xeCK . The solution of the rendezvous problem (for 
this solution, point C corresponds to the drift orbit eccentricity vector) 
may be represented as the solution and involves the combination of the 
two transfer problems on each of the manoeuvring intervals with the 
alteration of the orbital elements ,21 ItVa  xe1  and 

,22 IItVa  ,2 xee  respectively, where 
ItV  and

IItV , which 
can be found by the equations: 
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and 10  = is the first permitted arbitrary point for the manoeuvring interval 

(the radii of the circles are 
ItVR 21  and

IItVR 22 ). 

Since ea  for the nonintersecting orbits, then it is necessary to 
choose the transversal thrust engine orientation in the orbital coordinate 
frame for the fulfillment of the manoeuvre. The maximum alteration of the 
orbital semimajor axis occurs in this case. 

Using Eq. 6-10, we can write: 
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where 1m  and 2m  = the numbers of parts for the division of the 

transversal manoeuvring components of the first 
21

,
II tt VV  and the 

second 
21

,
IIII tt VV  manoeuvring intervals. 

With the help of Eq. 6-11, the magnitudes of the manoeuvres 

21
,

II tt VV , 
21

,
IIII tt VV  can be found from the following equation 

system: 
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 (6-42) 

 
If a  gradually exceeds e , and the signs of 1a  and 2a  coincide 

(in the impulse case, the AS solution type is optimal), then the total delta-v 
of the manoeuvres V  can be found by: 

 

.
2
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2121 21

a
VVmVVmV

IIIIII tttt (6-43) 

 
If the signs of 1a  and 2a  do not coincide (in the impulse case the 

CNS solution type is optimal) and 21 aa  gradually exceeds e , 

then the manoeuvres V  can be found by: 
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.
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21 2121
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IIIIII tttt (6-44) 

 
The same solution can be used for intersecting orbits when the CNS 

type solution will be optimal in the impulsive case. 
Equations 6-43 and 6-44 can be used when the point corresponds to the 

drift orbit eccentricity vector. This point is close to the middle of line 
segment EL. In those cases, when a  is bigger than e , but their values 
are close, and for the points that are close to the boundaries of line 
segment EL, the total delta-v of the manoeuvres will be higher due to the 
bigger expenditures on the alteration of eccentricity. 

6.2.2. Rendezvous in Coplanar Intersecting Orbits 

The variant when the CNS type solution is optimal in the impulsive 
case (the circles, which have the radii 1R  and 2R , intersect) was 
considered earlier. Let us consider the variant when the CAS type solution 
will be optimal in the impulse case (the circles, which have the radii 1R  
and 2R , do not intersect).  

In the impulse case, all solutions of the rendezvous problems on the 
coplanar intersecting orbits (for these solutions the points of line segment 
EL correspond to the drift orbit eccentricity vector in Fig. 6-15), have 
equal total delta-v expenditures. In the case of limited thrust, the total 
delta-v of the solution depends on the location of point C on line segment 
EL. As for the rendezvous problem on nonintersecting orbits, we denote x 
as the distance from point A to point C (AC = x), such that xeCK . 
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Fig. 6-15. Rendezvous on coplanar intersecting orbits 

 
The rendezvous problem solution (in this solution, point C corresponds 

to the drift orbit eccentricity vector) presented here also involves the 
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combination of the two solutions of the transfer problems with the 
alteration of the orbital elements 

ItVa 21 , xe1  and 

IItVa 22 , xee2 , respectively, where 
ItV  and 

IItV  can be 
evaluated by eqs. 6-39 and 6-40. Let us suppose that the fixed transversal 
orientation of the thrust engines in the orbital coordinate frame is used. 
Since the eccentricity correction is crucial for the intersecting orbits, by 
using Eq. 6-13, one can obtain the total delta-v value of the apsidal 
solution of the rendezvous problem: 

 

),arcsin(4arcsin4
22121 xkek

w
w

xk
w
w

VVV
cc

(6-45) 

where 1V  and 2V  = the total delta-v expenditures of the transfer 
problem solution on the first and second manoeuvring intervals, 
respectively: 

 

,
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,
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cw  = the centripetal acceleration of the support circular orbit and w is the 

acceleration caused by the thrust engine. 
The minimum V  is obtained for the value: 

 

.
22 2

2
2
1

2
1

2
2

1
ekk

kke
ex    (6-48) 

 
With the knowledge of 1e  and 2e , and the help of Eq. 6-11, one 

can obtain the impulse magnitudes on the first and second manoeuvring 
intervals. 

Similarly, the solution can be obtained for the problem when different 
thrust engines are used on the first and second manoeuvring intervals or 
different sets of identical thrust engines are used. In this case, there will be 
different values of w for the first and second manoeuvring intervals, and 
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the optimal value of x will be determined from the solution of the second-
degree equation. 

After the solution of a relatively simple problem with the use of the 
fixed orientation in the orbital coordinate frame, one can assess the 
characteristics of the solution and, if considerable eccentricity alteration is 
needed and the duration of the manoeuvres exceeds 100º, a turn to the 
“optimal” orientation. In this case there will be a single dimension 
minimization by x, and for every fixed x the two equation sets (similar to 
Eq. 6-38) will be solved numerically. 

6.2.3. Rendezvous Achieved by Manoeuvring During Each 
Revolution 

In some cases, several dozens or even hundreds of revolutions are 
needed for a flyby to the vicinity of the target spacecraft and the 
manoeuvring scheme is not specified. The problem consists of the 
provision of a rendezvous with the spacecraft and the demand for reducing 
the rendezvous time without a considerable increase in fuel expenditure 
becomes important. In order to meet these constraints, the spacecraft 
should manoeuvre in a practically uniform fashion during the greater part 
of the transfer revolutions and, hence, there are not two apparent 
manoeuvring intervals, unlike the abovementioned cases. The following 
relatively simple and reliable algorithm for the solution of this problem 
can be proposed. 

The solution process starts with the determination of the minimum 
number of revolutions needed for the flyby to reach the target orbit. For 
this purpose, the transfer problem is solved with the help of one of the 
methods from section 6.1. The minimum number of revolutions n 
necessary for the optimal transfer to the target orbit is obtained as a result. 

After modeling the flyby with 2n calculated manoeuvres, one can 
discover that the spacecraft will be in the target orbit by the end of the 
flyby, but with an angular deviation along the orbit fu  because the 
rendezvous condition has not yet been used. Let us suppose that, in the 
initial moment of time, the active spacecraft is situated on a lower orbit in 
comparison to the target spacecraft orbit ( 0aa f , where 0, aa f  = the 
semimajor axes of the target spacecraft and the active spacecraft orbits, 
respectively). This is the most typical case, but if the opposite variant 
occurs ( 0aa f ), it is considered in a similar way. If 0aa f , then it is 
supposed that 0fu  is always the case (the target is located ahead of 
the active spacecraft). For example, if the latitude argument of the target 
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spacecraft is 210u , and the latitude argument of the active spacecraft is 

215u , then, in the estimated moment of the rendezvous, 355fu ; 
and vice versa, if 0aa f , then it is the case that 0fu  (the target 
spacecraft is behind the active spacecraft). Let us designate the phase 
deviation of the two spacecraft in the initial moment of time as 0u  and 
designate the phase deviation after the transfer manoeuvres on the last 
revolution of the flight as fu . If the phase deviation in the initial 
moment of time was fopt uuu 0  instead of 0u , then it would 
have been optimal; the initial phase deviation and the solution of transfer 
problem would have also been the solution of the rendezvous problem. 
Since 0u  differs from optu , it is necessary to add m revolutions to the 
number of total revolutions for the flyby in order to solve the rendezvous 
problem. These revolutions are situated at the beginning of the flyby, with 
no manoeuvring performed on them. Due to the presence of the difference 
in the periods 0PPP f  (here fP  = the target orbit period and 0P  = 
the initial orbit period), the active spacecraft will decrease the 
desynchronization of the angular locations along the orbit per one passive 
revolution by the magnitude 1u : 

 

.2
0

1 P
P

u    (6-49) 

 
The magnitude m should be greater than the integer part of the ratio 
fu  to 1u  by one: 

 

.1int
1u

u
m f

 

 
As such, due to the flight on the first passive revolutions, the active 

spacecraft will be a little ahead of the target spacecraft.  
In Fig. 6-16, point K corresponds to the location of the active 

spacecraft after the fulfillment of the transfer manoeuvres; point L 
corresponds to the location of the target spacecraft in this moment; the 
phase desynchronization is fu ; the alteration of the phase distance per 
passive revolution is 1u ; point K’ corresponds to the location of the 
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active spacecraft after the addition of m passive revolutions; and the new 
phase desynchronization after the addition of the passive revolutions is 

nfu .  

.
.....
*

*
L

K

1u

fu

K’

fnu

 
 

Fig. 6-16. Relative position of spacecraft in orbit 
 

In fact, the addition of the initial passive revolutions allows us to start 
the manoeuvres at the moment of approximately optimal phase 
desynchronization. However, since m is an integer, not all the 
desynchronization fu  can be eliminated solely by choosing this 
number. The value m is chosen from among the neighbouring values. The 
chosen value must ensure the transfer of the active spacecraft ahead of the 
target spacecraft. For the situation depicted in Fig. 6-16, m = 5. 

In order to eliminate 
nfu  (the rest of the angular desynchronization), 

one should move the part of the manoeuvre 
1t

V  from the last revolution 
to the last of the first m revolutions, and decrease the performance of the 
previous manoeuvre of magnitude 

LtV  by the magnitude 
1t

V  on the last 
revolution. All in all, the alteration to the orbital element will remain 
practically the same, but the angular position will change at the end of the 
flight duration due to the fact that the active spacecraft would fly n 
revolutions on a higher orbit. 

The necessary value of 
1t

V  can be found by the equation: 
 

.)1(6
1 nft uVn    (6-50) 

 
The error that occurs during the use of this simplified scheme of 

determination can be eliminated with the help of the iterative procedure. 
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On the next iteration, the additional substitution of the value 
1t

V  by 

value 
2tV , which allows us to eliminate the new phase deviation 

2nf
u , 

can be evaluated by using the analogous equation: 
 

).1(6/
22

nuV
nft    (6-51) 

  
After elimination of the phase deviation, the found solution is made 

more accurate with the help of the iterative procedure from Chapter 1 in 
order to fulfill the terminal conditions with the given tolerance. Each 
iteration of this outer iterative procedure contains the inner iterative 
procedure, ensuring the fulfillment of the phase condition with the given 
accuracy. 

6.2.4. Example 

Table 6-6 presents the initial conditions for the active spacecraft and 
the target spacecraft, located on a higher orbit. The mass of the active 
spacecraft is 300 kg and the thrust is 0.1 N. 
 

Table 6-6 
 

Orbital elements Initial orbit Target orbit 
a km 6,566 6,721 

E 0.0022845 0.00248787 
 deg 20.0 30.0 

u deg 60.0 5.0 
N rev 1 1 
Date 2014.06.25 2014.06.25 
Time 43,120.065 43,120.065 

 
For the solution of the transfer problem, the active spacecraft requires 

52 revolutions while the target spacecraft makes 50 revolutions in the 
same time. The two manoeuvres are performed on each of the 52 
revolutions. The thrust engine orientation is fixed by the transversal 
component in the orbital coordinate frame. The latitude argument of the 
middle of the first manoeuvre is 89.03º and the latitude argument of the 
middle of the second manoeuvre is 269.03º. The angular duration of the 
first manoeuvre is 246.14º, while the second manoeuvre has the duration 
of 102.11º. The transversal component of the first manoeuvre on the 
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revolution is 1.23 m/s, the transversal component of the second manoeuvre 
on the revolution is 0.51 m/s, and the total delta-v of all the manoeuvres is 
90.35 m/s. The phase miss with these manoeuvring parameters is 

133.334fu . In order to eliminate this miss, 27 passive revolutions are 
added at the start of the flyby. After this, the phase miss becomes

166.0
nf

u . In order to eliminate the remaining miss, the magnitude of 
the first manoeuvre on the last revolution of the flight is reduced by 0.016 
m/s, while the magnitude of the second manoeuvre on the last revolution 
is reduced by 0.0066 m/s. These parts of the manoeuvres are added on the 
28th revolution (the first manoeuvring revolution). After these 
adjustments, the phase miss practically becomes zero 

131028.8
nf

u  degrees. 

6.3. Noncoplanar Low-Thrust Transfer 

Two options are usually used for the change of the orbital plane 
orientation. The scheme with a spacecraft having two sets of engines (one 
set of engines is responsible for manoeuvres in the orbital plane; the other 
set of engines is responsible for the alteration of the orbital plane 
orientation) is widely used. The manoeuvres in the orbital plane and the 
orbital plane rotating manoeuvres are performed separately. This variant, 
which provides simple and reliable although not optimal control, is widely 
used in the control of geostationary spacecraft and satellite constellations 
etc. 

Optimal control can be realized for the spacecraft with the ability to set 
the orientation of the thrust vector in the required direction and changing 
the orientation according to the manoeuvre realization program. A rather 
sophisticated system for motion control around the center of mass is 
needed for this. However, one can use the close-to-optimal and easy-
realizable control process as depicted in the second part of this paragraph. 

6.3.1. Plane Orientation Alteration Manoeuvre 

Firstly, let us consider the first, simpler manoeuvring scheme. Since 
the in-plane manoeuvres and the orbital plane rotating manoeuvres are not 
connected to each other, they can be considered separately. 

The change in the orbital plane orientation, caused by the lateral 
velocity zV , can be evaluated by the equation: 
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i   (6-52) 

 
where  = the angular duration of the active interval and  = the angle 
between the middle of the active interval and the current point. The middle 
of the active interval is situated on the line of the orbital plane intersection 
(Fig. 6-17). 

 

z

y

x
i

zV

 
 

Fig. 6-17. Alteration of the orbital plane orientation 
 

Using the equation V
w

w c , we obtain: 

 

).
2

sin(2
cw

w
i    (6-53) 

 
This equation differs from eqs. 6-4 and 6-19 by the multiplier (2 

instead of 4, since the influence of the lateral component is 2 times less 
than the transversal one). Equation 6-4 depicts the alteration of 
eccentricity in the conditions of the orbital orientation of the thrust 
engines. Equation 6-19 depicts the alteration of the semimajor axis in the 
conditions of the inertial orientation of the thrust engines. This fact is very 
important and will be used multiple times. For example, one can 
determine the decrease (in percent) of the alteration of the angle between 
the orbits in comparison to the impulse case depending on the duration of 
the thrust engine firing interval in table 6-1. 
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It is easy to realize the presented manoeuvre because it is enough to 
maintain the orbital or its inertial orientation. The engine’s axis is directed 
along an axis that is perpendicular to the orbital plane and the middle of 
the thrust engine firing interval coincides with the point of the optimal 
impulse correction of the lateral deviation (which can be evaluated by Eq. 
1-14b). 

6.3.2. Simultaneous Changing of All Orbit Elements 

In order to obtain an optimal transfer between the noncoplanar orbits, 
it is necessary to combine the orbital plane orientation alteration with the 
corrections for the eccentricity vector and the semimajor axis. In the 
general case, the primer vector hodograph, which determines the optimal 
orientation of the thrust engines, will be an ellipse with the dimensions 

,, . It is difficult to discover and realize the optimal solution and we 
need to enable the rather complicated alteration of the thrust engine 
orientation during manoeuvre fulfillment. The control in the conditions of 
the fixed orientation in the orbital and/or the inertial coordinate frame is 
easy enough to realize. The problem solution will be searched for with this 
additional constraint. 

The impulse solution is taken as the basis (denoted as the basic 
solution), just as in the case of transfers between coplanar orbits. The 
solution with only transversal and lateral impulse components is chosen 
from the domain of two-impulse solutions for the problem of optimal 
transfer between near-circular noncoplanar orbits in Chapter 2. The angle 
of application of one of the impulses is enumerated in the given interval. 
The enumeration of the angle is carried out extremely thoroughly in the 
vicinity of the optimal impulse solution. Once the angle is fixed, the other 
manoeuvre parameters are determined unambiguously using eqs. 2-2a to 
2-2c, 2-14a, and 2-14b. This solution can be used for the arbitrary 
deviations of the orbital elements of the initial and given orbits. The rest of 
the solutions from Chapter 2 exist for their respective areas. 

Let us suppose that the basic solution consists of two impulses with the 
magnitudes 21, VV ; the two angles of the impulse application 1  and

2 ; and the components 
11

, zt VV  and 
22

, zt VV . The thrust engine 
orientation is adjusted by the angles i : 

 

. tg,tg
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The lateral component of the first impulse will alter the orbital plane 
orientation by ,sin 111 1

VVi z  and the transversal component will 
alter the eccentricity by 111 cos22

1
VVe t  and the semimajor axis 

by 111 cos22
1

VVa t . 
Let us consider the variant when the thrust engine maintains a constant 

orientation in the orbital coordinate frame during manoeuvre fulfillment. 
We suppose (as always) that the moment of the middle passage of the 
manoeuvre coincides with the moment of impulse application. The 
acceleration made by the thrust engines in the transversal direction is 

,coswwt  while the acceleration in the lateral direction is 
.sinwwl  

From the equation: 
 

)
2

sin(sin2sin 11
111 1

c
z w

w
VVi  (6-55) 

 
we can find the duration of the first manoeuvre 1 : 

 
.

2
arcsin2 1

1 w
Vwc    (6-56) 

 
The same value 1  can be obtained using the equation for 

eccentricity: 
 

),
2

sin(cos4cos22 11
111 1

c
t w

w
VVe  

.
2

arcsin2 1
1 w

Vwc  

 
Similarly, the duration of the second manoeuvre 2  can be found: 

 
.

2
arcsin2 2

2 w
Vwc  

 
Since each manoeuvre provides the required alteration of the orbital 

elements 11 , ie  and 22 , ie , the corresponding elements of the given 
orbit will be identical to the elements in the impulse case. Complexity 
arises due to the fact that the alteration of the semimajor axis will be 
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greater than necessary because the orbital orientation is more effectively 
altered than the eccentricity. 

Thus, after manoeuvre fulfillment, the deviations in the eccentricity 
vector and the planar orientation for the initial and given orbits will be 
eliminated, but the error in the adjustment of the required semimajor axis 
will remain. This error can be eliminated with the help of the iterative 
procedure presented in Baranov and Karatunov (2016, 284-295). 

Let us suppose that the initial deviation of the semimajor axis was 
00 aaa f  (for example, 00a ). This deviation 0a  and the 

deviations 00 ,,,
00

iee yx  have already been used for the 
determination of the manoeuvring parameters. The angle 0  between 
the line of the orbital plane intersection and the apsidal line of the relative 
orbit can be obtained using Eq. 1-14c. 

The new semimajor axis 1a  ( faa1 ) is formed after the realization of 
the estimated manoeuvres. On the next iteration, the deviations 

,101 aaaa f  00 ,,,
00

iee yx  will be used for the 
determination of the manoeuvring parameters; on the next, the following 
will be used ,212 aaaa f  etc. The process continues until the 
semimajor axis is formulated with the required accuracy. 

If, for example, the transfer between the nonintersecting orbits (
ea ) is considered, then such an iterative procedure will lead to a 

successive decrease in the semimajor axis of the ellipse in Fig. 2-2. Thus, 
the impulse magnitudes, which stand as a base for the solution with 
constant limited thrust, will decrease while the angle between them will 
increase. 

We will suppose now that the thrust maintains a constant orientation in 
the inertial coordinate frame during manoeuvre realization. 

Using Eq. 6-56, one can determine the manoeuvre duration, which will 
ensure the same orbital plane rotation as the basic impulse. Since the 
alteration of the semimajor axis in the inertial coordinate frame orientation 
is presented by the same equation as the eccentricity alteration in the 
orbital orientation, the found manoeuvre duration will ensure the 
necessary alteration of the semimajor axis. However, the eccentricity 
alteration will differ from the desired one. Since the basic impulses are not 
situated on the apsidal line of the relative orbit, the error will occur both in 
the magnitude and the orientation of the eccentricity vector. 

In order to form the given orbit, one would need to apply the iterative 
procedure, during which the projections of the eccentricity vector will 
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alter. The process of their alteration is analogous to the process of the 
semimajor alteration described earlier. 

As shown in the first paragraph of this chapter, sometimes, in order to 
obtain a close-to-optimal solution, it is necessary to use the fixed thrust 
engine orientation in the orbital coordinate frame for the first manoeuvre 
and the inertial coordinate frame for the second manoeuvre. In this case, 
for a manoeuvre performed in the orbital coordinate frame we will add the 
error in forming of the set semimajor axis, while for a manoeuvre 
performed in the inertial coordinate frame, we will add the error in 
forming the given eccentricity vector. Thus, in order to obtain the exact 
solution, it is necessary to use the iterative procedure, including both the 
eccentricity vector projections and the semimajor axis alterations. 

The solutions from this paragraph ensure we get the size and 
orientation of the desired orbit with the necessary accuracy. These results 
are close enough to the optimal solution, since the rotation of the initial 
orbital plane is combined with the alterations to its eccentricity vector and 
semimajor axis. In order to get the solution based on the exact equations of 
motion with the accountancy of the influence of the noncentral 
gravitational field and the atmosphere etc., it is necessary to use the 
iterative procedure from Chapter 1. Each iteration of the outer iterative 
procedure uses the inner iterative procedure from this paragraph, which 
allows us to find the approximate solution with the necessary accuracy. 

6.3.3. Example 

We determine the transfer parameters with the use of the low-thrust 
engine. Table 6-7 presents the parameters of the initial and target orbits. 
These parameters are identical to the parameters from Example 2.2.8. The 
mass of the spacecraft m = 300 kg and the engine thrust P = 0.2 N. 
 

Table 6-7 
 

Orbital elements Initial orbit Target orbit 
minH  km 180 340 
maxH  km 210 360 
prgu  deg 20 150 
i deg 51.7 51.69 

 deg 17.49 17.5 
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After assessing the required number of manoeuvring revolutions, 56 
revolutions was decided on. 

Due to the fact that the initial parameters for this example and 
Example 2.2.8 coincide, one can use the calculation results: 

 
,00345.0,00004.0,00344.0,02333.0 eeea yx  

,1240.38,0127.0,01.0,01.0 zui  
.8760.141180 zz u  

 
In determining the manoeuvre parameters, the calculated orbital 

element deviations are divided by the number of manoeuvring revolutions. 
The solution procedure consists of the enumeration of the first impulse 

application angles; the determination of the rest impulse solution 
parameters for each angle (the second angle and the impulse components); 
and the parameter determination of all long-duration manoeuvres with the 
help of the iterative procedure. A comparison of the solutions with the 
different values of the first angles can help to find the optimal solution. 
Such a solution was found for the angle 3.2061 . Table 6-8 presents 
the alterations of the solution parameters per iteration, which correspond to 
this angle. The second column presents the values of the second angles of 
the impulse solution (the middle part of the long-duration manoeuvre). The 
third and fourth columns present the angular durations of the manoeuvres (in 
degrees). The fifth column presents the values of the semimajor axes (in 
km), which are used in the calculations. The sixth column presents the error 
in the semimajor axis correction. The seventh, eighth, ninth, and tenth 
columns present the impulse components. The columns between the fifth to 
the tenth columns present the summed values for all the manoeuvring 
revolutions. This allows us, for example, to control the total miss in forming 
the semimajor axis. It can be seen that the required value of the semimajor 
axis is formed with an acceptably high level of accuracy. 

 
Table 6-8  

 2  1  2  a  a  1t
V  

2tV  
1zV  

2zV  
1 35.1 105.2 76.26 155.00 -18.86 50.88 39.47 0.59 2.30 
2 36.5 90.16 64.28 136.13 7.04 45.35 34.01 0.27 1.98 
3 35.9 95.53 68.65 143.17 -2.28 47.41 36.05 0.39 2.10 
4 36.1 93.76 67.22 140.89 0.78 46.74 35.39 0.35 2.06 
5 36.1 94.36 67.71 141.67 -0.26 46.97 35.61 0.36 2.07 
6 36.1 94.16 67.54 141.41 0.09 46.90 35.54 0.36 2.07 
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6.3.4. Microsatellite Transfer to the Final Sun-Synchronous 
Orbit 

The microsatellite transfer problem is considered here as an example. 
The spacecraft is transferred from the deployment orbit to the operational 
sun-synchronous orbit with an altitude of 491 km. Due to the fulfillment 
of different technological operations, it is possible to carry out the 
manoeuvres from the 50th revolution onwards only. In order to reduce the 
influence of error in the orbital determination, which was carried before 
the start of manoeuvres, and the influence of the error connected to the 
realization of the estimated manoeuvres, the required alteration of the 
orbital elements was divided according to the proportions 0.8:0.2 between 
the first and second manoeuvring intervals. The first interval starts on the 
50th revolution and the second manoeuvring interval starts on the 85th 
revolution. The shaped orbit was controlled in the ascending node for the 
93 revolutions. Updating the orbit after the fulfillment of the first interval 
manoeuvre and subsequent recalculation of the second interval 
manoeuvring parameters help to gradually increase the accuracy of 
shaping the given orbit. 

The relatively small flight duration (43 revolutions) between the start 
of the first manoeuvring interval and the checkpoint, with sufficiently high 
altitudes of the initial and target orbits, allow us to use the iterative 
procedure for the problem solution from Chapter 1. The manoeuvring 
parameters were determined with the help of the simplest motion model 
(the central gravitational field and the linearized motion equations) using 
the algorithm from 6.3.2. The orientation of the thrust engine was fixed in 
the orbital coordinate frame. The influence of the gravity field 8*8 and the 
atmosphere dynamic model were used during the prognosis. 

Tables presenting the initial data and the determination results can be 
found below. 
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Table 6-9 
 

Orbital elements Initial orbit Target orbit 
minH  km 418.330 511.000 
maxH  km 420.355 511.100 
prgu  deg 218.918 0.134000 
i deg 97.5940 97.5440 

 deg 11.1200 17.1900 
revN  1.00000 1.00000 

latu  deg 93.7500 0.100000 
S  0.783330E-020.671130E-02

T s 448.28006 966.07807 
Data 2012.04.25 2012.05.01 
Time 43,120.065 42,118.065 

 
Table 6-9 presents the elements of the initial and target orbits, 

including: the minimum and maximum orbital altitudes; the pericenter 
argument; the inclination and RAAN; the revolution number; the latitude 
argument; the ballistic coefficient; and the date and time of the initial 
conditions. 

Table 6-10 presents the characteristics of a small spacecraft and its 
thrust engine, including: thrust N; the specific impulse; the small 
spacecraft’s mass in kg; the minimum time between manoeuvres s; and the 
minimum and maximum manoeuvre durations s. 
 

Table 6-10 
 

Thrust Specific impulse Weight T  minT  maxT  
0.20 2,060.0 300.0 600.0 0.25 3,600.0 

 
The first number in table 6-11 is the number of revolutions reached by 

which the given orbit must be shaped. The next two numbers are the 
revolution numbers, which determine the start of the first and second 
manoeuvring intervals. The fourth numbers shows the quantity of 
revolutions prohibited for the manoeuvring, the next two numbers are the 
numbers of these revolutions. The orbital parameters and the magnitudes 
of the remaining manoeuvres can be recalculated on these prohibited 
revolutions. 
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Table 6-11 
 

Nf N1 N2 N N11 N21 
93.0 50.0 85.0 2.0 55.0 91.0 

 
Table 6-12 presents the accuracies of the target orbital element, 

adjusting: the eccentricity vector projections; the semimajor axis in km; 
the time in seconds; the inclination in degrees; and the RAAN in degrees. 
If the corresponding number equals 0, this element is not corrected. The 
second line of the table presents the deviations between the final and the 
given target orbit. 

 
Table 6-12 

 
ex ey a T i  

0.000250 0.000250 0.010000 0.000000 0.000500 0.000000 
-0.000002 0.000000 -0.004580 10.825450 0.000000 -0.068249 

 
Table 6-13 presents the impulse solution parameters, which are used 

for the quality assessment of the obtained solution with low thrust. The 
total delta-v impulse, the sums of the transversal components, and the 
lateral components and angles, which determine the moments of the 
optimal eccentricity vector correction and alteration of the orbital plane 
orientation, are shown. These five parameters help to understand the 
problem physics.  

 
Table 6-13 

 
dVimp dVinpln dVoutpl UEopt UZopt 
41.53 41.02 6.51 263.2 0.0 

 
For the sake of comparison, table 6-14 gives the total delta-v impulse 

and the summed manoeuvring impulse for the “separate” correction 
scheme. In this scheme, the manoeuvres for the alteration of the orbital 
elements in the plane and manoeuvres for the orbital plane rotation are 
performed separately. The sum impulses for these manoeuvres can be 
found in the second and third columns of the table, respectively. The total 
number of manoeuvres required and the number of revolutions on which 
they are performed are listed further. The separate manoeuvring scheme is 
widely used today for the manoeuvring of small spacecraft with low 
thrust. 
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Table 6-14 
 

dVsp dVinpln dVoutpl Nman Nrev 
47.56 41.02 6.55 42 14 

 
Table 6-15 presents the parameters of the basic solution, including: the 

total delta-v impulse; the sums of the transversal and lateral components; 
the total number of manoeuvres; and the number of iterations needed for 
shaping the given orbit with the required accuracy. 

 
Table 6-15 

 
dV dVinpln dVoutpl Nman Niter 

42.30 41.02 7.71 38 6 
 

Table 6-16 presents analogous data about manoeuvres on the first and 
second manoeuvring intervals. 

 
Table 6-16 

 
dV dVinpln dVout Nman Rt 

33.60 33.03 6.18 30 0.8 
8.70 8.57 1.53 8 0.2 

 
Table 6-17 presents the number of each manoeuvre; the number of 

revolutions; and the latitude arguments of the start and end of the current 
manoeuvre, as well as the yaw and pitch, setting the orientation of the 
thrust vector and the magnitude of the equivalent impulse. 

Table 6-17 
 

Nman REV_bg U_bg REV_fn U_fn Yaw Pitch dVi 
1 50 138.55 50 248.05 10.50 0.00 1.162 
2 50 295.45 51 36.99 -10.69 0.00 1.078 

… … … … … … … … 
29 65 138.55 65 248.05 10.50 0.00 1.162 
30 65 295.45 66 36.99 -10.69 0.00 1.078 
31 85 139.24 85 245.61 10.21 0.00 1.128 
32 85 297.16 86 36.13 -10.02 0.00 1.048 
… … … … … … … … 
37 88 139.24 88 245.61 10.21 0.00 1.128 
38 88 297.16 89 36.13 -10.02 0.00 1.048 

 EBSCOhost - printed on 2/13/2023 10:43 PM via . All use subject to https://www.ebsco.com/terms-of-use



Chapter Six 
 

 

268

Table 6-18 presents information for each manoeuvre, including: the 
date and time of the start and end; the manoeuvre duration in minutes; and 
the small spacecraft’s mass after the manoeuvre. 

It can be noted that the total delta-v expenditures for the impulse and 
low-thrust solutions are practically identical, indicating the high quality of 
the solution accounting for the thrust engine firing duration. The total 
delta-v is considerably higher for the traditional “separate” solution. 

 
Table 6-18 

 
Manoeuvre Date_bg Time_bg Date_fn Time_fn dT Mass 

1 2012.04.28 85,324.5 2012.04.28 92,147.2 28.38 299.83 
2 2012.04.28 93,407.0 2012.04.28 100,028.3 26.35 299.68 

… … … … … … … 
29 2012.04.29 82,041.1 2012.04.29 84,922.5 28.69 295.35 
30 2012.04.29 90,149.1 2012.04.29 92,828.6 26.66 295.19 
31 2012.04.30 154,954.8 2012.04.30 161,748.2 27.89 295.03 
32 2012.04.30 163,120.9 2012.04.30 165,721.3 26.01 294.88 
… … … … … … … 
37 2012.04.30 203,340.2 2012.04.30 210,137.6 27.96 294.09 
38 2012.04.30 211,511.8 2012.04.30 214,116.1 26.07 293.93 
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CHAPTER SEVEN 

SATELLITE CONSTELLATION AND FORMATION 
FLYING DEPLOYMENT 

 
 
 
The algorithms presented in the previous chapters can be used for the 
determination of satellite manoeuvring parameters for satellites in 
constellations. However, the manoeuvres of such satellites, in certain 
cases, have peculiarities that need to be accounted for. 

Despite the variety of satellite constellations, two types of problems for 
optimal manoeuvring need to be solved. These are: how to deploy the 
satellite constellation with the desired configuration; and how to maintain 
this configuration. 

The satellite constellation configuration maintenance problem will be 
considered in the next chapter. The problem of satellite constellation 
initialization, which is similar to the classical rendezvous problem, is 
considered in this chapter. Each satellite is considered separately in terms 
of how it needs to move to a set position in the target orbit for a fixed time 
duration. Unlike the classical rendezvous problem, the satellite’s transfer 
time to a fixed orbital point is not strictly limited and can be chosen from 
across a considerably wide range. The problem becomes more 
complicated if the satellite is required to be transferred to an orbit with a 
RAAN (right ascension of ascending node) that differs by several or even 
dozens of degrees from the initial orbital RAAN. 

7.1. Changing a Spacecraft’s Position in a Constellation 
Operating in Circular Orbits 

Here, a satellite constellation is considered with the satellites situated 
on several circular orbits that have equal radii and inclinations, but differ 
in terms of their RAANs. The major part of real functioning satellite 
constellations belong to this type, including the “Global Navigation 
Satellite System (GLONASS)”, “Global Positioning System (GPS)”, and 
“Iridium”. The conclusions about the optimal satellite transfer strategy 
from one system position to another, which will be examined further, are 
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general in form and may be implemented in every satellite constellation of 
this type. 

Let us suppose that there is a spare satellite in one of the planes. This 
satellite should be placed in a vacant position in its orbit, in an orbit that 
has a different RAAN, or designated as the service satellite situated in this 
position. Let us consider the different variants of transferring a satellite to 
a new position in order to select the optimal manoeuvring scheme with 
simultaneous fulfillment of the following contradictory criteria: the flyby 
time to a new position, which needs to be reduced, and the minimization 
of V expenditure, which increases with a decrease in flyby time. 

7.1.1. Positional Change in Orbit 

First, let us consider the transfer of a satellite to another location in the 
same orbit, but u degrees distant from the initial one ( u 1800, u>0, if 
the new location is situated ahead of the initial one). Hereafter, the angle 

u will be measured in fractions of a revolution; its maximum value 
cannot exceed 0.5. 

It is supposed that the transfer is fulfilled at N revolutions of the target 
point flight. The number of flyby revolutions is chosen so that the satellite 
would not move much away from the initial orbit. The variant of a 
sizeable shift from the initial orbit and the rapid return to it is considered 
in the work of G. G. Raykunov (Raykunov, 2002). 

Using Eq. 3-1d, one can obtain the transversal impulse component Vt, 
which is necessary for the required change in the orbital period: 

 

,
3 0V

N
u

Vt     (7-1) 

where 
a

V0  = the satellite’s velocity of motion along a circular orbit 

of radius a. The moment of impulse application is arbitrary. 
An impulse of the same magnitude and opposite direction is applied on 

the final revolution at the apocenter (if 0u ) or at the pericenter (in the 
opposite case) in order to return to the circular orbit. Thus, the total delta-v 
expenditure V  will be: 

 

.
3

2
0V

N

u
V     (7-2) 

 

 EBSCOhost - printed on 2/13/2023 10:43 PM via . All use subject to https://www.ebsco.com/terms-of-use



Satellite Constellation and Formation Flying Deployment 
 

 

271

The total delta-v expenditure is considerable for the small duration of 
the satellite’s transfer to the desired point and the number of flyby 
revolutions N will increase with its decrease. It would appear that zero 
expenditure could be obtained with a further increase of N, but this is not 
the case. The orbital semimajor axis is changed by the transfer to a new 
position and, thus, a deviation between the RAANs  occurs thanks to 
different orbital evolutions under the influence of a noncentral 
gravitational field. The known equation for the alteration of the RAAN per 
revolution  due to the influence of the second member of the 
expansion of the gravitational field potential in series by the spherical 
functions of the geocentric latitude is used for the calculation of this 
deviation: 

 

,cos2
2 i

p
   (7-3) 

 
where i = the orbital inclination, p = the focal parameter (p = a for circular 
orbits), ,/skm 10634.2 2510  and 235 /skm 10986028.3M  (M 
= the mass of the planet and  = the gravitational constant). In order to 
assess , we will name its values for the several groups of circular orbits 
with different altitudes above the Earth’s surface: h = 330 km: 

deg cos521.0 i ; h = 1,400 km: deg cos394.0 i ; and h = 20,000 
km: deg cos034.0 i . 

The semimajor axis and eccentricity will be altered by a  and e , 
respectively, due to the application of impulse tV . By neglecting the 
magnitude ea  (it will be further shown that it is necessary to have a 
circular drift orbit, i.e. 0e ), we can write that aap . By 
expanding the equation for  by a  in series and taking the member of 
the first order of smallness, one can obtain the equation for the alteration 

 due to the alteration of a by a : 
 

.2)2(cos2
2 a

a
a

a
i

p
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Since 
0

2
V
V

aa t  (Eq. 3-1c), the equation for alteration  due to 

the application of tV  is given by: 
 

0
4

V
Vt .   (7-4) 

 
The difference between the target orbit RAAN and the drift orbit 

RAAN increases by  every revolution. Thus, the deviation after N 
revolutions can be determined by the equation: 

 

.4
0V
V

N t    (7-5) 

 
By expressing tV  in terms of u  from Eq. 7-1, one can obtain the 

final equation for the deviation between RAANs: 
 

.
3
4

u     (7-6) 

 
For example, the orbital plane rotation can reach up to 

deg cos262.0 i  for an orbit of altitude h = 1,400 km and 
deg cos022.0 i  for an orbit of altitude h = 20,000 km for the 

alteration of the satellite’s position by half a revolution. 
In order to assess the impulse required to compensate for the deviation 

between the RAANs, we find the deviations of i  and , which are the 
given by the application of the binormal impulse zV  (at the point of the 
orbit with the latitude argument u) (Fig. 7-1). 

The binormal impulse causes an orbital plane rotation by the angle: 
 

.
0V
Vz    (7-7) 
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z

i

y

i+ i

u+ uu
x

Vz

 
 

Fig. 7-1. Orbital plane orientation correction  
 

The following equation can be written with the help of the sine 
theorem for the spherical triangle: 

 

.
sin

))(180sin(
sin
sin

u
ii   (7-8) 

 
By taking into account the smallness of , i , and , we can 

obtain the final equation for the change in RAAN (Nazarenko and 
Skrebushevsky 1981): 

 

.
sin
sin

sin
sin

0V
V

i
u

i
u z   (7-9) 

 
The following equation can be written with the help of the cosine 

theorem for the spherical triangle: 
 

.cossinsincoscos))(180cos( uiiii  (7-10) 
 

The equation for the change in orbital inclination can be obtained from 
Eq. 7-10: 

  

.coscos
0V
V

uui z    (7-11) 
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The velocity impulse should be applied at the maximum distance from 
the equatorial points ( 90u  or 270u , the orbital apex or vertex) in 
order to effectively compensate for the deviation of  in the problem 
without causing deviation by i. The magnitude of the impulse lateral 
component zV  is determined by the equation: 

 

.
sin
sin

3
4

sin
sin

00 uV
u
i

V
u
i

Vz  (7-12) 

 
Let us suppose that the flyby to the given position starts at the orbital 

apex and ends N revolutions afterwards, also at the apex, i.e. a two-
impulse flyby is used. Let us divide the found lateral component into two 
equal parts between these impulses; then, the equation for the total delta-v 
of all the manoeuvres will be given by (Baranov and Terekhova 1993): 

 

.sin41
3
2)

2
1(2 22

20
22 i

N
VuVVV zt  (7-13) 

The expenditure on correcting the angle between the orbital planes 
exceeds the expenditure for the correction of the along-the-orbit position, 
which results in this angle with big numbers of N if the value N/1  is less 
than .sin2 i  

A two-impulse scheme, similar to the scheme in the work of Pollard 
(2000, 1-39), has been considered, but has not been sufficiently 
investigated to give an optimal solution. The evolution of the pericenter 
position, as well as the evolution of the RAAN, should be taken into 
account. The pericenter will not be at the apex on the final revolution, 
since it changes its position on each revolution by the following 
magnitude: 

 

).1cos5( 2
2 i

p
   (7-14) 

 
Due to this shift in the pericenter position, one impulse, applied at the 

apex of the last manoeuvring interval, will not be enough to shape the 
circular orbit. It is necessary to change the location of the impulse to the 
apsidal point; however, this change will lead to an increase in expenditure 
on RAAN correction. In reality, this change is small and commensurable 
with the change in RAAN. 
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The use of the four-impulse system, where every impulse is divided 
into two equal parts, helps to preserve minimal total delta-v, which can be 
determined using Eq. 7-13. The impulses in the four-impulse scheme are 
applied at the apex and the vertex of the first and last revolutions. The 
component sums of these impulses for each of the intervals are equal in 
magnitude to the corresponding impulse components of the two-impulse 
scheme; however, the lateral components have equal signs. 

With such a manoeuvring scheme, the drift orbit will have zero 
eccentricity, and the points, at the maximum distance from the equator, 
can be used again at the end of the flyby for the impulse application. 

The orbit 1T , which is the drift orbit for the two-impulse transfer to a 
new operational position (the single-impulse transfer from the operational 
orbit 0T  to drift orbit 1T ), is depicted in Fig. 7-2 by the dashed line. The 
two-impulse transfer from the operational circular orbit 0T  to the drift 
orbit fT  is depicted by the dotted line. The interim orbit is 2T . A return to 

the operational orbit is fulfilled with the help of the transfer 3T , depicted 
by the dash-dot line. 

 

Fig. 7-2. Four-impulse flyby to the drift orbit 
 

There is another opportunity to eliminate the deviation occurring 
between the RAANs. This involves the use of deviations in the evolution 
of orbits with different inclinations. If the drift orbit has a different 
inclination, then its influence on the RAAN may be compensated for by 
the influence of the semimajor axis alteration. 

For the alteration of the inclination, optimally we apply the impulse on 
the equator at the ascending or descending nodes. If the impulse is applied 
at the ascending orbital node, then the magnitude of its lateral component 
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izV , necessary for the required change in inclination, can be found from 
the equation: 
 

,
0V

V
Nk iz    (7-15) 

 

where i
p

k sin2
2  per change in revolution caused by alteration of 

the inclination by the magnitude .
0V

V
i iz  The equation for k was 

obtained by differencing of the equation for  by i. Thus, the equation 
for 

izV  can be written as: 
 

.
3

4
0V

Nk
u

V
iz   (7-16) 

 
Taking into account the relationship between k and , which can be 

stated ik tg , one can get the final equation for 
izV : 

 

.
tg3

4
0V

iN
u

V
iz   (7-17) 

 
This equation is true for the ascending node and the sign of 

izV  will 
be opposite for the descending node. 

The high level of effectiveness of this method with i close to 90º (in 
this case 0

izV ) can be explained by the fact that the magnitude of  

will be small and the alteration of the RAAN evolution together with the 
alteration to the inclination is considerable. 

Taking into account that it is necessary to obtain the initial inclination 
at the end of the flyby, the equation for the total delta-v expenditure is 
given by (Baranov 2008, 215-218): 

 

.
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3
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V

N
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i
t z   (7-18) 
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Equations 7-1 and 7-17 allow us to compare tV  and
izV . If the 

orbital inclination satisfies the condition 4tgi , then the expenditure on 
the correction of the orbital plane positional deviation that occurs will be 
greater than the expenditure on the position of the satellite’s along-the-
orbit correction, which caused it, with any magnitude of N. 

The aforementioned methods are interesting because the impulses are 
applied in known locations (at the equator or the orbital points most 
distant from the equator). However, the combination of both methods is 
optimal when the impulses are applied at some interim point of the 
revolution 0u . Let us determine the magnitude 0u  for a set number of 
flyby revolutions N. The magnitude of the impulse lateral component zV
, applied with the latitude argument u, which is used for the compensation 
of the deviation between RAANs , can be determined by the equation: 

 

.
3
4)

sin
sin2cos(

0
u

V
V

i
u

uNk z  (7-19) 

 
On the second manoeuvring interval, the impulses are applied at the 

symmetrical points relative to the apex in relation to the impulse 
application points of the first manoeuvring interval (

III
uu 00 ). This is 

connected to the necessity of changing the orbital inclination to its initial 
value by the impulses of the second manoeuvring interval. In the 
meantime, the same  change, which was fulfilled by the impulses of the 
first manoeuvring interval, should be fulfilled by those of the second 
manoeuvring interval; this explains the coefficient 2 in the second addend. 

The magnitude of zV  is minimal if the value in the brackets is at its 
maximum and u must be equal to u0, so that: 

 

.
sin
2arctg0 iNk

u    (7-20) 

 
One can obtain the equation for the optimal value zV : 
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Taking into account that the lateral components of the same magnitude 
are applied at the end of the flyby, the equation for total delta-v will be 
given by the equation (Baranov and Terekhova 1993): 

 

.
cos4sin

2sin41
3
22 2422

22

20
22

iiN

i

N
VuVVV zt (7-22) 

7.1.2. Examples 

Figure 7-3 presents the dependencies between total delta-v, which is 
needed for the satellite’s change in position by 180º along the orbit and the 
number of revolutions N. The upper three lines are plotted for the 
Globalstar satellite constellation (h  1,430 km, i  52 ) and the lower 
line is plotted for the GLONASS system (h  19,500 km, i  2.64 ). The 
distribution of V as a function of N in the case of along-the-orbit 
deviation correction with 180u  (Eq. 7-2) is plotted with dots. The 
distribution of V versus N in the case of simultaneous correction of u 
and  ( 16.0 ) with the impulse application at the points of the 
orbit most distant from the equator (Eq. 7-13) is plotted with the dashed 
line. The distribution of V(N) in the case of the simultaneous optimal 
correction of u and  (Eq. 7-22) is plotted with the solid line. 

 

 

Fig. 7-3. Total delta-v expenditure necessary for satellite transfer by 180º 
along the orbit as a function of the number of flight revolutions 
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It can be seen that, in the case of the Globalstar satellite constellation, a 
rapid decrease in V, up to approximately the 200th revolution, with an 
increase in N occurs. The further increase in N leads to an insignificant 
gradual decrease of V marked by the solid and the dotted lines and, in the 
case where the impulses are applied at those points of the orbit most 
distant from the equator (the dashed line), the expenditure of V does not 
practically decrease. 

The three analogous dependencies practically merge into one for 
GLONASS, as depicted by the dash-dot line 4. This is connected to the 
smallness of  for such high orbits and hence the small magnitude of 
the deviation of  that occurs ( 01.0 ), which can remain 
uncorrected, or, if necessary, be corrected at the orbital points most distant 
from the equator. 

Thus, for the satellite constellations in low Earth orbits (LEO), 
different manoeuvring strategies can be used depending on the flyby 
duration. With a flyby duration of less than or equal to 100 revolutions, 
the velocity impulses can be applied at the apex or vertex of the orbit and 
the total delta-v expenditure will not exceed 25 m/s for the satellite 
transfer along the orbit by 180º. With a duration of more than 1,000 
revolutions, the impulses can be applied on the equator and the 
expenditure will be less than 5 m/s. The combined strategy is optimal for 
medium durations. This conclusion is true for the following satellite 
constellations: Iridium (h  780 km); Orbcomm (h  800 km); and 
Globalstar (h  1,430 km). 

The optimal approach sees the application of impulses at the apex or 
vertex of the orbit for satellite constellations in medium orbits: GPS (h  
20,100 km) and GLONASS (h  19,500 km). 

7.1.3. Compromise Flight Duration 

According to the graphs in Fig. 7-3, a rapid decrease in V occurs with 
an increase in N; however, a further increase in N leads to an insignificant 
gradual decrease in V. The moment of the descent rate of change of V 
may be considered as a compromise number of the revolutions of the 
standby between the flyby time and the expenditure of V in its 
fulfillment.  

Figure 7-4 presents the isochronal dependency of V versus N for the 
altitudes 700 km and 2,500 km. It can be seen that the point of intersection 
of the two lines lies in the area of the interest. 
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Fig. 7-4. Velocity expenditure as a function of isochronal N for various 

heights 
 

This point can be calculated analytically (Baranov and Grishko 2013, 
289-312): 
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1T  and 2T  = the periods of the two compared orbits and 1p  and 2p = their 

focal parameters. After the application of Eq. 7-23, we find that the curves 
intersect twice in the general case. For example, Eq. 7-23 gives the values 

811N  and 5542N  revolutions for the altitudes 300 and 700 km, 
respectively. The principal change in the descent dynamics of the function 

V(N) occurs at point N1, which can be considered the point of flyby 
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duration compromise. During the investigation of the applicability of Eq. 
7-23, it was found that for all orbits the curves in Fig. 7-4 intersect only 
when the inclination of the initial orbit is less than 70º. This can be 
explained by the fact that with inclinations close to 90º, the multiplier cosi 
from the equation for the RAAN precession rate turns out to be close to 
zero and hence the influence of the altered semimajor axis on the secular 
drift of the RAAN is decreased. As such, with inclinations exceeding 70º, 
the choice of the standby compromise number of revolutions in the interim 
orbit is necessary to fulfill (by orienting on the graph) the dependency 
between the total delta-v expenditure and the number of flyby revolutions. 

This analytical search for a compromise between total delta-v 
expenditure on the flyby and its duration may be useful in designing 
complex multiple-tiered satellite constellations and satellite servicing 
constellations, etc. 

 

 
 

Fig. 7-5. Total delta-v expenditure as a function of u for various 
inclinations 

 
Figure 7-5 presents the total delta-v expenditure necessary for the 

elimination of phase desynchronization for satellite constellations at 
altitudes of 700 km, for different inclinations and with a flyby duration of 
100 revolutions (the optimal manoeuvring scheme is used in which V is 
calculated with the help of Eq. 7-22). It can be seen that the maximum 
total delta-v expenditure is reached with inclinations close to 45º and the 
minimum is reached on either the polar or equatorial orbits. 
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7.1.4. Satellite Transfer to Another Operational Plane 

The variant is possible when it is necessary to transfer a satellite to a 
location with a different latitude argument and in a different operational 
plane. This means that it is necessary to correct both deviations by the 
latitude u and the deviation between RAANs , which can reach up to 
several dozens of degrees, just like u. 

The direct correction of the considerable deviation between the 
RAANs demands considerable total delta-v expenditure. The influence of 
the gravitational field’s noncentrality can be used for its decrease. The 
deviation between the RAANs, which occurs during movement along 
orbits with different semimajor axes, may be compensated for, to a great 
extent, by the initial deviation between the RAANs, leading to a 
considerable decrease in the total delta-v of the manoeuvres. For a 
considerable decrease in total delta-v, it is necessary to have the difference 
of several revolutions between the number of the flight revolutions of the 
satellite and the target point (we will denote this difference n). 

Let us suppose that the orbit to which we wish to transfer the satellite 
has a smaller RAAN value than the orbit on which the satellite is initially 
situated ( 0 ). By engaging a transversal retrofire at the beginning of 
the flyby, one can achieve a double effect. Firstly, due to the decrease in 
the focal parameter p, the  of the drift orbit increases, and thus the 
difference between the RAANs will decrease with each new revolution of 
the flight. Secondly, with a relatively long flyby duration, the satellite will 
fly n revolutions more than the target point (due to the smaller period of 
the obtained orbit), which will additionally help to considerably decrease 
the deviation between the RAANs thanks to the rotation of the orbit on the 
additional revolutions of the flight. In this example, it is necessary to 
consider u as the positive value, which changes in the range [0,1], not in 
the range [-0.5,0.5] unlike the first part of this paragraph. 

The equality condition of the time spent on different numbers of 
revolutions of the satellite’s flight and the target point can be written as 
follows: 

 
),())(( uNPnNPP   (7-24) 

 
where P = the circular orbit period and P  = the period alteration due to 
the transversal component impulses of the first manoeuvring interval. By 

substituting the expression for the period 
0

2
V

a
P  and the period change 
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P t in Eq. 7-24, one can find the sum of the 

transversal impulse component of the first manoeuvring interval
It

V : 
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V
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This expression can be obtained from Eq. 3-1d. 
Let us consider the combined strategy for the correction of the 

deviation between the RAANs, with which the impulses are applied in 
some optimal locations: the first with latitude u and the second in a 
location half a revolution distant from the first one. Taking into account 
eqs. 7-5 and 7-19, the equation, which depicts the change in , can be 
written: 
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  (7-25) 

 
The change in  due to the different numbers of flight revolutions n 

has been accounted for in the right part of the equation; the member, 
which accounts for the difference in the evolution of  due to the motion 
of orbits with different values for the semimajor axes, has been added to 
the left part of the equation.  

Just as before, it is supposed that two impulses are applied at the 
beginning of the flyby (the first manoeuvring interval) and two impulses 
are applied at the end of the flyby (the second manoeuvring interval). 

For the optimal value of the impulse lateral component application 
angle, one gets the expression: 

 

,
sintg)

2arctg0 iin(N
u   (7-26) 

 
which practically coincides with the analogous equation for u0 for the case 
of a satellite’s transfer to a new location in the same orbit. This leads us to 
the statement that the conclusions about the optimal manoeuvring 
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strategies, made for the first problem, are true for the problem of satellite 
transfer to another working plane as well. 

By substituting the expression for 
It

V  in Eq. 7-25, and assuming that 

the impulse velocity is applied at the optimal point 0u , one can obtain the 
equation for zV : 
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from which the summed magnitude of the lateral impulse components of 
the first manoeuvring interval can be obtained: 
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Thus, the equation for the sum of expenditure is given by (Baranov 

2008, 215-218): 
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It can clearly be seen that V has approximately the same dependency 

on N, just as in the case of the first problem. 
The function of n has a more complex nature, but the search for an 

optimal value optn  is relatively simple because it is close to the value: 
 

,
7

43 u
nopt    (7-29) 

 
which minimizes the second addend in Eq. 7-28. 

Sometimes the variable /  is used for the assessment of optn , as 
it is widely thought that the major part of the deviation  should be 
compensated due to the different numbers of flight revolutions. The real 

optn  is more than two times smaller than / , which is connected to 
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the considerable decrease in the deviation between the RAANs on the 
coincident number of flight revolutions due to the difference p. It is worth 
remembering that n is an integer, hence, the deviation between the 
RAANs cannot be eliminated solely by choosing the proper value of n, but 
the remaining part of the deviation will not exceed 5.0  and can be 
easily eliminated with the help of zV . 

7.1.5. Examples 

We can consider a satellite’s transfer to the neighboring plane for the 
Globalstar satellite constellation as an example of the usage of Eq. 7-28. 
The difference between the RAAN values of the neighboring planes of 
this constellation is 45º and the optimal n for the satellite transfer to the 
neighboring plane is 70optn  revolutions. The dependency between V 
and the number of revolutions of flight N is depicted in Fig. 7-6. 

 

 
 

Fig.7-6. Total delta-v expenditure needed for the alteration of the RAAN by 
45  as a function of the number of flight revolutions (the orbital altitude is 

1,400 km) 
 

For GLONASS 000,3optn  revolutions; thus, the optimal flyby will 
take many thousands of revolutions, which speaks to the ineffectiveness of 
using such a scheme to change the RAAN for satellite constellations in 
high orbits. It is necessary to launch the satellite to the desired plane. 

 EBSCOhost - printed on 2/13/2023 10:43 PM via . All use subject to https://www.ebsco.com/terms-of-use



Chapter Seven 
 

 

286

7.1.6. Total Delta-V as a Function of the Difference 
 in the RAAN 

Total delta-v expenditure as a function of the desynchronization of the 
RAANs has a close-to-linear nature, but strongly depends on the orbital 
inclination; the expenditure rate of increase rapidly rises for the range of 
the values ]90;60[i  (Fig. 7-7). 
 

 
 

Fig. 7-7. Total delta-v expenditure as a function of RAAN 
desynchronization with various inclinations, an altitude of 700 km, and  

N = 1,000 including planar rotation in the direction of natural precession 
( <0) or opposite direction ( >0) 

 
Figure 7-8 gives the results of calculating the various inclinations in 

the small range of angles . The function of total delta-v expenditure in 
this case is represented by a curve with decreasing oscillations; moreover, 
the intensity of these oscillations depends on both the inclination and the 
magnitude of the semimajor axis (the nature of the function is similar). It 
can be seen in Fig. 7-8 that the oscillations are stronger for the inclinations 
20-40º. Based on Fig. 7-8, the following important conclusion can be 
made with the fixed inclination and the altitude of the initial orbit it is 
possible to transfer the spacecraft in the plane, with a big value in the 
RAAN deviation, but with a smaller total delta-v expenditure on the 
transfer; moreover, the difference for the medium inclinations can reach 
up to 20 m/s (up to 86 %). This is explained by the fact that parameter n is 
an integer in its distribution, which eliminates the possibility of accurately 
compensating the deviation between the RAANs by one phasing operation 
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in the orbital plane and the correction of the leftside deviation between the 
RAANs is needed. 

 

 
 

Fig. 7-8. Velocity expenditures as a function of the desynchronization 
between the RAANs for various inclinations (altitude 700 km and  

N = 1,000 revolutions) 
 

The fractional part of n as a function of the angle between the planes 
for the altitude 700 km is depicted below. The graph in Fig. 7-9 
unambiguously connects the fractional part of n with the oscillation 
amplitudes of the flyby delta-v expenditures (Fig. 7-8): in cases where the 
difference in the number of revolutions of the flight n is close to the 
integer value and the planes can be almost aligned by phasing, the 
function )(V  receives its minimums.  

 

 
 

Fig. 7-9. The fractional part of the absolute value of n as a function of the 
angle between planes for altitude 700 km and N = 1,000 revolutions 
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Let us note the following circumstance: the sign of  needs to be 
accounted for during the assessment of flyby total delta-v expenditure (in 
Fig. 7-8, 0 ). Figure 7-10 presents the curves for the total delta-v 
expenditure for two inclinations (30º and 60º) for the case of planar 
rotation by the angle 0.1-5º in the direction of the RAAN precession and 
the opposite direction, for the altitude 700 km. 

 

 
 

Fig. 7-10. Velocity expenditures needed for planar rotation for inclinations 
30º and 60º in the direction of precession (-) and  

in the opposite direction (+) 
 

It can be seen from the graph in Fig. 7-10 that, in the case of planar 
rotation against the direction of precession, the curve of total delta-v 
expenditure will be in the counter phase with curve oscillations, obtained 
for the concurrent rotation (a very important regular pattern), but a small 
shift takes place due to the negative influence of the RAAN evolution. 

The influence of the direction of the planar rotation is also noticeable 
in the dependency between total delta-v and the number of flyby 
revolutions for different values of the orbital desynchronization angle by 
the RAAN (Fig. 7-11). With an increase in the value of the required angle 
of planar rotation, this influence becomes more noticeable in the area of 
relatively small N. The planar rotation in the node line’s natural direction 
of precession allows, for example, obtaining a gain of 100 m/s in the case 
of 450 standby revolutions (  31 days) with the required planar rotation 
angle of 30º. 
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Fig. 7-11. Delta-v expenditure as a function of the number of revolutions 
for various directions and alteration to the RAAN magnitudes for an 

altitude of 700 km 
 

The conducted analysis of the satellite’s orbital transfer, which has a 
substantial deviation between the RAANs, allows us to choose the optimal 
strategy of such a transfer. The investigated dependency between the total 
delta-v of the flyby and the deviation between the RAANs may be used in 
choosing the optimal space debris removal strategy. 

7.2. Universal Algorithm for Manoeuvring Parameter 
Determination during Satellite Constellation Deployment 

The problem of satellite transfer to a desired point in the target orbit 
(the target point) is considered primarily in its general statement, with the 
initial and target orbits having close, but different values for the semimajor 
axes, eccentricities ( 05.0e ), and inclinations. The deviation between the 
RAANs may be arbitrary by magnitude. Problems of this type occur 
during the initialization of a satellite constellation and its maintenance; the 
de-orbiting of several satellites by one spacecraft; and soil delivery from 
other planets and their satellites, etc. 

The complexity of this problem consists not only of the difficulty in 
determining the manoeuvring parameters (such as the solution of the usual 
rendezvous problem of fixed duration, considered in chapters 3 and 4), but 
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also in finding the optimal number of revolutions N of the target point 
flight and the difference in the numbers of revolutions of the flight for the 
active spacecraft and the target point n. The optimal choice of these 
variable values and the drift orbit parameters allows us to practically 
eliminate the whole magnitude of the initial desynchronization of the 
RAANs due to the influence of the noncentrality of the gravitational field. 
This gradually reduces the total delta-v expenditure necessary for the 
transfer of a satellite to a given point. 

Due to the long rendezvous duration, it is necessary to eliminate the 
considerable deviations in the RAAN and the problems of convergence 
that appear during the use of the iterative procedure, ensuring the 
fulfillment of the terminal conditions with the desired accuracy. This 
iterative procedure is presented in Chapter 1. In addition, the orbit’s 
eccentricity is not only directly changed by the impulses of the first 
manoeuvring interval (like in rendezvous of small and medium durations), 
but also through the alteration of the orbital evolution due to the 
transversal and lateral components of the impulses, complicating the 
problem significantly. 

7.2.1. Difference in the Number of Revolutions:  
Active and Passive Spacecraft 

During the problem solution, we will assume that the duration of the 
rendezvous is fixed (the target point flight revolution number N is fixed). 
The problem in this statement is in itself both interesting and important 
and if we had a quick enough solution, we could enumerate the values of 
N with the set step in the range of interest and solve the problem for every 
N. This allows us to choose N, providing the necessary compromise in 
reducing both the rendezvous duration and the total delta-v expenditure, 
which, as a rule, increases with the decrease in rendezvous duration. The 
decision about the optimal solution N is made by the operator, who seeks 
to solve the problem through the analysis of the total delta-v expenditure 
versus the flyby duration. 

With the fixed value of N, the problem solution starts with a 
determination of the difference in the active spacecraft and target point n 
numbers of revolutions of the flight. Once this difference is defined, the 
analog of the conventional rendezvous problem is obtained, during the 
solution of which it is still necessary to take into account the influence of 
the gravitational field’s noncentrality. 

The determination of optimal n is also carried out with the help of the 
iterative procedure described as “outer”. The iterative procedure from 
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Chapter 1, which is used for the fulfillment of the terminal conditions with 
the given accuracy, is described as “inner”. 

The approximate value of n is determined at the first stage with the 
condition that only some of the orbital elements are corrected. Let us 
denote the difference between the semimajor axes, the latitude arguments, 
the inclinations, and the RAANs of the target and active spacecraft orbits 
in the initial moment of time as 0000 ,,, iua , respectively. We 
denote the sum of the transversal components of the impulse on the first 
and second manoeuvring intervals as 

It
V  and 

IItV , respectively. It is 
suggested that the first manoeuvring interval is the first revolution and 
second manoeuvring interval is the last revolution of active spacecraft 
flight. 

Let us start with the case when 0i  is small enough and the change in 
inclination does not take part in the change of . It is suggested that only 
the impulse transversal components are used for the solution at this stage. 

Taking into account Eq. 7-5, the conditions for compensating the 
deviations 000 ,, ua  in 7-24 have been approximately given 
(Baranov 2001, 113; Baranov and Labourdette 2003, 130-142): 
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here, 
2

0
0

u
u . It is also suggested that 0  in the beginning 

and 10  (where 1  = deviation of RAANs after the first 
iteration) after the first iteration of the outer iterative procedure etc. 

The expression for n, which does not depend on the magnitudes of the 
impulses, can be found from the second and third equations: 
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0un    (7-31) 

 
This relatively simple expression for n allows us to make several 

important conclusions. Firstly, n does not depend on the rendezvous 
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duration N. As we will further see, it is not exactly true for accurate 
solutions, but the dependency is indeed weak. Secondly, as previously 
noted, the found value for n is two times smaller than the simplest 
assessment of / . The initial phase desynchronization 0u  adds the 
addend, which does not exceed half a revolution, but, during calculation, n 
is rounded up and the deviation 0u  may change n by unit. 

The sum of the impulse transversal components of the first 
manoeuvring interval depends on the rendezvous duration and can be 
found from eqs. 7-30a and 7-30b: 
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A more accurate value of n can be obtained if the change in inclination 

is accounted for. Let us denote the sum of the impulse lateral components 
of the first and second manoeuvring intervals 

IzV  and 
IIzV , 

respectively. By supposing that the impulses are applied at the equator and 
taking into account Eq. 7-15, the following equation system is obtained 
(Baranov and Baranov 2008): 
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The number of variables is greater than the number of equations in Eq. 
7-33. Selecting n as an independent variable, one can obtain the 
expressions for the impulse components: 
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The value n will be optimal with the minimal function: 
 

.2222
IIIIII ztzt VVVVV  

 
It is not difficult to conduct single-dimensional optimization; 

moreover, a good initial value for n can be determined with the help of 
Eq. 7-31. 

The numerical and numerically analytical (which is more preferable 
thanks to the long rendezvous duration) integration of the equations of 
motion for the target point and the active spacecraft’s transfer to the target 
point is fulfilled after the determination of n. The target point is given by 
the number of revolutions and the latitude argument. The deviations of the 
orbital elements are calculated and the manoeuvring parameters, ensuring 
the adjustment of all the elements of the target orbit except for the RAAN, 
are determined. 

During the determination of the manoeuvring parameters, it is 
supposed that the inclination correction distribution between the 
manoeuvring intervals (the inclination of the drift orbit, calculated during 
the determination of optimal n) is preserved. The multiple iterations of the 
inner iterative procedure are fulfilled in order to make the deviations of the 
corrected elements small enough. After that the magnitude of the left 
deviation between the RAANs 1  is analyzed. If 1 , where

n/0 , such that the accuracy of the model used for the 
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determination of n is not enough, 0  should be substituted with 1  
and the next iteration of the outer iterative procedure should be conducted 
(with updated n). The flowchart of the n determination algorithm is given 
below. 
 
Evaluation of the difference in the number of revolutions of flight n 
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7.2.2. Change of Semimajor Axis and Eccentricity Vector 

When the final value for n is found, we can switch to determining the 
manoeuvring parameters, which ensure the adjustment of all elements of 
the target orbit. As with a medium duration rendezvous, the solution will 
be searched for in the form of a solution that combines the two transfer 
problems; however, the peculiarities, connected to the noncentrality of the 
gravitational field, must be taken into account. 

Figure 7-12 gives the target point orbital eccentricity vector in the 
rendezvous moment—vector OK; the active spacecraft orbital eccentricity 
vector in the initial moment of rendezvous—vector OA ; and the 
rendezvous final moment—vector OA. The optimal direction of 
eccentricity correction is set by vector AK. 
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Fig. 7-12. Eccentricity vector correction 
 

Let us suppose that the target point is set on the equator with 
inclination i corrected and  uncorrected; such a variant is used, for 
example, for the first iterations of the outer iterative procedure. In this 
case, the optimal direction of the orbital plane correction coincides with 
the direction of axis xe . Let us suppose that vector OL corresponds to the 
magnitude of the required inclination change. 

With the help of eqs. 7-32a and 7-32b, the change in distribution of the 
semimajor axes III aa ,  by the impulse transversal components of the 
first and second manoeuvring intervals is assessed. This assessment is 
rather accurate thanks to the long duration of the rendezvous. 

By setting the positions of point M on line segment OL and point D on 
plane yx ee , , i.e. by distributing the inclination and eccentricity vector 
correction between the manoeuvring intervals, the two transfer problems 
are obtained. Solving these problems, the optimal values of the total delta-
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v of each of the transfers (
ItrfV  and 

IItrfV ) can be found and, hence, the 

rendezvous total delta-v 
III trftrf VVV  can be found too. The 

optimal solution of the rendezvous problem can be obtained by varying 
the positions of points M and D (Baranov and Baranov 2009, 256-262). 

There is no need to account for the influence of the noncentrality of the 
gravitational field during the determination of 

IItrfV  for the second 
manoeuvring interval. The alteration of the semimajor axis is determined 
by Eq. 7-32b. The alteration of the eccentricity vector is set by vector DK 
and the alteration of the orbital plane is set by vector ML. The angle 
between these vectors 

IIz  is known (Fig. 7-12). The transfer problem 

(searching for 
IItrfV ) is determined and one of the methods from the 2nd 

paragraph of the Chapter 2 can be used for its solution. 
Accounting for the influence of the noncentrality of the gravitational 

field is necessary for the determination of 
ItrfV  for the first manoeuvring 

interval. We get vector OD , which, as can easily be seen, differs in 
magnitude from the desired vector OD, if we change the active spacecraft 
orbital eccentricity vector, which it had at the initial moment in time 
(vector OA ), by the seemingly required vector AD. In order to find the 
vector that needs to be corrected, one should draw line segment AD from 
OA   with the same angle  between vector AD and vector OA. Then, we 
will get the desired vector OD , which will take the place of vector OD 
after evolution. The drift orbit, shaped by the impulses of the first 
manoeuvring interval, should have the eccentricity vector OD right before 
the second manoeuvring interval. As we can see, the magnitude of the 
eccentricity alteration is equal to the magnitude of vector OD at the 
moment of performance of the first interval manoeuvre, but the direction 
gradually changes. The angle between the eccentricity vector’s optimal 
direction of correction and the optimal direction of the orbital plane 
correction changes too. The angle 

Iz  differs from angle 
IIz  (Fig. 7-12). 

The difference between angles 
Iz  and 

IIz  explains the necessity of 
searching for the optimal position of point D in the vicinity of line 
segment AK, not on line segment AK itself. Let us remember that, in the 
medium duration rendezvous problem, the optimal position of point D can 
easily be determined: for example, it divides line segment AK 
proportionally to 

It
V  and 

IItV . After determination of the position of 

point D , the transfer problem for the first manoeuvring interval is 
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determined: it is necessary to transfer from point A   to point D   with 
angle 

Iz  between the optimal orbital plane change in direction and the 
required alteration to the eccentricity vector. One of the methods from the 
second paragraph of Chapter 2 can also be used for its solution. 

7.2.3. Orbital Plane Rotation 

During the simultaneous correction of the inclination and the RAAN 
optimal direction of the orbital plane correction can be different for 
different intervals too. 

In Fig. 7-13a, the difference between the orbital inclinations 0i , 
which needs to be corrected, has been put on the abscissa axis. The 
deviation between the RAANs, which remains after the correction of the 
eccentricity vector, the semimajor axis, and the position along the orbit 
(let us denote it as r ) has been placed on the ordinate axis. 

There are two ways of performing deviation correction between the 
RAANs r . 

Let us assume that, during the determination of optimal n, it was found 
that the magnitude of the inclination change by the impulses of the first 
manoeuvring interval should be equal to ni ; and by the impulses of the 
second manoeuvring interval: nii0 . Such a distribution of inclination 
correction should lead (due to orbital evolution) to the alteration of the 
RAAN at the rendezvous point by the magnitude n . 

In Fig. 7-13a, the influence of the alteration of the inclination ni  on 
the alteration of the RAAN is plotted by line segment LM. The angle 
between line segment LM and the abscissa axis depends on N+n and on 

itg  (it depends on the flight duration and the rate of orbital evolution). 
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Fig. 7-13. Orbital plane orientation correction 
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Thus, the deviation between the RAANs nr  remains after the 
correction of the planar orbital elements and the inclination. 

In order to completely eliminate the deviations between the RAANs, 
the lateral components of the impulses of the first manoeuvring interval 
should alter the inclination by ri , not ni . In order to find ri , line 
segment NK, which is parallel to line segment ML, should be plotted from 
point N (0, r ). This is a method of RAAN correction with the help of 
the inclination. The deviation between the RAANs can be eliminated 
completely through the lucky choice of the inclination of the drift orbit (

ri ) without correcting the deviation between the RAANs. This is a 
simple and reliable method, but it may be nonoptimal from the total delta-
v expenditure point of view. 

The combined method appears to be more universal and optimal 
(Baranov and Baranov 2009, 256-262). Let us assume that the impulses of 
the first manoeuvring interval alter the inclination by ci  and the 
impulses of the second manoeuvring interval alter the inclination by 

cii0 . The alteration of the inclination by ci  will lead to the 
alteration of the RAAN by c . The deviation cr  remains, as 

ci  does not coincide with ri . The correction of the deviation 

cr  is conducted in the usual way and it is optimal to distribute it 
between the manoeuvring intervals. For example, on the first manoeuvring 
interval cp  may be corrected simultaneously with the correction 

of ci  (Fig. 7-13a) and on the second manoeuvring interval pr  

may be corrected simultaneously with the correction of cii0 . It is 
obvious that, in this case, the optimal points for the orbital plane rotation 
will shift from the equator and will be different for the first and second 
manoeuvring intervals. By altering ci , and by altering p  for each 

ci , different variants of alteration of the orbital plane on the first and 
second manoeuvring intervals are obtained. Since the optimal directions of 
eccentricity vector correction are also different on the first and second 
manoeuvring intervals, the opportunity to bring the near optimal directions 
of the corrections of the eccentricity vector and the orientation of the 
orbital plane on each of the intervals, hence, the decrease of the total delta-
v of the transfers 

ItrfV  and 
IItrfV  arises. 

It is worth mentioning that, sometimes, the deviation of i needs to be 
increased for the sake of a decrease in the deviation between the RAANs 
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(Fig. 7-13b). This happens when r  and 0  have different signs, 
where 0  corresponds to the alteration of the RAAN due to the change 
in inclination by the impulses of the first manoeuvring interval by the 
magnitude 0i . In this case, it is necessary to enumerate the points from 
interval 0, iir , not from interval 0,0 i , for obtaining the optimal 
value of ci  (Fig. 7-13b). 

7.2.4. General Algorithm for Getting the Precise Solution  
to the Problem 

The flowchart of the problem solution algorithm is given below. 
The solution consists of three embedded iterative procedures. The 

outer procedure is used for the determination of the optimal difference in 
the number of revolutions of flight n. The inner procedure is used for the 
fulfillment of the terminal conditions with the desired accuracy (for each 
of the fixed values of n). The third procedure ensures the transfer to the 
desired orbit for a fixed time with the required accuracy and the 
approximate determination of the manoeuvring parameters. 

The manoeuvring parameters, which ensure the adjustment of all 
orbital elements except the RAAN, are calculated during updating of the 
value n. Once the optimal value of n is found, all orbital elements 
including the RAAN are corrected in the inner and the third procedures. 
This solution is the final problem solution. 
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7.2.5. Examples of Algorithm Application in the Mars Sample 
Return Mission Project 

The method for calculating the manoeuvring parameters for a long 
duration rendezvous, described in this paragraph, was realized in the form 
of a piece of software entitled “GAMA”. The numerical analytical 
integration of high accuracy of the equations of motion “THEONA” was 
used for the propagation of the motion of the spacecraft in the software 
(Golikov 1990; Golikov 2008). A detailed description of the numerical 
analytical prognosis procedure “THEONA” can be found in the first 
paragraph of Chapter 10. The combination of the two numerical analytical 
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methods in one program allows us to obtain the solution of the most 
complex problems in some dozens of seconds, including the analysis of 
the dependency between the total delta-v expenditure of the manoeuvres 
and the rendezvous duration. During the development of the “GAMA” 
software, considerable difficulties had to be overcome, connected, first of 
all, with the poor convergence of the inner iterative procedure with the 
long duration of the rendezvous (several months). To demonstrate the 
capabilities of the “GAMA” software and the aforementioned method, the 
two rendezvous problems on the orbit of Mars and the two problems of the 
satellite transfer to the required positions in the satellite constellations in 
Earth orbit will be considered. 

In the project “Mars sample return mission” (Bollman, D’Amario, Lee, 
and Roncoli et al. 1999), the return vehicle would have to successively 
“grab” two capsules with soil in Mars orbit. It was assumed that the first 
capsule, delivered by a previous spacecraft, would be deployed in Mars 
orbit two years before the arrival of the return vehicle. This is why there is 
the possibility of considerable desynchronization of the RAANs of the 
return vehicle and the capsule orbits. The deviation 182  was 
considered in problem 1. The second capsule would be delivered by the 
spacecraft itself, but, due to its long stay on the surface of Mars and due to 
the fact that the return vehicle was grabbing the first capsule at that time, a 
considerable deviation between the RAANs would also occur ( 80 ). 
The project was not realized, but the problems remain interesting due to 
their complexity. The statements and solution results are presented in the 
work of Bollman, D’Amario, Lee, and Roncoli et al. (1999). This allows 
us to compare the results obtained with the help of different methods. This 
possibility was already used in the work of Breeden, Guinn, and Ocampo 
(2001, 1-20), in which the solution of one of the problems considered in 
the work of Bollman, D’Amario, Lee, and Roncoli et al. (1999) is 
depicted. The results, obtained in Bollman, D’Amario, Lee, and Roncoli et 
al. (1999), Breeden, Guinn, and Ocampo, (2001, 1-20), and the results, 
obtained with the help of the “GAMA” software (Baranov and Labourdette 
2003, 130-142; Baranov and Baranov 2009, 256-262) are listed in table 7-
1. 

In the work of Bollman, D’Amario, Lee, and Roncoli et al. (1999), the 
solution for both problems was searched for with the help of the traditional 
method for NASA3 (Fehse 2003, 441-449), with individual correction of 
the orbital plane orientation and other elements. Solutions of this type we 

 
3 “Shuttle Press Kit: STS-92”. Accessed March 25, 2007. 
http://www.shuttlepresskit.com/STS-92/. 
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will term “separate”. NASA used 10 impulses and 320.8 m/s of total delta-
v with a rendezvous duration of 123.9 days for the solution of problem 1 
(the 3rd row in table 3-1). The “GAMA” software used 6 impulses and 
233.7 m/s of total delta-v with a rendezvous duration of 123.1 days for the 
“separate” solution. The information about the solution is listed in the 
second row of table 3-1 and the solution parameters are presented in 
Example 1-1. 

At the beginning of Example 1-1, the orbital elements of the active and 
target spacecraft are presented, including: the minimal and maximum 
altitudes above the surface of Mars, Hmin and Hmax; the pericenter 
argument ; the inclination i and the RAAN; and the number of 
revolutions and the latitude argument Nrev and Ulat, respectively. The 
total delta-v of the manoeuvres and, separately, the total delta-v 
expenditure on manoeuvring in the orbital plane and the orbital plane 
rotation, the number of iterations of the inner iterative procedure, needed 
for the solution of the whole problem (with updated n) and the solution of 
the problem with a fixed value of n, are further listed. The parameters of 
each of the manoeuvres are also listed in the rows, including: the number 
of revolutions and the latitude argument of the impulse application 
moment and its components. Then, the duration of the rendezvous (in 
days), the value of n, and, separately, the active and target spacecraft 
number of flight revolutions, are listed. The next row gives the distribution 
between the manoeuvring intervals of the total delta-v expenditure on 
altering the eccentricity vector and the rotation of the orbital plane. At the 
end of the example case, the given accuracies of fulfilling the terminal 
conditions and the deviations in the rendezvous point between the orbits, 
shaped with the manoeuvres, and the given target orbit are presented. 

The apsidal four-impulse solution was used, which is why the four 
inner impulses are purely transversal. The application angles of one 
manoeuvring interval differ by 180º; however, as has already been shown, 
the directions of optimal eccentricity correction are different for the first 
and second manoeuvring intervals. The two impulses, listed in the last 
column, are used for the alteration of the orbital plane. They correct only 
the inclination (both applied on the equator), but, through the correct 
choice of their magnitude deviation between the RAANs, they can be fully 
eliminated. The four transversal impulses can solve the coplanar 
rendezvous problem. As shown in Chapter 3, we can use three impulses, 
but the four-impulse apsidal solution is more universal as there is no need 
to analyze on which of the intervals the two impulses should be applied. 
Furthermore, by using four impulses, one can obtain a solution that is less 
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sensitive to the errors of impulse realization and the knowledge of the 
orbital parameters (see paragraph 3.9). 

In the solution given by Bollman, D’Amario, Lee, and Roncoli et al. 
(1999), the five transversal impulses ensure the required evolution of the 
orbital plane for the elimination of the main difference between the 
RAANs, but do not solve the rendezvous problem completely—they only 
ensure the transfer to an orbit 0.5 km lower than the given orbit. At this 
moment, a difference in position along the orbit may be half a revolution 
long. As such, the necessary standby on this close orbit is fulfilled in order 
to let the active spacecraft catch up with the target spacecraft (the standby 
can take up to two weeks), after this a transfer to the desired orbit in the 
limited vicinity of the target spacecraft is made with help of two additional 
impulses. During this final phasing a deviation between the RAANs 
occurs; the special impulse, applied at the orbit apex is used for its 
correction. These additional impulses explain the big difference in the 
number of impulses used, presented in the two compared solutions. The 
general discrepancy in the total delta-v expenditures is connected to the 
different eccentricity vector deviation correction schemes (see paragraph 
4.5). 

The optimal total delta-v expenditure solution can be obtained, if the 
use of all components of every impulse is permitted (a “combined” 
solution). Such a solution, obtained with the help of the “GAMA” 
software is listed in Example 1-2. Four impulses are needed for the 
problem solution (the magnitude of the second impulse is only 0.54 m/s), 

V = 202.4 m/s. The information about this solution is listed in the first 
row of table 3-1. 

A close solution, in term of the attributes (the fourth row in table 3-1; 3 
impulses; V = 199.52 m/s; and a rendezvous duration of 133.04 days), 
was obtained in the work of Breeden, Guinn, and Ocampo (2001, 1-20) 
using the numerical method. The expenditures are slightly smaller, but the 
rendezvous duration is longer. The total delta-v expenditure can be 
decreased by increasing the rendezvous duration. Such a combined 
solution, obtained with the help of the “GAMA” software is listed in 
Example 1-3. Four impulses are used in this solution: V = 194.6 m/s; the 
duration of the flyby is 144.7 days; and the parameters of the solution are 
listed in the fifth row of table 3-1. 

The universal method (the impulses do not have radial components), 
leading to practically the same (the second decimal place of percent 
greater) total delta-v expenditures as the optimal Edelbaum solution 
(Edelbaum 1967, 66-73), but ensuring a more rapid convergence of the 
iterative procedures, was used during the search for the combined 
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solutions on each of the manoeuvring intervals for the determination of the 
optimal transfer manoeuvring parameters. 

The total delta-v expenditure decreases as the rendezvous duration 
increases. The high performance of the “GAMA” software allows us to 
find compromise values for these parameters. There is an option to 
enumerate the target spacecraft flight revolution number (Nf) during 
calculation. For every Nf, the problem is solved and the values of total 
delta-v and other manoeuvring parameters are found (Example 1-4) 
(Baranov and Baranov 2009, 256-262). The total solution time will be 
considerably smaller in comparison to the solution of the succession of 
problems with fixed Nf. Analysis of the calculation results from Example 
1-4 shows that a truly close-to-optimal rendezvous duration was chosen in 
the work of Bollman, D’Amario, Lee, and Roncoli et al. (1999). 
Specifically, on the interval from 1,350 to 1,400 revolutions of the target 
spacecraft’s flight, the dependency between total delta-v and rendezvous 
duration decreases considerably. It is not particularly effective to increase 
the rendezvous duration further. 

For the second rendezvous problem in Mars orbit, the optimal 
combined solution (Example 2-1), the separate solution (Example 2-2), 
and the solution with the enumeration of the number of target spacecraft 
flight revolutions (Example 2-3, 800 to 1,800 revolutions with a step of 
200) are presented. The obtained results can be compared to the results 
given by Bollman, D’Amario, Lee, and Roncoli et al. (1999) with the help 
of table 7-2. 

The calculation results, listed in Example 2-3, show that, for the 
second problem in the work of Bollman, D’Amario, Lee, and Roncoli et 
al. (1999), the optimal rendezvous duration was chosen as well, since, 
specifically on a target spacecraft flight interval of 1,200 to 1,400 
revolutions, the dependency between total delta-v and rendezvous duration 
decreases considerably. 

The impulse manoeuvres were supposed to have been used in all the 
aforementioned examples, as there was no information given about the 
types of engines used. 
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PROBLEM 1 
 

Example 1-1 
 
                       initial orbit        target orbit  
Hmin km             250.0              500.0     
Hmax km         1,400.0              700.0     

 deg                    4.0                 184.0     
i deg                    45.0                   46.0     

 deg                    2.0                 184.0     
Nrev                          1                     1     
Ulat deg             184.0                 184.0     
 

dV = 233.68 m/s   dVinpln = 184.68 m/s  dVoutpl = 49.00 m/s   
Niter = 95  16 

  
   Nimp   Nrev    Ulat       dVrd      dVtr        dVlt      
    1            1    180.00       0.0         0.0       -47.09     
    2            2    185.22       0.0       54.93        0.0     
    3            3        5.22       0.0         0.15        0.0     
    4      1,221      36.48       0.0        -0.67        0.0     
    5      1,222    216.48       0.0     -128.92       0.0     
    6      1,222        0.00       0.0          0.0         1.91     
 

N_days: 123.1   n = -169.0   REVfnlTG = 1392   REVfnlCH = 1223   
U1opt = 185.2   E1opt = 109.57   E2opt = 256.5   Z1opt = 47.09    
Z2opt = 1.91 

 
 Given tolerances of terminal condition fulfillment 
       ex                ey                 a            t            i deg            deg 
   0.0001         0.0001         0.01         0.1         0.0005         0.0005 
 
Deviations in the rendezvous point after manoeuvre fulfillment   

ex              ey              a              t            i deg      deg 
0.0000199  0.0000008  0.0011981 -0.0932687  0.0000011  0.0000036 
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Example 1-2 
 

dV = 202.39 m/s  dVinpln = 184.22 m/s  dVoutpl = 56.66 m/s    
Niter = 93  15 

  
   Nimp   Nrev    Ulat       dVrd      dVtr          dVlt      
    1           2     186.10       0.0      54.09      -47.41     
    2           3     306.19       0.0        0.54         0.09     
    3     1,221     210.05       0.0     -78.71       -5.47     
    4     1,222     224.74       0.0     -50.86        3.66     
  

N_days: 123.1   n = -169.0   REVfnlTG = 1,392   REVfnlCH = 1,223  
U1opt = 183.6   E1opt = 107.66   E2opt = 257.14   Z1opt = 47.5    
Z2opt = 2.1 

 
ex              ey              a                t              i                   

0.0000002  -0.0000002  -0.0000124  -0.0400580  -0.0000013 -0.0000171 
 

Example 1-3 
 
dV = 194.59 m/s  dVinpln = 186.35 m/s  dVoutpl = 53.82 m/s   
Niter = 79  14 

  
 Nimp    Nrev    Ulat       dVrd       dVtr        dVlt      
    1           2   188.50       0.0       50.13      -21.05     
    2           3     11.30       0.0      -12.81         4.56     
    3     1,461   195.93       0.0         5.72        -0.71     
    4     1,462       5.09       0.0    -117.67       27.48     
 

N_days: 144.7   n = -173.0   REVfnlTG = 1,636   REVfnlCH = 1,463   
U1opt = 184.6   E1opt = 125.88   E2opt = 246.60   Z1opt = 25.6   
Z2opt = 28.1 

 
ex              ey              a                t               i                   

-0.0000001   0.0000004   -0.00024   -0.0424021   0.0000052   -0.0000115 
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Example 1-4 
 

dV = 205.66 m/s  dVinpln = 183.11 m/s  dVoutpl = 60.77 m/s   
Niter = 73  14 

  
 Nimp   Nrev     Ulat       dVrd      dVtr        dVlt     
    1           2    189.67      0.0       50.87     -47.84     
    2           3      34.56      0.0       -2.08         0.67     
    3     1,279    244.60      0.0    -126.83       -6.51    
    4     1,280      84.65      0.0         3.30       -5.73     
 

N_days: 128.2   n = -169.0   REVfnlTG = 1,450   REVfnlCH = 1,281   
U1opt = 185.6   E1opt = 105.56   E2opt = 259.90   Z1opt = 48.5    
Z2opt = 2.2 

 
ex              ey               a                 t               i                   

-0.0000008   0.0000003   0.0000469   0.0951869   0.0000012   0.0000456 
 
        Nrevtg         dV           dVinpln      dVoutpl          n 
         1,050        293.40       284.35         51.11        -168.0 
         1,100        275.40       266.82         51.52        -168.0 
         1,150        259.69       251.39         54.81        -169.0 
         1,200        245.23       235.24         55.75        -169.0 
         1,250        231.92       221.97         56.34        -170.0 
         1,300        219.46       210.91         53.97        -172.0 
         1,350        208.59       196.96         55.30        -171.0 
         1,400        206.87       187.01         51.38        -169.0 
         1,450        205.66       183.11         60.76        -169.0 

 
Table 7-1 

 
 PROBLEM 1 

 Number of manoeuvres V m/s % Time 
days 

GAMA (comb.) 4 202.39 100 123.1 
GAMA (sep.) 6 233.68 115.5 123.1 

NASA (sep.) 10 320.8 158.5 
(137.3) 123.9 

UT&JetPL (comb.) 3 199.52 98.6 133.04 
GAMA (comb.) 4 194.6 96.1 144.7 

 

 EBSCOhost - printed on 2/13/2023 10:43 PM via . All use subject to https://www.ebsco.com/terms-of-use



Chapter Seven 
 

 

308

PROBLEM 2 
 

Example 2-1 
 
                     initial orbit             target orbit 
Hmin km           475.6                      446.8     
Hmax km          724.4                      553.2     

 deg               279.3                      238.4     
i deg                   46.0                        45.0     

 deg                 80.2                          1.2     
Nrev                       1                            1     
Ulat deg           356.5                      105.8     
 

dV = 145.36 m/s  dVinpln = 130.35 m/s  dVoutpl = 56.14 m/s   
Niter = 73  11 

  
 Nimp    Nrev     Ulat       dVrd      dVtr        Vlt      
    1            2    190.96      0.00     -42.60      6.48     
    2            3    348.66      0.00     -41.48    -25.61    
    3      1,430    322.68      0.00      28.90      -2.50    
    4      1,431    260.91      0.00      17.35       1.53     
 

N_days: 116.9   n = 59.0   REVfnlTG = 1,374   REVfnlCH = 1,433  
U1opt = 86.0 E1opt = 16.30 E2opt = 40.14   Z1opt = -51.1   Z2opt = -2.2 

  
Given tolerances of terminal condition fulfillment 
       ex              ey              a              t            i             
    0.0001         0.0001          0.01            0.1       0.0005       0.0005 
 
Deviations in the rendezvous point after manoeuvre fulfillment                   

ex               ey              a                t            i               
0.0000002   0.0000001   0.000023   -0.0148   -0.0000002   -0.000001 

 
Example 2-2 

 
dV = 181.74   dVinpln = 130.84   dVoutpln = 50.91   Niter = 86  16 

  
   Nimp    Nrev      Ulat       dVrd      dVtr       Vlt       
    1              1     180.00       0.0         0.0      46.34     
    2              2     265.26       0.0     -83.76       0.0     
    3              3       85.26       0.0       -0.11       0.0     
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    4        1,430       48.07       0.0      44.10       0.0     
    5        1,431     228.07       0.0        2.86       0.0     
    6        1,432         0.00       0.0        0.0        -4.55     
     

N_days: 116.9   n = 59.0   REVfnlTG = 1,374   REVfnlCH = 1,433 
U1opt = 85.3   E1opt = 167.31   E2opt = 82.47   Z1opt = 46.3   Z2opt = -
4.5 

 
ex              ey              a                t            i               

-0.0000005  0.0000086  0.0004194 -0.0837062  0.0000011  0.000012 
 

Example 2-3 
 

dV = 125.47   dVinpln = 112.10   dVoutpl = 55.34   Niter =  30   10 
   Nimp    Nrev      Ulat       dVrd      dVtr       dVlt     
    1              2    347.32        0.0     -43.37     -24.18   
    2              3    196.98        0.0     -31.32      18.18    
    3        1,859    174.50        0.0      33.43      11.68    
    4        1,860      60.77        0.0        3.96       -1.28    
 

N_days: 153.2   n = 62.0   REVfnlTG = 1,800   REVfnlCH = 1,862   
E1opt = 22.39   E2opt = 32.04   Z1opt = -41.0   Z2opt = -12.2 

 
 
        Nrevtg         dV          dVinpln       dVoutpl          n 
           800        203.00        193.26          55.37          58.0 
        1,000        176.27        166.28          56.06          60.0 
        1,200        156.45        145.34          54.29          60.0 
        1,400        145.78        130.06          62.01          60.0 
        1,600        134.80        119.72          59.00          61.0 
        1,800        125.46        112.10          55.34          62.0 
 

Table 7-2  
 

 PROBLEM 2 

 Number of 
manoeuvres V m/s % Time 

days 
GAMA (comb.) 4 145.36 100 116.9 
GAMA (sep.) 6 181.74 125 116.9 

NASA (separate) 10 219.6 151 
(120.8) 116.9 
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7.2.6. Example of Algorithm Application in the Globalstar 
Deployment Problem 

The “GAMA” software is especially effective for manoeuvring 
parameter determination during the deployment and station-keeping of 
satellite constellations. Table 7-3 presents the dependency between total 
delta-v, required for the satellite transfer to the neighboring operational 
plan and the number of target point revolutions of the flight for the 
“Globalstar” satellite constellation, and, separately, the total delta-v 
expenditure on manoeuvring in the orbital plane and the orbital plane 
rotation. 
 

Table 7-3  
 

N T days V m/s Vinpln Voutpln 
800 63.2 534.06 517.97 114.12 

1,000 79 425.86 395.79 147.78 
1,200 94.8 342.34 337.59 56.68 
1,400 110.6 290.17 285.17 53.41 
1,600 126.4 252.63 249.33 40.61 
1,800 142.2 223.76 218.81 46.42 
2,000 158 201.21 199.46 25.78 
2,200 173.8 182.32 179.21 33.06 
2,400 189.6 166.99 164.41 28.64 
2,600 205.4 154.13 151.93 25.41 
2,800 231.2 143.93 143.03 15.67 

 
The altitude of the initial and target orbits is 1,414 km; the inclination 

is 52i ; and the angle between the orbital planes is 45 . 
The solution, corresponding to a flyby duration of 2,400 revolutions, is 

listed in Example 3-1. 
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Example 3-1  
 
                     initial orbit      target orbit 
Hmin km        1,410.0           1,412.0     
Hmax km        1,418.0          1,416.0     
Uprg deg             10.0              90.0     
i deg                52.000          52.001     
gOMG deg         45.0               90.0     
Nrev                       1.0                 1.0     
Ulat deg              15.50           105.80     
 
dV = 166.99  dVinpln = 164.42  dVoutpl =  28.65  Niter =  86  8 
  
   Nimp   Nrev    Ulat       dVrd      dVtr          dVlt      
    1           2     191.66       0.0     42.3301    -6.2140    
    2           3       15.24       0.0     41.8784     9.7993    
    3       2,317   162.37       0.0    -40.1753     6.0814    
    4       2,318   342.36       0.0    -40.0335    -6.5529 

7.3. Manoeuvre Parameters for Multiple-Tiered 
Constellation Deployment 

7.3.1. Multiple-Tiered Satellite Constellation Characteristics 

In recent times, much attention has been paid to multiple-tiered 
satellite constellations (Kozlov, Razoumny, and Razoumny 2015, 200-
204; Kozlov, Razoumny, and Razoumny 2015, 196-199; Ulybyshev 2015, 
311-322; Ulybyshev 2016, 1-11), in which satellites are located in circular 
orbits of different radii. The satellites are divided into several groups, each 
of which is a conventional single-tiered satellite constellation; their 
combination gives a constellation with novel attributes. The difference in 
the precession rates of their orbital planes occurs with considerably 
different values of the semimajor axes of differently tiered orbits. As a 
result, different secular drifts of the RAANs occur, leading to a continuous 
increase in the difference between the orbital plane angles. These orbits of 
different tiers must have different inclinations in order to have equal 
secular RAAN drifts. The semimajor axes maxa  and the inclinations maxi  
of the orbits of one tier can be connected to the semimajor axes ma  and 
inclinations mi  of another tier by following the approximate equation: 
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Hereafter, we will term these orbits with different semimajor axes, but 

the same evolution of RAANs as “synchronized”. 
Equation 7-35 is true for an arbitrary value of the initial deviation of 

the RAANs, which is why the satellite orbits on different tiers maintain an 
equalized relative spatial configuration. 

Figure 7-14 gives graphs of the dependencies between the inclination 
deviations i  and the altitude differences h  for the orbits, which have 
different inclinations. The altitude of all orbits is h = 600 km. Similar 
graphs for orbits at an altitude of h = 1,100 km are depicted in Fig. 7-15. It 
is assumed that the altitude of the differently tiered orbits will be greater 
by h  and hence the deviations of inclinations i  should be negative. 
Similar graphs can be found in Kozlov, Razoumny, and Razoumny (2015, 
200-204). 

 

 
 

Fig. 7-14. Inclination as a function of altitude for lower tier orbits with 
altitude h = 600 km 
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Fig. 7-15. Inclination as a function of altitude for lower tier orbits with 
altitude h = 1,100 km 

7.3.2. Estimation of the Delta-V Required for Changing  
an Altitude Shell 

For a flyby from the synchronized orbit to an orbit of another tier (such 
a problem occurs during satellite constellation initializations), it is 
necessary to correct for differences in altitude and inclination. The total 
delta-v expenditure for such an impulse transfer V  is lower than the 
assessments of total delta-v expenditure for the solution of the real flyby 
problem, in which the phase correction and manoeuvre realization with the 
help of the low-thrust engines are taken into account. The total delta-v 
expenditure on the impulse transfer can be found using the equations: 

 

,
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Using the expression for V , one can find the dependency between 
i  and h  for the fixed expenditures of V : 

 

.
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2
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r

h

V

V
i    (7-36) 

 
Such lines for m/s 165V , m/s 200V , and m/s 300V  

are depicted in figs. 7-14 and 7-15. 
A more accurate assessment of the necessary V  expenditure can be 

obtained if the real manoeuvre duration (when the manoeuvres are 
fulfilled with the help of low thrust engines) is taken into account. Since 
the correction of the deviation between the semimajor axis a  and the 
inclination i  is fulfilled, optimally we perform the two equal 
manoeuvres on the revolution, the middle of which is located on the node 
line. 

The angular duration of the manoeuvre  and the angle , which 
sets the orientation of the thrust engines in the orbital coordinate frame, 
can be found from the equation system: 

 

,cos2
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w
n
a    (7-37) 

),
2
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w
n
i    (7-38) 

 
here, n = the number of revolutions on which equal manoeuvres are 
performed. 

Recalculating  of one of the manoeuvres into V  of all the 
manoeuvres with the help of equation: 

 

,2
cw

w
nV     (7-39) 

one can find the real total delta-v expenditure needed for the transfer to the 
synchronized orbit. 

Using the equation: 
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we can find the dependency between i  and h  for a firing duration of 
one revolution (n = 1), two revolutions (n = 2), and three revolutions (n = 
3). These dependencies are plotted with dashed lines in figs. 7-14 and 7-
15. Thus, the areas, which can be reached by continuous manoeuvring 
during one or two revolutions, can be determined. 

7.3.3. Optimal Initial Phase Range 

The alteration of V  during the transition from the impulsive model 
to the real engine thrust model has been determined. The correction of the 
difference between the phases  should be accounted for in the next 
stage (during satellite constellation deployment). The rate of the maximum 
approach along the orbit, when the difference between the phases is equal 
to zero (during maintenance) or to the set value (during deployment), is of 
special interest. Figure 7-16 shows the dependency between the 
rendezvous number for a one-year time interval and the deviation by 
altitude. 

 

 
Fig. 7-16. Number of rendezvous as a function of altitude 

 
Figure 7-17 gives the time between the two neighboring rendezvous as 

a function of deviation by altitude. It can be seen that the time between the 
rendezvous is small with a big difference between the altitudes and for 
which the total delta-v expenditure is considerable. The medium heights 
are a compromise with both the total delta-v expenditures being relatively 
small and the possibility of the rendezvous arising sufficiently often. 
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In the initial moment of flyby, if 0 , then it is necessary to 
transfer to the target orbit immediately (for impulsive manoeuvres). In the 
initial moment of the flyby, if 0  and the phase difference does not 
exceed the magnitude, which can be eliminated due to passive flight on 
the revolutions left before the moment of rendezvous, then the 
expenditures on the rendezvous do not exceed the expenditures on the 
transfer between orbits. The range of the optimal phases for the impulse 
transfers, which depends on the difference between the orbital semimajor 
axes and the flyby duration, is determined in this fashion. With a 
considerable or small initial phase difference, expenditure on the 
rendezvous will be greater than expenditure on transfer (see sections 1.5.2 
and 3.5). 

 

 
 

Fig. 7-17. Time between rendezvous as a function of the difference in 
altitudes 

 
The assessment of the angular difference between the two spacecraft is 

used in many problems. For example, it is used in the problem of 
dangerous approach hazard assessment (Baranov and Karatunov 2012; 
Baranov and Karatunov 2016). For the controlled time interval, if the 
assessed distance along the orbit exceeds the permitted one, then a 
collision with this object is impossible. The distance along the orbit 
exceeds the permitted one if it is greater within the boundaries of the 
interval and the point of the zero angular distance is outside the interval. 
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7.3.4. Manoeuvring Calculations in the Problem of Multiple-
Tiered Constellation Deployment 

The peculiarities of flyby between synchronized orbits involve the 
presence of a small deviation between their eccentricities e , as each one 
is small by itself, there are considerable deviations between the semimajor 
axes a  and, especially, the deviations between i . The manoeuvres 
under consideration are rendezvous manoeuvres of medium duration 
(since there is no significant deviation between the RAANs, there is no 
need to consider the long rendezvous duration). If the manoeuvre duration 
is relatively small, then the algorithms from chapters 4 or 5 can be used 
for their parameter determination. 

7.4. Manoeuvring Parameters in Satellite  
Formation Flying 

The methods from the first and second sections of this chapter may be 
used successfully in the determination of the manoeuvring parameters 
during the initialization of satellite groups (satellite formation flyings). 
The two problems of satellite formation flying initialization are considered 
in this section. With the help of the equations, developed in the first 
section, the initialization problem for the atmospheric tomography cluster 
has been solved; with the help of the “GAMA” software, the “Aqua Train” 
problem of satellite formation flying initialization has been solved as well. 

7.4.1. Deployment of the Cluster for Atmospheric Tomography 

The problem of initializing the cluster, which consists of four 
microsatellites (the weight of each one does not exceed 30 kg) is 
considered. The cluster is designed for atmospheric tomography. 

The satellites of the cluster should be placed in an orbit with an 
inclination 56i ; an altitude km 550h ; and with the satellite 
positions: 01u , 52u , 75.243u , and 75.344u . The positions 
of the satellites are shown in Fig. 7-18 by asterisks. 
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Fig.7-18. Atmospheric tomography satellite formation flying 
 

It is assumed that, in the initial moment, the launch vehicle delivers all 
the satellites to a single point in the given orbit and it is necessary to 
deploy the satellites to their operational positions. 

The total delta-v expenditure ( V ) necessary for the change in the 
microsatellite positions at half the maximum distance between them by the 
latitude argument in this cluster, depending on the number of the 
revolutions of the flyby, were calculated. 

 
Table 7-3 

 
Nrev days Vt Vomg Vi Viomg Vz Uopt 
20 1.326 12.210 12.366 35.132 12.249 0.980 6.591 
30 1.990 8.140 8.373 23.421 8.198 0.977 84.893 
40 2.653 6.105 6.412 17.566 6.182 0.974 83.205 
50 3.316 4.884 5.263 14.053 4.979 0.971 81.529 
60 3.979 4.070 4.518 11.711 4.183 0.966 79.867 
70 4.642 3.488 4.003 10.038 3.618 0.961 78.222 
80 5.306 3.052 3.629 8.783 3.198 0.955 76.596 
90 5.969 2.713 3.349 7.807 2.874 0.948 74.993 

100 6.632 2.442 3.133 7.026 2.617 0.940 73.412 
110 7.295 2.220 2.963 6.388 2.408 0.932 71.858 
120 7.958 2.035 2.827 5.855 2.235 0.924 70.330 
130 8.622 1.878 2.717 5.405 2.089 0.915 68.832 
140 9.285 1.744 2.626 5.019 1.965 0.906 67.363 
150 9.948 1.628 2.550 4.684 1.858 0.896 65.924 
160 10.611 1.526 2.486 4.391 1.765 0.886 64.517 
170 11.275 1.436 2.432 4.133 1.682 0.875 63.143 
180 11.938 1.357 2.386 3.904 1.609 0.865 61.801 
190 12.601 1.285 2.346 3.698 1.543 0.854 60.492 
200 13.264 1.221 2.311 3.513 1.484 0.843 59.216 
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210 13.927 1.163 2.281 3.346 1.430 0.832 57.972 
220 14.591 1.110 2.255 3.194 1.380 0.821 56.762 
230 15.254 1.062 2.231 3.055 1.335 0.809 55.584 
240 15.917 1.017 2.211 2.928 1.293 0.798 54.439 
250 16.580 0.977 2.192 2.811 1.254 0.787 53.325 
260 17.243 0.939 2.176 2.702 1.218 0.776 52.243 
270 17.907 0.904 2.161 2.602 1.184 0.765 51.191 
280 18.570 0.872 2.148 2.509 1.153 0.754 50.170 

 
With this approach, V  expenditures for the other microsatellites of 

the cluster will be slightly smaller or equal (for one microsatellite) to the 
calculated V  expenditures. All the spacecraft will have to manoeuvre, 
but, firstly, this will provide for a steady fuel expenditure and, secondly, 
the deployment errors can be eliminated. 

The first column of table 7-3 shows the number of revolutions between 
the first and last manoeuvres ( revN ); the second column gives the 
microsatellite transfer durations to the desired positions in days (days); the 
third column presents the sum of the impulse transversal components, 
needed for the required change in satellite position ( tV ); the fourth 
column shows the sum of the impulse lateral components, performed at 
the apex or vertex of the orbit, needed for direct correction of the deviation 
occurring between the RAANs ( omgV ); the fifth column gives V  for 

similar manoeuvres on the equator ( iV ); the sixth column presents V  
for the manoeuvres fulfilled at the optimal locations for the orbital plane 
rotation ( omgiV ); the seventh column presents the sum of the lateral 

components of the manoeuvres from the previous column ( zV ); and the 
eighth column gives the optimal angle for the orbital plane rotation ( optu ). 

The graphs in figs. 7-19 and 7-20 show the variable changes from the 
table in the dependency of the number of revolutions of the flyby. 

It follows from the above that the compromise duration of the 
initialization of the cluster lies in the range of 100 to 200 revolutions and 
the total delta-v expenditures decrease from m/s 62.2V  to 

m/s 48.1V . The expenditures of V  start to increase rapidly with 
shorter durations and the additional increase in duration does not lead to a 
significant decrease in V . 

Research into the problem has shown that, for low-thrust engines, the 
preferable manoeuvre duration does not exceed one eighth of a revolution. 
If the manoeuvre duration exceeds this magnitude with the chosen thrust 
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engines, it is recommended that it be divide it into two parts, which will be 
performed on different revolutions. With the large number of revolutions, 
needed for optimal cluster initialization, such a division is always possible 
and does not significantly influence the results of the calculation. 

 

 
 

Fig.7-19. Total delta-v expenditures with different schemes of cluster 
initialization (i = 56 , h = 550 km, and satellite location change relative to 

the cluster’s center u = 17.375 ) 
 

 
 

Fig.7-20. Latitude argument alteration for optimal correction impulse 
application points 
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7.4.2. Manoeuvres for “Aqua Train” Formation Flying 

With the help of the “GAMA” software, one of the problems of 
satellite transfer in formation flying “Aqua Train” was considered. This 
satellite group consists of six satellites located on identical orbits, but with 
shifts in the RAANs and the latitude arguments. The approximate location 
of the satellites is shown in Fig. 7-21 by asterisks. 

 

 
 

Fig.7-21. Satellite location in the formation flying “Aqua Train” 
 

Table 7-4 gives the V  expenditures for satellite transfer from one 
operational position in the group to another as a function of transfer 
duration. The solution, which corresponds to a flyby duration of 1,540 
revolutions, is depicted in example 3-1. 

 
Table 7-4 (Aqua Train) 

 
N T days V m/s Vinpln m/s Voutpln m/s 

340 23.3 180.58 138.61 112.07 
490 33.6 124.15 88.49 81.71 
640 43.9 93.61 69.68 55.27 
790 54.15 78.77 58.05 44.94 
940 64.4 66.67 50.11 34.07 

1,090 74.7 57.85 39.78 30.84 
1,240 85.02 52.58 35.99 26.08 
1,390 95.3 47.78 29.43 24.22 
1,540 105.6 44.69 24.82 23.45 
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Example case 3-1 (Aqua Train) 
 
                    initial orbit     target orbit 
Hmin km         663.0           705.0     
Hmax km        663.1           705.1     

prg deg          53.968         77.149            
i deg               98.0800       98.2055         

  deg             263.28         266.04         
Ulat deg             0.0              30.0     

 dV = 44.69 m/s   dVinpln = 24.82 m/s   dVoutpl = 23.46 m/s    
Niter = 30  11 

    
   Nimp    Nrev      Ulat       dVrd        dVtr       dVlt       
    1              2     184.95       0.0        0.024     -3.52 
    2              3       11.08       0.0        0.316    16.43 
    3         1,552    179.71       0.0      10.703      1.37    
    4         1,553        1.70       0.0      13.779    -2.14   
 

N_days: 105.6   n = 15.0   REVfnlTG = 1,540   REVfnlCH = 1,555   
 

In the aforementioned examples, it was necessary to place the satellites 
at considerably large distances from each other. In this case, when the 
satellites should be located at small distances from each other, the 
manoeuvring strategy during satellite formation flying initialization differs 
slightly. The assessment of satellite collision hazards during their transfer 
to the desired positions in the group becomes of great significance. The 
use of a target vector may help to reduce this hazard, ensuring the safe 
direction of the flight to the satellite formation flying procedure. The use 
of the final target vector will allow the occupation of the desired position 
in the satellite formation flying procedure. The emphasis should also be on 
compensating manoeuvre fulfillment errors. One of the algorithms for the 
determination of manoeuvre initialization in closely located satellite 
formation flying procuress was described in the work of Baranov, 
Boutonnet, Escudier, and Martinot (2005, 913-920). 

As a rule, the satellites make the desired formation flying manoeuvres 
with the help of low-thrust engines. The method determining such 
manoeuvres is presented in Chapter 6. This method is simple and reliable 
enough to be used during the design of onboard algorithms for the 
determination of the manoeuvring parameters for in the initialization of 
satellite formation flying. 
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CHAPTER EIGHT 

STATION-KEEPING OPTIMIZATION  
FOR A SATELLITE CONSTELLATION 

 
 
 
The two main keeping strategies for the given configuration of a satellite 
constellation can be distinguished as absolute and relative. With absolute 
station-keeping, the motion of each satellite complies with some 
programmed motion, which allows an assessment of the manoeuvre 
parameters of each satellite to be performed independently from the 
locations of the other satellites in the constellation. Coordinated 
movements for all satellites from the constellation are ensured with 
relative station-keeping. It is considerably more economical than the 
absolute one, as there is no need for constant element correction in orbit, 
as they change in practically the same fashion for all satellites. For 
example, the semimajor axes of all orbits may decrease under the 
atmosphere influence practically in the same fashion, but the relative 
satellite angular distances, which determine the constellation 
configuration, will be almost constant. The considerable alterations of the 
semimajor axes do not have to be corrected, and only maintaining the 
slowly changing angular configuration of the constellation is required. 
Relative station-keeping is a more complex problem as it is necessary to 
take the positions of all other elements of the constellation into account 
during one of the satellite manoeuvre parameter calculations.  

8.1. Relative Station-Keeping for a Satellite Constellation 

8.1.1. Maintenance Problem Statement 

This chapter considers the manoeuvre parameter determination 
problem, in which the keeping of the given satellite constellation 
configuration is ensured. The satellites are situated on several circular 
orbits, which have the same radii and inclinations, but different values of 
RAANs. The relative deviations between the satellites and their nominal 
values by the latitude argument u, the RAAN , and the inclination i are 
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required to be smaller than the given values of u , , and i  on the 
fixed time interval (the station-keeping interval). The constraints of the 
minimum and maximum magnitudes of the manoeuvres, as well as the 
number performed within the fixed time interval, should be taken into 
account; the constant expenditure of fuel by the satellites from the 
satellite constellation should also be considered. 

The satellite orbit elements are not fixed, and only their relative 
angular distances, which determine the constellation configuration, are 
important. Thus, relative constellation configuration keeping is considered.  

8.1.2. Calculation for the Basic Orbit Elements 

We will denote the base orbits as orbits, where the differences in their 
values for controlled parameters comply with the nominal values. If 
elements ( iu ,, ) for one of the base orbits are known, then the elements 
for all other base orbits are determined unambiguously from the nominal 
satellite location conditions.  

For example, let us consider the 6-satellite constellation (STARSYS). 
The initial conditions are listed in Table 8-1 (Bernussou, Brousse, 
Dufour, Foliard et al. 1997). The nominal latitude angular distances 
between the satellites in one plane are 180du , and the locations of the 

satellites in the different planes differ by 120mu .  
 

Table 8-1 
 

Satellite a km i deg  deg u deg 
11 7,377.178 52.9992 0.057 10.043 
12 7,377.004 52.9994 0.134 189.913 
21 7,378.914 52.9995 120.025 130.085 
22 7,379.607 53.0010 119.945 310.057 
31 7,378.106 52.9998 240.011 250.120 
32 7,378.647 52.9989 239.925 69.847 

 
Let us put all the satellites at one point, which, for example, 

corresponds to the position of satellite 11. For this purpose, we will subtract 
the nominal angular distances du  and/or mu  from the latitude arguments of 

the other satellites: 043.101111 uu
p

, 913.91212 duuu
p

, 085.102121 muuu
p

, 057.102222 md uuuu
p
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, 120.1023131 muuu
p

, and 847.936023232 md uuuu
p

. 

Let us find the value of the normalized base latitude argument bpu  with 
equal by magnitude maximum deviations from it. It can be easily seen that 

bpu  is equal to the arithmetic mean of the minimum and maximum values 

of pu . In this case, the maximum value is 
p

u31 , and the minimum value is 

p
u32 ; hence, 9835.9bpu . The maximum deviations are 

1365.0
0maxu . By knowing bpu  from the normalized base orbit, the 

latitude arguments of the base orbits of all satellites can be easily 
calculated. The nominal angular distances du  and/or mu  should be added 

for this purpose: 9835.911 bpuu
b

, 9835.18912 dbp uuu
b

, 

9835.12921 mbp uuu
b

, 9835.30922b
u , 9835.24931b

u , and 

9835.6932b
u . A similar procedure is also applied for the determination 

of the base values of the RAANs. By substituting 0d  and 120m , 

we get 0295.011b
, 0295.012b

, 0295.12021b
, 

0295.12022b
, 0295.24031b

, and 0295.24032b
. The base 

value of the inclination is easier to find; it is the same for all satellites in the 
constellation and is 99995.52bi . Thus, the elements of all base orbits in 
the initial moment of time are found.  

A similar algorithm is applied if the satellite planes are distributed on 
nonequal but known nominal angular distances from each other. The 
transition to the elements of the normalized base orbit is convenient 
because we can only deal with one value of each kind of element despite 
the number of satellites in the constellation. These parameters determine 
the positions of all base orbits. 

8.1.3. The General Algorithm for the Maintenance  
Problem Solution 

It can easily be seen that if the maximum deviations between the 
controlled elements of the orbits and the calculated values of the 
corresponding elements of the base orbits are less than half of the keeping 
accuracy of the constellation configuration, then the relative deviations of 
the controlled elements of an arbitrary pair of satellites will be less than the 
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given values of iu ,, , which is necessary according to the problem 
conditions. It is suggested that at the beginning of the station-keeping 
interval the constellation configuration meets the given constraints. The 
goal of the fulfillment of the manoeuvre is to ensure that these constraints 
will be met at the whole station-keeping interval. 

Since the dependencies between the u,  and time are close to the 
linear nature for the near-circular orbits, then the dependency between the 
mutual deviations of these elements and time is also close to the linear 
nature. This suggests that, if at the beginning and at the end of the station-
keeping interval the satellite-controlled parameters deviate from the 
corresponding parameters of their own base orbits by a value lower than the 
half of the necessary constellation station-keeping accuracy then this 
constraint is also fulfilled inside the station-keeping interval. If this 
constraint is fulfilled for all orbit elements of each satellite from the 
constellation then the mutual deviations by each of the controlled 
parameters of the orbits between two arbitrary satellites will not exceed the 
permitted values ( iu ,, ). For brevity, the vicinities of the base orbit 

elements 
2

,
2

uu , 
2

,
2

, and 
2

,
2

ii
 we will denote as 

2
,

2
. 

Thus, the control problem for the mutual deviations on all station-
keeping intervals is equivalent to the simpler problem of the transfer of 

each satellite to the vicinity 
2

,
2

 of their base orbit at the end of the 

station-keeping interval.  
This suggests using the following algorithm for the problem solution 

(Baranov and Baranov 2009, 48–54). A point in the space of elements of 
the normalized base orbit in the end of the station-keeping interval is 
chosen. The elements of the base orbits for each satellite in this moment 
are determined. The impulse parameters, which ensure the optimal (by the 

total delta-v expenditures) transfer to the vicinity 
2

,
2

 of the base 

orbit, are calculated for each satellite. The value of the problem functional, 
which corresponds to the given point of the space of elements of the 
normalized base orbit, is determined. The functional alteration in 
comparison with its value in the previous point is analyzed and the transfer 
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to the next point in the space of elements of the normalized base orbit is 
fulfilled. 

The parameter searching process for the optimal base orbit at the end 
of the station-keeping interval (the transfer to the next point) can be 
fulfilled with, for example, the help of the numerical method and the 
polytope method (Himmelblau, 1975), or by a simple enumeration with a 
constant step, since the search area is relatively limited. 

The procedure ends when the optimal position of the normalized base 
orbit is found at the end of the station-keeping interval. The manoeuvre 
calendar, which ensures satellite transfers to the vicinity of the base orbits 
that correspond to this point, will be the problem solution.  

The supposition about the control sufficiency of the constellation status 
at the beginning and the end of station-keeping interval means that only the 
information about its orbit and elements of the base orbits during the initial 
manoeuvre parameter determination of each satellite are used and that it 
does not take the other satellite motion into account, which simplifies the 
problem considerably. The information about the motions within the 
constellation is used for the manoeuvre calendar update, if some of the 
constraints are not met, such as when the number of satellites performing 
the manoeuvres on one revolution exceeds the permitted one.  

In order to find the initial point for the minimization process, the initial 
conditions of all satellites are adjusted at the end of the station-keeping 
interval and the values of the controlled parameters iu ,,  are determined. 
By subtracting the nominal difference between the RAAN and latitude 
arguments, the parameters are adjusted to the vicinity of the corresponding 
values of one of the satellites (a similar procedure to find these values was 
described above). Then the mean arithmetical inclination values, the 
normalized latitude arguments, and the RAANs, which are used as the 
initial point for the minimization of the parameters of the normalized base 
orbit in space, are calculated.  

The parameters of the normalized base orbit are optimal if the 
functional is minimal (Baranov and Golikov 1999, 482–485):  

 
n

j j

j

V

V
F

1

    (8-1) 

 
where n = number of satellites, jV  = impulse for j-th satellite, and 

jV  = sum impulse, which is necessary for the transfer of this satellite to 
the vicinity of its base orbit. The minimization of such a functional equally 
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distributes fuel expenditures between the satellites. The functional 
minimization suggested by G.V. Mozhaev also ensures the uniform 
distribution of expenditures: 
 

.1

1
*

n

j jj VV
F    (8-2) 

 
The application of this functional is especially effective when the 

satellites are low on fuel. Naturally, solutions with 0*
jj VV  are not 

considered. Other functionals can be used in which jV and jV  are 

present, or the functional of the conventional type jVF  can be 

minimized. 

8.1.4. Manoeuvre Parameter Determination 

During the manoeuvre parameter determination, it is supposed that just 
the transversal and the lateral components of impulses are used, as it is 
enough to only have these two variables in combination with the optimal 
angle of the impulse application to ensure the satellite transfer to the 
required point in space iu ,,  with the help of a single manoeuvre. 

Taking eqs. 1–12.d, 7-11, and 7-25 into account, the equation system 
for the determination of the impulse application point latitude argument 

ju  and its transversal and lateral components 
jtV  and 

jzV  will be as 

follows: 
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where jjj iu ,,  = deviations between the controlled parameters of j-
th satellite, calculated at the end of the station-keeping interval and the 
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parameters of the base orbit in this point; ju  = impulse application point 

latitude argument; and jU  = angle between this point and the point at 
which the deviations are calculated.  

The single-impulse scheme will be considered, since the decrease of 
the used impulse number is also important for the station-keeping process, 
as well as the problem functional minimization, and the corrected 
deviations and the impulses are usually small. However, if the keeping of 
the initial deviation by i, or even its increase, allows decreasing the 
deviation by , and hence jV , then it will be optimal to use the two-
impulse scheme for the transfer from the first paragraph of Chapter 7.  

If the impulse magnitude is greater than the permitted one, then it is 
divided into several impulses applied on the different revolutions. If the 
impulse magnitude is less than the permitted one, then the impulse 
application point can be shifted to the revolution with the greater number; 
this will lead to a transversal component increase. If the constraint violation 
of one of the parameters happens before the minimum impulse application 
moment, then it is applied before the constraint violation and then the 
sliding mode may occur. 

If only the inclination is corrected, the impulse is applied on the equator, 
but if only the RAAN is corrected and the satellite constellation is located 
on the considerable distance from the Earth (see the first paragraph of  
Chapter 7), then the impulse is applied in the orbit apex or vertex. These 
are the optimal points for the correction of the corresponding parameters. 
The number of the revolution, on which the impulse is applied, does not 
matter. If only the position along the orbit is corrected, then the impulse is 
applied at the apsidal point, which provides the maximum orbit eccentricity 
decrease. Herein the impulse is applied on the revolution, which is the 
nearest to beginning of the constellation configuration keeping interval.  

If both deviations by the latitude argument and by the RAAN or the 
deviation by the inclination are corrected, then the impulse is applied in the 
orbit apex or vertex or on the equator of the closest to the beginning of 
station-keeping interval revolution. The point is chosen according to the 
capability of the orbit eccentricity decreasing in this particular case. 

If during the constellation configuration keeping process or during its 
initialization the orbit of one of the satellites obtains a considerably high 
eccentricity value, it may need to be corrected. In this case, the two 
impulses should be used in order to optimally correct all orbit elements. 
Firstly, the impulse components and the optimal angle of the orbit plane 
rotation are found from Eq. 8-3, and then the parameters of the two 
impulses are determined with the help of the equations for the optimal 
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transfer between the close near-circular orbits. The deviation of the 
semimajor axes a  used in these equations can be evaluated as follows: 

 

,2
0V

V
aa jt

    (8-4) 

and the angle of the needed orbit rotation can be determined by  
 

,
0V

V
jz

    (8-5) 

 
where 

jj zt VV ,  = impulse components, which was determined using 

Eq. 8-3. 

8.1.5. Iterative Procedure Application 

With the help of iterative procedure (which is similar to the procedure 
from the first chapter), the impulse parameter update is fulfilled in order to 
adjust the base orbit parameters with the necessary accuracy. Each satellite 
is considered separately at this stage. 

The target orbit used in the iterative procedure coincides with the base 
orbit on the first iteration. After the determination (in the linear notation) 
of the parameters of the impulses, which shape the target orbit, the 
numerical (L'vov and Stepanyantz 2000, 9–14) or analytical numerical 
(Golikov 1990; 2008) propagation of the satellite motion for the accurate 
determination of the parameters of almost any shaped orbit at the end of the 
station-keeping interval is fulfilled. (Due to the large number of the 
satellites which can be in the constellation, the long station-keeping 
intervals, and the multiple prognosis application, the use of the numerical 
analytical prognosis is, undoubtedly, preferable for this problem). The 
deviations between these parameters and those of the base orbit are 
determined; if these deviations are greater than the acceptable ones, then the 
target orbit parameters are altered by the magnitudes of the calculated 
deviations. Then the impulse parameters, which should shape the new 
target orbit, are calculated, and then the deviations between the shaped 
orbit and the base orbit are calculated, etc. The process continues until the 
deviations will not be lower by K times the needed accuracy of the 
constellation configuration keeping (usually K = 10). This procedure, 
which allows eliminating the inaccuracies of the linear approach during the 
impulse determination, is repeated for every satellite from the constellation. 
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Despite the small impulse magnitude, the use of iterative procedures is 
necessary, since station-keeping intervals may be very long, and small 
errors in the impulse magnitude may lead to considerable deviations in the 
destination point. 

8.1.6. Target Point Selection 

The choice of the base orbit as the target point is the simplest one and 
ensures fulfillment of the terminal condition. However, it is often 
preferable to use the closest boundary to the permitted diapason as the 
target point, and not its middle part (Baranov and Baranov 2009, 48–54). 
This decreases the V  expenditures and increases the corrected orbit 
element in the permitted diapason duration stay, because this element can 
change from one boundary to another through the whole permitted 
diapason, but not half of it.  

For example, let us consider the latitude argument alteration for the 4-
satellite constellation. Figure 8-1 shows the normalized latitude arguments 
in the initial station-keeping moment 

pppp
uuuu 4321 ,,,  and in the final 

moment 
pfpfpfpf

uuuu 4321 ,,,  (if the correction was not fulfilled). The point 

bpu  corresponds to the latitude argument of the normalized base orbit in 

the initial moment, and the point 
fbpu  corresponds to the selected value of 

the base orbit latitude argument in the final moment of time. The 
permitted swath (the permitted diapason) is restricted by dashed-and-
dotted lines, which intersect the points 0d  and fd , as well as 0b  and fb  (

ubuudbuud fbpbpfbpbp ff
5.000 ). 

The satellite latitude argument alteration by time and without their 
motion correction is shown with dashed lines. The latitude argument 
alteration after the manoeuvre fulfillment is shown with solid lines. As can 
be seen, the closest boundary of the permitted diapason was chosen as the 
target point, and not the base orbit latitude argument 

fbpu .  

According to Eq. 8-3a, the expenditures on the correction of the 
deviation by the latitude argument u are proportional to the magnitude of 
this deviation. Hence, the expenditures needed for the correction of all 
deviations by u are proportional to the sum of the distances from the 
points 

pfpfpfpf
uuuu 4321 ,,,  to the target points. 
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Figure 8-1. Satellite latitude argument alteration on the station-
keeping interval. The alteration of latitude arguments before manoeuvre 

fulfillment are depicted by dashed lines, and the alteration of latitude 
arguments after manoeuvre fulfillment are depicted by solid lines. 

 
We will denote that cuubuuauu

pfpfpfpfpfpf 422331  , , . If 

the latitude argument of the normalized base orbit ],[ 23 pfpff
uuubp  is the 

target point for all the satellites, then the sum of the distances to this point 

ff bpip uu  is equal to cba 2  and does not depend on the location 

of the point 
fbpu  on the interval (

pfpf
uu 23 , ). This is a very important 

peculiarity, which can be used effectively. For example, if one of the 
boundary points, 

pf
u3  or 

pf
u2 , is taken as 

fbpu , then the corresponding 

satellite will not have to manoeuvre; hence, the total number of used 
impulses decreases without the alteration of the manoeuvre total delta-v. 
The interval for the search for the optimal value of 

fbpu , which is 

necessary to search for in the diapason ],[ 23 pfpf
uu , also considerably 

decreases.  
If the point 

fbpu  is shifted by x from the interval (
pfpf

uu 23 , ), but still 

belongs to the interval (
pfpf

uu 14 , ), then the sum will be xcba 22 . If 

the point 
fbpu  is chosen in a way that neither point 

pf
u3  nor point 

pf
u2  

belong to the interval ( ff bd , ), and the target points are the nearest to the 

boundaries fd  and fb  (like in Fig. 8-1), then the sum will be 

ucba 22 , and it still does not depend on the concrete location of 
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point 
fbpu . Thus, the usage of the boundaries fd  and fb  as target points 

helps to decrease the V  by a magnitude of 03
2

V
U
u . The duration of the 

stay in the permitted diapason after the station-keeping interval (since drift 
will occur in the direction set by the correction, i.e., from the closest 
boundary to the permitted diapason to the furthest) also increase. The 
disadvantage of the boundary usage as the target point is the increase in 
the probability of crossing the limits of the permitted diapason inside the 
station-keeping interval. This is mostly probable, when the solid line is 
close to the dashed-and-dotted line, i.e., when the initial and the final 
points lie on one side from the line 

fbpbpuu . These are the lines fdu
p1  

and fbu
p4  in Figure 8-1. Let us draw the real alteration of the latitude 

argument of the first satellite with a dotted line. As can be seen, inside the 
station-keeping interval the satellite gets out of the permitted diapason by 
the maximum value h. In order to eliminate this violation, the target point 
can be moved by the corresponding value inside the permitted diapason. 
The determination of the boundary violation of the permitted diapason and 
the shift of the target point are carried out during the process of the 
iterative fulfillment of the terminal conditions. It is worth mentioning, 
that, by benefiting from the number of impulses (when one of the satellites 
does not manoeuvre), we lose the duration of the station-keeping because 
the satellite will be outside of the given diapason after the end of the 
station-keeping interval. But, if the satellite is low on fuel and it is 
undesirable to manoeuvre, then the manoeuvre-avoiding option becomes 
the key. 

It can also be shown that, if the manoeuvre number is uneven, then it is 
optimal to bring the latitude arguments of all satellites to the vicinity of 
the latitude argument of the “inner” satellite (the big and small values of 
the latitude arguments have an equal number of satellites). If we drop the 
fourth satellite in Figure 8-1 (we leave three satellites in the constellation), 
then the latitude arguments of the first and the second satellites should be 
brought to the vicinity of point 

pf
u3 . 

Sometimes it is suggested to choose one of the satellites and 
synchronize the motion of the other satellites in the constellation to it (to 
choose “the leader”). In this case, all maintained parameters of the other 
satellite orbits accord with the leader-satellite orbit parameters. But, as the 
aforementioned example shows, it is optimal to bring each orbit parameter 
of the satellites to the “inner” value of this parameter. The “inner” values 
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of the different parameters may belong to various satellites. Thus, it is 
optimal to choose the fictive satellite as the leader with the maintained 
orbit parameters as the “inner” parameters relating to various satellites de 
facto. This is a simplified approach, but it shows the possible 
nonoptimality of the concrete satellite choice as the leader-satellite. The 
parameters of such a fictive satellite may be used as the initial guess for 
the numerical search of the optimal values, to which it is necessary to 
bring all the satellite parameters. It is worth remembering that the values 
of all parameters are calculated at the end of the station-keeping interval, 
and not at its beginning. And that this is the moment when the parameters 
of the fictive satellite are determined. 

8.1.7. Manoeuvring Interval Determination 

Figure 8-1 reveals the speed of the deviation correction using the 
latitude argument for the chosen position of the normalized base orbit at 
the end of the station-keeping interval 

fbpu . The extreme points of the 

manoeuvre are the intersection points of the dashed and dash-and-dot lines 
(point L, point K, point M, and point N). The closest boundary of the 
permitted diapason cannot be used as the target point during the 
manoeuvre at these moments of time, because the solid line will coincide 
with the boundary dash-and-dot line, and the probability of leaving the 
permitted diapason will be high. 

The orbit inclinations i practically do not alter on the whole station-
keeping interval. It is necessary to quickly bring it to some average value 
(which will also decrease the absolute values of the deviations by i) in 
order to prevent the secular drifts by . For some satellites, it is worth 
refraining from correcting the inclination, if the keeping of the initial 
deviation by i will decrease the initial deviation by . 

Figure 8-2 shows the possible alteration of  for each of four 
considered earlier satellites. The alteration of  after the latitude 
argument and inclination corrections is plotted with dashed lines. It is 
obvious that, for the third and the fourth satellites with the chosen value of 

fbp , the correction  may not be conducted, since the values of 
pf3  

and 
pf4  occur in the permitted diapason ( ff bd , ).  
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Figure 8-2. Alteration of satellite RAANs on the station-keeping 
interval. The alteration of RAANs is shown as a dashed line (before 

manoeuvres) and a solid line (after manoeuvres). 
 

For the first satellite, the dashed line 
pfp 11  intersects the boundary 

of the permitted diapason (the dash-and-dot line fdd0 ); therefore, it is 
necessary to alter  before the critical point K. It is necessary to do this 
in the initial moment by combining the corrections of the other deviations, 
which lead to the decrease of the impulse number, and manoeuvre V . 
The change of  has a “leaping nature”, and the new value after the 
impulse will be 

pm1 , and the line 
pmfpm 11 , which belongs to the 

permitted area, corresponds to the later alteration. The point inside the 
permitted diapason ( ff bd , ) was chosen as the target in order to prevent 
the constraint violation immediately after the station-keeping interval 
ends. 

The situation stays the same for the second satellite, but the alteration 
of  in the initial moment is limited by the value 

p
d 20 , which is why 

it is necessary to conduct the new correction of  in the point M.  
The impulse parameter search procedure is repeated for every satellite, 

until all satellites from the constellation will not be able to have their 
parameters brought to their base orbits. 

The near-optimal solution can be obtained with the help of numerical 
methods. However, it is practically impossible to account for the 
aforementioned physically understandable options for the V  decrease 
and the number of impulses while using numerical methods (as a rule, the 
simplex method should be used [Bernussou, Brousse, Dufour, Foliard et 
al. 1997; Bernussou, Dufour, and Lasserre 1996, 169–174; Fedorov, 
Malyshev 2001, 45–46), since the deviations are checked at equally distant 
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moments of time and not in moments when the actual station-keeping 
constraint violations occur.  

After determining the full manoeuvre calendar, the constraint 
fulfillment is checked for all the satellites from the constellation inside the 
station-keeping interval. The first priority is to control the constraint 
fulfillment for the total number of manoeuvres during the given 
manoeuvring interval. If the manoeuvre number exceeds the given value, 
the exceeding part is transferred to a later time. The first priority is to 
perform the manoeuvres without the transversal impulse component 
(because they can be conducted on any revolution), while the second 
priority is performing satellite manoeuvres with considerable fuel 
consumption and impulses close to the minimum possible magnitudes. 
When the manoeuvre calendar is formed, the combined integration of the 
equations of motion for all the satellites is conducted taking the calculated 
impulses into account. The maximum deviations of the controlled 
parameters inside the station-keeping interval are estimated. If the 
assumption about the linear dependency of the deviations is not accurate 
enough, and the corrected orbit elements exceed the permitted ones for 
some satellite deviations, then the target points for these elements are 
shifted or additional impulses, which decrease these deviations, are 
calculated.  

The value of the functional F is determined for the fully prepared 
manoeuvre calendar and the decision about stopping the problem solution 
is made, or the new values of the normalized base orbit elements are 
adjusted, and then the manoeuvre calendar determination procedure, which 
would correspond to this orbit, is repeated.  

8.1.8. Examples 

Table 8-2 shows the results of the manoeuvre calendar determination 
(Baranov and Baranov 2009, 48–54) for the satellite constellation; the 
initial conditions of which can be found in Table 8-1.  

The configuration of the constellation was maintained for an interval 
of six months; the deviations of the controlled parameters should not 
exceed 1.0 . The sum keeping expenditures are m/s 485.2V .  

As can be seen from the table, the only deviation is corrected by the 
latitude argument; the deviations of i and  stay in the permitted 
diapason even without the corrected impulse application. The position of 
the base orbit at the end of the keeping interval was chosen so that satellite 
31 was not manoeuvring at all. 
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Table 8-2 
 

Satellite Rev ui deg Vt m/s Vz m/s 
11 3 330.4 0.476 0.0 
12 2 150.5 0.528 0.0 
21 4 151.7 -0.418 0.0 
22 1 331.2 -0.801 0.0 
31 6 35.7 0.0 0.0 
32 5 330.5 -0.261 0.0 

 
The manoeuvre calendar determination method considered in this 

paragraph ensures the satellite station-keeping for the time interval from 
several days to twenty-four months. The problem peculiarities are taken 
into account during the calculation, which allows using the minimal 
manoeuvre number and performing them during optimal moments of time. 
The method is primarily suitable for the calculation of the satellite 
constellation station-keeping manoeuvres at altitudes of 800 to 1,500 km, 
but the deviation by the latitude argument correction strategy is also 
applicable for satellite constellations at altitudes of approximately 20,000 
km, since it has a universal nature. 

The algorithm presented by Y.P. Ulybyshev can be used for the 
manoeuvre parameter determination of the satellite constellation 
configuration relative station-keeping at high altitudes, when, for example, 
the solar and lunar attractions are considerable (Ulybyshev 1998, 109–
115). In the works by G.V. Mozhaev (Mozhaev 2001, 634–647) and R.F. 
Murtasin (Murtazin 1998, 173–182), problems similar to the one 
investigated in this paragraph are considered. It was supposed in these 
works that the manoeuvres are performed in the initial (Mozhaev 2001, 
634–647) or the initial and final moments of time (Murtazin 1998, 173–
182). The constellation status was not controlled in the interim moments. 
A comparison between the relative and the absolute station-keeping 
strategies was conducted using concrete satellite constellations as 
examples. It was shown that the relative station-keeping needs fewer 
manoeuvres and less total delta-v expenditures. 

8.2. Absolute Station-Keeping for a Satellite Constellation 

8.2.1. General Solution Scheme 

Despite the costs of absolute station-keeping, it is used far more often 
in real satellite constellations, where the station-keeping motion of each 
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satellite is accorded with some programmed motion. This allows the 
manoeuvres of each satellite to be estimated independently from the other 
satellite motion in the constellation. During the station-keeping, the 
satellite parameters must belong to the given diapason via each of the 
controlled orbit elements (which must be within the given dimensions). 
When the satellite reaches one of the boundaries of the box during the 
process of its evolution, it is transferred to the opposite boundary by the 
manoeuvres. The periodicities of the transfer by various elements may 
significantly differ. For example, in low earth orbits we have to increase 
the altitude far more often than correct the other elements. When we 
correct an orbit element which has reached its limit, this does not mean we 
do not have to correct the other maintained orbit elements. It is optimal 
that, in this moment, the other orbit elements are corrected proportionally 
to their sum alterations on the whole station-keeping interval. The 
algorithms described in the previous chapters may be used for the 
manoeuvre determination close to both the impulse and long-duration 
manoeuvres. As a rule, they are the transfer manoeuvres described in 
Chapters 2 and 6.  

8.2.2. Maintenance of the Semimajor Axis and Inclination 

Let us consider the problem of the spacecraft orbit semimajor axis and 
inclination keeping (Baranov and Wang 2015, 68-83) in a two given 
vicinities–– ],[ aa , ],[ ii ––with their nominal values ( 00 ,ia ) at the 
given time interval kT  (e.g. one year). 

Three stages can be distinguished within the solution to spacecraft 
operational orbit station-keeping problem: the parameter selection of the 
“rational” orbit on which the spacecraft will start functioning; the 
determination of the moment of exceeding the constraints by the 
operational orbit parameters; and the parameter determination of the 
manoeuvres that transfer the spacecraft to “rational” orbit. 

We will call this a “rational” orbit, which stays for the longest time 
within the permitted vicinity of the nominal orbit during the evolution 
process. In order to determine the parameters of the rational orbit, it is 
necessary to investigate the evolution of the maintained orbit. The figures 
in section 8.2.3 show the dependencies between the alterations of the 
maintained elements and eccentricity, as well as the time required for 
various orbits. All orbit elements suffer from short period alterations, and 
the eccentricity and the inclination also  periodically alter within 
sufficiently greater magnitudes. These are several times smaller than the 
station-keeping interval. The monotonous decrease of the semimajor axis 
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takes place for orbits sensitive to atmospheric drag; a continuous decrease 
of the inclination takes place for sun-synchronous orbits. 

If there are no strict demands for the accuracy of the given orbit 
keeping, there is no need “to fight” with the short-period perturbations. If 
there are no severe constraints on the given orbit station-keeping accuracy, 
then there is no sense in reacting to the short period perturbations. 
However, they need to be accounted for when choosing the “rational” 
orbit in order to not cross the upper boundary of the permitted diapason in 
the short time interval. For example, it is desirable to put the “rational” 
orbit semimajor axis rationala  as the maximum value of the maintained 
orbit semimajor axis minus the value of the doubled magnitude of the 
short-period alteration of the semimajor axis 

pka (the shift) plus several 

per cent from this value, and minus ma  =  the methodical accuracy of 
the orbit elevation problem solution. 

 
.)05.01(20 mkrational aaaaa

p
  (8-6) 

 
Thus, in the initial moment the “rational” orbit semimajor axis is close 

to the upper permitted boundary, but this is slightly lower for the 
prevention of the constraint on the maximum value violation of the 
operational orbit semimajor axis due to the short-period perturbations. The 
shift is approximately 250 m for the orbits with the altitudes from 270 to 
1,100 km. The similar shift values are 001.0  for the inclination and 
0.0005 for the eccentricity. Subsequently, the orbit semimajor axis will 
reach its lower boundary by decreasing under the atmospheric drag 
influence. 

In the program which determines the station-keeping manoeuvre 
parameters, the numerical integration of the spacecraft equations of 
motion is fulfilled on the first stage with the use of the exit function, 
which controls the constraint on the semimajor axis magnitude in the 
ascending node of the orbit; the inclination value is also controlled and the 
short-period oscillations of both element magnitudes are determined. It is 
preferable to have the orbit parameters close to the “rational” orbit 
parameters in the initial moment of time. For example, when the constraint 
on the semimajor axis lower value is reached, the exit out of the 
integration occurs. The parameters of the manoeuvres, which alter the 
semimajor axis, are evaluated in order to return its value to that of the 
“rational” orbit semimajor axis. It is optimal to correct the inclination in 
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this moment proportionally to its sum alteration on the whole station-
keeping interval. 

Let us assume that after the time T  from the beginning of the 
station-keeping (or from the previous elevation) the orbit elevation 
necessity occurred again. The inclination is changed by the angle i  for 
the time T . The time T remains before the end of the station-keeping 
interval. It can be assumed that the inclination will be more altered by the 
angle TTii /*  for the time left. The total inclination alteration 
will be ii*  by the end of the station-keeping interval. Let us put mi  
as the maximum permitted inclination alteration on the station-keeping 
interval TT  ( nm iiii 0 , ni  = inclination in the beginning of 
the interval T ; the sign of i  is chosen so that the signs of i  and mi  
will coincide). Thus, the exceedance, which is necessary to correct the 
interval TT , is mk iiii * . The exceedance part, which 
needs to be combined with the altitude elevation, is )/( TTTik . 
Thus, in this moment, it is essential to correct the deviation of Ti  (not 

i ) along with the altitude increase: 
 

.
TT

T
iii mT    (8-7) 

       
If 

 

,
TT

T
ii m    (8-8) 

 
then the inclination may not be corrected. When condition 8-8 is not 
fulfilled and the semimajor axis correction needs to be combined with the 
inclination correction, it is essential to perform the manoeuvres in the 
vicinity of the equator. 

When the inclination is not corrected and only the semimajor axis 
increase needs to be fulfilled (which may be corrected at any point of 
orbit), its eccentricity may be decreased by placing the altitude increase 
manoeuvre in the orbit apocenter. 

The manoeuvring always starts on the revolution before the one where 
one of the parameters goes out of the boundaries of the permitted 
diapason. 
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After the manoeuvre calculation and modeling, the numerical 
analytical prognosis for the newly formed orbit will be fulfilled again and 
the next moment of the operational orbit parameter boundary violation 
will then be found. The process ends when the given time of the station-
keeping interval ending is reached. 

One variant of orbit absolute keeping with the help of low-thrust 
engines will be considered in paragraph 8.2.5. 

8.2.3. Orbit Evolution Features 

The real orbit element alteration needs to be found in order to select 
the correct station-keeping strategy. With the help of the numerical 
analytical integration of the equations of motion and “THEONA” 
(Golikov 1990; Golikov 2008), the dependencies of the element alteration 
of the various orbits were obtained. Figures 8-3–8-11 show graphs of the 
obtained semimajor axes alterations, as well as the eccentricity and the 
inclination for orbits with an initial altitude of 700 km, which have the 
initial inclinations 6.51 , 8.63 , and 98 for the following time intervals: 
3 revolutions, one week, and one year. 
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Short-period inequalities for 3 revolutions 

 
Short-period inequalities for 1 week 

 
Short-period inequalities for 1 year 

 
Figure 8-3. Orbit semimajor axis evolution  

(Inclination 51.6°) 
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Short-period inequalities for 3 revolutions  

 
Short-period inequalities for 1 week 

 
Short-period inequalities for 1 year 

 
Figure 8-4. Orbit eccentricity evolution  

(Inclination 51.6°) 
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Short-period inequalities for 3 revolutions 

 

 
Short-period inequalities for 1 week 

 

 
Short-period inequalities for 1 year 

 
Figure 8-5. Orbit inclination evolution  

(Inclination 51.6°) 
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Short-period inequalities for 3 revolutions 

 

 
Short-period inequalities for 1 week 

 

 
Short-period inequalities for 1 year 

 
Figure 8-6. Orbit semimajor axis evolution  

(Inclination 63.8°) 
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Short-period inequalities for 3 revolutions 

 

 
Short-period inequalities for 1 week 

 

 
Short-period inequalities for 1 year 

 
Figure 8-7. Orbit eccentricity evolution  

(Inclination 63.8°) 
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Short-period inequalities for 3 revolutions 

 

 
Short-period inequalities for 1 week 

 

 
Short-period inequalities for 1 year 

 
Figure 8-8. Orbit inclination evolution  

(Inclination 63.8°) 
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Short-period inequalities for 3 revolutions 

 

 
Short-period inequalities for 1 week 

 

 
Short-period inequalities for 1 year 

 
Figure 8-9. Orbit semimajor axis evolution  

(Inclination 98°) 
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Short-period inequalities for 3 revolutions 

 

 
Short-period inequalities for 1 week 

 

 
Short-period inequalities for 1 year 

 
Figure 8-10. Orbit eccentricity evolution  

(Inclination 98°) 
 

 EBSCOhost - printed on 2/13/2023 10:43 PM via . All use subject to https://www.ebsco.com/terms-of-use



Chapter Eight 
 

 

350

 
Short-period inequalities for 3 revolutions 

 

 
Short-period inequalities for 1 week 

 

 
Short-period inequalities for 1 year 

 
Figure 8-11. Orbit inclination evolution  

(Inclination 98°) 
 

The spacecraft orbit elements change under the influence of the gravity 
field, the Earth’s atmospheric drag, and the Sun and Moon’s gravity fields.  
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8.2.4. Analytical Orbit Propagation 

In a number of cases, there is a necessity for the simplest analytical 
assessment of the orbit element alteration. These questions were 
sufficiently investigated in works by various authors. 

The spacecraft orbit altitude constantly decreases due to the 
atmospheric drag. The altitude alteration h can be estimated with the help 
of the approximate equation for the small eccentricity value orbits 
(Vallado, 2007): 

 
,/ scx maSCh    (8-7) 

 
where xC  = drag coefficient; S = spacecraft cross-section, 2m ; scm  = 
spacecraft mass, kg;  = atmospheric density on spacecraft flight altitude,

3kg/m ; a = orbit semimajor axis, km;  = 398,603; and the Earth’s 

gravitation constant, 23/skm . Let us consider the calculation example of h 
with the help of the aforementioned equation with the use of the 
atmospheric density model NRLMSISE-00 for the following inputs: S = 
2.5 2m , a = 6,890.396 km. The current value of the solar activity index 
F10,7 coincides with the average value and is equal to 125 units; the 
average value of the geomagnetic index is ap = 12.0. By neglecting the 
dependency between the atmospheric density and the time and latitude, 
one can calculate the atmospheric density (Baranov and Wang 2015, 68–
83) on the altitude h = 512,396 km, which turns out to be equal to 

313 kg/m 1018.2 , and m/day 2.13m/s 1053.1 4h .  
The Sun always stays on one side of the sun-synchronous orbit and its 

attraction leads to the orbital plane position alteration, i.e., it changes the 
orbit inclination. In case of sun-synchronous orbits. the expression for the 
secular perturbations of the inclination i can be found by (Cour-Palais and 
Kessler 1978, 2637–2646): 

 

)22sin()cos1(sin
16
3 2

2

ss
s uii
n

n
dt
di   (8-8) 

 
where, si  = solar declination; su  = solar right ascension; sn  = solar mean 
angular velocity;  = RAAN; and n = spacecraft mean motion. If the 
solar local time is 21:00, then 9022 su  and, for a sun-synchronous 
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orbit with latitude km 396.512h , /year04.0/ dtdi . The orbit 
inclination decreases due to the gravitational attraction of the Sun, which 
leads to the RAAN precession rate alteration:  

 

,cos
2
3 2

2 i
a
R

nJ
dt
d e    (8-9) 

 
where 2J  = the coefficient for the second zonal harmonic in the 
geopotential expansion and eR  = the Earth’s equatorial radius. In 
combination with the initial errors, this leads to a considerable deviation 
between the solar local time of the ascending node passage and the 
estimated active spacecraft lifetime. 

8.2.5. Sun-Synchronous Orbit Maintenance for a Microsatellite 

In this sun-synchronous orbit station-keeping problem, the 
microsatellite needs to be in the diapason with altitudes of 510–512] km. 
The solar local time (SLT) on the latitude 40  must be within the range of 
10 or 11 hours. The station-keeping is fulfilled with a seven year long 
interval. The manoeuvres are fulfilled with the fixed orientation of the 
thrust engines in the orbital coordinate frame.  

During the manoeuvre calculations, it is assumed that the orbit plane is 
not changed by the manoeuvres and the microsatellite in a relatively large 
diapason for SLT is ensured by the choice of an optimal initial inclination 
orbit.  

The problem solution process consists of the successive repetition of 
two stages.  

The numerical analytical propagation for the satellite motion was 
fulfilled in the first stage. The influence of the gravity field 8*8 and the 
dynamic atmospheric model were taken into account. During the 
prognosis process, the orbit altitude and the SLT were controlled. At the 
moment when the lower boundary reaches the permitted diapason in the 
ascending node by its altitude, the manoeuvre determination problem was 
used to determine the manoeuvre parameters, which transfer the satellite 
to the “rational” orbit. The iterative procedure from Chapter 1 was used 
for the calculations since a small orbit altitude alteration is needed, which 
can be achieved by using the manoeuvres in one revolution.  

The calculation results for the orbit station-keeping manoeuvres are 
listed below (see Tables 8-3–8-9).  
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Table 8-3 shows the initial orbit elements, the minimum and the 
maximum orbit altitudes, the pericenter argument, the inclination and the 
RAAN of the orbit, the revolution number, the latitude argument, the 
ballistic coefficient, and the initial condition’s date and time. 

Table 8-4 shows the characteristics of the microsatellite and its 
engines: thrust N, specific impulse, microsatellite mass kg, minimal time 
between the ending of one manoeuvre and beginning of another s, and 
minimal and maximum manoeuvre durations s. 

 
Table 8-3 

 
Orbital elements Initial orbit 

Hmin km 511.80 
Hmax km 511.83 
Uprg deg 0.1340 

i deg 97.5473 
gOMG deg 17.1900 

Nrev 1 
Ulat deg 0.1000 

Sball 0.78330000E-02
Date 2012.05.01 
Time 42,118.065 

  
Table 8-4 

 
Thrust Specific Impulse Weight T Tmin Tmax 
0.20 2,060.0 300.0 600.0 0.25 3,600.0 

 
Table 8-5 shows the solution parameters: the sum impulse including all 

manoeuvres, the total number of the orbit elevations, and the total number 
of performed manoeuvres.  

Table 8-6 shows the number for each manoeuvre; the revolution; and 
the latitude arguments of its beginning and ending; the yaw and the pitch, 
which form the thrust vector orientation; and the equivalent impulse 
magnitude. 
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Table 8-5 
 

dV Nlift Nman 
36.60 38.0 76.0 

 
Table 8-6 

 
Nman REVbg U_bg REVfn U_fn Yaw dVi 

1 1,082 9.28 1,082 55.27 0.00 
0.00 0.485 

2 1,082 189.28 1,082 235.27 0.00 
0.00 0.485 

3 2,223 58.74 2,223 103.37 0.00 
0.00 0.470 

4 2,223 238.74 2,223 283.37 0.00 
0.00 0.470 

5 2,861 162.50 2,861 213.34 0.00 
0.00 0.536 

6 2,861 342.50 2,862 33.34 0.00 
0.00 0.536 

… … … … … … … 

71 32,809 27.04 32,809 72.23 0.00 
0.00 0.476 

72 32,809 207.04 32,809 252.23 0.00 
0.00 0.476 

73 35,454 23.57 35,454 68.55 0.00 
0.00 0.474 

74 35,454 203.57 35,454 248.55 0.00 
0.00 0.474 

75 37,717 76.85 37,717 121.71 0.00 
0.00 0.473 

76 37,717 256.85 37,717 301.71 0.00 
0.00 0.473 

 
Table 8-7 shows the dates and times of the start and end of each 

manoeuvre, the duration in minutes, and the values of the microsatellite 
mass after the manoeuvres.  
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Table 8-7 
 

Nman DATE_bg TIME_bg DATE_fn TIME_fn dT Mass 
1 2012.07.11 74,827.5 2012.07.11 80,031.6 12.07 299.93 
2 2012.07.11 83,547.6 2012.07.11 84,756.3 12.15 299.86 
3 2012.09.24 101,629.0 2012.09.24 102,810.0 11.70 299.79 
4 2012.09.24 110,347.0 2012.09.24 111,535.0 11.80 299.72 
5 2012.11.05 102,743.0 2012.11.05 104,107.0 13.40 299.64 
6 2012.11.05 111,508.0 2012.11.05 112,830.0 13.36 299.57 

… … … … … … … 
71 2018.03.30 90,113.4 2018.03.30 91,306.9 11.89 295.02 
72 2018.03.30 94,835.0 2018.03.30 100,029.4 11.91 294.95 
73 2018.09.20 104,313.0 2018.09.20 105,501.0 11.81 294.88 
74 2018.09.20 113,033.0 2018.09.20 114,225.0 11.87 294.81 
75 2019.02.16 92,030.4 2019.02.16 93,217.8 11.79 294.74 
76 2019.02.16 100,750.0 2019.02.16 101,940.0 11.83 294.67 

 
Table 8-8 shows the distribution of the total delta-v expenditures 

versus years. Their inequality is connected with different solar activity 
levels. 

Table 8-9 provides information about the SLT for the beginning and 
ending station-keeping, as well as the orbit elevations 

 
 

Table 8-8 
 

Year 1 2 3 4 5 6 7 
dV i 6.77 8.80 7.68 5.73 2.84 2.85 1.89 
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Table 8-9 
 

Nrev DATE SLT Nrev DATE SLT Nrev DATE SLT 
1 2012.05.01 10.20 1,081 2012.07.11 10.26 2,222 2012.09.24 10.32 

2,860 2012.11.05 10.35 3,468 2012.12.15 10.38 4,272 2013.02.06 10.41 
4,896 2013.03.19 10.44 5,443 2013.04.24 10.46 6,035 2013.06.02 10.48 
6,857 2013.07.26 10.51 7,692 2013.09.19 10.54 8,209 2013.10.23 10.56 
8,680 2013.11.23 10.57 9,288 2014.01.02 10.59 9,970 2014.02.16 10.60 

10,548 2014.03.26 10.62 11,064 2014.04.29 10.63 11,688 2014.06.09 10.64 
12,539 2014.08.04 10.65 13,330 2014.09.25 10.67 13,846 2014.10.29 10.67 
14,332 2014.11.30 10.68 15,000 2015.01.13 10.69 15,760 2015.03.04 10.69 
16,383 2015.04.14 10.70 17,067 2015.05.29 10.70 18,192 2015.08.11 10.70 
19,134 2015.10.12 10.70 19,863 2015.11.29 10.70 20,926 2016.02.07 10.70 
22,005 2016.04.18 10.69 23,480 2016.07.24 10.67 25,090 2016.11.07 10.65 
26,852 2017.03.03 10.62 28,721 2017.07.04 10.58 30,743 2017.11.14 10.52 
32,808 2018.03.30 10.46 35,453 2018.09.20 10.35 37,716 2019.02.16 10.25 
38,838 2019.05.01 10.19 - - - - - - 

 
As can be seen, 36.6 m/s will be needed for the seven-year orbit 

altitude keeping, and the SLT changes in the diapason from 10.2 to 10.7 
hours. 

If necessary, the dispersion of the SLT during the microsatellite 
functioning process can be reduced due to the inclination correction. 

8.3. Station-Keeping for the Satellite Formation Flying 
TerraSAR-X–TanDEM-X 

The satellite formation flying (FF) “TerraSAR-X–TanDEM-X” can 
serve as an example of successful initialization and station-keeping with a 
high accuracy in the given satellite formation flying configuration. The 
Satellite “TerraSAR-X” (TSX) was launched on June 15, 2007, and the 
satellite “TanDEM-X” (TDX) was launched on June 21, 2010. The 
satellites were manufactured by the Astrium GmbH corporation. The 
project was initially financed by the German Federal Ministry of 
Economics and Technology, and the German Space Agency (DLR) was 
the satellite owner and operator. 

The satellite formation flying mission required the development of a 
high-accurate global digital model of altitudes, which is now used in 
scientific research and for commercial ventures. 
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8.3.1. Deployment of Formation Flying 

After the deployment, the TDX was 16,000 km away from the TSX 
along the orbit. The TDX transfer to the TSX vicinity was fulfilled from 
June 22 till July 19. It took 23 manoeuvres with total delta-v 6.5 m/s. The 
fuel economy was achieved thanks to the RAAN deviation correction with 
the help of the inclination alteration. This was presented in the previous 
chapter. The special space debris collision avoidance manoeuvres were 
fulfilled during the flight process (these are described in the following 
chapter). Due to the phasing manoeuvres, the TDX turned out to be 20 km 
distant along the orbit from the TSX. 

8.3.2. Safe Configuration for Formation Flying 

Even a relatively small deviation between the satellite orbit semimajor 
axes gradually leads to the considerable alteration of their relative 
positions along the orbit, and, hence, to the constellation collapse. In this 
case, the use of the different values of the inclinations or the semimajor 
axes also leads to the constellation configuration collapse due to the 
increase of deviation by RAANs. It is possible to ensure the safe and long-
lasting functioning of the closely positioned satellites in formation flying 
due to the dispersal of orbit tracks in the plane perpendicular to the 
velocity vector and/or their shift along the motion trajectory. For example, 
for the initialization of the steady satellite formation flying, one can use 
the RAAN difference and the eccentricity vector difference. The RAAN 
difference will lead to the safety shift in the lateral direction in the vicinity 
of the equator; however, this shift will be eliminated in the orbit apex and 
vertex. This situation can be fixed with the help of the difference in the 
eccentricity vector directed to the orbit apex or vertex. Then there will be a 
maximum relative shift in the radial direction at the points most distant 
from the equator. By choosing the proper values of these two deviations, it 
can be demonstrated that the guided satellite (the TDX in our case) would 
have an almost circular trajectory in the plane perpendicular to the guiding 
satellite velocity vector relative to the guiding (TSX) satellite. 

After the fulfillment of the initialization manoeuvres, the TDX satellite 
appeared 20 km distant along the orbit from the TSX, 300 m vertically 
distant (in the orbit apex), and 1,305 m horizontally distant (on the 
equator) (i.e., the monostatic formation). The trajectory, which uses the 
guided satellite in this configuration in the plane perpendicular to the 
velocity vector of the guiding satellite, is depicted in Figure 8-14 with 
dashed lines. The horizontal shift of 1.3 km on the equator intersection 
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was chosen for the prevention of the track shift, which is caused by the 2.6 
s desynchronization in time taken to reach the equator. This is caused by 
the 20 km desynchronization along the orbit. This configuration was used 
from July 22 to October 10. 

z

r

 
Figure 8-12. Deviation between the guided and guiding satellites in the 

plane perpendicular to the velocity vector. 
 

Later it was changed to a configuration where the deviation in the 
horizontal direction was decreased to 362 m and in the vertical direction 
was increased to 400 m (the bistatic formation). The trajectory, which 
corresponds to this configuration, is depicted in Figure 8-12 with a solid 
line. Since the deviation along the equator was decreased to 362 m, the 
track shift prevention deviation along the orbit must be decreased to 5.5 
km, which corresponds to the difference in time when reaching the equator 
(0.72 s).  

According to the equations from section 1.4.1, in order to get a radial 
shift of 400 m in the apex, the radial impulse directed upwards should be 
applied on the equator:  

 

.m/s 5.02.7609
6886

4.0
0

0
V

r
r

Vr  

 
This impulse will cause the eccentricity change:  

 

.000066.0
2.7609

5.0
0V
V

e r  

 
Due to the influence of this impulse, a shift in the satellite along the 

orbit in the descending node will occur (it will be behind the guiding 
satellite). This will happen because the guided satellite flies on a higher 
orbit from the ascending to the descending node 
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.m 16004 0
0

0 r
V
V

urn r  

 
The distance between the satellites along the orbit increases in the 

descending node up to 7.1 km. 
The guided satellite will fly closer to the Earth on a trajectory arc 

lower than the plane of the equator, and the lag of 1600 m will be 
compensated.  

The necessary shift by the RAAN will be ( )  
 

.000053.0
6886

4.0
0r
r  

 
Hence, deg003.0 . 
Due to the influence of these deviations, the satellite relative trajectory 

lies on the surface of the cylinder with a radius of 400 m and a length of 
1600 m.  

Table 8-10 shows the orbit parameters of the guiding (object 1) and the 
guided (object 2) satellites, the deviations of the eccentricity vectors, and 
the RAANs which correspond to the calculated deviations.  

The projections of the trajectory on the plane perpendicular to the 
guiding satellite velocity vector, on the plane of its orbit, and on the plane 
perpendicular to its radius-vector (which uses a guided satellite for the 
given initial conditions) are depicted in Figures 8-13–8-15. Figure 8-16 
shows the inclination changes for the time in the orbital coordinate frame.  

 
Table 8-10 

 
 Object 1 Object 2 

a 6,892.93 6,892.93 
ex 0.000468 0.000468 
ey 0.001238 0.001171 
i 97.44 97.44 

Omg 66.733 66.736 
U 360.0 359.95 

Date 2005.01.07 
20:31:56.14 

2005.01.07 
20:31:56.14 

Ball.coef. 0.01 0.01 
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Figures 8-13–8-16. Deviation between the guided and the guiding satellite 
in the orbital coordinate frame: in plane r,b; in plane r,n; and in plane n,b. 

Deviations in the orbital coordinate frame by time (dR), by radius (dr), in a 
lateral direction (db), and along the orbit (dn). 

 
The relative trajectory of motion for the guided satellite along the 

surface of the cylinder is depicted in Figure 8-17 with a thick solid line; 
the trajectory of motion of the guiding satellite is depicted with a thick 
dashed line. The position of the guiding satellite is marked with an asterisk 
(point B). 
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B*

 
Figure 8-17. Guided satellite trajectory relative to the guiding satellite 

trajectory  

8.3.3. Maintenance of Formation Flying with a Given 
Configuration 

The satellite formation flying operational configuration station-keeping 
problem is divided into two sub-problems. In the first sub-problem, it is 
necessary to provide the synchronized station-keeping of the operational 
orbit for each satellite from the formation flying. In the second sub-
problem, it is necessary to provide the configuration of the satellite 
position inside the formation flying.  

The TSX nominal orbit was chosen to be eleven days. The current 
orbit should lie within the tube of the radius 250 m around the nominal 
orbit (in Figure 8-17 the tube base and its generatrixes are plotted with 
dotted lines). It is very important that the manoeuvres performed by the 
guiding satellite must not drag it out from a circle with a radius of 250 m 
in the plane perpendicular to the velocity vector. Thus, not less than 150 m 
remains between the TSX and the TDX in the plane perpendicular to the 
satellite motion direction, which ensures safe satellite motion. In order to 
meet the constraint of 250 m in the plane perpendicular to the satellite 
motion direction, the semimajor axis alteration must not exceed 250 m (

m/s 16.0tV ), the inclination alteration )m/s 27.0(002.0 zVi , 
the eccentricity alteration 00004.0e  ( m/s 31.0rV , m/s 16.0tV

), and the RAAN alteration 002.0  ( m/s 27.0zV ).  
Depending on the solar activity the manoeuvres of the current 

trajectory keeping in the given vicinity of the nominal orbit had to be 
performed within periods from 2 days to 2 weeks. In order to maintain the 
given satellite formation flying configuration, it is necessary to 
simultaneously perform identical manoeuvres for the orbit keeping of both 
guiding and guided satellites. If the semimajor axis and/or the inclination 
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are corrected for orbit keeping, then the single impulse applied in the 
vicinity of the equator will be enough. These two or three impulses have to 
be used when correcting the previous parameters with the simultaneous 
correction. Hence, simultaneous successions have to be performed.  

The detailed description of this project is given in multiple articles. 
The numerical two satellite flight modeling with an analysis of the 
manoeuvre application periodicity depending on the maintenance accuracy 
of the operational orbit and the given configuration was conducted in 
(Baranov and Chernov 2019, 220–228).   
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CHAPTER NINE 

MANOEUVRING ISSUES IN THE SPACE  
DEBRIS PROBLEM 

 
 
 
Manoeuvring issues play an important role in the space debris problem. 
Most of the enormous volume of work connected to space object 
cataloguing is needed for predicting spacecraft collisions with space 
objects and the further calculation and application of collision avoidance 
manoeuvres. Collisions with moving space objects are especially 
dangerous due to the lack of information about their future movements. In 
this case, it is necessary to have a technique for estimating the already 
applied active spacecraft manoeuvres and how to predict future 
manoeuvres. 

9.1. Collision Avoidance Manoeuvres 

An orbit shaped by the target manoeuvres should not only be suitable 
for the tasks assigned to the spacecraft, but also to keep it safe from 
collisions with space debris and active space objects. The danger of 
collision can be eliminated using special collision avoidance manoeuvres 
or by modifying the target manoeuvres themselves. 

While calculating which approaches are dangerous, we have to look at 
the problem from two sides. On the one hand, we should not fail to 
account for a dangerous approach and, on the other, we should not 
exaggerate the danger approach criterion otherwise there will be too many 
false alarms. Reacting to these false alarms will lead to the excessive 
expenditure of the spacecraft’s resources. 

9.1.1. Dimensions of the Satellite Safety Zone 

Spacecraft orbits are determined and predicted using a space tracking 
system that looks 72 hours ahead so as to determine possible approaches. 
The collision probability cp  is calculated according to this interval. If the 
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collision probability 0001.0cp , then a collision avoidance manoeuvre 
needs to be applied. Such avoidance measures should push the spacecraft 
out of the danger zone. In this problem, we let the dimensions of the 
danger zone be minr  by the radius, minn  along the orbit, and minb  in the 
lateral direction. 

Space objects moving towards the spacecraft are the most dangerous, 
as the relative velocity in low Earth orbits can be as high as 15.5 km/s. 
The components of relative velocity that have the biggest magnitude are 
the transversal and lateral ones. The radius vector component does not 
exceed 1 km/s, even for highly eccentric orbits. 

The space object’s velocity relative to the spacecraft’s velocity can be 
evaluated by: 

 
.SCSOrel VVV  

 
Its projections along the axes of the orbital coordinate frame, 

connected to the spacecraft and fixed at the moment of supposed collision, 
are denoted 

rrelV , 
nrelV , and 

brelV . The safe zone dimensions, minr , minn , 

and minb , are determined, first of all, by the error calculation of the 
dangerous approach time t (Melnikov 2009). This error occurs because 
of an inaccuracy in determining the orbits of the spacecraft and the space 
object. It is hard to predict the motion of a space object because its mass-
inertial characteristics and shape are unknown. Errors also arise from 
inaccuracies in determining the atmospheric influence etc. 

The transversal deviation caused by the error t can be found as the 
multiplication of t and 

nrelV : 
 

nreltVnmin . 
 

The maximum deviation for t = 1 s is approximately km 5.15minn .  
For the lateral deviation, we get: 

 
breltVbmin . 

 
The maximum relative speed in this direction is 8 km/s; hence, the 

maximum lateral deviation for t = 1 s is approximately km 8minb . 
Similarly, for the radial direction: 
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rreltVrmin , 
 
and the maximum deviation in this direction for t = 1 s is approximately 

km 1minr . 
Narrowing the safe zone is possible only by decreasing t. This can be 

achieved by decreasing the error in orbital determination and increasing 
the frequency of searching and identifying dangerous approaches; the 
prediction errors decrease as the motion prediction interval narrows. 

There are many algorithms that can help discover the dimensions of 
the prohibited area more accurately. For example, this problem has been 
investigated in Estes and Foster (1992), Patera and Peterson (2003, 233-
237), Foster and Stansbery (2003), Kelly and Picciotto (2005), Byram, 
Slater, and Williams (2006, 1140-1146), and Klinkrad (2007, 955-962). 

9.1.2. Single-Impulse Avoidance Manoeuvres 

Usually, collision avoidance (in relation to a space object) is performed 
using a special collision avoidance manoeuvre. The manoeuvre parameter 
calculation method in this case is already well known (Melnikov, 2009). 

Different manoeuvring schemes can be applied. Along-the-orbit 
avoidance is most frequently used so long as there is the opportunity to 
apply the manoeuvre several revolutions before an expected collision. This 
avoidance procedure is fulfilled by a transversal manoeuvre. A similar 
manoeuvre applied half or one and a half revolutions before collision 
results in avoidance by altitude. Avoidance by altitude can also be fulfilled 
using a radial manoeuvre. This is less effective, but leaves the orbital 
period unchanged. 

Let us suppose that the transversal impulse tV  is applied 1  
degrees before the expected location of collision. The minimum 
magnitude of the impulse 

ntV
min

, which can push the spacecraft along the 

orbit and out of danger minn , can be calculated as: 
 

,
sin43

,)sin43(

11

min

min11

min

min

n
V

nV

n

n

t

t

   (9-1) 
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where  = the angular velocity of the motion along the circular drift orbit 
and 1  = the angle between the moment of impulse application and the 
possible moment of collision ( 01 ). 

In the case of forward firing, the spacecraft will reach the collision 
point after the space object (n > 0); if retrofiring is used, the spacecraft 
will reach the collision point earlier (n < 0). In both cases, safe spacecraft 
motion is ensured. 

If a collision avoidance manoeuvre is urgently needed, it is effective to 
apply it half or one and a half revolutions before the point of the estimated 
collision, dragging the spacecraft out of the danger zone by altitude. We 
can estimate the magnitude of the manoeuvre 

r
tV
min

, which is to be 

applied 2  degrees before the point of the estimated collision by the 
equations: 

 

.
)cos1(2

,)cos1(2

2

min

min2

min

min

r
V

rV

r

r

t

t

   (9-2) 

 
By substituting 2 , we can get the minimum manoeuvring 

magnitude: 
 

.
4
1

minmin
rV

rt    (9-3) 

With the use of an accelerating impulse, the spacecraft will go up 
above the space object, while the use of the braking impulse will force the 
spacecraft to go below the space object. Let us remember that minr  can be 
evaluated as follows: SCSO rrrmin . 

The angular distance 1  between the impulse application point and 
the estimated collision point, ensuring the equal effectiveness of both 
strategies, can be found by: 

 

.
4
1

sin43 min
11

min r
n

  (9-4) 

 
Assuming that 1  contains the integer revolution number N, we get: 
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.
6
4

min

min

r

n
N    (9-5) 

 
Using this equation, one can determine that, for the aforementioned 

values minn  and minr , and 1  greater than three revolutions, the strategy 
utilizing along-the-orbit drag becomes more valuable. 

Transversal impulses are used in the compared strategies. This allows 
us to combine collision avoidance manoeuvres with orbital elevation 
manoeuvres, which occasionally need to be fulfilled for Earth remote 
sensing spacecraft, the International Space Station (ISS), and other 
spacecraft. 

However, there are a number of cases for which changing the orbital 
period is prohibited; for example, if the spacecraft is in the phasing orbit 
and the approach is in process, specifically, when the ISS is maintaining 
the necessary initial phase for the docking spacecraft. In these cases, 
transversal impulses cannot be applied. Instead, radial impulses, which 
keep the orbital period unchanged, must be used. 

The influence of the radial impulse component on orbital altitude at the 
estimated moment of collision can be described as: 

 
.sin rVr  

 
As such, in order to drag the spacecraft out of the danger zone by 

changing its altitude, one should apply an impulse with magnitude: 
 

.
sin

min
min

r
Vr     (9-6) 

 
The magnitude of the impulse will be minimal with 

:,
2

ZNN  

 
minmin

rVr     (9-7) 
 

if it is applied one quarter of a revolution earlier )0( rV  or three 
quarters of a revolution after )0( rV  the approach point. For safety’s 
sake, it is necessary to reschedule this impulse to the previous revolution. 
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It can be seen that the use of transversal impulses is four times more 
effective than the use of radial impulses in dragging a spacecraft out of the 
danger zone by changing its altitude. Hence, where there are no other 
constraints, the use of transversal impulses for collision avoidance 
manoeuvres is more preferable. 

At the moment of minimum distance, there are deviations in the 
positions between the spacecraft and the space object, which we will 
denote bnr ,, . If the collision avoidance manoeuvre drags the 
spacecraft towards the space object, for example, if the manoeuvre 
increases the spacecraft’s altitude and the space object was initially higher 
than the spacecraft, then it is necessary to increase the orbital altitude by 

r . In this case, if the manoeuvre leads to a decrease in the spacecraft’s 
orbital altitude, the magnitude of altitude alteration can be decreased by 

r . 

9.1.3. Geometric Interpretation of the Satellite Safety Zone  

In the previous section, we examined the case where the avoidance of a 
collision with a space object was fulfilled through the use of an additional 
special manoeuvre. However, it is not always possible to do this. This 
technique is mainly used when spacecraft perform rendezvous 
manoeuvres. For instance, the “Soyuz” and “Progress” spacecraft will 
have communication-free revolutions after fulfilling the first two 
(performed on the 2nd or 3rd revolution) of a series of four connected 
rendezvous manoeuvres (see section 5.3). The communication-free 
revolutions cannot be used for the manoeuvres. If the phased orbit shaped 
by the first two manoeuvres is dangerous because of possible collisions, 
there will be no possibility of changing it. The only way to resolve this is 
to recalculate the rendezvous problem solution with the use of the 
additional constraint so that the spacecraft will not go through the danger 
area after the application of the first two impulses. 

A safe orbit can be obtained by changing the orbital phase eccentricity 
due to the fact that the magnitude of the semimajor axis after the 
application of the first interval impulses is determined by the problem 
conditions (the initial phase difference u ). The aforementioned special 
radial impulse also solves the problem by changing the orbital 
eccentricity. The radial impulse does not change the semimajor axis. 

Let us determine the boundaries of the area on the plane yx ee ,  from 
which the orbital phasing eccentricity vector should be moved in order to 
avoid a collision with the space object. We assume that the phasing orbit 
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has eccentricity 0e , the pericenter argument 0 , and the semimajor axis 

0a . A collision with the space object occurs when the latitude argument 
reaches 0u . The orbital radius at this point can be evaluated as follows: 

 

.
)cos(1

)1(

000

2
00

0 ue
ea

r  

 
In order to avoid a collision with the space object at the point with the 

latitude argument 0u , the orbital radius should be increased to min0 rr  
at the possible collision point (upwards drag) or decreased to min0 rr  
(downwards drag), where minr  = the distance of safe drag. By evaluating 
the value e for the different values of  using the equation: 

 

,
)cos(1

)1(

0

2
0

min0 ue
ea

rr    (9-8) 

 
one can calculate the outer boundary of the prohibited area. Using the 
equation: 
 

,
)cos(1

)1(

0

2
0

min0 ue
ea

rr    (9-9) 

 
one can calculate its inner boundary. Thus a collision can be avoided by 
dragging the eccentricity vector of the phasing orbit shaped by the first 
interval manoeuvres out of the prohibited area. 

Figure 9-1 presents the example of the prohibited area of the phasing 
orbit with the semimajor axis km 000,100a , eccentricity 3.00e , and 

the pericenter argument 00 . The collision occurs at the latitude 

argument 300u . It is supposed that the spacecraft’s altitude at the 
collision point should be changed by km 600minr  (higher or lower). 
This distance gradually exceeds the usual one used for collision 
avoidance, but helps to describe the prohibited area. 
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Fig. 9-1. Prohibited area overview 

 
The dashed line designates the prohibited area’s line of symmetry. The 

angle between this line and the xe  axis equals 0u . The inner boundary of 
the prohibited area is represented by the solid line and the outer boundary 
is represented by the dotted line. Point X is related to the phasing orbit (

00 ,e ). It can be seen that the boundaries of the prohibited area have a 
common point (Fig. 9-1) that corresponds to the turning of the elliptical 
orbit into a parabola ( 1e ). The dimensions of the prohibited area are 
proportional to minr . The dependency between e and  is depicted in 
Fig. 9-2. 

 

 
 

Fig. 9-2. Gaps of boundaries of the prohibited area on plane , e 
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In Fig. 9-3, one can see the prohibited areas for the angles 1000u  

and 2100u . 
It can be seen that the axis of symmetry of the prohibited area rotates 

around the datum point of the coordinate frame. The dimensions and the 
position of the prohibited area also change. 

 

 
Fig. 9-3. Location of the prohibited area for the angles u0 = 100° and u0 = 

210° 
 

As previously noted, the real magnitude of the value minr  is far 
smaller than the one used here in the examples. In Fig. 9-4, one can see the 
prohibited area for the phasing orbit of the “Soyuz” spacecraft with the 
semimajor axis km 660,60a , the eccentricity 005.00e , and the 

pericenter argument 1350 . The orbital station rendezvous point is 

3580u  and a collision occurs when 1350u . The necessary 
condition is km 3minr . As we can see, for the appropriate range of 
eccentricity alteration (in the vicinity of point X(

00
, yx ee )), the prohibited 

area is restricted by almost straight lines. The width of the prohibited area 
is e2 , where e  can be evaluated as: 

 
./ 0min rre    (9-10) 
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Fig. 9-4. Location of prohibited area in real conditions for angle u0 = 135° 
 

Let us determine the position of the prohibited area in accordance with 
the latitude argument of the collision. For this purpose, let us draw the 
several prohibited areas with 135,90,45,00u  on the single 
coordinate plane. In Fig. 9-5, one can see that altering angle 0u  leads to 
the rotation of the prohibited area around point X(

00
, yx ee ). The 

composition of several areas determines the area in which multiple 
spacecraft collisions are possible. 
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Fig. 9-5. Orientation of the prohibited area for different u0 
 
The use of the prohibited areas obtained allows us to find the 

rendezvous problem’s solution with the help of algorithms from chapters 
3, 4, and 5. This solution helps to avoid collisions in the phasing orbit. It is 
especially effective to use the graphical dialog for the manoeuvre 
parameter determination problem from Chapter 5 for these purposes. The 
example of the use of these areas for the “Soyuz” spacecraft manoeuvre 
parameter recalculation is presented in an article by the author. 

9.2. Assessment of Manoeuvres Performed by an Active 
Space Object 

The problem of propagating the motion of the manoeuvring spacecraft 
appears while keeping the space object catalogue. To solve this problem, 
one should know how to estimate the realized manoeuvres using the orbits 
obtained on the basis of trajectory measurements. The assessment of the 
performed manoeuvres together with further motion propagation of the 
active space object and accounting for future analogous manoeuvres 
allows us to gradually increase the accuracy of calculating dangerous 
approaches with this object. Manoeuvre assessment is also necessary for a 
proximity assessment of the protected spacecraft and the manoeuvring 
space object on the manoeuvring interval. This manoeuvre assessment 
allows the development of more precise orbital parameters in the case of 
determining the terminal orbit with considerable errors. In addition, the 
information obtained during the space object manoeuvre assessment 
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(information about acceleration during the manoeuvre), together with the 
information gathered during its passive motion, allows us to discover 
some of the manoeuvring space object’s characteristics, such as its mass or 
engine thrust. 

The existing methods of assessment of the performed manoeuvres 
(Alfriend, Kamensky, Stepanyants, and Tuchin 2009, 3-22; Borovin, 
Stepanyantz, Tuchin, and Tuchin et al. 2012) require a lot of processing 
time to obtain results. They are suitable for arbitrary orbits and due to the 
problem’s complexity are based on the simple enumeration of the 
definable parameters. Space object manoeuvres in near-circular orbits are 
described in this book. This simplifies the problem and allows us to use 
analytical and numerical analytical methods for its solution. In addition, 
the scope of application is insignificantly narrowed as most real 
manoeuvring space objects are situated in near-circular orbits. The time 
for solving the problem decreases by several orders, speeding up the 
updating of the manoeuvring space objects catalogue. The high response 
speed is important because the regular manoeuvre assessment has to be 
performed for a large number of real manoeuvring space objects. 

9.2.1. Manoeuvre Parameter Reconstruction:  
General Solution Method 

The two state vectors of manoeuvring space objects for the two 
moments of time are already known. The magnitude and orientation of the 
impulses that have changed orbit and the times of thruster firing need to be 
assessed. If the moments of time are not distant to each other, then it is fair 
to assume that one or two manoeuvres were performed during that 
interval. For longer time intervals with several possible manoeuvres, it is 
almost impossible to restore the magnitudes and moments of manoeuvre 
application. Only minimal total delta-v expenditures can be assessed with 
the help of the algorithms from chapters 2, 3, 4, and 6. 

It is supposed that only single and double-impulse manoeuvres will be 
assessed further. The assessment algorithms for close to impulsive 
manoeuvres and manoeuvres performed by low-thrust engines differ 
gradually from each other and need to be considered individually. The 
final determination of the manoeuvre parameters is made by the iteration 
procedure described in Chapter 1.  

The assessment methods for close-to-impulsive manoeuvres are mostly 
well-developed.  

The problem of assessing the single-impulse manoeuvring parameters 
with good accuracy for the initial and target orbits is the simplest one. If 
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the accuracy of determining the orbits is poor, an uncertainty occurs in the 
assessed impulse parameter selection. Lambert’s problem is usually used 
for the assessment of the two-impulse manoeuvring parameters (Alfriend, 
Kamensky, Stepanyants, and Tuchin 2009, 3-22). The use of the numerical 
analytical methods from the previous chapters allows us to gradually 
speed up the process of two-impulse velocity parameter determination. 
The two sub-problems can be distinguished for the two-impulse 
manoeuvre problem: 

1) Parameter determination of the two connected impulse coplanar 
manoeuvres; 

2) Parameter determination for the two connected impulse manoeuvres 
that caused the alteration of all orbital elements. 

Nowadays, mostly numerical methods with simple enumeration of the 
definable parameters with a constant step are used for the assessment of 
manoeuvres performed by low-thrust engines (Alfriend, Kamensky, 
Stepanyants, and Tuchin 2009, 3-22; Borovin, Stepanyantz, Tuchin, and 
Tuchin et al. 2012). The use of the analytical and numerical analytical 
methods from Chapter 6 for long-duration manoeuvre assessment also 
helps to gradually speed up the solution of the problem, thus making it 
possible to use this method in the technological cycle of calculating and 
keeping the catalogue of near-Earth space objects. In the case of a 
manoeuvre performed by low-thrust engines, the proposed method helps 
not only to determine the manoeuvre parameters, but also to determine the 
magnitude of acceleration made by the thruster engine. 

For long-duration manoeuvres, the problem stated in the general case 
can be divided into several simple sub-problems: 

1) Determine the parameters of the manoeuvre that results in the 
alteration of the semimajor axis and/or eccentricity vector; 

2) Determine the parameters of the manoeuvre that causes the orbital 
plane rotation; 

3) Determine the parameters of the combined manoeuvre that alters all 
orbital elements; 

4) Determine the parameters of the two connected long duration 
coplanar manoeuvres; 

5) Determine the parameters of the two independent long duration 
coplanar manoeuvres; 

6) Determine the parameters of the two long duration independent 
manoeuvres that alter all orbital elements. 
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Determination of Orbital Parameter Alteration:  
Accounting for the Influence of the Impulse 

 
The first step of the solution is the calculation of the orbital parameter 

deviation vector  caused by the working of the thrust engines. 
In order to determine the deviation vector , it is necessary to 

undertake a prognosis of the initial state vector up to the moment 2t . The 
prognosis is performed with all perturbations except engine thruster firing. 
Then the difference between the elements of the terminal orbit and the 
orbit obtained after the calculation of the prognosis. The components of 
the deviation vector T

zyx Vzteea ),,,,,( *  were determined in 
section 1.1.2. 

In the case where the thrust engine firing interval is small in 
comparison to the space object orbital period, the following assumption 
can be made: the orbital parameter change was instantaneous. This 
assumption allows us to write out the conditions for reaching the desired 
point of the terminal orbit in the form of eqs. 1-12a to 1-12f for 
manoeuvres in the vicinity of the circular orbit. 

In the case of a single-impulse manoeuvre, the definable variables are 
1,,,

111 ztr VVV  as the components of the first impulse and the angle of 
its application. For the two-impulse case, the unknown variables are 

21 ,,,,,,,
222111 ztrztr VVVVVV  as the parameters of the first and 

second impulses. 

9.2.2. Single-Impulse Manoeuvre Assessment in the Case of 
Accurate Orbital Determination 

The simplest method is the variant of the close-to-impulse manoeuvre, 
performed in a single ignition with both orbits having been determined 
with acceptable accuracy. The solution includes the search for the 
minimum distance between the object positions in the initial and target 
orbits with further evaluation of the difference between the velocity 
vectors at this moment. 

9.2.3. Single-Impulse Manoeuvre Assessment with Inaccuracies 
in Orbital Determination 

In practice, one has to deal with the initial data errors while 
determining the realized manoeuvres. These inaccuracies are connected to 
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errors in determining the initial and terminal orbits (especially concerning 
the terminal orbit, which has, by default, fewer measurements). 
Accounting for the stochastic nature of the trajectory information makes 
the problem more complex, but helps us get to a more trustworthy 
solution. The coplanar and noncoplanar cases are described further. 

 
Impulsive Coplanar Manoeuvre 

 
Let us state that the realized impulse does not have radial components. 

According to eqs. 1-12a to 1-12c, the radial impulse components do not 
take part in changing the semimajor axis and are twice as inefficient in 
altering the eccentricity vector as the transversal ones. This is why this 
component is barely used in manoeuvres for orbital maintenance. Thus, 
the assumption that the determined manoeuvre has zero radial components 
(i.e. 0rV ) is acceptable. 

In Fig. 9-10, point K with coordinates yx ee ,  corresponds to the end 
of the eccentricity vector difference between the initial and target orbit 
eccentricity vectors 0eee f . The angle of transversal impulse 
application, which allows us to correct the deviation of the eccentricity 
vector, is designated e . Following on from eqs. 1-12a and 1-12b, and the 
magnitude of the impulse, which produces the necessary eccentricity 
alteration: 

 

.
22 00
e

V
e

VVt  

Let us draw a circle with radius R (
0

0

0 r

aa

r
a

R f ), which is the 

dimensionless difference between the semimajor axes of the initial and 
terminal orbits. The circle’s center is situated at the center of the 
coordinate frame. If there are no orbital definition errors, point K would 

have belonged to the circle because e
V
V

r
a t

00

2
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Fig. 9-10. Single-impulse coplanar 

transfer 
Fig. 9-11. Influence of the error on the 

determination of the difference 
between the semimajor axes and the 
difference between the eccentricity 

vectors 
 

Due to errors in determining the semimajor axis and eccentricity vector 
of each orbit, point K may not belong to the circle. If the point is inside the 
circle (point K’ in Fig. 9-10), then the orbits do not intersect ( ea ) 
and the single-impulse solution does not exist. If point K is outside the 
circle (point K* in Fig. 9-10), then the initial and terminal orbits intersect (

ae ) and the single-impulse solution exists and the impulse has a 
radial component (BK* in Fig. 9-10). In order to obtain a trustworthy 
transversal solution, one has to account for errors in determining the 
semimajor axis and eccentricity vector. 

Let us designate a as the maximum error in the determination of the 
dimensionless difference of the semimajor axes. We will draw two 
concentric circles with radii aRR1  and aRR2 . In Fig. 9-11, 
these circles are drawn with dashed lines. The area between the dashed 
circles corresponds to the acceptable values of the dimensionless 
difference between the semimajor axes. Let us draw an ellipse, which will 
constrain the area, corresponding to the acceptable values of the difference 
between the eccentricity vectors. One of the semi axes of this ellipse is 
determined by the maximum error in the absolute value of the eccentricity 
vector difference e , while the other one is determined by the maximum 
error in the angular position of the eccentricity vector difference e . The 
intersection of the area constrained by the ellipse and the area between the 
dashed circles is the shaded area G, the points of which correspond to 
possible single-impulse transversal solutions for acceptable eccentricity 
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alteration (Baranov, Karatunov, Razoumny, and Vikhrachev 2017, 141-
149). If the areas do not intersect, the single-impulse solution is not 
possible and two-impulse solutions should be considered. 

In order to assess the parameters of the determined impulse, one 
should also take into account the error in the determination of the 
manoeuvre application time. The angle t  corresponds to the moment of 
time when the spacecraft will be on the same revolution and the same 
latitude argument, as if it moved forward along the initial orbit and 
backwards along the target orbit. The maximum error in determining this 
angle is t . The intersection of the sector ],[ tttt  with area 
G will give us the shaded area P (Fig. 9-12) with acceptable single-
impulse transversal solutions. The smaller the error in the orbital 
determination, the closer the angles t  and e  will be. 
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Fig. 9-12. The influence of the error in determining the difference between 

the semimajor axes, errors in determining the eccentricity vectors, and 
errors in determining the impulse application time 

 
There will be one point from area P that will determine the problem 

solution. The problem solution can be the point that is determined rapidly 
and ensures a minimal difference in the probability of adjusting each 
orbital element. 

For example, the impulse application angle imp  can be found from 
the equation: 

 

.
timp

t

impe

e  

 
Thus, imp  will be: 
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.
te

teet
imp  

 
For the determination of point K with this angle, we can use the 

equation: 
 

1
)(

2

2

2

2

e

impeimp

e

e
 

 
One should find the maximum error impe  in terms of the difference 
between the absolute magnitude of the eccentricity vector during impulse 
application with the angle imp : 
 

22 )( impee
e

imp
e

e

  
Then, from the equation: 

  

,
impe

xCD
a
x

 

 
one can determine x: 

 

,
ae

aCD
x

imp
 

 
where CD = the distance between a circle of radius R and an ellipse with 
axis x starting from this circle and determining the position of point K. 

 
Impulse Noncoplanar Manoeuvre 

 
Let us suppose that the assessed impulse has both transversal and 

lateral components. The angle z , which determines the position of the 
orbital plane line of intersection, is the application angle of the impulse 
lateral component. If the orbits have been determined without errors, then 
the application angles of the transversal and lateral components coincide 
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with each other and ze . If there were errors in the orbital 
determination, the angle of optimal eccentricity correction e  and the 
angle of orbital plane rotation z  do not coincide, although in the real 
impulse case they should. 

Let us call z  the maximum determination error of the angle on 
which the orbital plane rotation was performed. The lines between the 
angles zz  and zz  determine the acceptable area for the 
impulse application angle of the orbital plane rotation. If this area has 
common points with area P (we will designate the intersection area for 
these two areas L; in Fig. 9-13, this is depicted as the hatched section), 
then the single-impulse solution exists. If not, one should move to the 
determination of two-impulse solution parameters. 
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Fig. 9-13. The influence of the error 

in determining the difference 
between the semimajor axes, the 

eccentricity vectors, and the 
moment of the impulse lateral 

component application  

Fig. 9-14. Probability distributions of 
the impulse application angle for  
the correction of the eccentricity  

vector e, the angle of the impulse  
application moment t, and the angle 
of the orbital plane rotation start z 

 
Figure 9-14 gives the probability distributions for the impulse 

application angles for the correction of the eccentricity vector e , the 
angle of the orbital plane rotation start z , and the angle of the impulse 
application moment t . It can be easily seen that the acceptable angles for 
the application should belong to line segment AC. The angle imp  is 
chosen in accordance with point B (here, the probability density for both 
angles is equal). Then, impe  is determined for the found angle etc. 
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The magnitude of the dimensionless lateral impulse component can be 
found as: 

,zV  
 

where  = the angle between the nominal orbital planes. 

9.2.4. Assessment of Two Finite-Burn Manoeuvres 

In cases where the single-impulse solution does not exist, one should 
consider determination of the two-impulse solution parameters. By 
altering the angles 1  and 2  in the range corresponding to the time 
interval between the epochs of the initial and target orbits, and solving Eq. 
1-12 for each pair of angles (in order to find the impulse components), lots 
of solutions with different values of total delta-v ensuring the flyby from 
the initial to the target orbit can be obtained. The final result is the solution 
with the lowest energy cost. We call this approach the full enumeration 
method. This is the traditional approach for solving the two-impulse 
manoeuvre assessment problem (Alfriend, Kamensky, Stepanyants, and 
Tuchin 2009, 3-22; Borovin, Stepanyantz, Tuchin, and Tuchin et al. 2012). 

Usually the solution of Lambert’s problem is used, but, as will be 
shown later, the solution can be obtained more easily by using Eq. 1-12. 
The number of the enumeration variants gradually grows with the increase 
in the time interval between the epochs of the initial and target orbits. 
Even if the simple Eq. 1-12 is used instead of calculating Lambert’s 
problem, the calculation time gradually increases. This makes it difficult 
to use the traditional approach in the technological cycle of keeping the 
space object catalogue. 

The assumption about impulse orientation can also help reduce the 
computation time. As a rule, the assessed manoeuvres are not rendezvous 
manoeuvres, but are variations of simple transfer manoeuvres. The 
semimajor axis change and/or the eccentricity vector change are the goal 
of using such manoeuvres while manoeuvring in the orbital plane. As 
already mentioned, the radial components are hardly used in orbital 
maintenance manoeuvres. Thus, it can be assumed that the estimated 
manoeuvres do not have radial impulse components, i.e. 0

1r
V , 

0
2r

V . The radial components, which may occur as result of errors in 
setting up the required orientation of the thrust engines, usually do not 
exceed 2 % of the impulse magnitudes. These components do not alter the 
semimajor axis and practically do not influence the time of the flyby up to 
its end point. They can also be omitted during the manoeuvre assessment, 

 EBSCOhost - printed on 2/13/2023 10:43 PM via . All use subject to https://www.ebsco.com/terms-of-use



Manoeuvring Issues in the Space Debris Problem 
 

 

383

as will be shown in one of the examples in section 9.2.9. As such, the 
solution of the two-impulse problem is feasible in searching for the class 
of manoeuvres that only have transversal and lateral components. The 
search algorithm for this solution can be stated as follows (Baranov and 
Karatunov 2016, 284-295). The different application angles of the first 
impulse are selected on a single revolution interval. The angle 

f1 is the 

current value of 1 . Then, with the help of eqs. 2-2a to 2-2c, the 
magnitudes of the transversal components 

21
, tt VV  and the second 

impulse application angle 
f2  are found. The lateral components 

21
, zz VV  can be found using eqs. 2-14a and 2-14b. The obtained 

solution will be acceptable for all combinations of the angles 
n

fn
211 , n

fn
222 , and Nn  on the interval of the 

revolutions between 1t  and 2t . Only pairs of angles that ensure the 
solution of Eq. 1-12d with the given tolerance ft  are considered. Thus, 
we obtain not only a solution with the minimal total delta-v (the traditional 
criterion), but also the solution, which fulfils the demand that the flyby 
will miss the target orbit at a value not greater than the given value ft . 
The solution, which ensures a practically zero time miss, exists because 
the real orbital change was caused by impulses with zero radial 
components. The solution time with this approach is much smaller than 
the solution time with the method of full enumeration, as the basic 
enumeration of angle 1  is made only on one revolution and angle 2  can 
be found using Eq. 2-2c. There is no need to use enumeration to find 2 . 
Further consideration of the different combinations of angles 

nn 21 ,  for 
different revolutions requires only the computation of the left part of Eq. 
1-12d for each pair. 

This method gradually exceeds the method of direct enumeration. It is 
much faster and has the same or even better accuracy. A comparison of the 
accuracy and performance of these two methods can be found in section 
9.2.8. 

If the orbits are determined with considerable errors, no special 
solution is proposed, as the suggested two-impulse solution allows us to 
solve the problem. 
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9.2.5. Manoeuvres Performed by Low-Thrust Engines  
in the Case of Accurate Orbital Determination 

As was mentioned in Chapter 6, the real spacecraft thrust engine 
orientation is fixed in the orbital or inertial coordinate frame during 
manoeuvring. For a spacecraft with low-thrust engines, the manoeuvres 
are usually applied with fixed orientation of the thrust engines in the 
orbital coordinate frame. It is supposed further that this orientation of the 
thrust engines is used for the manoeuvre parameter assessment problem 
solution.  

The alteration of the eccentricity and the dimensionless semimajor axis 
caused by the firing of the thrust engines on the angular interval  can 
be found using eqs. 6-4 and 6-8: 

 

,
2

sin4 e
w
wc   (9-11) 

.2 a
w
wc    (9-12) 

 
After the division of Eq. 9-11 by 9-12, we get the equation for the 

determination of : 
 

.
)

2
sin(2

a
e   (9-13) 

 
By solving the transcendental Eq. 9-13, one can find the duration of 

the thrust engine firing . Then, with the use of eqs. 9-11 or 9-12, the 
acceleration of the spacecraft caused by the thrust engine firing can be 

found (
m
P

w ): 

 

.
2

a
w

w c  

 

 
The manoeuvre delta-v tV  can be found as follows: 
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.0V
w
w

V
c

t    (9-14) 

 
The position of the active interval e , which coincides with the 

impulse application moment in the optimal impulse solution (Braude and 
Kuzmak 1969, 323-338) is determined by: 

 

.arctg
x

y
e e

e
  (9-15) 

 
Lateral Manoeuvre Assessment 

 
 The middle part of the active interval of such a manoeuvre should be 

on the line of intersection of the initial and target orbits. The angle z , 
which determines the position of the orbital intersection line, can be found 
using the equation: 

 

.tg *
z

z
V

z  

 
If the orbital plane rotation is set by the deviations i, , then z  

can be found as: 
 

i
iz sintg  

 
The active interval angular duration can be determined with the use of 

Eq. 6-53: 
 

.
2

arcsin2
w

wc
z    (9-16) 

 
where  = the angle between the orbital planes, which is calculated by 
Eq. 1-14d: 
 

.2*2
zVz  
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The lateral impulse magnitude is determined by: 
 

.0 z
c

V
w
w

V
z

 

 
Assessment of Long-Duration Manoeuvres Altering All Orbital 

Elements 
 
Let us look at the case when the correction of the orbital coplanar and 

noncoplanar elements occurs simultaneously. To perform this manoeuvre, 
the thrust vector is rotated by the angle  out of the orbital plane. We 
have the following components of the thrust vector: 

 
cosPPt (thrust vector transversal component); 
sinPPz (thrust vector binormal component). 

 
The ratio of the thrust vector to mass )(w  will also have two 

components: 
 

. ;
m
P

w
m
P

w z
z

t
t   (9-17) 

 
The full acceleration magnitude is: 

 

.22
zt www  

 
It is supposed that during the manoeuvre, the orientation of the thrust 

vector in respect of the orbital coordinate frame cannot change. 
The duration of the active interval  can be found from Eq. 9-13, 

and then tw  can be found using Eq. 9-12: 
 

.
2 ct w

a
w    (9-18) 

 
zw  can be found with the knowledge of  from Eq. 9-16: 
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.

2
sin2

cz ww   (9-19) 

 
The next step is to find the thrust vector orientation: 

 

.arctg
t

z

w
w    (9-20) 

 
The components of delta-v can be determined with the use of eqs. 9-21 

and 9-22: 
 

,0V
w
w

V
c

t
t    (9-21) 

.0V
w
w

V
c

z
z    (9-22) 

 
The manoeuvre’s magnitude V can be calculated with the equation: 

 

.22
zt VVV  

 
The middle parts of the active intervals for eccentricity alteration and 

the orbital plane rotation should coincide if these alterations were caused 
by a single manoeuvre. However, due to the errors in orbital 
determination, these moments may slightly fail to coincide. In this case, 
the results obtained for the determination of the moment of impulse 
application with the errors in the orbital determination can be used for the 
determination of the active interval center (see section 9.2.3). 

Another approach for the assessment of long-duration manoeuvres is 
the full enumeration of parameters such as the start and end times of thrust 
engine firing, the thrust vector orientation, and the magnitude of 
acceleration made by the thrust engines, with further selection of the 
solution, which will ensure the necessary alteration of the orbital elements 
(Alfriend, Kamensky, Stepanyants, and Tuchin 2009, 3-22; Borovin, 
Stepanyantz, Tuchin, and Tuchin et al. 2012). Meanwhile, the number of 
steps, with which the calculation of the orbital element changes are 
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performed, is equal to 
2

2
wnnn

, where n  = the number of the steps of 

enumeration for the time of the thrust engine firing start and end; n  = the 
number of enumeration steps for the thrust vector orientation; and wn  = 
the number of enumeration steps for acceleration. Thus, it can be stated 
that the method proposed in this section demands reduced calculation time 
in comparison to the method presented in Alfriend, Kamensky, 
Stepanyants, and Tuchin (2009, 3-22) and Borovin, Stepanyantz, Tuchin, 
and Tuchin et al. (2012). 

9.2.6. Manoeuvres Performed by Low-Thrust Engines  
with Inaccuracies in Orbital Determination 

Coplanar Manoeuvres 
 

If there are errors in the determination of the initial and target orbits 
(especially errors in the determination of the target orbit), the procedure 
for determining the single long-duration manoeuvre parameter problem 
solution gradually changes. 

It is supposed that the acceleration caused by the active space object 
thrust engine firing w was calculated before, as a result of the assessment 
of the single long-duration manoeuvre parameters with the use of the 
algorithm depicted in section 9.2.5 with the initial and target orbits 
determined with high precision. 

In Fig. 9-15, one can find the area between the dashed circles that 
corresponds to the acceptable values of the dimensionless difference 
between the semimajor axes. Also, the ellipse that constraints the area, 
corresponding to the acceptable values of the eccentricity vector 
difference, is shown in the figure. Unlike the case which was considered in 
section 9.2.3, the area constrained with dashed circles and the area 
constrained with the ellipse may not intersect, and the ellipse will be 
inside the smaller circle. According to eqs. 9-11 and 9-12, this is 
connected to less effective eccentricity correction for long-duration 
manoeuvre conditions. However, the solution with a single ignition can 
take place in this case as well. 
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e

e

 
Fig. 9-15. Determination of the influence of the semimajor axis difference 

error and eccentricity vector differences 
 

Unlike the impulsive case, it is hard to determine the time of the 
manoeuvre’s middle. This is why angle t  is not used. If a manoeuvre 
that does not change the orbital plane is considered, then angle e  is 
agreed as the middle of the angular interval of the thrust engine firing. 
This is because the middle of the long-duration manoeuvre should 
coincide with the optimal impulse manoeuvre application angle (Braude 
and Kuzmak 1969, 323-338). 

The algorithm of the manoeuvre parameter assessment consists of the 
enumeration of the points of line segment BC (Fig. 9-15) with some steps. 
The angular duration of manoeuvre i , which ensures the corresponding 
alteration of the semimajor axis, is estimated for every value ia  from 
line segment BC with the use of Eq. 9-12. Then, with the help of Eq. 9-11, 
the eccentricity alteration caused by this manoeuvre is found. If the found 
value of the eccentricity ie  belongs to line segment DE, then the found 
solution is acceptable. The goal is to find the solution that has the 
maximum close propagation distributions )( ia ap  and )( ie ep . The 
angular duration of the manoeuvre i , which corresponds to ia , is the 
problem solution. The middle of the active interval is determined by the 
angle eimp . 
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Noncoplanar Manoeuvres 
 

Let us suppose that the assessed parameter has both transversal and 
lateral components. In this case, the middle part of the orbital plane 
rotating optimal manoeuvre should coincide with angle z , which 
determines the position of the initial and target orbital plane intersection 
line. If there are errors in orbital determination, then the angle of the 
optimal eccentricity correction e  and the angle of optimal orbital plane 
rotation z  do not coincide. The angular difference z  is the maximum 
error in the determination of angle z . The lines with the inclines 

zz  and zz  determine the area that is acceptable for the 
middle of the manoeuvre, which rotates the orbital plane. If this area has 
common points with the area constrained by the ellipse (we will designate 
it the area of intersection of the two areas P, shaded in Fig. 9-16), then the 
solution with one long-duration manoeuvre can exist; otherwise we have 
to consider the two manoeuvre parameter determination. 
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Fig. 9-16. The influence of the error in determining the difference between 
the semimajor axes, the difference between the eccentricity vector, and the 

errors in angle z, which determine the orbital plane rotation 
 

Angle imp  can be taken as the middle of the angular manoeuvring 
interval and can be found by: 

 

.
zimp

z

impe

e  
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We get: 
 

.
ze

zeez
imp  

 
The later angular duration of the manoeuvre, which ensures the 

corresponding alteration of the semimajor axis i , is calculated for each 
value ia  (from line segment BC, see Fig. 9-16). The equation system 9-
23 to 9-25 should be solved and the values zti ww ,,  can be found: 

 

.
2 c

i

i
t w

a
w    (9-23) 

,

2
sin2

c
i

z ww    (9-24) 

,22
zt www     (9-25) 

 
where  = the nominal angle between the orbital planes. Then, by using 
Eq. 9-26: 

 

,
2

sin4 i

c

t
i w

w
e    (9-26) 

 
one can find the eccentricity alteration caused by this manoeuvre. If the 
found eccentricity value ie  belongs to line segment DE (Fig. 9-15), the 
solution is acceptable. The goal is to find an acceptable solution with 
maximum close probability densities )( ia ap  and )( ie ep . The 
angular manoeuvre duration i , which corresponds to a value such as 

ia , is the problem solution. The middle part of the active phase is 
determined by the angle imp . The thrust vector orientation can be found 
using Eq. 9-20. 

If the engine thrust is unknown, the problem should be solved the same 
way as in the case of precise orbital determination. 
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9.2.7. Two-Impulse Coplanar Manoeuvres Over a Longer 
Period of Time 

As in the previous section, it is assumed that the thrust engines 
maintain a constant transversal orientation in the orbital coordinate frame 
(as the most effective one) during the manoeuvres. The proposed solution 
method allows us to account for the orientation in the inertial coordinate 
frame as well, but the orbital orientation is considered because it is met 
more frequently in practical contexts. 

There are two approaches for the application of the two long-duration 
manoeuvres: the realization of the connected manoeuvre with the purpose 
of the semimajor axis and eccentricity vector alteration; and the realization 
of the two independent manoeuvres (each of the manoeuvres causes the 
alteration of one orbital parameter). 

If two optimal connected manoeuvres ate performed, the center of the 
angular interval 1 , on which the first manoeuvre is performed, should 
be situated on angle e , which is optimal for the application of the first 
impulse in the impulse solution: 

 

,tg
x

y
e e

e
 

 
The center of the angular interval of the second manoeuvre should be 

half a revolution further on. 
In accordance with eqs. 9-11 and 9-12, the transfer conditions on the 

given orbit can be described as: 
 

w
aw

w
ew

c

c

21

21

22

2
sin4

2
sin4

  (9-27) 

 
It is supposed that the acceleration mPw / , produced by the thrust 

engines, was determined earlier when the assessment of the single 
manoeuvre was fulfilled. 

Using Eq. 9-27, one can find the manoeuvre angular durations 1  
and 2 : 
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,

8
cos8

arcsin2
41

w
aw

w

ew
w

aw

c

cc  

.

8
cos8

arcsin2
42

w
aw

w

ew
w

aw

c

cc  

 
Negative  means that the thrust vector should be transversal and 

directed towards the space object’s motion during manoeuvring (i.e. 
braking occurs). 

Thus, the transfer problem solution has been obtained, but, in fact, the 
rendezvous problem should be solved. In order to solve the rendezvous 
problem, we select the impulse application order and the manoeuvring 
revolutions using enumeration, and compare the time deviations. 

If the manoeuvres are performed individually, it is more complicated. 
It is not necessary for the middle parts of the manoeuvres to be divided by 
half a revolution. The first part of the assessment algorithm of such 
manoeuvres is analogous to the assessment algorithm of the two small 
duration manoeuvres. The application angle of the first impulse 

f11  

is fixed on one of the revolutions of the allowed interval between the 
moments of the initial condition fixation. Then, the transversal 
components and the application angle of the second impulse 

f2  are 

determined using eqs. 2-2a to 2-2c. 
As with the previous case, it is supposed that the middle points of the 

angular intervals with long-duration manoeuvres coincide with the optimal 
solution impulse application angles. 

1  can be found from the equation: 
 

,
2

sin4 1
1

cw
w

e  

 
where 1e  = the eccentricity alteration made by the first manoeuvre of the 
impulse solution. 1  is the necessary angular duration of the first 
manoeuvre that leads to eccentricity alteration made by the first impulse. 
Similarly, the angular duration of the second manoeuvre 2  is: 
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.
4

arcsin2 2
2 w

ewc  

 
Each manoeuvre causes a necessary change in eccentricity in the 

required direction. Thus, the desired eccentricity vector will be formed 
after the manoeuvres. 

The problem remains that the semimajor axis alteration will be greater 
than needed. According to eqs. 9-11 and 9-12, it changes more efficiently 
than the eccentricity in conditions of long duration and the fixed 
orientation of the thrust engines. 

This difference can be eliminated with the help of the following 
iteration procedure. Let us suppose that the initial semimajor axis 
deviation was 00 aaa f  (for example, 00a ). This deviation 0a  

and deviations 
00

, yx ee  are used in determining the manoeuvre 
parameters. 

After the realization of the estimated manoeuvres, the new semimajor 
axis 1a  will be obtained. Its value exceeds the required one. On the next 
iteration, the deviations 101 aaaa f , 

00
, yx ee  (the semimajor 

axis deviation will be smaller than the original one) will be used; on the 
next iteration 212 aaaa f , the values will be used etc. The 
process continues until the semimajor axis is obtained with the desired 
accuracy. 

Thus, for the fixed angle 
f1 , the target orbit transfer problem is 

solved with the use of two long-duration manoeuvres. 
The enumeration continues with the angles 

f1 , ensuring the solution 

of Eq. 1-12d with the desired accuracy ft . This allows us to find the 
solution with the minimum total delta-v and the target orbit transfer time 
miss does not exceed the given ft . Thus, the transfer problem solution 
and even the rendezvous problem solution will be obtained. 

As we can see, the enumeration of angle 
f1 , just as in the impulsive 

case, is made by one unknown variable and only on one revolution. 
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9.2.8. Two-Impulse Noncoplanar Manoeuvres Over a Longer 
Period of Time 

The solution results from the previous simpler impulsive problem are 
used, just as with the transition from the coplanar two-impulse solution to 
the solution with long intervals of thrust engine firing. 

Similarly, 
f1  is enumerated (the first impulse application angle) and 

the impulsive solution is searched for each value of the angle 
f1  with the 

algorithm from section 9.2.4. Let us suppose that the impulsive solution 
consists of two impulses with magnitudes 21, VV , the impulse 
application angles 

f1  and 2 , and the components 

2211
,,, ztzt VVVV . The orientation of the thrust engines is adjusted by 

the angles i : 
 

. tg,tg
2

2

1

1
21

t

z

t

z

V

V

V

V
 

 
The lateral component of the first impulse will change the orbital plane 

orientation 111 sin
1

VVz , while the transversal component will 

lead to the alteration of the eccentricity 111 cos22
1

VVe t  and the 

semimajor axis 111 cos22
1

VVa t . 
The acceleration made by the thrust engines in the transversal direction 

is coswwt , while in the lateral direction it is sinwwz . 
As in the previous section, we find the angular duration of the 

manoeuvre, which will alter the eccentricity by means of the first 
manoeuvre, corresponding to the alteration caused by the first impulse: 

  

,
2

sin42 1
1 1

c

t
t w

w
Ve  

,
2

sincos4cos2 11
111

cw
w

Ve  

,
2

sin2 1
1

cw
w

V  
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.
2

arcsin2 1
1 w

Vwc  

 
The calculated long-duration manoeuvre will rotate the orbital plane by 

angle , which can be found using the equation: 
 

).
2

sin(2
cw

w  

 

The angular duration of the manoeuvre leading to the required orbital 
plane rotation can be evaluated independently: 

 

),
2

sin(sin2sin 11
111 1

c
z w

w
VV  

.
2

arcsin2 1
1 w

Vwc  

 
The same value 1  was evaluated after using the eccentricity 

equation. Thus, the required alteration to the eccentricity and the orbital 
plane rotation with the given manoeuvre duration can be obtained. 

Similarly, the duration of the second manoeuvre 2  can be found. 
The required eccentricity vector will be formed and the orbital plane 
rotation will be done with the known manoeuvre durations. The error 
arising in the adjustment of the semimajor axis can be eliminated by the 
iteration procedure, which is analogous to the procedure from the previous 
section. 

9.2.9. Examples 

A program for the numerical integration of the spacecraft equations of 
motion accounting for the firing of the thrusters was used to formulate the 
initial conditions and can be used for the quality assessment of the 
aforementioned algorithms. The initial spacecraft state vector and the 
manoeuvre parameters provided the initial conditions for this program. 
The spacecraft terminal state vector after all manoeuvres was obtained. 
Then, the initial and the final state vectors were used in the program, 
which uses the aforementioned algorithms and gives assessed values for 
the manoeuvring parameters. These assessed values were compared to the 
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desired ones, which were used in the motion prognosis program. Based on 
this comparison, a conclusion about the magnitude of the error in the 
assessment of the manoeuvre parameters was made. 

Two initial orbits were considered. Orbit 1 is a low Earth orbit, while 
orbit 2 is a geostationary orbit. The orbital elements are described in table 
9-1. 

The calculation results can be found in tables 9-2 to 9-9 (Baranov and 
Karatunov 2016, 284-295; Baranov, Karatunov, Razoumny, and 
Vikhrachev 2017, 141-149). In the tables, V  = the manoeuvre delta-v; 

 = yaw;  = pitch;  = manoeuvre angular duration; and w = 
spacecraft acceleration made by the thrusters (indexes 1 and 2 near the 
parameters denote the number of manoeuvres to which they belong). 

The initial orbital parameters for both variants can be found in table 9-
1. 

 
Table 9-1. Test orbit initial parameters 

 
Orbital elements Orbit 1 Orbit 2 

a km 6,662.813 42,168.262 
ex 0.003335 -0.000021 
ey 0.000524 0.000134 

i deg 51.72082 0.15140 
deg 97.72594 84.06768 

Udeg 0.014097 151.36502 
Date 2012.09.20 2014.04.14 
Time 02:04:13.683 21:07:26.540 

 
Table 9-2 presents the results of the two assessments of single 

noncoplanar small-duration manoeuvres. This assumption can be 
explained by the ratio of the spacecraft thrust and mass (P = 2,940; N (300 
kg(f)); m = 7,127 kg) and the impulse magnitude ( V < 26 m/s). The 
manoeuvres were applied in orbit 1. 

As is clear, the parameters of such manoeuvres can be estimated with 
high accuracy. This is the case not only for the magnitude and the 
orientation of the impulse, but also for the moment of impulse application. 
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Table 9-2. Assessment of single-impulse noncoplanar short manoeuvres 
for orbit 1 

 
Manoeuvre parameters Given values Assessment result Errors 

Test 1 
V m/s 25 24.99 0.04% 
 deg 0 0.03 - 
 deg 330 329.94 0.02% 

Time 2:49:31.8 2:49:32.1 0.3 sec 
Test 2 

V m/s 12.5 12.49 0.08% 
 deg 0 0.04 - 
 deg 45 45.04 0.09% 

Time 2:49:16.7 2:49:17.3 0.6 sec 
 

The results of the assessments of the single coplanar and noncoplanar 
long-duration manoeuvres can be found in tables 9-3 and 9-4 (Baranov 
and Karatunov 2016, 284-295). The spacecraft mass = 7,127 kg; the 
engine thrust in case of the coplanar manoeuvres = 132.3 N (13.5 kg(f)); 
and the engine thrust in the case of noncoplanar manoeuvres = 122.5 N 
(12.5 kg(f)). It can easily be seen that the parameters of such manoeuvres 
have been assessed with a high level of accuracy. 

The assessment results for the two dynamic operations are described in 
table 9-5 for low orbit 1. Each operation consisted of the two small-
duration manoeuvres. This assumption can be explained by the ratio of the 
spacecraft’s thrust and mass (P = 2,940; N (300 kg(f)); m = 7,127 kg) and 
the magnitude of the impulse ( V < 26 m/s). For the sake of comparison, 
the assessment was made using the traditional method of full enumeration 
and the quick method proposed in this work. 

The search interval for the impulse application moments for test 7 was 
approximately 3 hours in length: 2012.09.20 6:04:13.6835 – 2012.09.20 
9:14:00.0000. 

The search interval for test 8 was much longer (approximately 15 
hours): 2012.09.20 06:04:13.6835 – 2012.09.20 21:14:00.0000. 

The angle selection step for tests 7 and 8 was 1º and the maximum 
phase error for the quick method was 1 second. 

As can be seen, the use of the quick method for orbit 1 allowed us to 
reduce the time of computation by several orders and increase the 
accuracy of the manoeuvre assessment. 

Table 9-6 presents two examples, which have reference solutions with 
the small pitches of the impulses. The pitch was 1º in test 3 and 2º in test 
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4. These examples imitate the impulses, performed with respective errors 
in the thruster orientation. As a result, the error in the determination of 
each impulse does not exceed 8 % for the quick method and can reach up 
to 27 % for the traditional method. The total delta-v can be estimated to an 
even higher level. The quick method gives a value of approximately 2.5 % 
for the determination error, while the value for the traditional method is 
6.5%. The time of the impulse application can also be estimated more 
accurately using the quick method. 

Table 9-7 gives the results of manoeuvre assessment for the 
geostationary orbit (orbit 2). 

The search interval for tests 11 and 12 was: 2014.04.14 21:07:26.5421 
– 2014.04.15 21:00:00.0000. 

The angle selection step was 0.1º and the maximum phase error was 20 
s. 

The manoeuvre parameters can be assessed more accurately for orbit 2. 
This can be explained by the difference in the orbital periods. 

There are practically no errors in the impulse assessment for the 
geostationary orbit. The impulses have radial components. 

Tables 9-8 and 9-9 show the results of the two-impulse long-duration 
manoeuvre assessment. 

The spacecraft mass = 7,127 kg and the engine thrust in tests 13 and 14 
= 98 N (10 kg(f)). The engine thrust in tests 15 and 16 = 5.9 N (0.6 kg(f)). 

The search interval for tests 13 and 14 was: 2012.09.20 06:04:13.6835 
– 2012.09.20 09:14:00.000. 

The search interval for tests 15 and 16 was: 2014.04.14 21:07:26.5421 
– 2014.04.15 21:00:00.000. 

The angle selection step for tests 13 and 14 = 1°.  
The angle selection step for tests 15 and 16 = 0.1°. 
The maximum phase error in tests 13 and 14 was 1 s. 
The maximum phase error in tests 15 and 16 was 20 s. 
We can also note that the manoeuvre parameters have been assessed 

with high accuracy and a very short time period.  
There is no comparison with the solutions of other types as only single 

long-duration manoeuvres were assessed in the works of Alfriend, 
Kamensky, Stepanyants, and Tuchin (2009, 3-22) and Borovin, 
Stepanyantz, Tuchin, and Tuchin et al. (2012). 
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Table 9-3. Assessment of single-impulse coplanar long-duration 
manoeuvres for orbit 1 

 
Manoeuvre parameters Given values Assessment result Errors 

Test 3 
V m/s 25 24.94 0.2% 

 deg 89.13 86.12 3.4% 
W 10-2 m/s2 1.858 1.917 3.1% 

Time of manoeuvre start 2:51:00.0 2:51:47.0 47 sec 
Time of manoeuvre end 3:13:33.2 3:13:28.0 5.2 sec 

Test 4 
V m/s 12.5 12.49 0.1% 

 deg 44.66 43.65 2.2% 
W 10-2 m/s2 1.858 1.903 2.4% 

Time of manoeuvre start 2:51:00.0 2:51:15.5 15.5 sec 
Time of manoeuvre end 3:02:13.2 3:02:11.9 1.3 sec 

 
Table 9-4. Assessment of single-impulse noncoplanar long-duration 

manoeuvres for orbit 1 
 

Manoeuvre parameters Given values Assessment result Errors 
Test 5 

V m/s  25 24.65 1.4 % 
 deg  45 44.29 1.6 % 
 deg  96.47 94.66 1.9 % 

W 10-2 m/s2  1.720 1.726 0.4 % 
Time of manoeuvre start 2:49:01.6 2:45:46.7 3:14.9 
Time of manoeuvre end 3:13:12.2 3:09:29.6 3:42.6 

 
Table 9-4 continued 

 
Manoeuvre parameters Given values Assessment result Errors 

Test 6 
V m/s  12.5 12.35 1.2 % 
 deg  45 44.44 1.5 % 
 deg  48.24 46.96 2.7 % 

W 10-2 m/s2  1.720 1.747 1.6 % 
Time of manoeuvre start 2:49:01.6 2:45:41.6 3:20.0 
Time of manoeuvre end 3:01:06.3 2:57:21.4 3:44.9 
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Table 9-5. Assessment of two-impulse short manoeuvres for orbit 1 
 

 
Table 9-5 continued 

 

 
 
 
  

Impulse 
parameters Reference Traditional 

method Errors  Quick 
method Errors  

Test 7 
Time of 1st 

impulse 
2012.09.20 
6:14:00.00 

2012.09.20 
06:12:31.06 01:28.94 2012.09.20 

06:14:08.52 00:08.52 

V1 m/s 10.5 12.07 15.0% 11.25 7.1% 
1 deg 45 47.60 5.8% 46.10 2.4% 
1 deg 0 -14.38 - 0 - 

Time of 2nd 
impulse 

2012.09.20 
8:22:30.00 

2012.09.20 
08:23:53.66 01:23.66 2012.09.20 

08:22:55.65 00:25.65 

V2 m/s 15.0 14.26 4.9% 14.91 0.6% 
2 deg 315 317.41  315.24 0.1% 
2 deg 0 0.63 - 0 - 
V m/s 25.5 26.33 3.2% 26.15 2.5% 

Comp. time - 2.521 s - 0.003 s - 

Impulse 
parameters Reference Traditional 

method Errors  Quick 
method Errors  

Test 8 
Time of 1st 

impulse 
2012.09.20 
18:14:00.00 

2012.09.20 
18:12:27.39 01:22.61 2012.09.20 

18:14:08.45 00:08.45 

V1 m/s 10.5 11.90 12.3% 11.25 7.4% 
1 deg 45 46.04 2.3% 46.11 2.5% 
1 deg 0 -15.95 - 0 - 

Time of 2nd 
impulse 

2012.09.20 
20:22:30.00 

2012.09.20 
20:24:05.12 01:35.12 2012.09.20 

20:22:55.48 00:25.48 

V2 m/s 15.0 14.49 10.2% 14.91 0.6% 
2 deg 315 316.43 0.5% 315.24 0.1% 
2 deg 0 0.92 - 0 - 
V m/s 25.5 26.39 3.5% 26.16 2.6% 

Comp. time - 57.839 s - 0.005 s - 
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Table 9-6. Assessment of two-impulse short manoeuvres with 
radial impulse components for orbit 1 

 
Impulse 

parameters Reference Traditional 
method Errors Quick 

method Errors 

Test 9  
Time of 1st 

impulse 
2012.09.20 
6:14:00.00 

2012.09.20 
06:11:27.75 02:32.25 2012.09.20 

06:14:08.53 00:08.53 

V1 m/s 10.5 13.35 2.85 
(27.1%) 11.33 0.83(7.9%) 

1 deg 45 49.04 4.04(9.0%) 46.33 1.33(3.0%) 
1 deg 1 -25.19 26.19 0 1 

Time of 2nd 
impulse 

2012.09.20 
8:22:30.00 

2012.09.20 
08:24:38.87 02:08.87 2012.09.20 

08:22:52.47 00:22.47 

V2 m/s 15.0 13.82 1.18(7.9%) 14.83 0.17(1.1%) 
2 deg 315 319.21 4.21(1.3%) 315.39 0.39(0.1%) 
2 deg 1 -1.17 2.17 0 1 
V m/s 25.5 27.17 1.67(6.6%) 26.16 0.66(2.5%) 

Comp. time - 2.521 s - 0.003 s - 
 

 Table 9-6 continued 
 

Impulse 
parameters Reference Traditional 

method Errors  Quick 
method Errors 

Test 10  
Time of 1st 

impulse 
2012.09.20 
6:14:00.00 

2012.09.20 
06:11:30.77 02:29.23 2012.09.20 

06:14:23.62 00:23.62 

V1 m/s 10.5 13.37 2.87(27.3%) 11.02 0.52(6.0%) 
1 deg 45 48.99 3.99(8.7%) 44.41 0.59(1.3%) 
1 deg 2 -25.12 27.12 0 2 

Time of 2nd 
impulse 

2012.09.20 
8:22:30.00 

2012.09.20 
08:24:38.86 02:08.86 2012.09.20 

08:23:00.54 00:30.54 

V2 m/s 15.0 13.78 1.22(8.1%) 15.13 0.13(0.7%) 
2 deg 315 319.18  313.93 1.07(0.3%) 
2 deg 2 -0.82 2.82 0 2 
V m/s 25.5 27.15 1.65(6.5%) 26.16 .66(2.5%) 

Computation 
time - 2.521 s - 0.003 s - 
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Table 9-7. Assessment of two-impulse short manoeuvres for orbit 2 
 

Impulse 
parameters Reference Traditional 

method Errors  Quick 
method Errors  

Test 11 (coplanar manoeuvre) 
Time of 1st 

impulse 
2014.04.15 
08:00:00.00 

2014.04.15 
08:04:21.91 4:21.91 2014.04.15 

08:00:40.66 0:40.66 

V1 m/s 10.5 10.52 0.02 
(0.2%) 10.52 0.02 

(0.2%) 

1 deg 180 179.95 0.05 
(0.0%) 179.95 0.05 

(0.0%) 
1 deg 0 0.10 0.10 0 0 

Time of 2nd 
impulse 

2014.04.15 
20:00:00.00 

2014.04.15 
20:01:58.52 1:58.52 2014.04.15 

19:59:21.25 0:38.75 

V2 m/s 15.0 14.97 0.03 
(0.0%) 14.97 0.03 

(0.0%) 

2 deg 180 179.96 0.04 
(0.0%) 179.97 0.03 

(0.0%) 
2 deg 0 0.05 0.05 0 0 

V m/s 25.5 25.49 0.01 
(0.0%) 25.49 0.01 

(0.0%) 
Computation 

time - 57.163 s  0.146 s  

Test 12  
Time of 1st 

impulse 
2014.04.15 
08:00:00.00 

2014.04.15 
07:56:17.92 3:42.18 2014.04.15 

07:58:09.13 1:50.87 

V1 m/s 10.5 10.40 0.10 
(1%) 10.32 0.18 

(1.7%) 

1 deg 45 44.88 0.22 
(0.5%) 44.44 0.56 

(1.2%) 
1 deg 0 0.49 0.49 0 0 

Time of 2nd 
impulse 

2014.04.15 
20:00:00.00 

2014.04.15 
20:02:26.30 2:26.30 2014.04.15 

20:01:10.69 1:10.69 

V2 m/s 15.0 15.10 0.10 
(0.7%) 15.17 0.17 

(1.1%) 

2 deg 315 315.06 0.06 
(0.0%) 314.76 0.24 

(0.0%) 
2 deg 0 1.23 1.23 0 0 
V m/s 25.5 25.50 0 25.49 0.01 

Computation 
time - 54.556 s  0.145 s  
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Table 9-8. Assessment of two-impulse long-duration manoeuvres 
for orbit 1 

 
Impulse parameters Reference Solution Error 

Test 13 
Time of 1st manoeuvre 

start 
2012.09.20 
06:14:00.00 

2012.09.20 
06:12:47.88 1:12.12 

Time of 1st manoeuvre 
end 

2012.09.20 
06:26:41.74 

2012.09.20 
06:25:59.37 0:42.37 

1 deg 50.6 52.5 1.9 
(3.8%) 

V1 m/s 10.50 10.51 0.01 
(0.0%) 

 1 deg 45 43.77 1.23 
(2.7%)  

Time of 2nd 
manoeuvre start 

2012.09.20 
8:45:00.00 

2012.09.20 
08:44:18.95 0:41.05 

Time of 2nd 
manoeuvre end 

2012.09.20 
9:03:03.52 

2012.09.20 
09:02:46.80 0:16.72 

2 deg 72.23 73.50 1.27 
(1.8%) 

V2 m/s 15 14.22 0.78 
(5.2%) 

 2 deg 315 313.42 1.58 
(0.5%) 

Computation time  0.13 s  

V m/s 25.5 24.73 0.77 
(3.0%) 

Test 14 (coplanar manoeuvre) 
Time of 1st manoeuvre 

start 
2012.09.20 
06:14:00.00 

2012.09.20 
06:13:12.63 0:47.37 

Time of 1st manoeuvre 
end 

2012.09.20 
06:26:41.74 

2012.09.20 
06:26:36.71 0:05.03 

1 deg 50.6 53.8 3.2 
(6.3%) 

V1 m/s 10.50 10.66 0.16 
(1.5%) 

 1 deg 180 183.73 3.73 
(2.1%)  
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Time of 2nd manoeuvre 
start 

2012.09.20 
8:45:00.00 

2012.09.20 
08:44:46.56 0:13.44 

Time of 2nd manoeuvre 
end 

2012.09.20 
9:03:03.52 

2012.09.20 
09:02:47.24 0:16.28 

2 deg 72.23 72.32 0.09 
(0.0%) 

V2 m/s 15 13.9 1.1 
(7.3%) 

 2 deg 180 179.77 0.33 
(0.0%) 

Computation time  0.14 s  

V m/s 25.5 24.56 0.94 
(3.7%) 

 
Table 9-9. Assessment of two-impulse long-duration manoeuvres 

for orbit 2 
 

Impulse parameters Reference Solution Error 
Test 15 

Time of 1st manoeuvre 
start 

2014.09.15 
06:30:00.00 

2014.09.15 
06:33:27.26 3:27.26 

Time of 1st manoeuvre 
end 

2014.09.15 
10:01:35.64 

2014.09.15 
09:55:39.01 5:56.63 

1 deg 52.37 50.23 2.14 
(4.1%) 

V1 m/s 10.50 9.70 0.80 
(7.6%) 

 1 deg 45.00 43.05 1.95 
(4.3%) 

Time of 2nd 
manoeuvre start 

2014.09.15 
17:30:00.00 

2014.09.15 
17:25:06.17 4:53.83 

Time of 2nd 
manoeuvre end 

2014.09.15 
22:30:58.72 

2014.09.15 
22:39:26.57 8:27.65 

2 deg 74.50 78.09 3.59 
(4.8%) 

V2 m/s 15 14.39 0.61 
(4.1%) 

 2 deg 315 313.45 1.55 
(0.5%) 
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Computation time  0.64 s  

V m/s 25.5 24.09 1.41 
(5.5%) 

Test16 (coplanar manoeuvre) 
Time of 1st manoeuvre 

start 
2014.09.15 
06:30:00.00 

2014.09.15 
06:25:54.38 4:04.62 

Time of 1st manoeuvre 
end 

2014.09.15 
10:01:35.64 

2014.09.15 
09:58:23.64 3:12.00 

1 deg 52.37 53.92 1.55 
(3.0%) 

V1 m/s 10.50 10.14 0.36 
(3.4%) 

 1 deg 180.00 179.49 0.51 
(0.3%) 

Time of 2nd 
manoeuvre start 

2014.09.15 
17:30:00.00 

2014.09.15 
17:25:23.41 4:36.59 

Time of 2nd 
manoeuvre end 

2014.09.15 
22:30:58.72 

2014.09.15 
22:27:16.84 3:41.88 

2 deg 74.50 76.61 2.11 
(2.8%) 

V2 m/s 15 13.87 1.13 
(7.5%) 

 2 deg 180 179.64 0.36 
(0.0%) 

Computation time  0.63 s  

V m/s 25.5 24.00 1.5 
(5.9%) 

 
Table 9-10 presents the results of the assessment of two single-impulse 

coplanar manoeuvres with errors in orbital determination (Baranov, 
Karatunov, Razoumny, and Vikhrachev 2017, 141-149). The second 
column gives the assessment results obtained without accounting for 
errors in orbital determination. The third one shows the assessment results 
obtained while accounting for errors in the initial and target orbital 
determination. Finally, the fourth one gives the magnitudes of the 
impulses planned for application. As we can see, the proposed method 
allows us to gradually increase the accuracy of the manoeuvre parameter 
assessment. Furthermore, if the calculated impulse is applied for the initial 
orbit, one can obtain the target orbit, which will be far closer to the real 
orbit than the one that was obtained using the measurements. 

 EBSCOhost - printed on 2/13/2023 10:43 PM via . All use subject to https://www.ebsco.com/terms-of-use



Manoeuvring Issues in the Space Debris Problem 
 

 

407

Table 9-10. Assessment of two single-impulse coplanar manoeuvres with 
the presence of the errors in orbital determination 

 

Manoeuvre parametersWithout accounting for 
uncertainty  

Accounting for
uncertainty Reference 

Test 1 (Electro-L2) 
V m/s 0.410 0.419 0.419 
V t m/s -0.392 0.419 0.419 
Vr m/s -0.118 0 - 
Vz m/s -0.016 0 - 

Manoeuvre  
duration 18:07:33 18:08:17 18:09:54 

Test 2 (Luch-5V) 
V m/s 0.155 0.107 0.105 
Vt m/s -0.134 -0.107 -0.105 
Vr m/s 0.002 0 - 
Vz m/s -0.061 0 - 

Manoeuvre  
duration 07:49:47 06:01:51 06:18:25 

 
This algorithm can be used for the assessment of the impulses required 

for a given spacecraft orientation. It is impossible to sequence the thrusters 
that rotate the spacecraft perfectly. An impulse that affects the motion of 
the spacecraft’s center of mass occurs and the assessment and the further 
accounting for these impulses will help increase the accuracy of motion 
prognosis for these spacecraft. 
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CHAPTER TEN 

LARGE SPACE DEBRIS POPULATION 
DECREASE  

 
 
 
There are two ways of mitigating overcrowding in the near space region. 
The first way focuses on preventing an increase in the number of space 
objects. For this purpose, it is necessary to transfer decommissioned 
spacecraft to appropriate disposal orbits (DOs). The second way is to clear 
space objects, especially large ones, from populated orbits. These two 
problems are considered in this chapter. 

10.1. Manoeuvres Forming an Orbit with Fixed Time  
of Ballistic Existence 

In solving the disposal problem, it is necessary to transfer various 
passive objects to a disposal orbit (DO) where they will no longer be a 
danger for active space objects. For the geosynchronous (GEO) region, 
such “graveyard” orbits are located above the geostationary orbits (250-
350 km). In the case of the low Earth orbit (LEO) region, the parameters 
of the DO should ensure that the passive object orbital lifetime is less than 
or equal to the given value existT . According to “GOST (State All-union 
Standard) of Russia 52925-2008: Items of Space System Engineering: 
Basic Demands of Spacecraft for the Restriction of Technogenic Pollution 
of Near-earth Space” (anonymous 2008), existT  is recommended as being 
no more than 25 years for all spacecraft at altitudes of less than 2,000 km 
after the active phase of the flight has been completed. 

The spacecraft transfer to the low Earth DO manoeuvre parameter 
determination problem can be divided into two sub-problems. In the first 
problem, it is necessary to determine an orbit with reduced ballistic 
existence; in the second, it is necessary to determine the spacecraft transfer 
manoeuvre parameters for this DO. Two main types of DO can be 
distinguished. In the first case, an elliptical orbit is shaped with the use of 
a single braking impulse applied at the apocenter. Its pericenter is located 
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in the upper layers of the atmosphere. In the second case, a circular orbit is 
shaped by two braking impulses applied at the orbital apocenter and 
pericenter. The orbit is situated in the upper layers of Earth’s atmosphere. 
The first case has lower fuel costs; however, the DO’s apogee stays in the 
operational altitudes of active space objects. Hence, a spacecraft 
transferred to an elliptical DO will be dangerous for active space objects 
with orbits that are lower than the apocenter of the DO. As such, one of 
the problems considered involves the assessment of how quickly the 
elliptical DO’s apogee will leave the active space object operational area. 
The transfer to a circular orbit immediately drags the spacecraft out of the 
active space object operational orbit area and the altitude of this orbit is 
higher than the altitude of the elliptical DO pericenter. 

Due to the fact that the magnitudes of the impulses used to adjust the 
DO are quite large, and their precision falls at the end of the spacecraft 
existence period, it is necessary to divide these impulses into individual 
parts and apply them on different revolutions but with the same latitude 
arguments. This improves the accuracy of orbital determination after 
application of the velocity impulse and helps us better calculate the 
probability of a possible collision with space debris during orbital shaping. 
If there is a danger of collision, manoeuvres lowering the orbit can be 
rescheduled to future revolutions or performed earlier. Due to the 
considerable magnitudes of the manoeuvres, any changes to the times of 
manoeuvre execution will be made significantly more efficient in terms of 
collision avoidance. 

10.1.1. Spacecraft Motion Simulation over a Long  
Time Interval 

It is necessary to predict the motion of a spacecraft for a period of 25 
years when selecting its DO. This results in considerable restrictions on 
the method of propagation. On the one hand, it is necessary to ensure a 
high level of prognostic accuracy; on the other hand, it needs to be quick 
enough to reduce the total computing time of the problem solution. 

Modelling the spacecraft motion can be done very effectively using the 
TRACE software. This software is based on the numerical analytical 
THEONA spacecraft motion theory developed at the Keldysh Institute of 
Applied Mathematics of the Russian Academy of Sciences (Golikov 1990; 
Golikov 2008). The software realization has high accuracy and is 100-300 
times faster than usual the method of numerical integration. The error is 
several centimeters per revolution along the orbit and less than a 

 EBSCOhost - printed on 2/13/2023 10:43 PM via . All use subject to https://www.ebsco.com/terms-of-use



Chapter Ten 
 

 

410

millimeter in the lateral direction in comparison to the method of 
numerical integration. 

The basic principles of THEONA numerical analytical theory can be 
briefly described as follows. As a drift orbit, we take the accurate solution 
of the generalized problem of two fixed centers—Euler’s orbit. This type 
of solution takes into account the most significant effects of the 
gravitational field, determined by the second, third, and, partially, the 
fourth zonal harmonics of the gravitational potential. Therefore, Euler’s 
orbital elements are used in differential equations of motion. The element 
selection in THEONA allows avoidance of the singularities typical for 
near-circular orbits: the satellite orbit latitude argument is selected as an 
independent variable. The satellite trajectory is divided into revolutions. 
Each revolution begins at one ascending node and ends at the next 
ascending node. For near-equatorial orbits, another variant of the 
“revolution” and nonsingular orbital elements are provided. Here, the 
integration variable is also angular, but it represents the sum of the latitude 
argument and the RAAN. 

The choice of Euler’s orbit as the drift orbit allows us to include the 
most significant disturbing factors in the interim motion of the satellite. 
The other dynamic effects are taken into consideration using the numerical 
analytical integration of differential equations for Euler’s orbital elements. 

The force model used for the calculation and propagation of spacecraft 
motion using the THEONA numerical analytical methods considers the 
most modern Russian standards: 

- The Earth’s gravitational field model PZ-90. The maximum 
degree and order of the model are defined by default at the point of 
software initialization, but they can also be changed by the operator. It is 
also possible to use the EGM2008 model from the IERS Conventions 
2010 (ed. IAU 2009), adopted as an international standard. 

- The dynamic model of Earth’s atmosphere density GOST R 
25645.166-2004. 

- Solar and lunar gravitational influence. 
- Solar radiation pressure taking the Earth’s cylindrical shadow 

into account. 
- Tidal forces, caused by changes to the Earth’s surface. 
The THEONA force model is practically the same as force models that 

are used in the numerical integration of the exact equations of orbital 
motion. 

The fundamental astronomical and geodetic constants from the IERS 
Conventions 2010 (ed. IAU 2009 XXVI GA) are used as built-in 
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parameters. The Russian standards for corresponding constants (PZ-90.02) 
are also used. 

The table of the exact ephemeris of the Sun and the Moon in the 
coordinate frame J2000 corresponds to the model DE405 created by JPL 
(Jet Propulsion Laboratory). The calculation of the position of the Sun and 
the Moon (to account for the gravitational influence of the external stellar 
bodies and the solar radiation pressure) can be carried out using this table 
or the approximate analytical equations depending on the TRACE 
software user selection. This selection is fixed at the point of initialization 
of the software for the calculation and prediction of the spacecraft’s orbital 
parameters. 

THEONA uses the cylindrical shadow model from the celestial body 
that has the orbiting satellite while considering the light pressure (from 
direct solar radiation). The light pressure force affecting the satellite is 
proportional to the light pressure coefficient. This coefficient depends on 
the satellite surface reflection coefficient and its figure. 

Consideration of the tidal forces is limited (Love’s model) with the 
tidal potential of “elastic” Earth, accounting for solar and lunar motion. 

Also, the motion of the active spacecraft as it executes manoeuvres 
(impulsive and low-thrust) is provided in the THEONA numerical 
analytical prediction method. 

Numerical analytical integration is carried out by the method of “step 
by step/revolution by revolution” summation of the orbital element 
perturbations calculated analytically within the revolution. Thus, this 
calculation scheme allows the tracking of changes to the orbital elements 
(long-period and secular) without the difficulties that arise in the classic 
methods of the general perturbation theory. The method of summing 
“revolution-by-revolution” makes it possible to take into consideration 
changes in physical parameters: the solar activity indices and the 
geomagnetic disturbance and minor motion (the pole, precession, and 
motion of nutation) of the Earth etc. Moreover, the spacecraft’s orbit may 
significantly change (the manoeuvres, collisions, changes in spacecraft 
orientation and, hence, in the force model, etc.) during its mission. The 
new trajectory parameters require recalculation of the orbit and, hence, the 
orbital elements need to be updated. THEONA has no difficulty in dealing 
with these cases in contrast to analytical theories. 

The short-period perturbations at the required time (or angular variable 
value) are calculated to make a prediction within the current revolution. 
The calculation of all (secular, long-period, and short-period) perturbations 
is carried out separately for each perturbing factor by the analytical 
integration of the perturbed motion of Lagrange-type or Newton-type 
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equations. At the same time, the special function recurrent relations of the 
THEONA numerical analytical theory that it uses allow us to realize rapid 
calculation. They are designed for the effective functioning of the whole 
THEONA extrapolator circuit accounting for all the features of the 
revolution per revolution summation of the analytic integrals. 

In addition to the functions known from celestial mechanics, new 
special functions have been proposed: 
 The orbit inclination functions are used for calculating the gravitational 

perturbations from the central (main) celestial body, external celestial 
bodies, and solar radiation pressure. They are directly expressed in 
terms of Jacobi’s polynomial functions )(cos iPn

mk  from group 

representation theory. The basic inclination functions )(cos iQn
mk  

differ from the well-known Kaula’s inclindation functions only by the 
normalization that optimizes the recurrence relations. The new 
additional inclination functions )(cos iQ n

mk  were created to take into 
account the members of the third order of minority (approximately 10-9 
for Earth’s gravitational potential) in the inequalities caused by the 
noncentrality of Earth’s gravitational field. 

 The functions of two arguments ),( eGn
m , their connection with 

Jacobi’s functions 
21

1

e
Pn

mk  (from group representation theory), 

and cylindrical Bessel functions of the first kind )( eJk  can be 
expressed as an infinite scalar product with index k: 

 

2,
1

1)(),(
e

PeJeG
k

n
kmk

n
m . 

 
The second argument of these functions is the orbital eccentricity e. 
The first argument, in accounting for the perturbations from the main 
celestial body’s gravitational field, is a multiple of the ratio of the main 
celestial body’s rotational angular velocity to the satellite’s mean 
motion. When taking into account the influence of the gravitational 
forces from external celestial bodies, as well as the solar radiation 
pressure, the first argument of the function ),( eGn

m  is a multiple of 
the ratio of the satellite’s mean motion to the angular velocity of the 
external celestial body around the central one. 
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In the THEONA numerical analytical theory, the proposed functions 
),( eGn

m  are used when taking into account the gravitational 
perturbations, the solar radiation pressure, and the tidal forces. These 
functions are efficient in terms of integrals with respect to the latitude 
argument, true anomalies, or true longitudes. 
Hansen’s coefficients )(

,
k
mnX  are a particular case with the first integer 

argument: 
 

).,(1 )2(2
1

2)(
, ekGeX n

mk

n
k
mn  

 
 The attached Legendre functions with noninteger superscripts )(xPn  

can be used to take into account atmospheric braking more effectively 
than the associated Legendre functions with the integer indices since 
they do not require the additional approximation of the Earth’s 
atmospheric density model. At the same time, they work both for 
understanding the distribution of the density over the height and to take 
into account the midday effect—the angle between the direction to the 
satellite and the “afternoon hump” in the planet’s atmosphere. 
For all special functions used in THEONA, a scheme for their 
recurrent calculation has been developed. It allows us to implement 
fast calculations without using large conserved data arrays. This is 
especially effective for use in manoeuvring problems (TRACE 
software implementation). 
The TRACE software created using the THEONA propagator returns 
results in Cartesian coordinates in the Greenwich coordinate frame, 
fixed at a given time and in the osculating orbital Keplerian elements. 
Moreover, the accuracy of the obtained spacecraft state vector (the 
position and velocity) allows, if necessary, for us to proceed to 
numerical integration and back. This can be used in the calculation of 
manoeuvring tasks for short time intervals ];[ endstart ttt  (accurate 
short propagation). 

10.1.2. Orbital Evolution with Fixed Time of Ballistic Existence 

The results presented below were obtained using the numerical 
analytical method for propagation, which allows us to evaluate the 
dependencies between the various parameters ensuring the lowering of an 
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orbit when selecting its DO (Baranov, Budyansky, Chernov, and Golikov 
2015, 4-19). 

First of all, it is necessary to estimate when the spacecraft should be 
inserted into the selected DO. The nature of orbital lowering depends on 
the distribution of the atmospheric density at the current moment in time. 
This may be due to a seasonal effect (i.e. when the Sun is above or below 
the ecliptic), changes in solar activity, and geomagnetic disturbances. As a 
rule, these factors are taken into account in dynamic Earth atmospheric 
models by Russian and foreign scientists. Since the geomagnetic 
disturbance index cannot be predicted for more than a few days, its 
changes should not be used for long-term orbital motion propagation. At 
the same time, the solar activity indices for several years ahead are 
provided by various physics research centers around the world. The 
American center NOAA provides prognostic data of the current solar 
cycle of solar activity on a daily basis and also assesses the parameters for 
the next 11-year cycle. The spacecraft’s orbital lowering rate also varies at 
different seasons. 

Table 10-1 gives the dependency of the circular orbital altitude (the 
second option selecting the operational orbit) versus the time of its 
initialization (spacecraft deployment). 

Here, we present the results of analysis of shaping a circular spacecraft 
orbit for two types of orbits with the different inclinations: 98º and 51.6º. 
If the initialization time is “delayed”, the required altitude of the initial 
orbit decreases (see lines 1-7 and 8-14). This is explained by the fact that, 
in 2013-2015, the average index of solar activity increased (in the first half 
of the 11-year solar cycle) and an “early” spacecraft would pass through 
the thicker atmosphere over a longer time interval. At the same time, a 
seasonal effect can also be observed: the change rate in the autumn/spring 
period is slowing (see lines 2-3 and 4-5). 
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Table 10-1 
 

 Inclination deg S (bal) Year Season Date Altitude km 
1 

98 0.03 

2013 summer 2013.06.22 687.029 
2  autumn 2013.09.22 685.351 
3  winter 2013.12.21 685.512 
4 2014 spring 2014.03.21 683.213 
5  summer 2014.06.22 683.164 
6  winter 2014.12.21 680.951 
7 2015 summer 2015.06.22 679.167 
8 

51.6 0.03 

2013 summer 2013.06.22 671.341 
9  autumn 2013.09.22 670.871 

10  winter 2013.12.21 669.772 
11 2014 spring 2014.03.21 668.803 
12  summer 2014.06.22 667.963 
13  winter 2014.12.21 666.175 
14 2015 summer 2015.06.22 664.737 

 
Figure 10-1 displays a graph showing the described dependency of the 

spacecraft operational orbital altitude with different inclinations versus 
deployment date. The altitude implies a 25 year lifetime. The spacecraft 
ballistic coefficient is 0.03. 

 

 
 

Fig. 10-1. Operational orbital altitude as a function of the deployment date 
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Table 10-2 shows the calculation results for the circular DO altitude 
(the second option in initial orbit selection) with the different ballistic 
coefficients: S (bal) = 0.18; 0.03; 0.005. 

 
Table 10-2 

 
# Inclination deg S (bal) Year Season Date Altitude km 
1 98 0.18 2013 summer 2013.06.22 816.886 
2 98 0.03 2013 summer 2013.06.22 687.029 
3 98 0.005 2013 summer 2013.06.22 541.172 
4 51.6 0.18 2013 summer 2013.06.22 802.061 
5 51.6 0.03 2013 summer 2013.06.22 671.341 
6 51.6 0.005 2013 summer 2013.06.22 540.094 

 
The difference in altitude of the required orbits is significant: 162-175 

km between the spacecraft with the biggest and the smallest ballistic 
coefficients. It is no coincidence that such values for the ballistic 
coefficients are chosen in the proposed test as they reflect the range for 
almost all the spacecraft used. 

In addition to the circular orbit, another orbit can also be chosen as the 
spacecraft DO—an elliptical, eccentric orbit with a given altitude of 
apogee. In order to get the parameters of such an orbit, it is necessary to 
find the perigee altitude of a DO ensuring a fixed degradation time. In the 
case of an elliptical DO, the perigee altitude should be lower than in the 
first variant with a circular DO. This perigee altitude decreases with the 
augmentation of the given apogee altitude. 

Table 10-3 shows the calculated results of the altitude required for a 25 
year satellite lifetime with different ballistic coefficients and different 
specified orbital apogee altitudes. The spacecraft deployment starting date 
was June 22, 2013. 

The lowering of the DO initial minimum altitude allows us to quickly 
lower the altitude of the orbital apogee into the thick layers of atmosphere. 
Thus, the DO leaves the area of operational orbits of active space objects 
sooner, reducing hazards to the active space objects with orbits lower than 
the DO apocenter. Further orbital lowering is similar to the variants with 
lower initial values of the given apogee altitude. 
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Table 10-3 
 

Initial orbit 
Initial 

inclination 
deg 

Perigee altitude km 
Ballistic 

coefficient  
S (bal) = 

0.03 

Ballistic 
coefficient 
 S (bal) = 

0.18 

Ballistic 
coefficient 

S(bal) = 0.005 

Near-Circular 98 687.031 816.886 541.172 
51.6 671.341 802.061 540.094 

Apogee altitude  
800 km 

98 658.728 - 537.531 
51.6 625.571 - 532.219 

Apogee altitude  
1,100 km 

98 616.639 774.837 519.231 
51.6 614.228 769.414 517.300 

Apogee altitude  
1,500 km 

98 580.110  504.115 
51.6 579.868 743.301 503.301 

 
The graph below presents a comparison of similar orbits with 

degradation for the initial circular orbit variant, as well as elliptical orbits 
with given apogee altitudes of 800 km and 1,000 km. The evolution of the 
maximum altitudes of the considered orbits is shown. 

 

  
 

Fig. 10-2. Comparison of orbital altitude evolution versus time for circular 
and elliptical DOs (apogee altitude) 
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The rapid lowering of the “high” orbit with an initial apogee altitude of 
1,100 km in the first 4 years makes it possible to argue that the variant of 
the high elliptic DOs may be interesting in terms of saving fuel (the fuel 
cost reduction on the manoeuvring for spacecraft deployment to the 
required orbit). 

It is necessary to perform the calculations using the high-performance 
software for the DO selection scheme and the deployment of the 
spacecraft to this orbit. It is also required for the determination of the 
orbital degradation time and the moment of time of leaving the 
spacecraft’s maximum orbital altitude from the spacecraft operational 
orbit area in the real project. 

The following two graphs demonstrate the nature of spacecraft orbital 
degradation during 25 years for both the considered variants of the initial 
DO: the circular and the elliptical. In the pictures, besides the average 
altitude, the maximum and minimum spacecraft orbital altitudes are 
shown. 

The eccentricity decreases with time for the elliptical orbit and altitude 
lowering into the thicker layers of the atmosphere tends to be the same as 
for the circular orbital evolution. 

 

 
 

Fig. 10-3. Near-circular orbital degradation versus time (inclination 98º) 
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Fig. 10-4. Elliptical orbital degradation versus time (inclination 98º) 

10.1.3. Parameter Determination Algorithm for an Orbit  
with Fixed Time of Ballistic Existence 

An iterative procedure for the determination of the spacecraft’s orbit 
with the exact (less than 1 hour) specified interval of existence time, uses 
the effective TRACE extrapolator based on the THEONA numerical 
analytical theory. Its high performance and accuracy make it possible to 
form a multiple-iteration process without facing the difficulties in 
predicting spacecraft motion over long time intervals. 

The input data for the iterative procedure are: 
 The spacecraft’s initial orbital parameters (the semimajor axis a , the 

eccentricity e , the inclination i , the perigee argument , the RAAN 
,  the initial moment of time 0t , and the latitude argument 0u ) and 

the spacecraft’s characteristics (mass, ballistic coefficient, and 
coefficient of solar radiation pressure). 

 The duration of the disposal time interval LT . The spacecraft enters 
the thicker layers of the atmosphere (with the following descent) at the 
fixed moment in time with acceptable accuracy. 

 The DO selection mode (the circular or elliptical orbit with a fixed 
apogee). In both variants, the orbital plane remains unchanged (the 
inclination and the RAAN) at the initial moment in time. For the 
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elliptical DO, the apogee point and the altitude (the geocentric 
distance) of the apogee are also fixed. The initial moment of time is 
preserved. 
Thus, the boundary equation is solved min0 hAh , where minh = the 

altitude of the spacecraft’s entry into the denser layers of the Earth’s 
atmosphere and A  = the operator, which depends on the time of the 
spacecraft’s existence LT  in the orbit and the fixed parameters Q  of the 
desired DO. 

While searching for the circular DO, the fixed orbit parameters are: 
},{ 00iQ  at the initial moment of time 0t , while searching for the 

elliptical DO. 
},,,{ 000 ihQ  at the initial moment of time 0t , where h  = the 

orbital apogee altitude. 
In both cases, it is convenient to use )( 00 taa  instead of )( 00 thh . 
Taking into account the close to exponential dependence between the 

atmospheric density )(exp)( 0
0 h

H
hh

h  and the altitude h  

above the Earth’s surface, it is more effective to consider the equation 
with another operator and a logarithmic variable )ln( 0 Hhh  or 

)ln( 0 Haa . 
At each iteration, the satellite’s motion is propagated until it enters the 

denser layers of the lower atmosphere and falls down towards Earth’s 
surface (Event 1), or until the specified time interval passes (Event 2). If 
these two events coincide (with permissible tolerance), it is supposed that 
the iteration procedure is complete and the desired initial parameters of the 
spacecraft DO have been found. 

The algorithm and methods of the iterative procedure for searching for 
the DO can be described as follows: 
1. Cross-checking of the event iterative procedure variants available for 

the initial spacecraft. 
2. A decrease (or increase, depending on the previous event) of the 

spacecraft orbit’s initial semimajor axis )( 00 taa  with a big step 
until the change of the event variant occurs. 

3. In the case of a big interval between the values of the previous )1(
0
na  

and the current step )(
0
na , the golden section method is realized 

(dichotomy method optimization) for the acquisition of the new )1(
0
na

. 
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4. In the case of the small interval between )1(
0
na  and )(

0
na , the secant 

method or chord method is used depending on the specific 
characteristics of the algorithm. If Event 1 occurs on the current step, 
the calculation of the direction of the secant while accounting for 
perturbations in the semimajor axis due to atmospheric deceleration 
calculated for the prognosis of the initial revolutions is realized. This 
quickens the convergence of the iterative process. 

5. The iterations are repeated until full convergence is achieved, i.e. until 
both events occur with acceptable accuracy. The convergence of the 
iterative process is monitored with the possibility of changing its 
methods, which were described above. 
As an explanation, the boundary equation with operator  can be 

represented as a function for Event 1: LThhQt ),,( 0min ; or for Event 2 
as: min0 ),,( hhTQh L . 

The results (the output data) of the iterative procedure algorithm: 
 The altitude )( 00 thh  of the DO perigee at the initial moment of 

time 0t . The perigee altitude coincides with the constant orbital 
altitude )( 00 thh  for the circular orbit. 

 The number of revolutions carried out in the DO until the critical 
altitude (“the fall”). This data can be used in reports and results 
analysis (in particular, in graphs or tables). 

10.1.4. Manoeuvre Parameter Determination Algorithm for 
Transfer to an Orbit with Fixed Time of Ballistic Existence 

Using the magnitude of the circular DO radius fr  and the pericenter 

radius of the elliptical DO fr  from the previous section, it is possible to 
calculate the total delta-v expenditure needed for the adjustment of the 
corresponding DO. 

The elliptical orbital semimajor axis alteration can be found using the 
equation 

 

,2 2

TV
Va

a     (10-1) 

 
where TV  = the impulse tangential component and V = the velocity at 
the location of impulse application. According to the equation, it is 
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necessary to orient the impulse tangentially to the orbit for optimal 
alteration of the semimajor axis. The maximum alteration can be gained 
by application of the impulse at the orbital pericenter where the spacecraft 
velocity has its maximum value. 

Before the start of the main calculation, the velocity at the initial 
orbital apogee is calculated, along with the apogee and perigee radii: 

 

),1( e
p

V  

),1( ear  
).1( ear  

 
One braking impulse applied in the initial orbital apogee is used for the 

shaping of the elliptical DO. The magnitude of the impulse can be found 
by: 

 

.
4

)(
2Va

rr
V f

t    (10-2) 

 
Two braking impulses are used for the second type solution in forming 

the circular DO. The first of the impulses is applied at the initial orbital 
apogee and the second one is applied at the orbital perigee, obtained after 
the application of the first impulse. The magnitude of the first impulse 
applied at the apogee can be found by: 

 

.
4

)(
21 Va

rr
V f

t

   (10-3) 
 

Then the semimajor axis na , the focal parameter np , the eccentricity 

ne  of the orbit shaped by the first impulse, and the velocity at the perigee 

nV  are found: 
 

),(
2
1

fn rra  
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The magnitude of the second impulse, applied at the orbital perigee 

obtained after the application of the first impulse, can be found as follows: 
 

.
4

)(
22

nn

f
t

Va

rr
V    

(10-4)

 

 
If the initial orbit is circular, then additional constraints should be 

taken into account while choosing the moment of transfer from the orbit. 
For example, one should choose an orbit which generally avoids collisions 
with space debris. 

10.1.5. Example 

The problem of manoeuvre parameter determination for a spacecraft’s 
transfer to a DO can be solved in two steps. The first step involves the 
determination of an orbit with a reduced time of ballistic existence. The 
second step involes the determination of the actual manoeuvre parameters 
to transfer the spacecraft to this orbit. The two options for shaping the 
orbit with the reduced time of ballistic existence have been realized. In the 
first case, the elliptical orbit is adjusted by the application of a single 
braking impulse at the apocenter. Its pericenter is situated in the denser 
layers of the atmosphere. In the second case, the circular orbit is shaped by 
the application of two braking impulses—at the apocenter and the 
pericenter. It is situated in the even thicker layers of the atmosphere. 

The algorithms for the determination of the DO parameters and the 
manoeuvre parameters that shape the DO were described earlier. 

Table 10-4 presents the elements of the initial spacecraft orbit. Table 
10-5 gives the spacecraft parameters of: engine thrust (P); spacecraft mass 
(kg); specific impulse (I); existence time of the DO (dT); the orbital 
elements printing step (dN); the accuracy of the DO adjustment (epsR); 
and the accuracy of the DO existence time (epsT). 
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Table 10-4 
 

Hmin 
km 

Hmax 
km  deg u deg i deg  deg N Date Time S (bal) 

707.7 750.3 0 72 98 50 1 2013.01.01 043000.15 0.0045 
 

Table 10-5 
 

P N m kg I s dT days dN mode epsR km epsT days 
3,000 7,000 0.023 9,131 3,000 2 0.001 1 

 
Information about the transversal braking manoeuvre (Baranov, 

Budyansky, Chernov, and Golikov 2015, 4-19), which transfers the 
spacecraft to the elliptical orbit, can be found in table 10-6, including: the 
date and time of the start of manoeuvring; its magnitude; the number of 
revolutions for the manoeuvre application; and the latitude arguments of 
its beginning and end. 

 
Table 10-6 

 
Date Time dVm/s Revolution U_in U_ta 

2013.01.01 45822.8 71.55 2 174.95 185.05 
 

Table 10-7 gives information about the two transversal braking 
manoeuvres, which transfer the spacecraft to a circular orbit. 

 
Table 10-7 

 
Manoeuvre Date Time dV m/s Revolution U_in U_ta 

1 2013.01.01 45,850.4 47.90 2 176.62 183.38 
2 2013.01.01 54,643.3 59.19 2 355.74 364.26 

 
Below, we find the information about the evolution of the circular and 

elliptical orbital elements with a 12,000 revolution step (Baranov, 
Budyansky, Chernov, and Golikov 2015, 4-19). 

The ballistic coefficient: 0.4500000000000D-02. 
The solar radiation coefficient: 0.3500000000000D-09. 
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The evolution of the formed circular DO 
 
Revolution     Semimajor axis           Eccentricity          Argument of 
perigee          Inclination                 RAAN              Argument of latitude             
Time            Flight duration        Altitude of perigee    
0   0.691518526288D+01   0.188963633604D-02   
0.534077652727929D+02   0.9798980982053D+02   
0.4998835802642D+02   0.2079163930186D+00   
0.3869483449816D+00   0.6737776267169D+00   
0.5191467727679D+00 
12,000   0.6910050637D+01   0.99626895852D-03   0.97675731382D+02   
0.9798681758181D+02   0.161677850795D+03   0.1200020791639D+05   
0.6902365575951D+00   0.794476952433D+03   0.5174040573780D+00 
24,000   0.69045256152D+01   0.17642920474D-02   0.5264659611D+02   
0.97988180283D+02  -0.8543534012577D+02   0.2400020791639D+05   
0.1272884399222D+00   0.15873735431D+04   0.5093786551627D+00 
36,000   0.68984083484D+01   0.12147105789D-02   0.9581586601D+02   
0.97984775341D+02   0.28772504210D+02   0.3600020791639D+05   
0.75160647230D+00   0.23792727749D+04   0.5044609776106D+00 
48,000   0.68915398165D+01   0.1513560635D-02   0.4693031706D+02   
0.9798319080282D+02   0.14448699096D+03   0.4800020791639D+05   
0.4569529980653D-01   0.317003765099D+04   0.4983694254986D+00 
60,000   0.68837999432D+01   0.15692059216D-02   0.8693337542D+02   
0.97984573775D+02  -0.9810855747773D+02   0.6000020791639D+05   
0.600908254738D+00   0.395952909260D+04   0.4880257878580D+00 
72,000   0.68746542153D+01   0.10688947970D-02   0.4866613792D+02   
0.97984268041D+02   0.2121055056212D+02   0.7200020791639D+05   
0.97688345646D+00   0.4747587858528D+04   0.4842600476981D+00 
84,000   0.6864018972D+01   0.1747816097D-02   0.70246607D+02   
0.9797954810D+02   0.1427778386D+03   0.8400020791639D+05   
0.3987172583D+00   0.55339666134D+04   0.468034014978D+00 
96,000   0.6850988423D+01   0.1088092563D-02   0.8351860256D+02   
0.97978995099D+02  -0.92957745893D+02   0.9600020791639D+05   
0.65934499690D+00     0.631834067892D+04   0.45849168772D+00 
108,000   0.6833781483D+01   0.1348714535D-02   0.5312903244D+02   
0.9797836567636D+02   0.347462338653D+02   0.108000207916D+06   
0.699654008843D+00   0.7100175424764D+04   0.441384506914D+00 
120,000   0.6809484442D+01   0.1610268829D-02   0.6796995206D+02   
0.97974781525D+02   0.16725486801D+03   0.12000020791D+06   
0.27286508923D+00   0.78784892161D+04   0.41456741851D+00 
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132,000   0.6763956514D+01   0.1473728186D-02   0.7866936324D+02   
0.979682073356D+02  -0.524058950951D+02   0.132000207916D+06   
0.550028992118D+00   0.865114296932D+04   0.369315631040D+00 
139,573   0.6518598360D+01   0.6637589020D-03   0.2019154822D+02   
0.97930094998D+02   0.140965354553D+03   0.141000207916D+06   
0.81188654224D+00   0.913143598161D+04   0.131977512142D+00 

 
The evolution of the elliptical orbit 

 
0   0.698300893939907D+01   0.23641198941D-01   
0.377324001414D+01   0.9798970932014D+02   0.4998792065997D+02   
0.2118375662256D+00   0.3329191174416D+00   
0.6737770013786D+00   0.4365476667912D+00 
12,000   0.697130821036D+01   0.206665984686D-01  -
0.136684079987D+03   0.9798653713232D+02   0.1471525460116D+03   
0.1200021183756D+05   0.6336642014066D+00   
0.8056102272414D+03   0.4407849960690D+00 
24,000   0.696004050022D+01   0.219267241667D-01   
0.794645134932D+02   0.97983352282208D+02  -
0.11327332902293D+03   0.24000211837566D+05   
0.45671568048419D+00   0.16085835701008D+04   
0.42353845961942D+00 
36,000   0.694824990590D+01   0.183332692905D-01  -
0.707421722178D+02   0.97983265094289D+02  -
0.11211388146403D+02   0.36000211837566D+05   
0.94559381308499D+00   0.24095504739073D+04   
0.43738256021135D+00 
48,000   0.693543479024D+01   0.188557098128D-01   
0.120943138911D+03   0.97983072289462D+02   
0.93474685414810D+02   0.48000211837566D+05   
0.13310166721930D+00   0.32084243765405D+04   
0.41871106677928D+00 
60,000   0.692212780045D+01   0.161662067919D-01  -
0.440936036024D+02   0.97980213151987D+02  -
0.15898563073397D+03   0.60000211837566D+05   
0.25084808515384D+00      0.4005036380218D+04   
0.42793255247802D+00 
72,000   0.690705780952D+01   0.159891438168D-01   
0.123727903817D+03   0.97978789158900D+02  -
0.48300702027612D+02   0.72000211837566D+05   
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0.88504246552474D+00     0.4799181491725D+04   
0.41045768514320D+00 
84,000   0.689049144014D+01   0.127885229966D-01  -
0.640357956355D+02   0.97972912852217D+02   
0.65859025846478D+02   0.84000211837566D+05   
0.64955866942182D+00   0.55906238269624D+04   
0.41915043568269D+00 
96,000   0.687147050470D+01   0.133690209724D-01   
0.809328236263D+02   0.97974377385835D+02  -
0.17604559527898D+03   0.96000211837566D+05   
0.25392688997089D+00      0.6379047711272D+04   
0.39548862687624D+00 
108,000   0.684889647758D+01   0.916118511227D-02  -
0.14887412646D+03   0.97969547364881D+02  -
0.53228668831080D+02   0.10800021183756D+06   
0.68754771491512D+00     0.7163888028791D+04   
0.39886179535013D+00 
120,000   0.681821152587D+01   0.791173060441D-02  -
0.22530022704D+02   0.97963043269527D+02   
0.75679477060619D+02   0.12000021183756D+06   
0.83711257798131D+00   0.79441739332999D+04   
0.38260601229904D+00 
132,000   0.676011617528D+01   0.610290374228D-02   
0.51041811480D+02   0.97954666432225D+02  -
0.14580580772984D+03   0.13200021183756D+06   
0.23680918919853D+00      0.8717434169407D+04   
0.33612002482384D+00 
 135,000   0.672780453941D+01   0.482607282465D-02   
0.59407342434D+02   0.97952018476325D+02   
0.71634231611012D+02   0.13500021183756D+06   
0.79273351724259D+00   0.89087388864899D+04   
0.31212370854329D+00 
138,531   0.651134593280D+01   0.508719801598D-03   
0.260863630465D+02   0.97918439161084D+02  -
0.28915308313555D+02   0.14100021183756D+06   
0.57465186133049D+00     0.9131503988132D+04   
0.12475769843603D+00  

 
This information allows us to present the dependencies between the 

orbital elements and the time or number of revolutions of the spacecraft 
flight. The graphs of the alteration of the perigee altitude (Fig. 10-5), the 
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semimajor axis (Fig. 10-6), and the apogee (Fig. 10-7) of the two 
estimated DOs can be found below. 

 

 
 

Fig. 10-5. Evolution of DO perigee altitude versus time 
 
 

 
 

Fig. 10-6. Evolution of the DO semi-major axis versus time 
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Fig. 10-7. Evolution of DO apogee and perigee altitude versus time 

10.2. Active Debris Removal Problem 

In order to stop overcrowding in the near space environment, de-
commissioned spacecraft and large-size space debris (LSSD) should be 
transferred to appropriate DOs. Above all, the final stages of launch 
vehicles (LV), upper stages, and large spacecraft should all be transferred 
to DOs. Collisions of LSOs with other space objects are accompanied by 
the generation of considerable quantities of debris with high kinetic energy 
(Johnson and Liou 2009, 1407-1415). This can lead to snowballing growth 
in dangerous space objects. This effect is known as the Kessler syndrome 
(Cour-Palais and Kessler 1978, 2637-2646; Johnson and Liou 2009, 1407-
1415). 

According to the results of research (Lewis and White 2014, 1195-
1206; Johnson and Liou 2009, 1407-1415), the removal of 3-5 LSOs a 
year from the near-Earth orbit environment in combination with the 
fulfillment of Inter-Agency Space Debris Coordination Committee 
requirements (Crowther, Lewis, Stokes, and White 2012, 62-68) is the 
only way to stop snowballing growth in space debris. It is worth 
mentioning that the accuracy of these recommendations should be treated 
with caution due to the complexity of spacecraft motion propagation over 
long time periods. This is primarily connected to errors in solar activity 
forecasting. 
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There are lots of current projects for returning LSOs. Schemes in 
which a service spacecraft or a space vehicle collector (SV-collector) 
remove several LSOs at one go are the most effective. 

 The first scheme implies the successive flyby of some objects and 
their collection, or the autonomous control of small spacecraft and fuel 
supplies in the exhaust sections of LSOs (thrust de-orbit kits (TDKs)) that 
can provide sufficient deceleration for the transfer of an LSO to an orbit 
with reduced time of ballistic existence. 

The second scheme implies the use of one SV-collector, which 
manoeuvres between objects and drags them to the DO with the help of its 
engines. It is less effective, but allows for a faster transfer on to the next 
object. In this section, both schemes are considered and a comparison is 
made. 

10.2.1. Geometry of Large Space Debris Objects 

Table 10-8 presents the geometrical characteristics of some objects of 
the aforementioned type. Based on the analysis in this table, the 
conclusion can be made that a minimal cross-section exceeds 5 m2 
(Baranov and Grishko 2014, 39-48). 

 
Table 10-8 

 

Object Type Diam. Len. 
Min.  
cross-
section 

Max.  
cross- 
section 

m m2 
 “Proton” launch vehicle 3rd stage 4.098 4.11 13.19 16.84 
“Soyuz” launch vehicle 3rd stage 2.66 6.745 5.56 17.94 
 “Zenit” launch vehicle 2nd stage  3.9 10.4 11.95 40.56 
 “Ariane 5” launch vehicle 2nd 

stage 3.96 3.356 12.32 13.29 

 “Agena-A” 2nd stage 1.52 4.73 1.81 7.19 
“Briz” upper stage 2.49 2.654 4.87 6.61 

“Fregat” upper stage 3.35 1.5 8.81 5.025 
“Centavr” upper stage 3.05 12.68 7.31 38.67 
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10.2.2. Compact Groups of Large Space Debris Objects  
in the LEO Region 

Several compact groups of LSOs in the LEO region can be 
distinguished due to the target attributes of spacecraft launches. Looking 
through the NORAD catalogue4, one can distinguish five groups of objects 
with sectional areas of more than 5 m2 in LEO (Baranov and Grishko 
2014, 39-48) (table 10-9). 

The semimajor axis value interval does not exceed 50 km for orbits of 
the second, third, and fourth groups. This value is less than 90 km for the 
first group. 

The last group has appeared due to spacecraft being launched into sun-
synchronous orbits. Hence, the inclination of the spacecraft in this group is 
a function of altitude. The altitude alters in the range of 527 km. 

Approximately 50 m/s is needed for a 100 km alteration of orbital 
altitude by spacecraft in the specified groups. However, approximately 
130 m/s is needed for an orbital plane rotation of 1º. As such, the most 
crucial aspect is the difference in inclination, which was used to 
distinguish these five groups. Besides the inclination, one can find the 
number of LSOs in the group and the range of the change in their 
semimajor axis values. 

 
Table 10-9  

 

Group  Group elements  
Inclination deg 

Semimajor axis  
diapason km 

Number of LSOs  
in a group 

1 71 7,193-7,281 23 
2 74 7,122-7,152 11 
3 81 7,211-7,262 28 
4 83 7,318-7,358 52 
5 97-100 6,973-7,500 46 

 
The groups were determined using the space object catalogue for 

November 21st, 2013. All the estimates of these objects are attribute-based 
and these attributes are used for the determination of the capability and 
effectiveness of different schemes for large space debris recovery. 

 
4 “NORAD Satellite Catalog”. Accessed November 21, 2013.  
http://www.celestrak.com/satcat/search.asp 
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10.2.3. A Portrait of RAAN Deviation Evolution  

The current mutual orientation of orbital planes must be known in 
order to design appropriate flyby schemes for the objects of the specified 
LSO groups. Direct consideration of the dynamic pattern of RAAN 
alteration leads to complications in the analysis of the flyby scheme 
problem because the orbital planes rotate at close rates. A parameter that is 
more static and that characterizes the orbital plane position should be 
chosen. This parameter should be connected to the corrected deviations. 
The RAAN deviation for all objects (indexes i) from the RAAN of the 
specially chosen object with the fixed number mk ;1  (m = number of 
objects in the group) ],[

ki
 can be chosen. With this approach, 

the dependencies )(t
ki

 for orbits with close parameters (mostly in 
groups 1-4) will be lines with small inclination angles, and the relative 
angular distance )(t

ki
 will alter slowly over time. It is better to choose 

an object with number k, which is the reference for relative angular 
distance determination, so that the majority of the lines )(t

ki
 will have 

an angular coefficient with one sign. 
The graphs of RAAN evolution for the specified groups can be found 

in figs. 10-8 to 10-12 (for a time span of 10 years). These deviations need 
to be corrected during successive flybys from one LSO to another. 
Analysis of these deviations allows us to choose an optimal flyby scheme 
for the LSO. 
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Fig. 10-8. RAAN deviation evolution for elements of group 1 
 

 
 

Fig. 10-9. RAAN deviation evolution for elements of group 2 
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Fig. 10-10. RAAN deviation evolution for elements of group 3 
 

 
 

Fig. 10-11. RAAN deviation evolution for elements of group 4 
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Fig. 10-12. RAAN deviation evolution for elements of group 5 

10.2.4. First De-Orbiting Variant: Estimation of Delta-V 
Budget Required for Flights between Objects 

If the evolution of the RAAN deviations primarily described quasi-
parallel lines (figs. 10-8 to 10-10), the flyby between the three LSOs 
would demand the following action sequence. After the flyby of the SV-
collector to the vicinity of object 1 for the injection of the TDKs into the 
exhaust section, the manoeuvring SV-collector fulfills the flyby to object 2 
(Fig. 10-13). For this purpose the transfer of the SV-collector from the 
orbit of object 1 to a drift orbit using the impulse 1V  is fulfilled. The 
impulse here denotes, as a rule, two ignitions on one revolution. After 
reaching the desired drift orbital plane orientation and the required phase 
difference, the SV-collector is transferred to the vicinity of object 2 with 
the help of impulse 2V  in order to inject the TDKs into the exhaust 
section of this object. The aforementioned actions are repeated with the 
help of impulses 3V  and 4V  to reach object 3, etc. 
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Fig. 10-13. Flyby between orbits on RAAN deviation evolution for  

the case when the LSO orbits for a group have  
small mutual deviations a and i 

 
During the determination of 1V  and 2V , it is supposed that the 

initial and target orbits have close but different values for the semimajor 
axes (the difference 0a ); that small inclination deviations are possible (

0i ); and that the deviation of the RAANs 0  may be arbitrary. The 
difference in eccentricity is small and does not effect the solution type; it 
can be neglected while assessing the total delta-v of the manoeuvres. It is 
supposed that impulses with transversal and binormal components are 
applied at the equator on two manoeuvring intervals, which are situated on 
the first and last flyby revolutions. It is also supposed that the flyby is 
fulfilled using N revolutions of the LSO flight. Due to the transversal 
components of the two impulses of the first manoeuvring interval, the 
semimajor axis alters in order to compensate for the initial moment 
deviation of the latitude argument *

0u  and the necessary difference in the 
number of revolutions of the flyby n while moving on the new (phasing) 
orbit. Also, due to the task-orientated alteration of the orbital precession 
rate, a substantial part of the RAAN angular difference 0  is 
eliminated. The binormal components of impulses, which are needed for 
the compensation of the inclination difference 0i , are also distributed 
between the manoeuvring intervals so that they can affect the precession 
rate of the phasing orbit. 

The required values for the sum of the transversal and lateral impulse 
components of the first 

21 III ttt VVV , 
21 III zzz VVV  and the 

ik, ° 
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second 
21 IIIIII ttt VVV , 

21 IIIIII zzz VVV  manoeuvring 

intervals can be found using eqs. 7-34a- to 7-34c: 
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where  = the RAAN alteration of the LSO orbit per single revolution. 
The functional minimum should be found while transferring from the 

current position to the next LSO: 
 

.2222
IIIIII ztzt VVVVV  

 
The difference between the number of flight revolutions of the active 

spacecraft and the target revolutions n in the first approximation can be 
found as follows: 

 

.
7
4

7
3 *

0un    (10-5) 

 
Single-dimension optimization for n can be fulfilled numerically and 

Eq. 10-5 gives a good initial guess for this parameter. It is worth 
remembering that n is an integer value, thus, by choosing n, we cannot 
eliminate the whole RAAN deviation, but the remaining part does not 
exceed 2/1 . 

10.2.5. Duration of Flight to the Next Object in Line 

The number of flyby revolutions between the two objects N can either 
be fixed or it can be chosen by knowing the magnitude of the difference in 
the RAANs, which is more preferable because the real spatial distribution 
of the LSOs is taken into account. The total delta-v expenditure decreases 
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with an increase in flyby duration. However, some temporal constraints 
occur during the process of choosing the flyby scheme. This can be the 
result of technical issues as well as an unwillingness to wait too long. 
Thus, the compromise value for the flyby duration should be seached for 
in the area where V expenditures start to reduce rapidly with an increase 
in N. 

The dependency between N and 
ki

, which helps find the 
compromise value of N, can be obtained for each LSO group based on a 
visual analysis of the graphs )(NV  (Fig. 10-14) for various values of

ki
. 

It is necessary to draw a slowly ascending convex curve on the 
coordinate plane V, N, which would intersect the graphs )(NV , plotted 
for the different 

ki
 in the compromise area. Using the intersection 

points, one can get the dependency )(
ki

N , which can be approximated 
with fairly good accuracy (for LSO group 4) using the linear function 
(Baranov and Grishko 2015, 639-650): 

 
6.25032.69)(

kk iiN   (10-6) 

 
It is obvious that the described approach for searching for the flyby 

revolution compromise number is not very convenient. On the other hand, 
the analytical dependency for the revolution compromise number search 
cannot be obtained for this problem, unlike with the case of a flyby in the 
orbital plane described in Chapter 7. 
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Fig. 10-14. Total delta-v expenditure as a function of the number of flyby 
revolutions from various ik for LSO group 4 

 
The following approach can be suggested as an alternative. The total 

delta-v expenditure in the considered problem is mostly formed by the 
magnitude of the RAAN deviation. This magnitude can be evaluated using 
Eq. 7-28: 

 

.
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The first guess for n can be found by: 

 

,
7

43 *
00 u

nopt  

 
Equation 7-28 can be transformed to: 
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0

0
0 373

2
N

VV   (10-7) 

 
One possibility for obtaining an analytical solution for N is the use of 

the functional: 
 

)(,...)( NfNVF    (10-8) 
 

In Eq. 10-8, the second term is the penalty function, which increases 
with the argument increase, unlike the case of the first term. The analysis 
of different variants (linear, logarithmic, and power penalty functions, Fig. 
10-14) shows that the best variants for the LSO group 4 appear when this 
function has the following form (Baranov, Grishko, Lapshin, and 
Medvedevskikh 2016, 229-236): 

 
4)( NkNf    (10-9) 

 
where .233917.0k  

The compromise value N can be obtained from the equation: 
 

0)37(56 2
0

4 3
00 NkNV  (10-10) 

10.2.6. Successive Transfer Scheme for a Group of Orbits  
with Close Semimajor Axes and Inclinations 

In the next stage, it is necessary to determine the order of flyby 
elements for each group. The configuration of the first three groups, the 
orbital elements of which are close due to the values of the semimajor 
axes and inclinations, hardly changes over time for the evolution of the 
RAAN deviations. This allows us to use the successive flybys of these 
objects in the direction of a natural RAAN precession (Baranov, Grishko, 
and Mayorova 2015, 307-317). Before each new flyby, a search for an 
object with the least total delta-v expenditure for the flyby with a given 
number of revolutions N from the current position is carried out. The total 
delta-v expenditures are basically determined by the angular difference 

ki
. The start of the flyby (the first object) is chosen so as to exclude 

the flyby between the two neighboring objects that are most distant in 
terms of the orbital RAAN. As the flyby of the whole group will take a 
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considerable time to complete, the relative angular positions of the orbits 
of the final objects may change after the flyby time passes. This should be 
taken into account and the RAAN values of the final objects should be 
recalculated after every flyby. 

10.2.7. Examples of Calculations for Groups 1, 2, and 3 

Let us consider the active spacecraft manoeuvre total delta-v 
determination for the flyby for LSO group 3 (Baranov and Grishko 2015, 
639-650) as an example. 

The objects in this group have orbits with inclinations of 
approximately 81º. The identification numbers of the elements of group 3 
in the NORAD catalogue5 and some fixed orbital elements as of 
November, 2013 can be found in table 10-10. 
 
  

 
5 “NORAD Satellite Catalog”. Accessed November 21, 2013. 
http://www.celestrak.com/satcat/search.asp 
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Table 10-10  
 

NORAD ID a km   i 
deg 

13771 7,242 35.277 81.2 
7493 7,231 26.186 81.3 
5732 7,244 15.762 81.2 
5918 7,218.5 2.758 81.2 
7275 7,225.5 336.582 81.3 
7210 7,239 334.788 81.2 
8846 7,235 325.465 81.3 
6393 7,243 316.731 81.3 
9904 7,245 308.01 81.2 
5118 7,242 288.046 81.3 

11963 7,232 287.289 81.3 
12457 7,245 280.591 81.3 
13403 7,240.5 274.718 81.3 
11166 7,239 268.278 81.3 
7364 7,220.5 226.695 81.2 
8800 7,262 212.623 81.3 
8027 7,240 207.415 81.3 

13719 7,215.5 180.447 81.3 
9482 7,245.5 166.249 81.2 

11608 7,224 151.181 81.2 
8520 7,262 132.137 81.2 
7715 7,227.5 126 81.2 
6257 7,245 125.895 81.2 
4420 7,236 121.222 81.2 
9662 7,242.5 116.194 81.2 

10515 7,248.5 102.624 81.3 
12646 7,211.5 100.14 81.2 
7575 7,235.5 83.823 81.3 

 
The difference in RAANs between the orbits of the last (7575) and the 

first (13771) objects at the moment the flyby starts is 48.5º (maximum). In 
table 10-10, the LSOs of this group are given in descending order by 
RAAN so as to exclude the most expensive flyby. 
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Table 10-11 
  

Flyby order with 
fixed number of 

revolutions  
N = 1,000 

V 
m/s 

Flyby order 
with flexible 
number of 
revolutions 

Flexible 
number of 
revolutions 

N( ik) 

Duration 
days 

V 
m/s 

1 2 3 4 5 6 
1-2 211 1-2 1,293 91.6 167 
2-3 222 2-3 1,483 105.1 149 
3-4 325 3-4 1,968 139.5 182 
4-5 499 4-5 2,601 184.3 189 
5-6 57 5-6 770 54.6 108 
6-7 144 6-7 752 53.3 129 
7-8 155 7-8 1,005 71.2 139 
8-9 289 8-9 2,007 142.2 167 
9-10 320 9-10 1,591 112.7 174 

10-11 89 10-11 885 62.7 137 
11-12 48 11-12 367 26 26 
12-13 168 12-13 1,185 84 153 
13-14 156 13-14 1,093 77.5 147 
14-16 985 14-16 4,896 346.9 213 
16-17 340 16-17 2,576 182.5 199 
17-15 56 17-15 2,044 144.8 177 
15-18 791 15-18 3,499 247.9 209 
18-19 207 18-19 1,117 79.2 128 
19-21 521 19-21 2,141 151.7 169 
21-20 132 21-26 2,306 163.4 193 
20-23 231 26-23 1,243 88.1 147 
23-26 107 23-20 422 29.9 61 
26-24 168 20-25 1,555 110.2 156 
24-25 3 25-24 679 48.1 113 
25-22 58 24-22 1,026 72.7 145 
22-28 341 22-27 5,456 386.6 232 
28-27 564 27-28 6,457 457.6 204 
V  m/s 7,187    4,213

Total duration 27,000 revs 
1,913.3 days  52,417 revs 3,714.3 

days 
 

 
Calculation of the total delta-v expenditure for flyby manoeuvres with 

a fixed number of revolutions N = 1,000 (columns 1 and 2), and the 
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expenditures for the flybys with the use of the “compromise” number of 
revolutions N depending on the RAAN difference (columns 3-6), can be 
found in table 10-11. 

The aforementioned method was also implemented for the calculation 
of the total delta-v expenditure for the flyby manoeuvres of LSO groups 1 
and 2 (Baranov and Grishko 2015, 639-650). The results of these 
calculations can be found in tables 10-12 and 10-13, respectively. 
 

Table 10-12 
  

Flyby order with 
fixed number of 

revolutions  
N = 1,000 

V 
m/s 

Flyby order 
with flexible 
number of 
revolutions 

Flexible 
number of 
revolutions 

N( ik) 

Duration
days 

V 
m/s 

1 2 3 4 5 6 
1-2 14 1-2 504 35.7 16 
2-3 123 2-3 1,349 95.6 94 
3-4 11 3-4 598 42.4 21 
4-5 257 4-5 2,520 178.5 105 
5-7 158 5-7 1,709 121 90 
7-8 65 7-8 1,009 71.5 68 
8-9 100 8-9 1,285 91 81 
9-10 77 9-10 1,100 77.9 73 

10-12 338 10-12 3,225 228.5 122 
12-13 92 12-13 1,369 97 76 
13-11 135 13-15 2,134 151.2 94 
11-15 211 15-11 1,263 89.5 134 
15-14 121 11-14 1,501 106.3 90 
14-17 378 14-17 1,528 108.3 183 
17-16 105 17-16 1,710 121.2 96 
16-18 213 16-18 2,122 150.3 99 
18-19 343 18-19 2,905 205.8 104 
19-21 230 19-21 2,313 163.9 102 
21-20 540 21-23 6,303 446.6 118 
20-22 176 23-22 1,241 87.9 82 
22-23 18 22-20 5,346 378.8 162 
23-6 1,104 20-6 3,805 269.6 223 
V  m/s 4,809    2,233 

Total duration 22,000 revs 
1,558.7 days  46,839 revs 3,318.5 

days  
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Columns 1 and 3 show the LSO pairs for the flyby. Columns 2 and 6 
present the total delta-v expenditures needed for the fulfillment of this 
flyby with a fixed number of revolutions N and “compromise” N, 
respectively. Columns 4 and 5 give the values of the best “compromise” 
flyby duration—the number of revolutions N and the flyby duration in 
days, respectively. According to table 10-11, the use of the “compromise” 
number of revolutions allows a decrease in the total delta-v expenditures 
approximately by half, but even in this case the total delta-v expenditures 
exceed 4 km/s, which is too high for modern spacecraft. 

 
Table 10-13 

 
Flyby order with 
fixed number of 

revolutions  
N = 1,000 

V 
m/s 

Flyby order 
with flexible 
number of 
revolutions 

Flexible 
number of 
revolutions 

N( ik) 

Duration 
days 

V 
m/s 

1 2 3 4 5 6 
1-2 57 1-2 633 43.9 89 
2-3 836 2-3 5,026 348.8 183 
3-4 306 3-4 2,066 143.4 176 
4-5 612 4-5 3,517 244 182 
5-6 616 5-6 3,429 237.9 192 
6-8 290 6-8 1,749 121.4 152 
8-7 69 8-7 1,216 84.4 150 
7-9 530 7-9 3,324 230.7 196 

9-10 180 9-10 855 59.3 116 
10-11 101 10-11 819 56.8 104 
V  m/s 3,597    1 ,540 

Total duration 
10,000 revs 
693.9 days 

 22,634 
revs 

 

1,570.6 
days 

 

 
The work of Castronuovo (2011, 848-859) is very interesting because 

it offers a comprehensive review of all questions connected to LSO return. 
This work suggests the use not only of an SV-collector with two 
manipulators and TDKs onboard, but also spacecraft-refuelers. The 
spacecraft-refueler will be injected into the orbit of the basic SV-collector 
when the latter runs out of fuel and TDK supplies. The SV-collector docks 
with the spacecraft-refueler, refuels its tanks, gets more TDKs, and 
continues its flyby for the remaining LSOs. According to the results from 
Castronuovo (2011, 848-859), the mass of the SV-collector in this model 
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would be approximately 600 kg. The fuel supplies for each spacecraft 
would allow the expenditure of up to 2,500 m/s total delta-v and the 
number of TDKs on each spacecraft-refueler could be up to 6 or 7. 

If the potential of total delta-v supplies is under consideration, then one 
SV-collector and one spacecraft-refueler would be enough to engage in a 
flyby with all the objects of group 3. However, the number of TDKs 
needed exceeds the real number twice as much for one spacecraft-refueler, 
which is why two more spacecraft-refuelers would be needed. As such, a 
part of the fuel supplies on these spacecraft-refuelers would need to be 
replaced with more TDKs. 

A delta-v budget of 2,233 m/s is needed for a flyby of the 23 LSOs of 
group 1. These total delta-v expenditures would be acceptable for the SV-
collector described in Castronuovo (2011, 848-859), but the number of 
TDKs needed is too big, hence, two more spacecraft-refuelers would be 
required. Part of the fuel supplies would have to be replaced with TDKs 
on the SV-collector and the spacecraft-refuelers. 

A delta-v budget of 1,540 m/s would be needed for a flyby of the 11 
LSOs of group 2. The total delta-v expenditure of the SV-collector would 
be higher than needed, but the number of TDKs would be insufficent for a 
flyby of all objects of the group. Hence, one more spacecraft-refueler 
would be needed. 

10.2.8. Diagonal Transfer Scheme for a Group of Orbits  
with different Semimajor Axes and Inclinations 

Groups 4 and 5 have a considerable number of objects with orbital 
differences in terms of semimajor axis and inclination. These are enough 
to result in the presence of intersections between the lines of relative 
difference in the RAANs (figs. 10-11 and 10-12). In Fig. 10-15, one can 
find the lines, corresponding to objects with the hypothetical numbers 1, 2, 
and 3. 

After approaching object 1, being in its orbit, it is enough to apply only 
one impulse 1V  to approach object 2 in the moment of orbital plane 
RAAN coincidence; furthermore, a single impulse 2V  should be applied 
for the subsequent approach to object 3. Hence, the number of ignitions in 
the interval of the flyby from object 1 to object 3 may be reduced by 2. 
The total delta-v expenditure also decreases because there is no need to 
correct the RAAN deviations. 
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Fig. 10-15. Flyby variants in the evolution of RAAN deviations for the 

case when the LSO orbital parameters in the groups have substantial 
mutual deviations of a and i 

 
Let line )(t

ki
, which corresponds to one of the orbits and 

intersecting the two lines and thus to the different orbits, be “diagonal”. 
We have the opportunity to find several branches that contain a number of 
successions of the diagonals, allowing the completion of a flyby to the 
greatest number of LSOs in the group. The suggested solution will be 
termed the “diagonal” from hereon. 

The moment where the lines intersect )(t
ki

 in the evolution of the 
RAAN deviations means that the orbits of corresponding LSOs have equal 
RAAN values. As such, the orbits of these objects may vary only in terms 
of their semimajor axes, eccentricity vectors, inclinations, and latitude 
arguments. The numerical and numerical-analytical algorithms for the 
solution of the small and medium duration rendezvous problem, which can 
be used for the determination of the approach manoeuvres with new 
objects, can be found in chapters 4, 5, and 6. 

10.2.9. Search of Diagonal Solutions 

As can easily be seen, the direct deviations of RAANs )(t
ki

 in Fig. 
10-12 chaotically intersect multiple times. As such, a successive flyby of 
the objects of group 5 becomes ineffective. In order to address the 
branches-solutions of the search problem, under the condition of a large 
number of lines and mutual intersections, it is good to use some graph 
theory elements. 

ik, ° 
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In order to find the diagonal solution of the flyby problem to an LSO 
inside the group, it is necessary to get the ijT  = matrix of line intersection

)(t
ki

, analogous to the classical connectivity matrix (Zarubin and 
Krischenko, 2004): 

 

.........
...............
.........
.........

...

1,46

1,2

46,12,1

t

t

tt

T  

 
The matrix T is symmetrical and its diagonal has the symbol “ ”, 

representing the coincidence of the lines )(t
ki

. If the intersection point 

of the lines )(t
ki

 and )(t
kj

 exists, then the coordinate t is shown as 

the element ijt ; if there are no intersection points or the intersection occurs 
when t , then the dash is set as the matrix element. The search for a 
diagonal solution is fulfilled with the help of the iterative algorithm of the 
graph node run. The solution should meet the following criteria: 
 The graph nodes should be in the range ],[

ki
. 

 The direction of the increase in branch length should coincide with the 
increase in t. 

 Each intersection point (graph node) contains two entries and two 
exits, and it is unlikely that three or more lines )(t

ki
 will intersect 

in one node. 
 Each line )(t

ki
 may be used only once. 

 The longer branch has priority; 
 If the branches have equal lengths, priority will be assigned to the 

branch with the lesser angular coefficient module sum of the lines used 
)(t

ki
. 

Using the diagonal solution, the flyby duration to the next LSO is 
entirely determined by the mutual remoteness of the intersection points of 
the lines )(t

ki
 for the evolution of the RAAN deviations. 

Three cycles are used in searching for a solution with diagonal 
transfers. 
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The inner cycle. Let us designate the point at which the motion from 
the object starts as 1. In the first line of matrix T, it is necessary to find the 
first element "",1 lt  and "",1 lt . Let us call this element 2,1t . Impulse 

1V , which is needed for the flyby to a new orbit should be found. After 
acquiring 1V , we should designate ""1,,1 ml tt  and nlm ,...,1, , in 
order to exclude further usage of the 1st branch, and also assign the value 

""  to all lmt , , being 2,1, tt lm . After the transition to line 2, it is 
necessary to find the first element ""1,2t  and ""1,2t . The process 
continues until there is no further option to find the element lmt ,1  from 
the node lmt ,  with the necessary constraints, or l reaches 46 (the number of 
LSOs in group 5), i.e. where the end of the branch with maximum length 
is found. If there is no option to proceed further, it is necessary to write the 
numbers of objects of the branch, the total delta-v expenditures, and the 
last pair lmt ,  from matrix T, assign it the value "" and continue searching 
the branches until the algorithm leads to the elements with the coordinates 
[1;1]. The aim of the inner cycle is to determine the branch of maximum 
length with the start of the flyby from the first object. 

The middle cycle. After fixing the longest branch with the start in the 
first object and the total delta-v expenditure, it is necessary to call the 
inner cycle for line 2 starting at object 2. This is repeated n times. The 
longest branch for the first SV-collector, which works with the use of the 
“diagonal” scheme, can be chosen from n interim variants. The goal of the 
middle cycle is to determine the priority starting point and the priority 
branch originating from this point, determining the first problem solution. 

After the work of the middle cycle and sorting of the found branches 
according to length, the situation may occur when several obtained 
solutions have maximum length for the current configuration of matrix T. 
In this case, it is necessary to compare the energy expenditures of the 
flybys of these branches indirectly. In the evolution of RAAN deviations, 
the angle between the lines )(t

ki
 is determined by the difference in 

their angular coefficients, which depend on the magnitudes of the focal 
parameter and inclination. Hence, the bigger the differences in p  and 

i  of two object orbits, the bigger angle will shape the corresponding 
lines )(t

ki
. This is why it is necessary to estimate the sum of the 

alteration of the angular coefficients in the transfer from one object to 
another for every branch found as an indirect energy assessment. 
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Thus, at the end of the middle cycle, the branch with maximum length 
and the least sum of alteration of the angular coefficients is chosen. The 
LSOs that form the example case are “dragged out” from the initial matrix 

0T  and the search for the branch of maximum length among the remaining 
objects within the outer cycle is carried out. 

The outer cycle. It is necessary to “drag out” all the elements from the 
initial matrix 0T , which were used in the first solution found, and repeat 
the inner and middle cycles. The goal of the outer cycle is to get the set of 
all possible “diagonal” branches, which will then be arranged in 
descending order by length, encompassing the maximum number of 
objects. 

After the fulfillment of three cycles, a part of the objects is 
encompassed by the “diagonal” transfers and the flyby of the rest of the 
LSOs can be estimated with the help of the aforementioned successive 
scheme, as used in determining the flyby for the first three groups of 
LSOs. 

10.2.10. Example Calculations for Group 5 

The LSO orbits of group 5 have inclinations in the range of 97.1-
100.4º. Apart from the region of near-Earth space with a high probability 
of collisions, the area of sun-synchronous orbits needs special attention 
(Castronuovo 2011, 848-859). The information about the LSOs of group 5 
for November, 2013 is listed in table 10-14; the objects are in descending 
order by RAAN. As a result of the aforementioned algorithm, the 
implementations of the two diagonal solutions were found, encompassing 
30 (18 and 12) LSOs out of 46 (Baranov, Grishko, Lapshin, and 
Medvedevskikh 2016, 242-250). 

 
Table 10-14 

 

 NORAD ID a km  i 
deg 

1 27940 7,052 170.1286 97.8 
2 7946 7,430.5 169.7677 100.1 
3 20323 7,105 166.1984 97.1 
4 27006 7,367.5 165.7893 99.2 
5 28932 6,979.5 163.8276 98.3 
6 28059 7,090.5 149.0105 98.7 
7 11081 7,315.5 143.212 99.7 
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8 32959 7,125.5 127.9842 99 
9 33500 6,989 126.2109 98.3 

10 13778 7,235 106.7009 100.1 
11 25979 6,973.5 96.3879 98.2 
12 2174 7,495.5 90.2609 100.4 
13 27601 7,159 65.798 98.5 
14 32063 7,098.5 55.4669 98.2 
15 26387 7,042 42.8234 98.1 
16 27422 7,166.5 37.8068 98.3 
17 20791 7,291 31.147 99.2 
18 36089 7,100 23.6017 98.1 
19 16615 7,159 14.203 98.8 
20 28499 7,005.5 11.2445 98.2 
21 29713 6,995 351.2681 97.6 
22 21610 7,129.5 343.3011 98.8 
23 21689 7,259 338.5724 99.5 
24 37932 7,191 336.9718 98.4 
25 25400 7,178.5 336.8603 98.3 
26 10704 7,308 333.6947 98.8 
27 28050 7,208.5 327.0023 98.5 
28 815 7,173 325.7258 99.9 
29 23343 7,013.5 325.2177 98.2 
30 20443 7,139.5 320.7193 98.8 
31 27387 7,144 315.5157 98.3 
32 25732 7,205 309.6141 98.9 
33 31114 7,200 306.3191 98.4 
34 19468 7,253.5 304.8742 99 
35 25261 7,153.5 303.4229 98.4 
36 22830 7,159.5 300.7151 98.8 
37 25861 7,008.5 300.5517 97.9 
38 27432 7,217 300.2821 98.8 
39 28651 7,027.5 299.5225 97.8 
40 18961 7,262 298.1063 99.3 
41 23561 7,139.5 293.7485 98.7 
42 38341 6,999.5 291.5595 98.5 
43 23828 7,191 290.3812 98.6 
44 23324 7,207.5 279.5703 98.9 

 
Columns 1 and 4 of table 10-15 give the obtained branches (the object 

numbers corresponding to the flyby order); columns 2 and 5 give the total 
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delta-v expenditures of the flyby to the respective object; and columns 3 
and 6 give the flyby time in days. It is supposed that a separate active 
spacecraft was used for each branch. 

 
Table 10-15 

 
First 

Solution V m/sDuration
days 

Second 
Solution V m/sDuration

days 
1 2 3 4 5 6 

37-38 161 60 30-26 87 161 
38-40 77 5 26-32 54 244 
40-33 127 52 32-25 83 88 
33-35 24 16 25-36 67 52 
35-41 41 100 36-10 174 1,270 
41-24 48 497 10-13 221 448 
24-34 94 130 13-15 81 122 
34-21 228 303 15-17 193 78 
21-3 89 429 17-1 221 554 
3-5 177 171 1-29 57 1 

5-27 124 51 29-4 225 458 
27-8 83 213 - - - 
8-28 127 52 - - - 

28-16 209 331 - - - 
16-44 90 30 - - - 
44-18 123 146 - - - 
18-46 69 356 - - - 

V , m/s per branch 1,891   767  
Duration per branch 

days  2,942   3,476 

V  m/s 2,658 
 

According to table 10-15, the total delta-v expenditure obtained for the 
first branch is 1,891 m/s and 767 m/s for the second. One SV-collector and 
two spacecraft-refuelers would be needed for the flyby of the first branch. 
The total delta-v budget is enough for a flyby of the whole branch, but the 
tanks of deployable modules would need to be refueled. One SV-collector 
and one spacecraft-refueler would have to be used for the flyby of the 
second branch. 

For a 30 object flyby, a delta-v budget of 2,658 m/s is sufficient. Thus, 
the presence of the diagonal intersections of RAAN deviation evolution 
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allows a decreasing number of manoeuvres to be performed and total 
delta-v expenditure in the flyby of objects of the group in comparison to 
the successive flyby used for groups 1-3. 

The results of determining the successive flyby of the LSOs, which 
were not encompassed by the diagonal solution, are listed in table 10-16. 

 
Table 10-16 

 

Flyby order
Number of 
Revolutions

N(
ki

) 
Duration

days 
V 

m/s 

Flyby duration  
on one full fuel 

tank  

V m/s on 
one  

fuel tank 
1 2 3 4 5 6 

2-6 1,669 118.2 248 

11,439 revolutions 
810.1 days 2,190 

6-7 660 46.7 387 
7-9 1,350 95.6 247 

9-11 2,368 167.7 282 
11-12 1,185 83.9 681 
12-14 4,207 298 345 
14-20 706 50 187 

12,893 revolutions 
913.1 days 2,260 

20-19 406 28.8 242 
19-23 970 68.7 356 
23-22 804 56.9 113 
22-42 1,599 113.3 200 
42-31 6,068 429.8 361 
31-43 693 49 265 
43-39 1,373 97.2 137 
39-45 274 19.4 399 
V  m/s   4,450   

Duration 24,332 
revolutions 

1,723.2 
days    

 
The data in the first column shows the LSO pair for the flyby. The 

second column gives the values for the compromise flyby duration N 
calculated by Eq. 10-10. The third column shows the duration of the 
corresponding flyby in days. The fourth column gives the total delta-v 
expenditures for the fulfillment of these flybys. 

A velocity expenditure of 4,450 m/s is needed for a flyby of 16 objects. 
Pushing (de-orbiting or DO transfer) of these objects can be fulfilled with 
the use of one active spacecraft and one spacecraft-refueler. The 
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distribution results of the LSOs and the spacecraft are listed in the 5th and 
6th columns. 

10.2.11. Example Calculations for Group 4 

The LSO identification numbers for group 4 in the NORAD catalogue6 
and some elements of their orbits for November, 2013 are depicted in 
table 10-17. The orbits of the objects of this group have an inclination of 
approximately 83º, the semimajor axis has the range of 7,318-7,358 km. 

 
Table 10-17 

 

 NORAD ID a km  i 
deg 

1 11289 7,329.5 73.6622 82.9 
2 21131 7,334.5 340.672 82.8 
3 24678 7,340.5 172.2879 82.9 
4 22208 7,342.5 94.1841 82.9 
5 26819 7,343.5 263.8941 83 
6 21876 7,346 83.1548 83 
7 18710 7,348 142.5439 83 
8 22007 7,349 241.8947 83 
9 12682 7,349.5 118.766 82.9 

10 24955 7,350.5 252.8786 83 
11 25569 7,351 265.5485 82.9 
12 27819 7,351 109.5972 83 
13 20509 7,351.5 272.864 82.9 
14 21231 7,352.5 171.8711 82.9 
15 32053 7,356 167.4046 83 
16 23774 7,356.5 111.474 83 
17 11327 7,358 230.8018 82.9 
18 15100 7,319.5 19.4841 82.5 
19 15517 7,318 318.0135 82.5 
20 16409 7,318 236.493 82.5 
21 16736 7,318 263.3544 82.5 
22 17242 7,323 257.8371 82.5 
23 18313 7,320.5 260.4844 82.6 

 
6 “NORAD Satellite Catalog”. Accessed November 21, 2013. 
http://www.celestrak.com/satcat/search.asp 
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24 22784 7,323 257.1819 82.6 
25 6829 7,345.5 194.4667 82.9 
26 10918 7,345 121.9273 82.9 
27 11586 7,339 225.249 82.9 
28 11681 7,351.5 201.9585 82.9 
29 14085 7,348.5 236.6751 82.9 
30 15360 7,347 197.7759 82.9 
31 16799 7,345 232.311 82.9 
32 18130 7,348 340.261 82.9 
33 20528 7,360.5 204.5554 82.9 
34 20805 7,350.5 208.2701 82.9 
35 21153 7,350.5 351.6455 82.9 
36 22308 7,350.5 315.5031 82.9 
37 22591 7,344.5 191.6403 82.9 
38 23466 7,355 52.1648 82.9 
39 24773 7,358.5 159.5764 82.9 
40 25592 7,356.5 250.7425 82.9 
41 25893 7,347.5 174.8071 82.9 
42 27535 7,355 11.261 82.9 
43 8597 7,352.5 204.1671 83 
44 8874 7,353.5 145.1377 83 
45 10461 7,347 160.6361 83 
46 11668 7,351 190.146 83 
47 16728 7,347 123.5242 83 
48 19325 7,344 171.2448 83 
49 19922 7,345 212.7931 83 
50 23180 7,342.5 81.2198 83 
51 27437 7,347.5 215.7 83 
52 28381 7,342 123.4479 83 

 
The evolution of RAAN deviations for LSO group 4 (fig. 10-11) is a 

combination of quasi-parallel and inclined lines )(t
ki

. Hence, the most 
effective combination would involve the diagonal solution with the 
successive flyby. First of all, diagonal solutions (the branches reaching as 
many LSOs as possible) are considered, because their realization needs far 
smaller total delta-v expenditures. There are two such solutions in the 
given example (Baranov and Grishko 2015, 5450-5462), the flyby order 
and the required total delta-v expenditures are shown in table 10-18. 

The first and fourth columns present the numbers of overflown objects 
between which the flyby is performed. The third and sixth columns give 
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the total delta-v expenditures necessary for the flyby. The flyby duration 
between two objects within every branch is given in the second and fifth 
columns. 

The duration of each branch coincides with the range for the RAAN 
deviation evolution: 3,148 and 3,522 days, respectively. The total delta-v 
expenditures are 540 and 358 m/s, respectively. In the first branch, 12 
spacecraft are flown by and in the second branch 10 objects are flown by. 
One SV-collector and one spacecraft-refueler are enough for the flyby of 
one branch. One SV-collector is enough for the second branch. 

  
Table 10-18 

 
First  

Solution Duration, days V, 
m/s 

Second  
Solution Duration, days V, 

m/s 
1 2 3 4 5 6 

48-3 88 19 29-22 409 54 
3-14 9 15 22-17 81 55 
14-15 290 19 17-24 102 43 
15-20 653 67 24-27 254 41 
20-39 309 56 27-43 528 19 
39-21 469 56 43-31 752 19 
21-7 75 66 31-18 714 54 
7-23 363 54 18-30 617 54 
23-16 439 55 30-45 65 19 
16-19 392 67 - - - 
19-52 61 66 - - - 

Duration,  
days  

using branch 1 
3,148 

Duration,  
days  

using branch 2 
3,522 

V , m/s using  
branch 1 540 V , m/s using  

branch 2 358 

V , m/s of  
diagonal solution 898 

 
Once the parameters of the two diagonal solutions are determined, the 

encompassed LSOs are no longer considered. The evolution of the RAAN 
deviations for the last 30 objects presents the same basic appearance as 
LSO groups 1-3. 

The results of calculating the successive LSO flyby, not encompassed 
by the diagonal solutions, are listed in table10-19. The data from the first 
column show the LSO pairs between which the flyby is performed. The 
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second column gives the flyby compromise duration values calculated 
using Eq. 10-10. The third column presents the duration of the 
corresponding flyby in days. The fourth column shows the total delta-v 
expenditures needed for the fulfillment of this flyby. 

From table 10-19, it follows that the total delta-v expenditure exceeds 
7 km/s even in the case of the “compromise” choice of the flyby 
revolution number. The “drag” (de-orbiting or DO transfer) of these 
objects could be fulfilled using one active spacecraft and three SV-
collectors. The distribution results for the LSOs and the spacecraft can be 
seen in the 5th and 6th columns. 

 
Table 10-19 

 

Flyby order
 

Number of 
Revolutions 

N( ik) 

Duration, 
days V, m/s 

Flyby 
duration on  
one full fuel 

tank  

V, m/s on 
one fuel tank 

1 2 3 4 5 6 
1-11 750 54.3 241 

6,640 
revolutions 
480.7 days 

1,836 

11-5 334 24.2 106 
5-10 990 71.7 272 

10-40 482 34.9 166 
40-8 756 54.7 253 
8-51 2,049 148.3 385 

51-49 472 34.2 174 
49-34 807 58.4 239 
34-33 387 28 128 

 
 

7,358 
revolutions 
532.6 days 

 

1,936 

33-28 540 39.1 199 
28-46 671 48.6 236 
46-25 464 33.6 163 
25-37 459 33.2 167 
37-41 1,352 97.9 318 
41-44 1,620 117.2 348 
44-47 1,865 135 377 
47-12 1,105 80 291 

7,436 
revolutions 
 538.1 days 

1,745 

12-26 353 25.5 102 
26-9 343 24.8 100 
9-6 1,958 141.7 378 

6-50 492 35.6 181 
50-4 317 22.9 72 
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4-13 2,083 150.8 385 
13-38 785 56.8 236 
38-42 3,046 220.5 420 

8,695 
revolutions 
629.3 days 

1,701 
42-35 1,784 129.1 364 
35-32 1,144 82.8 295 
32-36 1,821 131.8 364 
36-2 900 65.1 258 

V , m/s   7,218   

Duration 30,129 revs 2,180.7 
days    

10.2.12. Second De-Orbiting Variant:  
Parameters of Disposal Orbits 

The second scheme of LSO removal implies the use of a spacecraft 
manoeuvring between the objects and transferring them successively to 
DOs with the help of its thrust engines. The capture of an LSO is fulfilled 
with a specially developed unit (Iutkin and Trushliakov 2013, 56-61; 
Emanuelli, Ronse, Tintori, and Trushlyakov 2012, 185-218). 

Determination of the disposal orbit. It has been agreed 
internationally that LEO spacecraft should remain in a DO for no longer 
than 25 years. Two types of DOs can be distinguished for the considered 
LSO groups: an elliptical orbit with its pericenter in the upper layers of the 
atmosphere and a circular orbit that is entirely situated in the upper layers 
of the atmosphere. The transfer to the circular orbit “pushes” the 
spacecraft out of the operational area of the active spacecraft. The altitude 
of this orbit is higher than the altitude of the elliptical DO. 

Table 10-20 gives the elements of the circular and elliptical DOs, 
calculated for LSOs with an average ballistic coefficient value of 0.045. 
The algorithm described in the first paragraph of this chapter was used. 
The perigee argument was 45º for the elliptical orbits and the initial date 
for propagation was December 1st, 2013. The third column presents the 
radii of the circular DOs. The fourth column gives the semimajor axes, 
while the fifth gives the eccentricities of the elliptical DOs, corresponding 
to the lower (Min) boundary of the orbital semimajor axes values for 
orbits of each group. The sixth column presents the semimajor axes and 
the seventh gives the eccentricities of the elliptical DOs, corresponding to 
the upper (Max) boundary of the orbital semimajor axes values for the 
orbits of each group. 
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Table 10-20 
 

Inclination  
deg 

amin - amax  
km 

R 
km 

Min a  
km min e max a  

km max e 

71 7,193- 
7,281 6,912.7 7,000.3 0.0275 7,040.2 0.0341 

74 7,122- 
7,152 6,912.7 6,969.6 0.0219 6,981.9 0.0243 

81.3 7,211- 
7,262 6,913.1 7,007.5 0.0291 7,030.5 0.0329 

 
According to table 10-20, the semimajor axis of the circular DO for all 

LSOs from the first three groups is practically the same: 6,912.7 km. If the 
value of the semimajor axis of the LSO lies inside the boundaries of the 
respective range (column 2), the orbital element linear interpolation from 
columns 4-7 should be implemented for the correct determination of the 
elliptical DO elements. 

In Fig. 10-16, the relative evolution of the circular DO plane for one of 
objects of group 2 is shown by the dashed line. 

 

 
 

Fig. 10-16. RAAN deviation evolution of elements of group 2 
 

Manoeuvring strategy. If the RAAN deviation evolution describes 
mainly quasi-parallel lines (Fig. 10-16), the following sequence of actions 
should be done in order to fulfill the flyby between two LSOs using the 
second scheme. After the deployment of the active spacecraft in the 
vicinity of object 1, the approach to and then capture of this object occurs. 
Then, with the help of impulse 1V , the compound unit “active spacecraft 
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+ LSO” is pushed from the orbit of object 1 to the DO of object 1. For the 
circular DO, unlike the elliptical one, the impulse will be denoted as two 
ignitions localized on one revolution. The manoeuvre determination 
algorithm, which drags the LSO to the DO, is described in the first 
paragraph of this chapter. After shaping the DO, object 1 separates from 
the active spacecraft, which temporarily stays on this orbit until the planes 
of the DO and the orbit of the next LSO coincide in terms of their RAANs. 
Once the RAANs coincide, the transfer of the active spacecraft in the 
vicinity of object 2 is fulfilled with the help of impulse 2V  (the 
determination algorithm for these manoeuvres is described in chapters 4, 
5, and 6). Then, the described actions should be repeated. The points of 
line intersection in the RAAN deviation evolution correspond to the 
coincidence of the orbital planes by RAANs. In this case, the line 
corresponding to the next object and the dashed line intersect. 

10.2.13. Example Calculations for Groups 1, 2, and 3 

The results of the flyby manoeuvre determination for groups 1-3 are 
described in tables 10-21 to 10-23 (Baranov, Chernov, and Grishko 2016, 
48-64). Each table consists of two parts, which differ from each other by 
the type of DO to which the LSO will be transferred. All objects within 
one group have been sorted in descending order by initial RAAN values 
and enumerated in order for the flybys for the first scheme. 

The delivery of the first active spacecraft to the first object is fulfilled 
using a launch vehicle. The succession of further flybys in the case of a 
circular DO is shown in the first column. As the configuration of orbital 
planes on the RAAN deviation evolution in the case of the first three 
groups does not change with time, the initial orbital RAAN order of the 
objects, in general, corresponds to the succession of flybys, though with 
some exceptions. The second column gives the duration of the active 
spacecraft in the previous object’s DO before continuing the flyby to the 
current object. The third column shows the total delta-v expenditures 
necessary for the flyby from the previous object DO to the current object. 
The fourth column presents the total delta-v expenditures needed for the 
transfer of the current object to its DO. The fifth column gives the 
summed-up total delta-v needed for the flyby to the current object and its 
transfer to the DO. Similar data can be found in columns 6-10 for the 
elliptical DO. 
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Table 10-21 
 

Circular DO Elliptical DO 

Flyby 
order 

Duration 
at DO, 
days 

Transfer 
from 

DO to 
object 

Transfer 
to DO 

V, 
m/s 

Flyby 
order 

Duration 
at DO, 
days 

Transfer 
from 

DO to 
object 

Transfer 
to DO 

V, 
m/s 

1 2 3 4 5 6 7 8 9 10 
1 0 0 162 162 1 0 0 108 108 
2 0.1 165 165 330 2 0.2 112 110 222 
3 24.1 159 158 317 3 36.6 109 106 215 
4 4.5 161 161 322 4 6.4 109 107 216 
5 58.5 159 159 318 5 88.4 106 107 213 
6 1.8 161 161 322 6 2.1 108 107 215 
7 37.5 162 162 324 7 55.7 108 108 216 
8 12.3 160 160 320 8 19.3 107 107 214 
9 20.1 159 159 318 9 31.1 106 107 213 
10 15.6 158 158 316 10 24.1 106 106 212 
12 72.3 150 150 300 12 111.7 99 102 201 
11 10.5 240 192 432 13 31.6 106 104 210 
13 6.6 202 153 355 11 5.5 193 124 317 
14 58.7 226 193 419 14 68.8 125 124 249 
15 13.4 198 160 358 15 5.1 169 107 276 
17 110.2 161 161 322 17 162.4 108 108 216 
16 8.8 157 157 314 16 21.5 103 105 208 
18 52.1 157 157 314 18 76.6 106 106 212 
19 93.4 160 160 320 19 131.9 109 107 216 
21 53.2 160 160 320 21 79.9 107 107 214 
20 75.4 242 195 437 20 198.9 202 126 328 
22 58.8 213 157 370 22 34.5 192 106 298 
23 18.7 161 161 322 23 14.1 110 108 218 

Total 
V, 

m/s 
 3,871 3,761 7,632 

Total 
V, 

m/s 
 2,700 2,507 5,207 

Total 
duration, 

days 
806.6    

Total 
duration, 

days 
1,206.4 
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Table 10-22 
 

Circular DO Elliptical DO 

Flyby 
order 

Duration 
at DO, 
days 

Transfer 
from 

DO to 
object 

Transfer 
to DO 

V, 
m/s 

Flyby 
order 

Duration 
at DO, 
days 

Transfer 
from 

DO to 
object 

Transfer 
to DO 

V, 
m/s 

1 2 3 4 5 6 7 8 9 10 
1 0 0 125 125 1 0 0 88 88 
2 16.7 124 124 248 2 23.7 88 88 176 
3 299.7 129 129 258 3 426.4 93 91 184 
4 104.8 122 122 244 4 163 84 87 171 
5 200.3 125 125 250 5 274.7 89 88 177 
6 191.8 121 121 242 6 261.9 85 86 171 
8 91.2 129 128 257 8 122.8 95 90 185 
7 42.8 122 122 244 7 88.2 84 87 171 
9 187.2 114 113 227 9 280.1 82 81 163 

10 42.4 116 116 232 10 37.2 85 83 168 
11 32.3 124 124 248 11 40.4 92 88 180 

Total 
V, 

m/s 
 1,226 1,349 2,575 

Total 
V, 

m/s 
 877 957 1,834 

Total 
duration, 

days 
1,209.2    

Total 
duration, 

days 
1,718.4    

 
As can be seen in tables 10-21 to 10-23, the duration of the group flyby 

with the use of the elliptical DO is on average 1.5 times longer in 
comparison to the use of the circular DO. However, in this case the total 
delta-v expenditure is 1.5 times less. The group flyby durations with 
object transfers to the elliptical DOs will be 3.3, 4.7, and 8.7 years, which 
is acceptable for modern space systems. 

The flyby characteristics depend on the initial object for the flyby in 
the case of the 4th and 5th groups. Successive analysis of the variants 
allows us to choose the optimal initial object. The results of the optimal 
flyby manoeuvre determination for groups 4 and 5 are shown in tables 
10-24 and 10-25. 
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Table 10-23 
 

Circular DO Elliptical DO 

Flyby 
order 

Duration 
at DO, 
days 

Transfer 
from 

DO to 
object 

Transfer 
to DO 

V, 
m/s 

Flyby 
order 

Duration 
at DO, 
days 

Transfer 
from 

DO to 
object 

Transfer 
to DO 

V, 
m/s 

1 2 3 4 5 6 7 8 9 10 
1 0 0 175 175 1 0 0 116 116 
2 50.7 170 169 339 2 75.9 111 113 224 
3 66.1 177 176 353 3 102.7 120 116 236 
4 88.9 163 163 326 4 148.5 103 109 212 
5 131.3 167 167 334 5 174.8 114 111 225 
6 21.1 174 173 347 6 39.6 119 115 234 
7 33.3 172 171 343 7 35.5 114 114 228 
8 42.3 175 175 350 8 57.5 118 116 234 
9 80.8 177 177 354 9 146.9 118 116 234 
10 81.4 175 175 350 10 100.3 116 116 232 
11 21.5 170 170 340 11 45.8 110 113 223 
12 16.8 177 177 354 12 8.5 120 116 236 
13 42.2 174 174 348 13 70.6 114 115 229 
14 40.6 173 173 346 14 63.9 114 115 229 
16 265.3 185 185 370 16 360.4 127 121 248 
17 89.5 174 174 348 17 185.4 110 115 225 
15 17.3 164 164 328 15 149.4 106 110 216 
18 213.2 162 161 323 18 261.3 108 108 216 
19 62.1 177 177 354 19 70.9 125 117 242 
21 128.7 185 185 370 21 145.8 125 121 246 
20 48.1 166 166 332 26 154.9 115 117 232 
23 55.9 177 177 354 20 64.7 106 111 217 
26 16.3 179 178 357 23 4.3 121 116 237 
25 54.3 175 175 350 25 111.1 115 116 231 
24 0.3 172 172 344 24 25.6 112 114 226 
22 12.1 168 168 336 22 53.6 110 112 222 
28 94.4 172 172 344 28 20.4 117 114 231 
27 163.3 160 159 319 27 500.2 103 107 210 

Total 
V, 

m/s 
 4,661 4,828 9,489 

Total 
V, 

m/s 
 3,091 3,200 6,291 

Tot.dur., 
days 1,937.8    Tot.dur., 

days 3,178.5    
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Table 10-24 
 

Circular DO Elliptical DO 

Flyby 
order 

Dur. at 
DO, 
days 

Total V, m/s 

Flyby 
order 

Dur. at 
DO, 
days 

Total V, m/s 
Transf. 
from 

DO to 
object 

Transf. 
to DO 

V, 
m/s 

Transf. 
from 

DO to 
object 

Transf. 
to DO 

V, 
m/s 

1 2 3 4 5 6 7 8 9 10 
18 0 0 214 214 18 0 0 136 136 
42 35.1 238 232 470 42 49.1 162 145 307 
35 109.1 230 230 460 35 178.4 142 144 286 
32 64.1 229 229 458 32 105.0 142 143 285 
2 17.2 222 222 444 2 49.8 137 140 277 
36 111.1 230 230 460 36 149.5 148 144 292 
19 125.6 220 214 434 1 380.4 144 144 288 
1 85.2 236 230 466 5 16.4 144 142 286 
5 25.3 227 226 453 11 56.3 146 144 290 
11 17.1 230 230 460 10 20.4 144 144 288 
10 34.4 230 230 460 19 3.1 157 135 292 
40 43.4 233 233 466 40 60.8 163 145 308 
8 18.9 229 229 458 8 3.8 142 143 285 
29 75.5 229 229 458 29 169.3 144 143 287 
17 17.9 234 234 468 17 14.5 148 145 293 
31 12.1 227 227 454 31 40.7 139 142 281 
23 30.1 218 215 433 51 14.4 144 143 287 
51 8.0 234 228 462 49 37.4 142 142 284 
24 8.8 222 216 438 43 45.3 146 144 290 
27 1.3 228 224 452 27 3.4 139 141 280 
49 9.5 227 227 454 33 85.1 151 146 297 
21 26.3 223 214 437 34 14.3 141 144 285 
43 6.9 240 231 471 46 17.3 144 144 288 
22 22.6 226 216 442 28 38.8 145 144 289 
34 8.7 236 230 466 30 60.9 142 143 285 
33 2.5 235 235 470 25 37.6 142 142 284 
28 30.7 230 230 460 23 25.0 148 136 284 
46 10.5 230 230 460 15 2.8 162 145 307 
30 23.1 228 228 456 37 2.6 140 142 282 
25 21.4 227 227 454 241 17.9 143 137 280 
37 17.9 227 227 454 48 4.9 156 142 298 
15 48.6 233 233 466 45 80.3 143 143 286 
48 3.8 227 227 454 14 40.4 146 144 290 
20 17.2 223 214 437 41 2.9 142 143 285 
41 15.3 234 228 462 44 53.0 146 144 290 

 EBSCOhost - printed on 2/13/2023 10:43 PM via . All use subject to https://www.ebsco.com/terms-of-use



Large Space Debris Population Decrease  
 

 

465

14 5.3 231 231 462 3 14.6 138 141 279 
45 9.1 228 228 456 39 4.2 150 146 296 
3 16.8 225 225 450 7 35.0 141 143 284 
39 29.4 234 234 468 21 69.5 156 135 291 
44 22.3 232 231 463 22 14.7 138 137 275 
7 27.8 229 229 458 47 54.7 162 143 305 
47 110.1 228 228 456 52 34.9 140 141 281 
52 13.9 226 226 452 16 10.3 149 145 294 
16 28.4 233 233 466 12 55.3 142 144 286 
12 25.6 230 230 460 9 150.2 144 143 287 
26 32.1 227 227 454 26 5.5 141 142 283 
9 4.8 229 229 458 6 110.3 143 142 285 
6 118.0 228 228 456 20 28.4 155 135 290 
50 22.0 226 226 452 50 10.9 161 142 303 
4 22.0 226 226 452 4 135.2 142 142 284 
13 162.0 219 219 438 38 265.2 148 147 295 
38 29.9 232 232 464 13 47.4 132 138 270 

Total 
V,  

m/s 
 11,675 11,801 23,476

Total 
V,  

m/s 
 7,446 7,394 14,840

Tot.dur., 
days 1,784    Tot.dur., 

days 2,928    

 
Table 10-25 

 
Circular DO Elliptical DO 

Flyby 
order 

Dur. at 
DO, 
days 

Total V, m/s 

Flyby 
order 

Dur. at 
DO, 
days 

Total V, m/s 
Transf. 
from 

DO to 
object 

Transf. 
to DO 

V 
m/s 

Transf. 
from 

DO to 
object 

Transf. 
to DO 

V 
m/s 

1 2 3 4 5 6 7 8 9 10 
10 0 0 171 171 10 0 0 116 116 
9 71 247 42 289 9 92.4 253 25 278 
8 97.3 147 115 262 3 94.8 180 69 249 
3 6.7 272 104 376 11 238.8 176 19 195 
11 321.5 149 34 183 1 331.6 102 49 151 
1 245.4 92 76 168 4 94.9 279 163 442 
4 54.6 300 238 538 7 514.7 151 145 296 
7 238.3 222 213 435 2 35.5 208 184 392 
6 32.8 163 96 259 6 14.3 210 64 274 
2 26.3 325 270 595 8 72.2 91 76 167 
5 82.2 257 41 298 33 114.9 139 104 243 
45 192.3 365 291 656 39 121.1 111 40 151 
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33 6.9 260 153 413 45 41.9 392 199 591 
39 60.0 103 63 166 26 13.6 195 142 337 
26 142.0 246 209 455 25 80.3 127 96 223 
46 32.9 102 94 196 27 76.9 114 107 221 
43 16.2 149 149 298 43 14.0 99 100 199 
25 3.6 148 142 290 31 16.0 102 83 185 
27 34.2 160 158 318 24 5.4 109 100 209 
35 4.5 130 129 259 35 16.9 81 87 168 
31 2.9 125 124 249 21 72.6 141 28 169 
24 28.2 149 149 298 28 65.8 325 94 419 
21 68.5 115 45 160 46 42.9 209 62 271 
37 372.2 66 52 118 37 21.3 123 33 156 
28 110.4 297 139 436 38 351.8 185 110 295 
38 14.5 217 162 379 16 102.1 122 92 214 
34 96.3 183 181 364 18 95.8 78 67 145 
44 6.1 158 157 315 34 29.6 188 123 311 
16 16.9 157 136 293 44 50.3 100 106 206 
18 44.6 105 101 206 5 163.5 106 22 128 
32 497.3 188 156 344 32 244.7 161 105 266 
41 80.9 125 122 247 14 91.7 126 67 193 
14 37.9 120 100 220 41 236.3 118 82 200 
36 128.5 154 132 286 13 141.5 95 89 184 
13 100.1 138 132 270 36 22.6 107 89 196 
40 11.7 213 185 398 15 95.7 132 45 177 
15 32.2 173 70 243 17 163.1 226 136 362 
17 65.1 246 200 446 40 55.5 122 126 248 
29 43.0 143 55 198 29 108.9 181 35 216 
30 500.1 146 122 268 30 1,067.0 128 82 210 
19 113.4 132 132 264 19 27.3 92 89 181 
20 170.1 102 51 153 20 346.3 105 32 137 
22 219.5 141 117 258 22 915.7 125 78 203 
12 488.7 366 301 667 12 469.8 334 206 540 
23 10.6 218 184 402 23 256.9 164 125 289 
42 238.9 144 48 192 42 740.9 158 29 187 

Total 
V,  

m/s 
 8,158 6,141 14,299

Total 
V,  

m/s 
 7,070 4,120 11,190

Tot.dur., 
days 5,167    Tot.dur., 

days 7,970    
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10.2.14. Comparison of the Flyby Results Obtained  
by the Other Authors Using the Second Scheme  

The LSO flyby using the second scheme is examined to the fullest 
extent possible in the work of Braun, Flegel, Gelhaus, and Kebschull et al. 
(2013, 1638-1648) for active spacecraft types with chemical or electro-
rocket engines. Despite the use of different approaches for the propagation 
of orbital motion in the work of Baranov, Budyansky, Chernov, and 
Golikov (2015, 4-19) and Braun, Flegel, Gelhaus, and Kebschull et al. 
(2013, 1638-1648), similar results were obtained. These results are 
connected to the determination of the duration for which the DO apogee is 
in the operational zone of the spacecraft orbits: the DO apogee for the 
considered LSO groups descends to an altitude less than 700 km in 
approximately 10 years time. Meanwhile, the risk of collision of an object 
transferred to the elliptical DO with other objects during this time is 50 % 
less in comparison to the initial value calculated for the initial LSO orbit 
(Braun, Flegel, Gelhaus, and Kebschull et al. 2013, 1638-1648). The 
statement about the excessively long duration of the passive standby of the 
active spacecraft in the DO is not exactly correct (Braun, Flegel, Gelhaus, 
and Kebschull et al. 2013, 1638-1648). As can be seen in tables 10-21 to 
10-23, this has been fully determined by the current configuration of the 
group object orbital planes and may vary from several hours to several 
months. The required total delta-v expenditure for the transfer of 5 objects 
with similar orbits is 200-300 m/s less in comparison (Braun, Flegel, 
Gelhaus, and Kebschull et al. 2013, 1638-1648). This can be explained by 
the choice of an optimal manoeuvring scheme. The elliptical DOs have 
similar parameters in both cases. 

10.2.15. Comparison with Results of Flyby Manoeuvre 
Determination for Groups 1-5 Using the First Variant 

The results of the flyby for the first three groups using the two schemes 
and the results of the flyby for the last two groups using the first scheme 
(with the branch subdivision) are listed in table 10-26. In the third and 
fourth columns, the first value is for the flyby using the first scheme and 
the second value is for the flyby using the second scheme. Total delta-v 
expenditures for the LSO flyby in the case of the first and third groups 
with the use of the second scheme exceed total delta-v expenditures with 
the use of the first flyby scheme by 2.4 and 1.5 times, respectively. The 
total delta-v expenditures in the case of the second group are slightly 
higher too. The first group flyby time with the use of the second scheme is 
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2.8 times smaller than the flyby time with the first scheme. The flyby 
durations in the case of the second and third groups with the use of both 
schemes are practically the same. It is not entirely valid to compare the 
flybys of the fourth and fifth groups: with the use of the first scheme the 
flyby is carried out simultaneously by the three spacecraft. The second 
scheme flyby suggests that the active spacecraft will perform the de-
orbiting manoeuvre while being attached to a captured object with a mass 
of up to 1 ton. Hence, even if the required total delta-v is the same for both 
schemes, the realization of the second scheme will demand a bigger fuel 
budget and, thus, a greater number of spacecraft-refuelers in comparison 
to the first scheme. 

 
Table 10-26 

 

Group  Object 
number 

Total V  
m/s 

Flyby  
duration days 

Number of 
spacecraft for the 

first scheme 
1 23 2,233/5,207 3,318/1,206 1 SC+2 (1) Spare 
2 11 1,540/1,834 1,570/1,718 1 SC+1 (0) 
3 28 4,213/6,291 3,744/3,179 1 SC+3 (1) Spare 

 
Table 10-26 continued 

 

Group  Object 
number 

Total V  
m/s 

Flyby  
duration days 

Number of 
spacecraft for the 

first scheme 

4 
12 540 3,148 1 SC+1 (0) Spare 
10 358 3,522 1 SC 
30 7,218 2,180 1 SC+3 (2) Spare 

5 
18 1,891 2,942 1 SC+2 (1) Spare 
12 767 3,476 1 SC+1 (0) Spare 
16 4,450 1,723 1 SC+1 (0) Spare 

Column 
Total 160  9 SC+14 (5) Spare 

 
It is only possible to approximately determine the required number of 

refuelers for the second scheme at the stage of preliminary analysis; 
however, it is clear that it will be at least 10. Thus, the advantage of the 
second scheme is the reduced duration of object flyby in the case of the 
first three LSO groups. At the same time, the first scheme is poorer in the 
aspects of energy costs and the number of additional refuels. 
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10.2.16. Conclusions on Flyby Strategy for All Five Groups 
Using 2 De-Orbiting Variants 

The following conclusions can be made. 
Using the NORAD catalogue of space objects, five compact groups of 

LSOs can be distinguished. The elements of the groups have orbits with 
close inclinations. 

The RAAN deviation evolution, plotted for the specific LSO group, 
allows us to choose an adequate strategy for the flyby of objects of this 
group: the strategy of consequent flybys (groups 1-3) or the strategy of a 
combination of diagonal and consequent flybys (groups 5 and 4). 

The use of optimal manoeuvring schemes (from the chapter 7) and the 
compromise flyby duration (the algorithm is described in this paragraph) 
allow us to gradually reduce the total delta-v expenditures in the case of 
the consequent flyby. 

The use of the diagonal flyby scheme allows us to reduce the number 
of performed manoeuvres and the total delta-v expenditures for the flyby 
to the objects of the group in comparison to the consequent flyby. 

The advantage of the second scheme is the reduced duration of the 
object flyby. At the same time, it is poorer in terms of energy costs and the 
number of additional refuels required. 

Nine SV-collectors and 14 spacecraft-refuelers are needed for the 
removal of approximately 160 objects of the five considered groups using 
the first scheme (Castronuovo 2011, 848-859). 

At present, some works7 imply the use of up to 25 TDKs on one SV-
collector, which is clearly redundant for the removal of LSOs from their 
orbits (Lewis and White 2014, 1195-1206). However, the number of 
TDKs (6-7 units) on one SV-collector is clearly not enough (Castronuovo 
2011, 848-859). If the number of TDKs is increased up to 11-12 units, the 
number of spacecraft-refuelers necessary for LSO flybys for all groups can 
be decreased from 14 to 5. 

The necessary total delta-v budget for one spacecraft (2,300 m/s) was 
determined with high accuracy in Castronuovo (2011, 848-859). 

To maintain the pace of annual LSO removal (4-5 objects), having at 
least two functioning SV-collectors is recommended. 

It is better to solve the problem of LEO decontamination in an 
integrated fashion by removing several compact groups of LSOs 

 
7 “Rocket Space Company Ad AstraTM, Low Earth Orbit Large Debris Removal 
Using VASIMR®”. 
http://www.adastrarocket.com/aarc/SpaceCleaner 
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simultaneously. Thus, the spacecraft used for cleaning LEOs should have 
total delta-v of 2,300 m/s and 12 TDKs on board. 

10.2.17. Optimal Schemes for Flybys between Space Debris 
Objects in Geostationary Orbits 

The problem of re-orbiting space debris objects (SDO) from the 
vicinity of the GEO region is also extremely important. The problem of 
determining the transfer schemes between space debris objects in the 
vicinity of the GEO region with the goal of their transfer to disposal orbits 
(DO) has been considered. It was supposed that an active spacecraft-
collector (SV-collector) performs flybys between target objects (87 upper 
stages). Two re-orbiting variants were considered. For the first re-orbiting 
variant, each target object is re-orbited into a DO with special detachable 
modules—TDKs mounted on the SV-collector. For the second variant, the 
object is pushed to a DO by the collector itself, which then moves to a new 
space debris object from the previous object’s DO. 

The geometrical peculiarities of relative orbit positioning in the near-
equatorial region and two transfer schemes between space objects were 
considered. For the first scheme, a transfer is executed when the orbits 
have the same inclination near the equator and for the second scheme 
when the orbit of the next object has the smallest inclination. 

The calculations show that both schemes are practically equivalent in 
terms of both average V for a transfer and flyby duration; however, not 
all objects under consideration can be covered during the transfer in the 
moment of coincidence of inclination. 

Distinct from low orbits (in which it is preferable to use TDKs), it is 
more beneficial to follow the second variant for re-orbiting SDOs from the 
GEO region (i.e. using the SV-collector itself without TDKs). This 
problem has been thoroughly considered in Baranov and Chernov (2019, 
220-228) and Estes and Foster (1992). 
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