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Foreword
Equivocation is ubiquitous in human language. In some situations, it is harmless,
sometimes even funny, like when the realization of a misunderstanding creates an
awkward moment. In other situations, it can be used for manipulation, like in poli-
tics and in advertising. It is an unavoidable feature of any language because we hu-
mans tend to read and interpret words and sentences not simply in light of meanings
found in a dictionary but also considering the source, the circumstances, and our own
prior experiences.We sometimes do not hear what is said to us becausewe have filters
on, whereas other times we hear what we want to hear and may not have been said.
Mathematics, as a language that distinguishes itself from all other human languages,
tries to remove ambiguity as much as possible. It does so by providing precise defini-
tions and by requiring a standard of proof that any argument must satisfy before it is
accepted as valid. While a mathematician is completely free to define the objects of
her study and is therefore not in the least limited by the rigor of the discipline, once
these objects have been identified and described, one has to abide by the rules they
entail. It is my experience as a teacher that the source of many a student’s difficulties
with the subject can often be traced back to one of two phenomena. One consists of
an understanding that is purely intuitive, where words (mathematical symbols and
terminology) evoke approximative, sometimes even precise meaning, but still do not
lead to the targeted ability to perform the mathematical manipulations necessary to
derive further understanding and knowledge or even the desirable ability to apply the
understanding to any concrete context where the mathematical structure is present
and could offer a framework in which to ask and answer relevant questions. The other
consists of a purely formal understanding, wheremathematical symbols and formulæ
arememorized alongwith a set of “operational rules” to be used formanipulations. At
this other extreme, the act of thinking about a problem is reduced to almost random
attempts at manipulations in the hope of eventually obtaining “the correct answer”
(whichneeds to be knownor given for this approach towork). Evenprofessionalmath-
ematicians can, at any given time, be operating in one of these twomodes. Mathemat-
ics, however, is not pure intuition nor pure formalism, but the harmoniousmerging of
the two, where form is supported by intuition and intuition is given form. Intuitions
without muscles are mere conjectures just as thoughtless calculations are incoherent
blabber. We all had teachers who were excellent at conveying the main ideas of a sub-
ject and others who put extreme emphasis on the rigor of presentations: I never was
fully satisfied with any of these two approaches. I felt that they would lead to either
ideas with no tools to implement them or tools with no idea on how to use them. So
I always consciously attempted to design classes so as to incorporate enough of both.
While I think I never really and fully succeeded, I gained innumerable insights that
certainly improved my approach to teaching. This book is my latest attempt to recon-
cile the two souls of mathematics. The goal would remain hopelessly out of reach if I
were to try to take a linear approach where all tools and concepts required to address

https://doi.org/10.1515/9783110780925-201
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XIV | Foreword

the problems, whichwill be discussed in the book, were first to be developed in a com-
plete and rigorous way. It would indeed mean that I would have to write a book each
about calculus, linear algebra, point set topology, analysis, probability, ordinary and
partial differential equations, functional and harmonic analysis, geometry, etc. But I
would rather like to showcase the power of mathematics by presenting the resolution
of selected problems where it becomes apparent why, historically, the various basic
mathematical subjects have developed. It is only when addressing concrete questions
that one appreciates the remarkable unity of mathematics. Researchers will identify
many unresolved issues inside any of themanymathematical branches andwork tire-
lessly on resolving them, but mathematical subject areas were often born in response
to the need of solving specific problems before they took on a life of their own. That
is the reason why I take a problem and idea centered approach in this book. The hope
is that the reader will never feel the need to ask: why on earth are we doing this? The
problems I chose and themathematics they engender in this presentation are not nec-
essarily a historically correct account of the development of the corresponding ideas;
they are more like a fictional history that could and might have been. They lead us on
a plausible path from problem to mathematics as opposed to on a path from mathe-
matics to application. I realize that this is a question of taste. My teaching experience
tells me that this is what many students at least claim to crave for and what not too
many textbooks offer. I also learned thatmathematics is not necessarily easier to learn
this way (and many students eventually settle for a more traditional presentation or
learning mode once they realize it). I do not criticize the approach taken in the major-
ity of available excellent textbooks. I would simply like to offer an alternative that can
maybe prove useful to some students.

The target audience of this book is the advanced undergraduate or beginning
graduate student who is interested in obtaining a transversal, if necessarily partial,
view of the large edifice that is mathematics. As in most American universities real
analysis is a subject that is often first learned as a graduate course; we avoided its
use throughout the book. More often than not ideas cut across strict subject bound-
aries but are rarely presented in that way in standard courses. The latter are typically
devoted to a single topic, which is systematically developed. In such an approach en-
lightening applications and/or connections to other areas can be absent or relegated
to remarks. This books aims at offering an alternative and more inclusive perspective.
The price that needs to be paid is that no topic can be as exhaustively covered as in
a more traditional approach. The gain is the ability to present a selection of concepts
and ideas that are central in mathematics and find use in a wide spectrum of areas
ranging from pure to applied mathematics.

Prior exposure to calculus, linear algebra, and some probability is necessary for
a full appreciation of the presentation. While the topics covered in this book intersect
those covered in these courses, they are approached from a wider perspective that
focuses on their fundamental motivations and they occasionally lead outside their
traditional scope. The book is written in a colloquial style but maintains rigor every
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Foreword | XV

step of the way. It can be demanding for the reader since it encourages and requires
the reader to think along and contribute to their own understanding. It may therefore
occasionally be advisable to read it in a supervised mode.

The text is peppered with questions that the reader is invited to ponder to gain
a fuller and deeper appreciation of the material. While the answers to many of such
questions are a mere click away, the most effective reading requires full engagement.
The reader is encouraged to work things out for themselves.

Enjoy the journey.

Iwould like to thankHerbert Amann, SandroMerino, andYucheng Zhang for their
careful reading of early versions of the manuscript as well as for their constructive
feedback that helped make this a better textbook.

Irvine, June 2022
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1 Sets and functions

In this short chapter, we fix some basic but important notation in the hope of reducing
later confusion ormisunderstandings to aminimum. Setswill be viewed as collections
of elements. The latter will be explicitly listed or described in some way. The set of
natural numbersℕ is assumed to be given and understood

ℕ = {1, 2, 3, . . . }.

The prototypical set {1, 2, . . . , n} of n ∈ ℕ elements is denoted by ℕn. Other sets of
numbers used in this text are ℚ, ℝ, and ℂ and will be discussed in the next chapter.
If all elements of a set S also belong to another set T, we say that S is a subset of T or
simply write S ⊂ T. Two sets S and T coincide if S ⊂ T and T ⊂ S. Given two sets S and
T, their cross-product S × T is defined as the set containing ordered pairs (s, t) with
s ∈ S and t ∈ T, namely

S × T = {(s, t)  s ∈ S, t ∈ T}.

An example is the set ℕ × ℕ consisting of the ordered pairs (m, n) of integers m, n.
The ordering condition ensures that (1, 2) and (2, 1) are distinct elements, i. e., that
(1, 2) ̸= (2, 1). This stands in contrast to {1, 2} = {2, 1}.

Mathematics is made of definitions, statements, and proofs. They try to capture
observations, intuitions, and structures with concepts and their provable properties
and connections. Statements can sometimes be related to each other by implication,
meaning that validity of one follows from the validity of another. The notation A⇒ B
is used to indicate that the validity of A entails that of B. When two statements are
equivalent, we write A ⇔ B (read as “A if and only if B” and sometimes also written
as “A iff B”). Equivalence of the statements A and B is the same as the combination of
A⇒ B and B⇒ A. The negation of a statement A is denoted by ¬A. When attempting
to prove A⇒ B, we can just as well try to prove the equivalent ¬B⇒ ¬A.

A map m : D ⊂ S → T between two sets S and T is a triple (D,T ,M) consisting
of a domain of definition (domain) D ⊂ S, of a target set T, and of a subset M of their
cross-product S × T satisfying:
(m1) D = {s ∈ S | (s, t) ∈ M for some t ∈ T}
(m2) For each s ∈ D, there is a unique t ∈ T such that (s, t) ∈ M.

If condition (m2) holds, we simply write t = m(s), meaning that t is the value of the
map m at s. The set M is called the graph of the map and is sometimes denoted by
G(m). The elements of the domain of definition D of a mapm are called the arguments
of the map. The collection of elements t of T, which occur as values of a map m, that
is, such that an s ∈ D can be found with m(s) = t is called the range of the map m
and is denoted by R. To avoid confusion, we will sometimes include the mapm in the

https://doi.org/10.1515/9783110780925-001
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2 | 1 Sets and functions

notation of its domain and range and write D(m) and R(m). If a mapm : D ⊂ S → T is
such that D = S, we simply writem : S → T.

As a simple example of a map, consider a store S as the set of all items it contains.
Not all items found in the store will be for sale. Cash registers are examples of such
items. We denote the collection of all items for sale by D and associate to them their
sale price. In this way, we obtain a map

p : D ⊂ S → [0,∞), item → p(item),

the item pricing map. This example shows the intuitive nature of the defining prop-
erties of a map. It is indeed desirable to limit sales to the items actually available for
purchase and to have a unique price for each such item. Given a map m : S → T be-
tween two sets S,T and a subset V ⊂ T, the preimage m−1(V) of V under m is defined
as the set

m−1(V) = {s ∈ S  m(s) ∈ V} ⊂ S.

Given U ⊂ S, it is sometimes useful to consider the image set m(U) of U under m that
is given by

m(U) = {m(s)  s ∈ U} ⊂ T .

Notice that R(m) = m(S). The restriction m|U of m to the subset U is defined as the
(different) map

m|U : U → T , s → m(s).

The whole field of mathematics can be viewed as an effort to understand specific
maps. Maps can be distinguished by their properties, the most basic of which are in-
jectivity, surjectivity, and bijectivity. A mapm : D→ T is called injective, or one-to-one
if it holds that

m(r) = m(s) for r, s ∈ D ⇒ r = s.

In plain English, a map is one-to-one if each and any of its value t ∈ R is taken on at
most at a single argument s ∈ D, or, equivalently, iff different arguments always yield
different values, that is, iff

r, s ∈ D, r ̸= s ⇒ m(r) ̸= m(s)

A map is called surjective, or onto, if it holds that R(m) = T. This means that each
element of the target space occurs as a value of the map, i. e., that

for each t ∈ T there is s ∈ S s. t.m(s) = t,
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1 Sets and functions | 3

where s. t. stand for such that. Finally, a map m : D ⊂ S → T is bijective, iff it is both
injective and surjective, or, equivalently iff

for each t ∈ T there is a unique s ∈ D s. t.m(s) = t.

If two mapsm : S → T and n : U → V between sets S,T ,U ,V are such thatm(S) ⊂ U,
then they can be composed to obtain their composition n ∘m given by

n ∘m : S → V , s → n(m(s)).

If a given map m : S → T is bijective, it admits an inverse, denoted by m−1 : T → S1

such that

m−1(m(s)) = s for s ∈ S and m(m−1(t)) = t for t ∈ T .

This means that

m−1 ∘m = idS and m ∘m−1 = idT

where idU denotes the identity map of the set U,

idU : U → U , s → s.

What is the graph of the inverse of a function in terms of the graph of the function
itself? (Q1)

As a simple example, consider the following map:

f = (ℝ,ℝ, {(x, x2)  x ∈ ℝ} = G(f )),

which we will more simply denote as

f : ℝ→ ℝ, x → x2,

where m = f , D = S = ℝ, and T = ℝ. We intentionally avoid the notation f (x) = x2

because it quickly can lead to confusion (as it does not give information about the
domain of definition nor about the target set). To drive this point home, we consider
also the following other two functions:

g : ℝ→ [0,∞), x → x2,

h : [0,∞)→ [0,∞), x → x2,

1 Notice that in the earlier definition of preimage we used the same notation even though the map
may not have been invertible. The distinction is that preimages are taken of sets and not of individual
elements.
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4 | 1 Sets and functions

which are obtained from f bymodifying its target set and both domain and target sets,
respectively. These could loosely be referred to as the function x2. It, however, holds
that f is not one-to-one nor onto, while g is onto but not one-to-one, and h is actually
one-to-one and onto, and has an inverse h−1 given by

h−1 : [0,∞)→ [0,∞), x → √x.

You can see how easily we could run into trouble by giving upmathematical precision
in the name of simplicity of notation and expediency. Mathematicians are not always
this “pedantic” about details but this is due to the fact that they are fully aware of the
details they swipe under the rug. If you are still learning mathematics, we advise that
you accept this pedantry as the price to pay for a clean understanding of the concepts
and in order to avoid confusion later when dealing with more sophisticated concepts
and more involved situations.

A set S is called finite if there is an integer n ∈ ℕ and a bijective map c : ℕn → S.
You can think of c as a way of counting the elements of S, where c(1) is the first and
c(n) the last. Any set, which turns out not to be finite, is called infinite. Among infinite
sets, those which can be represented as the range of a bijective map defined on ℕ
are called countable (countably infinite). Examples are the set of integers ℤ, that of
rational numbersℚ, or the subset of even numbers 2ℕ = {2n | n ∈ ℕ} ⊂ ℕ.

It is sometimes possible to introduce operations on a set. By an operation ∗ on a
set S, we mean a map

∗ : S × S → S, (r, s) → ∗(r, s) = r ∗ s,

which combines two elements of the set to yield a third. In this case, we refer to Swith
the operation ∗ as (S, ∗). The operation ∗ is called commutative if it holds that

∗(r, s) = r ∗ s = s ∗ r = ∗(s, r) for each r, s ∈ S.

It is called associative if it holds that

(r ∗ s) ∗ t = r ∗ (s ∗ t) for each r, s, t ∈ S.

It is said to have an identity element if there is e ∈ S with

e ∗ s = s ∗ e = s for each s ∈ S.

If (S, ∗) admits an identity element e, an element s ∈ S is said to have an inverse (ele-
ment) if t ∈ S can be found satisfying

t ∗ s = s ∗ t = e.
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1 Sets and functions | 5

Such an inverse element is sometimes called s−1. (S, ∗) is called a group if its operation
∗ is associative and admits an identity element as well as an inverse for each of its
elements. If commutativity holds, then we speak of a commutative group. A set (S,+, ⋅)
with two operations + and ⋅ such that (S,+) and (S∗ = S \ {e}, ⋅), where e is the identity
element of (S,+), are commutative groups, is called a field if it additionally satisfies
distributivity, i. e., if

r ⋅ (s + t) = r ⋅ s + r ⋅ t for each r, s, t ∈ S.

In a field, + is called addition, ⋅ multiplication, the additive identity is denoted by 0,
and the multiplicative identity by 1.

Letting 𝔽 = ℝ,ℂ or your favorite field, we consider maps v : ℕn → 𝔽. Since the
domain of definition consists of the first n integers, any such map is fully determined
by its values v(1), . . . , v(n) ∈ 𝔽, which are fromnow on referred to as v1, . . . , vn. Themap
v can therefore be viewed as the n-vector (n-tuple),

(v1, . . . , vn) ∈ 𝔽
n = 𝔽 × ⋅ ⋅ ⋅ × 𝔽⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

n times
.

One can also consider maps x : ℕ → 𝔽, which are similarly fully determined by their
values x(n) for n ∈ ℕ. In this case, the values are simply denoted by xn, n ∈ ℕ, and the
map is thought of as the sequence

(xn)n∈ℕ = (x1, x2, x3, . . . )

in the field 𝔽. The field 𝔽 can clearly be replaced by any set S and the domain ℕ by
ℕn to obtain sequences and n-tuples of elements of the set S, respectively. Just like it
is often convenient to think of vectors as functions, it is sometimes useful to think of
functions as vectors, “very long vectors” at that. Let S be any set and consider func-
tions f : S → 𝔽. We can think of the values f (s) as the components of the vector
(f (s))s∈S. Notice that, since the values are taken in a field 𝔽, they can be added and
multiplied. This makes it possible to add and multiply functions as well through

(f + g)(s) = f (s) + g(s) for s ∈ S,
(f ⋅ g)(s) = f (s) ⋅ g(s) for s ∈ S,

for f , g ∈ 𝔽S, where 𝔽S denotes the collection of all functions f : S → 𝔽. With this
notation, we recognize that 𝔽n = 𝔽ℕn . We can also, for instance, think of complex
sequences (zn)n∈ℕ as vectors in ℂℕ or of real real-valued functions f : ℝ → ℝ as
vectors in ℝℝ. In general, we may sometimes denote the set or collection of all maps
defined on a set S with values in a set T by TS. The notation is motivated by the fact
that, if S and T are finite sets and |R| denotes the number of elements of a finite set R,
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6 | 1 Sets and functions

then it holds that

T
S = |T|

|S|.

Given a set S, finite or infinite, a collection of subsets𝒮 = {Si | i ∈ I}, where I is an index
set (not necessarily finite), is called a partition of the set S if it holds that:
(p1) Si ̸= 0 for i ∈ I.
(p2) Si ∩ Sj = 0, whenever i ̸= j for i, j ∈ I.
(p3) ⋃i∈I Si = S.

Here, 0 denotes the empty set. A partition therefore consists of subsets, which each
contribute at least one element of S, which do not contribute an element of S more
than once, and which exhaust all elements of S.

For the purpose of simplifying notation, we shall sometimes use quantifiers in
statements. When writing ∀, we mean for every, so that ∀ n ∈ ℕ means for each and
every natural number. A complete example would be “2n is even ∀ n ∈ ℕ” to mean
“2n is an even number for each natural number n ∈ ℕ”. The expression ∃means there
exists, whereas ∃!means there exists a unique, so that “∀ε ∈ ℝ with ε > 0 ∃ n ∈ ℕ s. t.
1
n < ε” means “that each positive real number admits a rational number of the form 1

n
that is smaller than it”.
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2 Numbers
While we assume that natural numbers are given, we will construct whole, rational,
real, and complex numbers from them in this chapter. Doing so will allow us to intro-
duce concepts that are useful in many other subject areas within mathematics. Along
with the natural numbersℕ,we assume that the two operations of addition and mul-
tiplication

+ : ℕ ×ℕ→ ℕ, (m, n) → m + n,
⋅ : ℕ ×ℕ→ ℕ, (m, n) → m ⋅ n,

are given and satisfy the properties we all learned in grade school as arithmetic (com-
mutativity and associativity for both, the existence of an identity for multiplication
and distributivity).

2.1 Rational numbers

It is likely a historical fiction but still conceivable that numbers have been “invented”
to satisfy our need tomeasure and quantify. Since there are no absolute quantities, the
first and rougher estimates of quantity aremore and less. If we care to bemore precise,
however,we could anddounderstand size in termsof arbitrarily chosenunits. Thefirst
definition of one meter (m) was, for instance, the length of a specific bar, which was
held in Paris. Measurement then relates the object to be measured back to the chosen
reference unit. With the natural numbers at our disposal, we can understand objects
whose length is an integer multiple of the unit. But what about objects, which can-
not be measured exactly as an integer number of units such as your height in meters
(most likely)? This question points to the need of finding a way to express sizes that
go beyond simple integer multiples of a unit. Using the example of a meter, we can
come across an object that fits exactly two times in a meter. In more abstract terms,
this relationship could be captured as it takes two (of these) to make one unit, which
again only requires the use of two natural numbers to express and can be taken as
the definition of the word one-half or of the number 1

2 . How can we turn this simple
idea into a proper mathematical definition of rational numbers? Consider the prob-
lem of obtaining a construction of the number m

n form, n ∈ ℕ. It would correspond to
the “real world” relationship it takes n (of these) to make m units. Again, describing
what will eventually be m

n , only requires access tom, n ∈ ℕ. We could therefore simply
stipulate that m

n is the pair (m, n) and the new set of these numbers to be

ℕ ×ℕ = {(m, n)  m, n ∈ ℕ}.

Ifwedid that, however, it takes n tomakemunits and it takes 2n tomake 2munitswould
be different descriptions of the same underlying relationship, and hence arguably of

https://doi.org/10.1515/9783110780925-002

 EBSCOhost - printed on 2/10/2023 3:59 PM via . All use subject to https://www.ebsco.com/terms-of-use

https://doi.org/\global \c@doi \c@chapter \relax \global \advance \c@doi \c@parttext \relax 10.1515/9783110780925-000


8 | 2 Numbers

the same number we are trying to define. In other words, we would have to conclude
that (m, n) = (2m, 2n), but these pairs are ostensibly not identical.

At this point, we introduce and use the first “mathematical trick” (device, idea),
which turns out to be ubiquitous in mathematics: we form so-called equivalence
classes. Given numbersm, n ∈ ℕ, we set

[m, n] = {(m, n)  m ⋅ n = m ⋅ n},

so that, e. g., (m, n) ∈ [m, n] but also (2m, 2n) ∈ [m, n], since 2m ⋅n = m ⋅2n thanks to the
properties of multiplication of the naturals. Any specific pair (m, n) ∈ ℕ determines,
and hence belongs to one and only one of these sets. These do in fact build a partition
of the set ℕ × ℕ = ℕ2 into disjoint and nonempty subsets. Any element of one of
these sets encodes the same“factual” relationship it takes thismany tomake thatmany
units. This idea of condensing certain subsets into a single element is based on the
mathematical construct of equivalence relation. Given a set S, an equivalence relation
on it is a map ∼: S × S → {0, 1} satisfying:
(er1) ∼ (s, s) = 1 for s ∈ S.
(er2) If ∼ (r, s) = 1, then ∼ (s, r) = 1 for r, s ∈ S.
(er3) If, for r, s, t ∈ S, it holds that ∼ (r, s) = 1 and ∼ (s, t) = 1, then ∼ (r, t) = 1.

It is customary to write r ∼ s and r ̸∼ s instead of the lengthier ∼ (r, s) = 1 and
∼ (r, s) = 0, respectively. These expressions are read as r is in relation with s and not in
relation with s, respectively. In the specific setting above, we would define an equiva-
lence relation onℕ2 by setting

(m, n) ∼ (m, n) iff m ⋅ n = m ⋅ n,

for any given (m, n), (m, n) ∈ ℕ2.
Next, given a set S and an equivalence relation ∼ on it, we define

vs] = {r ∈ S | r ∼ s} and [sw = {r ∈ S | s ∼ r},

the sets of elements left- and right-related to s, respectively. In view of condition (er1),
it holds that s ∈ vs] and s ∈ [sw, and thanks to (er2) also that vs] = [sw. Wewill therefore
simply write [s] instead of vs] or [sw. The last condition (er3) ensures that

s ∈ [r], r ∈ [t] ⇒ s ∈ [t]

Finally, notice that [r] ∩ [t] ̸= 0 implies that [r] = [t]. Convince yourself that the set of
all equivalence classes

S/∼ = {[s]  s ∈ S}
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2.1 Rational numbers | 9

yields a partition (Q1) of the set S and that the relation defined above onℕ2 is indeed
an equivalence relation (Q2), i. e., that it satisfies conditions (er1)–(er3). After these
preparations, we can define

ℚ+ = ℕ2/∼,

the set of positive rational numbers.
At this point, we introduce another universally important concept. While one is

free to make any definition, one is also required to check that the concept introduced
is well-definedmeaning that it is unambiguous and noncontradictory, that it does not
alter the meaning of any previous concept it extends, and that it admits at least one
example (existence of the described objects). In the case of the definition of ℚ+, this
means first and foremost that any two subsets of ℕ2 determined by ∼, supposedly
defining a rational number, do either coincide or have empty intersection. This can
be proven to be the case by showing that ∼ is indeed an equivalence relation (the very
properties of equivalence relation are introduced for that purpose). If thatwere not the
case, therewould be different rational numbers, which share the same representative,
thus leading to some confusion indeed. We also need to verify that the new numbers
are compatible with the natural numbers, in the sense that the latter can be viewed as
a subset of the former, i. e., that

ℕ ⊂ ℚ+ = ℕ2/∼.

To do so, consider the special equivalence classes [m, 1] form ∈ ℕ, which encode the
relation it takes 1 of these to make m units and clearly coincides with m units. This is
summarized by the map

ι : ℕ→ ℚ+ = ℕ2/∼, m → [m, 1]

being injective (one-to-one). Natural numbers come with two natural structures: they
can be added together and multiplied with one another. It is therefore natural to try
and extend these operations to ℚ+. When doing so, we first need to define addition
and multiplication onℚ+ ×ℚ+. We take two elements p = [m, n] and q = [k, l], which
are two sets (equivalence classes), and look for ways to define p+q and p ⋅q. Given that
an equivalence class is determined by any of its members, we choose representatives
(m̃, ñ) and (k̃, l̃) for p and q, respectively. Considering the product first, we may define

p ⋅ q = [m̃ ⋅ k̃, ñ ⋅ l̃].

This is motivated by considering an example. Notice that n ⋅ [m, n] = m, since [m, n]
means it takes n to make m units. This can be rewritten as

[n, 1] ⋅ [m, n] = [m, 1].
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10 | 2 Numbers

Nowobserve that [m, 1] = [n ⋅m, 1 ⋅n], which is compatiblewith the proposed definition
for the product. It still remains to verify, however, that this product is well-defined. In
this case, this amounts to showing that, while we use representatives in the defining
expression, the resulting equivalence class for the product does not depend on the
choice of these representatives. To that end, we pick (m, n) ∼ (m̃, ñ) and (k, l) ∼ (k̃, l̃).
This means thatm ⋅ ñ = n ⋅ m̃ and that k ⋅ l̃ = l ⋅ k̃. It follows that

(m ⋅ ñ) ⋅ (k̃ ⋅ l) = (m̃ ⋅ n) ⋅ (k ⋅ l̃),

which rewrites as

(m ⋅ k) ⋅ (ñ ⋅ l̃) = (m̃ ⋅ k̃) ⋅ (n ⋅ l).

This, in turn means that (m ⋅ k, n ⋅ l) ∼ (m̃ ⋅ k̃, ñ ⋅ l̃) or simply that

[m̃ ⋅ k̃, ñ ⋅ l̃] = [m ⋅ k, n ⋅ l].

We conclude that the definition of product does not depend on the necessary choice
of representatives. Notice that we used the standard properties of integer multiplica-
tion, such as commutativity and associativity, in this argument. It can be shown (con-
sider this an exercise) that thismultiplication of (positive) rationals not only preserves
all the properties of integer multiplication (commutativity, associativity, and the exis-
tence of an identity element), but gains some new. In particular, each p = [m, n] will
have amultiplicative inverse, i. e., a rational number q satisfying p ⋅q = q ⋅p = 1 = [1, 1].
What is a representative of its equivalence class? (Q3)

Next, we would like to investigate the possibility of adding positive rational num-
bers. How can we define [m, n] + [k, l] in a way that is compatible with the addition of
natural numbers and unambiguous, i. e., well-defined? We again start with the intu-
ition behind the definition of rational numbers. The rationals [m, n] and [k, l] encode
it takes n to make m units and it takes l to make k units, respectively. Thus if we take
n ⋅ lmany of [m, n] and of [k, l], we must end up with l ⋅m+ n ⋅ k units. Thus it “should”
hold that

n ⋅ l ⋅ ([m, n] + [k, l]) = l ⋅m + n ⋅ k.

This motivates the definition of addition by

[m, n] + [k, l] = [̃l ⋅ m̃ + ñ ⋅ k̃, ñ ⋅ l̃]

for (m̃, ñ) ∈ [m, n], (k̃, l̃) ∈ [k, l] ∈ ℚ+. It remains to verify that this definition is self-
consistent, in the sense that it does not depend on the choice of representatives used.
Take (m, n) ∈ [m, n] and (k, l) ∈ [k, l]: we need to show that

[̃l ⋅ m̃ + ñ ⋅ k̃, ñ ⋅ l̃] ∼ [l ⋅m + n ⋅ k, n ⋅ l]. (2.1)

 EBSCOhost - printed on 2/10/2023 3:59 PM via . All use subject to https://www.ebsco.com/terms-of-use



2.2 Whole numbers | 11

By definition of the equivalence relation, we have that

(m, n) ∼ (m̃, ñ) and (k, l) ∼ (k̃, l̃)⇐⇒ m ⋅ ñ = n ⋅ m̃ and k ⋅ l̃ = l ⋅ k̃,

and, consequently, that

(l ⋅m + n ⋅ k) ⋅ (ñ ⋅ l̃) = l ⋅ l̃ ⋅m ⋅ ñ + n ⋅ ñ ⋅ k ⋅ l̃

= l ⋅ l̃ ⋅ n ⋅ m̃ + n ⋅ ñ ⋅ l ⋅ k̃

= (̃l ⋅ m̃ + ñ ⋅ k̃) ⋅ (n ⋅ l),

and thus, again by definition of the equivalence relation, that indeed (2.1) holds. Next,
we verify that addition of rationals is an extension of addition for the naturals. Since
m = [m, 1] and n = [n, 1] by the identification ofℕ with a subset ofℚ+, we see that

[m, 1] + [n, 1] = [m ⋅ 1 + n ⋅ 1, 1 ⋅ 1] = [m + n, 1] = m + n,

for anym, n ∈ ℕ.
Once positive rational numbers are understood, we can start using a simpler but

more suggestive notation

[m, n] = m
n
,

which could generate potential ambiguities but is muchmore convenient in algebraic
manipulations. Similarly, we stipulate that

ℚ+ = {
m
n


m, n ∈ ℕ}.

2.2 Whole numbers

The mathematical construction of whole numbers starting from the naturals is fully
analogous to that of positive rational numbers. Still, intuition and motivation may
help understanding. While assumed to be a given set, no questions asked, we tend to
think of naturals as a sequence. More precisely, we have an order on them, denoted
by ⩽, which makes it possible to compare any two natural numbers n and m and de-
termine whether one is larger than the other. If m ⩽ n and n ⩽ m, we have that m = n
and will therefore writem < n if it so happens thatm ⩽ n andm ̸= n.

Notice that we are not giving a formal definition of order here, but still encour-
age the reader to think about finding just such a definition in order to practice your
translational abilities between intuition and mathematical language.

Givenm, n ∈ ℕwithm < n, it is possible to solve the equationm+ x = n for x ∈ ℕ,
i. e., to find a natural number k ∈ ℕ such that m + k = n. Thus we can think of m as
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12 | 2 Numbers

being k units ahead of n in the sequence of naturals. If, on the other hand, m > n,
the same equation m + x = n cannot be solved in the realm of natural numbers, but
there still is k ∈ ℕ such n + k = m; in other words, it is now n that is k units ahead
ofm. We could encode the relationship between any two natural numbersm and n by
simply recording both numbers in the pair (m, n). This expression would mean thatm
is k units ahead of n, ifm+ k = n, andm is k units past n, if n+ k = m. At this point, we
would notice that (m + l, n + l) encodes that same relationship as (m, n), thus leading
to ambiguity in the definition of the relationship. The concept of equivalence relation
again comes to the rescue. We will say that

(m, n) ∼ (k, l)⇐⇒ m + l = n + k,

wheneverm, n, k, l ∈ ℕ are given. Notice that this definition only requires to have and
understand natural numbers and uses addition of naturals, that we also assume to
be given. The reader is encouraged to verify that this is indeed an equivalence rela-
tion (Q4) onℕ2. It is then possible to introduce a new set of numbers, which extends
the naturals, by setting

ℤ = (ℕ2/∼) ∋ [m, n],

consisting of the equivalence classes [m, n] determined by the above equivalence re-
lation. The setℕ can be viewed as a subset of ℤ via the injective map

ι : ℕ→ ℕ2, n → [n + 1, 1],

so that, e. g., 1 is identified with [2, 1], thus corresponding to the unit that separates 2
from 1. Themapping ι is not surjective andnewnumbers are created that donot belong
toℕ. Among them is [1, 1].

Addition on this new set can be defined by

[m, n] + [k, l] = [m + k, n + l], m, n, k, l ∈ ℕ,

and it still enjoys all the properties of addition for naturals. We leave it as an exer-
cise (Q5) to verify that this definitionmakes sense (read is well-defined), that it extends
addition of naturals, and that commutativity and associativity are preserved.

The special new number [1, 1] enjoys the property that

[m, n] + [1, 1] = [m + 1, n + 1] = [1, 1] + [m, n] = [m, n],

for any m, n ∈ ℕ, i. e., for any [m, n] ∈ ℤ. This number usually goes by the name
of 0 and is the identity element of addition in the new set ℤ. Each natural number
n = [n + 1, 1] has a “companion” number in ℤ given by [1, n + 1]. Notice that

[n + 1, 1] + [1, n + 1] = [n + 2, n + 2] = [1, 1] = 0,
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2.2 Whole numbers | 13

so that [1, n+1] is the additive inverse (the negative) of n and is fromnowondenoted by
−n. The equivalence classes determining the whole numbers can be visualized as the
diagonals in the depiction below,where the correspondingwhole number is indicated
in blue.

It holds that

n + (−n) = 0 = (−n) + n, n ∈ ℕ,

and n + (−m) = (−m) + n is simply denoted by n − m = −m + n for m, n ∈ ℕ. Addition
and multiplication onℕ also satisfy the property of distributivity

m ⋅ (k + l) = m ⋅ k +m ⋅ l, m, k, l ∈ ℕ.

Verify that this property is also valid inℤ andℚ+. Notice that you need to definemulti-
plication (Q6) of whole numbers, in particular.We conclude this section by suggesting
that the reader give an explicit construction (Q7) of the full set of rationals ℚ either
starting with ℤ or withℚ+. In the process, show that the starting set of numbers can
be identified with a subset of the new set and that addition, multiplication, as well as
order structure can all be extended to the new set. From now on, wewill no longer use
⋅ to denote multiplication of numbers.
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2.3 Real numbers

2.3.1 Construction of the reals I

In the previous sections, we convinced ourselves that whole and rational numbers
can be thought of as equivalence classes of pairs of integers. While this aspect was
not stressed, it can also be argued that whole numbers are constructed in an attempt
to make sure that equations of the type

m + x = n

always possess a unique solution x (does not need to be possible but turns out to be),
while rational numbers are introduced in an effort to solvemultiplicative equations of
typem ⋅ x = n. This is not only possible but it can be done in finitely many steps in the
sense that it is sufficient to consider pairs of naturals or pairs ofwhole numbers to craft
an intuitive and formal understanding of whole and rational numbers, respectively.
This is, however, not possible when it comes to the reals. The search for the latter
can be motivated by the quest for solutions of algebraic equations, of which x2 = 2 is
prototypical. The first step is to show thatℚ is insufficient to allow for solutions of this
equation and the second will consist in giving a natural argument for the necessity of
additional numbers.

The classical argument that shows q2 ̸= 2 for q ∈ ℚ is by contradiction.1 Assume
thatq = m

n , thatmandndonot share any factors, and thatq2 = 2. Thenm2 = 2n2,which
makes m2 an even number (defined as a multiple of 2). For m2 to be even, though, m
needs to be as well: indeed if 2 is not a prime factor of m, it cannot possibly be one
of m2 (here we tacitly use the unique factorization theorem for integer numbers in a
product of integer powers of primes). Thenm = 2k for some k ∈ ℕ, which implies

4k2 = m2 = 2n2.

It follows that n2 = 2k2, which similarly makes n into an even number and violates the
assumption that m and n do not share any prime factors. We conclude that q2 ̸= 2 for
all q ∈ ℚ.

Next, consider the function f : ℚ→ ℚ, x → x2 − 2, the graph of which is depicted
below.

1 A proof is said to be by contradiction if it starts by assuming the negation of the statement to be
proved and concludes by deriving a contradiction from it, and thus showing that the statement must
actually be true.
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2.3 Real numbers | 15

If we are interested in determining what appears to be a possible positive zero of f
(we know it does not exists in ℚ), a strategy we could follow would be to start with
an initial guess x0 > 0 as depicted, then replace the actual function f with its tangent
at the point (x0, f (x0)), determine its zero x1, and continue in this fashion to obtain
x2, x3, . . . . The plot seems to indicate that xj moves closer to the point of intersection of
the graph of f with the x-axis. In order to turn this idea into an algorithm, we need to
determine the tangent lines to the graph of f wherever needed. Fix 0 < x0 ∈ ℚ. A line
lx0 through the point (x0, f (x0) = x

2
0 − 2) has necessarily the form

lx0 (x) = m(x − x0) + f (x0) = m(x − x0) + x
2
0 − 2.

We therefore try to determinem so that f and lx0 have a single point in common, i. e.,
such that the quadratic equation

0 = x2 − 2 −m(x − x0) − x
2
0 + 2 = (x −

m
2
)
2
−
m2

4
+mx0 − x

2
0

has a single solution. This is the case only if

m2 − 4mx0 + 4x
2
0 = (m − 2x0)

2 = 0,

that is, ifm = 2x0. It follows that x1 is determined by the equation 2x0(x−x0)+x20−2 = 0,
which gives

x1 = x0 +
2 − x20
2x0
=
x0
2
+

1
x0
.
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16 | 2 Numbers

As the initial point is positive but otherwise arbitrary and x1 > 0 if x0 > 0, we see that
x2 =

x1
2 +

1
x1
. We therefore obtain the recursively defined sequence (xn)n∈ℕ ∈ ℚℕ,

{
x0 > 0
xn+1 =

xn
2 +

1
xn
, n ⩾ 1.

(2.2)

Before we continue the discussion toward the introduction of real numbers, we take
a detour to highlight the general nature of the procedure we followed to obtain the
above sequence.

2.3.2 Newton’s method

Given a function f : V → W between two vector spaces (possibly infinite dimensional
and defined later in Chapter 3) and the equation f (x) = 0, one can apply the same
idea as above: pick an initial guess x0 and replace the function f by its linearization
(“tangent”) to produce a hopefully better approximation of an actual zero of f . In or-
der to do this, one needs the function f to satisfy some differentiability condition (see
Chapter 5). Denoting the derivative of f at x0 by Df (x0), this amounts to solving

f (x) ≃ f (x0) + Df (x0)(x − x0) = 0

for x so as to obtain x1 = x0 − Df (x0)−1f (x0), or the recursion formula

{
x0 given,
xn+1 = xn − Df (xn)−1f (xn), n ⩾ 1.

(2.3)

Notice that this is only possible as long as Df (xn) is invertible, which imposes restric-
tions on f as well as on the spaces V and W . If V = ℝn and W = ℝm for m, n ∈ ℕ,
we would need to have m = n. This procedure is called Newton’s method and can be
proved to deliver a solution of f (x) = 0 “in the limit” (we are about to define this),
provided f satisfies a regularity assumption (some differentiability) and x0 is chosen
close enough to an actual zero of f . For now, let us just interpret this as saying that xn
yields a better and better approximation of a zero as n gets larger. This is not the only
available procedure to compute zeros of a function but it is widespread and one of the
pillars of numerical analysis. In our concrete example above, we have V ,W = ℝ, and
f (x) = x2 − 2 for x ∈ ℝ. Since f ′(x) = 2x, we see that (2.2) is an example of (2.3) as

xn+1 = xn − f
′(xn)
−1f (xn) = xn −

x2n − 2
2xn
=
xn
2
+

1
xn
.
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2.3.3 Construction of the reals II

Returning to (2.2),wewould like tounderstand thebehavior of xn for largen. In order to
be able to say when two rational numbers are close to each other, we define a distance
function dℚ : ℚ ×ℚ→ ℚ+ by

dℚ(x, y) = |x − y|, x, y ∈ ℚ,

where | ⋅ | : ℚ→ ℚ is the absolute value function defined by

|x| =
{{{
{{{
{

x, x ∈ ℚ+,
0, x = 0,
−x, −x ∈ ℚ+.

For the function dℚ, it holds that dℚ(x, y) = 0 if and only if x = y, that dℚ(x, y) ⩾ 0 for
any x, y ∈ ℚ, and that

dℚ(x, z) ⩽ dℚ(x, y) + dℚ(y, z) ∀x, y, z ∈ ℚ.

The reader is encouraged to verify the validity of these claims (Q8). Following our in-
tuition, we will say that xn gets closer and closer to x∞ ∈ ℚ if no matter how large
M ∈ ℕ is

xn ∈ 𝔹(x∞,
1
M
) = (x∞ −

1
M
, x∞ +

1
M
),

for all but finitely many n ∈ ℕ. In more mathematical terms, we say that xn converges
to x∞ as n goes to∞, for short xn → x∞ as n→∞, or more concisely, limn→∞ xn = x∞
if

∀M ∈ ℕ ∃N ∈ ℕ s. t. dℚ(xn, x∞) = |xn − x∞| ⩽
1
M

for n ⩾ N . (2.4)

The set of rational numbers has the so-calledArchimedean property, which states that
any q ∈ ℚ satisfies q < m for some m ∈ ℕ. If q ⩽ 0, this is clearly true, otherwise
q ∈ ℚ+ and we can write q = m

n (= [m, n]) form, n ∈ ℕ, so that q = [m, n] ⩽ [m, 1] = m.
This discussion shows that there is no positive rational number smaller than 1

m for all
m ∈ ℕ (why?) and, in turn, provides some intuition for the definition of convergence.

An example of a convergent sequence is obtained by setting xn =
1
n for n ∈ ℕ. In

this case, x∞ = 0 and the sequence converges to 0. Notice that an arbitrary sequence
(xn)n∈ℕ ∈ ℚℕ does not need to converge as is exemplified by the sequences given by
xn = (−1)n or by xn = n for n ∈ ℕ. Convergence can, however, fail in more subtle ways.
Wewill now show that the sequence (xn)n∈ℕ defined in (2.2) does not converge in spite
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18 | 2 Numbers

of the fact that

lim
n→∞

x2n = 2.

First, notice that the recursive definition of (xn)n∈ℕ ensures that xn ∈ ℚ, since the con-
struction of the sequence only involves the operations of addition and multiplication
(albeit by the reciprocal of a number) on account that ℚ is a field. Next, define the
sequence (yn)n∈ℕ by

{
y0 = x20 ∈ ℚ,
yn+1 = x2n+1 = (xn/2 + 1/xn)

2 = yn/4 + 1 + 1/yn, n ⩾ 0,

which also consists of rational numbers.We claim that yn → 2 as n→∞. Observe that

y/4 + 1 + 1/y > 2 ⇔ (y − 2)2 > 0

implies that y1 > 2 so long as y0 ̸= 2. If y0 = 2, the sequence becomes stationary, i. e.,
yn = 2 for each n ∈ ℕ. In particular, whatever 2 ̸= y0 > 0 is, y1 > 2, and thus by
induction yn > 2 for all n ∈ ℕ. Now if yn = 2 + ϵ for some ϵ ∈ ℚ+, then

yn+1 − 2 =
16 + 8ϵ + ε2

4(2 + ϵ)
− 2 = ϵ2

4(2 + ϵ)
,

and thus

|yn+1 − 2| =
ϵ
4

ϵ
2 + ϵ
⩽
|yn − 2|

4
,

since ε
2+ε ⩽ 1. This implies that

|yn − 2| ⩽
|y0 − 2|
4n
, n ∈ ℕ,

and convergence follows. From yn > 2 > 1 for n ⩾ 1, we infer that

|xn − xm| = |√yn −√ym|
√yn +√ym
√yn +√ym

=
|yn − ym|
xn + xm

⩽
1
2
|yn − ym|,

for n,m ⩾ 1. As |yn − ym| can be made arbitrarily small by upping the indicesm, n ⩾ 1,
the term |xn − xm| can also be made arbitrarily small in the same way. More precisely,
givenM ∈ ℕ, there is N ∈ ℕ such that

|xn − xm| ⩽
1
M
, whenever n,m ⩾ N .
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Check the validity of this for yourself. Now, this may trick us into believing that the
sequence (xn)n∈ℕ converges. However, if it did, that is, if xn → x∞ for some x∞ ∈ ℚ,
then we would have to conclude that

x2n = yn → x2∞ = y∞ = 2 as n→∞.

We do, however, know that the equation x2 = 2 has no solution in ℚ. We therefore
need to reject the idea that (xn)n∈ℕ does converge. This shows that it is possible for a
sequence to satisfy the condition

∀M ∈ ℕ ∃N ∈ ℕ s. t. dℚ(xn, xm) = |xn − xm| ⩽
1
M

for n,m ⩾ N , (2.5)

and simultaneously fail to converge. When a sequence satisfies (2.5), it is said to be a
Cauchy sequence. Prove (Q9) that any convergent sequence is a Cauchy sequence. The
first few terms of the special sequence (xn)n∈ℕ that we constructed are given by

x1 = 1.83̄, x2 = 1.4621, x3 = 1.414998 ⋅ ⋅ ⋅ ,
x4 = 1.4142137 ⋅ ⋅ ⋅ , x5 = 1.41421356, . . .

if x0 = 3. It appears as if more and more digits settle on a value as the sequence in-
dex grows. We can intuitively think that this specific Cauchy sequence is pointing to
the “new” number √2 in spite of the fact that it does not converge. Since we do not
have that number, the largest set of numbers we constructed so far is indeed ℚ, we
could take the whole sequence to “be” the number√2 since it “detects it”. Just like in
the construction of whole and rational numbers, however, simply defining new num-
bers as Cauchy sequences would cause ambiguity. For any x0 > 0, the recursion (2.2)
yields a distinct sequence, which would need to be interpreted as √2. The issue can
be avoided in a way similar to the one we used in the construction of the rationals (or
of the whole numbers): build equivalence classes. First, define the set

ℚℕcs = {x = (xn)n∈ℕ ∈ ℚ
ℕ  x is a Cauchy sequence}

of all Cauchy sequences of rational numbers. Then introduce on this set the equiva-
lence relation given by

(xn)n∈ℕ = x ∼ y = (yn)n∈ℕ ⇐⇒ lim
n→∞
(xn − yn) = 0.

It makes sense to think of two sequences x, y ∈ ℚℕcs as encoding the same number
if their difference vanishes in the limit. When both sequences converge, the relation
x ∼ y boils down to limn→∞ xn = limn→∞ yn, which justifies the definition. The set of
real numbers is then defined by

ℝ = ℚℕcs/∼,
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i. e., as the set of equivalence classes x = [x1, x2, . . . ] of Cauchy sequences. In the case
of whole numbers and of rationals, it was enough to consider pairs of naturals; here,
we need infinite sequences of rationals to pin-point real numbers. From an intuitive
point of view, this is to be expected since a real number can require infinitely many
digits for its description, and as such, cannot be fully captured by any finite sequence.
The need to resort to infinite sequences (and to convergence) is a hallmark of analysis
and a feature that distinguishes it from algebra.

Tomake sure thatwehave aworkable definition of real numbers,weneed to verify
that ℚ can be realized as a subset of ℝ and that the operations of addition and mul-
tiplication as well as the concept of distance can be extended to the new number set.
Given a rational number q ∈ ℚ, we can associate to it the sequence (qn)n∈ℕ = (q, q, . . . )
and its whole equivalence class [q, q, . . . ]. In order to be able to interpret

ι : ℚ→ ℝ, q → [q, q, . . . ],

as the inclusion ℚ ⊂ ℝ, it needs to be shown injective. To this end, take sequences
(qn)n∈ℕ ∈ [q, q, . . . ] and (pn)n∈ℕ ∈ [p, p, . . . ] for q ̸= p. Then we have that

lim
n→∞
(qn − q) = 0 and lim

n→∞
(pn − p) = 0,

and, consequently, that

lim
n→∞
(qn − pn) = q − p ̸= 0,

so that [(qn)n∈ℕ] ̸= [(pn)n∈ℕ] or [q, q, . . . ]∩ [p, p, . . . ] = 0. If q ∈ ℚ, we simply write q for
the real number [q, q, . . . ]. Notice that

[q1, q2, . . . ] = q ∈ ℚ whenever lim
n→∞

qn = q

for all (qn)n∈ℕ ∈ [q1, q2, . . . ] as already implicitly used above. We define addition and
multiplication by

[q1, q2, . . . ] + [p1, p2, . . . ] = [q1 + p1, q2 + p2, . . . ],
[q1, q2, . . . ] ⋅ [p1, p2, . . . ] = [q1p1, q2p2, . . . ],

respectively. For these to be acceptable definitions, it needs to be verified that they
do not depend on the choice of class representatives. Let us begin with addition: take
representatives (q̃n)n∈ℕ, (q̄n)n∈ℕ ∈ [q1, q2, . . . ] as well as (p̃n)n∈ℕ, (p̄n)n∈ℕ ∈ [p1, p2, . . . ].
It follows that

lim
n→∞
(q̃n − q̄n) = 0 and lim

n→∞
(p̃n − p̄n) = 0,
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which imply that

lim
n→∞
[(q̃n + p̃n) − (q̄n + p̄n)] = 0,

and hence that indeed (q̃n + p̃n)n∈ℕ ∼ (q̄n + p̄n)n∈ℕ. The reader is urged to verify by
applying the definition of convergence for sequences inℚℕ that indeed

lim
n→∞
(qn + pn) = lim

n→∞
qn + limn→∞

pn,

for any two convergent sequences (qn)n∈ℕ and (pn)n∈ℕ of rationals. This fact was used
in the above argument. As for multiplication, an additional observation is needed. It
holds that any Cauchy sequence (qn)n∈ℕ must necessarily be bounded if, by bounded,
we mean that

|qn| ⩽ M for n ∈ ℕ,

for some constantM ∈ ℕ (a bound). The Cauchy property means that, given ε ∈ ℚ+,
N = N(ε) ∈ ℕ can be found such that

|qn − qm| ⩽ ε for n,m ⩾ N(ε).

Settingm = N and disentangling the absolute value yields

qN − ε ⩽ qn ⩽ qN + ε for n ⩾ N(ε).

It now suffices to choose ε = 1 to see that

|qn| ⩽ max{|qN(1) − 1|, |qN(1) + 1|,max{|q1|, |q2|, . . . , |qN(1)−1|}} = M,

which entails boundedness with bound M. Returning to the definition of prod-
uct: take any representative sequences (q̃n)n∈ℕ, (q̄n)n∈ℕ ∈ [q1, q2, . . . ] as well as
(p̃n)n∈ℕ, (p̄n)n∈ℕ ∈ [p1, p2, . . . ]. These are all bounded sequences and we can assume
that they share a common bound M (the maximum of any of their individual ones).
We can therefore verify that

|q̃n ⋅ p̃n − q̄n ⋅ p̄n| ⩽
q̃n ⋅ (p̃n − p̄n) + (q̃n − q̄n) ⋅ p̄n


⩽ |q̃n||p̃n − p̄n| + |q̃n − q̄n||p̄n|
⩽ M(|p̃n − p̄n| + |q̃n − q̄n|).

Now, by the definition of the equivalence relation, it is possible to make the term on
the right-hand side as small as one wishes by choosing n large enough to yield that

|q̃n ⋅ p̃n − q̄n ⋅ p̄n| ⩽ ε for n ⩾ N(ε).
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We just choose N1(ε),N2(ε) ∈ ℕ such that

|q̃n − q̄n| ⩽
ε
2M

for n ⩾ N1(ε) and |p̃n − p̄n| ⩽
ε
2M

for n ⩾ N2(ε),

and set N(ε) = max{N1(ε),N2(ε)} for any arbitrary chosen ε > 0. This shows that
[q̃1p̃1, q̃2p̃2, . . . ] ∼ [q̄1p̄1, q̄2p̄2 . . . ] whenever (q̃n)n∈ℕ ∼ (q̄n)n∈ℕ and (p̃n)n∈ℕ ∼ (p̄n)n∈ℕ,
as desired.

It can (and should) also be verified that ι(q+p) = ι(p)+ι(q) and that ι(q⋅p) = ι(p)⋅ι(q)
for any q, p ∈ ℚ. This shows that the newly defined operations do indeed extend the
ones for rationals. It is left as an exercise to check that addition and multiplication of
reals enjoy all the properties of these operations for the rationals like commutativity,
associativity, existence of an identity element and of additive and multiplicative in-
verses, and distributivity of the two operations. The setℚ is therefore a field as are the
sets ℝ and the soon to be introduced ℂ.

The irrational number denoted by √2 was introduced as the equivalence class of
the sequence x = (xn)n⩾0 recursively defined by (2.2) and any initial value x0 ∈ ℚ+.
With the newly defined multiplication for reals, we now see that

x2 = x ⋅ x = [x0, x1, x2, . . . ] ⋅ [x0, x1, x2, . . . ]

= [x20, x
2
1 , x

2
2 , . . . ] = [y0, y1, y2, . . . ]

= 2,

since limn→∞ yn = 2, thus providing a justification for its name√2.
Starting with the set ℚ of rationals and with a way to measure distance between

numbers (points), we introduced the concept of convergence to model our intuition
of a sequence of points getting arbitrarily close to a (limit) point as its index grows.
We learned that there exist sequences of points, which come arbitrarily close to each
other as the index grows but still do not converge. In more mathematical terms, we
discovered that not all Cauchy sequences do necessarily converge. When they do not,
the example (xn)n∈ℕ we considered in (2.2) suggests that they detect “holes” in the
set considered, like the sequence (xn)n∈ℕ seems to “feel” the presence of the number
√2. We therefore took these sequences (equivalence classes thereof) and stipulated
that they be the “new” numbers themselves, hence effectively filling in the holes they
helped us discover.

2.3.4 Metric spaces and completeness

The above procedure, the construction ofℝ fromℚ by means of Cauchy sequences, is
a simplemanifestation of a general approach that proves extremely useful in analysis.
One can in fact begin with any setM, which admits a distance dM between any two of
its points and define the concepts of convergence and of Cauchy sequence. Then one
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verifies whether there are any Cauchy sequences that do not converge. If that is not
the case, the space (M, dM), which is typically referred to as a metric space, is called
complete. Intuitively, thismeans that it containsnoholes. If, on theotherhand, it is not
complete, it can be extended to a complete space by a procedure analogous to the one
used above, i. e., by considering the set of equivalence classes of Cauchy sequences.
The procedure goes by the name of completion of the space (M, dM). We shall consider
a more involved concrete example in Chapter 3. Modeling a distance function on the
absolute value that was used for the rationals leads to the concept of metric dM on a
(nonempty) setM. It is a function dM : M ×M → ℝ satisfying the following properties:
(m1) dM(x, y) ⩾ 0 for x, y ∈ M, with equality only if x = y.
(m2) For any x, y ∈ M, it holds that dM(x, y) = dM(y, x).
(m3) The triangle inequality holds, i. e.,dM(x, z) ⩽ dM(x, y)+dM(y, z) for any x, y, z ∈ M.

Notice that condition (m3) encodes the idea that any path realizing the distance from
the point x to the point z should be shorter than a path taking one first from x to an-
other point y, and from there to z. Think of three points X,Y , Z in a Euclidean plane in
general position, and hence forming a triangle: going straight from X to Z, you should
cover less ground thangoing throughY first.What is the intuitive expectation encoded
by the second condition? Can you envision practical situations where you would con-
sider it inappropriate? On the set ℚ, we use the distance given by dℚ(q, p) = |q − p|,
which makes use of addition and of the absolute value function. On a general setM,
where no addition may be available, one has to settle for the more general definition
above. How would you define a distance on the set of reals? See below for an answer
and compare it to yours.

With a metric in hand, we can define what it means for a sequence (xn)n∈ℕ ∈ Mℕ

to converge to a limit x∞ ∈ M as the validity of

∀ε > 0 ∃N ∈ ℕ s. t. dM(xn, x∞) ⩽ ε for n ⩾ N . (2.6)

More concisely, we can say that, given any ε > 0, at most finitely many elements of the
sequence are at a distance to x∞, which is larger than ε. A Cauchy sequence, in this
context, would amount to a sequence satisfying

∀ε > 0 ∃N ∈ ℕ s. t. dM(xn, xm) ⩽ ε form, n ⩾ N . (2.7)

A visual example of ametric space is the surface of the earth (as the set) and the length
of the shortest “path” connecting any two points on it as the distance function/metric.

2.3.5 Construction of the reals III

Returning to the reals and, after defining addition and multiplication for them, we
would like to be able to introduce an order as well like we have for rationals, and a
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distance function that extends the one for rationals. The discussion will be concluded
by proving that the set ℝ, in contrast to ℚ, is now complete. In order to obtain an
order onℝ,we need to be able to say when an equivalence class of Cauchy sequences
is nonnegative.We stipulate that the real number x = [x1, x2, . . . ] is positive, i. e., x > 0,
iff there isM ∈ ℕ such that

∀(xn)n∈ℕ ∈ x ∃N ∈ ℕ s. t. xn ⩾
1
M
> 0 for n ⩾ N .

The reader is encouraged to verify (Q10) that it is enough to establish the validity of
this condition for a single representative of x. Of course, wewouldwrite x ⩾ 0 for x ∈ ℝ
iff x = 0 or x > 0 aswell as x ⩽ y for x, y ∈ ℝ iff y−x ⩾ 0.We can nowdefine an absolute
value for reals by

|x|ℝ = {
x, 0 ⩽ x ∈ ℝ,
−x, 0 > x ∈ ℝ,

and with it a distance function for reals in the same way as we did for rationals,
dℝ(x, y) = |x − y|ℝ for x, y ∈ ℝ. Verify that positivity and absolute value do indeed
extend the corresponding concepts for rationals and show that

|x|ℝ =
[x1, x2, . . . ]

ℝ = [|x1|, |x2|, . . . ], x ∈ ℝ.

As for convergence for sequences of real numbers, the definition can bemade via (2.6)
using dℝ. In view of the way the reals are constructed, it should not come as a surprise
thatℝ is now complete, i. e., it does not admit non-convergent Cauchy sequences. We
effectively filled the “holes” we had found inℚ. In order to give a formal proof, we first
observe that, given any x ∈ ℝ and anyM ∈ ℕ, a rational number q can be found such
that

|q − x|ℝ ⩽
1
M
.

This means that a real number admits arbitrarily close rational numbers.2 To see this,
let x = [q1, q2, . . . ] and consider any representative (q̃n)n∈ℕ ∈ x. As the latter is a Cauchy
sequence, we can findN ∈ ℕ such that |q̃n− q̃m| ⩽

1
M providedm, n ⩾ N . It follows that

[q̃1, q̃2, . . . ] − [q̃N , q̃N , . . . ]
ℝ = [|q̃1 − q̃N |, |q̃2 − q̃N |, . . . ] ⩽

1
M
.

To conclude the proof of completeness, we need to take an arbitrary Cauchy sequence
(xn)n∈ℕ ∈ ℝℕ of reals and show that it possesses a limit. For n ∈ ℕ, we pick qn ∈ ℚ

2 One says thatℚ is dense in ℝ.
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with |xn − qn| ⩽
1
n . This yields a real number x = [q1, q2, . . . ] since it can be shown (do

it (Q11)) that (qn)n∈ℕ is a Cauchy sequence (using that (xn)n∈ℕ is one). Finally, it holds
that limn→∞ xn = x, since, givenM ∈ ℕ, it is always possible to find N ∈ ℕ such that

|xn − qn|ℝ ⩽
1
M

for n ⩾ N .

If this feels like “cheating” to you, it actually is. The only crucial observation is really
that there are sequences of rationals,which areCauchybut donot converge. In order to
make themconverge,weuse themas the object they are tellingus ismissing (thehole).
This, just as it was the case for whole numbers and rationals, can only be done by re-
sorting to equivalence classes to remove ambiguity. In the case of reals, however, it is
also necessary to consider infinite sequences and not simple pairs. While we accept
the new number system, forget about its actual nature (equivalence classes of Cauchy
sequences of rationals) and operate with it using only the properties it satisfies, we
should not lose sight of the fact that a real number cannot possibly be captured by any
finite number of field operations (unless it is rational, of course). It requires an infinite
number of digits to describe, after all. More precisely, a real number does not have a fi-
nite expansion in any integer basis (as it would be rational in that case), while rational
numbers always do. The number 2/3, for instance, can be written as 0.2 in base 3.3

2.4 Complex numbers

Real numbers are often motivated algebraically by saying that they are needed to ob-
tain a solution to equations like x2 = 2 or more in general to polynomial equations. If
the latter is the ultimate goal, then one quickly encounters equations, which do not
admit real solutions, such as x2 = −1. Complex numbers are often justified by the at-
tempt to obtain a number of solutions to polynomial equations that matches the poly-
nomial’s degree. In this sense, complex numbers conclude the quest for a so-called
algebraically closed field. Here, we choose a somewhat similar but more analytical
justification of the need for complex numbers. We start by a simple but useful alge-
braic identity

(1 − y)(1 + y + y2 + ⋅ ⋅ ⋅ + yn) = 1 − yn+1,

which is valid for any y ∈ ℝ and n ∈ ℕ. In particular, we can choose y = −x2 for some
x ∈ ℝ and obtain

1 − (−x2)n+1

1 + x2
= 1 − x2 + x4 ∓ ⋅ ⋅ ⋅ + (−1)nx2n.

3 As a matter of a fact, most real numbers are even transcendental, i. e., not algebraic, in the sense
that they are not zeros of polynomials with rational coefficients. In fact, algebraic numbers such as√2
are countable.
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Next, we consider the function f (x) = 1
1+x2 for x ∈ ℝ, which is a very nice function:

it is bounded by 1, positive, and has infinitely many derivatives. Taking n to∞ in the
above identity yields that

1
1 + x2
=
∞

∑
k=0
(−1)kx2k ,

when |x| < 1. In this way, we obtain a series representation for the function

f (x) = 1
1 + x2
, x ∈ ℝ.

While the function does not experience any “issue” as |x| becomes larger than 1, this
series representation stops converging for |x| ⩾ 1. It is natural to ask why that is. In
order to obtain an answer, however, we need to see beyond real numbers. The reason
does, in fact, originate in the presence of zeros of the denominator 1+x2, whichhappen
to be of size one. This leads to the construction of complex (or imaginary) numbers.
The procedure is purely algebraic. Consider pairs (x, y) ∈ ℝ2 of real numbers and de-
fine the operations on the set of pairs given by

(x, y) + (x̃, ỹ) = (x + x̃, y + ỹ) and (x, y) ⋅ (x̃, ỹ) = (xx̃ − yỹ, xỹ + x̃y)

for x, x̃, y, ỹ ∈ ℝ. We can think of ℝ as a subset by the identification

ι : ℝ→ ℝ2, x → (x,0)

and notice that the new addition and multiplication extend the corresponding opera-
tions in ℝ since

ι(x + x̃) = (x + x̃,0) = (x,0) + (x̃,0) = ι(x) + ι(x̃),

and

ι(xx̃) = (xx̃,0) = (x,0) ⋅ (x̃,0) = ι(x) ⋅ ι(x̃).

It turns out that (ℝ2,+, ⋅) inherits all algebraic properties of (ℝ,+, ⋅). Check the valid-
ity of all the properties of addition and multiplication that make this set a field. The
numbers (0,±1) of this new number system satisfy

(0,±1)2 = (0,±1) ⋅ (0,±1) = (−1,0) = −1,

so that the equation x2 = −1 now has the two solutions x = (0,−1) and x = (0, 1). In
fact, even more is true: it can be proved that any polynomial equation

xn + an−1x
n−1 + ⋅ ⋅ ⋅ + a1x + a0 = 0
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with coefficients a0, a1, . . . , an−1 ∈ ℂ admits n solutions in this new set (counting their
multiplicity). This is known as the fundamental theorem of algebra.

The elements of the new number field are called complex (or imaginary) numbers.
It is customary to write z = (x, y) simply as z = x + iy, where x is called real part and y
imaginary part of the number z. The collection of all complex numbers is denoted by
ℂ. Noticing that i2 = (0, 1)2 = −1, this notation is justified by the fact that

(x + iy)(u + iv) = xu + i2yv + i(xv + yu)
= xu − yv + i(xv + yu) ∀x, y, u, v ∈ ℝ

formally applying commutativity of multiplication and distributivity. The absolute
value for real numbers is extended to themodulus of complex numbers given by

|z|ℂ = √x2 + y2 = √(x + iy)(x − iy) = √zz for z = x + iy,

where z = x − iy ∈ ℂ denotes the so-called complex conjugate of the number z =
x + iy ∈ ℂ. Observe that |x|ℝ = |x + i0|ℂ. We conclude this discussion by observing that
the function f (x) = 1

1+x2 can be extended to all complex numbers z simply by setting

f (z) = 1
1 + z2
=

1
1 + (x + iy)2

=
1

1 + x2 − y2 + i2xy
, z ∈ ℂ.

It still holds that

f (z) =
∞

∑
k=0
(−1)kz2k

for |z|ℂ < 1 andwe now know that the reason for the breakdown of this identity is divi-
sion by zero, which occurs for z = ±i. While the problem manifested itself on the real
line already, its roots (pun intended) are to be traced back to the existence of complex
zeros of the denominator.
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3 Vectors and their spaces

In virtually all branches ofmathematics, the concept of vector plays a central role. It is
the mathematical object encoding the intuition of direction. We often think of vectors
as directed segments,which canbe addedby juxtaposition/concatenation as depicted
below and which can be stretched by any factor.

The mathematical structure that captures vectors is that of vector space. It consists of
a set, the elements of which can be added and stretched. It is therefore necessary that
it be possible to define these operations of addition and (scalar) multiplication sat-
isfying some properties suggested by one’s intuition or by applications that motivate
their introduction (e. g., physics). Scalar multiplication is used to stretch vectors and
one needs to choose a field of numbers 𝔽 like ℚ, ℝ, ℂ, or any other (possibly finite)
field for the stretching factors.

We define a triple (V ,+, ⋅) comprised of a set V and maps + : V × V → V and
⋅ : 𝔽 × V → V to be a vector space over the field 𝔽 if the following properties are
satisfied:
(vs1) V contains at least one element, called the zero vector 0 for which it holds that

v + 0 = 0 + v = v for all v ∈ V .
(vs2) Addition is commutative, i. e., u + v = v + u for any u, v ∈ V .
(vs3) Addition is associative, i. e., (u + v) + w = u + (v + w) for any u, v,w ∈ V .
(vs4) Each nonzero vector u (if any) has an inverse vector −u, for which it holds that

u + (−u) = (−u) + u = 0.
(vs5) There is compatibility between the multiplication in the field 𝔽 and scalar mul-

tiplication of vectors, i. e., it holds that α ⋅ (β ⋅ u) = (αβ) ⋅ u for any α, β ∈ 𝔽 and
u ∈ V .

(vs6) The multiplicative identity 1 of the field 𝔽 acts like an identity for scalar multi-
plication, i. e., it holds that 1 ⋅ u = u for any u ∈ V .

(vs7) Distributivity in both variables holds, i. e., we have that (α + β) ⋅ u = α ⋅ u + β ⋅ u
and α ⋅ (u + v) = α ⋅ u + α ⋅ v for all α, β ∈ 𝔽 and all u, v ∈ V .

https://doi.org/10.1515/9783110780925-003
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Notice how (V ,+) is a commutative group according to the definition of the previous
chapter. As an exercise verify that the inverse −u of a vector u ∈ V is unique, that
0 = 0𝔽 ⋅ u (where the index of the second 0 is used to stress that it is the zero ele-
ment/additive identity of the field 𝔽), and that −u = (−1) ⋅ u, where −1 is the additive
inverse of 1 in the field 𝔽. It is understood that it is only allowed to use properties
(vs1)–(vs7) in the verification. The simplest examples of vector spaces are the trivial
vector spaceV = {0} consisting of a single vector and the field𝔽 itself, which are easily
seen to be vector spaces for any arbitrary field 𝔽. Given any set S and a field 𝔽, the set
𝔽S of all functions from S to 𝔽 has the structure of a vector space over 𝔽. Addition and
scalar multiplication are given by

+ : 𝔽S × 𝔽S → 𝔽S , (u, v) → +(u, v) ≡ u + v : S → 𝔽, s → u(s) + v(s)

⋅ : 𝔽 × 𝔽S , (α, u) → ⋅(α, u) ≡ αu : S → 𝔽, s → αu(s),

i. e., functions are added by adding their values and multiplied by multiplying their
values, which is possible since the values are in the field𝔽. By selecting special sets S,
we obtain a variety of examples. If

S = ℕn = {1, 2, . . . , n}

for n ∈ ℕ, the vector space𝔽ℕn is typically denoted by𝔽n and its elements are n-tuples
u = (u1, . . . , un) with components uj ∈ 𝔽 for j = 1, . . . , n. Recall that we simplify the
more precise notation u(k) to uk for k ∈ ℕn. The familiar vector spaces ℝn and ℂn are
obtained in this way. If S = ℕ, one obtains the vector space 𝔽ℕ of sequences in 𝔽
with elements denoted by (uk)k∈ℕ instead of the more accurate u : ℕ → 𝔽, k → u(k).
Finally, by choosing S = 𝔾 = 𝔾1, or more in general, S = 𝔾n for a field 𝔾 and n ∈ ℕ,
we obtain the vector space 𝔽𝔾

n
of functions u : 𝔾n → 𝔽. Selecting special fields yields

the spaceℝℝ of real real-valued functions f : ℝ→ ℝ, the spaceℂℝ of complex-valued
real functions f : ℝ → ℂ, or the space (ℝn)ℝ

m
of vector-valued functions f : ℝm → ℝn

form, n ∈ ℕ are obtained.
In a vector space V , one can often find special subsets W ⊂ V characterized by

the fact that addition of elements ofW and scalar multiplication do not produce out-
comes outsideW . Such subsets are called vector subspaces or subspaces and aremore
formally defined by the validity of the conditions

u + v ∈ W for any u, v ∈ W ,
αu ∈ W for any α ∈ 𝔽, u ∈ W .

Show that (W ,+|W×W , ⋅|𝔽×W ) is a vector space over 𝔽 in its own right, where addition
and scalarmultiplicationaredefinedby restrictionandarewell-definedby the validity
of the above conditions. A simple example of a subspace is obtained starting with a
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vector u ∈ V \ {0} and defining

𝔽u = {αu | α ∈ 𝔽}.

Check that this is indeed a subspace, the subspace generated by the vector u, which is
the smallest subspace containing u. In the vector space 𝔽n and given a set of indices
{i1, i2, . . . , im} for 1 ⩽ m < n, one can consider special subspaces of the form

Vi1 ,i2 ,...,im = {u ∈ 𝔽
n  uij = 0 for j = 1, . . . ,m},

such as, for instance, ℝ3 ⊃ V2 = ℝ × {0} × ℝ ∋ (u1,0, u3) for u1, u3 ∈ ℝ. In the vector
space ℂℕ of complex sequences, one can consider the sets

ℂℕcs = {u ∈ ℂ
ℕ  u is a Cauchy sequence},

ℂℕc = {u ∈ ℂ
ℕ  u is convergent},

ℂℕb = {u ∈ ℂ
ℕ  u is bounded},

ℂℕ0 = {u ∈ ℂ
ℕ  limn→∞

un = 0},

and show (exercise (Q1)) that they are subspaces. In the last example, would you still
have a subspace if you replaced the limit 0 by another limit 0 ̸= u∞ ∈ ℂ? Similarly,
one can consider a variety of subspaces of the vector space ℝ[0,1] of real real-valued
functions defined on the interval [0, 1] such as

ℝ[0,1]b = {u : [0, 1]→ ℝ
 u is bounded},

ℝ[0,1]c = {u : [0, 1]→ ℝ
 u is continuous},

ℝ[0,1]0 = {u : [0, 1]→ ℝ
 u(0) = u(1) = 0},

ℝ[0,1]r = {u : [0, 1]→ ℝ
 u is Riemann integrable}.

Think about what exactly you would need to show in order to verify that the above are
all subspaces and try to carry out the detailed verification (if you are familiar with the
required concepts of boundedness, continuity, and Riemann integrability).

3.1 Linear independence and bases

From now on, we will not be explicitly mentioning the base field when talking about
a generic abstract vector space. We will do so, of course, if considering specific exam-
ples. Given n vectors u1, u2, . . . , un in a vector space V , we can use them to generate
more vectors by addition and scalar multiplication as in

α1u1 + α2u2 + ⋅ ⋅ ⋅ + αnun =
n
∑
k=1

αkuk ,
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which is called a linear combination of the vectors u1, . . . , un with coefficients α1, . . . ,
αn ∈ 𝔽. Show that, given u1, u2, . . . , un ∈ V ,

{
n
∑
k=1

αkuk

αk ∈ 𝔽 for k = 1, . . . , n} = span{u1, . . . , un}

is a subspace ofV , the smallest subspace containing all vectorsu1, u2, . . . , un and called
the span of the vectors u1, . . . , un. This gives us the idea that it may be possible to de-
scribe any vector in a vector space by using linear combinations of a “small” number
of selected vectors. In order to keep the number of such vectors small, we need to
make sure that they all genuinely contribute to the generation of additional vectors.
This leads to the concept of linear independence which, for given vectors u1, u2, . . . , un
amounts to requiring that the zero vector can only be described by the trivial linear
combination of the given vectors, i. e., that

n
∑
k=1

αkuk = 0 implies α1 = ⋅ ⋅ ⋅ = αn = 0.

Notice that this is the same as saying that the map

Cu1 ,...,un : 𝔽
n → V , α = (α1, . . . , αn) →

n
∑
k=1

αkuk ,

is one-to-one. Indeed, notice that

n
∑
k=1

αkuk =
n
∑
k=1

βkuk ,

is equivalent to

n
∑
k=1
(αk − βk)uk = 0,

from which we infer that αk − βk = 0 for all k = 1, . . . , n, and thus that αk = βk for all
k = 1, . . . , n, yielding injectivity. Now, given a vector space V , we either have V = {0}
and we can describe all its vectors with the vector u = 0 or we have V ̸= {0}, in which
case theremust be a vector u1 ̸= 0.We are presented againwith two alternatives: either
V = 𝔽u1 or there is a vector 0 ̸= u2 ̸= αu1 ∀α ∈ 𝔽, i. e., satisfying u2 ∉ 𝔽u1. In the first
case, we are done since the vector u1 is enough to describe the whole vector space. In
the latter case, we either have that

V = 𝔽u1 ⊕ 𝔽u2 = {α1u1 + α2u2 | α1, α2 ∈ 𝔽}
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32 | 3 Vectors and their spaces

orwe can continue the procedure by findingV ∋ u3 ∉ span{u1, u2}. Step-by-step, we ei-
ther keep finding new linearly independent vectors indefinitely or the procedure stops
after identifying n ∈ ℕ vectors u1, . . . , un ∈ V such that any other vector u ∈ V can be
described as

u =
n
∑
k=1

αkuk

for scalars α1, . . . , αn ∈ 𝔽, which are necessarily unique by construction. For this choice
of vectors u1, . . . , un, the map Cu1 ,...,un : 𝔽

n → V is both one-to-one and onto, i. e., bijec-
tive. The sequence u1, . . . , un is called a basis in this case and n, which can be shown
to be uniquely determined,1 is called the dimension of the vector space V . It can, how-
ever, happen that we can indefinitely add new linearly independent vectors without
ever “filling out” V . In this case, the vector space is said to be infinite-dimensional.
Taking n ∈ ℕ and 𝔽 = ℝ, the vector space ℝn has dimension n and the sequences
e1, . . . , en and f1, . . . , fn given by

(1,0, . . . ,0), (0, 1,0, . . . ,0), (0,0, 1,0, . . . ,0), . . . , (0, . . . ,0, 1) and
(1,0, . . . ,0), (1, 1,0, . . . ,0), (1, 1, 1,0, . . . ,0), . . . , (1, . . . , 1),

respectively, are two bases for it. For any n ∈ ℕ, the space ℂn has dimension n over ℂ
and dimension 2n overℝ. This is due to the fact thatℂ can be viewed as a vector space
of dimension 2 overℝ by interpreting x + iy ∈ ℂ as (x, y) ∈ ℝ2. The vector spacesℝℕ of
real sequences andℝℝ of real real-valued functions are infinite-dimensional. Indeed,
any finite subsequence of the vectors

(1,0, . . . ), (0, 1,0, . . . ), (0,0, 1,0, . . . ), . . .

or of the functions

fy : ℝ→ ℝ, x → {
1, x = y,
0, x ̸= y,

indexed by y ∈ ℝ, is comprised of linearly independent vectors (check this (Q3)).
A somewhat different, but equally interesting example of an infinite-dimensional

vector space isℝ itself. In this case, we can takeℚ as the underlying field and consider
ℝ as a vector space overℚ, where addition is the addition of real numbers and scalar
multiplication is multiplication by rational numbers. In this sense, ℝ is an infinite-
dimensional vector space. Indeed, if that were not the case, we would find a basis

1 Give some thought to how you would prove the uniqueness (Q2) of n drawing from your knowledge
of elementary linear algebra.
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r1, . . . , rn ∈ ℝ of some length n (the dimension) so that

ℝ = {
n
∑
j=1

qjrj

qj ∈ ℚ for j = 1, . . . , n}.

This would yield a bijection between ℚn and ℝ, which cannot exist since ℝ is not
countable, whereasℚn is. We included this example since it clearly points to the fact
that ℝ is an extremely large set, which “contains” a lot of structure. It is an excellent
exercise to try and find an infinite number of linearly independent vectors in ℝ.2

3.2 Linear transformations

The structure of vector spaces is given by the availability of addition and scalar multi-
plication. This structure is typically called linear andvector spaces canbe called linear
spaces. This terminology ismotivated by the fact that vectors, by fixing a direction, es-
sentially determine a line: the vector u ∈ V can be associated to the one-dimensional
subspace 𝔽u, which we imagine as a straight line. When considering maps f : V → W
between two vector spaces V ,W , it is possible to single out those, which preserve the
linear structure. This means functions that map sums to sums and scalar multiples to
scalar multiples. In mathematical words, this can be formulated as the validity of

f (αu + βv) = αf (u) + βf (v),

for any choice of α, β ∈ 𝔽 and u, v ∈ V . Notice that the addition and the scalar multipli-
cations on the left of the identity are those of the space V , while they are those of the
spaceW on the right-hand side. Maps between vector spaces satisfying this property
are called linear maps. Clearly, not all maps are linear. A simple example is the map

f : ℝ2 → ℝ, (x, y) → x2 + y2,

which does not satisfy the above linearity identity. The bijective map

Cu1 ,...,un : 𝔽
n → V , α = (α1, . . . , αn) →

n
∑
k=1

αkuk

for a givenbasis u1, . . . , un of the n-dimensional vector spaceV is an example of a linear
map. It shows that an n-dimensional vector space over𝔽 looks like or can be identified

2 Hint: Take rk = log(pk) for k ∈ ℕ, where pk is the kth prime number. Here, you can use (or verify
for yourself) the known facts that there are infinitely many prime numbers, that every integer has a
unique factorization into a product of integer powers of prime numbers, and that the square root of a
prime is irrational.
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with 𝔽n itself. There are linear maps on infinite-dimensional spaces as well. Take the
space ℂℕc of convergent sequences in ℂ and consider the map

lim : ℂℕc → ℂ, u = (un)n∈ℕ → lim
n→∞

un.

It is linear and you are asked to prove it. Similarly, we can take the space ℝℝ of real
real-valued functions, fix a point x0 ∈ ℝ, and set

δx0 : ℝ
ℝ → ℝ, f → f (x0),

i. e., the operation of evaluating functions at the point x0. Again you are asked to
show (Q4) that this is a linear map. If you are familiar with differentiability, you can
take the vector space of real-valued continuously differentiable functions defined on
the interval (0, 1),

C1((0, 1),ℝ) = {f : (0, 1)→ ℝ  f
′ exists and is continuous},

and the linear map

D : C1((0, 1),ℝ)→ C0((0, 1),ℝ), f → f ′,

which consists in producing the derivative of its argument, a continuously differen-
tiable function f , and mapping it to its derivative f ′, which belongs to the space of
continuous real-valued functions C0((0, 1),ℝ) = C((0, 1),ℝ) defined on the same inter-
val.

Next, we take a closer look at linear maps between finite-dimensional vector
spaces. We shall come back to the infinite-dimensional case in later chapters. Con-
sider a linear map ℒ : V → W between two finite-dimensional vector spaces of
dimensions m and n, respectively. By choosing bases u1, . . . , um and v1, . . . , vn for V
and W , respectively, we can write any vector u ∈ V as a linear combination of the
basis elements, u = ∑mk=1 α

kuk, where αk = αk(u) depends (linearly) on u and is the kth
coefficient in the expansion for k = 1, . . . ,m. By linearity of the map, we have that

ℒ(u) = ℒ(
m
∑
k=1

αkuk) =
m
∑
k=1

αkℒ(uk).

Now, for each k ∈ {1, . . . ,m}, ℒ(uk) ∈ W and, therefore, has its own expansion in the
chosen basis ofW ,

ℒ(uk) =
n
∑
j=1

Ljkvj
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for uniquely determined coefficients Ljk ∈ 𝔽, j = 1, . . . , n. We conclude that

ℒ(u) =
m
∑
k=1

αk(
n
∑
j=1

Ljkvj) =
n
∑
j=1
(

m
∑
k=1

Ljkα
k)vj.

This means that the coefficients β in the basis expansion of ℒ(u) can be computed
by operating on the coefficients α in the expansion of u. You will recognize that this
happens by matrix multiplication, since the coefficients βj of the image vector are

βj =
m
∑
k=1

Ljkα
k = (Lα)j, j = 1, . . . , n

for the matrix L = [Ljk]
j=1,...n
k=1,...,m ∈ 𝔽

n×m and α ∈ 𝔽m. In conclusion, we see that, choosing
bases for V andW , it is possible to describe vectors as tuples of numbers in the field
and linear maps between V andW by matrices. In the example above, L is the matrix
representationof the linearmapℒ in thesebases. This canbenicely summarized in the
commutative diagram below, where we decorated some of the arrows with the symbol
∼ to indicate that the corresponding map is bijective.

V W u ℒ(u)

𝔽m 𝔽n α Lα

Cu1 ,...,um ≀

ℒ

L

Cv1 ,...,vn≀

Denoting the vector space (check (Q5) that it is indeed one) of linear maps between V
andW by ℒ(V ,W), the map

M : ℒ(V ,W)→ 𝔽n×m, ℒ→ M(ℒ) = [Ljm]
j=1,...n
k=1,...,m

is one-to-one and onto. Why did we choose to call the mapM?
Notice thatwe are guilty of an abuse of notation here caused by the implicit choice

of the basis consisting of the vectors

e1 =
[[[[[

[

1
0
...
0

]]]]]

]

, . . . , em =
[[[[[

[

0
...
0
1

]]]]]

]

,

for the special vector space 𝔽m (m ∈ ℕ). This basis is called the natural basis of 𝔽m.
When considering a linear operator operator ℒ : 𝔽m → 𝔽n form, n ∈ ℕ, we implicitly
take the natural basis on the domain and on the range, thus conflating the linear map
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ℒ and its matrix representation L, which has columns L∙k = ℒ(ek) ∈ 𝔽
n for k = 1, . . . ,m.

This, in turn, means that we think of any givenmatrix L ∈ 𝔽n×m as if it were the matrix
representation of the linear map

L : ℝm → ℝn, α → Lα,

obtained by matrix multiplication in the natural bases. An example can help clarify
this point. The matrix

L = [1 −1
1 1
]

is tacitly understood to be the matrix representation of

ℒ : ℝ2 → ℝ2, α → Lα

with respect to the natural basis both on the domain and on the range. This means
that

ℒ(e1) = e1 + e2 and ℒ(e2) = −e1 + e2.

However, this matrix could just as well be the representation matrix of a linear map
ℒ : ℝ2 → ℝ2 in a basis other than the natural one (but still the same for both domain
and range), say in the basis

v1 = [
1
0
] , v2 = [

1
1
] ,

then it would encode the validity of

ℒ(v1) = v1 + v2 and ℒ(v2) = −v1 + v2,

and consequently that

ℒ(e1) = ℒ(v1) = v1 + v2 = 2e1 + e2
ℒ(e2) = ℒ(−v1 + v2) = −ℒ(v1) + ℒ(v2) = −2v1 = −2e1.

This means that the matrix representation of ℒ in the natural basis (for both domain
and range) would actually be given by

[
2 −2
1 0
] .
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We see that the samematrix can represent different linear maps, depending on which
underlying bases were chosen in its derivation. As a matter of fact, it is an interest-
ing question to find bases in which the matrix representation of a given linear map is
“simplest” or to determine which linear maps can be represented by the same matrix
using different bases.

We conclude this section by looking at special linear maps that are related to the
task of finding the simplest representation in the sense just explained. We will en-
counter them again in a later chapter. We keep V andW finite-dimensional but make
one of them have dimension one. As we just saw, introducing a basis for V and W
reveals that these vector spaces can be identified with 𝔽m and 𝔽n together with their
natural bases, respectively, if their dimensions arem and n. We first assume thatm = 1
and consider a matrix L ∈ 𝔽n×1 with a fixed but arbitrary n ∈ ℕ. Following the above
discussion, L can be thought of as the linear map it defines by multiplication, and of
which it is the matrix representation in the natural bases of 𝔽 and 𝔽n. Since

Lα = αL1 = αv,

for v = L1 ∈ 𝔽n, the matrix L is thus fully determined by the vector v, which it “con-
tains” as its sole column. In this way, we can identify 𝔽n×1 with 𝔽n.

Next, consider the case when m ∈ ℕ is arbitrary and fixed, while n = 1. Again
a matrix L ∈ 𝔽1×m (thought of as a linear map by multiplication) is completely deter-
mined by the vector β with components βk = Lek = L1k, where k = 1, . . . ,m, laying flat
in its only row. Indeed,

Lα = L(
m
∑
k=1

αkek) =
m
∑
k=1

αkLek =
m
∑
k=1

βkα
k =

m
∑
k=1

L1kα
k .

This motivates the definition of the product between two vectors β, α ∈ ℝm given by

β⊤α =
m
∑
k=1

βkα
k ,

where β⊤ denotes the “horizontal version” of the “vertical” vector β.We use subscripts
(instead of superscripts) to identify the components of β in the product to reflect the
“horizontal” use of β. This makes sense considering that β yields the sole row of the
matrix L ∈ 𝔽1×m via

L = β⊤.

More in general, the transpose M⊤ ∈ 𝔽m×n of a matrix M ∈ 𝔽n×m is defined as the
matrix with entries

(M⊤)kj = M
j
k for k = 1, . . . ,m and j = 1, . . . , n,
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obtained by turning the columns (rows) of M into the rows (columns) of MT . In this
sense, we identify 𝔽1×m with 𝔽m(= “(𝔽m)⊤”) based on the identification of 𝔽m×1 with
𝔽m. Rows and columns can be viewed as building units of general matrices. Indeed,
given a matrix L ∈ 𝔽n×m for generalm, n ∈ ℕ, we can think of it either as consisting of
n rows

[[[[[

[

L1∙
L2∙
...
Ln∙

]]]]]

]

,

or ofm columns

[L∙1 L∙2 ⋅ ⋅ ⋅ L∙m] .

In the first interpretation, we take a vector α ∈ 𝔽m and obtain the output vector Lα
collecting its components

(Lα)j = Lj∙α =
m
∑
k=1

Ljkα
k , j = 1, . . . , n.

In the second, we use the components of α to build the linear combination of the
columns given by∑mk=1 α

kL∙k = Lα .
We can think of the simplest possible linearmap between𝔽m and𝔽n as amap that

takes the whole vector space 𝔽m, and maps it to a one-dimensional subspace of 𝔽n,
necessarily of the form 𝔽v for some v ∈ 𝔽n. Since a vector α ∈ 𝔽m maps to a multiple
of v, it is enough to know the appropriate stretching factor λ = λ(α) ∈ 𝔽. As we are
considering a linear map, λ : 𝔽m → 𝔽 is linear (provide a proof) and is given by
a matrix λ ∈ 𝔽1×m with a single row. In summary, such a simple linear map is fully
determined by the two vectors u ∈ 𝔽m and v ∈ 𝔽n, where u = λ⊤, the transpose of the
row λ.

Using this notation, the simple linear map, call it L, has the representation

Lα = λ(α)v = (u⊤α)v = vu⊤α, α ∈ 𝔽m,

i. e., L = vu⊤. Such a map is said to have rank 1 or to be of rank 1 to mean that it has
a one-dimensional image space. Rank one maps can be thought of as basic building
blocks of more general linear maps as follows from

L = ∑
k=1,...,m
j=1,...,n

Ljke
n
j (e

m
k )
⊤
, L ∈ 𝔽n×m,
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where em1 , . . . , e
m
m and en1 , . . . , e

n
n are the natural bases of𝔽

m and𝔽n, respectively.Wewill
revisit this issue in Sections 8.1 and 8.2, where we will try and determine the “best”
decomposition of a matrix into a sum of rank-one matrices.

3.3 The length of vectors

We saw in the previous chapter, when constructing real numbers, that one is often
lead to consider or build sequences in order to solve a variety of problems and/or ap-
proximate their solutions. The verification of convergence will require the ability to
measure distance, which is the basis for any concept of approximation (we need to
know what “close” means). The mathematical concept of length for vectors is that of
a norm. Given a vector space V , a norm on it is a map | ⋅ |V : V → ℝ satisfying:
(n1) |u|V ⩾ 0 for u ∈ V and equality only holds for the zero vector 0.
(n2) |αu|V = |α||u|V for α ∈ 𝔽 and u ∈ V .
(n3) |u + v|V ⩽ |u|V + |v|V for u, v ∈ V .

Here, |α| denotes the absolute value (the modulus if 𝔽 = ℂ) of α in the field 𝔽. Within
the scope of this book, 𝔽 will mostly be ℝ or ℂ. As the notation indicates, a norm
behaves similar to the absolute value in ℝ or the modulus in ℂ. In particular, (n3)
is the triangle inequality. We saw in Chapter 1 that assessing convergence requires a
distance function. If a norm | ⋅ |V is given on a vector space, then

dV : V × V → ℝ, (u, v) → dV (u, v) = |u − v|V

defines a metric, the metric induced by the norm | ⋅ |V . Remind yourself of what a
metric is and verify this claim. Let 𝔽 = ℚ,ℝ, orℂ and define | ⋅ |p on 𝔽m form ∈ ℕ and
p ∈ [1,∞] by

|α|p =
{
{
{

(∑mk=1 |αk |
p)

1
p , p ∈ [1,∞),

maxk=1,...,m |αk |, p =∞,

to obtain distinct norms (one for each p). The special norm obtained choosing p = 2
is called Euclidean, since when m = 2, it yields the length of Euclidean geometry
based onPythagoras’ theorem. Indeed, if you interpret the vector (1, 1) as the (directed)
segment connecting the origin to the point (1, 1) in the plane, Pythagoras’s theorem
yields a length of√12 + 12 = √2 for it. While the above norms are all different, they do
induce the same convergence for sequences in 𝔽m. This is due to the fact that, given
any two of the norms corresponding to p ̸= q ∈ [1,∞], it is possible to find a constant
C ⩾ 1 such that

1
C
|α|p ⩽ |α|q ⩽ C|α|p, α ∈ 𝔽m.
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Verify (Q6) the validity of these inequalities as an exercise and convince yourself that
the convergence of a sequence (αn)n∈ℕ in 𝔽m to a limit α∞ ∈ 𝔽m in any of these norms
amounts to the convergence of each individual component sequence (αkn)n∈ℕ, where
k = 1, . . . ,m. In the process, try to make a connection between the above pair of in-
equalities and the shapes of the sets

𝔹p(0, 1) = {x ∈ 𝔽
n  |x|p < 1},

which are delimited by the sets {x ∈ 𝔽n | |x|p = 1} depicted in the figure below.

Things become more interesting when dealing with infinite-dimensional vector
spaces. Consider first the space of sequences ℝℕ. Extending the definition of the
above norms by making the finite sum into an infinite one and setting

|α|p = (
∞

∑
n=1
|αn|

p)

1
p

, α ∈ ℝℕ,

is not straightforward. Indeed, we would have |α|p =∞ for the unbounded sequence
α = (1, 2, 3, . . . ) and any p ∈ [1,∞]. Even the bounded sequence (1, 1, 1, . . . )would have
infinite norm for all p ∈ [1,∞). While it is possible to look for a norm (or at least a
distance function) defined for all sequences, for most practical purposes, it is more
convenient (and useful) to change the vector space. We can take the space of conver-
gent sequences ℝℕc or that of Cauchy sequences ℝℕcs, which is the same as ℝ is com-
plete, and use the | ⋅ |∞ norm as a norm on them (check that the required properties
are satisfied), since such sequences are necessarily bounded. By reducing the size of
the vector space even further (when p <∞), we can consider the vector spaces
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ℝℕp = {
{α = (αn)n∈ℕ ∈ ℝℕ

 ∑
∞
n=1 |αn|

p <∞}, p ∈ [1,∞),
{α = (αn)n∈ℕ ∈ ℝℕ

 supn∈ℕ |αn| <∞}, p =∞,

and use the corresponding | ⋅ |p norm on them. Verification is left as an exercise, which
might include researching the so-called Minkowsky inequality that amounts to the
triangle inequality for these norms. Unlike the case ofℝn, these spaces are all different

ℝℕp ̸= ℝ
ℕ
q for p ̸= q,

and you are invited to investigate their relationships to one another (check which in-
clusions are valid). As an exercise also verify that ℝℕc = ℝ

ℕ
cs is a subspace of ℝ

ℕ
∞ and

thatℝℕp is one ofℝℕc for all p ∈ [1,∞). Can you show that the spaceℝℕp is complete for
p ∈ [1,∞]? (Q7) If you are wondering why we are excluding p ∈ (0, 1), try to see why
for yourself.3

Next, let us describe a distance function for the spaceℝℕ of all sequences of reals

d(α, β) =
∞

∑
n=1

|αn − βn|
1 + |αn − βn|

2−n

Show that this is indeed ametric onℝℕ.What are the properties of the fractional term?
Whydoweuse the factor 2−n? Try (Q8) tounderstandand characterize the convergence
that is induced by this metric. Convince yourself (Q9) that this distance does not come
from a norm.

Moving on to examples of norms for vector spaces of functions such asℝℝ, we see
that finding anormcannot simply behandled by replacing afinite sumwith an infinite
one, since functions are vectors with uncountably many components. It is, however,
possible to recycle one of the normswe already used, namely the so-called supremum
norm. It amounts to

‖f ‖∞ = sup
x∈ℝ

f (x)
,

and can be used on a variety of vector spaces such as, for instance,

ℝℝb = {f : ℝ→ ℝ | f is bounded},
ℝℝbc = {f : ℝ→ ℝ | f is bounded and continuous},

ℝℝc,0 = {f : ℝ→ ℝ
 f is continuous and lim

|x|→∞
f (x) = 0}.

For all of these examples, verify that the supremum norm is indeed a norm. Infinite
sums are reminiscent of integrals (the Riemann integral is defined as the limit of fi-

3 Hint: Which norm defining condition fails to hold?
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nite sums, after all). This leads us to another class of examples. Let a, b ∈ ℝ be given
such that a < b and consider the space of continuous all real- or complex-valued func-
tions f : [a, b] → 𝔽, which we denote by C([a, b],𝔽) for short (𝔽 = ℝ,ℂ). Continuous
functions are Riemann integrable and, therefore, the norms

‖f ‖p = (
b

∫
a

f (x)

p dx)

1
p

are well-defined on C([a, b],𝔽) for any p ∈ [1,∞). This requires a proof (Q10), which
you are encouraged to give. The validity of the triangle inequality, in this context, goes
by the name of Minkowski integral inequality. Choosing a = −1 and b = 1, it can be
verified that the sequence of functions (fn)n∈ℕ given by

fn(x) =
{{{
{{{
{

−1, x < − 1n ,
nx, |x| ⩽ 1

n ,

1, x > 1
n ,

consists of continuous functions. The pointwise limit of this sequence is the function
f∞ with f∞(0) = 0, f∞(x) = −1 for x < 0, and f∞(x) = 1 for x > 0. This limiting function
is not continuous and does therefore not belong to the space C([a, b],ℝ). It however
holds that

‖fn − f∞‖
p
p = 2

1
n

∫
0

npxp dx = 2
p + 1

1
n
,

for n ∈ ℕ, which entails that

‖fn − fm‖p ⩽ ‖fn − f∞‖p + ‖fm − f∞‖p ⩽ C(
1

n1/p
+

1
m1/p), m, n ∈ ℕ.

Since the right-hand side can bemade arbitrarily small by takingm and n large enough
for any p ∈ [1,∞), it follows that (fn)n∈ℕ is a Cauchy sequence in the metric space
C([−1, 1],ℝ) with distance (metric) defined by

dp(f , g) = ‖f − g‖p = (
1

∫
−1

f (x) − g(x)

p dx)

1
p

,

which is themetric induced by the ‖⋅‖p normdefined above. This shows that themetric
space (C([−1, 1],ℝ), dp) is not complete in the sense of Chapter 1 since it admits Cauchy
sequences, which do not converge to a limit in the space itself. Using the completion
procedure of Chapter 1 via equivalence classes of Cauchy sequences, it is possible to
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obtain a complete space, which is called Lp([−1, 1]). This is not the way this space is
usually introducedbut this approach ismore elementary since it does not requiremea-
sure theory. Of course, the counterexample to completeness can be adapted to any in-
terval [a, b] and completion leads to the space we denote by Lp([a, b]). Investigate the
inclusion relations between the spaces Lp([a, b]) for different values of p ∈ [1,∞).

We conclude this section bymentioning an additional important and useful struc-
ture that is sometimes available on a vector space, that of scalar product. In the finite-
dimensional case, when 𝔽 = ℚ,ℝ, we set

(x|y) = x ⋅ y =
n
∑
k=1

xkyk for x, y ∈ 𝔽n,

whereas we define

(z|w) = z ⋅ w =
n
∑
k=1

zkwk for z,w ∈ ℂn.

We recall the notation z = x− iy for the complex conjugate number of z = x+ iy ∈ ℂ. No-
tice that |z|2 = zz and that the complex definition of scalar product coincides with the
real/rational one for vectors with vanishing complex parts and rational components.
Among infinite-dimensional spaces, which admit a scalar product, wemention𝔽ℕ2 for
𝔽 = ℝ,ℂ and L2([a, b]), which were introduced above. Examples of scalar products on
these spaces are

(x|y) = x ⋅ y =
∞

∑
n=1

xnyn for x, y ∈ 𝔽ℕ2 ,

and

(f |g) =
b

∫
a

f (x)g(x) dx for f , g ∈ C([a, b],ℂ),

respectively. Notice that the latter scalar product can be extended to the completion
L2([a, b]) of the space of continuous functions since it generates the ‖ ⋅ ‖2-norm in the
sense that

‖f ‖22 = (f |f ), f ∈ L2([a, b]).

3.3.1 Banach and Hilbert spaces

A vector space V with a norm | ⋅ |V defined on it is called a normed vector space. It may
or may not be complete. If it is, then it goes by the name of a Banach space. If it carries
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a scalar product, i. e., a map

(⋅|⋅)V : V × V → 𝔽

for 𝔽 = ℝ,ℂ satisfying:
(sp1) (v|u)V = (u|v)V for u, v ∈ V ,
(sp2) (αu + v|w)V = α(u|w)V + (v|w)V for α ∈ 𝔽 and u, v,w ∈ V ,
(sp3) (u|u)V > 0 for u ̸= 0,

is called an inner product space. Given a scalar product (⋅|⋅)V on a vector space, we
always obtain a norm on it by defining

|u|V = √(u|u)V for u ∈ V .

Check that | ⋅ |V is indeed a norm on V . Just as in planar geometry, a scalar product
makes it possible to talk about the angle θ ∈ [0,π) between any two nonzero vectors
u, v ∈ V through

cos(θ) = (u|v)V
|u|V |v|V

.

In an inner product space, the concept of orthogonality can be introduced. Vectors
u, v ∈ V are called orthogonal if (u|v)V = 0. Show (Q11) that any number of pairwise
orthogonal (nontrivial) vectors u1, . . . , un in an inner product space are automatically
linearly independent. The so-called Cauchy–Schwarz inequality

(u|v)V
 ⩽ |u|V |v|V ∀u, v ∈ V ,

holds in inner product spaces. To prove it, first notice its validity whenever one of the
vectors is zero. For u ̸= 0 ̸= v, consider

0 ⩽ (u + zv|u + zv)V = |u|
2
V + z(u|v)V + z(v|u)V + zz |v|

2
V ,

and evaluate at z = − (u|v)V|v|2V
to obtain

0 ⩽ |u|2V −
(u|v)V (u|v)V
|v|2V

−
(u|v)V (v|u)V
|v|2V

+
|(u|v)V |2

|v|2V

= |u|2V −
|(u|v)V |2

|v|2V
,

using (sp1). The proof is then concluded by simple algebraic manipulations. The met-
ric of an inner product space is that induced by the norm | ⋅ |V corresponding to the
inner product (⋅|⋅)V . A complete inner product space is called a Hilbert space.
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Among the examples considered above,

(𝔽n, | ⋅ |p), for n ∈ ℕ, p ∈ [1,∞], and 𝔽 = ℚ,ℝ,ℂ,
(𝔽ℕc , ‖ ⋅ ‖∞), and (𝔽

ℕ
p , ‖ ⋅ ‖p) for p ∈ [1,∞), for 𝔽 = ℚ,ℝ,ℂ,

are all normed vector spaces and they are complete when𝔽 ̸= ℚ. When p = 2, they are
inner product spaces (with respect to the inner product defined earlier) and complete,
i. e., Hilbert spaces, if 𝔽 ̸= ℚ. Analogously,

(ℝℝb , ‖ ⋅ ‖∞) and (ℝℝbc, ‖ ⋅ ‖∞)

are Banach spaces, whereas

(C([a, b],ℝ), ‖ ⋅ ‖p)

are normed vector spaces for p ∈ [1,∞) (an inner product space for p = 2), and

Lp([a, b])

are Banach spaces for p ∈ [1,∞) and a Hilbert space when p = 2. What is the natural
inner product on L2([a, b])?

3.3.2 Gram–Schmidt orthogonalization algorithm

A finite-dimensional vector spaceV always has a basis u1, . . . , un, where n is its dimen-
sion. If V has an inner product (⋅|⋅)V , the basis vectors may or may not be orthogonal
to each other. When they are not, there is a procedure that produces an orthonormal
basis out of them. A basis v1, . . . , vn of an inner product space V is called orthonormal
iff

(vj|vk)V = {
0, j ̸= k,
1, j = k,

j, k ∈ {1, . . . , n}.

Starting with an arbitrary basis u1, . . . , un, we can normalize u1 to have unit norm and
define

v1 =
u1
(u1|u1)

1/2
V

=
u1
|u1|V
.

Next, we can use u2 and v1 to obtain a new unit vector v2, which is orthogonal to u1 in
the form u2 + αv1 by insisting that

(v1|u2 + αv1)V = 0,
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which yields α = −(v1|u2)V . Then we have that

v2 =
u2 − (u2|v1)v1
|u2 − (u2|v1)|V

has unit norm and is orthogonal to v1. Notice that, geometrically, v2 is obtained by
removing the orthogonal projection of u2 onto v1 (and then normalizing the length to
unit).

Assuming that we have already obtained orthonormal vectors v1, . . . , vk with k < n, we
can similarly set

vk+1 = uk+1 +
k
∑
j=1

αjvj,

and insist that

0 = (vk+1|vl)V = (uk+1 +
k
∑
j=1

αjvj|vl)
V

= (uk+1|vl)V + αl for l = 1, . . . , k.

This gives

vk+1 =
uk+1 −∑

k
j=1(uk+1|vj)vj

|uk+1 −∑
k
j=1(uk+1|vj)vj|V

and the procedure ends when k + 1 = n and vn is determined. The end result is an
orthonormal basis given by v1, . . . , vn.
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3.4 Coordinates and coordinate functions
Given a finite-dimensional vector space V of dimension d ∈ ℕ over 𝔽, it possesses a
basis v1, . . . , vd. This means that any vector u ∈ V can be written as a unique linear
combination

u =
d
∑
k=1

xkvk ,

for the appropriate x ∈ 𝔽d. This determines maps

Xk : V → 𝔽, u → Xk(u) = xk ,

which we alternatively also denote by vk or v′k for k = 1, . . . , d. These are the coordinate
maps, i. e., vk = v′k yields the kth coordinate vk(u) = xk of a vector in its expansion
in the chosen basis. They are linear maps from the vector space V to the base field 𝔽,
i. e., elements of the vector space V ′ = ℒ(V ,𝔽), also called dual space of V .

Fact. The linear maps v1, . . . , vd build a basis of V ′ whenever v1, . . . , vd build one of V.

In order to verify linear independence, assume that
d
∑
k=1

ykv
k = 0 for yk ∈ 𝔽 and k = 1, . . . d.

Thanks to the fact vk(vj) = {
1, j = k,
0, j ̸= k

, the validity of which you are encouraged to

check, this gives that

0 = (
d
∑
k=1

ykv
k)(vj) = yj,

for j = 1, . . . , d and the stated linear independence follows. It remains to show that the
vectors span the whole space. Let v′ ∈ V ′ and use linearity to see that

v′(u) = v′(
d
∑
k=1

xkvk) =
d
∑
k=1

xkv′(vk) =
d
∑
k=1

vk(u)v′(vk)

= (
d
∑
k=1

v′(vk)v
k)(u),

for any V ∋ u = ∑dk=1 x
kvk since xk = vk(u). This shows that

v′ =
d
∑
k=1

ykv
k

with yk = v′(vk) for k = 1, . . . , d and the argument is complete.√
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When considering the Hilbert space V = 𝔽d with an orthonormal basis e1, . . . , ed,
you are asked to verify that ej = e′j is given by e

⊤
j . In general, using that V = 𝔽

d = 𝔽d×1,
it follows that V ′ = 𝔽1×d, i. e., V ′ is a row space if we consider V a column space (and
vice versa).
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4 The topology of metric spaces
The main goal of this chapter is to introduce the important concept of compactness.
Its importance stems from the fact that any sequence (xn)n∈ℕ in a compact set always
has at least a subsequence, which converges. By a subsequence, we mean a sequence
that is obtained by (possibly) dropping some terms of the starting sequence. Compact-
ness, or better, characterization of it, also represents a clear divide between finite- and
infinite-dimensional spaces as we shall see in an example.

4.1 Open sets

The starting point is ametric space (M, dM) and the concept of an open set. A setO ⊂ M
is called open if each of its points x ∈ O admits a ball around it that is fully contained
in O, i. e., if there is r > 0 (which depends on x) such that

𝔹M(x, r) = {y ∈ M
 dM(x, y) < r} ⊂ O,

where 𝔹M(x, r) is the so-called ball of radius r about the point x. Show that, for any
x ∈ M and r > 0, the ball 𝔹M(x, r) is itself open (Q1). In (ℝ, d|⋅|) = ℝ, a simple example
of an open set is given by any interval of the form

(a, b) = {x ∈ ℝ | a < x < b},

for −∞ ⩽ a < b ⩽∞. Verify that any metric spaceM itself is open, that finite intersec-
tions of open sets are open as are unions of any number of open sets. The limitation to
finite intersections is necessary since the intersection of the intervals (−1/n, 1+1/n) ⊂ ℝ
for n ∈ ℕ is the interval [0, 1], a set that is not open since the points 0 and 1 do not
admit any ball around them that is fully contained in [0, 1]. Sets which happen to be
the complement of an open set are called closed. Intervals of the form

[a, b] = {x ∈ ℝ | a ⩽ x ⩽ b}

in ℝ are examples of such sets. A set need not be open or closed as [0, 1) ⊂ ℝ shows.
The concept of open set is intimately connected to that of convergence that we did
already define in Chapter 1. We leave it as an exercise to show that convergence of a
sequence (xn)n∈ℕ in M to a limit x∞ ∈ M is equivalent to the fact the ball 𝔹M(x∞, r)
of any radius r > 0 about x∞ contains all but finitely many elements of the sequence.
Given the definition of open set that we gave, this is the same as requiring that any
open set containing x∞ necessarily also contains all but finitely many terms of the
sequence. Notice that the limit x∞ ∈ M of a convergent sequence (xn)n∈ℕ in a closed
subsetC of ametric space necessarily belongs toC. Indeed, if x∞ ∈ Cc = M\C, which is
open, then r > 0 can be foundwith𝔹M(x∞, r) ⊂ Cc, and since this ballmust contain all

https://doi.org/10.1515/9783110780925-004
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50 | 4 The topology of metric spaces

Figure 4.1: If the limit x∞ ∈ Cc, then so is a ball 𝔹M(x∞, r) of some radius r > 0. The latter would
need to contain all but finitely many terms of the sequence, which are, however, all contained in the
set C.

but finitely many of the terms of the sequence, we get a contradiction to the assump-
tion that the sequence is in C. See Figure 4.1 for a depiction. You can think of this by
saying that convergent sequences cannot escape a closed set. Convince yourself, by
exhibiting an example (Q2), that the same is no longer true for nonclosed sets.

4.1.1 Open sets and continuity

A function f : M → N betweenmetric spaces (M, dM) and (N , dN ) is said to be continu-
ous at a point x ∈ M iff the following direct generalization of the same concept for real
real-valued functions holds:

f (x) = lim
n→∞

f (xn) for any (xn)n∈ℕ inM with lim
n→∞

xn = x.

Show that this is equivalent to the validity of

∀ε > 0 ∃δ = δ(x) > 0 s.t dN(f (x), f (y)) ⩽ ε provided dM(x, y) ⩽ δ.

A function f : M → N that is continuous at all x ∈ M is simply called continuous. If
the continuity at x ∈ U for a set U ⊂ M does not depend on x, i. e., if δ can be chosen
independently of x ∈ U, f is said to be uniformly continuous on U .

The use of open sets allows for a nice characterization of continuity. A function
f : M → N is continuous if and only if f −1(O) is an open subset ofM for any open subset
O of N . To see this, we first fix an open set O ⊂ N and set out to show that f −1(O) ⊂ M
is open given that f is continuous. Take x ∈ f −1(O) so that f (x) = y ∈ O and, by virtue
of the fact that O is open, there is ε > 0 with 𝔹N (y, ε) ⊂ O. Then continuity implies the
existence of δ > 0 such that f (𝔹M(x, δ)) ⊂ 𝔹N (y, ε), which is a rephrasing of the ε − δ
condition above. Owing to 𝔹N (y, ε) ⊂ O, this shows that
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𝔹M(x, δ) ⊂ f
−1(O).

Since x ∈ f −1(O) is arbitrary, this yields that f −1(O) is indeed open. The opposite direc-
tion is left as an exercise.1

4.2 Compactness and sequential compactness
We saw that a convergent sequence cannot escape a closed set. If convergence is not
assumed and we take an arbitrary sequence (xn)n∈ℕ, there is no telling whether the
sequence converges orwhether even only a subsequence of it converges. The sequence
(n)n∈ℕ = (1, 2, 3, . . . ) contained in the closed set ℝ (why is this set closed?) does not
converge and it is also impossible to identify a subsequence that does. On the other
hand, the sequence defined by

xn = {
1, if n is prime,
0, else

does not converge but its subsequence (xn){n|n is prime} does. We look for a general con-
dition that ensures convergence of at least a subsequence thatwouldwork in a general
metric space M. If a set K ⊂ M has the property that any sequence in it always pos-
sesses a convergent subsequence, it is called sequentially compact. Owing to the char-
acterization of convergence via open sets, it is enough to be able to show that there
is a point x∞ ∈ M such that any ball of the form 𝔹M(x∞, r) with arbitrary r > 0 con-
tains infinitely many terms of the sequence. Of course, we can restrict our attention
to sequences which, unlike the above example with the primes, do not have a term
that is repeated infinitely many times, in which case it is trivial to find a convergent
subsequence. Now, if a set K ⊂ M had the property that whenever

K ⊂ ⋃
λ∈Λ

Oλ, Oλ open for λ ∈ Λ,

i. e., whenever K were covered by a family of open sets Oλ, there would be a finite
subfamily that still covers K, i. e.,

K ⊂
N
⋃
k=1

Oλk ,

for some N ∈ ℕ and some λ1, . . . , λN ∈ Λ, then a sequence (xn)n∈ℕ in K would have
infinitely many terms in at least one of the open sets Oλk , k = 1, . . . ,N . If that were
not the case, the sequence would not be infinite in the sense that it would not visit

1 Hint: Choose special open sets.
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infinitely many distinct points. This motivates the definition of compactness for a set
K ⊂ M, which reads: K is compact if any open cover always contains a finite subcover
in the above sense.

Fact. A subset K ⊂ M of ametric space (M, dM) is compact if and only if it is sequentially
compact.

We only prove that compactness implies sequential compactness since this is all
we need for our purposes. Given a sequence (xn)n∈ℕ in a compact set K, we therefore
need to show that x∞ ∈ K can be found such that, for each j ∈ ℕ, there is nj ⩾ j with
xnj ∈ 𝔹(x∞,

1
j ). Without loss of generality, we can assume that the set {xn | n ∈ ℕ} is

infinite, otherwise at least one of its elementswould repeat infinitelymany times in the
sequence and thus would yield a convergent subsequence. We show that, assuming
the contraposition, an open cover can be found,which has no finite subcover, yielding
that K is not compact. Assume that, for each y ∈ K, we can find a natural number j(y)
with xn ∉ 𝔹(y,

1
j(y) ) for n ⩾ j(y). Since y runs through the whole set K, the family of

open sets

{𝔹(y, 1
j(y)
)

y ∈ K}

is an open cover of K, which cannot have a finite subcover. If it did, i. e., if

{xn | n ∈ ℕ} ⊂ K ⊂
m
⋃
k=1
𝔹(yk ,

1
j(yk)
),

for some y1, . . . , ym ∈ K and somem ∈ ℕ, then at least one of these balls would neces-
sarily contain infinitely many elements of the (infinite) set {xn | n ∈ ℕ}, which is not
possible by construction.√

We conclude this section with a fact about the interplay of continuity and com-
pactness.

Fact. A continuous function f : M → N between metric spaces maps compact sets to
compact sets.

In order to see this, take a compact C ⊂ M and consider an open cover {Oλ | λ ∈ Λ}
of f (C). By continuity, the sets f −1(Oλ) are open inM and build a cover of C. Theremust
therefore be a finite subcover, i. e., it must hold that

C ⊂
n
⋃
j=1

f −1(Oλj ),

for some n ∈ ℕ and some λj ∈ Λ for j = 1, . . . , n. This implies that
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f (C) ⊂ f(
n
⋃
j=1

f −1(Oλj )) =
n
⋃
j=1

Oλj

and yields a finite subcover for f (C). This means that f (C) is compact.√

As an exercise (Q3), show that a real-valued continuous function f : M → ℝ de-
fined on a metric space, attains a maximum and a minimum on compact sets C ⊂ M.
This means that, given a compact set C ⊂ M, there are xm, xM ∈ C such that

sup
x∈C

f (x) = f (xM) and inf
x∈C

f (x) = f (xm).

4.3 Extension of uniformly continuous maps

In Chapter 2, we saw that ℝ can be viewed as the completion ofℚ with respect to the
absolute value. This means, in particular, that any real number can be approximated
to an arbitrary degree of precision by a rational number. This relationship is described
by saying thatℚ is a dense subset ofℝ. More in general, given ametric space (M, dM),
we say that a subset D ⊂ M is dense inM if it holds that

∀x ∈ M ∀ε > 0 ∃z ∈ D with dM(x, z) ⩽ ε,

or more visually if 𝔹(x, ε) ∩ D ̸= 0 for every x ∈ M and every ε > 0. It is a useful
fact that uniformly continuous maps defined on a dense subset can be extended to a
continuous map of the whole space provided the target space is complete.

Fact. Let (M, dM) and (N , dN ) be metric spaces. Assume that D ⊂ M is dense in M and
that N is complete. Then any uniformly continuous map f : D → N has a unique uni-
formly continuous extension f : M → N. We speak of an extension if f |D = f holds.

Letting x ∈ M, density ofD yields a sequence (xn)n∈ℕ inD satisfying dM(x, xn)→ 0
as n → ∞ (why?). Given ε > 0, uniform continuity of f implies the existence of δ > 0
such that

dN(f (xn), f (xm)) ⩽ ε provided dM(xn, xm) ⩽ δ.

Next, the latter inequality canbe ensuredby choosingm, n ⩾ N forN ∈ ℕ large enough
since (xn)n∈ℕ is a Cauchy sequence (as any convergent sequence is). Since ε > 0 is
arbitrary in this argument, we see that (f (xn))n∈ℕ is a Cauchy sequence in N . Thanks
to completeness, a limit y ∈ N exists, i. e.,

dN(f (xn), y)→ 0 as n→∞.

We define f (x) = y. For this definition to make sense, however, independence on the
choice of the approximating sequence for x needs to be established. The details are
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left as an exercise (Q4). If x ∈ D, one can work with the constant sequence (x, x, . . . )
and set f (x) = f (x).

Finally, uniform continuity of f remains to be established. Let ε > 0 and take δ > 0
so that

dN(f (z), f (w)) ⩽ ε whenever dM(z,w) ⩽ 3δ for z,w ∈ D.

For any x, y ∈ M given with dM(x, y) ⩽ δ, we can find z,w ∈ D such that

dM(z, x) ⩽ δ, dM(w, y) ⩽ δ

and, by the construction of f , also such that

dN(f (x), f (z)) ⩽
ε
3
, dN(f (y), f (w)) ⩽

ε
3
.

It follows that

dM(z,w) ⩽ dM(z, x) + dM(x, y) + dM(y,w) ⩽ 3δ

and, therefore, that

dN(f (x), f (y)) ⩽ dN(f (x), f (z)) + dN(f (z), f (w)) + dN(f (y), f (w)) ⩽ ε.

Uniqueness is left as an exercise (Q5).√

Wewill use this fact in the next section to show the existence of linear functionals,
which are not continuous.

4.4 Finite versus infinite-dimensional spaces

4.4.1 Compactness

The characterization of compactness marks a divide between finite and infinite-
dimensional normed vector spaces. We recall that a normed vector space (V , | ⋅ |V )
always carries the structure of a metric space given by the induced distance dV de-
fined by dV (u, v) = |u − v|V for u, v ∈ V . It therefore holds that compactness and
sequential compactness are equivalent.

Fact (Bolzano–Weierstrass). Let (V , | ⋅ |V ) be a finite-dimensional normed vector space
over ℝ or ℂ. A subset K ⊂ V is compact if and only if it is closed and bounded.

We give a proof for V = (ℝd, | ⋅ |2), where d ∈ ℕ, and then for a general finite-
dimensional vector space overℝ. The complex case can be handled similarly. Given a
closed and bounded subset K ⊂ ℝd, there is a constant such that
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|x|2 ⩽ M for all x ∈ K.

Take a hypercube of the form C01 = [−R/2,R/2]
d, which contains the closed ball

𝔹|⋅|2 (0,M), and hence also K. Now consider a nontrivial sequence (xn)n∈ℕ in K, i. e.,
sequence that visits infinitely many distinct points. Trivial sequences in this sense
obviously have a convergent subsequence and the proof follows in that case. Split the
above hypercube of side length R into 2d subcubes C1j , j = 1, . . . , 2

d of side length R/2.
One of these, say C1j1 , must therefore contain infinitely many terms of the sequence
(xn)n∈ℕ. By splitting C1j1 itself into 2

d subcubes C2j ⊂ C
1
j1 , j = 1, . . . , 2

d, of radius R/22,
we similarly find a cube C2j2 ⊂ C

1
j1 containing infinitely many terms of the sequence.

We can continue this construction indefinitely to obtain subcubes Ckjk of radius R/2
k

containing infinitely many terms of the sequence. Finally, we choose xnk ∈ C
k
jk for each

k ∈ ℕ and obtain a Cauchy sequence since

|xnk − xnl |2 ⩽ √2
d R
2min{k,l} , k, l ∈ ℕ.

Convince yourself that this is indeed a Cauchy sequence and explain why the factor
√2d is needed in the inequality. Completeness ofℝd implies that a limit x∞ ∈ ℝd exists
for the subsequence (xnk )k∈ℕ of (xn)n∈ℕ. Since K is closed, it must hold that x∞ ∈ K.
This yields sequential compactness, and hence compactness.

We still need to show that closure and boundedness are necessary for compact-
ness. Indeed, if K is not closed, then there is a sequence in K with a limit outside
of it. Such a sequence cannot possibly have a convergent subsequence with limit in
K (why?). Similarly, if K is not bounded, then given any k ∈ ℕ, there is xk ∈ K with
|xk |2 ⩾ k. Again it is not possible to find a convergent subsequence for such a sequence
and again you are asked to explain why in more detail.

In order to deal with the case of a general real and finite-dimensional vector space
V with norm | ⋅ |V , take a basis u1, . . . un for it (see Section 3.1) and consider the bijective
map

Φ : ℝd → V , x →
d
∑
j=1

xjuj.

This maps is continuous as follows from

Φ(x) −Φ(y)
V ⩽

d
∑
j=1

x
j − yj|uj|V ⩽ |x − y|2(

d
∑
j=1
|uj|

2
V)

1/2

using the properties of a normand the Cauchy–Schwarz inequality. Given a closed and
bounded set C ⊂ V , the set K = Φ−1(C) is therefore closed (why?). As for boundedness
ofK, assume that it is not. Thenwe canfinda sequence (xn)n∈ℕ inK such that |xn|∞ ⩾ n
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forn ∈ ℕ. This implies that (xin)n∈ℕ is not bounded for at least one component 1 ⩽ i ⩽ d.
It holds that

yjn =
xjn
|xn|∞
∈ [−1, 1] for j = 1, . . . , d and n ∈ ℕ.

Notice that yjn = ±1 for at least one j (why?) and each n ∈ ℕ. It follows that there is
at least one component i ∈ {1, . . . , d} with either yin = −1 or y

i
n = 1 for infinitely many

indices n (why?). Using these indices, we obtain a convergent subsequence of (yin)n∈ℕ.
Since [−1, 1] ⊂ ℝ is closedandbounded,wecanextract further subsequences to ensure
that all components converge along a common subsequence (nk)k∈ℕ, i. e., so that

yjnk → yj ∈ [−1, 1] for l →∞ and each j = 1, . . . , d.

Since C is bounded, it holds that |u|V ⩽ M for u ∈ C and some M > 0. Now, with
vn = Φ(xn), we have that

0←
|vnk |V
|xnk |∞
=


d
∑
j=1

xjnk
|xnk |∞

uj
V
→


d
∑
j=1

yjuj
V
,

and, since at least one of the coefficients yj does not vanish, we also have that
|∑dj=1 y

juj|V ̸= 0. The latter follows from the fact that the linear combination is not
trivial and, therefore, cannot yield the zero vector (linear independence, remember?).
This is a contradiction and boundedness follows. We conclude that K is compact and
that so is C = Φ(K) as the image of the continuous map Φ of a compact set. Showing
that a nonclosed or non-bounded subset of V cannot be compact can be done in a
way completely analogous to the case when V = ℝd was considered in the first part of
the proof. The equivalence is established.√

While any compact set in ametric spacewill always be closed and bounded, these
two properties are not sufficient for compactness in infinite-dimensional spaces. We
refrain from proving this in general but give three examples. For one, take the Hilbert
spaceℝℕ2 and the vectors ek ∈ ℝℕ2 , k ∈ ℕ, with components ejk = 0 for j ̸= k and e

k
k = 1.

These are orthogonal and have unit norm as follows from their definition and

(ek |el) =
∞
∑
j=1

ejke
j
l = {

0 if l ̸= k,
1 if l = k

so that

‖ek − el‖2 = √2 for l ̸= k,

by Pythagoras’ theorem. This shows that the sequence (ek)k∈ℕ cannot have any con-
vergent subsequence. In infinite-dimensional vector spaces, there are simply toomany
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directions. It is an excellent exercise to think aboutwhat additional condition(s) could
ensure compactness of sets in ℝℕ2 . A similar approach can be taken for the space ℝℝb
of bounded real real-valued functionswith the supremumnorm ‖⋅‖∞. Define the func-
tions ix0 : ℝ→ ℝ by

ix0 (x) = {
0, x ̸= x0,
1, x = x0,

and observe that ‖in−im‖∞ = 1 form, n ∈ ℕwithm ̸= n. This clearly delivers a sequence
(in)n∈ℕ in ℝℝb , which does not have a convergent subsequence. This example is very
similar to the one preceding it, in that it directly exploits the existence of infinitely
many (linearly independent) directions in the space. We therefore give one additional
example of a somewhat different nature in the space ℝ[−1,1]c of continuous functions
f : [−1, 1]→ ℝ with the supremum norm ‖ ⋅ ‖∞. Take the sequence (fn)n∈ℕ defined by

fn(x) =
{{{
{{{
{

−1, x < − 1n ,
nx, x ∈ [− 1n ,

1
n ],

1, x > 1
n ,

which converges pointwise to the discontinuous function f∞ with

f∞(x) =
{{{
{{{
{

−1, x < 0,
0, x = 0,
1, x > 0.

We show that no subsequence can convergewith respect to the norm ‖⋅‖∞ defining the
distance on ℝ[−1,1]c . If any subsequence were to converge, it would have f∞ as a limit,
but this is impossible since uniform limits (i. e., limits in the supremum norm ‖ ⋅ ‖∞)
of sequence of continuous functions are necessarily continuous. In order to see the
latter, take a point x0 ∈ [−1, 1] and observe that

f∞(x) − f∞(x0)
 ⩽
f∞(x) − fn(x)

 +
fn(x) − fn(x0)

 +
fn(x0) − f∞(x0)


⩽‖f − fn‖∞ +

fn(x) − fn(x0)
 + ‖f − fn‖∞.

Given convergence in the supremum norm, for any given ε > 0, it is possible to find
N = N(ε) ∈ ℕ such that

‖fn − f∞‖∞ ⩽
ε
3

for n ⩾ N ,

and thus, in particular, for n = N . The continuity of fN yields the existence of a positive
δ = δ(N) = δ(N(ε)) such that
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fN (x) − fN (x0)
 ⩽

ε
3

for x ∈ [−1, 1] with |x − x0| ⩽ δ,

which finally implies that

f∞(x) − f∞(x0)
 ⩽

ε
3
+
ε
3
+
ε
3
= ε,

provided |x−x0| ⩽ δ and x ∈ [−1, 1]. Since x0 ∈ [−1, 1]was arbitrary, the same argument
applies to any other point in the interval [−1, 1] and continuity of f∞ follows. It is an
excellent exercise (Q6) to (literally) challengeyourself tofindconditions,which ensure
sequential compactness in the space ℝ[−1,1]c . A good start consists in identifying what
exactly is the breakdown in the above example. Counterexamples are always a good
source of ideas in the search for conditions ensuring some mathematical property or
other.

4.4.2 Linearity and continuity

Another fundamental and consequential difference between finite- and infinite-
dimensional vector spaces manifests itself in the relation between linearity and
continuity. Let us first look at linear maps between finite-dimensional spaces. Upon
introduction of bases for the domain and the target spaces, we can assume without
loss of generality that the linear map is defined on ℝm, has range ℝn, and is given
by matrix multiplication with a matrix L ∈ ℝm×n. While we have not proved it in this
book, any two norms on a finite-dimensional space are equivalent.2 Thus we can fix
the Euclidean norm | ⋅ |2 onℝm and onℝn. Then the Cauchy–Schwarz inequality gives
that

|Lx|22 =
n
∑
i=1
(

m
∑
j=1

Lijx
j)

2

⩽
n
∑
i=1
(

m
∑
j=1

L
i
j

2
)(

m
∑
j=1

x
j
2
) = ‖L‖22|x|

2
2,

if we set ‖L‖2 = (∑
n
i=1∑

m
j=1 |L

i
j|
2)

1
2 . This implies the estimate

|Lx − Ly|2 ⩽
L(x − y)

2 ⩽ ‖L‖2|x − y|2, x, y ∈ ℝm,

which amounts to continuity (in fact uniform continuity) of L.
Continuity of linear maps is no longer a given in infinite-dimensional spaces.

We give an example to illustrate the nature of this phenomenon. Take the infinite-
dimensional space defined by

2 Equivalence of twonorms |⋅|1 and |⋅|2 ona vector spaceV amounts to the existence of a constant c ⩾ 1
with 1

c |x|1 ⩽ |x|2 ⩽ c |x|1 for every x ∈ V . Equivalent norms induce the same concept of convergence.
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ℝℕ00 = {x ∈ ℝ
ℕ  xn = 0 for n ⩾ N for some N ∈ ℕ},

i. e., the space of sequences with at most finitely many non zero terms. It is infinite-
dimensional since the vectors ℝℕ00 ∋ ej, j ∈ ℕ, are linearly independent. The linear
map

S : ℝℕ00 → ℝ, x → ∑
n∈ℕ

xn,

is well-defined and linear. Notice that the vector space ℝℕ00 can be given the norm
defined by |x|∞ = supn∈ℕ |xn| and that it becomes a dense subspace of the Banach
space

ℝℕ0 = {x ∈ ℝ
ℕ  limn→∞

xn = 0},

with respect to the same norm (prove this (Q7)). The linear map S is not continuous,
since if it were, it would admit a unique uniformly continuous extension to ℝℕ0 . This
is, however, impossible since the sequence

xm = (1, 1/2, . . . , 1/m,0,0, . . . ), m ∈ ℕ,

in ℝℕ00 converges to the sequence x
∞ = ( 1n )n∈ℕ ∈ ℝ

ℕ
0 as

x
m − x∞∞ =

1
m + 1
→ 0 asm→∞,

but

S(xm) =
m
∑
n=1

1
n
→∞ asm→∞.

4.5 Topology and convergence

In a metric space (M, dM), convergence of a sequence (xn)n∈ℕ to a limit x∞ ∈ M
amounts to any open ball 𝔹M(x∞, ε) (i. e., for any ε > 0) containing all but finitely
many terms of the sequence. Thus, if the concept of open set is well-defined for sub-
sets of a set X, one can attempt a definition of convergence by replacing “any open
ball” by “any open set”. In a metric space, open sets have the property that any union
of any number of them still yields an open set as does any finite intersection, as well
as that the whole spaceM and the empty sets are open. This motivates the following
definition of the structure called topology. A collection τX of subsets of a given set X
is called topology if and only if it satisfies the following conditions:
(t1) X, 0 ∈ τX .
(t2) If Oλ ∈ τX for λ ∈ Λ and any index set Λ, then⋃λ∈Λ Oλ ∈ τX .
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(t3) If Oj ∈ τx for j = 1, . . . , n and n ∈ ℕ, then⋂
n
j=1 Oj ∈ τX .

Elements of the collection τX are called open sets and (X, τX) is called a topological
space. In a topological space, it is possible to define convergence of a sequence (xn)n∈ℕ
to a limit x∞ ∈ X by requiring that each open set containing x∞ also contain all but
finitely many terms of the sequence. In a metric space, the collection of all sets that
were defined to be open, i. e., of those sets for which each element admits a whole
open ball (with positive radius) around them still fully contained in the set, do indeed
build a topology. Given a set X, the largest topology one can think of is given by its
power set 2X . With respect to this topology, all sets are open. In particular, so are all
singletons {x} for x ∈ X. At the other end of the spectrum, we have the topology given
by τX = {0,X}. What concept of convergence is induced by these extremal topologies,
or in other words, how do convergent sequences (Q8) look like with respect to these
topologies?

Given a topological space (X, τX) and any subset Y of X, show (Q9) that the collec-
tion of sets

τX,Y = {O ∩ Y |O ∈ τX} = “τX ∩ Y”

defines a topology on Y , the topology induced by τX on Y , and also called the relative
topology. With this definition and considering ℝ a metric space with respect to the
distance induced by the absolute value, dℝ(x, y) = |x−y| for x, y ∈ ℝ, convince yourself
that τℝ,ℕ = 2ℕ. There are spaces, specifically vector spaces, on which it is possible to
introduce a natural topology, which is not generated by a norm. By natural, we mean
a topology, which captures an intuitive sense of convergence. Take for example, the
space of real real-valued functions ℝℝ and define a set O ⊂ ℝℝ to be open if it is any
union of sets of the form

∏
x∈ℝ

Ux

where Ux ⊂ ℝ is open and Ux = ℝ for all but finitely many x ∈ ℝ. Check that this is a
topology. It yields pointwise convergence and it can be shownnot to be induced by any
norm. To see the former, take a sequence of functions (fn)n∈ℕ in ℝℝ. Convergence to
f∞ ∈ ℝℝ would amount to all but finitely many terms in the sequence to belong to any
given open set of the above type. For this, it is enough that inclusion be valid for one of
the sets in the union defining the specific open set chosen. This amounts to requiring
that, for any given finite set x1, . . . , xM ∈ ℝ with M ∈ ℕ and given ε1, . . . , εM ∈ (0,∞),
there be N ∈ ℕ with

fn(xk) − f∞(xk)
 ⩽ εk for k = 1, . . . ,M and n ⩾ N .
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This is always the case when the same holds true for M = 1 (why?), i. e., it is enough
to consider single arguments x ∈ ℝ, which indeed amounts to pointwise convergence.
Can you find a metric, which induces pointwise convergence on ℝℝ?

While this is beyond the scope of this book, examples of topological spaces can
be exhibited, the topology of which cannot even be induced by a metric. An example
is the topological space just discussed.

Finally, notice that compactness can be defined in a topological space since it
only requires the concept of open set. Clearly, different topologies on a given set de-
termine different concepts of compactness, in general. It turns out that compactness is
a stronger condition on a subset of a topological space than sequential compactness.
Recall that the two concepts are equivalent in a metric space.
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5 Differentiation
Differentiability is one of the central concepts of mathematics, and when available,
makes it possible to simplify the analysis of many a problem. In this chapter, the
classical concept of differentiability is introduced and carefully explained. The impor-
tant concept of weak or generalized differentiability is (at least partially) discussed in
Chapter 9. We will proceed in steps, starting with real real-valued functions, moving
to maps between finite-dimensional vector spaces, infinite-dimensional spaces, and
finally more general sets still. We strive to highlight two important points of view, one
functional analytical and the other geometric (the distinction not being fully exclu-
sionary). In both cases, a differentiable function is locally approximated by a linear
map, but in the first the focus is squarely on the linear map, whereas in the second, it
is on taking derivates along curves (i. e., in specific directions).

5.1 Introduction

The intuition behind differentiability is geometric: we think of a set as being differen-
tiable at a point if it is locally well approximated by an affine space,1 which is then
necessarily tangent to the set at that point. In order to make this intuition mathemat-
ically sound, some care and effort are required. Let f : ℝ→ ℝ be a given function and
fix an argument x0 ∈ ℝ. If f is not continuous at x = x0, then it certainly cannot be
well approximated by a line (i. e., by an affine function), which is continuous. Think
of a function having a jump at x0, for instance. Assuming continuity, we look for an
affine function, i. e., for a function a of the form

a(x) = m(x − x0) + b, x ∈ ℝ,

for m, b ∈ ℝ, that “well” approximates f near x0. At a minimum, f and a should have
the same value at x0, which entails that

f (x0) = l(x0) = b and that a(x) = f (x0) +m(x − x0), x ∈ ℝ.

We therefore would like to choosem so that

f (x) ≃ f (x0) +m(x − x0),

at least for x ≃ x0. This suggests considering the expression

f (x) − f (x0)
x − x0

,

1 An affine space is a vector subspace translated inside the encompassing space. IfW ⊂ V for vector
spaces V ,W , then v +W = {v + w |w ∈ W} is an affine space.

https://doi.org/10.1515/9783110780925-005
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which is obtained solving for m. Unfortunately, this difference quotient depends on
x and does not directly determine m in a unique way. Since we are only interested in
a good approximation near x0, we could try to take x = x0. Unfortunately, we would
obtain 0

0 , which is undefined. We know from basic calculus, however, that we can try
and compute the limit

lim
x→x0

f (x) − f (x0)
x − x0

instead, whichmay ormay not exist. It does not exist in general as the simple function
f (x) = |x| shows when x0 = 0. If it exists, however, we can set

m = lim
x→x0

f (x) − f (x0)
x − x0

andobtain a goodapproximation for f at x0, one the graphofwhich is in fact “tangent”
to the graph of f . This motivates the definition of differentiability and of derivative for
the function f at an argument x0. The function f is called differentiable at x0 if the limit
exists, and in that case, its value is calledderivative of f at x0 and is denotedby f ′(x0)or
byDf (x0). Themain reason for spelling out these details is to gain enough insight to be
able to extend the definition of differentiability tomore general useful contexts. Before
continuing, we show that, for a differentiable function, the affine approximation just
derived is the best possible one. Indeed, if a function f : ℝ → ℝ is differentiable at x0
and a(x) = f (x0) +m(x − x0) form ∈ ℝ, then

lim
x→x0

f (x) − a(x)
x − x0

= lim
x→x0

f (x) − f (x0)
x − x0

−m = Df (x0) −m,

so that the approximation is best when Df (x0) −m = 0 since

f (x) − a(x)
 ≃
Df (x0) −m

|x − x0|

for x ≃ x0.
In order to simplify later discussions, it is convenient to introduce some notation.

We say that f (x) − f (x0) = o(|x − x0|0) = o(1) as x → x0 to indicate the validity of

lim
x→x0

|f (x) − f (x0)|
|x − x0|0

= lim
x→x0
f (x) − f (x0)

 = 0,

and say, analogously, that

f (x) − f (x0) − Df (x0)(x − x0) = o(|x − x0|
1) = o(|x − x0|) as x → x0,
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to mean that

lim
x→x0

|f (x) − f (x0) − Df (x0)(x − x0)|
|x − x0|

= 0.

In summary, differentiability amounts to “good” approximability by linear functions.
In more intuitive words, differentiability at an argument x0 means that the graph of
the functionwould look like a straight line to you if youwere a very tiny (infinitesimal)
creature standing on it at the point (x0, f (x0)). We are tiny enough to perceive the earth
as flat, which is the same experience a tiny germmight have on the surface of a soccer
ball. On the other hand, if you are standing on the tip of pyramid (or a triangle, for that
matter), it does not really matter how tiny you are, you will always be aware of two
different slopes on either side. Thus, a nondifferentiable function will never look like
a straight line, nomatter howmuch you zoom in. Figure 5.1 visualizes this discussion.

Figure 5.1: The graph of a differentiable function (blue line) is shown as well as that of a nondifferen-
tiable function (dashed blue line). As one zooms in, the graph of the differentiable function appears
to coincide more and more with that of its affine approximation (gray dashed line). This ostensibly
does not occur for the nonsmooth function in that the kink always looks the same, regardless of
magnification.
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5.2 Derivatives as linear maps

Given normed vector spaces (V , | ⋅ |V ) and (W , | ⋅ |W ), which for now, we consider over
the reals and finite-dimensional, we can think of linear maps as being particularly
simple maps. In fact, by introducing bases u1, . . . , um in V and v1, . . . , vn inW , we saw
in Chapter 3, that any linear map L : V → W can be represented (fully understood)
in terms of a matrix M = M(L) ∈ ℝn×m, which maps, by matrix multiplication, the
coefficients of arguments to the coefficients of their images. In the chosen bases, the
matrix has entries given by

Mj
k = L(uk)

j, 1 ⩽ j ⩽ n, 1 ⩽ k ⩽ m,

where L(uk)j ∈ ℝ denotes the jth coefficient in the basis expansion of the vector L(uk) ∈
W . Whenm = n = 1 the matrix reduces to a real number and matrix multiplication to
multiplication of reals. We take linear maps as the local model of differentiable maps
as we did for real real-valued functions, meaning that a map f : V → W will be called
differentiable at an argument u0 ∈ V , if it can be well approximated by an affine map
near u0. By an affine map, we mean a function of the form

[u → L(u) + w],

where L : V → W is linear and w ∈ W is a fixed vector in W . More precisely, f is
considered differentiable at u0 with derivative Df (u0) ∈ ℒ(V ,W) if it holds that

lim
u→u0

|f (u) − f (u0) − Df (u0)(u − u0)|W
|u − u0|V

= 0,

i. e., if

f (u) = f (u0) + Df (u0)(u − u0) + o(|u − u0|V ) as u→ u0,

borrowing from the notation introduced at the end of the previous subsection. Some-
times it is better to use the equivalent statement that

f (u0 + h) = f (u0) + Df (u0)h + o(|h|V ) as h→ 0,

where, throughout, we simplified the notation bywriting Lu for L(u)when L ∈ ℒ(V ,W)
and u ∈ V .2 Let us consider a couple of examples. Fix A ∈ ℝm×m and take the map

f : ℝm → ℝ, x → 1
2
x⊤Ax,

2 This is commonly done for linear maps on account that application of a linear map corresponds to
multiplication by a matrix in the finite-dimensional context upon introduction of bases/coordinates.
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and consider

1
2
(x + h)⊤A(x + h) − 1

2
x⊤Ax − 1

2
x⊤(A + A⊤)h = 1

2
h⊤Ah,

which follows from linearity and using that h⊤Ax = x⊤A⊤h for any x, h ∈ ℝm. The
reader is reminded that the transpose A⊤ ∈ ℝm×m of a matrix A ∈ ℝm×m has entries
which satisfy (A⊤)kj = A

j
k for j = 1, . . . ,m and k = 1, . . . ,m. Next, observe that

h
⊤Ah ⩽ |h|2|Ah|2 ⩽ |h|2 max

i=1,...,m
A

i
∙
2|h|2 = C|h|

2
2,

by the Cauchy–Schwarz inequality. This implies that

0 ⩽
|f (x + h) − f (x) − 1

2x
⊤(A + A⊤)h|

|h|2
⩽ C|h|2 → 0 (h→ 0),

showing that

f (x + h) − f (x) − 1
2
x⊤(A + A⊤)h = o(|h|2)

and, therefore, that f is differentiable at x with derivative given by the linear map de-
fined by

Df (x) : ℝm → ℝ, h → 1
2
x⊤(A + A⊤)h.

For a symmetric matrix, i. e., for a matrix with A⊤ = A, the derivative simplifies to
Df (x) = x⊤A, which it generalizes the simple case whenm = 1 and A = a ∈ ℝ = ℝ1×1,

f (x) = 1
2
ax2, f ′(x) = ax = x⊤a, x ∈ ℝ,

since clearly y⊤ = y for any y ∈ ℝ.
The second example we consider is

f : ℝn×n → ℝn×n, M → M2,

which consists in squaring amatrix. If we are to considerℝn×n a normed vector space,
we need to define a norm on it. A few options are available and we choose

‖M‖ = sup
0 ̸=x∈ℝn

|Mx|2
|x|2
= sup
|x|2=1
|Mx|2,

leaving it as an exercise (Q1) to verify the second identity, to show the validity of all
norm defining properties, and to ponder what possible geometric interpretation this
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norm has. Now, if f is differentiable at a matrixM, the derivativeDf (M) : ℝn×n → ℝn×n

would have to be a linear map. Again notice that

(M + H)(M + H) −M2 −MH − HM = H2.

For matricesM,N ∈ ℝn×n, it holds that

‖MN‖ = sup
|x|2=1
|MNx|2 ⩽ ‖M‖ sup

|x|2=1
|Nx|2 ⩽ ‖M‖‖N‖,

since |My|2 ⩽ ‖M‖|y|2 for any y ∈ ℝn. It follows that

f (M + H) − f (M) − (MH + HM) =
H

2 ⩽ ‖H‖
2,

and, upon division by ‖H‖, that

f (M + H) − f (M) − (MH + HM) = o(‖H‖) as H → 0.

We conclude that f is differentiable at any M ∈ ℝn×n and that the derivative at M is
given by the linear map

Df (M) : ℝn×n → ℝn×n, H → MH + HM,

where linearity follows from the fact that matrix multiplication is linear (you should
check this if you do not readily see it).

Finally, set L2 = L2([0, 1],ℝ) and consider the map defined by

F : L2 → ℝ, u → 1
2
‖u‖22 =

1
2

1

∫
0

u(x)

2 dx.

Observe that, for any given h ∈ L2 it holds that

F(u + h) − F(u) =
1

∫
0

u(x)h(x) dx + 1
2

1

∫
0

h(x)

2 dx,

from which it follows that:

|F(u + h) − F(u) − ∫10 u(x)h(x) dx|
‖h‖2

=
1
2
‖h‖2 → 0 as ‖h‖2 → 0.

We conclude that F is differentiable at u ∈ L2 with derivative there given by

Df (u) : L2 → ℝ, h →
1

∫
0

u(x)h(x) dx.
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Notice that F(u) = 1
2 (u|u) and that DF(u) = (u|⋅) in the sense that DF(u)h = (u|h) for

h ∈ L2.

5.3 Derivatives along curves

A real real-valued function canbe thought of as amapof one variable and its derivative
at an argument as the local rate of change of the function. In this sense, the function of
one variable hardly needs to be defined along a straight line. As a matter of fact, x can
be thought of as a parameter measuring the signed distance from an arbitrary origin
along any line, straight or not. We define a curvelet, or simply a curve, in a normed
vector space (V , | ⋅ |V ) over ℝ as a differentiable map

γ : (−1, 1) → V ,

and visualize it as the set {γ(t) | t ∈ (−1, 1)} it traces in the space V and shown as a
dashed line in the example image below.

We saw in the previous section that we can think of the derivative γ̇(t) = Dγ(t) ∈ V as
the vector tangent to the curve in the point γ(t) for any t ∈ (−1, 1). In a normed vector
space, vectors have a direction and a length, but do otherwise not have a “location”.
We can, however, think of the zero vector as a “point”, in which case we can imagine
any other vector v ̸= 0 as originating in that special point and of its tip as the point
determined by the vector v. If we think of a vector as the point at its tip in this sense,
we use the different notation P,Q, . . . . With this language, we can consider a curve γ
in V that goes through a point P, i. e., satisfying γ(0) = P, and the tangent vector of
which at the point P is given by γ̇(0) = v ∈ V (see depiction above). Given a function
f : V → ℝ, which happens to be differentiable at P, its local rate of change at the point
P in direction v is then computed as

d
dt
(f ∘ γ)(0) = Df (γ(0))γ̇(0) = Df (P)v,
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by the chain rule. This is the directional derivative of f atP in direction v and is denoted
by 𝜕vf (P). The use of directional derivatives reduces differentiability of functions of
several variables to differentiability along specific directions, and thus to functions
of a single variable. When V = ℝm, there are distinguished directions e1, . . . , em de-
termined by its natural basis. The so-called partial derivatives 𝜕ej = 𝜕j are therefore
special directional derivatives. For a differentiable function f : ℝm → ℝ, partial and
directional derivatives at a point x ∈ ℝm can be computed by

𝜕jf (x) = Df (x)ej and by 𝜕vf (x) = Df (x)v,

for v ∈ ℝm. In particular, partial and directional derivatives always exist for differen-
tiable functions. The converse is, however, not true: the existence of all partial deriva-
tives 𝜕jf (x), j = 1, . . . ,m, of a function does not necessarily yield differentiability of f at
x. It is shown in any basic advanced calculus class that equivalence can be regained
if continuity of the partial derivatives is assumed. Here, we only present an example
illustrating this phenomenon. Take the function f : ℝ2 → ℝ defined by

f (x1, x2) =
{
{
{

x1x2
x21+x22
, for x ̸= 0,

0, for x = 0,

and notice that 𝜕1f (0) = 𝜕2f (0) = 0 but f cannot be differentiable in x = 0 since it is
not even continuous there as follows from

lim
t→0

f (t,0) = 0 ̸= 1
2
= lim

t→0

t2

2t2
= lim

t→0
f (t, t).

5.4 Spaces of differentiable functions

We can now give more examples of infinite-dimensional vector spaces consisting
of continuously differentiable functions. In order to efficiently deal with partial
derivatives, we need to introduce so-called multiindices. These are simply vectors
α = (α1, . . . , αm) ∈ (ℕ0)m = ℕm0 ,

3 which are used to indicate the number of derivatives
taken in the directions e1, . . . , em for a function ofm real variables. Specifically,

𝜕α = 𝜕α11 𝜕
α2
2 ⋅ ⋅ ⋅ 𝜕

αm
m .

The length of the multiindex α ∈ ℕm0 is denoted by |α| and is given by α1 +α2 + ⋅ ⋅ ⋅+αm.
If Ω ⊂ ℝm is an open set andm ∈ ℕ, define

C(Ω,ℝn) = {f : Ω→ ℝn  f is continuous}

3 The notationℕ0 stands forℕ ∪ {0}.
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and, for k ∈ ℕ,

Ck(Ω,ℝn) = {f : Ω→ ℝn  𝜕
αf ∈ C(Ω,ℝn) for |α| ⩽ k}.

While the spacesCk(Ω,ℝn)are vector spaces (check), theydonot carry anorm. Starting
with C((0, 1),ℝ), which contains the function f (x) = 1

x , we see that functions in these
spaces can be unbounded and prevent us from using natural candidates for a norm,
such as the infinity norm given by

‖f ‖∞ = sup
x∈Ω

f (x)
.

If we add the condition of boundedness, we obtain normed vector spaces

BCk(Ω,ℝn) = {f : Ω→ ℝn  𝜕
αf ∈ BC(Ω,ℝn) for |α| ⩽ k},

starting from

BC(Ω,ℝn) = {f : Ω→ ℝn  f is continuous and bounded}

if we use the infinity norm for the latter and

‖f ‖k,∞ = ∑
|α|⩽k

𝜕
αf ∞

for the former. It is an excellent exercise (Q2) to show that the spaces BCk(Ω,ℝn) are
complete, i. e., Banach spaces.

5.5 The inverse and implicit function theorems

Given a function f : Ω → ℝn, defined on an open subset Ω ⊂ ℝn, and y ∈ ℝn, we
can ask whether x ∈ Ω can be found such that the equation y = f (x) is satisfied.
If the function were linear, i. e., of the form f (x) = Ax for a matrix A ∈ ℝn×n, this
questionwould boil down to the invertibility of thematrix,which canbe characterized
by the nonvanishing of its determinant. Assume that we know that f (x0) = y0 for some
specific argument x0 ∈ Ω and we would like to determine whether a solution can still
be found if y0 is replaced by a close by value y. To simplify the discussion as much as
possible, we can assume that x0 = 0 be moving the origin of the coordinate system to
that point and that y0 = 0 be replacing the function f by the function f − y0. Now, if
the function happens to be differentiable, then we know that

f (x) = f (x0) + Df (x0)(x − x0) + o(|x − x0|2)
= Df (0)x + o(|x|2) as x → x0 = 0.
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This suggests that, if thematrixDf (0) ∈ ℝn×n is invertible, thenmaybe thewhole func-
tion is aswell, at least for y and x near 0. This turns out to be true and goes by the name
of inverse function theorem. The rest of this section is devoted to its derivation, which
will rest on the use of a very useful fixed-point theorem named for the mathemati-
cian, Stefan Banach. Because of its independent interest, we formulate it in the more
general context of a metric space and give it its own subsection.

5.5.1 Banach fixed-point theorem

Imagine that you are in Buenos Aires as a tourist, open up a city map on a café table
while you are sipping on a maté, and ask yourself: is there a point on this map, which
represents the very point in the city under it? The Banach fixed-point theorem gives
a positive answer to this very question and also shows that there is only one such a
point.

Fact. Let (M, dM) be a complete nonempty metric space and let the map f : M → M be
a contraction, i. e., a map satisfying

dM(f (x), f (y)) ⩽ αdM(x, y), x, y ∈ M,

for a constant α ∈ (0, 1). Then f possesses a unique fixed point x ∈ M, i. e., a point such
that f (x) = x.

It is a good exercise to translate between the example and the formulation of the
theorem and determine what is playing the role of what. In particular, what do you
think is the role of maté?4

In order to find a fixed point, choose any initial guess x0 ∈ M ̸= 0 and recursively
define a sequence (xn)n∈ℕ inM by

xn+1 = f (xn), n ⩾ 0.

If we can show that it is a Cauchy sequence, completeness ofM will imply that it con-
verges to some limit x∞ ∈ M, i. e., dM(xn, x∞) → 0 as n → ∞. Then the assumption
yields

dM(f (xn), f (x∞)) ⩽ αdM(xn, x∞)→ 0 as n→∞,

showing that xn+1 = f (xn)→ f (x∞) as n→∞, and finally that necessarily f (x∞) = x∞.
Toward proving the Cauchy property, observe that

dM(xn, xn−1) ⩽ αdM(xn−1, xn−2) ⩽ ⋅ ⋅ ⋅ ⩽ α
n−1dM(x1, x0) for n ⩾ 2,

4 just joking.
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from which follows that, for n ⩾ m ⩾ 2,

dM(xn, xm) ⩽
n
∑

j=m+1
dM(xj, xj−1) ⩽ dM(x1, x0)

n
∑

j=m+1
αj−1

= dM(x1, x0)[
n−1
∑
j=0

αj −
m−1
∑
j=0

αj]

= dM(x1, x0)[
1 − αn

1 − α
−
1 − αm

1 − α
] =

dM(x1, x0)
1 − α
(αm − αn).

The claim now follows from the fact that (αn)n∈ℕ is Cauchy since it converges to 0 on
account of α ∈ (0, 1). As for uniqueness, observe that, for two fixed-points x and x̃, we
would have that

dM(x, x̃) = dM(f (x), f (x̃)) ⩽ αd(x, x̃),

and thus 0 ⩽ (1−α)dM(x, x̃) ⩽ 0, fromwhich it readily follows that x = x̃ since 1−α ̸= 0.
√

5.5.2 The inverse function theorem

We derive the theorem first and formulate it at the end. Given an open set Ω ⊂ ℝn

with 0 ∈ Ω and f : Ω → ℝn with f (0) = 0 satisfying some properties, which will
be identified in the course of the derivation, we would like to show that the equation
f (x) = y is solvable for y ≃ 0 by a solution x ≃ 0. Notice that we cannot exclude the
possibility that other solutions be found that are not close to the origin. To see the
latter, simply consider y = sin(x), where sin(0) = 0 and observe that, for each |y| < 1,
there is a unique solution x with |x| < π

2 , but infinitely many more farther from the
origin. If we assume that f is differentiable at x = 0 and thatDf (0) is invertible, we can
rewrite y − f (x) = 0 as

Df (0)x = Df (0)x + y − f (x)

or as the fixed-point equation

x = x + Df (0)−1[y − f (x)] = Φy(x).

It follows that, given y, any fixed point of Φy will deliver a solution of the equation
y = f (x). Since

Φy(x)
2 =
x + Df (0)

−1[y − f (x)]2
= x + Df (0)

−1[y − Df (0)x + o(|x|2)]
2
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⩽ Df (0)
−1[|y|2 + o(|x|2)] = c|y|2 + o(|x|2) as x → 0,

we find δ1 > 0, using the definition of o, such that

o(|x|2) ⩽
|x|2
2
⩽
δ1
2

if |x|2 ⩽ δ1.

If |y|2 ⩽
δ1
2c , then

Φy(x)
2 ⩽

δ1
2
+
δ1
2
= δ1 for |x|2 ⩽ δ1,

or in other words,

Φy(𝔹(0, δ1)) ⊂ 𝔹(0, δ1) ∀y ∈ 𝔹(0,
δ1
2c
).

If f is differentiable in a ball around x = 0, the mean value theorem5 yields that

f (x1) − f (x2) = Df (x2 + τ(x1 − x2))(x1 − x2),

for some τ ∈ [0, 1] and, if Df is continuous at x = 0, we have that

Df (x2 + τ(x1 − x2)) = Df (0) + o(1) as x1, x2 → 0.

Combining these, we obtain that

Φy(x1) −Φy(x2)
2 =
x1 − x2 − Df (0)

−1(f (x1) − f (x2))
2

⩽ o(1)|x1 − x2|2,

as x1, x2 → 0. Thus there is δ2 > 0 such that

Φy(x1) −Φy(x2)
2 ⩽

1
2
|x1 − x2|2

for x1, x2 ∈ 𝔹(0, δ2) and any y ∈ 𝔹(0,
δ1
2c ). This means that

Φy : 𝔹(0, δ)→ 𝔹(0, δ)

is a contraction independently of y ∈ 𝔹(0, δ2c ), where δ = min{δ1, δ2}. Since 𝔹(0, δ) is
complete as a closed subset of a complete space (why? (Q3)), we can apply the Banach
fixed-point theorem to obtain

5 You can apply the mean value theorem to the function given by [t → f (x2 + t(x1 − x2))] and defined
on the interval [0, 1].
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∀y ∈ 𝔹(0, δ
2c
) ∃! x ∈ 𝔹(0, δ) with Φy(x) = x or f (x) = y.

Continuity of f implies that

𝒰 = f −1(𝔹(0, δ
2c
))

is open,making f |𝒰 injective and surjective on its range. Notice that unique solvability
also yields a map X = X(y), which satisfies Φy(X(y)) = X(y) for y ∈ 𝔹(0,

δ
2c ). Differen-

tiating this identity with respect to y and denoting the identity matrix of size n × n by
1n gives

DX(y) = DyΦy(X(y)) + DxΦy(X(y))DX(y)

= Df (0)−1 + [1n − Df (0)
−1Df (X(y))]DX(y),

which is equivalent to

Df (0)−1Df (X(y))DX(y) = Df (0)−1,

and gives

DX(y) = Df (X(y))−1,

where invertibility ofDf (X(y)) in aball around0 is ensuredby the invertibility ofDf (0),
the continuity ofDf , and the continuity of the determinant, which implies that the set
{M ∈ ℝn×n | det(M) ̸= 0} is open. This shows that f |−1𝒰 is differentiable and that

D(f |−1𝒰 )(y) = Df (x)
−1 whenever y = f (x).

We summarize our findings in the following.

Fact. Let Ω ⊂ ℝn be open and f : Ω → ℝn be differentiable in a ball around 0 ∈ Ω with
continuous derivative Df and satisfying f (0) = 0. If Df (0) is invertible, then there is an
open set 𝒰 ⊂ Ω containing 0 and an open set 𝒱 ⊂ ℝn containing 0 such that

f : 𝒰 → 𝒱 ,

is bijective, has a differentiable inverse, and

Df −1(y) = Df (x)−1,

for y = f (x) ∈ 𝒱 .

It can be proved (try) that, if f is k-times continuously differentiable and satisfies
the conditions of the inverse function theorem above, then so is f −1 : 𝒱 → 𝒰 .
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5.5.3 Newton’s method revisited

We reconsider Newton’s algorithm for finding zeros of a function f : ℝn → ℝn with
new tools in our bag and show that it does indeed converge to a zero provided the
initial guess is close enough to it. Recall that the algorithm consists in iterating via

xk+1 = xk − Df (xk)
−1f (xk), k ⩾ 0,

starting from an initial guess x0 ∈ ℝn. We assume that f is twice continuously differ-
entiable, denote the zero of f we are trying to compute by x∗, and observe that

xk+1 = xk − Df (xk)
−1[f (x∗) + Df (x∗)(xk − x∗) + O(|xk − x∗|

2
2)]

= x∗ − Df (xk)
−1[(Df (x∗) − Df (xk))(xk − x∗) + O(|xk − x∗|

2
2)].

In order for this calculation to be valid and for the algorithm to be well-defined, it is
necessary that Df (xk) be invertible. This can be ensured by assuming that Df (x∗) be
invertible and that xk ≃ x∗ on account that Df is continuous. Since Df is once con-
tinuously differentiable by assumption, Df is Lipschitz continuous in any closed ball
𝔹2(x∗,R) about x∗ (show this), so that

Df (x∗) − Df (xk)
 ⩽ L|xk − x∗|2, xk ∈ 𝔹2(x∗,R),

for some constant L > 0. Using the definition of O6 and the boundedness of (Df )−1 on
𝔹2(x∗,R), we can estimate the recursive formula above to obtain

|xk+1 − x∗|2 ⩽ C|xk − x∗|
2
2, x ∈ 𝔹2(x∗,R),

for a constant C > 0. Show that this last inequality is enough to conclude that the
sequence (xk)k∈ℕ converges to x∗ for any initial guess x0, provided x0 is chosen close
enough to x∗.

5.5.4 The implicit function theorem

Closely related to the inverse function theorem is the implicit function theorem to
which it is equivalent.

Fact. Consider a continuously differentiable function (i. e., differentiable with continu-
ous derivative) f : Ω→ ℝn, whereΩ ⊂ ℝn+m is an open subset and n,m ∈ ℕ. Take a pair

6 One says that f (x) = O(g(x)) as x → x0 for two functions f , g iff |f (x)|2 ⩽ C |g(x)|2 for |x − x0|2 ⩽ δ for
some δ,C > 0.
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(x0, y0) ∈ ℝn × ℝm = ℝn+m with f (x0, y0) = 0 and assume that Dxf (x0, y0) is invertible,
where we set Dxf = [𝜕xk f

j]j,k=1,...,n. Then there are open sets 𝒰 ∋ (x0, y0) and𝒲 ∋ y0 and
a differentiable function g :𝒲 → ℝn such that

f (g(y), y) = 0, y ∈𝒲 ,

and this is the only solution of the form (x, y) in 𝒰 . Furthermore, it holds that

Dg(y) = −Dxf (g(y), y)
−1Dyf (g(y), y), y ∈𝒲 .

Before giving a sketch of the proof, we consider a simple example as a first illus-
tration. The real-valued function f (x, y) = x2 + y2 − 1 defined on ℝ2 has derivative

Df (x, y) = [2x 2y] ,

for which Dxf (1,0) = 2 is invertible and f (1,0) = 0. Thus there is an open set 𝒲 ⊂ ℝ
containing y = 0 and a map g : 𝒲 → ℝ such that f (g(y), y) = 0 for y ∈ 𝒲. Clearly, in
this case, the function is given by g(y) = √1 − y2, and the sets by 𝒲 = (−1, 1) and by
𝒰 = {(x, y) | x > 0}. It can also be verified that

Dg(0) = −2y

2√1 − y2

y=0
= 0 = −

Dyf (1,0)
Dxf (1,0)

.

As for the proof, define the auxiliary function

F(x, y) = (f (x, y), y) : ℝn+m → ℝn+m,

which inherits the continuity and differentiability properties of f . It holds that
F(x0, y0) = (0,0). By moving the origin of ℝn+m to (x0, y0), this amounts to F(0) =
0 ∈ ℝn+m. Since

DF(x, y) = [Dxf (x, y) Dyf (x, y)
0 1m

]

the matrix DF(0,0) is invertible (since Dxf (0,0) is) and the inverse function theorem
can be invoked and allows to conclude the proof. Filling in the missing details is an
excellent exercise that requires a good understanding of the material.

5.6 A dive into coordinates

The use of coordinates is ubiquitous in mathematics, especially in differential geom-
etry, and in applications. We illustrate their use and related issues in the “simpler”

 EBSCOhost - printed on 2/10/2023 3:59 PM via . All use subject to https://www.ebsco.com/terms-of-use



5.6 A dive into coordinates | 77

context of vector spaces. This sets the stage for their use in the description of differen-
tiable manifolds while allowing for a more compact presentation, without sacrificing
the main issues.

In an abstract finite-dimensional vector space V over ℝ, vectors cannot readily
be thought of as tuples of numbers. Think of vectors in the physical world, such as
representing a force acting on an object: while you can tell that a force is acting, you
do not see tuples of numbers floating around. In order to be able to represent a vector
by coordinates, it is necessary to choose a basis, i. e., to fix an appropriate number of
linearly independent reference vectors.

Given a basis u1, . . . , ud of a d ∈ ℕ dimensional real vector space V , we can use it
to represent any vector v ∈ V by its coordinates

X(v) = (X1(v),X2(v), . . . ,Xd(v)) ∈ ℝd

obtained from its unique representation as a linear combination of the chosen basis
vectors

v =
d
∑
j=1

Xj(v)uj

With coordinates in hand, we can think of any curve γ in V as a curve in ℝd given
by its coordinate curve X ∘ γ. Differentiability of the curve could then be defined as
differentiability of X ∘ γ, i. e., of all its coordinates

Xj ∘ γ : (−1, 1)→ ℝ, j = 1, . . . , d.

Similarly, given a function f : V → ℝ, it becomes possible to gain insight into its be-
havior by thinking of it as a function of the coordinates of its argument v ∈ V . We vary
v by varying its coordinate vector x, which becomes the new independent variable. In
other words, we consider f as the function

f ∘ X−1 : ℝd → ℝ, x → f (X−1(x)),

where it holds that

X−1 : ℝd → V , x →
d
∑
j=1

xjuj.

Differentiability of f could similarly be defined as differentiability of its coordinate rep-
resentation f ∘ X−1. Of course, this raises a whole set of questions, including depen-
dence on the arbitrary choice of basis performed in the beginning of this argument.
We will return to this in a little bit. For now we point out that, using this idea of in-
troducing coordinates, we effectively replaced the abstract vector space V with ℝd so
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that curves in V and functions on V can be thought of as curves in and functions on
ℝd. Given a curve γ in V and a function f on V , we can define differentiability directly
as we did in the previous two sections providedwe have a norm defined on V . We can,
however, also take the coordinates’ approach, which does not require a norm on V . In
the latter case, if we are interested in the behavior of f along γ, we would consider f ∘γ
but would have to interpret this composition in coordinates as (f ∘ X−1) ∘ (X ∘ γ) and
compute its derivative as

d
dt
[(f ∘ X−1) ∘ (X ∘ γ)](t)

= D(f ∘ X−1)((X ∘ γ)(t)) d
dt
(X ∘ γ)(t)

=
d
∑
j=1
(
𝜕
𝜕xj
(f ∘ X−1))((X ∘ γ)(t)) d

dt
(Xj ∘ γ)(t),

which is perfectly justified since f ∘X−1 and X ∘ γ are assumed to be differentiable. The
outcome is the same as if we had computed

(
d
dt
f ∘ γ)(t) = Df (γ(t))γ̇(t),

since f and γ are differentiable. The reason of this seemingly vacuous exercise resides
in the fact that the coordinates’ approach can be used (as we shall see in Chapter 6)
even in cases when it is impossible to define differentiability of f and γ directly due
to a lack of a linear structure (and of a norm). The above discussion shows that the
choice of particular coordinates does not affect the final result, i. e., that the choice of
other coordinates (i. e., of another basis in this case) would have delivered the same
outcome.

Working at a point P and using a curve γ in V with γ(0) = P and γ̇(0) = v ∈ V , it is
possible to compute the directional derivative dPf (v) at P in direction v in coordinates
X as

dPf (v) =
d
∑
j=1

𝜕f
𝜕xj
(X(P))dxj(v) = (

d
∑
j=1

𝜕f
𝜕xj

dxj)(v),

where the two terms in the first sum are

𝜕f
𝜕xj
(X(P)) = 𝜕j(f ∘ X

−1)((X ∘ γ)(0))

and

dxj(v) = d
dt
(Xj ∘ γ)(0) = Xj(γ̇(0)) = Xj(v),
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where the linearity of X was used in the second identity of the second term. As ex-
plained above, dPf (v) only depends on P, v, and f , i. e., it does not depend on the
specific coordinates X used in the computation. This defines the so-called differential
df of a function f , which encodes the local rate of change of the function f across any
point P in any direction v. Of course, we have that dPf (v) = Df (P)v.

We conclude this section by considering maps f : V → W between finite-
dimensional real vector spaces. We obtain a coordinate representation of f by choos-
ingbasesu1, . . . , um inV and v1, . . . , vn inW . Coordinates are givenbymapsX : V → ℝm

and Y : W → ℝn yielding the uniquely determined coefficients in the respective basis
expansions of vectors in these spaces. We can then think of f in coordinates as the
map

Y ∘ f ∘ X−1 : ℝm → ℝn, x → Y(f (X−1(x))),

which is often convenient to simply write as

(y1, . . . , yn) = y = f (x) = (f 1(x1, . . . , xm), . . . , f n(x1, . . . , xm)),

by an abuse of notation. In this case, df can be thought of as

df = (d(Y 1 ∘ f ), . . . , d(Yn ∘ f )) = (df 1, . . . , df n).

In this discussion, we considered functions between vector spaces, which can natu-
rally be coordinatizedbyusing globally defined linearmaps (themapsX andY above).
As a matter of fact, coordinates are not even strictly necessary in this context since, at
least when norms are available, differentiability can be understood directly as linear
approximability aswe explained in beginning of the chapter. Theuse of coordinates is,
however, crucial when dealing with nonlinear spaces, such as manifolds introduced
in the upcoming Chapter 6,where coordinates are, in general, only locally defined and
not linear.
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6 Manifolds

The basic idea behind the concept of a manifold is the use of ℝn as a local model for
more general sets, which do not carry a global linear structure like ℝn does, but as
in the case of differentiable manifolds, can locally be well approximated by a linear
space. In this sense, a manifold can be thought of as a generalization of the graph of
a differentiable function, which we know can be (well) approximated by the graph of
an affine function. We will initially focus our attention on manifolds M ⊂ ℝn, i. e.,
manifolds that are subsets ofℝn, but the definition can be extended to the case where
M is just a certain type of topological space to start with, which carries an additional
differentiable structure based on maps (called charts) that coordinatize it in a very
specific way. We will try to convey this point of view even as we mostly only consider
the special case of submanifolds of ℝn in the first part of this chapter.

6.1 A motivating example

Let us start by considering a unit circle as an example in order to motivate the general
definition of a differentiable submanifold. We work in the plane ℝ2 and consider the
set 𝕊1 = {x ∈ ℝ2 | |x|2 = √x21 + x22 = 1}. This set does not have a linear structure, but in
the vicinity of any of its points, it is well approximated by a line, the one tangent to it
at the point. It can, however, not be thought of as the graph of a single differentiable
function, which prevents us from being able to introduce global coordinates to de-
scribe it. We can, however, do so locally. Let us start with coordinates: for the portion
𝕊1x2<0 of the circle where x2 < 0, the map

X1 : 𝕊1x2<0 → ℝ, x → x1,

defines local coordinates. In these coordinates, to each point P in 𝕊1x2<0, there corre-
sponds exactly one point (the coordinate of P) in (−1, 1) ⊂ ℝ and vice versa.

https://doi.org/10.1515/9783110780925-006
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While the coordinate map X1 can be defined on the whole set 𝕊1, taking any bigger
open subset of 𝕊1 destroys the bijectivity of the map. The latter is a crucial ingredient
if we are to avoid confusion in the way coordinates identify points in 𝕊1. We also see
that 𝕊1x2<0 is the graph

𝒢f = {(x, f (x))
 x ∈ (−1, 1)}

of the differentiable function f (x) = −√1 − x2 for x ∈ (−1, 1). Because of this, we declare
that 𝕊1x2<0 is differentiable. By using a similar construction, we can cover the whole set
𝕊1 by (open) subsets, each of which can be viewed as the graph of a differentiable
function. For instance, we can take functions X2,X3,X4 on 𝕊1x1>0, 𝕊

1
x2>0, and 𝕊

1
x1<0, re-

spectively, with values given by X2(x) = X4(x) = x2 and X3(x) = x1. These functions are
all bijective. Another point of view is that of trying to generate the set 𝕊1 by a so-called
parametrization, in this case as a curve. That is sometimes useful and yields a direct
way to generate tangent vectors. In this case, we can use

γ : [0, 2π)→ ℝ2, θ → (cos(θ), sin(θ)),

from which it is a direct calculation to obtain tangent vector

γ̇(θ) = (− sin(θ), cos(θ))

at the point γ(θ). Finally, we observe that 𝕊1 can also be viewed as the zero set of the
smooth map G : ℝ2 → ℝ given by G(x1, x2) = x21 + x

2
2 − 1.

6.2 Submanifolds ofℝn

A differentiable submanifold M of ℝn is first of all a subset. As such, it inherits the
topology of ℝn, in the sense that

τM = {M ∩ O
 O ⊂ ℝ

n is open}

is a topology, and thus makes M into a topological space (check the validity of all
axioms of topology). Now M ⊂ ℝn is a k-dimensional C1-submanifold if each of its
points x ∈ M admits an open set Ox ∈ τM containing x and a homeomorphism (i. e., a
continuous map with continuous inverse)

φx : Ox → 𝔹ℝk (0, 1) = {x ∈ ℝ
k  |x|2 < 1}

such that φ−1x : 𝔹ℝk (0, 1) → ℝ
n is continuously differentiable and satisfies φx(x) = 0

and rank(Dφ−1x (⋅)) = k, where the rank of a matrix is the maximal number of linearly
independent columns, or equivalently, rows. The map φx provides local coordinates
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for M about the point x. While we insist that φx(Ox) = 𝔹ℝk (0, 1), the ball can be re-
placed by any open subsets ofℝk without affecting the definition. We choose the ball
for visualization purposes.

If

𝕊n−1 = {x ∈ ℝn  |x|2 = 1},

then 𝕊n−1 is a (n − 1)-dimensional C1-submanifold of ℝn. Indeed, if x ∈ 𝕊n−1, define
𝒫x = {y ∈ ℝn | x⊤y = 0}, which is the hyperplane through the origin orthogonal to the
vector x, and Px to be the orthogonal projection onto𝒫x. Taking an orthonormal basis
y1, . . . , yn−1 of 𝒫x and denoting by η = (η1, . . . , ηn−1) the corresponding coordinates,
define the (open) set Ox = {x̃ ∈ 𝕊n−1 | x⊤x̃ > 0} and

φx : Ox → 𝔹ℝn−1 (0, 1), x̃ → η(Px(x̃)).

We leave it to the reader to show that this map has the necessary properties (compute
φ−1x ). Since x is an arbitrary point of 𝕊n−1, this shows that we indeed have a submani-
fold.1

Fact. A k-dimensional C1-submanifold M of ℝn can be viewed, in a small open region
about any of its points, as the graph of a function

f ∈ C1(𝔹ℝk (0, δ),ℝ
n−k)

for some δ > 0.

Let x ∈ M and let φx : Ox → 𝔹ℝk (0, 1) ∋ ξ be some local coordinates. The par-
tial derivatives 𝜕𝜕ξ jφ

−1(0) = Dφ−1(0)∙j, j = 1, . . . , k, yield linearly independent tangent
vectors denoted by u1, . . . , uk toM at x, since

ξj → φ−1(0, . . . ,0, ξj,0, . . . ,0), (−1, 1)→ ℝ
n

is a curve on M through x and Dφ−1(0) has rank k. We complete u1, . . . , uk ∈ ℝn to a
basis ofℝn by adding n−k vectors uk+1, . . . , un, whichwe can choose such that u⊤i ul = 0
for i = 1, . . . , k and l = k + 1, . . . , n and such that u⊤l um = δlm

2 for l,m = k + 1, . . . , n. Using
x as the origin and the vectors u1, . . . , uk as a basis for the tangent k-plane TxM toM at
x, gives coordinates s′ = (s1, . . . , sk), i. e.,

1 Due to the rotational symmetry of the sphere, you can visualize the construction ofφx by assuming,
without loss of generality, that x is the north pole en.
2 We denote by δlm the so-called Kronecker symbol, which vanishes for l ̸= m and has value 1 for
m = l.
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TxM = {x +
k
∑
j=1

sjuj

sj ∈ ℝ for j = 1, . . . , k}

and coordinates s = (s1, . . . , sn) for ℝn,

ℝn = {x +
n
∑
j=1

sjuj for j = 1, . . . , n},

as depicted below in the case n = 2, k = 1.

Denoting by πx : ℝn → ℝk, the linear map defined by πx(y) = s′(y) for y ∈ ℝn with
y = x +∑nj=1 s

juj, we consider the map

πx ∘ φ
−1
x : 𝔹ℝk (0, 1)→ ℝ

k , ξ → πx(φ
−1
x (ξ )) = s

′(φ−1x (ξ )),

for which we have that πx ∘ φ−1(0) = 0 and D(πx ∘ φ−1)(0) = 1k (verify). The inverse
function theorem can therefore be applied to obtain the invertibility of πx ∘φ−1x on the
open set (πx ∘φ−1x )

−1(𝔹ℝk (0, δ)) for some δ > 0. Denote the differentiable inverse of this
map by ψx. Then, in s coordinates, we have that

φ−1x (ψx(𝔹ℝk (0, δ))) = {(s
′, f (s′))  s

′ ∈ 𝔹ℝk (0, δ)},

where f = s′′ ∘ φ−1x ∘ ψx : 𝔹ℝk (0, δ) → ℝ
n−k and s′′(y) are the (sk+1, . . . , sn) coordinates

of y ∈ ℝn. This shows that a small open region of M about x can be described as the
graph of a differentiable function, which yields the claim since x was arbitrary.√
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Being locally the graph of a differentiable function is in fact an equivalent def-
inition of manifold. We just proved the more involved implication. How would you
prove (Q1) the other?

A common source of submanifolds are zero sets of functions. We already saw the
example of the unit sphere 𝕊n−1 ⊂ ℝn, which can be thought of as the zero set of the
function f (x) = 1 − |x|22 defined for x ∈ ℝ

n. The dimension can vary, and before giving
a general result, we consider another example. Define the submanifold of ℝ3 as the
unit circle 𝕊1× {0} in the x1x2-plane.While it cannot be described by a scalar equation,
it is possible to resort to a vector valued function such as

f : ℝ3 → ℝ2, x → (1 − x21 − x
2
2 , x3),

for which 𝕊1 × {0} = f −1(0). It is, however, not always the case that the zero set of a
differentiable function is a manifold. Take f : ℝ2 → ℝ, x → x1x2, which has the union
of the coordinate axis as its zero set

f −1(0) = ℝ × {0} ∪ {0} × ℝ.

This set is not a manifold in the above sense because it is impossible to describe it
as the graph of a function in any region containing the origin. We give a sufficient
condition for the zero set of a function to be, at least locally, a submanifold.

Fact. Let f ∈ C1(Ω,ℝn−k) for an open set Ω ⊂ ℝn and assume that f (x0) = 0 and that
rank(Df (x0)) = n − k. Then the set f −1(0) ∋ x0 is a k-dimensional submanifold of ℝn in
an open region about x0.

We can use the implicit function theorem as follows. Since the rank of Df (x0) is
n−k, we can find n−k of its columns, that are linearly independent. By reordering and
relabeling the independent variables x1, . . . , xn, we can assume that it is the last n − k
columns (why exactly?). It follows that the matrix Dx′′ f (x0) is invertible if x = (x′, x′′),
where x′ = (x1, . . . , xk) and x′′ = (xk+1, . . . , xn). The implicit function theorem now
yields open sets 𝒰 ⊂ ℝn, containing x0, and 𝒲 ⊂ ℝk, containing x′0, such that any
solution x of f = 0 in 𝒰 has the form

x = (x′, g(x′)) for x′ ∈𝒲 ,

for a differentiable function g :𝒲 → ℝn−k . This shows that f −1(0) is indeed the graph
of a differentiable function about x0.√

The above (maximal) rank condition is sufficient, but not necessary as is demon-
strated by considering the zero set of the function

f (x, y) = y3 − x5, x, y ∈ ℝ,
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which is the graph G = {(x, sign(x)|x|5/3) | x ∈ ℝ}. Indeed, Df (0,0) = [0 0] does not
satisfy the rank condition but G is a 1-dimensional differentiable submanifold.

6.3 Abstract manifolds

Submanifolds of ℝn are subsets that carry a topology, the one induced by the ambi-
ent space ℝn, and that are differentiable in the sense of being locally the graph of a
differentiable function. An abstract manifold is also a topological space but it does
not a priori lie inside anyℝn. The topological space (M, τM) is typically assumed to be
Hausdorff. This means that two distinct points P andQ inM always possess neighbor-
hoods3 𝒰P and 𝒰Q, which are disjoint 𝒰P ∩𝒰Q = 0. We sometimes convey this by saying
that points can be separated.

Fact. A compact metric space is Hausdorff and any open set can be obtained as the
countable union of open balls.

Take P ̸= Q ∈ (M, dM). Then r = dM(P,Q) > 0 by one of the axioms of metric so
that

𝔹M(P, r/2) ∩ 𝔹M(Q, r/2) = 0,

for the open balls of radius r/2 about these points. As for the second property, notice
that for each n ∈ ℕ the collection of balls 𝔹M(P, 1/n) for P ∈ M yields an open cover
ofM. Due to its compactness, finite subcovers will exist: let {Pnk | k = 1, . . . ,Nn} be such
that

M ⊂
Nn

⋃
k=1
𝔹M(P

n
k , 1/n).

Then

𝒪 = {𝔹M(P
n
k , 1/m)
 k = 1, . . . ,Nn, andm, n ∈ ℕ}

is a countable collection of open sets, which has the desired property. The reader is
asked to show (Q2) than any open set in M can indeed be written as the union of a
subcollection of𝒪.√

Now, even on an abstract manifold, we would like to be able to do calculus.4 The
basic ingredients will therefore be functions onM, which we would like to study and

3 A subset 𝒰 of a topological space M is called neighborhood of a point P if it contains an open set
containing P.
4 Wedomodel our universe as amanifold, and sincewe are fully immersed in it, we can only perceive
it as an abstract manifold and not as a submanifold of a linear space (what would that be anyway?).
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curves, which we will need in order to take derivatives of functions. When dealing
with a curve γ : (−1, 1) → M on a submanifold M ⊂ ℝn, it is possible to consider its
differentiability since it can be viewed as a curve γ : (−1, 1) → ℝn in the vector space
ℝn. Differentiable curves γ through a point P ∈ M (γ(0) = P) can then be used to de-
fine tangent vectors γ̇(0) toM at P. This is not possible ifM is just a topological space
and it becomes a challenge to even define the concept of differentiable curve. As for
functions f : M → ℝ, we similarly need to define what it means for them to be differ-
entiable. With this in mind, we attempt a definition of abstract manifold mimicking
the one for submanifolds of ℝn. We could say that M is a k-dimensional C1-manifold
if each P ∈ M has an open neighborhood 𝒰P ⊂ M, which admits a homeomorphism
φP : 𝒰P → 𝔹ℝk (0, 1) with φP(P) = 0. While this is well-defined, since it only involves
continuity, yields local coordinates, and φ−1P : 𝔹ℝk (0, 1) → M exists, differentiability
cannot be directly enforced by requiring thatφ−1P be continuously differentiable, as we
did for submanifolds of ℝn, sinceM carries no linear structure.

We will now try to find a way to define a differentiable structure onM by focusing
on the need to study the behavior of functions along curves. The idea will be quite
natural if you think about navigation. In order to steer your ship to your destination,
youuse charts (maps) to trace your hopefully smooth (readdifferentiable) path (curve)
through the ocean. Any single chart cannot cover thewholeworld, sowe need a few of
them covering different regions of the globe. Charts are usually collected into an atlas
of the world.

Starting with a function f , say giving the distance to the next safe harbor, we try
and trace a curve γ taking us to our destination, which always keeps us close enough
to safety. To understand the curve and the function, we use charts, i. e., coordinates.
If the interest is in the vicinity of the point P, we find ourselves at along our journey,
we take a chart X : 𝒰P → 𝔹ℝk (0, 1) defined in an open neighborhood of P and think of
the function f in these coordinates as f ∘ X−1 : 𝔹ℝk (0, 1) → ℝ and call it differentiable
when f ∘ X−1 is differentiable. Similarly, we call the curve γ differentiable if X ∘ γ is
differentiable. This definitions manifestly depend on the choice of the coordinate X
andwewill need to address this issue. If differentiability holds in this sense, however,
we can think of the behavior of f along γ, i. e., of f ∘ γ in coordinates, that is, through
the study of (f ∘ X−1) ∘ (X ∘ γ). Notice that the differentiability of f ∘ γ : (−1, 1) → ℝ
can be considered since it is a function between vector spaces but the same cannot
be said of f : M → ℝ nor γ : (−1, 1) → M. Thus coordinates represent a means of
studying f ∘ γ as the composition of the function f ∘ X−1 : 𝔹ℝk (0, 1)→ ℝ and the curve
X ∘γ : (−1, 1)→ 𝔹ℝk (0, 1) the differentiability of which can be discussed. If all we cared
about was f ∘ γ, we could content ourselves with the differentiability of f ∘ γ. That
would, however, allow for the possibility that, even for maps between vector spaces,

Having calculus available on an abstractmanifold therefore helps us study the physics of the universe,
for instance.
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the composition be differentiable without both f and γ being so. Take, for instance,
f (x) = x3 and γ(x) = 3√x, so that γ is not differentiable in x = 0 but f ∘ γ(x) = x is
differentiable there. Also, this approach would avoid the use of charts, upsetting the
captain of our ship, who only has access to charts.

Assuming the above differentiability, based on coordinates, we can then compute

d
dt
(f ∘ γ)(0) =

k
∑
j=1

𝜕
𝜕xj
(f ∘ X−1)(X ∘ γ(0)) d

dt
(Xj ∘ γ)(0).

If the differentiability of f and γ were possible to establish, then independence of the
chosen coordinates would follow since the left-hand side could be evaluated by the
chain rule to yield an expression that does not include any coordinates. Since that is
not the case, independence needs to be addressed, otherwise the definitionwould not
be very useful. To do so, take other coordinates Y : 𝒱P → 𝔹ℝk (0, 1) about the point P
with the aim of showing that

k
∑
j=1

𝜕
𝜕xj
(f ∘ X−1)(X ∘ γ(0)) d

dt
(Xj ∘ γ)(0) =

k
∑
j=1

𝜕
𝜕yj
(f ∘ Y−1)(Y ∘ γ(0)) d

dt
(Y j ∘ γ)(0).

Notice that

f ∘ Y−1 = (f ∘ X−1) ∘ (X ∘ Y−1),

and that

Y ∘ γ = (Y ∘ X−1) ∘ (X ∘ γ).

Observe that the sets Y(𝒰P ∩ 𝒱P) and X(𝒰P ∩ 𝒱P) are open subsets of 𝔹ℝk (0, 1), since
φY ,X is a homeomorphism. Then, if the change of coordinates map

φY ,X = X ∘ Y
−1 : Y(𝒰P ∩ 𝒱P)→ X(𝒰P ∩ 𝒱P),

were differentiable, we would have that

k
∑
j=1

𝜕f
𝜕yj

d
dt
(Y j ∘ γ) =

k
∑
j=1

k
∑
l,m=1

𝜕f
𝜕xl
𝜕Xl

𝜕yj
𝜕Y j

𝜕xm
d
dt
(Xm ∘ γ),

using the simplifying notation 𝜕g𝜕zj for
𝜕
𝜕zj (g ∘ Z

−1) for local coordinates Z (X and Y in
our case). Noticing that

[
k
∑
j=1

𝜕Xl

𝜕yj
𝜕Y j

𝜕xm
]
l,m=1,...,k

= DφY ,XDφX,Y = DφY ,XDφ
−1
Y ,X

= DφY ,X(DφY ,X)
−1 = 1k ,
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we obtain the validity of the desired identity and, with it, coordinate independence.
For this to work, however, we need to assume that any change of coordinates map
be differentiable. This understanding is now enough for making a viable definition of
abstract manifold.

Toward the definition of k-dimensional Cm-manifold M for m ∈ ℕ, we let a Cm-
atlas 𝒜 on a Hausdorff and second countable topological space (M, τM) consist of a
family {(𝒰λ,Xλ) | λ ∈ Λ} of charts (local coordinates) satisfying:
(m1) Xλ(𝒰λ) = 𝔹ℝk (0, 1) for λ ∈ Λ.
(m2)M ⊂ ⋃λ∈Λ 𝒰λ.
(m3) φXλ ,Xμ ∈ C

m(Xλ(𝒰λ ∩ 𝒰μ),Xμ(𝒰λ ∩ 𝒰μ)) whenever 𝒰λ ∩ 𝒰μ ̸= 0 for λ ̸= μ.

Given an atlas𝒜 onM, a chart (U ,X) is called compatible with it iff

φX,Xλ ∈ C
m(X(𝒰 ∩ 𝒰λ),Xλ(𝒰 ∩ 𝒰λ))

whenever 𝒰 ∩ 𝒰λ ̸= 0. Two atlases are equivalent if all charts of one atlas are com-
patible with the other. This defines an equivalence relation of atlases on M and any
equivalence class is called differentiable structure on M. A Hausdorff second count-
able topological space with k-dimensional Cm-differentiable structure is called (ab-
stract) k-dimensional Cm-manifold. The dimension k of a manifold is often indicated
along with the topological space as a superscript as inMk . The simplest example of a
k-dimensional Cm-manifold is ℝk with the topology induced by | ⋅ |2 and the equiva-
lence class of the atlas consisting of the single chart X = (ℝk , idℝk ).

Let nowMk be a Cm-manifold form ⩾ 1 and f : M → ℝ be a real-valued function. It
is called differentiable if f ∘ X−1 ∈ C1(𝔹ℝk (0, 1),ℝ) for all charts (X,𝒰) compatible with
the atlas 𝒜 defining its differentiable structure. Similarly, a curve γ : (−1, 1) → M is
called differentiable iff X ∘ γ is differentiable for all charts compatible with 𝒜. Differ-
entiable curves through a point P ∈ M can be used to define the tangent space TPM
toM at P following the intuition that a differentiable curve through P has a direction
(tangent vector) in which it passes through P. We introduce an equivalence relation
for such curves through P via

γ1 ∼ γ2 ⇐⇒
d
dt
(f ∘ γ1)(0) =

d
dt

t=0
f ∘ γ1 =

d
dt

t=0
f ∘ γ2,

for all differentiable f : M → ℝ. If M = ℝn, then this is equivalent to γ̇1(0) = γ̇2(0)
(check this (Q3)). Denote by 𝒞P the set

{γ : (−δ, δ)→ M  δ > 0, γ is differentiable and γ(0) = P}

of differentiable curves through P and notice that it is convenient for curves to be de-
fined in a variable (i. e., depending on the curve itself) open interval about the origin
since we are only interested in the behavior (infinitesimally) close to P.
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Fact. The set of equivalence classes𝒞P/∼has the structure of a k-dimensional real vector
space, it is denoted by TPM and is called the tangent space to M at P.

We need to define scalar multiplication and addition for equivalence classes [γ]
of curves, which satisfy the necessary properties. For α ∈ ℝ, define

α[γ] = [γ(α ⋅)].

This is well-defined since γ(α ⋅) : (− δα ,
δ
α ) → M is a differentiable curve and α[γ] does

not depend on the choice of representative. Both follow observing that

d
dt

t=0
(f ∘ γ1)(αt) =

k
∑
j=1

𝜕f
𝜕xj

d
dt

t=0
Xj ∘ γ1(αt)

=
k
∑
j=1

𝜕f
𝜕xj

αd
d(αt)
|t=0X

j ∘ γ1(αt)

= α
k
∑
j=1

𝜕f
𝜕xj

d
dt

t=0
Xj ∘ γ1(t)

= α d
dt

t=0
f ∘ γ1(t) = α

d
dt

t=0
f ∘ γ2(t)

=
d
dt

t=0
f ∘ γ2(αt)

for γ1, γ2 ∈ [γ] and any differentiable f : M → ℝ. In order to define addition, we first
observe that a special representative canbe found in the equivalence class of any curve
γ ∈ 𝒞P, which is given by

γs = [t → X−1(t d
dt

t=0
X ∘ γ)],

which is defined in an open interval about the origin. Equivalence follows from

d
dt

t=0
f ∘ γ =

k
∑
j=1

𝜕f
𝜕xj

d
dt

t=0
Xj ∘ γ

=
d
dt

t=0
[f ∘ X−1(t d

dt

t=0
X ∘ γ)]

=
d
dt

t=0
f ∘ γs,

and independence on the choice of coordinates X is left as an exercise. We are now
ready to define addition of equivalence classes of curves as

[γ1] + [γ2] = [X
−1(⋅

d
dt

t=0
(X ∘ γ1 + X ∘ γ2))].
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This is made possible by the fact that X ∘ γj, j = 1, 2, are curves in ℝk, so that the
addition in the right-hand side makes sense. We only point out that the zero vector in
𝒞/∼ is given by the equivalence class of the curve γP ≡ P and the opposite (additive
inverse) of [γ] is given by [γ(−⋅)]. The verification that the definition is independent
of the choice of representatives and of all vector space axioms are left as an exercise.
Given a coordinate X about P ∈ M, it is an exercise to convince yourself that

[X−1(⋅ ej)], j = 1, . . . , k,

is a basis of TPM.

6.3.1 The differential

We conclude this chapter with a brief definition of a ubiquitous and fundamental ob-
ject, that we all mindlessly use on a daily basis: the differential d. Let Mm and Nn be
C1-manifolds of the indicated dimensions m, n ∈ ℕ. We call a map f : M → N differ-
entiable (or C1, i. e., continuously differentiable) if

Y ∘ f ∘ X−1 : 𝔹ℝm → 𝔹ℝn is differentiable (or C
1)

for all charts X of the atlas of M and Y of the atlas of N, whenever X are coordinates
for P and Y for f (P) for any P ∈ M. The differential df of f is then given pointwise by

dfP : TPM → TPN , [γ]→ [f ∘ γ],

for γ ∈ 𝒞P, or, in coordinates,

dPf (v) =
n
∑
k=1

m
∑
j=1

vj (𝜕Y
k ∘ f )
𝜕xj
[Y−1(⋅ enk)] ∈ Tf (P)N ,

for v = ∑mj=1 v
j[X−1(⋅ emj )] ∈ TP(M). The superscripts in the basis vectors are used to

indicate their different lengths. The standard notation used in books about topology
or differential geometry are

f k = Yk ∘ f , 𝜕
𝜕xj
= [X−1(⋅ emj )], and 𝜕

𝜕yk
= [Y−1(⋅ enk)],

so that one can more compactly write

dPf(
𝜕
𝜕xj
) =

m
∑
k=1

𝜕f k

𝜕xj
𝜕
𝜕yk
, j = 1, . . . , n.

Geometric objects (shapes), as we see them in nature or through our idealized imagi-
nation are simply regions of space and sets of points. In order to perform calculuswith
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or on them, we need to use coordinates, much in the way the captain of a ship uses
nautical charts. The geometric properties of shapes should, however, not depend on
any specific coordinates used to derive them, since coordinates are a purely artificial
device that is not intrinsic to the objects of study. For this reason, it is important to
identify useful mathematical quantities and operations that are coordinate-free. The
differential d is maybe the most fundamental such operator.

6.4 Concluding remarks

We can think of both submanifolds of ℝd and abstract manifolds as sets M that are
approximately linear in the vicinity of any of their points P. The linear structure is
captured by the tangent spaces TPM to themanifold at P ∈ M. Using local coordinates,
we were able to understand smooth curves onM and smooth functions defined onM.
More complicated maps, like for instance vector fields, i. e., maps V : M → TM with
the property that

V(P) ∈ TPM, P ∈ M,

still pose a challenge. To see why, take a curve γ : (−1, 1) → M and study the behavior
of V along γ, i. e., the map V ∘ γ. Since the vectors

V(γ(t)) ∈ Tγ(t)M

are elements of different vector spaces, they cannot be added or subtracted, making
it challenging to discuss their differentiability and their derivatives.5 In the case of
submanifolds in ℝd, all tangent spaces can be viewed as subspaces TPM ⊂ ℝd and
the problem can be avoided. In a way, all tangent spaces are connected as subspaces
of one and the same larger space ℝd. We can indeed consider the map V ∘ γ as a map
from (−1, 1) to ℝd. It can of course happen that d

dt (V ∘ γ)(t) ∉ Tγ(t)M. If we considerM
to be our universe, however, we are only interested in the (rate of) change of direction
(of the vector field) inside the tangent space. The latter can be obtained by projection
onto the tangent space and leads to the definition

(∇wV)(P) = πTPM
d
dt
(V ∘ γ)(0),

where γ(0) = P, w = γ̇(0) ∈ TPM, and πTPM is the orthogonal projection from ℝd to
TPM. Notice that, by choosing the orthogonal projection, we think of ℝd as a Hilbert

5 Notice that TM can be given a naturalmanifold structure so that the smoothness of curves inTM can
be understood in the way explained earlier in this chapter. The point we are making here, however, is
another.
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spacewith respect to its natural inner product, which naturally induces an inner prod-
uct on each of the tangent spaces TPM. Since the outcome only depends on w ∈ TPM,
we can replace w by a vector fieldW by using the interpretation

(∇WV)(P) = (∇W(P)V)(P)

Varying V andW while choosing γ so that γ̇(0) = W(P), it can be verified that ∇WV is
linear inW andV . It follows that, upon introduction of local coordinates about P ∈ M,
it is enough to determine

∇ 𝜕
𝜕xj

𝜕
𝜕xk
∈ TPM

for i, j = 1, . . . ,m, where m is the dimension of the manifold, since the general case
follows by linearity. Thus the operator ∇ is completely determined by the coefficients
Γij,k ∈ ℝ for which it holds

TPM ∋ ∇ 𝜕
𝜕xj

𝜕
𝜕xk
=

m
∑
i=1

Γij,k
𝜕
𝜕xi
.

The operator ∇ is called connection since it allows to connect the different tangent
spaces as explained above. The connection depends on the choice of scalar product
on ℝd since it is defined using an orthogonal projection. When dealing with an ab-
stract manifold M, we only have access to the tangent spaces TPM at points P ∈ M.
It is therefore impossible to connect the tangent spaces in a “natural way” and one is
free to choose any connection ∇. The choice of connection will determine the geomet-
ric properties of the manifold (which, without a connection, is merely a topological
space, albeit with a differentiable structure). An important special case is that of Rie-
mannian manifolds. These are manifolds, which have an inner product ⟨⋅, ⋅⟩P defined
for each tangent spaceTPM that depends smoothly onP. Suchmanifolds admit a “nat-
ural connection”∇ (the so-called Levi-Civita connection) characterized by the validity
of

d[⟨U ,V⟩](W) = ⟨∇WU ,V⟩ + ⟨U , ∇WV⟩,

for any smooth vector fields U ,V ,W . When M = ℝd with its natural scalar product,
the corresponding Levi-Civita connection corresponds to D since

𝜕W (U ⋅ V) = d(U ⋅ V)(W) = (DU)W ⋅ V + U ⋅ (DV)W
= 𝜕WU ⋅ V + U ⋅ 𝜕WV ,

for smooth vector fields U ,V ,W : ℝd → ℝd. Manifolds have many applications and
are studied in topology and geometry.
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7 Ordinary differential equations
Many a physical law can be written in terms of rates of change. The most basic and
historically important example is that of Newton’s law of motion

d
dt
(mv) = ma = F,

which relates themotion of an object or the rate of change a (acceleration) of its speed
v to the resultant F of all forces acting on it. If x : [0,T) → ℝd is the curve traced by
the object up to time T ⩽ ∞, then this amounts to mẍ = F, where each dot indicates
taking one derivative with respect to t. Considering that the force acting on the object
may depend on its location, i. e., F = F(x). We obtain an equation,

mẍ = F(x),

for its trajectory x through space. Think of planetary motion, where gravitational pull
depends on relative position. This equation is an example of an ordinary differential
equation (ODE), i. e., an equation for an unknown function of one variable involving
one or more of its derivatives. Another source of differential equations is biology. Con-
sider the simplest population growth model where x : [0,T) → [0,∞) is the size of a
population as it changes over time. Assuming that the growth is proportional to the
population size, by a factor r > 0, which is the growth rate, one arrives at the equation

ẋ = rx.

Borrowing from calculus knowledge, we may try and use the fundamental theorem of
calculus to “undo” the derivative in a differential equation in order to find its solution.
Taking the population growth example, we arrive at

x(t) = x0 +
t

∫
0

rx(τ) dτ, t ⩾ 0,

whichmakes it explicit that we need to know the initial size of the population in order
to determine its subsequent evolution. This approach does, however, not produce a
solution to the equation, but just another (integral) equation. In this formulation and
fixing T > 0, we can think of the equation as a fixed-point equation for the unknown
function x : [0,T] → ℝ, which we may assume to be continuous. Indeed, if x is to be
a solution of the ODE, it would even need to be differentiable. This means that we can
think of x as an element of the vector space C([0,T],ℝ), which turns into a normed
vector space if endowed with the supremum norm ‖ ⋅ ‖∞ given by

‖x‖∞ = sup
t∈[0,T]x(t).

https://doi.org/10.1515/9783110780925-007

 EBSCOhost - printed on 2/10/2023 3:59 PM via . All use subject to https://www.ebsco.com/terms-of-use

https://doi.org/\global \c@doi \c@chapter \relax \global \advance \c@doi \c@parttext \relax 10.1515/9783110780925-000


94 | 7 Ordinary differential equations

Defining

Φ(x)(t) = x0 +
t

∫
0

rx(τ) dτ, t ∈ [0,T],

we obtain a map Φ : C([0,T],ℝ) → C([0,T],ℝ). Since Φ(x)(0) = x0, we can restrict
this map to

X0 = Cx0([0,T],ℝ) = {x ∈ C([0,T],ℝ)
 x(0) = x0},

and obtain a self-map Φ : X0 → X0. Notice that

Φ(x)(t) −Φ(y)(t)
 =

r

t

∫
0

(x(τ) − y(τ)) dτ

⩽ r

t

∫
0

x(τ) − y(τ)
 dτ

⩽ rT‖x − y‖∞, t ∈ [0,T],

which implies

Φ(x) −Φ(y)
∞ ⩽ rT‖x − y‖∞, x, y ∈ X0.

Considering that X0 is a complete metric space (check this (Q1)) with respect to the
metric induced by its norm, we can envision applying the Banach fixed-point theorem
to obtain a solution. For that, we need that the map Φ be contractive. This can be
achieved by choosing T > 0 so that rT < 1. In this way, we obtain a unique fixed point
x(⋅, x0) : [0,T1] → ℝ for 0 < T1 <

1
r . As a fixed point of Φ, the function x(⋅, x0) is

differentiable by the fundamental theorem of calculus and satisfies

ẋ(t) = rx(t) for t ∈ [0,T1].

Then the continuity of x(⋅, x0) implies that of ẋ(⋅, x0), so that

x(⋅, x0) ∈ C
1([0,T1],ℝ).

At this point, we can consider the equation ẋ = rx complemented with the new initial
condition x(0) = x1 = x(T1, x0). The fixed-point argument did not rely on the specificity
of the initial value x0 and can be used to obtain a solution x(⋅, x1) with the new initial
datum x1 on the interval [0,T1]. Setting

x(t, x0) = x(t − T1, x1), t ∈ [T1, 2T1],

the solution x(⋅, x0) canbe extended to [0, 2T1], and, repeating this extension argument
indefinitely, to [0,∞).We leave it to the reader to verify that this “piecewise” definition
does not affect differentiability at the points {kT1 | k ∈ ℕ} of juncture. We shall see
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7.1 Linear systems of ODEs | 95

that this procedure can be used successfully also for more complicated (nonlinear)
equations. For the simple equation ẋ = rx, the solution can of course be guessed. We,
however, show another point of view that will inform our approach to general higher-
dimensional linear ODEs. After rewriting the ODE as an integral equation, we can also
keep replacing x by its integral representation to obtain

x(t) = x0 + r
t

∫
0

x(τ) dτ = x0 + x0rt + r
2

t

∫
0

τ

∫
0

x(σ) dσdτ

= [1 + rt + 1
2
(rt)2 + ⋅ ⋅ ⋅ + 1

n!
(rt)n]x0 + rn(t).

Noticing that 1 + rt + 1
2 (rt)

2 + ⋅ ⋅ ⋅ + 1
n! (rt)n ↗ ert as n→∞ and that

rn(t)
 ⩽
(rT)n+1
(n + 1)!
‖x‖∞, t ∈ [0,T],

where the supremum norm is over the interval [0,T], we first see that

‖x‖∞ ⩽ erT + α‖x‖∞
for α < 1, if n ∈ ℕ is chosen so that (rT)n+1(n+1)! ⩽ α < 1, which is possible since (rT)n+1(n+1)! → 0

as n→∞ for any fixed T > 0. It follows that ‖x‖∞ ⩽ erT
1−α , so that x is bounded on [0,T]

and, therefore, that

rn(t)→ 0 as n→∞, uniformly in t ∈ [0,T].

We conclude that x(t) = ertx0 for t ∈ [0,T] and for arbitrary T > 0, i. e., x(t) = ertx0 for
t > 0. By considering y(t) = x(−t), we obtain similarly that y(t) = e−rtx0 for t > 0, so
that x(t) = ertx0 is a solution also for t < 0.

7.1 Linear systems of ODEs

An important class of ODEs is that of linear equations. We now consider trajecto-
ries/curves x in ℝn, i. e.,

x : [0,T]→ ℝn,

or, more in general, at no additional effort, curves x : [0,T]→ E in a complete normed
vector space E (which we called Banach space), possibly infinite-dimensional. Start-
ing with ℝn, a linear system of ODEs is simply an equation such as

ẋ = Ax, x(0) = x0,
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96 | 7 Ordinary differential equations

for an unknown curve x : [0,T] → ℝn and a matrix A ∈ ℝn×n. More in general one
would consider an ODE like

ẋ = F(x), x(0) = x0,

where F : ℝn → ℝn is a nonlinear function. Thus one speaks of linear equation when
F is linear. As to the importance of linear equations, we observe that a solution to the
nonlinear equation, if it exists, will stay close to x0 for some possibly small interval of
time. If F is differentiable, then

F(x) ≃ F(x0) + Df (x0)(x − x0)

and y = x − x0 solves ẏ = Ay + F(x0), y(0) = 0. This is essentially a linear equation,
modulo the additional constant term, and is the reason why we shall consider the
slightly more general inhomogeneous equation

ẋ = Ax + f (t), x(0) = x0,

for f : [0,T] → ℝn. As an example of a linear homogeneous (f ≡ 0) system of ODEs
consider two biological species x1 and x2 living in the same environment and evolving
according to the simple rule that they each grow at a rate r1 and r2, respectively, and
that one preys on the other so that

{
ẋ1 = r1x1 + αx2, x1(0) = x1,0,
ẋ2 = r2x2 − βx1, x2(0) = x2,0,

for parameters α, β > 0 modeling the enhanced growth experienced by the predator
population, which depends on the availability of prey, and the reduced growth of the
prey population, influenced by the size of the predator population.

Integrating the linear homogeneous equation yields

x(t) = x0 +
t

∫
0

Ax(τ) dτ,

and, iterating the procedure, leads to

x(t) = x0 + tAx0 +
t2A2

2
x0 + ⋅ ⋅ ⋅ +

tnAn

n!
x0 + rn(t),

rn(t) = A
n+1 t

∫
0

τ1

∫
0

⋅ ⋅ ⋅

τn−1
∫
0

x(σ) dσdτn−1 . . . dτ1
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When working in a Banach space (E, ‖ ⋅ ‖E), A can be taken to be a bounded1 linear
operator, i. e., a linear map A : E → E satisfying

‖A‖ = sup‖x‖E=1 ‖Ax‖E = supx ̸=0 ‖Ax‖E‖x‖E <∞.
It is an exercise to prove that ‖A2‖ ⩽ ‖A‖2, and consequently, that one has ‖An‖ ⩽ ‖A‖n

for any n ⩾ 3 also, for a bounded operator A ∈ ℒ(E,E), where

ℒ(E,E) = {A : E → E  A linear and ‖A‖ <∞}.

With this in hand, we can show that sn = ∑
n
k=0 (tA)kk! converges as n → ∞. Indeed, it

holds that

‖sn − sm‖ =


n
∑

k=m+1 (tA)kk!


⩽

n
∑

k=m+1 tk‖A‖kk!
→ 0 asm, n→∞,

since (∑nk=0 tk‖A‖k
k! )n⩾0 converges to et‖A‖, and thus is a Cauchy sequence. This is true for

any t > 0 and the convergence is uniform for t ∈ [0,T]. Thus, if the space (ℒ(E,E), ‖ ⋅ ‖)
is complete, a limit of the Cauchy sequence (sn)n∈ℕ must exist. We use the notation

etA =
∞
∑
k=0 tkAkk!

,

and observe (without proof) that

d
dt
etA = d

dt

∞
∑
k=0 tkAkk!

=
∞
∑
k=0 d

dt
tkAk

k!
= A
∞
∑
k=1 tk−1Ak−1(k − 1)!

= AetA, t > 0.

This exponential function for linear bounded operators shares some properties with
the real (or complex) exponential function. There are, however, differences. Show, for
instance, that eA+B ̸= eAeB, in general, even forA,B ∈ ℝ2×2. Can you identify the origin
of the failure of this identity?

We leave it as an exercise to check that rn(t) → 0 as n → ∞ for any t > 0 and,
uniformly in t ∈ [0,T] for any T > 0.

Fact. The vector space ℒ(E,E) is complete with respect to the norm ‖ ⋅ ‖.

1 Boundedness in this context is equivalent to continuity of A. The reader may try to prove this
equivalence when E is finite-dimensional, where all linear operators can be shown to be continu-
ous/bounded.
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Let (Ln)n∈ℕ be a Cauchy sequence of bounded linear operators, i. e., satisfying
∀ε > 0 ∃N ∈ ℕ with ‖Ln − Lm‖ ⩽ ε form, n ⩾ N .

Then, given x ∈ E, we can find N ∈ ℕ such that ‖Ln − Lm‖ ⩽
ε

max{‖x‖E ,1} , and thus
‖Lnx − Lmx‖E ⩽ ‖Ln − Lm‖‖x‖E ⩽

ε
max{‖x‖E , 1}

‖x‖E ⩽ ε,

for m, n ⩾ N . This shows that, for each x ∈ E, (Lxn)n∈ℕ is a Cauchy sequence in E,
which has a limit L∞(x), since E is assumed complete. This defines amap L∞ : E → E,
which is linear since

L∞(λx + y) = lim
n→∞ Ln(λx + y) = lim

n→∞(λLnx + Lny)
= λ lim

n→∞ Lnx + limn→∞ Lny = λL∞(x) + L∞(y),
for x, y ∈ E, λ ∈ ℝ. Next, observe that the triangle inequality gives (Q2)

‖Ln‖ − ‖Lm‖
 ⩽ ‖Ln − Lm‖, m, n ∈ ℕ,

which shows that (‖Ln‖n)n∈ℕ is a Cauchy sequence in ℝ and, therefore, has a limit
M ⩾ 0. It follows that

‖Lnx‖E ⩽ ‖Ln‖‖x‖E ⩽ (M + 1)‖x‖E ,

for n ⩾ N and some N ∈ ℕ. Letting n tend to∞ in Lnx yields

‖L∞x‖ ⩽ (M + 1)‖x‖E ,
which amounts to the boundedness of L∞.√

We have effectively shown that the linear equation

ẋ = Ax, x(0) = x0 ∈ E,

possesses the solution x(t) = etAx0, t ∈ ℝ, for any x0 ∈ E and any linear bounded
operatorA. How (Q3) would you show that this solution is unique? How do you obtain
this solution for t < 0?

In order to avoid introducing the integral of Banach space valued continuous (or
more general) functions f : [0,T] → E, which is possible and goes by the name of
Bochner integral, we restrict our attention, for the remainder of this section, to the
finite-dimensional case, which further reduces to ℝn upon introduction of coordi-
nates. Given T > 0 and f ∈ C([0,T],ℝn), the inhomogeneous linear equation

ẋ = Ax + f (t), x(0) = x0,
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can be solved with the use of e⋅A only, in a way very much similar to that you have
likely learned in the one-dimensional case in a first course about ODEs. The basic idea
is that of using an integrating factor, in this case the exponential of thematrix. Setting
y = e−tAx, we see that

ẏ = d
dt
(e−tAx) = −Ae−tAx + e−tAẋ = e−tAf (t), t ∈ [0,T],

using the “product rule” and that Ae−tA = e−tAA for t ∈ ℝ, facts the validity of which
you are encouraged to verify on your own. Integrating (component by component)
then yields

e−tAx(t) = y(t) = x0 + t

∫
0

e−τAf (τ) dτ, t ∈ [0,T],

and, upon verification that (etA)−1 = e−tA for t ∈ ℝ (left to the reader), the formula

x(t) = etAx0 +
t

∫
0

e(t−τ)Af (τ) dτ, t ∈ [0, t].

This formula is known as the variation of constants formula.2

While refraining at this stage from going into a detailed discussion, we observe
that, while etA is well-defined, we do not havemuch of an idea of how it actually looks
like for any concrete example. The defining series is not much help in an actual com-
putation of the exponential. We merely notice that, if it is possible to find a vector
v ̸= 0 such that Av = λv for some λ ∈ ℂ (in this case λ is called an eigenvalue and v an
eigenvector of A), then

Akv = λkv, k ∈ ℕ

and, therefore,

etAv =
∞
∑
k=0 (tA)kk!

v =
∞
∑
k=0 tkk!Akv = ∞∑k=0 (tλ)kk!

v = eλtv,

for t ∈ ℝ. If we had a whole basis v1, . . . , vn forℝn comprised of eigenvectors (to eigen-
values λ1, . . . , λn), we could write

x0 =
n
∑
j=1 xj0vj,

2 In the context of partial differential equations, its generalization is also known as Duhamel’s princi-
ple.
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for coefficients xj0, j = 1, . . . , n, in this basis. Then

etAx0 =
n
∑
j=1 xj0eλjtvj,

greatly simplifying the computation of the exponential. While it is not possible to find
a basis consisting solely of eigenvectors for general matrices, we shall show in Chap-
ter 8 that this is possible for symmetric matrices, i. e., matrices A with A⊤ = A.
7.2 Existence and uniqueness for nonlinear ODEs
Most differential equations are nonlinear and donot admit explicit representations for
their solutions. It is therefore important to be able to determine existence, uniqueness,
and long time behavior based on the analysis of the equations alone. These questions
are of interest even if it is possible to use numerical methods to compute solutions.
Numerical procedures can in fact fail to deliver an approximation to the correct so-
lution or to converge at all. Often numerical issues can be addressed if their origin is
understood, thus providing additionalmotivation for the analysis of ODEs. Their anal-
ysis plays an important role in differential geometry as well, where basic objects such
as geodesics (curves of minimal distance between points) appear as solutions of non-
linear systems of ODEs. Here, we only focus on the basic existence and uniqueness
result for nonlinear ODEs, which we view as an application of the Banach fixed-point
theorem of Section 5.5.1.

We first consider simple examples to illustrate that obstacles and limitations are
encountered when studying the existence and uniqueness for ODEs. The nonlinear
scalar equation

ẋ = x2, x(0) = x0 > 0,

has the unique (will follow from the upcoming discussion) solution given by x(t) =
x0

1−x0t , which is seen to develop a singularity at t = 1
x0
. This shows that solutions of

nonlinear ODEs may not exist for all times t ∈ ℝ, while they actually do in the linear
case as shown in the previous section. Both functions x ≡ 0 and x(t) = t3, t ∈ ℝ are
solutions of

ẋ = 3x
2
3 , x(0) = 0,

showing that the equation admits multiple solutions. The condition that allows the
construction of a unique solution turns out to be Lipschitz continuity. For a function
F : E → E on a Banach space E with norm | ⋅ |E, Lipschitz continuity amounts to the
existence of a constant L ⩾ 0 such that

F(x) − F(y)
E ⩽ L|x − y|E , x, y ∈ E.
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We speak in this case of global Lipschitz continuity in that the constant L works for
all x, y ∈ E. More often, it is only possible and enough for our purposes that Lipschitz
continuity be available only locally. A function F : E → E is called locally Lipschitz
continuous iff

∀x ∈ E ∃r = r(x) > 0, ∃L = L(x) ⩾ 0 with F(y) − F(z)
E ⩽ L|y − z|E , y, z ∈ 𝔹E(x, r).

This simply means that Lipschitz continuity holds in a neighborhood of any and each
x ∈ E. Notice that F(x) = x2, x ∈ ℝ is an example of a locally, but not globally, Lipschitz
function, whereas F(x) = 3x

2
3 , x ∈ ℝ is not Lipschitz in any neighborhood of x = 0.

Fact. Assume that F : ℝn → ℝn be locally Lipschitz. Then, given x0 ∈ ℝn, there is a
unique solution x(⋅, x0) of the initial value problem

ẋ = F(x), x(0) = x0,

on the interval [0,T] for someT > 0. This solution can be extended to amaximal interval
of existence [0,T(x0)) with T(x0) > 0. If T(x0) <∞, then

lim
t↗T(x0)x(t, x0)2 =∞.

We shall use the Banach fixed-point theorem aswe did for the linear equation. For
fixed T > 0 (to be chosen later), define

X = X(T , r, x0) = {x ∈ C([0,T],ℝ
n)  x(0) = x0,

x(t) − x0
2 ⩽ r, t ∈ [0,T]},

which is a complete subset of C([0,T],𝔹(x0, r)) with respect to the supremum norm
‖ ⋅ ‖∞. Define

Φ(x)(t) = x0 +
t

∫
0

F(x(τ)) dτ, t ∈ [0,T], x ∈ X,

and observe that

Φ(x)(t) − x0
2 ⩽

t

∫
0

F(x(τ))
2 dτ, t ∈ [0,T], x ∈ X.

Since continuous maps assume their maximum and minimum on compact sets, we
have that

F(z)
2 ⩽ M, z ∈ 𝔹(x0, r),
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for someM ⩾ 0, and consequently, that

Φ(x)(t) − x0
2 ⩽ MT , t ∈ [0,T], x ∈ X.

By choosing T sufficiently small, we can achieve that Φ(x)(t) ∈ 𝔹(x0, r) for t ∈ [0,T],
which shows that Φ maps X into itself. Notice that this is possible for any r > 0. Local
Lipschitz continuity yields r0 > 0 and L ⩾ 0 such that

F(y) − F(z)
2 ⩽ L |y − z|2, y, z ∈ 𝔹(x0, r0).

Then it holds that

Φ(x)(t) −Φ(x̃)(t)
2 ⩽

T

∫
0

F(x(τ)) − F(x̃(τ))
2 dτ

⩽ LT‖x − x̃‖∞.
This shows that

Φ(x) −Φ(x̃)
∞ ⩽ 12 ‖x − x̃‖∞, x, x̃ ∈ X,

provided T ⩽ T0 and T0 is chosen so that LT0 ⩽
1
2 . The Banach fixed-point theorem

then yields a unique solution x(⋅, x0) ∈ X = X(T0, r0, x0). The reader can verify that
such a fixed point is a solution of the initial value problem and that any solution of the
initial value problem must be a fixed point of Φ. The length of the existence interval
[0,T0]depends on the local properties of F near the point x0. Considering the equation

ẋ = F(x), x(0) = x1 = x(T0, x0),

the argument can be repeated to obtain a solution x(⋅, x1) on some interval [0,T1] for
T1 > 0. Glueing the solutions together, i. e., extending x(⋅, x0) by setting

x(t, x0) = x(t − T0, x1), t ∈ [T0,T0 + T1],

we obtain a (still unique) solution on [0,T0 + T1], and, repeating the argument, on an
interval [0,T(x0)) of length T(x0) = ∑k⩾0 Tk, where Tk > 0 for k ⩾ 0. Clearly, we either
have T(x0) =∞ or T(x0) <∞. In the latter case, if lim supt↗T(x0) |x(t, x0)|2 <∞,3 there
exists a sequence (tk)k∈ℕ with tk ↗ T(x0) as k →∞ such that x(tk , x0) → x∞ ∈ ℝn, in
which case the solution could be extended oncemore using x∞ as a new initial datum.

3 The limes superior lim supk→∞ xk of a sequence (xk)k∈ℕ of reals is defined as limn→∞ x̄n, where(x̄n)n∈ℕ is the nonincreasing sequence given by x̄n = supk⩾n xk , n ∈ ℕ. The limit can be infinite. Derive
the definition for a function (as opposed to for a sequence), which is needed here.
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This argument also shows that the maximal interval of existence cannot include the
right-end point.√

If F is globally Lipschitz, as is the case for F linear (affine), the above argument
shows that we can choose Tk = T0 for k ⩾ 1 and obtain a global solution, i. e. one for
which T(x0) = ∞ for any x0. The examples in the beginning of the section show that
global existence does not hold in general if the global Lipschitz property is dropped
and that uniqueness is lost, in general, if no Lipschitz continuity is required.

7.3 Gradient flows

A very important special class of ODEs is obtained when the driving vector field F :
ℝn → ℝn (n ∈ ℕ) has a special form. This happenswhen there is a function u : ℝn → ℝ
with

−∇u(x) = F(x), x ∈ ℝn,

where ∇u(x) = Du(x)⊤ ∈ ℝn×1 = ℝn. The corresponding ODE system reads

ẋ = −∇u(x), x(0) = x0,

and, geometrically, it pushes a solution going through a point z ∈ ℝn in the direction
of steepest descent of the values of u about z. This can be seen by using the Cauchy–
Schwarz inequality to obtain that

𝜕vu(z) = Du(z)v = ∇u(z)
⊤v ⩾ −∇u(z)2|v|2 = −∇u(z)2,

for v ∈ 𝕊n−1 and observing that the strongest decrease happens in the direction of the
vector v = − ∇u(z)|∇u(z)|2 . If the gradient vanishes at the point z, then x ≡ z is a solution of
the initial value problem with initial datum z. We shall assume that u ∈ C1(ℝn,ℝ) and
that ∇u is Lipschitz (locally) in order to ensure unique existence of solutions to the
initial value problem. Now, if x(⋅) is a solution of the initial value problem, it satisfies

d
dt
(u ∘ x)(t) = Du(x(t))ẋ(t) = −∇u(x(t))⊤∇u(x(t))

= −∇u(x(t))

2
2 ⩽ 0

for as long as it exists. This shows that, if u : ℝn → ℝ is coercive in the sense that

lim|z|2→∞ u(z) =∞,
then any solution exists globally. If it did not, it would hold that
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lim
t↗T(x0)x(t, x0)2 =∞,

for some x0 ∈ ℝn and T(x0) <∞. This is, however, excluded by the validity of

u(x(t, x0)) = u(x0) +
t

∫
0

d
dt
(u(x(τ, x0)))(τ) dτ ⩽ u(x0),

and the fact that u is bounded from below, i. e., u ⩾ M for someM ∈ ℝ, as follows from
its coercivity (why? (Q4)). This also shows that solutions are bounded. Since closed
and bounded subsets of the real line are (sequentially) compact, we can find (tk)k∈ℕ
with tk →∞ for k →∞ such that

x(tk , x0)→ x∞ as k →∞,

for some x∞ ∈ ℝn. If we assume that ∇u is bounded on bounded sets, i. e., if it holds
that

∀R > 0 ∃M = M(R) ⩾ 0 with ∇u(z)
2 ⩽ M for |z|2 ⩽ R,

then we can show that it must necessarily hold that ∇u(x∞) = 0. This means that
x(⋅, x∞) ≡ x∞ is a steady state (equilibrium) for the initial value problem. We argue by
contradiction and assume that ∇u(x∞) ̸= 0. Boundedness of x(⋅, x0) yields R > 0 such
that |x(⋅, x0)|2 ⩽ R, and thus that

ẋ(t)
2 =
∇u(x(t, x0))

2 ⩽ M,

for someM ⩾ 0 and t ⩾ 0. Then we have that

x(t, x0) − x(s, x0)
2 =


t

∫
s

ẋ(τ, x0) dτ
2
⩽ M|t − s|, t, s ⩾ 0.

Continuity of ∇u ensures the existence of r∞ > 0 such that
∇u(z)
2 ⩾
|∇u(x∞)|2

2
> 0 for z with |z − x∞| ⩽ r∞.

Then

x(τ, x0) − x(tk , x0)
2 ⩽ r∞/2 for τ with |tk − τ| ⩽ δ,

where δ = r∞/2M > 0. There is also K ∈ ℕ with |x(tk , x0) − x∞|2 ⩽ r∞/2 for k ⩾ K. It
then follows that
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u(x(t, x0)) ⩽ u(x0) −
t

∫
0

∇u(x(τ, x0))

2
2 dτ

⩽ u(x0) − ∑
k⩾K, tk⩽t

tk

∫
tk−δ ∇u(x(τ, x0))22 dτ

⩽ u(x∞) − |∇u(x∞)|224
∑

k⩾K, tk⩽t δ,
which yields a contradiction as t →∞ since∑k⩾K, tk⩽t δ →∞.

This shows that the limit points of solutions x(⋅, x0) of a gradient system as t →∞,
with the above assumptions, are critical points of the potential u, i. e., points where
∇u vanishes. We will see an application of this in the next chapter.

7.4 Concluding remarks

The study of the behavior of solutions to ordinary differential equations (and more
general equations) goes by the name of dynamical systems. The latter studies the to-
tality of all solutions of an equation and aims at establishing its structural properties.
Of particular interest are often the existence of special solutions (like equilibria and
periodic solutions) and their stability, aswell as the existence andproperties of special
sets (invariant manifolds, attractors, etc.). Ordinary differential equations can also be
considered on a manifoldM. They take the form

{
Ẋ = F(X),
X(0) = P,

for a smooth vector field F : M → TM,P → F(P) ∈ TPM. A solution on [0,T) is a curve
γ : [0,T) → M, which satisfies γ(0) = P and γ̇(t) = F(γ(t)) for t ∈ [0,T).4 Notice that,
upon introduction of local coordinates on the manifold, the equation reduces (Q5) to
an ordinary differential equation in ℝm, where m is the dimension of the manifold,
at least in small intervals of time. Indeed the solution may leave any chosen initial
coordinate patch containing the initial pointP, so that different local coordinates need
to be used in different time segments. The existence result we described earlier in the
chapter applies to the manifold setting since it is local (“stepwise”) in nature.

4 We use an intuitive notation here instead of the more correct form dtγ( 𝜕𝜕t ) = F(γ(t)) introduced in
Section 6.3.
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8 Optimization
Optimization problems are ubiquitous in all human endeavors:mathematics, science,
engineering, computer science, business, health care, etc. We like to measure things
and like to see “good numbers”. This means that we often introduce a metric to mea-
sure benefit or harm, which depends on variables we have control over and look for
those values of the variables thatmaximize the benefit orminimize the harm. In geom-
etry, wemay want to identify which shape contains themost volume given its surface.
In physics, one is often interested in configurations that minimize some kind of en-
ergy. In business, profit is typically the goal of optimization. For Netflix, it may be the
likelihood of you liking a certain type of content, so they can offer the best suggestions
in order to keep you engaged. Mathematically, this boils down to having an objective
function f : X → ℝ and looking for its extremal points. If X is only a set with no addi-
tional structure, the search can only occur through a scan of all individual arguments
x ∈ X in order to identify which ones lead to the extreme values of f , if they exist.
If the set X has additional structure, it is possible to devise some more sophisticated
strategies. Here, we focus mainly on the continuous case (as opposed to discrete) and
assume that X is either a linear space or a smoothmanifold. The dimension of X could
be infinite as we shall see in the final remarks of the next chapter. We start with an ob-
jective function f with f ∈ C1(ℝd,ℝ) for some d ∈ ℕ, which we would like to minimize
in the sense that we look for the argument(s) such that f has the least possible value

argminx∈X f (x) = argminX f = {y ∈ X
 f (y) ⩽ f (x) ∀ x ∈ X}

With no information in hand, we begin with some random initial guess x0 ∈ ℝd and
test our way around for a direction v ∈ ℝd along which f decreases. We know that the
direction of steepest descent at x0 is given by

v = − ∇f (x0)
|∇f (x0)|2

,

something we learned toward the end of the previous chapter. This naturally leads us
to consider the initial value problem

ẋ = −α∇f (x), x(0) = x0,

whichmay generate a solution that flows toward aminimizer. The intensity α > 0with
wewhichwe take off in direction of the negative gradient is a parameter thatmay need
to be tuned in concrete applications (and even varied in time). In practical implemen-
tations, continuous time is not viable and a natural replacement is time stepping. It
can be obtained by taking discrete time steps of size h and approximating the time

https://doi.org/10.1515/9783110780925-008
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8 Optimization | 107

Figure 8.1: An objective function with multiple wells.

derivative by a difference quotient

x(tn + h) − x(tn)
h

= −α∇f (x(tn)), n ⩾ 0, x(t0) = x0.

Taking tn = t0 + nh for n ⩾ 0 and denoting x(tn) by xn, this amounts to the recursion
relation

xn+1 = xn − αh∇f (xn), n ⩾ 0, x0 given.

In other words, we take steps in the direction of steepest decrease fromwhere we hap-
pen to be and keep repeating this procedure indefinitely. This iteration is by nomeans
guaranteed to succeed: the function f maybe unbounded frombelow as for f (x) = −x2,
in which case we would wander off to infinity (check). The function f may have mul-
tiple extremal points like the one the graph of which is depicted in Figure 8.1 and our
walk may lead us to a local but not global minimum, depending on where we start
our search. In spite of this, the basic idea of gradient descent is a very commonly used
tool in optimization, albeit often in some modified form. A particularly well-suited
class that allows for straightforwardminimization is that of convex functions, ofwhich
quadratic functions are the model example. We will get back to convexity after con-
sidering one simple in this section and two more involved examples in the next two
sections. The simple one is the objective function given by

f (x) = 1
2
|x|22, x ∈ ℝd,
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the gradient flow of which is simply given by ẋ = −αx. Starting with the initial guess
x0, the solution of the ODE system is given by x(t) = e−αtx0. It converges to the unique
point ofminimum x∞ = 0 at a speed that is determined by the parameter α > 0. Taking
the discrete approach, we would consider the recursion

xn+1 = xn − α∇f (xn) = xn − αxn, x0 given.

The parameter α > 0 (in which we absorbed the time step h of above) could be chosen
by looking for the minimum of f along the line l = [α→ xn − αxn], i. e.,

argminα>0 f ∘ l = argminα>0
1
2
(1 − α)x0


2
2 =

1
2
|x0|

2
2 argminα>0(1 − α)

2

in the first step n = 0, which yields α = 1 and the actual global minimum is reached
in one single step since x1 = 0, in this case. This is of course due to the special radial
nature of the function f .

8.1 Singular value decomposition

We consider now matrices A ∈ ℝn×m and try to understand their structure. Using sim-
plematrices as building blocks, we try to recover anymatrix as a linear combination of
these. By a simple matrix inℝn×m, we mean one that maps the whole domainℝm to a
one-dimensional subspace ofℝn. The zero matrix would be even simpler but not very
useful. A matrix A with one-dimensional range is what we called a rank one matrix
and can be written as

A = σvu⊤,

for unit length vectors 0 ̸= u ∈ ℝm and 0 ̸= v ∈ ℝn and a scalar σ ̸= 0. In order to see
this, observe that the columns A∙i ∈ ℝ

n, i = 1, . . . ,m, must all be multiples A∙i = ũiṽ of a
single vector 0 ̸= ṽ ∈ ℝn with ℝ ∋ ũi ̸= 0 for at least one index since A ̸= 0. It follows
that

A = [ũ1ṽ ũ2ṽ ⋅ ⋅ ⋅ ũnṽ] = ṽũ
⊤.

Since the vectors ũ, ṽ are nonzero, we see that

ṽũ⊤ = |ṽ|2|ũ|2
ṽ
|ṽ|2

ũ⊤

|ũ|2
= σvu⊤,

where u, v have unit length. Think of this matrix as taking any vector x ∈ ℝm and com-
puting its component u⊤x in the direction of u (u can be thought of as the first vector in
an orthonormal basis ofℝm) and producing amultiple of the vector v ∈ ℝn with factor
σu⊤x. The computation of the component of x in direction of u can be interpreted as
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a projection and σ as a stretching factor. If a matrix A ∈ ℝn×m has rank k ⩽ min{m, n},
then it is conceivable that it be representable as

A =
k
∑
j=1

σjvju
⊤
j ,

for so-called singular values σj ∈ (0,∞) and linearly independent unit vectors uj ∈ ℝm

and vj ∈ ℝn. We shall see that this is possible and that the vectors can be chosen so
that u⊤i uj = δij that v

⊤
i vj = δij for i, j = 1, . . . , k, respectively.

The space ℝn×m of matrices is a vector space with respect to matrix addition and
scalar multiplication. Of the several norms that can be used on it, we now select the
so-called Frobenius norm ‖ ⋅ ‖2, which is defined through

‖A‖22 =
n
∑
j=1

m
∑
i=1

A
j
i

2
= Tr(A⊤A) = Tr(AA⊤), A ∈ ℝn×m,

where the trace of a square matrixM ∈ ℝd×d, d ∈ ℕ, is given by

Tr(M) =
d
∑
k=1

Mk
k .

In search of singular values, we look for the “best” rank one approximation σ1v1u⊤1 to
the matrix 0 ̸= A ∈ ℝn×m in the sense that

(σ1, v1, u1) ∈ argmin{ 1
2
A − σvu

⊤
2
2
 σ ∈ ℝ, v ∈ 𝕊

n−1, u ∈ 𝕊m−1}.

Noticing that u and v belong to a compact set (the unit sphere), we first focus on the
dependence on σ by fixing u and v. Computing the norm, we obtain

A − σvu
⊤

2
2 = ‖A‖

2
2 − σ Tr(uv

⊤A + A⊤vu⊤) + σ2 Tr(uv⊤vu⊤)

= ‖A‖22 − σ
m
∑
i=1
[

n
∑
j=1

uivjA
j
i +

n
∑
j=1
(A⊤)ijvjui] + σ

2 Tr(uu⊤)

= ‖A‖22 − 2σv
⊤Au + σ2.

This expression attains its minimum at σ = v⊤Au so that

1
2
A − σvu

⊤
2
2 ⩾

1
2
[‖A‖22 − (v

⊤Au)2] = 1
2
[‖A‖22 − σ

2(u, v)] = E(u, v),

for any choice of σ ∈ ℝ, u ∈ 𝕊m−1, and v ∈ 𝕊n−1 where equality holds when σ has the
special value σ(u, v) = v⊤Au. Observe that

σ(u, v) ⩽ ‖A‖2, u ∈ 𝕊m−1, v ∈ 𝕊n−1,
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thanks to the Cauchy–Schwarz inequality. By compactness of 𝕊m−1 × 𝕊n−1 and con-
tinuity of the map E, there is a minimum (u1, v1) ∈ 𝕊m−1 × 𝕊n−1 with corresponding
σ1 = σ(u1, v1). Notice that σ(u1, v1) = 0 is only possible if v⊤Au = 0 for all u and v
(why?), in which case A = 0. Thus unless A = 0, any minimizing σ does not vanish
and can be assumed to be positive (otherwise replace u by −u or v by −v).

At a minimum (u1, v1), we must have that all derivatives of E in directions tangen-
tial to the product manifold 𝕊m−1 × 𝕊n−1 vanish (remember that directional derivatives
at a point are derivatives along curves on the manifold through that point). This im-
plies that ∇E(u1, v1) points in a direction normal to 𝕊m−1 × 𝕊n−1 (i. e., orthogonal to all
tangent vectors) at the point (u1, v1). Since the vector (u1, v1) is normal to 𝕊m−1 ×𝕊n−1 at
(u1, v1), we see that

∇E(u1, v1) = [
−σ1A⊤v1
−σ1Au1

] = λ [u1
v1
] ,

for some 0 ̸= λ ∈ ℝ, from which we infer that

u⊤1 (−σ1A
⊤v1) = −σ

2
1 = λu

⊤
1 u1 = λ,

v⊤1 (−σ1Au1) = −σ
2
1 = λv

⊤
1 v1 = λ,

whence λ = −σ21 . It follows, in particular, that

A⊤v1 = σ1u1 and Au1 = σ1v1.

Next, we replace A by A1 = A − σ1v1u⊤1 and notice that rank(A1) < rank(A). The latter
follows from the fact that Au1 = σ1v1 ̸= 0, while

A1u1 = [A − σ1v1u
⊤
1 ]u1 = σ1v1 − σ1v1 = 0,

and the rank-nullity theorem.1 At this point, we either have that A1 = 0 in which case
we are done, since A = σ1v1u⊤1 , or A1 ̸= 0, in which case we can repeat the argument
with A replaced with A1 and obtain another singular value σ2 > 0 for A1 as well as unit
vectors u2 ∈ ℝm and v2 ∈ ℝn such that

rank(A2) < rank(A1),

forA2 = A1−σ2v2u⊤2 . Continuing in this fashion, after rank(A) steps, wemust have that

0 = Ak = Ak−1 − σkvku
⊤
k = Ak−2 − σk−1vk−1u

⊤
k−1 − σkvku

⊤
k = ⋅ ⋅ ⋅

1 This is the statement that dim(ker(A)) + dim(rank(A)) = m for any A ∈ ℝn×m, which the reader is
invited to prove.

 EBSCOhost - printed on 2/10/2023 3:59 PM via . All use subject to https://www.ebsco.com/terms-of-use



8.2 Eigenvalues of symmetric matrices | 111

= A −
k
∑
j=1

σjvju
⊤
j .

This yields the following.

Fact. For any given matrix A ∈ ℝn×m of rank k, there are singular values σ1 ⩾ σ2 ⩾
⋅ ⋅ ⋅ ⩾ σk > 0 and singular vectors u1, . . . , uk ∈ 𝕊m−1 and v1, . . . , vk ∈ 𝕊n−1 such that
A = ∑kj=1 σjvju

⊤
j .

Defining matrices U ∈ ℝm×k by using the vectors u1, . . . , uk ∈ 𝕊m−1 as columns and
V ∈ ℝn×k by using the vectors v1, . . . , vn ∈ 𝕊n−1 as columns, we see that

A = VΣU⊤,

if Σ ∈ ℝk×k denotes the diagonal matrix with the singular values as the diagonal en-
tries. Try to show that the vectors u1, . . . , uk are (can be chosen to be) pairwise orthogo-
nal as are the vectors v1, . . . , vk . If you run into difficulties, revisit this issue after read-
ing the next section.

8.2 Eigenvalues of symmetric matrices

In the special case of self-maps of a finite-dimensional vector space, which upon in-
troduction of a basis, amounts to the case of square matrices, it is possible to consider
eigenvalues (as opposed to the singular values of the last section). Given A ∈ ℝm×m,
this corresponds to attempting to find values λj ∈ ℂ and vectors uj ∈ 𝕊m−1 such that

A =
m
∑
j=1

λjuju
⊤
j .

Complex eigenvalues (and eigenvectors) need to be allowed as the matrix

A = [0 −1
1 0
]

indicates. The above representation is not always possible due to a potential lack of a
sufficient number of eigenvectors as the simple example

A = [0 1
0 0
]

shows. This matrix has indeed the single eigenvalue λ = 0 and a one-dimensional
eigenspace spanned by the vector [ 10 ], which makes it impossible to obtain a basis
of eigenvectors. When λj is real for each j = 1, . . . ,m, the matrix A = ∑mj=1 λjuju

⊤
j is
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symmetric (or self-adjoint) in the sense that A = A⊤. Interestingly, the converse is also
true: if a real matrix is symmetric, then it has a complete set of real eigenvalues.

Fact. A matrix A ∈ ℝm×m for m ∈ ℕ with A = A⊤ possesses m real eigenvalues

λ1 ⩽ λ2 ⩽ ⋅ ⋅ ⋅ ⩽ λm,

(not necessarily distinct) and an orthonormal basis of eigenvectors u1, . . . , um, i. e., vec-
tors satisfying

Auj = λjuj and u⊤j uk = δjk for j, k = 1, . . . ,m,

such that

A =
m
∑
j=1

λjuju
⊤
j ,

where it is allowed that one or more of the eigenvalues vanish.

Given the possible presence of complex eigenvalues, we need to consider the com-
plex inner product u⊤v for u, v ∈ ℂm, which extends the real one onℝm ⊂ ℂm. We then
observe that

λ|u|22 = u
⊤λu = u⊤Au = (Au)⊤u = u⊤A⊤u = u⊤Au = u⊤Au = λ|u|22,

since

u⊤v = v⊤u,

for u, v ∈ ℂm and provided that u is an eigenvector of A to the eigenvalue λ, i. e., pro-
vided that Au = λu and u ̸= 0. It follows that λ = λ and, therefore, that λ ∈ ℝ. Next,
observe that

λv⊤u = v⊤(λu) = v⊤Au = u⊤A⊤v = u⊤Av = μu⊤v,

so that, if λ ̸= μ are eigenvalues with eigenvectors u and v, respectively, it must hold
that (λ − μ)v⊤u = 0, and hence that v⊤u = 0, i. e., u and v must be orthogonal. If lin-
early independent eigenvectors can be found to the same eigenvalues, then they can
be chosen to be orthonormal by applying the Gram–Schmidt orthogonalization pro-
cedure of Section 3.3.2. The existence of eigenvalues can be handled in a way similar
to that used to produce singular values. Consider the optimization problem

argminλ∈ℝ,u∈𝕊m−1 12 A − λuu⊤22⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
=F(λ,u)

.
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A direct computation yields that

1
2
A − λuu

⊤
2
2 =

1
2
‖A‖22 − λu

⊤Au + 1
2
λ2 ⩾ 1

2
‖A‖22 −

1
2
(uTAu)2 = E(u),

since the expression isminimized at λ = u⊤Au for any fixed u. By continuity of themap
E : 𝕊m−1 → ℝ and compactness of 𝕊m−1, a vector u1 ∈ 𝕊m−1 is found that minimizes
E. Then (λ1, u1) = (u⊤1 Au1, u1) is a minimizer of F. Notice that the optimality condition
amounts to the validity of

∇E(u1) = −(u
⊤
1 Au1)Au1 = σu1

for some σ ∈ ℝ, since the gradient has to point in a direction normal to 𝕊1 at u1
and the only such direction is u1 itself (see the analogous discussion in the previ-
ous section if you need a more detailed explanation). Scalar multiplying with u1 gives
−(u⊤1 Au1)

2 = σ, and consequently, that Au1 = λ1u1. Thus u1 is indeed an eigenvector
to the eigenvalue λ1. By replacing 𝕊m−1 with 𝕊m−1 ∩ V⊥1 in the optimization problem,
where V1 = ℝu1, another minimizer (λ2, u2) ∈ ℝ×𝕊m−1 can be found that is orthogonal
to u1. Here, we used the termW⊥ to denote the orthogonal complement subspace

W⊥ = {u ∈ ℝm  w
⊤u = 0 ∀w ∈ W} ⊂ ℝm

of a subspaceW ofℝm. The procedure can be repeated until um ∈ 𝕊m−1 is found, which
is orthogonal to all previous minimizers u1, . . . , um−1, at which point we have a (or-
thonormal) basis of ℝm and it must therefore hold that

A =
m
∑
j=1

λjuju
⊤
j .

Notice that ∞ > |λ1| ⩾ |λ2| ⩾ ⋅ ⋅ ⋅ ⩾ |λm| ⩾ 0 by construction and that some or all
eigenvalues can vanish.√

If all eigenvalues of a symmetric matrixA ∈ ℝn×n are positive, then convince your-
self that x⊤Ax is a norm |⋅|A onℝn. The boundary of the unit ball𝔹|⋅|A (0, 1), an ellipsoid,
is shown below for a particular A ∈ ℝ2×2.
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Why is it an ellipse and howdo the directions and lengths of its principal axes (dashed
segments) relate to the matrix A? (Q1)

Try to convince yourself that the singular values of a square matrix do not need
to coincide with its eigenvalues. Eigenvectors point in directions that are left invari-
ant by the matrix (they are only stretched or compressed), whereas singular vectors
point in directions of maximal stretching. Both eigen and singular values record the
amount of stretching/compression. It is a good exercise to find a connection between
singular value and eigenvalue decompositions of a matrix and its representation in
special bases.

We conclude this section by pointing out that the case when A ∈ ℂm×m is a com-
plexmatrix could also be considered. In that case, symmetry has to be replaced by the
property that

AT = A, i. e., that akj = a
j
k , j, k = 1, . . . ,m.

Matrices satisfying this condition are called Hermitian or self-adjoint. It is good prac-
tice to show a Hermitian matrix admits a basis v1, . . . , vm ∈ ℂm of eigenvectors to (pos-
sibly repeated) real eigenvalues λ1, . . . , λm ∈ ℝ such that

A =
m
∑
j=1

λjvjvj
T .

8.2.1 The conjugate gradient method

Let A ∈ ℝn×n be a symmetric matrix and assume that all its eigenvalues are positive.2

Then the solution of the linear system Ax = b exists for any b ∈ ℝn and is unique. It is
the point of minimal value of the quadratic function f defined by

f (x) = 1
2
x⊤Ax − x⊤b, x ∈ ℝn.

This can be verified by computing its gradient

∇f (x) = Ax − b, x ∈ ℝn,

and noticing that its vanishing amounts to the validity of Ax = b. The function f is
strictly convex and satisfies lim|x|2→∞ f (x) =∞ (check these statements3). In the next
section, we shall see that this implies the existence of a unique point of minimum.
In applications, one is often confronted with the problem of inverting large matrices.
Direct inversion via some formula or Gauss elimination can prove computationally

2 One says that A is positive definite when this holds and writes A = A⊤ > 0.
3 If you are not familiar with convexity, take a peek at the beginning of the next section.
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intensive and iterativemethods canprovide a viable alternative. The simplest iteration
for the above problem is obtained by applying gradient descent to f . Starting with an
initial guess x0 ∈ ℝn, one iterates based on

xk+1 = xk − α∇f (xk) = xk + α(b − Axk) =: xk + αrk ,

where rk is called the residual. The step α is chosen to be optimal, i. e., to satisfy

0 = d
dα

f (xk + αrk) = ∇f (xk + αrk) ⋅ rk
= (Axk + αArk − b) ⋅ rk = αr

⊤
k Ark − r

⊤
k rk .

This yields the algorithm:

1. Choose x0.
2. Repeat for k=0,1,2,…

rk = b − Axk , αk =
r⊤k rk
r⊤k Ark

xk+1 = xk + αkrk
until rk is as small as desired.

Observe that ∇f (xk+1) ⋅ rk = 0 and, more in general, that

∇f (x + v∗) ⋅ v = 0 for v ∈ U ,

ifU ⊂ ℝn is any subspace and if v∗ ∈ argminv∈U f (x+v). Given v ∈ U, this follows from

g′(0) = 0 for g(t) = f (x + v∗ + tv), t ∈ ℝ.

This method can be slow as it may bounce off steep walls as it slowly makes its
way down a narrow canyon. This happens when the matrix A has eigenvalues of
significant differing sizes so that the ellipsoidal level sets of f are elongated. In the
two-dimensional depiction below, the path taken by gradient descent appears to zig-
zag about the level lines of f toward the solution (i. e., the minimizer) given by the
black dot.
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It is possible to improve this algorithm by sequentially minimizing in conjugate di-
rections, i. e., in directions which are A-orthogonal4 as opposed to orthogonal with
respect to the standardEuclidean inner product.We start, as inplain gradient descent,
with an initial guess x0 and find the point of minimum x1 of f along the line through
x0 with direction given by the (negative) gradient −∇f (x0) = b − Ax0. It is given by

x1 = x0 + α
0
∗r0 for α0∗ =

r⊤0 r0
r⊤0Ar0
,

and, as we only have one direction r0 for now, set p0 = r0 for the first vector in
the A-orthogonal basis. Next, observe that, for any basis consisting of A-orthogonal
vectors p0, . . . , pn−1, it holds that

argmin
α0 ,...,αn−1 f(x0 +

n−1
∑
j=0

αjpj) = (α
0
∗, argmin

α1 ,...,αn−1 f(x1 +
n−1
∑
j=1

αjpj)),

since

0 = 𝜕α0 f(x0 +
n−1
∑
j=0

αjpj) = ∇f(x0 +
n−1
∑
j=0

αjpj) ⋅ p0

= (Ax0 − b +
n−1
∑
j=0

αjApj) ⋅ p0 = (−p0 + α
0Ap0) ⋅ p0

= 𝜕α0 f (x0 + α
0p0),

where the fourth identity follows from p⊤j Ap0 = 0 for j = 1, . . . , n − 1. This means that
minimizing f along the line {x0 + α0r0 | α0 ∈ ℝ} yields the same minimizing value α0∗
as we would get by minimizing f (x0 +∑

n−1
j=0 α

jpj) over all α0, . . . , αn−1 and extracting the
first component of the minimizer. We can now continue with r1 = b − Ax1 = −∇f (x1)
andmodify it to p1making itA-orthogonal to r0 by a Gram–Schmidt orthogonalization
step, i. e.,

p1 = r1 −
r⊤1 Ap0
p⊤0Ap0

p0.

Minimizing f (x1 + α1p1) in α1 yields

x2 = x1 + α
1
∗p1 with α1∗ =

p⊤1 p1
p⊤1 Ap1
.

4 Two vectors x, y are A-orthogonal if x⊤Ay = 0, i. e., orthogonal with respect to the scalar product
induced by A.
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Notice that r0 ∈ span{r0} and that

r1 = b − Ax1 = b − Ax0 − α
0
∗Ar0 = r0 − α

0
∗Ar0 ∈ span{r0,Ar0},

as well as that

span{r0, r1} = span{r0,Ar0} = span{p0, p1}.

Using this and the fact that

(α0∗, α
1
∗) = argmin

α0 ,α1
f (x0 + α

0p0 + α
1p1),

we see that

r2 = −∇f (x2) ⊥ span{r0,Ar0}.

In particular, r⊤2 Ap0 = 0 and, when modifying r2 = b − Ax2 to obtain p2, which is
A-orthogonal to p0 and p1, it suffices to obtain A-orthogonality to p1. This gives

p2 = r2 −
r⊤2 Ap1
p⊤1 Ap1

p1,

and the procedure can continue. Depending on the initial guess x0, the process will
end when ri = 0, which can happen for any i ∈ {0, . . . , n− 1}. In any event, after at most
n steps, the minimizer is identified. We obtained the following conjugate gradient
algorithm:

1. Choose x0 and set p−1 = 0.
2. Repeat for k = 0, 1, 2, . . . , n − 1

rk = b − Axk , pk = rk −
r⊤k Apk−1
p⊤k−1Apk−1

pk−1, αk =
r⊤k pk
p⊤k Apk

xk+1 = xk + αkpk .

In the two-dimensional example used to illustrate gradient descent, the conjugate
gradient algorithm obtains the solution in two steps as depicted below
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In the derivation of the algorithm, we made use of the fact that rk is A-orthogonal to
p0, . . . , pk−2 for k = 2, 3, . . . , n − 1. A proof was given for k = 2 in the argument above.
Try to obtain one for k > 2.5

8.3 Convexity

Convexity is a structure that, when available, opens the door to a whole set of tools
that prove very useful in many areas of mathematics where optimization plays a role.
Its tools are known under the umbrella of convex analysis. Here, we simply would like
to introduce the concept and offer a peek into some basic but important consequences
it entails. Given a subset U of a vector space V , we call it convex iff

U ⊃ [x, y] = {x + t(y − x)  t ∈ [0, 1]}
= {(1 − t)x + ty  t ∈ [0, 1]} ∀x, y ∈ U .

This simply means that a set is convex if the segment [x, y] connecting any two of its
points x, y is contained in the set itself. Vector (sub)spaces are clearly convex, since
they contain the whole line determined by at any two of their points. In ℝd for d ∈ ℕ,
the balls

𝔹p(0, 1) = {x ∈ ℝ
d  |x|p < 1}

with respect to the p-norm given by |x|p = (∑
d
k=1 |xk |

p)1/p for p ∈ [1,∞) and given by
|x|∞ = maxk=1,...,d |xk | for p =∞ and x ∈ ℝd, are convex (check this). An annulus like

𝔹2(0, 2) \ 𝔹2(0, 1) ⊂ ℝ
d

is an example of a nonconvex set. If L ∈ ℒ(V ,W) is a linearmap between vector spaces
and U ⊂ V is convex, so is L(U) ⊂ W . Indeed, given vectors w1,w2 ∈ L(U), there are
v1, v2 ∈ U with L(vj) = wj for j = 1, 2. Then, for t ∈ [0, 1],

(1 − t)w1 + tw2 = (1 − t)L(v1) + tL(v2) = L((1 − t)v1 + tv2) ∈ L(U),

since (1 − t)v1 + tv2 ∈ U by the convexity of U . For the rest of this section, we assume
that V = ℝd since the infinite-dimensional case will not be discussed. The set

epi(f ) = {(x, t) ∈ ℝd × ℝ  t ⩾ f (x)}

5 It would be natural to try and do so by induction.
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is called the epigraph of the function f : ℝd → ℝ, where ℝ = ℝ ∪ {∞}. An example of
epigraph is depicted in the image below.

A function f : ℝd → ℝ is called convex iff its epigraph is convex. Given such a convex
function, the set

dom(f ) = {f <∞} = {x ∈ ℝd  f (x) <∞}

is called the effective domain of f . If x, y ∈ dom(f ) for a convex function f , then
(x, f (x)), (y, f (y)) ∈ epi(f ), so that

((1 − t)x + ty, (1 − t)f (x) + tf (y)) ∈ epi(f ) ∀t ∈ [0, 1],

or, equivalently, that

f ((1 − t)x + ty) ⩽ (1 − t)f (x) + tf (y) <∞ ∀t ∈ [0, 1],

showing that dom(f ) is convex for any convex function f . This can also be seen by
observing that dom(f ) = P1(epi(f )) for the linear map (projection) P1 : ℝd × ℝ → ℝd,
(x, t) → x. Given a function f : U → ℝ, defined on a convex set U, it can be identified
with its extension

f : ℝd → ℝ, x → {
f (x), x ∈ U ,
∞, x ∉ U .

It is called convex if f is convex, in which case U = dom(f ). It follows from the above
discussion that in this case f is convex iff it holds that
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f ((1 − t)x + ty) ⩽ (1 − t)f (x) + tf (y) ∀t ∈ [0, 1],

for x, y ∈ U .6 The geometric interpretation of convexity is that the curve

γfx,y = {(z, f (z))
 z ∈ [x, y]} ⊂ U × ℝ ⊂ V × ℝ

on the graph of f always lies under the segment sfx,y = [(x, f (x)), (y, f (y))] connecting
its end points in the planeℝ(y − x) ×ℝ determined by the vector y − x and the vertical
axis of the graph.

Verify that convexity of a function f : U → ℝ defined on a convex set U ⊂ ℝd is
equivalent to the validity of

f (λ1x1 + ⋅ ⋅ ⋅ + λnxn) ⩽ λ1f (x1) + ⋅ ⋅ ⋅ + λnf (xn),

for n ∈ ℕ, x1, . . . , xn ∈ U, and λk ∈ [0, 1] with∑
d
k=1 λk = 1. The functions

| ⋅ |pp : ℝ
d → [0,∞), x → |x|pp,

are convex for p ∈ [1,∞). So are the functions

exp : ℝ→ ℝ, x → ex and − log : (0,∞)→ ℝ, x → − log(x).

Show that convexity of − log implies the following inequality of arithmetic and geo-
metric means:

(x1 ⋅ ⋅ ⋅ xn)
1/n ⩽

x1 + ⋅ ⋅ ⋅ + xn
n
,

valid for x1, . . . , xn ∈ (0,∞).

6 One speaks of strict convexity if the defining inequality is strict.
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A convex function f : ℝd → ℝ has convex domain dom(f ) that may not be full-
dimensional. Take for instance f : ℝ2 → ℝ defined by

f (x) = {
0, if x1 ∈ (0, 1) and x2 = 0,
∞, otherwise,

for which dom(f ) = (0, 1)×{0}. In such a situation, we can simply “discard” the dimen-
sions in which the function is identically equal to infinity and assume without loss of
generality that the domain is full-dimensional. If dom(f ) ̸= 0, i. e., if f ̸≡∞, and there
are at least two points in dom(f ), then the domain has nonempty interior int(dom(f )).
Now consider

f (x + th) = f ((1 − t)x + t(x + h)) ⩽ (1 − t)f (x) + tf (x + h),

for x ∈ int(dom(f )), h ∈ ℝd, and t small enough so that x + th ∈ int(dom(f )). The
inequality rewrites as

f (x + th) − f (x)
t

⩽ f (x + h) − f (x), (8.1)

and implies that

𝜕hf (x) = ∇f (x) ⋅ h ⩽ f (x + h) − f (x),

upon letting t tend to 0, provided f is differentiable at x. This shows that the graph
of a differentiable convex function f defined on an open set U, always lies above its
tangent (hyper)plane, i. e., that

f (x + h) ⩾ f (x) + ∇f (x) ⋅ h, h ∈ ℝd.

If f is not differentiable at a point x with f (x) <∞, it still holds that

f (x + τh) = f ((1 − τ)x + τ(x + h)) ⩽ (1 − τ)f (x) + τf (x + h),

for τ ∈ (0, 1], which can be rewritten as

f (x + τth) − f (x)
τt

⩽
f (x + th) − f (x)

t
,

where t ∈ (0,∞) and τ ∈ (0, 1] by replacing h with th. This shows that the map

dhf (x, ⋅) : (0,∞)→ ℝ, t → f (x + th) − f (x)
t
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is monotone nondecreasing, so that

dhf (x,0) = limt↘0 dhf (x, t) ∈ ℝ,

is well-defined for any h ∈ ℝd and is the directional derivative of f at x in direction h.
Show that dshf (x,0) = s dhf (x,0) for s > 0, that dhf (x,0) is a convex function of h, and
consequently, that

−d−hf (x,0) ⩽ dhf (x,0) for h ∈ ℝd.

If f is differentiable at x, then dhf (x,0) = 𝜕hf (x) = ∇f (x) ⋅ h. A vector v ∈ ℝd is called a
subgradient of f at x iff it holds that

f (x + h) ⩾ f (x) + v ⋅ h ∀h ∈ ℝd,

and the set 𝜕f (x) of all subgradients of f at a point x ∈ dom(f ) is called subdifferential.
A function is called subdifferentiable at x ∈ dom(f ) iff 𝜕f (x) ̸= 0. When a function f is
differentiable at x ∈ dom(f ), then 𝜕f (x) = {∇f (x)}.

The simplest but still very illustrative example is given by the absolute value func-
tion | ⋅ |, which is subdifferentiable everywhere and differentiable for x ̸= 0. At x = 0,
we have that

𝜕| ⋅ |(0) = [−1, 1],

which is compatible with the observation that any line through the origin with slope
between −1 and 1 is “tangent” to the graph of | ⋅ |.
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Notice how the extreme values of 𝜕| ⋅ |(0) correspond to the directional derivatives of
the function at x = 0. Compute the subdifferential of the function

| ⋅ |1 : ℝ
d → ℝ, x → |x|1 =

d
∑
k=1
|xk |,

discuss (Q2) the correspondence with the absolute value (d = 1), and the relation be-
tween 𝜕| ⋅ |1(0) and 𝜕| ⋅ |1(x) = {(sign(x1), . . . , sign(xd))} for x such that∏

d
j=1 xj ̸= 0. What

is the subdifferential of | ⋅ |∞ given by

|x|∞ = max
k=1,...,d
|xk |, x ∈ ℝd for d > 1?

The function f : ℝ→ ℝ defined by

f (x) = {
−√1 − x2 for |x| ⩽ 1,
∞ for |x| > 1,

shows that a convex function can fail to be subdifferentiable at points in its domain
(here for x = ±1). Given a convex function f : ℝd → ℝ and x ∈ dom(f ), show that
ℝd ∋ v ∈ 𝜕f (x) iff

v ⋅ h ⩽ dhf (x) ∀h ∈ ℝ
d.

A remarkable property of convex functions (defined on a finite-dimensional space) is
that they are automatically continuous.

Fact. Let f : ℝd → ℝ be convex and assume that dom(f ) ̸= 0 is open. Then the function
f : dom(f )→ ℝ is continuous. It is actually locally Lipschitz continuous.7

We will need inequality (8.1), which reads

f (x + th) − f (x) ⩽ t[f (x + h) − f (x)],

and the similar

t[f (x) − f (x − h)] ⩽ f (x + th) − f (x),

which hold for any x ∈ dom(f ), h ∈ ℝd with x ± h ∈ dom(f ), and t ∈ [0, 1]. The second
inequality, just as the first, is a consequence of convexity if we observe that

x = t
1 + t
(x − h) + 1

1 + t
(x + th).

7 Local Lipschitz continuity amounts to Lipschitz continuity in the neighborhood of each point.
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Indeed

f (x) ⩽ t
1 + t

f (x − h) + 1
1 + t

f (x + th)

is equivalent to it. Given x ∈ dom(f ) it is possible to find tx ∈ (0, 1) such that

x + 𝔹|⋅|1 (0, tx) = x + {y ∈ ℝ
d

|y|1 =

d
∑
k=1

y
k  ⩽ tx} ⊂ dom(f )

since the effective domain is assumed to be open. Any point in x + 𝔹|⋅|1 (0, tx) is of the
form

x + th for t ⩽ tx and h with |h|1 = 1.

It follows that

t[f (x) − f (x − h)] ⩽ f (x + th) − f (x) ⩽ t[f (x + h) − f (x)].

Using

x ± h = x ±
d
∑
k=1

sign(hk)⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
sk

h
k ek =

d
∑
k=1

h
k [x ± s

kek],

and convexity, we arrive at

f (x + h) − f (x) ⩽
d
∑
k=1

h
k [f (x + s

kek) − f (x)]

⩽ max
k=1,...,d; s=±1

f (x + sek) − f (x) = M

and at

f (x) − f (x − h) ⩾ f (x) −
d
∑
k=1

h
k f (x − s

kek)

⩾ f (x) − max
k=1,...,d; s=±1

f (x − sek) = −M

since |h|1 = ∑
d
k=1 |h

k | = 1. This, together with the inequalities for f (x+ th)− f (x) derived
above, implies

f (x + th) − f (x)
 ⩽ Mt for t ⩽ tx and |h|1 = 1,

and continuity follows. This is, however, not local Lipschitz continuity yet. To obtain
the latter, fix x ∈ dom(f ) and t > 0 with 𝔹|⋅|2 (x, t) ⊂ dom(f ), and notice that
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f (w)
 ⩽ M for w ∈ B|⋅|2 (x, t),

for some M > 0 by continuity of f and compactness of the closed ball. For ε ∈ (0, t),
take y, z ∈ 𝔹|⋅|2 (x, ε) and define

w = y + t − ε
|y − z|2
(y − z) ∈ 𝔹|⋅|2 (x, t).

Algebraic manipulations show that

y = t − ε
|y − z|2 + t − ε

z + |y − z|2
|y − z|2 + t − ε

w,

and convexity yields

f (y) ⩽ (t − ε)
|y − z|2 + t − ε

f (z) + |y − z|2
|y − z|2 + t − ε

f (w),

which rewrites as

(t − ε)[f (y) − f (z)] ⩽ [f (w) − f (y)]|y − z|2 ⩽ 2M|y − z|2.

By switching the role of y and z, we arrive at

f (y) − f (z)
 ⩽ L|y − z|2 ∀y, z ∈ 𝔹|⋅|2 (0, ε),

with L = 2M/(t − ε), i. e., at (local) Lipschitz continuity about the point x ∈ dom(f ),
which was arbitrary.√

The convex function f : ℝ→ ℝ given by

f (x) =
{{{
{{{
{

0, x ∈ (−1, 1),
1, x = ±1,
∞, x ∈ [−1, 1]c,

shows that continuity may fail on the boundary of the effective domain (and is the
reason we assume that it be open for the continuity result). In order to exclude this
possibility a convex function with (full-dimensional) dom(f ) ̸= 0 can be modified to
its so-called closure cl(f ) by setting

cl(f )(x) = lim inf
y→x

f (y) = lim
δ→0

inf
|y−x|2⩽δ

f (y),

which only alters f on 𝜕dom(f ), given its continuity in the interior of its domain. In
the concrete example above, the values of f at x = ±1 would be reset to 0 when taking
the closure.

We conclude this section with the following important fact.
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Fact. Let f : ℝd → ℝ be strictly convex and assume that

lim
|x|2→∞

f (x) =∞.

Then f attains its unique minimum.

The assumption about the behavior of f for large arguments yields the existence
of R > 0 such that

f (x) ⩾ 2f (0) for |x|2 ⩾ R.

We infer that the points where f has its infimumm ∈ ℝ have to belong to 𝔹2(0,R). As
we just learned that convex functions are continuous,we conclude that f |𝔹2(0,R) attains
its minimum in at least one point. Finally, assuming that the minimum is taken on at
two points x1, x2 ∈ 𝔹2(0,R) at least, we can use strict convexity to obtain

f( 1
2
x1 +

1
2
x2) <

1
2
f (x1) +

1
2
f (x2) = m,

which contradicts the fact that m is the infimum value of f . Hence the minimum is
unique. The function

f : ℝ→ ℝ, x → ex

shows that the condition about the behavior at infinity is necessary since it is strictly
convex but does not attain its minimum value 0.
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In this chapter, we give a very limited and partial introduction to the treatment of the
heat equation as an example of an approach that can be taken to deal with evolu-
tionary (time dependent) equations and asmotivation for the introduction of function
spaces of general interest. A possible and interesting derivation of the equation is of-
fered in the next chapter. The approach is very much inspired by that taken to solve
ODEs.

9.1 The periodic heat equation

The (linear) heat (or diffusion) equation for a periodic function

u : 𝕋d = [0, 2π]d → ℂ

in dimension d ∈ ℕ with periodic initial datum u0 reads

{
𝜕tu − Δu = 0 in 𝕋d for t > 0,
u(0, ⋅) = u0 in 𝕋d,

where Δu = ∑dj=1 𝜕
2
j u and periodicity means

u(x + 2πej) = u(x) ∀x ∈ 𝕋
d ∀j = 1, . . . , d.

We can think of this equation as the linear ODE u̇ = Auwhere the matrix A (see Chap-
ter 7) is replaced by Δ. Formally, the solution should be given by etΔu0 and we know
that a way to compute the exponential of a matrix is through the determination of
eigenvalues and eigenvectors. We therefore consider the eigenvalue equation

Δu = μu,

for periodic u. Looking for periodic solutions of the form u(x) = u(xj) for j ∈ {1, . . . , d},
the equation reduces to u′′ = μu. The general solution of the latter equation is given
by αe√μξ +βe−√μξ for α, β ∈ ℂ. Such solution is only 2π-periodic if we have that√μ = ik
for some k ∈ ℤ, in which case μ = −k2. We therefore have the eigenvalues μk = −k2,
k ∈ ℕ, with associated eigenvectors (better eigenfunctions)

e±ikξ , ξ ∈ 𝕋.

https://doi.org/10.1515/9783110780925-009
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128 | 9 Partial differential equations

Notice that

2π

∫
0

eikξ e−ilξ dξ = 2πδkl, k, l ∈ ℤ,

making

{φk =
1
√2π

eik⋅  k ∈ ℤ},

an orthonormal system on

C∞π = {u ∈ C
∞(𝕋,ℂ)  u is 2π-periodic},

with respect to the scalar product

(u|v)2 =
2π

∫
0

u(ξ )v(ξ ) dξ , u, v ∈ C∞π .

Choosing k ∈ ℤd and defining

φk(x) =
1
(2π)d/2

d
∏
j=1

φkj (xj),

yields (orthonormal) eigenfunctions of Δ as follows from

Δφk(x) = −[
d
∑
j=1

k2j ]
d
∏
j=1

φkj (xj) = −|k|
2
2φk(x).

Inspired by the finite-dimensional case of matrices, we consider linear combinations
of eigenfunctions. Since there are infinitely many of the latter, convergence consider-
ations will have to play a role. Here, we consider the natural choice

ℓ2(ℤ
d,ℂ) = {(ûk)k∈ℤd


ûk ∈ ℂ for k ∈ ℤ

d and ∑
k∈ℤd
|ûk |

2 <∞},

where absolute convergence makes it possible to add the terms in the series in any
order. This vector space carries the inner product given by

(û | v̂) = ∑
k∈ℤd

ûk v̂k , û, v̂ ∈ ℓ2(ℤ
d,ℂ),

for û = (ûk)k∈ℤd and v̂ = (v̂k)k∈ℤd .
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Fact. The space ℓ2(ℤd,ℂ) is complete, i. e., it is a Hilbert space.

In order to see this, take a Cauchy sequence (xn)n∈ℕ in ℓ2(ℤd,ℂ) with respect to
the norm induced by the scalar product. Since for any given k ∈ ℤd,

x
n
k − x

m
k
 ⩽
x

n − xm2 = √ ∑
k∈ℤd

xnk − x
m
k

2
→ 0 asm, n→∞,

the sequence (xnk )n∈ℕ in ℂ of the kth component xnk of xn is Cauchy and, therefore,
admits a limit x∞k ∈ ℂ for each k ∈ ℤd. Cauchy sequences are bounded sequences,
and thus it holds that

∑
|k|2⩽M

x
n
k

2
⩽ ∑

k∈ℤd

x
n
k

2
= x

n
2
2 ⩽ C, n ∈ ℕ

for some C > 0. Taking the limit as n→∞, this yields that

lim
n→∞
∑
|k|2⩽M

x
n
k

2
= ∑
|k|2⩽M

x
∞
k

2
⩽ C, M ∈ ℕ,

and lettingM tend to∞, we see that x∞ ∈ ℓ2(ℤd,ℂ). Finally, taking the limitm →∞
in the inequality

√ ∑
|k|2⩽M

xnk − x
m
k

2
⩽ x

n − xm2 ⩽ ε,

which, for any given ε > 0, is valid for m, n ⩾ Nε, some Nε ∈ ℕ, and arbitraryM ∈ ℕ,
we arrive at

√ ∑
|k|2⩽M

xnk − x
∞
k

2
⩽ ε for n ⩾ Nε, M ∈ ℕ,

and eventually to ‖xn − x∞‖2 ⩽ ε for n ⩾ Nε, by lettingM tend to∞. We conclude that
xn → x∞ in ℓ2(ℤd,ℂ).√

Taking the subspace of finite sequences,

c00(ℤ
d,ℂ) = {(ûk)k∈ℤd

 ûk = 0 for all but finitely many k ∈ ℤd},

we see that u = ∑k∈ℤd ûkφk for (ûk)k∈ℕ ∈ c00(ℤd,ℂ) satisfies that

u ∈ C∞π and that ∫
𝕋d

u(x)

2 dx = ∑

k∈ℤd
|ûk |

2,

due to orthonormality of (φk)k∈ℕ. This gives a map
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𝒢 : c00(ℤ
d,ℂ)→ L2(𝕋d,ℂ), û = (ûk)k∈ℕ → u = ∑

k∈ℤd
ûkφk ,

satisfying 𝒢(c00(ℤd,ℂ)) ⊂ C∞π and ‖u‖2 = ‖u‖L2 = ‖û‖2 = ‖û‖ℓ2 . It can be shown (do
it! (Q1)) that ℓ2(ℤd,ℂ) is the completion of c00(ℤd,ℂ) with respect to the ‖ ⋅ ‖ℓ2 norm.
Recalling that L2(𝕋d) was defined as the completion of C(𝕋d,ℂ) ⊃ C∞π with respect to
the ‖ ⋅ ‖L2 norm, we see that the map 𝒢 can be uniquely extended1 to a map

𝒢 : ℓ2(ℤ
d,ℂ)→ L2(𝕋

d,ℂ),

for which it holds that ‖𝒢(û)‖L2 = ‖û‖ℓ2 . It is an exercise to show that this map is injec-
tive and surjective, so that 𝒢 is an (isometric, i. e., norm preserving) isomorphism.2 In
the process, verify that the inverse ℱ ∈ ℒ(L2(𝕋d,ℂ), ℓ2(ℤd,ℂ)) of 𝒢 is given by

ℱ(u) = ( 1
(2π)d/2

∫

𝕋d

u(x)e−ikx dx)
k∈ℤd
= ((u|φk))k∈ℤd .

This map ℱ is usually called Fourier transform and it holds that

u = ∑
k∈ℤd

ûkφk provided ûk = (u|φk) for k ∈ ℤ
d.

This is compatible with the standard notation û = ℱ(u) that we shall adopt from now
on. If we take u ∈ L2(𝕋d), we can imagine that

Δu = Δ ∑
k∈ℤd

ûkφk = ∑
k∈ℤd

ûkΔφk = − ∑
k∈ℤd
|k|22ûkφk .

This shows that, unless (|k|22ûk)k∈ℤd ∈ ℓ2(ℤ
d,ℂ), we may have convergence issues for

the series, even though û ∈ ℓ2(ℤd,ℂ). In order to be able to better understand the
mapping properties of Δ, we introduce additional spaces

Hs
π = {u = ∑

k∈ℤd
ûkφk


∑
k∈ℤd
[1 + |k|22]

s
|ûk |

2 <∞}

for s ∈ ℝ with norm given by

‖u‖s,2 = √ ∑
k∈ℤd
[1 + |k|22]

s
|ûk |2.

1 This can be done using the fact of Section 4.3 and the fact that linear continuous maps are neces-
sarily uniformly continuous.
2 For the purposes of this book, an isomorphism is a bijective, linear, and continuous map between
normed vector spaces with a continuous inverse.
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A somewhat more rigorous way to introduce these spaces is via completion of
ℱ−1(c00(ℤd,ℂ)) with respect to the norm ‖ ⋅ ‖s,2. In any event,

ℱ(Hs
π) = ℓ

s
2(ℤ

d,ℂ) = {ξ ∈ ℂℤ
d 
∑
k∈ℤd
[1 + |k|22]

s
|ξk |

2 <∞}.

Notice that H0
π = L

2(𝕋d) and that its elements do not need to be periodic (nor contin-
uous). Verify (Q2) the latter statement by showing that

h ∈ L2(𝕋) for h(x) = {
−1, x ∈ [0,π),
1, x ∈ [π, 2π).

Show that Hs
π ⊂ H

r
π for r > s and that ‖u‖r,2 ⩽ C‖u‖s,2 for some constant C > 0 (which

depends on r, s). The inequality shows that the inclusion map is continuous. When
this is the case, one speaks of an embedding of spaces. The parameter s ∈ ℝmeasures
the regularity of the elements of Hs

π . Indeed, we have the following.

Fact. For any s > d/2, it holds that u ∈ C(𝕋d) for any u ∈ Hs
π . In particular, any such

function is periodic in the classical sense.

Fix x0 ∈ ℝd and define the linear functional δx0 by

⟨δx0 ,ψ⟩ = ψ(x0) for ψ ∈ C∞π ,

and notice that

⟨δx0 ,φk⟩ =
1
(2π)d/2

e−ikx0 = (δ̂x0 )k = δ̂
k
x0 , k ∈ ℤd.

It follows that

ψ(x0) = ⟨δx0 , ∑
k∈ℤd

ψ̂kφk⟩ = ∑
k∈ℤd

ψ̂k δ̂
k
x0 , ψ̂ ∈ c00(ℤ

d,ℂ),

and hence

δx0 |L00 = ∑
k∈ℤd

δ̂kx0φk ,

where

L00 = { ∑
k∈ℤd

ξkφk


ξ ∈ c00(ℤ

k ,ℂ)}.

Moreover, it holds that
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∑
k∈ℤd
[1 + |k|22]

sδ̂kx0 =
1
(2π)d/2

∑
k∈ℤd
[1 + |k|22]

s
<∞ if s < −d/2.

This shows that δx0 ∈ H
−s
π for s > d/2. The Cauchy–Schwarz inequality implies that

⟨δx0 ,ψ⟩ = ∑
k∈ℤd

δ̂kx0 ψ̂k
(1 + |k|22)

s

(1 + |k|22)s
⩽ ‖δx0‖−s,2‖ψ‖s,2,

for ψ ∈ L00, and hence for ψ ∈ Hs
π by density.

3 With this in hand, we see that

ψ(x) − ψ(y)
 =
⟨δx ,ψ⟩ − ⟨δy ,ψ⟩

 =
⟨δx − δy ,ψ⟩

 ⩽ ‖δx − δy‖−s,2‖ψ‖s,2,

where

‖δx − δy‖
2
−s,2 =

1
(2π)d/2

∑
k∈ℤd

e
−ikx − e−iky

2
[1 + |k|22]

−s

⩽
41−ε

(2π)d
∑
k∈ℤd

|k|2ε2
(1 + |k|22)s

|x − y|2ε = C |x − y|2ε, x, y ∈ ℝd,

provided s > d/2 + ε for some ε > 0, since

e
−ikx − e−iky ⩽ 2 and e

−ikx − e−iky ⩽ |k|2|x − y|2, x, y ∈ ℝd.

This gives continuity and we leave it to the reader to show that periodicity follows.√

Observing (and you are encouraged to provide a formal proof) that

𝜕j ∈ ℒ(H
s
π ,H

s−1
π ) for j = 1, . . . , d,

i. e., that differentiation in any direction is a linear and continuous (bounded) opera-
tion between the given spaces for any s ∈ ℝ, we use the above fact to show that

u ∈ Hs
π ⇒ u ∈ Cmπ ,

form ∈ ℕ if s > m + d/2, and, in this case, that

𝜕αu(0) = 𝜕αu(2πej) for j = 1, . . . , d and |α| ⩽ m, α ∈ ℕd.

It follows that we also have the inclusion

⋂
s∈ℝ

Hs
π ⊂ C
∞
π .

3 Density means that any function in Hs
π can be approximated arbitrarily well by elements of L00 in

the ‖ ⋅ ‖s,2 norm.
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Notice that, in a way fully analogous to the case of linear operators between finite-
dimensional spaces (i. e., essentially, of matrices), we can write

−Δ = ∑
k∈ℤd
|k|22φkφk

⊤,

if we set φk
⊤ = (⋅|φk) = ∫𝕋d ⋅(x)φk(x) dx. The fact that the sum is infinite and that

the set of eigenvalues is not bounded introduces, however, a new phenomenon: the
linear operator −Δ is not bounded. To be more precise, we can try to define −Δ on Hs

π ,
in which case you should verify (Q3) that

−Δu ∈ Hs−2
π for u ∈ Hs

π ,

which entails (check)4 that it is impossible to find a constant C > 0 such that

‖Δu‖s,2 ⩽ C‖u‖s,2,

which would amount to boundedness. This means that Δ, considered as an operator
on Hs

π can only be defined for functions in H
s+2
π , which is its domain. We write this as

Δ : dom(Δ) = Hs+2
π ⊂ H

s
π → Hs

π ,

where the inclusion indicates that we consider Hs+2
π with the topology induced by Hs

π .
We can alternatively consider the native topology on Hs+2

π , in which case we would
actually have aboundedoperator (show it), i. e., Δ ∈ ℒ(Hs+2

π ,H
s
π). Thiswould, however,

not be convenient since we would like to consider the periodic heat equation ut = Δu
as an infinite-dimensional ODE. This requires that we interpret Δ as a “vector field”
V : E → E on some space E. At a purely formal level, it is straightforward to see that

u(t, u0) = ∑
k∈ℤd

e−t|k|
2
2 û0kφk , t > 0

is a solution of the periodic heat equation with initial datum

u0 = ∑
k∈ℤd

û0kφk .

Fact. Given u0 ∈ Hs
π for s ∈ ℝ, it holds that

u(⋅, u0) = ∑
k∈ℤd

e−⋅|k|
2
2 û0kφk ∈ C([0,∞),H

s
π)

4 Construct a sequence (un)n∈ℕ of functions in Hs
π such that ‖Δun‖s,2 = n

2‖un‖s,2.
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solves the periodic heat equation in Hs
π with initial datum u0. Furthermore,

u ∈ Cm([0,∞),Hs−2m
π ),

for m ∈ ℕ.

If u0 ∈ Hs
π , then

∑
k∈ℤd
[1 + |k|22]

s
|û0k |

2 <∞.

For t ⩾ s ⩾ 0, we have that

u(t, u0) − u(s, u0)

2
Hs
π
=

∑
k∈ℤd
(e−t|k|

2
2 − e−s|k|

2
2)û0kφk

Hs
π

= ∑
k∈ℤd
[1 + |k|22]

s
(e−t|k|

2
2 − e−s|k|

2
2)
2
|û0k |

2.

For ε > 0, Nε ∈ ℕ can be found such that

∑
|k|2⩾N
[1 + |k|22]

s
(e−t|k|

2
2 − e−s|k|

2
2)
2
|û0k |

2 ⩽ 4 ∑
|k|2⩾Nε

[1 + |k|22]
s
|û0k |

2

⩽ ε2/2 for N ⩾ Nε,

since u0 ∈ Hs
π . Then there is δ > 0 such that

∑
|k|2<Nε

[1 + |k|22]
s
(e−t|k|

2
2 − e−s|k|

2
2)
2
|û0k |

2 ⩽ ε2/2 for |t − s| ⩽ δ,

by continuity, since the sum is finite. Combining the inequalities, we see that: For any
given ε > 0, there is δ > 0 such that

u(t, u0) − u(s, u0)
Hs

π
⩽ ε for |t − s| ⩽ δ,

and the claimed continuity follows.
Observe that

u(m)(t, u0) = ∑
k∈ℤd
(−|k|22)

me−t|k|
2
2 û0kφk .

As (|k|2m2 û0k)k∈ℤd satisfies

∑
k∈ℤd
|k|4m2 [1 + |k|

2
2]
s−2m
|û0k |

2 ⩽ ∑
k∈ℤd
[1 + |k|22]

2m
[1 + |k|22]

s−2m
|û0k |

2 <∞,
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since u0 ∈ Hs
π , we see that

u(m)(t, u0) = Δ
mu(t, u0) ∈ H

s−2m
π , t ⩾ 0,

and continuity follows as in the first part of this proof.√

Defining

T(t)u0 = ∑
k∈ℤd

e−t|k|
2
2 û0kφk = “e

tΔu0”, u0 ∈ H
s
π ,

we obtain a so-called strongly continuous semigroup on Hs
π for any s ∈ ℝ, which

amounts to the validity of:
(i) T(t + s) = T(t)T(s) for t, s ⩾ 0.
(ii) T(0) = idHs

π
.

(iii) T(⋅)u0 ∈ C([0,∞),Hs
π) ∀u0 ∈ H

s
π .

The reader is urged to verify that

u(t, u0) = T(t)u0 ∈ ⋂
s∈ℝ

Hs
π for t > 0,

so that T(t)u0 ∈ C∞π for t > 0, and consequently, that

T(⋅)u0 ∈ C
∞((0,∞),C∞π ).

Also verify that

ΔT(t)u0
Hs

π
⩽
C
t
‖u0‖Hs

π
, t > 0,

which shows that regularity does not hold up to t = 0, in general. Finally, convince
yourself that, in stark contrast to ODEs in finite dimensions (or in infinite dimensions
but for a bounded operator), the equation cannot be solved for negative times for
generic initial data.

9.2 The heat equation on the whole space

Next, we consider the heat equation on the whole space ℝd,

ut = Δu, u(0, ⋅) = u0.

In analogy with the periodic case, we consider the Fourier transform defined by

û(ξ ) = ℱ(u)(ξ ) = 1
(2π)d/2

∫

ℝd

e−ix⋅ξu(x) dx, ξ ∈ ℝn,
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for

u ∈ 𝒟(ℝd) = 𝒟 = {u ∈ C∞(ℝd,ℂ)  supp(u) = [u ̸= 0] is compact}.

Here, the support of a function is definedas the closure of the set onwhich the function
does not vanish. Observing that

ℱ(u)(ξ )
 ⩽ C ∫
ℝd

e
−ix⋅ξ ⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
=1

u(x)
 dx = C‖u‖1, ξ ∈ ℝd for u ∈ 𝒟,

we see that the definition can be extended to all functions in the completion of𝒟with
respect to the ‖ ⋅ ‖1-norm

L1(ℝd) = 𝒟‖⋅‖1 .

Themotivation for the use of the Fourier transform, as in the periodic case, is its ability
to diagonalize differentiation, i. e., (check)

ℱ(𝜕ju) = (iξj)ℱ(u) for u ∈ 𝒟 and j = 1, . . . , d,

which can also bewritten as 𝜕j = ℱ−1∘Miξj ∘ℱ onceweprove thatℱ is invertible inwell-
chosen function spaces. We use the notation Mf for the linear operator of pointwise
multiplication given by [u → fu]. Taking a Fourier transform of the heat equation
yields

ût = −|ξ |
2
2û, û(t, ⋅) = û0,

which can be solved to give

ℱ(u)(t, ξ ) = e−t|ξ |
2
2ℱ(u0)(ξ ), t > 0, ξ ∈ ℝd.

Once invertibility of ℱ is well understood, this can be used to obtain a solution of the
heat equation. We therefore study the Fourier transform inmore detail. Exploiting the
fact that

e−ix⋅ξnu(x) → e−ixξu(x) uniformly in x ∈ ℝd as n→∞,

if ξn → ξ as n → ∞ for any fixed u ∈ 𝒟 (why? (Q4)) we see that û is a continuous
function, which is also bounded since

‖û‖∞ = sup
ξ∈ℝd
û(ξ )
 ⩽ C‖u‖1
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as shown above. In search of spaces on which the Fourier transformmay be invertible
and motivated by the fact that it turns derivatives into multiplications by monomials
and multiplication by monomials into derivatives as follows from

ℱ(Mxju) = ℱ(xju) =
1
(2π)d/2

∫

ℝd

xje
−ix⋅ξu(x) = i

(2π)d/2
∫

ℝd

𝜕je
−ix⋅ξu(x)

= i𝜕j
1
(2π)d/2

∫

ℝd

e−ix⋅ξu(x) = i𝜕jℱ(u), j = 1, . . . , d, u ∈ 𝒟,

we introduce the space

𝒮 = {u ∈ C∞(ℝd,ℂ)  ∀m, k ∈ ℕ qm,k(φ) = sup
x∈ℝd

sup
|α|⩽m
[1 + |x|22]

k/2𝜕
αu(x) <∞},

which is invariant with respect to taking derivatives and to multiplying by polynomi-
als. Given u ∈ 𝒮 andm, k ∈ ℕ, a constant C = C(m, k) can be found such that

𝜕
αu(x) ⩽ C

C
[1 + |x|22]k/2

, x ∈ ℝd,

for any α ∈ ℕd such that |α| ⩽ m. Convince yourself that any partial derivative is
integrable, i.e. that 𝜕αu ∈ L1(ℝd) for any α ∈ ℕd if u ∈ 𝒮, and show that

ℱ(𝜕αu) = (iξ )αℱ(u), ℱ(xαu) = i|α|𝜕αℱ(u), u ∈ 𝒟.

It is a tedious but instructive exercise to verify that

û ∈ 𝒮 ⇐⇒ u ∈ 𝒮 .

The functionψe(x) = e−
|x|22
2 , x ∈ ℝd, is an element of𝒮 ,which does not belong to𝒟 ⊂ 𝒮.

Notice

∫

ℝd

e−ix⋅ξ e−
|x|22
2 dx = e−

|ξ |22
2 ∫

ℝd

e−(x+iξ )
2/2 d(x + iξ ) = (2π)d/2e−

|ξ |22
2 ,

so that ℱ(ψe) = ψe. If σs denotes dilation by s, that is, if we have that σs(u) = u(s ⋅) for
a function u : ℝd → ℂ, then

ℱ(σs(u)) =
1
(2π)d/2

∫

ℝd

e−ixξu(sx) dx = 1
(2π)d/2

1
sd
∫

ℝd

e−ixξ/su(x) dx

=
1
sd
σ1/s(ℱ(u)).

Given functions u, v ∈ 𝒮, we define their convolution u ∗ v by
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(u ∗ v)(x) = ∫
ℝd

u(x − y)v(y) dy.

Show that u ∗ v ∈ 𝒮. Using the function ψe introduced above, define φ =
ψe
‖ψe‖1

and set
φε =

1
εd σ1/ε(φ), so that ∫ℝd φε(x) dx = 1 for ε > 0.

Fact (Approximation of the identity). It holds that

φε ∗ u → u as ε → 0,

where the convergence is in the ‖ ⋅ ‖p-norm if u ∈ Lp(ℝd) and uniformly on compact
subsets if u is bounded and continuous. More explicitly, it holds that

∫

ℝd

φε ∗ u(x) − u(x)

p dx → 0,

in the first case, and that supx∈K |φε ∗ u(x) − u(x)| → 0 for any compact K ⊂ ℝd, in the
second case, as ε → 0.

We start with the second claim. First, observe that

∫

ℝd

φε(x − y)u(y) dy = ∫
ℝd

φ(z)u(x − εz) dz,

as follows by changing variables in the integral (z = x−y
ε ). Then

φε ∗ u(x) − u(x)
 =

∫

ℝd

φ(z)[u(x − εz) − u(x)] dz

.

Due to the exponential decay of ψe, a constant Nδ can be found such that

∫
|z|⩾Nδ

φ(z) dz ⩽ δ
4‖u‖∞
,

for any given δ > 0.Moreover, if x is taken froma compact subsets ofℝd, there is εδ > 0
such that

u(x − εz) − u(x)
 ⩽

δ
2

for |z| ⩽ Nδ, if ε ⩽ εδ.

We conclude that

φε ∗ u(x) − u(x)
 ⩽ ∫
|z|⩾Nδ

φ(z)2‖u‖∞ dz + ∫
|z|⩽Nδ

δ
2
φ(z) dz ⩽ δ,

provided ε ⩽ εδ since ∫ℝd φ(z) dz = 1 and φ ⩾ 0.

 EBSCOhost - printed on 2/10/2023 3:59 PM via . All use subject to https://www.ebsco.com/terms-of-use



9.2 The heat equation on the whole space | 139

As for the first claim, we prove it for p = 1 and leave the case p > 1 as an exercise.
The space𝒟 is dense in L1(ℝd) by definition. Thus, given u ∈ L1(ℝd) and δ > 0, we can
find v ∈ 𝒟 such that ‖u − v‖1 ⩽

δ
3 . It follows that:

‖u ∗ φε − u‖1 ⩽ ∫
ℝd


∫

ℝd

φ(z)[u(x − εz) − u(x)] dz

dx

⩽ ∫

ℝd

φ(z) ∫
ℝd

{u(x − εz) − v(x − εz)


+ v(x − εz) − v(x)
 +
v(x) − u(x)

} dxdz,

and, since

∫

ℝd

φ(z) ∫
ℝd

u(x − εz) − v(x − εz)
 dxdz = ∫

ℝd

φ(z) ∫
ℝd

u(x) − v(x)
 dxdz = ‖u − v‖1 ⩽

δ
3
,

that

‖u ∗ φε − u‖1 ⩽
2δ
3
+ ∫

ℝd

φ(z) ∫
ℝd

v(x − εz) − v(x)
 dxdz.

Arguing as in the proof of the second claim and using the fact that v is compactly
supported (and hence also uniformly continuous), it is shown that there is εδ > 0
such that

∫

ℝd

φ(z) ∫
ℝd

v(x − εz) − v(x)
 dxdz ⩽

δ
3
∫

ℝd

φ(z) dz = δ
3
,

for ε ⩽ εδ, which concludes the argument.√

Fact (Convolution theorem). It holds that

ℱ(u ∗ v) = (2π)d/2ℱ(u)ℱ(v) for u, v ∈ 𝒮 .

The verification of this identity is left as an exercise.

Fact (Inversion formula). For any u ∈ 𝒮 , it holds that

u(x) = 1
(2π)d/2

∫

ℝd

eix⋅ξ û(ξ ) dξ , x ∈ ℝd.

We observe that

l(t) = 1
(2π)d/2

∫

ℝd

eix⋅ξ e−t
|ξ |22
2 û(ξ ) dξ
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=
1
(2π)d
∫

ℝd

eix⋅ξ ∫
ℝd

e−iy⋅ξu(y) dy e−t
|ξ |22
2 dx

=
1
(2π)d
∫

ℝd

∫

ℝd

ei(x−y)⋅ξ e−t
|ξ |22
2 dξ u(y) dy

=
1
(2π)d/2

∫

ℝd

1
td/2

e−
|x−y|22
2t u(y) dy = r(t).

Now, notice that

l(t) → 1
(2π)d/2

∫

ℝd

eix⋅ξ û(ξ ) dξ ,

as t ↘ 0, while r(t)→ u(x) in the same limit thanks to

1
(2π)d/2

1
td/2

e−
|x|22
2t = (

1
√t
)
d
σ 1
√t
(ψe),

and the approximation of the identity property. This yields the inversion formula.√

Notice that we introduced the term e−t
|ξ |22
2 to ensure convergence of the integrals in

all steps of our calculation before letting the parameter t vanish. Performing a purely
formal calculation with t = 0, would correspond to having that

1
(2π)d/2

∫

ℝd

ei(x−y)⋅ξ dξ = δ(x − y),

with δ defined (again formally) by ∫ℝd δ(x)u(x) dx = u(0),
5 which follows from the fact

that:

ℱ(δ) = 1
(2π)d/2

∫

ℝd

e−ix⋅ξδ(x) dx = 1
(2π)d/2
,

by formally applying the inversion formula. Keeping this in mind as a guiding princi-
ple, give a proof of the following.

Fact (Plancherel). It holds that

∫

ℝd

u(x)v(x) dx = ∫
ℝd

ℱ(u)(ξ )ℱ(v)(ξ ) dξ

for u, v ∈ 𝒮. In particular, we have that

5 This can be justified by properly defining δ as a measure or as a generalized function.
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‖u‖2 = (∫
ℝd

u(x)

2 dx)

1
2

= (∫

ℝd

û(x)

2 dx)

1
2

= ℱ(u)
2

for u ∈ 𝒮, i. e., the Fourier transform is an isometry on 𝒮 with respect to the ‖ ⋅ ‖2-norm.

Given the above fact and thedensity of𝒮 ⊃ 𝒟 in L2(ℝd),6wecanextend theFourier
transform to L2(ℝd). Indeed, if u ∈ L2(ℝd), take a sequence (φn)n∈ℕ in 𝒮 satisfying
‖φn − u‖2 → 0 as n→∞, so that (φn)n∈ℕ is a Cauchy sequence. Then

‖φ̂n − φ̂m‖2 = ‖φn − φm‖2 → 0 asm, n→∞

shows that (φ̂n)n∈ℕ is also Cauchy, and as such, has a limit v ∈ L2(ℝd) by complete-
ness. We define v = û = ℱ(u). Show that this is well-defined, i. e., that v is uniquely
determined by u. The inverse ℱ−1 can similarly be extended to yield an inverse for
the extension of ℱ (check this). We shall continue to use the notation ℱ even for the
extension, which is an isometric isomorphism.

We observe that, while one often writes

ℱ(u)(ξ ) = 1
(2π)d/2

∫

ℝd

e−ix⋅ξu(x) dx

for u ∈ L2(ℝd), the integral does not actually always exist for such u. You are asked to
verify that, however, we have that


ℱ(u) − 1
(2π)d/2

∫
|x|2⩽R

e−ix⋅(⋅)u(x) dx
2
→ 0 as R→∞.

In away similar towhatwe did for the periodic heat equation, we introduce the spaces

Hs(ℝd) = {u ∈ L2(ℝ
d)  [1 + |ξ |

2
2]
s/2û ∈ L2(ℝn)}

for s ⩾ 0. These are Hilbert spaces with respect to the inner product given by

(u|v)Hs = ∫

ℝd

û(x)v̂(ξ )[1 + |ξ |22]
s dξ .

Notice that H0(ℝn) = L2(ℝd). Spaces can be obtained also for s < 0 by defining Hs(ℝd)
as the completion of 𝒮 (or of L2(ℝd)) in the norm given by

‖u‖Hs = (∫

ℝd

û(ξ )

2
[1 + |ξ |22]

s dξ)
1
2

.

6 We define Lp(ℝd) for p ∈ (1,∞) as the completion of𝒟 in the ‖ ⋅ ‖p norm.
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These are also Hilbert spaces with the corresponding scalar product and it holds that
Hs(ℝd) ⊂ Hr(ℝd) if s ⩾ r. Notice thatψe ∈ Hs(ℝd) for each s ∈ ℝ and that, similar to the
periodic case, δ ∈ Hs(ℝd) provided we have that s < −d/2 (convince yourself of this
even if you cannot give a completely rigorous proof). It follows, again in a way fully
parallel to the periodic case, that we have the following.

Fact. For s > d/2, it holds that

Hs(ℝd) ⊂ BUC(ℝd),

where

BUC(ℝd) = {u : ℝd → ℂ  u is bounded and uniformly continuous}.

This, together with the fact that

𝜕j ∈ ℒ(H
s(ℝd),Hs−1(ℝd)) for j = 1, . . . , d and s ∈ ℝ,

implies that⋂s>0 H
s(ℝd) ⊂ C∞(ℝd,ℂ).

Returning to the heat equation, we will now verify that

H(t, x) = 1
(4πt)d/2

e−
|x|22
4t , (t, x) ∈ (0,∞) × ℝd,

is a solution satisfying u(0, ⋅) = δ in the sense that

∫

ℝd

H(t, ⋅ − y)φ(y) dy → φ in L2(ℝd) as t ↘ 0,

for φ ∈ L2(ℝd) (and hence in the previously defined sense of an approximation of the
identity). Before proving this claim, we make a parallel with the finite-dimensional
case of a linearODE fully explicit. The solution of ẋ = Ax, x(0) = x0 for x : [0,∞)→ ℝn,
and A ∈ ℝn×n is given by etAu0. If we are able to find/compute etAvk for k = 1, . . . , n and
a basis v1, . . . , vn, denote the coefficients of u0 in this basis by uk0, i. e., u0 = ∑

n
k=1 u

k
0vk,

then we would have that

etAu0 = e
tA(

n
∑
k=1

uk0vk) =
n
∑
k=1

uk0e
tAvk .

In other words, we can synthesize the solution to any initial datum by means of the
solutions, which have the basis vectors as initial data. If you replace the basis vectors
by (δy)y∈ℝd ,where δy = δ(⋅−y)andcanfind/compute the solutionofut = Δu,u(0, ⋅) = δy
for y ∈ ℝd, i. e., etΔδy = H(t, ⋅ − y), then the solution to a general initial datum
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u0(⋅) = ∫
ℝd

u0(y)δy(⋅) dy = “ ∑
y∈ℝd

u0(y)δy(⋅)”,

is given by

etΔu0 = e
tΔ ∫

ℝd

δy(⋅)u0(y) dy = ∫
ℝd

etΔδy(⋅)⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
=H(t,⋅−y)

u0(y) dy

= ∫

ℝd

H(t, ⋅ − y)u0(y) dy.

In contrast to the finite-dimensional case, more care needs to be taken inmaking sure
that the integrals do make sense. This translates into conditions on the initial datum
u0, which cannot be just any function inℂℝ

d
, whereas it can be any vector inℂn in the

finite-dimensional case since the construction works for any x0 ∈ ℂn.
In order to verify thatH is indeed a solution of the heat equation, we let ourselves

be guided by another pertinent analogywith the finite-dimensional case. Formatrices
and for the Laplacian Δ in the periodic case, we saw that eigenvalues/eigenvectors
open the door to the effective representation of solutions. The functions

eξ (x) =
1
(2π)d/2

eix⋅ξ , x ∈ ℝd,

parametrized by ξ ∈ ℝd are formally eigenfunctions of Δ to the eigenvalue −|ξ |22 and
they formally satisfy

etΔeξ = e
−t|ξ |22eξ .

Thus, if we can represent any initial datum u0 as a “combination” of such functions,

u0 =
1
(2π)d/2

∫

ℝd

û0(ξ )e
ix⋅ξ dξ = ∫

ℝd

û0(ξ )eξ dξ = “ ∑
ξ∈ℝd

û0(ξ )eξ ”,

then we obtain a representation of the corresponding solution as

etΔu0 =
1
(2π)d/2

∫

ℝd

e−t|ξ |
2
2 û0(ξ )e

ix⋅ξ dξ = “ ∑
ξ∈ℝd

e−t|ξ |
2
2 û0(ξ )eξ ”.

This can now be justified by using the Fourier transform of the equation to obtain

ût = |ξ |
2
2û, û(0, ⋅) = δ̂ = 1

(2π)d/2
,

solving the (parameter dependent) ODE to get
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û(t, ξ ) = e−t|ξ |
2
2 û0 =

1
(2π)d/2

e−t|ξ |
2
2 =

1
(2π)d/2

e−|√2tξ |
2
2/2,

and using the inversion formula, the dilation property of the Fourier transform, and
ℱψe = ψe to finally see that

u(t, x) = 1
(√2t)d

1
(2π)d/2

e−|
x
√2t |

2
2/2 =

1
(4tπ)d/2

e−
|x|22
4t

= H(t, x), (t, x) ∈ (0,∞) × ℝd.

Using the spacesHs(ℝd) and theproperties of the Fourier transform,we canget precise
regularity statements about solutions of the heat equation, the proofs of which are left
as an exercise. If u0 ∈ Hs(ℝd), then the solution satisfies

u ∈ Cm([0,∞),Hs−2m(ℝd)) form = 0, 1, . . .

In particular, if u0 ∈ H2(ℝd), then

u ∈ C([0,∞),H2(ℝd)) ∩ C1([0,∞), L2(ℝd)).

The strongly continuous semigroup on L2(ℝd) (check) defined by

T(t)u0 = e
tΔu0 = (ℱ

−1 ∘M
e−t|⋅|

2
2
∘ ℱ)(u0) = H(t, ⋅) ∗ u0

satisfies

T(t)(L2(ℝd)) ⊂ Hs(ℝd), t > 0, for any s ⩾ 0,

so that T(t)(L2(ℝd)) ⊂ C∞(ℝd) for t > 0, and consequently,

T(⋅)u0 ∈ C
∞((0,∞),C∞(ℝd)).

Moreover, it holds that

T(t)u0
Hs ⩽

C
ts/2
‖u0‖Hs , t > 0,

showing that the regularity does not hold up to t = 0 in general.
We conclude this section by a brief and incomplete discussion of the inhomoge-

neous heat equation

ut = Δu + f (t), u(0) = u0,

which, for given f : [0,T] → Hs(ℝd) and some s ∈ ℝ, we think of as an equation for
u : [0,T] → Hs(ℝd). Given the functional framework, we developed and properties
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of the Fourier transform. This equation can be thought of as an infinite-dimensional
ODE with formal solution given by

u(t, u0) = e
tΔu0 +

t

∫
0

e(t−τ)Δf (τ) dτ, t ∈ [0,T].

It is an excellent exercise to think aboutwhat properties f mayneed to possess in order
to show that the formula above does actually make sense, first, and yields an actual
solutionof the inhomogeneous equation, second. It is advisable to start by considering
s = 0 and by taking a Fourier transform in the spatial variable.

9.3 Concluding remarks

9.3.1 Infinite-dimensional optimization

Introducing the quadratic functional

E(u) = 1
2
∫
ℝn

|∇u|2 dx, u ∈ H1(ℝd),

noticing that it is differentiable with

DE(u)h = ∫∇u ⋅ ∇h dx for h ∈ H1(ℝd),

it is possible to interpret the heat/diffusion equation as a gradient flow. If u ∈ H2(ℝd),
integration by parts7 yields

DE(u)h =
d
∑
j=1
∫ 𝜕ju 𝜕jh dx = ∫(−

d
∑
j=1
𝜕2j u)h dx

= ∫(−Δu)h dx = (−Δu|h)2, h ∈ H1(ℝd).

This means that ∇E(u) = −Δu for u ∈ H2(ℝd) and, therefore, that

ut = Δu = −∇E(u),

is indeed a gradient flow (in an infinite-dimensional space). Gradient flows in infinite-
dimensional vector spaces (or even in metric spaces) are long standing (more recent)

7 This is justified for integrable and smooth functions simply by calculus knowledge. The validity
extends to the more general case considered here by density.
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fruitful tools in mathematics with applications in differential geometry and many ar-
eas of applied mathematics. The study of general functionals on infinite-dimensional
spaces goes by the name of calculus of variations. The study of convex functionals
falls under the label of convex analysis and allows generalizations to nondifferen-
tiable functionals. Their powerful techniques find application in many areas of math-
ematics, as well.

9.3.2 The spectrum of a linear operator

In Section 8.2, we considered the problem of finding the eigenvalues of a square (sym-
metric/self-adjoint) matrix A ∈ 𝔽m×m for 𝔽 = ℝ,ℂ, andm ∈ ℕ. An eigenvalue λ ∈ ℂ, in
this case, is characterized by the lack of injectivity of the map A− λ, i. e., the existence
of 0 ̸= x ∈ ℝm with (A−λ)x = 0. Eigenvalues λk and eigenvectors xk of a symmetric ma-
trix, counted according to their multiplicity, yield a particularly simple representation
of A in the form

A =
m
∑
k=1

λkxkx
⊤
k .

This representation essentially tells us that in a basis of eigenvectors the linear map
given by multiplication by the matrix A is represented by a diagonal matrix with the
eigenvalues appearing on its diagonal. Studying the unbounded linear map,

−Δ : H2
π ⊂ L

2
π → L2π ,

in a periodic context in Section 9.1 we derived a similar representation

−Δ = ∑
k∈ℤd
|k|22φkφ

⊤
k ,

maybe suggesting that (symmetric) linear maps between infinite-dimensional spaces
can also be understood in terms of their eigenvalues and eigenfunctions. There are,
however, significant differences between the finite and the infinite-dimensional cases.
One such difference originates in the fact that A ∈ ℝm×m is one-to-one if and only if
it is onto. Indeed, if A is not injective, there exists 0 ̸= x ∈ ℝm such that Ax = 0,
yielding a vanishing nontrivial linear combination∑mk=1 x

kA∙k = 0 of the columns of A.
In this case, the m columns are not linearly independent and cannot span the image
spaceℝm, i. e., R(A) ̸= ℝm. It follows that A is not surjective. Similarly, if A is not onto,
then there must be a vanishing nontrivial linear combination of the m columns of A,
showing that N(A) ̸= {0}. This means that the set of eigenvalues σ(A) ⊂ ℂ of a matrix
A ∈ ℝm×m satisfies

σ(A) = {λ ∈ ℂ  N(A − λ) ̸= {0}}
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= {λ ∈ ℂ  R(A − λ) ̸= ℝ
m}

= {λ ∈ ℂ | A − λ is not invertible}.

This is no longer always true in infinite dimensions. We consider simple illustrative
examples here as well as revisit −Δ onℝd. We fix the spaceℝℕ1 of sequences satisfying
∑j∈ℕ |xj| <∞. Then the left-shift operator

Sl : ℝ
ℕ
1 → ℝ

ℕ
1 , (xj)j∈ℕ = (x1, x2, . . . ) → (xj)j⩾2 = (x2, x3, . . . )

is not injective since Sle1 = 0 but it is surjective. On the other hand, the right-shift
operator

Sr : ℝ
ℕ
1 → ℝ

ℕ
1 , (xj)j∈ℕ = (x1, x2, . . . ) → (0, x1, x2, . . . )

is injective but not onto, since e1 ∉ R(Sr). These are, however, not all the possible
ways in which a linear map on an infinite-dimensional space can fail to be invertible.
Consider the map

L : ℝℕ1 → ℝ
ℕ
1 , (xj)j∈ℕ → (

xj
j
)
j∈ℕ
,

which is injective, has the inverse

M : R(L)→ ℝℕ1 , (xj)j∈ℕ → (jxj)j∈ℕ,

which is not continuous, since it cannot hold that

|My|1 ⩽ c |y|1, y ∈ R(L),

for any c <∞. The latter can be seen by taking (yn)n∈ℕ ∈ ℝℕ1 given by

yn = (1, 1
4
, . . . ,

1
n2
,0,0, . . .), n ∈ ℕ,

for which we have

Myn1 =
n
∑
j=1

1
j
→∞ as n→∞,

while |yn|1 ⩽
π2
6 <∞ for n ∈ ℕ. Notice that, since c00 is dense inℝℕ1 , so isR(L) because

c00 ⊂ R(L). SinceM is not continuous, it can, however, not be extended (continuously)
to ℝℕ1 .

Going back to −Δ on ℝd, observe that, for any λ ∈ ℂ, it holds that

−Δ − λ = ℱ−1M|ξ |2−λℱ ,
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whereMf denotes the linear operation ofmultiplication by the function f , i. e.,Mf (u) =
fu for u ∈ L2(ℝd). In particular, if λ ∉ [0,∞), we have that

(−Δ − λ)−1 = ℱ−1M 1
|ξ |2−λ

ℱ ,

which, with the help of Plancherel’s identity, entails that

(−Δ − λ)
−1u2 =



1
|ξ |2 − λ

û
2
⩽

1
dist(λ, [0,∞))

‖û‖2

⩽ c(λ)‖u‖2, u ∈ L2(ℝd),

and yields the invertibility of −Δ − λ for λ ∈ ℂ \ [0,∞). While the points λ ∈ [0,∞)
are not eigenvalues in the sense that there is no φλ ∈ L2(ℝd) with −Δu = λu, the latter
equation does hold for φ±λ (x) = e

±i ξ ⋅x, x ∈ ℝd, with λ = |ξ |22. These functions can be
used to show8 that

inf
‖u‖2=1
(−Δ − λ)u

2 = 0,

thus showing that −Δ − λ is not invertible for λ ∈ [0,∞). If it were, there would be a
constant c > 0 with ‖(−Δ − λ)u‖2 ⩾ c ‖u‖2 for u ∈ L2(ℝd) (why?). The functions φ±λ are
called approximate eigenfunctions, in this case. Infinite-dimensional spaces and lin-
ear maps between them are the subject of study of functional analysis, of which spec-
tral theory is the branch that investigates the spectrum of linear operators. Complex
analysis also plays a prominent role in the theory of operators. In order to illustrate
this point,we conclude this sectionbybriefly introducing anddiscussing the resolvent
of a linear operator. The resolvent set of a linear operator A (bounded or unbounded)
on a Banach space E is given by

ρ(A) = {λ ∈ ℂ  A − λ is invertible},

and the resolvent of A is (A − λ)−1 for λ ∈ ρ(A). If λ0 ∈ ρ(A), then

(A − λ0)
−1ℒ(E) ⩽ c <∞.

From this, we can infer that

(λ − λ0)(A − λ0)
−1

⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
=B(λ)

ℒ(E) < 1,

for |λ0 − λ| <
1
c . Then, for λ ∈ 𝔹ℂ(λ0,

1
c ),

A − λ = A − λ0 + λ0 − λ = (A − λ0)[idE −B(λ)]

8 Try to give a proof by approximating the functions φ±λ by square integrable ones.
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is invertible with inverse

(A − λ)−1 =
∞

∑
k=0

B(λ)k(A − λ0)
−1 =
∞

∑
k=0
(λ − λ0)

k(A − λ0)
−k−1,

since

[idE −B(λ)]
−1
=
∞

∑
k=0

B(λ)k ,

for λ ∈ 𝔹ℂ(λ0,
1
c ).

9 This shows that ρ(A) ⊂ ℂ is open. Using the simple (resolvent)
identity

(A − μ)−1 − (A − λ)−1 = (A − μ)−1[A − λ − (A − μ)](A − λ)−1

= (μ − λ)(A − μ)−1(A − λ)−1, μ, λ ∈ ρ(A),

we see that

lim
μ→λ

(A − μ)−1 − (A − λ)−1

μ − λ
= (A − λ)−2 in ℒ(E),

which shows that

RA : ρ(A)→ ℒ(E), λ → (A − λ)−1,

is complex differentiable and that d
dλRA(λ) = R

2
A(λ) for λ ∈ ρ(A). This makes a whole

range of techniques and results of complex analysis available in the study of linear
operators and their spectral properties.

9 Show that this is indeed true and, in particular, that the series converges in the operator norm
‖ ⋅ ‖ℒ(E).
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10 Probability
Due to our sometimes intrinsic, sometimes practical inability to understand or dis-
cover the precise laws that underlie natural phenomena, it can happen that we need
to settle for the estimation of the likelihood of possible outcomes as opposed to fully
explaining them. A commonly used example is that of coin tossing:whilewe know the
physical laws that describe the motion of solid objects, the parameters involved in a
coin toss are too many and not necessarily accurately measurable to make it possible
to use a physical model to predict the outcome. In such cases, it is sometimes possible
to obtain probabilistic statements instead. Our effort to understand the chances of
events has led to the development of probability theory and statistics. Here, we give
a very partial introduction to elementary probability making a connection with many
topics that were covered so far in this book.

10.1 Axioms of probability

The intuitive understanding of probability we all share is that of frequency of occur-
rence. If we flip a coin n ∈ ℕ times and collect the number 0 ⩽ nH ⩽ n of heads
observed, we would take the ratio

p = nH
n

as some measure of the probability of observing heads. While we may not trust this
measure if n is small, we tend to believe that a large number of flipswould yield a good
approximation of the “actual” probability. This requires, in particular, that we believe
that there is an underlying probability of occurrence for events of interest. First and
foremost, we need an experiment which can be repeated and which has well-defined
outcomes. Rolling a die once is such an experiment, the outcomes of which are the
face values 1, 2, . . . , 6.We thereforemodel an experiment by collecting its possible out-
comes into a set S that we call the sample space. When rolling a die once, we have that

S = {1, 2, 3, 4, 5, 6}.

Events are collections of outcomes. If we care whether the outcome of a die roll is odd,
for instance, we would be considering the event

{1, 3, 5} ⊂ S.

The probability of an outcome, or more in general of an event, would then be some
number between 0 and 1 which aims at quantifying the “expected” frequency with
whichwe observe the event of interest in a series of experiments. Probability therefore
appears to be a function P that takes events, i. e., subsets E ⊂ S, as arguments. The set

https://doi.org/10.1515/9783110780925-010
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S collects all possible outcomes. The value at an argument E is a number P(E) ∈ [0, 1].
Since S contains all possible outcomes, we expect that P(S) = 1. This is almost all that
is needed for a viable and useful definition of probability, which is formally defined
as a function P : ℰ → [0, 1] on a subset ℰ1⊂ 2S of the power set

2S = {E |E ⊂ S}

of a set S satisfying P(S) = 1 and the following σ-additivity condition:

P(⋃
k∈ℕ

Ek) =
∞

∑
k=1

P(Ek),

which is required tohold for eventsEk ∈ ℰ that are pairwise disjoint, i. e., provided that

Ej ∩ Ek = 0 for j ̸= k.

This latter condition is not as intuitive as the previous two and enforces a form of
continuity of P. When the sample space S = {ω1,ω2,ω3, . . . } is countable (or finite), all
properties are automatically satisfied if

P({ωk}) = pk , k ∈ ℕ,

for pk ∈ [0, 1] with ∑
∞
k=1 pk = 1, ℰ = 2

S, and

P(E) = ∑
ω∈E

P({ω}) for E ⊂ S.

If the sample space S is uncountable, then it can be shown (measure theory2) that
there exist probabilities (in the above sense) that cannot be defined on the whole
power set and one has to work with some ℰ ⊊ 2S.

If one flips a coin indefinitely and records the outcome ωk ∈ {H ,T} of each flip
k ∈ ℕ, then the experiment has the sample space

S = {H ,T}ℕ = {(ωk)k∈ℕ
 ωk ∈ {H ,T} for k ∈ ℕ}.

If the coin is fair, then it holds that

P(ωj = H) = P({ωj = H}) = .5

for any fixed j ∈ ℕ, where {wj = H} is shorthand for the event given by the set
{(ωk)k∈ℕ |wj = H} ⊂ 2S. If one is interested in the event T⩽4 that no heads are flipped

1 For the definition to make sense, ℰ must be such that S ∈ ℰ, that Ec ∈ ℰ whenever E ∈ ℰ, and that
⋃k∈N Ek ∈ ℰ whenever Ek ∈ ℰ for k ∈ ℕ. Such a ℰ is called σ-algebra.
2 See, for instance, the textbook by Folland,Real Analysis:Modern Techniques and Their Applications.
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in the first 4 flips, then

T⩽4 = {(ωk)k∈ℕ
 ωj = T for j = 1, . . . , 4} =

4
⋂
k=1
{ωk = T}.

In order to help the intuition, we observe that the continuity property of probability
implies another condition which more explicitly resembles a sort of continuity. Take
a sequence of (Ek)k∈ℕ of events in ℰ with the property that, if

either Ek ⊂ Ek+1 ∀k ∈ ℕ or Ek ⊃ Ek+1 ∀k ∈ ℕ,

i. e., if the sequence is “increasing” or it is “decreasing”, then it holds that

P( lim
k→∞

Ek) = lim
k→∞

P(Ek)

if we set

lim
n→∞

En = ⋃
k∈ℕ

Ek or lim
n→∞

En = ⋂
k∈ℕ

Ek ,

respectively. To see this in the case of an increasing sequence of events, we can keep
E1 = F1 and replace Ek by Fk = Ek \ Ek−1 for n ⩾ 2 to obtain pairwise disjoint sets for
which⋃k∈ℕ Ek = ⋃k∈ℕ Fk and argue based on

P(⋃
k∈ℕ

Ek) = P(⋃
k∈ℕ

Fk) =
∞

∑
k=1

P(Fk) = lim
n→∞

n
∑
k=1

P(Fk) = lim
n→∞

P(En)

that the defining condition implies the identity for increasing sequences of events. The
argument for decreasing sequences is similar and left as an exercise. If P is additive,
i. e., if it satisfies

P(
n
⋃
k=1

Ek) =
n
∑
k=1

P(Ek) provided Ej ∩ Ek = 0 for j ̸= k,

for any n ∈ ℕ, then σ-additivity and the above continuity condition are equivalent
(check this (Q1)).

10.2 Conditional probability and independence
One the most important concepts, if not the most important concept, in probability
theory is that of conditional probability, which is closely related to that of indepen-
dence. Given a probability space (S, ℰ ,P), fix an event F ∈ ℰ with P(F) > 0 and define
the conditional probability P(E|F) of E given F by the expression

P(E|F) = P(E ∩ F)
P(F)
, E ∈ ℰ .
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Thinking of probability as frequency of occurrence, this definition is quite intuitive in
the sense that it measures the frequency of concurrent occurrence of E and F among
the occurrences of F. It can be verified (do it for yourself) that

P(⋅|F) : ℰ → [0, 1], E → P(E|F),

is itself a probability on S. Two events E, F ∈ ℰ are independent with respect to the
probability P iff

P(E|F) = P(E) or, equivalently, if P(F|E) = P(F),

i. e., iff the probability of E is not altered by the knowledge of F occurring or, equiva-
lently, iff that of F is not changed by knowing that E has occurred. The symmetry is
apparent in the equivalent condition

P(E ∩ F) = P(E)P(F).

Conditional probability allows one to consider a series of circumstances and relate the
total probability of an event to its probability under the given circumstances. Letting
F ∈ ℰ be a circumstance, so that Fc describes its nonoccurrence, we have that, for any
event E ∈ ℰ, the so-called Bayes’ formula

P(E) = P((E ∩ F) ∪ (E ∩ Fc)) = P(E ∩ F) + P(E ∩ Fc)

= P(E|F)P(F) + P(E|Fc)P(Fc),

holds. It has the nice interpretation that the probability of E can be computed as its
probability given the circumstance F times the frequency of F added to the probability
of E given Fc times the frequency of Fc. Convince yourself that the same remains true
for any pairwise disjoint “set” of circumstances Fj ∈ ℰ that partitions the sample space
S, i. e., satisfying⋃j∈ℕ Fj = S, i. e., that

P(E) = ∑
j∈ℕ

P(E|Fj)P(Fj)

Independence ismainly used tomodel situationswhere an experiment is repeated
with the intuitive understanding that the outcome of a trial does not influence that of
another. When repeatedly flipping a fair coin, it is reasonable to assume that the out-
come of a flip has no influence on the outcome of any other additional flips (unless
the flips are performed by a very precise machine with the exact same settings each
time). Then, when computing probabilities, independence yields useful simplifica-
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tions. Take for instance T⩽4 for which we have that3

P(T⩽4) = P(ω1 = ⋅ ⋅ ⋅ = ω4 = T) = P(
4
⋂
k=1
{ωk = T})

=
4
∏
k=1

P(ωk = T) =
1
24
=

1
16
.

10.3 Random variables
Another central concept of probability theory is that of random variable. Before giving
a formal definition,we try andmotivate it by considering a concrete example and com-
paring it to that of a deterministic variable. Let x be the length of a person’s foot, say
yours. You can consider it as the independent variable x of the function size that re-
turns the corresponding shoe size size(x). You measure your foot and determine your
shoe size, and like you, anybody has a determined foot length and a corresponding
shoe size. Consider now a shoe factory and the basic question of how many shoes of
each given size to produce and distribute. Foot length is no longer a deterministic vari-
able since the factory does not know all its customers, it does typically not even sell
directly to the public! Even if it did, it would not be in a position to knowwhowill want
to buyapair of shoes at anygiven time. Thus the best the factory cando is consider foot
length as a random variable X, which it does not know the value of. It does knowwhat
the possible values are: anynumber between the smallest and largest foot lengths Lmin
and Lmax ever observed, i. e., X ∈ [Lmin, Lmax]. It can also try to measure the preva-
lence or frequency of certain foot sizes by simple statistical analysis of the target pop-
ulation and/or of past sales. With this information, it can determine the probability
P(X = L) of each foot length L ∈ [Lmin, Lmax] or, more realistically the probability
P(Li ⩽ X < Li+1) of the foot length to fall in certain intervals [Li, Li+1) (i = 0, . . . , n − 1),
where Lmin = L0 < L1 < ⋅ ⋅ ⋅ < Ln = Lmax, maybe corresponding to shoe size. In this
case, X cannot be thought of as an independent variable because its value does de-
pend on the specific buyer, which the factory cannot know at the time of production.
This motivates the formal definition of random variable with values in T as a function
X : S → T defined on a probability space (S, ℰ ,P) and taking values in a set T. It is then
possible to obtain information about the probability of certain values by considering

P(X ∈ U) = P({X ∈ U}) = P({ω ∈ S  X(ω) ∈ U}),

3 Notice that independence of multiple sets E1, . . . ,En ∈ ℰ amounts to the validity of

P(
k
⋂
j=1

Enj) =
k
∏
j=1

P(Enj ),

for any choice of 1 ⩽ n1 < n2 < ⋅ ⋅ ⋅ < nk ⩽ n and of 2 ⩽ k ⩽ n. This is more than mere pairwise
independence.
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forU ⊂ T such that X−1(U) ∈ ℰ .4 Notice that, when computing the shoe size, wewould
consider the composition size ∘ X = size(X). Thus we can consider a function of a ran-
dom variable just aswe can consider a function of a deterministic variable. Notice that
size ∘ X is itself a random variable, albeit with values in another set. Restricting our
attention to real valued random variables (T ⊂ ℝ), we distinguish two cases: discrete
and continuous random variables. A discrete random variable X is characterized by
having a discrete range

X(S) = {x1, x2, . . . } ⊂ ℝ.

In this case, the random variable is fully understood in terms of

pX(xk) = P(X = xk) = pk ∈ (0, 1], k ∈ ℕ,

where we can assume the positivity of pk since otherwise xk would actually not be a
value of X in the first place. Indeed, we have that

P(X ∈ U) = ∑
x∈U

pX(x) for any U ⊂ ℝ.

Notice that the sum/series always makes sense since S = X−1(ℝ), P(S) = 1, and hence

0 ⩽ P(X ∈ U) ⩽ ∑
k∈ℕ

pk = 1 for any U ⊂ ℝ.

The function pX : ℝ → [0, 1], x → p(X = x) is known as the probability mass function
of the discrete random variable X. A continuous random variable X does not assign
a positive probability to any specific value but is characterized by the existence of a
so-called probability density function fX : ℝ→ [0,∞) for which it holds that

P(X ∈ U) = ∫
U

f (x) dx for U ⊂ ℝ,

where fX is assumed to be piecewise continuous.5 It is enough to think of U as an
interval [a, b] for −∞ ⩽ a ⩽ b ⩽∞ in which case we have that

P(X ∈ [a, b]) =
b

∫
a

f (x) dx.

Take a minute to consider the parallels between the concepts of mass and den-
sity in physics and the corresponding concepts of probability mass and probabil-

4 The requirement that {X ∈ U} ∈ ℰ is necessary whenever ℰ ̸= 2S and, in a full treatment of the
subject, leads to the definition ofmeasurability of X.
5 It would actually be enough to assume that f ∈ L1(ℝ, [0,∞)) here, i. e., Lebesgue integrable in the
sense of measure theory.
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ity density functions. Show (Q2) that, for any random variable with real values,
at most a countable number of the values can have positive probability, i. e., that
the set {x ∈ ℝ |P(X = x) > 0} is at most countably infinite (consider the sets
{x ∈ ℝ |P(X = x) ⩾ 1

n } for n ∈ ℕ and their relation to it).
Given any random variable X with real values, we can obtain insight into how

the values are distributed (in terms of their probability) by looking at the function
FX : ℝ→ ℝ defined by

FX(x) = P(X ⩽ x), x ∈ ℝ.

It is called cumulative distribution function. Givenany randomvariableX, convince (Q3)
yourself that:
(i) It holds that limx→−∞ FX(x) = 0.
(ii) It holds that limx→∞ FX(x) = 1.
(iii) FX is nondecreasing, i. e., FX(x) ⩽ FX(x̃), whenever x ⩽ x̃.
(iv) FX is right continuous and admits left limits in the sense that

lim
x̃↘x

FX(x̃) = F(x) and lim
x̃↗x

FX(x̃) exists,

for any x ∈ ℝ.

Draw a generic graph of the cumulative distribution function of a discrete random
variable and one of a continuous random variable. Given a random variable X with
real values, we obtain a probability measure on ℝ, if we define

PX(U) = ∑
x∈U

pX(x), U ⊂ ℝ,

or

PX(U) = ∫
U

fX(x) dx, U ∈ ℰ ,

for a discrete or continuous random variable X, respectively. The domain of definition
ℰ is intentionally left vague but contains all intervals.

The simplest example of a discrete random variable is one with a single value
(which makes it deterministic, but we can still consider it a random variable). If that
value is 0, X ≡ 0, then its cumulative distribution function is given by

hX(x) = {
0, x < 0,
1, x ⩾ 0

,

while its probability mass function is the function pX , which vanishes everywhere ex-
cept at x = 0, where pX(0) = 1. It is often thought as having probability density func-
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tion fX concentrated in 0. While we will not make it rigorous here, it can be shown
that

fX = δ0,

where δ0 is the probability measure on ℝ with domain ℰ = 2ℝ defined by

δ0(U) = {
1, 0 ∈ U ,
0, 0 ∉ U .

In particular, fX is not a function. Making this rigorous would require measure theory,
so that without it, it is more convenient to talk about probability mass function for
discrete random variables, thus avoiding the discussion of singular density functions
like δ0 altogether.

Another example of a discrete random variable is the total number X of heads
observed after n ∈ ℕ tosses of a coin, for which the probability of heads is p ∈ (0, 1).
Clearly, the coin is fair only when p = .5. This random variable has 1, 2, . . . , n as its
values and it holds that

P(X = k) = (n
k
)pk(1 − p)n−k , k = 1, . . . , n.

When flipping a coin indefinitely, the first toss resulting in heads is also a discrete
random variable X for which X(S) = ℕ and

P(X = k) = (1 − p)k−1p, k ∈ ℕ.

Notice that (as expected)

∞

∑
k=1

P(X = k) = p
∞

∑
k=1
(1 − p)k−1 = p

1 − (1 − p)
= 1.

If we randomly pick a real number in the interval [−1, 1] according to the rule that each
number should be just as likely to be chosen as any other and denote by X its value,
then X is a continuous random variable with X(S) = [−1, 1] and with

fX(x) = {
1
2 , x ∈ [−1, 1],
0, x ∉ [−1, 1].

In this case, we say that X is uniformly distributed in [−1, 1] and that X is a uniform
random variable. Notice that

∞

∫
−∞

fX(x) dx =
1

∫
−1

1
2
dx = 1,
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and that

FX(x) =
{{{
{{{
{

0, x < −1,
x+1
2 , x ∈ [−1, 1],
1, x > 1.

We conclude this section by establishing a connection between the cumulative distri-
bution and probability density functions of a continuous random variable. Take x ∈ ℝ
and h > 0 (h < 0 can be handled similarly with the necessary modifications). Then

x+h

∫
x

fX(y) dy = P(X ∈ [x, x + h]) = P(x ⩽ X ⩽ x + h)

= P(X ⩽ x + h) − P(X ⩽ x)
= FX(x + h) − FX(x),

since {X ⩽ x + h} = {X ⩽ x} ∪ {x < X ⩽ x + h} with disjoint union. Dividing both sides
of this identity by h, taking the limit as h ↘ 0, and using the fundamental theorem of
calculus, we see that

fX(x) = F
′
X(x), x ∈ ℝ,

at least at points where fX is continuous.

10.4 A discrete random walk and the diffusion equation

Next, we consider the following process which takes places in a two-dimensional ros-
ter as depicted below.
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Each square cell Ci,j has side length dx > 0 and is centered at the point with coordi-
nates (idx, jdx) ∈ ℝ2. We assume that a particle is initially, i. e., at time t = 0, found in
cell C0,0 with probability 1. We denote by Xn the location of the particle at time t = ndt
for a time step dt > 0. For each n ∈ ℕ, Xn is a random variable and

P(X0 ∈ Ci,j) = {
1, (i, j) = (0,0),
0, (i, j) ̸= (0,0).

We do not care where exactly the particle is in a cell and, therefore, assume that X0 is
uniformly distributed in C0,0, i. e., that

fX0 (y) = {
1
dx2 , y ∈ C0,0,
0, y ∉ C0,0.

We assume that, in each time step, the particle moves anywhere in a cell that is to the
left, to the right, below, or above the current cell, each with the probability 1/4. Then,
for instance, we would have that

P(X1 ∈ Ci,j) = {
1
4 , (i, j) ∈ {(−1,0), (1,0), (0,−1), (0, 1)}
0, (i, j) ∉ {(−1,0), (1,0), (0,−1), (0, 1)},

and that

fX1 (y) = {
1

4dx2 , y ∈ C−1,0 ∪ C1,0 ∪ C0,−1 ∪ C0,1,
0, y ∉ C−1,0 ∪ C1,0 ∪ C0,−1 ∪ C0,1,

again assuming that we do not record the exact location of the particle in a cell but
rather think of it as being anywhere in the cell with equal probability. As the process
evolves step-by-step, we are interested in what can be said about the probability of
finding the particle in any given cell at any given step. Let us therefore define pni,j as
the probability density of finding the particle in cellCi,j in step n, i. e., at time ndt. Then

P(Xn ∈ Ci,j) = ∫
Ci,j

fXn (y) dy = pni,jdx
2 for n ∈ ℕ and (i, j) ∈ ℤ2.

Since the cells partition the whole plane, we can use Bayes’ formula to see that

pn+1i,j dx2 = P(Xn+1 ∈ Ci,j) = ∑
k,l∈ℤ

P(Xn+1 ∈ Ci,j|X
n ∈ Ck,l)P(X

n ∈ Ck,l)

=
dx2

4
[pni−1,j + p

n
i+1,j + p

n
i,j−1 + p

n
i,j+1] for (i, j) ∈ ℤ2, n ⩾ 0,
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since a particle found in cell Ci,j in step n + 1 must have been found in any of the four
adjacent cells in the previous step with equal probability. Upon subtracting pni,j from
both sides of the identity and dividing by dt, we arrive at

pn+1i,j − p
n
i,j

dt
=
dx2

4dt
pni−1,j + p

n
i+1,j + p

n
i,j−1 + p

n
i,j+1 − 4p

n
i,j

dx2
,

for (i, j) ∈ ℤ2,m ⩾ 0. If we think of pni,j as p(ndt, idx, jdx) for some underlying function
p (that we assume exists) where t = ndt and x = (i, j)dx, then

pn+1i,j − p
n
i,j

dt
=
p(t + dt, x) − p(t, x)

dt
≃ pt(t, x) for dt ≃ 0,

and

pni−1,j + p
n
i+1,j − 2p

n
i,j

dx2
=
p(t, x − dxe1) + p(t, x + dxe1) − 2p(t, x)

dx2

≃ 𝜕21p(t, x) for dx ≃ 0,
pni,j−1 + p

n
i,j+1 − 2p

n
i,j

dx2
=
p(t, x − dxe2) + p(t, x + dxe2) − 2p(t, x)

dx2

≃ 𝜕22p(t, x) for dx ≃ 0.

Thus, given (t, x) ∈ (0,∞) × ℝ2, if we let dt, dx → 0 in such a way that

dx2

4dt
= D > 0, ndt → t and (idx, jdx)→ x,

wemay guess that the limiting probability density p : (0,∞)×ℝ2 → [0,∞) (if it exists)
satisfies

pt(t, ⋅) = DΔp(t, ⋅) for t > 0, p(0, ⋅) = δ0.

As for the initial condition, notice, somewhat formally, that

∫φ(y)fX0 (y) dy → φ(0) = “∫φ(y)δ0(y) dy ”

for any smooth functionφ : ℝ2 → ℝ. This can be interpreted as saying that the limiting
probability density is singular and concentrated in 0, i. e., that

fX0 → δ0 as dx → 0.

We conclude that, in the limit of dt and dx small, the probability density function pni,j
is approximated by p(t, x), where p is the solution of the diffusion equation provided
that t = ndt and x = dx(i, j). We know that
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p(t, x) = 1
2πDt

e−|x|
2
2/4Dt , (t, x) ∈ (0,∞) × ℝ2,

so that we finally obtain that

P(Xn ∈ U) ≃ 1
2πDt
∫
U

e−|x|
2
2/4Dt dx,

for U ∈ ℰ, where ℰ includes open and closed sets. It can be shown, but this requires
significant additional technical developments, that there is a so-called stochastic pro-
cess {Xt | t ⩾ 0} comprised of random variables Xt with

fXt (x) = 1
2πt

e−|x|
2
2/4t , x ∈ ℝ2 for t > 0,

and fX0 = δ0 and satisfying additional properties. It is called (2-dimensional) Brown-
ian motion.

10.5 Expected value of a random variable

We begin with a motivational example. Assume that we are given a data set d1, . . . , dn
and would like to determine its mean/average μ. We would likely automatically com-
pute

μ = d1 + ⋅ ⋅ ⋅ + dn
n
=
1
n

n
∑
k=1

dk .

If the observed values are all in the set {1, 2, . . . 6}, for instance, there is an arguably
more efficient way to do this, which is obtained by first determining the number of
times ni each value i = 1, . . . , 6 occurs in the data set and then computing

μ = 1
n

6
∑
i=1

i ni =
6
∑
i=1

i ni
n
.

The latter sum can be interpreted as a weighted average of the possible values, where
the weights are given by the values’ relative frequency of occurrence ni

n ∈ [0, 1] in the
data set. It clearly holds ∑6i=1

ni
n = 1. If we recall the intuitive understanding of proba-

bility as frequency of occurrence, we can define the expected value (mean/average) of
a discrete random variable X with values {x1, x2, . . . } ⊂ ℝ by

E[X] = ∑
i∈ℕ

xi pX(xi) = ∑
i∈ℕ

xiP(X = xi).

For a concrete situation, roll a die n times and denote the outcomes of the rolls by
d1, . . . , dn, where clearly di ∈ {1, 2, . . . , 6}. The average value rolled is given by
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1
n

n
∑
i=1

di =
n
∑
i=1

i ni
n
,

where ni = |Ni| is the number of elements in the set

Ni = {k ∈ {1, 2, . . . , n}
 dk = i},

for i = 1, . . . , 6. If the die is fair, we expect that ni
n ≃

1
6 , at least if n is large. This is

reflected in

E[X] =
6
∑
i=1

i 1
6
=

6
∑
i=1

i P(X = i).

if X denotes the outcome of a roll and explains the definition.

10.6 The gambler’s ruin problem

Consider a game with two players (A and B), which consists in repeatedly flipping a
coin that shows heads with probability p ∈ (0, 1). Each time heads comes up, player
B gives a chip to player A, else player B receives one from A. The game ends when
one of the players runs out of chips. If A starts with m chips of a total of N chips in
the game (i. e., B begins with N − m chips), what is the probability of A winning the
game? A possible unfolding of a fair game (p = .5) is depicted below, in which player
A eventually loses starting with 20 of a total of 40 chips.
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10.6.1 Winning probability

If Wm is the event of winning the game with m chips initially and H/T the events of
flipping heads/tails in the first toss, Bayes’ formula yields that

wm = P(Wm) = P(Wm|H)P(H) + P(Wm|T)P(T)
= pP(Wm+1) + (1 − p)P(Wm−1) = pwm+1 + (1 − p)wm−1,

if wk = P(Wk) for k = 0, . . . ,N and p ∈ (0, 1) is the probability of flipping heads. Notice
that w0 = 0 and wN = 1 since A cannot play, let alone win, with no initial chips, while
victory is assured starting with all the chips. This information is enough to recover the
actual values of wm. Indeed, it follows from the above that

wm+1 − wm =
1 − p
p
(wm − wm−1) = ⋅ ⋅ ⋅ = (

1 − p
p
)
m
(w1 − w0)

= rmw1, m = 1, . . . ,N − 1,

for r = 1−p
p . This entails that

wm =
m−1
∑
k=0
(wm+1 − wm) = w1

m−1
∑
k=0

rm = {
1−rm
1−r w1, r ̸= 1,
mw1, r = 1.

Notice that r = 1 iff p = 1
2 , i. e., iff the coin is fair. Then we use

1 = wN = {
1−rN
1−r w1, r ̸= 1,
Nw1, r = 1,

to find the value of w1, which finally gives

wm = {
1−rm
1−rN , r ̸= 1,
m
N , r = 1.

It follows that a gambler with limited (finite) resources (m < ∞) playing a fair game
with an opponent of infinite wealth (N =∞), such as a casino, is bound to eventually
go broke (wm = 0), i. e., meet her ruin.

In the special case when p = 1
2 and N is large, it is possible to interpret the system

{
wm =

1
2wm+1 +

1
2wm−1, m = 1, . . . ,N − 1,

wm =
m
N , m = 0,N .

as the discrete manifestation of a boundary value problem. In order to see this, we
think of the fraction m

N ∈ [0, 1] of chips in player A’s possession and of the correspond-
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ing winning probability wm as the value w(mN ) of an unknown function w defined on
[0, 1] with values in the same interval. As it holds formally that

wxx(x) ≃
1
h2
(w(x + h) − 2w(x) + w(x − h))

= N2(wm+1 − 2wm + wm−1) = 0

for x = m
N ∈ (0, 1) and h =

1
N , we expect the validity of

{
wxx = 0, x ∈ (0, 1)
w(x) = x, x = 0, 1

,

in the limit asN →∞. It is easily seen that the solutionof this boundary valueproblem
is given by w(x) = x for x ∈ [0, 1]. This, not only approximates the formula we derived
for the corresponding probability, but actually coincides with it

wm =
m
N
= w(m

N
).

10.6.2 A pool of games

Before turning our attention to another interesting question about the gambler’s ruin
problem, we look at the winning probability problem from a slightly different view-
point. Instead of assuming that player A starts the game with m chips, we think of
many people, maybe in a casino, who are, in pairs, simultaneously playing the game.
In each pair, one of the players is designated as player A. Each player starts with a
different initial amount of chips. In order to follow all games simultaneously, we track
the fraction πm of players A who start with m ∈ {0, 1, . . . ,N} chips. We keep the total
number of chips in each game fixed at N . We use the vector

π = [π0 π1 . . . πN ]

to encode the state of the whole pool. Notice that ∑Nj=0 πj = 1. Then we can ask about
the time evolution of a pool that starts in a given state π0, where time corresponds to
number of flips. We can think of πkj as the probability P(C

k
A = j) of finding a randomly

chosen gamewith player A holding j chips after k coin flips. Here, we denote the num-
ber of chips in player A’s possession after k flips by CkA. Using conditional probability
and Bayes’ formula, we see that

πk+1j = P(C
k+1
A = j) =

N
∑
l=0

P(Ck+1A = j|C
k
A = l)P(C

k
A = l)
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= P(Ck+1A = j|C
k
A = j − 1)P(C

k
A = j − 1)

+ P(Ck+1A = j|C
k
A = j + 1)P(C

k
A = j + 1)

= pπkj−1 + (1 − p)π
k
j+1,

since any player A will gain one chip with probability p and lose one with probability
1 − p. We read this equation with the additional understanding that πk−1 = 0 = π

k
N+1

in which case it is valid for all j = 0, . . . ,N . We see that one step in the game causes a
change in the probabilities, which can be captured by vector-matrix multiplication

πk = πk−1M = ⋅ ⋅ ⋅ = π0Mk , k ⩾ 1,

where the rows of the matrixM ∈ [0, 1](N+1)×(N+1) are given by

M0
∙ = [1 0 . . . 0] = e⊤1 ,

MN
∙ = [0 0 . . . 1] = e⊤N+1,

Mi
∙ = [0 . . . 0 (1 − p) 0 p 0 . . . 0] = (1 − p)e⊤i−1 + pe

⊤
i+1,

and the last identity holds for i = 1, . . . ,N − 1. The entries of this matrix can be inter-
preted as transition probabilities:Mi

j gives the probability of going fromhaving i chips
in one step to having j chips in the next step. The first row therefore indicates that you
will still have no chips in the next step, if you have none currently. The last column
reflects the fact that youwill still have all chips in the next step, if you possess them all
at present. All other rows capture the fact that the numbers of chips can only change
by one in a step with probabilities as given. Notice that the row vectors e⊤1 and e⊤N+1
are left eigenvectors6 ofM to the eigenvalue 1. Indeed,

vM = v for v = e⊤1 , e
⊤
N+1.

This means that a pool where all players A have no chips does no longer evolve (all
games are over). The same is true if all players A own all chips in the game. Not only
can we interpret vector-matrix multiplication probabilistically, but also matrix-matrix
multiplication. Let us, for instance, take M2 and find an interpretation of its entries.
Bayes’ formula7 gives

6 Left eigenvectors v of M are the transpose of regular (right) eigenvectors v⊤ of the transposed ma-
trixM⊤.
7 Here, we apply Bayes’ formula not to the probability P, but rather to the conditional probability
P(⋅|F). Its validity follows from the fact that P(⋅|F) is itself a probability for any fixed F (check this).
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P(Ck+2A = l|C
k
A = i) =

N
∑
j=0

P(Ck+2A = l|C
k+1
A = j&CkA = i)P(C

k+1
A = j|C

k
A = i)

=
N
∑
j=0

Mj
lM

i
j = (M

2)
i
l,

where we used the fact that

P(Ck+2A = l|C
k+1
A = j&CkA = i) = P(C

k+2
A = l|C

k+1
A = j),

since we are assuming that the coin flips are independent and the state of the pool
at any step only depends on its state in the previous step. Independence of the coin
flips also yields the validity of the two above formulæ for any k = 0, 1 . . . This argument
can be applied inductively to see that (Mn)ij amounts to the probability of transitioning
from having i chips to having j in n steps. The probability wm of ending a game with a
win starting withm chips initially is therefore given by

wm = lim
n→∞
(Mn)

m
N ,

whereas that of losing, denoted by lm, is correspondingly given by

lm = lim
n→∞
(Mn)

m
0 .

The limit needs to be taken since victory or defeat can intervene after any number
of coin flips. It can be verified that all rows of Mn add to 1 for any n ∈ ℕ so that this
remains valid for the limitingmatrixM∞ = limn→∞Mn. Next, we show that (M∞)ij = 0
for each i ̸= 0,N and j ̸= 0,N, i. e., the only two nonzero columns of M∞ are the first
and the last. The reader is asked to verify that (M∞)0j = 0 for j = 1, . . . ,N and (M∞)Nj = 0
for j = 0, . . . ,N − 1. As for the other entries, we take an arbitrary

π = [π0 π1 . . . πN ] ∈ ℝ
1×(N+1)

and observe that

(πM)0 = π0 + (1 − p)π1, (πM)1 = (1 − p)π2, (10.1)
(πM)j = pπj−1 + (1 − p)πj+1 for j = 2, . . . ,N − 2, (10.2)
(πM)N−1 = pπN−2, (πM)N = πN + pπN−1. (10.3)

It follows that (πM)j depends only [π1, . . . ,πN−1] for j = 1, . . . ,N − 1. Thanks to the fact
that πj ⩾ 0 for each j = 0, . . . ,N and that∑Nj=0 πj = 1, we conclude that

(πM)j ⩽ max(p, 1 − p) = q ∈ (0, 1) for j = 1, . . . ,N − 1.
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Now, since (πM)j ⩾ 0 for each j = 0, . . . ,N and since ∑Nj=0(πM)j ⩽ 1, the argument can
be iterated to give

(πMn)j ⩽ q
n for n ∈ ℕ and j = 1, . . . ,N − 1.

Choosing π = e2, . . . , eN and letting n→∞, we see that

(e⊤i+1M
∞)j = (M

∞)
i
j = 0 for i, j = 1, . . . ,N − 1.

Since the rows ofM∞ sum to 1, we learn that

wm + lm = (M
∞)

m
N + (M

∞)
m
0 = 1,

i. e., that each single game ends with a winner or a loser with probability 1. Further-
more, if player A begins with m chips and wins, given a probability p ∈ (0, 1) of flip-
ping heads, then player B loses the same game that she begins with N −m chips with
her winning probability in each toss amounting to (1 − p). This shows that wm(p) =
lN−m(1 − p) and, with the above, that wm(p) = 1 − wN−m(1 − p).

10.6.3 Game duration

Another interesting question that can be asked about this game is its expected du-
ration. A game can possibly run forever. Take m = 2 and N = 2 so that each player
starts with 2 chips. If the sequence (H ,T ,H ,T , . . . ) of flips is observed, then the game
continues forever without a winner. We also know that the game will last at least two
flips, since this is the number of consecutive losses, which would cause either player
to lose. Each duration of the game has a certain probability. For the specific example,
we have that

P(D = 2) = P({(H ,H), (T ,T)}) = p2 + (1 − p)2,

where D denotes the duration of the game. In general, a game can have any duration
k and we denote the corresponding probability by P(Dm = k), where the indexm indi-
cates that we consider a game in which player A begins withm chips, while as before
the total numberN of chips in the game is given and fixed.We allow for the possibility
that P(Dm = k) = 0 in order to avoid having to specify the durations of a game that are
actually possible. In the specific example withm = N = 2, we see that

P(D2 = 0) = 0, P(D2 = 1) = 0, P(D2 = 2) = p
2 + (1 − p)2,

P(D2 = 3) = 0, P(D2 = 4) =?, . . .
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A histogram of observed game durations for 5,000 randomly generated games is
shown below. It is assumed that player A starts with 40 of a total of 60 chips and that
the coin is fair. Verify that the computed winning frequency and average game dura-
tion are close to the theoretical valueswe derived and are about to derive, respectively.

The expected duration of a game is given by

dm = E[Dm] =
∞

∑
i=0

i P(Dm = i), m = 1, . . . ,N .

We know that d0 = dN = 0 since the game cannot even start if player A has none or all
of the chips. Next, we show that

dm = 1 + p dm+1 + (1 − p) dm−1,

for m = 1, . . . ,N − 1. This will allow us to determine dm for each m. In order to verify
the identity, observe that, form = 1, . . . ,N − 1, it holds that

P(Dm = i) = P(Dm = i|H)P(H) + P(Dm = i|T)P(T)
= pP(Dm+1 = i − 1) + (1 − p)P(Dm−1 = i − 1)

by conditioning on the first flip being heads or tails by Bayes’ formula. Notice that we
can consider the first flip form = 1, . . . ,N − 1 since the game will last at least one flip.
We also used the fact that the duration of the game increases by 1 after the first flip
and that A’s chips’ count increases or decreases by 1 depending on whether the first
flip is heads or tails. This implies that
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E[Dm] =
∞

∑
i=0

i P(Dm = i) =
∞

∑
i=1

i P(Dm = i)

=
∞

∑
i=1

i[pP(Dm+1 = i − 1) + (1 − p)P(Dm−1 = i − 1)]

= p
∞

∑
i=1

i P(Dm+1 = i − 1) + (1 − p)
∞

∑
i=1

i P(Dm−1 = i − 1)

= p
∞

∑
j=0
(j + 1)P(Dm+1 = j) + (1 − p)

∞

∑
j=0
(j + 1)P(Dm−1 = j)

= p + (1 − p) + pE[Dm+1] + (1 − p)E[Dm−1],

since ∑∞j=0 P(Dm = j) = 1 for anym and thanks to the definition of expected value. The
desired identity follows since E[Dm] = dm for anym and can be rewritten as

dm+1 − dm = −
1
p
+ r(dm − dm−1) = ⋅ ⋅ ⋅

= −
1
p
(1 + r + ⋅ ⋅ ⋅ + rm−1) + rm(d1 − d0)

= −
1
p
1 − rm

1 − r
+ rmd1,

assuming that r ̸= 1 and where r = 1−p
p . The case when r = 1, i. e., p = 1

2 , is left as an
exercise. It holds that

dm =
m−1
∑
k=0
(dk+1 − dk) =

m−1
∑
k=0
[−

1
p
1 − rk

1 − r
+ rkd1]

= −
1

p(1 − r)
[m − 1 − r

m

1 − r
] +

1 − rm

1 − r
d1

=
1

1 − 2p
[
1 − rm

1 − r
−m] + 1 − r

m

1 − r
d1

Settingm = N and using that dN = 0, we arrive at

d1 =
N

p(1 − rN )
−

1
2p − 1
,

and consequently, at

dm =
1

1 − 2p
[m − N 1 − rm

1 − rN
] form = 0, . . . ,N .
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10.7 Vector-valued random variables and variance

Every variable that exist in a deterministic formwill also exist in random form. In par-
ticular, we can consider vector-valued random variables, i. e., random variables with
values in a vector space, say ℝn. These are functions of the form

X : S → ℝn

defined on a probability space S. We can think of X just as well as a vector consisting
of scalar random variables X1, . . . ,Xn, which are its components, i. e., satisfy

X = (X1, . . . ,Xn).

The corresponding expected value is the vector E[X] with

E[X] = (E[X1], . . . ,E[Xn]).

The expected value μ = E[X] of a real-valued (n = 1) random variable is the value
μ ∈ ℝ, which makes the expected difference between X and μ vanish, i. e., such that

E[X − μ] = 0(= E[X] − μ).

Unless X is deterministic (i. e., constant), it will take on multiple values. It is natural
to ask how far such values are from the mean, on average. While a possible measure
of mean distance to the average could be given by E[|X −μ|], for technical reasons, the
preferred quantities are variance, which is given by

var(X) = E[|X − μ|2],

and the related standard deviation

std(X) = √var(X) = E[|X − μ|2]
1
2 ,

which scales like a distance. For a vector valued random variable X ∈ ℝn, the corre-
sponding quantity is given by

var(X) = E[(X − μ)(X − μ)⊤] ∈ ℝn×n,

and it is called covariance matrix. Notice how this symmetric matrix not only contains
the variance

var(Xi) = var(X)ii

of the components of the vector X on its diagonal, but also, in its off-diagonal entries,
the so-called correlations

 EBSCOhost - printed on 2/10/2023 3:59 PM via . All use subject to https://www.ebsco.com/terms-of-use



10.7 Vector-valued random variables and variance | 171

E[(Xi − μi)(Xj − μj)] = var(X)ij

of the components of X. If you think of the correlation as an inner product of the cor-
responding random variables, then the intuition is that it would be large if both ran-
dom variables simultaneously assume nonvanishing values for many of the same out-
comes. In this sense, one could be used as a proxy for the other. Take for instance the
binary random variables of it raining and of carrying an umbrella. While the two ran-
dom variables are different since it is possible to carry an umbrella when the weather
is nice or not carry one when it is raining, it is the case that these variables will both
have the same value a lot of the time. Their correlation will reflect this by exhibiting a
nonzero value.

10.7.1 Principal component analysis

Next, we showcase a nice connection between linear algebra (singular value decom-
position), statistics/probability, and data science. It is given by the so-called Principal
Component Analysis (PCA), a widely used method of data analysis.

Given a sample of data vectors x1, . . . , xn ∈ ℝm (measurements of some kind) for
whichm is large, we would like to identify (a small number of) directions inℝm along
which the data exhibit most of their variability. These could be and are interpreted
as distinguishing features. The framework consists in assuming that the data are a
manifestation of the values of a random vector X ∈ ℝm in the sense that the frequency
of values in the observed data set reflects the probability of corresponding values of
X. With this understanding, the value

x = 1
n

n
∑
i=1

xi

can be thought of as a reasonable guess for the expected value E[X] based on the ob-
served data. It is called samplemean for apparent reasons. As the data points xi can be
replaced by xi − x with no loss of information, we may assume, without loss of gener-
ality, that x = 0. Let us collect the data in the so-called designmatrix𝕏 ∈ ℝn×m, which
features the data vectors in its n rows 𝕏i∙, i = 1, . . . , n. Then it is natural to interpret
𝕏⊤𝕏 as an approximation (up to a multiplicative constant) of the covariance matrix
E[XX⊤] of X since it holds that

(𝕏⊤𝕏)
j
k =

n
∑
i=1
(𝕏⊤)

j
i𝕏

i
k =

n
∑
i=1
𝕏ij𝕏

i
k =

n
∑
i=1

xjix
k
i

= (
n
∑
i=1

xix
⊤
i )

j

k
= (

n
∑
i=1
(xi − 0)(xi − 0)

⊤)

j

k
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Here, we assume that X has also been centered (i. e., been replaced by X − μ) so that
E[X] = 0 without loss of generality. We know that the optimal approximation of𝕏 (in
the sense of the Frobenius normas explained in Section 8.1) by a rank-kmatrix is given
by its truncated singular value decomposition that keeps only the k largest singular
values. Let K = rank(A) ⩽ min(n,m) and

𝕏 =
K
∑
j=1

σjvju
⊤
j = VΣU

⊤

be the singular value decomposition of𝕏. Recall that

σ1 ⩾ σ2 ⩾ ⋅ ⋅ ⋅ ⩾ σK > 0

and that the vectors v1, . . . , vK ∈ ℝn can be constructed to build an orthonormal system
and so can the vectors u1, . . . , uK ∈ ℝm. We compute

𝕏⊤𝕏 = UΣV⊤VΣU⊤ = UΣ2U⊤,

which can be interpreted as saying that the covariancematrix of the transformed (pro-
jected) data

(U⊤𝕏⊤)∙1 = U
⊤x1, . . . , (U

⊤𝕏⊤)
∙
n = U
⊤xn ∈ ℝ

K

with design matrix𝕏U is diagonal as follows from𝕏U = VΣ and

(𝕏U)⊤𝕏U = Σ⊤V⊤VΣ = Σ2.

LettingUk ∈ ℝ
m×k be the submatrix consisting of the first k columns ofU (correspond-

ing to the k-largest variances σ21 , . . . , σ
2
k), we obtain the directions uj = U

∙
j along which

the data have variance σ2j for j = 1, . . . , k. Verify (Q4) that this means that the scalar
quantities u⊤j xi, for i = 1, . . . , n, exhibit variance amounting to σ2j . Notice also that the
projected dataU⊤k x1, . . . ,U

⊤
k xn are uncorrelated as the off-diagonal entries of the corre-

sponding covariance matrix vanish, a fact that follows from the identity𝕏Uk = VkΣk,
the validity of which rests on

𝕏UkU
⊤
k = 𝕏

k
∑
j=1

uju
⊤
j =

k
∑
j=1

σjvju
⊤
j = VkΣkU

⊤
k ,

which holds for any k ⩽ K (the case k = K was studied above) and where Vk is the
matrix consisting of the first k columns of V and Σk ∈ ℝk×k is the diagonal matrix with
the k largest variances on its diagonal.
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In the two-dimensional example depicted below, a sample of data points
x1, . . . , x50 ∈ ℝ2 is plotted along with the direction (blue dotted line) in which the
most variability is observed. This direction is determined by the vector u1 that corre-
sponds to the largest singular value σ1 of the design matrix 𝕏. In this direction, the
data exhibits a sample variance σ21 .

10.8 Concluding remarks

In this chapter, we learned that conditional probability is a powerful tool and that
the computation of many a probability is intimately connected to (partial) differential
and difference equations.We chose to present prototypical examples in a discrete con-
text in order to avoid technicalities, which may have obfuscated the core ideas. It is,
however, possible and interesting to study phenomena with continuous time and/or
continuous sample space.
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11 Answers to selected questions

11.1 Answer to Chapter 1 question

Answer to Q1

If G is the graph of a mapm : S → T with inversem−1, then the graph of the inverse is

G(m−1) = {(t, s)  (s, t) ∈ G} ⊂ T × S.

In other words, the graph of the inverse is obtained by flipping the order in the pairs
of the graph ofm.

11.2 Answers to Chapter 2 questions

Answer to Q1

Let s ∈ S. Due to (er1), we have that s ∈ [s]. This shows that

S ⊂⋃
s∈S
[s].

Next, take [s] ̸= [t] ∈ S/∼ and assume that there is r ∈ S such that r ∈ [s] ∩ [t], i. e.,
that r ∼ s and r ∼ t. Then, by (er2) s ∼ r, so that s ∼ t by (er3) and we would have
to conclude s ∈ [t] and t ∈ [s]. This is, however, not the case since [s] ̸= [t] and we
conclude that [s] ∩ [t] = 0.

Answer to Q2

Let (m, n) ∈ ℕ2 and observe that m ⋅ n = n ⋅ m showing that (er1) is satisfied. Next,
(m, n) ∼ (p, q)meansm ⋅ q = n ⋅ p, which, using commutativity, rewrites as p ⋅ n = q ⋅m
andmeans (p, q) ∼ (m, n) and yields (p, q) ∼ (m, n). This gives (er2). Finally, let (m, n) ∼
(p, q) and (p, q) ∼ (r, s), which amount to

m ⋅ q = n ⋅ p and p ⋅ s = q ⋅ r.

It follows that

(m ⋅ s) ⋅ (p ⋅ q) = (m ⋅ q) ⋅ (p ⋅ s) = (n ⋅ p) ⋅ (q ⋅ r) = (n ⋅ r) ⋅ (p ⋅ q),

and simplifying that m ⋅ s = n ⋅ r. This means (m, n) ∼ (r, s) and gives (er3), thus
concluding the proof.

https://doi.org/10.1515/9783110780925-011
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Answer to Q3

It is simply [n,m] since

[n,m] ⋅ [m, n] = [n ⋅m,m ⋅ n] = [n ⋅m, n ⋅m] = [1, 1] = 1,

[m, n] ⋅ [n,m] = [m ⋅ n, n ⋅m] = [m ⋅ n,m ⋅ n] = [1, 1] = 1.

Answer to Q4

Notice that (ℕ,+), just as (ℕ, ⋅), enjoys commutativity and associativity. These were
the only two properties used in order to show that (m, n) ∼ (p, q) defined bym ⋅q = n ⋅p
is an equivalence relation onℕ2. The claim therefore follows by replacing ⋅ by +.

Answer to Q5

Well-defined:Theproof is again obtainedby replacing ⋅ in the corresponding argument
that was used in the construction of ℚ+ by + and observing that only commutativity
and associativity are needed.

Extension: The natural numbersm and n correspond to the new numbers [n+ 1, 1] and
[m + 1, 1] so that, according to the new definition of addition, their sum is

[n + 1, 1] + [m + 1, 1] = [n +m + 2, 2] = [n +m + 1, 1],

which corresponds to n +m as desired. Commutativity: It holds that

[m, n] + [k, l] = [m + k, n + l] = [k +m, l + n] = [k, l] + [m, n]

since we can use commutativity in each component, that is commutativity of (ℕ,+).

Associativity: Similarly, we can use the associativity of (ℕ,+) in each component to
see that

([m, n] + [k, l]) + [i, j] = [m + k, n + l] + [i, j] = [(m + k) + i, (n + l) + j]

= [m + (k + i), n + (l + j)]

= [m, n] + ([k, l] + [i, j])
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Answer to Q6

Multiplication on ℤ can be defined by

[m, n] ⋅ [k, l] = [m ⋅ k + n ⋅ l,m ⋅ l + n ⋅ k],

which amounts to the familiar

(m − n) ⋅ (k − l) = (m ⋅ k + n ⋅ l) − (m ⋅ l + n ⋅ k).

Notice how we have that

(−1) ⋅ n = [1, 2] ⋅ [n + 1, 1] = [n + 1 + 2, 1 + 2 ⋅ (n + 1)]
= [1, n + 1] = −n.

Answer to Q7

Starting with ℤ, we can introduce the equivalence relation given by

(m, n) ∼ (k, l) iff m ⋅ l = n ⋅ k,

on ℤ × ℕ in order to obtain ℚ = (ℤ × ℕ)/∼. Starting with ℚ+, we can alternatively
define the equivalence relation

(p, q) ∼ (r, s) iff p + s = q + r,

and obtainℚ = (ℚ+ ×ℚ+)/∼.

Answer to Q8

We only verify the inequality using the fact that x ⩽ |x| for any x ∈ ℚ, which holds
since x = |x| if x ∈ ℚ+ and x ⩽ −x if x ∈ ℚ−. If x − z ∈ ℚ+, then

|x − z| = x − z = x − y + y − z ⩽ |x − y| + |y − z|,

if x − z ∈ ℚ−, then

|x − z| = z − x = z − y + y − x ⩽ |z − y| + |y − x| = |x − y| + |y − z|,

and if x − z = 0, then

|x − z| ⩽ |x − y| + |y − z|.

We also used that |x| = | − x| as can be easily verified.

 EBSCOhost - printed on 2/10/2023 3:59 PM via . All use subject to https://www.ebsco.com/terms-of-use



11.2 Answers to Chapter 2 questions | 177

Answer to Q9

Let the sequence (xn)n∈ℕ of rationals converge to x∞ ∈ ℚ and letM ∈ ℕ be given. The
definition of convergence yields N ∈ ℕ such that

|xn − x∞| ⩽
1
2M

for n ⩾ N ,

from which we conclude that

|xn − xm| ⩽ |xn − x∞| + |x∞ − xm| ⩽
1
2M
+

1
2M
=

1
M

form, n ⩾ N .

Thus the sequence is Cauchy.

Answer to Q10

If (xn)n∈ℕ has the positivity property, i. e., if there existM ∈ ℕ and N ∈ ℕ such that

xn ⩾
1
M

for n ⩾ N ,

and if (yn)n∈ℕ is an equivalent Cauchy sequence, we can find Ñ ∈ ℕ such that

|yn − xn| ⩽
1
2M

for n ⩾ Ñ .

It follows that

yn = yn − xn + xn ⩾ xn − |yn − xn| ⩾
1
2M
,

and thus that the stated positivity condition holds for all Cauchy sequences in the
equivalence class of (xn)n∈ℕ with lower bound

1
2M .

Answer to Q11

It is enough to notice that

|qn − qm| ⩽ |qn − xn| + |xn − xm| + |xm − qm| ⩽ |xn − xm| +
1
n
+

1
m
,

and to use the assumption that (xn)n∈ℕ is a Cauchy sequence. Indeed, given ε ∈ ℚ+,
we can find N ∈ ℕ such that

|xn − xm| ⩽
ε
3
,

1
k
⩽
ε
3

for k,m, n ⩾ N ,
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from which we conclude that

|qn − qm| ⩽
ε
3
+
ε
3
+
ε
3
= ε form, n ⩾ N ,

using the first inequality.

11.3 Answers to Chapter 3 questions

Answer to Q1

First, observe that ℂℕcs = ℂ
ℕ
c since ℂ is complete so that Cauchy sequences are con-

vergent, while convergent sequences are always Cauchy. If two sequences x = (xn)n∈ℕ
and y = (yn)n∈ℕ converge (with limits x∞ and y∞), then, given ε > 0 and λ ∈ ℂ, we can
find N ∈ ℕ with

|xn − x∞| ⩽
ε

2max{|λ|, 1}
and |yn − y∞| ⩽

ε
2

for n ⩾ N .

SuchN exists for each individual sequence by thedefinition of convergence and taking
the maximum yields one that works for both. It follows that

xn + yn − (x∞ + y∞)
 ⩽ |xn − x∞| + |yn − y∞| ⩽ ε for n ⩾ N ,

which yields the convergence of (xn + yn)n∈ℕ to x∞ + y∞ and shows that x + y ∈ ℂℕc . It
also follows that

|λxn − λx∞| ⩽ |λ||xn − x∞| ⩽ ε for n ⩾ N ,

which gives the convergence of (λxn)n∈ℕ to the limit λx∞ and shows that λx ∈ ℂℕc ,
concluding the proof that ℂℕc is a subspace of ℂℕ.

Answer to Q2

Assume that V = span{u1, . . . , un} and V = span{v1, . . . , vm}. Then there are a1j , . . . , a
n
j ∈

𝔽 for j = 1, . . . ,m as well as b1k , . . . , b
m
k ∈ 𝔽 for k = 1, . . . , n such that

a1ju1 + ⋅ ⋅ ⋅ + a
n
j un = vj and b1kv1 + ⋅ ⋅ ⋅ + b

m
k vm = uk

for j = 1, . . . ,m and k = 1, . . . , n. For any vector u ∈ V , we can find α ∈ 𝔽n and β ∈ 𝔽m

such that

u =
n
∑
j=1

αjuj =
n
∑
j=1

αj
m
∑
k=1

bkj vk =
m
∑
k=1
[

n
∑
j=1

bkj α
j]vk

 EBSCOhost - printed on 2/10/2023 3:59 PM via . All use subject to https://www.ebsco.com/terms-of-use



11.3 Answers to Chapter 3 questions | 179

=
m
∑
k=1

βkvk =
m
∑
k=1

βk
n
∑
j=1

ajkuj =
n
∑
j=1
[

m
∑
k=1

ajkβ
k]uj.

It follows from the definition of basis that

αj =
m
∑
k=1

ajkβ
k for j = 1, . . . , n and βk =

n
∑
j=1

bkj α
j for k = 1, . . . ,m.

This shows that the matrices A = [ajk]
j=1,...,n
k=1,...,m and B = [bkj ]

k=1,...,m
j=1,...,n are inverse to each

other. We, however, know (from basic linear algebra) that matrices can only be invert-
ible if they are square and this requiresm = n.

Answer to Q3

We give a proof for the functions fy. Let y1, . . . , yn be distinct points in ℝ for arbitrary
n ∈ ℕ and assume that

f =
n
∑
j=1

αjfyj ≡ 0.

Then f (x) = 0 for every x ∈ ℝ and, in particular,

0 = f (yk) =
n
∑
j=1

αjfyj (yk) = α
k for k = 1, . . . , n.

This shows that the vectors (functions) fy1 , . . . , fyn are linearly independent as desired.

Answer to Q4

Starting with the function lim, notice that linearity amounts to

lim
n→∞
(αxn + βyn) = αx∞ + βy∞,

for sequences (xn)n∈ℕ, (yn)n∈ℕ converging to x∞ and y∞, respectively. This is precisely
what we proved in a previous answer. As for δx0 , the claim follows from

δx0 (αf + βg) = (αf + βg)(x0) = αf (x0) + βg(x0) = αδx0 (f ) + βδx0 (g),

which is valid for any functions f , g ∈ ℝℝ, and scalars α, β ∈ ℝ.
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Answer to Q5

We need to show that

ℒ(V ,W) = {ℒ : V → W |ℒ is linear}

is a vector space. Notice first that any set of functions WS from a set S into a vector
space is itself a vector spacewith respectwith pointwise addition andpointwise scalar
multiplication given by

(f + g)(s) = f (s) + g(s) and (λf )(s) = λf (s) for s ∈ S,

for f , g ∈ WS, and λ ∈ ℱ . Then the claim follows observing that ℒ(V ,W) is a subspace
of WV since the sum of any two linear maps is linear as is any scalar multiple of a
linear map.

Answer to Q6

We shall use the so-called Hölder’s inequality, which states that

m
∑
j=1
|α|j|β|j ⩽ |α|p|β|p′ for α, β ∈ 𝔽m,

where p ∈ [1,∞] and 1
p +

1
p′ = 1. To derive this inequality, we use that
xy ⩽ 1

p
xp + 1

p′
yp
′

for x, y ⩾ 0,

the validity of which is obtained exploiting the concavity of the logarithm. Indeed, we
have that

log( 1
p
xp + 1

p′
yp
′
) ⩾

1
p
log(xp) + 1

p′
log(yp

′
) = log(xy),

which gives the inequality after exponentiation. To obtain Hölder’s inequality, it is
then enough to replace α by α̃ = α

|α|p
and β by β̃ = β

|β|q
, which is possible if α ̸= 0 ̸= β.

Notice that Hölder’s inequality holds true when α = 0 or β = 0 and we can therefore
focus on the case α and β do not vanish. Then

α̃
jβ̃j ⩽

1
p
α̃
j
p +

1
p′
β̃
j
p′ for j = 1, . . . ,m,
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and adding

1
|α|p|β|q

m
∑
j=1

α
jβj =

m
∑
j=1

α̃
jβ̃j ⩽

1
p

m
∑
j=1

α̃
j
p +

1
p′

m
∑
j=1

β̃
j
p′

=
1
p
+

1
p′
= 1,

since∑mj=1 |α̃
j|p = 1 = ∑mj=1 |β̃

j|p
′
by construction. Now take p ∈ (0,∞) and observe that

|α|p∞ = ( max
i=1,...,m
α
i)

p
= max

i=1,...,m
α
i
p ⩽

m
∑
j=1

α
j
p = |α|pp

and that

|α|pp =
m
∑
j=1

α
j
p ⩽ m max

i=1,...,m
α
i
p = m|α|p∞,

for α ∈ 𝔽m. This amounts to

|α|∞ ⩽ |α|p ⩽ m
1/p|α|∞, α ∈ 𝔽m.

Next, take 1 ⩽ p < q <∞ and observe that

|α|qq =
m
∑
j=1

α
j
q ⩽

m
∑
j=1
|α|q−p∞
α
j
p ⩽ |α|q−p∞ |α|

p
p ⩽ |α|

q
p

by the first inequality for | ⋅ |∞ above, and that

|α|pp =
m
∑
j=1

1 ⋅ |α|p ⩽ (
m
∑
j=1

1r)
1/r

(
m
∑
j=1

α
j
pr′)1/r

′
= mp/q|α|pq ,

by Hölder’s inequality with r′ = q
p . The last two inequalities amount to

|α|q ⩽ |α|p ⩽ m
1/p−1/q|α|q, α ∈ 𝔽m.

Answer to Q7

Let p ∈ [1,∞) and (xn)n∈ℕ be a Cauchy sequence inℝℕp . Fixing k ∈ ℕ and considering
a single component (xkn)n∈ℕ we obtain a Cauchy sequence of real numbers since

x
k
n − x

k
m
 ⩽ (∑

j∈ℕ

x
j
n − x

j
m

p)

1/p
= |xn − xm|p.
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Completeness of ℝ yields a limit xk∞ for each k ∈ ℕ, i. e. a sequence x∞ = (xk∞)k∈ℕ in
ℝℕ, which may or may not be an element of ℝℕp . We prove next that it is. Notice that,
given ε > 0, there is N ∈ ℕ such that

(
M
∑
k=1

x
k
n − x

k
m

p)

1/p

⩽ (
∞

∑
k=0

x
k
n − x

k
m

p)

1/p

= |xn − xm|p ⩽ ε for n,m ⩾ N ,

and we can let m tend to∞ in the first sum exploiting the convergence of each com-
ponent individually to obtain

(
M
∑
k=1

x
k
n − x

k
∞

p)

1/p

⩽ ε for n ⩾ N .

The latter inequality is valid for any finite M and, letting M → ∞, it is inferred that
|xn − x∞|p ⩽ ε for n ⩾ N . This shows that x∞ ∈ ℝℕp since

|x∞|p ⩽ |xN |p + ε,

and that |xn−x∞|p → 0 as n→∞ (since ε > 0 is arbitrary), thus concluding the proof.
The last inequality follows from the validity of

|y|p − |z|p
 ⩽ |y − z|p for y, z ∈ ℝℕp ,

which you should verify.1

Answer to Q8

This metric generates the topology of componentwise convergence. To see this, we
take a sequence (xn)n∈ℕ of sequences inℝℕ where each term xn ∈ ℝℕ in this sequence
has components xjn for j ∈ ℕ and assume that

lim
n→∞

xjn = x
j
∞ for every j ∈ ℕ.

This means that, given any ε > 0, we can find a number N = N(j) ∈ ℕ such that

x
j
n − x

j
∞
 ⩽ ε/2 provided n ⩾ N(j).

Simultaneously, we can findM ∈ ℕ such that

1 Use the triangle inequality.
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∞

∑
j=M+1

|xjn − x
j
∞|

1 + |xjn − x
j
∞|

2−j ⩽
∞

∑
j=M+1

2−j ⩽ ε/2,

since the series∑j∈ℕ 2
−j converges. Taking N = max{N(1), . . . ,N(M)}, it follows that

d(xn, x∞) = ∑
j∈ℕ

|xjn − x
j
∞|

1 + |xjn − x
j
∞|

2−j ⩽ ∑
1⩽j⩽M

|xjn − x
j
∞|

1 + |xjn − x
j
∞|

2−j + ε/2

⩽ ∑
1⩽j⩽M

ε2−j−1 + ε/2 ⩽ ε if n ⩾ N .

This shows that componentwise convergence implies convergence with respect to d.
If, on the other hand, we assume convergence in d, then for any given δ > 0, we can
find N ∈ ℕ such that

d(xn, x∞) = ∑
j∈ℕ

|xjn − x
j
∞|

1 + |xjn − x
j
∞|

2−j ⩽ δ for n ⩾ N .

Thus, for any given fixed j ∈ ℕ, it holds that

|xjn − x
j
∞|

1 + |xjn − x
j
∞|
⩽ 2jδ for n ⩾ N .

Given j ∈ ℕ and ε > 0, δ > 0 can be chosen such that 2jδ < ε and we obtain that

lim
n→∞
|xjn − x

j
∞|

1 + |xjn − x
j
∞|
= 0.

This is, however, equivalent to limn→∞ |xjn − x
j
∞| = 0 since the function g defined by

g(s) = s
1+s for s ⩾ 0 is monotone increasing as follows by computing its derivative.

Answer to Q9

Notice that, for any x ∈ ℝℕ and t > 0, it holds that

d(tx,0) = ∑
n∈ℕ

|txn|
1 + |txn|

2−n ⩽ ∑
n∈ℕ

2−n = 1.

If d were induced by a norm | ⋅ |, it would have to hold that

t|x| = |tx| = |tx − 0| = d(tx,0) ⩽ 1 for every x ∈ ℝℕ and t > 0,

which is clearly impossible since it would imply that x = 0 for every x as is seen from
|x| ⩽ t−1 by letting t →∞.
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Answer to Q10

It clearly holds that ‖f ‖p ⩾ 0 for every f ∈ C([a, b],𝔽) since the integral of nonnegative
functions is nonnegative. Assume now that ‖f ‖p = 0 but that |f | ̸≡ 0. The latter entails
the existence of x ∈ [a, b] with |f (x)| > 0. Since f and the absolute value/modulus are
continuous, we can find δ > 0 such that

f (y)
 ⩾
f (x)
/2 for y ∈ [x − δ, x + δ] ∩ [a, b].

This implies that

b

∫
a

f (ξ )

p dξ ⩾

min(b,x+δ)

∫
max(a,x−δ)

f (ξ )

p dξ ⩾ δ

2p
f (x)

p > 0.

It follows that ‖f ‖p = 0 can only hold for f ≡ 0. Let now λ ∈ 𝔽. The validity of |λf (ξ )| =
|λ||f (ξ )| for ξ ∈ [a, b] and the linearity of the Riemann integral implies that

‖λf ‖pp =
b

∫
a

λf (ξ )

p dξ = |λ|p

b

∫
a

f (ξ )

p dξ = |λ|p‖f ‖pp,

which is the scaling property if a norm. Finally, we consider the triangle inequality for
the proof of which we need Hölder’s inequality in integral form

‖fg‖1 =
b

∫
a

f (x)g(x)
 dx ⩽ ‖f ‖p‖g‖p′ ,

which is valid for f , g ∈ C([a, b],𝔽), p ∈ [1,∞), and p′ = p
p−1 (p

′ = ∞ if p = 1). We
first prove the triangle inequality and then Hölder’s inequality. It is straightforward to
verify the triangle inequality for p = 1 or p =∞. Let therefore p ∈ (1,∞). It holds that

‖f + g‖pp =
b

∫
a

f (ξ ) + g(ξ )

f (ξ ) + g(ξ )


p−1 dξ

⩽ (‖f ‖p + ‖g‖p)(
b

∫
a

f (ξ ) + g(ξ )

p dξ)

p−1
p

= (‖f ‖p + ‖g‖p)‖f + g‖
p−1
p ,

from which the triangle inequality follows. In this context, it is also known as Min-
kowski inequality. Returning to Hölder’s inequality and observing that it holds when-
ever f or g vanish, we assume that ‖f ‖p ̸= 0 ̸= ‖g‖p′ . Using the scalar inequality
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xy ⩽ 1
px

p + 1
p′ xp′ valid for nonnegative numbers, we see that

1
‖f ‖p‖g‖p′

b

∫
a

f (ξ )g(ξ )
 dξ ⩽

b

∫
a

[
1
p
|f (ξ )|p

‖f ‖pp
+

1
p′
|g(ξ )|p

′
‖g‖p

′
p′ ] dξ =

1
p
+

1
p′
= 1,

which concludes the proof.

Answer to Q11

It needs to be verified that λ = 0 is the only solution of

n
∑
j=1

λjuj = 0.

Using orthogonality, we see that

(uk |
n
∑
j=1

λjuj) = λk(uk |uk) for every k = 1, . . . , n.

It follows that λk = 0 for every k since the vectors are nontrivial.

11.4 Answers to Chapter 4 questions

Answer to Q1

If z ∈ 𝔹(x, r) for r > 0, then |x − z| < r and

𝔹(z, r − |z − x|) ⊂ 𝔹(x, r).

Indeed, for any y ∈ 𝔹(z, r − |z − x|), it holds that

|x − y| ⩽ |x − z| + |z − y| < |x − z| + r − |x − z| = r.

Answer to Q2

The sequence (xn)n∈ℕ in [0, 1) given by xn = 1 − 1/n has limit

x∞ = 1 ∉ [0, 1).
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Answer to Q3

The set f (C) ⊂ ℝ is compact since C is and f is continuous. This means that the ex-
tremal values M = sup f (C) and m = inf f (C) exist, are finite since compact sets are
bounded, and m,M ∈ f (C) since compact sets are closed. It follows that xm, xM ∈ C
can be found such that

max
x∈C

f (x) = max f (C) = sup f (C) = f (xM) and

min
x∈C

f (x) = min f (C) = inf f (C) = f (xm).

Answer to Q4

Let (x̃n)n∈ℕ be another sequence in D that converges to x. It follows from uniform con-
tinuity that

dN(f (x̃n), f (xn)) ⩽ ε for n ⩾ L,

since dM(x̃n, xn) ⩽ δ for n ⩾ L and some L ∈ ℕ. This shows that

lim
n→∞

dN(f (x̃n), f (xn)) = 0,

and thus that limn→∞ f (x̃n) = limn→∞ f (xn) as desired.

Answer to Q5

Let g be another uniformly continuous extension of f . It then holds that f |D = f = g|D,
so take x ∈ M \ D and a sequence (xn)n∈ℕ in D, which converges to x. It follows that

f (xn) = f (xn) = g(xn) for every n ∈ ℕ,

and that

g(x) = lim
n→∞

g(xn) = lim
n→∞

f (xn) = lim
n→∞

f (xn) = f (x).

The claim is now a consequence of the fact that x is arbitrary.

 EBSCOhost - printed on 2/10/2023 3:59 PM via . All use subject to https://www.ebsco.com/terms-of-use



11.4 Answers to Chapter 4 questions | 187

Answer to Q6

The example shows that a bounded sequence (fn)n∈ℕ of continuous functions, for
which it always holds that {fn | n ∈ ℕ} is closed with respect to the supremum norm,2

does not need to have a convergent subsequence. The reason is that continuity can
deteriorate with increasing index, and even if the values remain in a bounded set,
continuity can be lost. In the example, this happens because a jump appears in the
limit. The fix consists in making sure that all terms in the sequence share a common
degree of continuity. This leads to the concept of equicontinuity, which for a family
ℱ ⊂ C([−1, 1]) of continuous functions means

∀x0 ∈ [−1, 1], ∀ε > 0 ∃δ > 0 s. t.
f (x) − f (x0)

 ⩽ ε when |x − x0| ⩽ δ and for every f ∈ ℱ .

Equicontinuity therefore holdswhen “the δ needed for a given ε can be chosen towork
for all f ∈ ℱ simultaneously”.Uniform equicontinuity holds when the above condition
is satisfied with the same δ for all arguments x0 ∈ [−1, 1]. You should try to show that
a bounded and uniformly equicontinuous sequence of continuous functions defined
on [−1, 1] does indeed have a convergent subsequence. A general version of this result
is known as the Arzéla–Ascoli theorem.

Answer to Q7

We need to show that, given x ∈ ℝℕ0 , we can approximate it with arbitrary precision
with elements of ℝℕ00. Since x is a null sequence, given ε > 0, we can find N ∈ ℕ such
that

|xn| ⩽ ε for n ⩾ N .

This, however, means that

x
m − x∞ = supn∈ℕ

x
m
n − xn
 ⩽ ε form ⩾ N ,

where ℝℕ00 ∋ x
m = (x1, x2, . . . , xm,0,0, . . . ). It follows that xm → x as m → ∞ and

density follows.

2 To see this, take any convergent sequence of terms selected from the original sequence and show
that its limit must be a term of the sequence also.
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Answer to Q8

Since the power set 2X of any set contains all of its subsets, the conditions (t1)–(t3) are
satisfied because set operations on subsets of X can only produce subsets of X. In this
topology every set is open, so that all singletons {x} are open. If we have a sequence
(xn)n∈ℕ that converges to a limit x∞, it would mean that the open set {x∞}would have
to contain all but finitely many terms of the sequence. This means that the sequences
becomes stationary beyond some index N ∈ ℕ, i. e., that

∃N ∈ ℕ s. t. xn = x∞ for n ⩾ N .

At the other extreme, take any sequence (xn)n∈ℕ in X and any x ∈ X, then the only
open set containing x is the whole set X since τ = {X, 0}, which contains every term of
the sequence. Thus any sequence is convergent to any point in X.

Answer to Q9

It clearly holds that Y = X ∩Y and 0 = 0∩Y , and hence that Y , 0 ∈ τX,Y since X, 0 ∈ τX .
If {Uλ | λ ∈ Λ} is any family of open sets in τX,Y , then there are open sets Oλ ∈ τX such
that Uλ = Oλ ∩ Y and then

⋃
λ∈Λ

Uλ = ⋃
λ∈Λ
(Oλ ∩ Y) = (⋃

λ∈Λ
Oλ) ∩ Y ,

which shows that⋃λ∈Λ Uλ ∈ τX,Y since⋃λ∈Λ Oλ ∈ τX as τX is a topology. Similarly, given
finitely many open sets Uk ∈ τX,Y (k = 1, . . . ,m), there are Ok ∈ τX with Uk = Ok ∩ Y ,
and thus

n
⋂
k=1

Uk =
n
⋂
k=1
(Ok ∩ Y) = (

n
⋂
k=1

Ok) ∩ Y ,

showing that⋂nk=1 Uk ∈ τX,Y since⋂
n
k=1 Ok ∈ τX as τX is a topology.

11.5 Answers to Chapter 5 questions

Answer to Q1

Linearity gives that

sup
0 ̸=x∈ℝn

|Mx|2
|x|2
= sup

0 ̸=x∈ℝn


M x
|x|2

2
= sup
|y|2=1
|My|2,
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since | x|x|2 |2 = 1. As for the norm axioms, it clearly holds that |M|2 ⩾ 0, and if
sup|y|2 |My|2 = 0, then it must hold that My = 0 for every y of unit norm, and conse-
quently, that Mx = |x|2M

x
|x|2
= 0 for every x ̸= 0. It follows that M = 0 iff ‖M‖ = 0.

Next, let λ ∈ ℝ. Then

‖λM‖ = sup
|y|2=1
|λMy|2 = |λ| sup

|y|2=1
|My|2 = |λ|‖M‖,

since | ⋅ |2 is a norm on ℝn. Finally, let N ∈ ℝn×n notice that

(M + N)y
2 ⩽ |My|2 + |Ny|2 for y with |y|2 = 1,

and take the supremum over y of unit norm to see that

‖M + N‖ = sup
|y|2=1

(M + N)y
2 ⩽ sup
|y|2=1
[|My|2 + |Ny|2]

⩽ sup
|y|2=1
|My|2 + sup

|y|2=1
|Ny|2 = ‖M‖ + ‖N‖,

which is the triangle inequality. As for a geometric interpretation of this norm, it can
be thought of as themaximal stretching (or shrinking) factor of the linearmap. It mea-
sures how much the norm of a vector is changed, at most, by applyingM.

Answer to Q2

Weonly show the claim forBC(Ω,ℝn). Theproof has two steps: first,we show that there
is a pointwise limit to any Cauchy sequence, then we show that the limit is bounded
and continuous. Given a Cauchy sequence (uk)k∈ℕ, we see that

uk(x) − ul(x)
 ⩽ ‖uk − ul‖∞, x ∈ Ω,

so that, for every x ∈ Ω, (uk(x))k∈ℕ is a Cauchy sequence inℝn and, as such, has a limit
u∞(x). We therefore have a candidate for the limiting function. As Cauchy sequences
are bounded, we findM > 0 such that

uk(x)
 ⩽ ‖uk‖∞ ⩽ M, k ∈ ℕ, x ∈ Ω,

which letting k tend to infinity shows that |u∞(x)| ⩽ M for every x ∈ Ω. Boundedness
is thus established. Next, we show that convergence actually occurs in the supremum
norm. Given any ε > 0, K ∈ ℕ can be found with

uk(x) − ul(x)
 ⩽ ‖uk − ul‖∞ ⩽ ε for k, l ⩾ K and x ∈ Ω.
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Letting l →∞, if follows that

uk(x) − u∞(x)
 ⩽ ε for k ⩾ K and x ∈ Ω.

Taking the supremum over x ∈ Ω yields ‖uk −u∞‖∞ ⩽ ε for k ⩾ K, which gives uniform
convergence. Finally, we show that u∞ is also continuous. Given x ∈ Ω and ε > 0, we
first choose K ∈ ℕ so that ‖uK −u∞‖∞ ⩽

ε
3 and then exploit the continuity of uK to find

δ > 0 such that

uK(y) − uK(x)
 ⩽

ε
3

for y ∈ 𝔹(x, δ).

This gives

u∞(y) − u∞(x)
 ⩽
u∞(y) − uK(y)

 +
uK(y) − uK(x)

 +
uK(x) − u∞(x)


⩽ ε for y ∈ 𝔹(x, δ),

and the desired continuity follows since x ∈ Ω was arbitrary.

Answer to Q3

LetC bea closed subset of the completemetric spaceM. If (xn)n∈ℕ is a Cauchy sequence
in C, then it is one inM and, as such, will possess a limit x∞ ∈ M. Since xn → x∞ as
n→∞, x∞ ∈ C since C is closed (and closed sets contain all their limit points).

11.6 Answers to Chapter 6 questions

Answer to Q1

If M ⊂ ℝn is locally the graph of a function C1-function f of k-variables, then given
P ∈ M, there are a coordinate system X = (x1, . . . , xn) (a point, the origin, which can
be taken to be P, and n linearly independent vectors, a basis), an open set OP ⊂ M
containing P and fP ∈ C1(𝔹ℝk (0, 1),ℝ

n−k) such that

M ∩ OP = {(x
′, fP(x

′))  x
′ ∈ 𝔹ℝk (0, 1)} and with fP(0) = 0,

where x′ = (x1, . . . , xk). It is left as an exercise to verify that the map

φP : OP → ℝ
k ,Q → x′(Q),

has all the required properties, i. e., that φP is a homeomorphism onto its range, with
differentiable inverse φ−1P such that Dφ−1P (0) is of maximal rank. Notice that it holds
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that φ−1P (x
′) = (x′, fP(x′))! You are encouraged to draw a picture of the above set up,

even simply in the case of a 1-dimensional submanifold of ℝ2.

Answer to Q2

Indeed, take any open setO ⊂ M. Then, for each x ∈ O and for each n ∈ ℕ, we can find
kn(x) ∈ {1, . . . ,Nn} such that x ∈ 𝔹(Pnkn(x), 1/n). Take n = n(x) large enough to ensure
that

d(x,Oc) ⩾
2
n
,

and observe that

d(Pnk(x), y) ⩾ d(x, y) − d(x,P
n
k(x)) ∀y ∈ O

c,

by the triangle inequality. By taking the infimum over y ∈ Oc, we arrive at

d(Pnk(x),O
c) ⩾ d(x,Oc) − d(x,Pnk(x)) ⩾

2
n
−
1
n
=
1
n
,

which means that 𝔹(Pnk(x), 1/n(x)) ⊂ O. It only remains to note that

O = ⋃
x∈O
{x} ⊂ ⋃

x∈O
𝔹(Pnk(x), 1/n(x)) ⊂ O,

where the union on the right consists of at most countably many distinct balls.

Answer to Q3

Assume first that γ̇1(0) = γ̇2(0) and take f ∈ C1(ℝnℝ). Then

d
dt
(f ∘ γ1)(0) = Df (P)γ̇1(0) = Df (P)γ̇2(0) =

d
dt
(f ∘ γ2)(0),

since γ1(0) = P = γ2(0). Assume now that the identity holds for all differentiable func-
tions f : ℝn → ℝ. Choosing f = Xi, i = 1, . . . , n, where Xi(x) = xi for x ∈ ℝn, we obtain
that

γ̇i1(0) =
d
dt
(Xi ∘ γ1)(0) =

d
dt
(Xi ∘ γ2)(0) = γ̇

i
2(0) for i = 1, . . . , n,

and thus γ̇1(0) = γ̇2(0).
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11.7 Answers to Chapter 7 questions

Answer to Q1

Take a Cauchy sequence of functions (xn)n∈ℕ in X0 with respect to ‖ ⋅ ‖∞. Then, given
ε > 0, N ∈ ℕ can be found such that

xn(t) − xm(t)
 ⩽ ‖xn − xm‖∞ ⩽ ε for t ∈ [0,T] andm, n ⩾ N .

Thus, for any fixed t ∈ [0,T], (xn(t))n∈ℕ is a Cauchy sequence of real numbers and it
necessarily possesses a limit, which we denote by x∞(t). Letting m tend to infinity in
the above inequality, we see that

xn(t) − x∞(t)
 ⩽ ε for t ∈ [0,T] and n ⩾ N .

Taking the supremum over t ∈ [0,T], we arrive at

xn − x∞
∞ ⩽ ε for n ⩾ N ,

which yields the convergence of (xn)n∈ℕ. Observe that x∞(0) = x0, since xn(0) = x0 for
every n ∈ ℕ, and that x∞ is continuous as the uniform limit of continuous functions.
We conclude that x∞ ∈ X0 and that X0 is complete.

Answer to Q2

Notice that the triangle inequality implies that

‖Lm‖ = ‖Lm − Ln + Ln‖ ⩽ ‖Lm − Ln‖ + ‖Ln‖.

This gives

‖Lm‖ − ‖Ln‖ ⩽ ‖Lm − Ln‖,

and, by switching the roles ofm and n, also that

‖Ln‖ − ‖Lm‖ ⩽ ‖Ln − Lm‖ = ‖Lm − Ln‖.

Combining these two inequalities yields the claim.

Answer to Q3

Assume that y : ℝ → ℝn is another solution and consider the function u defined by
u(t) = e−tAy(t) for t ∈ ℝ. Taking a derivative, we see that
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u̇(t) = −Ae−tAy(t) + e−tAẏ(t) = e−tA(−Ay(t) + Ay(t)) = 0, t ∈ ℝ.

It follows that u(t) = u(0) = y(0) = x0 for t ∈ ℝ, which yields y(t) = etAx0 and the
desired uniqueness.

Answer to Q4

Coercivity of u yields that, for any givenM1 > 0, u(z) ⩾ M1 provided |z|2 ⩾ R for some
R > 0. Continuity of u now guaranties that u|𝔹(0,R) attains a minimum M2 ∈ ℝ, i. e.,
that u(z) ⩾ M2 for z ∈ 𝔹(0,R). The claim follows withM = min{M1,M2}.

Answer to Q5

Choosing local coordinates Y : 𝒰 → 𝔹ℝm (0, 1) about the point P, a solution of the
ordinary differential equation is a curve γ : (−ε, ε) → 𝒰 , the coordinates α = Y ∘ γ :
(−ε, ε)→ ℝm of which satisfy

{{{
{{{
{

m
∑
j=1

α̇j 𝜕
𝜕yj
=

m
∑
j=1
⟨dyj, (F ∘ Y−1)(α)⟩ 𝜕

𝜕yj
,

α(0) = Y(P) = 0.

11.8 Answers to Chapter 8 questions

Answer to Q2

Let us first compute the subdifferential in x = 0. Taking v ∈ 𝔹|⋅|∞ (0, 1), we see that
v ⋅ h + |0|1 = v1h1 + ⋅ ⋅ ⋅ + vdhd ⩽ |v1||h1| + ⋅ ⋅ ⋅ + |vd||hd| ⩽ |0 + h|1,

since |vi| ⩽ 1 for i = 1, . . . , d. Conversely, if it holds that

|h1| + ⋅ ⋅ ⋅ + |hn| ⩾ v ⋅ h = v1h1 + ⋅ ⋅ ⋅ + vdhd

for every h ∈ ℝd, we can conclude that

|vi| ⩽ 1 for i = 1, . . . , d,

by setting h = sign(vi)ei for i = 1, . . . , d. This means that

𝜕| ⋅ |1(0) = 𝔹|⋅|∞ (0, 1).
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As for the connectionwith {(sign(x1), . . . , sign(xd))}, notice that approaching the origin
from different directions x, one can generate any vector of the form (±1, . . . ,±1). These
vectors are the vertices (extremal points) of 𝔹|⋅|∞ (0, 1) = 𝜕| ⋅ |1(0).

Answer to Q1

If we assume that the matrix A has positive eigenvalues, then

A =
n
∑
j=1

λjuju
⊤
j and λj > 0 for j = 1, . . . , n

and

x⊤Ax = x⊤
n
∑
j=1

λjuju
⊤
j x =

n
∑
j=1

λj(u
⊤
j x)

2 =
n
∑
j=1

λj(β
j)2,

if x = ∑nj=1 β
juj (i. e., using the eigenvectors as a basis). It follows that

{x ∈ ℝn  x
⊤Ax = 1} = {β ∈ ℝn



n
∑
j=1

λj(β
j)2 = 1},

and that the set is indeed an ellipse. We also recognize that the eigenvectors point in
the direction of the main axes of the ellipse, which have length 2

√λj
for j = 1, . . . , n.

11.9 Answers to Chapter 9 questions

Answer to Q1

Since we already know that ℓ2(ℤd,ℂ) is complete, it is enough to show that c00(ℤd,ℂ)
is dense in it. For that, take û = (ûk)k∈ℕ ∈ ℓ2(ℤd,ℂ), and for any n ∈ ℕ, set

ûn = (û1, . . . , ûn,0,0, . . . ) ∈ c00(ℤ
d,ℂ).

It remains to observe that

û − û
n

2
ℓ2
=
∞

∑
k=n+1

û2k → 0 as n→∞,

since û ∈ ℓ2(ℤd,ℂ). To see that density is enough, take a Cauchy sequence ûn in
c00(ℤd,ℂ) with respect to ‖ ⋅ ‖ℓ2 . As c00(ℤ

d,ℂ) ⊂ ℓ2(ℤ
d,ℂ) and the latter is complete,
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the sequence will have a limit û ∈ ℓ2(ℤd,ℂ) with respect to ‖ ⋅ ‖ℓ2 . This shows that the
completion c00(ℤd,ℂ) satisfies the inclusion

c00(ℤd,ℂ) ⊂ ℓ2(ℤ
d,ℂ),

and density that they actually coincide.

Answer to Q2

It is a calculation to see that

ĥk = (h|φk) =
1
√2π

2π

∫
0

e−ikxh(x) dx = √ 2
π
i
k
[1 + (−1)k+1], k ∈ ℤ \ {0}.

Since |ĥk |2 =
c
k2 , k ̸= 0, it follows that ĥ ∈ ℓ2(ℤ,ℂ), i. e., that h ∈ L

2(𝕋). Clearly, h is not
periodic as h(0) ̸= h(2π).

Answer to Q3

Taking u ∈ Hs
π means that

∑
k∈ℤd
[1 + |k|22]

s|ûk |
2 <∞.

Observing that −(̂Δu)k = |k|22ûk, it will not be true in general that

‖ − Δu‖2s,2 = ∑
k∈ℤd
[1 + |k|22]

s|k|42 |ûk |
2 <∞.

Nevertheless, one has that

‖ − Δu‖2s−2,2 = ∑
k∈ℤd
[1 + |k|22]

s−2|k|42 |ûk |
2

⩽ ∑
k∈ℤd
[1 + |k|22]

s−2[1 + |k|22]
2 |ûk |

2 = ‖u‖s,2.

Answer to Q4

Since u ∈ 𝒟, u has compact support and

e−ix⋅ξu(x) = 0 for |x| ⩾ M and someM > 0.
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As a continuous function, u is bounded on its support. Then

e
−ix⋅ξu(x) − e−ix⋅ξnu(x) ⩽ C

e
−ix⋅ξ − e−ix⋅ξn 

= C


1

∫
0

e−ix⋅(ξn+τ(ξ−ξn))x ⋅ (ξ − ξn) dτ


⩽ CM|ξ − ξn|,

which yields the stated convergence uniformly in x. If you do not see the latter, carry
out the missing details showing that the integrals defining û do indeed converge.

11.10 Answers to Chapter 10 questions

Answer to Q1

Take a sequence (En)n∈ℕ of pairwise disjoint events. Then, defining

Fn =
n
⋃
k=1

En for n ∈ ℕ,

one obtains an increasing sequence of sets and, therefore,

P(
∞

⋃
n=1

Fn) = lim
n→∞

P(
n
⋃
k=1

Fk)

by assumption. It holds that

n
⋃
k=1

Fk =
n
⋃
k=1

Ek

and, therefore, that

P(
n
⋃
k=1

Fk) = P(
n
⋃
k=1

Ek) =
n
∑
k=1

P(Ek),

by (finite) additivity. We conclude that

P(
∞

⋃
n=1

En) = P(
∞

⋃
n=1

Fn) = lim
n→∞

P(
n
⋃
k=1

Fk) = lim
n→∞

P(
n
⋃
k=1

Ek)

= lim
n→∞

n
∑
k=1

P(Ek) =
∞

∑
k=1

P(Ek),

which is σ-additivity.
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Answer to Q2

Take the set

En = {x ∈ ℝ

P(X = x) ⩾ 1

n
}

and observe that it contains at most n elements since otherwise its probability would
exceed 1. In particular, the setsEn are finite and, therefore, their union is atmost count-
able. Since

{x ∈ ℝ  P(X = x) > 0} = ⋃
n∈ℕ

En,

the claim follows.

Answer to Q3

Monotonicity follows observing that

{X ⩽ x} ⊂ {X ⩽ x̃} for x ⩽ x̃,

since P(E) ⩽ P(F) whenever E ⊂ F. In order to verify the first property, observe that

⋂
n∈ℕ
{X ⩽ −n} = 0

and that {X ⩽ −n − 1} ⊂ {X ⩽ −n} for n ∈ ℕ. The continuity property of probability
therefore yields that

0 = P(0) = P(⋂
n∈ℕ
{X ⩽ −n}) = lim

n→∞
P(X ⩽ −n) = lim

n→−∞
F(n).

Monotonicity ensures that n can be replaced by x in the limit since it can be verified
that {X ⩽ x} ⊂ {X ⩽ −n} for x ⩽ −n. The second identity follows in a similar way
considering the increasing sequence of sets {X ⩽ n} for n ∈ ℕ. As for right continuity,
consider

{X ⩽ x} = ⋂
n∈ℕ
{X ⩽ x + 1

n
},

and exploit continuity of probability andmonotonicity of F. The existence of left limits
follows from monotonicity (why?). Why does left continuity not hold in general? Give
an example.
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Answer to Q4

Letw ∈ ℝm be a unit vector alongwhichwewould like to project the data so that it has
maximal variance. In other words, we would like to choose w so that the scalar data
set

w⊤x1 = (𝕏w)
1, . . . ,w⊤xn = (𝕏w)

n

has maximal sample variance∑ni=1(w
⊤xi)2 = ∑

n
i=1[(𝕏w)

i]2. Notice that the mean of the
projected data vanishes since

w⊤x1 + ⋅ ⋅ ⋅ + w
⊤xn = w

⊤(x1 + ⋅ ⋅ ⋅ + xn) = w
⊤0 = 0,

as the original data is centered. Using that

𝕏 =
K
∑
j=1

σjvju
⊤
j ,

the variance computes to

n
∑
i=1
(

K
∑
j=1

σjv
i
j(u
⊤
j w))

2

=
n
∑
i=1

K
∑
j,l=1

σjσlv
i
jv
i
l(u
⊤
j w)(u

⊤
l w)

=
K
∑
j,l=1

σjσl(u
⊤
j w)(u

⊤
l w)(

n
∑
i=1

vijv
i
l)

=
K
∑
j=1

σ2j (u
⊤
j w)

2,

since v1, . . . , vK is an orthonormal system. As u1, . . . , uK also form an orthonormal sys-
tem, the maximum is achieved by choosing w = u1 as σ1 is the largest singular value.
The next best choice is the direction u2 associated to the next largest singular value σ2.
We allow singular values to repeat if necessary and “next best” has to be interpreted
accordingly.
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Cauchy–Schwarz 44
Chart 88
Commutative 4
Compact 52
Compactness, sequential 51
Completeness 23
Complex conjugate 27
Complex numbers 27
Conjugate Gradient Algorithm 117
Connection 92
Continuity 50
Continuity, Lipschitz 100
Continuity, uniform 50
Contraction 71
Convergence 23
Convex function 119
Convex set 118
Convolution 137
Convolution Theorem 139
Correlations 170
Covariance matrix 170
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Map 1
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Matrix transpose 37
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Order 11
Ordinary differential equation 93

Partition 6
Pre-image 2
Probability 151
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Probability density function 155
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Random variable 154
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Random variable, discrete 155
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Rank 38
Rank One Matrix 108
Real numbers 19
Resolvent set 148
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Sample space 150
Self-adjoint 114
Semigroup, strongly continuous 135
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Sets 1
Sets, cross product 1
Span 31
Standard deviation 170
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Subgradient 122
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Subset 1
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Surjective 2

Tangent space 88
Topology 59
Triangle inequality 23
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Values, singular 109
Variance 170
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