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PREFACE 
 

 

 

The book by Profs. Paul Blaise and Olivier Henri-Rousseau entitled "The 

Fundamental Principles of Physics: From Atom to Molecule" presents in 

an illustrative, didactic and attractive way current knowledge in the area of 

molecular physics at the basic and advanced level for undergraduate 

science students. 

 

The book is composed of eight chapters describing constituents of matter, 

the wave and corpuscular nature of light and matter, quantization of 

energy in the hydrogen atom, semi-classical and quantum models of the 

hydrogen atom, Lewis and MO models of chemical bond and chemical 

reactivity and molecular orbitals in electrocyclic reactions. 

 

The material is presented in an attractive and illustrative way. The book 

contains photos of eminent scientists and well designed figures. Most of 

the chapters end with well prepared tutorials containing problems to be 

solved and answers.   

 

This book is a valuable source of knowledge in molecular physics at the 

undergraduate level and is recommended to students of physics, chemistry 

and molecular science. 

 

    Prof. Dr. hab. Marek J. Wójcik 

    Jagiellonian University 

    Krakow, Poland 
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FOREWORD 

 

 

 

This book corresponds to an introductory course on the structure of matter 

for students in the first years of their physical sciences degrees. Starting 

from the fundamental constituents of matter and highlighting their mutual 

interactions, it gradually leads to a more precise idea of what an atom or 

molecule is by using theories that seek to reproduce the experimental 

behaviors of matter while remaining within the commonly accepted 

scientific framework. The aim of this course is therefore to awaken in 

physical science students an acknowledgement of the complexity of 

reality, as well as the methods used to achieve some understanding of the 

world around us. To this end, since the beginning of the 20th century 

physics has possessed a powerful theoretical tool to understand certain 

aspects and behaviors of matter: quantum theory, which uses quantum 

mechanics. However, being aware of the difficulties in understanding 

quantum theory that can arise in the minds of students, we have often 

insisted on the importance of the physical principles underlying this 

theory, such as the Coulomb relation, the particle-wave duality, the 

notions of determinism and indeterminism, estimation of the probability of 

presence, and the virial theorem. 

This book is composed of eight chapters. At the end of each chapter, we 

have added tutorials containing several exercises along with the answers. 

Chapter I provides a directory of atomic constituents. 

Chapter II is dedicated to the study of light, experimentally highlighting 

the wave-like behavior and the corpuscular character of electromagnetic 

vibrations in general. 

In Chapter III, we are led to consider material particles using an identical 

approach and consider the behavior of both corpuscular and wave-like 

matter generally. 

In Chapter IV, remaining in the microscopic domain, we discuss the 

various experiments that show the energy of electrons in atoms to be 

quantized. 
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xii

Then, in Chapter V, we discuss the various semi-classical theories that 

explain the quantization of energy in the atom based on fundamental 

principles, as well as discussing their limitations and the need for more 

rigorous theory. 

Chapter VI addresses the full quantum theory of the atom through the 

resolution of the Schrödinger equation; its resolution allows us to clarify 

the details of energy quantization with the model of stationary states. This 

model, extended to atoms with several electrons, is able to describe each 

atom by its electronic configuration and account for its physicochemical 

properties by explaining the periodic classification of the elements. 

Chapter VII, being the largest chapter of this book, is the culmination of 

previous chapters. It is devoted to an analysis of chemical bonding both 

from the electronic point of view with Lewis’s elementary theory, which 

allowed the principles defining a chemical bond between two atoms to be 

set down, and with the theory of molecular orbitals based on the linear 

combination of atomic orbitals. Part of this chapter is devoted to showing 

how the basic principles of physics are at work even in rudimentary 

models of atoms and molecules. In relation to polyatomic molecules, the 

notion of geometry intervenes with the shape of molecules in space. The 

predictive nature of a theory, such as the VSEPR method, combined with 

the theory of hybridization of atomic orbitals and the theory of molecular 

orbitals can provide the most relevant picture possible of what constitutes 

a molecule. 

Finally, in Chapter VIII, which goes beyond the study of the structure of 

matter, we examine how this knowledge of molecules is at work in 

attempting to predict their reactivity. Thus, the use of the theory of 

molecular orbitals of polyenes is able to account for the experimental 

results of electrocyclic reactions. 
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CHAPTER I 

THE CONSTITUENTS OF MATTER 
 
 
 

I-I. The Macroscopic and Microscopic Domains 

The world can be roughly divided into two domains: the macroscopic and 
the microscopic. 

The macroscopic domain concerns that which is on the human scale or 
above. 

The microscopic domain concerns that which is at the scale of the atom or 
below. 

Thus, a comparison can be made between what is at the microscopic scale 
and what is at the macroscopic scale. 

Table I-1: Microscopic and macroscopic domains 

 

 EBSCOhost - printed on 2/13/2023 7:38 PM via . All use subject to https://www.ebsco.com/terms-of-use



Chapter I 
 

2 

1. The macroscopic and microscopic ratio: the mole N 

 

A. Avogadro 

This ratio is given by the Avogadro1 number, denoted 
by N. This overall classification must be clarified using 
a more quantitative measure of the microscopic 
character. A mole corresponds to a collection of N 
“individuals”. In particular, we talk about the mole of 
atoms (N atoms), the mole of molecules (N molecules), 
or the mole of electrons (N electrons). 

2. The value of N 

As early as 1875, J. van der Waals estimated this value 
by interpreting the laws of real gases (based on the 
ideal gas law). Let us take the example of a variety of 
iron, �-iron, consisting of a regular assemblage of 
atoms, the basic pattern of which (conventional unit 
cell) is described as “centered cubic”. 

 

 
J. van der Waals2 

In this model, the edge of the cube is l. The ball-and-stick form is shown on 
the left side of Fig. I-1. In fact, since the atoms are in contact with each 
other, the conventional unit cell should be represented as the space-filling 
form located on the right side of the same figure. 

 
 

Ball-and-stick model. Space-filling model. 

Figure I-1a: Iron α conventional unit cell. 

                                                      
1 Amadeo Avogadro (1776-1856). Italian physicist and chemist. 
2 Johannes Diderik van der Waals (1837-1856). Dutch physicist and mathematician 
(1837-1923). He won the Nobel Prize in Physics in 1910. 
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Let us now detail the various steps leading to the calculation of the 
Avogadro number in the case of the α-iron crystal. Consider the space-
filling form. It can be seen that there is 1/8 of an iron atom at each corner 
and thus each corner corresponds to a volume of (1/8)vAt, where vAt is the 
total volume of an atom. All 8 vertices correspond to a volume of 
approximately 

v = 8(1/8) vAt 

Let us add that there is a whole atom of iron in the center of the cell. If the 
residual gaps are neglected, this gives the cell the following total volume 

 

then 

 

In addition, there are N atoms in a mole of atoms and thus the volume of a 
mole of atoms is 

 

However, the volume of the cell is, of course, that of a cube of edge l 

 

From this, we can then obtain the expression of the volume of the mole of 
an atom of iron 

  (I-1) 

However, the density of iron is, by definition, the ratio between the mass of 
a mole of iron atoms MFe and its volume VFe 

  (I-2) 

 

vcell  l3

Fe  MFe
VFe
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then 

 

Let us identify the two expressions (I-1) and (I-2) for the volume of a mole 
of iron atoms 

 

As a result, the expression of the Avogadro number can be determined 
experimentally by the following expression 

  (I-3) 

Now, we have to measure the distance l. To do this, an X-ray machine called 
the Debye-Scherrer chamber is used. 

 

P. Debye3 

   

  P. Scherrer4 

 

W. Bragg5 

Here, the X-ray beam is focused on the iron crystal. If this beam is punctual, 
the crystal diffracts it. There is a symmetry of revolution around the axis of 
the beam. The diffracted rays form cones, the axis of which is the incident 
beam. On a photographic plate, we can then observe Debye-Scherrer rings, 
which are the traces of these cones. Figs. I-1b and 1c illustrate these rings. 

                                                      
3 Peter Debye (1884-1968). Dutch physicist known for his contributions to the study 
of dielectric materials. Winner of the Nobel Prize in Chemistry in 1936. 
4 Paul Hermann Scherrer (1890-1969). Swiss physicist known for his work on 
crystallography and, in particular, his contribution to the Debye-Scherrer method. 
5 William Bragg (1890-1971). British mathematician and crystallographic physicist. 
Winner of the Nobel Prize in Physics in 1915. 

VAt 
MFe
Fe

N l3

2
 MFe

Fe

N  2 MFe

Fel3
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Figure I-1b:  
Debye-Scherrer 

chamber. 

Figure I-1c:  
Details of diffraction rings. 

Figure I-1d:  
X-ray diffraction. 

As schematized in Fig. I-1d, in a crystal there is a three-dimensional 
periodic repetition of elements (atoms or molecules) called nodes; these 
appear as dark discs on the figure representing the reticular planes passing 
through the centers of these elements, spaced at a distance of l. The angle θ, 
called the Bragg angle, determines the impact of a parallel X-ray beam on 
these reticular planes. Note that this is the complement to the usual angle of 
incidence in optics. The difference in the path between the two light rays 
depicted has a value of AC+CB = 2l sin θ. When this path difference is equal 
to an integer number n of wavelengths, they constructively interfere. 

If λ is the wavelength of the radiation, θ is the angle of diffraction, and l is 
the inter-reticular distance of the diffracting crystal plane, then the 2θ 
directions of the space in which we have peaks of intensity that check 
Bragg’s law are 

 

As such, the distance l can be deduced as 

  (I-4) 

where n = 1. For the iron crystal, we can find experimentally that 

 

This last result, introduced in Eq. (I-3), and using the atomic mass of iron 
MFe = 55.8 10-3 kg and the iron density �Fe = 7.89 103 kg.m-3, allows us to 
propose a more precise value for the Avogadro number 

           

l  n
2sin

l  2.864  1010m.

N  2  55.8  103

2.864  1010 
3  7.89  103

 6.03  1023
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Note that the most accurate current value6 of the Avogadro number is 

 

I-II. Highlighting the Complexity of Atoms 

1. Experiment 

The electron is an elementary or fundamental particle7. This can be 
highlighted by studying the radioactive decomposition of a piece of radium, 
which spontaneously emits several types of radiation: 

�-radiation, which is an 
emission of material 
particles deflected in the 
direction of the field and 
which generates helium gas. 

�-radiation, which is a very 
high energy electromagnetic 
emission. This radiation is 
not sensitive to the action of 
the electric field and so the 
rays propagate in a straight 
line. 

 

Figure I-2: Radioactive decomposition  
of radium. 

�-radiation, which is made up of particles that are deflected in the opposite 
direction of the electric field and therefore carry an electrical charge inverse 
to that of the α-particles. Later, we will describe how this radiation is the 
result of the electrons. These three types of radiation are shown in Fig. I-2. 
Matter therefore appears to be made up of positive particles and negative 
particles. 

                                                      
6 Peter J. Mohr, David B. Newell, & Barry N. Taylor, “CODATA Recommended 
Values of the Fundamental Physical Constants: 2014” [archive], July 30, 2015. 
7 An elementary or fundamental particle is a particle the composition of which is 
unknown or is not made up of other smaller particles. 
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2. Measuring the electron charge 

 

Figure I-3: Voltameter for performing 
electrolysis of molten sodium chloride. 

A voltameter can be used to 
measure the charge of the 
electron, (See Fig. I-3): 

Sodium chloride, under the 
action of the electric current, 
splits into Na⁺ and Cl⁻ ions. 
Each ion moves to the 
electrode of the opposite sign. 
As such, metallic sodium is 
deposited at the anode 
(negative) 

 

 

while at the cathode (positive) we have the reaction 

 

and Cl₂ molecular chlorine is released. 

Let us consider the reaction at the anode. To deposit one Na atom, you have 
to circulate one electron 

 

For one mole, we have 

 

The amount of electricity needed to deposit one mole of sodium atoms has 
been measured as Q = 96485 Coulomb8. This is the Faraday constant9. 

                                                      
8 Charles-Augustin Coulomb (1736-1806). French officer, engineer, and physicist. 
He clarified the laws of solid friction and formulated the law of attraction between 
electrified solids. 
9 Michael Faraday (1791-1867). British physicist and chemist. 
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C-A. Coulomb 

 
M. Faraday 

This amount must correspond to N 
times the elementary charge, i.e. 

 

             so that 

                             

  

3. Measuring the electron mass: the J. J. Thomson10 experiment 

In a famous experiment, 
pictured in Fig. I-4 and 
called the J. J. Thomson 
experiment, the ratio 
qe/me is determined.  

 

Figure I-4: Thomson experimental device. 

This determination is made by studying the trajectory of an electron in an 
electric field perpendicular to its movement. 

The electrons, emitted by the thermoionic effect (resistive heating) in an 
electron gun, are accelerated by the potential difference with the aid of a 
positive electrode before entering between the plates of a capacitor and the 
hole of an electromagnet. If the electric field is acting alone, the electrons 
of charge qe undergo the action of an electrostatic force fel 

 

which is in the direction of the electric field with the modulus 

                                                      
10 Sir J. J. Thomson (1856-1940). British physicist. Nobel Prize in Physics in 1906 
for his studies on electrical conductivity in gas and discoverer of the electron. 

Nq  96485 Coulombs
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If induction B is acting alone, an electron of charge qe and velocity v that 
enters a magnetic induction B perpendicular to the velocity vector v 
undergoes the action of a magnetic force fmgt, the direction of which is given 
by the right-hand rule (see the figure on the right) 

 

with the modulus 

  

If the electric field and the magnetic field act simultaneously, so that the 
electrostatic force is equal and opposite to the electromagnetic force, then 
we can write 

 

i.e. 

  

Simplifying the expression by qe, we get 

 

Hence the expression for the speed with which the electron will continue its 
path in a straight line without being deflected is 

 (I-5) 

and, as such, we can know the speed modulus, which will be useful to us in 
the following. 

f el  qeE

f mgt  qevB

f el  f mgt

qeE  qevB

E  vB

v  E
B
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4. Determining the electron q/m ratio 

Now, let us consider an 
electron with mass me 
and charge qe arriving at 
point O with uniform 
velocity v in the space 
between the capacitor 
plates. One can 
schematically represent 
the trajectory of the 
electron as shown in 
Fig. I-5. 

 

Figure I-5: Electron trajectory. 

The electron is subject solely to the action of the electrostatic force. It 
follows from point O and, as long as it remains between the capacitor plates, 
describes a trajectory that will become parabolic. Once it has passed point 
P, marking the end of the space between the capacitor plates, its trajectory 
will show a straight and uniform movement and it will reach the observation 
screen at point M. 

Consider the entry point O. The electron is subjected to an electrostatic force 
and its acceleration � can be broken down in both directions of the plane, 
either x or y. Given the fundamental relationship of the dynamics f = m��, 
for each component we can write 

 

By integrating each expression with respect to time, according to the x and 
y axes, respectively, we obtain 

 

where v0x is the initial velocity of the electron along the x axis. 

We can identify that the velocity v of the electron calculated in v0y is the 
initial velocity along the y axis. Before the application of the electrostatic 
force, this is zero. The velocity vy along the y axis is the integral in relation 
to the acceleration � y, so that 

 EBSCOhost - printed on 2/13/2023 7:38 PM via . All use subject to https://www.ebsco.com/terms-of-use



The Constituents of Matter 
 

11 

 

Let us integrate these speeds with respect to time in order to get the 
coordinates for x and y 

 (I-6) 

By reversing the left equation of Eq. (I-6), for time t we get 

  

This allows us to rewrite y, as given by the right equation of Eq. (I-6), in the 
form of a dependence on the initial velocity v of the electron, its mass me, 
and the intensity of the electric field E 

  

According to Eq. (I-5), this leads to 

 (I-7) 

By rearranging the following expression, which is that of a parabola (the 
left-hand part of Eq. (I-8), the derivative of which is given by the right-hand 
part of the same equation), we obtain 

     (I-8) 

The slope a at point P' of the abscissa x = l is the value of this derivative in 
x = l 

  

 

vx  v ; vy 
qE
m t

t  x
v

yx  1
2

qeE
me

x
v

2

yx  1
2

qeE
me

Bx
E

2

yx  1
2

qeB2

meE x2 ; yx  dyx
dx 

qeB2

meE x
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The equation of the tangent y′(x) to the parabola y(x) is 

  

Let us now consider point M', the intersection between the tangent and the 
x-axis for which its ordinate y′(0) is obviously zero. Let us proceed, only 
for the tangent, to a change in the origin of the coordinate x for which the 
abscissa x becomes �̅. The tangent equation thus becomes 

 (I-9) 

Let us set �̅M′ = 0 in M′. At this point, the ordinate of the tangent is zero so 
that in the new system of the abscissa �̅ we have 

  

i.e. in the new coordinate system for �̅ , we have b = 0. 

Eq. (I-9) can thus be simplified as 

  

We now move on to consider point P'. The abscissa xP for the parabola (I-
8) is measured with respect to point O, i.e. x = l, while for the tangent in P, 
the abscissa x is measured with respect to the origin M', i.e. x = 0. An 
examination of Fig. I-5 shows that the ordinate y′(x = xP’) of the tangent 
y(x) in x = xP′ is equal to the ordinate d of the parabola y(x = l) 

 (I-10) 

and 

 

 

yx  xP    d  qeB2

m eE l xP 
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By equalizing the two expressions, we get 

 

and by simplification we obtain 

 

Let us return to Fig. I-5. Consider the similar triangles M'MO and M'PP'. 
Given the properties of similar triangles, one has 

 (I-11) 

However, the length M'P' is none other than the coordinate �̅P′, which, as we 
have just seen, is equal to l/2. The tangent therefore cuts the x-axis at the 
mid-point of distance 1, i.e. 

 

In addition, by definition we have 

 

Using Eq. (I-11), we can write 

 

and the value of d is then deduced as 

 

Recall that d represents the ordinate of the parabola at point P' when the 
abscissa is l, given by the equation of the parabola Eq. (I-10). Then, we have 

 

qeB2

meE l xP   1
2

qeB2

meE l2

xP   l
2

MP  xP   l
2

MO  L

l
2L  d

D

d  Dl
2L

1
2

qeB2

meE l l  Dl
2L
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so that, after simplification and rearrangement, we have 

 (I-12) 

The geometric parameters D, L, and l are known, geometrically, from 
experimentation, while E and B are determined by the experimenter so that 
the electron crosses the space between the capacitor plates without being 
deflected with simultaneous application. 

Various experiments have given the following result for the charge-to-mass 
ratio of the electron 

 

Given the value of the charge qe determined by other procedures such as 
electrolysis, which has been described above, or by Millikan’s oil drop 
Experiment11, i.e. 

 

we obtain the following value for the mass of the electron 

 

5. The nucleus 

a. Description of the Rutherford12 experiment 

We have seen above that some natural radioactive elements, such as radium, 
emit �-radiation made up of He²⁺ cations carrying a positive charge equal 

                                                      
11 R. A. Millikan, Phys. Rev. (Series I) 32, 349 (1911). 
12 Ernest Rutherford (1871-1937). New Zealand and British physicist. He discovered 
that radioactivity was accompanied by the disintegration of chemical elements and 
won the Nobel Prize in Physics in 1908. 

qe
me

 D
L

E
B2 l

qe  1,602  1019C

me  9,1  1031Kg
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to twice the absolute value of the electron charge. These �-particles are 
emitted with a very high initial speed. 

One can produce a narrow beam of these particles by placing two successive 
diaphragms, D₁ and D₂, in their path, as shown in Fig. I-6. 

 

E. Rutherford 

 

Figure I-6a: The Rutherford experiment 

 

Figure I-6-b: Impact 
distribution. 

 

Figure I-6-c: Number of impacts per mn. 

The �-particles can then be detected by the scintillation they produce in a 
screen of zinc sulfide. The apparatus is placed in a high vacuum 
environment. When a thin sheet of gold is inserted between the second 
diaphragm and the screen, we observe that: 

(i)  the gold leaf is not damaged; 

(ii)  the majority of the �-particles cross the gold leaf without deviating 
from the initial trajectory; 

(iii)  some particles are deflected by angle � and meet the screen at distance 
d from the central spot; 
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(iv)  the number of deviating particles decreases as angle � increases; 

(v)  and the number of deviating particles increases with the atomic 
number Z of the metallic element that constitutes the sheet. 

b. Interpretation of the Rutherford experiment 

The Rutherford experiment shows that: 

(i)  Atoms are made up almost entirely of empty space, i.e. vacuum. In 
fact, if the atoms formed a compact whole, the particles would bounce 
off the metal sheet. 

(ii)  The force producing the observed deviations is the Coulomb force, 
which is exerted between the positively charged �-particles and 
centers of repulsion. These carry a positive charge. 

(iii)  These positive centers, which are called nuclei, constitute almost the 
entire mass of the atom since the mass of the negative particle, the 
electron, is about 2,000 times smaller than the mass of the lightest 
atom. 

(iv)  The force exerted on an α-particle, which carries the charge q��= +2e, 
is 

   

where Q is the charge of the positive center and k is a constant equal to 
1/(4πε₀). 
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Figure I-6d: Repulsion and deviation between � particles and the positive center. 

It can be seen that the (Q/e) ratio is an integer characteristic of the metal of 
the sheet and is the atomic number, denoted Z, of the metal. As we shall see 
later, it corresponds to the number of the box in which the metal is found in 
the periodic table. 

Now, let us see what happens when an �-particle approaches the metal sheet. 
It will be subjected to the force of repulsion that we saw above and will 
describe a planar hyperbolic trajectory. The angle of deviation � becomes all 
the more important as the initial direction of the particle passes closer to the 
nucleus. The results show that if the particle passes at a distance greater than 
25×10⁻¹⁴ m from the positive center, it will not be deflected. The particles that 
are sent backwards (� = 180°) are those going in the direction that passes 
through the positive center. Having approached the distance from the positive 
center, they turn back. At this stage, the initial kinetic energy is fully converted 
into potential electrostatic repulsion energy. The distance a of the particles 
decreases as their initial kinetic energy increases. It tends towards a limit, the 
distance a₀, which we assimilate to the radius of the positive center. We find 
that a₀ is about 10⁻¹⁴ m. 

This positive center corresponds to the nucleus of an atom of the metal 
constituting the sheet. This nucleus contains particles, known as subnuclear 
particles, the nature of which we shall now discover. 
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c. The proton 

The name ‘proton’ comes from the Greek and means ‘first’ or ‘in the first 
place’. This name was coined by Rutherford, whose experience we have just 
recounted highlighting positive centers in matter called the nuclei. 

In 1919, Rutherford discovered that hydrogen nuclei, known to be the 
lightest nuclei, could be produced as a result of collisions with nitrogen 
atoms. He came to the conclusion that the proton could be a fundamental 
particle making up the nuclei. 

Today, the proton is 
no longer considered 
a fundamental 
particle. 

The new theory of 
matter, known as 
the standard model, 
considers it to be a  

 

Figure I-7: Quarks  
inside a proton. 

 

Figure 1-8: Quarks  
inside a neutron. 

composite particle made up of three sub-particles known as 
quarks13.Quarks have a mass and an electrical charge that is fractional. 
These features are described in Table I-2. 

 

 

  

                                                      
13 A quark is an elementary particle and a constituent of observable matter. Quarks 
combine to form hadrons, composite particles, of which protons and neutrons, 
among others, are known examples. The two up quarks and the proton’s down quark 
are linked by a strong interaction, transmitted by gluons. These gluons are 
exchanged between quarks and, by the binding energy they represent, constitute 
about 99 % of the mass of the proton. In addition to these three valence quarks 
(which determine the quantum numbers of the particle) and gluons, the proton, like 
other hadrons, consists of a ‘sea’ of pairs of virtual quarks-antiquarks that appear 
and disappear permanently. 
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Table I-2: Different types of quarks  

 

The rest of the mass of quarks contributes about 1 % of the mass of the 
proton. It is due to the bonding energy of the quarks, carried out by a field 
of gluons. This is symbolized in Fig. I-7 by the grey springs connecting the 
up quarks and the down quarks. 

The proton is part of a set of particles called fermions14, in the framework 
of Fermi-Dirac statistics15. Composed of three quarks, it is part of the family 
of baryons16. The proton is made up of two UP quarks each with charge 
                                                      
14 In the physics of particles, a fermion (named after Enrico Fermi) is a half-integer 
spin particle (i.e. 1/2, 3/2, 5/2...). It obeys Fermi-Dirac statistics. A fermion can be 
an elementary particle, such as an electron, a composite particle, such as proton, or 
all their antiparticles. All the elementary particles that have been observed are either 
fermions or bosons (hypothetical dark matter, not observed in 2018, is not currently 
categorized). Elemental fermions are grouped into two families the leptons 
(electrons, muons, tauons, and neutrinos), which are not subject to strong interaction 
and quarks, and are subject to the four interactions existing in nature. The other 
fermions are all composites. According to the Pauli exclusion principle, two 
identical fermions cannot be in the same place in the same quantum state. Thus, in 
the atom, all electrons have different quantum numbers; this is also the case in all 
other fermion systems. 
15 In quantum mechanics and statistical physics, the Fermi-Dirac statistic refers to 
the statistical distribution of indistinguishable fermions (all similar) on the energy 
states of a thermodynamic equilibrium system. The distribution in question is due to 
a particularity of fermions: the semi-whole spin particles are subject to the Pauli 
exclusion principle, namely that two particles cannot occupy the same quantum state 
simultaneously. 
16 In the physics of particles, a baryon (from the Greek βαρις, ‘heavy’) is a category 
of non-elementary particles, consisting of three quarks, whose most well-known 
representatives are the proton and neutron. 
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(2/3) qe and spin (1/2), and one DOWN quark of charge -(1/3) qe and spin -
(1/2). Thus, its charge is 

 

and its spin �̅ is 

 

For the proton, the ratio qp/mp is equal to 

 

The electric charge of the positive proton17, which is exactly equal to the 
elementary charge e, is 

 

which gives us the mass of the proton 

 

Thus, the mass of a proton is about 1836.15 times that of an electron. 

Its radius is about 0.84 femtometer (fm), but its precise measurement 
remains a puzzle that is still to be solved. From a recent experiment carried 
out in September 201918, it would appear that its radius is 

 

                                                      
17 The electric charge of the proton is equal to the sum of the electrical charges of its 
quarks: each UP quark is 2/3 e and each DOWN quark is -1/3 e. 
18 A team from the University of York (Canada) was able to measure, using Ramsey 
interferometry (a technique that also appears in atomic clocks) and with unrivalled 
precision, the difference in energy between two excited states of the electron of an 
ordinary hydrogen atom. A measurement that can be traced back to the radius of the 
proton was established at 0.833±0.01 femtometer. 

qp
mp

 9.578844  107C. kg1

qp  1,602176565  1019C

mp  1.67262  1027kg

 EBSCOhost - printed on 2/13/2023 7:38 PM via . All use subject to https://www.ebsco.com/terms-of-use



The Constituents of Matter 
 

21 

The proton is a positive particle. To determine its characteristics, one has to 
study its behavior in a bubble chamber. However, one can also use the 
device described below—the mass spectrometer. 

Bubble chamber principle 

The principle of a bubble chamber (a 
detector developed in 1953 by the 
American physicist Glaser19, winner 
of the Nobel Prize in Physics in 
1960) is as follows: a liquid (often 
hydrogen) is placed in a bubble 
chamber and compressed by a piston 
(phase (1), Fig. 1-9); its temperature 
is higher than its boiling temperature 
under atmospheric pressure, but 
lower than its boiling temperature 
under the pressure at which it is 
placed. 

Immediately after the passage of 
the particle to be detected, the 
piston is relaxed (for about 1 ms, 
phase (2)) and the liquid (see Fig. 
I-9) returns to atmospheric 
pressure. Boiling begins around the 
ions created by the particle. 

 

D. Glaser 

 

Figure I-9: Principle of the  
bubble chamber. 

If you use a flash and take a photograph, the trajectory is materialized by a 
string of small bubbles. 

                                                      
19 Donald Glaser (1926-2013). American physicist who developed a particle detector 
in 1953, winning him the Nobel Prize in Physics in 1960 at the age of 34. 
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N₂ liquid nitrogen molecules 
are bombarded with �-
particles. These break the 
nitrogen molecule into 
nitrogen atoms according to 
the scheme shown in Fig. I-
10. The protons are then sent 
towards the bubble chamber 
and the trajectory is 
materialized by the bubbles 
that  

 

Figure I-10: Example of proton  
production in a bubble chamber. 

the bubble chamber and the trajectory is materialized by the bubbles that 
appear with the passage of the charged particle. 

b. The neutron 

The neutron is a sub-atomic particle with zero electric charge and spin 1/2 
that of the proton. Neutrons are present in the nucleus of atoms and linked 
with protons by the strong interaction. Neutrons bound in an atomic nucleus 
are generally stable, but free neutrons are unstable and disintegrate in just 
under 15 minutes. Free neutrons are produced in nuclear fission and fusion 
operations. 

The neutron is not an elementary particle but a composite particle formed 
by the assembly of three components, the quarks: one UP quark and two 
DOWN quarks, linked by gluons as shown in Fig. I-8. The characteristics 
of these quarks are given in Table I-2. 

Its charge qn is 

 

with a half integer spin. 

The mass of the neutron is more difficult to determine because it is a particle 
with zero charge. We are therefore obliged to proceed indirectly. To this 
end, we use a source of neutrons created by the collision of α-particles 
(₂⁴He²⁺) with beryllium atoms 
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which are sent to a bubble chamber containing, successively, hydrogen and 
nitrogen. These neutrons ₀¹n then collide with molecules of nitrogen (or 
hydrogen), breaking them up into atoms that themselves collide with 
neutrons and give rise to charged particles. These can be studied in the 
bubble chamber and make it possible to determine the mass of the neutron 
indirectly. 

In practice, the study of trajectories in the bubble chamber makes it possible 
to identify the speed vH of the hydrogen atoms (or vN of nitrogen) after impact 
with a neutron. If the tank is filled with liquid hydrogen, one can then express 
the initial speed v₀ of the neutron-projectile of mass mn before the impact with 
a hydrogen atom of mass mH, as shown in Fig. I-11. 

 

Figure I-11: collision between a neutron and a hydrogen atom. 

Let us express the initial velocity v₀ of the neutron using the laws of 
conservation of momentum and kinetic energy. 

The conservation of momentum 

 

where mn is the mass of the neutron; mH the mass of a hydrogen atom; and 
VH is the speed of hydrogen atoms after impact with neutrons. 

Given the orientation of the axis, we can express the previous equation in 
terms of algebraic values 

 

Since the proton has negligible speed compared to that of the incident 
neutron, we have VH₀ ≈0, i.e. 

 

or 
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 (I-13) 

The conservation of kinetic energy 

 

by simplifying this expression, we get 

 

since VH₀ ≈0, we have 

 

which can be rearranged to give 

 

 (I-14) 

Now, we introduce the result of (I-13) into this equation 

 

After simplifying, we get 

 

Let us express the speed of the neutron as a function of the other parameters 

 (I-15) 

From Eq. (I-13), introducing Eq. (I-15), we get 

 

i.e. 

mnv0  vn   mHVH

mnv0
2  mnvn

2  mHVH
2
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We can then express the initial speed v₀ of the neutron by rearranging this 
last expression as 

 

Similarly, if we replace liquid hydrogen with liquid nitrogen in the bubble 
chamber, we can write 

 

If we use the same neutron source, we can then write 

 

where mN and VN are, respectively, the mass and speed of the nitrogen. This 
leads to 

 

and 

 

By transposing and putting mn into the factor, we get 

 

We deduce the expression of mn as 

 

The velocities VH and VN can be deduced from the study of the respective 
trajectories of the hydrogen or nitrogen ions that are visible in the bubble 
chamber. By replacing the letters with their respective values, we finally 
find the neutron mass 

mn2v0  VH  mHVH
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Having defined the basic bricks of matter, we can now see how their 
associations lead to chemical elements. 

I-III. Chemical Elements 

1. Definitions 

a. The mass unit, abbreviated as u, amu, or Dalton 

 

J. Dalton 

Table I-3. Particle masses 

 

By convention, since the 1960s the atomic mass unit has been defined as 
1/12th the mass of the carbon isotope 12, thus 

 

Some masses expressed in kilograms and atomic mass units are given in 
Table I-3. Note that 

 

and 

 

  

mn  1.67493  1027kg

103

N  1.66043  1027kg withN 6.02252  1023
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b. Mass number A 

“A” indicates: 

(i)  the mass of the nucleus expressed in u (or Dalton); 

(ii)  the number of nucleons contained in the nucleus given quasi-equality 
between the respective masses of the proton and the neutron. 

c. Atomic number Z 

“Z” indicates: 

(i)  the mass of the protons expressed in u (or Dalton); 

(ii)  the number of protons contained in the nucleus (due to the almost equal 
mass of the proton and the neutron). 

d. Representation of a chemical element 

In the nucleus there are A 
nucleons, Z protons, A-Z 
neutrons, and Z-Q electrons. If 
Q is a negative charge, then we 
have an anion. If Q is a 
positive charge, we have a 
cation. 

 
e. Mass defect 

The mass defect, denoted �m, is the difference between the sum of the 
masses of all the nucleons of a nucleus (mass of Z protons + mass of (A-Z) 
neutrons) and the mass of this same nucleus M(A,Z) i.e. 

 

The binding energy per nucleon is not the same, but varies according to the 
nuclide. The mass equivalent of the cohesion energy of nucleons is 
calculated by taking the difference between the two ways of calculating the 
mass of the nucleus. A good example is uranium 235 (₉₂²³⁵U). To simplify 

m  Z  mp  A  Z  mn  MA,Z.

Way 2 Way 1
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the equation, the mass defect can be calculated using two different methods 
of calculating the mass of an atom. 

Way 1. Using the definition of the atomic mass unit. The mass of the nucleus 
is 

 

Way 2. Using the nucleons. 

92 protons: 92×1.67262×10⁻²⁷ = 1. 53881×10⁻²⁵ kg 

235-92 = 143 neutrons: 143×1.67493×10⁻²⁷ = 2. 395150×10⁻²⁵ kg 

Total

 

Mass defect: method 2 - method 1: 

 

The energy equivalent of this mass defect is given by Einstein’s relation E 
= mc², where c = 2.99792458×10⁸ m.s⁻¹ is the speed of light 

 

For a mole of uranium 235 we would have 

 

and thus 235 g of uranium20 would release 1.715361×10¹⁴ J by nuclear 
fission. 

                                                      
20 For the purposes of comparison, let us see what would be released by the 
combustion of a ton of coal knowing that the combustion of one mole of carbon 
releases 94 kcal/mole and that 1 calorie = 4.18 joules. 
1 ton of coal would release 94000×4.18×((1000)/(12))×1000 = 3. 274333×10¹⁰ J. 
We deduce that the fission of a mole of ₉₂²³⁵U (235g) would be equivalent to the 
combustion of ((1. 715361×10¹⁴)/(3. 274333×10¹⁰)) = 5239 tons of coal, which 
shows that a lot of energy is contained in the nucleus of an atom. 

m1  235  1.66054  1027  3. 902269  1025kg

m2  1.53881  1025  2. 395150  1025  3. 93396  1025 kg

E  m  c2  3. 1691  1027  2.99792458  108 
2  2. 848245  1010J
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2. Experimental determination of the mass of elements 

Below, we describe the characteristics and use of the mass spectrometer 
with speed filter. 

The mass spectrometer with speed filter can be considered as something like 
a balance for weighing atoms. It consists of four parts: an ion producer; a 
speed filter; an ion deflection chamber; and a detector (shown in Fig. I-12). 

 
Figure I-12: The mass spectrometer with speed filter. 

Ion producer 
 
Ion production is by electrons accelerated through a positive potential 
difference—this is an electron gun. Electrons, emitted by the F filament, 
tear the X⁺ ions from the X metal. These ions are accelerated by a negative 
potential difference and penetrate the speed filter at all speed ranges. Once 
there, they are subjected to the simultaneous action of an electric field E and 
a magnetic field B₁. The electrostatic force fel and the electromagnetic force 
fem act on the ion, compensating for and allowing the straight-line path of 
the ion, which will then enter the deflection chamber through the O-hole 
(see Fig. I-13). 
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Figure I-13: Balance of forces  
in the speed filter. 

 

Figure I-14: Mass spectrogram. 

Speed filter 

One must have 

 

with 

 

and

 

The modulus of these forces are 

 

 

In order for the ions to cross the filter in a straight line, we must have 

 

i.e. 

 

so that 

f el  f em  0

f el  qE for the electrostatic force directed in the sense of E

f em  qv  B1 for the electromagnetic force directed in the opposite sense to E

f el  qE for the electrostatic force

f em  qvB1 for the electromagnetic force

f el  f em

qE  qvB1
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 (I-16) 

Thus, only ions with speed v equal to the ratio E/B₁ will be allowed to enter 
the speed filter. 

Deflection chamber 

In the deflection chamber, the ions are subject to the action of magnetic field 
B induction. They describe a circular trajectory and will hit the plane at the 
ion counters (detector). The ions enter the deflection chamber with speed v. 
They are then subjected to the action of a centripetal electromagnetic force 
fem, which is compensated for by a centrifugal mechanical force fmec so that 
the modulus of these forces are equal 

 

that is 

 

where R is the radius of the curvature of the trajectory and the mass m of 
the ion. Then, the mass of the ion can be deduced as 

 (I-17) 

although we have seen with Eq. (I-16) that 

 

then Eq. (I-17) becomes 

 

and we find that the mass is proportional to the radius of the curvature of 
the ion in the deflection chamber. If we wish to discover the atomic mass of 
the ion, for a mole of ions we write 

v  E
B1

f mec  f em

qvB  mv2

R

m  qB
v R

v  E
B1

m  qBB1

E R

 EBSCOhost - printed on 2/13/2023 7:38 PM via . All use subject to https://www.ebsco.com/terms-of-use



Chapter I 
 

32 

 (I-18) 

In practice, it is easier to work with a standard substance. In this case, some 
trace of a substance with a known atomic mass, such as carbon ¹²C, is 
introduced into the X sample. Here, let Rc and Rx be the respective curvature 
radii of carbon C and metal X; using the previous equation, it is obvious that 

 

Since there is a proportionality between the curvature radius and the mass, 
and therefore between the curvature diameter and the mass, it is easy to 
connect the mass directly to the distance between the origin 0 and the impact 
of the peaks. This distance corresponds to the curvature diameter of the ion 
in question. This allows us to draw a graph showing the number of impacts 
recorded during the experiment and the atomic mass of the corresponding 
ion. The graph, as shown in Fig. I-14, is called a spectrogram. The peak 
corresponding to the standard substance appears, but with negligible 
intensity. 

Now, let us look at the case of several isotopes present in a sample, for 
example, the case of two isotopes21. Let a and b be the isotopes of an element 
present in a sample with respective atomic masses Ma and Mb. After 
processing in the mass spectrometer, it can be observed that the number of 
impacts of a is Na while b is Nb. The number of ion impacts indicates the 
quantity of the isotopes present in the sample. The resultant number needs 
to be reduced to a fraction or percentage. 

We then proceed to normalize the intensities of the peaks. The number of 
impacts is proportional to the height of the peaks in the spectrogram: ha and 
hb are the respective heights of the two peaks. This normalized intensity is 
called abundance. 

 

or, in the present case 

                                                      
21 Elements are isotopes that have the same atomic number, but different mass numbers. 

Mg  qBB1N105

E Rcm

MX
Mc

 RX
RC

so that MX  Mc
RC

RX

In  Nn


n

Nn
 h n


n

h n
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We can is easily understand that 

 

i.e., in the present case 

 

In addition, knowledge of the abundances can be used to calculate the 
natural atomic mass of the sample 

 

Now that we can determine the characteristics of each element, let us look 
at the situation they occupy in a table of periodic classification. 

I-IV. Periodic Classification of Elements (Descriptive) 

The periodic table or Periodic Classification of Elements was invented by 
the Russian chemist D. Mendeleev22 who built the first table in 1869 (it is 
different from the one we use today, but similar in principle). This table 
proposed a systematic classification of the elements known at the time in 
order to emphasize the periodicity of their chemical properties; to identify 
elements that were yet to be discovered; and to predict certain properties of 
chemical elements then unknown. 

1. Description 

The Periodic Classification of Elements used today is based on the 
following principles: 

                                                      
22 Dmitri Mendeleev (1834-1907) was a Russian chemist known for his table of the 
classification of elements according to their physico-chemical properties. 

Ia  ha

hahb
and Ib  hb

hahb


na

b
In  1

Ia  Ib  1

M  Ia  Ma  Ib  Mb
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(i)  Elements are ranked in order of increasing atomic 
number, from left to right and up and down. 

(ii)  Elements with the same physical-chemical properties 
are placed in the same column and define a family 
or a group. 

(iii)  A row of the periodic classification is called a 
period. 

 
D. Mendeleev 

Table I-4: Periodic classification of the elements 

 
In this periodic table, the element characteristics and properties are 
symbolized by colors. 

2. Period and number of electrons 

Z is the number of protons in the nucleus, but also, if the element is neutral, 
the number of electrons around the nucleus. The classification of the 
elements suggests that the electrons have an organized arrangement inside 
the atom. 
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Experiment 

When fast electrons are sent towards chemical elements, the electrons of 
these elements are torn off, with the following process 

   

The energy involved in this process is called the ionization potential (IP) or 
ionization energy (IE). There exists an ionization potential for each 
extracted electron and there will be as many ionization potentials as there 
are electrons in the atom. As such, we may write the different processes 

 

  

  

and for the last ionization potential we have 

 

Let us consider the example of phosphorus (P) and undertake the 
experiment of pulling its electrons out one by one. The Ln(IPn) of these 
ionization potentials can be plotted on a graph (Fig. I-15) against the 
number n° of the extracted electrons. 

Figure I-15: “Families” of 
ionization potentials of phosphorus. 

Figure I-16: Binding energy  
per nucleon. 

 

e  X  X  e

IP1  X  X  e

IP2  X  X2  e

IP3  X2  X3  e

IPn  Xn1  Xn  e
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In the case of ₁₅P, the electrons may be divided into 3 categories: 

5 electrons of external-type (type M) with low ionization potential; 

8 intermediate-type electrons (type L), the IPs of which align without 
breaking the slope; 

2 deep-type electrons (type K) with high-value IP. 

Ionization potentials measuring the importance of the electron’s connection 
to the atom make it possible to distinguish between the various energy 
situations of the electrons. Thus, the type of ionization potential corresponds 
to the shells in the energy distribution of the electrons in the atom. The same 
experience may be repeated with other elements to obtain Table I-5. 

Table I-5: Energetic shells in the elements 

 

There is a direct relationship between the level of shell occupancy and the 
period. A period of the periodic classification corresponds to the gradual 
saturation of the shells. We can say that the K shell is saturated with 2 
electrons and the L shell with 8 electrons. If we were to continue the 
experiment, we would be able to show that the M shell is saturated with 18 
electrons. If n is the number of the shell, it can be said that each shell can 
contain a maximum of 2n² electrons. 

3. Radioactivity 

In order to complete this description of the periodic classification, we need 
to say something about the phenomenon of radioactivity, which concerns 
those elements belonging to the 6th and 7th periods of the periodic 
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classification. This phenomenon reveals the aptitude of such elements to 
change into other elements, i.e. the phenomenon of transmutation. 

a. Binding energy 

Fig. I-16 shows the evolution of the binding energy per nucleon as a 
function of the number of mass A for different stable atomic nuclei. 

For an atom 

 

For a nucleus, we have 

 

where BN is the nuclear bond energy. 

With the exception of very light nuclei, the nuclear bond energy per nucleon 
BN/A varies very little (saturation of the nuclear forces) and is close to 8 
MeV. 

High-energy nuclei per nucleon can be obtained in two ways: 

by breaking a heavy nucleus into two lighter nuclei, i.e. the fission 
process; 

or by assembling two light nuclei into a heavier nucleus, i.e. the fusion 
process. 

 
b. Nuclear forces 

The core cohesion is due to the strong nuclear interaction. 

Characteristics of nuclear forces: 

(i)  Attractive and very intense (strong binding energy of the nucleons). 

(ii)  Very short range ≃1 fm (different from the long range Coulomb force 
in 1/r²). 

(iii)  Independent of the charge (identical attraction forces neutron-neutron, 
proton-proton, and neutron-proton. 

MAtom Z,A  MNucleusZ,A  Zme  Be

c2

MNucleusZ,A  Zmp  A  Zmn  BN

c2
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(iv) They are saturated.

As discussed above (see Fig. I-2), there are three types of particles (or 
radiation) emitted: α, β, and γ. These radiations are classified according to 
their penetrative power into a material: α radiation is the least penetrating 
(it can be stopped by a sheet of paper), while γ radiation is the most 
penetrating with several cm of lead being needed to block it. The nuclei,
being unstable, spontaneously transform into other nuclei by simultaneously 
emitting particles; they are said to disintegrate.

c. Different disintegration processes

(i) α-emission

Radioactive entities emit α-particles. An α-particle is a helium nucleus, i.e.

Consequently, when an entity emits an α-particle, its mass number 
diminishes by 4 units and its atomic number by 2 units, i.e.

(ii) β⁻-emission or β⁻-disintegration

Here, we see the emission of an electron and an anti-neutrino (massless anti-
particle). The atomic number increases by 1 unit

(iii) β⁺-decay

The emission of a positron23 and a neutrino24 (of zero mass). The atomic 
number decreases by 1 unit

                                                     
23 A positron or antielectron is the antimatter counterpart to an electron. A positron has 
the same mass as an electron and a spin of 1/2, but it has an electrical charge of +1.
24 A neutrino is a fermion that interacts only via the weak subatomic force and 
gravity. The neutrino is so named because it is electrically neutral and its resting 
mass is so small that it was long thought to be zero.

 2
4 He2

Z
AX Z2

A4 Y 2
4 

Z
AX Z1

A Y e 0
0 
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(iv) K-capture 

As in β⁺-decay, we see the emission of a neutrino, but the process is different 
as the nucleus captures an electron belonging to the nearest electronic shell 
(K). The atomic number decreases by 1 unit 

 

d. Radioactive series 

A decay chain or radioactive decay series refer to a series of radioactive 
decays from an unstable parent isotope to a stable one through a sequential 
series of transformations. 

All elements have a mass number, which can be put in the form 

  (I-19) 

The integer r represents the radioactive series. It can only take 4 values: 0, 
1, 2, and 3. The integer n characterizes the element of the series. The 
variation of n and r defines the radioactive series. 

Three main decay chains (or families) are observed in nature, commonly 
called the thorium series (A=4n), the radium or uranium series (A=4n+2), 
and the actinium series (A=4n+3). They result in three different stable 
isotopes of lead. The long-lived starting isotopes of these three isotopes, 
respectively thorium (²³²Th), uranium (²³⁸U), and uranium (²³⁵U), have 
existed since the formation of the earth, ignoring the artificial isotopes and 
their decays that have existed since the 1940s. 

A fourth chain, the neptunium series (A=4n+1), has the starting isotope of 
neptunium (²³⁷Np), which has a half-life of 2.14 million years; this chain 
does not exist in nature. The final isotope of this chain is now known to be 
thallium-205. 

Example 

Uranium (²³⁸U) is a radioactive element belonging to the r = 2 series. We 
can deduce the mass numbers belonging to this series. 

Z
AX Z1

A Y e 0
0 

Z
AX  e Z1

A Y  0
0

A  4n  r
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First, we have to find the value of n, characteristic of ²³⁸U 

 

then n = 59. 

From here, we can determine the other elements by applying the formula in 
(I-19). 

Table I-6: Radioactive series and elements 

 

e. Law of radioactive decay 

Let us consider the chain of uranium-lead decays in which the final step is 
lead. The number of uranium atoms in a sample decreases over time. The 
decay rate or radioactive activity is a function of the number of ²³⁸U atoms 
present in the sample, i.e. 

 

where NU represents the number of uranium atoms and λ is the decay rate 
constant. This process displays first order kinetics. 

We can also express the decay speed as the variation of the number of atoms 
per unit of time, i.e. 

 

we can then write 

 

so that 

238  4n  2

v  NU

v   dNU

dt

dNU

dt
 NU
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or 

 

By integration with respect to time we obtain 

 

where N°U is the number of uranium atoms at the initial time. This 
expression can be written 

 

where N°U (t) is the number of uranium atoms at time t. This is the 
radioactive decay law. 

Now, let us make a simplistic approximation by saying that all the lead 
present in the sample comes from the disintegration of uranium. We can 
then write that the number of lead atoms present in the sample at time t is 

 

or 

 

The ratio between the quantities of lead and uranium may then be written 

 

If this ratio is known, then we can find the age of the sample 

 

or 

dNU

dt
 NU

dNU
NU

 dt

ln NU
NU°

 dt

NUt  N°U et

NPbt  NU°  NU°et

NPbt  NU°1  et

NPbt
NUt


N°U 1et

N°Uet 
1et

et

NPbt
NUt


1et

et
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which may be written 

 

and finally 

 

f. Radioactive half-life 

The radioactive half-life is the time T after which the number of radioactive 
atoms remaining is half the initial number of atoms. In our example 

 

and 

 

i.e. 

  

and 

 

Radioactivity unit 

The unit of measurement of the radioactivity of a sample is the Curie (Ci) 
in which 3.7×10¹⁰ atoms disintegrate per second. 

We now have to understand why this arrangement of electrons in shells in 
an atom occurs. This understanding is clearly linked to the interior nature of 

NPbtet  NUt1  et

et  NPbt
NUt

 1

t  1
 Ln NPbt

NUt
 1

NuT  N°U
2

NU°
2

 N°UeT

1
2
 eT

T  Ln2

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microscopic particles and will be addressed in the next chapter. Any 
theoretical model that we build has to take these properties into account. In 
order to familiarize ourselves with the formalism used in the different 
models, we need to address the properties of light and, more generally, those 
of electromagnetic radiation. 

I-V. Tutorial for Chapter I 

T-I-1. The Avogadro number 

1) Let us consider the crystal 
structure of iron where l is the length 
of the edge. The atomic mass of iron 
is 55.845 g/mol, its density is 7.86×10³ 
kg/m³, and the Avogadro number has 
the value N = 6.022×10²³. Determine 
the length l of the edge. 

 
Figure T-1: �-iron cell. 

ANSWER 

As we can see in the figure, there is 1/8 of an iron atom at each vertex and thus 
each vertex corresponds to a volume vAt/8, where vAt is the volume of an atom. 

Since there are 8 vertices, they correspond to volume v = 8(1/8) vAt. In 
addition, there is an entire atom in the center of the cell. If we neglect the 
residual interstices, this gives the crystal cell a total volume 

 

then 

 

There are N atoms in a mole of atoms, therefore the molar volume of an atom is 

 

  

vcell 2vAt

vAt
vcell

2

VAt NvAt N vcell
2
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besides, the volume of the cell is 

 

then 

 (I-A1) 

The density ρFe of iron is 

 

and we can deduce the molar volume of an iron atom 

  (I-A2) 

Now, we identify the two expressions (I-A1) and (I-A2): 

 

and we obtain 

 

so that 

 

2) Previously, when ¹⁶O was the reference for atomic masses, the 
carbon isotope ¹²C had a relative mass of 12.0038 g/mol. The new 
reference base is M(₆¹²C)=12 g/mol. How does this change the value 
of the Avogadro number? 

 

  

vcell l3

VAt NvAt N l3

2

Fe
MFe
VFe

VFe
MFe
Fe

N l3

2
 MFe

Fe

l  3
2MFe
NFe

l  3
255.845103

6.0210237.86103
 2. 87  1010m
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ANSWER 

Let mC be the mass of a carbon atom (microscopic). If we work with the 
carbon reference, we have to write 

 

If we work with the oxygen reference, we have 

 

Now, we can make a ratio between these two expressions 

 

As a result, for the Avogadro number in the carbon reference we have 

 

that is 

 

T-I-2. The mass spectrometer 

1) Natural zinc has an atomic mass of 65.4 g/mole. Analysis with the 
mass spectrometer gives 3 signals corresponding to the mass 
numbers 64, 66, and 68 g/mole whose intensities are proportional to 
5, 3, and 2 respectively. Justify the experimental atomic mass of zinc. 

 

  

MC
C

NCmC

MC
O

NOmC

MC
C

MC
O

 NC

NO

NCNO MC
C

MC
O

NCNO 12
12.0038

 0.99968 NO
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ANSWER 

The intensities of the 
peaks are proportional to 
the abundances (fraction) 
of the isotopes in the 
sample. The intensity 
must be normalized so 
that the sum of all the 
intensities is equal to 1. If 
h₁, h₂, and h₃ represent the 
heights of the peaks, we 
have 

 

Table T-I-1: Intensities of the peaks 

 

We deduce the natural atomic mass of zinc as follows 

 

 

2) Using a mass spectrometer fitted with a speed filter, two kinds of 
ions carrying an elementary positive charge can be separated out 
when analyzing a sample of natural boron. In the speed filter, the 
ions are subject to the action of two perpendicular fields, E and B, 
such that E/B = 4×10⁵ S.I. ₆¹²C atoms were incorporated into the 
sample of boron analyzed, giving rise to the ionic species ₆¹²C⁺, which 
is the heaviest of the three. At the output of the speed filter, the ions 
enter a magnetic induction B₁ = 0.2 SI and perform semicircles there 
before reaching the detector. 
 
a) Determine the dimensions of the E/B ratio. 

 

  

In
hn


i

hi

M  I1M1I2M2I3M3

M  0.5  64  0.3  66  0.2  68  65.4g/mol
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ANSWER 

Recall Fig. I-9, which presents the different parts of a mass spectrometer. 

An ion X⁺ produced 
by the collisions of 
the rapid electrons 
arrives at the speed 
filter. It undergoes 
the simultaneous 
influence of the 
electrical E and 
electromagnetic B 
fields, which 
generate two forces, 
fel and fem 
respectively.   

Figure T-I-2. Mass spectrometer schema. 

If the ion passes through the filter without being deflected then the forces 
must obey the condition  

 

with 

 

 

So, for the ions to pass through the filter in a straight line, we must have 

 

i.e. 

 

f el  f em  0

f el qE for the electrostatic force having the same direction as E

f em qvB1 for the electromagnetic force having the opposite direction as B1

f el  f em

qE  qvB1
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then 

 

The unit of this ratio is therefore at the level of meters per second. 

b) The radius of the trajectory of carbon ions is RC = 24.92 cm. The 
central impact on the detector is 4.17 cm from each of the two side 
signals. Determine the atomic masses of the two boron isotopes. 

ANSWER 

Looking at the deflection chamber, we see that the trajectories of the ions 
subjected to magnetic induction are semicircles tangential to the point O 
output of the speed filter. The difference between the peaks at the detector 
therefore represents the difference d between diameters. Thus, if R₁, R₂, and 
RC, respectively, represent the radii of curvature of the ion trajectories 1 and 
2, and of carbon ¹²C, we can deduce the diameters of curvature of the 
trajectories. 

The impact of carbon displays 
the largest diameter of 
curvature because it is heavy 

 

 

Regarding the masses, a quick 
calculation shows us that, in 
the deflection chamber, the 
ions undergo the action of a 
magnetic induction B. They 
describe a circular trajectory 
and will strike the plane 
where there are ion counters 
(detector). 

 Figure I-T-3: Deviations of  
the isotope ions. 

v  E
B1

D2  Dc  d

D1  Dc  2d
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The ions enter the deflection chamber at speed v. They are then subjected 
to the action of an electromagnetic force fem, which serves to compensate 
for the effect of their speed in the form of a centrifugal mechanical force 
fmec, so that the moduli of these forces are equal 

 

so that 

 

where R is the radius of curvature of the trajectory and m is the mass of the 
ion. We then deduce the mass of the ion 

 

Using 

 

we obtain 

 

It can be seen that the mass is proportional to the curvature radius of the ion 
in the deflection chamber. If we wish to obtain the atomic mass of the ion, 
for one mole of the ion, we write 

 

In practice, it is easier to work with a standard substance and so we introduce 
some trace of a substance whose mass we already know into the sample, for 
example, ¹²C carbon. Let RC and RX be the respective curvature radii of 
carbon and isotope 1. Using the above equation, it is obvious that 

f mec  f em

qvB  mv2

R

m 
qB
v R

v  E
B1

m 
qBB1

E R

Mg 
qBB1N105

E Rcm
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For isotope 2, we have 

 

Considering what we said above, 

 

 

we deduce that 

 

 

i.e. 

 

 

c) The signal intensity of the heaviest isotope of boron is 4.3 times 
greater than that of the light isotope. Calculate the atomic mass of 
natural boron. 

ANSWER 

As in the previous exercise, we have to normalize the intensities. If I₁ and I₂ 
represent respectively the normalized intensities of isotopes 1 and 2 of 
boron, and if 2 is heavier than 1, then we have the system of equations 

M1

Mc


R1

RC


D1

DC

M2

Mc


R2

RC


D2

DC

M1

Mc
 Dc2d

DC

M2

Mc
 Dcd

DC

M1 Mc
Dc2d

DC

M2 Mc
Dcd

DC

M1 12
224.9224.17

224.92
 10g/mol

M2 12
224.924.17

224.92
 11g/mol
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From this, we obtain 

 

 

 

and so the natural atomic mass of boron is 

 

 

T-I-3. Sub-atomic particles 

1) Determine the number of particles present in the following 
elements: ₇¹⁴N, ₂₆⁵⁶Fe, and ₃₁⁷²Ge. 

ANSWER 

The representation of a chemical element is 

 

where 

the number of protons = Z, 

the number of neutrons = A-Z, 

the number of electrons = Z-Q. 

I1I2 1
I2

I1
 4. 3

I14.3  I1 1

I1
1

5.3
 0.19

I2 4.3  I1 4.3  0.19  0.817

M  I1M1I2M2

M  0.19  10  0.817  11 10.887g/mol

Z
AXQ
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If we apply this information to these elements, we obtain the following 
table. 

Table T-I-3 

 

2) Knowing that the atomic mass unit has the value 1 u = 
1.6605402×10⁻²⁷ kg, that the respective masses of the proton and the 
neutron are m_{p} = 1,00727 u and m_{n} = 1,00867 u, evaluate the 
mass defect (in kg and in electron volts) in a lithium atom ₃⁷Li, 
knowing that the mass of the nucleus formed is 7,01435 u, c = 
2.99792458×10⁸ m/s, e = 1.60217733×10⁻¹⁹ C. 

ANSWER 

Core atom mass in kg 

 

The mass of the nucleons 

 

 

 

Mass defect 

 

protons neutrons electrons

7
14N 7 14-77 7

26
56Fe 26 56-2630 26

31
72Ge 31 72-3141 31

mcor 7.01435  1.6605402  1027  1. 164761  1026kg

mnuc 3  mprotons7  3  mneutrons

mnuc  3  1.00727  1.6605402  1027  7  31.00867  1.6605402  1027

mnuc  1. 171759  1026kg

m  mcormnuc
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i.e. 

 

In order to transform this mass defect into energy, we use Einstein’s formula 
drawn from the theory of special relativity 

 

In the case of lithium, we have 

 

 

Since 1 eV = 1.60217733×10⁻¹⁹ J, we have 

 

i.e. 

 

T-I-4. Radioactivity 

1) In the element ��
	 , what do A and Z represent? 

ANSWER 

A is the mass number and Z is the atomic number. 

2) For the radioactive element ��
	 , describe the 4 types of decay. 

ANSWER 

1. α-decay. Radioactive nuclei emit α particles; an α-particle is a helium 
nucleus, i.e. 

m  1. 164761  10261. 171759  1026

m 6. 998  1029kg

E  m  c2

E  6. 998  1029  2.99792458  108
2

E  6. 289489  1012J

Ee.V 6.2894891012

1.602177331019

Ee.V3. 925589  107e.V
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Consequently, when a nucleus emits an α-particle, its mass number 
diminishes by 4 units and its atomic number by 2 units 

 

2. β⁻-decay. The emission of an electron and an anti-neutrino (anti-particle 
without mass) 

 

3. β⁺-decay. The emission of a positron and a neutrino (of zero mass) 

 

4. K-capture. As with β⁺-decay, there is the emission of a positron and a 
neutrino, but the process is different. It is the nucleus that captures an 
electron belonging to the nearest electronic shell (K) 

 

3) What is a radioactive series? 

ANSWER 

It is a series of elements that can be deduced from an unstable parent 
element through four different processes leading to the value of the mass 
number given by the formula 

 

where r is the radioactive series and is an integer that defines the series. It 
can only take 4 values: 0, 1, 2, and 3. n is an integer characterizing the 
element of the series. The variation of n and r defines the radioactive series. 

Three main decay chains (or families) are observed in nature: the thorium 
series (A = 4n); the radium or uranium series (A = 4n+2); and the actinium 
series (A = 4n+3). They end in three different, stable isotopes of lead. A 
fourth chain, the neptunium series (A = 4n+1) has neptunium (²³⁷Np) as its 

 X
4 He2

Z
AX Z2

A4 Y X
4 

Z
AX Z1

A Y  e  

Z
AX Z1

A Y  e  

Z
AX  e Z1

A Y  

A  4n  r

 EBSCOhost - printed on 2/13/2023 7:38 PM via . All use subject to https://www.ebsco.com/terms-of-use



The Constituents of Matter 
 

55 

starting isotope, which has a half-life of 2.14 million years; this chain does 
not exist in nature. The final isotope of this chain is thallium (²⁰⁵Tl). 

4) In 1981 a new radioactive element ��
	  was discovered. By the chain 

of successive decays corresponding to 3 α-decays, 1 β⁺-decay, and, 
finally, an α-decay, we obtain the known element ₉₈²⁴⁶Cf. Determine 
the mass number and the atomic number of X. 

ANSWER 

3 α-decays 

 

 

 
then, 1 β⁺-decay 

 

Finally,1 α-decay 

 

We must have 

 

so that 

 

and 

Z-9 = 98. 

Then, we have 

 

i.e. 

Z
ACf Z2

A4 X X
4 

Z2
A4X Z4

A8 Y X
4 

Z4
A8Y Z6

A12 Y X
4 

Z6
A12Y Z7

A12 W  e  

Z7
A12W Z9

A16 Cf  e  

Z9
A16Cf 98

246 Cf

A  16  246

A  246  16 and Z  98  9
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5) Radioactive decay. 
a) Define the half-life of a radioactive source. 

ANSWER 

The radioactive half-life is the time T after which the number of radioactive 
atoms remaining is half the initial number of atoms. 

b) What relation links the half-life T and the radioactive constant of 
a sample? 

ANSWER 

 

c) The half-life of a radioactive sample is 3.8×10⁵ years. 
1) Calculate the value of its radioactive constant in the SI unit. 

ANSWER 

 

 

d) After how much time has the initial quantity of radioactive nuclei 
divided by 8? 

ANSWER 

The radioactive decay law is 

 

where N(t) is the quantity of radioactive nuclei in the sample at time t and 
N° is the initial quantity. 

A  262 and Z  107

T  ln2


  Ln2
T

 
ln2

3.8  105365.25243600
 5. 780134  1014s1

Nt  N° et
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The half-life of the sample is T. We can then evaluate the radioactive 
constant λ 

 

If Nº is the quantity of radioactive nuclei in the sample, the remaining 
quantity N(t) will be 

 

so that we may write 

 

and 

 

also 

 

Then, the time t necessary to obtain a quantity corresponding to N°/8 is 

 

and 

 

e) A radioactive source of half-life T = 65 years has 1.256×10²¹ 
radioactive nuclei at instant t. Calculate the activity of this source at 
time t. 

 

  

  ln2
3.8  105  1. 824072  106années1

Nt  N°
8

N°
8
 N°et

1
8
 et

et 8

t  ln8


t  ln8

1.824072106
 1.14  106 years
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ANSWER 

The activity of a radioactive sample is defined as the rate at which 
radioactive particles are emitted 

 

or 

 

 

since 1 Curie = 3.7×10¹⁰ radioactive decays per seconds 

 

T-I-5. Periodic classification 

1) Schematically, draw the periodic table and correctly place 
the families of elements (alkaline, alkaline earth, halogens, and 
rare gases). 

ANSWER 

First, draw a table with 18 columns and then place the families. 

Table T-I-3. Periodic classification 

 

At  Nt

At  Nt 
ln2

T Nt

At 
ln2

65.0365.25243600
1.256  1021 4. 24  1011Becquerels

At  4.241011

3.71010
 11,46 Curie
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2) The evolution of the 
natural logarithm of the 
successive ionization 
potentials of an element is 
given as a function of the 
order n of the extracted 
electron. 
 
a) What is the element? 

 
 

Figure T-I-4: Successive IPs of phosphorus. 
 

ANSWER 

There are 15 IPs and thus it is phosphorus. 

b) Why are there changes in the slope of the curve? 

ANSWER 

Atoms have energy shells, but the energy situation of atoms is not 
homogeneous. The closer an electron is to the nucleus, the more energy it 
takes to pull it out. The points on the line mean that the electrons belong to 
the same energy shell. Where there is a break in the slope, it means that we 
are passing to another shell. 
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CHAPTER II 

THE WAVE-LIKE AND  
CORPUSCULAR NATURE OF LIGHT 

 
 
 

II-I. Some Reminders About  
the Wave-Like Nature of Light 

According to Maxwell’s1 theory, light results from the simultaneous 
propagation of an electric field and a magnetic field, perpendicular to each 
other and varying periodically. 

 

J. Maxwell  

Figure II-1: Electromagnetic propagation of light. 

Several concepts have to be understood to describe the phenomenon of light. 

                                                      
1 James Maxwell (1831-1879). Scottish physicist and mathematician. He unified the 
equations of electricity, magnetism, and induction in a single electromagnetic 
model. 
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1. Vibration wave function2 Ψ

We shall only consider here the vibrations of the electric field. We can 
represent the vibration of a light source through the following relationship

where Ψ is the elongation; Ψ° is the maximum elongation or amplitude; ω 
is the pulsation or angular frequency; t is the time; and � is the phase angle 
(the angle value when t = 0).

2. Period T of a vibrational movement

This is the time it takes for the movement to reproduce identically. Let Ψ(t)
be the elongation at time t and Ψ(t+T) at time t+T. At time t, we have

and at time (t+T)

If the elongation at time t+T is identical to the elongation at time t, we must 
have

that is

Simplifying by Ψ°, we obtain

                                                     
2 Strictly speaking, Ψ represents here one of the Cartesian components of the electric 
field E of a monochromatic wave. Besides, is the spatial part of the phase of the 
wave (i.e. that which includes the dependence of the position).

  °cost  

t  °cost  

t  T  °cost  T  

t  T  t

°cost    °cost  T  

cost    cost  T  
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Given the trigonometric relationships, we can write 

 

which leads to 

 

or 

 (II-1) 

T is named the period of vibrational motion 

3. Frequency ν 

This is the inverse of the period T, i.e. 

 

4. Angular frequency ω 

This is related to the frequency 

 (II-2) 

5. Wavelength λ 

The wavelength is the distance traveled by the wave during period T. Light 
moves at a velocity of c≃3×10⁸ ms⁻¹ in a vacuum (this is very important) 

 (II-3) 

Note: since ν = 1/T, we have T = 1/ν and 

 

t    2  t  T  

2  T

T  2


  1
T  

2

  2

  cT

  c

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6. Wavenumber 		
 

The wavenumber 	
 is the inverse of the wavelength, so that 

 

This comes to 

 

7. Light interferences 

a. Experiment 

Interference patterns present a manifestation of the wave behavior of light. 
We can highlight this property using Young’s double slit experiment. 

 

T. Young 

In Fig. II-2a, we can see Young’s device3. The 
experimental setup has two very thin slits, S₁ and S₂, cut 
into a sheet of cardboard, separated by a distance of about 
one millimeter and illuminated by a single color 
(monochromatic) light source. A schematic view is given 
in Fig. II-2b. 

We can see alternating dark bands and bright bands on a screen; these are 
light interference patterns. 

Figure II-2a: Young’s device. 

 

Figure II-2b: Schematic of Young’s 
device. 

                                                      
3 Thomas Young (1773-1829), British physicist, physician, and Egyptologist. 

  1


  c 
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Let us undertake a mental experiment and visualize walking along the Oz 
axis at a small distance on either side of the center O and with a small 
photoelectric cell recording the light intensity I(z). Fig. II-3a displays the 
intensity I(z) according to position z. 

 

Figure II-3a: The real evolution of 
the light intensity I(z) in Young’s 

double slit experiment. 

 

Figure II-3b: Simplified evolution  
of the light intensity I(z). 

Strictly speaking, when looking at Fig. II-3a we can see that the intensity 
of the central band is greater than that of the lateral bands because of the 
phenomenon of diffraction at the slits, but we shall neglect this effect (Fig. 
II-3b) if the distance from the center O is not too large in order to simplify 
the theory as much as possible. 

Let us define a stationary wave as a wave that does not propagate and that 
can take the form 

 

In this sense, light interference can be considered a stationary phenomenon 
because, as we shall see, it generates wave functions, which have a time 
dependent part and another part dependent on the spatial coordinates. 
Indeed, the appearance of the fringes persists as long as the experience lasts 
and seems frozen in time. This is only a matter of appearance because, as 
we shall see, we have to deal with a vibrational phenomenon, the amplitude 
of which depends on the spatial coordinates. Each maximum of this curve 
corresponds to the center of a bright fringe and each minimum to that of a 

sx, t  ft  gx
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dark fringe. We therefore propose a theory capable of explaining this 
alternation of dark and bright bands. 

b. Theory 

This experiment can be interpreted by considering that light displays wave-
like behavior. To simplify, we shall consider a wave whose elongation wave 
function at source S is 

 

This source illuminates the plane of the slits at an equal distance from each. 
It is assumed that the phase in S₁ and S₂ is zero. Thus, in S₁ we have 

 

and in S₂ we have 

 

The S₁ and S₂ slits then behave like vibrating sources in phase. 

In Fig. II-4, we can see a schematic presentation of the experimental 
assembly in order to identify the parameters used in the theory. 

 

Figure II-4: The different parameters used in the interference theory. 

We can plug one of the slits, for example S₂, and calculate the expression of 
the elongation Ψ�
 

(�) at point M. 

At S₁, the wave has as the following elongation 

 

St  °cost  S

S1t  °cost

S2t  °cost

S1t  °cost
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In M, the wave will have traveled the distance S₁M, i.e. l₁. To travel this 
distance, it will have taken time t₁. The speed of propagation of the wave 
being the velocity of light, c≃3.10⁸ m.s⁻¹, we can write 

 

In M, the wave will have the elongation 

 

Developing the expression, we come to 

 

By posing 

 

we get 

 

or, given Eq. (II-1), we get 

 

so that 

 

Remembering Eq. (II-3), we have 

 

hence 

 

Let us call φ₁ the following expression 

l1  c  t1

S1,Mt  °cost  t1

S1,Mt  °cost  t1

t1  l1
c

t1   l1
c

  2
T

t1  2
T

l1
c

  cT

t1  2
 l1
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 (II-4) 

we can deduce the expression of the elongation at point M of the wave 
coming from S₁ 

* 

If we were to block S₁ and let S₂ work, we would get a similar expression 

 

with 

 (II-5) 

Now, if we let the two sources work together, the elongation of the M-point 

can be accounted for by performing the linear combination ΨM of wave 
functions at the M-point, as follows 

 

that is 

 

and by placing Ψ° as the common factor, we get 

 

Let us now use the trigonometric relationship concerning the sum of two 
cosines 

 

and get 

 

1  t1  2
 l1

S1,Mt  °cost  1

S2,Mt  °cost  2

2  t2  2
 l2

M  S1,Mt  S2,Mt

M  °cost  1  °cost  2

M  °cost  1  cost  2

cosp  cosq  2cos pq
2

cos pq
2

M  2°cos t1t2

2
cos t1t2

2
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By simplifying 

 

applying the property 

 

reversing the order of φ₁ and φ₂ in the expression, we come to 

 

We get an expression with one part that depends on time and another part 
that is time-independent. This time-independent part can be considered in 
the form of an amplitude, making it possible to write the wave function as 

 

If one poses 

 

we define this new amplitude Ψ°. As such, the wave function can be 
written 

 

However, the most interesting part concerns the properties of this amplitude 
Ψ°. We shall now try to link the phase difference to the position of a point 
on the Oz axis. Let us express φ₂-φ₁ using eqs. (II-4) and (II-5) 

 (II-6) 

Consider Figure II-4. By applying the Pythagorean theorem, we can express 
lengths l₁ and l₂ 

M  2°cos t  12

2
cos 12

2

cos  cos

M  2°cos t  12

2
cos 21

2

M  2°cos
2  1

2
cos t  1  2

2

Amplitude Time-dependent part

°
 2°cos 21

2

M  °
cos t  12

2

2  1  2
 l2  l1
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Let us calculate the difference of l₂²-l₁², which gives us 

 

or by factoring 

 

By simplifying, we get 

 

i.e. 

         (II-7) 

Now, given that the l₂ and l₁ are in the order of magnitude of one meter and 
a is in the order of a millimeter, it is easy to see from Fig. II-4 that, if one 
considers their sum, one can make the approximation 

 

As such, Eq. (II-7) becomes 

 

so that the difference of l₂-l₁ is 

 (II-8) 

We can replace l₂-l₁ in Eq. (II-7) by Eq. (II-8) above, so that 

 

l1
2  D2  z  a

2
2

l1
2  D2  z  a

2
2

l2
2  l1

2  z  a
2
2  z  a

2
2

l2  l1l2  l1  z  a
2
  z  a

2
 z  a

2
  z  a

2


l2  l1l2  l1  z  a
2
 z  a

2
 z  a

2
 z  a

2


l2  l1l2  l1  2za

l1  l2  D

2Dl2  l1  2za

l2  l1  za
D

2  1  2
 l2  l1  2


za
D
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The expression for Ψ°(z) may thus be deduced as 

 

It can be seen that the amplitude depends on the position of point M along 

the z-axis. It just remains to define the link between Ψ°(z) and the light 
intensity I(z) along the interference axis. 

If we plot Ψ°(z)2 as a function of z we obtain the following result. 

 

Figure II-5: Squared amplitude  
evolution along z axis. 

This figure can be compared to 
Fig. II-3b. It is a 
superimposable graph with the 
position of the peaks and the 
“experimental values” of the 
light intensity. Consequently, 
the following analogy can be 
made4 

 

A such, we can deduce that the 
light intensity is proportional to 
the square of the amplitude. 

This observation then allows us to interpret and predict the position of dark 
or bright fringes along the z-axis. 

Position of bright fringes 

The minimum of the light must correspond to a square of the amplitude, 
which is zero 

 

                                                      
4 In fact, illumination is actually proportional to the time average of the square of 
the electric field of the wave resulting from the superposition of the waves coming 
from the two source slits. 

°
z  2°cos 


a
D z

Iz  °
z

2

min °
z  min 2°cos 


a
D zmin

2  0
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which happens when 

 

or 

 

This occurs when the argument of the cosine is equal to an odd number of 
times the value π/2 

 

leading to 

 

Inter-fringe 

The distance between two successive bright fringes or two successive dark 
fringes is 

 

or 

 

In summary 

The interference between two vibrational wave functions leads to a 
vibrational wave function resulting from the linear combination of these 
wave functions and the amplitude of which depends on the spatial 
coordinates. 

A wave, with the amplitude of the wave function dependent on the spatial 
coordinates is a stationary wave and light interference patterns are thus 
stationary phenomena. 

 

cos2 


a
D zmin  0

cos 


a
D zmin  0




a
D zmin  2n  1 

2

zminn  2n  1 
2

D
a

i  zmaxn  1  zmaxn  n  1 D
a  n D

a  D
a

i  zminn  1  zminn  2n  1  1 
2

D
a  2n  1 

2
D
a  D

a
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II-II. The Corpuscular Aspect of Light 

In addition to its wave aspect, light has a corpuscular aspect. This aspect is 
illustrated by the photoelectric effect and the Compton effect. 

1. Experiment 

If we illuminate a zinc plate, for example, with UV radiation produced by 
an electric arc, we observe that electrons are torn from the metal. 

To highlight this, we use a small glass bottle containing an electrometer or 
electroscope, which consists of a metal plate connected to a metal rod 
carrying very fine gold sheets, as shown in Fig. II-6. 

 
Figure II-6: Experiment with an electrometer to prove the emission of electrons by 

the photoelectric effect. 

(1)  The gold leaves are negatively charged. They repel each other. 

(2)  The zinc plate is illuminated with UV light and the gold leaves 
therefore approach each other. Irradiation by UV light causes a fall in 
the negative charges, decreasing the negative charge of the gold leaves. 
As a result, the repulsion force becomes increasingly weak and the 
leaves approach each other. 
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(3)  We maintain the illumination and the zinc plate becomes deficient in 
electrons, attracts the electrons of the gold leaves, and thus the gold 
leaves become positively charged and repel each other. 

We can deduce from this experiment that the UV light tears electrons from 
zinc when it irradiates this metal. 

If we now use red light, there is no subsequent tearing of electrons. It 
therefore appears that this emission of electrons by a given substance 
depends on the nature of the light used, that is to say on its frequency. Thus, 
for a given substance X, there is a frequency below which the emission of 
electrons no longer occurs. This is the threshold frequency ν°X, which is 
characteristic of the substance. 

2. The photoelectric effect: theoretical explanation 

Einstein5 proposed an explanation of the photoelectric effect, which can be 
summed up in the simple formula 

 (II-9) 

where hν is the energy of a quantum6 of light; h is the Planck constant (h = 
6.6260755×10⁻³⁴ J
s); Ek is the maximum kinetic energy of ejected 
electrons; and W° is the work function—the energy that must be supplied 
to bring an electron from the inside of the substance to its periphery. Fig. 
II-8 schematizes this balance. 

                                                      
5 Albert Einstein (1879-1955) won the Nobel Prize in Physics in 1921 for his work 
on the photoelectric effect. He is the author of Relativity: The Special and the 
General Relativity. 
6 G. Lewis gave the quantum hν the name “photon”. Photon is derived from the 
Greek word for light, φως. According to A. Compton, this term was created by 
Gilbert N. Lewis in 1926. 

h  W°  Ek

 EBSCOhost - printed on 2/13/2023 7:38 PM via . All use subject to https://www.ebsco.com/terms-of-use



Chapter II 
 

74 

A. Einstein 
 

Figure II-7: The 
photoelectric effect. Figure II-8: Energy balance of 

the photoelectric effect. 

3. Quantitative measurement of the photoelectric effect 

To quantitatively measure the photoelectric effect, Millikan’s device7 may 
be used. 

 

E. Millikan 

 
A photon of hν 
energy falls onto a 
cathode C covered 
with substance X. 
As a result, an 
electron is emitted. 

When V = 0, the 
electron crosses the 
grid G and strikes 
the plate P, 

 

Figure II-9: Experimental device allowing  
measurement of the photoelectric effect. 

                                                      
7 Edward Millikan (1868-1953) was an American physicist who won the Nobel Prize 
in Physics in 1923. He is known for his work on the charge of the electron and 
measurement of the photoelectric effect. 
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thus closing the circuit A-P. An electric current flows and moves the needle 
of the micro-ammeter A. This makes it possible to detect the arrival of an 
electron.As V, the potential difference between C and G, becomes more and 
more negative (by using  the rheostat), the emitted electrons are braked by 
this potential difference. When V reaches the value VR, the stopping 
potential, the electrons are stopped and no longer at plate P. As such, there 
is no more current across the circuit A-P. The potential energy, which must 
be opposed to the electrons from C, is therefore, at this time, equal to the 
kinetic energy of the emitted electrons 

 

The potential 
difference VR is 
reported as a function 
of the frequency ν of 
the incident light. As 
such, we obtain the 
following graph. The 
line crosses the 
frequency axis at point 
ν₀, representing the 
frequency below 
which there is no  

 

Figure II-10: The threshold potential  
of the Millikan experiment. 

longer a photoelectric effect. This is the threshold frequency. It is easy to 
interpret this graph. Let us start by finding the equation on the right. It is of 
the following type   

  (II-10) 

Two measurements can then be made. The first one, with light of frequency 
ν₁, requires the potential VR₁ to stop the electrons (zero plate current). The 
other, with a light of frequency ν₂, requires the potential VR2 to stop the 
electrons. We deduce the slope A of the curve as 

 

Ek  eVR

VR  A  B

A 
VR2

VR1
21
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We can see that, in all cases and whatever the nature of the metal, the slope 
of A is 

 

Now, we multiply the expression (II-10) by the elementary charge e 

 

and evaluate the quantity eA 

 

This is the value of Planck’s constant h. 

Eq. (II-10) becomes 

  (II-11) 

when ν = ν₀ then VR = 0 and we see that 

 

and 

 

Eq. (II-11) becomes 

 

By rearranging this expression, we obtain the experimental expression of 
Einstein’s relation (II-9) 

 

or 

 

A  4.12  1015volt.hertz1

eVR  eA  eB

eA  1.602  1019  4.12  1015  6. 60  1034joule.s

eVR  h  eB

0  h0  eB

eB  h0

eVR  h  h0

h  W°  eVR

h  W°  Ek
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in which it is easy to identify eVR with the kinetic energy Ek. Furthermore, 
the work of extraction W° can be evaluated by irradiating the cathode C 
with a radiation of frequency ν°, the frequency beyond which the 
photoelectric effect occurs. 

We then have W° = hν°. So, we can write Einstein’s equation in the form 

 

which is Millikan’s formula and is useful for many problems concerning the 
photoelectric effect. 

Einstein’s theory of the photoelectric effect highlights the corpuscular 
nature of light. The energy of light is transported in the form of a quantum 
of energy as photons. This conception of light seems to oppose the wave-
like nature highlighted in light interference patterns. 

In the conclusion of this chapter, we can see that the nature of light has a 
double aspect being both wave-like and corpuscular, i.e. it is both a wave 
and particle. As such, we speak of its wave-particle duality. This behavior 
is also found in the case of matter. 

II-IV. Tutorial for Chapter II 

T-II-1. The wave-like nature of light 

1) A monochromatic source S illuminates a screen E₁ pierced by two 
very fine parallel slits S₁ and S₂ separated by distance a of 3 mm. The 
source is placed 50 cm from the two slits. It is observed that light 
interference occurs on a screen E₂ placed at a distance D = 3 m from 
plane E₁. There are 6 bright fringes on each side of the central fringe 
O, occupying a total length of l = 7.2 mm. 

a) Calculate the wavelength of the radiation used. 

ANSWER 

According to the interference theory, we have the following interfringe 

 

h  h°  eVR

i  D
a
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We have 

 

and 

 

b) a and l were measured with a precision of 1/10 mm and D with a 
precision of 1 cm. How accurately can we know the wavelength? 

ANSWER 

We start from the expression for the wavelength 

 

Taking the natural logarithm of this expression, we get 

 

Moving on to the differential gives 

 

Using the expression for the deviation ���we get 

 

Moving on to the relative errors gives 

 

We then obtain the expression of the relative error of the wavelength, with 
Δa = Δl = 0.1 mm; ΔD = 10⁻² m. The expression becomes 

i  l/12  7.2 103/12  6 104m

 ai
D  3  103  6  104

3
 6.0 107m

 ai
D  a

D
l
6

log loga logl logDlog6

d


da
a dl

l dD
D




a
a l

l D
D




a
a l

l  D
D
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We then deduce
 

 

Therefore, the measurement of λ lies between these two values 

 

i.e. 

 

and 

 

i.e. in nanometers 

 

2) In an interference experiment with a light beam composed of 2 
radiations of wavelength λ₁ = 250 nm and λ₂ = 650 nm, and where the 
distance between the sources is 1mm and that between the sources 
and the observation screen is 2m, we observe a grooved spectrum 
that presents 2 completely dark lines on either side of a bright central 
line. 

a) Determine the distances from the bright central line where we 
observe the first completely dark line of the fluted spectrum, as well 
as the respective orders n₁ and n₂ corresponding to the dark lines of 
the two radiations under these conditions. 

ANSWER 

The relation giving the position of the dark fringes is 

 




0.1
3

0.1
7.2

0.01
3

 5 102

  6.0  107  5  102  3.0  108  0.3  107m

        

6.0  107  0.3  107m    6  107  0.3  107m

5. 7  107m    6. 3  107m

570 nm    630 nm

zminn  2n  1D
2a
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As such, for each wavelength we have 

 

As the two systems must have a dark line for the same distance z, we have 

 

 
Replacing �
 and �
 by their numerical values, we get 

 

a relation between n₁ and n₂. We therefore have to vary n₁ to have n₂. This 
is given in Table IV-T-1. 

Table IV-T-1: Positions of dark lines 

 

z1 minn1  2n1  11

2
D
a and z2 minn2  2n2  12

2
D
a

z1 minn1  z2 minn2

2n1  11  2n2  12

2n1  1 1

2
 2n2  1

2n1
1

2
 1

2
 2n2  1

2n1
1

2
 1

2
 1  2n2

n1
1

2
 1

2
1

2
 1

2
 n2

n2  n1
1

2
 1

2
1

2
 1

2
 n1

250
650

 1
2

250
650

 1
2

n1 n2 zmm

0  0.30769 0.25

1 0.07692 0.75

2 0.46154 1.25

3 0.84615 1.75

4 1. 2308 2.25

5 1. 6154 2.75

6 2.0 3.25

7 2. 3846 3.75

8 2. 7692 4.25

9 3. 1538 4.75

n1 n2 zmm

10 3. 5385 5.25

11 3. 9231 5.75

12 4. 3077 6.25

13 4. 6923 6.75

14 5. 0769 7.25

15 5. 4615 7.75

16 5. 8462 8.25

17 6. 2308 8.75

18 6. 6154 9.25

19 7.0 9.75
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We deduce the distance at which grooved lines appear by applying the 
formula 

 

 

We can see that the number n₂ is an integer when n₁ takes the value 6. Thus, 
at a distance of 3.25 mm the two radiations undergo extinctions, one (250 
nm) corresponding to n₁ = 6 and the other (650nm) corresponding to n₂ = 2. 

The following scheme presents the evolution of the squared amplitudes 
corresponding to the two radiations. 

 

Figure II-T-1: Squared amplitudes of the two radiations. 

b) How far from the central line do we see a second dark fringe? 

ANSWER 

Looking at the table, we can see that the next coincidence of the dark lines 
occurs for n₁ = 19 and n₂ = 7 and at a distance of 9.75 mm. 

zminn1  2n11
1D
2a

zminn1  2n1  1 250  109

2
 2

1  103
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T-II-2. The corpuscular nature of light 

The photoelectric effect. 

1) Radiation with a wavelength of 250 nm is used to illuminate a 
metal. The photoelectrons emitted are stopped if they are opposed 
by a retarding potential of 0.77 V. Calculate the work of extraction 
of a photoelectron: h = 6.6×10⁻³⁴ j.s; c = 3×10⁸ ms⁻¹; e = 1.6×10⁻¹⁹ C 

ANSWER 

According to Einstein’s formula, we have 

 

where hν is the energy of a photon colliding with the metal; W° is the work 
of extraction of an electron from the metal; and Ek is the residual kinetic 
energy of the extracted electron. This kinetic energy can be evaluated by 
opposing a retarding potential V, which will brake the emitted electrons. As 
a result, the above formula becomes 

 

We deduce the extraction work as follows 

 

and 

 

so that 

 

2) A radiation of wavelength 656 nm emitted by a hydrogen tube 
collides with a metal whose extraction energy is 2 eV. The 
photoelectrons emitted are collected by an anode. Calculate the 
retarding potential, which must be exactly set against them to 
prevent them from reaching the anode. 

h  W°  Ek

h  W°  eV

W°  h  eV or W°  hc


 eV

W°  6.6  1034  3  108

250  109
 1.6  1019  0.77  6. 688  1019 joule

W°  6. 688  1019

1.6  1019
 4. 18e.V
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ANSWER 

This is a variant of the previous exercise. We start with the formula 

 

and deduce the following 

 

with W° expressed in joules. The quantity W°/e therefore represents the 
extraction work expressed in electron volts. So we have 

  

3) The classical theory of electromagnetic waves proposes that a 
wave that falls on an atom, considered as a circle of radius 10⁻¹⁰ m, is 
absorbed and that its energy can then be used by the atom to extract 
its least bound electron. If the bond energy of this electron is 3 eV: 

a) Calculate the time after which sufficient energy will have been 
absorbed by an atom irradiated by a lamp placed at a distance of 1 
m emitting a power of 1 W in all directions. 

ANSWER 

A light of power P is 
irradiated by a lamp 
throughout the space. At 
distance R from the lamp, 
the radiated power is 
distributed across the 
surface of a sphere of 
radius R. The following 
figure presents the sphere 
of diffusion of the light 
energy. 

We can then calculate the 
power received by an atom 

 

Figure II-T-2: propagation of the light power. 

h  W°  eV

V  h  W°
e or : V  hc

e  W°
e

V  6.6  1034  3  108

250  109  1.6  1019
 2  2. 95Volts
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considered as a disk of 
radius r 

 

We deduce 

 

so that 

 

Then, we have 

 

Recall that the power is energy per unit of time 

 

According to classical theory, energy accumulates in the atom until it 
reaches a value of 3 eV. The electron is then expelled. This energy 
corresponds in joules to 

 

We can deduce that, to reach this energy, will require time equal to 

 

However, we know that the photoelectric effect is instantaneous. 

b) The wavelength, located in the UV, is 1216 Å. Calculate the 
number of photons that arrive at the atom in one second. 

 
p
s

 
p
r2

 P
4R2

p  Pr2

4R2
 P r2

4R2

p  1
1010 

2

412
 2. 5  1021watt

p  2. 5  1021watt  2. 5  1021J/s

E  3  1.5  1019  4. 5  1019J

t  E
p  4. 5  1019

2. 5  1021
 180s
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Data: h = 6.6⁻³⁴ j.s; c = 3⁸ ms⁻¹; e = 1.610⁻¹⁹ C 

What conclusion can we come to? 

ANSWER 

According to wave theory, the energy of a photon is 

 

for this wavelength 

 

We deduce the number of photons arriving at an atom in one second 

 

This result reveals, first of all, that the photoelectric effect does not concern 
all the atoms present. For the same atom, there is an average time between 
two collisions 

 

However, it must be remembered that there are a large number of atoms in 
a metal and that it is always the case that one or more that will collide with 
the electrons. The second remark concerns the instantaneity of the 
photoelectric effect as the collision instantly causes the emission of an 
electron. 

 
 

 

 

Eph  h c


Eph  6.6  1034 3  108

1216  1010
 1. 6283  1018J

N 
p

Eph
 2. 5  1021

1. 6283  1018
 1. 5353  103 photons per second

  1/N  1
1. 5353  103

 651s
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CHAPTER III 

THE CORPUSCULAR AND  
WAVE-LIKE NATURE OF MATTER 

 
 
 
The corpuscular aspect of matter is well known and represented through the 
examples of electrons, protons, neutrons, atoms, and molecule. On the other 
hand, the wave aspect of matter is more difficult to understand. However, 
multiple experiments have proven that matter displays wave-like behavior. 

Let us consider a material particle of mass m moving 
in space with speed v; it has a momentum 

 

According to Louis de Broglie1, it generates what he 
called an “wave associated with a particle”, the 
wavelength λ of which is given by the relation 

 

Louis de Broglie 

 (III-1) 

where h is the Planck constant and ‖�⃗‖ is the modulus of momentum of the 
particle. 

Since Louis de Broglie first presented his hypothesis, a number of 
experiments have proved its veracity, including: the Davisson and Germer 
experiment using electronic diffraction; the electronic biprism of 
Möllenstedt; and the Jönsson experiment using interference slits. 

                                                      
1 Louis de Broglie (1892-1987) (pronounced “Louis de Broille”) was a French 
mathematician and physicist. He won the Nobel Prize in Physics in 1929 for his 
discovery of the wave-like nature of electrons. 

p  mv

  h
p
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III-I. The Davisson and Germer Experiment 

Davisson2 and Germer3 were experimental physicists who studied metal 
surfaces by irradiating them with electron beams. 

They used a vacuum chamber with an electron 
gun that throws electrons at a piece of crystalline 
nickel that could pivot on itself to observe the 
angular dependence of the scattered electrons. 
Their electron sensor was mounted on a 
graduated circular arc so that it could be rotated 
to observe electrons at different diffraction 
angles φ (see Fig. III-1a). 

Surprisingly, some angles saw the scattered 
electron beam at maximum intensity, showing 
the same behavior in the case of the X-ray 
diffraction. 

 

Davisson and Germer 

This peak can be interpreted using Bragg’s law, which we met in Chapter 
1, in the study of X-ray diffraction: 2lsinθ = nλ where θ is the Bragg angle 
relying the lattice spacing l in the nickel crystal to the wavelength λ of the 
X-rays. This supposes the attribution of wave-like behavior to electrons. As 
such, we may write 

 II-2) 

Davisson and Germer used an accelerating potential difference of 54 volts 
to obtain a peak at the scattering angle φ = 50°. As can be seen in Fig. III-
1b, the scattering angle can be related to Bragg’s angle by 

   

so that θ = 65°. 

                                                      
2 C. J. Davisson, 1881-1958. American physicist. Winner of the Nobel Prize in 
Physics in 1937. 
3 L. H. Germer (1896-1971) American physicist. 
(https://upload.wikimedia.org/wikipedia/commons/thumb/9/99/Davisson_and_Ger
mer.jpg/260px-Davisson_and_Germer.jpg) 

  2l sin 
n

2  180°  
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Figure III-1a: Davisson  
and Germer device. 

 

Figure III-1b: Scattering  
and Bragg’s angles. 

Using Eqs. (III-1) and and (III-2), we can evaluate the wavelength from 
Bragg’s formula because we know the value of distance l that separates two 
successive reticular plans, i.e. l = 0.092nm. 

In addition, if we consider the maximum of an order 

 

using de Broglie’s formula, we may write 

 

where ‖�⃗‖ is the modulus of the momentum linked to the kinetic energy of 
the electron, so that 

 

where m is the electron mass. This gives us 

 

and using the electron gun, the kinetic energy of the electron is 

 

 
20.092109sin 

180
65

1
 1. 667  1010m

  h
p

T  p 2

2m

p  2mT

T  eV
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where V is the accelerative potential difference. Thus, we have 

 

and λ is 

 

Using the following parameters: h = 6.62×10⁻³⁴ J.s; m = 9.1×10⁻³¹ kg; e = 
1.602×10⁻¹⁹ C, and the experimental potential difference of Davisson and 
Germer, we can find λ 

 

As we can see, this gives the same value as the one predicted by the de Broglie 
relationship; this is the first verification of the de Broglie hypothesis 
concerning the wave-like nature of particles, such as the electron. 

Now, let us look at some more recent experiments proving the veracity of 
the de Broglie hypothesis. 

III-II. The Jönsson Experiment (1961) 

In 1961, Claus Jönsson4 carried out a real Young-type experiment for the 
first time with electrons scattered by slits5. 

 

C. Jönsson 

 

Figure III-
2:Electronic 

interferences. 

The electrons were produced 
by a source that accelerated 
them to 50 keV, while the 
slits, which very narrow 
(~0.5 μm) and separated by 
about 0.1 μm, were made 
using copper foil. He 
obtained interference patterns 
as shown in Fig. III-2. 

                                                      
4 Claus Jönsson, born in 1930. German physicist. 
5 See for example C. Jönsson, Z. Phys. 161, 454 (1961) [Am. J. Phys. 42, 4 (1974)]. 

p  2meV

  h
2meV

  6.62  1034

2  9.1  10311.602  1019  54
 1. 668  1010m
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III-III. The Möllenstedt Experiment (1955) 

Previously, Möllenstedt6 had realized some electronic interference figures 
with the aid of an electronic biprism. His results are shown in figs. III-3a 
and III-3b. 

 

Figure III-3a. Möllenstedt device: the electronic biprism. 

 

G. Möllenstedt 

Figure III-3b. 
Electronic 

interferences 

The very thin gold wire F in Fig. III-3a has a potential of 30,000 volts and 
the electron source S has a width of 500 A. One can observe an interference 
figure (Fig. III-3b, the distribution of electrons in the observation plane 
with maxima and minima). The system behaves like a Fresnel biprism 
where the secondary sources are 10.10⁻⁶ m apart. 

In Fig. III-4, the evolution versus the coordinate z of the square of the 
amplitude is given, which reproduces the evolution of the intensity of the 
electronic impacts along the z-axis. 

                                                      
6 Gottfried Möllenstedt (1912-1997). German physicist. 
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The theoretical explanation of the 
electronic interference figures is 
based on the same principles as 
those already seen in the case of light 
interference. The superposition of 
two vibrations characterized by the 
wave functions Ψ₁ and Ψ₂ on the 
interference plane leads to a 
stationary wave characterized by the 
wave function 

 

 

Figure III-4. Bright fringes  
and dark fringes. 

where 

                           (III-3) 

The interfringe is i = λD/a = 0.16 10⁻⁶ m for D = 25cm and a=10.10⁻⁶ m, 
and the measured wavelength is 

 (III-4) 

The electrons emitted by the S-source have the following kinetic energy 

 

where V is the accelerative difference of the potential. However, the 
momentum is obtained from the kinetic energy 

 

and applying the Louis de Broglie relationship we get 

 (III-5) 

The identity of the result between the two ways (III-4) and (III-5) shows, 
once again, the veracity of Louis de Broglie’s hypothesis regarding the 
wavelength associated with the particle. 

z, t  °zcost  

°z  2°cos 
a
D z

  0.07  1010m.

Ek  eV

Ek  p2

2m i.e. p  2mEk  2meV

  h
2meV

 EBSCOhost - printed on 2/13/2023 7:38 PM via . All use subject to https://www.ebsco.com/terms-of-use



Chapter III 
 

92 

III-IV. The Meaning of the Square of the Amplitude 

In interpreting the results of the experiment on light interferences, the square 
of the amplitude was connected to the intensity of the light along the plane 
of the interference. In the case of electronic interferences, the experimental 
intensity along the z-axis represents the N number of electron impacts on 
the observation screen 

 

As such, we can then refer to Feynman’s7 famous thought experiment. 

Imagine an electron interference experiment initially involving a single 
electron by adjusting an electron gun and gradually increasing the rate of 
emission of electrons. Fig. III-5 shows the observations for different 
durations of the experiment. This experiment was only recently done, 
although it could actually have been carried out a long time ago8. 

 

R. Feynman 

Figure III-5: Feynman’s mental experience: evolution of 
electronic impacts over time. 

As can be seen, the impacts of electrons seem to be randomly distributed 
over very short times, but as time passes, the lines of interference are formed 
by the accumulation of impacts on lines that make up the bright fringes. 
Thus, it may be seen that the bright fringes correspond to areas of high 
probability of impacts, while the dark fringes correspond to areas of zero 
probability of impact. Ψ°(z)², therefore, represents the probability of impact 

                                                      
7 Richard Feynman (1918-1988). American physicist and winner of the Nobel Prize 
in Physics in 1965. Known for his work on quantum electrodynamics. 
8 About twenty years later, two teams, one Italian in 1976 and the other Japanese in 
1989, undertook the experiment: they first replaced the slits with a filament with 
positive potential surrounded by plates parallel to the mass. They then attenuated the 
intensity of the incident electron beam from an electron microscope so that the 
experiment resembled Young’s single photon experiment. Both teams managed to 
show that, after a long time, the interference figure can be reconstructed as shown 
in Fig. III-5. 

N  °z2
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at point z. The square of the amplitude of the associated wave has a 
probabilistic meaning. 

In conclusion, we have seen that matter and light have a double aspect, both 
undulatory and corpuscular. This is called wave-corpuscle duality. 
Moreover, the wavelength of the wave associated with the particle has been 
assessed thanks to the Louis de Broglie relationship and the probabilistic 
character of the square of the wave amplitude at a point in space has been 
demonstrated. 

III-V. Tutorial for Chapter III 

T-III-1. de Broglie’s wavelength 

1) We consider a proton of mass mp and of charge qp, and an ��-particle 
of mass mα and charge qα accelerated by a potential difference V of the 
same magnitude, but with opposite signs. Compare the wavelengths of 
the waves associated with these 2 particles. Data: ₁₁¹H and ₂₂⁴α 

ANSWER 

Here, we use the de Broglie relation 

 

The momentum of the particles is obtained by evaluating the kinetic energy 
of the charged particles subjected to the potential difference V 

 

then, we have 

 

and 

 

As such, we deduce 

  h
p

Ek
p 2

2m  q.V

p2 2m.q.V

p  2m.q.V
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Let us consider the wavelengths λp and λα 

   

The ratio of the two wavelengths shows that  

 

however, we know that 

   

The wavelength of the proton is longer than that of the α-particle under these 
conditions. 

2) In an interference experiment on helium nuclei ₂₂⁴He²⁺⁺ (α-particle), 
we measured the interfringe i = 0.5 mm on a screen placed at D = 4 
m from the plane of the virtual sources S₁₁ and S₂₂. S₁₁ and S₂₂ were 
also separated by the distance a = 1mm. Data: h = 6.6×10⁻⁻³⁴ j.s; the 
mass of a nucleon = 1.67.10⁻²⁷ kg 

a) Calculate the wavelength of the wave associated with the α-
particles. 

ANSWER 

The interfringe i in an interference experiment is related to the wavelength λ 

  

and, in our case 

   

 

  h
2m .q.V

p
h

2m p.q p.V
  h

2m .q.V

p


 m .q

m p.qp

m 
m p

 4m p
m p

 4 ;
q
qp

 2
1
 2 ; p


 8 2.843

i  D
a so that   ia

D

 
5.104 0.001

4
 3. 6954 107m
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b) Deduce the speed of the α-particles. 

ANSWER 

Taking into account the de Broglie relation, we have 

   

 We deduce that   

 

T-III-2. The photoelectric effect 

1) When ultraviolet radiation with a wavelength of 58.4 nm emitted 
by a helium lamp is sent to a vapor of xenon atoms in their ground 
state, it can eject an electron from each of these atoms with a speed 
of 1.79×10⁶ m/s. 

Calculate the ionization energy of xenon in eV. 

Data: h = 6.6×10⁻⁻³⁴ J.s; c = 3×10⁸ m.s⁻⁻¹; e = 1.610⁻⁻¹⁹ C; m = 9.1×10⁻⁻³¹ 
kg 

ANSWER 

Let us write out the relation for the photoelectric effect 

 

The ionization energy corresponds to the extraction work W° and we can 
deduce that 

 

The kinetic energy is 

 

 

p  h
 with v 

p
m so that v  h

m

v  6.61034

41.671027 3. 695 4107
 0.267m/s

h  W° Ek

W°  h Ek

Ek
1
2

mv2
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then 

 

Besides 

 

then 

   

that is 

 

or, in eV 

  

W°  h  1
2

mv2

h  hc


W°  hc
  1

2
mv2 in Joule or W°  hc

e 
1
2e mv2 in e.V.

W°  6.610343108

58.4109
 1

2
9.1 10311.79 106 

2  1. 9325 1018 Joule

W°  1. 932 51018

1.61019
 12. 078 e.V.
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CHAPTER IV 

EVIDENCE OF THE QUANTIZATION OF  
ENERGY IN THE HYDROGEN ATOM 

 
 
 
What does the term quantization mean? It is used to describe something that 
is not continuous. Most life events follow the principle of continuity. 
Continuity in time refers to the consideration of something that undergoes 
transformations at different moments according to a process of continuous 
evolution. We consider continuity in energy in terms of objects moving in 
our environment, such as pedestrians, cyclists, airplanes, and automobiles, 
etc., and their kinetic energy can take all values. As such, we say that their 
kinetic energy is continuous. 

Now we consider a world in which quantized behavior is the norm. The 
transformation undergone by any object will have a discrete character. The 
speed of a car, for example, cannot possibly take all values: it would not be 
allowed to be non-mobile if the driver wished to increase his speed, going 
from 80 to 120 miles per hour say, without any intermediate speeds. Such a 
situation would be very strange indeed. However, all phenomena at the 
microscopic scale display this behavior, especially atoms and molecules. 
Their energy, whatever its form, is characterized by quantization. This is the 
subject of this chapter—we show how the quantization of energy works. 

Many experiments have been done to highlight the quantization of energy 
in the atom. As such, we describe here the Franck-Hertz experiment and the 
atomic spectra of hydrogen and hydrogenic atoms. 
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IV-I. The Franck-Hertz Experiment 

The Franck1-Hertz2 experiment was 
first carried out in 1914 by James 
Franck and Gustav Hertz. 

Their aim was to prove the quantization 
of the energy of electrons in atoms, 
making it one of the fundamental 
experiments of quantum physics. 

 

J. Franck 

 

G. Hertz 

1. Experimental device 

 

Figure IV-1: Franck-Hertz  
device schematic.  

A is a micro-ammeter detecting the 
passage of a current i. 

F is a heating filament that 
generates an electron gas by 
the effect thanks to a battery of 
accumulators. 

G is a grid and between it and 
F one can establish a variable 
V potential difference 
(rheostat) to accelerate the 
electrons emitted by F. 

P is a receiving plate for 
electrons that have passed 
through G. 

ε is a small difference in 
potential to avoid low kinetic 
energy electrons reaching P. 

 

                                                      
1 James Franck (1882-1964). German physicist known for his discovery of the laws 
governing the collision of an electron and an atom in collaboration with Gustav 
Hertz. Winner of the Nobel Prize in Physics in 1925. 
2 Gustav Ludwig Hertz. (1887-1975). German physicist known for his discovery of 
the laws governing the collision of an electron and an atom in collaboration with 
James Franck. Winner of the Nobel Prize in Physics 1925. 
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2. How the experimental device works in the absence of gas 

First, we empty the light bulb. Electrons accelerated by the potential 
difference V between F and G possess kinetic energy Ek of eV value3 

 

These electrons pass through grid G and reach plate P. This has the effect 
of establishing a connection between grid G and plate P. We then observe 
the passage of the current i through the plate circuit. Its evolution can be 
plotted against the potential difference V. In Fig. IV-2, we present the 
behaviors of the current intensity in the absence of gas inside the bulb. 

 

Figure IV-2: in the absence of gas. 
 

Figure IV-3: in the presence of gas. 

3. How the experimental device works in the presence of gas 

A monoatomic gas (e.g. helium or neon) is introduced into the bulb and the 
experiment is repeated. Fig. IV-3 shows a discontinuous variation in the 
intensity of the current i depending on the difference in potential V. When 
the potential reaches a VR₁ value, the resonance potential, the intensity i 
drops and the bulb emits monochromatic frequency light. 

                                                      
3 Indeed, at point F the total energy is EF = EKF + EPF and the kinetic energy in F is 
EKF = 0, whereas the potential energy in F is at its maximum and equal to EPF = eV. 
At point G the total energy is EG = EKG + EPG, the kinetic energy is at its maximum, 
and the potential energy is EPG = 0. Since there is conservation of the total energy, 
we have EF = EG so that EKF + EP F = EKG + EPG and we deduce that EKG = eV. 

EkG  eV
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If V is higher than VR₁, the intensity i again grows to reach a maximum at 
VR2₁. The gas then emits ν frequency light, but with twice the intensity, and 
so on. 

If the potential difference is initially zero, then VR2 = 2VR₁ and VR₃ = 3VR₁. 
We also note that the energy of the emitted monochromatic light is h��with 

 

4. Interpretation of the Franck-Hertz experiment 

Interpretation of the Franck-Hertz experiment is based on the notions of 
“elastic” and “inelastic collisions”. 

a. Elastic collisions 

As long as the potential difference V remains below the value VR₁, the 
electrons emitted by the resistance F collide with the gas atoms without 
losing their kinetic energy. These are elastic collisions. The electrons 
continue their run and eventually reach the plate P and cause the current i to 
pass. The stronger the kinetic energy of the electrons, the greater the 
potential difference V, the higher the rate of passage of the electrons, and 
thus the higher the intensity i. The intensity of the current will therefore 
increase according to V. 

b. Inelastic collisions 

When the potential difference V reaches the value VR₁, an electron hitting 
an atom can transmit its kinetic energy to it. It is then said that the collision 
is inelastic. 

First inelastic collision 

During this first inelastic collision, the electron transfers all of its kinetic 
energy. The gas then emits monochromatic ν frequency light. We therefore 
see the transformation of kinetic energy into light energy. After this 
collision, the electrons see their kinetic energy drop, and the i current plate 
also drops since the electrons no longer have enough energy to overcome 
the small stopping potential ε. 

  

h  eVR1 ; h  eVR2  VR1  ;h  eVR3  VR2 
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Second inelastic collision 

Between VR₁ and VR₂, the same process starts again, the remaining kinetic 
energy is then e(V-VR₁) and is sufficient to allow the electron to overcome 
the difference in potential and increase the intensity of the current i. 

If V = VR₁, the kinetic energy available to an electron is e(VR₂-VR₁). If the 
latter then meets an atom, it will transmit that energy to it and the atom will 
return a photon of energy hν. 

When V = VR₃, the kinetic energy available to an electron is e(VR₃-VR₃ ) and 
if the latter then meets an atom, it will transmit that energy to it and the atom 
will restore a photon of energy hν and so on. 

To schematize this, consider the case where the potential difference V is 
equal to 3 VR₁. Fig. IV-4 gives the example of three successive collisions 
with gas atoms in the space separating the filament from the grid. 

 

Figure IV-4: Successive  
inelastic shocks. 

Figure IV-5: Process during  
an inelastic shock. 

We note that, for different atoms within a gas, the amount of energy 
transmitted is always the same. It is therefore a characteristic of the nature 
of the atoms of this gas. The fact that the gas emits light during these 
collisions shows that it has restored the kinetic energy transmitted by the 
electron. As we shall see later with Bohr’s theoretical model, the 
interpretation is that before the collision, the atom is in a fundamental state 
of energy Ef and after the collision it passes to a higher state of energy E*, 
which is called the first excited state. This process is called the transition of 
absorption. As only the fundamental state is stable, the atom immediately 
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returns4 from its first excited state to the fundamental state by restoring 
energy in the form of light energy, i.e. photons5. We can describe this as a 
transition of emission. These processes are illustrated in Fig. IV-5. 

The amount of energy hν represents the difference between the energy states 
Ef and E*. Ef represents the fundamental state and E* the first excited state. 
The existence of energy levels in the atom shows that energy is quantized. 

IV-II. The Emission Spectrum of Atomic Hydrogen 

The Franck-Hertz experiment has shown that both a fundamental energy 
level and an excited energy level exist. There are also other quantized 
energy levels in an atom and other experiments have made it possible to 
better clarify this notion of quantized energy. These have been developed 
through the study of the emission and absorption spectra of the hydrogen 
atom and its analogues, described as hydrogen-like6. 

1. Obtaining an emission spectrum 

A spectrum results from the dispersion of light by an experimental device 
(prism or network). Fig. IV-6 shows us the dispersion of sunlight through a 
prism. The device is called a spectroscope. 

 

Figure IV-6: Decomposition of white light through a prism. 

                                                      
4 The lifetime of an excited state is about 10 ns. 
5 In reality, when the glow discharge regime is established, the mercury vapor 
appears blue. Strictly speaking, the blue light that we observe does not correspond 
to the return of the mercury atoms to the ground state. The photon corresponding to 
the transition from the 1st excited state to the ground state has an energy of 4.9 eV 
and therefore a wavelength of 253 nm (UV). The observed blue light, with a 
wavelength of 436 nm, corresponds to the transition between the 5th and the 1st 
excited states. 
6 Hydrogene-like: monoelectronic ions, the nuclei of which contain different 
numbers of protons. 
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 The set of lights, i.e. 
frequencies, 
constituting the figure 
obtained on the screen is 
the white light 
spectrum. 

Now, let us replace the 
light of the Sun with 
light from a hydrogen 
bulb, 

Figure IV-7. Obtaining the spectrum  
of atomic hydrogen. 

as shown in Fig. IV-7. Having passed through the prism, the beam is sent 
to a recording device (photographic plate). 

In Fig. IV-8, we have obtained a spectrum of lines appearing in the form of 
several series in the different fields of light. 

 

Figure IV-8: Emission spectrum of atomic hydrogen. 

These lines are situated in all the domains of light and the series are 
identified as follows: 

The ultraviolet domain, i.e. the Lyman series. 

The visible domain, i.e. the Balmer series.  

The infrared domain, i.e. Paschen and Brackett series. There are also 
further series, located in the infrared domain. 
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2. Obtaining an empirical formula 

Around 1880, Balmer7 studied the part of the spectrum located in the visible 
domain because, at this time, the photographic technique was limited to this 
domain. 

 

J. Balmer 

 

A. Angström 

 

J. von Fraunhofer 

Previously, the Swedish physicist Angström8 had precisely identified the 
first four lines of hydrogen in the Fraunhofer9 lines of the solar spectrum. 
His results are presented in Table IV-1 and Fig. IV-9. 

Table IV-1: Fraunhofer rays 

 

 

 

Figure IV-9: The rays  
of the Balmer series. 

                                                      
7 Johann Balmer (1825-1898). Swiss mathematician and physicist. Author of the 
famous Balmer formula. 
8 Anders Angström. (1814-1874). Swedish astronomer. 
9 Joseph von Fraunhofer (1787-1826). German optician and physicist. Inventor of 
the spectroscope. 
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To account for the position of the lines, Balmer established the following 
relationship from his experimental data 

 

where λ is the wavelength of a line of the spectrum; λ° is a constant; and n 
is an integer equal to or greater than 3 corresponding to the line. This 
expression may be easily transformed into 

 

where Cst = 4/λ°; n is an integer equal to or greater than 3; and �̅ is the 
wavenumber and the inverse of the wavelength λ. In Fig. IV-9, we can 
identify each line of this spectrum by number. The wavenumber of the four 
first rays will be 

 

As ni increases, the lines get closer together, eventually creating a 
continuum the end of which is called the limit line and corresponds to the 
wavenumber νLim 

 

Using the wavelengths of the first lines of atomic hydrogen measured by 
Angström, Balmer was able to determine the Cst constant 

   

When applied to the other rays, we find 

 

 

 

We find practically the same value for each of the lines observed. 

  ° n24
n2

1


   Cst 1
4
 1

n2

1  Cst 1
4
 1

32
;2  Cst 1

4
 1

42
;3  Cst 1

4
 1

52
;4  Cst 1

4
 1

62

Lim  Cst 1
4
 1

2

Fromray N°1: Cst  36
5

1
6532.101010

 1. 1022  107m1

Fromray N°2: Cst  16
3

1
4860.741010

 1. 0972  107m1

Fromray N°3: Cst  100
21

1
4340.101010

 1. 0972  107m1

Fromray N°4: Cst  9
2

1
4101.201010

 1. 0972  107m1
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Even more precise measurements show that this 
constant is equal to 1.0973731534×10⁷ m⁻¹, which is 
called the Rydberg10 constant for hydrogen, so that 

 

Balmer proposed the following formula to predict 
the position of the lines of the visible emissions 
along the wavenumber scale. Here, n is an integer 
that can take the values 3, 4, ... up to infinity,; each 
value of n corresponds to a wavenumber 

 

J. Rydberg 

 

3. Generalization to other series 

With progress in observation techniques, especially 
the photographic technique, it was quickly established 
that there were series of lines in the different areas of 
the light spectrum, such as the series in the ultraviolet 
domain, called the Lyman11 series. The position of the 
lines12 in this series, as with the Balmer series, can be 
predicted by a similar empirical law 

 

  

T. Lyman 

   

                                                      
10 Johannes Rydberg (1854-1919) Swedish physicist known for his work in 
spectroscopy. 
11 Theodore Lyman (1874-1954). Known for his work on the atomic spectra of 
hydrogen. A series of rays bears his name. 
12 The first line of the Lyman series ultraviolet (UV) spectrum was discovered in 
1906 by a Harvard physicist, Theodore Lyman, who studied the UV spectrum by 
electrifying hydrogen molecules. The rest of the spectrum lines were discovered by 
this same researcher between 1906 and 1914. 

RH  1,0973731534  107m1

 em
Balmer  RH

1
4
 1

n2
with ni  2

 em
Lyman  RH 1  1

n2
with n  1
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In the infrared domain, we find other series whose positions along the scale 
of the wavenumbers obey identical laws; these are the Paschen13, Brackett14, 
and Pfund15 series. 

 

F. Brackett 

 

F. Paschen 

 

A. Pfund 

In Table IV-2, we 
summarize the 
formulas used to 
reproduce each of 
these series. 

This is the Balmer 
formula in which nf 
refers to the series and 
ni gives the number of 
the ray in the series. 

Table IV-2: Other series for atomic hydrogen 

 

In Table IV-3, we have classified the different lines of the emission 
spectrum of atomic hydrogen corresponding to the first three series, while 
Fig. IV-10 presents the corresponding theoretical lines. 

 

 

 

                                                      
13 Friedrich Paschen. (1865-1947) German physicist known for his work on electric 
discharges in gases 
14 Frederick Brackett (1896-1988). American physicist and astronomer known for 
his work on the infrared radiation of the sun. 
15 August Pfund (1879-1949). American physicist known for his work in 
spectroscopy. 
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Table IV-3: Theoretical generation of atomic hydrogen spectrum rays 
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Figure IV-10: Emission spectrum of atomic hydrogen. 

4. Intuitive interpretation of Balmer’s formula 

Consider below Balmer’s formula for emission 

  

where ni and nf are integers. We multiply on both sides by the quantity hc 

 

and write the following formula as well 

 

Given what we know about light, the quantity hcνem represents the light 
energy emitted by the hydrogen atom, i.e. the energy of a photon, where h 
is the Planck constant and c is the velocity of light in a vacuum. We can see 
that this energy results from a difference between two energy terms hcRH/nf² 
and hcRH/ni². Let the absolute values of |E(nf)| and |E(ni)| be 

 (IV-1) 

We can then write that the energy of the emitted photon is 

 

 em  RH
1

n f
2
 1

n i
2

with ni  nf

hc em  hcRH
1

n f
2
 1

n i
2

with ni  nf

hc em  hcRH

nf
2

 hcRH

ni
2

with ni  nf

|Enf| 
hcRH

nf
2

and |Eni| 
hcRH

ni
2

|hc em |  |Enf|  |Eni|
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Now, let us use the thermodynamic convention that the energy emitted by a 
system has a negative sign 

 

or 

 

so that 

 

Given Eq. (IV-1), we thus have 

 

Here, we have quantized energy. As we shall show with the study of models 
of the hydrogen atom, these quantities are none other than quantized energy 
levels, characterized by an integer. 

In this context we see, as shown in Fig. 
IV-11, that the emission of a photon by 
the atom results from its journey from 
an energy level characterized by the 
integer number ni to the energy level 
characterized by the integer nf. We can 
thus speak of energy transition and can 
schematize the process of emission of 
a photon by a change in the potential 
energy of the atom. Here, we 
understand the notation i for initial and 
f for final. Therefore, by deduction, the 
general expression of an energy level 
in the hydrogen atom is 

 

Figure IV-11: Electronic 
transition. 

   (IV-2) 

where n is the quantum number. 

Enf  Eni  hc em

Enf  Eni  hc em

Enf  Eni  hc em

Enf   hcRH

nf
2

and Eni   hcRH

ni
2

En  En   hcRH

n2
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We have just seen how a simple empirical analysis allows us to realize that 
the energy of the electron in the hydrogen atom is quantized. The lines 
observed in the emission spectrum of atomic hydrogen are therefore the 
result of transitions from an initial level characterized by an initial quantum 
number ni to a final energy level characterized by the quantum number nf . 
If we evaluate the term hcRH, we obtain 

 

or, in eV 

 

We can draw a 
diagram of the energy 
levels of the hydrogen 
atom and show the 
transitions between 
those levels, which 
generate the rays of 
the atomic hydrogen 
emission spectrum  

The emission process 
can also be visualized 
by drawing a diagram 
of the energy levels 

 

Figure IV-12: The transitions of the atomic  
hydrogen emission spectrum. 

of the atomic and energy transitions of the first three series hydrogen 
emission spectrum (Fig.IV-12). 

hcRH  6.626  1034  2.998  108  1.097  107  2. 179  1018J

En   13. 606
n2

e.V
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IV-III. The Absorption Spectrum Of Atomic Hydrogen 

1. The absorption spectrum 

For us to obtain an absorption spectrum, we must first pass white light 
through a sample. The sample will absorb some of the radiation and return 
a spectrum such as that shown in Fig. IV-13. 

 

Figure IV-13: Absorption spectrum of atomic hydrogen. 

The absorption spectrum represents the opposite phenomenon to the 
emission spectrum as transitions now take place from lower to higher levels. 
However, the Balmer and Paschen series do not appear at room temperature, 
which is why they are shown with dotted lines. 

2. Particularity of the absorption spectrum 

At room temperature (i.e. the lowest 
energy level of the electron), only the 
Lyman series appears, but if we raise 
the temperature considerably we can 
see the other series appear. The 
absorption spectrum is superimposed 
on the emission spectrum in terms of 
the position of the rays. To calculate 
the position of these lines we use an 
identical relationship, looking at 
where the integer numbers ni and nf 
are swapped since the transitions go 
from the lowest quantum number to 
the higher quantum numbers. 

 

Figure IV-14: The transitions in the 
absorption spectra of the hydrogen 

atom. 
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In the case of the absorption spectrum, ni defines the series, which is the 
starting point of the radiation, while nf, being the point of arrival of the 
transitions, defines the ray number (Fig. IV-14). 

One may ask why only the Lyman series appears in the spectrum at room 
temperature. It should be noted that in order for radiation to be observed 
clearly, it is necessary, among other conditions, that the number of 
transitioning atoms is quite high. As such, the fewer atoms at a given 
transition, the less visible the ray will be. There is thus a proportionality 
between the number of atoms where a transition occurs and the light 
intensity of the absorption ray. 

3. The Boltzmann distribution law 

In a set of hydrogen atoms, we see particular distributions between different 
energy levels. The most “populated” level is the fundamental state n = 1, 
which is that of almost all atoms. However, the higher levels may only have 
a small number of atoms and these numbers are reduced even further as the 
energy level rises. Fig. IV-15 represents this situation. 

 

Figure IV-15: Illustration of the Boltzmann law. 

 

 abs  RH
1

ni
2
 1

nf
2

with nf  ni
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L. Boltzmann 

Furthermore, the ratio of the number of N₂ atoms in a 
given E₂ level to N₁ of an E₁ state is given by the 
Boltzmann16 distribution 

 

where kB is the Boltzmann constant (kB = 
1.3806568×10⁻²³ J.K⁻¹) and T is the absolute 
temperature (in Kelvin). 

Thus, since there is a proportionality between the number of atoms and the 
intensity of a ray having its starting point on the level considered, for cases 
where one compares the intensities of the lines of the Balmer series (IB) and 
those of the Lyman series (IL), we can write 

 

where N represents the number of atoms having the fundamental energy 
level (n = 1) and N₂ stands for the number of atoms having the energy of 
the 1st excited state (n = 2). Given Eq. (IV-2) and knowing that 

 

we can write 

 

We may wonder what temperature would be sufficient to observe the 
Balmer series in an absorption spectrum with an intensity of 1/10 of that of 
the Lyman series 

 

                                                      
16 Ludwig Boltzmann (1844-1906). Austrian physicist known for his foundational 
works of statistical physics and as a fervent defender of the existence of atoms. 

N2

N1
 exp  |E2E1 |

k BT

IB
IL

 N2

N1
 exp  |E2E1 |

k BT

E1   hcRH

12
and E2   hcRH

22

IB
IL

 exp  3
4

hcRH

k BT

1
10

 exp  3
4

hcRH

k BT
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or 

 

and then 

 

which leads to 

 

This temperature would be difficult to obtain on earth outside certain 
experimental situations (i.e. atomic and thermonuclear explosions). 

IV-IV. Generalization to Hydrogenic Atoms 

Hydrogenic refers to something that “looks like hydrogen”. 

The Balmer formula (emission or absorption) can be extended to hydrogenic 
atoms. A hydrogenic atom is a single-electronic system and hydrogen itself 
is thus a hydrogenic atom because it has only one electron. We also have all 
the ions formed from the atoms that have only one electron around a 
nucleus, as with He⁺, Li²⁺, Be³⁺, B⁴⁺.....Na¹⁰⁺. 

All these entities behave like hydrogen and are therefore subject to the same 
laws. Thus, the spectra of these entities resemble the absorption and 
emission spectra of atomic hydrogen. The difference with hydrogen comes 
from the number of protons present in the nucleus. Thus, Balmer’s formula 
has to be changed so that we have, respectively, for emission and absorption 

 

 

where Z is the atomic number of the hydrogenic atom. 

Ln 1
10
   3

4
hcRH

k BT

T  3
4

hcRH

k BLn10

T  3
4
 6.62610342.9981081.097107

1.3811023ln10
 51427 K

 em  RHZ2 1

n f
2
 1

n i
2

with ni  nf

 abs  RHZ2 1

ni
2
 1

nf
2

with nf  ni
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In conclusion, we can say that experimentation has shown that the energy of 
atoms can be quantized roughly, as in the Franck-Hertz experiment, or more 
precisely through the study of the atomic spectra of hydrogenic atoms. 
Discovering the facts involves understanding their underlying reasons, which 
is what we propose to investigate in the chapters that follow. 

IV-V. Tutorial for Chapter IV 

T-IV-1. The Franck-Hertz experiment 

1) Briefly describe this experiment. What does it highlight? 

ANSWER 

In this experiment, electrons accelerated by a potential difference collide 
with the atoms of a gas. There are two kinds of collision: inelastic collisions 
with no effect on the kinetic energy of the electrons and elastic collisions in 
which the kinetic energy of the electrons is transmitted to the atoms of the 
gas. Simultaneously, the gas emits monochromatic light, the energy of 
which is equal to the energy difference between the ground state and the 1st 
excited state of the atom. This experiment therefore highlights the existence 
of energy levels in the atom and the quantization of energy in the atom. 

2) We carry out this experiment on the vapor of a metal 
(monoatomic). It is observed that when the accelerating potential 
difference reaches the value V₁₁ = 2 volts, the gas emits light. The 
potential difference of V = 6 volts is then applied and the light is 
analyzed using a dispersive device. We then obtain the spectrum of 
this light. Represent this spectrum on a scale graduated in 
wavenumbers ν. Data: e = 1.610⁻⁻¹⁹ C, h = 6.6.10⁻⁻³⁴ j.s., c = 3.10⁸ ms⁻⁻¹ 

ANSWER 

According to Franck and Hertz, there is a relationship between the kinetic 
energy lost by an electron and the emission of light, i.e. 

 

where Vn is the potential applied to the incident electron. We have 
successive inelastic collisions between the incident electron and an atom of 
the gas in the Franck-Hertz bulb, i.e. 

eVn  Vn1  hc
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With the initial potential being zero, we have 

 

We can deduce the wavenumber that is emitted in the first inelastic 
collision, i.e. 

 

or 

 

During the second inelastic collision, because the same quantity of kinetic 
energy is transmitted to another atom of the gas, we must have the following 
value for V₂ 

 

and 

 

However, since 

 

we have 

 

For the third inelastic collision, we have 

 

where V₃ has the value 6 V, so that 

eV1  V0  hc ; eV2  V1  hc ; eV3  V2  hc

eV1 hc

 hc
eV1

 1.610192
6.610343108

 1. 6161 106m1

eV2  V1  hc ; eV2  eV1  hc ; eV2 hceV1

V2
hc  eV1

e

hc eV1

V2
2eV1

e  2V1 and V2 2 2  4V

eV3  V2  hc
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The wavenumber of the emitted light 
remains the same and the spectrum 
of the light in this experiment will 
have a unique line. 

 

Figure T-IV-1: Unique line for the 
Franck-Hertz experiment. 

 
c) Using an electron gun, electrons are 
sent towards a speed filter consisting of 
two capacitor plates parallel to each 
other and separated by a distance d = 2 
cm. 

 

 Figure T-IV-2: speed filter. 

A potential difference of V = 600 volts is applied between these plates 
and perpendicular to the electric field thus created a magnetic 
induction B = 0.05 Tesla is applied. Electrons passing through the filter 
without being deflected pass through hole O. 

Data: e = 1.6×10⁻⁻¹⁹ C, h = 6.6×10⁻³⁴ j.s., c = 3.10⁸ ms⁻¹, m = 9.1×10⁻³¹ kg 

1) What is the condition for the electrons to pass through the filter 
without being deflected? 

ANSWER 

Between the capacitor plates, an electron with velocity ������⃗  is subject to the 
action of two opposite forces: an electrostatic force ���

����⃗  created by the 
electrostatic field and an electromagnetic force ���

�������⃗  created by the magnetic 
induction !��⃗ . 

If the modulus of these forces is equal, the result of their action on the 
electron is zero and it crosses the speed filter without being deflected 

 

and we have 

 

e6  4 hc and 2e  hc eV1

felfem  where fel qE and fem  qvB

qE  qv0B so that v0
E
B
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as the required condition for the electron to cross the speed filter 
without being deflected. 

Let us calculate this velocity. For the intensity of the electrostatic field we 
have 

 

so the velocity is 

 

3) Those electrons that pass through the filter without being deflected 
emerge through hole O into a Franck-Hertz bulb filled with a 
monoatomic gas. When the first resonance potential VR₁₁ is reached, the 
gas emits monochromatic radiation of wavelength λ = 4125×10⁻¹⁰ m. 
Calculate the value of the first resonance potential under these 
conditions. 

ANSWER 

The energy received by the atom is equal to the gap ΔE between its ground 
state and the 1st excited state. This energy gap ΔE is 

 

In the Franck-Hertz experiment, the electron has an initial kinetic energy E°k, 
but this energy is not sufficient to allow the electron to experience an inelastic 
collision. Such an inelastic collision may be obtained if we give additional 
energy to the electron by the use of a resonance potential VR₁, such as 

 

The initial kinetic energy E°k is 

 

thus, we have 

E  V
d
 600

2102
 3 104volt m1

v0
E
B  3104

0.05
 6.0 105m s1

E  hc
 i.e. E  6.610343108

41251010
 4. 8 1019 j

E  E°keVR1

E°k
1
2

mv0
2 1

2
9.1 10316.0  105 

2
 1. 638 1019J
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and 

 

4) What would the value of the second resonance potential be? 

ANSWER 

As the electron undergoes a second inelastic collision, its kinetic energy 
again reaches the value ΔE. The second resonance potential must therefore 
correspond to the kinetic energy necessary to cause 2 successive inelastic 
collisions, i.e. eVR₁+ ΔE 

 

and 

 

T-IV-2. Atomic spectra 

1) Using a dispersive device, we can analyze the light coming from a 
star; we highlight a line located in the ultraviolet domain and 
corresponding to a wavelength of 2225×10⁻⁻¹⁰ m. Does this line belong 
to the emission spectrum of atomic hydrogen? If this is the case, say 
which transition it corresponds to; if not explain why. Data: RH = 
1.1×10⁷ m⁻⁻¹ 

ANSWER 

This is an emission spectrum. If the line belongs to atomic hydrogen, then 
it obeys Balmer’s relation for emissions 

 

VR1
EE°k

e

VR1
4. 810191. 6381019

1.61019
 1.976 volt

eVR2 eVR1E so that VR2 VR1
E
e

VR2 1.976 4. 81019

1.61019
 4. 976 volt

  RH
1
nf

2
 1

ni
2
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If the line is in the ultraviolet domain, then it belongs to the Lyman series. 
If it belongs to the Lyman series, then it corresponds to one of the transitions 
from the upper levels to the level n = 1. As such, we have 

 

then 

 

or, otherwise 

 

so that 

  

which gives the result 

 

The quantum number corresponding to the initial level of the transition must 
be an integer. Consequently, we can say that the transition does not obey 
the Balmer relation and the line does not belong to the emission spectrum 
of atomic hydrogen. 

2) We give the part of the 
emission spectrum of atomic 
hydrogen corresponding to 
the Balmer series.  
 
Exclusively using the 
spectrum data, evaluate the 
Rydberg constant. 

 

Figure T-IV-3: The Balmer series. 

  RH
1
12

 1
ni

2


RH

 1
12

 1
ni

2

1
ni

2
 1 

RH

1
ni

2
 1 1

2225  1010  1.1  107
 0.59142

ni
1

0.59142
 1.30
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ANSWER 

There are three ways to calculate this constant from the spectrum data.  

1) Consider the line ν₁
=1.528×10⁶ m⁻¹. It corresponds to the first line of the 
Balmer series whose wavenumber is given by the Balmer relation 

 

so that 

 

2) Consider the line ν₂
 =2.062×10⁶ m⁻¹. It corresponds to the second line of 
the Balmer series whose wavenumber is given by the Balmer relation 

 

then 

 

3) Consider the limit line �̅#$%=2.750×10⁶ m⁻¹. It corresponds to the limit 
line of the Balmer series whose wavenumber is given by the Balmer relation 

 

then 

 

The three ways give, of course, the same result for the Rydberg constant. 

 

 1 RH
1
22

 1
32

 RH
9  4

36
 RH

5
36

RH
36  1.528

5
106 1. 1002 107m1

 2 RH
1
22

 1
42

 RH
4  1

16
 RH

3
16

RH
16  2.062  106

3
 1. 0997 107m1

 lim RH
1
22

 1
2

 RH
1
4

RH 4 2.750 106 1. 1000 107m1
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3) At what temperature would atomic hydrogen have to be for the 
Balmer series to appear with an intensity of 1/10 that of the Lyman 
series in the absorption spectrum of atomic hydrogen. 

Data: h = 6.6×10⁻⁻³⁴ j.s.; kB = 1.38×10⁻⁻²³ j.K⁻⁻¹; RH = 1.1×10⁷ m⁻⁻¹ 

ANSWER 

There is a proportionality between the number of hydrogen atoms having 
energy level n and the intensity of the transitions resulting from this level. 
In other words 

 (T-IV-1) 

The ratio of the numbers of atoms having energies E₂ and E₁ is given by the 
Boltzmann distribution law 

 

where kB is the Boltzmann constant. On the other hand, the energy of one 
level of the hydrogen atom is given by 

 

and we can deduce that 

 

so that 

 

We take the natural logarithm of this expression 

 

N2

N1
 IBalmer

ILyman

N2

N1
exp  |E2  E1 |

kBT

En   hcRH

n2

|E2E1 | hcRH
1
12

 1
22

3
4

hcRH

N2

N1
 exp  3hcRH

4kBT

Ln N2

N1
  3hcRH

4kBT
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Given Eq. (T-IV-1), this expression may be written in the form 

 

so that 

 

and 

 

4) We give the energy levels (in 
eV) of the hydrogen atom. Based 
only on the data provided below, 
determine the wavelength of the 
radiation corresponding to the 
third line of the Lyman series. 

Data: e = 1.610⁻⁻¹⁹ C; h = 6.6× 
10⁻⁻³⁴ j.s.; c = 3×10⁸ J.ms⁻⁻¹ 

 

Figure T-IV-4: Energy levels. 

ANSWER 

This is the transition: ni = 4 → nf = 1. 

Thus, we have 

 

since 

 

for the wavelength, we have 

 

Figure T-IV-5: Emission 
transition 

Ln IBalmer

ILyman  3hcRH
4kBT

Ln 1
10

 3hcRH
4kBT that gives T 

3hcRH
4kBLn10

T 3  6.6  1034  3  108  1.1  107

4  1.38  1023  ln10
 51407K

E |E4  E1 | 13.6 0.85  12. 75 e.V.

E hc

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5) Here are the 
spectra of two 
hydronenoids, one 
of which is 
hydrogen. They 
correspond to the 
same series. 

a) Identify the 
spectrum 
concerning 
hydrogen. 

 

Figure T-IV-6: Two hydrogenic atom spectra. 

ANSWER 

The spectrum relating to hydrogen is the one presenting the weakest value 
of the limit line wavenumber. Indeed, the wavenumbers of a hydrogenic 
atom are multiples of those of hydrogen by the factor Z² (the squared atomic 
number). As such, spectrum A is the one for hydrogen. 

b) Using only the data provided, determine the atomic number of the 
other hydrogenic atom. 

ANSWER 

Consider the limit lines �̅#$%& and �̅#$%' . For each of them we can write the 
spectra out as if they are emission spectra 

 

The ratio of the limit lines wavenumbers therefore gives 

 

Since nf and RH are the same in both cases, we can deduce 

  hc
E  6.6  1034  3  108

12. 75  1.6  1019
 97.06  109m

 Lim A  RH
1
nf

2
 1
2

 RH
1

n f
2

and  Lim B RHZ2 1
nf

2
 1
2

 RH
Z2

nf
2

 Lim B

 Lim A
 Z2
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This is the lithium hydrogenic atom Li²⁺. 

6) Ground state hydrogen atoms are excited by UV radiation with a 
wavelength of 97 nm. 

a) What is the principal quantum number nf of the state thus 
obtained? 

ANSWER 

This is an absorption spectrum. Hydrogen is in its ground state and so we 
use the formula 

 

so that 

 

then 

 

and 

 

Taking the rounding errors into account, we can deduce that the quantum 
number is nf = 4 and that absorption takes place. 

b) Calculate the wavelengths of the different radiations that these 
atoms can emit when they are de-excited. 

 

Z22.475  107

2.75  106
 9 then Z  3

  RH
1
ni

2
 1

nf
2

i.e.   RH
1
12

 1
nf

2

1
nf

2
 1 

RH
or 1

nf
2
 1 1

RH

1
nf

2
 1 1

1.1  107  97.109
 6. 2793 102

nf
1

6. 2793  102
 3.99
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ANSWER 

Emission transitions are made 
from level nf = 4 to lower levels 
and in turn these levels are de-
energized according to the 
scheme. 

We then calculate the 
corresponding transitions using 
the Balmer formula for the 
emission 

 

Figure T-IV-7: Emission  
transitions from n = 4. 

 

 

 

 

 

 

c) How much energy is needed to ionize this hydrogen atom in eV? 
 
Data: R_{H} = 1.1×10⁷ m⁻⁻¹; h = 6.6×10⁻⁻³⁴ j.s; c = 3×10⁸ m.s⁻⁻¹; e = 
1.6×10⁻⁻¹⁹ C 

ANSWER 

This is the transition corresponding to the passage from level n = 1 to level 
n = ∞ 

 41 1.1 107 1
12

 1
42

 1. 0313 107 m
-1

i.e. 41  1
1. 0313  107

 95.9nm

 42 1.1 107 1
22

 1
42

 2. 0625 106m
-1

i.e. 42
1

2. 0625  106
 48.48nm

 43 1.1 107 1
32

 1
42

 5. 3472 105m
-1

i.e. 43
1

5. 3472  105
 187.nm

 31 1.1 107 1
12

 1
32

 9. 7778 106m
-1

i.e. 31
1

9. 7778  106
 102.27nm

 32  1.1  107 1
22

 1
32

 1. 5278  106m
-1

i.e. 32  1
1. 527 8106

 65.54nm

 21  1.1  107 1
12

 1
22

 8. 25  106m
-1

i.e. 32  1
8. 25106

 121.21nm

 EBSCOhost - printed on 2/13/2023 7:38 PM via . All use subject to https://www.ebsco.com/terms-of-use



Chapter IV 
 

128 

 

 

 
 

7) In the emission spectrum of atomic hydrogen, we observe a series 
of lines of decreasing wavelengths: 656.46 nm, 486.27 nm, 434.17 nm, 
and 410.29 nm. 

a) Give the wavelength of the line following this series. 

ANSWER 

Let us transform the wavelengths into wavenumbers 

 

 

 

 

subtracting �̅* from �̅+, we get 

 

This gap corresponds to 

 

then 

hc
ion

 hcRH
1
12

 1
2

Eion 6.6 10343 1081.1 107 2. 178 1018J
Eion 13.6 e.V

 1
1

656.46  109
 1. 5233 106

 2
1

486.27  109
 2. 0565 106

 3
1

434.17  109
 2. 3032 106

 4
1

410.29  109
 2. 4373 106

 2 1 2. 0565 1061. 5233 106 5. 332 105

 2 1 RH
1
nf

2
 1

ni2

2
RH

1
nf

2
 1

ni2

2
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Assuming that the lines of the series are successive 

 

so that 

 

 

which gives 

 

 

and the resolution of this equation gives 

 

We can then identify the 1st line 

 

then 

 

Thus, we deduce 

 2 1 RH
1

ni1

2
 1

ni2

2

ni2

2  ni1

2 1

 2   1

RH
 1

ni1

2
 1
ni1  12

5. 332  105

1.1  107
 1

ni1

2
 1
ni1  12

 4. 8473 102

ni1

2  2ni1  1  ni1

2

ni1

2 ni1  12
 4. 8473 102

2ni1  1

ni1

2 ni1  12
 4. 8473 102

ni 3

 1 1.1 107 1
nf

2
 1

32
 1. 5233 106

1. 5233  106

1.1  107
 1

32
 1

nf
2
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We are therefore in the Balmer series. The next line is 

 

which conforms to the given statement. 

As such, the next line will be 

 

which is given in the statement 2. 3032×10⁶ m⁻¹. 

The next line will be 

 

which is given in the statement 2. 4373×10⁶ m⁻¹. 

We can therefore predict that the next line will have a wavenumber of 

 

i.e. the wavelength 

 

and 

 

 

nf
1

0.24959
 2

 2 1.1 107 1
22

 1
42

 2. 0625 106m1

 3 1.1 107 1
22

 1
52

 2. 31 106m1

 4 1.1 107 1
22

 1
62

 2. 4444 106m1

 5 1.1 107 1
22

 1
72

 2. 5255 106m1

  1
2. 5255  106

 3. 9596 107m

  395.96nm
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b) What is the value of the energy and the wavelength corresponding 
to the limit line of this series? 

Data: RH = 1.1×10⁷ m⁻⁻¹ 

ANSWER 

The limit line of the Balmer series is 

 

 

c) Ground state hydrogen atoms are excited by UV radiation with a 
wavelength of 97nm. 

1) What is the principal quantum number nf of the state thus 
obtained? 

ANSWER 

If the radiation is in the UV domain, then the possible transitions will 
concern the Lyman series (the transitions start from ni = 1). The radiations 
must have their wavenumber given by the Balmer relation 

 

or, if ni = 1 

 

then 

 

since 

 Lim 1.1 107 1
22

 2. 75 106m1

Lim 252.55nm

  RH
1
ni

2
 1

nf
2

  RH
1
12

 1
nf

2


RH

 1 1
nf

2
and 1

nf
2
 1 

RH
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then 

 

The absorption transition reaches the level n = 4. 

d) Calculate the wavelengths of the different radiations that these 
atoms can emit when they become de-excited. 

 
ANSWER 

The different emission 
transitions start from level n = 4. 
There are six: 3 belong to the 
Lyman series; 2 belong to the 
Balmer series; and 1 belongs to 
the Paschen series. 

The wavenumbers are obtained 
using the Balmer relation 

 

For the Lyman series, we have 

 

 

Figure T-IV-8: Emission  
transition from n = 4. 

For the Lyman series, we have 

 

 

  1
 we have 1

nf
2
 1 1

RH

1

n f
2
 1 1

971091.1107
 6. 2793 102 and nf

1
6. 279 3102

 3.99 i.e nf 4

  RH
1

n f
2
 1

n i
2

  RH
1

n f
2
 1

n i
2

 1
L  1.1  107  1  1

22
 8. 25  106m1

 2
L  1.1  107  1  1

32
 9. 7778  106m1
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For the Balmer series, we have 

 

 

For the Paschen series, we have 

 

Now, let us transform these wavenumbers into wavelengths 

 

 

 

 

 

 

3) What is the energy needed to ionize this hydrogen atom in eV? 

Data: RH = 1.1×10⁷ m⁻⁻¹; h = 6.6×10⁻⁻³⁴ j.s; c = 3×10⁸ m.s⁻⁻¹; e = 1.6×10⁻⁻¹⁹ 
C 

ANSWER 

 3
L  1.1  107  1  1

42
 1. 0313  107m1

 1
B  1.1  107  1

4
 1

32
 1. 5278  106m1

 2
B  1.1  107  1

4
 1

42
 2. 0625  106m1

 1
P  1.1  107  1

9
 1

42
 5. 3472  105m1

1
L 1

 1
L  1

8. 25  106
 1. 2121 107m

2
L 1

 2
L  1

9. 7778  106
 1. 0227 107m

3
L 1

 3
L  1

1. 0313  107
 9. 6965 108m

1
B 1

 1
B  1

1. 5278  106
 6. 5454 107m

2
B 1

 2
B  1

2. 0625  106
 4. 8485 107m

1
P 1

 1
P  1

5. 3472  105
 1. 8701 106m
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It is the transition corresponding to the passage from level n = 1 to level n 
= ∞ 

 

 

or, in eV 

 

 

Eion hcRH
1
12

 1
2

Eion 6.6 10343 1081.1 107 2. 178 1018J

Eion 13.6e.V
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CHAPTER V 

THE SEMI-CLASSICAL MODEL  
OF THE HYDROGEN ATOM 

 
 
 
In the preceding chapter, we studied how energy quantization has been 
manifested in its experimental reality. 

In this chapter, we shall examine 
the attempts to explain the 
quantization of energy in the 
atom from theoretical 
considerations based on the 
wave-like nature of the electron. 
As such, we shall look at, 
successively, the semi-classical 
approach of Bohr1 and 
Sommerfeld, and the entirely 
quantum approach of 
Schrödinger2. 

 

N. Bohr 

 

E. Schrödinger 

V-I. Bohr’s Model of Hydrogenic Atoms 

We have already seen in our descriptive study of the classification 
established by D. Mendeleev in 1869 that the elements can be grouped in 
rows and columns in a table according to their chemical properties. 

Once the idea of atoms had been proposed, the common model of the era 
suggested that the atom is composed of electrons immersed in a “soup” of 
positive charge to balance the negative charge of the electrons (the “plum 
pudding” model). These are considered to be dispersed within the atom, but 

                                                      
1 Neils Bohr (1885-1962). Danish physicist known for his work in the construction 
of quantum mechanics. Winner of the Nobel Prize in Physics in 1922. 
2 Erwin Schrödinger (1887-1931). Austrian physicist known for his work in the 
construction of quantum mechanics. Winner of the Nobel Prize in Physics in 1933. 
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with multiple possible structures for their positioning (rotating rings of 
electrons for example). This model was challenged by E. Rutherford in 1909 
using the results of bombardment experiments with gold leaf. These 
experiments showed the existence of a very small positively charged 
nucleus, which led to him proposing an atomic model, called the Rutherford 
model. This model describes the atom as being made up of negative 
electrons orbiting around a dense positive nucleus with circular trajectories, 
just like the planets of the solar system, which orbit in an almost circular 
manner around the Sun. In this model, the electromagnetic force replaces 
the gravitational force as the system’s cohesive force. 

However, Rutherford’s planetary theory was in contradiction with the 
theory of accelerated electron radiation. Indeed, according to experimental 
observations and Maxwell’s laws, an electron subjected to acceleration 
emits energy in the form of an electromagnetic field3. 

Brought back to the level of Rutherford’s atom, the electron should describe 
a concentric spiral, and not a circle, which would result in it crashing into 
the nucleus after a few million revolutions, corresponding to a nanosecond 
of time. The orbits are therefore not stable. 

In 1913, N. Bohr proposed a theory based on Rutherford’s planetary model, 
which was immediately successful because it explained, in a simple way, 
the spectral lines of the hydrogenic atoms, while reconciling the first models 
of the atom and the theory of quanta. This model was generalized to the case 
of relativistic electrons by A. Sommerfeld in order to quantitatively write 
the fine structure of the spectral lines of hydrogen. However, this theory 
could not explain the spectrum of polyelectronic atoms (such as helium), 
nor the nature of chemical bonds, and was finally be replaced by quantum 
mechanics in 1925. 

  

                                                      
3 This is the Larmor formula, devised by J. Larmor in 1897. 
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1. Principles 

Bohr’s model is based 
on several postulates: 

(i) The electron 
revolves around the 
nucleus on a circular 
trajectory, as shown in 
Fig. V-1. 

 

Figure V-1: Representation of  
classical angular momentum. 

Let us consider an electron, negatively charged, revolving around a nucleus 
containing a positively charged proton. 

(ii) Electrostatic force 

The electrostatic force between two charges q₁ and q₂ separated by distance 
r, according to Coulomb’s law, is given by the formula 

 

where ε₀ is the permittivity of the vacuum. 

2. Potential energy 

We can express the force as the derivative of the potential energy V with 
respect to the distance r 

 

so that 

 

After integration, we get 

 

F  1
40

q 1 q2

r2

Fr   dVr
dr

dVr  Frdr or dVr   1
40

q 1q2

r2
dr

Vr  1
40

q 1q2
r  Cst
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where Cst is a constant. Taking as a convention that when r→∞, V(r)→0, 
then Cst = 0 we have 

 

If q₁ = -e is the electron charge and q₂ = +e is that of the proton, we have 

 

3. Kinetic energy 

The kinetic energy of the electron moving with speed v is 

 

where m is the electron mass. Knowing the momentum of the electron, we 
obtain 

 

4. Orbital angular momentum 

The rotational motion of the electron around the nucleus generates an 
angular momentum -��⃗  such as 

 

the sense and direction of which are shown in Figure V-1, where /�⃗  is the 
position of the electron and 0��⃗  is its mass and velocity. If the trajectory is 
perfectly circular, the modulus ‖-��⃗ ‖ is 

 

Vr  1
40

q 1q2
r

Vr   1
40

e2

r

T  1
2

mv 2

p  mv and then T 
p2

2m

L  r  mv

L  rmv  rp
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5. Quantization of the angular momentum 

According to Bohr, among the infinite number of possible circular 
trajectories, only a few have physical significance. These are the ones for 
which the orbital angular momentum modulus is a multiple of the quantity 
h/(2π) = ℏ , i.e. 

 

where n≥1. The consequence of this postulate is that 

 

We can then express p according to r, which allows us to write the kinetic 
energy in the form 

 

4. Total energy 

The total energy is the sum of the kinetic T(r) and potential V(r) energies, 
such as 

 

To simplify, one poses 

 (V-1) 

and the total energy becomes 

 (V-2) 

We need to find the lowest energy for the system, i.e. the value of re for 
which the derivative of the total energy in relation to re cancels out 

L  n h
2

 n

n  rp or p  n
r

Tn,r  p2

2m  1
2m

n
r

2
so that Tn,r  2n2

2m
1
r2

Etotr  Tn,r  Vr  2n2

2m
1
r2

 e2

40

1
r

an  2n2

2m ; b  e2

40

Etotn,r  an 1
r2

 b 1
r
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As re is different to zero, Eq. (V-2) can be simplified, which gives 

 

so that 

 

and 

 (V-3) 

Eq. (V-3) is introduced into the total energy equation (V-2) and we get 

 

after simplification, we obtain 

 

and 

 (V-4) 

Let us now replace the terms a(n), b, and ℏ with their respective expressions 
in Eq. (V-4) 

d
dr Etotn

rre
 0

2an 1
re

 b  0

2an 1
re

 b

re 
2an

b

Etotn  an 1
2an

b

2
 b 1

2an
b

Etotn  b2

4an  b2

2an

Etotn   b2

4an

 EBSCOhost - printed on 2/13/2023 7:38 PM via . All use subject to https://www.ebsco.com/terms-of-use



The Semi-Classical Model of the Hydrogen Atom 141 

 

Simplifying, we get 

 (V-5) 

If we replace the constants with their values, i.e. m = 9.1093897×10⁻³¹ kg, 
e = 1.60217733×10⁻¹⁹ C, h = 6.6260755×10⁻³⁴ J.s, and ε₀ = 
8.854187817×10⁻¹² Fm⁻¹, we get 

 

or, in eV 

 (V-6) 

5. Atomic radius 

Now, let us express the radius re(n) by introducing the definitions of a and 
b given in Eq. (V-1). We find 

 

which, using the set of known parameters, reads 

 

so that 

Etotn  

e4

40 
2

4
h

2

2n2

2m

Etotn   me4

8h20
2

1
n2

Etotn  2. 179874  1018 1
n2

J

Etotn  Etotn  13. 60570 1
n2

eV

ren  ren  h20

me2
n2

ren 
6.6260755  1034 

2  8.854187817  1012

  9.1093897  10311.60217733  1019 
2

n2
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 (V-7) 

given that 1Å = 10⁻¹⁰ m, we obtain 

 

6. Graphical representation 

The energies and radii of the electron’s preferred orbits in the hydrogen 
atom have been determined and these sizes are quantized since they both 
depend on the integer number n, introduced into the model at the level of 
momentum. This integer number is greater than or equal to 1, which is 
understandable because if n = 0 then the electron would crash into the 
nucleus! 

Here we represent our 
results. In Table V-1 we 
report the values of the 
radius corresponding to the 
first five trajectories. These 
were obtained using Eq. (V-
7) giving the radius of the 
orbit and with 0.529 A = a₀. 

Table V-1: Radius of the first orbits 

 

Fig. V-2 gives a graph of these orbits, which are concentric circles. 

ren  0. 5291773  1010n2 m

ren  0. 5291773 n2 Å

n 1 2 3 4 5

ren a0 4a0 9a0 16a0 25a0
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7. The electronic transition hypothesis 

Bohr postulated that the light 
energy emitted by atoms is 
the result of changes in the 
electron’s orbit. In the case 
of emission, the transition 
from the upper to the lower 
orbits is accompanied by the 
emission of a photon, the 
energy of which is equal to 
the energy difference 
between the energy levels 
corresponding to the orbit 

 
 

Figure V-2: Orbits and emitted  
radiations in Bohr’s atom. 

This topological vision of transitions between different orbits can be 
supplemented by an energetic vision using the diagram presented above in 
our empirical study of the hydrogen atom’s spectrum. We have identified 
the energy levels by theoretically calculating their values and they are the 
same as those deduced experimentally. 

As such, using Eq. (V-
6) we can deduce the 
energy of the levels in 
Table V-2. 

Table V-2: The first energy levels  
in Bohr’s model

 

Mapping these levels on a vertical scale, we obtain the diagram in Fig. V-
3, which is identical to the experimental emission spectrum given in Fig. 
IV-12. 

En2 , n1  En2
 En1

 h
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Figure V-3: Transitions corresponding to the first three series  
calculated by Bohr’s model. 

Emission transitions between these levels generate the rays of the atomic 
hydrogen emission spectrum presented in Fig. V-4, which coincide with 
those found experimentally. 

 

Figure V-4: Reconstruction of the emission spectrum  
of atomic hydrogen using Bohr’s model. 

To make the relevance of this model even better, we can calculate the 
Rydberg constant from the analytical expression of the energy levels. 
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For this, from Eq. (V-5) 

 

we can calculate the energy gap between two levels of the hydrogen atom, i.e. 

 

this energy gap must be equal to the energy of the photon hc�, i.e. 

 

The expression of the wavenumber of the corresponding radiation is deduced 

 

We therefore compare this theoretical formula to that of the previous, 
experimental Balmer relationship 

 

and easily infer that the Rydberg constant has the expression 

 

so that
 

 

   

Etotn   me4

8h20
2

1
n2

En2 , n 1  me4

8h20
2

1
n2

2
 1

n1
2

hc  me4

8h20
2

1
n2

2
 1

n1
2

  me4

8h3c0
2

1
n2

2
 1

n1
2

with n1  n2

 em  RH
1

n f
2
 1

n i
2

with ni  nf

RH  me4

8h3c0
2

m1

RH 
9.1093897  1031 1.60217733  1019 

4

86.6260755  1034 
3
2.99792458  108 8.854187817  1012 

2
m1

RH  1.0973731534  107 m1

 EBSCOhost - printed on 2/13/2023 7:38 PM via . All use subject to https://www.ebsco.com/terms-of-use



Chapter V 
 

146 

Thus, Bohr’s model allows the exact calculation of a fundamental constant, 
which is the basis of its success. However, this model does not take into 
account two factors: 

- The actual orbit of the electron should be elliptical and not circular. 
- The non-punctual core, which should be moving in relation to a 

center of gravity. 

V-II. Perfecting Bohr’s Model 

Sommerfeld4 introduced the quantization of 
elliptical orbits and relativity into his model of the 
atom. 

In the Sommerfeld model, the energy takes the 
form 
 

 

where En is the energy of Bohr’s model and α is 
the fine structure constant with a value given in the 
SI unit system 

 

A. Sommerfeld 

   

 

In addition to the quantum number n, a second quantum number appears 
that can take all the integer values from 0 to n-1. We move from the three 
energy levels described by Bohr (K, L, M) to a greater number of levels for 
Sommerfeld, following the introduction of quantum numbers n and l, as 
given in Table V-3. 

 

                                                      
4 Arnold Sommerfeld (1868-1951). German physicist known for his contribution to 
the birth of quantum theory. 

En,l  En 1  2Z2

n2
n

l  1
 3

4

  e2

40c

 
1.602177331019 2

4 8.8541878171012 6.62607551034/2/ 2.99792458108
 7. 297353  103
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Table V-3: The limits of the theoretical models 

 

However, experience has also revealed the existence of: 

- A thin structure of three rays instead of two for level L. 
- A thin structure of five rays instead of three for level M. 
 

To expand the theory, Sommerfeld proposed the introduction of an 
additional quantum number I called the internal quantum number, but was 
unable to provide further details. As such, his theory remained incomplete, 
demonstrated by the action of a magnetic field on the spectral lines emitted 
by atoms (the Zeeman effect). 

However, all these models proved to be problematic due to their systemic 
instability. The electron rotating around the nucleus emits electromagnetic 
energy (think of synchrotron radiation in particle accelerators) and, as such, 
it has to lose energy, eventually falling onto the nucleus. 

As such, we can see that the problem of the stability of the hydrogen atom 
was not solved by the semi-classical theories of Bohr and Sommerfeld and 
the development of a new theory was necessary. 

V-III. Tutorial for Chapter V 

1) Recall Louis de Broglie’s relation concerning the wavelength of 
the wave associated with a particle of mass m and speed v 

ANSWER 

 

2) Express the classical angular momentum -��⃗  of a particle of mass 
m moving in a circular orbit of radius /�⃗  and animated by speed 0��⃗ . 

  h
p  h

mv

 EBSCOhost - printed on 2/13/2023 7:38 PM via . All use subject to https://www.ebsco.com/terms-of-use



Chapter V 
 

148 

ANSWER 

The classical angular momentum -��⃗  is the cross product of the position /�⃗  and 
the momentum m0��⃗  

 

 

Figure T-V-1: Angular momentum. 

3) We hold the assumption that the circumference of the circular 
trajectory of the particle can contain an integer number of times the 
wavelength. What can we conclude for the angular momentum 
modulus (1st Bohr hypothesis)? 

ANSWER 

The first Bohr hypothesis may be written 

 

where r is the radius of the circle; λ is the wavelength; and n is an integer 
number. According to the Louis de Broglie relation, we have 

 

so that 

 

A such, we deduce that the angular momentum rp is equal to nh/2π 

 

4) We now consider an electron in an hydrogen atom. The potential 
energy is 2 = −3

45

/
, where K is a constant (K = 9.10⁹ SI). Express 

the kinetic energy T of the system as a function of the square p² of 
the momentum, then express the total energy E of the system. 

L  r  mv

2r  n

  h
p then 2r  n h

p

r.p  n h
2

r.p  n h
2

 n
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ANSWER 

 

5) Using the relation found in c), express the total energy E as a 
function of r. 

ANSWER 

The total energy of the system can be presented in the form 

 

By using the relation found in c), we deduce that 

 

We introduce this result into the expression of T 

 

so that, the expression of the energy is 

 

6) Applying the condition for the minimization of energy with 
respect to the distance r, calculate the distance re(n) for which the 
energy of the system passes through a minimum. Deduce the 
minimum energy En of the system. This energy represents the energy 
of one level of the hydrogen atom. 

ANSWER 

We need to get the lowest energy for the system. The energy function must 
therefore pass through a minimum for a distance that therefore corresponds 
to a zero derivative of the function E(r). To facilitate the calculations, let us 
write 

T  1
2

mv 2 
p2

2m

E  T  V

p  n
r

T 
p2

2m  n22

2m
1
r2

Er  n22

2m
1
r2

 Ke2

r
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and the energy becomes 

 

The derivative of this expression is 

 

for the distance r = re, this derivative is zero 

 

i.e. 

 

We deduce 

 

since A depends on n, we also have re, which depends on n. Thus we write it 

 

If we replace A and B by their respective expressions, we have 

 

i.e. 

 

An  n22

2m and B  Ke2

Er  An 1
r2

B
r

dEr
dr   2An

r3
 B

r2

dEr
dr rre

 0

2An
re

3
 B

re
2
 0

re 
2An

B

ren 
2An

B

ren 
2 n22

2m
Ke2

 2

mKe2
n2

ren  h2

42mKe2
n2
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Let us introduce this distance into the expression of energy. It corresponds 
to the distance for which the energy is at a minimum, i.e. 

 

We see that Emin(n) depends on n 

 

then 

 

By replacing A and B by their values, we obtain 

 

and 

 

This minimum energy therefore depends on an integer number and we say 
that it is quantized. We denote it by the letter En. 

7) By applying the 2nd Bohr hypothesis concerning electronic 
transitions, deduce the Balmer relation and the expression of the 
Rydberg constant RH. 

Data: h = 6.6 ×10⁻⁻³⁴ j.s; c = 3.10⁸ m.s⁻⁻¹; e = 1.6 ×10⁻⁻¹⁹C; m = 9.1×10⁻⁻³¹ 
kg; K = 9.10⁹ SI 

 

EMin 
An
re

2
 B

re

EMinn 
An

2An
B

2
 B

2An
B

EMinn   B2

4An

EMinn  
Ke2 

2

4 n 22

2m

 mK2e4

22
1
n2

EMinn   mK2e4

2 h
2

2
1
n2

  22mK2e4

h2
1
n2
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ANSWER 

This energy corresponds to an energy level of the hydrogen atom. Bohr’s 
second hypothesis concerning electronic transitions states that when the 
electron of the atom changes its energy level, it emits or receives a quantum 
of energy hν. If we call ΔE the energy difference between two levels Eni 
and Enf, then we must have 

 

Using the expression for energy, for an energy absorption ni<nf we have 

 

and for an energy emission ni>nf 

 

If we apply the Bohr condition, for an energy absorption we have 

 

and for an energy emission we have 

 

or, in frequency, for an absorption we have 

 

and, in frequency, for an emission we have 

E  |Eni  Enf |  hninf

|En i  Enf |  22mK2e4

h2
1
ni

2
 1

nf
2

|En f  En i | 
22mK2e4

h2
1
nf

2
 1

ni
2

habs  22mK2e4

h2
1
ni

2
 1

nf
2

hemi  22mK2e4

h2
1
nf

2
 1

ni
2

abs  22mK2e4

h3
1
ni

2
 1

nf
2
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or, in wavenumber, for an absorption we have 

 

and, in wavenumber, for an emission we have 

 

This is Balmer’s formula for absorption and emission. We can deduce the 
Rydberg constant as follows 

 

the value of which is obtained by replacing the constants by their values as 

 

 

emi  22mK2e4

h3
1
nf

2
 1

ni
2

1
abs

  abs  22mK2e4

ch3
1
ni

2
 1

nf
2

1
emi

  emi  22mK2e4

ch3
1
nf

2
 1

ni
2

RH  22mK2e4

ch3

RH 
2  2  9.1  1031  9  109 

2  1.6  1019 
4

3  108  6.6  1034 
2  6.6  1034 

 1. 1056  107m1
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CHAPTER VI 

THE QUANTUM MODEL  
OF THE HYDROGEN ATOM  

 
 
 
In this chapter we discuss the quantum description of the hydrogen atom. 
Our model is that of an electron coupled to a nucleus containing a proton, 
forming the simplest atom in existence. First, we shall see how the double 
nature—corpuscular and wave-like—of particles is at work when the 
electron is confined to the reduced space of the atom. However, the classical 
laws of physics are powerless to describe what actually happens in the atom. 
For example, the quantized nature of energy seems a little artificial to us, 
especially in the assumption regarding momentum that Bohr introduces and 
on which his demonstration of the quantization of energy is based. In the 
following we shall see that this quantization is closely related to the nature 
of the wavelength associated with the electron when it is confined to a small 
space. Once the main principles are understood, we shall address the real 
case of the hydrogen atom by solving this problem in an exact manner. 

VI-I. Theoretical Explanation of Energy Quantization: 
The Potential Well 

1. Comparing the electron in the atom to a stationary wave 

a. The amplitude wave function 

In the study of electronic interference, we have shown that the amplitude 
wave function at coordinate z of the interference plane takes the expression 

  

where λ is the wavelength of the wave associated with the electron; a is the 
distance separating the interference slits; D is the distance separating the 
plane of the slits and the observation screen; and ψ° is the amplitude of the 
vibrational motion of the sources. This amplitude depends on the spatial 

°z  2°cos


a
Dz
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coordinate z and is a stationary phenomenon. In addition, its other 
characteristic is that the square of the amplitude has physical significance, 
i.e. that |Ψ°|² is the probability of the electron’s impact along the z′Oz axis. 

We thus rely on the assumption: electron = stationary wave. 

We shall consider the electron in the atom as a stationary wave and, as such, 
it has the properties associated with a stationary wave mentioned in the 
previous paragraph. 

This means that the electron in the atom has the amplitude of its associated 
wave function, which depends on the spatial coordinates. The square of this 
amplitude will have a physical significance, which will be the probability 
of the presence of the electron at a point in space inside an atom. 

b. A simplified model of the atom: the potential well 

Consider a microscopic particle of mass m and velocity v moving in a 
single-dimensional space represented by an x′Ox axis. This particle 
generates an associated wave whose wavelength is given by the Louis de 
Broglie relationship 

      (VI-1) 

where h is the Planck constant and p is the modulus of the momentum of 
the particle. We may suppose that the wave amplitude associated with this 
particle is a periodic function for which we shall arbitrarily choose the form1 

  

where A is a constant. In order to simplify it, we can write 

  

so that the expression of the wave function becomes 

                                                      
1 This is the only arbitrary assumption we shall make. 

  h
p

°x  Asin 2


x

x°x
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 (VI-2) 

From now on, when we talk about a wave function, it will be the wave-
amplitude function Ψ(x). 

c. An analogy 

Here, we make an analogy 
between an atom and a one-
dimensional system. 

An atom is a portion of space 
with a potential energy that is 
lower than elsewhere (indeed, the 
electron-nucleus attraction 
energy is a Coulombic energy) 

 

where K is a constant equal to 

 

and the space in which the 
electron moves is a sphere of 
radius re. This space can be 
reduced to the diameter 2 re. It 
can trivially be seen that the 
potential energy is greater on the 
outside (red) of the atom than on 
the inside (green).  

 

Figure VI-1: Analogy between an atom 
and a potential well. 

We can schematize this situation using a discontinuous potential that clearly 
marks the outside and the inside. In this way, we can obtain a graph of an 
“infinite potential well”, which is an atomic analogue in one dimension. 

x  A sin 2


x

V  K e2

r

K  1
40

 8. 987552  109SI
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Table I-4: Periodic classification of the elements (Page 50) 

 

 
 

In this periodic table, the element characteristics and properties are 

symbolized by colors. 

 

 
 

Figure IV-6: Decomposition of white light through a prism. (Page 119) 
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Figure VI-1: Analogy between an atom and a potential well. (Page 171) 
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Figure VI-2: The limit conditions. (page 177) 
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1. A wave equation 

Let us consider the wave function associated with the particle, for which we 
postulate the equation 

 (VI-3) 

It presents the characteristics of a stationary wave, namely a dependence on 
its spatial coordinates and the physical meaning of its square. Let us derive 
this expression twice 

 

We can see that, once again, we are dealing with Eq. (VI-2) and so we may 
write 

 

Let us transpose the second member into the first, to read 

 (VI-4) 

The particle has a wavelength given by the Louis de Broglie equation (VI-1) 

 

and by replacing this wavelength in Eq. (VI-4), it becomes 

 

To simplify, let us write 

 

x  A sin 2


x

dx
dx  2


Acos 2


x and

d2x
dx2

  42

2
Asin 2


x

d2x
dx2

  42

2
x

d2x
dx2

 42

2
x  0

  h
p

d2x
dx2

 42

h2
p2x  0

  h
2
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and so we obtain the equation 

 (VI-5) 

Let us consider p², the modulus square of the momentum of the particle, and 
see its relationship to the kinetic energy T of this particle 

 (VI-6) 

we deduce that 

 

Since we have 

 

we may express the modulus square of the momentum as follows 

 

Putting this expression into Eq. (VI-5), we get 

 (VI-7) 

This is the expression of the one dimensional time-independent Schrödinger 
equation, which governs the behavior of the particle in the potential well. It 
is a relationship as fundamental as those of classical mechanics. Normally, 
this equation is not demonstrable; however, the reasoning above presents 
the properties of the amplitude wave function and shows that the 
Schrödinger equation is closely related to these properties. 

When we solve this equation in conditions similar to those that occur in the 
atom, we get, as one would expect, two types of solution: 

- The energies that the particle can take under these conditions. 

d2x
dx2


p2

2
x  0

T  1
2

mv2  1
2
mv2

m 
p2

2m

p2  2mT

ETot  T  V

p2  2mETot  V

d2x
dx 2

 2m
2

ETot  Vx  0
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- The expression of the corresponding amplitude wave functions. 

2. A compact form of the Schrödinger equation 

Let us take the expression of the equation of the one dimensional time-
independent Schrödinger equation (VI-7) 

 

Developing it, we get 

 

We transpose the underlined text by a brace in the right-hand member 

 

and divide the whole equation by -2m/ℏ², which gives 

 (VI-8) 

Now, we write the equation in the form 

 

d2x
dx2

 2m
2

ETot  Vx  0

d2x
dx 2

 2m
2

ETotx  2m
2

Vx  0

d2x
dx2

 2m
2

Vx   2m
2

ETotx

 2

2m
d2x

dx2
 Vx  ETotx

 2

2m
d2

dx 2
 V x  ETotx

Ĥ
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This operator2 is named the Hamiltonian operator 
or energy operator after the Irish physicist and 
mathematician William Rowan Hamilton3 and is 
denoted Ĥ. Its expression is 

 

 

Sir W. Hamilton 

Given the new meaning of the term, entity V is the potential energy operator. 
Its mode of action is multiplication by the scalar function V, i.e. 2 6 = Vx. 
Similarly, we have the entity 

 

represents the kinetic energy operator 76 

 

For the Schrödinger equation, we write 

 (VI-9) 

with 

 

                                                      
2 An operator is a series of operations performed on a number or function. For 
example, the operator “square root” (√( )) applied to the number 2 gives: √2 = 1.414; 
the operator “square” ( )² applied to the same number gives (2)² =4; or the derivative 
operator d/dx applied to the x² function gives the result: 

   
3 Sir William Hamilton (1805-1865). Irish mathematician, physicist, and 
astronomer. Known for his discovery of quaternions; his research was important in 
the development of quantum mechanics. 

Ĥ   2

2m
d2

dx 2
 V

2

2m
d2

dx 2

T   2

2m
d2

dx 2

Ĥx  ETotx

Ĥ  T  V

d
dx x2  2x
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Eq. (VI-9) means that when one applies the H operator to the wave function, 
the solution of the Schrödinger equation, one gets a scalar, the energy, 
multiplied by the wave function. 

We therefore use the terms of the 
eigenvalue equation for the 
Schrödinger equation; the 
eigenfunctions of the Hamiltonian 
H for its wave function solutions; 
and the eigenvalues for the 
corresponding energies Ei  

 

Table VI-1: Operator, eigenvalue, 
and eigenfunction 

 

Generally speaking, the action of an O operator on one of its eigenfunctions 
f(x) generates a scalar, which is the operator’s eigenvalue multiplied by this 
eigenfunction 

 

3. Solving the Schrödinger equation for a particle  
in a potential well 

a. Trapped Particles: Limit Conditions 

Here we have a particle of mass m located on a segment of width defining 
an infinite potential well. Inside the well, the potential energy is zero and 
the Schrödinger equation governing the particle is therefore 

 

This equation is a second order differential equation without a second 
member. It generally admits functions such as 

 

where A and B are constants and where we have 

 (VI-10) 

Ô fx  scalar  fx

d2x
dx 2

 2m
2

ETotx  0

x  Asinkx  Bcoskx

k 2  2m
2

ETot
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In Fig. VI-2, consider 
the potential well and a 
point M placed in the 
“red” zone (outside the 
well): 

First limit condition 

Now let us consider the 
possibility that the 
particle may be in M. 
For this to  

 

Figure VI-2: The limit conditions. 

be the case, it would be necessary for the kinetic energy of the particle to be 
infinite so as to break down the potential barrier, which is infinitely high. 
As a result, there is no chance of finding the particle in M. This means that 
the probability of finding the particle at point M is negligible or zero. This 
is true for all points in the “red area” of Fig. VI-2, especially point 0. As 
such, we must have 

 

This is the first limit condition. The consequence is that 

 

implying that B = 0 and that the wave function takes the form 

 

Let us now see what the application of the second limit condition gives. 

Second limit condition 

What was said for the first limit condition is valid for the second: the 
probability of the presence of the particle in the zone x∈]a,+∞[ is null. It is 
inferred that 

 

with the consequence that 

02  0 then 0  0

0  Asink0  Bcosk0  0

x  Asinkx

a2  0 so that a  0
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Since A is a constant that cannot be zero, it is inferred that 

 

Allowed solutions for energy 

Given the properties of the circular functions, one must have ka = nπ, where 
n is an integer number that can take all the integer values from 0 to infinity. 
We shall see later that the value n = 0 has no physical significance even 
though it is part of the mathematical solution. 

Squaring the expression, we come to 

 (VI-11)  

Let us equalize this equation with Eq. (VI-10) 

 

simplifying the change in notation ETot = E(n), we get 

 

and replacing constant ℏ by h, we obtain 

 (VI-12) 

This is the expression of the energy of a particle in an infinite potential well 
where n is an integer number; it is inferred that the energy can only take 
certain values and we can say that the energy is quantized. Now, let us see 
if the value n = 0 is allowed. If n = 0, then the constant k is zero according 
to Eq. (VI-11). The consequence is that the wave function Ψ(x) is zero 
whatever the value of x. This means that the probability of the presence of 

a  Asinka  0

sinka  0

k 2  n22

a2

2m
2

ETot  n22

a2

En  22

2ma2
n2

En  h2

8ma2
n2
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the particle is zero whatever the position on the Oa segment. It also means 
that the particle is not in the well, a conclusion that is opposed to the initial 
hypothesis, which envisaged the presence of a particle in the potential well. 
Therefore, the solution n = 0 has no physical significance and must be ruled 
out. 

Finally, the solutions of the Schrödinger equation are 

 

We can now adapt our notation concerning the eigensolutions of the 
Schrödinger equation. Since the energy is discrete, we must denote it as En 
rather than E(n). Similarly, the wave functions must be denoted Ψn (x) 
instead of Ψ(n,x), so that 

 

The corresponding wave functions 

From Eq. (VI-10), we deduce 

 

Hence, the expression for the wave function solutions of the Schrödinger 
equation are 

 

b. Representation of the stationary states of the particle in a potential 
well 

We have just seen how the resolution of the Schrödinger equation leads to 
two types of solutions: quantized energies corresponding to the Hamiltonian 
H eigenvalues of the system and the corresponding wave functions 
corresponding to the Hamiltonian 96  eigenfunctions. Both solutions can be 
represented graphically. 

 

En  h2

8ma2
n2 with n  1,2,3. . .

En  h2

8ma2
n2 with n  1,2,3. . .

k  n
a

nx  Asin n
a x with n  1,2,3. . .
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Energy level diagram 

Here, we consider the energy. Using the energy unit 
system 

giving the first four levels in Table VI-3. 

By deferring the values on an energy scale, we get 
the energy level diagram shown in Fig. VI-3. The 
energy levels are shown on the left. Energy is 
expressed in unity h²/(8 ma²). 

Table VI-3: First 
eigenvalues 

 

 

Figure VI-3: Energy levels, wave functions, and probabilities of presence of 
the four first stationary states of a particle in an infinite potential well. 

The wave functions 

The wave functions (center of Figure VI-3) display ripples along the sides 
of the well. A simple calculation allows us to calculate the relationship 
between the wavelength associated with the particle and the width of the 
well. Indeed, if we consider that the particle energy is purely kinetic (V = 
0), we can write 

1u  h2

8ma2
we have: En  n2 u with n  1,2,3. . .

n 1 2 3 4

En 1 4 9 16
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However, according to Eq. (VI-6), we have 

 

By equalizing the last two relationships we get 

 

where p is the quantized momentum. It may be deduced that 

 

However, the wavelength of the quantized wave associated with the particle 
is expressed by 

 

and it may be deduced that 

 

We can see that the wavelength λn is about the size of the width of the well. 
This behavior of a system of quantized energy is characteristic of 
microscopic systems and the wavelength associated with the particle is 
about the size of the space in which it moves. Thus, an electron in the 
hydrogen atom must have an associated wavelength of the order of 
magnitude of an atomic diameter, i.e. of the order of the angstrom. This 
behavior also explains that as energy increases, the number of points where 
the probability of presence (right graph) cancels out increases. These zero 
probability points are described as knots within the space where the particle 
is located. 

 

Enn  Tn  h2

8ma2
n2

Tn 
pn

2

2m

pn
2

2m  h2

8ma2
n2

|pn |  h
2a n

n  h
|pn |

n  2a
n
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c. Wave function normalization 

The normalization of a wave function allows us to examine the physics of 
the studied system. To understand this normalization, we have to consider 
the evolution of the probability of the particle’s presence in one of its 
stationary states, for example, the fundamental state Ψ₁(x). 

Fig. VI-4 gives, in ordinate fashion, the evolution of the probability of 
presence Ψ₁(x)² as a function of position x in the potential well. 

Let there be a point M of 
abscissa x and the 
probability of a particle 
being present at point M 
is Ψ(0,x)². Now, we 
consider an element of 
length dx around the x 
coordinate. 

It may be considered that 
the elementary 
probability of presence 
of the particle  

 

Figure VI-4: Probability density evolution 
Ψ(1,x)² for the potential well. 

dP in the infinitesimal segment dx will be the surface of the grayed-out 
trapezoid. As dx is infinitely small. one can equate this area with that of the 
rectangle formed by the height Ψ₁(x)² and by the dx segment, so that 

 (VI-13) 

We may deduce that 

 

The probability Ψ₁(x)² appears as a probability per unit of length. We can 
speak then, in a lazy fashion, of the “probability density”. Of course, this 
can be generalized to the set of probability densities Ψn (x)². Now, let us 
describe the normalization process of a wave function. 

The physical data of the potential well model is premised on the fact that a 
particle may be found somewhere between O and a. We can mathematically 

dP  1x2dx

1x2  dP
dx
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translate this by saying that the response to finding a particle between O and 
a is a certainty, i.e. it is equal to unity. This certainty therefore corresponds to 
the sum of all the elementary probabilities dp that the segment Oa can carry. 
In other words, we can write 

 

Replacing dP with the expression in (VI-13), we obtain 

 

This operation is the “normalization of the wave function”. For the model 
to have physical meaning, its wave functions must be normalized or 
normed. The consequence of this operation is the assignment of a value to 
the parameter A in front of the sine function. As such, we can replace the 
wave function with its analytical expression 

 

or  

 

where A is the normalization constant of the function. To evaluate this 
constant, we need to evaluate the integral. Thus, we write 

 

and hence 

 


0

a

dP  1


0

a

n,x2dx  1


0

a

A sin n
a x2dx  1

A2 
0

a

sin2 n
a xdx  1

I  
0

a

sin2 n
a xdx

A2I  1
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To resolve this integral, the degree of the sine function must be diminished. 
We use the sinusoidal circular function for this purpose 

 (VI-14) 

which gives 

 

This expression may be decomposed into two integrals 

 

The first integral is obvious 

 

while for the second one we have 

 

which leads us to 

 

i.e. 

 

The normalized function is thus 

 (VI-15) 

sin2ax  1
2
1  cos2ax

I  1
2 

0

a

1  cos2 n
a xdx

I  1
2
I1  I2  with I1  

0

a

dx and I2  
0

a

cos2 n
a xdx

I1  a

I2  a
2n sin 2n

a x
0

a  a
2n sin2n  0  0

I  1
2

a and we deduce A2 1
2

a  1

A2  2
a and A  2

a

nx  2
a sin n

a x
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4. Heisenberg’s uncertainty principle 

The model of the particle in an infinite potential well 
allows us to discover a fundamental principle in 
quantum mechanics, as stated by Heisenberg4 in the 
general relation 

 

where Δr and Δp are, respectively, the absolute 
uncertainties of the position and the momentum of a 
particle in an atom, and ℏ is the Planck constant 
divided by 2π. Recall that in classical mechanics, 
momentum is the product of the mass times the speed 
of the particle 

 

W. Heisenberg 

 

Consider a particle in a potential well with quantized energy that is equal to 

 

Inside the well, the potential energy of the particle is given by the null 
hypothesis, we deduce that its energy is purely kinetic, which leads to the 
relation demonstrated above 

 

We can deduce that the algebraic value of the momentum is 

 

                                                      
4 Werner Heisenberg (1901-1976). German physicist known for being one of the 
founders of quantum mechanics. He was awarded the Nobel Prize in Physics in 1932 
“for the creation of quantum mechanics, the application of which led, among other 
things, to the discovery of allotropic varieties of hydrogen”. 

r.p  

p  mv

En  h2n2

8ma2
with n  1,2,3. . .

pn
2  h

2a n
2

pn  pn   h
2a n
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In other words, the largest value of p is +|p| while the lowest value is -|p|. 
The uncertainty of the measurement of p is therefore 

 

On the other hand, the uncertainty of the measurement of the position of the 
particle is of the order of magnitude of the width of the well, i.e. 

 

Let us derive the product of the uncertainties 

 

Since n is greater than or equal to 1, we deduce 

 

We thus find an approximate expression of the general Heisenberg relation. 
This relationship is extremely important because it defines the framework 
for using a physical representation of phenomena on the quantum scale. 
According to this principle, it is impossible to know the position of a particle 
in an atom as soon as we know its momentum and hence its energy. 

This prohibits the representation of the situation of an electron in an atom 
like that given by Bohr in his semi-classical theory of the hydrogen atom, 
which was based on the notion of the trajectory of an electron orbiting 
around the nucleus, a bit like a planet revolving around the sun. The 
examples below help explain this. 

  

p  pn  pn  2pn

x  a

x.pn  a. 2pn  a. 2 h
2a n  n h

x.pn  h
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Table VI-2: Comparison between macroscopic and microscopic scales 

 

5. Eigenvalues and mean values of an operator 

Consider the Schrödinger equation written in compact form 

 

We recall that, written in this form, the equation shows its solutions as the 
eigenvalues En and the eigenfunctions Ψn(x). To realize the meaning of this 
equation, let us apply the Hamiltonian operator H to the wave functions 
Ψn(x) 

 

or 

 

Deriving once, we get 

Macroscopic scale Microscopic scale

Particle: ball moving on a Particle: electron in an atomof

1 mlength rail 1010meter radius

Mass: m about 103kg Mass: m around 1030kg
Speed: v around 1ms1 Speed v around 106ms1

Error on speed v  103ms1 Error on speed v  103ms1

Error on the momentum Error on the momentum

p  m  v  103103 106 p  m  v  1030103 1027

Calculated error on position Calculated error on position

r  h
p  1033

106
 1027 m r  h

p  1033

1027
 106 m

Perfect precision Lack of precision. The error

Compatible with the notion of trajectory represents 10000 times the size of the atom

The particle is well located Unable to locate the particle

Ĥnx  Ennx

Ĥnx   2

2m
d2

dx2
2
a sin n

a x

Ĥnx   2

2m
2
a

d2

dx 2
sin n

a x
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and for a second time, we get 

 

which can be written by returning to the expression Ψn(x) 

 

and replacing ℏ 

 

The quantity in the square brackets on the right side of the equation 
corresponds to the energy En. As such, we can see the meaning of the 
expression 

 

The action of the energy operator on a wave function gives a scalar—the 
energy En multiplied by the wave function Ψn(x). 

From a general point of view, if we consider an operator :6  corresponding 
to a physical quantity O and F a function that is an eigenfunction of O, then 
we can have the following equation, which can be verified under certain 
conditions 

 

In this case, the physical quantity O is the eigenvalue of the operator :6  with 
the associated eigenfunction F. However, the eigenfunction of one operator 
is not necessarily the eigenfunction of another.  

This is the case for example of the position operator ;<, which does not 
accept the same eigenfunctions as >6 . 

Ĥnx   2

2m
2
a

n
a

d
dx cos n

a x

Ĥnx  2

2m
n22

a2
2
a sin n

a x

Ĥnx  2

2m
n22

a2
nx

Ĥnx  h2

8ma2
n2 nx

Ĥnx  Ennx :

ÔF OF
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The operator position ;< acts on a function, multiplying it by the variable x. 
The function is an eigenfunction of >6  and so we have 

 (VI-16) 

We see that x is not an eigenvalue because in this case it would be a scalar. 
Consequently, knowledge of the physical quantity corresponding to the 
operator x is impossible with the wave function Ψn(x). It is thus necessary 
to proceed differently to get an idea of the position of the particle when it is 
in a stationary state Ψn(x) and the energy of which is known. We shall 
calculate a mean value of the Hamiltonian operator on the wave function 
Ψn(x). 

By definition, the mean value of the operator ;< calculated on the wave 
function Ψn(x) noted <x>ψ is 

 

or, taking into account the mode of action of the operator ;< given by Eq. 
(VI-16), we find 

 (VI-17) 

This relation appears as the sum of the probabilities to have the x coordinate. 

Let us replace Ψn(x) by its expression (VI-15) in Eq. (VI-17) 

 

We know that the eigenfunction Ψ(n,x) is normalized and the denominator 
of the previous equation is equal to 1. The expression is thus written as 

x nx  x nx

x  


0

a
nxxnxdx


0

a
nx2dx

x  


0

a
nx2xdx


0

a
nx2dx

x  


0

a 2
a sin n

a x
2

xdx


0

a 2
a sin n

a x
2

dx
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or 

 

Let us calculate the integral. The expression under the integral must be 
transformed so as to drop its degree. To do this, we make use of the circular 
function (VI-14) and obtain 

 

or, by separating the terms under the integral 

 

Let us write 

 

with 

 

Calculation of I₁. 

 

Calculation of I₂. 

 

x   
0

a 2
a sin n

a x
2

xdx

x   2
a 

0

a
sin2 n

a xxdx

x   2
a 

0

a 1  cos2 n
a x

2
xdx

x   1
a 

0

a
xdx  

0

a
cos2 n

a xxdx

x   1
a I1  I2 

I1  
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a
xdx and I2  
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a
cos2 n
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2 0
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We need to integrate by parts 

 

 

and      

 

or
 

 

 

The expressions underlined by braces are null 

 

This is the mean value of the operator of position ;< of the particle in the 
potential well, also called the first moment of the operator ;<. 

6. Fluctuation of mean values 

A mean value implies uncertainty about its measurement. This information 
is given by the calculation of the fluctuation or absolute error on the 
measurement of the quantity. Let us take, once again, the case of the 
particle’s position. 

By definition, the fluctuation of the mean value of the position operator 
calculated on the wave function Ψn(x) will be 

 (VI-18) 

u  x; du  dx
dv  cos 2n
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I2  a
2n x sin 2n
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where 〈;<+〉 is the mean value of the square of the operator position ;< , also 
called the second moment of the operator. A such, we have to calculate this 
quantity 

 

Since Ψn(x) is normalized, we may write 

 

or 

 

Now, let us write 

 

then we have 

 

The expression under the integral must be transformed so as to drop its 
exponent. To do this, we use the circular function (VI-14), which comes out 
as 

 

or 
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
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Let us solve the integrals J₁ and J₂ 

 

Calculation of J₁. 

 

Calculation of J₂. 

 

Now, using integration by parts 

 

Let 

 

 
Then we obtain 

 

 

We can see that the first term J₂₁ is null 

 

and the second term J22 may be developed as follows 

J  1
2

J1  J2
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x2dx  1

3
x 3 

0

a  1
3

a3

J2  
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2n sin2 n

a x

J2  a
2n sin2 n

a xx 2

0

a
 a

2n 2 
0

a
sin2 n

a xxdx

J21 J22

J2  J21  J22

J21  0

 EBSCOhost - printed on 2/13/2023 7:38 PM via . All use subject to https://www.ebsco.com/terms-of-use



The Quantum Model of the Hydrogen Atom 179 

 
 

 

where a new integration by parts may be performed 

 

  

 

 

 

 

 
and finally 

 

 

The fluctuation of the mean value of the position operator is 

   

     

so that we obtain the expression for ΔxΨ 
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 (VI-19) 

VI-II. Schrödinger’s Model of the Hydrogen Atom 

We have just solved the Schrödinger equation for a one-dimensional 
system. We now extend these principles to the resolution of a three-
dimensional system—the hydrogen atom. 

1. Comparison between the 1-D and 3-D problem 

Table VI-3 draws some parallels between the resolution of a one-
dimensional system and a three-dimensional system such as the hydrogen 
atom. While the resolution of the one-dimensional system does not pose a 
difficult theoretical problem, in the case of the hydrogen atom, the 
resolution of the Schrödinger equation is more complex and has to be 
undertaken in several stages. 

Table VI-3: Comparison between 1-D and 3-D systems 

2. The 3-D Schrödinger equation 

Consider a nucleus carrying a positive charge around which an electron 
moves. The theoretical model uses the fact that this electron is a wave that 
is considered stationary. We have previously studied a stationary 
phenomenon in the form of interference. In a stationary phenomenon, the 
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amplitude of the wave associated with the particle depends on the spatial 
coordinates and the square of this amplitude has a probabilistic meaning. 

Let Ψ be the amplitude wave function of the wave associated with the 
electron in the hydrogen atom. This function is related to the energy of the 
particle by the Schrödinger equation presented above. It leads to two types 
of solutions—for wave functions and for energy levels. The wave function-
energy level pair defines what is termed a stationary state. 

The amplitude wave function (which we shall call the wave function), being 
that of a stationary wave, depends on the spatial coordinates. In the case of 
the hydrogen atom, which is a three-dimensional entity, the wave function 
will, itself, be three-dimensional, i.e. expressed as x, y, and z. However, 
solving the Schrödinger equation is only possible by working in the 
spherical polar coordinate system in which the wave functions are 
expressed. It takes the form 

  (VI-20) 

3. Spherical polar coordinates 

Fig. VI-5 gives the 
relationships between 
the Cartesian 
coordinates x, y, and 
z, and the spherical 
polar coordinates r, θ, 
and φ. 

 

 
 

Figure VI-5: Spherical polar coordinates. 

and the infinitesimal volume element is 

 (VI 21) 

2x,y,z
x 2


2x,y,z

y2

2x,y,z

y2
 2m

2
E  Vx,y,z

y  rsin sin
z  rcos
x  rsincos

dv  r2 sindrdd
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We shall not give all the details of the resolution of the Schrödinger equation 
here, but only draw out its main lines concerning the separation of the 
variables and the individual resolution of the differential equations relating 
to each variable. 

4. Schrödinger’s equation in spherical polar coordinates 

1st step: The Laplacian ∇∇2 in spherical polar coordinates 

Schrödinger’s equation (VI-20) may be written in the form 

 
where 

 

∇² is the Laplacian of the system that we have to express in spherical polar 
coordinates. After some mathematical developments, which exceed the 
level of this course, we obtain 

      

2nd step: Schrödinger’s equation in spherical coordinates 

Starting from the expression in Cartesian coordinates of the Schrödinger 
equation, we must obtain 

 (VI-22) 

where Ψ(r, θ, ϕ) is the wave function in spherical coordinates, which we 
shall assume to be in the form 

 (VI-23) 

where R(r), Θ(θ), and Φ(ϕ) are sub-functions referring to the space variables 
r, θ, and ϕ; E is the energy; and V is the electron nucleus attraction potential, 
which is of the type 

2x,y,z  2m
2

E  Vx,y,z  0

2  2

x 2
 2

y2
 2

z2

2 2

r2
2

r

r

1
r2

2

2
 1

r2
cos
sin



 1

r2 sin2
2

2

2r,,  2m
2

E  Vr,,  0

r,,  Rr..
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3rd step: Separation of variables 

Let us introduce the wave function (VI-23) into the Schrödinger equation. 
We can then write 

  

            

 

which reduces to 

 

 

Now, we divide the expression by R(r)Θ(θ)Φ(ϕ) and it becomes 

 

 

This gives the following expression of Schrödinger’s equation in spherical 
polar coordinates

  

Vr  K e2

r with K  9.10⁹SI
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2
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Angular part
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This equation may be broken down into two sub-equations: the radial part, 
which only depends on the coordinate r; and the angular part, which only 
depends on the coordinates θ and ϕ. This partition is possible because the 
potential V depends only on r, allowing the separation of the variables. 
Besides, the angular part must be periodical with respect to the variable φ 
with a 2π angular period and it is for that reason that the magnetic quantum 
number m is an integer, as used below. 

4th step: Individual resolution of each part 

Angular part: resolution of the part in φ 

Let us write 

 

where m is an integer number. Thus, we have 

 (VI-24) 

Eq. (VI-24) admits, as a general solution 

 

We can then express the part in θ such that 

 

where l is an integer, which gives the equation 
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 cos
sin
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sin2
 ll  1
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or, by rearranging 

 

This differential equation admits more complicated solutions than 
previously. They are of the form 

 

The C#
|%| (DE�θ) terms are named associated 

Legendre functions. They are associated with 
Legendre polynomials by the function 

 

 
 

A-M. Legendre5 

Radial part 

(VI-25) 

Now, we multiply Eq. (VI-25) by R(r) 

 

The resolution of this equation is complex and leads to the expression 

                                                      
5 Adrien-Marie Legendre (1752-1833). French mathematician who made numerous 
contributions to mathematics. 
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1
Rr

2Rr
r2

 2
r

1
Rr

Rr
r  2m

2
E  V  ll  1

r2
 0

2Rr
r2

 2
r
Rr
r  2m

2
E  V  ll  1Rr

r2
 0
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where the GH
I (J) are the associated Laguerre 

polynomials 

 

and where the Lq (z) 

 

are the Laguerre polynomials. 

 

E. N. Laguerre6 

The resolution of the radial part also leads to the expression of the quantized 
energy En. We find that 

 (VI-26) 

where Z is the atomic number of the nucleus; m is the mass of the electron; 
h is Planck’s constant; e is the elementary charge; and ε₀ is the vacuum 
permittivity. 

5. Wave functions: solutions of the Schrödinger equation 

Solving the Schrödinger equation reveals 3 quantum numbers: 

(i) n is the principal quantum number, which varies from 1 to ∞ by integer 
values. It defines the energy of the stationary state. The energy may be 
written as 

 

                                                      
6 E. N. Laguerre (1834-1886). French mathematician and member of the Académie 
Française. 

Rn,lr   4 Z3

n4a0
3

n  l  1!
n  l!

1
2 2Zr

na0

l
e
 Zr

na0 Ln1
2l1 2Zr

na 0


Lq
s z  ds

dzs Lqz

Lqz  e z dq

dzq ezzq 

En   1
2

1
40

2 4Z2me4

h2
1
n2

En  K2me4Z2

22
1
n2
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where K is the proportionality constant given above and ℏ is Planck’s 
constant divided by 2π. We may express the result in eV 

 

which is the expression of the energy obtained from the experimental spectra. 

(ii) l is the secondary or azimuthal quantum number, which varies from 0 to 
n-1 by integer values. 

(iii) m is the magnetic quantum number, which varies from -l to + l including 
0 by integer values. 

The variation of quantum numbers generates stationary states as shown in 
the table below. 

Table VI-4: Names of the stationary states of the hydrogenic atom 

 

The wave functions depend on these 3 quantum numbers and the spherical 
polar coordinates. 

Recall that the wave function solutions of the Schrödinger equation for a 
hydrogenic atom are of the general form 

   

There are two notations for designating stationary states. For example, we 
can write 

   

En  
13,6 Z2

n2
e.V

r,,  Rr..

n,l,m r,,
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or use letters to distinguish 
them, as shown in Table VI-5. 
These letters depend on the 
value of the secondary quantum 
number. 

Table VI-5: Names of the states 

 

For example, the wave function of the state characterized by the set of 
quantum numbers n = 1, l = 0, and m = 0 is written 

 

Note that when we are dealing with complex wave functions, the two 
notations are not completely equivalent. As an example, let us take the states 
characterized by n = 2, l = 1, and m = ±1. For these states we have the 
expression 

 

We can rewrite the expression in the form 

 

and so we have two complex functions 

 

Now, let us make linear combinations of these wave functions 

 

Using Euler’s formula gives 

 

and we can write 

 

letter s p d f g h i k
l 0 1 2 3 4 5 6 7

1,0,0 or 1s

2,1,1  1
4 2

Z3/2reZr/2 sinei

2,1,1  Fr,ei with Fr,  1
4 2

Z3/2reZr/2 sin

2,1,1  Fr,ei and 2,1,1  Fr,ei

2,1,1  2,1,1  Fr,ei  ei  and 2,1,1 2,1,1  Fr,ei  ei 

cos  ei  ei

2
and sin  ei  ei

2i

2,1,1  2,1,1  2Fr,cos and 2,1,1  2,1,1  2iFr,sin
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from which 

 

By reconstructing the expressions, we get 

 

 

Note in the formulas that the parts underlined by a brace represent the 
Cartesian coordinates x and y. We then use the notation 

 

 

Table VI-6 presents these wave functions, which represent the stationary 
states of the atom. 

  

2,1,1  2,1,1

2
 Fr,cos and

2,1,1  2,1,1

2
 2iFr,sin

2,1,1  2,1,1

2
 1

4 2
Z3/2eZr/2rsincos

2,1,1  2,1,1

2i  1
4 2

Z3/2eZr/2rsin sin

2p x 
2,1,1  2,1,1

2
 1

4 2
Z3/2eZr/2rsincos

2p y 
2,1,1  2,1,1

2i  1
4 2

Z3/2eZr/2rsin sin
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Table VI-6: Hydrogenic atom wave functions 

 

6. Operator and wave function notation 

Exact solution 

The Schrödinger equation may be written in a compact form using the 
operators and wave functions. Recall the expression in Eq. (VI-22) 

   (VI-27) 
2n,l,m r,,  2m

2
E  Vrn,l,m r,,  0
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where 

 

Developing expression (VI-27) as 

 

and rearranging it, we get 

 

Dividing all the expression by -2m/ℏ², we get 

 

Now, we may use the same procedure as for Eq. (VI-8) in the one-
dimensional case. We then obtain 

 

As with the one-dimensional case, the quantity underlined by a brace is the 
Hamiltonian operator and is denoted H. Thus, the Schrödinger equation may 
be written in the form 

 (VI-28) 

with 

 

where -(ℏ²/2m)∇∇² is the kinetic energy operator and V(r) is a function of the 
position is the potential energy V operator 

 

2  2

x 2
 2

y2
 2

z2

2n,l,m r,,  2m
2

En,l,m r,,  2m
2

Vrn,l,m r,,  0

2n,l,m r,,  2m
2

Vrn,l,m r,,   2m
2

Enn,l,m r,,

2

2m 2n,l,m r,,  Vrn,l,m r,,  En,l,m r,,

 2

2m 2  Vr n,l,m r,,  En,l,m r,,

Ĥn,l,m r,,  Enn,l,m r,,

Ĥ   2

2m 2  Vr

Ĥ  T  V
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7. The mean value of an operator 

When the wave function is an eigenfunction of the Hamiltonian operator H, 
but not of another operator, r for example, we can calculate the mean 
value<r>ψ of this operator for this wave function using the following 
expression 

 (VI-29) 

where �K,#,%
 ∗ (r, , ϕ) is the complex conjugate of the function�K,#,%(r,

, ϕ). 

a. Dirac notation 

The stationary state solutions of the time-independent Schrödinger equation 
can be assimilated to vectors in Hilbert space. These kinds of vectors, called 
“ket” and “bra”, were imagined by Dirac so as to simplify the writing of 
mathematical formulas. Thus, the Schrödinger equation that we wrote above 
(VI-28) is written in this new formalism as 

 

| �K,#,%> is the vector named ket belonging to the set of state vectors of 
Hilbert space. The projection of this vector into the space of positions r, 
represented by the vector bra <r|, gives the wave function 

 

b. Mean value of an operator 

Consider for example the position operator r, the action of which is 
multiplication by the scalar function r. The eigenstates of the operator H are 
not eigenstates of r and so we need to calculate a mean value<index>mean 
value</index>. In Dirac notation, for this mean value <r>ψ we simply write 

           (VI-30) 

r 
n,l,m r,,rn,l,m r,,dx

n,l,m
 r,,n,l,m r,,dx

Ĥ|n,l,m   En |n,l,m 

r|n,l,m   n,l,m r,,

r 
n,l,m |r|n,l,m 

n,l,m |n,l,m 
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This results in great simplification of the formulas and this procedure may 
be extended to every sort of operators and states. For instance, as we shall 
see in the chapter dealing with molecular theory, the energy has to be 
calculated with a given stationary state |φi>, which is not an eigenstate of 
the Hamiltonian. Dirac notation is thus used, so that 

 

As an example, let us consider the calculation of the mean value <r>ψ on 
the eigenstate | �K,#,%> of the H₂⁺ molecular ion of the atomic radius. Let 

us choose the fundamental state | �*,�,� >, in other words state 1s. The 

corresponding wave function is  �*I 

 

The wave function expression may be found in Table VI-5, i.e. 

 

For the H₂⁺ molecular ion, we have Z = 1, and, if we use atomic units, a₀ = 
1. Then, after simplification of the notation, we have 

 (VI-31) 

Using the polar coordinates, the volume element is 

 

and the general expression of the mean value given by Eq. (VI-30) takes the 
form 

                        (VI-32) 

Ei  i


 i |H| i 

 i| i 

r|1s  1sr,,

1sr,,  1


Z
a0

3
2 eZ r

a0

1sr  1


er

dv  r2 sindrdd

r
1s

1srr1srdv

1sr1srdv
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Since �*I (r) is real, we may write 

 (VI-33) 

Now, replacing �*I (r) by its expression (VI-31), Eq. (VI-33) becomes 

 

by simplifying the above equation and expressing the r operator, we get 

 

Now, we individually resolve the numerator and the denominator of this 
expression 

 

 

integrating and simplifying by the angular part, we get 

  

r
1s

  1sr2rdv

1sr2dv

r
1s

   1


er

2

rdv

   1


er
2

dv

r
1s

   e2rrdv

   e2rdv

r
1s

   e2rrdv

 e2rdv
 N

D

r
1s



0

 
0

 
0

2
e2rr3 sindrdd


0

 
0

 
0

2
e2rr2 sindrdd

r1s



0


e2rr3dr


0


e2rr2dr

 N
D
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with 

 

Let us calculate the numerator N and proceed by integration by parts. 
Starting with the numerator, we put 

 

 

Thus, we have 

 

 

so that 

 

c. Fluctuations of the mean value of an operator 

As in the case of the one-dimensional potential well, we can calculate the 
fluctuation on the average value of an operator for a three-dimensional 
atom, like the molecular ion hydrogen. As an example, we shall take the 
calculation of the fluctuation of the mean value of the atomic radius. The 
fluctuation Δr1s is, by definition 

 

We have already calculated the second term <r>1s. Let us calculate the first 
one <r²>1s. Thus, we have 

 

N  
0

2
e2rr3dr and D  

0


e2rr2dr

u  r3 and du  3r2dr
dv  e2rdr and v   1

2
e2r

N  
0


e2rr3dr   1

2
r3 e2r

0

  3
2 0


r2e2rdr

N  0  3
2

D

r
1s
 3

2

r 1s  r2 
1s
 r

1s

2

r2 
1s

1srr21srdv

1sr1srdv
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Passing to the analytic expressions, we get 

 

and 

 

After simplification and integration of the angular part, we get 

 

We shall treat the numerator N because it is of a higher degree than the 
denominator D. Let us write 

 

 

so that 

 

 

 

r2 
1s

   1


er

2

r2dv

   1


er
2

dv

r2 
1s

   1


er

2

r4 sindrdd

   1


er
2

r2 sindrdd

r2 
1s



0


e2rr4dr


0


e2rr2dr

 N
D

u  r4 and du  4r3dr
dv  e2rdr and v   1

2
e2r

N  
0


e2rr4dr   1

2
r4e2r

0

  4
2 0


e2rr3dr

N  0  2 
0


e2rr3dr

N  2 
0


e2rr3dr
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We have already calculated this r³ degree integral 

 

so that 

 

then 

 

The fluctuation of the mean value of r is thus 

 

8. Graphical representation of wave functions:  
the atomic orbitals (AOs) 

In the previous paragraphs, we solved the Schrödinger equation of the 
hydrogen atom and hydrogenic atoms. We are now faced with the question 
of representing graphically the results concerning the eigenfunctions of the 
Hamiltonian, i.e. the natural atomic orbitals. 

To represent the orbitals, we can use several types of representation. For 
example: 

(i)  Representation by angular distribution of the wave function modulus 
ǁΨǁ or of the probability density Ψ². 

(ii)  Representation by isoamplitude surfaces or isodensity surfaces of 
probability. 

(iii)  Representation by radial density. 

All these representations are complementary. 


0


e2rr3dr  3

2
D

N  3D

r2 
1s
 3

r 1s  3  9
4


3

2
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It is useful to have a good understanding of the way in which orbitals are 
constructed and now it is possible to make full use of the advanced 
computing abilities available to achieve beautiful representations. 

a. Representation by angular distribution 

Application to the 1s orbital 

Given the separation of the variables, the wave function Ψ(r,θ,ϕ), the 
solution of the Schrödinger equation, can be represented, as we saw above, 
by a product of three sub-functions R(r),Θ(θ) and Φ(ϕ) 

 

In Table VI-5, we find some examples of stationary wave-functions. These 
functions can be represented graphically, but this would really require four-
dimensional space. 

Reduction in the number of variables 

To set up the method, we take the trivial example of the 1s orbital of the 
hydrogen atom (Z = 1). 

We reduce the number of variables, starting with r and φ. We vary θ, with 
the two other space variables being arbitrarily fixed, for example at r = 1a₀ 
and at φ = π/2 (yOz plane). 

 

Taking into account the fixed variables, we have 

 

r,,  Rr..

1s  1


Z
a0

3
2 exp  Z

a0
r

1s  1


exp1  0.2075537
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Angle θ variation 

We vary θ from 0 to 180° and 
obtain Fig. VI-a. Then, we 
transfer the value of ǁΨ1sǁ to 
Fig. VI-6b. Each vector 
represents a value of ǁΨ1sǁ for a 
value of the angle θ. 

In Fig. VI-6b we have plotted 
each vector ǁΨ1sǁ on a 
directional graph in the 
corresponding direction θi 
(polar representation) and the 
ends of the vectors describe a 
semicircle. 

Angle φ variation 

We can now vary the angle φ 
from 0 to 360°, which creates 
the spherical surface seen in 
Fig. VI-6c. The graph bears 
the name, like the wave 
function from which it comes, 
of orbital 1s. 

The sign + in the center of the 
1s orbital means that the wave 
function always has the same 
sign (+) in all directions. We 
say that the 1s orbital has 
spherical symmetry. But it is 
not always so, as we can see in 
the graph of the 2pz orbital. 

 

Figure VI-6a: ǁΨ1sǁ versus θ. 

 

Figure VI-6b: Polar representation of 
ǁΨ1sǁ. 

 

Figure VI-6c: 1s orbital by angular 
distribution of the amplitude function. 
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Application to the 2pz orbital 

Reduction in the number of variables 

Let us consider the 2pz orbital the 
expression of which is given in 
Table VI-5 

Angle θ variation 

We vary angle θ from 0 to 180° and 
plot the value of ǁΨ2pzǁ on the graph. 
Each vector represents the value of 
Ψ2pz for the angle θi. The graph in 
Fig. VI-7a shows this evolution. 

Fig. VI-7b presents a polar 
representation and we carry each 
vector of length ǁΨ2pzǁ in the 
corresponding direction. 

Then, we join the ends of each vector 
and get two semicircles tangential to 
the origin. We then report the sign that 
the function takes in each area of 
space. 

Angle φ variation 

We can now vary the angle φ from 0 
to 360°, which generates the two 
spherical surfaces tangentially to O 
in Fig. VI-7c. 

The graph bears the name, like the 
wave function from which it comes, 
of the 2pz orbital. 

Figure VI-7a: Ψ2pz versus θ. 

 

Figure VI-7b: Polar representation. 

 

Figure VI-7c: 2pz orbital. 

 

2pz 
1

4 2
Z
a0

5
2 rexp  Zr

2a0
c
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The signs on the lobes recall the sign 
of the function in this area of space. 

Applying this method to other wave 
functions, we get the results in Fig. 
VI-8. 

 

Figure VI-8: The first atomic orbitals of hydrogenic atoms represented  
by the angular distribution of ǁΨǁ. 

b. Representation by isodensity surfaces 

This mode of representation provides information on probability density 
and topology. This concept is borrowed from cartography. Consider how a 
mountain can be represented on a map. 
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For this, it is necessary to 
cut out planes at different 
altitudes, h₀, h₁, h₂... and 
project the trace of the 
intersection of the mountain 
with these planes. We then 
obtain contour lines that 
translate a three 
dimensional relief into two 
dimensions, as shown in 
Fig. VI-9. 

The construction of the 
isodensity curves of an 
orbital follows the same 
procedure as that already 
applied to the 2pz orbital. 

Let us start by writing the 
orbital expression 

 

Figure VI-9: The contour line principle. 

 

Taking Z = 1 and a₀ = 1, we get 

 

We shall now represent the probability density, i.e. (Ψ2pz)². 

1. First, let r and θ evolve simultaneously, for example 0<r<10 and 0<θ<90°. 
We obtain the following Table VI-7, in which the values of (Ψ2pz)² are 
multiplied by 10⁴. 

 

 

 

 

2pz 
1

4 2
Z
a0

3
2 rexp  Zr

2a0
cos

2pz 
1

4 2
rexp  r

2
cos so that 2pz  6. 049  102  rcos
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Table VI-7: Values of (Ψ2pz)² multiplied by 10⁴ 

 

2. Now, let us draw graphs (Ψ2pz)² for a certain number of values of the angle 
θ as a function of the variable r. Thus, we obtain Fig. VI-10a 

 

Figure VI-10a: AO 2pz: Probability densities versus θ and r. 
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3. We draw straight lines parallel to the axis of distance at different 
probability densities. Each straight line intersects the curves at two points: 
a point close to O (point 1) and another distant from O (point 2), as given in 
Table VI-8. 

Table VI-8: 2pz orbital: points of same density and corresponding angles 

 

Each axis 
corresponds to an 
orientation θ and will 
thus have 2 points—
one near the origin of 
the referential and 
the other away far 
from it. We then join 
all the points with 
the same probability 
density and obtain 
Fig. VI-10b. 

Here, we have varied 
θ from 0 to 360°, 
bringing out the 
isodensity curves.  

 

Figure VI-10b: Isodensity curves for the 2p_{z} AO. 

The 2pz orbital thus represented is reminiscent of an onion cut 
lengthwise.The + and - recall the sign of the wave function in the area of the 
figured space.If we now vary φ from 0 to 360°, we obtain a series of nested 
isodensity surfaces. The outermost surface finally gives an appearance for 
the 2pz orbital, which is similar to that observed in the case of representation 
by angular distribution of the wave function (cf. Fig. VI-7c). 
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This second type of representation is more complete than the first because 
it simultaneously gives information on the distance and the probability 
density. The distance from a point on the surface to the center of the frame 
of reference represents the distance from the nucleus at which the density 
represented by the surface is obtained. 

It is of course necessary to know what we are talking about when we deal 
with graphical representation of orbitals. 

d. Representation by radial density 

We now move on to the representation of the orbitals, making it possible to 
show the degree of exteriority of an orbital. This degree of exteriority 
measures the probability density along the r coordinate, in other words, the 
distance for which the probability density of the electron is the greatest. It 
also gives an idea of the radius of the atom. 

Consider the volume element in the spherical polar coordinates given by Eq. 
(VI-21), i.e. 

 

Let there be a wave function Ψ(r,θ,φ) describing a stationary state of the 
hydrogen atom. The probability of finding the electron inside the volume 
dv is 

 

Knowing that the wave function is the product of three sub-functions 
R(r)Θ(θ)Φ(φ) because of the separation of variables 

 

We can group the parts with the same variables 

 

then, we can calculate the probability δP of finding the electron in a 
spherical film of radius r and thickness dr, as is shown in Fig. VI-11a. 

 

dv  r2 sindrdd

dP  r,,2r2 sindrdd

dP  Rr2r2 sindrdd

dP  Rr2r2dr2 sind 2d
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Figure VI-11a: Spherical film of 
radius r and thickness dr. 

Figure VI-11b: Radial densities of  
the 1s and 2s orbitals. 

If we integrate with respect to all the angular space, we get 

  

Of course, the angular part of the solution is normalized, i.e. 

 

so that the elementary probability δP takes the form 

 

This quantity is named the radial probability density and is symbolized by 
the function D(r), so that 

 

We can now express the radial density probability for the atomic orbitals 1s 
and 2s, and with the distance r expressed in a0 units, i.e. 

 

P  Rr2r2dr 
0


2 sind 

0

2
2d


0


2 sind 

0

2
2d  1

P  Rr2r2dr so that P
dr

 Rr2r2

Dr  Rr2r2

Rr1s  2expr and R2sr  1
2 2

2  rexp  r
2
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Thus, for the radial densities of the 1s and 2s orbitals we have, respectively 

 

We can draw the radial densities 1s and 2s on the same graph. As can be 
seen in Fig.VI-11b, the radial density 1s has a maximum of r = 1a₀, while 
2s has a maximum distance r = 5.24a₀. This shows that the exteriority of 
orbital 2s is larger than that of orbital 1s. Consider now the probability P of 
observing the electron inside a sphere of radius r centered on the nucleus. 
This probability is equal to 

 

For a sphere of radius 2a₀, the probability for the 1s state is 

 

For the 2s state, this probability is weak for the same distance 

 

However, if we consider the section of the radius of the sphere between 2 
a₀ and 10 a₀, it is much more important 

 

There is good evidence that an electron in a 2s orbital has greater externality 
than an electron in a 1s orbital. 

9. The orbital momentum and its relationship  
with the quantum numbers l and m 

In Fig. VI-12a, consider the electron rotating around the nucleus in a 
classical model. 

D1sr  4r2 exp2r and D2sr  1
8

r22  r2 expr

P  
0

r Drnsdr

2sr  
0

2
1
8

r22  r2 exprdr  0.052

2sr  
2

10 1
8

r22  r2 exprdr  0.888
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Figure VI-12a : Classical momentum. 

 

FigureVI-12b : 
Momentum 
components. 

This movement generates a vector, the angular momentum G�⃗ , which is 
perpendicular to the plane formed by the vector position P⃗ and speed �⃗, so 
that 

 

where �⃗ is the momentum of the particle, i.e. 

 

Momentum, being a vector, is defined by its three components, Lx , Ly, and 
Lz, and by its square L², as shown in Fig. VI-12b. 

In quantum mechanics, we can only know the momentum by the square of 
its length and one of the components, Lz for example, the other components 
being unknown. 

The length of the angular momentum, i.e. the modulus of G�⃗ , is related to the 
secondary quantum number l by the relation 

 

L  r  mv  r  p

p  mv

L   ll  1
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Its component along the z axis is 
related to the magnetic quantum 
number m 

 

then, for the angle θ, we have 

 
Figure VI-12c: Orbital  
momentum orientations. 

We can thus see (Fig. VI-12c) that there are preferred directions for the 
angular momentum, for example, in the case of a 2p state (l = 1 and m = 0, 
+1, -1). 

The angular momentum L takes 3 directions, that is to say the angular 
momentum is really quantized. Only one component Lz (m = -1, +1, and 0), 
for example, is known. The components Lx and Ly cannot be known. It 
follows that they can take all the values. This uncertainty is expressed by 
the tracing of the cones (θ = π/4) and (θ = 3π/4) and of the central disc (θ = 
0). There are therefore 2l+1 possible orientations of the orbital angular 
momentum. 

10. The 4th quantum number: spin 

Since 1920, the notion of spin has presented a difficult problem to solve. 

a. The anomalous Zeeman effect7 

The Zeeman effect concerns the hyperfine structure of observed spectral 
lines and designates the separation of a defined energy level of an atom or 
a molecule into several sublevels of distinct energies under the effect of an 
external magnetic field, as depicted in Fig. VI-13. There is therefore a 

                                                      
7 Peter Zeeman (1865-1943). Dutch physicist known for his work on the emission 
of light by excited atoms, the propagation of light signals in moving media, and the 
discovery of the effect that bears his name. He won the Nobel Prize in Physics in 
1902. 

Lz  m

cos  m
 ll  1

 m
ll 
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degeneration in the energy levels. This effect is easily observed using 
spectroscopy: when a light source is immersed in a static magnetic field, its 
spectral lines separate into several components. 

P. Zeeman 

Figure VI-13: Zeeman effect. 

b. The Stern-Gerlach experiment (1922) 

The Stern8-Gerlach9 experiment is an experiment in quantum mechanics that 
highlights the existence of spin. The experiment was developed by Otto Stern 
and Walther Gerlach in February 1922 and is described in Fig. VI-14. 

It consists of passing silver atoms through a non-uniform magnetic field in 
a vertical direction. Silver atoms in their ground state have zero angular 
momentum and their associated orbital magnetic moment is also zero. As 
such, the beam should not be influenced by the magnetic field. 

However, experience shows that the beam is split in two parts. One cannot 
attribute this result to an orbital kinetic momentum and has to explain this 
phenomenon by introducing an essentially quantum observable: the kinetic 
moment of spin, or more simply “spin”. Spin is comparable to intrinsic 

                                                      
8 Otto Stern (1888-1969). German physicist known for his discovery of the magnetic 
moment of the electron. He won the Nobel Prize in Physics in 1943. 
9 Walther Gerlach (1889-1979). German physicist known for his discovery of the 
magnetic moment of the electron. 
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angular momentum, but the classical analogy is very limited as it makes no 
sense to speak of an electron rotating around its axis. 

In the case of the silver atom, its separation into two beams reveals that there 
are two possible states for the spin of the atom. The study of spin operators 
as angular momentum operators leads to the value 1/2 (in units of ℏ) for the 
total spin, to which the two possible states (projections) correspond: +1/2 
and -1/2. 

 

O. Stern 

 

W. Gerlach 

Figure VI-14: Stern-Gerlach experiment. 
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c. The concept of spin 

The discovery of the concept of spin by 
Goudsmit10 and Uhlenbeck11 in September 
1925 was revolutionary. In an article 
published in the journal Nature12 they 
presented their ideas, providing the origin of 
“spintronics”. 

In quantum physics spin is an intrinsic 
property of particles, just like mass or electric 
charge. Like other quantum quantities, its 
measurement gives discrete values and is 
subject to the principle of uncertainty. It is the 
only quantum observable that does not have 
a classical equivalent, unlike, for example, 
the position, the pulse, or the energy of a 
particle. 

It is, however, often assimilated to the 
intrinsic angular momentum of the electron, 
just like the intrinsic magnetic moment (of 
spin), and both are confused under the term 
of spin. 

Spin has important theoretical and practical 
implications and has influenced practically 
everything in physics. It is responsible for the 
magnetic spin moment and therefore for the 
anomalous Zeeman effect (sometimes 
incorrectly described as “abnormal”) that 
results. 

 

 

S. Goudsmit 

 

 

G. Uhlenbeck 

                                                      
10 Samuel Goudsmit (1902-1978). Dutch-American physicist known for his work on 
spin with Georges Uhlenbeck. 
11 George Uhlenbeck (1900-1988). Dutch-American physicist known for his work 
on spin in collaboration with Samuel Goudsmit. 
12 G. E. Uhlenbeck, S. Goudsmit, “Spinning Electrons and the Structure of Spectra”, 
Nature, vol. 117, 264-265, February 20, 1926. 
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W. Pauli 

 

P. A. M. Dirac 

Based on W. Pauli’s13 non-relativistic spin system, in 

1928, Paul Dirac14 developed a relativistic equation 

describing the electron and spin. Today, this is called 

the Dirac equation. 

This equation describes the behavior of elementary 

particles of half-integer spins, like electrons. Dirac 

sought to transform the Schrödinger equation in order 

to make it invariable to the action of the Lorentz group, 

in other words, to make it compatible with the 

principles of special relativity. 

This equation naturally takes into account the notion 

of spin, which was developed shortly before, and made 

it possible to predict the existence of antiparticles. 

To schematize, we can say that when we introduce a 

fourth coordinate in the Schrödinger equation, the four 

quantum numbers relative to the movement of the 

electron, we must solve a four-dimensional system. It 

must correspond to these four dimensions, i.e. four 

quantum numbers: 

(i)  the principal quantum number n related to the energy of the electron; 

(ii)  the secondary quantum number l related to the magnitude of the orbital 

angular momentum; 

(iii)  the magnetic quantum number m, related the value of the projection of 

the angular momentum on the z axis; 

(iv)  the 4th quantum number, the magnetic quantum number of spin s, the 

characteristics of which will be described further. 

 
13 Wolfgang Pauli (1900-1958). Austrian physicist known for his definition of the 

principle of exclusion in quantum mechanics, or the Pauli principle, which earned 

him the 1945 Nobel Prize in Physics. 
14 Paul Adrien Maurice Dirac (1902-1984) was a British mathematician and 

physicist. He is one of the fathers of quantum mechanics and predicted the existence 

of antimatter. With Erwin Schrödinger, he was a co-winner of the Nobel Prize in 

Physics in 1933 “for the discovery of new and useful forms of atomic theory”. 
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In Fig. VI-15a, we compare the situation of an electron moving around the 
nucleus and that of an electron “rotating” by itself. 

 

Figure VI-15a: Comparison between orbital and spin angular momentum. 

In both cases a kinetic momentum is generated. We have already seen that 
orbital angular momentum and spin angular momentum are comparable, 
leading to two new quantum numbers: the quantum number of spin s and 
the magnetic quantum number of spin. s is related to the modulus of the 
angular spin momentum while �̅ is related to the projection along z of the 
spin angular momentum. 

Unlike l, the spin quantum number s only takes the value 1/2. It characterizes 
the nature of the corpuscle, of which there are two elementary types: fermions 
and bosons. Recall that fermions are corpuscles with a half-integer quantum 
number of spin. The bosons, on the other hand, correspond to particles with a 
quantum number of whole spin (a photon for example). 

Thus, by continuing the 
correspondence with the orbital angular 
momentum, we can say that there will 
be 2s+1 possible orientations for the 
spin angular momentum. As s only 
takes the value 1/2, it follows that the 
possible orientations correspond to s = 
+1/2 and s = -1/2, as can be seen in Fig. 
VI-15b. For the same reasons as in the 
case of the orbital angular momentum, 

 

Figure VI-15b: Orientations of 
electronic spin momentum. 
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the other components of Q⃗ are not 
known. 

To conclude, we can state that the spin momentum can only have 2 
orientations characterized by the values of the electron magnetic moment 
quantum number s = ±(1/2). 

VI-III. Extension of the Model to Polyelectronic Atoms 

The model of stationary states of hydrogenic atoms can be extended to 
atoms with several electrons; however, we should remain aware that this 
model is only an approximation. The difference between hydrogenic atoms 
and polyelectronic atoms lies in the presence of the other electrons. The 
latter result in such perturbation that the resolution of the Schrödinger 
equation is impossible. This is due to the existence of Coulomb repulsion 
energy between electrons whose respective positions cannot be known. 

Nevertheless, the experimentally derived facts show that an approximation 
can be made, leading to a satisfactory description of polyelectronic atoms 
within the framework of the hydrogenic atom model. 

1. General principles 

The electrons of a polyelectronic atom are distributed in energy levels, 
which are, more or less, the stationary states of hydrogenic atoms. 

a.  Orbital box notation 

By definition, an orbital box is a 
stationary state defined by three 
quantum numbers: n, l, and m. 

Orbital box notation is used in 
Table VI-8 to represent these 
states in addition to two further 
ones. 

Table VI-8: Stationary  
state notations 
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In this stationary state, an electron can exist with a magnetic 
quantum number of spin equal to +1/2. We say that we have 
an orbital box occupied by an electron with spin 1/2:  

This is the electronic configuration of the hydrogen atom in its ground state. 

Examples of other possible states include 

n = 2; l = 1; m=0; s = +1/2, for which we write: 
 

This is an excited state of the hydrogen atom. 

Another example is 
the state characterized 
by n = 2; l = 1; m = 0, 
±1; s = +1/2: 

 

For the same value of l corresponding to a given value of n, the orbital boxes 
are placed in a contiguous manner to mark the triple degeneracy of the state 
l = 1 (same energy for contiguous orbital boxes). 

 

Other cases: n = 3; l = 
3; m = 0, ±1; ±2; s = 
+1/2, which will be 
written: 

 

In conclusion, the orbital boxes corresponding to the same value of l are 
shown joined together. Their number represents the different values of m, 
that is to say the different orientations of the orbital angular momentum for 
the same value of l. These stationary states correspond to the same energy 
value. 

b. The Pauli exclusion principle 

According to the laws of classical physics, an atom having several electrons 
should have all of its electrons in the lowest level, i.e. level 1s. 

If this were the case, atoms in their ground state should have an identical 
radius and identical physicochemical properties. 

 EBSCOhost - printed on 2/13/2023 7:38 PM via . All use subject to https://www.ebsco.com/terms-of-use



The Quantum Model of the Hydrogen Atom 217 

However, this is not the case meaning that the electrons are not all in the 
same energy level. This leads us to state the principle, known as the Pauli 
exclusion principle, that: 

“Two electrons belonging to the same atom cannot have four identical 
quantum numbers. They must differ by at least one quantum number value”. 

Let us consider two electrons belonging to the same atom. Suppose that 
these electrons are described by three quantum numbers, n, l, and m, 
identical and placed two by two 

 

If this is the case, then we must should have 

 

Since there are only two possible values for �̅, we have 

 

According to the Pauli exclusion principle, we deduce that there cannot be 
more than two electrons per stationary state, that is to say per orbital box. 

Example: two electrons in a 1s state: 

 

We can thus predict the maximum number of electrons per energy level, as 
in Table VI-9. 

  

n1  n2 ; l1  l2 ; m1  m2

s1  s2

s1   1
2

and s2   1
2

or vice-versa
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Table VI-9: Quantum numbers and atomic shells 

 

 
 

F. Hund 

c. Hund’s rule 

We can distinguish three simple rules, which are used to 
determine what the fundamental spectroscopic term of the 
atom considered is. They were proposed by Hund15. 

The first of these rules is particularly important in 
chemistry and we often refer to it as “Hund’s rule”. 

 
Hund’s rule: 

If two electrons belonging to the 
same atom have different 
quantum numbers, n, l, and m, 
but their energies are equal or 
very close, then their magnetic 
quantum numbers of spin � will 
be equal.  

 

                                                      
15 Friedrich Hund (1886-1997). German physicist known for his work on the rule 
that bears his name and his contributions to the study of the tunnel effect. 

n  1, l  0,m  0  maximum 2 electrons K shell

n  2, l  0  maximum 2 electrons

n  2, l  0,m  0,1  maximum 6 electrons

Total 8 electrons L shell

n  3, l  0  maximum 2 electrons

n  3, l  1,m  0,  maximum 6 electrons

n  3, l  2;m  0,1,2  maximum 10 electrons

Total 18 electrons M shell

Electrons 1 Electron 2

Energy E1 Energy E2

n1  n2

l1  l2

m1  m1

If E1 E2 then s1  s2
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Consequently, for a particular case where we have 

 

 

Hund’s rule is respected in the middle case where we find the most stable 
arrangement, which corresponds to the maximum sum of the magnetic spin 
quantum numbers. 

d. The Pauli construction principle and Klechkowski’s rule16 

The Pauli construction principle proposes that one builds the “skeleton” of 
the configuration by placing the orbital boxes in the natural order of growth 
of the quantum numbers, which corresponds to the increasing order of the 
energy levels. For reasons of space, the levels are represented horizontally 
with increasing energy from left to right. 

For example, we arrange the orbital boxes in the following manner. 

 

 

 

 

 

 

                                                      
16 Also called Madelung’s rule or Aufbau principle 

n1  n2  2

l1  l2  1
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Klechkowski’s rule17 

As given in Table 
VI-10, this is a 
mnemonic process to 
remember the order 
of filling the orbital 
boxes and not the 
energetic order of 
energy levels. 

Table VI-10: Klechkowski’s rule 

 

So we shall follow the order given by this table to fill the orbital boxes 
already arranged. 

e. The writing of electronic structures 

Let us take the example of potassium (K). 

1. The empty orbital boxes are disposed in the number necessary to contain 
the electrons (the Pauli construction principle). 

 

2. The electrons are placed, starting from the left and following the different 
rules (the Pauli exclusion principle, Hund’s rule, and Klechkowski’s rule). 

 

The 3d sub-shells remain unoccupied. These are virtual levels. It is possible 
to not represent them and write the configuration as follows 

                                                      
17 Vsevolod Kletchkovski (1900-1972). Russian chemist known for his work on 
radioisotopes and for the rule that bears his name. 
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2. Electronic structures and periodic classification 

We previously saw how the periodic classification was based on the 
periodicity of the physicochemical properties. 
 
Groups 

 
 
 
Hydrogen and 
alkalines 

 
 
 
Alkaline-
earth 
 
 

 
 
 
Boron group 
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Nitrogen group 

  
 

 
 
Oxygen 
group 
 
 

  

 
 

 
 
Halogen 
group 
 

  

 
 

 

Rare gas 
group 

 

     

Transition elements 

Located between the elements of block s and those of block p, the elements 
of block d are also called “transition elements” because they mark the 
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transition between blocks s and p. They are characterized by the filling of 
their d sub-shells and constitute a category of elements and not a family. 

 

For chromium, we see a peculiarity. 

 

The other transition elements follow Klechkowski’s rule. 

 

However, for copper there is also a peculiarity 
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Finally, zinc corresponds to a normal filling. 

 

We must be aware of possible confusion regarding the name of the family 
to which an element belongs due to the similarity of their outer shells. 

See, for example, the following elements, which have the same type of outer 
shells. 

 

Always check whether the d orbital boxes just below the outer shell are 
occupied or not before saying whether or not it is an alkaline. 

3. The periodicity of physicochemical properties  
enlightened by electronic configurations 

a. Experimental evolution of the first ionization potential 

The first ionization potential (IP₁) and second ionization potential (IP₂) (or 
ionization energies) of the elements have been measured from the first to 
the fourth period of the periodic table. 

The first ionization potential is, by definition, the energy that must be 
supplied to an atom to extract an electron from it 

 

The second ionization potential is the energy that must be supplied to the 
ion X⁺ to extract an electron, such as 

 

Table VI-11 gives the first and second ionization potentials, expressed in 
electron volts, for each element. 

IP1  X  X  e

IP2  X  X2  e
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Table VI-11: first and second ionization potentials (in eV) 

 

Experimental evolution 

In Fig. VI-16 we can trace the evolution18 of IP₁ versus the atomic number Z. 

 

Figure VI-16: First ionization potential versus the atomic number Z. 

 

 

                                                      
18 From https://cdn.britannica.com/38/6038-050-DC1FDAEA/ionization-energy-
element-atom-electron-energies-nonmetal.jpg 
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b. Qualitative explanation of IP₁₁ evolution versus the atomic number Z 

We can qualitatively explain this evolution by assimilating the ionization 
energy IP₁ to the energy of an electron belonging to the outer shell with a 
changed sign. 

Since the energy of an electron belonging to the outer shell is characterized 
by the quantum number n, for a polyelectronic atom we have 

 

where n* denotes the effective quantum number of this electron and Z* is 
the effective atomic number with which an electron of this outer shell “sees” 
the nucleus. 

The effective atomic number Z* depends on the environment of a given 
electron, as well as the effective quantum number n*. 

These parameters are determined by computation. For the moment, as we 
wish to understand the evolution of IP₁, we shall content ourselves with 
using the usual values given by the energy formula of the levels of the 
hydrogenic atoms for these quantities, namely 

 

Given what we have said above, IP₁ can be assimilated to -E(n), where n is 
the principal quantum number of the outer shell 

 

We therefore see why, overall, IP₁ increases within a period: when we travel 
through a period the main quantum number of the peripheral shell remains 
constant. The variation of IP₁ is then dictated by the evolution of the atomic 
number Z. However, as Z increases from alkalis to rare gases in a period, 
we can understand why IP₁ correlatively increases. 

 

En   13.6
n2

Z2

En   13,6
n2

Z2

IP1   13,6
n2

Z2

IP1  13,6
n2

Z2 is increasing because nconstant and Z 
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When we change the period, Z continues to increase; however, this increase 
will be controlled by the increase in the quantum number of the outer shell, 
which increases by one unity. This results in a denominator that increases 
sharply and, therefore, by a decrease in IP₁, which falls when one passes 
from the rare gas of one period to the alkaline of the following period 

 

c. A more quantitative explanation: Slater's rule 

 

 

J. Slater 

Table VI-12: Screen constants 

 

According to Slater19, the electrons of the internal shells and those of the 
same shell as the considered electron, characterized by the quantum number 
n, exert a screen effect. The electron being studied will then not “see” the 
nucleus with its Z protons, but rather with a lower number, much like a 
person wearing a wide-brimmed hat in a movie theater can hide the screen 
from those next to or behind them. Slater evaluated these effects as follows. 

The screen constants σi are given in Table VI-12, where n represents the 
principal quantum number of the electron of a given shell; n-1 represents 
the situation in the level below that of the considered electron; and n-2, … 
etc., represent deeper situations. Their values depend on the situation of 
electrons other than the one considered. 

                                                      
19 John Clarke Slater (1900-1976). American physicist and theoretical chemist. He 
devised a relevant method for the expression of antisymmetric wave functions for 
fermions in the form of determinants. These functions are known as Slater 
determinants. John Slater stood out again in 1930 by introducing exponential 
functions to describe atomic orbitals. These functions are now known as Slater 
orbitals. 

IP1  13,6
n2

Z2 is decreasing because n 
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The values of σi are proton charge fractions, which are deducted from the 
atomic number Z 

 

Thus, if we wish to know the effective number of an electron in the 
outermost shell of carbon, we start by identifying the electron in the 
environment that we wish to determine, represented here in gray. 

 

Then, we deduce from the atomic number of carbon (Z = 6) the sum of the 
screen constants of the electrons of the environment of the red electron, 
which can be grouped as follows: 

-  electrons belonging to the same shell as it (shell n = 2): of which 
there are 3; 

-  electrons from shell n-1, i.e. shell n = 1: of which there are 2. 
 

 

We can deduce that the energy of an electron in the outer shell of carbon 
will be 

 

Slater extended this method of calculating the energies of electrons to the 
more precise calculation of the first ionization potential IP₁ 

 

He considered the ionization energy or ionization potentials given by the 
relation 

 

where EX⁺ is the energy of the ion X⁺ and EX is that of the atom X. Let us 
take the example of carbon. 

Z  Z  i

Z  6  0.35  3  0.85  2  3.25

E2  13.6
3.252

22
 35.913 e.V

IP1  X  X  e

IP1X  EX  EX
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First calculate the energy of the atom C 

 

Energy of the shell n = 1: energy of an electron (gray electron) of this shell 
× the number of electrons in this shell, i.e. 2. 

 

The energy of the “gray” 1s electron in this shell is found using the screen 
constants, i.e. 

 

Energy of the n = 2 shell = energy of an electron of this shell × the number 
of electrons in this shell, i.e. 4 (no distinction is made between s and p 
electrons). 

 

 Therefore, we have 

 

 

EX  Energy of the shell n  1Energy of the shell n  2

EC   13.6
12

6  0.31  12  2  13.6
22

6  0.85  2  0.35  32  4
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Second: calculate the energy of the ion C⁺⁺ 

Consider the outer shell of this ion 

 

There will be one electron less on the shell n = 2; hence, the calculation 

 

Ultimately, for the IP1 of carbon we have 

 

which is 

 

and the result can be compared to the experimental value of 11.20 eV. 

Qualitative improvement of the result 

However, calculation of the Slater ionization energies does not address local 
variations in IP₁; it only presents the general evolution. To explain 
“accidents” in global evolution, we must engage in intuitive reasoning. 

It is an experimentally proven fact that the energies of saturated or half-
saturated shells have a certain stability. As such, it takes more energy to 
extract an electron from a saturated or half-saturated structure than it does 
to extract an electron from a structure that does not have these 
characteristics. 

We should also note that, if, by extracting an electron from a structure, we 
obtain a saturated structure, it will take less energy than expected. 

We can therefore predict these corrections and match them to the evolution 
of IP₁ by looking at the electronic structures before and after ionization, as 
shown in Table VI-13. 

 

EC   13.6
12

6  0, .31  12  2  13.6
22

6  0.85  2  0.35  22  3

IP1C  EC  EC  13.6
22

6  0.85  2  0.35  32  4  6  0.85  2  0.35  22  3

IP1C  11. 46 e.V
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Table VI-13: Qualitative explanation of accidents during the evolution of IP1 

 

d. Electron affinity (EA) 

Electron affinity, denoted EA or A, is the amount of energy released 
following the capture of an electron by an isolated atom. The greater the 
electronic affinity, the more energy the electron captured by the atom has 
and the more stable the resulting negative ion. A negative electronic affinity, 
on the contrary, means that it would be necessary to supply energy to the 
atom to attach an electron to it. 

 

By definition20, the electron affinity is 

 

                                                      
20 CRC Handbook of Chemistry and Physics, 91st Edition (Internet Version 2011), 
W. M. Haynes, ed., CRC Press/Taylor and Francis, Boca Raton, FL., 10-147. 

X  1e  X  EA

EEA  EX  EX
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Fig. VI-17a gives the experimental EA values. 

 

Figure VI-17a: Experimental EAs of elements. 

If we graph the EAs of various elements against their atomic numbers Z 
(Fig. VI-17b), we can see that the minimum electronic affinities occur for 
alkaline earth metals and rare gases, while the maximums occur for 
halogens. This is understandable if we consider that the addition of an 
electron to a saturated or semi-saturated shell is contrary to stability and 
therefore the electron affinity of this element will be low or zero. 
Conversely, if a captured electron reinforces the stability of a shell by 
making it saturated or half saturated, the electron affinity will be high. 
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Figure VI-17b: Electron affinities of elements. 

We can try to calculate the electron affinity using Slater’s method, as 
described above. For example, we have already calculated the energy of a 
carbon atom, i.e. 

 

according to Slater’s method, for the energies of C and C⁻ respectively we 
have
 

 

 

Then, according to the definition of electron affinity 

 

EC   13.6
12

6  0.31  12  2  13.6
22

6  0.85  2  0.35  32  4

EC   13.6
12

6  0.31  12  2  13.6
22

6  0.85  2  0.35  42  5

EEA  EX  EX
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we may write
 

 

so that 

 

The experimental value is thus 1.26 eV and we can see that Slater’s method 
is too crude to be applied in the calculation of electron affinities. 

e. Electronegativity 

Electronegativity is a relative quantity, which 
depends on how it is defined, like a temperature 
scale. This notion, introduced in chemistry, is applied 
to non-isolated atoms. For molecules, which are 
assemblies of atoms, it expresses the greater or lesser 
ability of an atom to attract an electron from the 
chemical bond that binds it to another atom. There 
are several definitions of electronegativity, but we 
shall only talk here about those given by Mulliken21 
and Pauling22 because they are the most commonly 
used. 

 

R. S. Mulliken 

Note that, recently, a new revision of Pauling’s 
electronegativity scale has been proposed23. 

According to Mulliken, the electronegativity RS of an 
element X is 

 

 

L. Pauling 

                                                      
21 Robert Sanderson Mulliken (1896-1986). American physicist and chemist. He is 
mainly known for his work on the concept of the molecular orbital, explaining the 
structure of molecules, for which he won the Nobel Prize in Chemistry in 1966. 
22 Linus Carl Pauling (1901-1994). American chemist and physicist. He won the 
Nobel Prize in Chemistry in 1954 for his work on the nature of the chemical bond 
and the Nobel Peace Prize in 1962. 
23 A. Oganov and C. Tantardini, Nature Communication, 12, (2021) 2087. 

EA   13.6
22

6  0.85  2  0.35  32  4  13.6
22

6  0.85  2  0.35  42  5

EA   13.6
22

6  0.85  2  0.35  42  5  6  0.85  2  0.35  32  4  0.68 e.V.

X  1
2
IP1X  EAX   0,317
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where TC*U
 and VWX are, respectively, the first ionization potential and the 

electron affinity of X. The factor 0.317 is used to make Mulliken’s scale 
coincide with that of Pauling, which is based on the dissociation energies of 
diatomic molecules. 

We can thus see that electronegativity increases when we move from left to 
right along a row of the periodic table. Furthermore, electronegativity 
decreases from top to bottom in a column of the periodic table. Fig. VI-18 
gives an idea of the evolution of electronegativity: the larger the circle, the 
greater the electronegativity. 

 

Figure VI-18: Relative Electronegativity magnitudes according to Pauling. 

f. Atomic radius 

The atomic radius can be experimentally obtained indirectly by measuring 
the distance between the centers of the atoms of a diatomic molecule. 
Indeed, if Re is the internuclear distance at equilibrium, we can write that 
the atomic radius re of an atom is at least equal to half the distance of Re 

 

and the “experimental” atomic radii of some elements may be calculated24 
(see Table VI-14). 

 

                                                      
24 For rare gases the values are of course calculated using quantum mechanics 

Re  2re from which we deduce re  Re
2

 EBSCOhost - printed on 2/13/2023 7:38 PM via . All use subject to https://www.ebsco.com/terms-of-use



Chapter VI 
 

236 

Table VI-14: Calculated radii of some atoms 

 

As can be seen in Fig. VI-19, the atomic radius decreases in the same row 
of the periodic table as we move from alkalines to rare gases. 

 

Figure VI-19: Atomic radius re versus Z. 

The theoretical explanation of this behavior is easily understood, but 
requires the notion of orbital radius. It will be shown later that the atomic 
radius can be estimated using the quantum properties of the electron. The 
electron of the peripheral shell of an atom is at a mean distance <r> from 
the nucleus. 
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Quantum mechanics tells us that 

 

where Cst is a constant; a₀ is the radius of the first Bohr orbit, i.e 0.529 A; 
and Z* is the effective atomic number, which evolves like Z. 

We can thus see that, within a period where n is constant and Z increases, re 
will decrease as we move from an alkaline to a rare gas. 

VI-IV. Tutorial for Chapter VI 

T-VI-1. The one-dimensional atomic model 

a) Recall the properties of a stationary wave 

ANSWER 

A stationary wave is a wave that has amplitude dependent on the spatial 
coordinates. The square of this amplitude has physical meaning, for 
example, in the case of electronic interferences: it represents the probability 
of impact of a particle at a point along the electronic interference plane. 

b) Give the expression of the equation relating the energy of a 
particle to its amplitude wave function. 

ANSWER 

This expression is the Schrödinger equation. For a one-dimensional system, 
we have the following equation 

 

where E is the total energy of the particle and V is the operator potential 
energy, which is zero in the case of the model of the particle in a well of 
infinite potential. 

c) What do the boundary conditions imposed on the wave-particle 
in the potential well correspond to physically? 

re  r  Cst 3n2  ll  1
2Z a0

d2x
dx2

 2m
2

E Vx  0
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ANSWER 

It is the imposing of a space of the order of magnitude of its associated 
wavelength is imposed on the wave-particle. 

d) Express the energy En of the particle in a well of infinite potential. 
What remark can we make? 

ANSWER 

A quick glance at Chapter VI gives the energy of a particle in a potential well as 

 

where h is the Planck constant; m is the mass of the particle; a is the size of 
the one-dimensional space; and n is an integer that takes values from n = 1 
to infinity. 

It is a purely kinetic energy since the potential energy is hypothetically null. 

This energy is quantized because it depends on an integer n called a quantum 
number. It depends on the size of the space and since we have here one-
dimensional space, there is a unique quantum number. 

e) Give the expression of the energy difference between two 
successive energy levels of the potential well. 

ANSWER 

The gap between two successive levels corresponding to n and n+1 is 

 

then 

 

and 

 

En  h2

8ma2
n2

En  En1  En

En  h2

8ma2
n  12  h2

8ma2
n2

En  h2

8ma2
2n  1
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f) Show that the wavelength associated with the particle in the 
potential well is of the order of magnitude of the width of the well. 

ANSWER 

Let us first express the wavelength of the wave associated with the particle 

 

Now let us express the kinetic energy Ekn of the particle. This is equal to 
the total quantized energy En because the potential energy is zero 

 

In addition, the kinetic energy can be put into the form 

 

where p is the momentum of the particle. By equalizing the two expressions 
of the kinetic energy, we get 

 

 

We deduce the relation between the width a and λn 

 

We can see that the wavelength is indeed of the order of magnitude of size 
a of the space. 

h) What is the origin of the quantization of energy in microscopic 
systems? 

n  h
pn

Ekn  En  h2

8ma2
n2

Ekn  1
2

mvn
2 

pn
2

2m

pn
2

2m  h2

8ma2
n2

so that pn
2  h2

4a2
n2 i.e. pn  h

2a n

n  h
pn

 h
h
2a n

 2a
n
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ANSWER 

The expression of the gap ΔEn between two successive levels shows that the 
larger the size of the space, the less the quantization is felt. This is the same 
for the mass of the particle: the lower the mass, the less the energy is 
quantized. On the other hand, a system will have its energy quantized if the 
wavelength of the particle is of the order of magnitude of the size of the 
space in which it is located. 

T-VI-2. Applications of the potential well model 

a) The nucleus of an atom can be compared to a potential well in 
which nuclear particles (nucleons) move in a space of the order of 
one nuclear diameter in length. 

A comparison of the situation of a nucleon with that of an electron 
in the atom, shows that the radiation emitted by the nucleus (γ rays) 
has an energy of the order of one mega electron-volt (10⁶ eV). 

Data: mass of a nucleon ≃≃10⁻²⁷ kg; mass of an electron ≃≃10⁻³⁰ kg; 
diameter of a nucleus ≃≃10⁻¹⁴ m; diameter of an atom ++10⁻¹⁰ m 

ANSWER 

Let us call me the mass of an electron and mnu that of a nucleon. Let aat be 
the diameter of an atom and aN the diameter of a nucleus. We can now 
consider the relation giving the difference between the two successive levels 
previously obtained 

 

We know that a transition between the energy levels En and En+1 corresponds 
to a photon of energy ΔEn = hν. 

We can then write that in the case of an atom we have 

 

and for a nucleus 

En  h2

8ma2
2n  1

hUV  h2

8meaat
2
2n  1

 EBSCOhost - printed on 2/13/2023 7:38 PM via . All use subject to https://www.ebsco.com/terms-of-use



The Quantum Model of the Hydrogen Atom 241 

 

If we consider that the levels concerned are the same in the two systems, 
then, by finding the ratio of these two relations, we obtain 

 

which leads to 

 

As the radiations emitted by the atoms are in the ultraviolet domain, and 
therefore of the order of 10 eV, we can see that the rays emitted by the 
nucleus have an energy of the order of mega-eV. 

b) Construction of a one-dimensional atomic model. In an atom, the 
kinetic energy T has an expression that resembles that of a particle 
in a well of infinite potential. Using this resemblance and knowing 
that the Coulomb energy of electron-nucleus attraction has the 
expression V = -Ke²/r where K = 10⁹ SI 

1) Express the total energy ETot of the system. 

ANSWER 

The total energy is 

 

where T is the kinetic energy and V is the potential 
energy. 

If we assimilate the kinetic energy of the electron to 
the energy of a particle in a well of infinite potential, 
then we can write, taking the diameter of the atom 
as the value of a, as shown in Fig. T-IV-1. 

 

Figure T-VI-1 

h  h2

8mnuaN
2
2n  1

h

hUV


meaat
2

mnuaN
2

h

hUV


1030  1010 
2

1027  1014 
2
 105

ETot  T  V
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Setting a = 2r, we get 

 

Moreover, knowing the expression of the potential energy 

 

we can express the total energy as 

 

Let us simplify 

 

and use the derivative of this expression with respect to r 

   

To obtain the minimum energy for the system, this derivative must be zero. 
Let re be the distance for which this energy is minimum. We then have 

 

which will be verified if 

 

By introducing this value into the expression of the energy, we obtain 

 

T  h2

8m2r2
n2 i.e. T  h2

32mr2
n2

V  K e2

r

ETot  h2

32mr2
n2  K e2

r

An  h2

32m n2 and B  Ke2 so that: ETotnr 
An

r2
 B

r

dETotnr
dr  2 An

r3
 B

r2

dETotnr
dr rre

 2 An

re 
3
 B
re 

2
 0

re  2An
B

ETot
An

re 
2
 B

re
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By replacing An and B in the expressions of re and En, we obtain 

 

so that 

 

We see that the energy is quantized and resembles that found for the 
hydrogen atom according to Bohr’s theory. We can now numerically 
evaluate these quantities. 

 

and 

 

or in angstrom 

 

 

 

or in eV 

 

ETotnr  En  An
2An

B
2
 B

2An
B

  B2

4An

re 
2 h2

32m n2

Ke2
 h2

16me2K
n2

En  
Ke2 

2

4 h2

32m n2
  8mK2e4

h2
1
n2

re  h2

16me2K
n2 i.e. re 

6.6  1034 
2

16  9.1  1031   1.6  1019 
2  9  109

n2

re  1. 2985  1010n2meter

re  1. 2985n2Å

En  
Ke2 

2

4 h2

32m n2
 

8  9.1  10319  109 
2
1.6  1019 

4

6.6  1034 
2

1
n2

En  8. 8717  1019 1
n2

J

En  5. 5448 1
n2

e.V
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These values are slightly different from those found experimentally, but are 
of the same order of magnitude. 

In this approach, it is important to see how the fundamental principles 
operate. The assumption of the wave-like nature of the electron and the 
restriction of the space within which this electron is moving are sufficient 
to make apparent the quantization of energy. 

2) Give the expression of the wavenumber of a transition between the 
levels n₁ and n₂ of this system. Construct the emission spectrum of 
this one-dimensional atom. 

ANSWER 

Just as with Bohr’s model, using the formula giving En, we can reconstitute 
the electron spectra of this one-dimensional atom. 

For the emission spectrum, we have 

 

so that 

 

and for absorption 

 

The value of the constant, which is analogous to Rydberg’s constant, is 

 

We can then construct the spectra by varying ni and nf, just as in the case 
of the hydrogen atom. 

hc 1
em

 8mK2e4

h2
1
nf

2
 1

ni
2

 em  1
em

 8mK2e4

h3c
1
nf

2
 1

ni
2

with nf  ni

 abs
1

em
8mK2e4

h3c
1
ni

2
 1

nf
2

with nf ni

rH
8mK2e4

h3c


8. 8717  1019

6.6  1034  3  108
 4. 4807 106m1
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T-VI-3: Extension to three dimensions:  
the hydrogen atom and hydrogenic atoms 

a) Recall where the 3 quantum numbers that characterize the 
situation of the electron in the atom come from. 

ANSWER 

They come from the solution of the Schrödinger equation in three 
dimensions and are independent of time: n is the principal quantum number 
n = 1, 2,...∞; l is the secondary quantum number; l = 0.1...n-1; m is the 
magnetic quantum number: m = 0, ±1,...±l 

b) What do orbitals represent? 

ANSWER 

They represent the amplitude function of the electron or the square of this 
function, which is called the probability density. They depend on the space 
variables used for the solution of the three-dimensional Schrödinger 
equation, namely the spherical polar coordinates r, θ, and φ. r is the radial 
coordinate, which varies from 0 to ∞; θ and φ are the angular coordinates, 
which vary, respectively, as 0≤θ≤π and 0≤φ≤2π. 

c) Draw the orbitals freehand using the angular distribution of the 
amplitude function |Ψ|. The atomic orbitals: 

1s, 2s, 2px, 2py, 2pz, 3dz₂ ,3dx2-y2, 2dxy, 3dxz, 3dyz 
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ANSWER 

 

Figure T-IV-2: Hydrogenic atomic orbitals. 

d) Give the outermost shell electronic structure of an alkaline, an 
alkaline earth, a halogen, and a rare gas. 

ANSWER 

Alkaline: outermost shell of ns¹ type 

Alkaline earth: outermost shell of ns² type 

Halogen: outermost shell of ns²np⁵ type 

Rare gas (except helium): outermost shell of ns²np⁶ type 

e) Give the electronic structure of the following elements and 
indicate those that belong to the same group: 

₆C, ₁₅P, ₁₈Ar, ₁₄Si, ₃₃As, ₂₄Cr, ₁₀Ne 
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The outermost shell is 4s¹, but there are electrons in the d orbitals of the 
previous shell. As such, it is not an alkaline, but a transition element. 

f) Give the electronic structure of the following ions:  

₁₇Cl⁻, ₂₉Cu⁺, ₂₂Ti^{2⁺}, ₂₅Mn²⁺ 

ANSWER 

The principle of constructing ion structures implies that we first build the 
structure of the neutral element, then we remove (ion +) or add (ion -) 
electrons. 
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g) We define the valence of an element as the number of electrons 
that it is able to give up or receive when it binds with other elements. 

Using this definition, predict the valence of the elements of the first 
three periods of the periodic table from their electronic 
configuration. Plot the evolution of the valence as a function of the 
atomic number Z on a graph. 

ANSWER 

H: valence 1, He: valence 0, Li: 
valence 1, Be: valence 2, B: 
valence 3, C: valence 4, N: 
valence 3, O: valence 2, F: 
valence 1, Ne: valence 0. 

Then, changing the period, 

Na: valence 1, Mg: valence 2, 
Al: valence 3, Si: valence 4, P: 
valence 3, S: valence 2, Cl: 
valence 1, Ar: valence 0.  

Figure T-IV-3. Valence evolution with Z. 

h) An element of the 4th period by double ionization gives an ion that 
has the electronic structure of a halogen. What is its atomic number? 

ANSWER 

Two solutions are possible depending on whether the ion is positive or 
negative. 

Positive ion. Ionization removes 2 electrons from the X atom resulting in an 
ion with the outermost shell of a halogen. 

  

  

 EBSCOhost - printed on 2/13/2023 7:38 PM via . All use subject to https://www.ebsco.com/terms-of-use



The Quantum Model of the Hydrogen Atom 249 

To reconstitute the element it is necessary to add 2 electrons, i.e. 

 

We must therefore give the electronic structure of the alkaline of period 4. 
It is the alkaline of atomic number 19, which is potassium. 

 

Negative ion. We start from the ion 

 

and subtract 2 electrons. 

 

We need to reconstruct the electronic structure of the element of the nitrogen 
family of the 4th period. 

This is arsenic having the atomic number 33. 

 

i) Recall how the first ionization potential (IP₁) evolves 
experimentally when Z increases. 
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ANSWER 

IP1 grows globally 
within one period from 
the alkalines to the rare 
gases and decreases 
sharply when changing 
from the rare gas of one 
period to the alkaline of 
the following period 

 

Figure T-VI-4. Experimental IP1 evolution. 

j) Qualitatively predict this evolution. For which values of Z will we 
see accidents in this evolution? 

ANSWER 

We can assimilate IP₁ to the energy of the least bonded electron (peripheral 
shell) with the sign changed. As the energy of the electron in a 
polyelectronic atom can be likened to the energy of an electron of the 
outermost shell characterized by the quantum number n of a hydrogenic 
atom whose atomic number has been corrected by the influence of the 
environment of the other electrons included in the effective atomic number 
Z* 

 

As such, for IP₁, we have 

 

where n is the quantum number of the outermost shell. We can therefore see 
that within a period, n is the same. As such, Z imposes the evolution of IP₁ 
when we go from left to right. When we change the period, the linear 
evolution of IP₁ conducted by the continuous rising of Z is broken by a 

En   13.6  Z2

n2

IP1  13.6  Z2

n2
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sudden change in n, which increases by a unity. As a result, IP₁ drops 
suddenly. 

We can therefore predict the corrections to be made to the evolution of IP₁ 
by looking at the electronic structures before and after ionization and 
following the qualitative reasoning presented in Table T-VI-1. 

Table T-VI-1: Qualitative explanation of accidents along the evolution of 
IP1 
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CHAPTER VII 

THE CHEMICAL BOND 
 
 
 
This chapter deals with the formation of chemical bonds and the geometry 
of molecules. 

We focus on the successive conceptual contributions that have led to the 
current vision of a chemical bond starting with the fundamental work of G. 
Lewis. In order to better understand this work, we shall build on what we 
have learned from a number of discoveries about the electronic structure of 
atoms, the Lewis method being a consequence of these structures. 

VII-I. The Chemical Bond According to Lewis 

The Lewis method1 is well known through 
the writing of molecular formulas, which 
make use of the conventions stated by 
Lewis. We give here a method for the 
systematic application of this method. 

   
 

G. Lewis 

1. The chemical bond: principles 

A chemical bond is the realization of a bond between two atoms through the 
pooling of two electrons. This convention began with Lewis and remains 
the basis of descriptions of the chemical bond. Even modern theories of 
chemical bonding (molecular orbital theory and the VSEPR method) make 

                                                      
1 Gilbert Lewis (1875-1946). American physicist and chemist. He is known for his 
theory of electron sharing in the chemical bond and for his theory of acids and bases. 
Lewis developed theoretical physics by studying the application of thermodynamics 
to chemical equilibrium. 
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use of this concept of chemical bonding resulting from sharing a pair of 
electrons. 

1. Lewis’s rule 

By bonding, the atoms acquire the outermost electronic structure of a rare 
gas. 

When we consider the electronic structure of the elements as described in 
quantum theory, it is easy to understand the method. 

Let us take the fluorine 
molecule as an example. 

 

The outermost electronic shell of this element allows us to understand the 
representation that Lewis made of the fluorine element (F). 

In the representation of the element according to Lewis, only the electrons 
of the outermost shell (the L shell) are represented by points. The electrons 
are grouped two by two, that is to say in doublets where possible. Thus, 
fluorine, which contains 7 electrons on its outermost electronic shell, has 
them arranged in 3 doublets represented by the closed points. 

A quick way to represent these doublets 
is to use lines. Thus the outermost shell 
of fluorine can be represented as shown 
on the right. 

 

Now let us examine the union between two atoms. We shall represent their 
respective electrons differently to distinguish them. 

The Lewis rule, 
which says that 
through bonding 
two atoms acquire 
a saturated 
outermost shell. 
This gives the  

 

  

structure of the nearest rare gas belonging to the 2nd period of the periodic 
table, which is neon.As we can see, there will be 8 electrons around each 
atom, i.e. an outermost shell of rare gas form. 
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In general there are 8 electrons on the 
outermost shell of a rare gas, except for 
helium, which has only 2. 

We may note that the Lewis 
representation of the hydrogen molecule 
makes the outermost shell of bonded 
hydrogen look like that of a helium 
atom, as shown on the right. 

 

2. Bonding and non-bonding doublets 

In the example of fluorine, we can see the difference between bonding and 
non-bonding doublets. 

(i) The Lewis rule places 8 electrons around each 
atom. As such, for 2 atoms there should be 2 x 8 
= 16 electrons for the Lewis rule to be respected. 

(ii) The fluorine molecule has only 2 x 7 = 14 
electrons in its outermost shell. 

(iii) The difference 16 - 14 = 2 then represents 
the number of electrons counted twice, i.e. the 
number of electrons that are common to the two 
atoms. 

 

(v) There are 14 - 2 = 12 electrons remaining that do not participate in the 
bond. 

(vi) There are 12/2 = 6 non-bonding doublets. 

With fluorine, this procedure seems obvious, but for more complex 
molecules it can be useful to represent this in the form shown in tables VII-
1 and VII-2. 
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Table VII-1: Systematic method for Lewis structures 

Let us now look at the ozone molecule. This molecule has the formula 
O₃, is bent, and the distances between the oxygen atoms are of equal 
length. An analysis of the electronic structure of this molecule gives the 
following results. 

Table VII-2: Systematic method for the Lewis structure 
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As bonds 12 and 23 must be of equal length, it should be envisaged that 
a bonding doublet is delocalized on the whole of the molecule. This 
phenomenon is called mesomerism or resonance The resonance 
structures are connected by a double entry arrow, i.e. ↔. This arrow does 
not mean that we are dealing with an equilibrium, but ratehr that the 
structure of the molecule is intermediate between two resonance 
structures. 

We can globalize this representation in 
the following way with a hybrid 
structure. For ozone, we have a 
superposition of the two resonance 
forms, giving the representation on the 
right, with the delocalized doublet 
shown by dotted lines. 

 

 

3. Exceptions to the Lewis rule 

Atoms in column 13 of the periodic classification (boron, aluminum, etc.) 
are often electro-deficient, which is a default violation of the octet rule. 
These atoms have exactly 6 electrons around them. We speak of a “gap” 
(represented by a small empty rectangle), which both boron and 
carbocations have. The gap gives the atom a particular acidity for 
neighboring electrons (Lewis acidity). 

With the element silicon, atoms can override the octet rule. We can then 
speak of hypervalence (for example PCl₅, SF₄). The atoms particularly 
concerned are sulfur, phosphorus, and xenon. 

Hydrogen atoms have a maximum of 2 electrons around them and thus we 
speak of the duet rule in relation to them. 

For example, we have the case of the SF₄ 
molecule where the hypervalence of 
sulfur states that this atom will accept 10 
electrons on its outermost shell when it 
binds with other atoms. The Lewis rule 
then results in 10 electrons (see Table 
VII-3). 
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Table VII-3: Systematic method for SF4 

Another example is the case of the XeF₂ molecule where the hypervalence 
of neon states that this atom will accept 10 electrons on its outermost shell 
when it binds with other atoms. The Lewis rule thus results in 10 electrons. 

Table VII-4: Systematic method for the Lewis structure of XeF₂ 

 

4. Formal charges 

Another interesting notion of the Lewis method is the calculation of formal 
charges. Formal charges are local charges reflecting the non-uniformity of 
the electronic distribution in a molecule. The sum of these local charges is 
zero if the molecule is neutral or equal to the charge of the ion if the 
molecule is electrically charged. 

By definition, the formal charge carried by an atom X is 
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For example, consider the ozone molecule described above and more 
particularly one of its resonance forms. 

                                    

Table VII-5 gives the formal charges on each atom of ozone. For the other 
limit forms, the same calculations are given in the figure below on the right 
in which the formal charges are represented by numbers within parenthesis, 
above the atoms of both resonance structures and the hybrid form after 
delocalization of the electrons. 

Table VII-5: Formal charges on O3 

 

For the hybrid form, the changing formal charges are averaged. 

                       

fX  Z  core electronsNon-bonding electrons  Bonding electrons

2
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For instance, in the case of ozone, for atoms 1 and 3 we have the average 
formal charge of (-1) divided by the number of atoms concerned, i.e. (-1/2). 

5. Failures of the Lewis method 

There are certain molecules that do not respect the Lewis rule; however, we 
still use Lewis notation to represent them. These molecules have an 
electronic deficit on one of the atoms or molecules where the d orbitals play 
an important role.  

An example is the BH₃ molecule for which the systematic method indicates 
that 2 electrons are missing if we were to obtain a conventional Lewis 
structure; however, BH₃ violates the Lewis rule (Table VII-6). 

                                              

Table VII-6: Lewis rule failure for BH3 

 

Another example is phosphorus pentachloride (PCl₅). In Table VII-7, we 
apply the systematic method to it. 

Table VII-7: Lewis method failure for PCl5 
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In this case, there are not enough bonding doublets 
to bind the 5 ligands of the phosphorus. However, 
if we consider that P has what is called 
hypervalence, the Lewis rule is satisfied if 
phosphorus can have 10 electrons in its outermost 
shell.   

Then, the number of bonding doublets becomes equal to five, giving us the 
figure on the right. 

There are many other examples of such failures to account for electronic 
structure according to Lewis’s octet rule. 

As such, a need to develop other more relevant theories of the chemical 
bond was recognized. 

VII-II. The Chemical Bond according  
to Molecular Orbital (MO) Theory 

The theory of molecular orbitals (MO) is the modern 
theory of chemical bonding. It builds on the definition 
of the chemical bond by Lewis that an electronic doublet 
shared in common between two atoms is equivalent to a 
chemical bond. 

The theory of molecular orbitals builds on the valence 
bond theory (1927) and was developed in the work of F. 
Hund, R. Mulliken, J. C. Slater, and J. Lennard-Jones2. 

 

Sir Lennard-
Jones 

This theory was originally called the Hund-Mulliken theory. The term 
orbital was introduced by Mulliken in 1932 and in 1933 the theory of 
molecular orbitals was accepted as a valid and practical theory. 

                                                      
2 Sir John Lennard-Jones (1894-1954) was a British mathematician, theoretical 
physicist, and theoretical chemist. He is considered to be the initiator of modern 
quantum chemistry. 
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According to the physicist and physicochemist Erich 
Hückel3, the first quantitative use of the theory of 
molecular orbitals is in a 1929 article by Lennard-
Jones4. 

 The first precise calculation of a molecular wave 
function was carried out in 1938 by Charles 
Coulson5 for the dihydrogen molecule.  

E. Hückel 

In 1950, molecular orbitals were definitively defined as eigenfunctions 
(wave functions) of the Hamiltonian of the self-coherent field and it was 
from this moment that the theory of molecular orbitals became fully 
rigorous and consistent. This rigorous approach is known as the Hartree6-
Fock7 method for molecular orbitals, although it is based on atomic 
calculations. In these calculations, molecular orbitals are developed on a 
basis set8 of atomic orbitals, represented by the Roothaan’s equations9. 

 

C. Coulson 

 

V. Fock 

 

D. Hartree 

 

C. Roothan 

                                                      
3 Erich Hückel (1896-1980) was a German physicist and chemist. He is known for 
two major contributions: the Debye-Hückel theory on electrolytic solutions and 
Hückel’s method of approximation for the calculation of molecular orbitals. 
4 J. E. Lennard-Jones, Trans. Faraday Soc., 25 (1929), p. 668. 
5 Charles Alfred Coulson (1910-1974). British theoretical chemist known for his 
contribution to theoretical chemistry. 
6 Douglas Hartree (1897-1958) was an English mathematician and physicist. He is 
known for his development of numerical analysis and its application to atomic 
physics. 
7 Vladimir Fock (1898-1974). Russian physicist known for his work on quantum 
mechanics and quantum electrodynamics. 
8 A basis set in quantum chemistry is a set of atomic wave functions used to construct 
molecular orbitals by their linear combination. 
9 Clemens Roothaan (1918-2019) was a Dutch physicist. He is known for his 
contributions to molecular calculations. 
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This led to the development of many ab initio methods of quantum 
chemistry. In parallel to these rigorous developments, the theory of 
molecular orbitals is also applied in an approximate form using empirically 
established parameters in what is known as a semi-empirical quantum 
method. 

1. Principles 

Molecular orbital theory envisions an interaction between the atomic 
orbitals of two different atoms, resulting in molecular orbitals. Just like the 
light interferences that we studied in Chapter II, this interaction has two 
types of solutions: a constructive solution that favors the chemical bond and 
a destructive interaction that does not favor it. As such, depending on the 
interfering orbitals, there will be two types of molecular orbitals: molecular 
bonding orbitals and molecular anti-bonding orbitals. This method is known 
as the simple LCAO method (linear combination of atomic orbitals). This 
method can be improved by adding a variational parameter in the wave 
function used, but the principle remains the same. 

a) Referential 

 

Figure VII-1: Coordinates for the H₂⁺ ion. 

 EBSCOhost - printed on 2/13/2023 7:38 PM via . All use subject to https://www.ebsco.com/terms-of-use



The Chemical Bond 263 

Let us consider two orbitals ϕ₁ and ϕ₂ of the same kind, centered respectively 
on two nuclei, which we shall call 1 and 2. We call φ the angle of rotation 
around the z axis, which passes through the nuclei. This angle can vary from 
0 to 2π and is shown in Fig. VII-1. 

What is the wave function that describes the movement of the electron? We 
can answer this question immediately if we mentally increase the distance 
R separating the two nuclei. The electron can then belong to the zone of 
influence of nucleus 1 or to that of nucleus 2. The first case will be described 
by the atomic wave function ϕ₁ and the second case by the atomic wave 
function ϕ₂. 

b) Molecular energy 

We know the principle for calculating the energy of the electron when it is 
in any orbital. For this, the energy operator H or Hamiltonian of the system 
and the wave function Ψ must be known. The energy is then formally 
written 

 (VII-1) 

where Ψ* is the conjugate complex of Ψ. 

using the LCAO method, we can construct the molecular wave function Ψ 
as a linear combination of the atomic wave functions ϕ₁ and ϕ₂, so that 

 (VII-2) 

where C₁ and C₂ are the coefficients associated to each atomic orbital, i.e. 
the respective “weights” of the orbitals ϕ₁ and ϕ₂ in the combination. By 
introducing this expression of Ψ in Eq. (VII-1), we get 

 (VII-3) 

in which we consider, for reasons of simplicity, that the wave function Ψ is 
real. 
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We can rewrite the expression (VII-3) by developing the two terms of this 
fraction, knowing that C₁ and C₂ are constants. 

 
       (VII-4) 

We can simplify its writing as 

 

E₁₁ and E₂₂ are, respectively, the Coulomb energies of the electron in the 
state ϕ₁ of hydrogen atom 1 and in the state ϕ₂ of hydrogen atom 2, and the 
crossed term E₁₂ is called the exchange energy. 

 

The term S is the overlap integral between atomic orbitals ϕ₁ and ϕ₂ 

 (VII-5) 

If one considers that ϕ₁ and ϕ₂ are normalized wave functions, i.e. if 

 

then Eq. (VII-4) becomes 

 

and as such, we may write 

 
                                                                                              (VII-6) 

1H1dv  E11 and 2H2dv  E22

12dv  21dv  S

1
2dv  2

2dv  1

E  C1
2E11C2

2E22  C1C2E12  C1C2E21

C1
2  C2

2  C1C2S  C1C2S

EC1
2  C2

2  C1C2S  C1C2S  C1
2E11C2

2E22  C1C2E12  C1C2E21
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We now perform what is called the variation method. In order to determine 
the best coefficients to obtain the lowest energy, we successively derive this 
expression with respect to C₁ and C₂ to obtain 

 

 

giving 

 

by rearranging, we get 

 

As we wish to find the minimum energy with respect to C₁, we have 
∂<E>)/∂C₁ = 0, so that 

 

by rearranging, we get 

 

Now, let us derive Eq. (VII-6) with respect to C₂. We thus obtain 

 

We then have the following system of two simultaneous equations to solve 

 (VII-7) 

and have 

 
C1

C1
2E11C2

2E22  C1C2E12  C1C2E21 

E
C1

2C1  C2S  C2S  E2C1  C2S  C2S  2C1E11  C2E12  C2E21

E
C1

C1  C2S  EC1  C2S  C1E11  C2E12

EC1  C2S  C1E11  C2E12

C1E11  E  C2E12  ES  0

C1E12  ES  C2E22  E  0

E11  E E12  ES
E12  ES E22  E

 0
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 (VII-8) 

Let us simplify Eq. (VII-8) in the case of the hydrogen atom where E₁₁ = 
E₂₂ because the two atoms are identical 

 

rearranging this equation leads to 

 

This equation has two solutions 

 (VII-9) 

and 

 (VII-10) 

We shall see later why we chose the sign for the first solution. Thus, we 
can deduce 

 

and obtain the two following solutions 

 (VII-11) 

 (VII-12) 

We need to evaluate the different quantities in the equations to access the 
energies of the molecular orbitals, namely the Coulomb energy of the 
atomic orbitals E₁₁, the exchange integral E₁₂, and the overlap integral S. 
This integral depends on the distance R between the nuclei, which is 

E11  EE22  E  E12  ES2  0

E11  EE11  E  E12  ES2  0

E11  E2  E12  ES2

E11  E2  E12  ES2

E11  EII   E12  EIIS

EI1  S  E11  E12

EII1  S  E11  E12

EI  E11  E12

1  S

EII 
E11  E12

1  S
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neglected if R is not too small. Under these conditions, the molecular 
energies are simply reduced to 

 (VII-13) 

 (VII-14) 

As E₁₁ and E₁₂ are both negative, it can be seen that EI is more negative than 
EII. Necessarily being lower in energy than the atomic energy E₁₁, it 
therefore corresponds to a more favorable situation from the energetic point 
of view. EII is thus energetically higher than the atomic energy E₁₁ and the 
system will be destabilized if the electron is in the state characterized by EII. 

c) Orbital coefficients 

To fully describe the system, we need to know the coefficients of the linear 
combinations. For this, consider the secular equations 

 (VII-14) 

In the case of the lower energy orbital ΨI, for the first equation we can write 

 

where C₁I and C₂II, respectively, denote the coefficients of the atomic 
orbitals in the linear combination. 

We can write 

 (VII-15) 

so that 

 

Let us replace the energy <E>I by its expression (VII-13). This leads to 

EI  E11  E12

EII  E11  E12

C1E11  E  C2E12  ES  0

C1E12  ES  C2E22  E  0

C1
I E11  EI   C2

I E12  0

C1
I E11  EI   C2

I E12

C1
I

C2
I   E12

E11  EI
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Let us do the same with the energy <E>II 

 

then 

 

We can thus deduce the expression of the molecular orbitals 

 

It just remains to evaluate C₁I and C₁II. For this we introduce a physical 
condition into the problem. When it is in an orbital, the electron must have 
a probability of 1 (certainty) to be in the molecule. In other words 

 

If the wave functions are real, as is the case here, we have the condition 

 

For the wave function ΨI, we can write 

 

As C₁I is a constant, we have 

 

so that, by developing the integral 

C1
I

C2
I  1 so that C1

I  C2
I

C1
IIE11  E11  E12   C2

IIE12  0

C1
IIE12  C2

IIE12  0 and C1
II  C2

II

I  C1
I 1  2 

II  C1
II1  2 

I
Idv  1

I
2dv  1

C1
I 

2   1  2 
2dv  1

C1
I 

2 1  2 
2dv  1
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or 

 

Given that the orbitals ϕ₁ and ϕ₂ are normalized, and using the notation for 
the overlap integral (VII-5), we have 

 

which leads to 

 

and 

 (VII-16) 

The expression of the coefficient C₁I may be deduced 

 (VII-17) 

Similarly, with ΨII for the coefficient C₁II we obtain 

 (VII-18) 

If the overlap integral S is neglected, these coefficients become 

 

Hence, the expressions of the molecular wave functions are 

C1
I 

2 1
2  2

2  212 dv  1

C1
I 

2 1
2dv  2

2dv  2 12dv  1

C1
I 

2
1  1  2S  1

2C1
I 

2
1  S  1

C1
I 

2  1
21  S

C1
I  1

21  S

C1
II  1

21  S

C1
I  1

2
and C1

II  1
2
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 (VII-19) 

and 

 (VII-20) 

2. Graphical representations of molecular orbitals 

One way to represent molecular orbitals is to use isodensity surfaces, which 
have the merit of providing information on both probability density and 
topology. To make the information provided more complete, we use the 
representation that gives the value of the wave function including its sign in 
the different areas of the space. This method is similar to that used for 
atomic orbitals with the difference that there are now two nuclei and 
therefore a different referential, the origin of which will be taken as the 
middle of the internuclear axis. 

We start from the expression of molecular orbitals with linear combinations 
of atomic orbitals 

 

in which φ₁ and φ₂ constitute a basis set of wave functions.  

From the geometrical point of view, the establishment of a chemical bond 
supposes a direction. Usually, we consider that the chemical bonds between 
two atoms start by establishing themselves along the axis z'0z giving us the 
interaction pattern in Fig. VII-2. 

I  1
2
1  2 

II  1
2
1  2 

I  1
2
1  2  and II  1

2
1  2 
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Figure. VII-2: interaction scheme between AOs. 

a. Interaction between atomic orbitals ns: molecular orbitals σs 

Consider the case of the linear combination of two orbitals 1s, the 
expression of which is given in Table VI-2. If a₀ = 1 and Z = 1, we have 

 

where r₁ and r₂ are the distances from the electron to nucleus 1 and 2, 
respectively. 

First consider the problem in two dimensions. The coordinates will then be 
as shown in Fig. VII-1. 

For nucleus 1, we have 

 

 

so that 

 

r1  1


expr1 and r2  1


expr2

z°1  R
2

, y°1  0

z°2  R
2

, y°2  0

I  1
2

expr1  expr2

II  1
2

expr1  expr2
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Using the Pythagorean theorem we can write 

 

So, replacing r₁ and r₂ with their respective values, we have 

 

 

For a value of the distance between the nuclei, for example R = 2, it then 
suffices to vary z and y, for example, between -3 and 3, and we obtain a 
table of values of ΨI and ΨII, respectively, the 3-D representation of which 
(the two space variables and the function) are given in figs. VII-3a and VII-
4a for the two molecular wave functions. In order to better visualize the 
orbital, we use contour lines (figs. VII-3b and VII-4b), which projects the 
trace of the wave function at a certain value in the z0y plane. These curves 
are called isoamplitude curves. 

 

Figure. VII-3a: Amplitude  
function for σ1s. 

 

Figure. VII-3b: Amplitude  
contours for σ1s. 

 

r1  z  z°1 
2  y  y°1 

2

r2  z  z°2 
2  y  y°2 

2

I  1
2

exp  z  z°1 
2  y  y°1 

2  exp  z  z°2 
2  y  y°2 

2

II  1
2

exp  z  z°1 
2  y  y°1 

2  exp  z  z°2 
2  y  y°2 

2
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Figure VII-4a: Amplitude  
function for σ*1s. 

 

Figure VII-4b: Amplitude  
contours for σ*1s. 

Note that the sign of the function is reversed in the case of the orbital ΨII 
after being canceled in the internuclear zone. 

A similar representation given in Fig. VII-5 uses the probability density 
ΨII², rather than the wave function ΨII. In this case, the orbital is represented 
by isodensity curves the shapes of which are similar to those shown above. 
This representation allows us to realize the probability density of the 
electron in the space around the nuclei. We can then see that the probability 
density in the internuclear zone is not zero, which favors the existence of a 
chemical bond between the nuclei. There is symmetry in the revolution of 
the orbital around the axis σ, which merges with the axis z'Oz; we shall call 
this orbital σ1s because it comes from the interference between two atomic 
orbitals 1s. As it promotes chemical bonding due to the non-zero probability 
density in the internuclear zone, this orbital is called the bonding orbital. 
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Figure VII-5a: Probability density for 
σ1s. 

 

Figure VII-5b: Probability  
density for σ*1s. 

When we represent the orbital ΨII, which corresponds to a combination of 
the function of opposite sign, we obtain the orbital σ*s for the symmetry of 
the revolution around the axis z'Oz, which has a zero probability density 
between the nuclei. This is not favorable to the establishment of a chemical 
bond between the nuclei, hence it takes the name anti-bonding molecular 
orbital (Fig. VII-6). 

Figure VII-6a: Probability  
density for σ*1s. 

Figure VII-6b: Probability  
density contours for σ*1s. 

 EBSCOhost - printed on 2/13/2023 7:38 PM via . All use subject to https://www.ebsco.com/terms-of-use



The Chemical Bond 275 

The representation of the orbital is complete once we have varied the third 
variable, the angle φ of rotation around the axis z'oz.  

In the case of the orbital σ1s or σ*1s, we obtain an elongated volume 
representing an isodensity surface according to the diagram: the 
constructive combination gives the bonding orbital σns and the destructive 
combination gives the anti-bonding orbital σ*ns (Fig. VII-7). 

 

Figure VII-7: Schematic representation of the interaction between two AO ns. 

The sign of the wave function is represented by a color—gray for the “+” 
and white for the “-” signs. 

This type of orbital is met in the case of axial interactions between ns 
orbitals and also between npz orbitals. There are also other types of 
interactions between p orbitals. 

b. Interaction between np atomic orbitals 

There are three np atomic 
orbitals, i.e. 2px 2py, and 2pz; 
there are two sorts of 
interactions between them. An 
axial interaction between npz 
AOs and two lateral 
interactions for the 2px and 2py 
respectively. Fig. VII-8 
presents the interaction 
scheme between these 
orbitals. 

 

Figure VII-8: Interaction scheme  
between np AOs. 
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σz orbital 
 
Looking at Fig. VII-8, we can see that once we complete the linear 
combination along the z axis, generating the two orbitals σz and σ*z, the 
only possibility of interaction between the np AOs is lateral and 
perpendicular to the z axis, while the only possibility of interaction between 
the 2p orbitals is lateral. Let us look first at the axial combination between 
the atomic orbitals 2pz. 

Consider the expression of the 2pz wave function 

 

in which we recognize the expression of the z coordinate and write 

 

The wave function linear combinations of atomic orbitals for σz are thus 

 

and for the anti-bonding σ*z 

 

which leads to 

 

The orbital will initially be constructed in the z0y plane. To do this, we have 
to locate the coordinates of the nuclei in the coordinate system, the origin 
of which is in the middle of the internuclear axis, i.e. 

 

 2pz 
1

4 2
exp  r

2
r
2

cos

 2pz 
1

8 2
zexp  r

2

z  1
2
2pz1 2pz2 

z
  1

2
2pz1  2pz2 

z  1
2

1
8 2

z1 exp  r1

2
 1

8 2
z2 exp  r2

2

z1  R
2

; y1  0 and z2  R
2

; y2  0
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Then, we have the expressions for the two molecular orbitals 

 

 

We represent the contour lines of the Ψσz and Ψσ*z OM amplitudes 
respectively in figs. VII-9a and VII-9b. 

 

Figure VII-9a: bonding σz MO  
contour lines. 

 

Figure VII-9b: bonding σ*z  
MO contour lines. 

We can see that for the orbital σz the wave function is not null in the 
internuclear zone, implying electronic density in this area and thereby 
favorable connective conditions for the two nuclei. The orbital σz has axial 
symmetry with respect to the axis z'oz and is symmetrical with respect to a 
plane perpendicular to z'Oz in the middle of the internuclear distance. It has 
a positive phase in this area, but a negative phase beyond the nuclei. 

 z  1
16 2

z  z1 exp 
z  z1 

2  y  y1 
2

2

 1
16 2

z  z2 exp 
z  z2 

2  y  y2 
2

2

 z
  1

16 2
z  z1 exp 

z  z1 
2  y  y1 

2

2

 1
16 2

z  z2 exp 
z  z2 

2  y  y2 
2

2
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On the contrary, the orbital σ*z does not favor a connection between the two 
nuclei since the probability density between the nuclei is zero. The orbital 
has axial symmetry with respect to z'Oz and is asymmetric with respect to 
the plane perpendicular to z'Oz passing through the middle of the 
internuclear axis. 

Fig. VII-10 gives a schematic representation of the molecular orbitals σz 
and σ*z. 

 

Figure VII-10: Interaction scheme of two npz AOs. 

πx and πy orbitals 

These orbitals result from the lateral interaction of two atomic orbitals npx 
or npy. For this, we have to work in the xOz or yOz plane. We preferably 
study the orbital resulting from the interference in the yOz plane for reasons 
of convenience, but the orbitals obtained in the xOz plane are identical to 
those obtained in the yOz plane with a rotation of π/2. We have the 
following interactions in Figs. VII-11. 

Figure VII-11a: Lateral 
interactions of two npy AOs. 

Figure VII-11b: Lateral interactions  
of two npy AOs. 

If we draw the isoamplitude curves for the πy molecular orbital, which are 
easier to represent, we obtain the following result for the πy binding orbitals 
(Fig. VII-12a) and the π*y anti-binding orbitals (Fig. VII-12b). 
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Figure VII-12a: πy MO contour lines. 

 

Figure VII-12a: π*y  
MO contour lines. 

The πnpx orbitals can be deduced from πnpy by a rotation of π/2 in the plane 
perpendicular to the sheet. 

3. Energy level diagrams 

Above we saw that the interaction of two atomic orbitals leads to two molecular 
orbitals—one binding, the other non-binding. The binding orbital has lower 
energy than the energy of the starting atomic orbitals, while the anti-binding 
orbital has an energy greater than that of the starting atomic orbitals. 

In Fig. VII-13, we represent these results in a diagram of energy levels, 
which should be read as follows: on the left and right followed by the  

vertical energy axes, we can see 
the situation of the system 
before the molecular interaction. 
In the center, we find the 
situation that results from this 
interaction: the atomic levels of 
the same energy E₁ = E₂ are split 
into molecular levels of 
different energies EI and EII. 
This diagram is diachronic 
(before-after) and is called an 
orbital correlation diagram. 

 

Figure VII-13: Correlation diagram  
of AOs and MOs. 

It can be seen that the OMs obtained are of different energies. The lowest 
energy is the binding ΨI, while the highest is the anti-binding ΨII. It can be 
noted that the electronic density (the density probability of the presence of the 
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electron) is large in the internuclear zone of the binding OM, thus favoring a 
bond between the nuclei; in the case of the anti-binding OM, the electronic 
density is zero, which is unfavorable for a connection between the nuclei. 

4. Interference principles 

If we consider the interaction between all the atomic orbitals of one atom 
with all the atomic orbitals of another atom, we can have two types of 
diagrams. These diagrams can be predicted by looking at the outermost 
electronic structure of the interacting atoms. We shall limit our study to that 
of homonuclear diatomic molecules. 

If an atom that has n orbitals is interacting with an atom that also has n 
atomic orbitals, we get 2n molecular orbitals. 

The interacting orbitals must all be of the same symmetry or of neighboring 
symmetry and their energies must not be too far apart, or their respective 
interaction, although possible, will remain negligible. 

The correlation diagram for the set of molecular orbitals resulting from the 
interference between the atomic s or p orbitals takes into account the energy 
of the starting atomic orbitals, which is the basis of the linear combination. If 
we start from the basis of the atomic orbitals, including the 1s, 2s, 2px, 2py, 
and 2pz orbitals, for each atom, we get 10 molecular orbitals. Each molecular 
orbital is created based on the symmetry and the energy gap between the 
initial atomic orbitals. Thus, we shall be able to see several groups of atomic 
orbitals, which will interfere. If A and B are the atoms with atomic orbitals 
that interfere, we mainly have the following interactions. 

 

From the energy point of view, we have the a priori arrangement given in 
Fig. VII-14. 

1sA  1sB   1s and 1s


2sA  2sB   2s and 2s


2pzA  2pzB   2pz and 2p z
 or, to simplify z and  z



2pxA  2pxB   2px and 2p x
 or, to simplify x and  x



2pyA  2pyB   2p y and 2p y
 or, to simplify  y and  y


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The double lines on the vertical axes mean that the energy scale has been 
shortened to include the orbitals on the diagram. The 1s and 2s orbitals 
therefore have no significant interaction even if they are of the same 
symmetry because they are energetically too far apart. Regarding the anti-
bonding orbitals (marked with an asterisk *), they will always be higher on 
the energy scale than the corresponding bonding orbitals. 

 

Figure VII-14: a priori diagram. 

The σ type orbitals are a priori more stable than the π type orbitals and 
therefore come below them on the energy scale. However, as we shall see, 
this last detail has to be reconsidered. The orbitals πx and πy have the same 
energy and are said to be degenerate, as are π*x and π*y. It is for this reason 
that they are represented by lines on the same level. 
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5. Extension to polyelectronic molecules 

As with the results obtained in the case of the hydrogen atom 
(monoelectronic atom), which have been extended to atoms with several 
electrons (polyelectronic atoms), we can use the same principles to 
molecules other than the molecular hydrogen ion. This supposes certain 
rules, specified due to the presence of several electrons, which govern the 
electronic structures of molecules with several electrons. 

a. Types of diagrams encountered 

In order to facilitate the rapid use of the correlation diagrams of molecular 
orbitals to build the electronic structures of molecules, we state the 
following procedures the reasons for which will be made apparent later. 

Filling the molecular energy levels with electrons, we must obey the 
following rules: 

-  when the outermost shell of an atom constituting a homonuclear 
diatomic molecule does not have doublets in the np orbitals, we have 
what is called a diagram with configuration interaction (CI). 

-  when there are doublets in the np atomic orbitals, we have an a priori 
diagram, which we have already defined and that we can qualify as 
natural. These types of diagrams occur periodically and they intervene as 
soon as the atomic orbitals np are occupied by electrons (Fig. VII-15). 

 

Figure VII-15: Both types of diagrams for homonuclear diatomic molecules. 
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The difference between these diagrams is related to the gap Δ between the 
energies of the orbitals s and p in the same atom. The gap Δ is significant when 
there is a strong repulsion between the s and p orbitals of the outermost shells 
of the same atom, occurring when there are doublets in the p orbitals. The order 
of the energy levels is that given by the a priori diagram. This term means that 
it is the natural order of molecular energy levels. 

The difference Δ is small when there is little repulsion between the electrons 
in the outermost shell of orbital s and p, that is to say when there are no 
electron doublets in the p orbitals. We then have the diagram with 
configuration interaction. These terms mean that, due to their energetic 
proximity, there is an interaction between the molecular orbitals σ2s and σz; 
an interaction that raises the level of the orbital σz and lowers that of the 
orbital σ2s. The orbital σz then passes over the orbitals πx and πy. We say that 
there is a permutation of the levels σ and π. 

b. Interference between atomic orbitals of different energies 

The energy level of the interfering orbitals is not always the same. Let us 
examine the case where the basis orbitals that interfere do not have the same 
energy. 

We consider the result of the interaction between two normalized orbitals 
characterized by ϕ₁ and ϕ₂. The molecular wave function can be represented 
within the framework of the LCAO method, i.e. 

 

where the Ci is the respective weight of orbital ϕi. 

Using the same notations as in our treatment of the molecular ion H₂⁺, we 
have 

 

We suppose that 

 

and E₁₂, the interaction energy, has the form 

  C11  C22

1H1 dv  E11 and 2H2 dv  E22

E11  E22
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whereas the overlap integral is written 

 

Furthermore, since ϕ₁ and ϕ₂ are normalized, we have 

 

and then, for the energy (VII-11) we write 

 

Let us now apply the variation method we used previously 

 

which leads to the system of secular equations 

 

For the system to be solved, the secular determinant must be zero 

 

i.e. 

1H2 dv  2H1 dv  E12

12 dv  S12

11 dv  22 dv  1

E  C1
2E11  C2

2E22  2C1C2E12

C1
2  C2

2  2C1C2S12

E
C1

 0

E
C1

 0

C1E11  E  C2E12  ES12   0

C1E12  ES12   C2E22  E  0

E11  E E12  ES12 

E12  ES12  E22  E
 0
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by developing this expression we get 

 

i.e. 

 

or 

 

 

The resolution of this equation leads to 

 

To simplify, consider that S₁₂ is negligible and the equation then becomes 

  

Let us consider the discriminant 

 

and develop it 

 

or 

 

which may be also written 

 

E11  EE22  E  E12  ES12 
2  0

E11E22  EE22   EE11  E2  E12
2  E2S12

2  2ES12  0

E11E22  EE22   EE11  E2  E12
2  E2S12

2  2ES12  0

E21  S12
2   EE11  E22  2S12   E11E22  E12

2 

E  1
21  S12

2 
E11  E22  2S12   E11  E22  2S12 

2  41  S12
2 E11E22  E12

2 

E  1
2

E11  E22   E11  E22 
2  4E11E22  E12

2 

  E11  E22 
2  4E11E22  E12

2 

  E11
2  E22

2  2E11E22  4E11E22  4E12
2

  E11
2  E22

2  2E11E22  4E12
2

  E11
2  E22

2  2E11E22   4E12
2
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and 

 

The first solution <E>I is 

 

 

so that 

 

and finally 

 

Likewise, for <E>II we find 

 

Note that the expression E₁₂²/(E₁₁-E₂₂) is positive because E₁₂² is a square 
and E₁₁-E₂₂>0. 

 

EII 
1
2

E11  E22   E11  E22  
2E12

2

E11  E22 

EI 
1
2

E11  E22   E11  E22  
2E12

2

E11  E22 

EI 
1
2

E11  E22  E11  E22 
2E12

2

E11  E22 

EI 
1
2

2E22 
2E12

2

E11  E22 

EI  E22 
E12

2

E11  E22 

EII  E11 
E12

2

E11  E22 
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We deduce that <E>I is 
the most negative of the 
solutions. It therefore 
corresponds to the 
energy of the binding 
orbital while <E>II 
corresponds to the 
energy of the anti-
bonding orbital. In Fig. 
VII-16 we schematize 
this by drawing a 
diagram of the energy 
levels. 

 

Figure VII-16: Interaction between two  
orbitals of different energies. 

Let us consider the secular equations in which we have neglected the 
overlap integrals 

 

These equations can also be written 

 

 

Let us make the product of these two last expressions 

 

So, for the energy binding orbital <E>I, we have 

C1E11  E  C2E12   0

C1E12   C2E22  E  0

C1E11  E  C2E12 

C1E12   C2E22  E

C1

C2
  E12

E11  E
 E12

E  E11 

C1

C2
  E22  E

E12


E  E22 

E12

C1

C2

2


E22  E
E11  E
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while for the anti-binding orbital <E>II, we have 

 

c. Dipole moment 

A quick glance at the molecular 
orbital diagram shows that 

(E₂₂-<E>I) < (E₁₁-<E>I) and that 
(E₂₂-<E>II) < (E₁₁-<E>II). 
 
So that 
 

Figure VII-17: Dissymmetry  
of coefficients. 

We can thus see that in the bonding MO, the most important coefficient is 
found on the right atom, while this is the opposite for the anti-bonding 
orbital. This means that the probability of the presence of the bond doublet 
is greater on atom 2 than on atom 1. The situation is the opposite for the 
anti-bonding MO. 

We deduce that the electronic charge carried by atom 2 and atom 1 are, 
respectively 

 

Compared to a so-called covalent situation where the electrons of the bond 
doublet are exactly shared between the two atoms, we can say that the 
excess of negative charge on atom 2 or a positive charge on atom 1 will be, 
respectively 

 

C1
I

C2
I

2


E22  EI 

E11  EI 

C1
II

C2
II

2


E22  EII 

E11  EII 

C1
I

C2
I

2

 1 and
C1

II

C2
II

2



Q2  2eC2
I 

2 and Q1  2eC1
I 

2

Q  |Q2  1|e and  Q  e|1  Q2 |
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i.e. 

 

In both cases, we can see that the quantity 
δQ is the same except for the sign. We can 
therefore say that the molecule formed 
corresponds to a dipole. 

The system formed by two equal charges, 
but with opposite signs separated by 
distance Re is called a dipole. A dipole is 
characterized by its electric dipole moment 
μ such as that given in Fig. VII-18. 

 

Figure VII-18: Dipole  
moment definition. 

 (VII-21) 

||μ|| is expressed in Coulomb meter (C.m). It is often also expressed in 
Debye, i.e. 1 Debye = 0.33.10⁻²⁹ C.m. 

The dipole moment is an experimentally measured quantity. The existence 
of a dipole moment in a molecule has its origin in the difference of 
electronegativity between atoms. We have seen that the electron density is 
higher in the vicinity of the most electronegative atom, which leads to an 
asymmetry in the distribution of the binding electrons. The molecule is said 
to be polar because the barycenter of positive charges is no longer confused 
with the barycenter of negative charges. The molecule is therefore 
comparable to a dipole. 

By convention, the experimental dipole moment vector is oriented from the 
negative charge to the positive charge. We can thus predict the importance 
of the dipole moment as a function of the energy difference between the 
orbitals entering into interference. Table VII-8 gives the values of the 
experimental dipole moment for several diatomic molecules. We shall see 
later how to calculate a dipole moment using the theory of molecular 
orbitals. 

 

 

 

Q2  2C2
I 

2  1 e and Q1  e 1  2C2
I 

2

||||  ReQ
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Table VII-8: Experimental dipole moments 

 

d. Explanation of the permutation of the σ and π levels in MO diagrams 

We can now give a qualitative explanation10 of the permutation of the σ and 
π levels in molecular orbital diagrams. 

For this we must remember that two orbitals, whether atomic or molecular, 
can interfere if they are of the same or almost the same symmetry and of the 
same or almost the same energy. This is the case of the molecular orbitals 
2s and σz and 2s* and σ*z. It may indeed happen that the difference between 
these energy levels becomes relatively small allowing such interference to 
take place. This then leads us to a new interaction diagram, shown in Fig. 
VII-19. 

                                                      
10 For more details see for instance the paper O. Henri-Rousseau and B. Boulil, 
“Explanation of the Permutation of the σ(p) and π Levels in Homonuclear Diatomic 
Molecules”. J. Chem. Educ. 55 (1978) 571-73. 
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Figure VII-19: The permutation of σz and π levels. 

The molecular orbital σz of axial symmetry can interfere with the molecular 
orbital σ2s, also of axial symmetry, and under certain conditions 
energetically close to σz. This interference causes the raising of σz to σz’ 
(destructive interference) and the lowering of σ2s to σ2s′ (constructive 
interference). We can thus understand why there is a permutation of the 
levels σ2s and πx and πy. This phenomenon is called a configuration 
interaction (CI) in the language of quantum chemistry. We shall call the 
diagram of molecular orbitals in these conditions, a diagram with CI, as in 
Fig. VII-15. 

e. Molecular electronic structures 

These structures are a result of the molecular levels being filled by the 
electrons of the atoms making up the molecule. For reasons of simplicity, 
we only represent what is happening on the outermost shell of atoms. 

The rules of constructing molecular electronic structures are almost the 
same as those governing the construction of atomic electronic structures, 
applying the following: 

-  The Pauli construction principle: we trace the empty orbital boxes. 

-  The Pauli exclusion principle: no more than 2 electrons per molecular 
stationary state. 
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-  Hund’s rule: the distribution at the same energy levels of the electrons 
with the same quantum magnetic spin number. 

To represent the MO diagram of a diatomic homonuclear molecule X₂, we 
may use the following procedure: 

(i)  We give the electronic configuration of the atom X. 

(ii)  We establish the necessary orbital basis (in general, the AOs occupied 
by electrons) 

(iii)  We note whether or not there are electron doublets in the np orbitals 
of the outermost shell of the atom X. If yes, then the diagram used is 
of the a priori type. If not, the diagram used is of the CI type. 

(iv)  The electrons are placed in the molecular levels starting with the lower 
energy levels, respecting the Pauli exclusion principle and Hund’s 
rule. 

(v)  We calculate the bond index I, which is the difference between the 
number of electrons in bonding orbitals and the number of electrons in 
anti-bonding orbitals all divided by 2. 

(vi)  If i is different to zero, then the molecule may exist and we then give 
its electronic configuration. 

(vii) One can predict its magnetic properties. The molecule is paramagnetic 
if there are single electrons in the molecule; otherwise it is 
diamagnetic. 

 

a) Without 
electromagnetic field. 

 

b) With electromagnetic 
field. X is 

paramagnetic. 

 

c) With 
electromagnetic field. 

X is diamagnetic. 

Figure VII-20: Behavior of paramagnetic and diamagnetic samples in an 
electromagnetic field. 
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Fig. VII-20 gives the behavior of a paramagnetic sample (b) and of a 

diamagnetic sample (c) placed within the poles of an electromagnet. If the 

electromagnet moves into the air gap, it means that the sample is 

paramagnetic. On the contrary, movement away from the field implies 

diamagnetic behavior. 

Examples 

The hydrogen (H ) molecule 
(i) The electronic structure of hydrogen 

 

(ii) The basis orbital is 

{1s}. An interaction 

between two 1s orbitals 

is performed. 

(iii) There are no p 

orbitals concerned in the 

fundamental state. 

 

 

Figure VII-21: MO correlation diagram  

for the H2 molecule. 

(iv) The diagram is drawn and the electrons are placed respecting the rules 

(Fig. VII-21). 

(v) The bond index is (2-0)/2 = 1. 

(vi) The molecule exists. 

(vii) The molecule is diamagnetic because there are no single electrons on 

the outermost shell. 

(viii) Its electronic configuration is 

   

  

H2 : 1s
2
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The helium (He₂) molecule 
 
(i) The electronic structure of helium 

 

(ii) The basis orbital is {1s}. 
An interaction between two 1s 
orbitals is performed. 

(iii) There are no p orbitals 
concerned in the fundamental 
state. 

 

 

Figure VII-22: MO correlation diagram  
for the hypothetical He2 molecule. 

(iv) The diagram is drawn and the electrons are placed respecting the rules 
stated above (Fig. VII-22). 

(v) The bond index is (2-2)/2 = 0. 

(vi) The molecule cannot exist. 

The lithium (Li₂) molecule 

(i) The electronic structure of Li 

  

(iv) The diagram is drawn and the electrons are placed respecting the rules 
stated above (Fig. VII-23). 

(v) The bond index is (2-0)/2 = 1. 

(vi) The molecule can exist. 
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(vii) The molecule is diamagnetic because there are no single electrons on 
the outermost shell. 

(viii) Its electronic configuration is 

   

The beryllium (Be2) molecule 
(i) The electronic structure of beryllium 

 

(ii) The basis orbital is {2s} 
because we limit ourselves 
to the outermost shell. An 
interaction between two 2s 
orbitals is performed. 

(iii) There are no p orbitals 
concerned in the 
fundamental state. 

 

Figure VII-24: MO correlation diagram  
for the hypothetical Be2 molecule. 

(iv) The diagram is drawn and the electrons are placed respecting the rules 
stated above (Fig. VII-24).  

(v) The bond index is (2-2)/2 = 0. 

(vi) The molecule cannot exist. 

The boron (B₂) molecule 
(i) The electronic structure of boron 

 

Li2 : 2s
2
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(ii) The basis orbital is {2s, 
2px, 2py, 2pz} because we 
limit ourselves to the 
outermost shell. 
Interaction between the 2s 
orbitals and between the 
six p orbitals is performed. 

(iii) There is a p orbital 
concerned in the 
fundamental state. The 
diagram that must be used 
is of the CI type because 
there are no electronic 
doublets in the 2p 
orbitals. 

 

Figure VII-25: MO correlation diagram  
for the B2 molecule. 

(iv) The diagram is drawn and the electrons are placed respecting the rules 
stated above (Fig. VII-25). 

(v) The bond index is (4-2)/2 = 1. 

(vi) The molecule can exist. 

(vii) The molecule is paramagnetic because there are two single electrons 
on the outermost shell. 

(viii) Its electronic configuration is 

 

The carbon (C₂) molecule 
(i) We give the electronic configuration of carbon atom 

 

(ii) Choice of the orbital basis {2s, 2px, 2py, 2pz}. 

B2 : 2s
2 2s

2x
1y

1

 EBSCOhost - printed on 2/13/2023 7:38 PM via . All use subject to https://www.ebsco.com/terms-of-use



Chapter VII 
 

298 

(iii) We note that there are no 
electron doublets in the np orbitals 
of the outermost shell of the atom 
C. Hence, the diagram used is the 
CI type. 

(iv) The electrons are placed in the 
molecular levels starting with the 
lower energy levels, respecting the 
Pauli exclusion principle and 
Hund’s rule. 

(v) We calculate the bond index I = 
(6-2)/2 = 2. 

(vi) The bond index is different to 
zero and the molecule may exist. 

 

Figure VII-26: MO correlation 
diagram for the C2 molecule. 

(vii) The molecule is diamagnetic since all electrons in the outermost shell 
are paired. 

(viii) Its electronic configuration is 

 

The Nitrogen (N₂) molecule 
(i) The electronic structure of nitrogen atom 

 

C2 : 2s
2 2s

2x
2y

2
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(ii) Choice of the orbital basis 
{2s, 2px, 2py, 2pz}. 

(iii) There is a p orbital 
concerned in the fundamental 
state. The diagram that must 
be used is the CI type because 
there are unpaired electrons 
in the 2p orbitals. 

(iv) The diagram is drawn and 
the electrons are placed 
respecting the rules stated 
above (Fig. VII-26). 

 

 

Figure VII-27: MO correlation  
diagram for the N2 molecule. 

We limit ourselves to the outermost shell. The basis is therefore {2s, 2p}. 
There is an interaction between the 2s and 2p orbitals of each atom. 

(v) We calculate the bond index i = (8-4)/2 = 2. 

(vi) The molecule can exist. 

(vii) The molecule is paramagnetic since it retains unpaired electrons in the 
outermost shell. 

(viii) Its electronic configuration is 

 

The Oxygen (O₂) molecule 

(i) The electronic structure of the oxygen atom 

 

N2 : 2s
2 2s

2z
2x

2y
2
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(ii) Choice of the 
orbital basis {2s, 2px, 
2py, 2pz}. 

(iii) There is a p 
orbital concerned in 
the fundamental state. 
The diagram that must 
be used is the a priori 
type because there are 
one doublet in the 2p 
orbitals. 

(iv) The diagram is 
drawn and the 
electrons are placed 
respecting the rules 
stated above.  

 

Figure VII-28: MO correlation  
diagram for the O2 molecule. 

We limit ourselves to the peripheral shell. The basis is therefore {2s, 2p}. 
There is an interaction between the 2s and 2p orbitals of each atom. 

(v) We calculate the bond index I = (8-4)/2 = 2. 

(vi) The molecule can exist. 

(vii) The molecule is paramagnetic since it retains unpaired electrons in the 
outermost shell. 

(viii) Its electronic configuration is 

 

We leave it to the reader to discover the molecular diagrams of difluorine 
and dineon. 

It should be noted that we find the same evolution with the molecules 
resulting from the elements of the third period of the periodic table. 

O2 : 2s
2 2s

2z
2x

2y
2x

1y
1
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6. Molecular orbitals and physical properties  
of diatomic molecules 

By presenting a few examples, we shall see how the evolution of the 
properties of diatomic molecules can be understood using the theory of 
molecular orbitals. 

Consider the oxygen molecule O₂: we can ionize it and create positive ions 
like O₂⁺ and negative ions like O₂⁻. Let us build the molecular orbital 
diagrams of these entities. 

 

Figure VII-29: MO correlation diagram for O2, O2
+, and O2

- molecules. 

As can be seen, we have 

 

The higher the bond index, the higher the dissociation energy, the higher the 
vibration frequency, and the shorter the interatomic distance at equilibrium. 
We can conclude that 

 

iO2
 iO2 iO2



DeO2
 DeO2 DeO2



ReO2
 ReO2 ReO2



e O2
 e O2

e O2

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which gives the following evolutions when we plot the potential curves 

 

Figure VII-30: Potential curves for O2 , O2
+, and O2

- molecules. 

It should be noted that the concavity is less and less marked when we pass 
from the molecule with the strongest force constant (i.e. the vibration 
wavenumber) to the weakest.  

This has been confirmed experimentally11, as can been seen in Table VII-9. 

Table VII-9. Experimental data for O2 , O2
+, and O2

- molecules 

 

                                                      
11 K. P. Huber and G. Herzberg, “Molecular Spectra and Molecular Structure. IV 
Constants of Diatomic Molecules”, Van Nostrand Teinhold Company, New York, 
1979, p.490-507. 

De (e.V) Re (Å) e cm1

O2 5.08 1,207 1580

O2
 6,48 1.123 1905

O2
 4,09 1.350 1090
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7. MOs and heteronuclear diatomic molecules 

When the molecules are made up of different atoms, the energies of the 
interacting atomic orbitals are no longer the same. 

An asymmetry appears due to the different electronegativities of each atom. 
The more electronegative an atom, the more marked the negative energy of 
its orbitals. 

In some cases, this can lead to interferences 
between atomic orbitals of the same symmetry, 
which can end up being fairly similar 
energetically and allow significant interference. 
Table VII-10 gives the energies of the first atomic 
orbitals versus the atomic number Z calculated by 
Clementi12 in 1965. (These data are given in tables 
in the paper in the references13.) 

 

E. Clementi 

Table VII-10 can be 
used to position the 
atomic orbitals that 
are interfering on an 
energy scale. We 
have previously seen 
the case of 
interference between 
orbitals of different 
energies.  

Table VII-10: Calculated atomic orbital 
energies

 

Let us see how the theoretical data allow the calculation of a quantity such 
as the dipole moment, which characterizes the difference in electronic 
distribution in a chemical bond between two atoms of different 

                                                      
12 Enrico Clementi (born 1931). Italian chemist and a pioneer in computational 
techniques for quantum chemistry and molecular dynamics. 
13 E. Clementi, IBM Journal of Research and Development, 9 (1965) 2. Basic Data 
Tables for Chemistry, O. Kahn and M-F. Koenig, Hermann, Paris, 1972. 
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electronegativities.In section VII-2-5c (vide supra), we showed how 
calculate a dipole moment using molecular orbital theory. Let us apply this 
procedure to the calculation of the dipole moments of some molecules. 

The LiH molecule 
 

Let us start by placing 
the energies of the 
orbitals concerned. 
The lithium 1s orbital 
is too low to interfere 
with the hydrogen 1s 
orbital. Interference 
takes place between 
the 2s orbital of 
lithium and the 1s 
orbital of hydrogen, 
which are of the same 
symmetry, to form the 
molecular orbitals σs 
and σ*s. 

 

 

Figure VII-31: Energy position of  
orbitals in the LiH molecule. 

The energies of these molecular orbitals are, respectively, -0.1963 Hartree 
and -0.50 Hartree. The interaction energy E₁₂ between these atomic orbitals 
is approximately -0.12 Hartree at a distance Re of 1.60 A. Thus, we can 
deduce approximately 

  

with 

 

then 

 

E  E1s  E and E  E2s  E

E 
E12 

2

E22  E11 

E 
E12 

2

E22  E11 


0.122

0.50  0.19
 0.047 hartree
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and we have 

 

We can calculate the coefficients of the molecular orbitals 

 

or 

 

so that 

 

Taking into account that the molecular orbitals must be normalized, that is 
to say, if we neglect the overlap integral, then we must have 

 

 

and finally we get 

 

We can thus calculate the dipole moment of LiH using the results obtained 
in section VII-2-5c 

 

For LiH, if we consider a distance at equilibrium of Re = 1.60 A, for the 
dipole moment we find 

E  E2s  E  0.5  0.047  0.547 hartree

E  0.1963  0.047  0.1493 hartree

C1

C2 

2


E  E2s

E  E1s

C1

C2 

2

 0.547  0.500
0.547  0.1963

 0.135

C1
2  0.135C2

2

C1
2  C2

2  1

0.135 C2
2  C2

2  1 so that 1.135 C2
2  1

C2
2  1

1.135
 0.881 and C1

2  1  0.881  0.119

Q  e 1  2C2
2 

2

 EBSCOhost - printed on 2/13/2023 7:38 PM via . All use subject to https://www.ebsco.com/terms-of-use



Chapter VII 
 

306 

 

or, in Debye 

 

The experimental value is 5.88D. 

The HF molecule 

Another example 
In the calculation 
of a dipole 
moment is the 
HF molecule. In 
this case, the 
situation is 
reversed—it is 
the hydrogen 
atom that has the 
least negative 
energy because it 
is less 
electronegative 
than fluorine.  

 

Figure VII-32: Energy position of  
orbitals in the HF molecule. 

However, the imbalance is less strong than in the previous case, as can be 
seen in Fig. VII-32.  

These are the 1s orbitals of hydrogen and 2pz of fluorine, which, being of 
similar symmetry and relatively close energies, will interfere. The dipole 
moment is directed this time from fluorine to hydrogen and will be of lower 
value than that found in the case of LiH because the difference between the 
atomic orbitals that interfere is smaller. As such, we find by calculation that 
||μ|| = 1.83 D. 

8. Other heteronuclear diatomic molecules 

Even if the predictive character is not as complete as in the case of 
homonuclear diatomic molecules, the same phenomena occur and it seems 

||||  1.595  1010  1.6  1019  2  0.881  1  1. 944624  1029C.m

|| ||  1. 944624  1029

0.33  1029
C.m  5.89 D
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that we can classify three types of diagrams—with the addition of a medium 
CI diagram to the two already mentioned: a priori and “strong” CI diagrams. 

 

Figure VII-33: Different Types of OM diagrams in heteronuclear diatomic molecules. 

The strong configuration interaction reverses the levels σz and π with respect 
to the a priori diagram. An interaction of medium configuration raises the 
level σz to the same level as that of π. 

Choosing which of these three diagrams to use will of course depend on the 
electronic structure of the atoms in terms of interference. In these diagrams, 
atom B being more electronegative, its atomic will have orbitals with more 
negative energy than those of atom A. 

 The BN molecule 

The BN molecule is an 8-electron valence system in which nitrogen N is 
more electronegative than its neighbour, boron (B), being located to its left 
in the periodic table. We can see their electronic configurations on the right 
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Boron, like nitrogen, has no doublets in its p orbitals. The repulsion between 
the p layer and the s layer is reduced and the energy difference is relatively 
small between these orbitals. As such, we should expect to have a 
configuration interaction diagram, although we might hesitate over whether 
to choose a medium or a strong CI type diagram. Experience shows that the 
BN molecule is paramagnetic and therefore carries unpaired electrons on its 
valence shell. Let us look at the two hypotheses in Fig. VII-34. 

 

Figure VII-34: hypothesis for BN diagram. 

In the strong CI hypothesis, the energy difference between σ2s and σz 
remains large enough for the electrons of shell p to be distributed only in 
the shells π by virtue of the Pauli construction principle. In the medium CI 
hypothesis, the increase in σz is not sufficient to pass over the molecular 
orbitals π. Hund’s rule therefore applies in the filling of these three levels 
whose energy is the same. As such, the diagram on the left accounts for the 
fact that BN is paramagnetic. The electronic structure of the BN molecule 
is therefore 

 

The bond index of this molecule is: iBN = (6-2)/2 = 2 

The BO, CN, and CO⁺ molecules 

BN : 2s
2 2s

2xyz
4
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These entities have 9 
valence electrons. 
Let us look at the BO 
molecule, the 
electronic structures 
of which are shown 
on the right. 

 

The diagram is a CI type because the repulsions between the electronic 
shells of the atomic orbitals remain weak. 

 

Figure VII-35: BO diagram. 

The bond index is iBO = (7-2)/2 = 2.5 

Thus, we can predict that BO is diamagnetic. 

The CO, NO⁺, and CN⁻ 
molecules 

These have 10 valence 
electrons. Consider for 
instance the CO molecule.  

The electronic structure of the outermost shell of C and O are given on the 
right.  Here, we have an a priori type diagram 
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Figure VII-36: CO diagram. 

The electronic structure of CO is 

 

and the bond index is: iCO = (8-2)/2 = 3 and the CO molecule is diamagnetic. 

9. Properties of diatomic molecules in light of the  
fundamental principles of physics 

The theory of molecular orbitals allows us to make a number of predictions 
about the physical properties of homonuclear diatomic molecules. 

CO : 2s
2 2s

2z
2x

2y
2
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The external action of fields 
on molecules (electric, 
magnetic, and mechanical 
fields etc.) modify the 
distance between the nuclei 
of the molecule, generating 
the phenomenon of 
vibration. A common image 
of the chemical bond is to 
compare it to a spring 
connecting two masses, as 
shown in Fig. VII-37. 

 

Figure VII-37: A chemical bond  
is analogous to a spring. 

We can reduce the vibration movement to that of a single mass, called the 
reduced mass μ, the value of which is 

 

where m₁ and m₂ are the masses of atoms 1 and 2, respectively, undergoing 
elongation +x or compression -x with respect to length at resting Re, so that 

 

Thus, the mass m is subjected to a restoring force, the modulus of which is 

 

where ke is the force constant of the spring. This restoring force generates 
potential V(x) 

 

which characterizes the potential energy of the spring when it deviates from 
its equilibrium position. If we express the distance as a function of R, we 
obtain 

 

  m1m2
m1  m2

|x |  |R  Re |

F  kex

Vx  1
2

kex 2

VR  1
2

keR  Re 
2
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If we draw this potential as a function of the 
internuclear distance R, we obtain the curve 
with a thin line in the figure below. The 
quadratic potential is sufficient to describe the 
potential energy of the molecule when the 
internuclear distance R does not deviate too 
much from the equilibrium distance Re. 

In fact, this potential does not describe the 
reality of the chemical bond because when R 
becomes greater than the equilibrium distance, 
a deformation of the chemical bond occurs 
similar to a spring that has been over-stretched.  

 

Ph. Morse 

This phenomenon is called anharmonicity: the movement of the nuclei is no 
longer harmonic, but is said to be anharmonic. 

Anharmonicity prevents the bond from returning to a reversible situation. 
The anharmonic potential of the bond is named the Morse curve14 after the 
physicist who proposed an empirical formula describing, in a more realistic 
way, the potential of diatomic molecules 

        (VII-22) 

 

 

 

                                                      
14 Phillip Morse (1903-1985). American physicist. 

VMorseR  De1  expR Re 
2  De
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where De is the 
dissociation energy 
of the molecule, that 
is to say the energy 
that must be 
supplied to the 
molecule so that its 
nuclei deviate from 
each other at 
infinity, and β is a 
constant15 
characteristic of the 
molecule that 
depends on the 
quantities measured 
by spectroscopy. 

 

Figure VII-38: Harmonic (thin line) and  
anharmonic (thick line) potential curves. 

This curve is shown (thick line) in Fig. VII-38, along with the quadratic 
potential in order to bring out its characteristics.The quadratic potential 
VQ(R) depends on the force constant ke. It is the second derivative of this 
potential at the equilibrium internuclear distance Re 

 

By analogy, we can calculate the force constant for the Morse curve 

 

Thus, we find 

 

                                                      
15 This parameter depends on the dissociation energy, the force constant, and 
therefore the wavenumber of the vibration of the molecule in the ground state. All 
the values of these parameters can be found in G. Herzberg Molecular Spectra and 
Molecular Structure. I. Spectra of Diatomic Molecules. Van Nostrand, New York, 
1950. 

ke 
d2VQR

dR2
RRe

ke
M 

d2VMR
dR2

RRe

ke
M  22De
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then 

 

given that the wavenumber νe of the bond vibration in the ground state is 

 

where μ is the reduced mass of the molecule, the force constant is 

 

and so we find that 

 

We can thus reconstruct the potential curves of many diatomic molecules 
without having to determine them experimentally. It therefore appears from 
this study of the properties of diatomic molecules that a diatomic molecule 
can be defined by: 

-  Its internuclear distance Re (Å) at equilibrium. 

-  Its force constant ke (N.m), which is related to the wavenumber νe 
(cm⁻¹) of the vibration of the molecule in the ground state. 

-  Its dissociation energy D₀(eV). 

We may use the general formula to calculate β in Å⁻¹ using μ in Dalton, νe 
in cm⁻¹, and De in eV. 

 

  k e
M

2De

e  1
2c

ke
M



ke
M  e

242c2

  ec 2
De

  1. 3609  103  e


De
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For example, taking the example of dihydrogen16, we have 

 

D₀ is the bond dissociation energy, which may be experimentally found. To 
obtain the theoretical dissociation energy De, we have to take into account 
what is called the “zero-point-energy”, i.e. the residual energy due to 
quantum fluctuations 

Or        

 

so that, for the H₂ molecule, we have 

 

10. Qualitative prediction of the evolution of the  
properties of diatomic molecules 

Let us see how the application of fundamental principles makes it possible 
to make such predictions. Key among these principles are the theory of 
molecular orbitals and the virial theorem. 

a. The virial theorem 

The theory of molecular orbitals (MO) makes it possible to calculate the 
bond index, which is related, as we saw above, to the physicochemical 
properties: the internuclear distance at equilibrium Re; the dissociation 
energy De; and the force constant ke of the bond. 

However, this level of the method is not sufficient to explain the variations 
observed when moving within the same column of the periodic 
classification. Indeed, the bond index remains the same as the bond length 
increases, while the dissociation energy and the force constant decrease, as 
can be seen in Table VII-11. 

                                                      
16 Data from G. Herzberg, 2nd ed. “Molecular spectra and molecular structure, 
spectra of diatomic molecules”, Van Nostrand Reinhold, 1950, p. 531. 

e  4395cm1 ;  0.504 Dalton ; D0  4.476 e.V ; Re  0.742Å

De  D0  1
2

hce

Dee.V  D0  6. 199  105  ecm1 

De  4. 748 e.V and   1. 949 Å1
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Table VII-11: Physicochemical properties of some diatomic molecules 

 

If we consider a given bond, the same observation can be made from Table 
VII-12 for bonds in polyatomic molecules17. 

Table VII-12: Physicochemical properties of some bonds in some 
polyatomic molecules 

 

We can explain this evolution using the virial theorem, as was first done 
several years ago18. 

 

 

                                                      
17 In the case of polyatomic molecules, the force constants are calculated within the 
framework of the valence force approximation (see E. Wilson, J. Decius, P. Cross, 
McGraw Hill, New York, 1955, p. 175). 
18 See our paper: P. Blaise, A. Krallafa, O. Henri-Rousseau “Constantes de force et 
énergie de dissociation des molécules diatomiques” (Force constant and energy of 
dissociation of diatomic molecules), Actualité Chimique, sept. 1979, p. 53. 
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Use of the virial theorem 

The virial theorem relates the average kinetic energy <T> to the average of 
the virial forces 

 

where Z⃗i stands for the coordinates of the particle i and [⃗i stands for the 
forces acting on it 

 (VII-23) 

The virial theorem is particularly recognized by chemists because of its use 
in the case of gases. For an atom, the virial of the forces is equivalent to the 
potential energy 

 

and so we can write 

 (VII-24) 

Let us examine the link between diatomic molecules and the virial theorem. 
Consider a diatomic molecule. If we wish to keep the two nuclei motionless 
at a distance different from the internuclear distance equilibrium Re, the 
nuclei must be subject to a force that is opposite to the restoring force. 
However, this restoring force is derived from the potential V. Indeed, within 
the framework of the Born-Oppenheimer approximation, which considers 
the nuclei immobile with respect to the movement of the electrons, it is 
possible to obtain a relation between the potential energy V and the 
internuclear distance R. If R is greater or lesser than the equilibrium distance 
Re corresponding to the minimum of the curve, then a force appears that acts 
on the nuclei to bring them back to their equilibrium position (see Fig. VII-
38). 

 


i
qiF i

T   1
2 

i

qiF i

V  
i

qiF i

T   1
2
V

F   dU
dR
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Under these conditions, two types of forces appear, the so-called Coulomb 
internal force and an external force that is opposed to the restoring force. 
The virial of the internal forces is 

 

while the virial of the external forces is 

 

so that the total virial of the forces is therefore 

 

or 

 (VII-25) 

From Eq. (VII-24), we have 

 

then, Eq. (VII-25) becomes 

 

and 

 (VII-26) 


i

qiF i

internal

 V


i

qiF i

external

 RdU
dR


i

qiF i

total

 
i

qiF i

internal

 
i

qiF i

external


i

qiF i

total

 V  RdU
dR


i

qiF i

total

 2T

2T  V  RdU
dR

2T  V  RdU
dR  0
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Since 

 

we may write 

 

then 

 

and since 

 

we have 

 

The function U is the total energy and we can use, as an expression of U, 
the Morse curve given by Eq. (VII-22), so that 

 

Then, the mean kinetic energy can be obtained using the virial theorem, so 
that

 

which leads to the expressions 

     

U  T  V

T  T  V  RdU
dR  0 and T  U  RdU

dR  0

T  U  RdU
dR

V  U  T

V  2U  RdU
dR

UR  De1  expR Re 
2  De

dU
dR 

d De  1  exp  R  Re 
2  De

dR  2DeeRRe eRRe   1

T  DeeRRe eRRe 2R  1  2R  1

V  2DeeRRe eRRe 1  R  R  2
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Fig. VII-39 
presents the 
evolution versus 
the internuclear 
distance of the 
total energy U, of 
the mean 
electronic kinetic 
energy <T>, and 
of the mean 
potential energy 
<V>. 

For the 
equilibrium 
distance Re, Eq. 
(VII-26) becomes 

 

Figure VII-39: Evolution of the kinetic,  
potential, and total energies for a diatomic  
molecule according to the virial theorem. 

 

so that 

 

and given that we have 

 

If we take the energy level of free atoms as zero, U is equivalent to the 
dissociation energy -De and we may write 

 

We are interested in the relation between the mean kinetic energy and the 
force constant. Starting from the expressions of <T> and <V> above we 
found 

2T  V  0

V  2T

T  2T  U i.e. T  U

De  T
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We may perform a first derivation with respect to R of these expressions 

  (VII-27) 

 and 

  (VII-28) 

For the equilibrium distances, theses equations become 

 

Recall that the definition of the force constant is 

 

It is then possible to obtain a simple relation between the force constant 
k_{e} and the derivative of the mean kinetic energy for R = Re. Then 

 (VII-29) 

For a minimum, as is the case for mean kinetic energy, we have 

T  U  R dU
dR

V  2U  R dU
dR

dT
dR   dU

dR  dU
dR  Rd2U

dR2
so that

dT
dR  2 dU

dR  Rd2U
dR2

dV
dR  2 dU

dR  dU
dR  Rd2U

dR2
so that

dV
dR  3 dU

dR  Rd2U
dR2

dT
dR Re

 Re
d2U
dR2

Re

dV
dR Re

 Re
d2U
dR2

Re

k e  d2U
dR2

Re

Reke   dT
dR Re
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The derivative of <T> must be negative, while that of <V> must be positive. 
It follows that near the equilibrium distance, as R increases, <T> decreases 
while <V> increases. This leads to consideration of the equilibrium distance 
as a result of a compromise between kinetic energy, which tends to repel the 
nuclei, and a potential energy, which tends to attract them towards each 
other. 

Recall that there exists an approximate relation between the mean kinetic 
energy <T> and the equilibrium distance Re. This relation was seen when 
we studied the model of the potential well. Mean kinetic energy comes 
directly from the wave properties of particles, i.e. from the Louis de Broglie 
relation 

 

where λ is the wavelength of the wave associated with a particle; h is the 
Planck constant; and p is the momentum of the particle. When the 
wavelength of a particle is of the order of magnitude of the size of the space 
in which it is moving, a quantized expression for the kinetic energy appears, 
such as 

 

where m is the mass of the particle; R is the internuclear distance; and n is 
an integer number called a quantum number, which quantizes the expression 
of the energies. Using the virial theorem, we find that 

 

so that 

 

where cst = h²/(8m). 

d2U
dR2

Re

 0

  h
p

T  h2

8mR2
n2

De  T

De  h2n2

8mRe
2
 cst  n2

Re
2
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Consider the force constant. Then, given Eq. (VII-29), we may write 

 

with 

 

so that 

  

The derivative of <T> with respect to R is 

 

For R = Re, we have 

 

and 

 

so that 

 

and 

Reke   dT
dR Re

Reke   dT
dR Re

 d
dt

h2

8mR2
n2

ke   1
Re

dT
dR Re

  1
Re

d
dR

h2

8mR2
n2

d
dR

h2

8mR2
n2   h2n2

4m
1

R3

ke   h2n2

4m
1

Re
4

ke  cst 
Re

4
n2 with cst   h2

4m  2cst

ke
De  cst

cst
1

Re
2
 2

Re
2
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We have the qualitative evolution of De and ke with respect to the 
equilibrium distance Re, which allows us to understand, except in a few 
cases, the experimental evolutions described in the tables. We shall come 
back to this problem later. 

b. Obtaining the parameters of the chemical bond 

Here, we present a very simplified model of the H₂⁺ molecular ion. We 
resume here the qualitative approach to a model of the stability of the H₂⁺ 
molecular ion that we published several years ago19. 

 H₂⁺ is formed by two protons and one electron. Fig. VII-40 gives a 1-D 
representation of this ion and we can see the molecular hydrogen ion as a 
potential well. 

Since the probability density of 
the electron in the potential well 
is at its maximum at the center 
of the well in the ground state, 
we shall suppose that a negative 
charge is at the center of the 
space defined by the segment 
connecting the two protons. 

 

Figure VII-40: 1-D atom coordinates. 

In these conditions, the kinetic energy T(n,R) of the electron is of the form 
obtained for the particle in a box model we studied above 

 

while the potential energy V(R) is the sum of the Coulombian electron-
proton attractions and of the proton-proton repulsion 

                                                      
19 P. Blaise, Olivier Henri-Rousseau, and P. Mialhe, “Modeling of the molecular ion 
H₂+ using only the Coulomb and de Broglie relations: a unified approach of the 
orders of magnitude of the physical parameters of diatomic molecules” (French), J. 
Chim. Phys, 91, 1994, p. 1347-1385. 

k e  2De
Re

2

Tn,R  h2

8mR2
n2
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so that 

  

The total energy will be 

 

Putting 

 (VII-30) 

then 

 (VII-31) 

Deriving this equation, we get 

 

and for the equilibrium distance Re, we have 

 

so that 

 

and then 

VR  K e2

R
2

 2  K e2

R

VR  K e2

R  4  K e2

R and VR  K e2

R  3

En,R  h2

8mR2
n2  K e2

R  3

ATn  h2

8m n2 and AV  Ke2  3

En,R  ATn
R2

 AV
R

d
dREn,R  2

ATn
R3

 AV

R2

d
dREn,R

RRe
 2

ATn
Re

3
 AV

Re
2
 0

2
ATn

Re
3

 AV

Re
2
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 (VII-32) 

The energy for R = Re is thus 

 

 

Now, let us evaluate Re and E(n). We have the following values for the 
fundamental constants 

 

Introducing these values in the expressions of AT(n) and AV gives 

 

so that, for the ground state n = 1 we have 

 

and for the energy of the ground state we have 

 

Re  2
ATn

AV

En  ATn
Re

2
 AV

Re

En -
AV

2

4ATn

h  6.6260755  1034 J s

e  1.60217733  1019 C

K  8.98755  109SI
m  9.1093897  1031 kg

ATn  6. 024673164  1038  n2  J m2

AV  6. 92123729  1028J m1

Re  1. 741  1010m  1. 741 Å

E  1. 988  1018J  12. 407e.V
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To obtain the dissociation energy, we must 
subtract the energy of the hydrogen atom 
obtained in the spirit of this simplification. 
Let us imagine a 1-D atom with the 
electron is moving on a diameter. If r is the 
maximum extension of the electron 
displacement, the system is a potential 
well of width 2r as shown in Fig. VII-41. 

 

Figure VII-41: 1-D atom. 

Of course, the exact position of the electron cannot be known because of the 
uncertainty principle. 

The kinetic energy of the electron would be that of a particle in a potential 
well, i.e. 

 

while the potential energy would be 

 

where K is the Coulomb constant. Thus, the total energy of the 1-D atom is 

 

As above, we put 

 (VII-33) 

so that 

  (VII-
34)  

This energy is at a minimum when 

T  h2

8m2r2
n2

V  K e2

r

Eatn,r  h2

8m2r2
n2  K e2

r

aTn  h2

32m n2 and aV  Ke2

Eat 
aT

2

r2  aV
r
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leading to the energy minimum 

 

Using the constants 

 

so that 

  

The energy of the ground state of the 1-D hydrogen atom is 

 

and the dissociation energy De of the 1-D hydrogen molecular ion would be 

 

We can find the experimental values concerning H₂⁺ in the book by 
Herzberg, i.e. Re = 1.06 Å and De = 2 .64 eV. The results of the 1-D hydrogen 
molecular ion calculations are Re = 1.741 Å and De = 6.89 eV, which are 
of the same order of magnitude. 

c. Introduction of fine structure constant and Compton wavelength in 
the expression of the equilibrium distance Re 

dEat
dr rre

 0

2
aT

2

re
3
 aV

re
2

 0 so that: re  2aT
aV

Emin  
aV

2

4aTn

h  6.6260755  1034 J s

e  1.60217733  1019 C

K  8.98755  109SI
m  9.1093897  1031 kg

aT  1. 506  1038n2 and aV  2. 307  1028

Emin  8. 834  1019J or, in e.V. Emin  5. 514e.V

De  EH2  EH  12. 407  5. 514  6. 893e.V
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In physics, the fine structure constant is the dimensionless coupling 
constant associated with the electromagnetic interaction. The constant is so 
designated for historical reasons with reference to the fine structure and was 
proposed by the German physicist A. Sommerfeld (1868-1951) in 1916. 

Its conventional symbol is α and it has no dimension 

 

where e is the elementary charge; ε₀ is the permittivity of the free space; ℏ 
is the reduced Planck constant; and c is the light velocity. Using the constant 
values, we find 

 

The inverse of which is 

 

This constant appears in a lot of expressions in physics. 

The Compton wavelength20 

When a primary photon hits a free particle, a secondary photon is emitted 
whose wavelength is higher than that of the primary photon; this is the 
Compton effect. The difference in wavelength between the primary photon 
and the emitted photon is proportional to a constant value known as the 
Compton wavelength, see the example of an electron in Fig. VII-42. 

                                                      
20 Arthur Compton (1892-1962). American physicist who won the Nobel Prize in 
Physics in 1927 for his 1923 discovery of the Compton effect. 

  e2

40c

  7. 297347  103

1
  137.04

 EBSCOhost - printed on 2/13/2023 7:38 PM via . All use subject to https://www.ebsco.com/terms-of-use



Chapter VII 
 

330 

A. Compton Figure VII-42: The Compton effect. 

The Compton wavelength is 

 (VII-35) 

where h is the Planck constant; m is the electron resting mass; and c is the 
speed of light. 

Consider the expression of the equilibrium distance Re given above in the 
case of 1-D H₂⁺ molecular ion 

 

Using the expression of the Compton wavelength, we have 

 

The proportionality constant K may be expressed in term of the fine 
structure constant 

 

and the constant AV may be written 

 

The equilibrium distance Re is then 

C  h
mc

AT  h2

8m or AT  h
m

h
8

AT  C
hc
8

and AV  Ke2  3

K  1
40

  c
e2

AV  c  3
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 (VII-36) 

Neglecting the constant term we obtain the qualitative relation using the 
Compton wavelength and the fine structure constant 

 (VII-37) 

d. Expression of the rotation energy of the molecule 

We can imagine H₂⁺ as a rigid rotator of length Re, being the equilibrium 
distance, while r₁ and r₂ are the distance from the nuclei to the center of mass 
of the system, as shown in Fig. VII-43. 

Using the expression of the 
equilibrium distance Re, we are 
able to determine the order of 
magnitude of the energy of 
rotation of the molecule Erot 
and, consequently, that of the 
frequency of rotation νrot of the 
molecular ion. 

 

Figure VII-43: The rigid rotator. 

This can be done simply by writing the classical expression for rotational 
energy as a function of the moment of inertia I of the molecule and its 
rotational pulsation ωrot 

 (VII-38) 

The quantum treatment of the rotation energy leads to the expression 

 (VII-39) 

where J is the rotation quantum number and can take the values 0, 1, 2, 3... 

We can imagine a simplified treatment based on the fundamental Bohr 
hypothesis of the quantization of angular momentum, which may lead us to 

Re  2AT
AV

 
6
C


Re  C


Erot  1
2

Irot
2

Erot  2

2I JJ  1
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an analogous expression. First, recall that pulsation ωrot is related to the 
angular momentum and to the moment of inertia by the expression 

 

Now, we introduce the Bohr hypothesis concerning the quantization of 
angular momentum 

 

where h is the Planck constant and n is an integer representing quantization. 
The expression of ωrot becomes 

 (VII-40) 

By introducing Eq. (VII-40) into Eq. (VII-38), we get 

 (VII-41) 

This expression looks like the exact one (VII-39), except that n² replaces 
J(J+1), which quantizes the rotational energy. 

Let us express the moment of inertia of the rigid rotator as 

 

that is 

 

where Mi is the mass of the nucleus i and ri is the distance of the electron to 
the nucleus i. Since M₁ = M₂ = M and r₁ = r₂ = Re/2, we have 

 (VII-42) 

By introducing Eq. (VII-42) into Eq. (VII-41) we get 

rot  L
I

L  n

rot  n I

Erot  2

2I n2

I  
i

Miri
2

I  M1r1
2  M2r2

2

I  M
2

Re
2
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and the rotational frequency 

 

becomes 

 

or, since ℏ = h/2π 

 

There is a relation between the pulsation ωrot and the frequency νrot, so we 
may write 

 

and 

 (VII-43) 

Let us introduce the approximate expression (VII-37) of Re in Eq. (VII-43). 
In doing so, we obtain an approximate relation for which λC is the Compton 
wavelength 

 

Since we have 

 

Erot  n22

MRe
2

rot  n I

rot  2 
MRe

2
n

rot  h
MRe

2
n

rot  2rot

rot  2h
MRe

2
n

rot  2h2

MC
2

n

C  h
mc
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with m being the electron mass and c the speed of the light, the rotational 
frequency becomes 

 

Since 

 

the rotational frequency may be approximately written as 

 

For the ground state, we have n = 1 

 

Replacing the constants by their respective values, we get the approximate 
value for the rotational frequency 

 

This value may be compared to the experimental one of 1.83×10¹²Hz, 
highlighting that the qualitative approach remains in an experimental order 
of magnitude. 

We can express the rotational energy of the ground state as 

 

so that 

 

 

 

rot  2c2

C

m
M n

c
C

 C

rot  C2 m
M n

rot  C2 m
M

rot  3. 58  1012Hz

Erot
1  hC2 m

M

Erot
1  2. 37  1021J or in e.V. Erot

1  1.5  102e.V
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e. Expression of the vibration energy of the molecule 

Let us consider Fig. VII-37, which represents the extension or compression 
of the spring formed by the chemical bond, for which 

 

Consider a space of width x in which the H₂⁺ molecular ion of reduced mass 
μ is moving. If we consider this mass as a quantum particle, its kinetic 
energy will be quantized and of the type of a potential well of width x. 

 (VII-44) 

Its potential energy will be that of a spring, i.e. 

 (VII-45) 

 where ke is the force constant of the spring. The total energy will thus be 

 (VII-46) 

Now let us simplify as 

 

Eq. (VII-46) thus becomes 

 

Let us derive this expression as 

 

The minimum energy is required so that 

x  Re  R

T  h2

8x 2
n2

V  1
2

kex 2

ETot  T  V  h2

8x 2
n2  1

2
kex 2

A  h2

8
n2 and B  1

2
ke

ETot  A
x 2

 Bx 2

d
dt ETot  2A

x 3
 2Bx
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i.e. 

 

or 

 

and 

 

Transposing this expression into that for the energy, we get 

 

that is 

 

Replacing A and B by their expressions, we obtain 

 

and 

 

since the vibrational angular frequency ωe is 

d
dt ETot

xxe
 0

2A
xe

3
 2Bxe  0

2A
xe

3
 2Bxe so that A

B  xe
4

x e
2  A

B

Evib  A
A
B

 B A
B

Evib  AB  AB  2 AB

x e
2  1

2
h 1

k e
n

Evib  1
2

hn k e

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and the energy takes the form 

 

Since the angular frequency is related to the frequency by 

 

we get the vibrational energy 

 (VII-47) 

where n is the vibrational quantum number. This expression may be 
compared to that obtained in the case of the full treatment of the quantum 
oscillator 

 

We find that the approximate expression leads to equidistant energy levels 
as in the quantum harmonic oscillator, but the energy hνe is multiplied by 
the factor π and for the quantum number the approximate model starts from 
n = 1, whereas in the exact model it is v = 0. 

We still need to find the value of the vibrational frequency νe in the ground 
state. Let us recall the simplified model of H₂⁺. The expression (VII-31) of 
the energy is 

 

with AT(n) and AV given respectively by 

 

e  k e


Evib  1
2

nhe

e  2e

Evib  nhe

Evib  he v  1
2

En,R  ATn
R2

 AV
R

ATn  h2

8m n2 and AV  Ke2  3
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Consider now the bottom of the potential well of the ground state n = 1 
obtained from the graph of the energy (VII-31) versus the internuclear 
distance R. For distances near the minimum, the potential energy is that of 
a harmonic oscillator. In this approximation, the force constant may be 
obtained as the second derivative of the energy at its minimum. 

Then 

 

and the force constant is 

 

Replacing the constants in this expression gives 

 

i.e. 

 

Using the expression (VII-32) of Re we find 

 

Thus, we get 

d2

dR2
E1,R  d2

dR2

AT1
R2

 AV
R 

6AT1
R4

 2AV

R3

ke 
6AT1

Re
4

 2AV

Re
3

k e 
6 h2

8m
Re

4
 2Ke2  3

Re
3

ke  3h21
4m

1
Re

4
 6Ke2

Re
3

Re  2
AT1

AV
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which leads to 

    (VII-48) 

Taking the values obtained above 

 

for the force constant, we get 

 

For the vibrational frequency of the ground state νe, we have 

 

where M is the proton mass. Then we obtain 

 

i.e. in cm⁻¹ 

 

This result is close to the experimental value for the ground state of H₂⁺, 
which is 2,321 cm⁻¹. 

k e 
6AT1

2
AT1

AV

4
 2AV

2
AT1

AV

3

k e 
AV

4

8AT13

ATn  6. 025  1038n2J m2

AV  6. 921  1028J m1

ke  131. 173 J m2

e  1
2

ke
  1

2
2ke
M

e  1
2

131. 173  2
1.673  1027

 6.303  1013Hz

e  2102cm1
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According to Eq. (VII-47), the vibrational energy will then be 

 

 

and the experimental expression is 

 

Now, let us express the vibrational frequency in terms of fundamental 
constants as undertaken previously for the rotational energy. Recall that for 
the AT and AV constants, we have the expressions 

 

with 

 

 so that, for the force constant ke, we have 

 

which, for the force constant, leads to 

 

and for the vibrational angular frequency νvib, we have 

 

If we are interested in the order of magnitude, we have 

Evib  1. 312  1019n J and in e.V.Evib  0.819n e.V

Evib  0.286 v  1
2

e.V

AT  C
hc
8

and AV  Ke2  3

K  1
40

  c
e2

  hc
2e2

k e 
 h  c

2e2
e2  3

4

8 C
hc
8

3

k e  324
4

hc4

C
3

vib  9
2

3
2C

m
M
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This result may be compared to that concerning the rotational vibration 
energy 

 

Then, we have roughly 

 

so that we have 

 

f. Expression of the dissociation energy 

In the same spirit, we can express the dissociation energy in terms of 
fundamental constants. 

For the ground state the energy of the H₂⁺ molecule and that of the separated 
atoms, we have found 

 

with 

 

and for the separated atom we have 

 

with 

vib  2C
m
M

rot  2C
m
M

vib
rot

 M
m

vib
rot

 40

Emol  
AV

2

4ATn

AT  C
hc
8

and AV  Ke2  3

Eat  
aV

2

4aT
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By definition, the dissociation energy is 

 

so that 

 

and 

 

i.e. 

 

and finally 

 

This result may be compared to that concerning the rotational energy 

 

with 

 

then 

aT  C
hc
32

and aV  Ke2

De  Emol  Eat

De   
AV

2

4ATn


aV
2

4aT

De   
Ke2  32

4C
hc
8


Ke2 

2

4C
hc
32

De   
 hc

2
 3

2

4 hc
8


 hc

2
2

4 hc
32

De  5
22

2mc2

hrot  2C
m
M

C  c
C

 mc2

h
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Hence, the ratio of these energies is 

 

which is in the experimental order of magnitude. 

If we now compare the dissociation energy De with the vibrational energy 
νvib 

 

we obtain 

 

which is also in the experimental order of magnitude. 

g. Extension to polyelectronic diatomic molecules 

When the 1-D model is extended to other diatomic molecules, the kinetic 
and potential energies of the system may be given, respectively 

 

where the parameters AT*and AV* are of same nature as that evoked above 
in eqs. (VII-30), which take into account the fact that there are several 
electrons. Thus, we have 

 

where neff is the number of valence electrons implied in the bonding process 
and Z_{eff} is the effective nuclear charge of the nuclei. 

Erot  hrot  2mc2 m
M

De
Erot

 M
m  2000

vib  2C
m
M

De
Evib

 M
m  45

T 
AT


R2
and V 

AV


R

AT
  h2

8m  neff and AV
  Ke2Zeff
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Let us now consider two homonuclear diatomic molecules, I and II, in which 
elements of the same valence are involved. In these conditions, the number 
neff of valence electrons is the same for the two molecules. The consequence 
is that the two molecules I and II have the same AT* parameter, so that 

 

On the contrary, the AV* parameters have no reason to be the same 

 

This allows us to compare the force constants keI and keII of the two bonds. 
Using Eq. (VII-48), we have 

 

The ratio of these force constants gives 

 

The equilibrium distances for the both molecules are given by Eq. (VII-37) 

  

and their ratio is 

 (VII-49) 

Then, we may write 

 

ATI
  ATII

  AT


AVI
  AVII



keI 
AVI

4

8AT
 3

and keII 
AVII

4

8AT
 3

k eI

k eII


AVI

4

AVII
4

ReI 
2AT



AVI
 and ReII 

2AT


AVII


ReI

ReII


AVII


AVI


k eI

k eII

 ReII

ReI

4
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This is a well-established result21. Let us undertake a comparison of the 
dissociation energy of homonuclear diatomic molecules, the atoms of which 
belong to the same column of the periodic table and have the same bond 
index. The dissociation energy is given by the approximate relation 

 

As such, we may write 

 

Since all these molecules will have the same AT* parameter, we may write 

 

Given Eq. (VII-49) above, we get 

 

This is also a well-established result21. 

VII-III. Theories Dealing with Molecular Geometry 

In this section, we shall address the theories dealing with molecular 
geometry. In the first step, we examine the VSEPR method, which is used 
to predict the geometry of molecules with a central atom by means of 
electrostatic considerations. The predictions made by this method are used, 
in a second step, to undertake a quantum description using the concept of 
the hybridization of atomic orbitals in order to construct the orbitals and 
discover their probability densities in the direction of the bonds. In the third 
step, we shall apply the theory of molecular orbitals to obtain a description 

                                                      
21 see for instance R. Parr, R. Simons, and R. Borkman, J. Chem. Phys, 50, 1969, p. 
58. 

De 
AV

2

4AT

DeI 
AVI

2

4AT
 and DeII 

AVII
2

4AT


DeI

DeII


AVI
2

AVII
2

DeI

DeII
 ReI

ReII

2
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of localized MOs for several polyatomic molecules. Finally, in order to 
describe a system, such as the transition metal complexes, we shall use the 
hybridization theory and obtain information on the magnetic properties of 
these compounds. 

1. The VSEPR method (Valence Shell Electronic Pair Repulsions) 

This method deals with 
molecules having a central atom 
A surrounded by a certain 
number of peripheral atoms X, 
i.e. the ligands, and is down to the 
work of Gillespie22 and 
Nylhom23. 

a. An electrostatic model R. Gillespie Sir R. Nylhom 

Table VII-13 shows the equilibrium configurations of point charges—
configurations that minimize the repulsions between these charges kept at 
the same distance from a point in space. 

  

                                                      
22 Ronald Gillespie (born 1924). Canadian chemist known for his work on molecular 
geometry. 
23 Sir Ronald Sydney Nyholm (1917-1971). Australian chemist. Known for his work 
on molecular geometry. He is one of the two creators of the VSEPR theory. 
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Table VII-13: The electrostatic model 

 

The molecules we study here will have one of the geometries presented 
above, depending on the number of charges that can be counted around the 
central atom A. 

Central atom A 

Provides the molecule with its outermost electronic structure. The outermost 
electrons are distributed on the surface of a sphere centered on the A 
nucleus, called the valence sphere. 

Ligand X 

They will give their unpaired electrons to the valence sphere. 

The outermost electrons of atom A and the unpaired electrons of atoms X 
will group into doublets, which constitute the charges. These charges on the 
surface of the valence sphere repel each other until an adequate equilibrium 
structure is obtained, as given in Table VII-13. 

Each ligand X collects as many doublets as it has supplied unpaired 
electrons: 

-  we then define the number of charges (charge = doublet or grouping 
of doublets); 

-  we draw the geometry in space corresponding to the number of 
charges found according to Table VII-13; 

-  we place the free doublets; 
-  the ligands are placed in the remaining positions; 
-  and we define the type of molecule. 
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A bonding doublet takes up less space than a free doublet. As a result, the 
free doublets exert a pressure on the bond doublets and will tend to close 
the bond angles. We can therefore predict certain deformations of the 
molecule. 

b. Examples 

The BeH₂ molecule 
We have the central atom Be and the outermost shell of Be is 2s AO, 
containing 2 electrons. 

 

Total 4e⁻ on the valence shell gives 2 doublets. 

As such, each ligand collects as many 
doublets as it has supplied unpaired electrons, 
i.e. 1 doublet per H atom. There are therefore 
2 charges on the valence sphere, which repel 
each other until the equilibrium position of 2 
charges of the electrostatic model is obtained. 

 

Figure VII-44:  
Geometry of BeH2. 

In naming this type of molecule, we call the central atom A, the peripheral 
atoms Xn, and the free doublets En. 

Hence, BeH₂ is of the AX₂ type. 

The BF₃ molecule 
Central atom: boron; ligands : fluorines. 
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The 3 fluorine atoms will therefore supply 3 electrons to the valence sphere. 

In total, we have 6 electrons which are grouped into 3 doublets. 

Each ligand F collects as many doublets as it has supplied unpaired 
electrons. There are therefore 3 charges on the valence sphere, which are 
distributed at the corners of an equilateral triangle. 

 

As such, the molecule is of the AX3 type. 

 

Figure VII-45: Geometry of BF3. 

The SnCl₂ molecule 

 

Tin (Sn) belongs to the carbon family and therefore has 4 outermost 
electrons, while chlorine is a halogen and therefore has 1 outermost 
unpaired electron. 

In total, there are 6 electrons on the valence sphere, i.e. 3 doublets 
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It may be noted that the free doublet 
occupies a greater volume than a bond 
doublet, exerting a certain pressure on the 
two SnCl bonds. Hence the angle 
between these bonds is less than 120°. 
This has been confirmed with the 
experimental value of 95° for this angle. 

The molecule is thus of the AX2E type. 

 

Figure VII-46: SnCl2 
geometry. 

The H₂O molecule 

 

Total 8 electrons on the valence sphere, i.e. 4 doublets. 

 

This results in a bi-pyramidal arrangement 
of the atoms with a triangular base (or 
hexahedron). The free doublets put pressure 
on the bond doublets so that the angle FClF 
is less than 90°. This predicted angle has 
been confirmed experimentally (87.5°).  

The molecule is of the AX₃E₂ type. 

 

Figure VII-47: H2O 
geometry. 

6 electrons  3 doublets

Cl gets 1doublet  1charge

Cl gets 1doublet  1charge

Free doublet  1charge

3 charges system

8 electrons  4 doublets

H gets 1doublet  1charge

H gets 1doublet  1charge

Free doublet  1charge

Free doublet  1charge

4 charges system
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The IF5 molecule 
The central atom is iodine, which is a halogen and therefore supplies 7 
electrons to the valence sphere, while the ligands are fluorines, which are 
halogens; each of them supplies 1 unpaired electron, i.e. 5 electrons in total. 
 

 

In total we have 12 electrons, which regroup into 6 doublets on the valence 
sphere. 

 

The doublets point in the direction 
of the vertices of a square-based bi-
pyramidal arrangement (octahedral 
arrangement). The free doublets put 
pressure on the IF bonds and close 
the FIF angles, which are <90°. 
Experimentation (81.9°) has 
confirmed this prediction. 

The molecule is of the AX₅E type. 

 

Figure VII-48: IF5 geometry. 

c. The case of molecules with multiple bonds 

The CO₂ molecule 
The central atom is carbon (C) and supplies its 4 outermost electrons to the 
valence sphere, while the ligands are the two oxygen atoms, which have 2 
unpaired electrons each on their outermost shells. The ligands will therefore 
supply their 4 unpaired electrons to the valence sphere. 

12 electrons  6 doublets

F gets 1doublet  1charge

F gets 1doublet  1charge

F gets 1doublet  1charge

F gets 1doublet  1charge

F gets 1doublet  1charge

Free doublet  1charge

6charges system
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In total, there will be 8 electrons on the valence sphere, which regroup into 
4 doublets. 

 

 
Figure VII-49: CO2 geometry. 

The molecule is linear and of the AX₂ type. 

The VSEPR method remains a classic electrostatic method and continues to 
offer great support to quantum methods, such as the theory of hybridization 
and the theory of molecular orbitals. 

2. The theory of hybridization of atomic orbitals 

a. Principles 

The theory of hybridization of atomic orbitals is a theory of chemical 
bonding considered a posteriori. It is thus necessary to know the geometry 
of the molecule before using this method. 

The aim of this method is to adapt the shape of atomic orbitals so that they 
reflect the directions in which the links are made. This consists of mixing 
the solution wave functions of the Schrödinger equation. 

Polyatomic molecules have a spatial geometry in which a limited number 
of angles occurs between bonds. 

8 electrons  4 doublets
O gets 2 doublets  1charge

O gets 2 doublets  1charge
2 charges system

 EBSCOhost - printed on 2/13/2023 7:38 PM via . All use subject to https://www.ebsco.com/terms-of-use



The Chemical Bond 353 

The angles between the bonds that can be noted can be classified into 5 types: 

-  Angles close to 180° (linear molecules). 
-  Angles close to 120° (planar molecules and those of equilateral 

triangle shape). 
-  Angles close to 109.5° (tetrahedral molecules). 
-  Angles close to 90° and 120° (bi-pyramid with triangular base). 
-  Angles close to 90° only (bi-pyramid with square base or octahedron). 

 
The so-called natural orbitals are not able to account for the direction of the 
chemical bonds in these molecules. We must then consider their transformation 
in order to discover the orbitals that are pointing in the direction of the bonds. 
This transformation operation is called hybridization. Since it affects the shape 
of these orbitals, it will therefore modify the analytical expression of the 
corresponding wave function. It is therefore a mathematical operation, which 
consists of changing the basis of the atomic orbitals. 

Recall that the basis of the atomic orbitals is the set of orthogonal wave 
functions that can describe an atom. This basis can be limited to atomic 
orbitals occupied only by electrons or extended if other orbitals are included. 

In our case, we shall limit ourselves to the orbitals describing the outermost 
shell of the atoms. Let us consider the outermost shell of an element from 
the second period of the periodic table. 

The minimum natural basis of this atom will be the 2s, 2px, 2py, and 2pz 
orbitals. We represent this basis as 

 

Hybridization consists of changing this basis to a new hybrid basis that takes 
into account the geometry of the molecule. Each hybrid orbital is described 
as a linear combination of the natural basis orbitals. If φk designates an 
orbital of the natural basis, then we can write 

 

where ti is the ith hybrid orbital and Cik is the hybridization coefficients, the 
weights of the atomic orbital k in the combination constituting the hybrid 
orbital i. 

2s,2px,2py,2pz

t i  
k

Cikk
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b. Main types of hybridization 

Hybridization sp 
The BeH₂ molecule has been shown to be linear through experimental 
measurements (see Fig. VII-44). This geometry suggests that the 
interactions between beryllium and the hydrogen atoms, i.e. the chemical 
bonds Be-H, imply the creation of an electronic density between the atoms. 
This electronic density is therefore concentrated along the internuclear axis. 
The beryllium atom must therefore be prepared through its atomic orbitals. 
The beryllium atom is characterized by the atomic orbitals of the outermost 
shell or valence shell Ψ2s, Ψ2pz, Ψ2px, Ψ2py. We can suggest that these orbitals 
form a basis as 

 

If we consider the natural atomic orbitals of beryllium, we can see that they 
are unsuitable for the description of the molecular geometry. Indeed, the s 
orbitals have spherical symmetry, while the axial symmetry of the p orbitals 
points in the direction 90°, as shown in Fig. VII-50. Recall the properties 
of the natural atomic orbitals of the beryllium atom, the energies and shapes 
of which are given in Fig. VII-51. 

 

Figure VII-50: Directions of sp 
hybrids in BeH2.  

One way to make these orbitals 
conform to molecular symmetry 
is to undertake hybridization of 
the atomic orbitals. The 
hybridization of atomic orbitals 
consists of mixing an s orbital 
with one or several other 
orbitals. 

Figure VII-51: Energies and  
shapes of the natural atomic orbitals  

of Be and H atoms. 

2s,2pz,2px,2py
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The goal, as in the case of the BeH₂ molecule, is to obtain two hybrids 
pointing in diametrically opposite directions towards the 1s orbitals of the 
hydrogen atoms, allowing us to account for the geometry of BeH₂. We can 
say that beryllium is hybridized into sp. Now, let us see what this 
hybridization gives. Mathematically, we define a new basis of the hybrid 
atomic orbitals from the natural atomic orbitals 

 

We then construct the hybrid orbitals as a linear combination of the natural 
atomic orbitals, so that 

 

where ai and bi are the coefficients of the combination expressing the 
respective “weights” of the atomic orbitals in the hybridization. 

Now we apply the properties of these new orbitals. 

1. Each orbital must be normalized, i.e. 

 (VII-50) 

2. These new orbitals must be orthogonal to each other 

 

Consequently, for normalization we have 

 (VII-51) 

2s,2pz,2px,2py  t1 , t2 ,2px,2py

Natural basis Hybrid basis

t1  a12s  b12pz

t2  a22s  b22pz

 t1
2dv  1 and  t2

2dv  1

 t1 t2dv  0

a12s  b12pz
2dv  1

a22s  b22pz
2dv  1
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and for orthogonality 

 (VII-52) 

Developing Eq. (VII-50), we have 

 

Since Ψ2s and Ψ2pz must be normalized and orthogonal to each other, we 
obtain 

 

Thus, we have the following equations 

 (VII-53) 

 (VII-54) 

 (VII-55) 

Multiplying (VII-53) by (VII-54), we get 

 

so that 

 (VII-56) 

From Eq. (VII-55), we have 

 

a12s  b12pza22s  b22pzdv  0

a1
2 2s

2 dv  b1
2 2pz

2 dv  2a1b1 2s2pzdv  1

a2
2 2s

2 dv  b2
2 2pz

2 dv  2a2b2 2s2pzdv  1

a1a2 2s
2 dv  b1b2 2pz

2 dv 

a1b2 2s2pzdv  a2b1 2pz2sdv  0

a1
2  b1

2  1

a2
2  b2

2  1

a1a2  b1b2  0

a1
2  b1

2 a2
2  b2

2   1

a1
2a2

2  b1
2a2

2  a1
2b2

2  b1
2b2

2  1

a1a2  b1b2
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and then 

 

Eq. (VII-56) becomes successively 

 

so that, according to (VII-53) and (VII-54) 

 

Likewise, we can show that 

 

Matrix writing 
Hybrid atomic orbitals can be written in the form 

 

Considering the matrix in this expression, we can note: 

- that the sum of the squares of a line is equal to 1 

 

- that the sum of the squares of a column is equal to 1 

 

- that the sum of the products of the matrix elements of a row is zero 

a1
2a2

2  b1
2b2

2

a1
2a2

2  b1
2a2

2  a1
2b2

2  a1
2a2

2  1

a1
2a2

2  a1
2b2

2  a1
2a2

2  b1
2a2

2  1

a1
2a2

2  b2
2   a2

2a1
2  b1

2   1

a1
2  a2

2  1

b1
2  b2

2  1 and a1b1  a2b2  0

t1

t2


a1 b1

a2 b2

2s

2pz

a1
2  b1

2  1

a1
2  a2

2  1
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- that the sum of the products of the matrix elements of a column is 
zero 

 

Calculation of hybridization coefficients 
The sign of the 
coefficients depends on 
the geometry of the 
molecule. Consider the 
basic atomic orbital 2pz.  

Figure VII-52: Signs of phases in OA 2s and 
2pz. 

Phase + points in the direction of t₁ and the sign in front of |b₁| will be 
positive. On the contrary, for t₂ the sign will be negative because the orbital 
t₂ points in the direction of the negative z. The contribution of the 2s atomic 
orbital will always be positive since this orbital has a positive phase 
regardless of the direction observed. Ultimately, for the matrix coefficients 
we have 

 

If we apply the rules defined above, we have 

 

which, for the matrix coefficients, gives 

a1a2  b1b2  0

a1b2  a2b1  0

|a1 | |b1 |

|a2 | |b2 |

a1
2  b1

2  1 then b1
2  1  a1

2 and b1  1  a1
2

a1
2  a2

2  1 then a2
2  1  a1

2 and a2  1  a1
2
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If we define |a₁| = a, the matrix becomes 

 

To find the value of a, we need to apply the rules 

 

and so the matrix becomes 

 

The shape of the hybrids 
We can therefore construct the hybrid atomic orbitals t₁ and t₂ 

 

with 

|a1 |  1  a1
2

 1  a1
2 |a1 |

a 1  a2

1  a2 a

a1b2  a2b1  0 and 2a2  1 so that: a 
2
2

2
2

2
2

2
2

 2
2

t1 
2

2
2s 

2
2

2pz

t2 
2

2
2s 

2
2

2pz
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The manual construction of the hybrid orbitals uses the same methods as we 
saw for natural atomic orbitals, namely the representation by angular 
distribution of the absolute value of the wave function. For practical 
questions, we use the representation by isoamplitude contours of the orbital 
t₁ in the plane zOy by changing the variables θ and r by the Cartesian 
coordinates z and y. 

 

Figure VII-53: sp hybrid isoamplitude contours for beryllium. 

To get an idea of the complete representation of these orbitals, we have to 
vary the angle φ in the xOy plane from 0 to 180° to obtain a 3-D shape of 
the isoamplitude surfaces. 

2s  1
4 2

2  rexp r
2


2pz  1
4 2

rcosexp r
2

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Figure VII-54: isoamplitude surfaces of sp hybrids. 

In practice, as in Fig. VII-55, we can schematically represent the sp hybrid 
orbitals t₁ and t₂ 

Figure VII-55: Schematic 
form of sp hybrids. 

The large lobe points 
towards the ligand and 
the angle between the 
hybrids is 180°.  From an 
energy point of view, we 
have the correlation 
diagram given in Fig. 
VII-56. 

Figure VII-56: sp hybridization diagram. 

 
 
Hybridization sp² 
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This involves the mixing of an orbital s with two orbitals p. The goal is to 
get three hybrids pointing towards the vertices of an equilateral triangle. 
This allows us, for example, to account for the geometry of boron hydride 
(BH₃). It can be said that boron is hybridized into sp². Let us see the results 
of this hybridization. 

First, let us recall the basis of the atomic orbitals used 

 

In this case, we have used the atomic orbitals Ψ2s, Ψ2px, and Ψ2py to build 
the hybrid atomic orbitals sp₂. This gives 

 

Matrix writing 

 

  

2s,2pz,2px,2py  t1 , t2 , t3,2pz

Natural basis Hybrid basis

t1  a12s  b12px  c12py

t2  a22s  b22px  c22py

t3  a32s  b32px  c32py

t1

t2

t3



a1 b1 c1

a2 b2 c2

a3 b3 c3



2s

2px

2py
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Definition of the referential 

Fig. VII-57 gives the referential 
used for sp2 hybrids in which the 
sign of the orientation of the 
hybrids with respect to the sign 
of the axes appear. 

t₁ confuses itself with the x axis 
and points to positive x. 

t₂ has a positive component in the 
y direction and is negative in the 
x direction. 

t₃ has a negative component in 
the y direction and is negative in 
the x direction. 

As such, we have the following 
equations 

 

Figure VII-57: Sign convention  
for sp² hybrids. 

 

Besides, given the symmetry we must have 

 

which involves setting |a₁| = a to the transformation matrix 

 

t1  |a1 |2s  |b1 |2px  02py

t2  |a2 |2s  |b2 |2px  |c2 |2py

t3  |a3 |2s  |b3 |2px  |c3 |2py

|b2 |  |b3 | and |c2 |  |c3 |

a |b1 | 0

a2 |b2 | |c2 |

a3 |b2 | |c2 |
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By applying the rules on the coefficients, we have 

 

As such, we have the following transformation matrix 

 

a remains to be determined. To do this, let us introduce the physics in the 
problem. If we compare the directions of the hybrid atomic orbitals to the 
vectors, we have 

 

with 

 

2|c2 |2  1 so that |c2 | 
2

2

a2  |b1 |2  1 so that |b1 |  1  a2

|b1 |2  2|b2 |2  1 so that 1  a2  2|b2 |2  1 then |b2 |  a
2

|a2 |2  a
2
 1

2
 1 so that |a2 |  1  a2

2

|a3 |2  a
2
 1

2
 1 so that |a3 |  1  a2

2

a 1  a2 0

1  a2

2
 a

2
1
2

1  a2

2
 a

2
 1

2

t1. t3  t1 t3 cos120°

t1

1  a2

0

and t3

 a
2

 1
2
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so that 

 

We have vector lengths equal to 

 

or 

 

Let us express the scalar product of the hybrid vectors 

 

so that 

 

We can then write 

 

or 

 

cos120°  t1 . t3

t1 t3

t1  x1
2  y1

2 and t3  x3
2  y3

2

t1  1  a2 and t3  a2

2
 1

2

r 1 r 3  x1x3  y1y3

t 1 t 3  1  a2  a
2

 a 1  a2

2

1
2


a 1  a2

2

1  a2 a2

2
 1

2

1
2


a 1

2

a2  1
2

 a
a2  1
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Let us square this expression 

 

We can thus deduce 

 

so that the equations giving the hybrid orbitals sp₂ are 

 

where 

 

If we use Cartesian coordinates, we obtain 

  

a2

a2  1
 1

4

a2  1
3

i.e. a  1
3

t1

t2

t3



1
3

2
3

0

1
3

 1
6

1
2

1
3

 1
6

 1
2



2s

2px

2py

2s  1
4 2

r  2exp  r
2

2px  1
4 2

rsin cos exp  r
2

2py  1
4 2

rsin sin exp  r
2

2s  1
4 2

x 2  y2  2 exp 
x 2  y2

2

2px  1
4 2

x exp 
x 2  y2

2

2py  1
4 2

yexp 
x 2  y2

2
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Then, in the xOy plane we can draw the isoamplitude contours of the hybrid 
atomic orbitals. 

 

Figure VII-58: Isoamplitude contours of sp² hybrids. 

If we vary the angle ���we obtain volumes contained in the outermost 
amplitude surface. 

 

t1   t2   t3 

Figure VII-59: Isoamplitude surface of sp² hybrids. 

Energetically speaking, we have the following correlation diagram. 

 

Figure VII-60: Hybridization diagram sp². 
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We can mix an s orbital and 2 pz orbitals and thus obtain three hybrid orbitals 
t₁ , t₂, and t₃, the schematic form of which is in the diagram below. 

 
t1  t2   t3 

Figure VII-61: Schematic forms of sp² hybrids.  
The angle between the hybrids is 120°. 

sp³ hybridization 
sp³ hybridization consists of mixing an orbital s with three orbitals p. The 
goal is to obtain 4 hybrids pointing towards the vertices of a cube, as in the 
CH₄ molecule. This allows us to account for the geometry of CH₄. It can be 
said that the carbon is hybridized in sp³. There are several ways of designing 
the referential. 

We shall see two types of representation, one with pure sp³ the other close to sp³. 

Pure sp³ hybridization molecules 

We speak of pure hybridization when 
hybrids are obtained making an angle of 
109° 28′ exactly between them. Fig. VII-
62 gives an example of pure sp3 
hybridization. The hybrids point, two by 
two, towards the opposite corners of a 
cube. The angle between the hybrids is 
109° 28′ exactly. This is a fully symmetric 
disposition. 

The hybridization equations in this case are 

 

Figure VII-62:  
pure sp3 hybrids. 
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In this kind of hybridization, all 
the coefficients have the same 
weight, but the signs are 
different depending on how the 
hybrid orbitals point to the 
positive or negative 
coordinates.  

By initially distinguishing the 2s and 2p orbitals we get the hybridization 
matrix on the right.    Thus, we have the relation 

 

from which we deduce 

 

Besides 

 

then |b₁| to get 

 

leading to the hybridization matrix 

t1

t2

t3

t4



a1 b1 c1 d1

a2 b2 c2 d2

a3 b3 c3 d3

a4 b4 c4 d4

2s

2px

2py

2pz

|a| |b1 | |b1 | |b1 |

|a| |b1 | |b1 | |b1 |

|a| |b1 | |b1 | |b1 |

|a| |b1 | |b1 | |b1 |

a2  3b1
2  1

|b1 |  1  a2

3

4a2  1 so that |a|  1
2

|b1 |  1  a2

3


1  1
4

3
 1

2
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Hybridization close to sp³ 

The angle between the 
hybrids can be different 
to 109° 28′, but it must 
remain relatively close to 
this value. This is the 
case for the 
hybridization of nitrogen 
in the ammonia 
molecule (NH₃), for 
example.   

Figure VII-63: Other types of sp3 hybridization. 

For this, we can consider the arrangement given in Fig. VII-63 of the hybrid 
orbitals with respect to the Cartesian referential. Thus, we have the 
following equations 

 

Taking into account the symmetry, one can provide a transformation matrix 
of the type 

 1
2

 1
2

 1
2

 1
2

 1
2

 1
2

 1
2

 1
2

 1
2

 1
2

 1
2

 1
2

 1
2

 1
2

 1
2

 1
2

t1

t2

t3

t4



a1 b1 c1 d1

a2 b2 c2 d2

a3 b3 c3 d3

a4 b4 c4 d4



2s

2px

2py

2pz
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Using the relation between the coefficients we saw above, we may write 

 

The matrix takes the form 

 

and we can deduce 

 

Furthermore, we can see on the graph that |c₂| = |c₃|. The three hybrids t₂, t₃, 
and t₄ are superimposed by a simple rotation around an axis and the 
contribution of the orbital 2s is therefore the same for these three 
sp³.hybrids. So we have 

 

a 0 |c1 | 0

|a2 | 0 |c2 | |d2 |

|a3 | |b3 | |c3 | |d3 |

|a3 | |b3 | |c3 | |d3 |

a2  c1
2  1 so that |c1 |  1  a2

a 0  1  a2 0

|a2 | 0 |c2 | |d2 |

|a3 | |b3 | |c3 | |d3 |

|a3 | |b3 | |c3 | |d3 |

2b3
2  1 then |b3 |  1

2

a 0 1  a2 0

|a2 | 0 |c2 | |d2 |

|a2 |  1

2
|c2 | |d3 |

|a2 | 1

2
|c2 | |d3 |
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We thus deduce 

 

and 

 

 

Then, we have the matrix 

 

and deduce that 

 

we get the matrix as a function of a 

3a2
2  1  a2 so that |a2 |  1  a2

3

3c2
2  1  a2  1 so that 3c2

2  a2 and |c2 |  a2

3

a 0 1  a2 0

 1  a2

3
0  a2

3
|d2 |

 1  a2

3
 1

2
 a2

3
|d3 |

 1  a2

3
1
2

 a2

3
|d3 |

d2
2  1  a2

3
 1  a2

3
and |d2 |  2

3
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leading us to write 

 

 

 

and thus the matrix takes the form 

 

Now we apply the physical condition of the angle α between the hybrids, t₃ 
and t₄ for example. For ammonia we have the angle α = 107.3°. This is not 
the value of 109° 28' of pure sp³ hybridization, but sp³ hybridization can be 
applied to this case. 

a 0 1  a2 0

 1  a2

3
0  1  a2

3
 2

3

 1  a2

3
 1

2
 1  a2

3
|d3 |

 1  a2

3
1
2

 1  a2

3
|d3 |

2d3
2  2

3
 1 so that |d3 |  1

6

a 0 1  a2 0

 1  a2

3
0  1  a2

3
 2

3

 1  a2

3
 1

2
 1  a2

3
 1

6

 1  a2

3
1
2

 1  a2

3
 1

6
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If we assimilate hybrids to vectors, we can write their scalar product 

 

with the vector components 

 

We thus have 

 

Besides, we have the dot product t₃t₄, which is equal to 

 

i.e. 

 

Besides 

 

then 

 

t 3. t 4  t3 t4 cos

t 3

 1
2

 1  a2

3

 1
6

and t 4

1
2

 1  a2

3

 1
6

cos  t 3 t 4

t 3 t 4

t 3 . t 4   1
2

1
2

  1  a2

3
 1  a2

3
  1

6
 1

6

t 3 . t 4  a2

3

t 3  x2
2  y2

2  z2
2 and t 4  x3

2  y3
2  z3

2

t 3   1

2

2

  1a2

3

2

  1
6

2
and t 4  t 3
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i.e. 

 

We can then write 

 

or 

 

so that 

 

and using the physical data 

 

we obtain 

 

Finally, the hybridization matrix close to sp³ takes the form 

t 3  1  1
3

a2 and t 4  t 3

cos  t 3 . t 4

t 3 t 4

cos 
a2

3
1  1

3
a2

cos  a2

3  a2

cos107.5  a2

3  a2

a  0.9
1.3

 0.832
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Numerically, we obtain 

 

We deduce the NH₃ hybrid orbitals 

 

 

If we draw the isoamplitude contours in the yOz plane, for the hybrid 
orbitals t₁ and t₂, we obtain the figure below. 

0.832 0 1  0.8322 0


1  0, .8322

3
0  1  0.8322

3
 2

3


1  0.8322

3
 1

2
 1  0.8322

3
 1

6


1  0.8322

3
1
2

 1  0.8322

3
 1

6

0.832 0 0.555 0

0.320 0 0.320 0.816

0.320 0.707 0.320 0.408

0.320 0.707 0.320 0.408

t1

t2

t3

t4



0.832 0 0.555 0

0.320 0 0.320 0.816

0.320 0.707 0.320 0.408

0.320 0.707 0.320 0.408

2s

2px

2py

2pz
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Figure VII-64: sp³ hybrid amplitude contours t₁ and t₂ for ammonia. 

The other hybrid orbitals t₃ and t₄ are deduced by a rotation of π/3 around 
the axis y'Oy. 

Note that the hybrid pointing 
to the y axis will be the one 
that carries the free doublet 
of nitrogen in NH₃. The other 
hybrids will point towards 
the hydrogen atoms. 

Energetically speaking, we 
have the following correlation 
diagram: we mix an s orbital 
and 2 p orbitals and obtain 
three sp³ hybrid orbitals t₁, t₂, 
and t₃. 

 

Figure VII-65: sp³ hybridization. 

The shape of the hybrid orbitals is presented 
schematically in Fig. VII-66; the other 3 
directions are similar. In the pure sp₃ form, 
that of CH4 for example, each hybrid points 
towards the vertices of a tetrahedron whose 
central atom is in O. The angle between the 
hybrids is then 109° 28′. 

 

Figure VII-66:  
Schematic representation  

of an sp3 hybrid. 
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As the number of ligands increases, the d orbitals must become involved. 
Thus we have sp³d type hybridizations to account for structures having a bi-
pyramidal form with a triangular base (hexahedron), or sp³d² for geometries 
of bi-pyramidal type with a square base (octahedron). We have previously 
seen such geometries during our examination of the VSEPR method and the 
principle of construction remains the same. 

sp³d and dsp³ hybridizations 

These concern molecules with a 
hexahedron or bi-pyramidal 
arrangement with a triangular base, 
such as transition metal complexes. 

Here, we use one s atomic orbital, three 
p orbitals, and one d orbital. 

 

 

Figure VII-67: Directions  
of hybrids sp³d² or d² sp³. 

If the hybridization involves orbitals of the same shell, we then have sp3d² 
hybridization and pass from the basis 3s, 3px, 3py, 3pz, 3dz² , 3dx²-y², 3dxy, 
3dxz, and 3dyz, to the new hybrid basis  

 

which gives the diagrams in Fig. VII-68. On the left of this figure we have 
the sp³d² hybridization and on the right the d² sp³ hybridization. 

 

Figure VII-68: Hybridization diagrams for sp³d²(left) or d² sp³(right). 

3s,3px,3py3pz,3dz2 ,3dx2y2  t1, t2, t3, t4, t5, t6
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c. Use of hybridization theory to construct molecular orbitals of 
polyatomic molecules 

In this section we shall see how to simply build the molecular orbital 
diagrams of polyatomic molecules on the basis of hybridized atomic 
orbitals. 

The BeH₂ molecule 

We have previously seen that the 
sp type hybridization of beryllium 
leads to the hybrid orbitals t₁ and 
t₂, as shown in Fig. VII-69. 

Both 2s electrons of beryllium are 
found in the hybrid orbitals t₁ and 
t₂ with each pointing in the 
direction of the ligands so that we 
have the interactions given in Fig. 
VII-70. 

 

Figure VII-69: sp hybridization of Be. 

Figure VII-70: Interaction scheme  
of orbitals in BeH₂. 

We can then obtain a correlation 
diagram (Fig. VII-71) for the AOs 
and MOs of BeH₂. Each hybrid 
AO thatinterferes with the AO 1s 
of hydrogen, which is opposite, 
gives a bonding MO of σ type and 
an anti-bonding MO of σ* type. 

Figure VII-71: MO diagram of the 
BeH₂ molecule. 

We thus have a description in terms of localized molecular orbitals. This 
description is close to the chemist’s vision of the chemical bond in Lewis 
notation, in which the bond is considered to be due to a pair of electrons 
located between the bonding atoms. 
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There is another description of the molecular orbitals of BeH2 that we shall 
not describe here—the delocalized molecular orbitals. This description 
allows molecular orbitals of the same symmetry to interfere. For example, 
OM ��s-t1 and OM ��s-t2 having the same energy and being of the same axial 
symmetry have the possibility of interfering leading to delocalized 
molecular orbitals. 

The BH₃ molecule 

Recall the VSEPR procedure for determining the geometry of this molecule. 
It consists of counting the number of electrons in the outermost shell of the 
central atom, boron here, and the number of unpaired electrons brought in 
by the ligands. 

 

The 3 hydrogen atoms will therefore supply 3 electrons to the valence sphere. 

In total we have 6 electrons, which are grouped into 3 doublets. 

 

Each ligand H collects as many doublets as 
the number of unpaired electrons it has 
supplied. There are therefore 3 charges on 
the valence sphere, which are distributed at 
the corners of an equilateral triangle, as 
shown in Fig. VII-72. 

The angle formed by the BH connections is 
therefore 120°. In order to make the atomic 
orbitals of boron directional, we need to use 

 

Figure VII-72:  
geometry of BH3. 
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sp² hybridization, which will consist of mixing the 2s orbital with the 2px 
and 2py orbitals of boron.This mixing leads to the 3 hybrid orbitals t₁, t₂, and 
t₃, as shown in Fig. VII-73. 

The shape of the hybrid orbitals is given in Fig. VII-59 and the angle 
between the hybrids is 120°. Thus, we have the following diagram (Fig. 
VII-74) for the BH₃ molecule. 

 

Figure VII-73: sp² hybridization for boron. 
 

Figure VII-74:  
Localized MO of BH₃. 

The ethylene molecule (C₂H₄) 
sp² hybridization is also found in molecules of larger size, such as ethylene 
(C₂H₄). 

This molecule is 
planar and the 
directions of the CC 
bond form an angle of 
120° with the CH 
bonds. 

. 

 

Figure VII-75: Interaction scheme in ethylene.  
The subscripts L and R mean, respectively,  

“left” and “right”. 
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Each carbon being hybridized in sp², we have the interaction scheme given 
in Fig. VII-75. The correlation diagram of orbitals is given in Fig. VII-76, 
knowing that carbon has 4 valence electrons. 

 

Figure VII-76: Correlation diagram of localized MO in ethylene. The subscripts L 
and R mean, respectively, “left” and “right”. 

 

Figure VII-77: Schematic form of localized MOs of ethylene. The subscripts L 
and R mean, respectively, “left” and “right”. 
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d. Counting molecular orbitals in a molecule 

Finally, we have a method to determine, without drawing the energy 
diagrams, the different molecular orbitals of a polyatomic molecule. We 
take as an example the ozone molecule O₃. Looking at the geometry of this 
molecule, we are able to propose a type of hybridization for oxygen. The 
ozone molecule is in a folded form and the angle between the O-O bonds is 
117°. 

 

Figure VII-78:  
Geometry of ozone O3. 

This angle being close to 120°, 
one can envisage the sp² 
hybridization of the oxygen 
atoms, which will consist of 
mixing the 2s orbital with the 
2px and 2py orbitals. 

 

Figure VII-79: sp² hybridization  
for the oxygen atom of ozone. 

As such, each oxygen atom 
carries 3 hybrid atomic 
orbitals and an OA 2pz. We 
then have the interaction 
scheme given in Fig. VII-80, 
which will help us identify 
the molecular orbitals of 
ozone given in Table VII-
14. 

 

Figure VII-80: Interaction scheme  
between AOs in ozone. 
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Table VII-14: Molecular orbitals of ozone 

 

Knowing that there are 2 electrons per orbital, we have 6 electrons in the 
bonding MO and 12 in the non-bonding MO. The overall binding index is 
therefore 6/2 = 3. As an exercise, repeat the same reasoning with the 
hypothesis of sp hybridization for oxygen. We should also find a bond index 
of 3. However, in this new configuration, there are electrons in the anti-MO. 
It may be noted that the anti-bonding effect is more important than the 
bonding effect, for an equal overall index, in the configuration of which no 
electron in the anti-bonding MO is preferred. 

e. Electronic and magnetic properties of transition metal complexes 

In this paragraph we give another illustration of the use of the theory of 
hybrid orbitals to try to theoretically explain the electronic and magnetic 
properties of complexes. 

The transition metal complexes constitute an important part of compounds 
where the hybridization theory is used. 

Nomenclature of complexes 

The rules below were issued by the International Union of Pure and Applied 
Chemistry (IUPAC). 

Formulas 

The central atom is indicated in first place, then, in order, the negative, 
neutral, and positive ligands. 
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The formula is enclosed in square brackets []. 

Names 

The central atom is named in last place and the ligands appear in 
alphabetical order, whatever their charge. 

The oxidation number of the central atom is indicated by a Roman numeral 
to accentuate its formal character: Fe (II) or FeII. 

If the complex is anionic, the name of the central atom has the suffix “-ate”. 

Example 

 

Name of ligands 

If the ligands are anionic, they have the suffix “o”: Cl⁻ = “chloro”; S₂O₃²⁻ = 
“thiosulfate”; NO₂ = “nitrito”. 

If the ligands are molecules or cations, the name is unchanged. Exceptions: 
H₂O = “aqua”; NH₃ = “ammine”; CO = “carbonyl”; NO = “nitrosyl”. 

If the ligands are bridging, they are indicated by “μ-”, example: Cl⁻ = “μ-
chloro”. 

Number of ligands 

The number of ligands is indicated by the prefixes di-, tri-, tetra-, penta-, 
hexa-, etc. 

If the ligand has a composite name, we use bis-, tris-, tetrakis-, pentakis, 
hexakis, etc. 

Examples 

 

CrH2O6Cl3 :aqua chromium(III) hexachloride

CoNH34H2O2Cl3 : tetra ammine diaqua cobalt(III) chloride

NaAlCl4: sodium tetrachloro aluminate

CoClNO2NH34Cl : Chloro nitrito cobalt(III) tetra ammine chloride
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There are several theories dealing 
with the properties of complexes. 

Valence bond theory 

Defined by Linus Pauling, it uses 
the concept of hybridization. 
Consider an octahedral metal 
complex. 

The position of the ligands is 
indicated by numbers. M+ is the 
central positive metallic ion as 
given in Fig. VII-81. 

 

Figure VII-81. Octahedral complex. 

If we compare this last figure with the direction of the d atomic orbitals, we 
note that only the AOs 3dz2 and 3dx²-y² are pointing in the direction of the 
ligands and consequently will be useful in the construction of hybrid atomic 
orbitals. 

 

Figure VII-82: 3 atomic orbitals. 

We note that only the AOs 3dz² and 3dx²-y² are pointing in the direction of the 
ligands and consequently will be useful in the construction of hybrid atomic 
orbitals.  

We can consider two types of octahedral hybridization involving the d 
orbitals. 

The inner orbital complexes and the outer orbital complexes. These two 
types correspond to the following hybridizations. 
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Figure VII-83: d2sp3  
hybridization diagram. 

Figure VII-84: sp3d2  
hybridization diagram. 

d2sp3 or sp3d2 
hybridization both lead 
to the same spatial 
disposition for the 
hybrid orbitals, that is, 
to the octahedral 
disposition given in 
Fig. VII-85. 

Inner orbital 
complexes 

The hybridization is 
then of the d²sp³ type.  

Figure VII-85: Coordination octahedron. 

In order to understand this type of hybridization, see Fig. VII-83.In this type 
of hybridization, 2 d orbitals, 1 s orbital, and 3 p orbitals are mixed. The dz² 
and dx²-y² orbitals belong to the shell n-1 with respect to the outermost shell, 
and the hybridization is said to be “with the inner orbitals”. These orbitals 
are chosen from the 5 possible d orbitals because they “point” towards the 
ligands and therefore have a privileged position in the hybridization process. 

The directions taken by the hybrids are obviously those of the ligands, 
forming the coordination octahedron given in Fig. VII-85. 

Example: [Ti(H₂O)₆]³⁺ complex 

 EBSCOhost - printed on 2/13/2023 7:38 PM via . All use subject to https://www.ebsco.com/terms-of-use



Chapter VII 
 

388 

In this complex, water is the ligand. The water molecule binds to the central 
atom via one of its oxygen doublets, as seen in Fig. VII-86. 

The electronic structures of Ti and its Ti³⁺ ion are as follows 

Fig VII-86: 
Water ligand. 

Consider the structure of Ti3+. The d²sp³ hybridization will give 

 

where n is the number of unpaired electrons in the d orbitals. In the present 
case, we have n = 1, which gives a theoretical paramagnetic moment equal 
to 

 

Example: [Cr(CN)₆]³⁻ 

To begin, let us determine the oxidation number of chromium in this ion. If 
noCr is the number of oxidation of chromium and noCN⁻ that of CN⁻, then we 
must have 

 

As CN⁻ carries a negative charge, its oxidation number is -1. Consequently 

 

The chromium in this ion has an oxidation number of +3 and we have the 
following configurations 

  ° 11  2  1. 73°

noCr  6noCN  charge of the ion  3

noCr  6  3 then noCr  3
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d²sp³ hybridization gives: 

 

and the doublets of the ligands can then be placed in the hybrid orbitals. 
Consequently, the number of unpaired electrons in the d orbitals being 3, it 
follows that the theoretical paramagnetic moment is equal to 

    

Example: [Mn(CN)₆]K₃ 

The experimental paramagnetic moment of the complex [Mn(CN)₆]K₃ is 
equal to 3.18 μ°. Is this value compatible with that of an internal orbital 
complex? Manganese has the degree of oxidation of +3. 

Let us build the electronic structures of Mn 

 

The d²sp³ hybridization gives 

  ° 33  2  3. 87°
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It has two unpaired electrons in the d AOs and the theoretical paramagnetic 
moment is therefore 

 

This number should be compared to the experimental value 3.18 μ°, which 
remains within the range of validity. As such, we do have an inner orbital 
complex. 

Outer orbital complexes 

Let us now consider the complex 
K₃[Mn(Ox)₃],3H₂0 (potassium trioxalato 
manganate (III)) with an experimental 
paramagnetic moment equal to 4.81 μ° 
where Ox represents the ligand oxalate. 

The oxidation number of Ox is -2 and that 
of K is +1. The oxidation number of Mn is 
therefore 

   

 

Figure VII-87:  
Oxalate ligand. 

so that 

 

In the first hypothesis, we consider that this complex is described by the 
model of inner orbitals. Under these conditions, given that Mn has a +3 
degree of oxidation, we have 

  ° 22  2  2.83°

noMn  3  2  3

noMn  3
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As we saw above, a d²sp³ hybridization would give 

 

With the following theoretical paramagnetic moment 

 

This number is very far from the experimental value (4.81 μ°). Therefore 
we must consider another hypothesis, that of a complex with outer orbitals. 
In this type of complex, the d orbitals that will be hybridized are outside the 
outermost shell, hence they are described as an outer orbital complex. 

 

In this type of hybridization, the 4 unpaired electrons remain in their non-
hybridized OA d. Consequently, we have 

 

  ° 22  2  2.83°

  ° 44  2  4.90°
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which is close to the experimental value. 

The crystal field theory 

Another theory was developed by considering two compounds: manganese 

(II) oxide (MnO) and copper (I) chloride (CuCl).  

Almost at the same time as the previous theory was being developed, the 

physicists Hans Bethe24, John Van Vleck25, and Leslie Orgel26 proposed 

another approach called crystal field theory. 

 

H. Bethe 

 

J. van Vleck 

 

L. Orgel 

This theory describes the effect of the electric field of surrounding ions on 

the energy of the valence orbitals of an ion in a crystal. It was developed by 

considering two compounds: manganese oxide (II) (MnO) and copper 

chloride (I) (CuCl). 

Octahedral crystal field 

Consider the manganese ion. 

Each Mn²  ion is surrounded by 6 

O²  ions placed at the points of an 

octahedron, as shown in Fig. VII-
88. 

Now, let us remember the shape 

of the 3 d atomic orbitals of this 

central atom. 

 

Figure VII-88: Octahedral  

arrangement in the Mn²  ion. 

 
24 Hans Bethe (1906-2005). American winner of the Nobel Prize in Physics in 1967 

for his contribution to the understanding of stellar nucleosynthesis. 
25 John Hasbrouck van Vleck (1899-1980). American physicist known for his 

fundamental theories on magnetism and the crystal structures of metals. Won the 

Nobel Prize in Physics in 1977. 
26 Leslie Eleazer Orgel (1927- 2007). British chemist known for his theories on the 

origin of life. 
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Figure VII-89: The five OA d. 

We can see that among these orbitals, 2 are pointing in the direction of the 
ligands. They will therefore be subject to the action of these ligands more 
than the other d atomic orbitals. 

How do the energies of AOs 
4s and 4p of the central ion 
behave when this ion is 
enclosed in an Mn0 crystal? 
The electronic repulsions 
between the electrons located 
in these orbitals and those of 
the six O²⁻ ions will increase 
their energy. The four p 
orbitals, while seeing their 
energy increase, remain 
energetically degenerate  

 

Figure VII-90: Octahedral central  
atom and ligands. 

because they all point in the direction of the ligands and are therefore 
affected in the same way. On the other hand, the repulsions between the 
electrons of the O²⁻ ions and those of the 3d orbitals of the metal in MnO 
undergo an energy increase, which differs given their respective situation 
with respect to the ligands. The five d OAs do not remain degenerate and 
the two AOs 3dz² and 3dx²-y² will be more destabilized than the other d AOs. 
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Figure VII-91: Effects of ligands on the energy of OA d of the central ion. 

We note the energy eg of the most destabilized orbitals and that of the least 
destabilized orbitals t2g. To remember the name of the levels, we make the 
link between t of t2g and the three levels dxy, dyz, and dxz. 

The energy difference between the t2g and eg orbitals in an octahedral 
complex is represented by the symbol Δ0. This burst of energy in previously 
degenerate orbitals is not random, but depends on the nature of the central 
metal and the ligands. Thus, for the complex ion [Ti(H₂O)₆]³⁺ we have, for 
example, Δ0 = 242 kJ/mol. 

Spectrochemical series 

The parameter Δ0 represents the energy difference between the t2g and eg 
orbitals, which is the jump that the electrons of the shell d must make to 
pass to the excited state. 

The value of Δ0 varies depending on the type of ligand. A series of ligands 
for the same central ion, classified according to their effect on the gap Δ0, is 
called a spectrochemical series. 

Example: Cr³⁺ ion 

Table VII-15 gives the 
values of the Δ0 parameter 
for different ligands of the 
Cr³⁺ ion. 

Table VII-15: Δ0 parameter  
for different ligands 

 

The link between Δ0 and the magnetic properties 

Ligand Cl H2O NH3 CN


106

m1 1.36 1.74 2.16 2.63
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The magnetic properties can be related to the importance of Δ0. As an 
example, let us take the case of the two following complexes [Fe(CN)₆]⁴⁻ 
and [Fe(H₂O)₆]²⁺. 

First, we calculate the oxidation number of iron in these two complexes. 

In [Fe(CN)₆]⁴⁻, the iron is surrounded by six CN⁻ ions, giving 

 

In [Fe(H₂O)₆]²⁺, the iron is surrounded by six neutral molecules of water 
H₂O, giving 

 

In the two complexes, the electronic configuration of iron is Fe²⁺. 

 

Now, let us construct the correlation diagram between the d atomic orbitals 
of the isolated central ion and those of the central ion in the crystal field of 
ligands. 

 

Figure VII-92: Comparison of strong (left) and weak (right) octahedral fields. 

In the first case, that of [Fe(CN)₆]⁴⁻, the crystal field is strong because of the 
presence of doublets resulting from the CN⁻ ion. As such, the burst Δ0 will 

noFe  6  1  4 then noFe  2

noFe  6  0  2 then noFe  2
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be large. The six electrons of Fe²⁺ will be arranged in the level t2g because 
the energy difference in the levels eg is too large. As a result, there will be 
no more single electrons in the d orbitals and the paramagnetic moment will 
therefore be zero. 

In the second case, the crystal field will be weak because the doublets of the 
ligands belong to an H₂O molecule. The difference Δ will be small and the 
levels t2g and eg will be energetically close. Hund’s rule will therefore apply. 
We observe a distribution of electrons between these two levels and can 
therefore observe that the central ion will have four unpaired electrons, 
which gives this complex a paramagnetic moment that can be evaluated as 

   

Indeed, the experiment shows a paramagnetic moment equal to 5 μ°. This 
method can be extended to other types of complexes. 

Tetrahedral field complexes 

Now, we consider complexes such as copper chloride. In this complex, 4 
Cl⁻ ions surround the Cu⁺ ion, placed at the vertices of a tetrahedron. 

 

Figure VII-93: Arrangement of 
ligands in a tetrahedral 

complex. 

 

Figure VII-94: orientation of the axes  
with respect to the ligands. 

We can see that, this time, the dxy, dxz, and dyz orbitals point towards the 
ligands. It is therefore these orbitals that will be most destabilized by the 
approach. 

  ° 44  2  4.9°
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Figure VII-95 : Influence of a tetrahedral field on the d AOs. 

Given that, in this type of complex, the number of ligands involved is lower 
than in the octahedral field, the energy difference Δt will be approximately 
half that of the octahedral field. The levels t2g and eg will thus be reversed 
compared to the situation of the octahedral field. 

Square planar complexes 

The square-planar 
configuration is mainly 
encountered for the elements 
d⁸ (Ni²⁺, Pd²⁻, and Pt²⁻). It is 
obtained from an octahedral 
complex in which the ligands 
placed along the z axis are 
infinitely distant. Thus, the 
orbitals oriented along the x 
and y axis are more 
destabilized than those 
oriented along the z axis, as 
shown in Fig. VII-96. 

 

Figure VII-96: Square-planar crystal field. 
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This transition 
from octahedral 
geometry to 
square-planar 
geometry 
involves a 
deformation of 
the octahedron 
called the Jahn-
Teller effect, 
which is 
encountered in 
particular in the 
ions d⁹ (Cu²⁺) and 
d⁴ (Cr²⁺ and 
Mn³⁻),  

 

Figure VII-97: Energies of d orbitals in the  
case of a square-planar crystal field. 

and which causes a new degeneracy removing the d orbitals, thus leading to 
4 energy levels. 

VII-IV. Extended Systems and the Hückel Lcao Method: 
Principles 

In referring to extended systems we mean molecules or crystals with a large 
number of atoms. We shall limit our study to that of conjugated polyenes 
for which quantum processing is relatively easy. 

We saw in the examples of the previous chapter that the molecular orbitals 
of an organic molecule can be classified into two categories: molecular 
orbitals of σ-type and molecular orbitals of π-type. The π molecular orbitals 
play a particular role because they are generally placed on the frontier 
between the occupied molecular orbitals and the vacant molecular orbitals. 
This is why they are called frontier orbitals and in this position, they play 
an important role in chemical reactivity. Studying the system formed by 
these orbitals (π system) gives valuable information, for example on the 
possibility of atoms being able to receive reagents. Indeed, π electrons are 
very sensitive to polarization and therefore to disturbances caused by 
chemical reactions. 
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This method is called the linear combination of 
atomic orbitals (LCAO) and was developed in 
the 1930s by Erich Hückel27. 

It applies in particular to molecules with 
carbon chains having multiple conjugate bonds 
forming a π system. 

 

E. Hückel 

1. The Hamiltonian 

The molecular Hamiltonian limited to the π system is written as 

 

where Heff (i) is a Hamiltonian that incorporates the repulsion effects of the 
π electrons statistically, without specifying the manner. Therefore, there is 
no explicit form of Heff (i). 

2. Energy of state i 

We shall use the Dirac notation discussed in Chapter VI. 

Let us consider a stationary state |ϕi > of the electron centered on an atom 
constituting the polyene obeying the equation with the eigenvalues 

 

where ei is the energy of the electron i. This is, for example, the energy of 
an electron in a 2pz orbital. 

3. Molecular state 

Let us assume by hypothesis that the molecular state |Ψ> is a linear 
combination of the atomic eigenstates represented by |ϕr> according to the 

                                                      
27 Erich Hückel (1896-1980). German physicist and chemist. He is mainly known 
for two major contributions: the Debye-Hückel theory on electrolytic solutions and 
the Hückel method of calculating molecular orbitals by approximation. 

H  
i1

n

Heffi

Heffi|i   ei|i 
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principles of the LCAO method that we saw in Chapter VI with the 
molecular ion hydrogen. Thus 

 

4. Molecular energy 

This molecular state is of course approximate and therefore cannot be 
claimed to be a solution to the Schrödinger equation. Thus, we are led to 
define an average value for the energy of the system π so that 

 

5. Variational method 

Let us now apply the variational method to energy by saying that the energy 
of the system must be minimal compared to the coefficients Cr of the linear 
combination. That is 

   

Furthermore, we define the Coulomb integral α by 

 

and the exchange integral β by 

 

|  
r1

n

Cr|r 

E 
|Heff 

|

E
C1

 0

E
C2

 0

. . .

E
Cn

 0

  r |Heff r whatever r may be

rs  r |Heff s   for s  r  1
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Writing that 

 

and the overlap integral S 

 (VII-58) 

one obtains the following secular equations 

 

the resolution of which supposes that the secular determinant must be 
equal to zero 

 

one then obtains the energies <E>₁, <E>₂, ... <E>nπ corresponding to the 
molecular states 

 

 

 

 

0  r |Heff s for s  r  1

S  rs

C1  E  C2 . . .  0

C1  C2  E  C3. . . 0

. . .

... Cn1  Cn   E  0

  E  0 ...

   E  ...

... ... ... ...

... 0    E

 0


i
 Cir r
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6. Applications 

a. Ethylene 

The formula of ethylene is given in Fig. 
VII-98. Each carbon atom has a 2pz 
AO, which interacts with that of the 
other atom and gives a��-system. 

 

Figure VII-98:  
Formula of ethylene. 

The secular equation of this system are 

 

and the secular determinant takes the form 

 

To simplify the writing, we divide the whole expression by β. The 
expression thus becomes 

 

Now, let us put 

 

we obtain 

C1  E  C2  0

C1  C2  E  0

  E 

   E
 0

  E


1

1
  E



 0

x 
  E


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This determinant has two solutions 

 

The coefficients can then be determined from the secular equations 

 

For the solution x = -1, we obtain 

 

Taking into account the condition of normalization 

 

we may write 

 

Taking into account the rule (VII-58) concerning the overlap integral, we 
have 

 

or, because C₁ = C₂, we get 

 

As such, as an expression for the lower energy state, we have 

 

x 1

1 x
 0

x  1 and x  1

C1  E  C2  C1x  C2  0

C11  C2  0 that is: C1  C2

|  1

C1
21 |1   C2

22 |2   2C1C21|2   1

C1
2  C2

2  1

2C1
2  1 i.e. C1  1

2


1
 1

2
1  2
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The 2pz orbitals are perpendicular to the 
plane of the molecule and each is 
containing 1 electron. These electrons will 
then be found in the molecular orbital π as 
shown by the diagram given in Fig. VII-
99. 

 

Figure VII-99:  
Ethylene π MOs. 

π charges 

By definition, the π-charge carried by a 
given atom is the sum of the squares of the 
coefficients of the molecular orbitals 
corresponding to this atom. 

For the ground state, we have the situation 
described in Fig. VII-100. 

The charge on atom 1 = charge on atom 2 
= 2 electrons x (1/√2 )2 = 1 

 

Figure VII-100: Ground state 
calculation of �-charge. 

For the first excited state, we have the 
situation described in Fig. VII-101. 

Charge on atom 1 = 1 electron×(1/
√2)²+1 electron×(1/√2)² = 1 

Charge on atom 2 = 1 electron×(1/
√2)²+1 electron×(-1/√2)² = 1 

 

Figure VII-101: excited state 
calculation of �-charge. 

π-bond index 

For the bond ij, the sum is extended 
to the occupied molecular orbitals of 
the product of the coefficients Cki, 
Ckj of the atoms i and j in the MO k 
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multiplied by the number of 
electrons of the occupied MO 

  

For the ground state of ethylene, we 
have 

 
 

Figure VII-102: Ground state 
calculation of π-bond index. 

 

For the 1st excited state of ethylene, we may 
write 

 

 

Figure VII-103: 1st 
excited state calculation 

of π-bond index. 

We can conclude that this 
molecule dissociates when it 
is in the 1st excited state. 

π transition energy 

This is the difference in 
energy between the ground 
state and the 1st excited state. 

 

 

Figure VII-104: π-transition energy for 
ethylene. 

We can see that the energy of the ground state is 

Iij  
k

CkiCkj  2

I12  C11C12  2  1
2

1
2

 2  1

I12  C11C12  1  C21C22  1 

1
2

1
2

 1 

1
2

 1
2

 1  0
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That of the 1st excited state is 

 

The difference in energy between the excited state and the ground state 
gives us the π-transition energy  
 

 

i.e. 

 

and 

 

b. Butadiene 

Let us continue our study with an examination of butadiene. This molecule 
presents two configurations: the transoid configuration and the cisoid 
configuration. 

 

Figure VII-105: Ethylene conformers. 

We shall not make a distinction between these two forms and will write 
polyene in linear form (left) or, more simply, give the atom numbering 
(right). 

EFond  2  E1

E1ex  1  E1  1  E2

E  |E1ex  EFund |  |1  E1  1  E2  2  E1 |

E  |E1ex  EFund |  |E2  E1 |

E  |E1ex  EFund |  |      |  2
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There is a relationship between the internuclear distance and the value of 
the exchange integral. If we consider the exchange integral β of ethylene as 
a reference, we have for the exchange integrals 

 

where �12 and �34 are the exchange integrals between, respectively, atoms 1 
and 2 and 3 and 4, whereas d23 is the distance between atoms 2 and 3. Then, 
with d₂₃ = 1.47 A, we obtain 

 

Furthermore, the value of the Coulomb integrals and the exchange integrals 
change with the nature of the atoms involved in the bond. In the following 
table we give some examples of Coulombic and exchange integral values28. 

Table VII- 16: Coulombic and exchange integrals for various bonds 
αC=βC=C=-6.5 eV 

 

                                                      
28 From A. Julg and O. Julg, Exercices de Chimie Quantique, Dunod, 1967. 

12  34   and 23  exp6.785  5.075  d23 

23  exp6.785  5.075  1.47  0.51

 EBSCOhost - printed on 2/13/2023 7:38 PM via . All use subject to https://www.ebsco.com/terms-of-use



Chapter VII 
 

408 

Now, let β₂₃ = λβ. The secular equations become 

 

and the secular determinant is 

 

Dividing the whole expression by β leads to 

 

and by putting  

 

this determinant becomes 

C1  E  C2  0

C1  C2  E  C3  0

C2  C3  E  C4  0

C3  C4  E  0

  E  0 0

   E  0

0    E 

0 0    E

 0

  E


1 0 0

1
  E


 0

0 
  E


1

0 0 1
  E



 0

x 
  E


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To resolve this determinant, we can use the symmetry of the molecule. 
Consider the cisoid conformer below. 

 

Figure VII-106: Cisoid  
conformer symmetry. 

We consider the median plane of 
the molecule plane as the plane of 
symmetry. In relation to this 
plane, we can consider two types 
of symmetries: 

- symmetrical; 
- antisymmetric. 

These are the coefficients that will 
translate the symmetrical or 
antisymmetric character. 

As such, we have 

 

For symmetrical solutions, the secular equations take the form 

 

Then, the determinant is 

 

x 1 0 0

1 x  0

0  x 1

0 0 1 x

 0

Symmetrical solution: C1  C4 and C2  C3

Antisymmetrical solution: C1  C4 and C2  C3

C1x  C2  0

C1  C2x  C2  0
so that

C1x  C2  0

C1  C2x    0

x 1

1 x  
 0 so that xx    1  0

 EBSCOhost - printed on 2/13/2023 7:38 PM via . All use subject to https://www.ebsco.com/terms-of-use



Chapter VII 
 

410 

i.e. 

 

This equation admits two solutions 

 

For antisymmetric solutions, the secular equations take the form 

 

 

Then, the determinant is 

 

This equation admits two solutions  

  

Now, coming back to the energy expressions 

x2  x  1  0

x 1 
  2  4

2


0.51  0.512  4
2

 1. 287

x 3 
  2  4

2


0.51  0.512  4
2

 0.777

C1x  C2  0

C1  C2x  C2  0
so that

C1x  C2  0

C1  C2x    0

x 1

1 x  
 0 so that x 2  x  1  0

x 2 
  2  4

2


0.51  0.512  4
2

 0. 777

x 4 
  2  4

2


0.51  0.512  4
2

 1.287
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These energy levels can be represented 
with a diagram on which the symmetry 
of the corresponding molecular orbitals 
is indicated by S for “symmetric” and 
A for “antisymmetric”. 

The corresponding wave functions will 
be 

 

 

Figure VII-107: Energy  
levels and symmetries  
of butadiene π MOs. 

Now, let us find the values of the coefficients of these molecular orbitals. 
For this, we return to the secular equation 

 

Then, for the |Ψ₁> state, we shall have 

 

In addition, taking into account the normalization condition of the π orbital, 
one must have 

 

hence, taking into account the symmetries of the coefficients, we get 

 

x 1 
  E1


 1. 287  E1    1. 287

x 2 
  E2


 0.777  E2    0.777

x 3 
  E2


 0.777  E3    0.777

x 4 
  E2


 1.287  E4    1.287

|4   C1 |1   C2 |2   C2 |2   C1 |1 

|3   C1 |1   C2 |2   C2 |2   C1 |1 

|2   C1 |1   C2 |2   C2 |2   C1 |1 

|1   C1 |1   C2 |2   C2 |2   C1 |1 

C1x  C2  0 fromwhich it is deduced C1x  C2

C2  C11.287  1.287C1

C1
2  C2

2  C3
2  C4

2  1

2C1
2  2C2

2  1
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Using the relation obtained above 

 

which comes to 

 

so that 

 

Then, the expression of the��-MO wave functions may be found 

 

If we represent 
the size of the 
coefficients by 
the larger or 
smaller size of 
the atomic 
orbitals 2pz, we 
obtain Fig. VII-
108. 

Let us find the 
π-bond index or 
π-bond order in 
the ground state.  

 

Figure VII-108: Energies and coefficients  
in the π MOs of butadiene. 

 

C2  1. 287C1

2C1
2  21.287C1 

2  1 i.e. 5.3127C1
2  1

C1  1
5.3127

 0.4339

C2  1.287C1  1. 287  0.4339  0.5584

|1   0.4339|1   0.5584|2   0.5584|2   0.4339|1 

|2   0.5584|1   0.4339|2   0.4339|2   0.5584|1 

|3   0.5584|1   0.4339|2   0.4339|2   0.5584|1 

|4   0.5584|1   0.4339|2   0.4339|2   0.5584|1 
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The ground state corresponds to the 
following configuration in which 
the two doublets π are found in MOs 
Ψ₁ and Ψ₂. Taking into account the 
definition of the π-bond index, we 
have 

  

Then, for the 12 bond of butadiene, 
we shall have 

Figure VII-109: Calculation of the 
bond index π in butadiene. 

 

Similarly, for the 23 bond 

 

 

�-charges in the ground state 

We can also determine the charges carried by each atom. Thus, we have 

 

where Nocc represents the number of occupied MOs. For butadiene, for 
atoms 1 and 4, we have 

Iij  
k

CkiCkj  2

I12  C11C12  C21C22   2 electrons

I12  0.4339  0.5584  0.5584  0.4339  2  0,969

I23  C12C13  C22C23   2 electrons

I23  0.5584  0.5584  0.4339  0.4339  2  0.247
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Similarly, for atoms 2 and 2 

 

Transition π-energy 

This is the energy that must be supplied to the molecule to move an electron 
from the highest occupied MO (HOMO) to the lowest unoccupied MO 
(LUMO). We can see that the energy of the ground state is 

 

and that of the 1st excited state is 

 

 

Figure VII-110: Transition energy in butadiene. 

q1  2
j1

2

Cj1 
2 

2  C11 
2  C21 

2

2  0,43392  0,55842  1  q4

q2  2
j1

2

Cj2 
2 

2  C12 
2  C22 

2 

2  0.55842  0.43392  1  q3

EGround  2  E1  E2 

E1ex  2  E1  1  E2  1  E3
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The energy difference between the excited state and the ground state gives 
us the transition π-energy 

 

i.e. 

 

or 

 

We can compare this energy to that obtained for ethylene 

 

The difference in energy is lower for butadiene than for ethylene with a 
value of 0.46 β. The consequence is that radiation absorbed during transition 
will have a longer wavelength for butadiene. This is called the bathochromic 
effect. 

To evaluate this transition energy and make it coincide with the 
experimental energy, we must multiply the expression ΔE by an arbitrary 
factor of 0.54. 

As such, the transition energy of butadiene will be 

 

but β≃-6.5 eV, which gives a transition energy equal to 

 

We can then evaluate the wavelength of the radiation absorbed during this 
transition   

 

Experimentation gives a result of λbut (Exp} = 214 nm. 

E  |E1ex  EFond |  |2  E1  1  E2  1  E3  2  E1  E2 |

E  |E1ex  Eground |  |E3  E2 |

EBut  |E1ex  EFond |  |  0.777    0.777|  1. 554

EEth  2

EBut  1. 554  0.54  0.84

EBut  1. 554  6.5  0.54  5.45e.V

But  hc
EBut

 6,6  1034  3  108

5,45  1.6  1019
 227nm
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We should note here29 several intuitive approaches of the coefficients of π 
OM of linear polyenes, which are compared to the normal vibration modes 
of a lead string. 

VII-V. Tutorial for Chapter VII 

T-VII-1. The Lewis method 

1) Recall the principles of the Lewis method. 

ANSWER 

The chemical bond is the realization of a bond between two atoms through 
the pooling of two electrons. This convention originates with Lewis and 
remains the basis of descriptions of the chemical bond. Even modern 
theories of chemical bonding (molecular orbital theory and VSEPR method) 
use this particular concept of a chemical bond resulting from a shared pair 
of electrons. The Lewis method is founded on what is known as the Lewis 
rule. 

The atoms acquire the outermost electronic structure of a rare gas by 
bonding. 

2) Where possible, give the Lewis electronic structures of the following 
molecules using the systematic method. Indicate cases where there is 
mesomerism. 

 
 
 

                                                      
29 J-M. Capon, P. Blaise, and O. Henri-Rousseau, “Comparison between a classical 
system with n degrees of freedom: normal modes of vibration of a leaded rope and 
molecular orbitals of a linear polyene (in French)”, l’Actualité Chimique, Sept. 
1981, p. 33. 
A. Benzaza, P. Blaise, O. Henri-Rousseau, and F. Texier, “Significance and origin 
of the signs and relative magnitudes of atomic coefficients in π molecular orbitals of 
unsaturated small molecules common in organic chemistry”, Bull. Soc. Chim. Fr, 3-
4, 1982. I-138. 
B. Boulil, P. Blaise, and O. Henri-Rousseau “An intuitive approach to the relative 
magnitude of the atomic coefficients in the π molecular orbitals of butadiene”, J. 
Chem. Educ., 58, 1981, p.29-31. 

CH4,C2H4,SnCl2,BeCl2,BF3,SO2,SiF4,NH4
,H3O,POF3,SO4

2,H2O,Cl2O,XeF4
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Data: Systematic method 
 
Table VII- T-1: Systematic method 

 

ANSWER 

We shall use the systematic method, which counts the binding electrons 
and the non-binding electrons in the molecule under the Lewis rule. The 
systematic method is summed up in the tables. 

Table VII-T-2: Lewis systematic method for CH4 

 

Table VII-T-3: Lewis systematic method for C2H4 

 

Molecule Atoms Electrons Outermost shell Bonding Non bonding Bonding Non bonding Representation

Lewis rule electrons electrons electrons doublets doublets

A B C  A  B B  C C
2

BC
2
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Table VII-T-4: Lewis systematic method for SnCl2 

 

The double arrow means that the Lewis structure is intermediate between 
two limit structures. This characterizes mesomerism. 

The binding electrons are delocalized on the 
whole molecule. This suggests that the bonds 
12 and 23 are of equal length and intermediate 
between a single and a double bond (1.42 Å), 
as shown in Fig. VII-T1. 

The dotted lines signify that the doublets are 
delocalized. 

 

Figure VII-T-1: 
Resonance form of SnCl2. 

Table VII-T-5: Lewis systematic method for BeCl2. (∗) As an exception to 
the octet rule, beryllium needs only 4 electrons on its outermost shell instead 
of 8 to verify the Lewis rule 
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Table VII-T-6: Lewis systematic method for BF3 

 

BF3 is another example of 
mesomerism. The three BF bonds are 
undergoing mesomerism. One of their 
bonding doublets is delocalized on the 
whole molecule, such as the three BF 
bonds, which are of equal length and 
intermediate between a single and a 
double bond BF, as shown in Fig. VII-
T-2. 

 

Figure VII-T-2:  
Resonance form of BF3. 
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Table VII-T-7: Lewis systematic method for SO2  

 

Mesomerism is also present here. 
The two bonds SO are 
intermediate between a simple 
and a double bond and are of 
equal length. 

 

Figure VII-T-3: Resonance form of 
SO2. 

Table VII-T-8: Lewis systematic method for SiF4 

 

 

Molecule Atoms Electrons Outermost

shell
Bonding Non

bonding
Bonding Non

bonding
Representation

Lewis rule electrons electrons electrons doublets doublets

A B C  A  B B  C
C
2

BC
2

SO2 1S 1  8  8 1  6  6

2O 2  8  16 2  6  12

Tot  24 Tot  18
24  18

 6

18  6

 12

6
2

 3
12
2

 6
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Table VII-T-9: Lewis systematic method for NH4
+. (*) we substract an 

electron for the ion + 

 

Table VII-T-10: Lewis systematic method for H3O+ 

 

 

  

Molecule Atoms Electrons Outermostshell Bonding Non bonding Bonding Non bonding Representation

Lewis rule electrons electrons electrons doublets doublets

A B C  A  B B  C
C
2

BC
2

NH4
 1N 1  8  8 1  5  5

4H 4  2  8 4  1  1 3

Tot  16 Tot  8 16  8  8 8  8  0 8
2
 4 0
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Table VII-T-11: Lewis systematic method for POF3 

 

Phosphorus presents hypervalence. The Lewis rule states that the number of 
electrons saturating its outermost shell is 10 and the octet rule is not 
satisfied. 

Table VII-T-12: Lewis systematic method for SO4
2- 

 

  

Molecule Atoms Electrons Outermostshell Bonding Non bonding Bonding Non bonding Representation

Lewis rule electrons electrons electrons doublets doublets

A B C  A  B B  C
C
2

BC
2

SO4
2

1S 1  8  8 1  6  6

4O 4  8  32 4  6  2  26

Tot  40 Tot  32 40  32  8 32  8  24
8
2

 4
24
2

 12
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Table VII-T-13: Lewis systematic method for XeF4 

 

(*) The number of saturating electrons on the outermost shell in the case of 
xenon is 12. The hypervalence Lewis rule is then 12. This is another 
exception to the octet rule. 

3) Calculate the formal charges of the atoms in the SO₄²⁻ ion. 
Data: 

 

ANSWER 

The systematic method applied to SO₄²⁻ gives the results in Table VII-T-12. 

Using the equation giving the formal charges, we obtain 

 

Note that the sum of the formal charges is 

 

fX  Z  core electronsNon bonded electrons  Bonded electrons

2

FS1610  0  8/2  2

F0  16  10  6  2
2

 1

Sum  1  FS  4  F0  2  4  1  2
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The sum of the formal charges is equal to the ion charge. 

T-VII-2. The theory of molecular orbitals for diatomic molecules 

1) Explain why there is a permutation of the levels σ and π in the 
diagram of the molecular orbitals for the elements of the 2nd period 
when we move from oxygen to fluorine. 

ANSWER 

The difference between these diagrams is related to the gap Δ between the 
energies of the orbitals s and p in the same atom. The gap Δ is significant 
when there is strong repulsion between the s and p orbitals of the outermost 
shells of the same atom, which occurs when there are doublets in the p 
orbitals. The order of the energy levels is that given by the a priori diagram. 
This term means that this is the natural order of molecular energy levels. 

The difference Δ is small when there is little repulsion between the electrons 
in the outermost shell of the orbitals s and p, that is to say when there are no 
electron doublets in the p orbitals. We then use the diagram with 
configuration interaction. These terms mean that, due to their energetic 
proximity, there is an interaction between the molecular orbitals σ2s and σz, 
which raises the level of orbital σz and lowers that of orbital σ2s. Orbital σz 
then passes over the orbitals πx and πy. We say that there is permutation of 
the levels σ and π. 

2) Predict the existence and electronic structure of the following 
diatomic molecules by constructing molecular orbital diagrams: 
 
₁₆S₂, ₁₅P₂, ₃₁Ga₂, ₃₆Kr₂. 

ANSWER 

We must first write the electronic structures of the atoms constituting these 
molecules. 

In the case of ₁₆S₂, the electronic structure of S is as follows. 
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If we consider the 3p orbital, we can see that there is an electron doublet 
and so there will be strong repulsion between this doublet and that present 
in the 3s orbital, which implies an important gap between the energies of 3s 
and 3p, allowing an interaction configuration to occur. As such, the order of 
the natural succession of the energy levels will not be affected and the 
diagram used will be a priori. 

3) Consider the molecule and ions X₂, X₂⁻, and X₂⁺. 
 
Qualitatively compare the characteristics of each of these entities 
respectively for the following cases: 
 
X = ₁₂C; X = ₁₄N; X = ₁₆O; X = ₁₇F 

ANSWER 

The carbon (C₂) molecule 

(i) The electronic 
configuration of the carbon 
atom is 

 

(ii) Choice of the orbital basis  

{2s, 2px, 2py, 2pz}. 

(iii) We note that there are no 
electron doublets in the np 
orbitals of the outermost shell 
of the atom C. Hence, the 
diagram used is of the CI type. 

 

 

Figure VII-T-4:  
MO Correlation diagram for C2. 

(iv) The electrons are placed in the molecular levels starting with the lower 
energy levels, respecting the Pauli exclusion principle and Hund’s rule. 

(v) We calculate the bond index  
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i = (6-2)/2 = 2. (vi) If the bond index is different to zero, then the molecule 
may exist. 

(vii) The molecule is diamagnetic since all electrons in the outermost shell 
are paired. 

(viii) Thus, its electronic configuration is 

   

The nitrogen (N₂) molecule 

(i) The electronic structure of 
the nitrogen atom is 

 

(ii) Choice of the orbital basis 

{2s, 2px, 2py, 2pz}. 

(iii) There is a p orbital, which 
is concerned in the 
fundamental state. The 
diagram that must be used is of 
the CI type because there are 
unpaired electrons in the 2p 
orbitals. 

 

Figure VII-T-5: MO Correlation  
diagram for N2. 

(iv) The diagram is drawn and the electrons are placed respecting the rules 
stated above. 

We limit ourselves to the outermost shell; the basis is therefore {2s, 2p}. 
There is an interaction between the 2s and 2p orbitals of each atom. (v) We 
calculate the bond index i = (8-4)/2=2. 

(vi) As such, the molecule can exist. 

(vii) The molecule is paramagnetic since there are unpaired electrons in the 
outermost shell. 

C2 : 2s
2 2s

2x
2y

2
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(viii) Its electronic configuration is 

 

Oxygen (O₂) molecule 

(i) The electronic structure of 
the oxygen atom is 

(ii) Choice of the orbital basis: 
we limit ourselves to the 
outermost shell. The basis is 
therefore 

{2s, 2px, 2py, 2pz}. 

 
Figure VII-T-6: Correlation  

diagram for O2. 

(iii) There is a p orbital, which is concerned in the fundamental state. The 
diagram that must be used is of the a priori type because there is one doublet 
in the 2p orbitals. 

 (iv) The diagram is drawn and the electrons are placed respecting the rules 
stated above. There is an interaction between the 2s and 2p orbitals of each 
atom. 

(v) We calculate the bond index: i = (8-4)/2 = 2. 

(vi) As such, the molecule can exist. 

(vii) The molecule is paramagnetic since there are unpaired electrons in 
the outermost shell. 

(viii) Its electronic configuration is 

 

 

N2 : 2s
2 2s

2z
2x

2y
2

O2 : 2s
2 2s

2z
2x

2y
2x

1y
1
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The fluorine (F₂) molecule 

(i) The electronic structure of the 
fluorine atom is 

(ii) Choice of the orbital basis 

{2s, 2px, 2py, 2pz}. 

(iii) There are two paired p orbitals, 
which are concerned in the 
fundamental state. The diagram that 
must be used is of the a priori type 
because there are doublets in the 2p 
orbitals. There is an interaction 
between the 2s and 2p orbitals of each 
atom. 

Figure VII-T-7: Correlation  
diagram for F2. 

(iv) The diagram is drawn and the electrons are placed respecting the rules 
stated above. (v) We calculate the bond index: i = (8-6)/2=1  

(vi) As such, the molecule can exist. 

(vii) The molecule is diamagnetic since all the electrons in the outermost 
shell are paired. 

(viii) Its electronic configuration is 

 

4) Represent the evolution of a potential curve in the case of a diatomic 
molecule. What information can we obtain from this curve? 

ANSWER 

If we consider a diatomic molecule as a system of two masses relied by a 
spring, it is possible to represent the potential energy of this spring as a 

F2 : 2s
2 2s

2z
2x

2y
2x

2y
2

 EBSCOhost - printed on 2/13/2023 7:38 PM via . All use subject to https://www.ebsco.com/terms-of-use



The Chemical Bond 429 

function of the distance R between the two nuclei constituting the diatomic 
molecule. 

The length R of the spring may undergo 
compression or an extension both of 
which produce an enhancement of the 
potential energy according to Hooke’s 
law. For a non-deformable spring, the 
curve obtained is parabolic (in red). The 
potential is said to be harmonic. In 
reality, the chemical bond is rather close 
to a deformable spring and the molecule 
cannot withstand excessive stretching. 
The potential is then said to be 
anharmonic (thick curve). 

 

Figure VII-T-8:  
vibration of a spring. 

Looking at this last curve, it is 
possible to obtain the physical 
characteristics of the chemical 
bond: the internuclear 
equilibrium distance Re, the 
dissociation energy De, and the 
force constant ke near the 
equilibrium distance, which is 
the second derivative of the 
potential curve at point R = Re. 

 

Figure VII-T-9: Potential curves. 

T-VII-3. Molecular geometry and the VSEPR method 

1) The repulsion energy between 2 identical charges qi and qj depends 
on the distance rij separating them so that Vij = Kqi qj/rij. Calculate the 
repulsion energy received by a charge (black circle) placed in the 
situations described by Fig. VII-T9, the distances connecting the 
peripheral atoms to the central atom being equal to a. 
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Figure VII-T-10: Equatorial and axial positions. 

ANSWER 

Consider the equatorial situation. The “black” atom repulses 2 atoms in the 
plane making an angle of 120° with respect to it. It also repulses 2 out-of-
plane atoms making an angle of 90° to it. We may write the potential energy 
of the repulsion that the “black” atom is undergoing in the form 

 

Consider the “axial” situation. The “black” atom repulses 3 atoms in the 
plane and 1 atom in the out-of-plane situation. 

 

We can see that repulsions with the “black” atom are weaker if it occupies 
an equatorial situation. This may be an explanation of why free doublets, 
which, according to the principles of VSEPR, occupy a larger volume than 
bonding doublets, prefer the equatorial position. 

2) Determine the geometries of the following molecules, indicating their 
type: BeCl₂, CS₂, HCN, HNC, BCl₃, H₂CO, (CO₃)², SnCl₂, SO₂, NSF, 
PCl₅, (IO₅)³⁻, XeO₃F₂, IOF₅, SF₆, XeO₂F₂ 
Data: ₄Be, ₁₇Cl, ₅B, ₆C, ₁H, ₅₀Sn, ₁₆S, ₈O, ₁₄Si, ₉F, ₇N, ₁₅P, ₅₄Xe, ₅₃I, ₃₃As 

ANSWER 

Beryllium chloride (BeCl₂) 

Veq  2  e2

a 3
 2 1

a 2
e2  e2

a
1
3

3 2  2 3  2.57 e2

a

Vax  3  e2

a 2
 e2

2a  e2

a
1
2

3 2  1  2.62 e2

a
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With the central atom Be and the outermost shell of Be has a 2s AO 
containing 2 electrons. 

 

There is a total of 4e⁻ on the valence shell, which give 2 doublets. 

 

Each ligand collects as many doublets as 
the number of unpaired electrons 
supplied, i.e. 1 doublet per Cl atom. There 
are therefore 2 charges on the valence 
sphere, which repel each other until the 
equilibrium position of 2 charges of the 
electrostatic model is reached and we 
obtain Fig. VII-T-10. 

 

Figure VII-T-11:  
Geometry of BeCl2. 

For this type of molecule we call A the central atom, Xn the peripheral 
atoms, and En the free doublets. Hence, BeCl₂ is of the AX₂ type. 

Carbon disulfide (CS₂) 

The central atom is carbon (C), which supplies its 4 outermost shell 
electrons to the valence sphere. The ligands are the 2 sulfur atoms. Sulfur 
has 2 unpaired electrons in its outermost shell and therefore the ligands will 
supply their 4 unpaired electrons to the valence sphere. 
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In total, there will be 8 electrons on the valence sphere, which regroup into 
4 doublets. 

 

 

Figure VII-T-12: Geometry of CS2. 

The molecule is linear and of the AX₂ type. 

Hydrogen cyanide (HCN) 

The central atom is carbon (C) and the ligands are hydrogen (H) and sulfur 
(S). 
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The outermost shell of C is 2s²2p² and contains 4 electrons. H gives 1 
unpaired electron and N gives 3 unpaired electrons to the valence shell, 
giving a total of 8 electrons in 4 doublets. 

Each ligand collects as many doublets as the 
number of unpaired electrons it has supplied, i.e. 
1 doublet for H and 2 doublets for C because it 
has given 2 unpaired electrons. There are 
therefore 3 charges on the valence sphere that 
repel each other until the equilibrium position of 
2 charges of the electrostatic model is reached and 
we thus obtain Fig. VII-T-12. 

 

Figure VII-T-13: 
Geometry of HCN. 

For this type of molecule, we call A the central atom, Xn the peripheral 
atoms, and En the free doublets. Hence, HCN is of the AX₂ type. 

Hydrogen isocyanide (HNC) 

The central atom is nitrogen (N) and the ligands are hydrogen (H) and 
carbon (C). 
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The outermost shell of N is 2s²2p3 and contains 5 electrons. H gives 1 
unpaired electron and C gives 2 unpaired electrons to the valence shell, 
giving a total of 8 electrons in 4 doublets. 

Each ligand collects as many doublets as the number of unpaired electrons 
it has supplied, i.e. 1 doublet for H and 3 doublets for N because it has given 
3 unpaired electrons. There are therefore 4 charges on the valence sphere 
that repel each other until the equilibrium position of 3 charges of the 
electrostatic model is reached. 

 

The free doublet exerts pressure on the binding 
doublets, so that the angle between the bonds of 
NH and NC can be predicted to be less that 120°, 
as shown in Fig. VII-T-14. 

The molecule is of the AX2E type. 

 
 

Figure VII-T-14: 
Geometry of HNC. 

Boron trichloride (BCl3) 
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Boron has 3 electrons in its outermost shell. The 3 chlorine atoms will 
therefore supply 3 electrons to the valence sphere. In total, we have 6 
electrons grouped into 3 doublets. 

 

Each ligand Cl collects as many doublets 
as it has supplied unpaired electrons. 
There are therefore 3 charges on the 
valence sphere, which are distributed at 
the corners of an equilateral triangle 

The molecule is of the AX₃ type and the 
angle between the BCl bonds is 120°. 

 

Figure VII-T-15:  
Geometry of BCl3. 

Methanal (formaldehyde) (H₂CO) 
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Carbon has 4 electrons in its outermost shell. The 2 hydrogen atoms will 
therefore supply 2 electrons to the valence sphere and the oxygen supplies 
its 2 unpaired electrons 

In total, we have 8 electrons grouped into 4 doublets. 

 

Each ligand collects as many doublets as the 
number of unpaired electrons it has supplied. 
There are therefore 3 charges on the valence 
sphere, which are distributed at the corners of 
an equilateral triangle. 

The molecule is of the AX3 type and the angle 
between the two CH bonds is less than 120° 
because of the free doublet repulsion. 

 

Figure VII-T-16: 
Geometry of COCl2. 

Carbonate ion (CO₃²⁻) 

 

Carbon has 4 electrons in its outermost shell and each of the 3 oxygen atoms 
will therefore supply 2 electrons, i.e. 6 electrons in total, to the valence 
sphere. The ion will supply 2 electrons. 

In total, we have 12 electrons grouped into 6 doublets. 
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Each ligand collects as many doublets as the 
unpaired electrons it has supplied. There are 
therefore 3 charges on the valence sphere, 
which are distributed at the corners of an 
equilateral triangle. 

This molecule is of the AX₃ type and the 
angle between the two CO bonds is 120°. 

 

Figure VII-T-17: 
Geometry of the carbonate 

ion. 

Tin chloride (SnCl₂) 

 

Tin has 4 electrons in its outermost shell. The 2 chlorine atoms will therefore 
supply 2 electrons to the valence sphere. 

In total, we have 6 electrons grouped into 3 doublets. 

 

Each ligand Cl collects as many doublets 
as the number of unpaired electrons it has 
supplied. There are therefore 3 charges on 
the valence sphere, which are distributed 
at the corners of an equilateral triangle. 
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 Figure VII-T-18:  
Geometry of SnCl2. 

The free doublet occupies more space than a binding one and exerts pressure 
on the two Cl bonds. Thus, the angle ClSnCl will be less than 120°. The 
type of this molecule is of the AX₂E type 

Sulfur dioxide (SO₂) 

 

 

Sulfur has 6 electrons in its outermost shell. The 2 oxygen atoms will 
therefore supply 4 unpaired electrons to the valence sphere. 

In total, we have 10 electrons grouped into 5 doublets. 
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Each ligand O collects as many doublets as the 
number of unpaired electrons it has supplied. 
There are therefore 2 charges on the valence 
sphere, which are distributed at the corners of 
an equilateral triangle. 

The doublets are disposed on the points of an 
equilateral triangle. 

 

Figure VII-T-19:  
SO2 geometry. 

However, the free doublet exerts pressure on the two bonds of SO and the 
angle OSO is less than 120°. Experiments have shown that it is 119.5°. This 
type of molecule is AX₂E. 

Thiazyl fluoride (NSF) 

 

Sulfur has 6 electrons in its outermost shell. The nitrogen atom will 
therefore supply 3 electrons to the valence sphere and the fluorine atom will 
supply 1 unpaired electron. 

In total, we have 10 electrons grouped into 5 doublets. 
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Each ligand O collects as many doublets as the 
number of unpaired electrons it has supplied. 
There are therefore 3 charges on the valence 
sphere, which are distributed at the corners of 
an equilateral triangle. 

The angle between the bond SN and SF is 
116.92°. The molecule is of the AX₂E type. 

 

Figure VII-T-20: 
Geometry of NSF. 

Ammonium ion (NH₄)⁺ 

 

Nitrogen has 5 electrons in its outermost shell. The 4 hydrogen atoms will 
therefore supply 4 unpaired electrons to the valence sphere. We must 
subtract 1 electron for the ion. 

In total, we have 8 electrons grouped into 4 doublets. 
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Each ligand H collects as many doublets 
as the unpaired electrons it has supplied. 
There are therefore 4 charges on the 
valence sphere, which are distributed at 
the corners of a tetrahedron. 

The molecule is of the AX₄ type.  

Figure VII-T-21:  
Geometry of NH4

+. 

Phosphoryl fluoride (POF₃) molecule 

 

Phosphorus has 5 electrons in its outermost shell. Oxygen will therefore 
supply 2 unpaired electrons to the valence sphere. Fluorine will supply 3 
unpaired electrons. 

In total, we have 10 electrons grouped into 5 doublets. 
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Each ligand H collects as many doublets as 
the number of unpaired electrons it has 
supplied. There are therefore 4 charges on 
the valence sphere, which are distributed at 
the corners of a tetrahedron. 

This molecule is of the AX₄ type.  

Figure VII-T-22:  
Geometry of POF3. 

Thiazyl trifluoride (SNF₃) molecule 

 

Sulfur has 6 electrons in its outermost shell. The nitrogen will therefore 
supply 3 unpaired electrons to the valence sphere and the fluorines will also 
supply 3 unpaired electrons. 

In total, we have 12 electrons grouped into 6 doublets. 
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Each ligand collects as many doublets as the 
number of unpaired electrons it has supplied. 
There are therefore 4 charges on the valence 
sphere, which are distributed at the corners of a 
tetrahedron 

This molecule is of the AX₄ type. 

 

Figure VII-T-23: 
Geometry of SNF3. 

Thiosulfate ion (S₂0₃²⁻) 

 

Sulfur has 6 electrons in its outermost shell. Oxygen will therefore supply 
2×3=6 unpaired electrons to the valence sphere, sulfur will supply 2 
unpaired electrons. The ion 2- will supply 2 electrons 

In total we have 16 electrons which are grouped into 8 doublets. 
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Each ligand collects as many doublets as the 
number of unpaired electrons it has supplied. 
There are therefore 4 charges on the valence 
sphere, which are distributed at the corners of a 
tetrahedron. 

The molecule is of the AX₄ type.  

Figure VII-T-24: 
Geometry of S2O3

2-. 

Phosphorus pentachloride (PCl₅) 

 

Phosphorus has 5 electrons in its outermost shell and chlorine will 
therefore supply 1 unpaired electron to the valence sphere. 

In total, we have 10 electrons grouped into 5 doublets. 

 

Each ligand Cl collects as many doublets 
as the number of unpaired electrons it has 
supplied. There are therefore 5 charges on 
the valence sphere, which are distributed at 
the corners of a hexahedron. 

The molecule is of the AX₅ type.  

Figure VII-T-25:  
Geometry of PCl5. 
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Ion pentaoxoiodate (IO₅)³⁻ 

 

Iodine has 7 electrons in its outermost shell and the oxygen atoms will 
therefore supply 10 unpaired electrons to the valence sphere and the ion will 
supply 3 electrons. 

In total, we have 20 electrons grouped into 10 doublets. 

 

Each ligand collects as many doublets as 
the number of unpaired electrons it has 
supplied. They are placed at the vertices 
of a hexaedron. 

The molecular ion is of the AX₅ type. 

 

 

Figure VII-T-26:  
Geometry of (IO₅)³⁻. 
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Xenon trioxyfluoride (XeO₃F₂) 

 

Xenon has 8 electrons in its outermost shell, the oxygen atoms will therefore 
supply 6 unpaired electrons to the valence sphere, and the fluorine will 
supply 2 unpaired electrons. 

In total, we have 16 electrons grouped into 8 doublets. 

 

Each ligand collects as many doublets 
as the number of unpaired electrons it 
has supplied. There are therefore 5 
charges on the valence sphere, which 
are distributed at the corners of a 
hexahedron. 

The molecule is of the AX₅ type. Figure VII-T-27:  
Geometry of XeO3F2. 
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Iodine oxopentafluoride (IOF₅) 

 

Iodine has 7 electrons in its outermost shell, oxygen will therefore supply 2 
unpaired electrons to the valence sphere, and the fluorines will supply 5 
unpaired electrons.  

In total, we have 14 electrons grouped into 7 doublets. 

 

Each ligand collects as many doublets as 
the number of unpaired electrons it has 
supplied. There are therefore 6 charges on 
the valence sphere, which are distributed at 
the corners of an octahedron. 

The molecule is of the AX₆ type. 

 

 

Figure VII-T-28:  
Geometry of IOF5. 
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Sulfur hexafluoride (SF₆) 

 

Sulfur has 6 electrons in its outermost shell and each fluorine will supply 1 
unpaired electron to the valence shell. Each ligand collects as many doublets 
as the number of unpaired electrons it has supplied. 

In total, we have 12 electrons on the valence shell grouped in 6 doublets. 

 

Each ligand collects as many doublets as the 
number of unpaired electrons it has supplied. 
There are therefore 6 charges on the valence 
sphere, which are distributed at the corners 
of an octahedron. 

The molecule is of the AX₆ type. 

 

Figure VII-T-29:  
Geometry of IF6. 
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Xenon dioxydifluoride (XeO₃F₂) 

 

Xenon has 8 electrons in its outermost shell, the oxygen atoms will therefore 
supply 6 unpaired electrons to the valence sphere, and fluorine will supply 
2 unpaired electrons.  

In total, we have 16 electrons grouped into 8 doublets. 
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Each ligand collects as many doublets as 
the number of unpaired electrons it has 
supplied. There are therefore 5 charges 
on the valence sphere, which are 
distributed at the corners of a 
hexahedron. 

The molecule is of the AX5 type. 

 

 

Figure VII-T-30:  
Geometry of XeO3F2. 

Tetrafluoro(oxo)xenon (XeOF₄) 

 

Xenon has 8 electrons in its outermost shell, the oxygen atoms will therefore 
supply 2 unpaired electrons to the valence sphere, and fluorine will supply 
4 unpaired electrons.  
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In total we have 14 electrons, which 
are grouped into 8 doublets. 

Each ligand collects as many 
doublets as the number of unpaired 
electrons it has supplied. Each ligand 
is place at the vertices of an 
octahedron. The free doublet 
occupies a larger volume than the 
binding doublets and exerts pressure 
on the Xe-F bonds, making a bond 
angle OXeF of less than 90°. 

The molecule is of the AX5E type. 

 

Figure VII-T-31:  
Geometry of XeOF4. 

T-VII-4. Molecular geometry and the  
hybridization of atomic orbitals 

1) Define the concept of hybridization. 

ANSWER 

The hybridization of atomic orbitals is the mixing of the atomic orbitals of 
an atom belonging to the same electronic shell in order to form new orbitals, 
which allow a better qualitative description of the bonds between the atoms. 

2) Why is the theory of hybridization described as an a posteriori method? 

ANSWER 

The use of the atomic orbital hybridization method requires prior knowledge 
of the geometry of the molecule. Hybrid orbitals are defined with respect to 
the directions of bonds in the molecule and constitute a theoretical basis 
allowing the use of quantum methods, such as the theory of molecular 
orbitals. 

3) What are sp, sp², and sp³ hybridizations? In which molecules are they 
involved? Which atoms are often involved? 
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ANSWER 

sp hybridization is the mixing of a ns orbital with a np orbital belonging to 
the same n shell. It intervenes in linear molecules such as beryllium 
dihydride (BeH₂), acetylene (C₂H₂), and hydrogen cyanide (HCN), etc. 

sp² hybridization is the mixing of a ns orbital with two np orbital belonging 
to the same n shell. It intervenes in boron (B) in plane molecules, such as 
boron trihydride (BH₃) and in the carbons of ethylene (C₂H₄), etc.  

sp³ hybridization is the mixing of a ns orbital with three np orbital belonging 
to the same n shell. It intervenes in carbon in tetrahedral molecules such as 
methane (CH₄), in nitrogen (N) in ammonia (NH₃), or in silicon (Si) in silane 
(SiH₄). 

4) Consider the BeH₂ molecule (₄Be, ₁H). 

a) Using the VSEPR method, determine the geometry of this molecule. 

ANSWER 

In the BeH₂ molecule, the central atom is Be and the outermost shell of Be 
is a 2s AO containing 2 electrons. 

 

There is a total of 4e⁻ on the valence shell, which give 2 doublets. 
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Each ligand collects as many doublets 
as the number of unpaired electrons it 
has supplied, i.e. 1 doublet per atom of 
H. There are therefore 2 charges on the 
valence sphere, which repel each other 
until the equilibrium position of 2 
charges of the electrostatic model is 
reached. 

 

Fig VII-T-32:  
Geometry of BeH2. 

a) What type of hybridization can we envisage for the beryllium in 
this molecule? Give their mathematical expression. 

ANSWER 

In the case of beryllium, we must have two hybrid AOs, t₁ and t₂, pointing 
in opposite directions, this is sp type hybridization. 

 

We then construct the hybrid orbitals as a linear combination of the natural 
atomic orbitals, so that 

 

where ai and bi are the coefficients of the combination expressing the 
respective “weights” of the atomic orbitals in the hybridization. 

b) Put the above equations into matrix form. 

ANSWER 

    

2s,2pz,2px,2py  t1 , t2 ,2px,2py

Natural basis Hybrid basis

t1

t2


a1 b1

a2 b2

2s

2pz
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d) Determine the hybridization coefficients knowing that the sum of the 
squares of the coefficients of a row or of a column of the hybridization 
matrix is equal to 1 and that the orbitals t₁ and t₂ are orthogonal to each 
other as well as the atomic orbitals Ψ2s and Ψ2pz. 

ANSWER 

- The sum of the squares of a line is equal to 1 

 

- The sum of the squares of a column is equal to 1 

 

- The sum of the products of the matrix elements of a row is zero 

 

- The sum of the products of the matrix elements of a column is zero 

 

Calculation of hybridization coefficients 

The sign of the 
coefficients 
depends on the 
geometry of the 
molecule. 
Consider the 
basic atomic 
orbital 2pz. 

 

Figure VII-T-33: Signs of phases in AO 2s and 2pz. 

Phase + points in the direction of t₁, so the sign in front of |b₁| will be 
positive. On the contrary, for t₂ the sign will be negative because the orbital 
t₂ points in the direction of negative z. The contribution of the 2s atomic 
orbital will always be positive since this orbital has a positive phase 
regardless of the direction observed. Ultimately, for the matrix coefficients, 
we will have 

a1
2  b1

2  1

a1
2  a2

2  1

a1a2  b1b2  0

a1b2a2b1 0
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If we apply the rules defined above, we will have 

 

which for the matrix coefficients gives 

 

if we define |a₁| = a, the matrix becomes 

 

To find the value of a, we need to apply the rules 

 

so that 

 

and the matrix becomes 

 

|a1 | |b1 |

|a2 | |b2 |

a1
2  b1

2  1 then b1
2  1  a1

2 and b1  1  a1
2

a1
2  a2

2  1 then a2
2  1  a1

2 and a2  1  a1
2

|a1 |  1  a1
2

 1  a1
2 |a1 |

a 1  a2

1  a2 a

a1b2  a2b1  0 and 2a2  1

a 
2

2

2
2

2
2

2
2

 2
2
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5) Here we consider the BH₃ molecule (₅B and ₁H). Determine the 
geometry of the molecule using the VSEPR method and predict the 
appropriate hybridization for boron. Construct the hybridization 
matrix and give the analytical expression of the hybrid orbitals. 

ANSWER 

 

The 3 hydrogen atoms will therefore supply 3 electrons to the valence 
sphere. 

In total, we have 6 electrons grouped into 3 doublets. 

 

Each ligand H collects as many doublets 
as the number of unpaired electrons it has 
supplied. There are therefore 3 charges on 
the valence sphere, which are distributed 
at the corners of an equilateral triangle. 

This molecule is of the AX₃ type.  

Figure VII-T-34:  
Geometry of BH3. 

We must get three hybrids pointing towards the summits of an equilateral 
triangle and thus we can say that the boron has been hybridized into sp². Let 
us examine this hybridization. 

First, let us recall the basis of the atomic orbitals used 
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In this case, we have used the atomic orbitals Ψ2s, Ψ2px, and Ψ2py to build 
the hybrid atomic orbitals sp₂. This gives 

 

Constructing a matrix form gives 

 

Definition of the referential 

t₁ confuses itself with the x axis and 
points towards positive x 

t₂ has a positive component in the y 
direction and is negative in the x 
direction 

t₃ has a negative component in the y 
direction and is negative in the x 
direction 

Figure VII-T-35: Referential  
for BH3 hybridization. 

2s,2pz,2px,2py  t1 , t2 , t3,2pz

Natural basis Hybrid basis

t1  a12s  b12px  c12py

t2  a22s  b22px  c22py

t3  a32s  b32px  c32py

t1

t2

t3



a1 b1 c1

a2 b2 c2

a3 b3 c3

.

2s

2px

2py

t1  |a1 |2s  |b1 |2px  02py

t2  |a2 |2s  |b2 |2px  |c2 |2
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Besides, given the symmetry, one must have 

 

which leads to the transformation matrix by setting |a₁| = a 

 

By applying the rules on the coefficients we have 

 

and thus we have the following transformation matrix 

 

t3  |a3 |2s  |b3 |2px  |c3 |2

|b2 |  |b3 | and |c2 |  |c3 |

a |b1 | 0

a2 |b2 | |c2 |

a3 |b2 | |c2 |

2|c2 |2  1 so that |c2 | 
2

2

a2  |b1 |2  1 so that |b1 |  1  a2

|b1 |2  2|b2 |2  1 so that 1  a2  2|b2 |2  1 then |b2 |  a
2

|a2 |2  a
2
 1

2
 1 so that |a2 |  1  a2

2

|a3 |2  a
2
 1

2
 1 so that |a3 |  1  a2

2

a 1  a2 0

1  a2

2
 a

2
1
2

1  a2

2
 a

2
 1

2
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a remains to be determined. To do this, let us introduce the physics of the 
problem. If we compare the directions of the hybrid atomic orbitals to the 
vectors, we have 

 

with 

 

so that 

 

We have vector lengths equal to 

 

Let us express the dot product of the hybrid vectors 

 

so that 

 

we can then write 

t1

1  a2

0

and t3

 a
2

 1
2

cos120°  t1 . t3

t1 t3

t1  x 1
2  y1

2 and t3  x 3
2  y3

2 so that:

t1  1  a2 and t3  a2

2
 1

2

t1t3  x1x3  y1y3

t1 t3  1  a2  a
2

 a 1  a2

2
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or 

 

Let us square this expression 

 

and deduce 

 

so that the equations giving the hybrid orbitals sp₂ are 

 

where 

1
2


a 1  a2

2

1  a2 a2

2
 1

2

1
2


a 1

2

a2  1
2

 a
a2  1

a2

a2  1
 1

4

a2  1
3

i.e. a  1
3

t1

t2

t3



1
3

2
3

0

2
3

 1
6

1
2

2
3

 1
6

 1
2

.

2s

2px

2py
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Using Cartesian coordinates, we obtain 

  

6) Using the hybridized atomic orbitals of the beryllium atom, construct 
a diagram of the localized molecular orbitals of the BeH₂ molecule. 

We have previously seen that the sp 
type hybridization of beryllium leads 
to the hybrid orbitals t₁ and t₂, as 
shown in Fig. VII-T-35. 

Both 2s electrons of beryllium are 
found in the hybrid orbitals t₁ and t₂, 
which point in the direction of the 
ligands giving us the following 
interactions 

 

 

Figure VII-T-36:  
sp hybridization of Be. 

2s  1
4 2

r  2exp  r
2

2px  1
4 2

rsin cos exp  r
2

2py  1
4 2

rsin sin exp  r
2

2s  1
4 2

x 2  y2  2 exp 
x 2  y2

2

2px  1
4 2

x exp 
x 2  y2

2

2py  1
4 2

yexp 
x 2  y2

2
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We then obtain the 
correlation diagram 
between the AOs and the 
molecular orbitals of BeH₂. 
Each hybrid AO that 
interferes with the 1s AO of 
hydrogen, which is 
opposite, gives a bonding 
MO of σ type and an anti-
bonding MO of σ* type. 

We thus have a description 
in terms of localized 
molecular orbitals. This 
description is close to the 
chemist’s vision of the  

 

Figure VII-T-37:  
MO diagram of the BeH₂ molecule. 

chemical bond using Lewis notation, where we consider that a bond is due 
to a pair of electrons located between the bonded atoms. 

T-VII-5. The hybridization of atomic orbitals  
and transition metal complexes 

1) In Fig. VII-T-37, we give a space 
representation of a complex ion. 

a) What possible types of 
hybridization of cobalt can take place 
in this ion? What is the name of the 
polyhedron formed by the nitrogen 
and oxygen atoms in the cation? 

 

Figure VII-T-38: Complex 
ion. 

ANSWER 

Hybridization types: sp³d² or d²sp³. The polyhedron is called a coordination 
polyhedron. 
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b) Give the IUPAC nomenclature of this complex. 

ANSWER 

In the formula, the central atom is indicated in the first place, followed by, in 
order, the negative, neutral, and positive ligands; the formula is enclosed 
within square brackets [ ]. As such, the formula of the compound is 

 

When written in words, the central atom is named in last place and the 
ligands appear in alphabetical order, regardless of their charge. The degree 
of oxidation is indicated in parentheses 

tetraammine diaqua cobalt (III) chloride 

Names of the ligands: H₂O: aqua; NH₃: ammine. 

2) Show how the magnetic properties are explained within the 
framework of the valence bond theory (VB), based on the hybridization 
of atomic orbitals, and within the framework of the theory of the crystal 
field, based on the removal of degenerated d orbitals by ligands. Take 
the example of the complexes [FeF₆]³⁻ and [Fe(CN)₆]³⁻ whose theoretical 
paramagnetic moments are, respectively, μ = 5.90 μ° and μ = 1.73μ°, 
where μ° is the unit of paramagnetic moment. 

ANSWER 

Let us start by determining the degree of iron oxidation in these compounds 
[FeF₆]³⁻ 

no_{Fe}+6×no_{F}=-3 

the fluorine oxidation number is -1. For the Fe in [FeF₆]³⁻, we can deduce that 

 

Let us do the same with [Fe(CN)₆]³⁻ 

 

CoNH34H2O2 Cl

noFe  3

noFe  6  noCN  3
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However, the oxidation number of the CN group is -1. For the Fe in 
[Fe(CN)₆]³⁻, we can deduce that 

  

Now, let us give the electronic configuration of iron (III) 

 

Within the framework of the valence bond method, we must consider two 
types of hybridization depending on whether we are dealing with a complex 
with external or internal orbitals. 

Outer orbital complex 

 

There are 5 unpaired electrons in the unhybridized orbitals, which gives a 
theoretical paramagnetic moment of 

 

Inner orbital complex 

Let us examine the hypothesis of a complex with internal orbitals 

noFe  3

  ° 55  2  5.92°
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There is only one unpaired electron left and therefore a theoretical 
paramagnetic moment of 

 

Taking into account what we know about the experimental paramagnetic 
moment, we can see that with [FeF₆]³⁻ we are dealing with a complex with 
external orbitals, while [Fe(CN)₆]³⁻ is a complex with internal orbitals due 
to the low value of its paramagnetic moment. 

Let us examine the 
crystal field theory. In 
this theory, the ligands 
disturb the energy of the 
atomic orbitals d and 
cause their degeneration. 
The 3dz² and 3dx²-y² 
AOs that point in the 
direction of the ligands 
more than the other d 
orbitals are the most 
disturbed.. 

 

Figure VII-T-39: Fe(CN)₆3⁻:  
weak octahedral field. 

If the disturbance is not too great, we have a weak field complex. As a result, 
the new orbitals have slightly different energy and allow the application of 
Hund’s rule concerning the distribution of electrons. We therefore have the 
simplified diagram in Fig. VII-T-38 

As such, we have 5 unpaired electrons in the orbitals of the outermost shell 
and thus a large paramagnetic moment, i.e. 

 

We find the same result as with the valence bond method. 

  ° 11  2  1.73°

  ° 55  2  5.92°
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We can also show that in the case of [Fe(CN)₆]³⁻, the burst between the 
orbitals eg and t2g is large; the electrons cannot reach the eg levels and 
therefore they remain in the t2g orbital with a single electron giving a weak 
paramagnetic moment. 

T-VII-6. Extended systems 

Glyoxal or ethanedial. The glyoxal molecule, with the formula O = CH-
CH = O, resembles butadiene. It exists in 2 forms, cisoid and transoid, 
that Hückel’s rule cannot distinguish between. 

1) Represent the cisoid and transoid forms of ethanedial by numbering 
the carbon atoms. 

ANSWER 

 

Figure VII-T-40: The two conformers of butadiene. 

2) Recall the principles of Hückel’s rule. 

ANSWER 

In a polyatomic molecule, the ��molecular orbitals play a large role in 
reactivity because of their energetic situation with respect to other orbitals, 
which place them in a border position between occupied molecular orbitals 
and vacant molecular orbitals. Everything happens as if the � system alone 
had intervened. To access the � system, using Hückel’s rule, we can 
examine the interaction between 2p atomic orbitals as part of the LCAO 
method. 
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3) Construct the secular determinant of this molecule, taking as its 
parameters 

   
where α and β are, respectively, the Coulombic integral and exchange 
integral in the ethylene molecule. 

ANSWER 

The Coulombic integrals in this molecule are αO and αC and the exchange 
integrals are βCO and βCC. 

The secular equations become 

 

of which the secular determinant is 

 

Using the particular values for glyoxal of αO and βCO, the determinant 
becomes  

O   0.7 ; C   0.2

CO 1.1 ; CC 0.5

C1O  E  C2CO  0

C1CO  C2C  E  C3CC  0

C2CC  C3C  E  C4CO  0

C3CO  C4O  E  0

O  E CO 0 0

CO C  E CC 0

0 CC C  E CO

0 0 CO O  E

 0

 EBSCOhost - printed on 2/13/2023 7:38 PM via . All use subject to https://www.ebsco.com/terms-of-use



Chapter VII 
 

468 

 

Dividing all the expression by β, we get 

 

Now, putting 

 

we obtain 

 

4) Considering two types of solutions (symmetrical and 
antisymmetrical), determine the energy levels of this molecule. 

ANSWER 

To resolve this determinant, we can use the symmetry of the molecule. 
Consider the cisoid conformer given in Fig. VII-T-39. 

  E  0.7 1.1 0 0

1.1   E  0.2 0.5 0

0 0.5   E  0.2 1.1

0 0 1.1   E  0.7

 0

  E


 0.7 1.1 0 0

1.1
  E


 0.2 0.5 0

0 0.5
  E


 0.2 1.1

0 0 1.1
  E


 0.7

 0

x 
  E



x  0.7 1,1 0 0

1.1 x  0.2 0.5 0

0 0.5 x  0.2 1.1

0 0 1.1 x  0.7

 0
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We consider the median plane of the molecule plane as the plane of 
symmetry. In relation to this plane, we can consider two types of 
symmetries: 

- symmetrical; 
- antisymmetric. 

These are the coefficients that will translate the symmetrical or 
antisymmetric character. 

Symmetrical solutions 

We have 

 

For symmetrical solutions, the secular equations take the form 

 

i.e. 

 

We can write a new determinant as 

 

the solutions of which are 

 

so that we obtain two solutions (symmetric) 

C1  C4 and C2  C3

C1x  0.7  1.1C2  0

1.1C1  C2x  0.2  0.5C2  0

C1x  0.7  1.1C2  0

1.1C1  C2x  0.7  0

x  0.7 1.1

1.1 x  0.7
 0

x  0.72  1.12  0
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which may be expressed in terms of α and β 

 

Antisymmetric solutions 

We have 

 

and 

 

i.e. 

 

so that 

 

x  0.7  1.1 ; x  0.7  1.1

x  1.8 ; x  0.4

  ES 1


 1.8 ;

  ES 2


 0.4

  ES 1
 1.8 ;   ES 2

 0.4 

ES 1
   1.8 ; ES 2

   0.4 

C1  C4 and C2  C3

x  0.7 1.1 0 0

1.1 x  0.2 0.5 0

0 0.5 x  0.2 1.1

0 0 1.1 x  0.7

 0

C1x  0.7  1.1C2  0

1.1C1  C2x  0.3  0

x  0.7 1.1

1.1 x  0.3
 0
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i.e. 

 

There are two solutions (antisymmetric) 

 

so that the energies of the π system of glyoxal are 

 

Since the integrals α and β are negative, we have the following order of 
energy levels on an energy scale 

 

5) Express the corresponding wave functions. 

ANSWER 

We know the sign and the relative value of the coefficients.  

x  0.7x  0.3  1.12  0

x 2  0.4x  1. 42  0

x  1. 008 ;x  1. 408

  EA2


 1. 408 ;

  EA1


 1. 008

EA1
   1. 408  ; EA2

   1. 008

ES 1
   1.8 ; ES 2

   0.4 

EA1
   1. 408  ; EA2

   1. 008

EA2
   1. 008

ES 2
   0.4 

EA1
   1. 408 

ES 1
   1.8
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Thus, we have 

 

We start from the symmetrical expression of the secular equation 

 

If we introduce the energy x = -1.8 in it 

 

we deduce 

 

Given that the sum of the squared coefficients are equal to 1, we have for 
the state |Ψ₁> 

 

and the expression of the state may be written 

 

Now, for the second level we have 

 

The secular equation is 

|4   C1 |1   C2 |2   C2 |2   C1 |1 

|3   C1 |1   C2 |2   C2 |2   C1 |1 

|2   C1 |1   C2 |2   C2 |2   C1 |1 

|1   C1 |1   C2 |2   C2 |2   C1 |1 

C1x  0.7  1.1C2  0

C11.8  0.7  1.1C2  0

C11.1  1.1C2  0

C1  C2

4C1
2  1 then C1  1

2

|1   1
2

|1   1
2

|2   1
2

|2   1
2

|1 

x  1. 408
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and 

 

 

 

 

 

The second molecular orbital is
 

 

so that 

 

 

 

 

 

For |Ψ₃>, we have 

 

C1x  0.7  1.1C2  0

C11. 408  0.7  1.1C2  0

C10.708  1.1C2  0

C10.708  1.1C2

C1
0.708

1.1
 C2

0.644.C1  C2

|2   C1|1   0.644 C1 |2   0.644 C1 |2   C1|1 

2C1
21  0.6442   1

C1
2  1

2  1  0.6442 
 0.3534

C1  0.3534  0.5944

C2  0.644  0.5944  0.3828

|2   0.5944|1   0.3828|2   0.3828|2   0.5944|1 

|3   C1 |1   C2 |2   C2 |2   C1 |1 
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The secular equation is 

 

with x = 0.4 we obtain 

 

so that 

 

and for |Ψ₃>, we have 

 

At last, for |Ψ₄> if we take x = 1.008 as the solution, we get 

 

then 

* 

 

 

C1x  0.7  1.1C2  0

C10.4  0.7  1.1C2  0

C1  C2

|3   1
2

|1   1
2

|2   1
2

|2   1
2

|1 

C11.008  0.7  1.1C2  0

1. 708C1  1. 1C2  0

C1
1.708

1.1
 C2

C2  1. 5527C1
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The expression of |Ψ₄> is therefore 

 

Finally, the π MOs of glyoxal take the following expressions 

 

which may be put in a matrix of the form
 

 

Ci
2  1

2C1
2  2C2

2  1

2C1
21  1. 55272   1

2C1
21  1. 55272 

6. 82175458C1
2  1

C1
2  1

6. 8217
 0.1466

C1  1
6. 8217

 0.3828

C2  1. 5527  0.3828  0.5944

|4   0.3828|1   0.5944|2   0.5944|2   0.3828|1 

|1   1
2

|1   1
2

|2   1
2

|3   1
2

|4 

|2   0.5944|1   0.3828|2   0.3828|3   0.5944|4 

|3   1
2

|1   1
2

|2   1
2

|3   1
2

|4 

|4   0.3828|1   0.5944|2   0.5944|3   0.3828|4 

|1 

|2 

|3 

|4 



1
2

1
2

1
2

1
2

0.5944 0.3828 0.3828 0.5944

1
2

 1
2

 1
2

1
2

0.3828 0.5944 0.5944 0.3828



|1 

|2 

|3 

|4 
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6) Calculate the bond index π (bond order). 

ANSWER 

Let us recall the definition of the 
bond index or bond order in the 
ground state of glyoxal. 

The ground state corresponds to 
the following configuration in 
which the two doublets π are 
found in MOs Ψ₁ and Ψ₂. For the 
bond index, we have 

  

then, for bond 12 of glyoxal we 
have Fig. VII-T-41. 

 

Figure VII-T-41: Calculation  
of the bond 12 order of glyoxal 

Recall that the bond index of bond 12 is given by 

 

similarly, for bond 23 we have 

 

7) Calculate the π electron populations in the ground state. 

ANSWER 

We can also determine the electron population carried by each atom. We have 

 

Iij  
k

CkiCkj  2

I12  C11C12  C21C22   2 electrons so that:

I12  1
2
 1

2
 0.5944  0.3828  2  0.9551

I23  C12C13  C22C23   2 electrons so that

I23  1
2
 1

2
 0.3828  0.3828  2  0.2069

qi  2e
j1

Nocc

Cij 
2
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where Nocc represents the number of occupied MOs. For atoms 1 and 4 of 
glyoxal we have 

 

Similarly, for atoms 2 and 3 we have 

 

 

so that, for the cisoid and transoid forms respectively, we have the π 
electron populations in the ground state 

 

Cisoid form  Transoid form 

Figure VII-T-42: π electron populations in the ground state for glyoxal. 

We can easily understand why only the cisoid form has a dipole moment. 

 

q1  2
j1

2

Cj1 
2  2  C11 

2  C21 
2

 2  1
2

2
 0.59442  1.2069  q4

q2  2
j1

2

Cj2 
2  2  C12 

2  C22 
2

 2  1
2

2
 0.38282  0.7931  q3

Atom 1 or 4 : Q1  1  q1  1  1.2069  0.2069

Atom 2 or 3 : Q2  1  q2  1  0.7931  0.2069
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CHAPTER VIII  

CHEMICAL REACTIVITY  
AND MOLECULAR ORBITALS:  
ELECTROCYCLIC REACTIONS 

 
 
 
In this last chapter, we shall show how the concepts discussed above can be 
applied to predict chemical reactivity. 

Chemical reactivity is the way in which a chemical reaction transforms 
matter. During a reaction, the chemical species that constitute matter are 
modified. The species that are consumed are called reactants. The species 
formed during the reaction are called reaction products. Anyone 
investigating chemical reactivity is looking to determine, from a number of 
reagents, the ways they will turn into products. We shall see that the use of 
quantum theory makes it possible to predict the evolution of such reactions. 
This perspective defines a field of chemistry called theoretical chemistry or, 
more precisely, quantum chemistry because it studies chemical reactions in 
the light of mathematical theories such as quantum mechanics. 

This course has undertaken a slow progression towards an elementary 
knowledge of quantum chemistry. The elements that we have acquired 
allow us now to approach the simple case of electrocyclic reactions. 

We have seen, during the development of the theory of molecular orbitals, 
the importance of establishing correlation diagrams between atomic orbitals 
and molecular orbitals. These correlation diagrams, when applied to 
polyatomic molecules such as conjugated polyenes, make it possible to 
obtain important results concerning the evolution of reactants towards the 
products of a reaction. We shall therefore begin the study of electrocyclic 
reactions. Let us take for example, the reaction of cyclization of butadiene 
to cyclobutene and the reverse reaction of the opening of the cycle. 

Consider a conjugated polyene with n double bonds. This polyene can 
undergo cyclization reactions (and conversely the opening of the cycles 
formed). 
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These reactions were 
called electrocyclic 
reactions by Woodward1 
and Hoffmann2 who 
established predictive 
rules for the 
stereochemistry of these 
reactions. 

 

R. Woodward 

 

R. Hoffmann 

These rules, called Woodward-Hoffmann rules, are based on the theory of 
molecular orbitals of systems, the principle characteristics of which we gave 
in the previous chapter 

VIII-I. Electrocyclic Reactions 

An electrocyclic reaction can be schematized as follows.  

Where the chain 
connecting the ends of the 
molecule has n 
conjugated double bonds, 
that is to say alternated 
with single bonds, the 
ends each carrying a 
double bond.  

Figure VIII-1: Conrotatory process. 

We can consider the type of cyclization-opening: in the conrotatory mode, 
the ends of the molecule rotate in the same direction, while in the disrotatory 
mode, the ends of the molecule rotate in opposite directions. 

                                                      
1 Robert Burns Woodward (1917-1979). American theoretical chemist and winner 
of the Nobel Prize in Chemistry in 1965. 
2 Roald Hoffmann, born Roald Safran (born in 1937). American chemist and winner 
of the Nobel Prize in Chemistry in 1987. 
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We can see the 
importance of 
distinguishing 
between these two 
processes because 
the stereochemistry 
of the molecule 
obtained  

 

Figure VIII-2: Disrotaory process. 

with this or that process is different, taking into account the differences 
between the substituents A, B, C, and D. 

In general, electrocyclic reactions can be carried out thermally or 
photochemically, according to the conrotatory or disrotatory process. 

The result of these reactions is not explained by the electrostatic (charge 
repulsion) or steric (bulk) effects of the substituents. Such interpretations 
often give results that are contrary to our predictions. This led Woodward and 
Hoffmann to propose that the stereochemistry of electrocyclic reactions is 
controlled by the symmetry of the highest occupied atomic orbital (HO) of 
the open product. This prediction is based on selection rules. 

VIII-II. Woodward-Hoffmann’s Selection Rules 

We shall discuss here neutral molecules and ionic molecules. 

1. Neutral molecules 

a. Example of the cyclization of butadiene to cyclobutene 

Consider for example the cyclization of butadiene to cyclobutene. The 
following figure shows the butadiene molecule (left) and the cyclobutene 
molecule (right) in interconversion. 
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We have shown the 
planes of symmetry 
of the molecule, in 
particular the P 
plane, with respect 
to which we shall 
define the 
symmetry of the 
atomic orbitals. 

 
 

Figure VIII-3: Cyclization of butadiene. 

 
In this type of reaction some orbitals undergo profound changes. These are 
the four molecular orbitals π of butadiene, Ψ₁, Ψ₂, Ψ₃, and Ψ₄, and the 
orbitals σ, σ*, π, and π* of cyclobutene, which can be represented 
schematically as follows (Fig. VIII-4). 
 

 

Figure VIII-4: Energy levels of butadiene and cyclobutene. 

We have also included the scale of the energies as well as the symmetry of 
the orbitals with respect to plane P. Taking into account the signs of the 
coefficients in each orbital (gray = sign +; white = sign -) we can deduce the 
symmetry of the molecular orbital: (S) for symmetric and (A) for 
antisymmetric. This notation will be very useful to us in constructing the 
correlation diagram of the butadiene-cyclobutene reaction. 

The separation limit (blue dotted line) between the occupied atomic orbitals 
and the vacant atomic orbitals in the system of orbitals that undergo the 
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greatest transformations in the two molecules is indicated on this diagram. 
Among these orbitals, some will play an important role: the highest 
occupied atomic orbital (HO) and the lowest vacant atomic orbital (LV). 

If the process is thermal, according to Woodward and Hoffmann, we start 
from the ground state of butadiene, which includes 2 electrons in the 
molecular orbital HO Ψ₂. The reaction is done by a binding interaction in 
the HO by overlapping the lobes of the same sign, the symmetry of the 
orbital being preserved throughout the process. 

It can thus be seen that, in the case of butadiene, the HO being 
antisymmetric with respect to plane P, the reaction leading to the positive 
overlap of the lobes of the ends of the orbital ends of HO is the conrotatory 
movement. 

 

Figure VIII-5: Conrotatory (left) and disrotatory (right)  
processes of butadiene cyclization. 

On the contrary, in a photochemical process, the HO has the orbital Ψ₃, 
which is symmetrical with respect to P. The movement will therefore be 
disrotatory. 

In the thermal process the molecules react in their ground state. 

If the molecule contains 4q electrons, then the HO has the orbital number 
2q and is therefore an even-numbered orbital. 

If the molecule contains 4q+2 electrons, the HO has the number 2q+1 and 
is an odd-numbered orbital. 
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Coulson has shown that the energies of molecular orbitals and the coefficients 
of linear polyenes can be predicted by the formulas that bear his name 

 

where n is the number of polyene atoms; p is the number of the molecular 
orbital counting from the lowest energy MO; and k is the number of the 
atom considered. For example, in butadiene we can calculate the 
coefficients of the extreme atoms of the HO orbital and thus realize the 
symmetry of the latter with respect to plane P. Thus, we find 

 

and HO is therefore asymmetrical. 

Using this formula, we can determine whether the HO is symmetrical or 
antisymmetric, which makes it possible to determine the disrotatory or 
conrotatory process of the reaction. 

In photochemical reactions, molecules react in their first excited state. If the 
molecule contains 4q electrons, the HO in the first excited state has the 
number 2q+1 and is therefore odd. 

If the molecule contains 4q+2 electrons, the HO of the first excited state has 
the number 2q+2 is and even. 

 

Figure VIII-6: Disrotatory (left) and conrotatory (right) movement. 

 

  

Ep    2cos
p

n  1

Cp
k  2

n  1
sin

pk
n  1

C2
1  0.601 and C2

4  0.601
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b. Example of cyclization of hexatriene to cyclohexadiene. 

Fig. VIII-7 presents the 
cyclization of hexatriene 
to cyclohexadiene. 

Using Coulson’s 
formulas, we can 
quickly determine the 
energy levels and 
coefficients of the π 
molecular orbitals for 
hexatriene. 

For the energy levels 
we have 

 

Figure VIII-7: Cyclization of hexatriene to 
cyclohexadiene. 

 

Energies and coefficients obtained from the above formulas are given in 
Table VIII-1. 

Table VIII-1: Energies and coefficients for hexatriene 

 

Ep    2cos
p

n  1

Cp
k  2

n  1
sin

pk
n  1

E C1 C2 C3 C4 C5 C6

E1    1. 802 0.232 0.418 0.521 0.521 0.418 0.232

E2    1. 247 0.418 0.521 0.232 0.232 0.521 0.418

E3    0.445 0.521 0.232 0.418 0.418 0.232 0.521

E4    0.445 0.521 0,232 0,418 0,418 0,232 0,521

E5    1. 247 0.418 0.521 0.232 0.232 0.321 0.418

E6    1. 802 0.232 0.418 0.521 0.521 0.418 0.232
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We can represent the OM of hexatriene as 
well, the size of the lobes being 
proportional to the importance of the 
coefficients. 

It can clearly be seen that, taking into 
account the symmetry of the HO, the 
thermal cyclization in cyclohexadiene 
takes place according to a disrotatory 
process. 

A photochemical process will affect the 
status of orbital Ψ₄, which becomes HO 
by the excitation of an electron. Therefore 
the overlap of the lobes at the extremities 
will happen according to a conrotatory 
process. 

 

Figure VIII-8: Energies and MO 
coefficients of hexatriene. 

2. Ionic molecules 

The reasoning is the same for ionic molecules. It is sufficient to add or 
subtract the number of electrons from the ion and to consider the HO orbital 
under these conditions. 

 
Consider the allyl 
cation C₃H₅⁺, which is 
a π system with 3 
carbon atoms and 2 
electrons, as shown in 
Fig. VIII-9. 

 

 

Figure VIII-9: Allyl system. 

By applying the linear combination of the atomic orbital 2pz, we are led to 
the secular equations describing the system π 

 

The secular determinant is 

C1  E  C2  0

C1  C2  E  C3  0

C2  C3  E  C4  0
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Dividing these equations by β, we come to 

  

and putting 

 

the secular determinant becomes 

 

so that: 

 

This equation has the following solutions 

 

i.e., for energies 

  E  0

   E 

0    E

 0

  E


1 0

1
  E


1

0 1
  E



 0

x 
  E



x 1 0

1 x 1

0 1 x

 0

x3  2x  0

x1  2; x2  0; x3   2
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The coefficients of atomic orbitals can be obtained using the Coulson 
formula met above, i.e. 

 

in which n = 3. Then, for MO 1, we have 

 

 

For MO 2 

 

For MO 3 

E1     2

E2  

E3     2

Cp
k  2

n  1
sin

pk
n  1

Cp
1  2

3  1
sin

p
3  1

C2
1  2

3  1
sin 

3  1
 0.5

C2
1  2

3  1
sin 2

3  1
 0.707

C2
1  2

3  1
sin 3

3  1
 0.5

C1
2  2

3  1
sin 2

3  1
 0.707

C2
2  2

3  1
sin 2  2

3  1
 0

C3
2  2

3  1
sin 3  2

3  1
 0.707
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We therefore have the representation of the molecular orbitals π of the allyl 
cation (2 electrons) and the allyl anion (4 electrons). 

 

Figure VIII-10: π MOs of the cation (left) and of the allyl anion (right). 

We can see that in the case of the allyl cation, the HO being symmetrical, 
the movement towards the thermal cyclization will be disrotatory, while the 
movement towards the photochemical cyclization will be conrotatory, since 
the HO will be the 2nd orbital, which is antisymmetric. 

On the contrary in the case of the allyl anion, the HO being antisymmetrical, 
one can provide a conrotatory movement for thermal cyclization and a 
disrotatory movement for photochemical cyclization. 

C1
3  2

3  1
sin 3  

3  1
 0.5

C2
3  2

3  1
sin 3  2  

3  1
 0.707

C3
3  2

3  1
sin 3  3  

3  1
 0.5
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We have given here only a short overview of the possibilities of predicting 
chemical reactivity as represented by the Woodward-Hoffmann rules. In so 
doing, we have gone beyond the scope of the current work, the focus of 
which is an approach to the structure of matter and the theories involved. 
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CONCLUSION 
 
 
 
In this didactic work, offering an introduction to the structure and energy of 
atoms and molecules, we have attempted a graduated presentation of current 
knowledge in this area, from simplest to most complicated. 

In the first chapter, we enumerated the constituent elements of atoms. In 
the second chapter, we approached the study of light to demonstrate 
experimentally the character of both the wave-like and corpuscular nature 
of electromagnetic vibrations in general. This chapter allowed us to set up 
the basic formalism concerning wave phenomena. 

All these notions have led us, in the third chapter, to look at material 
particles with an identical approach and consider both the corpuscular and 
wave-like behavior of matter in general. 

The fourth chapter showed us how various experiments, such as the 
Franck-Hertz experiment or the spectra of the atomic hydrogen and the 
hydrogenic atoms, are explanatorily useful only if we consider that the 
energy of the electrons in the atom is quantized. This empirical hypothesis, 
born of experience, gradually acquired a theoretical explanation in the fifth 
chapter with the use of so-called semi-classical theories like that of the 
Bohr-Sommerfeld model, which is based on a classical approach, but where 
quantization elements are introduced to improve the accuracy. Despite great 
quantitative success, this theory cannot fully explain the energy stability of 
the atom when considered in the classical planetary model. 

In the sixth chapter, we examined the full quantum theory of the atom in 
which all reference to a classic trajectory for the electron moving in the atom 
is abandoned. The electron is described as a stationary wave, represented by 
a wave function through the resolution of the Schrödinger equation, which 
allows us to specify the details of the quantization of energy with the model 
of the stationary states. This model, extended to atoms with several 
electrons, makes it possible to describe each atom by an electronic 
configuration and to account for the physicochemical properties by 
explaining the periodic classification of the elements. 
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The seventh chapter, the longest in this work, using the logic of what we 
know about atoms, is devoted to examining the chemical bond, both from 
the electronic point of view with the elementary Lewis theory, which made 
it possible to pose the principles defining a chemical bond between two 
atoms, and with the theory of molecular orbitals based on the linear 
combination of atomic orbitals. If we are interested in polyatomic 
molecules, the notion of geometry comes into play and the shape of 
molecules in space. The predictive nature of a theory such as the VSEPR 
method combined with the theory of hybridization of atomic orbitals and 
the theory of molecular orbitals has made it possible to obtain the most 
global image possible the molecule. 

Finally, the eighth chapter, which goes beyond the framework of the study 
of matter, has looked at how the knowledge of molecules can be put to work 
when attempting to predict their reactivity. Thus, the use of the theory of π 
molecular orbitals of polyenes can account for the experimental results of 
electrocyclic and sigmatropic reactions. 

This modest study has illustrated the path by which our knowledge of matter 
has progressed, showing the close link between experience and theory. We 
hope that it has given students, starting out on this path, the desire to learn 
more. 
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