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INTRODUC TION

These constitute lecture notes of graduate courses given by the
authors at Indiana University (1985-86) and the University of Chicago
(1986-87), respectively.,

In recent years there has been considerable progress in some of the
questions related to the Navier-Stokes equations and their relation to
finite-dimensional phenomena. For instance, the upper bound for the
dimension of the universal attractor for 2D Navier-Stokes equations has
been lowered from an estimate of the type Gzexp 6% to an estimate of the
type G2/3Iog 61/3, where G is a nondimensional number, typically of the
order of 100-1000. This most recent estimate can be understood in terms
of the Kraichnan length and seems to be optimal for general body forces.

We try in these lecture notes to give an almost self-contained
treatment of the topics we discuss. These notes are by no means an
exhaustive treatise on the subject of Navier-Stokes equations. It has
been our choice to present results using the most elementary techniques
available. Thus, for instance, the regularity theory for the Stokes
system (Chapter 3) is an adaptation of the classical L2 regularity
theory for a single elliptic equation of [All; our adaptation is
inspired from {G]. Another example of our desire to illustrate the
general results, while avoiding excessive technicalities, is the way we
describe the asymptotic behavior of the eigenvalues of the Stokes

operator (Chapter 4). For general bounded domains we provide a lower
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Introduction

bound, using essentially elementary means. The lower bounds are all we
really need later on. For complieteness we give the elementary proof of
the exact asymptotic behavior in the periodic case. The same asymptotic
behavior for yeneral domains, while true, would have required
considerably more effort to describe. Questions regarding the notions
of weak and strony solutions and their relations to classical solutions
are studied in some detail. We prove that strong solutions are as
smooth as the data permit; thus, loss of regularity caa only occur if
the solution ceases to be strong. We then show how, if there is an
initial datum leadinyg to loss of regularity in infinite time, there
exists another one which leads to loss of regularity in finite time. We
give the argument of Scheffer and Leray estimating the Hausdorff dimen-
sion of the singular times of a weak solution to be not more than 1/2.

A simple argument is used to prove that, in the absence of boundaries,
the vanishiny viscosity 1imit of the Navier-Stokes equation is the Euler
equation for incompressible fluids. The same technique can be used to
show that as lony as the solution to the incompressible Euler equation
is smooth, solutions to small viscosity Navier-Stokes equations with the
same initial data remain smooth. We provide a proof of time analyticity
and consequent backward uniqueness for the initial value problem for the
Navier-Stokes equations.

The importance of contact element transport is emphasized in the
last chapter., We study first (Chapter 13) the decay of volume elements
and yive optimal lower bounds for the dimension at which this procéss
starts. These bounds use inequalities of Lieb-Thirring. The construc-
tion of the universal attractor for 20 Navier-Stokes is given in Chapter

14, The fractal and Hausdorff dimensions of the universal attractor are

viii
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estimated making the connection with the Kaplan-Yorke formula involving
global Lyapunov exponents. Upper bounds for the fractal dimension of
bounded invariant sets for 3D Navier-Stokes are given also. The final
chapter deals with the concept of inertial manifolds for an artificial
viscosity perturbation of the Navier-Stokes equation. The spectral
blocking property and consequent cone invariance are illustrated in
detail, These are ideas of independent interest and were successfully
used to construct inertial manifolds for several physically significant
equations. As of this writing the question of the existence of inertial
manifolds for the Navier-Stokes equations remains open.

We wish to thank E. Titi, who taught some of the classes at both
Indiana and Chicago and assisted in the preparation of these notes. We
are indebted to Fred Flowers for his expert typing. This work was

performed while PC was a Sloan research fellow.

ix
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1
NOTATION AND PRELIMINARY MATERIAL

Let o C IR be an open set. ¢ is said to have the segment property
if the boundary of q, sq, has a locally finite open cover (Ui)’ iel and
for each i there exists a direction wi € S"'1 and g > 0 such that, for
XeUiﬁg,xt=x+tmie,(zfor0<t<g1~.

We denote by LP(q) = {f|f:o » IR, measurable, f|f(x)|pdx < w}. We
shall use (. , .) for the scalar product in Lz(g). If o has the segment
property the notions of a weak derivative in the sense of distributions
i=1,...,n and

and in the LP sense coincide. We denote %;~ =D

i
ol
p* =
o3 (Xn
Xy eee BXg

i

s lal = a)p ¥ oeee *oape

W™sP(g) are the Sobolev spaces W™P(g) = (F|D%F e P, |4 < m}. For
p = 2 we denote H™(g) = wm’z(g). The norm in W%P(gq) is

)

- o, ,2 1/2
Wig 5 o (Ial fZmuD Uan(Q) .

When p = 2 we write Wiy o instead of Wiy 5 o H™(q) is a Hilbert

space equipped with the scalar product

(U’V)m,g = Ll 2 . £ (D%) (x) (DN ) (x)dx.

The spaces wm»p(g) are Banach spaces., We shall use the same notation
LP(q), H™q), W™P(q) for vectorial counterparts. For instance, the

scalar product in (H"(g))" will be denoted
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2 Chapter One
(s dpgt (uW) = 3 0% . D% dx,
. "a lal ¢ m g
where . signifies scalar product in R'. We shall use sometimes the
notation < , > for the scalar product in R'. The closure of C;( q) in

WM:P(g) is denoted by Wo*P(q).

Proposition 1.1. Let g satisfy the segment property. Then CS(]R") is

dense in W™sP(gq), for 1 < p < .

The idea of the proof is the following. Let ue w‘“’P( Q). We first
approximate u in W"P(g) by a sequence of elements in W":P(g) with com-
pact support by considering um(x) = ¢(%)u(x), where ¢(x) = 1 if |x| <1,
b€ CS(]R"), Supp ¢ C {xl]x\ < 2}. Then, using a partition of unity we
may assume that the support of u is compact and either is included in g
or is one of the sets U; from the definition of the segment property. If
the support of u is contained in o then a standard convolution with a
mollifier will provide the approximation.

We may assume that the support of u is compact and included in some
open set V;CC U;. Let U be the extension of u defined by setting @

to be zero outside . Then e WP(RY\ (ag n V4)). We approximate &

EBSCChost - printed on 2/10/2023 4:11 PMvia . All use subject to https://ww. ebsco.conlterms-of-use



Notation and Preliminary Material 3

by up = (. + t“i) for small t. By doing this we push the singular set
3 NV 1o 3 AV - By Upe WhP(R\ (50 AV - tei)). From the
segment property this set does not touch q. Thus ug e WP(W) for some
open neighborhood W of'gr\vi. A convolution of u, with some moliifier

will produce a CZ(?D function near to u.

Proposition 1.2. (The Poincaré inequality) If o is bounded in some
direction (i.e., if there exists a straight line in R such that the

projection of g on it is bounded) then

(1.1) Wi, < Cladimn ,  for all ue Hy(a)
L"(q) L(a)
We shall denote by ju] = juy 2 .t Also, the Dirichlet norm
n 2,..1/2 - )
U, = (f ) lDiul dx) will be denoted by yuy. This notation
L) Q i=1

(Ju}, suy) will be used for vector valued functions, too, throughout

this work.

Proof. Since C;(n) is dense in Hé(g) it is enough to prove (1.1) for
1% ecg(g). Performing a rotation if necessary we may assume, without
loss of generality, that g is bounded in the Xq direction. Let d be the

width of g in the x; direction: Ix, - ill <d for all x,; in g. Since

1

the support of ¢ is compact in g there exists x?

Jection of o on the x; axis, such that supp ¢  {x | X > x?}. We con-

belonging to the pro-

sider ¢ to be defined in R"., Then

N I ! e = (13 \
@(xx") = o(x],x') + { %%‘ (s,x')ds = [ © 22 (5,x")ds.

p 1 Xp axy
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4 Chapter One

Using the Cauchy-Schwartz inequality,
3 X

1
12 [4] Y i 2
bolxx )% ¢ dxg - xql | |%XL (s.x")|%dx* < d | |%§‘(’— (s,x')|%ds.
xf 1 xg 1

Integrating in x',

I | ¢(xl,x‘)|2dx‘ <djg uz.
Integrating in Xy over the projection of the support of
2 2 2
lel® ¢ diuga.

(The length of the projection of g on the xy axis is less than d.) We
see that the constant C(g) in {(1.1) can be taken to be d, the width of ¢
in some direction.

We shall present now some trace theorems and the Weyl decomposition
from [T1]. For more details see [T1].

Let o have the segment property. Let E(q) denote the space

E(Q) = fue LZ(Q)n | div ue LZ(Q)}. We denoted div u = g.u =

nooau.

b 5;1-, the derivatives taken in the sense of distributions in q.
i=1 °%
E(q) is a Hilbert space with the scalar product

Lu,v] = (u,v) + [ (div u){div v)dx.
Q

Proposition 1.3. The set (CS(H?))" is dense in E(q).

Proof. Same method as for Proposition 1.1.

We shall impose a much more restrictive assumption on g. We shall
say that g is of class C" if there exists a locally finite open cover
{U;j)j 1 Of a0 and " diffeomorphisms yi:U; » D, where D is the unit

open disk in ', B = (x | |x| < 1} such that

wi(uir\ Q) =D, = {xeD | X, > 0%,

W

¢1(U1 ™ 30) Dy = {xeD | X, = 0.

EBSCChost - printed on 2/10/2023 4:11 PMvia . All use subject to https://ww. ebsco.conlterms-of-use



Notation and Preliminary Material 5

Suppose now that ¢ is bounded and of class Cz. The trace operator
YO:HI(Q) > Lz(an) is a bounded Tinear operator agreeing with the
restriction operation ul—>u/3q for continuously differentiable
functions on 5; The kernel of Y0 is Hé(g). The image is denoted
Hl/z(ag), and is a Hilbert space. {0n 3n we consider the Lebesgue

1/2(39) > HI(Q) which

measure,)} There exists a lifting operator gQ:H
satisfies Yo% = identity in Hl/z(ag). For these results see [Lil],

[L-M1]. We define H'l/z(an) as the dual space of Hl/z(ag). We want to
define the normal component u . nﬂ of elements of E(q). The notation

N stands for the outer normal to j3q.

Proposition 1.4. Let g be an open bounded set of class ¢Z. There
exists a continuous linear operator y:E{(gq) » H_l/z(g) such that

y(u) = Ueng for every ue CS(E)". The Stokes formula
(1.2) (u, grad w) + (div u, w) = <y(u), YO(W)>

holds for every uekE(Q), we Hl(g).

The idea of the proof is to use the 1ifting operator

i/2 1

ZQZH (s0) » H () to define the element y(u) of the dual H'l/z(an) of

HY/2(q) by (1.2):

<y(u),0> 987 (u, grad 2q9) + {div u, ¢ o)

for all ge Hl/z(ag), and fixed ueE(q). Clearly, since 2,0 eHl(g) and

ie (o) < Cyal [<y(u),e>] < cyan U . This
T ik (q) ul/2 WY2(5q)  Ele)

(a9)
takes care of the fact that y:E(g) » H'l/z(ag) and y is a bounded linear

map. If u is a C”(E)" function and ¢ is the restriction to 3q of a

C=(@) function, w, the divergence theorem (Stokes formula) implies that

f (u.nQ)Q dx = (u, grad w) + (div u, w).
aQ
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6 Chapter One

Since w - zQ(q)) is in the kernel of y,, that is,
. 1 . ) ~
Wy = WS gn(¢) EHO(Q) and since (u, grad wo) + (div u, wo) = 0 for any
1 . :
W, € HO(Q) it follows that f (u.n9)¢ dx = <y(u),4>. Now the functions
¢ which are restrictions of c*(q) functions are dense in Hl/z(ag). It

follows that ueng = y{u) for smooth u.

Proposition 1.5, Let ueE{q) be such that y{u) = 0. Then u can be

approximated in E(g) by functions belonging to CS(Q)".

For the proof we note that y(u) = 0 implies
[ (div u) ¢ + u.grad ¢ dx = 0 for every o= q>|__ s @ecg(xfé“). We
gefine by U the extension by 0 of u: <ﬁi"l’> = ui(x)‘;,(x)dx,
1= 1,000,n, yeC(R"). It follows that div i TV, Thus U eE(R).
Now we localize, as in the proof of Proposition 1.1. We may assume that
the support of u is compact and contained in one of the sets U; from the
definition of the segment property. However, in the present case, there
is no singular set since u ¢E{IR") and thus we can perform a small
translation “inland”, U = u(. -tmi) (as opposed to u, = (e + t“’i) in
the proof of Proposition 1.,1). By this translation we detach the sup-
port of u from the boundary: u, e E(IRY), supp U C . Again convolution
with a mollifier will produce functions in C;(IR") close to u but this

time their support will be included in gq.

Let us denote by U the set
(1.3) T = eelcia))” | dive = 05

Let us denote by H and V the closure of ¥ in LZ(g)" and Hé(g)n,

respectively.
(1.4) H = closure of V in L2(g)"
(1.5) V = closure of Yin Hé(g)n.

Let o C R be open. We state without proof the following results.
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Notation and Preliminary Material 7

Proposition 1.6. Let fy ¢ 17‘(9), i=1,...,n, be distributions. Then

f = grad p for some p e [7'(9) if and only if <f,v> = 0 for all v 1.
Also

Proposition 1.7. Llet o C 1K' be an open bounded set with jocally
Lipschitz boundary.
(i) If a distribution pedﬁl(g) has all its first derivatives D;p in

Lz(g) then pe Lz(g) and

ey

c{a)rvpy
L2 n

<
L2(a)/ R ()

(i1) If a distribution p has all its first derivatives in H’l(n) (the

dual of HI(Q)) then p ELZ(Q) and

[l clallbwll -y

L2(a)/ R : ()"

In both cases, if no restriction is imposed on 3p it follows that

peL2

Tocl@)e By Hp[|L2( we mean

)/ R
[ pdx
inf -c = _ & ol
. €IR“P ||L2(Q) e ‘1}{r‘ lle(Q)

Proposition 1.8. Let o C IR' be a locally Lipschitz bounded open set.

Then
(1.6) Ho= e t®()" | div u =0, y(u) = 03
(1.7) Ht = {u eLz(g) | u=yrad p, pe Hl(g)}.

Proof. For (1.7): If u = grad p with p eHl(n) then <u,v> = 0 for all
v e and ueHt. On the other hand, <u,v> = 0 for all ve? implies by

Propositions 1.6 and 1.7, u = grad p, pe Hl(n).
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8 Chapter One

Now for the proof of (1.6). Denote by H the right hand side of
(1.6). If u belongs to H then u is the limit in Lz(g)n of a sequence of
functions in V. Thus clearly div u = 0. Therefore u¢E(g) and the
convergence of the functions of ¥ to u takes place in E(q). Now
y:E(Q) » H'l/z(ag) is continuous. Therefore, y(u) = 0. Now H C H.
Moreover H is dense in the L2(g)" topology in H'. For H® is a closed
subspace of Lz(n)n and if H" © H would be nonempty, say v eH @H,
then ve HY, and thus v = yp with peH (g) and also v e H', thus
div (grad p) = ap = 0, y{u) = %;'L = 0. Thus p must be constant on each
connected component of g. Thus un= 0, since H is closed H = W,

Proposition 1.9. Let g be open, bounded, connected of class CZ. Then

Lz(ﬂ) = H®H) ®H,, where H, Hy, H) are mutually orthogonal spaces,

1l
1l

2
H1 = {uel (Q)n | u=grad p, p eHl(Q), ap = 03
and

"y

{ueLz(n)" | u=grad p, peHé(Q)}.

Proof. Clearly Hl,Hz are inciuded in HL. Also Hl and H2 are
orthogonal, for if u = yp, v = yq, p eHl(Q), ap = 0 and g GHé(Q) then,

by the Stokes formula {1.2)

(uv) = (u,vq) = (yu,vy9) - (ap,q) = O.
Let now ue L2()" be arbitrary. First let us solve ap = div ue H l(q),
pe H(ll(n). This Dirichlet probiem has a unique solution. We set
up = yp; clearly uy € Hp, Then, for u - up we solve the Neumann probiem
Aq = 0, g—;‘—= y{u - uz). Remark first that div(u - u2) =divu-ap=0
and so u -nuze E(@). Moreover, the compatibility condition
<y(u - uz),1> = 0 1is satisfied because of the Stokes formula. Then

there exists a unique q (up to additive constants) such that qe Hl(n)

and solves the Neumann problem. Then u; = vq clearly is in Hy.
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Notation and Preliminary Material 9

Finally, let Ug = U - up - Uy, We need to show that ug € H, Clearly,

div ug = div u - div U -div uy =

div u - aq - ap =divu-0-divu-=290,
Also,
vlugh = vy - uy) - ylug) = y(u - ) - g; 0.

Remark 1.10. Let P:Lz(g)" » H be the orthogonal projector u F—»uo. We
shall refer to it occasionally as the Leray Projector. If wue Hé(g)n
then Pue H(g)". Indeed, in finding u, we solve now ap = div ue LZ(Q),
p eH(l)(n) so we can find p eHZ(Q). Therefore u, = yp belongs to
Hl(Q). Then u -u, belongs to Hl(ﬂ) and y(u - uy) belongs to Hl/z(an).
Thus solving the Neumann problem aq = O, %%— = y(u - UZ) we obtain
] (HZ(Q) and thus uy = vq belongs to Hl. It follows that
Uy = u - up - up belongs to Hl(g). Thus P:(Hé(g))n > (Hl(g))n is
bounded.

If further smoothness is assumed on 3 then we see that P is

bounded in higher Sobolev spaces.

Proposition 1.11. Let g be open, bounded and localiy Lipschitz. Then

(1.8) V= queny(a)" | divu =0y

Proof. Let V' be the space defined in the right hand side of (1.8).

1
0

continuous linear functional on V . Clearly, L can be extended to
n
Hl(n)n so it can be written as L = J (11,.) with %€ H_l(g). Now,
i=1
if <L,v> = 0 for all ve V it foliows from Proposition 1.6 that there

Clearly VC V. Moreover V' is closed in H (Q)n. Let L be any
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10 Chapter One

exists p e bl(g) such that 2 = %5— . Since 25 eH'l(Q) it follows from
i

Proposition 1.7 that pe Lz(sz). But then

L{w) =
i

e~ 3

n
g W.> = ¥ <Dip,wi> = -£ pdivw=20

AL )

for every we V', Thus V is dense in v’ and since V is closed, V = V',
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2
THE STOKES EQUATIONS.

EXISTENCE AND UNIQUENESS OF WEAK SOLUTIONS

Let o be an open bounded set in IR'. Let fe Lz(g)". The Stokes

equations for the vector u = (ul,...,un

a constant)

) and the scalar f are (y > 0 is

(2.1) -vau ¥ grad p = in g
{2.2) div u =0 in g
(2.3) u=20 on 3q.

If u,p are smooth then integating by parts we obtain

{2.4) w((u,v)) = (f,v)
for all v e ¥,

n
((u,v)) = § (Dju,Dv).
i=1

Hereafter {(u,v)) is the scalar product

We shall say that u is a weak solution of the Stokes equations

(2.1)-(2.3) if

J'us V and

l v({u,v)) = {f,v) for

(2.5)

alt ve?l.

Let us note that (2.5) implies by continuity that {{u,v)) = (f,v)

for all ve V,

Proposition 2.1. Llet o be open bounded

are equivalent

11
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12 Chapter Two

(i) u is a weak solution of the Stokes equations

(ii) ueHé(g)n and satisfies: there exists pe LZ( o) such that

(2.6) —vau + grad p= f in 8 (g
(2.7) divu=0 in p'la
(2.8) voluj) =0 i=1,...,0.

(iii) wu eV achieves the minimum of ¢(v) = vHVNZ - 2(f,v) on Vv,

Proof. If (ii) is true then ue V because of (2.7) and (1.8). Then
(2.4) is true because of (2.6)., So (ii) implies (i). Conversely, if
(i) is true then -ym - f is a distribution in H™1(g)" satisfying

<-yau - f, v = 0 for all v e 2. Then, by Propositions 1.6 and 1.7,
-yau - f is the gradieat of an 12( o) function. Now if (i) is true then
olu+w) = ylju+wllZ- 200+ w,f) = o{u) + HlwliZ 2 elu) for all we V.
Conversely, if (i1i1) is satisfied then the expression glu + v) - o{u)
is nonnegative for all ve V, , ¢ R. But this expression is the
guadratic polynomial )\2\)2“\,“2 + 23l u{{u,v)) - (f,v)] and therefore the

coefficient of , must vanish.

Proposition 2.2 (Lax-Milgram). Let X be a separable Hilbert space and
a:X x X »R be a bilinear continuous coercive form. That is, if || .|y
denotes the norm in X

(1) fa(u,v) | < dluligiviig

(1) alu,u) 2 dull § -

Then, for each g linear continuous form on X, there exists a unique
element uge X such that

(iii) a(ul,v) = <g,v>  for all v eX
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Proof. a{.,.) is a scalar product in X. It induces a norm which
is equivalent to the original norm. Then g is a linear continuous form
on X with this scalar product. By the F, Riesz representation theorem

there exists and is unique uy such that (iii) is true.

Theorem 2.3. Let ¢ be open and bounded in some direction. Then for
every fe Lz(a)", v > 0 there exists a unique weak solution of the Stokes

equations (2.1)-(2.3).

Proof. By the Poincaré inequality a((.,.)) 1is coercive on V. The
result follows from the Lax-Milgram theorem. A second proof can be

given using the characterization (iii) of Proposition 2.2.
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3
REGULARITY OF SOLUTIONS OF THE STOKES EQUATIONS

The Stokes system is elliptic in the sense of Agmon, Douglis, and
Nirenbery and therefore the general a priori estimates of [ADN 1,2] are
available for it. The LP existence and regularity results were first
obtained by Vorovich and Yudovitch (V], Cattabriga [Cal] and Sotonnikov
{Soll. We shall restrict ourselves to the 12 results. In the case of
2 elliptic estimates the classical method of [A1] used to derive
regularity resuits for scalar equations can be adapted with no
difticulty to the Stokes system. We use thus the notation and technique

of [Al].

Definition 3.1. We define the difference operators 5;‘ by
i 1 i

(gpud(x) = 4 (u{x + he’) - u(x)), h#0.

Here e1 = (51-1, 512,...,51'") is the canonical basis of R'.

Lemma 3.2. Suppose ueH™ ), m > 1, @ C. Q. Assume

dist{Q' ,30) > n > 0. Then

(3.1) I sppy et ,g € Hullg,g

Proof. For any function fe Cl(a,b+h) we have

xth
f(x + nh) - f(x) = / fe(t)dt
X

and thus

14
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2 x+h 2
PF(x + h) - Fx)|2 <nf o |F(e)] .
X

Integrating, we get

b 2 b x+h 2
[ Ifx +h) - f(x)|[%dx < h [ odx f £ (t)]|dt
a a X

t b+h b

+ ! 2 X
({_hdx)dt g | £ {t)] (g-hd Jdt ]

a+h t b

=n[f FOIE() axgat ¢ ()2
a a ath

b+h
<n? [ ye(e))| 2t
a

Therefore

b+h

b
lf X + ha - f x)|2 dx < [ |f'(t)|2dt.
a

(3.2) [
a

Now clearly if ue €™(g) then using (3.2), the fact that 5; commutes
with differentiation and iterated integrals, we obtain (3.1). For

general u the result follows from density arguments.

Lemma 3.3. Suppose g has the segment property. Assume ue H™{(g) and
that there exists a constant C > 0 such that, for every Q'C C Qs

il 5;"||m,9‘ < C for all h sufficiently small. Then||D1-u|lm’Q < ¥l
where y = |a|2 ml .

Proof. Assume first m = 0. Fix o'Ccc . By the weak compactness

property of L2 we find a sequence {h,} of reals h, - 0 and a function
{"¢} k

15

i 3 L}
uj € 12 such that §, U - u; weakly in L2(g"). clearly also ”UiHO,Q'

< C. For any g¢e CS(Q) we have

Cas i _ . i _
flu1¢dx = lim § (5h uedx = - lim fu S.p o= - [| uDi¢dx.
Q kK @ k kK @ k Q
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This proves that u; = Dju in the weak sense in qg'. Allowing o' to vary
we obtain the conclusion of the lemma for m = 0. For general m, the re-

sult follows from the m = O case applied to derivatives of order m of u.

Lemma 3.4. Let R > 0 and let G = (x eR" | |x| <R, x, > 0}. Suppose
u eLZ(G) and assume that there exists a number C such that, for every
R' <R, || SLU HO,GR’ < C for some ie {1,2,...,n-1}. Then the weak
derivative Dly belongs to LZ(GR) and

Diu <C.
If ‘\o,GR <
Proof., Same as before,

Remark 3,5, For vector valued functions, Lemmas 3.2, 3.3 and 3.4 are
true, The difference operators act on each component. The operators

5; act almost like derivatives:
i L Ty ooy oo By
(3.3) splav) = spla)v + gla)s(v) = ag (v) + g (@) r(v)

Here TL(a)(x) = a{x + he1) is a translation operator and, of course,

for small h, it is close to identity.

We are ready to give the main lemma. The method of proof of
regularity involves localization (a partition of unity) and local
flattening of the boundary. The change of variables by which the iocal
flattening is obtained will transform the constant coefficients Stokes
system into a slightly more complicated, variable coefficients system.
Tne stragegy, thus, consists in treating systems of a type that is
invariant to chanye of variables in simple domains. The operator

n
r ,Jz=1 %’? 24
G if there exists M > 0 such that

(x) g;—) is said to be uniformly elliptic in a domain
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Regularity of Solutions of the Stokes Equations 17

(3.4) % IE‘Z <1 aiJ(X)EiEJ < MlEIZ’ for all xeG, ge R
1’\]

From now on we shall use the summation convention (repeated indices
are summed) uniess the contrary is expressly stated. We shall consider
two kinds of domains G, balls and half balis:

(3.5) Gy = (xe R | |x}] <R}

1

(3.6) G = xe R | x, > 0, |x| <R},

We shall denote by ER the set

(3.7) B = (xe K| x, 2 0, |x| <Ry},

A function whose support is compact and included in GR may not vanish

for points on x, = 0.

Lemma 3.6. ([G]) Let 0 < R' < R, Consider a weak solution v,p of the

system
R v, v, '
(3.8) v (aij(x) > + bj(x) 3;7-+ gmj(x) X o fm’ m=1,...,0
J J J
BVm
(3.9) gmk(x) 5;; = p{x)
1 2 0
where 2 C (GR), gnu €C (GR), bJ €C (GR),
- 2 n 2
and f = (fm)m=1,...,n 6(]_ (GR)) . peH (GR).

The principal part of (3.8) is assumed to be uniformly elliptic, i.e.,
(3.4) holds. The domain Gy is either a ball ((3.5)) or a half ball
((3.6)).
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Suppose VE(H(I)(GR.))n, pe LZ(GR.). Assume that the supports of v,p
are compact in Gps (GR. in case of the half balls)., Then, there exists
a constant C depending on R, R' and the coefficients of (3.8), (3.9)

such that

(3:0) il s STl 2 )+ Wil g

+
otz gy * Rl 2.y
where i = 1,,..,n if GR,GR. are balls and i = 1,2,....,n-1 if GR, GR'

are half balls.

Proof. According to Lemmas 3.3 and 3.4 all we need to show is that

the right hand side of (3.10) is an upper bound for || 5;] for

R - R"
5 .
below.) The sense in which (3.8) is satisfied is the following: for

"t g

all R' < R" <R and |h] < (The index i is fixed and not summed

every o ¢ (C:;(GR))n one has

V. dp v
_mm _m - - . =
(3.11) ] akd BXJ 3, dx + | bj axj q)mdx [p ij (gm¢m)dx f fmqam.

Clearly (3.11) is true, by continuity, for every ge (H(l)(GR))n. If
|n] < R—%—R then if ¢e CS(GR..)n we may apply (3.11) with ¢ replaced
by o = -51_h¢p . We obtain
; Vv g W
i —_m “'m - 9_
(3.12) [ splay 3"j) e dx - [ by =% axJ 8 h¢mdx e 9y _h;pm)

_ i
= fadon?n

We treat the three terms on the left-hand side of (3.12) separately.

The first one using (3.3) can be computed
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Regyularity of Solutions of the Stokes Equations 19

i ¥ g

avm) S0 avm) 3
h axJ. 3X,

i _ i ¥n
“onlag ) e T agton axj

—
1

¥ i
7 T alag)

V
=a(ah,«>) +f<sh kJ)rh( ) o,

In view of the fact that ag; are uniformly Lipschitz we obtain

i
1= alqre)l <elvll gl vellzgg

The constant C is independent of h and will change during the proof.

W, Ay
(3.13) a(v,w) = f akJ. B(‘IW dx.

We estimate the second term using Lemma 3.2:

11 = b. @ dx| < Cjjv [
1l = 1f b, aXJ slatuxl < vl o e lag )
where R™ = R R ; R“.

In order to estimate the third term we write first, using (3.3)

a¢m

i % 1 I
(g 6lhon) = (o =1 - s (g ) n ) e .
mj °-h%m hm‘]ax‘j

) T S e
. -h
J axJ m
Now since supp p is compact in G (ER‘) we can find ¢ eCS(GR,.)
such that op = p. Thus
alx) 2 (g6l g ) = 8] (a8 =) - 6 (adp (g, =)
LY -h%m ~h* ®my o R T TpVImy ax
. i 3 L
A i m mj i
“5-h(gmj)f-h(_axj) +a 'QXJ- S_h ?m
and therefore we obtain
- 3 i
11T} = |f op aTJ.(gmj‘s-h @)dx|

) 2 + lidl

<tz 0l (g, 0 " Gy
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20 Chapter Three

The precaution of inserting g is not needed for the proof of the
present lemma but it will take care of a minor fine point later on. The
right-hand side of (3.12) is bounded by || f i

g ( ) y |l ||L2(GR)"¢“H1(GQ")‘ Summi ng

up, we obtained

(3.14)  la(gv. 9l < ol el livil

+
H (Ggu L2(6g) H(6g)
3¢m

i
LI R T IPYN XA TP

valid for every ¢ e(CS(GRu))n. Now for each fixed h, {small)

agv e(HS(GRu))n. There exists a sequence ¢(k)e (CS(GRH))" converging

2
i s 1 n ?m i 2
to sy in H (GRH) . But then Sp; 5;3—— converges in L (GRu) to the
. oav
corresponding expression °9muﬁﬁ 3;9 . It follows that
(2) J
i { E—JE— ) converges weakly in LZ(G i ( i Eiﬂ)
S_h Ggmj axj verg aK iy R"') to 6_h ugmjéh axj .
Now this last expression can be computed using (3.3),
R LAV A : ; ;oav
i i %my, _ i i, i%'m
G-h(“gmjéh 3;30 = G_héh(up) - 5-h(5h(“9mj)1h 8xj)
. L av : LY
N I o T i i i %m
8 pdplan) = & pop(agyy) %, 8p (8306 7 =
A L 3 . LoV
= 51h5:\(°‘9) - Sth;‘(agmj) ﬁﬂ}"’ GQ(ugmj)G;\ 'a—xm .
3 J
Thus
. ;v
(3.15) | 6!, (a8, 6n =0 I
- ®mith ax " T2 (gpu)
i i
< cllls + |lv + || s.v ]
< cljl h“p"Hl(GRu) I llGl(GR) il 8y "HI(GRH)
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Regularity of Solutions of the Stokes Equations 21

Here we used the fact that agmj is Cz, Lemma 3.2 and the fact that the

) (2)
. . i ¢m
supports of v and p are actually in GR" Since a_h(agmJ 5;—-—)
J
: . gv
converges weakly in LZ(GRm) as g » = to slh(ugmjé; ng) we may
J

assume, by passing to a subsequence, if necessary, that their norms in

LZ(GRH) are uniformly bounded by the right-hand side of (3.15) (with a

larger constant).

( )

15! oy, 2 2 € c[lls:,uleHl(GR“)

gy * el )]

Reading (3.14) for ¢(l) and passing to 1lim sup we obtain

L > =

(3.16)  la(giv.eiv)] < c{n ot Mgy M 20y * ML

(6g) HL(Gg)
LTI ||puL2 EIIVII 6+ sp(ao) ||H1(G N

Now, from the uniform ellipticity
i, i 1 in2 1, i, 2
alevs8.v) > 5 |l vav i =3l sy il X ||
h h - M h LZ(GRH) M h HI(GRu M h LZ(G )
and thus, with Lemma 3.2
(3.17) aaivasiv)_> 216l 112 divi
° h"*°h" /-" M h Hl Hl(G )

Now we use (3.16), (3.17) and Young's inequality to deduce

1 2 2 2
(3.18) |l sv Il < cLiivll + |l el
W T HL (Ggu) H(6g) ! 'LZ(GR)

2 i
el 2 )+ il 2l enlon) ll g )3
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The estimate (3.10) follows now from (3.18), Lemma 3.2 and Lemma

3.4, The proof of Lemma 3.6 is complete.

Let us consider now a bounded open set g with boundary 3q. Each
point yq € 3q has a neighborhood U equipped with a ¢3 diffeomorphism
U R" such that U Mg is the preimage under p of the upper half
plane x, > 0 and U Myq is the preimage of x, = 0. Restricting y and U
to the preimage of a half ball in R" containing Xg = Wyg) it is easy
to see that one can construct open sets U‘ such that ¢ U UJ,

Ui Cc Uj' There exists 3 defined in open neighborhoods of UJ_1 3
diffeomorphism such that \"j(ujm Q) = GRj’ q,j(U‘; NQ = GR"]’

0 < R3 <R if 53 C o then GRj and GR:] are balls. If U3 Mg is not
empty, then GRj and GR“] are half t;aﬂs. Let us consider a partition of
unity % ec(‘;’(up, 0¢q5¢1, 321“3 = 1, supp ajc??-

Let u,P be a weak solution of the Stokes system

(3.19) -vAu + §P

"
-

(3.20) y.u

[
o

in Q. We asssume that ueH (gz) and P el2(g), FeL2(@M. We write
): ajUs P = E %P. Let us fix je(l,...,r} and consider the pair
c,\]u, aJP. We drop the index j for convenience.

Let us define
(3.21) vix) = () (5 ), p(x) = (P L))

Note first that the supports of v,q are included and compact in Gg»
(G’R. in the case of half balls). Differentiating the identity {y)u(y)

= v(y(y)) we get

34 P 1
(3.22) (aggdy) =ty ) ot = L () - B W)

E
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and
3y _ ' By 32"1‘ -1 32% LAR TIPS
(3.23) (o aYE Hy) = E Sy—k_ ﬁma_xr;‘ v (y) + 3)(& () 5([; (y ~(¥))
Ry - 23“—()' a—y_(y)
We are lead to define thus k
(3.20) ) = 2K (57 00)
£ 3
(3.25) 2,00 = %"; ) g o0

Note that since y is a c3 diffeomorphism, g, ¢ ¢? and (gme) 1s an

invertible matrix. This implies property (3.4) for the matrix aji.

. . . Ay Wy
Taking the trace in (3.22) and using {3.20) we see that o
m 7k
da
W, u Thus
BV -1
(3.26) olx) = 9o —— = (¢ () ()

We muitiply (3.19) by o and use (3.23). We obtain an equation

(3.8) for f appropriately defined

(3.27) it < cLifpif + HUHHl(Q) all Fl\Lz( a3

L2(6y) L2 q)
We apply (3.18). We use for 4 in (3.18) the function

wAUx) = cl(q,'l(x)). The reason we can do this is that

p{x) = (x)P( q,'l(x)). Now from {3.26) we see that

wsl) = 3 G0 30w (0D . Now 30w () = vi(x) by

definition and thus

Gp = gV

where

8;(x) -—“—(q; 1(x))
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The need to consider Gp instead of p arose from the fact that
itself is not an expression in v. Now

(328)  ahE g s Ol gl i

(6ge) * + i

H (Ggn)

Using (3.28) we can bootstrap in (3.18): We obtain

i 2
(3.29) lslvii? <P, + S, o+ F
Wiy T ) Wl gy 2]
where v = (qu)(y ( Yy and 1 = 1,2,...,n-1. Using Lemma (3.4) we infer
(3.30) Hogell?y, | < ce
. iv Hl(GR) <c

where we denoted

2 2 2
(3.31) E= TPl o, v+ Wl g,y + IFI (]
L“(a) i (q) L%(a)

From (3.30) we know that D4 D v belongs to LZ(GR) for all i,j except
(1,3) = (n,n).
As in the case of a single elliptic equation we need to use the
2
v

equation to yget information about T In order to do so we first
n°n
1n

study the pressure., We shall use the expression "belongs to H™*" (resp.
"belongs to LZ“) to mean that the corresponding quantity has a norm as a
linear functional on H} (resp. norm in L2) bounded by c/E for an
appropriate c.

We differentiate (3.8) in a tangential (k < n) direction. We infer

2,
] 3
that 95 0% belongs toZH (GR). (Indeed ¢( XkaXJ) belongs to
-1 : 3V 2 i ;i
H *(Gg) since k < n and 3Xkan belongs to L¢). Since Inj 1
2

invertible, it follows that %;25;~ belongs to H'l(GR) for all
2°7k

¢ =1,2,...,n, But this implies
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(3.32) % velongs to L¥(Gg), for all k = 1,2,...,n-1.
77k

Now let us take (3.26) and differentiate with respect to the normal

3 azvm n-1 azvm
direction £— . MWe infer that g = —5— T 9., s Pefongs to
Xy mn axi ki1 mk X 8%
LZ(GR). Using (3.30) we conclude that
2
3 Vm 2
(3.33) g belongs to L%(Gp)
mn axz
n

Let us return now to equation (3.8). Using (3.30) it follows that

(3.34) a L 90j %gf belongs to LZ(GR).
J

2
5V
m ap 2
a, ax2 * 9 ax belongs to L%(Gg).
n

Multiplying by gp, and summing in m we get

2

3V
__m 3P 2
a9 7t (gmngmn) ax belongs to L¢.
ax n
n
Using (3.33) we obtain that (gmngmn) %&— belongs to L2,
n

Now since the matrix gy, is invertible (actually gp.Gun = 2pn) it

follows that

(3.35) —;‘;J;—— belongs to LZ.
n
32V
Now from (3.32), (3.34) and (3.35) it follows that a, 2m belongs to
3%
n

LZ(GR) and since ag, # 0 finally

2

v
n belongs to L2(
L2

(3.36) G

R)'
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In order to conclude, let us remark that (3.32) and (3.35) imply
W(gg) c/E. similarly, (3.30) and (3.36) imply
that v EHZ(GR) and HVHHZ(G ) < ¢/E. From the definitions of v and p it
follows that (y)u(y) and éiy)P(y) belong to H(g) and H(ga)

that p e H (Gp) and |lpll

respectively (with norms bounded by c/E). Since u = § ajus P = ] ajf we

proved:

Theorem 3.7. Let o be a bounded open set with ¢3 boundary. Let (u,p)
solve the Stokes system weakly:

(3.37) -vau + yp = f

(3.38) geu = 0
1

0
There exists a constant such that

Assume f eLz(n)", ueH (n)n, pe Lz(g). Then ue HZ(Q)", pe Hl(g).

(3.39) flull,  +lell, < cOlf R . ]
IR LRI L R TR L IR LT

(o)

Remark 3.8. [If the boundary of g is assumed to be of class ¢2*M and

H (g
f ¢HP(o) then it can be shown that u € H2()", p eH™1(g) and
p

(3:40)  Nullyyp g+ 1Plgg o € Calll o * Hully o+ lpll g

The requirement that q be of class €3 in Theorem 3.7 can be relaxed

at the (academic) price of assuming pe Hl, u eHe.

Theorem 3.9. Let ¢ be a bounded open set of class 2. et (u,p) solve

the Stokes system (3.37), (3.38) weakly. Assume fe LZ(Q)",

2

Ue Hé(q)nf‘ H (Q)n, Pe Hl(Q). Then there exists a constant such that

(3.41) lull + < e f + llu + lip ]
He (q) “p“Hl(Q) < <l “LZ(Q) ! “Hl(Q) ! HLZ(Q)

EBSCChost - printed on 2/10/2023 4:11 PMvia . All use subject to https://ww. ebsco.conlterms-of-use



Regularity of Solutions of the Stokes Equations 27

Note the fact that the right-hand side of (3.41) does not contain

RPN TR

Theorem 3.9 cannot be used in conjunction with Theorem 2.3. One
needs a constructive method or an approximation scheme that has
pe Hl(Q), ue HZ(Q). These methods are available but will not be
described here., Theorem 3.7, however, can be used together with Theorem
2.3 and provides existence and regularity of solutions to the Stokes
system.

For the proof of Theorem 3.9 we need an analogue of Lemma 3.6.

Lemma 3.10. Let 0 < R' < R. Let v,p be a weak solution of

EN) v
N _m _m 3P - =
(3.42) - (aiJ(x) aX-) + bJ(x) =t ng X fm, m=1,...,0
i J J J
v
m:
(3.43) Yk 5;; p

where a;; € CH(Gg), gpye CH(GR), bye COGR), £ = (f)e L2(Gp)",

o Hl(GR). The principal part of (3.42 ) is assumed to be uniformiy
elliptic, (i.e., (3.4) holds). Gp is either a ball or a half ball.
Assume that v e (Hé(GR.))n, pe Hl(GRn) and that the supports of v,p are
compact and contained in Gp: (GR. in the case of half balls). Then
there exists a constant such that, for i < n (resp. i < n-1 in the case

of half balls)

(3.44) ol

L LR L R T
Ml ep) = T 2(6e) T PN 2(gp) T Mgy

i i
Ul g Ml gy + IO 2 g
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Proof. We proceed exactly as in the proof of Lemma 3.6. We estimate
the term III = f ap-%;— (9mu51h )dx differently. Using (3.3) one sees
J

that III can be estimated by

TR
N R ENE - o TP L TN LIS

Now, if (1) converyes to 5h in HY as 2 + wy, 1t follows that

] (2 2 i Va
ugnu aXJ converge in L to ag 5h BXJ = ushp - (!5h(g“u')'rh(;(3')-

Therefore one obtains, passing to the limit, as ¢ » «

(3450 lalauaql < edl a e Ol 26 )+ 1l 2.

i i
+ “v"HI(GR)] + 1l 5P “LZ(GR)H “ahpllLZ(GR)

soaell g, (Ml

Hl(gy) !

L2(Gg)

Using the coercivity of a(. , . ) we get

ol s’

(3.46) || chv u 1 M

HY(Ggu) £ L2(Gg) L2(6g) H(Gg)

i i i
e iz MMy * ol zgg )l hton) g )3

The estimate (3.44) follows from (3.46) by Lemma 3.2.
In order to proceed let us assume that ng(x) = 8kj if j <n,
39
Ynnlx) = 1 and that Y%n ecl R ——53 =0 (C1 would suffice), Thus, from
Xq

(3.42) we get

v 3
(3.47) 2= f 4 3—— (a;. =M +b . g 2L peq

xy m iJ 3x J 3xj mn  3x
av
T . jL__ L] . -n
(3.48) al (alJ ey ) axj .
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)

Differentiating {3.48) with respect to some tangential direction
k < n (if Gy is a ball k < n) then we see that

) < CEIIfIILz I 3 l| + vl

Ilax ol T ()]

{(Only first order derivatives of ayj and no derivatives on b are used.)

We differentiate (3.47) with respect to Xc. The only interesting

term is
B g Wy-a_ (g @ By a% s (Pm
ax, T X ax, \Tmn X, T e, WX 3%, | aX. ' oXy

It follows that

2
pe < cf|If 2 + * 1
5% % "H'l(GR) < el IILZ( o) el e lMIHl(GR) IlleLz(GR)

Using the estimate || 28— || < g2 valid since the
axk 2 C” 3x ”H I(GR)

mean of ég— N é%— equals 0, we obtain
3 K R 3 K

(3.49) D < cf|| f + |ID + + 3
I kp“Lz(GR)' I “LZ(GR) | kqul(GR) (R LI

Combining (3.44) and (3.49) we obtain, after a bootstrap

2
(3.50) Dl < el i’ + ol N )
Tl (g) L2(6,) L2(6p) Hle) NGy

Now the proof of Theorem 3.9 will follow from (3.50) and the proof
of Theorem 3.7 provided we are able to produce 9mj with the special
form. If g is of class C2 then, locally, after a rotation and a
translation if necessary, o is given by Yn > oly') for some ¢ ec? .

= (¥y>+++s¥p-1). Therefore after localization and a rigid motion

(transiation + rotation) the change of variables which achieves the
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flattening of the boundary y(y) is given by y{y) = {y'.y, - o(¥y')).

Now, the Stokes system is invariant to rigid motions. The functions

3P
= —d (y ' i i i L= s
ng(x) = W, (x', X, * o{x')) satisfy the required properties 9k = &j
39
) ' 1 .
for j <n, g, =1, 95n = - %%— (x') €, 3<n, axJn = 0.
J n

Theorem 3.11. Let o be open bounded of class €2, Let f eLZ(Q)". There

exists and are unique ue HZ(Q)r\ vV, p EHI(Q) solutions of the Stokes

system
-vau + grad p = f  in g
div u =20 in g
u =0
a0
Moreover,
(3.51)

ol 2y * Mol oy e il 2

The proof, in the case q of class C3, consists of Theorem 2.3 and
Theorem 3,7. .In the case q of class C2 one uses Theorem 3.9 (or rather

its proof}.
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THE STOKES OPERATOR

We recall that we denoted by P the orthogonal projection

P:12()" » H. Let us assume that o is bounded, an of class C2.

Definition 4,1, The Stokes operator A is defined by

(3.1)  A:B(MCHsH, A=-Pa, B(A) = H(a) N V.

Proposition 4.2. The Stokes operator is symmetric, i.e.,

(4.2) (Au,v) = (u,Av) for all u,v e B(A).

Proof. Let us assume first that u,v e (CS’(Q))n and div u = divv = 0,

Then, since Pu = u, Pv = v, (4.2) is nothing but the familiar

BU]- 8V.i
(4.3) <f (augvidx = f — —L1d
g 7 2 ¥ ¥

Now, if u,v are in P(A) and arbitrary we can approximate them in
Hl(gz)n by functions in V. If ue P{A) and v ¢ V then obviously (4.3)
holds. Passing to the limit in the v's in Hl(n) we get (4.3) for

arbitrary ue p(A), v eV. In particutar (4.3) means
(4.4) (Au,v) = ((u,v)) for all u,vepd(A)

Since the right hand side of (4.4) is symmetric the Proposition is
proven. We note that {4.4) is true for ueH(A), veV.

31
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Theorem 4.3. The Stokes operator is selfadjoint.

Proof. Let u be an element of .b(A*). By definition there exists fe H

such that
(Av,u) = (v,f) for all v ¢ O(A)

Since fe HCLZ(g)" we can find, by Theorem 3.12,
U,p, U € P(A) such that Al = f. We want to show that u = u. In order
to do so let us compute (g,u - G) for arbitrary ge H, Using Theorem

3.12 again, there exists ve B(A) such that Av = g. Therefore
{g,u-1) = (Av,u) - (Av,0) = (v,f) - (v,Al} = (v,f) - (v,f) = O.

Since g €H is arbitrary u = U and thus u e P(A) and f = Au.

Theorem 4.4. The inverse of the Stokes operator, A‘l, is a compact

operator in H.

Proof. For feH, Ale = u, where u is the unique solution in Hz(g)n v

= P(A) of the Stokes equation. In view of (3.51) A~l:H 5 v is bounded.
Since the inciusion V C H is compact by Rellich's Theorem, the result
follows.

Now K = A’1 is self-adjoint, injective and compact. By a well known
theorem of Hilbert, there exists a sequence of positive numbers uj > 0,
W+l < uj and an orthonormal basis of H, (wj) such that ij = ujWje We
denote A o= u;l. Since A™L has range in [DO(A) we obtain that

(4.4) ij = ajWys  Wje R(A)

(4.5) 0 <oy < een A S Ay S e
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The Stokes Operator 33

(4.6) 1im A, = »
Jrw 3

(4.7) (w\]—)‘j=1 are an orthonormal basis of H.
yeee
Proposition 4.5, If q is bounded of class ¢, > 0 then W H2+2(Q)“.

The proof follows from Remark 3.8.
Let 4 > 0 be a real number. We define the operator A% by

(4.8) A%y = for z uw., uep(A%

zlJJJ 3 39

(8.9)  B(A%) = (ueH| u= gu W] u g2 < wy U e Ry
shN i

The spaces O (A%) carry a natural scalar product

o

®
if u-= U.W. , Vv = Ev‘w.

{4.10) U,v> = z
a =1 J J J J=1 JJ

For this scalar product, the vectors )‘3“"‘3" j=1,... form an

orthonormal system which is complete. For ¢ = 1/2, we have b(Al/Z) =V

and <u,v>; = ((u,v}). Indeed the vectors x}l/zwj belong to V and on
them
-1/2 -1/2 1 -1 _ - -1/2 -1/2
DT = Sy = sy = (AL T W)y J)
-1/2 -1/2
(0 Wi dy W),

Therefore B(Al/z) C V and it is a closed subspace of V. If veV is
orthogonal in V to D(Al/z) then, in particular, ((v,wj)) = 0 for all j.

But v eV, Wy H(A) and from (4.4) (and the observations following it)
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34 Chapter Four

0= {{vowg)) = (v,Awg) = ay(v,uy).

Since Ay > 0 it follows that (v,wj) = 0 for all j and thus v = 0.

Proposition 4.6. V' Cp(A*) for all 4> 0. In particular, m DAY
is dense in H. @ ?

Proof. Clearly  J3(A®) C P(AB) because (XJ./M)O"‘3 > 1if o > g,

J = 1,2,... . It is enough therefore to show % c P(AP) for any positive
integer p. Let @€, Then (-p)e eV . In particular, it is divergence
free and thus P(-pa)e = - agp. SO0 Ap = (-p forq;e?): (Incidentally,
we showed that Au = -au for ue Hg(g)"r\v or in other words that Au #
-au may happen only for those ue B(A) which do not belong to HS(Q)".)
Therefore for ¢ e‘])', Ap(p eV . Now

P = (AP - P
xJ(wJ,w) (ij,w) (wJ-,A ¢)

and since Ap(pGH, the series of its Fourier coefficients is square

summable:

o

2

2p P . !(WJ,quz ME < w

- -
'leJ Hwys o)l jzl

This means ¢ ¢ D(Ap). Moreover, we proved
(4.11) <u,u> < |(-A)pu|2 for all u e'v’, peN.
be ()"
Remark though that ‘Y may not be dense in H(AP) with the < , >p
topology, as one can see in the case p = 1.
Before addressing the question of the relationship between spaces
B (A" and HZ™(g) we discuss the scale dependence of various quantities.
We shall say that a function of the set g, c(g), is scale invariant
if c(g) = c(o') for all o' obtained from g by a rigid motion and a

dilation x » §x. Let us denote by T6 and T the operation transporting
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functions defined on g, f(x), to functions defined on Qg = {sx|x e a3,
(Téf)(y) = f(%). When we refer to the way something scales we mean under
the dilations s and operations T&’ One can easily modify the definition

of the norms || in such a way that they scale as the pure m-th

g
order derivatives do. We shall denote by |qf = [ 1 dx and by L(g) =L =

Q
|Qll/" the linear size of g. Then the natural definition of

I g 15
2 2(|a}-m)
n 2
(4.13) Il = Ial [ 1D%f] “dx
m,Q lcx <m Q
Z-m
With this definition the quantity || f]jy o scales like L , i.e.,
{4.14) Ilﬂ‘m,ﬂ is scale invariant,
1 m
2 n
ol
Clearly the operator A scales like L2 and thus
2
(4.15) lgl" XJ is scale invariant, j = 1,...
and of course
)
(4.16) o is scale invariant, j = 1,...
1

Finally if wj(x) is an orthonormal basis formed with eigenfunctions of A

in the domain ¢, then in 2 the corresponding orthonormal basis will be

n
Siy) = 5 2w (¥
wily) =6 T wilg).
So w; scales like L-n/2,
(4.17) L"/ij = |n|1/2wj is scale invariant.
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Proposition 4.7. Let g be bounded open of class €2, Then there exists a

constant (scale invariant) such that
(4.18) llu"?,sz < C(@)|Au], for all u e B(A).

Proof. If u eD(A) then Au = fe HC Lz(g)n and ueHZ(g)". Therefore

(4.18) is a consequence of Theorems 2.3 and 3.9.
We are going to investigate now the size of the eigenvalues Aje

Lemma 4.8. let g ¢ IR be open, bounded and of class C%, There exists
Eé:Hm(Q) > HM(IR®) bounded Tinear operator, Eé(u)‘Q = u, for all
u (Hm(g), m<og.

Proof. Consider first the case of Rz = (x IR | Xg > 03. lLet us

define for x_, > 0 and ue C&(q)

n
2 el
1 - L} s
EPu)(x'y=x) = ] ajulx',ix,)
Jj=1
where a; are defined by
1
k_ bk
(-)" =7 3 aj K =0,00058
J=1

Such numbers obviously exist because (‘jk)j=1,...g,+1 has a Vandermonde

determinant = (j-1) # 0. k=0,1,..050

1ci<jgg+l
Clearly the function E%(u) is continuous, together with g
derivatives across x, = 0. Moreover
E4(u < cdlu for all m <
HEX )l oy < Call el gny <o
obviously. Since the functions belonging to C’~(R2) and having finite

HY(RY) are dense in H™R]) we can extend gl2) by continuity. The case of
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a general domain is reduced to that of a halfspace by a partition of

unity.

Lemma 4.9 Let 0 < sy < n/
n/2 = (1 - t)sy + ts, (i.e

a constant ¢ = c(n,sl,sz)

2 < sp. Define te (0,1) such that

=

n
(7 -
depending on n,$1,Sy only such that, for every

51)/(52 - sl)). Then there exists

S
f el (R
1-t t
4,19 f <d|f f
(4.19) il IIL,,- ] ) L4l S
Proof. Let fecg. Then
f(x) = (207" "8 F()dg = (20" + (20" g
Igl<R |z{>R
-s./2 5./2
~ 2 1 ~
[1R@g = [ slel®) TV asel®) 1R lae
lg] <R g[<R
n-251
n
<cC R f|
< Cns, Il lls1
with ¢ = “n the area of s"-1
n.s; n-251 > ¥ :
-s,/2 s, /2
~ 2 -~
[If@lae = asel®) F ase®) P Rl
fg]>R lg}>R
n-252
7
<c R f]
< Cns, ! Ils2
with ¢ =\/L Equating RZ L |fll. = RC 2|
n.s, 2, - n " 4 9 sy 2
nfn52 1/(52_51)
gives the choice R = (~?~——) and yields (4.19) with
] Ilsl
— 1 1
¢ 'Jmn( + )'
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38 Chapter Four

Lemma 4.10. Let g be an open, bounded set of class C%. Assume
2 > n/2. Let g' be an integer ¢' < n/2. Then there exists a constant

depending on g (scale invariant), g¢,q' such that, for any f e H(q)

1-t t
(4.20) AR L I L
n 1
where t = Z ln
[

Proof. Let Eé(f) be the extension of f to H4(IR")

L 2
WERE Wy < Al o I ERF Iy el flle e

2
<
<l ek

o

TRill since Elf\ = f. This proves (4.20) as a
L L2(R™) e
consequence of (4.19). For the scale invariance we could proceed in two

ways. We could check the scale independence of each step in the proof
(cl, cl. in particular). This is clear, if one pauses a moment to think
about the proof of Lemma 4.8, Or, we can check that the expression

el AFEE JEI® s scale invariant. Now ||fl| _ . is scale
Lw(Q) L 58 29 L={q)

: ; 1-t t .
invariant and||f|lm.’Q llfﬂl,Q scales like

~lD
[o)

(tMg- ) G- 5 -
L N A Y

= L.
Theorem 4.11. Let o< IR", n = 2 or 3 be open bounded and of class Cz.
There exists a scale invariant constant < such that, for every

j=1,2,... the eigenvalues Aj of the Stokes operator satisfy

(4.21) 3 2 cgi?

n)\l.

Proof. Let w{x) be the sequence of the corresponding eigenfunctions.

J
veesats i = . Th
Let aps 204 be arbitrary real numbers and let w k§1“kwk Thus,

applying (4.20) with ¢' = 0 and consequently t = 2%§,= we get

FSE-)
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4-n
Ky n 4
Il <eqlul ® o
)
it & 1Aw|"/4
By Proposition (4.18), |jwll, o < cplAw| so jiw]| L= < c3|wl But
2_ 42
jwl® = ¥ @ because wy are orthonormal. Also
k=1
|Aw|2 = ¥ 2.2 Y K because w, are eigenfunctions and
kgl My < Aj(kzlak) Kk 9
< It follows that ||w|| <c n/4 2 It follows that
Mo s Mot L7(q) - 3 (} %)

J
lw(x){2 < 54*?/2(2 ai) almost everywhere. Actually, since H2(Q)C: CO(Q),
1

the inequality holds for all x. Let 1 < i < n., Let us denote by

wé1)(x) the i-th component of the vector wi(x). Then
J ; J
(1) /.12 2 n/25 2
a0 b £ e .
Choosing @ = wéi)(x) we obtain

Summing in i

J
W, (x < ncyay or all x eq.
GO1Z < nep?, for an
k=1
Integrating over o we obtain j < nc A |Q| and thus
(4.22) A 2 clgl'z/" §2/n,

The scale invariance follows from the scale invariance of the constants

Cys€ps... and from (4.15), (4.16).
Proposition 4.12. Let o C I®', n =2 or 3 be an open bounded set of
class ¢%» & 2 2. Then

ey,

(4.23) HY( )" A Hg"l(g)" NV p(A if mis even
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(4.24) Hl(a)" A v cB(AM2), if m is odd
(4.25) PAYZY « (HWMa))" OV provided m> 1, m < g.

Proof. Let ueH"‘(g)"r\Hg"l(g)"nv, m = 2p. Then

(-A)ku eHg'l'ZK(g)" for k = 0,...,p-1. Moreover, div(-A)ku = 0.
Therefore (-A)kUe H, P(—A)ku = (-A)ku, k < p-1. Let W; be an

eigenfunction. Then

20w ) = (WAP) = (0P(-2)P(-8) eePl-au) = ((-0)P"Nu,maw).

1

Now since (-A)p'lu eHz(Q)"/\ Hg(g) and since e HZ(Q)"(\ Hé(g)n,

integrating twice by parts we get

m/2 - ((_nP

g (u,wj) = ((-a) u,wj)
and thus

P 12 <l CoPu 2l

) 3T - 0,0 - m,Q

or
2

(4.26) o Sl g o

for all ue Hg“l(g)" A W AY, if m=2p. If m= 2p+l for some

0. Then
)k

integer p > 0 then we assume that u GHg(Q)n, div u

)k m=2K
0

k=0,1,...,p. Then

(n)", k = 0,1,...,p and thus P(-A)ku = {(-p)u,

(-a)"u €H

m/2 B pal/2 = (0P, al/2 _ al/2,_4p
Ay (uwy) = (u,APA wj) = ({-a)"u,A wj) (A*4(~a) u,wj)-

Now (-a)Pue Hé(n)n, div{-a)Pu = 0 and therefore (-a)Pu €V and thus
AL 2((-a)Pu)] = 1 (-0)Pu il < Yl g+ The rest follows as in the even

case: (4.26) is true for m = 2p+l, u eHg(Q)nf\V.
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Let us prove now (4.25). Let u e £(A™?2). We know, for m = 0 and

m =1 that
(4.27) Hullp,q < () A™2u], for all ue BAMZ).

Suppose by induction that (4.27) is true for m' < m-1, m' > 1. Let
ue JA™2) . Then Au = fen(al™2)/2) | Moreover ue V. Since R4 PPY
< c(@)]A™2y] by (4.27) for m-2 it follows from (3.40) that (4.27) is

true. The proof is complete.

Tne difference between the Lapiacian for the Dirichlet problem and
the Stokes operator originates from the fact that Leray's projector P and
(-a) do not commute, in general. In the absence of boundaries, however,
P and - commute, By absence of boundaries we mean either the case
Q= K and usual Soboiev spaces or the case g = 1" the n-th dimensional
torus. Let us describe the latter situation. Let L > 0 be a real. We
denote by @ = (xe R'| |x;] < L/2} = (-L/2,L/2)". For each ke ', k # 0
we define

24
(448
-n/2 L kx>

(4.28) e 0 = L e

J

where e = (GKJ)k=1,...,n are the canonical basis in ®', i = /£1, and
we define, for 4,3eC",

n
(4.29) o, = leaJSJ .
{Note the absence of complex conjugate in 4.29.) We shall consider
complex valued periodic functions of period L. We shall denote by wk(x)

the vector w (x) = (wk,J)J=1 Then a vector valued periodic

.
sevesh

function u witl have an expansion

(4.30) where uge c.

U ~ U w
kz oK’
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If we want u to be real we need to impose Gk = u for all k e2". For

each ¢ > 0 we define, for a periodic function u

(a.31) Mol = U003 (1 1kIDu Y2
ke
where
(4.32) u = { <u,w_k>dx.
Q@

Note that u, scales like 19/2 5o (4.31) agrees with (4.14). The space of
functions u such that |[ull ; < » is denoted H_ .

We define H,V now by the conditions
(4.33) H= {ue HO,L | U = U s Uy = 0, <up,k> = 03

(4.34) V= {ue Hl,Ll U = U Yy T 0, <uk,k> = 03y

We set A: D(A) » H.

(4.35) B(A) = Hy ) DV =Hy OH
2
(4.36) A= 3 31? lk\zukwk
kez" L
i.e.,
2
(4.37) (Au), = %-Z‘L |k|2uk.

We note that leray's projector P acts on components

(4.38) (Pu)y = Py

(4.39)  Pu, = u, - <u,, 5> K for ke 2\ 0
: Kk Tk K Tk TkT

(4.40) Pyug =0 at k=0,
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Clearly the operator -a is given by (4.36) only that its domain is not

restricted to div u = 0 elements.
Remark 4,13, The projector P commutes with a.

In this case, the spaces D(A“/z) are easily identifiable

(4.41) b(A“/z) = H“’L!\ V= (ue H“’L| Gk = Uy, Uy =0, < ,k> = 0},

The eigenvalues of A are

2
(4.42) {Xm}m=1,2,... = {%%_ Ik ?

}ke "\ (0}

Clearly, for each ke Z"\{O} there are 2(n-1) eigenfunctions corresponding
to it: they are of the form cw, + Eh_k where the vector ¢ ¢C" satisfies
the equations

<c,k> = 0

Since -k and k have exactly the same eigenfunctions we see that the

multiplicity of each eigenvalue Aj is

(n-1)e#(k | keZ", K|

Proposition 4.14. The asymptotic behavior of the eigenvalues Aj is given
by

(4.43) lim J‘Z/"(;i—) = ((n-1)w) 2" .

J oo

Proof. Let NA = #m | A < a}. Clearly,

N = (n-1)e#{ke 7"\{03] || 5.[::1}

For each k with integer coordinates there will be a box of unit volume
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that contains no other point with integer coordinates:
Bk =k + (-1/2,1/2)". This box is included in a ball of radius yn/2

around k. Thus

i /M U PN
] I><I<\/:1 z}cm< AAlBk x| IXIfx/Al’fz}.

The first inclusion follows from the fact that the distance from any
point xe R to Z" is at most /A/2. Since the volume of

N
= A4+ 1 it follows that

8
Ikl <, ¢
N
A /mn A /n \n

N R A= ST C e S
Now, if ' < AJ < A" then N(a') < j < N(A") and thus

T /fn . AL, /AN

(n-1)(( H'Z—) wy = 1} €3¢ ("-1)[wn(\/;1‘+7) - 1]

Allowing ' » Ajs Aty Ay we get

X A
(n-1)[mn(\/§% - %ﬁ)n_ 11 << (n-l)[mn(\/;% + %ﬁ)" - 1].

From this inequality it follows that
A
-2/n .2 :
(.44) 3 ety /n @0k o(s M.
The result of Proposition 4,14 and actually even (4.44) remain true for

the Stokes operator in a bounded C® domain g ([Ko 1]) provided we replace

Ay by its large volume asymptotic value, ]Q|_2/n(2n)2. Of course, in
2
the periodic case i, = |Q |'2/“(2,,)2 L
1 L L2
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THE NAVIER-STOKES EQUATIONS

Let o C IR" be an open set. The Navier-Stokes equations are a n+l
by n+l system of equations for the unknowns ul(t,x),...,un(t,x)
representing a velocity vector and p(t,x) representing specific
pressure. The variables (t,x) ¢ R, x q represent time and position. The

equations are

U Y.
; __ 1,23 _ =
(5.1) 5 vau; + uJ. axJ + o, f]., i 1yeeayn,
’()U]-
(5.2) div u = W" 0.
i
auy
The vector (uJ sif) i=1,...,n is denoted (u.y)u or u.gu. The
J

functions f;(t,x) are given specific body forces. The coefficient y > 0
is called the kinematic viscosity coefficient. The equations are
supplemented by boundary conditions. We shall treat “"no-slip" boundary

conditions

(5.3) u(t,x) = 0 for xesq

or periodic boundary conditions

(5.3") u{t,x+ley) = u(t,x), L >0, e; the canonical basis in r.

The initial value problem consists in solving (5.1)-(5.3) together with

the initial condition

45
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46 Chapter Five

(5.4) u(0,x) = ug(x)

where ug is a ygiven vector function,
The Navier-Stokes equations possess important scaling properties.

Suppose that the functions v(s,y), q{s,y) solve the system

P 1 2

— - pAV; + V. —— & 4= g (s,y) i=1,...,n
as 1 J ayJ Syi 1

il

ay-]

for s > 0, yeD C R'. Then for L > 8, T > 0 the functions

(5.5 u(tx) =Ev@E, D
2
(5.6)  p(t.x) = ;— it H

solve the equations

%- vad + (uey)u + yp = f

div u=20

ing= LD for t > 0 with

Lot x
(5-7) f= Tz g(T s L)
and

2
(5.8) \)=%—p.

We refer to (5.5)-(5.6) as the scaling properties of the Navier-
Stokes equations, All statements about Navier-Stokes equations must be

made beariny these scaling properties in mind. We say that u has the
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The Navier-Stokes Equations a7

scaling dimension L/T, p has the dimension L2/T2, f the dimension L/T2
and y the dimension L2/T. The dimension of the variable t is T and that
of x is L.

Applying Leray's projector P to {5.1) we obtain for smooth functions

u{t,x), p{t,x) satisfying (5.1), (5.2) that

(5.9) %+ vAu+ Blu,u) = P

where A is the Stokes operator and
(5.10)  B(u,u) = P{u.yu).

The procedure of applying P eliminates the pressure from the
equations. In (5.9) the term vAu is the dissipative term. Its effect is
one of dissipating energy and smoothing. The term B(u,u) is the

nonlinear term and Pf is the forcing term.
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6
INEQUALITIES FOR THE NONLINEAR TERM

We first recall the Sobolev imbedding inequalities.
if ¢ is an open set in R' of class C1 then for m < n/2 one has

H™a) € L9(a) where
1 1 m
6.1 ~ = 5 -
(6.1) q
with continuous inclusion

(6.2) il g ) < cn g

Note that (6.1) is the only possible definition of a q that makes
(6.2) scale invariant., If g is bounded and is of class C% then
for ¢ > m > n/2, H'q) C cX(g) where k = m - [%] -1>0 and

1 n
n (m- 7 Ial)

(6.3) | 0%l _ lal
L

<
) = C(!:m
for all {a] < k.

In the case g = IR the spaces HS can be easily defined, via Fourier

transform, for noninteger values of s and we have

n 1_1 s
(6-4) ||U“ Lq( IR") < Csnulle(IRn)s s < ? s a ) n
(6.5) || D%u |} ,s>n/2, |of <5 -2

(R Cq,silull WS (1Y) 2

In section 4 we defined the extension maps et (q) » HY(RY).

Using them we can introduce noninteger valued Sobolev morms on . Let us

48
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note that El‘ ‘1, =1 E¥L where i HEL R Co uy(RY) s the
Wi ¥ t
inclusion. Let ueH&1(g), o of class C¥l. Then one can take for

= (1 - t)g+ t{gtl), te (0,1)
= ol
(6.6)  llullg,o = 11 E¥ 77wl s R
We note that, for every ue H&1(q), ¢ < s < gl

(6.7)  Mullg,q < el 75l By o

witht = s - 5, Indeed

ol ol 1 t o+l
Il e ‘Jlls’R SHE ull I E uIl,,_ﬂ

and the properties of EX'L assure || %'}y “k,R“ < cllully o

for k < ¢+1. MWe shall avoid using the spaces obtained by completing

H“l(g) with the norms (6.6) and state our inequalities in terms of the

right-hand side of (6.7) when, in fact, the left-hand side would do.
Let us define first a trilinear form by

V

6. blu,v, —_ = [ <U.pv,wrdx,
(6.8) {u,v,w) = ]uJawadx S{uvvwx

We assume g is bounded and of class C% with g sufficiently large. The

expression (6.8) surely makes sense for functions u,v,we C"(_g;)".

Proposition 6.1. let qC R' be bounded, open and of class C%. Let
$1:52,53 be real numbers, 0 < $1 ¢ 4 0 < Sg < -1, 0 < s3 < 2. Let us
assume that
(i) Sy * Syt sy nf2 if 3 # n/2 for all i = 1,2,3

or

(ii) Sy * Sy ¥+ s3>n/2 if s; =n/2 for at least one i.
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50 Chapter Six

(In other words, we assume Sy + Sy + 532 1n/2 and (51,52,53) # (0,0,n/2),
(0,n/2,0), (n/2,0,0)}.

Then there exists a constant depending on $1:52553,Q5 scale

invariant, such that sl«!-s2 3 1
TTh T2 Lsy )5y -Ls,]
(6.9) Ib(u,v,w)| < clal llu Il[s e llu ll[S ]+1 Q®
-[s,] 1+[s,1-s -Ls,]
-l n[S 1+1 2 I 22 Il D S n[s T

for all u,v,weC=(a)".

Remark. The estimate (6.9) is the extrapolated version of

S¢*Sp*S3

(6.10) [p(uwanl <clal " P lllg dvllsye,divllsy g

Proof. Let us set T = Eu, ¥ = E%, & = £%. Let us consider first the

case
115
sy < n/2 for all i = 1,2,3, Defining 43 by 3. =5 i=1,2,3 and
i
qq (1 < gq ¢ =) by Lyl ol oL o whieh is possible since
3 5 9 % B3 Y
S.
El— =3 Let we have, by HOlder's inequality
JLoq. 2 n -
=1
BVi
[fu; =—w. dx| = lju ——w.l dx|
2 J SXJ 1 J BXJ
< 1
< yug q [ 1, Wi a 1ie 9
()] L) L2 L (a)
3
v s
ist 1
<lal ™ A q W qp Wy a3
3 (IRY (IR L (IR
S
f o !
< clgf” TR T
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This proves (6.10) in this case.
If one of the s; -s is larger than n/2 we replace the corresponding

qj by = and use (6.5) for o = 0. This would prove

Gl < KT flg Il o ll 1 # l,

with k depending on g, S1s> Sps S3 but not scale invariant. The reason is
that (6.5) is not dilation invariant. In order to obtain a scale
invariant estimate we use Lemma 4.9 because (4.19) is dilation invariant.
Suppose for example sy > n/2, sy < n/2, s < n/2. Then write

n/2 = (1-t)0 + tsy for t €{0,1). We use

15l gy € 1T o gl @ I, g (500 4190
Then use the extrapolation, since || ¥ ”LZ(HP) < dlu ||0’(2
1-t [syl-s;  s-[s]

(6.11)  Jlull (2) N q'“"Lz [ v "[s e !l “[s ]+1 N
and also

[51]

Il 2y € ol ™ Wl 3,4 5
bs;+1

el L2(q) <lal " ”u“[51]+1.9

(see the definition (4.13) of |ju||, o)+ We obtain, because

(L +[s3d -5s7) +sy-1[s557=1

©12) Nl , -l . R b ol
L () L™ (e) L (o)
£s,] {s,]+1
S ‘m . (l”’[sl]_sl) + n (51' [5 ] "u" [S[] 3251 ” " [S giilg
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52 Chapter Six

Then, from (6.11) and (6.12) we get

S
n1 Csyl-sy - sy-Lsy]
(6.13)  |lull @) < clal NUH[S e r I ]+1 o

Indeed t = n/251 and

(s,] [s;]+ 1 s
(L+ 051 -58)) v+ —5— (s - [51]) =0 -

In this case, using (6.13), 4, g3 defined as usual and AN N S 1

B 93 Y
defining q4 we get (6.9).

The case in which more than one of the s:

; 1s larger than n/2 is

treated in the same way. If one or more of the s; = n/2 and Sy * Sp+ s3
> n/2 we can modify s; to si, si <55, S; + S, + 53> 0/2, 58 fn/2
all i = 1,2,3. We write then (6.9) for the s% and note that it implies

the one for s; because

m-m'

Wl g € Wfllg g lal ™ it mzaw.

Let us note that (6.9) permits us to define b{u,v,w) for u,v,w such that

the right-hand side of (6.9) is finite.

Remark 6.2. The case in which (sy, Sy, s3) is one of the vectors
{n/2,0,0), (0,n/2,0) or (0,0,n/2) corresponds to an estimate of the type
L® (for the two remaining places) Combining with Lemma 4.10 we get

estimates of the type

(6.18)  [b(uv,w)| < caun iy kg o < cauntit gt vy
> - L e 0,a - ', "g.0" 'lynt 0,0

for n/2 = (1-t)g' + tg, t (0,1), q of class C% at least

1-t t
(6.15) ib(u,v,w)| < mu%,yvh’ﬁw%mf Cillg IVHG oIWE L W

and
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Inequalities for the Nonlinear Term 53

1-t
(6.16) |blu,v,w) ¢ CIIUIIO’QIIWlIO’QllWHme CHUlG WG VIV oV o

Until now we did not assume that any of u,v or w is divergence free.
Clearly, if div u = 0 and SRR AR Tl 0 (i.e., <w,v> Ueng> = 0
on a, ng being the normal) then

V. w.

fu—~w= fu———v
JBXJ JBXJ

In particular, if u,v,weV
(6.17)  blu,v,w) = -blu,w,v)
(6.18) b{u,v,v) = 0

The properties (6.17), (6.18) hold of course for u,v,w eV,

In Proposition 4.12 we proved that, as long as 0 <m ¢ g and @ is

bounded and of class C%, b(Am/z) C Hm(gz)n. We can extend this result

to noninteger values of m. The proof of this statement lies outside the
scope of this work; we shall give however an indication of its flavor,
First we remark that b(A“/Z) is the interpolation space

[alt1
2

[J@(A[“‘J/2 {X,Y] denoting complex interpolation .

). R (A )]a-[a] s
(See [Be-Lo]). This follows from the fact that D(AB/Z) are isomorphic

)

to spaces 12’3:{(uj)l 1 A?u? < w} through the obvious map u > ((u,wj)j

and from the fact that the interpolation space

1 1}

[gz’m ,12"" ]e = 22’(1'e)m+9m . Then we observe that the definition
HY )" = fuelP(@)™ | Efu e HA(IRMy

where E4:n%(g)" » HY(IR") is our extension map (recall eL™a)" -

HT(R")", 0 <m < g is bounded) agrees with

()" = L) bed* (g™

a-lal *
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54 Chapter Six

This can be proven as a consequence of the fact that
HHR™)" = [H[a](Rn)n,H[“]+1(Rn)n]a_[a]. Indeed if [4]+1 < g then, from

the interpolation theorem it follows that
AT PSURTL ST I TUL
a-Lal
is bounded and thus
trbedg)n wbal i gyny o cue(e)”
a-Lal

by the definition of HA(g)" = fue LZ(q)"|E% eHa(RM)}. The other
inclusion follows using the interpolation theorem for the (obviously
bounded) restriction operator R:H[“]+1(Rn) > H[“]+1(Q)n,
R:H[“](Rn)n > H[“](Q)n. This operator is then bounded

Re RN 5 (@) ko )™y o and therefore, if

u e Ho()" then by definition E%(u) ¢ H*(R™) and u = R(E%u) belongs to

puted(g),mledtl (o)

. a-Cal’

it OA 2 )CH™ ()" and i: ©(AY2) CoH™()" s bounded if Ltm <

Now, the inclusion map

¢ by Proposition 4.12. If [o] = m, [ol*l = m+1l if follows that i is

bounded from

noowl
LA, B )] )™ (@) "]

a-m
i.e., that ® (A¥2)Cs H(q) for all « such that [oJ+l < 4.
Definition 6.3. Let u,v ¢ C®(g)". We define B(u,v) by

(6.19) B(u,v) = Plu.w)

where P is Leray's projector.
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Proposition 6.4. Let @ C R be bounded, open, of class ¢4, Let
$1552,53 be real numbers such that 0 < s < %, 0« Sp ¢ -1, 0 < s3 < 4.
Assume that Sy ¥ Sp 532 n/2 and that (31,52,53) is neither of the
triplets (n/2,0,0), (0,n/2,0), (0,0,n/2). Then there exists a constant

¢ = c(s1,55,53,@) scale invariant, such that, for all u,v ec=(a)",

%3 S1752%%3 1 6. 3os £s,]
2 n 51 5
(6.20) |A Blu,v)| < ¢jal “ “[s Joa “ ”[S ]+1 Q
1ls,J-s,  s,-[s,]

Vil lvil

[s,l+l,a Lsy *2,q

Remark. The right-hand side of (6.20) can be replaced by

$1¥8,¥sg 1
n 2

clal ol g 1ol o1,

where HuHS’Q = % “s,R" .

Proof of Proposition 6.4. Clearly, since B{u,v) is an element of H,

-53/2 53/2
A B(u,v) belongs to DO(A ). Let we H be arbitrary. Then

-53/2 -53/2
(A B(u,v),w) = {B(u,v),A w).
~52/2 -52/2
Since P(A ¥ w) = A 3/ w it follows that
—53/2 -53/2
(A B(u,v),w) = b(u,v,A w).
Now by (6.10)
-53/2
jo(u,v,A wi
S.+S,+S
< clal ol g g W1 g A7 e
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From Proposition 4.12, if s is an integer and from the discussion pre-

-33/2 53/2 S3
ceding Definition 6.3, it follows that A wepD(A ) C H(q) and
-53/2 53/2 -s3/2
HA > wllgy,q <0 ATA 3wl = liwlg g
Thus
/2 $1¥5,*S3 1
(A 3 B(u,v),w)| < ¢jal n 2

Hulls. | glivIl liwllg, o+
51 sQ 52+1,Q 0,0
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STATIONARY SOLUTIONS TO THE NAVIER-STOKES EQUATIONS

Stationary (steady state, equilibrium) solutions of the Navier-

Stokes equations are time independent solutions:
(7.1) vAu + B(u,u) = f, ue P{(A)

tor f eH, ygiven.
In this sectiong C R n =2 or 3, and g is of class C%, g > 2.
It ue P(A) then B(u,u)eH so (7.1) is an equation in H. Moreover, if
ue P(A) then (7.1) can be written as the Stokes system
-yau + grad p = f - (uey)u

div u = @

ul 0

aQ

and we see that pe Hl(g).

We discuss first existence solutions to (7.1) in P(A). We call
them simply solutions or strong solutions. As in the case of the Stokes
system, we can use a variational approach and define weak solutions. By

this we mean solutions u eV of the equation
(7.2) w(u,v)) + b(u,u,v) = (f,v), for all veV.

Tnis formulation (7.2) makes sense for fe V',

57
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Lemma 7.1, Llet ue V. Let us define the map K{u):V » V by K(ul =
A'IB(u,v). Then the map K(u):V » V is compact. More precisely,

K(u):V » b(A3/4) is bounded and

(7.3)  |A¥%(uwv] < cllull ]l for some ¢ > O.-

Proof. A3/4K(u)v = A3/4A'1B(u,v) = A'1/4B(u,v). The inequality (7.3)

X _ _ ~ 3.n
follows thus from (6.20) with Sy = 1, sy = 0, Sy = 1/2, and —2-2 2 for
n=2or 3. We omit the dependence of the constant on g and do not write
(7.3) in scale invariant form. Compactness follows from the fact that
BAYY) ¢ w2(g)" and the inclusion V N(HY2(g))"C >V is compact by

Rellich's selection theorem.

Lemma 7.2. Let B be a closed ball in IR'. Suppose $:B » R satisfies:
¢ continuous and <g(v),v> < 0 for all v € 3B. Then there exists ve B such

that o(v) = 0.

Proof. Let us assume that R is the radius of the bali. Assume that
o(v) # 0 for all ve B. Then the map v +—R ¢(z) is a map from B into

38. As a continuous map from B to B it has a fixed point by Brouwer's
o(vy,)
0 A .

theorem v, = R ]—r . Moreover v B, But this is absurd since

0 ¢(V0) 0€d

<olvglavg>
<V0,V0> = —W_OT R < 0.

dx _

Remark. This proves that the system @ o(x{t)) in R has a fixed

point Xg € B.

Let us introduce some notation. Let m be an integer. We denote by

Pm the projection in H on the span of WisWpsenesW the first m

e
eigenfunctions of A. In this section we consider also the corresponding

object in V and denote it by PIY'. Since (w.} are orthogonal in
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v = D(Al/z) we have the formulae

m
(7.4) me = 21 (w\],f)w‘J R feH
J
v "
7. = . N s
(7.5) Paf le)‘J ((wJ f))wJ feV

N v
{Remark: Pof me for feV).

Theorem 7.3. Let f e¢H, There exists a solution u e R(A) of (7.1).
Proof. Let m > 0 be an integer. We first remark that (7.1) is
equivalent to

(7.6) w + K{uu = A-lf = g.

We shall approximate (7.6) by

(7.7 o+ plk(u)u = pliatte),

The first step is to prove that for every m > O integer, there exists a

. v
solution Up € Pm(v) of (7.7).

Let - q;m(u) = W+ P[Yl(K(u)u) - Pr\:‘(g), for ue PIY1(V). Then

~(gludsu)) = ((ww,w)) + ((K(u)u, PY)) = ((Plg,u))

AUl + ((K(u)u,u) - ((g,u).

Now (B(u,v),v) = 0 for all ve V means

(7.8) ({(K(u)v,v)) =0 for allv V.

n

So {{gglu),u)) —\;||u||2 + ({g,u)). Therefore, according to Lemma 7.2

there exists u = uy such that g {u) = 0 provided we choose the ball in

Pv of radius R > 491 |
m v
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We obtain thus a solution U P¥(V) of (7.7). Moreover

-1 -1/2
I T

v

Now, using {(7.3) it follows that

34,V -1/4 vV, 3/4 1/4

3/4 .
viAT T < JATTP KU du T+ A f| = |Pm (um)uml + |A fl
2, |1/ WVl
o T T B L A LA
v

We used implicitly the fact that uy, ¢BP(A). But the space P¥V = PM is

the span of {w;,...,w;} and thus is contained in P(A%) for all o > 0.

We have thus

12,02 4o/
(7.20) () AT AT
v

Now from (7.9) it follows that the sequence u_, is bounded in V. There

m

exists a subsequence u_. which is weakly convergent in V to some element

m

u. We could use the information given by (7.10) and improve the conver-
gence but we refrain from doing so, for the moment.
Passing to a subsequence if necessary, we may assume that ug, > u in

H strongly. Then we claim that Px.K(um.)um. converges to K{u)u in V,

weakly. Indeed, this statement is equivalent to A1/2P¥.K(um.)um.

converges to Al/zK(u)u in H, weakly. Let he H be arbitrary. Then

1/2.v /2 _ -1/2,y . -1/2
(A0P K (up Juge = AT K(u)u,h) = blug s uPdA h) - b(u,u,A” "' “h)
- -1/2 -1/2 -1/2
= b(um.- u,um.,A h) + b(u,um.- u,A h) + b(um.,um.,(l - Pm.)A h)
< blugi- A2y - b(u, AT P )+ blugug s (19,0872,
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Now we

52=O,S3=

use estimate (7.9) in conjunction with (6.9) with sy = 1/2,

1 for the first term in the sum, s; = 1, s, = 0, sq = 1/2

for the second and third terms in the sum

[

Now, since |

P;.K(u

lau[

m i

Since
follows, pas
(7.6). Then
ue p(aAYH

(7.11)  |A

Now AK(u)u
follows that
|A

Then since

(7.12)  |A

Al/ZP;.K(um.),um. - Al/zK(u)u,h)l

-1/2 -1/2 1/2
< CU\V_fL (J¥L+ lolly ™ Tug-ul Y2 n|

-1/2
e L T I TS LR

v

+

A2 - b nit/2 ¢ 5MA 0|2 it foliows that indeed
) converges weakly in V to K(u)u.

PV.(A -1
m

f}) converges {strongly even) in V to alr e
sing to the (weak) limit in V in (7.7) that ueV solves

using (7.10) and passing to lim sup we deduce that

and
-1/2_.,2 -1/4
3/4ul <c A ; f1° L 1A fl
= v
Y
= B(u,u) and using (6.9) with $sp =1, 55 = 1/2 and (7.11) it

IA-1/2fl lA-l/Zle lA-l/Zfl
c [ 3 +
v v

v

K(uul < dllull]A¥/ %) <

I

Als
v

u = - % K{u)u + it follows that ue p(A) and that

12,3 a-1/8, 4-1/2
uI<M+C[A1/5f1+A/f2A/f|]
- v

v v

This concludes the proof of the theorem,
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Remark. (1) If f V', i.e., if A Y254 1 the same proof provides a

-1/2
solution to (7.2) which satisfies |julj < lﬂ——;—iL .

(2) 1If the boundary of o is of class C%, ¢ > 2, and if fe He ()",

a < & then ue H“+2(Q)".
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WEAK SOLUTIONS OF THE NAVIER-STOKES EQUATIONS

We consider g ¢ HP, d = 2 or 3 a bounded open set of class C%,
g > 2 large enough. The Navier-Stokes equations will be written in the

form

(8.1) du

(8.2) u(0) = u

The function f = f(t) is a given vector valued function. The function ug
is given and so is v > 0, The solution will be a vector valued function
u{t) such that Au{t) and B{u{t),u{t)) = P(u(t).yu(t)) make sense. We
shall make this more precise later.

The need to study weak solutions arises mainly for d = 3 because
even if ug and f are very nice functions, in this case the existence of a
classical solution of the Navier-Stokes equations is known, in general,
only for short time intervals.

The method of proof of existence of solutions to (8.1) that we
present is based on Galerkin approximations and energy estimates. First
we describe the Galerkin approximations. These are systems of Ordinary
Differential Equations. Let m be a positive integer. We consider
Wiseeo,Wy, the Tirst m eigenfunctions of A, (The Galerkin method can be
devised starting from a different basis, also.) We consider the

progector Po:H » H onto the space of WisenssW Applying P to (8.1)

m*

would yield the equation

63
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64 Chapter Eight

d

at Pt * \A(Pmu) + PmB(u,u) = me.

The Galerkin system of order m is the system

dum
(8.3) JooF Ayt PmB(um,um) =9,

(8.4) uy(0) = )

The function um(t) belongs to P H.

h

More precisely, let us denote by g5 = ;j(t) the jt component of

um(t):
g5(t) = (up(t) wy).

Also, let ,,j(t) = (gm(t),wj) be the components of g;. Then (8.3) is
equivalent to

dgj m
(8.5) Wi‘ ")‘.]'Ej + k,%__.lb(wk’wl’wj)gkglr_ nj J=1,...,m

s e 0 s 0 _ 0 3
The initial data un has coefficients ("m’wj) = g and (8.4) is

equivalent to
(8.6) (0) = &2 i= 1.,
EJ EJ ) B ’

Thus the Galerkin system of order m is a quadratic, constant coefficient
m x m ODE system. 1If the function g, and thus the vector , are time
independent the system is autonomous. We shall derive some bounds for
solutions of (8.3) and (8.4). Our goal is to have enough control on the
solutions of (8.3) to be able to let m tend to infinity and obtain a
solution to (8.1). We shall consider an arbitrary T > 0 and fix it
throughout this section. Let us assume that the function gm(t) is
continuous on {0,T] with values in V'. Since wje V this guarantees that
the function ,:[0,T] » R™ is continuous. From the theory of ordinary

differential equations we know that (8.5), (8.6) have a unique solution
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Weak Solutions of the Navier-Stokes Equations 65

g{t) defined for t in a neighborhood of t = 0. The tensor b(wk "'g""j)

is, for each fixed k, antisymmetric in g and j:
Dlwy w W) = —b(wk,wj ,wz), 1 ¢ k,e,d sm.

This property implies that the maximal interval of existence of g(t)
coincides with that of n. In other words, if o would be defined (and
continuous) for all t so would be ¢. Indeed, taking the scalar product

of (8.5) with £ in K" we obtain

1d 2 mo2
(8.7) 7 gt e+ VJ=X1XJ g,(t) = <n(t),glt)>
because
(3.8) 2 .b("k ’wz’wj)gkgzgj = 0.

K, 2sd
Together with Gronwall's inequality, (8.7) would prove that |g(t)|
is bounded as long as |n(t)| is bounded. (In particular, for negative t,

too.) For positive t we can use the fact that Aj > 0 to estimate

-t £t -uxy{t-s) 2
o 1% T e T Lt s,

v

Let us estimate the right-hand side of (8.7) differently

m

[<nlt),elt)>] < (3 Ajéi )1/2(; A31n§ )1/2
J=1 =1
We return to the notation
m m
uglt) = jzlaj(t)wj 3 gglt) = lenj(t)wj .

Then we yet from (8.7):
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(8.9) 5 lugt?+ il ug 12 < 1Y 2 0 v Il < 21 vy 12

-1/2. 2
124 |

1
+ . |A "

Thus we obtain from (8.9) and Gromwall‘s lemma

2
2 VMt |t e’“l(t's) lgq(s)]

2 < ug(0))%

(8.10) |y, (0] 5

We use the notation |h{y: = ]A'I/Zhl, meaning that we identify the
dual V' of v with p(A~Y/2),

Let us assume that the sequence “3 is bounded in H and that the
sequence g, is bounded in LZ(O,T;V‘). We denote by LP(1,X) for 1 C IR,
1 < p < =, X @ Banach space, the space of vector valued functions x{t),
x:Is X such that the scalar function || x(t) |ly is measurable and

{ hxe) 5 dt < w for p < », ess sup |x{t)]l < » for p < w. Thus, if
tel
T 2 ¥ 2
(8.11) é 19, (s) 1y ds 5({ fg(s}yds

for some ge LZ(O,T,V') and if

(8.12) [ < |u% for some u°

as is the case if Yp = ng, ug = Pmu0 then (8.10) means that

(8.13) The sequence u_ is bounded in L®(0,T;H).

m

This fact is not yet sufficient for passing to the limit. Let us

integrate (8.9) between 0 and some t < T.

-1/2

t t
(8.14) |um(t)|2 + vé il um(S)szs < Iugl2 + %6 [A gm(S)IZdS-

In particular,

T T
(8.15) \)lj; Il up(s)Ias < [u)? +%é ‘9(5“\2/"’5 .
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That is,
(8.16)  The sequence uy is bounded in LZ(O,T;V).

We need to have some uniform bound on dum/dt. First let us consider

the equation (8.3):

du
m:- -
o v Aum PmB(um,um) + 9.
Since u, is bounded in LZ(O,T,V) it follows that Aug is bounded in

LZ(O,T,V‘). Actually,

T 2 T 2
[ agls)lpes = f I unCs) I, ds

Moreover, by assumption g, is bounded in LZ(O,T;V‘). It remains to

investiyate the term P B(u Now

me Y -

-1/2 -1/2 B(

leB(um,um)lv. = |A PmB(um, o= P A U "N o< |A m,um)l

Using (6.20) with s3 =1, 51 = /2, sp = 0 we get
2
|PBlugug) Lye < clugt M2 ug 172,

Since |up(s)| are bounded uniformly and since || um(s)ll2 are uniformly
integrabie we obtain

du

(8.17) afm' are bounded in L4/3(0,T;V‘).

We proved therefore

m
Lemma 8.1. Let gm(t) = 7 “j(t)wj and ug = 2 gJ j be g1ven. Assume

J=
that (8.11) and (8.12) hold. Then the solution um(t = 2 gJ(t j to
the Galerkin system (8.3), (8.4) exists and is unique on [O,T].

Moreover, the sequence u. is uniformly bounded in L®(0,T;H) and in

m
LZ(U,T;V). The sequence dugy/dt is uniformly bounded in L4/3(0,T;V').
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A1l we need now is some kind of compact imbedding theorem, of the

type of the Rellich Lemma but for vector valued functions.
Lemma 8.2. Let up be a sequence of functions satisfying

T 2
(8.18) é | uyls) “V ds <M

T
8.19) I & u(s) 1.ds < m

tor some 0 <M, p > 1 and all m = 1,2,... . Then there exists a
subsequence U of U which is convergent in LZ(O,T;H) to some function
u L2(0,T;H), i.e.,
T
lim ju_ {s) - u(s)l2 ds = 0.
J o+ e é ™ H

In order to clarify what are the properties needed for this
selection theorem we shall prove it in an abstract version. Instead of
the spaces VC HCV'we shall consider three separable reflexive Banach
spaces Xy&— XCrX_q.

We will assume that the inclusions ch—a-xo is compact and that the
inclusion XOC—’X_1 is continous. If u:[0,7T] » Xy is a strongly
measurable function we say that du/ds belongs to LP(O,T;X_l) for some

1 <p <« if there exists ve Lp(O,T;X_l) such that

u(tz) - u(tl) = { v(s)ds

for almost all t;,t, in [0,T]. The element { v{s)ds can be defined
1

using the duality: t
2 2

L(f v(s)ds) = g L{v(s))ds

Y 1

for every Le (X_l)' (the dual of X_4).
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Lemma 8.3, For every ¢ > 0 there exists ¢ 0 such that, for each xe X,
lixllg < elixlly + ¢ Jixll_;-
Proof. Assume not. There exists a sequence x € X1 such that

I xpll 2 el xglly + ml xpll_

Take y, = xg/lixlly. It satisfies

“.Ym“() 2 e? "“‘ym“—]’

flygly = L. Since Xy is reflexive the unit ball is weakly compact. We
may assume (by passing to a subsequence) that y, converges weakly in X;
to y. Since the inclusion XIC;—>X0 is compact, y, converges strongly to
y in Xg. Since llylly is bounded it follows that ||y ll_y converges to 0.

Thus |lyll_) = 0 and y must equal 0. But [lyglly 2 ¢ implies II¥llg 2 ¢, absurd.

Lemma 8.4. Let u, be a bounded sequence in Lpl(O,T;Xl). Assume that
dug/dt is bounded in Lpz(O,T;X_l). Here 1 < py < w, 1 < Py < w Then
¢ of uy, converging in Lpl(O,T;XO).

there exists a subsequence Up

Proof. The space Lpl(O,T;Xl) is separable, reflexive. (The dual of

p
LPH(0,7,%) = L }0,T,X}) where -+ 5= L X] s the dual of X).

1
Therefore there exists a subsequencé of im which is weakly convergent in
Lpl(O,T;Xl). Subtracting the limit we may assume that uy: converges
weakly in Lpl(O,T;Xl) to 0. We want to prove that the convergence is
strong in Lpl(O,T;XO). Using Lemma 8.3 we see that it is enough to prove

that ug. converges strongly to O in LPZ(O,T;X_I). Indeed since
p P p
1 1 1
™ < e lxli y + < [IxHl
%o - Xy ey T A

for all x EXI, e > 0 and since
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T p
§ o (1 at

is bounded it follows that, for every ¢
T "o (01 TR
U < g sup (VI t + ¢ u .
o " % L 1 epy § Um X4

Now if I is any subinterval of {0,T] the sequence { um(s)ds is
weakly convergent in X; to 0. [Indeed denoting by X the characteristic
function of 1, for any element L of the dual Xi, XI(s)L is an element

of the dual of Lpl(O,T;Xl) and
<um’XIL> = { <um(s),L> ds = < { um(s)ds,L>

converges to zero. Thus since the inclusion ch—e-xo is compact we know
that { um(s)ds converges strongly to zero in Xy and a fortiori in X.1.
t du
Let t be any number in [0,T]. up(t) - um(tl) = { HEE ds . Let us take
. R X 1
an average in t1 over an interval I€ of size ¢:

1t 1 b dupye
um.(t) = —e-{_aum.(tl)dt1 + ;—{-e(s -t + g) 75— ds -

Using HElder's inequality

t du_, t p; Yp, t du., Pp 1/p
1 m 1 2 2 m 4
Lo stel gl o5 <2 (g (st 8y A0S gl )
t-g¢ t-¢ t-¢

< .1+ i 1/P2 E1/p2(éT i g;m. “Pg l/pz < Ce1/P2

= %
where 1—.—+ 1. 1.

P2 P2 .

For yiven eg > 0 choose ¢ such that cg 2 < 90/2. Then fix ¢; it

follows that

0,1y, [F
Huge(ed i, <7+l g_eum'(tl)dtl fix_,

Since the second term on the right-hand side of this inequality tends to
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zero as m' » » we proved that, for each t,llum-(t)nx — 0. The
-1

result follows from the Lebesgue dominated convergence theorem.

Remark. Actually we proved also that up+ converges to zero in C[O,T;X_l]
i.e., that sup  flug(B) ]y - 0. This follows from the fact that

tefo0,T]
there is pointwise convergence and the uniform H¥lder continuity

1/p,
“Um(to) - um(tl)“X_l < Clto - tll

Definition 8.5. A weak solution of the Navier-Stokes equations {8.1),

: ; 2(0.7- . isfying d%e ! '
(8.2) is a function u €L%{(0,T;V) O Cw(O,T,H) satisfying pra L]oc(O’T’V )
and
(8.20) < %%-,v> + vw{{u,v)) + blu,u,v) = (f,v) a.e. int, for all veV,

(8.21) u(0) = uy

The space Cw(O,T;H) is a subspace of L®(0,T;H) consisting of
functions which are weakly continuous: (u{t),h) is a continuous function,

for all he H. In particular (8.21) is taken in this sense.

Theorem (Leray). There exists at least a weak solution of (8.1), (8.2)

for every ugeH, f eLZ(O,T;V'). Moreover,

%%—eLq/a(O,T;V') for d = 3
Der0,Tv")  for d = 2

and the energy inequality
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1 2 t 24 (1 2,
(8:22) 7 WO+ o [ lu(s)lPs < 3 Ju(tg)]® + [ < fls).uls)> ds
0 0
holds for all 0 <ty <t < T, tg a.e. in [0,T].

Proof. Let uy(t) be solutions of the Galerkin equations (8.3), (8.4) with
9 = me, ug = Pmuo. From Lemma 8.1 and 8.4 we may assume that Upts @
subsequence of uy converges weakly in LZ(O,T;V) strongly in LZ(O,T,H) and
in C[0,T;V'] to some u. Moreover, dug+/dt converges weakly in
L4/3(0,T;V‘) to du/dt. Let v eV be arbitrary. Take the scalar product of

(8.3) with v and integrate

t
(up(t)v) + v { ((ugi(s),v) Mds + { blup(s),u (s),P v)ds
¢ 0
= (um.(to),v) + g <f(s),va>ds.

0

Since yg converges to u in LZ(O,T;V) weakly, by extracting a subsequence,
relabeled ug, we may assume that um(to) converges to u(to) weakly in V for

all tye {0,TI\E, for some E of Lebesgue measure 0. Thus

;12 um(to) = u(to) strongly in H, for ty {E. Now clearly
t t
1im { ((um(s),v))ds = { ({u{s),v))ds.
Mo 1y 0

A simple argument shows that

t
lim { b(um(s) ( ),P v ] b{u(s),u(s),v)ds.
Moo 0 0

It follows that for t > t; and t,ty¢ E

t
{u(t),v)- (u(t vj u(s),v))ds+j b{u(s),u{s),v)ds = { <f(s),v>ds.
0 0 0

This implies the weak continuity of u(t) in H because V is dense in H and

sup |u(t)] is finite. Also the last relation implies (8.20).
tel0,T]
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For the energy inequality take the inequalilty

¢ 2.1 2, [t

oy { fugls) 0 <5 Ty (eg)° + g <f(s),up(s)> ds.
0 0

Assume that t, (E. The right-hand side has for limit as m » «,

t
|u(tu)|2 + { <f(s),u(s)>ds. Passing to 1im using
Moo
0
2

7 lug(e)|?

N

Tima_ +limb

Tim (am + bm) 0 o

and the fact that if x, » x weakly in a

Hilbert space X then |[x|| < lim [{x,}| we obtain the energy inequality

t 2 t
% |u(t)|2 + v [ lu(s)ids < %»Iu(t0)|2 + [ <f(s),u(s)>ds
Y %
for to FE, t 2 tg.

The fact that du/dt belongs to LZ(O,T,V') for d = 2 foliows from the

fact that one can estimate ind = 2 |A'1/28(u,u)| < clullju

|. Indeed
(A1 28(0,u),v) = Bu,u, A"V &) = - b(u,A"Y 2 ,u) and thus
| (A"1/28(u,u),v)| < clulfluljlv]. This together with the fact that ug is

bounded in LZ(O,T,V) and L*=(0,T,H) makes A'I/ZB(um,um) bounded in

L2(0,T,V").
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Let uy be a solution of the Galerkin system

du

n =
(9.1) Tt vAUm + PmB(um,um) = me

(9.2) um(O) = Pyig

We take the scalar product of (9.1) with u_ and obtain (see (8.8))

m

2
ld 2 2 _ f 1 2
B9 1ugl® ¢ gl = () < B g

since xllum|2 5|lumu2 it follows that

2
d 2 2 f
9.3) L 1ul? wllugl sl;kl—

and thus
t t 2
2 2 £l
(9.4) v é upllcds < |u0| + é o ds
and

- t - (t-S) 2
2 2,7Vt 1178 6)°
(9.5) jup{t) e ¢ |u0| e + é e W ds.

Let us take the scalar product of (9.1) with Aum. We get

d

(9.6) 5 S Nugll? + vlAuglZ + blupup.Aug) = (F.Auy).

We will describe separately the cases of spatial dimensions two and

three.

74
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The two dimensional case

Our aim is to give a bound on sup Jluy(t)|| which is independent on m.
0<t
For this purpose let us first assume that fe L“(HQ,H) and denote by

(9.7) |f|m = sup |f(t)].
t>0

The estimates (9.4) and (9.5) become

8 ¢ 2 ,  If12
(9.8) vé lug{s)lI® < lugl® + N t
e 2, M0
(9.9} fug (317 < |u0| ty .
v A].

Integrating (9.3) between t and t + ¢ and using (9.9) we get

t+

. , L
(9.10) v{ Hug(s)iFds < Jugl® +

1
vAl (z + vkl)'

Therefore, denoting by ) the Lebesgue measure on IR, we get

L LT
Mes Ceted | flugls) 2 o} ¢ (0= * =2 (x + =)

v VA

v Al 1

2 2
AL 1,172
Let us take 5 = / [ + 5 (r + ~——)] /vt . It follows that
v v Al vAl

Msls e [tutedllug(s)ll 2 o3 € 7 ¢

and therefore that
In every interval of length ; there exists a time tye {t,t+]

such that

2 2
lugl? 1112
[———+ 5 (¢ +
v
v xl

(9.11)  fupltg)i? < 2

)]

vkl

Remark that until now the reasoning did not depend on the spatial

dimension d. The two sides of (9.11) scale like Ld/Tz. Now let us
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, 1f1?
estimate in (9.6) the term H(faAu )] < f [Aug1® + ——;3 and the term

b(um,um,Aum) using (6.9) with sy = 12, Sy = i/2, s3 = 0.

(9.12)  |b(ugoupAu)l < clugl Y ugll 1Ayl

Thus (9.6) becomes

2
f
1 2 ® 2., ¢ 2
3 5o Nl + olaug? < 3 phugt? v == e 2 a2 S a2 flugll®
v
fl
¢ 2.,
(9.13)  Gpllugl? + vlau % < 24 S qu 12 fugl®s
\)
Multiplying with exp { |u | l[umuzds we obtain
[ 2 Zd
dt Mg exp j |u | g ds] < = exp { |u | v, 1°ds

To\)

Integrating we obtain

t
C 2
(9.18)  lugli? < flug(tg) |2 exp(f S5 lugl lupli?ds)
0 v
212

t
© c
+ {t - tylexp { -5 |um|2||um||2 ds
v

The inequality (9.14) is valid for 0 < tg < t. Now we estimate the
exponential using (9.10) and (9.9):
|2 £12

t | f [f]
C 2 2 [ 2 © 2 © 1
=3 { [ug) SHlugli®ds < =5 [lugl® + 55 J[lugl® + o (t -ty + _"*1)]
0 v v Al

<

If t; is chosen in the interval [t-¢,t] (assuming t > ¢) such that (9.11)

be valid we get 2
[ £
Hup(t) I < Ae® + ——= e®
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where A is the right-hand side of (9.11) and B is

PP ION L ORI |4
=7 Clugl™ + =55 Myl
vxl

Assume now that ¢ ¢ 1/va;. Then we get, fort 2 ¢

2 2 2

) lugl® 21 2|f| c FRLALY:

(915 Hlua(O)IF < (1= + 571 + —7=exp[5 ( lugl® + 5571
v v }‘1 vy

This bound is not only uniform for me N and t > ¢ but also does not

involve the quantity {jugll. In other words, although |ju,(0)]| are finite,
sup Jlup(0)fl is not required to be finite. If we allow Jlugll to enter the
e?timate vwe can fix ¢ = 1/Vx1 for instance and use {(9.14) with ty = 0 to

estimate {lu,(t)|f for 0 <t < 1/vp;. However, we can avoid this in the

following way: Let us use (9.15) on an interval [—l—-. 1 ,-—l— . l—]
Y k+l 2wy 7ok
with =+ .1 15y L .1 then ¢ <t < 2¢ and thus (9.15)
2 2k+1 - }
1 1
implies, for tef[ o L |
2"+1 v gk vy

2 2
6 2 lugl 2|f|°° l |12 c s IfIC 5
(9.16)  tlup(e)|I® < (Al-——+ 55 1+ 32 Sexpl=g (lugl® + 5351
v A M v v oAy

that

Since the estimate (9.16) is independent of k we proved that (9.16) is

true for any t, 0 <t < l/vxl- Summarizing we obtain:
Proposition 9.1. Let m > 1 be an integer. Llet ug € H, fe L°(IR,H). Let Un
be the solution of the Galerkin system

du
m =
&—‘4‘ \;Aum + PmB(Um,Um) = me
una(0) = Prug

There exists a constant p; depending on v, iy, fugl and sup |f(t)] only
ts0

such that
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(9.17) sup  oatllug(e) |12 < 55
0<t<1/vx1

(9.18) sup Ilum(t)u < pge
t)l/vkl

If up€V, there exists a constant py depending on lupll, v, 3y and

sup [f(t)| only such that, in addition to (9.18),
t
(9.19) sup luglo)ll £ o

0<t<1/v>\1

holds.

Passing to the limit we obtain

Theorem 9.2. Let g be an open bounded set of class c? included in F.
Let ugeH, fe L*(IR,H). Let T > 0. There exists a solution u of the

Navier-Stokes equation

du _
P vAu + B(u,u) = f
u(0) = uy
satisfying u el]) (0,T;¥) N L2 (0,T;8(A)) M L=(0,T,H) » L2(0,T;V).
oc Toc
Moreover,
2 2 2
(9.20) sup vatllu(e) |I© + sup fluCt)i® < 204
0<t<1/vay<T 1/ vagst<T

where o4 depends on |ugl,v,xy, and sup|f(t)] but not on T.
t

If ug belongs to V then uel™(0,T;¥) O L%(0,7, D(A)) and
2 Toe 1
sup Jlu(t)|ic + v é JAu|“dt < C{—==—+ T}
OgtgT viy

with C depending on V’Al,lluon and sup |f(t)| but not on T.
t
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An upper bound for p, is

, LR L
(9.21) oy € 10(alugl® + —2exp[ (lugl® + =5 )]
v Al v v )\1

Let us consider now

The three dimensional case.

We return to the Galerkin system (9.1), (9.2). Let us assume that
f ELZ(O,T;H) for some T > 0 and ug €V, We shall estimate in (9.6)
el <2 a2+ 2L 1o order to estimate the t bu_,u,Au)
1 (f, um)l <7 | uml s n order to estimate the term b{ug,uy.Auy

we use (6.9) with sy = 1, sp = 1/2, s3 =0
(9.22)  [blugsupshug)| < dlugli3/2)Au,|3/2

It follows from (9.6) that

2
d
L Hunll? + wlaugl? < 2 1aul? LS o g 172 a0y 372

2
2 f
Jaugl? + L S fugl®
v

Thus
2
d 2, 2if C
(9.23) S llugl? + vlaugl? < ZEL o £ pug
v

Let us assume that

1/2
(9.24)  Nug(0) ]2 + é f(e) 120t <§ 9 1/2

Then we claim, for all T>t >0

(9.25) Nl < Y222

112 < c—l/ZvZAi/Z_ Since

Indeed, from {9.24) it follows that Hum(O)

flugle)ll is smooth“um(t)“2 < c-l/ZvZAi/Z for small t. As long as

1/2 2.1/2
v Al

llum(t)H2 <c” it follows that \,|Aum|2 - S3—||um\l6 is positive.
v
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Indeed,
2 ¢ c
wlhugl® = S5 lugll > wagllugl? - S5 llugl
v v

C
= ullugll?1 - ——flugll®1 > o.
v )‘l

From (9.23) it follows that, as long as[lum(t)ll2 < c'l/zvzxi/z

t 2 T 2 -1/2
Hug(t) 112 s%& F1Z + fugo)] s%g L2+ lug() )] < S5— WA)/2.

Therefore the least upper bound of the set of t < T such that (9.25) is
satisfied must be T.

Passing to the limit in m we obtain:

Theorem 9.3. Let @ be an open bounded set in IR3 of class €. There
exists a scale independent positive constant C such that, for ugyeV and

fe LZ(O,T;H) satisfying

fu II2

(9.26) TOW?*Ti/—zéT 1£(t)| %t < L
vy vy 4 £

there exists a solution u(t) of

du _
@’ vAu + B(u,u) = f

(9.27)
(9.28) u(0) = ugy

belonging to L(0,T;V) N L2(0,T, B(A)) and satisfying

2 T
puft)y 1 2 2
(9.29) Y YY) 6 JAu(s)|“ds < ;;
vy vA C

for all 0 ¢t < T.
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The condition (9.26) is a nondimensional smallness condition. It can
be interpreted in various ways: small initial data and f but arbitrary T,
or large y but arbitrary data and T. It would appear from it that||u0H2
small with respect to vzxi/z is necessary for local existence. This, of
course, is not the case. Indeed, in the inequality (9.23) we have,

ignoring vIAUm|2
2
d 2| f [+
(9.30) e Wuph? < ZLEL v S B
v

Let us introduce the nondimensional quantities

uum(t)u2
) = =577
v Al

(v) - Lo

Then from (9.30) we get

Introducing the nondimensional time s = y3;t we get, for y(s) = y(t) =

if y(so) is finite then for s near 5g» y(s) will be finite. Indeed,
s
dividing by (1 + y)3 we get, after integration [ dg
S
0

1 S
- L <[ glo)do + 2c(s - 5p) = Els,5)

So
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and therefore

1+ y(sg)
{1+ y(s)) ¢ 5
Y1 - (1« y(sg) %E(s,50)
Then
2
1+ y(sgh = 1 - {1+ y(s4))7Els,s)
¥(s) < 0 0 0

1= {1+ ylsg)E(s,sg)

We need to impose the restriction (1 + y(so))ZE(s,so) < 1., Let us assume

thus

S
4 [ g{o)do + 2¢(s - sp) < ——____l_—‘_TZ
%0 2(1 + y(sq))

Then y{s) < /2 (y(so) + 1),

We proved:

Theorem 9.4. let o C I® be a bounded open set of class 2. Let uge V.

Let f €L2(0,Ty;H) satisfy

T
4] 2 -1
§ _4l%2_""1 dt vty s —
(9.32) v g
1 0 2
VZ)‘}/Z

Then there exists a solution u(t) of (9.27), {9.28) belonging to
Lm(O,TO;V) f\LZ(O,TO; P(A)) satisfying
L
(9.33) :‘)—‘z‘i—%}L<f(2°m 1)
1

fOr‘OStSTo.
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10
FURTHER RESULTS CONCERNING WEAK AND STRONG SOLUTIONS

We address first the question of uniqueness of weak solutions. 1In

two dimensions weak solutions are unique.

Theorem 10.1. Llet o ¢ ® be open, bounded, of class cZ. Let

fe LZ(O,T,V‘). Two solutions belonging to LZ(O,T;V) N Cw(O,T;H) of

n
-

(10.1) — + vAu + B{u,u)
(10.2) u(0) = uge H
must coincide.

Proof. Let us call the two solutions g J = 1,2. Let w denote their
difference w = u; - u,. We obtain for w the equation

(10.3) U vAw + B(ul,w) + B{w,u

dat =0

2)

(10.4) w(0) =0

Taking the scalar product of {10.3) with w we obtain

dw

(10.5) <Gt W+ fjwl|? + B(w,up,m) = 0

83
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Indeed, from (10,.3) and the assumptions on f, Uy, Uy it follows that
du,
Efi , J = 1,2 and thus dw/dt all belong to LZ(O,T,V'). Then (10.5)

takes place almost for every t. Moreover, because of the estimate

1B{w,up,w)| < ciwlliwll [lu,l]

we see that <gﬂ w =

d, w|Z belongs to L1(0,T). From (10.5) we

1d
2 dt

deduce
d 2 ¢ 212
g <&
gelwt® < S hlup 1wl

and by Gronwall's inequality

2

t
(10.6)  |w(t)] 5|w(0)l2exp%& llug fi2ds..

Since |w(0)] = 0 it follows w = 0. The theorem is proven.

This theorem together with the existence theorems settie the situa-
tion in the case of two-dimensional Navier-Stokes in a satisfactory
manner, If ug is in H there exists a unique global weak solution. At
time O+ (i.e., for any t > 0) this solution becomes strong provided the
forcing term is in H. Genuine weak solutions are generated only by
singular forcing terms.

In the three-dimensional case, the uniqueness of the weak solutions

is not known. What is known is the uniqueness of strong solutions.

Theorem 10.2. Let g C H9 be open, bounded, of class C2. Let
f st(O,T;H) and uy eV. Two solutions belonging to 2o, ; (AN N
C,(0,T5V) of (10.1), (10.2) must coincide.

Proof. One proceeds as in the proof of Theorem (10.1). The term

B(w,uy,w) in (10.5) can be estimated by {(6.9) with Sy = Sp =s3= 1/2)
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[Bw,upam)] < clul [hul] lul[/2|au}t/2
The equation (10.5) yields
d 2 _c
(10.7) G 1S < lupll faupljul?.
From Gronwall's inequality
2 2 t [
WE)]® < w(0)1% exp S llug(s)] JAup(s)]ds

Since ujye L=(0,T;V) N LZ(O,T;JD(A)) the integral is finite. The proof

is concluded by noting that w(0) = 0 implies w(t) =0 for 0 <t < T.

Remark 10.3. a) It is clear from this formal proof that we can assume
that only one of the two solutions is strong, the other being only a weak
solution: 1in other words, strong solutions are unique in the larger
class of weak solutions.

b) The method of proof gives sufficient conditions for uniqueness. For

instance, estimating the term B(w,uz,w) differently

C
18(w,upw) | < w2l Bluy Il < 3wl + S5 wiBu it
Vv

we obtain gf-lwlz < £—3—||u2||4|w|2 and therefore, uniqueness provided

v
6 Nuplidt < =, i.e., upe L40,T;v)

The rest of this sections will be devoted to a few of the aspects of
the basic question: do solutions of three-dimensional Navier-Stokes
equations lose regularity or not? Suppose ug is a very nice function,
say ug €V. Suppose QCIR3 is a bounded set with smooth boundary.
Moreover, suppose that the driving force f is time independent and very
smooth, (e.g. f = 0!). Then we know, for fixed , > 0 that there exists a

solution u(t) for 0 <t < Ty of (10.1), (10.2) which is
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a strony solution, i.e., uge Cw(O,TU;V) N LZ(O,T;ﬁ(A)). In particular

sup [lu(s)]} is finite.
0<S<TU

Let T > TU' We know that, starting from Yo there exists a weak
solution o eLz(O,T;V) r\Cw(O,T;H). Moreover, from the preceding Remark
10.3 a) it follows that U and u coincide on [O,TOJ. Let us consider for
fixed Yys f and y the maximal time of existence of a strong solution
Te = Max{T > 0; there exist u«€L®(0,T;V) N LZ(O,T;g(A), solution of
(10.2), (10.2)3. Because of the uniqueness of strong solutions if Ty <
then 1im sup [fu(t)}f = » and sup Jlu(t)|| < = for all Ty < Tx. Indeed,
if lim ;up*uu(t)n < « then fo:<lg appropriate constant ¢ and t as close

>
to T« as we please we would have [fu(t)|| < c. From the local existence

theorem (Theorem 9.4) we would be able to find v({s) solution (10.1) and
v(0) = u(to) eV, The solution v(s) of (10.1) would be a strong solution
defined for a time interval [0,T,] whose length depends on the size of

{f] and of |[v(0)]| = flu(tg}ll (see (9.32)) Since {lu(ty)|| is bounded from
above as tU + T the corresponding T0 is bounded below, i.e., can be
chosen uniformly for tO near Tx. If Ty - tO < TO, we obtain, since f is

time independent, a strong solution U(s) =v(s +t of (10.1) which in

o)
view of Theorem 10.2 coincides with u for t < T,. We were able thus to
extend u{t) beyond T, (namely to Ty + tg > Tx) contradicting the
definition of Ti.

We see thus that the quantity |ju(.)]|| becoming infinite is a
necessary condition for loss of regularity. One could ask oneself: why
identify "regularity" with “strong solutions"? After all, a strong solu-
tion is not yet a classical solution of the Navier-Stokes system. The

reason is that if a solution is strong then u(t) will be as smooth as uy

provided the boundary j3q and f are smooth enough.
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We will treat this question in absence of boundaries. In this case,
as we pointed out in Remark 4.13, the operator A coincides on its domain

with (-a)P = P(-a).

Lemma 10.4. Let u,v be two finite sums

u= 73 n ukexp(gfl <X,k>)

kel
. 241
v = v, exp(—— <x,k>)
cebgn VK L
i ; = - T = 7 = n -0 =
satisfying uy = vy = 0, U = U s vy =V (uk,vk €C") and <y ,k> =0 =
wisk>. let s > g— be a real number. Then, denoting B{u,v) = Plu.w),
we have the estimates
. 0 s+l
(10.8) |AS/ZB(u,v)| <cL 2 |A5/2u||A 2 vi, for s > %
s-1- n
(10.9)  [(A®B(u,v),v)| < cL 2 A2 a2, ir s > Da .

2

Proof. Without loss of generality we may assume L = 1 since (10.8) and

(10.9) are scale invariant. Since A and P commute we can estimate the

left hand side of (10.8) as  sup (AS/ZB(u,v),w)
weH
[w]=1
AS/ZB(u,v) = P(-A)S/Z(U-V)V

since Pw = w we have

(A Z8(uv) ) = (=% Z(u) )

Now
2i<x, k>

- = V 211
(uevlv k)éZ"( NI

2oV je
J+zk Yy

J

SO
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(A%2B(uv) ) = I wo(al e ?)e
Jrerk=0_ 9 27k
Jrgsk eZ

(241)

Now we use the inequality
(10.10) {3 + 2] < (13l +1eD)® < € L1 + (2l

valid for any j,ge H@, a > 0. The first part is trivial and the second

o
is just the boundedness of f(x) = e+ 1)7 , x > 0. Therefore we
1+ x%
estimate

LA 2B ) 0] < (2005, 1 Qugliv I 1alTil® + 131°]
Jj+etk=0

5 35+l s+l S
e CS(J+2§ =0|uj|(lvl||£| el )+ J+sz=0|v2H2’HujHJl w1
s+l

s+l 2 s+l
(27) cs(jtiznlqu)lwllA v + (2%)

A

e Eznlvlllzl)(IWIlAS/ZU|>-
[

A1} we need now is to observe that In |”j| < clAs/zul and
st Je

lellv i <cla?vl.  Indeed,
g el 2

5 lqu =3 |J|_S|J|S|uj| < Q1 m-ZS)l/z(z ljlzslujlz)l/z < ClAs/2ul
J J
since 25 > n. Also
. -5, s+l -2s.1/2 2s5+2 2.1/2
eliv | = 2 I3 v | < 2 3 v
DIVl = ™l s (D 1T ECT el 1)

s*1
<clA 2 vl .

This proves (10.8). Moreover, we note that (10.8) is true for s > n/2.
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Now for the proof of (10.9). We have, since (B(u,As/zv),Az/zv) =0
(ASB(u,v),v) = (AS/ZB(u,v) - B(u,AS/Zv),AS/Zv).
We will prove
(10.11)  |A28(u,v) - B(u,AS/Zy)| < c|AS/2y||AS/2y|

Again we check (10.11) by estimating sup I(AS/ZB(u,v) - B(u,AS/Zv),w)
fw]=1

s/2

(A 28(u,v),w) = (B(uv),A% %) = (20i)(20)° ) cug o < w11l

J+k+g=0

B0 = (2ai)(2n)® T ko > [k
Jtk+g=0 J L

Taking the difference

(10.12) (A% Z(uv) - B(u,A% %) ,m)

= (2ni)(2n)® 7 <o (el kD).
rk¥e=0 J £
3ok, ez™o0

Now, for any s > 1 there exists ¢, such that
S s s-1 s-1
(10.13)  |1el® - 1%} < egle - mitle - al®h 1ol

for any g,ne ],

Indeed,
1
s s d s
[el™ = {nl” = é gt tlg - n) + nl7dt
and

d s _ s-1 <t{g - n) *+ns £ - n>
— |t - + = t - .
gt I1tle = n) + al s{t{g - n) + nl (e = ) * nl

Thus using 0 <t < 1 and (10.10)
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d -1
Ige 1t = n) + al®] < sle - nllts - n) + gl°

s-1 s-1
<egle - alfle - vl a EY R

Now in (10.12), |2} = |J + k| and using (10.13) with £ = j+*k, n = k we get

1A 2B(u,v) - B(u,A2v)m)] <
s+l ) .1 5-1 s-1
< (20)7 e J+k2 o LatTugbbklivi diw 1T131°77 + k]
Kye e2™0
s+l S
(25)7 e J+E+g=0“| futhe Lkl v |

+ (2")s+1 c

U RIICAIEIIERE

s Jtktg=

Let us estimate the first sum:

1 Bl H kbl = kv FINTRITAN

Jtk+g=0
We get, thus

R INIHE A I ullul 1ol

Similarly,

21wl .

RN N T I TR jzeznmlujnm

J+k+e=0

: n
Now since s > 7 + 1 we have

2.1/2 |k|2-zs 1/2

z\o
s/zvl.

PECIE A L )

"\o "

: (kzez"\olklzsIV

S 1-s 2s
Lkl St Lk f(kﬁz"\o““ vyl

\2)1/2( z n\olk‘Z-ZS)l/Z <c|A
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This means

(10.39) ]Ikl < aA), s> B

The proof of (10.11) and therefore of (10.9) is complete.

Remark 10.5. Estimates of the type of (10.8), (10.9), and (10.11),

suitably modified, are valid for IR replacing 1", the unit torus.

Now we are going to make more precise the statement about higher
regularity of strong solutions. Let us return to n = 3 and assume that f
is (for simplicity) time independent and ug.f, are smooth, Let us con-
sider the periodic case and fix y > 0, L > 0. Let us assume that u(t)
solution of (10.1), {10.2) is a strong solution on [0,T]: u eL®(U,T;V) N
L2(0,T; B(A)). Let us first assume that f,ug cHS(T5)3 with s > 3/2.
Since the estimate {10.8) is valid for s > n/2 we get from (10.1), multi-

plying scalarly by ASu:

st -3 sl
A R L R L I TR T TS
Using by now familiar manipulations we deduce that
s+l
a{‘|AS/2U|2 + olA 2 U|2 < C 25 3lAs/2ul4 + lAS/szZJ-
- v
Thus by Gronwall's inequality
st
(10.15)  ue L°(0,T; B(A%2) ~ 12(0,T; 8(A 2 ))

provided u e L2(0,T; D (AS/2)). If 3/2 < s ¢ 2 then u ¢ L2(0,T: p(A)) N

LZ(O,T; b(AS/Z)). It follows that, if u is a strong solution with ug,
_s+l

f e HS(T3)3 for s €(3/2,2] then ue L=(0,T; B(AS/2)) N (2(0,T; P(A
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In particular u(t) is bounded in HS. Now, if s €(2,5/2] then

s+l
st =5 - %— (%32] and therefore a strong solution ueLz(O,T; B(A z )) .
: s'41 s 1 s .
Since VR it fol]owgiirom (10.15) that
u €L7(0,T; D(AS/Z)) ) L2(0;T;Q(A 2 )) for s e(2,5/2]. We can go on

like this forever.

These were formal considerations but can be easily made rigorous.

Theorem 10.6. Let s > 3/2. Assume f,u; e D(AY?) = v s(13)3,
Assume that u(t), solution of (10.1), (10.2) (periodic case) is a strong
solution, i.e., u €L=(0,T;V) M L2(0,T; P(A)). Then

s+l

wel®(0,7; B(A¥2)) A 12(0,T; B(A 2 ).

Corollary 10.7. Let s > 3/2. Assume f,uj b(AS/Z). Then a necessary
and sufficient conditions for a weak solution u ¢L®(0,T;H) N LZ(O,T;V) of

(10.1), (10.2) (periodic case) to belong to
1+s

L™(0,T; 5(A%2)) A 12(0,T; (A 2 )) s that ue L2(0,T; p(al/2)),
Proof, Clearly, if s > 3/2,

L7(0,T0(882)) m 120,75 p(AY2)) ¢ L%0,T; p(AYD)).

1/2)) s/2)’

Reciprocally, if ue L4(0,T; DA and uo,f e p(A s > 3/2 then

formally
2
d 2 21 f
(10.6) S fhul? + olaul? < 2 Soudu2.
v

T

Since | ||u“4dt < = we deduce that u is a strong solution on [0,T]. The
0

rest foliows from Theorem 10.6. To make this into a bona fide proof we

observe that, because of the local existence theorem (10.16) is true for

printed on 2/10/2023 4:11 PMvia . All use subject to https://ww. ebsco. conterns-of -use



EBSCChost -

Further Results Concerning Weak and Strong Solutions 93

t ¢ T,. We use the Tocal existence and unigueness theorem to prove
sup{TU > Oju is a strong solution on [O,TO]} > T. We omit further
details.

We presented Theorem 10.6 and Coroliary 10.7 as justifications of the
importance of the question: do strong solutions lose regularity? We do
not, as yet, know the answer to this question. We saw that loss of regu-
larity occurs only if Jlu(t)]|| becomes infinite. The set of singular times
of a weak solution is clearly of Lebesyue measure 0 since JT Hu(t)nzdt is
finite. Actually more is true: The set of singular times of a weak solu-
tion has Hausdorf{ dimension not larger than 1/2.

Let us assume that ug eV and feH (for simplicity). Let u(t) be a
weak sotution of (10.1), (10.2). Assume that u(to)e Vv for some ty. Then,
the local existence theorem ( Theorem 9.4) and the uniqueness result
(Remark 10.3 a)) imply that u‘[to’t0+T0] is a regular solution

(1&.,ueLWtD¢&ﬂﬁV)ﬂ LQQV%+%,bM)) for some positive T

depending on Hu(to)“. Actually, from (9.32) it follows that

2
2 uity)
|f o't -2,
(10.17) “*LTU(l Y 37 ) > ol + YRV
v Al v Al

For each ty such that [[u(tg)]| is finite we consider a maximal
interval 1 € {0,T] on which u is regular. More precisely, I maximal with
the properties: 1 is an interval included in [0,T], tg€ I, and for any
closed interval JC I, ulde L=(J,v) M LZLJ,D(A)). The existence of a
maximal interval with these properties follows from the fact that the set
of intervals with these properties is nonempty and is inductively ordered
under inclusion. 1 is necessarily open at the right end if the right end
is not T. Clearly there are at most countgp\y many distinct intervals of
this type, IJ, aqq the measure of [O,T]\ LJ Ij is zero., {This is

obvious since g \lu(t)H2 < = and thus {lu(ty)]l < « for almost all t;).
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Let I be one of the intervals IJ. From (10.17) it follows that for any

toel nu(t )u2
- J_l_ 0 -2
(b - tg) (1 + ) 2 (1 )
v )‘1 v )‘1

if b is the least upper bound of I. It follows that

2
nulta)n 2
(10.18) Locqr —2 a2« L 1/2
Jb—.—t(‘)'( vzxi/z)” ( v“xf’z)

Integrating (10.18) on 1 we get

1/2
2|1, K1+~ 1,2{ lu(tg) Ii2dt)
J
Summing over j we obtain
1/2 1 T 2
(10.19) 2 |1 | t = 1/26 Jluljedt) < w.
v )\1

Let X C M be a compact subset of a metric space. We define the

d-dimensional (outer) Hausdorff measure of X by

d : d
(10.20) ”H(X) = Jim “H,r(x)
r >0

where

(10.21) SIROE 1nf1 zr | xc UBV

B; open balls in M of radius r; < r‘}

The Hausdorff dimension of X is
. d
dH(X) = inf{d > 0 | “H(X) = 03}.

Iet us consider a weak solution u{t) defined on [0,T] of (10.1), {10.2).

EBSCChost - printed on 2/10/2023 4:11 PMvia . All use subject to https://ww. ebsco.conlterms-of-use



EBSCChost -

Further Results Concerning Weak and Strong Solutions 95

Let {IJ} n be the collection of maximal intervals of regularity in
J e

[0,T] described earlier, Let us denote by aj and bj their ends:

(aj,bj) < Ij C [aj,bj).

Clearly aj and bj are singular times, in particular, Hu(bj)“ = » (if you
prefer lim sup Ju(t)]l = + = ).
t«»bj

Theorem 10.8. Llet u be a weak solution of (10.1), (10.2) on [0,T]. There
exists a set E, closed, of 1/2-dimensional Hausdorff measure 0, outside

which u is reguiar, i.e.,

2

2 LOTE A D(R)).

u Ly ((0,H\E;V) O L
I[O,T]\E ¢ loc \

® o]
Proof. E will be defined as E = [O,T]\ LJ 1. where Ij on the maximal
J=1

—Q ('

intervals of regularity constructed above and means interior of I. 1In

order to compute the 1/2-dimensional Hausdorff measure of E, let us first
make the observation that in the definition of u: we can use closed

intervals instead of open intervals in the case the metric space M %s R.
Let then m be a positive integer. Let E, be the set Em = [O,T]\ }:{ ?j;

Ep D E. Clearly Ej is the union of a finite number of closed intervals

3

E_ = k{m
3

" . The intervals Kgm) are closed and disjoint, Since the
j=

—

o

Lebesgue measure of L_) I‘j is T it follows that the measure of any of

3=1
I3 . . .
the Ké )‘s (i.e, its length) is not larger than the sum of the measure of

the IJ that touch it., From the construction of the K§m)'s if an inteval

I. with j > m+l touches a Kim) then it is included in it, Thus, the

J
sets N = g5 >l IJ.f\Kim) Ay = 32wl I CKS“)

are
. }
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disjoint. ©Denoting by |F| = the Lebesgue measure of F we have

(m)
IK!L i Sje):N(m)“jl
Thus 3
LA
=m
and also
(m),1/2 1/2
IK!L | SjezN(m)lel .
Then
m
1/2 1/2
[k{my /2 1, — 0.
zzl L - '>x§+ll e
Ka

Since L) Kgm) is a cover of (E with intervals of radius less than ¢,/2,
e=1
we proved here that

1/2 3 1/2
egl® < 3151

In view of (10.19), g »0 and thus 1/%(E) = 0.

The next result shows that if the enstrophy |lu(t)||Z of a solution of
the three-dimensional Navier-Stokes equations (10.1) becomes infinite in
infinite time then there are solutions U(t) of the same equations for

which the enstrophy becomes infinite in finite time.

Theorem 10.9. Let u{t) be a solution of the three-dimensional Navier-
Stokes equations (10.1) in a domain g C IR with 2 boundary. Assume f ¢H
is time independent (for simplicity). Assume u(t) is a strong soution for
each T> 0; u(0) = uge V; ueL™(0,T;V) A L2(0,T; B(A)) for all T > 0.
Assume also that 1im sup |lu(t)|| = + =. Then, for any T; > 0 there exists
Vg€ V such that the sglslion to (10.1) having vg as initial data blows up

before T, > 0, i.e., v is not a stong solution on [O,Tl].
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Proof. We use (9.11) which is valid for 3-dimensional Navier-Stokes

too. Let tJ > © be such that 1lim Hu(tj)n = o, From (9.11) we find
Jarw

ay ‘[tJ’Tl’tJ] such that
2 1 =
Hu(aj)ll < T + K, =K
for appropriate constants Kl’ Kz ,K which are j independent.
Passing to a subsequence we may assume that u(aj) converges weakly ir
V and strongly in H to an element Vo of V. Now let us consider the func-

tions v (s + a

3 i i)
Navier-Stokes equation (10.1) with initial data vy eV. By the local

s) =u and the function v(s) defined by solving the
existence theorem v(s) is a strong solution for some Ty = Tylllvglh.

Our claim is that v cannot be a strong solution on [O,Tl]. Indeed,
assume by contradiction that u is a strong solution, Forming the
differences wj(s) = vj(s) - v(s) we have

w. + yAw. + B(w

d =
dt j i J-’V) + B(V’WJ-) + B(wj’wj) -

wj(o) = vj(O) - Vge

Taking the scalar product of the first equation with wj(s), we get
l d 2
S 1%+ w g ()17 < dliv Il w172 1w | 12

<3 w2 + S v itingl?
\)
From Gronwall
2 4
. < |w, ds
|wJ(t)] < |wJ( 2 exp é |vH
Tl
Since by assumption A llv“ads is finite and vj(O) - vy »0inH it

follows that wJ(t) > 0 in H for all te [O,Tl]. Also since

IROIEE g llw(s)|i2ds <T<§ W li*w;(s) 12
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T
it follows that | \le(s)uzds tends to zero, Thuslle(t)H » 0 a.e. for
0
te [O,Tl]. Now
v T < hwy (el + Hiv(e)

SHwgledft +livik = wjled ]+ v
L7(0,T,5V)
Take any te[0,7;] such that ||w;(t)|} < 1. Then ij(t)u < l4r. By the
local existence theorem , (Theorem 9.4) there exists a time interval

[t,t+T,] with T, depending on r and |f|, v, Ay only, but independent of t
2 2 1

such that

V52 < /2 v I2 + 1) < /201 + /)2 + 1)

for all se [t,t+T2].

Let 1 be the set of t ¢[0,Ty] such that 1im ij(t)u = 0, Clearly

J + w
there exists finitely many tie I, 1 =1,...,m such that

m
LTO’Tl] C $;{ [ti’ti+ Tz] where T, is defined above. Therefore, there

exists jy 2 1 such that for te {0,7,3, J 2 Jg» ij(t)||5 ¢, absurd, since

“Vj(tj - aj)H = ““(tj)“ > @
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fet us consider solutions of

(11.1) 9%—+ vAu + B(u,u) =

d

(11.2)  u(0) = yy

where the problem is set in the periodic n-dimenisonal case (n = 2,3).
The function f is, for simplicity, assumed to be time independent. We
recall that the period of the functions u{t,.) is denoted by L. Let us
assume that fe B(AS/2) and uge B(AS/2) for some s > 1 + % . Let us

multiply (11.1) by ASu and use (10.9):

s-1- o
(11.3) 3 2 (a2 1A% %) oL 2/

Let us define the scale independent quantities

v,
-5t
L2

(11.4) T

n
s- 04
2 2
(11.5) ys(T) L - IAS/Z L r)l

S- %% +3
(11.6) g = Sy (A% %1).
v
Multiplying (11.3) by L25-n+4/v3 we get
d

(11.7) G-y la) € g + clyglan)?

99
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(In order to obtain (11.7) one neglects the nonnegative term

s+l
-~ 9 l_25-n+4 o . o
viA © ul. —3 and divides by /¥.) Let us drop, for simplicity, the

v
index s. We infer from (11.7) that
dy
_i_l.’__ < 1'

(11.8)
g+ eyl "

Integrating between 0 and ¢ we obtain

C T
arctan\/g y{1) - arctanJ;y(O) < ;/c_g‘ T.

Therfore, if

(11.9) fcg « + arctanJg-y(o) <2

we obtain

\/% y{z) < tan(fcg ¢ + arctan ng(o)).

Using a well known trigonometric formula

- tan(4cg ©) + < y(0)
(11.10) |G yla) < - {; .
1 - tan{ 4cg ‘)*/%y“’)

If g = 0 we get, directly from (11.8) that
(0)

) (o < Rk

We get, in the g = 0 case, if

(11.12) ¢y(0)c < 1/2

that

(11.13)  y(x) < 2y(0).
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This means, going back to the scale dependent quantities that, for f = 0,

(11.14) (A% 2u(t)] < 2)a%%u(0)|
provided
n
s- 5 -1
1as) o 2 YAl < 5.

Note that condition (11.15) is independent of y. If g # 0 then we

find ¢ > 0 such that, if

(11.16) cy(0)r < 1/4

(11.17) g «

A
Iy

then

(11.18} y(r) < 2(279 + y(0)).

(The number ¢ is determined here by the requirement tan x < 2x for

0 < x < ¢.) Going back to scale dependent quantities, we get that

s/2 5/2 s/2 ‘

(11.19)  |A%%u(t)] < at|A%of] + 2|A

provided that

1+ 8 s 1
(11.20) t 51\11n{}L 1AS/2y |'1L 27 e a%/2 7122

Estimates of the type (11.19) and the vanishing viscosity limit were

obtained for the L = » case in ([K1]).

Theorem 11.1, Let fe p(AS/2) and uge p(AS/?) for s > 1 + 7 and A

defined in the L-periodic, n-dimensional case. There exists T > 0 depend
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ing on L, s, ug, and f (T given by the right-hand side of (11.20)) such
that for every v > 0 and corresponding solution u(t) = uv(t) of (11.1) and
(11.2) , the bound (11.19) is valid.

Moreover, if s > 3 + g-then as y converges to 0 the functions u,

converge uniformly in L®(0,T; D(AS'/Z)), 1+ % s' <s-2, to a function v,

a solution of the Euler equations

dv _
(11.21) w B{v,v) = f

(11.22) v(0) = uq

Proof Let us take two solutions uv(t) and uu(t) of (11.1}), (11.2). Let
us assume y > y. Then forming the difference w(t) = uv(t) - uu(t) we

obtain the equation

LN vAw + Blw,u } + B(u ,w) + B(w,w) = (y - v)Au ,
dt u u M

]‘W(O) =0

Taking the scalar product with A2y and using (10.8), (10.9) we obtain

s s+l S| s s s
1d 2 2 2 2 2 2 2 2 2 3
= = |A < k[]A A + |A A" w|® + A
> ar VA wWlT k(] u LA™ wl | u i ! 1A% w7
Si SI
= +1 =
2 2
+ - A uullAwl-

The constant k depends on L, s'. Now since s'+2 < s we can bound

' [ '
34.1 s i

2 2 2t 2
|A ul and thus [ASu |, |A u | uniformly on [0,T], using
" " n
(11.19). Dividing by |AS /Zwl we get for y = |AS /2w| an inequality of
the type

g%gk(y+y2+v)
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for t ¢ [0,T]. Multiplying by e"Kt and considering z = e'Kty we get

(11.23)

for t < T, and some M depending on L,T. This inequality is of the same

type as (11.7). Therefore, if y is small (see (11.17)) i.e., if

2
(11.24) v < ==
- wlrl

then from (11.18) we deduce
(11.25) z{t) < 4TMy

for all t ¢[0,T].

Form (11.25) we deduce that

T

(11.26) lAS'/Z(uv - u ()] € (atMekTy,

for ali t < T and y < 52/(M2T2), b < ove

The inequality (11.26) enables us to pass to the limit in (10.1). We
omit further details.

The same technique is used in [C1] to prove that if uy is smooth
enough, and if the solution v(t) to the Euler equations (11.21), (11.22)
is smooth on an interval [0,T1] then the solutions u, of (11.1), (11.2)
will be smooth on the same interval [O,Tl] for all 0 < y < vy where vy is

a positive number determined by the solution v(t).
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ANALYTICITY AND BACKWARD UNIQUENESS

We discuss first analyticity of stong solutions as O(A) valued
functions of time ([T.2]). Let us consider a Galerkin system

du

m =
@t \,Aum + PmB(um,um) = me
(12.1)

ug(0) = Palo

where feH, uge V, m > 1 and the system originates from any of the n = 2,3

Dirichlet or periodic cases.

We want to extend (12.1) for complex t. In order to do so we need to
complexify the spaces H,H.,V, B(A) and the corresponding operators. For
instance, the complexification of H is
Hg = {uy + fup| upeH, uyeHy.

The scalar product will be

lusvde = Quy +duy, vy + v, e = (ugvg) + (uy,,) + i(uyv ) - (uv,)]

The system (12.1) admits a unique solution u_(t) for t in a complex neigh-

il
borhood of the origin. Since f and ug are real, the solution ug{t), for t
real, is real and coincides with the usual Galerkin approximation. We
want to prove that the complex domain of definition of ug(t) can be chosen
independently of m and that a a priori bounds can assure passage to the

limit inm > «,

104
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Let us fix g e(- % , %) and take t of the formt = se'® for s >

We want to compute

d i d i i
Sl (se'®) 12 = 5o (u (s’ (se'®)).

We get
X . du : du
1d. igy 2.1, ie_m 1 Ty M
5 g5 Wuglse™ ™) 119 = 5 (e'” = LAu ) + 5 (ug,e PA g)
du
= Re e]e(—d-fm ,Aum).

Thus, muitiplying (12.1) scarlarly by Aug,(t) and by e18 and taking the

real part we obtain
1d i i 2
(12.2) §-a§l|um(se1e)|F + y COS g [Aum(se‘en
- ig
= Refe “L(B(u ,u ),Au de + (F,Au }c]}.
Now we use the estimates

(12.3) {{B(u ,um), Aum)cl < Cfju

3/2 3/2
0 1¥/2) Augl

ml
which follow from corresponding estimates for the real case.

The term involving (f,Aum)c will be estimated

2
(F )| € 2050 a2 v LT

v COS g
Also from (12.3) we get
c0s 2 C 6
(12.4)  [(BlugsugAu)el € 2522 [Au |+ s [yl
v (cos g)

We deduce the inequality

d i i 2
(12.5) gl um(se'e) i + v cos e]Aum(se19)

2t , ¢
- v COS § v3(cos

3 Il u(se'®) |5,
9
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The inequality (12.5) is valid for all the cases (n = 2,3, Dirichlet

or periodic). We see that on a time ray of fixed angle g the role of the
viscosity is played by y cos g.

We obtain a bound forllum(t)nz, t = sel® of the type
(12.6)  lup(t) e < /2(ugll? + 1)
provided t = sel® satisfies

4l ,
v COS g

< 1

(12.7) s
e+ nuouz)2

)
)3

v3(cos )

(see (9.31) and the proof of Theorem 9.4). (The inequality (12.7) is not
nondimensional.) Fixing the parameters |f|,v, "Uglh we see that (12.6)
amounts to a uniform bound for |ju ()|} for all m > 1 and t in a region

D = v,llugll,If]) € C described in (12.7).

The open set
D = D(wlluglh 1) ={t = seto | Jo] < w2,
0 < s af? 2 » 1 }
veos 6 Sicos )3 21 + nuouz)

is therefore a domain of analyticity of the functions ug(t). It is

symmetric about the real axis and thus is a neighborhood of all its real
points. The origin O belongs to its closure.

In order to obtain a priori bounds for |Auy(t)| for teD we use first
the Cauchy formula to obtain a priori bounds for || E;EIL Indeed, let y
be a small circle contained in D. Then, for t inside the circle

k

du u_(z)
(12.8) I e

dt T ylz-t)
and therefore

K
d'u
m k! 1/4

(12.9) I g S e 2 g )2

(r.)
Y
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Here rY is the radius of y and we used the estimate (12.6) for\!um(z)n,
Zey.

If M is a compact subset of D then denoting by = dist(M,3D) we
obtain from (12.9) the estimates

a*u

(12.10) | —2(0) 1l ¢ (_k'_k LA lluglI2)2/2

dt rM)

for all teM c ¢D and k = 0,1,2,... . In particular, taking k = 1 and

using the equation (12.1) we deduce that
(12.11)  Au(t)} < E

for all teM, m > 1. The positive number E depends on v, [f{, ljugll, the
set M, but not on teM, nor m.

The proof of (12.11) is straightforward; one uses the equation
(12.1), the estimate |B{up,up)| < qlumu3/2]Aum|1/2 and (12.10). Now we
can use {12.11) instead of (12.6) in the estimate of the Cauchy integral
(12.8). We obtain, for every compact set L a constant E; such that

k
d Uy

(12.12)  |A —
dt

k!
] < g =
- L rk

for all tel, k >0, m> 1, The constant r is smaller than the distance

from L to 3D and £ is the constant E of (12.11) for a set M such that
{zeC | dist(z,L) <r} =McCCD

We can pass to the limit in m. We observe that, since the domain
D{v./lugll, |f]) depends on the size of ||ug|l we can repeat this

construction with tyeR, instead of 0 as vertex. We obtain

Theorem 12.1 (Time analyticity). Let f eH, ugeV, v > 0. Llet o C R be

an open bounded set with 3q of class CZ. Then
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(i) If n =2, there exists an open neighborhood D of (0,=) in C such that
the solution u(t) of

du =

@t Au + B(u,u) = f
(12.13)

u(0) = Yo
is analytic u:D » P(A).

(ii) If n = 3 there exists Ty > 0 and an open neighborhood in C of

(0,7y), DTO’ such that the solution of (12.13) is analytic u:DT0 > (A},

Remarks. 1. The same result holds in the periodic case.

2. In the n = 2 case, we can allow ug€ H.

We are going to use this result in order to deduce backward

uniqueness of strong solutions.

Theorem 12.2 (Backward uniqueness) Let up,up be two strong solutions of

the Navier-Stokes system

Y+ vAu + Blu,u) = f

(12.14) ¢

(i) The two-dimensional case: We assume that f, ul(O), uy(0) are in H.
Suppose there exists tg > 0 such that uj{tg) = up(ty). Then uj{t) = uy(t)
for all t > 0.

(i1) The three-dimensional case: We assume that feH, ul(O), uy(0)
belony to V. There exists TO > 0 (a common time of existence and
analyticity of strong solutions) such that, if, for some tye [O,TO),

uy(tg) = uy(ty) then it follows that uy(t) = uy(t) for all te [0,7g).

Proof. From Theorem 12.1 (and the Remark following it in the case uy(0),

uy(0) belonging only to H) the functions ul(t), uy(t) are analytic in
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(O,TO) for the n = 3 case and in (0,») for the n = 2 case, If ul(to) =
u2(t0) then from the uniqueness of strong solutions to (12.14) it follows
that uy(t) = up(t) for t 2 ty. From the analyticity, ui(t) = uz(t) for

all t > 0. But ul(t), uz(t) tend strongly in H to uy(0), u2(0) as t ¢ 0.

Thus, ul(O) = "2(0) must occur, too.
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EXPONENTIAL DECAY OF VOLUME ELEMENTS

Let u{t) be a solution of the Navier-Stokes equations

du

(13.1) @’ vAu + B{u,u) = f

(13.2) u(0) = yy

Suppose that the initial data depends on a parameter ge IR,
Differentiating (13.1) with respect to this parameter we obtain the

equations governing the time evolution of infinitesimal displacements:

LA vAvV + B(u,v) + B{v,u) =0

(13.3) &

(13.4) v(0) = vo

In (13.3) the function u(t) is playing the role of a known coefficient in
the equation. Standard energy methods together with the a priori bounds
for u{t) described in previous sections will provide estimates for the
solutions of (13.3).

To fix ideas we will consider the two-dimensional Navier-Stokes
equations., The concepts that we are going to define and study in this and
the next sections are quite general. The common theme of these last
sections is the study of long time behavior of solutions to (13.1) or

similar equations. Let us denote by S{t)u, = u(t) the solutions to

110
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(13.1), (13.2). We view S{t) as a map from H into H. The following are

known properties of S(t):

Proposition 13.1.
(i)  S(t + s)uo = S(t)S(s)uO t,s 20, yge H
(i) lim S${(t)u, = u in H
ty o 0 0
(iii)  S:(0,») » P(A) is analytic
(iv}  S{t) is injective fort > 0
(v) There exists BZ = qu| |Jull < p} ¢ V which is an absorbing set,
i.e., for every upe H, there exists to(luol) such that, for t >
tlugl), Stthug eB‘;.

(vi) S{t):H » H are continuous, for t > 0.

Proof. Property (i) follows from uniqueness of solutions and the fact
that f is time independent. Property (iii) is a restatement of the result
of Theorem 12.1. Property (iv) follows from the Backward Uniqueness
Theorem (Theorem 12.2). Property (v) is a straightforward consequence of

the first two energy estimates:

(13.5) 35 i+ ul? < 1F11ul

(13.6) S ull? + olAu)? < f11Aul + clul YA ulliaul 32
We obtain
W) S e g < U8
. dt v T vy

From (13.7) we deduce first that

t 2
(13.8) v/ fules < LU (o - 6) + ju(s))?
5 251
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and also, using ||ujj? > x1|u|2 that
vt
1 2 “vA t
(13.9)  fu(t)]? < jugl % a7,
v )‘1
From (13.10) it follows that, for any up €, ift > to(luol) then
(13.10)  fu()]? < 2 ML

- 2.2 °
v

Now we deduce from (13.6) that
2
(13.01) G MR + olaul? < LD 4 e g2 jupt
v

If £ > ty we obtain, from Gronwall's inequality and (13.10) an a
priori bound on the growth of ||u/2 on bounded time intervals. Let us take

a time length of, say 2/vyy. Fort > tg it follows from (13.8), (13.10)

that
2
T o 2 2 2
| vip c lul2 Hu”zd <&, 2f]" f 2_,2f )
3 o3 G2 372
T v v \J).l 1 ")‘1 ")‘1

Denoting by G the nondimensional number

(13.12) 6= 4

vAl

we get that, for ¢ > ty(fugl)

2

v
LS ul? flul2ds < (8c)at

v

T

+
/
T
Then from (13.11) we deduce, using Gronwall's inequality that, for ¢ >

tollugl) and teflr,r + ;%I] we have

4
(13.13) Jlu(e)l? < Jlu(o)|)? e8¢67 + IS
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On the other hand, from (13.8) we infer that in any interval of length

1/vaps [£,t+41/va] with t 2 ty we find at least some ¢ such that ||u(1)|l2 <

6v23,62.
Now let us cover [tg,=) by the intervals [tk,tk+1] where
t, = t,+ =%, k=0,1,.... In each such interval, we find
Kk 0 viy

e [Eyotisq] such that [lu(g)l2 < 622,62,
Since the distance between successive Tk's does not exceed 2/vx1 it

follows from (13.13) that, for t e[q,7y4q]
2 . 2, 2(c.8c6%
(13.14)  Hu(e)|® ¢ vox 6°(6e + 4).

Therefore the estimate (13.14) holds for all t > ¢y and in particular for
a1l t 2 tylfugl) + 1wy =ty Lt )
~v
Since the condition determining ty was |u0|2e 170 < 1 s

property (v) is proven with , given by
1/2,,..8¢6" . ,\1/2

(13.15) p = VA G(6e + 4)

and t, given by

(13.16) Vxlto > log

If f =0 then for any uy, S{t}uy tend exponentially to zero in both
the H and V norms.

For uge V, let us denote by A(t) the operator
(13.17)  A(t)v = vAv + B(S(t)uo,v) + B(v,S(t)uO).
A proper notation would be A(t,uo). Thus (13.3) can be written as

dv
(13.18) @t A(t)v + 0.
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Proposition 13.2. Let uge€ v, Vot H. There exist constants kl,kz
depending on v, nuon, |f] such that the solution v(t) to (13.3), (13.4)

satisfies
(1) v is a real analytic f(A) valued function for t > 0
klvxlt
(11) v(t)] < e |v0| forallt >0
At
(i) M /2,1 Yivgls forall t > 0.

=)
m

Proof. We will give only a sketch of the proof because it is very similar
to the proof of the corresponding result for S(t)uo = u{t). The existence
of solutions follows from linear theory. One can easily devise a Galerkin
approximation, also. The estimate (ii) follows from the first energy

estimate
2 nu"2 2
(13.19) dt |v| + ufvli® < ¢ jvic.

Thus kl can be chosen to be

uS(t)uon2
sup =
t >0 vy

—
o

The proof of (v) of Proposition 13.1 shows how to bound kq in terms of

g0
and . The estimate (iii) follows from the second energy
v4/— v).l
est1mate:
1d

£ NI+ vlav]? < (B(v,uAv) |+ [Buyy AV)|

clulliviY 2av 1372+ clul V2 e/ 2 av | 3/2

1A

< C(u¥;4 + Lul M2y 2)||V||1/2|Av|3/2
A
< %"AV|2 v S e Ll Y2 puit 2302

<

NE
M
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The second energy inequality is
d
(13.20) ¢ w I vIAV|2 < Kyvag v 1

with

1/2
k, = sup | ngn + Ll lHUH

vz,
2 7z ]

t >0 viy vip
From (13.9) and (ii) we obtain

t; ) , "2
v { “V” f 2k1(\))\1)|vo‘ é €
1 1

2k, vt 2k vas t
TP G s |v(0)l2 e 111

Thus

t
2 2k, va, t
sz v IVIE s fvglPe L
1

Integrating (13.20) we get

eI - IVEDIZ < ko fz lIvif?
1

Using (13.21)

2k VA t
2 1vM172
v (EI2 < IVIEDIE + kynglvgl© e .

t
Integrating é 2 dtl we obtain

2k 2 2k

1Mt
+ k2A1t2|v0| e

2
Vol IR
tqu(tZHF e .

Multiplying by v:

HV(tz)ﬂz 2k

t
2 1Vt
A] f IVOI (1 + kzvkltz)e

vxltz
which is (iii).
Let now 4 be a smooth function defined on an open set D C H”, N>1

and taking values in V. Let g4 be the image of 4. Let 3 = S{t)gg. Let
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us denote by (.;.) and |.| the scalar product and norm in AN (the N-th
exterior product of H). The volume element in It is

3 2 3

ey (S(ala))a £ (S(1)gla)) ~ wev n o (S(E) ol ey

where dya = d"‘l d“N is the volume element in IR'. The functions

v;(t) 3—1 (S{t)gla))s i = 1,2,...,N

satisfy the linearized equation (13.3) along u(t) = S(t)¢(a). Therefore
in order to study the time evolution of the volume element of an

N-dimensional surface transported by S(t) we are lead to study the time

evolution of
|v1(t) N ...AvN(t)l

where vi,...,vy satisfy equation (13.3) along some u{t) = S(t)uo.

Let us recall the formula

(13.22) (le SeeAVIWIA cean wN) = det(vi,wj)i 1,eeN°
J 1,...,N

If Viseee,Vy are elements of H we denote by Q(Vl’“"VN) the orthogonal
projector in H onto the linear space spanned by the vectors vi,...,vy. If

T:8(T)C H » H is an operator in H then we define an operator in ANH by

T

N TAIAIA ceeAl + INTAIAcee + IATIA saan T,

T will act on a monome ViA eeenvy as

TN(le ...AvN) = Tvlh Voh cesaVyt cee VA coun v, .

N 1 N
The following formula is proven in [CF1]

Lemma 13.3. let vy,...,vy be elements of H(T). Then

2
(13.23) (TN(le ...AvN);le ...AvN) = |V1l\ ...AVNI Tr(TQ(vl,...,vN))
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As a consequence we can write the equation satisfied by the Wronskian

IV, (E) A vee vy (2D

Lemma 13.4. Let vl(t),...,.vN(t) be solutions of

dv

i -
a_'—‘f A(t)Vi =0

1 vi(O) = v?

where A(t)v = VAV + B(S(t)uo,v) + B(V,S(t)uo) and uge V. Then the

i=1,...,N

Wronskian |v1(t)A ..-AVN(t)l is either identically zero or never vanishes

and satisfies

2 2
(13.24) Vyn e avy S VA ey 1 TRA)QY 5 eelvy)) = 0

lAﬁ_!
2 dt 1

Proof. The equation satisfied by via sccavy is

d
a0 (Vgn seenvy) + AGE)y (Viaeeenvy) =0

Thus (13.14) is a consequence of (13.23).

Denoting the lower order term in A(t) by
{13.25) L{t)v = B(S(t)ug,v) + B(v,S(t)uy)
we have
Tr(A(t)Q(vl,...,vN)) = vTr(AQ(vl,...,vN)) + Tr(L(t)Q(vl,...,vN)).

Now Tr AQ(vl,...,vN) can be computed, using again (13.23)

(A vlh...Athle...AvN)

"

(13.26) Tr AQ(vl,...,vN) = Vi
IVlA--.AVM
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Now the first eigenvalue of AN is N + Ao + eee + Ane Therefore

(13.27) Tr AQ(vqseeesvy) 2 Ap *oeee oy

Let us remark here that we could have derived entirely similar
results in V instead of H. The volume element would have to be computed
in AV, The orthogonal projection Q{vy,...,vy) will have to be orthogonal
with respect to the scalar product in V. The first eigenvalue of AN in
AW is stin Aot oeee Ty

From Theorem 4.11, we know that Aj > cojxl (we are in the

two-dimensional case). Thus

N(N+1

(13.28) A toees Ty 2 Gy 5 .

We will give lower bounds for

1 t

T é Tr(A(s)Q(vl(s),...,VN(s))ds.
From {13.24) it follows that

2 0 0,2
(13.29) lle...;\le (t) < |v1A...,\vN| exp(-tyN(t))
where YN(t) is a function depending actuaily on N, t, uy, v?,...,vg:
1 t
{13.30) YN(t) =% é Tr(A(s)Q(vl(s),...,vN(s))ds.
It is clear that a lTower bound of the type

(13.31)  yy(t) 2 waqcy

for all t >ty = tglllugl), and ¢y > 0 will imply exponential decay for
volume elements.

We will present two ways of estimating the averages

t
%é Tr(A(S)Q(v () .00,V y(s))ds.
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Let us first observe that, since B(S(t)uo, .) is an antisymmetric operator

in H the trace
Tr(L(s)Qvi(s),....vy(s))

is equal to
Tr(B(« ,S(£)ug)Q(v {s),eeumvy(s))).
Let us fix s > 0 and omit the dependence on s of various quantities, for
the moment.
Tr L(s)Q(vl(s),...,vN(s)) = Tr B(-,S(s)uO)Q(vl(s),...,vN(s))
N

121 B(‘V:l’ u, ‘P.i)-

Here Ppsees Py are an orthonormal family of functions o€V, (¢ i wj) =
84 spanning the linear span of vy(s),...,vy(s). The element
u = S(s)uu. A direct estimate would give

{8( ¢

U, @
1 1

i

A
e~ 2

N
| Y Bleo,u, ¢ <
= Y T

A

N N
¢ '21 Leillleiliiull = c _21 llesliffull

N
el ] Nesl? Y2 N2 ).
i=

On the other hand

-
et 2

Tr AQ(Vy(s),eeusvy(s)) = . llp 112 -

-
he~ ==

(Apireos) =
1 1 1

Therefore,

(13.32) |ir L(S)Q(vl(s),...,vN(s))

< N2s(s)uglle(Tr AQ(vy,...vy(s)))Y/2
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From (13.22) it follows that
1 t
't-é |Tr L(s)Q(vl(s),...,vN(s))lds

t
<tk { lis(s)ugliZds Y2 é Te AQY(5), ..y y(s))ds) 2.
Therefore
t t
%é Tr A(s)Q(vl(s),...,vN(s)) = % é Tr \,AQ(vl(s),...,vN(s))ds

t
é Tr L(s)Q(vl(s),...,vN(s))ds

+
ot

b1t Ana t S(s)u |2
fgé VMW““L-HN“Q)-ZT{é\ISUMIS

v

v

2 2
F g+ eeet W - t é ls{s)ugllcds

CAvA 2 t
0vA c 1 2
> -3 N(N+l) - ?; N '{é llS(S)UON ds.

Now, from the first energy inequality (13.7)

p 2, . 112 l”olz
T 6 f{s(s)ugll®ds ¢ 50—+ -
v g

v
We obtain

%éTr(A(s)Q (5),000s¥y(5))ds

[ 2
VM c
—— M1 - 5= N

v

c 2 lu
0 2
= Ny 7 (W1) - %— [6° +

vz(vxlt)

We take tg = tgljugl) to be defined by

(13.33) gt

EBSCChost - printed on 2/10/2023 4:11 PMvia . All use subject to https://ww. ebsco.conlterms-of-use



Exponential Decay of Volume Elements 121
We proved
A 2
(13.34) E—é Tr(A(s)Q(vl(s),...,vN(s))ds > Cszxl(N+1 -c3G )

for ail t > to(luol). The constants are ¢y = cy/4, cg = 4c2/c0, with ¢
the constant occurring in Theorem 4.11 and c the constant in the estimate

1Blo,u, ¢)] < clellle Hlull. The estimate (13.34) implies that,
(13.35) If N 2 c46%, then yy(t) 2 coNuags For t 2 tollugl).

This would mean that the exponential decay of volume elements would
start at dimensions > c362.

Actually, replacing the Sobolev estimates at one step in the preced-
ing argument by a Lieb-Thirring inequality yields an improvement. The

Lieb-Thirring inequality we refer to is the following [L-T].

Theorem 13,5 (A Lieb-Thirring Inequality). Let ¢g,..., ¢y be Hl(ﬂg)

functions. Assume that the ¢1's are orthonormal in L2:

[ o3(x) gy(x)dx = g4 4.

Then there exists a constant s independent of N, such that

P N
(13.36) [ (]| e;001%%x < ¢ by Ivo1%dx.
i=

i

i~ 2

1

We will use (13.36) with ¢;¢ V which implies v;€ Hé(g)z, QC ®

bounded. We return to the estimate of yy(t). We compute

N
B( ¢;5U, @.) =
1 il

e 2

Tr L(s)Q(vl(s),...,vN(s)) = / <yu(x) ?i0 @3>
Q

i 1

Therefore
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N
110 L8100 ()2 eeavy DI € [ I T 1 w3001 %)ex

e 1Ml

1A
—
—_
=
s 2

< with Lieb-Thirring 1/2( z lloi2)/2 ful)

1/2 IIs(s

ct/z Jugll.

(Tr AQ(vl(s),...,vN(s)))
Thus the Lieb-Thirring inequality (13.36) allows us to replace (13.32) by

(13.37)y |Tr L(s)Q(vl(s),...,vN(s)H

1/2 1/2

S(shugli(Tr AQ(vl(s),...,vN(s)))

Notice that the difference between (13.32) and (13.37) is in the absence
of N/2 in (13.37). (Aslo the constant is now the one appearing in
(13.36).) We can repeat exactly the steps which followed (13.32) using

(13.37). We keep the same definition (13.33) of t; and get that
‘0 2
(13.38) YN(t) > “Alfz_ N{N+1) - cLG ) provided t > to(\u0|).

We proved

Theorem 13.6. Let o C H@ be bounded, open, of class Cz. Let uge V. Let

S(t)ug = u{t) be a solution of the Navier-Stokes equations

du
o vAu + B(u,u) = f
u{0) = Uy
with fe H. Denote by G
o=,
v Al

Let N be a positive integer satisfying
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(13.39) N > 46

ic,
with ¢4 an absolute constant ( Cy = 2 JEL ). Let vy,...,vy be arbitrary
0

solutions of the linearized equation

dv

@t vAV + B(u,v) + B(v,u) =0

with initial data

2,0 i =
vi(0) = vieH i=1,..,.N
Then the volume elements {vi(t)s ...avy(t)| decay exponentially. More

precisely

)

exp(- 7= va Nt)

(13.80) v, () seenvy ()12 < WOa ceiavpl?

for all t > to(]uol) defined by

2
lugl™ 4
(13.41) t0(|u0]) =3 .
v )‘1 G

If G = 0 the exponential decay starts at N =1 and ty may be chosen

Now we will present an improvement of the result in Theorem 13.6 in
the case of periodic boundary conditions. The resuit will be that
exponential decay of volume elements starts at N ~ 62/3(109 G)l/3. the
idea of the proof is to compute everything in V instead of H and use the
Lieb-Thirring inequality used before together with another inequality [C2]
which is an L® generalization of some LP inequalities of Lieb [L1].

As we mentioned earlier we can compute volume elements in V. We

consider the equation

(13.42) g—‘{+ WAy + Blu,v) + Bl{v,u) = O
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along the solution u(t) of

== + yAu + B{u,u) = f
(13.43)
u(0) = ug

in the two-dimensional periodic case. Let N be a positive integer and let

v? eV for i =1,...,N. We recall the notation {(v,w)} for the scalar

product in V
((v.w) = (A/2 al/2y),

We consider the volume elements
2
ViA sesAV = det((vi,v;
livy il (v J))i,j = 1,...,N

computed for vi(t) = v,

i ; solutions of (13.42). Then, as in (13.24) we have

(13.48) 2 Mvia ceonnd + Hvpr e n v RTR(AR)QY (v, ) = 0

where Qv(vl,...,vN) is the orthogonal projection in V on the linear space
spanned by the vectors vy,...,vy. The operator A{t) is still given by the

expression
(13.45) A(t)v = yAv + B(S(t)ug,v) + B(V,S(t)uo)
but it is viewed as an operator in V. We need to give a lower bound for
1 b v
T é Tr(A(s)Q (vl(s),...,vN(s))ds.
Let us note first that, in the periodic case the identity
(13.46) (B{v,v),Av) = 0

holds for all v e D(A). The proof is done by integration by parts.
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Differentiating (13.46) we obtain
(13.47) (B(u,v),Av) + (B{v,u),Av) + (B(v,v),Au) = 0.
Let Areess Oy be a family of orthonormal elements of V
(13.48) ((#5, 93)) = &5,

such that their linear span coincides with the span of the vectors
vi{s),...,vyls). In order to compute Tr L(s)QV(vl(s),...,vN(s)) we use
(13.48):

v

Tr L(S)Q (Vl(s),-..,VN(S)) = (B(U, ‘P’I) + B( <P-i ’u)’A¢i)

e~ 2
—

1

B¢, (ﬂi:Au)-

i

1

]
I~y 2
e

i

Now, since we are in the periodic case

=z

N
'Qf(%’¢vm)=i%f(¢“vwﬁw

Let us denote by p(x) the function

N 2
(13.49)  o(x) = 'le ¢i(x)]

]:
and by g{x) the function

N 2
(13.50)  ox) = ] lvgy(x)IZ.

i=1

We have

v 1/2‘

L

1/2

(13.51) Tr L(s)Q u .
| of 2 1aul 43

(Vl(s)""’vN(S))l S lpl
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Notice that, since ¢ are orthonormal in V

)=

f(VwiNV¢J

iJ
and therefore from the Lieb-Thirring inequality (13.36) for (v ¢i) it
follows that
(13.2) 1o M2 o 3 Ao 2% = c(r m'v, (5) (s)1/*
. cle < c(igll @515 = o{Tr AQ7{v (8], (s .
On the other hand, in order to estimate Iple we use an inequality
(£C2]) of the following type:

Lemma 13.7. Let be a sequence of functions belonging

{eili=1,... N N
to B(A) and orthonormal in V. Let o be defined by o(x) = § |¢;(x)|%.
if1

There exists a constant, independent of N such that

N

i 2
Ae 7).
igllwli)

(13.53) fol < c(l1+ log =
L M

The proof of this lemma is rather technical and will not be given

here. We estimate the term |AU‘L4/3 by
(13.50)  faul 475 ¢ oY 4|
Now, combining (13.51), (13.52), (13.53), and (13.58) we get
(13.55) |Tr L(s)Q(s)]
< cqlAS(shugl (1 + tog - Te Mals) VA Te Aas) VL

This is the analogue of the estimates (13.32) and (13.37). We denoted,
for simplicity Q(s) = Qv(vl(s),...,vN(s)). Let us denote, in order to

alleviate the computation by
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(13.%)  x{s) =i—1Tr (AQV(vl(s),..,vN(s))).
Note that, in view of (13.28)

(13.57)  x(s) >

c
?g (N+1)N.

Let us assume that N is chosen such that

o
(13.98) 5 N(N+1) > 1.

In the following string of inequalties we will use, at some point,
the concavity of the function g(x) = xl/z(l + log x) for x > 1 > 1l/e (the

function g{x) is concave for x > l/e) and Jensen's inequality
1 b p b
gé g{x(s))ds < g(fé x(s)ds)

which can be applied since x(s) > 1 on [0,t]. The inequalities are as

follows:

t
% é Tr AQV(vl(s),...,vN(s))ds

t t
Ati({ Tr AQ(s)ds +-tl-<§ Tr L(s)Q(s) > (with (13.55))

At t
z%—l—é K(s)ds - cg [+ 109 x()) Akt AIMS(s ug) s
A t
VA 1/2(% A g(x(s))ds)llz

"

t 1t 2
—E—'é x(s)ds - Cs(f é lAS(s)uOl ds)
> (with Jensen's inequality)

t 1/2
=

t t
x(s)ds - Cs(tlg |A(s(s)u0)|2ds)”2(g(%é x(s)ds) ).

"W
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Let us denote

t
(13.59) cs(%of 1As(s)ug) Zas) 2 = o(t,ug) = a
and

t
(13.60) %({ x(s)ds = m(t) = m.

Then we have

t 3/4
1 v 1/4 1/2 m
S TP AQ (Vo (S)yeeesvyls))ds > ypam "(1+10g m) - S
t é 1 N Ivh ((Mog ) /2 vxl)
‘o
and therefore, since m > 7 N(N+1) > 1, we will have
AR % 1/4
{13.61) f'£ r AQ (Vl(s)""’VN(S))dS > vxl(ﬁ—-N(N+1)) >0
provided 3/4
_____JE__._T7?_ > 9 41,
(1 + log m) T vy
m3/4
Now the function h{m) = —7 satisfies h'(m) > 0 for m > 1 and
(1 + log m)
h(1) = 1. Therefore, h(m) > 2-+ 1 if m > my where my is the solution
TV 3/4
of h(mo) =L+ 1. Now if «———-Jl———~r7§ = 2.+ 1 then
Vi (1 + log mg) viy
= (% 4/3 2/3
n, (Vxl + 1) (1 + log mo) . Thus
log m, = é-log(—ﬁ— + 1) + g-1og(1 + log m,) < 5-109 (—%-+ 1) + Z-1og M.
0 3 Vi 3 0/ -3 viy 3 0

It follows that 1log my <4 log{ —%— + 1) and consequently that
- v
1

4/3 ))2/3'

a o
(13.62) mog(vh—rl) 1+ 4]m(“1+1
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Exponential Decay of Volume Elements 129

Let us denote by

t
=L 4 1 2...\1/2
(13.63) g(uQ) = oAy 11m*sip (t é |AS(s)u0| ds)™' =,

Note that g = 1 lim sup 4(t,u,). The preceding argument shows that
Sty e 0
the inequality (13.61) is valid provided

[
(13.68) 2 MWL) 2 1+ (cgg + D¥3(1+ 4 t0g(cgg 41)%3

In order of magnitude terms, (16.64) implies that exponential decay
of volume elements (in V) along a trajectory S(t)uy takes place if the
dimension N of the volume element is at least of the order of
32/3(109 3)1/3 when g is the time average of |AS(t)uy} defined in (13.63).

We can give easily an upper bound for g. Taking the second energy
equation for u(t) = S(t)ugy, that is taking the scalar product of (13.43)

with Au(t) and using (13.64) we obtain
t 2 2 £ 2
(13.65) é [Au(s)|“ds < Ju(O}|I® + ¢ l—%— .

Dividing by t and taking 1im sup we infer
t>w

(13.66) g(ug) < G-

Note that G = lgL— is independent of uy. Also note that (13.65) implies

v A
1
that the expression 4(t) can be bounded from above by (csvxl)'lg(uo) + 8,

for any § > 0, provided t > tl(éJlUQH); thus uniformly for ugy in bounded

sets of V. We proved
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130 Chapter Thirteen

Theorem 13.7. Let u(t) = S(t)uo be a solution of the two-dimensional
Navier-Stokes equation with periodic boundary conditions

du

Fr vAu + Blu,u) = f

u(0) = 0
Assume fe H and let G = —%iL . Assume that the positive integer N

) VA
satisfies

(16.68) N 2 cg(1 + 6)%/3(10g(6 +2))1/3

with an appropriate absolute constant cg. Let vy(t),...,vy(t) be

solutions of the linearized equation along S{t)ug = u(t)

dv

ot vAv + B(u,v) + B{v,u) = 0

with initial data v;(0) = v? belonging to V, i = 1,..,N. Then the volume

elements Hvl(t)A ...AvN(t)lldecay exponentially. More precisely
(13.68) [} vy(t)a waenvy(®) 2 <11V eeenvd 7 exp(-uny (cohi1)) Y %)

provided t > ty(jlugl).

We conclude this section with a brief description of the
three-dimensional Navier-Stokes case. Let us take a strong solution
u(t) = S(t)ug of the Navier-Stokes equation in g cIB. Let us work
in H. Taking the linearized equation and computing the volume elements
lvl(t)A PPN vN(t)I we arrive at the same equation as in the
two-dimensional case ({13.24)). In order to estimate
Tr(L(s)Qvy(s),...,vy(s)}) we proceed as in the two-dimnensional case

Tr(L(s)Q(s)) =

, LICN

Wy 2
—
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with ( @3 ¢j) = 8ij» {@1seees @y} spanning the same linear subspace of H

as (v1(s},...,vy(s}}. Then we use (6.20) with sy = 3/4 = s3, 5, =0

N N
| 380 e el < 3 clogl 2 sl Al
i=1 i=1

3/4

N N
=Cj“MW“MH5mMW“(lHMW)

i=

Using Young's inequality, it follows that

t
%é T A(S)Q(Y 1 (5), +ee5vy(5))ds

t t
% é Tr AQ{s)ds + %-é Tr L{s)Q(s)ds

t t N1t 4
2 [ TrAAs)ds - g [T AUs)Es - ¢p Sy [ fluls) s
v
t N1t "
¥ 6 Tr AQ(s)ds - ¢, :§ T & Hu(s)|™ds.

Now Tr AQ(s) > Mt oeee by and from Theorem 4.11,

(123 4 213 ¢ W83

Al + see t AN 2 COAI
SO
A+ A > 3 CanaN
1 “°T AN 2 5 V0% °

Therefore

t
(13.69) %é Tr A(S)Q(V,(8)5eusvy(s))ds

10 70 7 4

t
2 g o' - ¢ g [ luts)ies)
A n

Clearly, if

t
3 2/3 1 1 4
(13.70) 10 CON - C7 e Fé "U(S)“ ds > 1
v A
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132 Chapter Thirteen

then

t
(13.71) -tl-({ Te A(S)QY,(5) 500 esvy(5))dS 2 waN.

Now, for an arbitrary uge V (or even smoother) we have, at this
t
moment, no way of giving an a priori bound on %({ ||S(s)u0n4ds. Note
that this is the very same quantity that controls global existence of
strong solutions and unigueness of weak solutions. Thus, decay of volume
elements can be obtained without other requirements that the ones needed

for ylobal regularity.

Theorem 13.8. Let u(t) = S(t)ug be a solution to the three-dimensional

Navier-Stokes equations du

P Au + Blu,u) = f

uw(0) = 0

Let us assume that the quantity n(“o)

. 11t 4
(13.72) n(uu) = lim sup 7 f({ ||S(s)uoll ds

T > v A

is finite, Let N be a positive integer satisfying
(13.73) N 2 cgll + oluy))3/?

with cg an appropriate absolute constant. Let VisesesVy be solutions of

the linearized equation along S(t)uoz
dv
Tt W +B{u,v) + B(v,u) =0

with initial data vi(o) = V?e H, i =1,...,N. Then the volume elements

|v1(t)/\ +eeavy(t)| decay exponentially. More precisely,
(13.78) v t) a eeenvy()1Z < V0 a cenavdi Zexp(- i Ne)

for t 2 ty(yy).
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GLOBAL LYAPUNOV EXPONENTS. HAUSDORFF AND FRACTAL DIMENSION
OF THE UNIVERSAL ATTRACTOR

The objects of study of this section are bounded invariant
(S(t)Z = Z) sets Z CH. We will prove that if Z is bounded and invariant
then Z has finite fractal and a fortiori Hausdorff dimensions. We
consider first the case of two dimensional Navier-Stokes equations in
order to fix ideas. In view of the property (v) of the solution map S(t)

(Proposition 13.1) there exists 5 > 0 and a ball in V such that

S(thug €8! = ue v | flull < o)

for all ugeH and all t > tg(jugl). Let us observe that BZ is bounded

{actually compact) in H and therefore there exists T > 0 such that

v

s(t)g ¢ 8
p D

for all t > T. Let us consider the set
(1a.1)  x= [ s(s)8’.
$>0 P
Let t > 0. We claim S{t)X = X. Indeed, if xe X then S(t)x = S{t)S{s)y
with y = R BZ. From the semigroup property of S, S{t)x = S{t+s)y. Thus

S{t)xe ﬂ S(S)BV. Now if s <t then S(t)x = S(s)S(t-s)x and it is enough
s>t 0

to check that S(t-s)x eBV. But x = S(T+s)y for some y ¢8Y and thus
o o
S{t-s)x = S(t-s + T+s)y = S(T+t)ye BV since S(T+t)Bgc BV. Thus
P o
S{t)x e ﬂ S(s)BZ, that is S(£)XC X. Reciprocally, if xe X then
>0

133
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134 Chapter Fourteen

x = S(t)y with some y eBZ. We want to prove that actually yeX. In
order to check this we take s > 0 and find ze BZ such that S(t+s)z = x.
This means that S(t)S(s)z = S(t)y. From the injectivity property of S(t)
it follows that y = S(s)z and thus ye¢ S(s)Bz. Since s was arbitrary, ye X
and thus S{t)X D X.

Next we claim that if Z C H is bounded and S(t)Z = Z for all t > 0 it
follows that Z C X. Indeed, if Z is bounded in H there exits ty such
that S(t)uue B! for all t > ty, uy eZ. Then, let uye Z be arbitrary.

We want to show that for every s > 0, yg = S(s)y for some ye BZ. From
the invariance property of Z it follows that ug = S(s + tz)z with z €Z.
Thus uy = S(s}{S(tz)z) and y = S(tz)z belongs to BZ. This proves that

Uy ¢ (\ S(s)BZ and thus that ugeX. Let us now take upeH, arbitrary.

s>0
Let us define m(uo) by

wlty) = {u eH| there exists Sj > such that

u = lim S(sj)uo, the limit being taken in Hj.

NEY

First since S(t)ugy eBZ for t > to(luol), W(UO) is nonempty and bounded.
For each t > 0, S(t)(m(uo)) = w(uo). Indeed, if u ‘w(uO) then

u = lim S(sJ)u and therefore S(t)u = lim S(t+sj)u0. Reciprocally if

0
>0
u ewf{uy) and S(sJ)uO tend to u then we consider the sequence

S(s; - t)ug for s. >t. Since ﬂ is compact and since Sh.w)ueBV
J 0 J o J 0 P

for all but finitely many j's it follows that, passing to a subsequence

S{s, - t)ug converge to an element Ve BZ. Now clearly S(t)(S(sjk- t)ug)

g

= §( )uO converges to u and S(t)v simultaneously, thus u eS(t)(w(uo)).

S‘]-k
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Proposition 14.1. Let S(t) satisfy properties (i)-{vi) of Proposition

13.1. Let

x- {1 s’
Then >0 °
(1) X is compact in H
(i1) S(t)X = X for all t > 0

(iii) If Z is bounded in H and satisfies S{t)Z = Z for all t > 0

then Z C X.
(iv) For every ugeH
Tim dist(S(t)uO,X) =0
t +
(v) X is connected.

Proof. The claims (ii) and (iii) were proven above; (iv) follows from
(i11) applied to Z = ,(ug). Indeed, if dist(S(tj)uo,X) > ¢ >0 fora
sequence tj » w, then because of the compactness of BZ the sequence
S(tJ)uu will have a converging subsequence, defining an element of w(UO)
which would have to lie outside X, absurd. Property (i) follows form the
fact that BZ and thus S(t)B! are all compact. For the proof of the
fact that X is connected we reason by contradiction. Assume that Dy and
D, are two open (in H) disjoint sets such that X C D; Dy, Assume

X eX N Dl and X5 € XN D2. Let t > 0 be arbitrary. Then there exist
- yl(t), yp = yz(t) in BZ such that x; = S(t)yl, Xy = S(t)yz. Let us
join ¥y toy, in BZ by a straight line,y. The image under S{t) of Ys
S(t)y, is a continhous curve joining X1 to Xo. Therefore there exists at
least one point on it which is neither in D1 nor in DZ' Let us denote it
by x(t) = S(t)y(t), y(t) ¢y C B:, x(t)e H\(D; W Dy) = F. The set F is
closed and FN X = 4. Since forlt large x(t)e BZ { S(t)BZ C Bz for t

larger than T) there then exist tj > o such that x(t;) is convergent in H

3)
to some x. Clearly, since x(tj)e F and F is closed, xe F. We claim x e X.
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136 Chapter Fourteen

Indeed, let s > 0 be arbitrary. Take the sequence S(tj - s)y(tj), for

tj > s+T. Since y(tj) €y C Bv it follows that S(tj - s)y(tj) sBV for
P o
tJ > s+T. Since BV is compact there exists a subsequenct tjk + » such
P

that S(tjk- S)Y(tjk) converges to some yeB . Thus S(s)(S(tjk- s)y(t

Jk)
S(tjk)y(tjk) converges to x

o =<

converges to S{s)y and S(s)(S(tjk-s)y(tjk))

as a subsequence of S(tj)y(tj). Thus x = S{s)y with y eBV, for arbitrary
p

s > 0 and therefore x eX. This is absurd since xe¢e XN F and XN F is

empty.

Definition 14.2. The set X is called the universal attractor of the

equation (13.1).

We introduce now global Lyapunov exponents ([CF1]). Let t > O,

uge V. We define the linear operator S‘(t,uo):H > H by
(14.2) S'(t,uo)g = v(t,uo,;)

where v(t,uo,;) is the solution of

d
% + v+ B(S(t)ug,v) + B(v,S(t)uy) = 0

(14.3)
(14.4) v(0) = ¢

computed at t.
From Proposition 13.2 it follows that S‘(t,uo):H » V is bounded and

therefore S'(t,uy) is a compact operator in H. Let us denote by
(18.5)  M(t,ug) = [(S*(t.ug))"s* (,ug)1"/2
* *70 *70 *70

M(t,ug) is compact selfadjoint, nonnegative. We denote by mj(t,uo) the

eigenvalues of M counted according to their multiplicities:

0 < vee & mN(t,uo) < mN_l(t,uO) < eee € ml(t,uo).
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Global Lyapunov Exponents 137

The numbers mj(t,uo) are called the singular values of S'(t,uo). Let us
consider an orthonormal family ¢j(t,u0) of eigenvectors for M(t,uo)
corresponding to the eigenvalues mj(t,uo). From the uniqueness of solu-

tions of (14.3) and the semigroup property of S(t) it follows that
(14.6)  S'(t+s,uglg = S'(£,S8(s)ug)S' (s,uplg

for all ge H, t,s > 0. Therefore, if S'(s,uO)g = 0 for some s > 0 it will
remain zero for all ¢ > s. From property (i) of Proposition 14.2, it

follows that $'(t,ug)g = 0 for all t > O and from strong continuity ¢ = 0.
Therefore, M(t,ug) is injective for every t > 0 and ¢j(t,u0) form a basis.

Let us denote by y;{t,uy) the vectors
¥j 0

(14.7) wj(t,uo) = S'(t,u0)¢j(t,u0).

Then
(14.8) (Wj’wk) = Sjkmjmk .

(We will omit the dependence of 9i> ¥j» "5 on t and ug when no confusion
can arise from the omission.) We obtain thus a representation of S'(t,uo)
as the sum
14.9 S'(t, = s ce
( ) (t,ug)e _21(¢J )y
J
Lemma 14.3. There exists a positive continuous function c(t) defined for

every t > 0, depending on y, |f| and , such that, for every uy,u eBV the
4 [0V

foliowing estimate holds

(18.10) |S(t)u; - S(t)ug - ' (t.ug)(ug - ug)| € clt)]uy - ugl?.
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Proof. One considers the difference w(t) = S{t)u; - S(t)yy -
S‘(t,uo)(ul - ug) and uses the first energy equation for w(t). We omit

further details.

The inequality (14.10) implies that S'(t,uo) is the Frechet

. . Ds(t
derivative Dlu

0

of S(t).

Lemma_14.4. Let uy,uge BV and let N > 1 be an integer., Then
e P

N

(14.11)  [s(t)u; - [S(t)ug + J,=zl<qu(t,u0),ul- ug)u;(t,ug)]l

< (mN+1(t’u0) + c(t)lu1 - u0|)]u1 - uol

Proof. Combine (14.10) with | (6:s8) s
prant bl

2 2 2
[ < mN+1|E‘ .

The geometrical interpretation of (14.9) and (14.10) is that, up to
an error of order rz, S{t) transforms a ball in H centered at ug and of
radius r into an infinite dimensional ellipsoid, centered at S(t)uo and
with semi axes on the directions ¢j(t:“0) and of lengths rmj(t,uo). We

consider the N dimensional ellipsoid
N
(14.12)  E(t,ug,r) = pviv = S(thug + j21(¢j(t,u0),g)¢j(t,u0), lel < r3.
Its N dimensional volume is less than the volume of the corresponding box:
N
(14.13) volN( EN(t,uO,r)) < (2r) ml(t,uo) ves mN(t,uo).

The classical Lyapunov exponents are numbers uj(uo) such that,
asymptotically nﬁ(t,uo) ~ exp tuj(uo)- We want to define global Lyapunov

exponents.,
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Let PN(t,uO) denote the numbe
(14.14)

We observe that

(14.15) PN(t,uo) = sup
E_ieH,'l=1,-.,N
Indeed lggl <1

1) 1} 2 -
iS (t,uo)gl,\ veeAS (t,uo)gN| =

The supremum is achieved for zq c

(14.6) that

(14.16) PN(t+s,uO) < PN(t,S(s)u0
Let us set
(14.17) PN(t) = sup y PN(t,uO)
UOEB
p
(14.18) mJ(t) = SthV mj(t,uo).

Uy
the numbers Py(t) and ﬁj(t) are fi
P

pit) ¢ m

-

J
The fact that ﬁl(t) is finite is

m (t) < explkyvnt).
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PN(t,uo) = ml(t,uo) vos mN(t,uO).

lS'(t,uO)gl Aoses AS'(t,uo)gNI

?eg (s'(t,uylg; S (t,uo)gj)

2
]M(t,uo)gl A sesA M(t,uo)gNl

2 2 2
ml(t,uo)A ceen mN(t,u0)151A aen ;N| .

¢i(t,u0). It follows from (14.15) and

)PN(s,uO).

nite

m.(t) < ﬁl(t).

a consequence of Propositien 13.2, (ii);
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140 Chapter Fourteen

From (14,16) it follows that the function log PN(t) is subadditive.

The numbers PN(t), ﬁJ(t) are never zero because M(t,uo) are injective.

Definition 14.5. Let j > 1 be an integer. We define giobal Lyapunov

exponents y, ;; by

- a 1 —
(14.19) = ];m sup log mj(t)
> ®
- 1im L
(14.20) a, = tl1m T log Pj(t)
> @
(14.21) T and inductively

HJ+1

Note that, from these definitions it follows that

N
14.22 <p <40 i > 1
( ) - M- J -

and clearly wp toeee ¥ uj = oy

Proposition 14.6. For every N there exists a positive continuous function
cN(t) defined for t > 0 such that, for Upsuy e BV
o

2 2 1/2
(14.23)  [Pp(t,u;) - Pe(tuy)] < cy(t)]uy - u,l /2,

Proof. Since the linear operator M(t,uJ) J = 1,2 have norms (as operators
K.va,t
in H) bounded by e 1 (Proposition 13.2,(ii)) it follows that, for

legl € 1= LN,
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l?(:-:(M(t.ul)gi,M(t,ul)gj) - ?‘,’E(M(t’“z)ii’M(t’“z)ﬁj”

< t M{t,u - M(t,u
] N“)‘lklt .
where yy(t) is of the form Ype with yy a constant.

Using the representation (14.15) we deduce that
1P2(t,u,) = PR(E,u)] < yu(t) [IM(E,uy) - M(t,un) )l
LARSASY NYTRT2 SN *71 s¥2/ 00 2 (H,H)*

Now for any two bounded, nonnegative, selfadjoint operators M; and M,

4y2 2
N R LN e

where || || means the norm as an operator. It follows that

K,vat/2
| Mt - MEuy) | e IS () - S (6up) Iy

a3 |&

<
Z(HH) -
Finally, we estimate

||S'(t,u1) - S'(t :Uz “Z H,H) < C(t lul -uzl

by standard energy estimates.

As a consequence we have

Lemma 14.7. For every t > 0, N > 1, let
mN(t) = inf
The number EN(t) is strictly positive

ﬂn(t) >0

Proof. Indeed, assume that for some N > 1 and t > 0, ﬂm(t) = 0. Then, in

21Dkt o v

view of P2(t,u ) < e {t,u.}, the compactness of B' and the
NeYgl C Mnitstg o

continuity of PN(t,.) there would exist uy eBV such that Pﬁ(t,uo) = 0.
p
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But this implies mJ(t,uU) = 0 for some j, 1 < j < N, contradicting the
fact that M(t,uo) is injective.

In the Tanguage of global Lyapunov exponents e ;5 the statements
of exponential decay of volume elements of Section 13 become negative
upper bounds for y; + ... + uj for j large. For instance, from Theorem

13,6 we infer that
pp foees t u <

qu —T——S-T\))‘l

(14.24)

for j > c46, j positive integer. (See (13.40).)

Actually, in the proof of Theorem 13.6 we showed that
Vo {t) Aveurv (t:)l2 < vi(0) Aeeeav (0)|2 exp{-ty,)
1 oAV <Ivy ceeAVy pl-tyy

c
L~ 0 2 .
for t > ty(y) with Wy = (W— N(N+1) - cLG )”Al‘ In view of (14.15), the
definition of PN(t), wy and yy we deduce that in the two dimensional

Navier-Stokes case

- 2 _ %o
(14.25) Juy Sy toeen ? < vAl(CLG - ]f‘i(i*l))

¥
for all 4y = 1,2,... .
Estimates of the type of (14.25) are valid for the periodic two
dimensional case too. Defining the Lyapunov exponents in V instead of H
would improve, in the periodic case, estimates (14.24) and (14.25).
Let us recal the definitions ((10.20), (10.21)) of Hausdorff dimen-
sion and define the fractal dimension., Let Z C H be a compact set. The

Hausdorff dimension of Z is
(14.26)  4,(2) = infD > 0 | ,0(2) = 0}

where

(z)

Tim uD

D
(14.27)  ,o(2)
H o et
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and
k

D k D i
(14.28) ) ((Z) =dnfg 3rey | ZC L)Bi, B; balls in H of radii ry < rj.
’ i=1 i=1

The fractal dimension of 7 is defined as

log nz(r)

(14.29) dM(Z) = lim sup —]—W

r»0

where

(14.30) nZ(r) = minimal number of balls in H of

radii < r needed to cover Z.

Let us observe that an alternative and equivalent definition of

dy(Z) 1s
(18.31)  dy(2) = infD > 0 | 4(2) = 0
where

D . D
(14.32) ua(Z) = Vim sup ron (r).

M z

rs+0

This second way of defining dM(Z) shows clearly the difference between

Hausdorff and fractal dimension. First
(14.33) dy(Z) < du(Z)

because, for each r > O

D

(14.38)

(1) < 2 ny(r)

However, the inequality (14.33) can be strict. Actually, there are
examples of compact sets Z C H with dH(Z) = ( and dM(Z) = o! ([CF1]). The
difference originates from the fact that for fractal dimension a fine cover

LC LJ B; with B; balls of radii ry < r, has the same weight in the
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computation as the coarser cover when all the balls Bi are dilated to have
radius r.

The method of estimate of both the Hausdorff and the fractal dimen-
sions that we will use is roughly the following. Suppose the set X is
covered by a finite number of balls of radius less than r. Let S(t)
transport each ball for a very lony time. Then each ball becomes a
slightly distorted ellipsoid whose semiaxes have lengths of of the size
mJ(t,uU)r. Cover these ellipsoids by smaller balls. In this process of
coverinyg again, the control on the volumes implies control on the number

of balls,

Lemma 14.8. tet & n be an N dimensional ellipsoid with semiaxes of
lengths rmj, 3=1,...,N where r > 0 and My 2 My > een 2 My > 0, let a
be a positive number. Then the number of balls of radius ra needed to
cover EN does not exceed

m

(18.35)  (2/mr .

at

a_

A

where g is the largest number 1 < g < N such that 2 ml. If > m

then one ball suffices,
Proof. The ellipsoid EN is included in a box whose sides have lengths

2rmJ, i=1,...,N. We will cover this box with N dimensional cubes of

side lengths Zﬁg__ Then each such cube will be contained in a ball of

radius ra. We count how many cubes we need.
2rm,
Each side of the box will be divided in [ ng ] +2 subdivision

points where [ 1 denotes integer part, yielding

my _ M, Y
(AT + NI+ 1) ees NI+ D)

m,
cubes. In this product only the factors where /N<Ei > 1 contribute.

m, m,
For such j we majorize [/N Ei] +1by 2N Ei . This yields (14.35).
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Let ugye X where X is the universal attractor (or any other bounded
invariant set, for that matter; however since the universal attractor is
the largest such set, upper bounds on its dimensions are upper bounds for
the dimensions of any bounded invariant set). Let BH(uo,r) denote a ball
in H of radius r around u. Let t > 0 be a large time, to be fixed later,
Let us consider S(t)BH(uO,r). Let EN(t,uO,r) be the N dimensional
ellipsoid defined in {14.12). The estimate (14.11) of Lemma 14.4 implies
that the distance between any point S(t)u; of S(t)BH(uO,r) to & N(t,uo,r)

is bounded by
(14.36) dist(S(t)ul, EN(t,uO,r)) < (mN+1(t,u0) + c(t)r)r.
Let us call g the stretching factor in (14.36)

(14.37) g = o(t,up,r) = mN+1(t,u0) + c{t)r.

Lemma 14.9. Let N be a positive integer and D a positive number

satisfyiny
(i) e <0
(i) N <D g N+l

(iii) (D - Ny * N toeee ¥t iy <0

Then uS(X) = 0.

Theorem 14.10 (Kaplan-Yorke formula). Let

(14.38) gy = max{jlyy + «e0 ¥ 5 20}

Then
Pyt oeee F o
1 JO

(14.39)  dy(X) €3+ B

Jo
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Proof. If D > yy*l then we can apply Lemma 14.9 with N = [D]. Assumption

(ii1i) is true because toeee by < 0 0. If D satisfies

u >l €

T
' 0 peye
+ S <D< j+
Yo 7-T:35 + ;T—— - Yo
S DAL 1!

LTS N1 and

we can apply Lemma 14.9 with N = j,. Since

by the definition of j,, u, +* eeo + 4. < 0 we check (i). Assumption
0 1 J0+1
coay . B D _
(iii) 1s+valld+because l“;j0+1l = -_,JOH . Thus lJlH(X) =0 for
up toeee by
Jo +r———r—-——r——ig < D and and therefore {14.39) is true.
M. +1
Jo

Theorem 14,11,

(a) In the two dimensional Dirichlet boundary conditions case
(14.40) dH(X) < C4G + 1
(b) In the two dimensional periodic boundary conditions case

(14.41)  ay(X) < cg(1 + 6)2/3(l0g (a+2))/3

Proof. The inequality <0 implies

) + eee t ujo + ujo‘l‘l

up toeee ¥ b,
v 1 since y, 41 is negative. Thus, from (14.39),
uy +1[ - Jg
4]
(14.42) dy(X) < gy + 1.

Now (14.40) and (14.41) are obtained from (14.42) and the upper
bounds {13.39) and {13.67) for Jg*tl. In the periodic case all operations
are in V. A simple lemma is required, to prove that the dimension of X

when computed in V is the same as when computed in H.
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Proof of Lemma 14.9. Let us take ¢ > 0 such that

(18.43) (D = N)pyp * pp + =oe + py * 35 < 0.

Let us choose t large enough to satisfy

1

(14.44) 2

N log N+ (N+ 1)log 2+ D log 3 < ¢t
(18.45) e"et < 1/2

(14.46) mN+1(t) <18
log PN(t)
(14.47) | —————— < et et

t -1

log P, .(t)
]:_-__~ﬂil_- Cpp b oeen k + e
t - N+l ©

The requirements (14,44), (14.45) are only largeness assumptions., The
requirement (14.47) can be achieved in view of the definition of the
global Lyapunov exponents ;. Requirement (14.46) follows from assumption
(i) of the lemma. We fix t with these properties. We choose now rg>0
such that

c(t)r0

(14.48) 1 + )

< 2.

Recall that @N+l(t) = inf V M1
ug eBp

(t,u,) > 0. (Lemma 14.7). From the

9
definition (14.37) for the stretching factor g = g(t,uy r) it follows that
’

v
for any ugy ch and r <1y

(14.49) e(t,uo,r) < 2mN+1(t,u0).

Let us consider the image S(t)BH(uo,r) of a ball of radius r < ry centered

at ug e X, Since the distance from $(t)8,(ug,r) to E'N(t,uo,r) is not
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larger than 2my, ;(t,uy)r ((14.36), (14.37), (14.49)) if follows that a
covering of EN(t,uO,r) with balls of radii rmN+1(t,u0) will yield by
dilation a covering with balls of same centers and radii 3rmN+1(t,u0) of

S{t)Bylug,r). Now by Lemma 14.8 with a = mN+1(t,u0) we obtain that

(14.50) the number of balls of radii 3mN+1(t,u0)r needed to cover

S(t)BH(uO,r) does not exceed

P, (t,u,)
(glﬁ)N____ﬂ___ll_jq
(myeq (Esup))

Note that the radii 3mN+1(t,u0)r are not larger than r/2 by (14.46). Now

let us take a finite cover of X by balls BH(“i’ri)’ 1 <1 <k,

rj ¢r <rg. From the invariance property of X
3
xe U s(sytu,r).
iZ1 o

We cover each set S(t)BH(ui,ri) with balls of radii
r.
3myap(t,ugdry <5 <5 . We obtain a new cover of X with balls of radii
not larger than %—. Then we compute UD r(X):
H,§
P (t,u.)
e ——

1 (Myep (£505))

(14.51) 0 (x) <

D D D
RS = 3Py (£,u)P.
> ? 1

it~y

Now we write Py(t,u;)(my,;(t,u;))0N as

1+N-D D-N

Ptaup dmg (6,u )% = pyce,u) N Pp (e u PN

The exponents 1+N-D and D-N are both nonnegative and thus from (14.47) it

follows that

1+N-D D-N
PN(t’ui) PN+1(t’ui) < exp((D-N)uN+1+ pp teeet oyt e)t) < exp(-2¢t)

in view of (14.43).
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On the other hand, the numerical constant in (14,51}, (Z/N)N3D is
majorized by
(2,/N)N3D < ect
because of (14.44).

Combining we get, in view of (14.45)

Np~r &
-
-
A
N =
ew X
3
.

uD x) < e-et
H

s i=1 i

N

Since the cover BH(“i’ri) was arbitrary we obtained

Since the function r » uﬁ r(X) is nonincreasing it follows that
’

ug(x) = 0. The proof of Lemma 14.9 is complete.

We pass now to the fractal dimension,

Lemma 14.12. Let N be an integer and D a real number. Assume

(i) D>N
(ii) (0 - 1);N+1 gt et by <0 for all g = 1,2,...,N
(iii) ey <0

Then ,(X) = 0.

Proof. Let us choose ¢ > 0 such that
(14.82) (D - g);N+1 gttt (D-g+3)g<0

for all ¢ =0, 1, 2,...,N. (For g =0, gy toeee t Hy is taken = 0).

We choose t large enough to insure the validity of (14.44)-(14.46)

and also
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log m,. . {t)
(14.53) Nﬂ <hep
loy Pz(t)
———7;———-5 Y + eee t i + o for g = 1,...,N,

Ltet uy;e X and BH(uO,r) with r < ry, rg defined in(14.48). We take

S{t)By{ug.r) and cover it with balls of radius 3m,

N+1(t)r. Applying Lemma

14.8, with a =m,

N+1(t) we deduce that

(14.54) The number of balls of radii 3mN 1(t)r needed to cover

S(t)BH(uu,r) does not exceed
N — -2,
max {( 2y/N) (mN+1(t)) Pl(t)’l}

for some g = g(N,uO), 1 < g < N. Considering the minimal number of balis

of radii < 3ﬁN+1(t)r needed to cover X we obtain the relation

(MMl( ) < [( NN max {(m mﬂ)'%

(t (r)
Nt ))]nX r

3

Multiplying by (3ﬁN+1(t)r)D we get
— D — D N - D- D
(e (€)7) Ty (Bmyy (€)1 < [T max - (my, (£)) o (&) ny(P)r

Now the quantity in square brackets is less than 1/2.
The function e¢(r) = anX(r) satisfies
(a) sup{el(r) | 3mN+1(t) frirg) e
(b) ¢(3mN+1(t)r) < §-¢(r), for all r ¢ o
It is elementary to check that such a function ¢ (r) must have
lim e(r) = 0.

r»>0
This proves the lemma.
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Theorem 14.13. Let j, be defined as in {14.38)

g = Maxgy | bt oeee t g2 03.

Then
bt oeee tu
(14.59%) dM(X) < Max (g + ~——ij---———&)
Lpcdg lujo+1|
Wt oeee toy _
Proof. It D> Max (g +————2%) Then D > j; because
1<£<JU I”J'D'i'll

1

toeee t ujo >0. (D - g)u30+1 gt ety < 0

for all g = 1,...,J0, because UJ0+1

conclusion of the theorem follows directly from Lemma 14.12, applied with

is negative. Therefore the
N =y
Now, from (14.25) we know that

- 2 _%0
Eulful"' '--"’ulf\))\l(CLG ’4—'2.(2. 1)

for all g.

Assume N is such that
Cy 2
(14.56) g—-(N+2)(N+1) > cLG .
It follows that

C
(14.57) (gg(N+2))-

Myl ST VY
Take D > 2N+2, Then

C
— 0 2
(B = phupgyy * luy ¥ oo b ul) $mvap g (ND)(Ne2) + vy € 67 <0

for all g =1,2,...,N+1.,

We can apply Lemma 14,12 for N+1:
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Theorem 14.14,
(a) In the two dimensional Dirichlet boundary conditions case

dM(X) $cgh+ 1
(b) In the two dimensional periodic boundary conditions case

dy(X) < cy(6 + 1) 3(10g(6 + 2))1/3.

For the three dimensional Navier-Stokes equations the previous
results work under the assumption of regularity. For instance, if Z is a

bounded invariant set in V then one can define the quantity (see (13.72))

‘ 1ot 4
(14.58) = 1im sup ( sup 7 E—é f{ s(s)ugll™ds)

t o qu ‘,)‘1

Applyiny Theorem 13.8 and the Lemmas 14.9, 14.12 one can prove
(see [CFTLY)

Theorem 14.15. let Z CV be bounded. Assume Z invariant. Then

(18.59) dy(Z) < dy(Z) € ol + )2,

The above bounds can be understood in the context of the traditional
estimates of the number of deyrees of freedom of turbulent flows

([L-L1, [X1). This number is
2

(14.60) N~ (¢
e

where g4 is the linear size of the region occupied by the fluid, d = 2 or
3 is the spatial dimension and ¢. is a small scale, below which viscosity
effects determine entirely the motion. Thus N = (]—Zg)d is simply an

account of the number of mesh points dividing a cubecof side length g4

into divisions of lenygth fee The scaie fc is defined differently for d = 2
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and d = 3. If d =3 then 4. is defined via an energy dissipation flux
(14.61) ¢ = y <qu>’

where < > denotes ensemble averaging. By dimensional analysis the only

length one can form with y, ¢ is
(14.62) % = N,

In the two-dimensional case, d = 2, the role of ¢ is played by an

enstrophy flux

(14.63) 4 = v <aw?.
The only length one can form with , y is

3
(10.64) o = ()15,
X

1t is very significant that the estimates of the fractal dimension of
the attractor in d = 3 (14.59) and d = 2 (13.64) can be expressed in the
form (14.60) provided the average operation is defined as a time average

on the attractor. For instance, if the quantity

t
(14.65) <pu> = Ai/z sup lim sup (% g |AS(s)uO|2ds)

UOXt-)on

1/2

(see (13.63)) is taken to represent the average of the Laplacian then
(13.64) implies that the fractal dimension of the universal attractor for

2D Navier Stokes equations is bounded by

(14.66) dM(x) <l + (EQ)Z)(I + 1og(£g) + 1)1/3
- e e
. 1 ‘ .
with 8, = % and ¢. given by (14.64) via (14.63) and (14.65).

For more details see [CFT1] for d = 3 and [CFT2] for d = 2.
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INERTIAL MANIFOLDS

In this section we study the question: can one imbed the universal
attractor X into a finite dimensional, regular manifold Y which is
invariant (forward in time) and which attracts exponentially all
tragectories? If one could find such Y and if Y would be smooth enough
then the restriction of the PDE to Y would be an ODE, called an inertial
form of the PDE, whose dynamics would contain all the information about
the lony time behavior of the solutions to the PDE. The manifold Y is
called an inertial manifold. The existence of such inertial manifolds for
the Navier-Stokes equations, even in the two dimensional case, is unknown.
A certain number of dissipative PDE's do possess inertial manifolds
(LF-S-T4, [CFNT]). Among them, a number are one dimensional as the
Kuramoto-Sivashinski, nonlocal Burgers, Cahn-Hilliard equations are.
Reaction diffusion equations can be treated in one and two spatial
dimensions. There are, to present, two techniques of constructing
inertial manifolds. The one that we present here ([CFNT]) constructs the
inertial manifold as an integral manifold starting from an explicit,
simple, smooth finite dimensional manifold of initial data and integrating
forward in time. The strong dissipative linear principal part of the
equation helps to control the time evolution of the position of the tan-
gent space to the integral surface. We will present here the method of

[CFNTJ illustrated on a simple example,
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(15.1) g—: - AU+ sAZU + (Ueyju + yp =
(15.2) div u =0

with periodic boundary conditions in ®.

We chose the example (15.1), (15.2) rather than one of the more
physically significant equations for which the same construction works
because the notation and background of the Navier-Stokes equations
established in the previous sections can be used. The equation (15.1),

(15.2) has thus the form

(15.3) &y AU+ Au o+ B(uyu) = f

(15.4) u{0) = 0.

We take the two dimensional periodic case; we take the period to be 25 so

that 3y = 1. We will give first some bounds for u(t) = S(t)ug. Clearly,

since

(15.5) (B(u,u),u) =0 and

{15.6) (B{u,u),Au) = 0

we have

(15.7)  Ju(e)|? < Jugl%e™t + 1F12(1 - o)
(15.8)  flu(e)f? < lugl? e + |£1201 - 7).

Then taking the scalar product of (15.3) with A2y we get

1

2 2.2
d
z‘ag‘lAulz + cl#ul? ¢ lEL *e lAK!L— + | (B(u,u),A%)]
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Using (6.20) with s3 =0, s = 1/2, s, = 1/2 we get

1B(u,u,A%u)) < clul Y2 u it gt/ 2| auy /2| a2y)
2 .2
< clul M u) a2y 32 ¢ BT qupugt
We obtain
2
(15.9)  lAu(e)? s JAugl? + L ¢ (ugli? + 171203,

£

We could have gotten a much better dependence of |f| on the right hand
side of (15.9) but we do not attempt to optimize results here.

From {15.9) and the estimate
(15.10} lUle < dlull{1 + Tog,|Au])
where log+ A= 1log , for x> 1 and 109+ Aa=0for 0 <3 <1 it follows
that

(15.11) e,

2
< cllivgll + 16101 10g,Claugl? + v e (lugl? + 1£12)%D)

€

First we define and study some objects of independent interest.

Let QU:H » H be a projector of N dimensional range. We think of this
range as beiny the tangent space at some uge H to an N dimensional surface
. We let the solution map S(t) transport this surface. At each t > 0
the tangent space to S{t)g at S(t)u0 determines uniquely an orthogonal

projector Q(t). We call the pair (uO,Qo) a contact element.

Proposition 15.1. The contact element (u(t),Q(t)) evolves acording to the

equations
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(15.12)  u(t) = S(t)y,
(15.13) o a(t) + (1 - Qe)T()(t) + o(t)T(8) (1 - Q(t)) = 0
(15.14) Qu) = Q
Here T(t) depends on uy also and is the linearized operator
(15.15)  T(t)v = A% + Av + B(S(t)ug,v) + B(v,S(t)ug)
Proof. Let vy be a fixed element in H. Let vl(t),...,vN(t) be solutions

of

] dv _
(15.16) gt Tew =0

with initial data v?, i=1,...,N. Assume that Q; is the orthogonal

projector in H onto the linear span of v?,...,vg. Then Q{t) will be the
orthoyonal progector onto the linear span of vl(t),...,vN(t). From

(13.24) we know that

d 2

2
at IVIA...AVN| + T!‘(TQHVIA...AVNI =0

(15.17) %

Let us consider the element of AN+1H

vaav(t)a ceonvp(t) = (1 - Q(t))vOAvl(t)/\ ceenvy(t).
Its time evolution is given by
d
9 (VOA vl(t)«...AvN(t)) + [T(t)]N+1(v0A...A vN)

- T{t)vya vl(t) AN oves A vN(t) =0

Therefore

1 d

2
2 at |VUI\ Vll\,.. I\VN|

+ TR(TE)TE)) [vg a ee avyl?

- (T(t)VUA Vleo-AVN;Vol\Vll\v--)\ VN) =0
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where { is the orthogonal projector on the span of vo,vl(t),...,vN(t).

(It was denoted Q(vo,vl(t),...,vN(t)) in section 13.) The notation Ty
stands for Ty, = TAla weaalnt see bt 1a e 1AT and was introduced in
section 13.

We remark that

(TVU'\-ooI\VN;VU/\a..AVN) = ((1-Q)TVgA Vi Aeae AVNIVG oo vy)

= ((1-QTVgavg) ¥y a «oe avyl?
Now
2

{15.18) [(1-4q

)v|2 =|vUAv1A...AvN
v 2
KPS conavyl

Differentiating both sides with respect to t we get

2

L9y vyl = -TrT 1 - Qvgl 31 - QT (TR (1 - Qdvgl?

U

~(Tr T - (L - Qv+ (1 = QTvgvg)

'(T(l - Q)VO’(l - Q)VO) + ((1 - Q)TVO’VO)

(1 - QTQvsvy)

Since vye H is time independent and arbitrary, it follows from the

paralleloyram identity that
4o (1= Q) = (1 - QE)TA(E) + AT (1 - alt))

which establishes (15.13)

Now we are yoing to investigate the time evolution of the position of
the ranye of Q(t) relative to the fixed coordinate system given by the
fUNCtions Wy,.ee,Wysees (eiyenfunctions of A}, Let Q be a N-dimensional

orthoyonal projector. We define the numbers A(Q), A(Q) by
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(15.19) AQ) = max{(Ag,9)] |9} = =g, 9¢p(A)}

1
—
-
Pl
(1]
1

(15.20) AMQ) = ming{Ag,9){ |9} = 1, Qg = 0, ge H(A)}.

From the minimax and maximin theorems it follows that
(15.21)  AQ) 2 ay

(15.22) MQ <

where again, N is the dimension of Q and (3j} is the sequence of repeated
eigyenvalues of A,

Suppose Q(t) evolves according to (15.13). Then the numbers
Alt) = A(Q(t)) and (t) = A(Q(t)) will satisfy certain differential
inequalities that we wish to investigate. We will study a(t), the study
of A(t) beiny entirely similar. Let ty > 0 be fixed. Then A(to) is
actually the largest eigenvalue of the operator Q(tO)AQ(tO). Assume that

4 1s an eigenvector corresponding to it. Thus

(15.23)  Qleglg = g, 19} = 1, QtglAg = altgly.
The equality (15.23) is valid at t = ty. We do not vary g. For t close to
t, we consider the vector Q(Eggf . From the definition of a(t) it

follows that
A(t) 2 (_&QLELQ_’Q(JZM__. E(t).
1a(t) g}

At t = ty we have equality. Therefore for t < ty
Mt) - alty)  E(t) - E(ty)

t - to t - tO

A

Consequently, if we denote by?2 the derivative

_ LA - Aty)
dE(A(t))l = 1im sup —x T
t=t0 t s tO 0
t < to
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we obtain

)| < G E)

=t lt=t

0
Now, it is easy to compute %f E(t)lt=t . In order to make the computation
0

easier let us note that

(15.24) 4 1q(t)yl? = 0.
el

Indeed, using (15.13), we have

4 fagl? = 2% alt)g.g) = -2((1 - QTeg - QT(L - Qg9)

I

-4({1 - Q)g,Tqq) .
At t = ty, (1-Qy=0.

Differentiating Q(t) and setting t = tg we get

d . . .
at Et)] = (AQg,9) + (Ag,Q9) = 2(Ag,Q9) = -2(Ag,(1 -Q)Ty).
t—to
We used 6 for DQ/dt and (15.13). We obtained the inequality

(15.25) T NE)| < -2Rei(1 - QTy)
0

Now Ty = d\zg + Ay + B(S(to)uo,g) + B(g,S(tO)uO). Since (1 - Q) is

selfadjoint we have

-2(Ag,(1 - Q)Tg) = -2((1 - QAg,Tg) = -2((A - Altg))y,Tg)

= -24((A - DgAZY) - 2((A - gAg) - 2((A - A)g.B(u,3) + B(g,u)).

We denoted S(to)u0 = u and dropped the t; dependence in p = A(to).

We compute the term -2:((A - A)g,Azg) first. Let us remark that

((A - Ag,g) =0
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This follows from the fact that
A= (Ag,9), g| = 1.

This means that we can substitute Azg by (A2 - ¢)g in {{(A - A)g,Azg) for

any constant c, We take this constant to be AZ:
-2¢((A - a)y, A%g) = -2¢((A - Mg, (AZ - 4%)g).
Now A% - AZ = (A + pA)(A - p). Therefore we obtain
(15.26)  -2¢((A - )y,A%) < ~2aal(A - n)g]2.
On the other hand, we estimate the term

-2({A - A)y, B(u,y) + B(y,u))

as follows

2[((A - p)y, B(u,g) + B(g,u))| < 2{(A - a)g||BLg,u}| + 2[(A - A)g}|B(u.g)|

(7S

2[(A - mylLlgl Jlull + ful Jlalid.

Now |y}l = Al/2 since Hg|F = (Ag,9) = A. Moreover, lg| _ < cllg]l(1 +

L(ﬂ
Toy, [Ay|) (see 15.10) and since Ag = (A - p)g + pg we get an estimate of

the type

I8l . < 21 + tog, (J(A - a)g] + a)]

On the other hand, the estimates (15.11), (15.8) for u(t) = S(t)ug are of

the form
(15.27) ffull < kg
(15.28) “u[[Lm < kploy (1 + JAugj)

with ky, k, constants depending on [lugll, ¢ and |f| only. Combining all
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these toyether we yet

2[{A = p)glCiyf Jlull + ful _figlld

< aat2I(A - Nyllk (2 + Tog,(a + [(A - A)g])) + kptog, (1 + Aug|)]
Let us denote |(A - p)g| = 5. Then
(15.29) T p < -2ens?-2s% + cal/2olk (1+10g, (a+5)) + k,log, (1 + |Auy[)]
. P € [ 51 L ATS 2 + ]

Now we note that 5 > 1 because of the Poincaré inequality. Therefore

1og(a + &) < log(a + sA) = loy o + log{l + ¢)

< log o + log(s v& +1) < Tog A + (s M2

(We used the inequality log(l + x) ¢ yX, valid for x > 0.) Then

1/2 1/2 3/2
ckyA 72501 + tog(n + ) < {ck,log a2 + cklAl/zs * (Ckl)(Al/zﬁ) /
2 2 2 4, .2
£
<S8t Cekl(]og A+ Ce(kl + k1)°

From (15.29) we obtain

(15.30) T (0) < -(en + 2)s24c [K2(1+(Tog m2)+kdekd(1+t0g( | Au | 241)) 2
AL em1 17%2 0

2 2 X
Now GZ = (A - a)g|" > dlSt(A,c(A))z where 4(A) = {Ayshpseeeshisees}s

J
Indeed, since |y} = 1 we have
Z,

gj-

[(A - n)gl? = 1292 > dist(n,q(A))°.

J

(AJ - A

e~ 8
-

We proved therefore
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Proposition 15.2. Let uj e D(A). Let S(t)uo = u{t) be a solution of
(15.3), {(15.4). Let Q; be an arbitrary N dimensional projector. Let Q(t)
evolve according to (15.13), (15.14). Let a(t) = a(Q(t)), a(t) = A(Q(t))

where 7(Q), a(Q) are defined in (15.19), (15.20). Denote by

s(a) = dist{p,o(A}) = min

I\'AJl-

J=Llslseee

There exist constants ks, kg depending on Hug|l, &, |f| only such that

(15.31) @ (n) ¢ ~nelsla))? + ky[log  + Tog(1 + [Aug|D) % + K,

(15.32) 4,00 2 exlsl)? - Kglog » + Tog(1 + AugI2)17 - kg

Theorem 15.3 (Spectral Blockiny Property). Let uy e p(A). Assume
(15.33) Hugll < Ry
(15.34) jAugl <R

There exist constants k3(R0, es If])s k4(R0, e» |T|) (independent of R}

such that if ,, satisfies the gap condition

+
A Amtl

N
. 2 Am T Al
(1.38) e =5 Gy = ag)" > g R3[l08 —5——

+ log(l + RZ)]2

then

(a) If Q, is a projector of dimension N <m such that
P DY
m m+1
A(Qo) < 7
then

Wa(e) ¢

for all t > U,
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(b) It Qy is a progector of dimension N > m such that

ot Al
Mgy > B

then

Aae)) 5

for all t > 0.

Let us note that the gap condition (15.35) can e easily fulfilled,
tor infinitely many ),'s. Indeed, the ) 's are sums of squares and as
such they have discrete gaps and behave like multiples of the index m.

Actually a much stronger property holds ([R1])
(15.36) Mitl T m 2 © Tog iy

for infinitely many m's, We do not use this property for the present

equation. All we use is gy ~ A 2 8 > U for infinitely many m's and

A

—-—Jﬂ—*—? > w, that is Am > e 0f course, implicit in the proof is the

(Toy )
il

fact that A? nas larye enough gaps to dominate the nonlinearity. However,
it the nonlinearity would have been of reaction-diffusion type (no
derivatives) then the gap condition requirement would have been much
weakened.

The proof of the theorem is immediate form (15.31) and (15.32)

Nn * Am+1 . . .
because they imply that the point 5 is a repelling point for the

evolution of p(t) from left to right and for the evolution of A{(t) from
riyht to left,

In the construction of the inertial manifold we will have to let R to
depend on j: R? = Ang. Since the constants k,, k3 depend on Ry and | £l
only, condition (15.35) with R = Ang creates no difficulty.

Theorem 15.3 has important consequences. First let us discuss the

consequence of point (a) of the theorem for N = 1, Let v(t) be a solution
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of
(15:37) %z- + o av + B(S(t)uy»v) + B(v,S(t)yy) = 0
(15.38) v(0) = v,

where uy satisfies |lugll < Ry, |Aug] ¢ R. Then the projection on the

direction v(t) constitutes Q(t) for N = 1, The quantity

(Av(t) ,v(t)) 2
AQt)) = ———pm = B
fv(t)] vl

Let us assume that (ig,ipp) 1S any of the gaps satisfying (15.35).
Point (a) of Theorem 15.3 is an invariance statement about the locally

compact cone in H

\
(15.39) Ky = pre V] w2 ¢ L 2y

if v(tu) belongs to K, then v(t) belongs to Ky for all t > ty. Now, there
are two possibilities: either v(t) stays outside Ky for alt t > 0 or it
enters K, in finite time, never to leave it again., We will show that the
first alternative implies very strong exponential decay of |v(t)|. 1In
other words, K, are “slow cones" and their complements “fast cones".
Indeed, from the first energy equation for v(t):

2
d 2
W12+ VI < clviiiviifull < B0+ cfviZjul2.

ld
Z dt :

We used (6.20) with Sy = s3 = 1/2, s, = 0. Now from (15.8), jlu
HZ < RS + |f|2. We infer
2
d 2 v 1o 2 2
@it (f;fi - ARy + [FITN)IvIT <0
Therefore, if

+
(15.40) 5‘“—2—%‘“ > 25+ |£17)
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Wil At ey
vii 2

(15.41)  [v(t)]? < [v(0) | Pexp(-

then, as long as we have

n * A+l

ra

The condition (1%.40) is a only largeness condition on m and it can be
achieved simultaneously with (15.3%) even in the case R2 = Kng'

The property just described is called "strong squeezing" in [CFNT].
We have the similar property for differences S(t)uy - S(t)u1 if both

ugll € Rys Hlugll € Rys lAugl < R, JAug| < R.

Theorem 15.4 {(Invariance of the slow cones Km). Let uy,uq¢ D(A). Assume
flugll ¢ Rgs Hlugll € Ry, [Augl < R, JAug| ¢ R. Let v(t) denote either the
solution of the linearized equation (15.37) or the difference

S(thuy - S(t)ul. Let (Am’*m+1) be a gap satisfying (15.35) and assume
that the yap is located far enough so that (15.40) be valid, Then, if

for all s > t. Moreover, either

Am  Ape
; m+1 t)

v(t)e Ky then v(s) € Kps

12 < |v(0) | exp(-

(a) jvit) for all t > 0

or
(b)  There exists U < t; < » such that the inequality in (a) is valid

for t < tyand, for t 2 tg, v(t)e Kne

Let us consider now a different type of cones

(15.42) ¢

my = DR L - PvIE < B Rv]

where y > 0 and P is the projection onto the linear span of the first m
eiyenfunctions of A. Let v(t) be a solution of (15.37) where||u0H < Rgs

{Auyl < R, Let us denote by g¢(t) = (1 - P )v(t) and by p(t) = Pav(t).
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Then

(15.43) 9 Clal? - H1a14 + clral? - 2elan)?

Al - ApIZ + (Blu,v) + B(v,u), g-42p) = 0

Now
(8uv) + B(v,u)a-yp)] < < Jlulitlall + HoldClal + [1pld
<c 3+ 191HY2 fiqll + elliCial + (el

Y

< £l +%;c§(f<3+ 115 0a % 1012+ ¢ @3 105 Y2 pllal + 11

<EUal? v g2 RS+ 1aAal® + 1018+ e PRE  1rAtal - el

Tnerefore computing 2 dt qu‘ _ YZ‘p‘ZJ at a point where |g| = y|p
yields
1d - 2 2
7 @ Uat® - Frelt < -claal? + (Felant? + 5 flall?
jal=vlpl

+xglpl2 + kg 4 Zlpl + Alell? - lall.

Here kg and kg depend on Ry, |f|, ¢ and y alone. Now

~clnal? v S 1laliZ + 2l apl2 + i) - qlf?
<oy - 1+ Dllall + yzmﬁ + g iel? <
f(a&ml—l‘fﬁxﬂﬁlm s)m AmIPI

< [_5’\?\-&-1 + 535‘ + % )\m,,_l]yzlplz
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Thus
td .,2 2, 2 2 2 2
S UaP - PP et of * S T8 5 )
lai=ylpl
1 ke
where Y7 ==z (k5 + fz)' Therefore
Y
1d 2 2, (2
(15.44) 2 d@ Lla)® - y"lel j| <0
lal=ylp}
provided
5 - £
(15.45) eOper = A Oger * A 25 Ogep 2 + Ky

This condition can be fulfilled easily, for instance, if A+l T w2 1

(which in our case requires only el P Ap Since Aj are integers) and if

tad

el T A
2

-1
2ky =

(15.46) n

We have therefore

Theorem 15.5 (Invariance of the slow cones Ca Y). Let ugsly be in
’
H(A). Assume |lugll < Ry, flugll € Ry, Let v{t) denote either the solution
of the linearized equation (15.37) or the difference S(t)uo - S(t)ul.
There exists k; = k7(R0,|f|,Y, e) such that if M+l > Am
Aurl + *m

and — 2 k7 then the cones Cm,Y are invariant: if v(to)e Cm,Y

then v(t) €Cp . for all t > t,.
’

We have at this stage all the ingredients for the construction of
inertial manifolds for the equation (15.1). Let us check some of the
consequences of Theorems (15.3)-(15.5) for the universal attractor X.

First let us estimate the dimension of the attractor and the decay of
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volume elements. Let Prreens Py be orthonormal in H. Let Q be the
linear space spanned by ¢j,..., ¢y.

Let T be the linearized (15.15)
Tv = EA2v + Av + B{u,v) + B{v,u).

B( [ u, ? ).

-
it~ Z
—

N
Then Te(TQ) > E.EI(AZ pir 93) ¥
]:

N
Thus Tr(TQ) ; ¢ 412 ~dlull g sl
)

since |{gill < | 051 /2|A0 ;112 = |A o |/2 it follows that

N N N
3 HﬁHS_Z”A¢J1n (z|A¢|2f“
= i= i=1
Thus
N 4/3,
0 2§ ] Ihegl? - e Nl

2 -t

If u=S(t)uy, llugll < Ry then HuIF <Rye "+ |f|2 (see 15.8). On the

other hand, because ¢; are orthonormal

N

'zllA ¢i|2 > A% + eee + Aﬁ .

i=
Therefore

) 1 b e .2 2 4/3
(15.47) f'6 Tr T(s)Q(s)as > 5 (Al + aes AN) - cN|f]|
it o2 tyRy).
This estimate implies (see section 14)
2 2 4/3

(15.48) up ey <0 % (;1 + oes *N) + cN|f] /

for all N = 1,2,... . Now since A 2 Cgd» the right-hand side of (15.48)

becomes negative for
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(15.49) N> ce|f|2/3.

Therefore we have

Theorem 15.6. Let X be the universal attractor of equation (15.3).

(15.50)  dy(X) < dyiX) < c|f?/3

Now let us fix R0 large enough so that

(15.51) 2 sup Jlufl < Ry
ue X
From (15.8) it follows that Ry = 2|f| would do.

Let (apsrgep) De @ yap (i.ees ey > Xm) and assume that (15.46) is
satisfied for the constant k; determined by Ry, |f| and y = 1/3 (we choose
y = 1/3 rather arbitrarily). Assume also that N = m-1 satisfies (15.49).
From the assumption (15.46) it follows that for any two u,u,€X,

Uy - upe Cm’1/3. This is a direct consequence of the fact that outside
Cm,1/3 there is exponential decay for differences S(t)u? - S(t)ug, just

as in the case of the cones Km.

Proposition 15.7. Let y = 1/3 (for the sake of being specific). Let

Ap < Ageps and assume g satisfy (15.46). Then the set

(15.52) Cm,X = (uju - xe Cm,1/3 for all xe Xy

is invariant

v

(15.53) S(t)(cm,X n BRU) C Cm,X .
Moreover, for arbitrary ug e BX either
0
; Am * w1
(a) dist{S(t)uy,X) ¢ max ju - u0|exp(- —x t) for all t
ue X
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or
(p) the inequality in (a) is valid for t < tg < = and for t > tg,
S(t)uoé Cm,X'

We are going to consider the set g = U S(t)r where r will be a
t>0
simpie N-1 dimensional smooth compact surface in the N dimensional space

Hy = PNH. Qur aim is to show that = Y is an inertial manifold.

Definition 15.8. A set Y C H is an inertial manifold for the equation
(15.3) if

(1)  s{t)Yg vy for all t >0

(ii) Y is a finite dimensional, Lipschitz manifold

(ii1) There exists a constant cy such that for every uje H there exists

C, ty depending on |ugl such that
(15.54) dist(S(t)uO,Y) <C exp(-th) for t > t;.

Actually the inertial manifold that we construct will satisfy several
other important properties. Let us prepare first the initial data set r.

We take r to be an ellipsoid in Hg.
(15.55) = queV|Pqu = u, llujl = Ry}
The number RU can be chosen

(15.56) Ry = a il

The number m is going to be determined below.

Let uer. We consider the vector
(15.57)  N(u) = AZu + Au + Blu,u) - f

We consider the linear space Tu( r), tangent to r in Hp = Palt at u. We
take the direct sum T,(r) ® N(u)R. This is the initial tangent space at

our inteygral manifold. Let us denote by Q(u) the orthogonal projector in
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H from H onto Tu(r)() N(u)R. The requirements that we wish to impose on p

are

(1) AlQ(w)) <i"‘—%w for all uer

(11) AQ(w) >£§iﬂ for all ue r

(111) {(N{u),v(u)) > 0 for all u er, where (u) is the external
normal to r in PgH at u.

(1v) r C Gy

(v) Tu(r) ®Mu)R € Cy g

The conditions (I) and (II) will insure that the integral manifold
L= \_) S(t)r 1is “spectrally blocked". Condition (III) is a coercivity
cond?t:og. We check first what kind of restrictions do conditions (I)-(V)
impose on m.

We start by showing that in our case condition (IIl) is automatically

fulfillied without restriction for m. Indeed, the normal (u) can be

computed in our case
- u
(15.58) Wu) = A m .

Indeed, |julj = R; is an ellipsoid in H:

JENJUJZ -2, (uj = ().
Now, in view of the identity
B(u,u,Au) = 0
we have
_ elw® %% + 3 1wl
(15.59) (N(u) ,(u)) > m >0 for all ue y.

We used here |Auj > 2{f| for uer. In order to check (I) and (II) we
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denote by Ai < Aé < e 4; the eigenvalues of Q(u)AQ(u). In particular,

g = MQ(u)) . We know p{u) 2 5y so

Ufl\(u)'xn‘:]\li'...'*[\‘;l-)‘l-)‘z-...-)m
T S U WY

SR e am (A + eee )

because

AP oees Ay 2y + oaee ¥ Nai®
Thus

(15.60) 0 < alu) - a < Tr QQu)AQ(u) - Tr PAP,.

similarly

(15.61) 0 < ey - Alu) € T QUuIAQ(Y) - Tr PeAPL
Now we decompose Q{u):

(15.62)  Qu) = w@w+ Q(u)

where QT is the orthogonal projector from H onto the tangent space Tu(r)
at 1 to u. The vector , is the normalized component of N(u) orthogonal to

Ty(r):

) (1 - @ IN(u)
(15.63) w = “(—Q*l 1< QTI——(—)N u)—]- .

The notation , ® , stands for the one dimensional projector in the

direction

Vi (wV)y .
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On the other hand, obviously

(15.64) Py = y(u) @ wlu) + Q.

Then

Tr Q(u)AQ(u) - Tr PLAP. = [l - llv(w) .

Now, from (15.64), 1 - QT =1 =P+ y(u) ® vlu). Since vlu) ePH it

tollows that
(15.68) (L - QIN(u)|® = [(1 - Po)N(u)|Z + (N(u),u())?

(15.66) 11 (1 - QINDIZ = (2 = PRINIIZ + (M) su(u))E}olu) 2

In the computation of||u,l|2 - “v(u)|F the cross terms (N(u),v(u))znv(u)IF
cancel each other:
B = PN = u(u)a?] (L - P NG) [P

Hall - fhotu) I = 5 >
HL - PoN(u) [ ® + (N(u) ,u(u))

Thus

, H(1 - PN
(15.67) Tr Q(u)AQ(u) - Tr PmAPm e
(N(u),u(u))}

The conditions (I) and (II) will be fulfilled if

H(1 - PoN(u) me "

{15.68)
(N(u) ,v(u))? 2

Now the quantity

(1 - P IN(u) = (1 - Pm)gAzu + (1= P (BLu) - F) + (1 - P )Au
= (1 - P )(B(u,u) - f)

since u e P H. So
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(L= PINCWIZ = (1 - Pr)(Blu,u) - D)2
< 2]AY2(1 - o yB(u,u) |2 + 2 FI2.
Now
W21 - e yBluu)|? ¢ N_l A1 - P Y8, < Kle 1AB(u,u)| 2.

m+1

Usiny the inequality |AB(u,u)| < c|Au|[A3/2u| (see (10.8) with s = 2) we

yet

(1-P)N(u)2§——A/2u + | I8
H m N X 1 l l “ “
On the other hand, from (15.59)

4
(N(u) u(u))? > Max{‘——iz— |A3/2u|4, % Jl%\‘i%_ e
u

Thus
i1 - P IN(u) 42 2,2 R? 2 2
o s < S quy? s iuiLAI.u.l.- -9 ‘lﬂ{_n- o eyt 211‘ .
(8(u) ,u{u)) T Amel |Au] T M+l R Ame

0

Since if agq - Ay > 0 we have g - 5y 2 1, condition (15.68) will be

fulfitled if M1 1S large enough:

(15.69) gy 2 cl 2.

We see thus that conditions I, IL, III can be fulfilled if (g, Nn+1) is a
yap, situated far enough. No requirement of largeness on the gap is
needed. WNow (IV) and (V) are easier to realize than (I) and (II).

Let us check IV: First let us note that from (15.8) it follows that
(15.70) sup |ix|} <If].
xe€X
Take ue 1, Xe X. We need

(1 - Pp(u = 0] < 3 [Pyu - 9],
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Now (1 - Pp)(u - x} = -(1 - Pm)x since ue P H. Thus

W= p)(u - )] = 1 - Px| < A;n}{?..xn < x,'n,}{zlfl-

On the other hand

Aetu - 012 Y2 Miieglu - 00> Y2 gyl - ekl
&;1/2
. A‘;1/2 —;—[N““ - Pl > A‘;‘1/2 %llull - —5— |fl.

Thus u - xe Cy 1/3 provided
3

-1/2

-1/2 | 'm -1/2
Oy !

R LT Pk

0°
Multiplyiny by A;/Z and using g < Apey We see that u - xe Cm,1/3

provided

w| &=

Il < 3Ry = 3UFIL

No extra requirement is needed.

Finally, let us check (V). Let v eNu)R + T{r)e Thus v = 4 4+ gr
with ¢ eTu(r), w defined in (15.63) and 4, real numbers.
(1- PV = a1 = Pplu; Pov = oPpo * gr. Since |Povi? = o2|p 4|2 + g2) |2

> aZlemlz it is enough to check that

1
L= Pl <5 1Pl -

Now we use the decomposition {15.64) and (15.65)

2
1 - P N
(0= pyul? = — L Tl ,
H1 - PN |E + (M) o(u))
Lipu?-12 (M), u))? .

11 - Pm)N(u)l2 + (N(u) ,u(u))
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Theretore what we need is
(15.71) (1 = PON(W| < 3 (N(u),u{u))

But condition (15.68) will imply (15.70) if

Amel T

i 1
(15.72) 7\ <3 -

m+1
This ayain is a mild requirement:

5 ey ~ M)

(19.73) el 2 5 .

Summarizing we proved

Lemma 15.8. Let m be such that and jg,q 1S large enough:

>
A+l *m

( - )
(15.74) > max(9 A W L chf“z)

Mmtl 2

Then the flat m-1 dimensional ellipsoid
(15.75) 1 = qu | Pou = u, [lull = Ry}
with

(15.76) Ry = 4|l

satisfies properties (I)-(V).

Let us fix Ry = 4]|f|. Let us seek m > 1 satisfying (15.35) with RZ =
’\mRS’ i.e.,

A * A A
. m+1 m 2 Am m+1 2
(15.77) ¢ 7z (Xm+1_ Nn) > k4+k3[1og 2

+ log(1),R5)]

and (15.40), (15.46), (15.74). Assume also that m is large enough so that
N = m-1 satisfies (15.49). The conditions (5.40), (15.46), (15.74) are

. Am 1 + *n
all of the form ~—7——-Zk where k=km0w,|fﬂ. Since Ry, ¢ are
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fixed, k = k(|| f]|) depends on || f|| alone., Condition (15.77) is of the type

Marl * Am Mt Al 2
e T kg + ky(log(TEh)

pecause Akl ~ Mm > 1 if Al > Mme Condition {15.49) is expressed in

terms of m,
m-12 c|f|2/3.

Since a2 S it follows that we can fulfill simultaneously conditions

(15.40), (15.46), (15.74), (15.77) provided
(15.78) Ml > Am

Anwy T A
(15.79) > e (IFlD

with CE(“fID a sufficiently large positive constant. We fix now m such

that (xm,x ) satisfy (15.78) and (15.79). Thus the spectral blocking

m+1
property (Theorem 15.4) the Cg 1/3 cone invariance (Theorem 15.5) are
L]
valid. Moreover, surfaces of dimension m-1 decay exponentially ((15.48),
(15.49)) and the initial surface r = (uePH | |lu]l = Ry} has the
properties {I)-(V}.
We start studyinyg the m dimensional surface 7y = k_) S{t)pr. Let us

t>0
consider the maps s and 4 yiven by

si{U,w) x 7 » £ CH, S(t,uo) = S(t)yg
oi{0se) x T »Puz s o= Pps.

The map s is a C*® map when viewed as a map of IR, x r in H. The Jacobian

of ¢ at some point Ty Yy is yiven by

(D) (tgouy) = L-PN(S(EIug), PL(S' (ty,uq)]
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where N(u) = EAzu + Au + B(u,u) - f and where S'(to,uo) is the
application that assigns to vy the value v(ty) of the solution of (15.37),
(15.38), the linearized equation along S(t)uo. Now assume that for some
ty > U, yyer, (Do)(tu,uo) would not be invertible. Then there would
exist a tanyent vector to r, vy € PmH and a real number 4 such that the
vector w(t) = aN(S(t)uo) + S‘(t:,uu)v0 satisfies me(to) = 0. Now let Q(t)
be the projector on the linear space N(S(t)uO)IR+ S‘(t,uo)(Tuo(r)).
Observe Q(t)w(t) = w(t). Also Q(t) solves the transport equations
(15.13), (15.14) with Qy = Q(up) the projector on the space R N(ug) +

¥ Amel

A
Tuu(r). The choice of 1 (property (1)) implies A(QO) < m_z___ . From

; ; At Amal
the spectral blockiny property (Theorem 15.3) 4(Q(t)) < i On
the other hand, since Q(ty)w(ty) = w(ty) we get by the definition of

a{Q(t)) that

2
iw(to e +
0 ‘m T Amei
— <aQ(t)) ¢ ———
lwit)|
Now at ty, Pyw(t;y) was assumed to be zero. Th:s [lw(ty) “2 > )‘m+1|w(t0)|2
A
and we arrive at the contradiction A+l sz_m_i-l . Thus we proved

(15.80) o is regular at each (t,ug)e (U,2) x 1o

It follows that ¢ is locally invertible. The local inverses of 4 form an
atlas for . Thus g is a smooth manifold. Also, clearly sz is open in
PuH. Now, from property (IV) and Proposition 15.7, 5 C Cm,X' Moreover,
sN X = Y. Indeed, if xex MX then x = S(t:)u0 with uje . But since

S{t)X = X it would follow that x = S(t)y with ye X and, from the
ingjectivity of $(t) that Uge © O X, Now this is absurd because 1 was taken
to be far away from X. But gz C Cm,x and g X = P imply Pt N Pk = ]
(yust use the definition of Cm,X)' Now let p Eﬁm—z = the closure in Hy of

Ppz. Thus p = ]zm Pms(i:k)uk with t, € (0,w), u €. Assuming that uy
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converyes to u it follows that p is either in PmX (if tk have » as cluster
point), or in p (if 0 is a cluster point of tk) or in Poy (if a finite
nonzero number is a cluster point for the t,'s.) So fn_ic PXoPzUr

and the union is disjoint. Now we claim that

EalRy) = © <P Ml llugll < Rpyc Pt -

We aryue by contradiction and assume that a small open ball
PPl fp - pyl < e} = B, is contained in llpgll < Ry but does not
intersect Poz. It follows that Ber\ PmS(t)r = P for all t > 0. Now, from

the isoperimetric inequality
vo]m_l(aBa) < volm_l(PmS(t)r) < vo]m_ls(t)r.

Now the right-hand side decreases exponentially as t » « and the left-hand
side 1s a positive number, absurd. (Here we used the fact that m-1 dimen-
sional volume elements decay exponentially, that p is compact and that P_,
as an orthoyonal projector, does not increase volumes). Now g is arcwise
connected, obviously. Thus Ppy is connected,open. Thus, since g is

reyular, 5 is a covering space of P, Therefore the cardinal of

mie

Pr-n1 {P} Nz is equal to the number of connected components of jx, that is,
it is equal to one. Thus Pp:y » Pz is injective., Now we define the map

o by ¢:& (Rg) > H

p if per
olp) = uer 1f pePyz, Pu=p

ueX if pePyX, Pou =

1
~

The map ¢ is clearly well defined. Now we will show that ¢ is Lipschitz.

Let py,py e € 4(Ry) . Let us take the straight line that joins them,
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pla) = py + WPy - py)s v€l0,11. Assume first that p(q) ¢ PyX for all
te{U,1). (Since dyX = m-1 this is the case for most points.) Then, for
each ¢ ¢[0,1], p{1) = Puu( ), with u() gz, u(¢) a smooth curve. Now u{<)
= S(t)uo for some t > 0, up e r depending on . It follows that the
tangent du/d; to u() is the transported S‘(t,uU)v for some v eTuo(r) +
N(uO)R. Since this space is in Cm,1/3 by assumption (V) and since Cm’1/3
is invariant to S‘(t,uo) by Theorem 15.5 it follows that du/dce Cm,1/3‘

Therefore,

1
(1= P)uly) - wlon] < (101 -py) a e

1 o du p ! 1
3 J le H—'(r)ldt =3 J 1P2-Dlldr =5 |P2-Dll-

T

A

Thus
(15.81) falpy) - alpy)l 5%\91 - Pl

On the other hand, if p()e P X for some r¢{0,1), say p(q) = Pau,» then

since T ¢ C it follows 4(p;) - u_ Cn.1/3 and ¢(p,) - u_ ecm’1/3.

m,X >
Thus

1(1-P,) (s(p,) = alpp)] < 1(1-P)(akpy) = u)| + (1P} (alp,) - )]
<3 1Palalpy)) - u)l + 3 1P (alp) - u )]

=3 lp, - (Dl + 3 1py - (] =3 1y - oyl

Tne last equalilty is true because P1» pl ), p, are on a straight line
with p( ;) between py and p,. Thus {15.81) is valid for every P1sPp-
Finally, let us consider the problem of uniform exponential conver-

gence of trajectories to'E. Let ujeH be arbitrary and let us consider

EBSCChost - printed on 2/10/2023 4:11 PMvia . All use subject to https://ww. ebsco.conlterms-of-use



182 Chapter Fifteen

S(t)uo. If S(t)uU stays outside Cm’x for all t > 0 then, according to

Proposition (15.7)

.
dist(S(t)uy.K) < C exp(- 5"__13@_1 £)

with ¢ = Max |x - u Since X ¢ gz, (this follows from P 3 DP X and

X eX_ Ol ) _
the fact that g Cm,1/3, thus Pou = Pox, ueg, XeX implies u = x),
clearly exponential decay towards X implies exponential decay towards _g
We may assume therefore that S(t)uo € Cm,x for t 2 tg (again from
Proposition {15.7)). If we take t large enough then PmS(t)uO belongs to
Em(Ru), clearly, (See (15.8)). It follows that Pms(t)u0 belongs to
PaZe Indeed the other two possibilities, namely Pms(t)uo in PaX and
Pms(’c)u0 in 1 are excluded easily. If PmS(t)qu PaX, since S(t)uoe Cm,X’
it follows that S(t)uo <X and the distance to 3 {(and X) are 0. If t is
Tarye enouyn || Pos(t)ygli < Ry so PpS{t)yg ¢ r. Now, since P S(t)uy ePys,
there exists uj e y such that PalS{tlug) = Pm(“1)° We claim that, for each

X €X,
fug - s(tlugl < |s(e)yy - x|.

Indeed, since S(t)uoe Cm,X we have
11 - Pp(s(Ehug - )] < 5 P (S(thug = )| = 5 1P(u; = x)
and also since 3 C Cm,x
1= Py = )] €5 1Py = X1

But S(t)ug - uy = (1 - Pad(S(t)ug - ug) and thus

0

Is(thug - upl = 11 = PO(S(E)y

1
[=4
—
~—

1

A

5 iegluy - 1 < §

(]
=
-
]
>
Fa)
[~
1
bod
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since ;X = @, Thus, for each fixed S(t)uo for t sufficiently large,
the distance between S(t)u0 and E must be attained on y. Let us fix t and

consider u = S(t)uy and u; e 3 such that dist{u;zp) = ju - ull. Let Q(ul)

be the projector on the tangent space at u; to z. Clearly
Q(ul)(u - ul) = 0.

On the other hand, since 3 is an integral surface

.
Q) > ML

because of property (II) and the spectral blocking property. From the

definition of AMUﬂ)itfm1wstMt

ot e

\2 - 2

lu - Uy

Let us consider u(s) = S(s)u, uy(s} = S(s)ul. Ctearly, u(s) = S(s + t)uy
and ul(s) ¢ 1. Forminy the difference v{s) = u{s) - ul(s) and taking the

first eneryy estimate we yet

294 N2+ IR < erglvilivil < S HvIE + Rflvi .
Thus
2
& s < AIVIR + wRlIvi? - -xvlz[ll:—‘lz—- @3]
Computing at s = U we yet
R

LI I Av 2l 2y ¢
Since

d . — 12 d 2

a5 laist(s(t+s)ug, B ‘s=0 = g5 IvisH \s=0

we obtain the desired uniform exponential decay
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+
dist(S(t)u,,3) < c exp(- i“__rx‘ﬁtl €

g%
for t > t,.

We proved therefore

Tneorem 15.9. Let Ry = 4“,f”’ Let m be such that ,g.q > ), and
a2 € (Tl where <. (Jl fll) is a positive constant depending on | f||.
Let

Em(RO) = (] ffull € Ry} P

tet r= g fjull =Rgy PH and z= ) S(t)r. Then g is an inertial
>0

manifold for the equation {15.3). Moreover, ¢: Em(RO) » 3 defined

by o(p) = u if uey, Pgu = p, is Lipschitz
1
11 - pdCalpy) - e )l <5 1oy - byl

Also ¢ is a C® manifold and the projectors Q(u) onto the tangent space to

5 at u satisfy

>m*m+1

< MAw) ¢ — < AW S ageqe

For any uyeR, there exists t; and c depending on ]uol only such that

R W
T

dist(s(t)u;,z) < c exp(- t)

for t > ty-
One can prove also
Theorem 15.10. The inertial manifold 3 has the following asymptotic

completeness property. For each ugeit, there exists ty and uy ey such

that
tlim |S(t‘.)u0 - S(t - tl)ull =0
»> @

EBSCChost - printed on 2/10/2023 4:11 PMvia . All use subject to https://ww. ebsco.conlterms-of-use



BIBLIOGRAPHY

The material in chapters 1 and 2 can be found in [A1], {T1], [LM1].
For chapter 3 we used [K1] and [G]. Most of chapters 4, 5, and 6 are well
known ([LM1], [T1], (721, (Be-Lo}). 1In chapters 7, 8, 9, 10, and 12 we
present the classical theory of Navier Stokes initiated by Leray ([Lal],
fLi1}, (113, (T2]). Chapter 11 illustrates the results of [K1] in the
periodic case. Chapters 13 and 14 cover more recent results, ({CF1],
LCFTL), {CFT2], [T3]). Work in progress is presented in chapter 15
(LCFNT1], CCFNT2} [F-S-T]).

{a1} S. Agmon - Lectures on elliptic boundary value problems, Van
Nostrand Math. Studies, no. 2, 1965,

LADN] S. Agmon, A. Douglis, L. Nirenberg - Estimates near the
boundary for solutions of elliptic partial differential
equations satisfying general boundary conditions II, Comm. Pure
Appl. Math 17 (1964), 35-92.

[Be-LO] J. Bergh, J. L&fstrdin - Interpolation spaces, An
introduction. Grundlehren der Mathematischen Wissenschaften
223, Springer, Berlin, Heidelberyg, NY, 1976.

[Cal] L. Cattabriga - Su un problema al contorno relativo al sistema
di equazioni di Stokes, Rend. Sem. Mat. Univ. Padova 31,

(1961), 308-340.

185

EBSCChost - printed on 2/10/2023 4:11 PMvia . All use subject to https://ww. ebsco.conlterms-of-use



186 Bibliography

[cil P. Constantin - Note on loss of regularity for solutions of the
3-D incompressible Euler and related equations, Comm. Math,
Phys. 104, (1986), 311-32.

Lezl P. Constantin - Collective L* estimates for families of
functions with orthonormal derivatives, to appear in Indiana
Journal of Math.

{CF1] P. Constantin, C, Foias - Giobal Lyapunov exponents, Kaplan-
Yorke formulas and the dimension of the attractors for 2-D
Navier-Stokes equations, Comm. Pure and Applied Math. 38
(1985), 1-27.

[CFT1] P. Constantin, C. Foias, R. Temam - Attractors representing
turbulent flows, Memoir of AMS, January, 1985, Volume 53, No.
314.

{CFT2] P. Constantin, C. Foias, R, Temam - On the dimension of the
attractors in two dimensional turbulence, preprint.

[CFNTL] P. Constantin, C. Foias, B. Nicolaenko, R. Temam - Integral
manifolds and inertial manifolds for dissipative partial
differential equations, preprint.

[CFNT2] P. Constantin, C, Foias, B. Nicolaenko, R. Temam - Comptes
Rendus de 1'Acad. Sci. Paris, vol, 302, série I, no. 10, 14
Mars 1986, 1375-378.

{F-S-T} C. Foias, G. R. Sell, R, Temam - Comptes Rendus de 1'Acad. Sci.
Paris 201, série I, 1985, 139-141.

[6J J.-M. Ghidaglia - Régularité€ des solutions de certaines
problémes aux limites lindaires lides aux équations d'Euler,
Comm. P.D.E., vol. 9, No. 13, (1984), 1264-9.

[KJ R. H. Kraichnan - Inertial ranges in two dimensional

turbulence, Phys. Fluids, 10, (1967), 1417-1423.

EBSCChost - printed on 2/10/2023 4:11 PMvia . All use subject to https://ww. ebsco.conlterms-of-use



LK1]

[Kol]

Lta]

[Lig

{L-1]3

(-1

fLiad

[LM1]

{R1]

{sSol}

Bibliography 187

7. Kato - Nonstationary flows of viscous and ideal fluids in
R3, J. Funct. Anal. 9, (1972), 296-305.

A.N. Kozhevnikov - On the operator of the linearized steady
state Navier-Stokes problem, Math. USSR Sbornik, vol 53, No.l,
(1986), 1-16.

0. A. Ladyzhenskaia - The mathematical theory of viscous
incompressible fiow, Gordon and Breach, 1969.

E. H. Liedb - An LP bound for the Riesz and Bessel potentials of
orthonormal functions, J. Funct. Anal, 51, No.2, (1983), 159-
165.

L. Landau, I. M, Lifschitz - Fluid Mechanics, Addison-Wesley,
New York, 1953,

E. H. Lieb, W. Thirring - Inequalities for the moments of the
eigenvalues of the Schrddinger equation and their relation to
Sobolev spaces, in Studies in Mathematical Physics: Essays in
honor of Valentin Bargman, (E. H, Lieb, B. Simon and A.
Wightman, eds.) Princeton Univ. Press, Princeton, NJ, 1976.

J. L. Lions - Problémes aux limites dans les équations aux
derivées partielles, Presses de 1'Université€ de Montreal,
Montreal 1965.

J. L, Lions, E. Magenes - Probiémes aux limites non homogenes
et applications, Dunod, Paris 1968-1970.

I. Richards - On the gaps between numbers which are sums of two
squares, Adv. In Math., 46 (1982), 1-2.

V. A, Solonnikov, On estimates of Green tensors for certain

boundary problems, Dokl. Akad Nauk SSSR, 29 (1960), 988-991.

EBSCChost - printed on 2/10/2023 4:11 PMvia . All use subject to https://ww. ebsco.conlterms-of-use



188 Bibliography

[Tl R. Temam - Navier-Stokes equations: theory and numerical
analysis, North Holland, Amsterdam, New York 1977.

[72} R. Temam - Navier-Stokes equations and nonlinear functional
analysis, SIAM, Philadeliphia 1983.

{13] R. Temam - Infinite dimensional dynamical systems, Proc. Symp.
Pure Math., vol. 4J, part 2, (1986), 431-445.

fv-v1] 1.1. Vorovich, V. I. Yudovich, Dokl Akad. Nauk SSSR, 124

(1959), 542.

EBSCChost - printed on 2/10/2023 4:11 PMvia . All use subject to https://ww. ebsco.conlterms-of-use



INDEX

backward uniqueness 108
contact element 156
energy dissipation flux 153
energy inequality, first 111, 120
energy inequality, second 115
enstrophy flux 153
fractal dimension 143
gap condition 163
Galerkin 64
generalized Grashof number 122
global Lyapunov exponent 140
Hausdorff dimension 94
higher regularity 91
infinitesimal displacement 110
inertial manifold 171
integral manifold 154, 171
Kaplan-Yorke formula 145
Leray 71
Leray projector 9, 42
Lieb-Thirring inequality 121
linearized equation 130
number of degrees of freedom 152
189

EBSCChost - printed on 2/10/2023 4:11 PMvia . All use subject to https://ww. ebsco.conlterms-of-use



190 Index

Poincaré inequality 3, 162
scale invariant 34, 35
solution, semigroup S(t) 110
solution, strong 86
solution, weak 57, 71

solution, uniqueness of weak 83

slow cone 165
spectral blocking 163
Stokes equation 11
Stokes operator 31
strony squeezing 166

time analyticity 107
universal attractor 136
volume element 116, 124
Wronskian 117

EBSCChost - printed on 2/10/2023 4:11 PMvia . All use subject to https://ww. ebsco.conlterms-of-use



	Contents
	Introduction
	Chapter 1. Notation and Preliminary Material
	Chapter 2. The Stokes equations. Existence and Uniqueness of Weak Solutions
	Chapter 3. Regularity of Solutions of the Stokes Equations
	Chapter 4. The Stokes Operator
	Chapter 5. The Navier-Stokes Equations
	Chapter 6. Inequalities for the Nonlinear Term
	Chapter 7. Stationary solutions to the Navier-Stokes Equations
	Chapter 8. Weak Solutions of the Navier-Stokes Equations
	Chapter 9. Strong Solutions
	Chapter 10. Further Results Concerning Weak and Strong Solutions
	Chapter 11. Vanishing Viscosity Limits
	Chapter 12. Analyticity and Backward Uniqueness
	Chapter 13. Exponential Decay of Volume Elements
	Chapter 14. Global Lyapunov Exponents. Hausdorff and Fractal Dimension of the Universal Attractor
	Chapter 15. Inertial Manifolds
	Bibliography
	Index

