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INlRODUCnON 

These constitute lecture notes of graduate courses given by the 

authors at Indiana University (1985-86) and the University of Chicago 

(1986-87), respectively. 

In recent years there has been considerable progress in some of the 

questions related to the Navier-Stokes equations and their relation to 

finite-dimensional phenomena. For instance, the upper bound for the 

dimension of the universal attractor for 2D Navier-Stokes equations has 

been lowered from an estimate of the type G2exp G4 to an estimate of the 

type G2/ 310g G1/ 3, where G is a nondimensional number, typically of the 

order of 100-1000. This most recent estimate can be understood in terms 

of the Kraichnan length and seems to be optimal for general body forces. 

We try in these lecture notes to give an almost self-contained 

treatment of the topics we discuss. These notes are by no means an 

exhaustive treatise on the subject of Navier-Stokes equations. It has 

been our choice to present results using the most elementary techniques 

available. Thus, for instance, the regularity theory for the Stokes 

sJstem (Chapter 3) is an adaptation of the classical L2 regularity 

theory for a Single elliptic equation of [AI]; our adaptation is 

inspired from (G]. Another example of our desire to illustrate the 

general results, while avoidiny excessive technicalities, is the way we 

describe the asymptotic behavior of the eigenvalues of the Stokes 

operator (Chapter 4). For general bounded domains we provide a lower 

vii 
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lntroduct ion 

bound, using essentially elementary means. The lower bounds are all we 

really need later on. For completeness we give the elementary proof of 

the exact asymptotic behavior in the periodic case. The same asymptotic 

behavior for yeneral domains, while true, would have required 

considerably more effort to describe. Questions regardiny the notions 

of weak and strong solutions and their relations to classical solutions 

are studied in some detail. We prove that strony solutions are as 

smooth as the data permit; thus, loss of regularity can only occur if 

the solution ceases to be strong. We then show how, if there is an 

initial datum leading to loss of regularity in infinite time, there 

exists another one which leads to loss of regularity in finite time. We 

yive the aryument of Scheffer and Leray estimating the Hausdorff dimen­

sion of the singular times of a weak solution to be not more than 1/2. 

A simple aryument is used to prove that, in the absence of boundaries, 

the vanishin~ viSCOSity limit of the Navier-Stokes equation is the Euler 

equation for incompressible fluids. The same technique can be used to 

show that as long as the solution to the incompressible Euler equation 

is smooth, solutions to small viscosity Navier-Stokes equations with the 

same initial data remain smooth. We provide a proof of time analyticity 

and consequent backward uni queness for the i ni t i a 1 va·1 ue probl em for the 

Navier-Stokes equations. 

The importance of contact element transport is emphasized in the 

last chapter. We study first (Chapter 13) the decay of volume elements 

and yi ve opt i rna 1 lower bounds for the di mens i on at whi ch thi s process 

starts. These bounds use inequalities of Lieb-Thirring. The construc­

tion of the universal attractor for 20 Navier-Stokes is given in Chapter 

14. The fractal and Hausdorff dimensions of the universal attractor are 

viii 
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Introduction 

estimated making the connection with the Kaplan-Yorke formula involving 

ylobal Lyapunov exponents. Upper bounds for the fractal dimension of 

bounded 'invariant sets for 3D Navier-Stokes are given also. The final 

chapter deals with the concept of inertial manifolds for an artificial 

viscosity perturbation of the Navier-Stokes equation. The spectral 

blockiny ~roperty and consequent cone invariance are illustrated in 

detail. These are ideas of independent interest and were successfully 

used to construct inertial manifolds for several physically significant 

equations. As of this writing the question of the existence of inertial 

manifolds for the Navier-Stokes equations remains open. 

We wish to thank E. Titi. who taught some of the classes at both 

Indiana and Chicago and assisted in the preparation of these notes. We 

are indebted to Fred Flowers for his expert typing. This work was 

performed while PC was a Sloan research fellow. 
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1 

NOTATION ANO PRELIMINARY MATERIAL 

Let g £ mr be an open set. g is said to have the segment property 

if the boundary of g, aa, has a 1 oca lly fi ni te open cover (Ui ), i • I and 

for each i there exists a direction wi" Sn-1 and Ei > 0 such that, for 

x" Ui f"\ a, ~ = x + t wi • a for 0 < t < Ei. 

We denote by LP(g) = {fl f:g + IR, measurable, II f(x) I Pdx < oo}. We 

shall use (. , .) for the scalar product in L2(g). If g has the segment 

property the notions of a weak derivative in the sense of distributions 

and in the LP sense coincide. We denote _a - = 0i' i = 1, ••• ,n and 
aXi 

Oa = -'La _I a_I ___ , 
al an 

aXI ••• aXn 

I al = al + ••• + an· 

Wm,p(a) are the Sobolev spaces Wm,p(g) = {floaf" LP, lal ~ m}. For 

p = 2 we denote Hm(g) = Wm,2(g). The norm in Wm,p(g) is 

2 1/2 
BU1m,p,g = (Ial l: uOauu P ) • 

~ m L (g) 

When P = 2 we write instead of 

space equipped with the scalar product 

(u,v)m = l: I (Oau)(x)(oav)(x)dx. 
,g lal ~ m g 

The spaces wm,p(g) are Banach spaces. We shall use the same notation 

LP(g), Hm(g), Wm,p(g) for vectorial counterparts. For instance, the 

scalar product in (Hm(g»n will be denoted 
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2 Chapter l)Ie 

(u,v) = l: f D"u • Day dx, 
m,ll lal ~ m Il 

where. signifies scalar product in rnr. We shall use sometimes the 

notation < , > for the scalar product in In. The closure of C~(Il) in 

Proposition 1.1. Let n satisfy the segment property. Then C~(rnr) is 

dense in Wm,P( Il), for 1 ~ P < .,. 

The idea of the proof is the fo 11 owi ng • Let u < Wm ,p( n). We fi rst 

approximate u in Wm,P( ill by a sequence of elements in Wm,P( ill with com­

pact support by considering um(x) = ,(~)u(x), where ,(x) = 1 if Ixl ~ 1, 

q,< C~(rnr), supp q, c {xllxl ~ 2}. Then, using a partition of unity we 

may assume that the support of u is compact and either is included in Il 

or is one of the sets Ui from the definition of the segment property. If 

the support of u is contained in !l then a standard convolution with a 

mollifier will provide the approximation. 

We may assume that the support of u is compact and included in some 

open set vice Ui. Let il' be the extension of u defined by setting il' 

to be zero outside n. Then irE wm,p( rnr \ (an" Vi)). We approximate ir 
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Notation and Preliminary Material 3 

by ut = u(. + t wi ) for small t. By doing this we push the singular set 

ao n Vi to ao,.. Vi - tWi: UtE Wm,P(IR\(ao n Vi - tWill. From the 

segment property this set does not touch Q. Thus ut E Wm,p(W) for some 

open neighborhood W of 0 n Vi' A convolution of ut with some moll ifier 

wi 11 Ilroduce a C~(Q) funct i on near to u. 

Proposition 1.2. (The Poincare inequality) If 0 is bounded in some 

direction (i.e., if there exists a straight line in ~ such that the 

projection of 0 on it is bounded) then 

(1.1) IIUII 2 < C(o) nVUl1 2 
L (0) - L (0) 

1 
for all UE HO(o). 

We shall denote by lui = IIUII 2 • Also, the Dirichlet norm 
L (0) n 

IIVUII 2 = (J l: IDiUI2dx)1/2 will be denoted by 
L (0) 0 i=l 

nUll. This notation 

(lui, nUll) will be used for vector valued functions, too, throughout 

this work. 

Proof. Since C;(o) is dense in H~(o) it is enough to prove (1.1) for 

'" E C~(o). Performing a rotation if necessary we may assume, without 

loss of generality, that 0 is bounded in the xl direction. Let d be the 

width of 0 in the xl direction: IX1 - Xli ~ d for all x.x in o. Since 

the support of", is compact in 0 there exists x~ belonging to the pro-

o jection of 0 on the xl axis, such that supp", C {X I xl > Xl}' We con-

sider", to be defined in IR". Then 

x x 
",(x1 .x') = ",(x~,x') + f 1 L- (s,x')ds = f 1 ~ (s,x')ds. 

x£ aX1 x£ aXl 
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4 Chapter line 

Using the Cauchy-Schwartz inequality, 

xl xl 
I 'I'(x l ,x')1 2 ~ IXl - xOll J I~ (S,X')1 2dX' < d J 1lP.- (S,X')1 2dS. xf 0 1 - xy aXl 

Integrati ng in x', 

Integrating in xl over the projection of the support of 

222 
I 'I' I ~ d 1'1' II • 

(The length of the projection of n on the xl axis is less than d.) We 

see that the constant C(n) in (1.1) can be taken to be d, the width of n 

in some direction. 

We shall present now some trace theorems and the Weyl decomposition 

from [Tl]. For more details see [Tl]. 

Let Q have the segment property. Let E( g) denote the space 

E(Q) = {UE L2(n)n I div u E L2(g)}. We denoted div u = 'l.U = 
n au. 
I _1 , the derivatives taken in the sense of distributions in Q. 

i=l aXi 
E(Q) is a Hilbert space with the scalar product 

[u,v] = (u,v) + J (div u)(div v)dx. 
Q 

Proposition 1.3. The set (C~(~))n is dense in E(n). 

Proof. Same method as for Proposition 1.1. 

We shall impose a much more restrictive assumption on g. We shall 

say that g is of class Cr if there exists a locally finite open cover 

(Ui)i El of an and Cr diffeomorphisms wi :Ui .. D, where D is the unit 

open disk in ~, D = {X I Ixl < l} such that 

Wi (Ui r. n) = D+ = {X ED I xn > O}, 

wi (Ui " ag) = DO = {X E D I xn = o}. 
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Notation and Prelimina~ Material 

Suppose now that n is bounded and of class C2• The trace operator 

yo:H1(n) + L2(an) is a bounded linear operator agreeing with the 

rest ri ct ion ope rat ion u I----- u/ an for continuously different i abl e 

functions on n. The kernel of yo is H6(n). The image is denoted 

H1/ 2(an), and is a Hilbert space. (On an we consider the Lebesgue 

measure.) There exists a lifting operator t :H1/ 2(an) + H1(n) which 
n 

satisfies Yotn = identity in H1/ 2(an). For these results see [Li1], 

[L-Ml]. We define H- 1/ 2(an) as the dual space of H1/ 2(an). We want to 

define the normal component u. nn of elements of E(n). The notation 

nn stands for the outer normal to an. 

Proposition 1.4. Let n be an open bounded set of class C2• There 

exists a continuous linear operator y:E(n) + H-1/ 2(n) such that 

y(u) = u.nn for every U' cO'Cil)n. The Stokes formula 

(1.2) (u, grad w) + (div u, w) = <y(u), YO(w» 

The idea of the proof is to use the lifting operator 

5 

tn:H1/2(an) + H1(n) to define the element y(u) of the dual H-1/ 2(an) of 

H1/ 2(n) by (1.2): 

<y(u),~> d~f (u, grad tnt) + (div u, tnt) 

for all ~. Hl/ 2(an), and fixed U. E(n). Clearly, since tnt .• H1(n) and 

iii., (~)II 1 ~ CiiU 1/2 ' l<y(u),~>1 5 Cii~1I 1/2 IIUUE()· This 
il H (Q) H ( an) H (an) n 

takes care of the fact that y:E(n) + H- l / 2(an) and y is a bounded linear 

map. If u is a C""(n) n funct i on and tis the rest ri ct i on to an of a 

C""(n) function, w, the divergence theorem (Stokes formula) implies that 

J (u.n )~ dx = (u, grad w) + (div u, w). 
an n 
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6 Chapter One 

Since w - £n(') is in the kernel of yO' that is. 

wo = w - £n(') EH6(n) and since (u. grad wO) + (div u. wO) = a for any 

Wo E H6(n) it follows that f (u.n ), dx = <y(u).,>. Now the functions 
an _ n 

~ which are restrictions of C~(n) functions are dense in H1/ 2(an). It 

follows that u.nn = y(u) for smooth u. 

Proposition 1.5. Let u E E(n) be such that y(u) = O. Then u can be 

apVroximated in E(n) by functions belonging to C;(n)n. 

For the proof we note that y(u) = 0 implies 

f (div u)rp + u.grad ",dx = 0 
n 
defi ne by u the extens ion 

for every '" = t\_ . t E COl IR'). We 
n 

by 0 of u: <Ui.ljJ> = f ui(x)ljJ(x)dx. 

i = 1 ••••• n. ljJ EC;(IR'). It follows that div 'f=~. Thus U EE(IR'). 

Now we localize. as in the proof of Proposition 1.1. We may assume that 

the support of u is compact and contained in one of the sets Ui from the 

definition of the segment property. However. in the present case. there 

is no singular set since u • E(IR') and thus we can perform a small 

translation "inland". ut = u(. -t wi ) (as opposed to ut = u(. + t wi ) in 

the proof of Proposition 1.1). By this translation we detach the sup­

port of u from the boundary: UtE E(IR'), supp Ut C n. Again convolution 

with a mollifier will produce functions in C;(IR') close to u but this 

time thei r support will be included inn. 

Let us denote by "IT the set 

(1.3) 'li" = {rp • (Co(n))n I div '" = oJ. 

Let us denote by H and V the closure of "V' in L2(n)n and H6(n)n, 

respect ively. 

(1.4) H = closure of'1! in L2(n)n 

(1.5) V = closure of ~in H~(n)n. 

Let n c rnr be open. We state without proof the following results. 
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Notation and Preli.ina~ Material 

Proposition 1.6. Let fi 0 D' (n). i = 1 ..... n. be distributions. Then 

f = grad p for some poP' (n) if and only if <f .v> = 0 for all v o'lr. 

Also 

Proposition 1.7. Let n C IR'l be an open bounded set with locally 

Lipschitz boundary. 

(i) If a distribution poJ7'(n) has all its first derivatives DiP in 

L2(n) then po L2(n) and 

(ii) If a distribution p has all its first derivatives in H- 1(n) (the 

dual of HI(n)) then po L2(n) and 

In both cases. if no restriction is imposed on an it follows that 

By II p II 2 we mean 
L (n)/lR 

J pdx 

inf lip - c11L2( ) = II p - W .IIIL2( ) 
colR n n 

Proposition 1.8. Let n C rR'1 be a locally Lipschitz bounded open set. 

Then 

(1.6 ) H = {U 0 L2(n)n div u = O. y(u) = O} 

( 1.7) 

Proof. For (1.7): If u = grad p with po HI(n) then <u.v> = 0 for all 

v o'lf and u E Hl. On the other hand. <u.v> = 0 for all v 0 'IT implies by 

Propositions 1.6 and 1.7. u = grad P. p E HI( n). 
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Chapter One 

Now for the proof of (1.6). Denote by H the right hand side of 

(1.6). If u belongs to H then u is the limit in L2(0)n of a sequence of 

functions in 1!. Thus clearly div u = O. Therefore u E E(n) and the 

convergence of the functions of V'to u takes place in E(o). Now 

y:E(o) + H- l / 2(ao) is continuous. Therefore, y(u) = o. Now H C H'. 

Moreover H is dense in the L2(0)n topology in H'. For H' is a closed 

subspace of L2(0)n and if H' e H would be nonempty, say v EH' e H, 

then VE Hl, and thus v = VP with PE Hl(o) and also v E H', thus 

div (grad p) = AP = 0, y(u) = + = O. Thus p must be constant on each 
a 0 

connected component of o. Thus u = 0, since H is closed H = H'. 

Proposition 1.9. Let 0 be open, bounded, connected of class C2 • Then 

L2(0) = H liE) HI liE) H2, where H, HI' H2 are mutually orthogonal spaces, 

HI = {UEL2(0)n u = grad p, p EHl(o), AP = O} 

and 
1 u = grad p, p E HO(o)}. 

Proof. Clearly Hl,HZ are included in Hl. Also HI and HZ are 

orthogonal, for if u = vp, v = Vq, P E Hl(o), AP = 0 and q E H6(0) then, 

by the Stokes formula (l.Z) 

(u,v) = (u,Vq) = (yu,yoq) - (AP,q) = O. 

Let now UE LZ(o)n be arbitrary. First let us solve t.P = div UE H-l(o), 

p E H6(0). This Dirichlet problem has a unique solution. We set 

Uz = vp; clearly Uz E HZ' Then, for u - u2 we solve the Neumann problem 

Aq = 0 ~ = y(u - u) Remark fi rst that div(u - u2) = div u - t.P = 0 , ann Z • 

and so u - UZE E(o). Moreover, the compatibility condition 

<y(u - uZ),l> = 0 is satisfied because of the Stokes formula. Then 

there exists a unique q (up to additive constants) such that qE Hl(o) 

and solves the Neumann problem. Then ul = vq clearly is in HI' 
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Notation and Preli.inary Material 9 

Finally, let Uo = u - u1 - u2. We need to show that UOE H. Clearly, 

div Uo = div u - div u1 -div u2 = 

div u - ll.q - lIP = div u - 0 - div u = O. 

Also, 

Remark 1.10. Let P:L2 (Il)n + H be the orthogonal projector u l---.uO• We 

1 n shall refer to it occasionally as the Leray Projector. If u E HO(Il) 

then PUE H1(Il)n. Indeed, in finding u2 we solve now ll.P = div UE L2(1l), 

P E H6(1l) so we can find p E H2(1l). Therefore u2 = 'lP belongs to 

H1(1l). Then u -u2 belongs to H1(1l) and y(u - u2) belongs to H1/ 2(all). 

Thus solviny the Neumann problem ll.q = 0, 1*- = y(u - u2 ) we obtain 
Il 

'I E H2( 11) and thus u1 = vq be longs to HI. It foll ows that 

lIn 1 n Uo = u - u1 - u2 belongs to H (11). Thus P:(HO(Il)) ... (H (Il)) is 

bounded. 

If further smoothness is assumed on all then we see that P is 

bounded in higher Sobolev spaces. 

Proposition 1.11. Let 11 be open, bounded and locally Lipschitz. Then 

(loB) V = {U E H6(Il)n 1 div u = o} 

Proof. Let V· be the space defined in the right hand side of (l.B). 

Clearly V C V·. Moreover V· is closed in H6(Il)n. Let L be any 

continuous linear functional on V·. Clearly, L can be extended to 

1 n_1 
H (Il)n so it can be written as L = I c". ,.) with 1i E H (11). Now, 

i =1 ' 
if <L,v> = 0 for all VE V it follows from PropOSition 1.6 that there 
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10 Chapter One 

exists p • fj' (Q) such that ~i = ~. Since ~i • H- 1(Q) it follows from 

Proposition 1.7 that pE L2(Q). But then 

n n 
L(w) = 1: <~. ,w.> = ~ <D.p,w.> = - f P div w = 0 

i=l 1 1 i;l 1 1 (l 

for every WE V Thus V is dense in V and since V is closed, V = V . 
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2 

THE STOKES EQUATIONS. EXISTENCE AND UNIQUENESS OF WEAK SOLUTIONS 

Let n be an open bounded set in llf. Let f. L 2( n) n. The Stokes 

equations for the vector u = (u1' ••• 'un ) and the scalar f are (v > 0 is 

a constant) 

(2.1) -v~u + grad p = f in n 

(2.2) div u = 0 in n 

(2.3) u = 0 on an. 

If u,p are smooth then integating by parts we obtain 

(2.4) v((u,v)) = (f,v) 

for all v E 'If. Hereafter ((u,v)) is the scalar product 
n 

((u,v)) = I (D.u,D.v). 
i =1 1 1 

We shall say that u is a weak solution of the Stokes equations 

(2.1)-(2.3) if 

(2.5) 
J U E V and 

l v((u,v)) = (f,v) for all v E 'If. 

Let us note that (2.5) implies by continuity that v((u,v)) (f,v) 

for all VE V. 

Proposition 2.1. Let n be open bounded and of class C2 • The following 

are equivalent 

11 
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12 Chapter lito 

(i) u is a weak solution of the Stokes equations 

(ii) 1 n 
u E HO( 11) and satisfies: there exists PE L2( \1) such that 

(2.6) -vt:.U + grad p = f in /j' ( fl) 

(2.7) div u = 0 in ,D' ( fl) 

(2.8) YO(ui) = 0 i = 1, ... ,n. 

(iii) u..v achieves the minimum of t(v) = vII vII 2 - 2(f,v) on V. 

Proof. If (ii) is true then u' V because of (2.7) and (1.8). Then 

(2.4) is true because of (2.6). So (ii) implies (i). Conversely, if 

(i) is true then -vt:.u - f is a distribution in H-1(fl)n satisfying 

<-vt:.u - f, v> = 0 for all v E'lf. Then, by Propositions 1.6 and 1.7, 

-vt:.u - f is the gradient of an L2(ru function. Now if (i) is true then 

t(u + w) = vllu + wll2 - 2(u + w,f) = <t(u) + vllwll2 ~ t(u) for all WE V. 

Conversely, if (iii) is satisfied then the expression t(u + AV) - t(u) 

is nonnegative for all VE V, A E JR. But this expression is the 

quadratic polynomial ).2lllvll2 + 2>£v((u,v)) - (f,v)] and therefore the 

coefficient of ). must vanish. 

Proposition 2.2 (Lax-Milgram). Let X be a separable Hilbert space and 

a:X x X + R be a bilinear continuous coercive form. That is, if 1I.lIx 
denotes the norm in X 

( i ) I a( u, v) I ~ ell u II xII v II X 

(i i) a( u ,u) ~ all u II i . 
Then, for each t linear continuous form on X, there exists a unique 

element UtE X such that 

(iii) a(ut,v) = <t,v> for all v EX 
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The Stokes Equations. Existence and Uniqueness 

Proof. a{.,.) is a scalar product in X. It induces a norm which 

is equivalent to the original norm. Then t is a linear continuous form 

on X with this scalar product. By the F. Riesz representation theorem 

there exists and is unique ut such that (iii) is true. 

13 

Theorem 2.3. Let u be open and bounded in some direction. Then for 

every fE L2{u)n, v > 0 there exists a unique weak solution of the Stokes 

equations (2.1)-{2.3). 

Proof. By the Poincare inequality a{{.,.)) is coercive on V. The 

result follows from the Lax-Milgram theorem. A second proof can be 

given using the characterization (iii) of Proposition 2.2. 
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3 

REGUlARIlY OF SOLUTIONS OF lIIE STOKES EQII\. TIONS 

The Stokes system is elliptic in the sense of ~gmon, Douglis, and 

Nirenber~ and therefore the general a priori estimates of [ADN 1,2] are 

available for it. The LP existence and regularity results were first 

obtained by Vorovich and Yudovitch [V], Cattabriga [Cal] and Solonnikov 

[SolJ. We shall restrict ourselves to the L2 results. In the case of 

L2 elliptic estimates the classical method of [Al] used to derive 

reyularity results for scalar equations can be adapted with no 

difficulty to the Stokes system. We use thus the notation and technique 

of [All. 

i Definition 3.1. We define the difference operators 0h by 

i 1 i (ohu)(x) = h (u(x + he ) - u(x)) , hI O. 

Lemma 3.2. Suppose u E Hm( u), m ~ 1, [i' C. u. ~ ssume 

di st([i' ,asl) > h > O. Then 

(3.1) 

Proof. 

and thus 

For any function f E C1(a,b+h) we have 

x+h 
f(x + h) - f(x) = f f'(t)dt 

x 

14 
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Regularity of Solutions of the Stokes Equations 15 

If{x + h) - f{x)1 2 
x+h 

< h J If'{t)1 2dt. 
x 

Integratiny, we get 

b b x+h 
J 1 f (x + h) - f (x) 12 dx 5 h J dx J 1 f' (t) 12 dt 
a a x 

a+h t b t b+h b 
h [J 1 f' (t) 12 (J dx )dt + J 1 f' (t) 12 (I dx )dt + r 1 f' (t) 12 (I dx )dt 1 

a a a+h -h 6 -h 

b+h 
< h2 J If'{t)1 2dt. 

a 

Therefore 

b b+h 
J 1f(x+h~-f{X)12dX5J If'{t)1 2dt. (3.2) 
a a 

Now clearly if UE Cm{~) then using (3.2), the fact that o~ commutes 

with differentiation and iterated integrals, we obtain (3.1). For 

general u the result follows from density arguments. 

Lemma 3.3. Suppose ~ has the segment property. Assume UE Hm{~) and 

that there exists a constant C > 0 such that, for every ~'C C~, 

II o~u Ilm,~' ~ C for all h sufficiently small. Then II Diull m,~ ~ YmC, 

where Ym = Ii. 
1 "I = m 

Proof. Assume first m = O. Fix Q'CC Q. By the weak compactness 

~roperty of L2 we find a sequence {h k} of reals hk + 0 and a function 

2 i 2 ui E L such that 0hkU Itui weakly in L (Q'). Clearly also lIuillo,Q' 

~ C. For any ~E Co{Q) we have 
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16 Chapter Three 

This proves that ui = DiU in the weak sense in n'. Allowing n' to vary 

we obtain the conclusion of the lemma for m = O. For general m, the re­

sult follows from the m = 0 case applied to derivatives of order m of u. 

Lemma 3.4. Let R > 0 and I et ~ = {X ElRn I I X I < R, xn > O}. Suppose 

u • L 2( G) and assume that there exi sts a number C such that, for every 

R' < R, \I 6~U \I O,~, S C for some i • {1,2, ••• ,n-1}. Then the weak 

derivative Diu belongs to L2(GR) and 

\I Diu 110 ,GR ~ C. 

Proof. Same as before. 

Remark 3.5. For vector valued functions, Lemmas 3.2, 3.3 and 3.4 are 

true. The difference operators act on each component. The operators 
i 6h act almost like derivatives: 

(3.3) 

Here ,~(a)(x) = a(x + he i ) is a translation operator and, of course, 

for small h, it is close to identity. 

We are ready to give the main lemma. The method of proof of 

regularity involves localization (a partition of unity) and local 

flattening of the boundary. The change of variables by which the local 

flattening is obtained will transform the constant coefficients Stokes 

system into a slightly more complicated, variable coefficients system. 

The stragegy, thus, consists in treating systems of a type that is 

invariant to change of variables in simple domains. The operator 
n 

-. I t-:- (ai/x)~) is said to be uniformly elliptic in a domain 
1 ,J= 1 1 J 

G if there exists M > 0 such that 
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Regularity of Solutions of the Stokes Equations 17 

From now on we shall use the summation convention (repeated indices 

are summed) unless the contrary is expressly stated. We shall consider 

two kinds of domains G, balls and half balls: 

(3.5) GR = {x. Iitl Ixl < R} 

(3.6) GR = {X' Iff1 xn > 0, Ixl < R}. 

We shall denote by GR the set 

( 3 .7) GR = {x. Iitl I xn ~ 0, I x I < R}. 

A function whose support is compact and included in GR may not vanish 

for points on xn = O. 

Lemma 3.6. ([G]) Let 0 < R' < R. Consider a weak solution V,p of the 

system 

(3.8) 

(3.9) 

where 

and 

The principal part of (3.8) is assumed to be uniformly elliptic, i.e., 

(3.4) holds. The domain GR is either a ball ((3.5» or a half ball 

((3.6» • 
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18 Chapter Three 

Suppose VE(H~(GR,))n. pE L2(GR,). Assume that the supports of v.P 

are compact in GR, (GR, in case of the half balls). Then. there exists 

a constant C depending on R. R' and the coefficients of (3.8). (3.9) 

such that 

(3.10) IIDiV IIH1(GR) ~ CCllf Il L2 (GR) + IIv IIH1(GR) 

+ II :)11 H2(GR) + II pll L2(GR)J 

where i = 1 ••••• n if GR.GR, are balls and i = 1.2 •••••• n-l if GR' GR, 

are half balls. 

Proof. According to Lemmas 3.3 and 3.4 all we need to show is that 

the right hand side of (3.10) is an upper bound for II S~V II 1( ) for 
H GRIO 

all R' < RIO < Rand Ihl < R;; RIO. (The index i is fixed and not summed 

below.) The sense in which (3.8) is satisfied is the following: for 

every tp E (CO(GR))n one has 

(3.11) 

1 n Clearly (3.11) is true. by continuity. for every tpE (HO(GR)). If 
R - RIO . _ n 

Ihl < -2- then lf tpE CO(GRIO) we may apply (3.11) with tp replaced 
i by tph = -o_htp. We obtai n 

(3.12) 

We treat the three terms on the left-hand side of (3.12) separately. 

The first one using (3.3) can be computed 
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Regularity of Solutions of the Stokes Equations 

In view of the fact that akj are uniformly Lipschitz we obtain 

The constant C is independent of h and will change during the proof. 

(3.13) 
av m aWm 

a(v,w) = f ak" - - dx. 
J aXj aXk 

We estimate the second term using Lemma 3.2: 

R + R" where Rill = -2- . 

In order to estimate the third term we write first, using (3.3) 

Now since supp p is compact in GRI (GRI) we can find a EC~(GR") 

such that aP = p. Thus 

and therefore we obtain 

I III I = If aP :X(YmjO~h cp)dxl 
J 

< cllpllL2(G )[11 oi (ag " acpm) II 2( ) + 11'1'\1 1( 
- R -h mJ aXj L GRill H GRill) 

19 
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20 Chapter Three 

The precaution of inserting a is not needed for the proof of the 

present lemma but it will take care of a minor fine point later on. The 

right-hand side of (3.12) is bounded by IlfIlL2(GR)II"'IIH1(GRIII). Summing 

up, we obtai ned 

valid for every",. (C;(GR"»n. Now for each fixed h, (small) 

o~v. (H~(GR"»n. There exists a sequence ",Cd. (C;(GR"»n converging 
. a",(·d 

to 0h\ in H1(GR")n. But then ag . _m_ converges in L2(GR") to the 
ffiJ ax . 

. av J 
corresponding expression ag .oh1 -..!!!. It follows that 

Cd ffiJ aXj 
i a m 2 i i av m ° h(ag . --) converges weakly in L (GRill) to o_h(agmJ·oh -;;x:-). 
- ffiJ a~ • J 

Now this last expression can be computed using (3.3), 

Thus 

(3.15) 
i ; av m 

o_h (a9mj 0h ax/II L2( GRill) 

~ c[lIo~apIIH1(GRII) + IIvllG1(GR) + II o~v II Hl(GRlI)J 
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Here we used the fact that agmj is c2, Lemma 3.2 and the fact that the 
a (i) 

1 . . i ( '" m ) supports of v and pare actua ly 1 n GR,· S1 nce o_h agmj ax:--
J 

2 i i aVm 
converges weakly in L (GRoo,) as i + .. to o_h(agmj0h 3)(':") we may 

J 

assume, by passing to a subsequence, if necessary, that their norms in 

L2(GRoo) are uniformly bounded by the right-hand side of (3.15) (with a 

larger constant). 

. a (i) . 

Ilo~h(agmj aXjm )II L2(GRooo) ~ c[lIo~aPiIHl(GROO) 

+ IlvIIHl(GR) + lIo~VIIHI(GROO)] 

Reading (3.14) for ",(i) and passing to lim sup we obtain 
i + .. 

21 

(3.16) la(o~v,o~v)1 ~ C{II o~v IIHI(GR,}lIfIlL2(GR) + l~vIlHl(GR) 
+ IIpIIL2(GR)] + IIpIIL2(GR)[lIvIlHl(GR) + II o~(ap) II HI(GRoo)]} 

Now, from the uniform ellipticity 

and thus, with Lemma 3.2 

(3.17) 

Now we use (3.16), (3.17) and Young's inequality to deduce 

(3.18) 
. 2 2 2 

II o~v II H1 (GRu) ~ C[lIvIIHl(GR) + II fllL2(GR) 

2 i 
+ IIpIiL2(GR) + IIpIiL2(GR)11 °h(ap) IiH1(GR)] 
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22 Chapter Three 

The estimate (3.10) follows now from (3.18). Lemma 3.2 and Lemma 

3.4. The proof of Lemma 3.6 is complete. 

Let us consider now a bounded open set n with boundary an. Each 

point YO' an has a neighborhood U equipped with a C3 diffeomorphism 

1/I:U + JRn such that un n is the preimage under 1/1 of the upper half 

plane xn > 0 and U nan is the preimage of xn = O. Restricting 1/1 and U 

to the preimage of a half ball in JRl containing Xo = 1/I(YO) it is easy 
r 

to see that one can construct open sets Uj such that ""ii c ~ UJ~' 
J=1 

iJj C Uj • There exi sts 1/Ij defi ned in open nei ghborhoods of iJj • C3 

di ffeomorphi sm such that 1/Ij (Uj n n) = ~.' 1/Ij (Uj n n) = ~ ' .• 
_ J J 

o < R'. < R .• If U~ C n then ~. and ~, are balls. If U'. n an is not 
J J J J j J 

empty. then GR. and ~~ are half balls. Let us consider a partition of 
J J r 

unity a.:. CO(U~). 0 S ~j S 1. J ~J. = 1. supp ~J. c!i· 
J J J=1 

Let u.p be a weak solution of the Stokes system 

(3.19) -"flU + vP = F 

(3.20) v.u = 0 

in n. We asssume that u. H~( n)n and P E L2( n). F. L2( n)n. We write 
r r 

u = I ~.u. P = I .... P. Let us fix j • {l ••••• q and consider the pair 
j=1 J j=1 J 

~ju. ~jP. We drop the index j for convenience. 

Let us define 

(3.21) 

Note first that the supports of v.q are included and compact in ~, 

(GR' in the case of half balls). Differentiating the identity ~(y)u(y) 

= v( ijo(Y» we get 

au. a 'lin aVi 1 
(~ 'v~)(y) = - (y) - (1/1- (y» _.k. (y)u. (y) OJ.. aYk aXm aYk 1 

(3.22) 
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and 

(3.23) 

We are lead to define thus 

(3.24) 

(3.25) 

Note that since ~ is a C3 diffeomorphism, 9mk E C2 and (9mk) is an 

invertible matrix. This implies property (3.4) for the matrix aij. 

Taking the trace in (3.22) and using (3.20) we see that ~ aVm = 
aYm aXk 

1.lL u Thus 
aY k k· 

(3.26) 

We multiply (3.19) by a and use (3.23). We obtain an equation 

(3.B) for f appropriately defined 

(3.27) 

We apply (3.18). We use for a in (3.18) the function 

~(x) = a( ~-l(x». The reason we can do this is that 

p(x) = ~(x)p(~-l(x». Now from (3.26) we see that 

a(x)p(x) = -::- (~-l(x».~(x)ui(~-l(x». Now a(X)Ui(~-l(x» = vi(x) by 
1 

definition and thus 

where 
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24 Chapter Three 

The need to consider ~p instead of p arose from the fact that p 

itself is not an expression in v. Now 

(3.28) 

Using (3.28) we can bootstrap in (3.18): We obtain 

(3.29) 

where v ("u)(w- 1(x)) and i = 1.2 •.••• n-1. Using Lemma (3.4) we infer 

(3.30) 

where we denoted 

(3.31) 

From (3.30) we know that DiDjv belongs to L2(GR) for all i.j except 

(i.j) = (n.n). 

As in the case of a single elliptic equation we need to use the 
2 

equat i on to get i nformat i on about _0 _v_. In order to do so we fi rst 
oXn aXn 

study the pressure. We shall use the expression "belongs to WI" (resp. 

"belongs to L2,,) to mean that the corresponding quantity has a norm as a 

linear functional on HI (resp. norm in L2) bounded by c/E for an 

appropri ate c. 

We differentiate (3.8) in a tangential (k < n) direction. We infer 

,2n 1 2v 
that 9 . ~ belongs to H- (GR). (Indeed v(~) belongs to 

mJ axkaxJ axkaXj 
2 

H-l(GR) since k < nand _a_v_ belongs to L2 ). Since gmj is 
aXk a~j 

invertible. it follows that ~ belongs to H-1(GR) for all 
ax ~ aXk 

~ = 1.2 ••••• n. But this implies 
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Regularity of Solutions of the Stokes Equations 

1E- belongs to L2(GR). for all k = 1.2 ••••• n-1. 
3xk 

25 

Now let us take (3.26) and differentiate with respect to the normal 

a2vm n-1 a2vm 
di rect ion aa xn • We infer that gmn -- + l: g k --- belongs to 

ax~ k=1 m axnaxk 

L2(G R). Using (3.30) we conclude that 

(3.33) 
a2v m 

gmn -2- belonys to L2(GR) 
aXn 

Let us return now to equation (3.8). Using (3.30) it follows that 

(3.34) 

Using (3.32) it follows that 

Multiplying by gmn and summing in m we get 

belongs to L2. 

Using (3.33) we obtain that belongs to L2. 

Now since the matrix gmn is invertible (actually gmngmn = ann) it 

fo 11 ows that 

(3.35) 

Now from (3.32). (3.34) and (3.35) it follows that 

L2(GR) and since ann F 0 finally 

(3.36 ) 

belongs to 
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In order to conclude, let us remark that (3.32) and (3.35) imply 

that p E Hl(GR) and IIpll 1 ~ clf. Similarly, (3.30) and (3.36) imply 
H (GR) 

that v E H2(GR) and II vII 2 ~ clf. From the defi nitions of v and p it 
H (GR) 

follows that ~(y)u(y) and ~(y)P(y) belong to H2(~) and Hl(~) 

respectively (with norms bounded by clf). Since u = z: ~jU, p z: ~/ we 

proved: 

Theorem 3.7. Let ~ be a bounded open set with C3 boundary. Let (u,p) 

solve the Stokes system weakly: 

(3.37 ) -"l'lU + VP = f 

(3.38) v.u = 0 

Assume f E L2(~)n, UE H~(~)n, pE L2(~). Then UE H2(~)n, pE Hl(~). 

There exists a constant such that 

(3.39) II u II 2 + II Pill ~ c[1I f II 2 + II u II 1 + II pil 2 ] 
H(~) H(~) L(~) H(~) L(~) 

Remark 3.8. If the boundary of ~ is assumed to be of class C2+m and 

f EHm(~) then it can be shown that u • Hm+2(Q)n, p. Hm+l(~) and 

(3.4U) 

The requirement that Q be of class C3 in Theorem 3.7 can be relaxed 

at the (academi c) pri ce of assumi ng p. Hi, u • H2. 

Theorem 3.9. Let ,1 be a bounded open set of class C2• Let (u,p) solve 

the Stokes system (3.37), (3.38) weakly. Assume f. L2(Il)n, 

1 n 2 n 1 u E HO(11) r. H (11) , p. H (11). Then there exists a constant such that 

(3.41) lIuli 2 + IIpll 1 < c[lIfll 2 + lI ull 1 + IIpll 2 ] 
H(Il) H(il)- L(Il) H(Il) L(~) 
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Note the fact that the right-hand side of (3.41) does not contain 

Theorem 3.9 cannot be used in conjunction with Theorem 2.3. One 

needs a constructive method or an approximation scheme that has 

pE H1((l). UE H2((l). These methods are available but will not be 

27 

described here. Theorem 3.7. however. can be used together with Theorem 

2.3 and provides existence and regularity of solutions to the Stokes 

system. 

For the proof of Theorem 3.9 we need an analogue of Lemma 3.6. 

Lemma 3.10. Let 0 < R' < R. Let v,p be a weak solution of 

(3.42) 

(3.43) 

a av m av - ax:- (aij(x) ax:-) + b.(x) -----E! + gmj ~ = fm• m = 1 ••••• n 
1 J J ax j ax j 
av m 

9mk ax = p 
k 

where aiJ E C1(GR). 9mj E C1(GR). bj E CO(GR), f = (fm) E L2(GR)n. 

p H1( GR). The pri nci pal part of (3.42 ) is assumed to be uniformly 

elliptic. (i .e., (3.4) holds). GR is either a ball or a half ball. 

Assume that VE (H6(GR,))n. pE H1(GR,) and that the supports of v.P are 

compact and contained in GR, (GR, in the case of half balls). Then 

there exists a constant such that, for i ~ n (resp. i S n-1 in the case 

of half balls) 

(3.44) 
. 2 2 2 2 

IID1VIIH1(GR) s cCllfIIL2(GR) + IIpIIL2(GR) + IlvIIH1(GR) 

+ II Dipil L2(GR)11 pll H1(GR) + II Dipil L2(GR)llvll H1(GR)J 

 EBSCOhost - printed on 2/10/2023 4:11 PM via . All use subject to https://www.ebsco.com/terms-of-use



28 Chapter lhree 

Proof. We proceed exactly as in the proof of Lemma 3.6. We estimate 

the term III = f aP ~ (g o6ih )dx differently. Using (3.3) one sees aXj 11\)-

that III can be estimated by 

Now, if tp{ I.) converyes to 6~ v 
( I.) 

aYl1\)0 ~ converge in L 2 to 
a J 

Therefore one obtains, passing to the limit, as 1 + ~ 

(3.45) la{6~v'6~V)1 ~ cnl 6~V IIHl{~ .. )[IIPlIL2{GR) + IIfIlL2{~) 

+ II vII H1{GR)] + II 6~P IIL2{GR)1I (l6~P II L2{GR) 

Using the coercivity of a{. , • ) we get 

(3.46) 
i 2 2 2 2 

II 6hv "Hl{~ .. ) ~ c[IIPlI L2{GR) + II filL2{GR) + IIvlIHl{~) 

+ II 6~P IIL2{GR)lIvIlHl{GR) + II 6~P IIL2{GR)1I 6~{(lp) IIL2{~)] 

The estimate (3.44) follows from (3.46) by Lemma 3.2. 

In order to proceed let us assume that gkj{X) = 6kj if j < n, 

Ynn{x) = 1 and that 9ltn ECI , agkn = 0 (C1 would suffice). Thus, from 
aXn 

(3.42) we get 

(3.47) 

(3.48) ~= f +~(a.o avn) + bo avn • 
aXn n aXi lJ ax j J aXj 
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Differentiating (3.48) with respect to some tangential direction _a_ aXk • 

k < n (if GR is a ball k S n) then we see that 

(Only first order derivatives of aU and no derivatives on b are used.) 

We differentiate (3.47) with respect to xk. The only interesting 

term is 

a ( lE...-) _ a lE...- agmn _ ~ L- agmn ax- gmn ax - ax- (gmn ax + ax- p) - gmn ax ax + ax (ax- p) 
k n n k k nk n k 

It follows that 

Us i ny the est i mate II lE...-ax II 2 S 
k L (GR,,) 

ell vlE...-1I -1 ) valid since the aXk H (GR 

mean of ~. l ~ equals O. we obtain 
R 

Combining (3.44) and (3.49) we obtain. after a bootstrap 

Now the proof of Theorem 3.9 will follow from (3.50) and the proof 

of Theorem 3.7 provided we are able to produce gmj with the special 

form. If Q is of class c2 then. locally. after a rotation and a 

translation if necessary. Q is yiven by Yn > a(y') for some a E C2 • 

y' = (y1 ••••• yn-1). Therefore after localization and a rigid motion 

(translation + rotation) the change of variables which achieves the 
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flattening of the boundary ljJ(Y) is given by ljJ(Y) = (y' 'Yn - a(Y')). 

Now, the Stokes system is i nv ari ant to ri 9 i d mot ions. The funct ions 

aljJ 
y(x) = _J (x' xn + a(X')) 

kJ aYk ' 
satisfy the required properties 9kj = 0kj 

for J < n, 9nn = 1, gJ' n = - 1.L (x') aXJ 
c1 , j < n, 

a9 jn = o. 

Theorem 3.11. Let n be open bounded of class C2 • Let f E L2(n)n. There 

exists and are unique UE H2(n) n V, p E H1(n) solutions of the Stokes 

system 

f"" 
+ grad p f in n 

dlV u = 0 inn 

u I an = 0 

Moreover, 

(3.51 ) 

The ~roof, in the case n of class C3, consists of Theorem 2.3 and 

Theorem 3.7. ,In the case Q of class C2 one uses Theorem 3.9 (or rather 

its ~roof). 
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4 

THE STOKES OPERATOR 

We recall that we denoted by P the orthogonal projection 

P:L2(g)n + H. Let us assume that g is bounded, ag of class C2 • 

Definition 4.1. The Stokes operator A is defined by 

(4.1) A:.D (A) C H + H, A = -P", .D(A) = H2(g) n V. 

Proposition 4.2. The Stokes operator is symmetric, i.e., 

(4.2) (Au,v) = (u,Av) for all u,v E .e(A). 

Proof. Let us assume fi rst that u ,v E (Co( g) ) nand div u = div v O. 

Then, since Pu = u, Pv = v, (4.2) is nothing but the familiar 

(4.3) 

Now, if u,v are in ll(A) and arbitrary we can approximate them in 

H1(g)n by functions in V. If u E J;J(A) and v. V then obviously (4.3) 

holds. Passing to the limit in the v's in H1(g) we get (4.3) for 

arbitrary U' ,b(A), v • V. In particular (4.3) means 

(4.4) (Au,v) = ((u,v)) for all u,v • .a(A) 

Since the right hand side of (4.4) is symmetric the Proposition is 

proven. We note that (4.4) is true for u.b(A), V' V. 

31 
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Theorem 4.3. The Stokes operator is selfadjoint. 

Proof. Let u be an element of b(A*). By definition there exists fE H 

such that 

(Av,u) = (v, f) for all v E .o(A) 

Since fE HCL2(u)n we can find, by Theorem 3.12, 

il',p, il' E .p (A) such that Ail' = f. We want to show that u = u. In order 

to do so let us compute (g,u - u) for arbitrary gE H. Using Theorem 

3.12 agai n, there exi sts v E b (A) such that Av = g. Therefore 

(g,u-il') = (Av,u) - (Av,il') = (v,f) - (v,Au) = (v,f) - (v,f) O. 

Since 9 E H is arbitrary u = u and thus u • .I'(A) and f = Au. 

Theorem 4.4. The inverse of the Stokes operator, A-I, is a compact 

operator in H. 

Proof. For fEH, A-If = u, where u is the unique solution in H2(u)nV 

= ~ (A) of the Stokes equation. In view of (3.51) A- 1:H + V is bounded. 

Since the inclusion V CHis compact by Rellich's Theorem, the result 

follows. 

Now K = A-I is self-adjoint, injective and compact. By a well known 

theorem of Hilbert, there exists a sequence of positive numbers ~j > 0, 

~J+l ~ ~j and an orthonormal basis of H, (Wj) such that KWj = ~jWj' We 

denote Aj = ~jl. Si nce A-I has range in .0 (A) we obtai n that 
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(4.6) limx·=~ 
. J 
J"~ 

(4.7) (Wj)j=I.... are an orthonormal basis of H. 

Proposition 4.5. If Q is bounded of class C.ll.+2 • .II. ~ 0 then Wj E H.II.+2 (Q)n. 

The proof follows from Remark 3.8. 

Let a > 0 be a real number. We define the operator Aa by 

(4.8) for u = L U.W .• uE.o(Aa ) 
j=1 J J 

(4.9) {U E HI 
~ 2 2 

u = L U.W.. L x.alu·1 <~. uJ. E IR} 
j=1 J J j=1 J J 

The spaces O(Aa) carry a natural scalar product 

(4.10) <u.V> 
a 

if u = L u.w. • V 
j=1 J J 

L v.w. 
j=1 J J 

For this scalar product. the vectors xj~j' j = 1 •••• form an 

orthonormal system which is complete. For a = 1/2. we have b(AI/2) V 

and <u,v>1 = «u.v)). Indeed the vectors xj1/2Wj belong to V and on 

them 

-112 -II? ) 
6jk = (A(xj wj).Ak 'N j 

-1/2 -1/2 
«Aj wj.Ak wk)). 

Therefore J;l (A1/2) C V and it is a closed subspace of V. If v E V is 

orthogonal in V to .tHA1/2) then. in particular. «v,Wj)) = 0 for all j. 

But v E V. WjE J:)(A) and from (4.4) (and the observations following it) 
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Since AJ > 0 it follows that (v,w j ) = 0 for all j and thus v = O. 

Proposition 4.6. If C fj(Ao,) for all 0, > O. In particular, n J)(A") 

" > 0 
is dense in H. 

Proof. Clearly jJ(A") C j)(A~) because (A/A1)o,-~ > 1 if " > ~, 

J = 1,2, •••• It is enough therefore to show "If c Jl(AP) for any positive 

integer p. Let <p.1T. Then (-~) <P.1f. In particular, it is divergence 

free and thus P(-t.)<p = - fl<p. So A<p = (-~)<p for<p.'l!. (Incidentally, 

we showed that Au = -,\U for u. H~ «(1) n (""\ V or in other words that Au f 

-flU may happen only for those u. t:J(A) which do not belong to H~«(J)n.) 

Therefore for<p .11", AP<p.1[. Now 

and since AP<p. H, the series of its Fourier coefficients is square 

summable: 

This means <p' jJ(AP). Moreover, we proved 

( 4.11) 

Remark though that -V- may not be dense in JJ (AP) with the < , >p 

topology, as one can see in the case p = 1. 

Before addressing the question of the relationship between spaces 

~(Am) and H2m(n) we discuss the scale dependence of various quantities. 

We shall say that a function of the set n, c(n), is scale invariant 

if c(n) = c(n') for all n' obtained from (1 by a rigid motion and a 

dil at i on x + ox. Let us denote by To and (Jo the ope rat ion transport i n9 
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functions defined on n, f(x), to functions defined on no = {oXIXE O}, 

(Tof)(y) = f(~). When we refer to the way something scales we mean under 

the dilations 0 and operations To. One can easily modify the definition 

of the norms \I \I m,O in such a way that they scale as the pure m-th 

order derivatives do. We shall denote by 101 = J 1 dx and by L(o) L = 
o 

1011/n the linear size of n. Then the natural definition of 

\I I\m,n is 

(4.13) 

2( I "I-m) 
I. 101 n 

I"r~m 

.!!. - m 
With this definition the quantity I\fllm,o scales like L2 ,i.e., 

(4.14) is scale invariant. 

Clearly the operator A scales like L- 2 and thus 

2 

(4.15) I nl n Aj is scale invariant, j 1, ... 

and of cou rse 

(4.16 ) is scale invariant, j = 1, ... 

Finally if wj(x) is an orthonormal basis formed with eigenfunctions of A 

in the domain n, then in no the corresponding orthonormal basis will be 

n 
0-2" y 

Wj(Y) = 0 wl6"). 

So wJ scales like L- n/ 2: 

(4.17) 
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Proposition 4.7. Let n be bounded open of class C2• Then there exists a 

constant (scale invariant) such that 

(4.1B) II ull2.n ~ C(n) IAul. for all u E p(A). 

Proof. If u dl(A) then Au = f E He L2(n)n and uEH2(n)n. Therefore 

(4.1B) is a consequence of Theorems 2.3 and 3.9. 

We are going to investigate now the size of the eigenvalues Aj. 

Lemma 4.B. Let n C rnr be open. bounded and of class CL. There exists 

E~:Hm(n) + Hm(Iitl) bounded linear operator. E~(U)\n = u. for all 

u E Hm(n). m ~ L. 

Proof. Consi der fi rst the case of R~ = {X E rItl I xn > O}. Let us 

defi ne for xn ~ U and u E CL(n) 

L+1 
EL(u)(x'.-xn) = l: a.u(x' .jxn) 

j=l J 

where aJ are defined by 

k L+1.k 
(-1) = l: J a. 

j=l J 
k = O ••••• L 

Such numbers obvi ously exi st because 

determinant = lrlr (j-i) F O. 
l<i <j<L+1 

(jk)j=1 •••• L+1 has a Vandermonde 
k=O.l ••••• L 

Clearly the function EL(u) is continuous. together with L 

derivatives across xn = O. Moreover 

obviously. Since the functions belonging to CL(R~) and having finite 

Hm(R~) are dense in Hm(R~) we can extend E(L) by continuity. The case of 
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a general domain is reduced to that of a halfspace by a partition of 

unity. 

Lemma 4.9 Let a < 51 < n/2 < 52' Define tE (0,1) such that 

n/2 = (1 - t)sl + tS2 (i.e., t = (I - 51)/(52 - 51))' Then there exists 

a constant c = c(n,sl,s2) depending on n,sl,s2 only such that, for every 

f E HS2 ( JRl) 

Proof. Let f E CO' Then 

f(x) = (2w)-n J ei<x,~> f(;)d~ = (2n)-n J + (2n)-n f 
I ~I <R I ~ I >R 

A -5 /2 5 /2 
f If(~)ld~ = { (1+1~12) 1 (1+1~12) 1 If(~)ld~ 

I~I<R I~ <R 
n-2s1 

~ cn,slR n II fll 51 

with ~n c = -- to n,sl n-2s1 ' n 
the area of Sn-1. 

n n 

with cn,s2 = ,,)2S;n_ n' Equating R2 - 51 IIflls1 = R2 - 52 IIflls2 

nfns 1/(5 -5 ) 
gives the choice R = (~) 2 1 and yields (4.19) with 

II Is 
1 

c=.;;;;.( 1 + 1). 
1252 - n ..;n-::--2S 1 
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Lemma 4.10. Let u be an open. bounded set of class ct. Assume 

t > n/2. Let t' be an integer t' < n/2. Then there exists a constant 

depending on u (scale invariant). t.t' such that. for any f E Ht(n) 

(4.20) II fll 00 ~ ell fli ~~\ II fli ~ n 
n ,L (u) • • 

t _ "2 - t 
where - ~'. 

Proof. Let E~(f) be the extension of f to Ht(Ifil) 

II fli < 11 Etf 11 since Etfl = f. This proves (4.20) as a 
L OO(u) - u L OO(Rn) n n 

consequence of (4.19). For the scale invariance we could proceed in two 

ways. We could check the scale independence of each step in the proof 

(Ct' ct ' in particular). This is clear. if one pauses a moment to think 

about the proof of Lemma 4.8. Or. we can check that the expression 

11 fll /11 fll1~t II flit is scale invariant. 
LOO(u) t.n t.u 

Now IIfll ) is scale LOO(n 

invariant and II flll~t 11 flit scales like t.n t.n 

(l-t)(.!!. - t') t(.!!. - t) .!!. -.!!. 
L 2 L 2 = L2 2 = LO• 

Theorem 4.11. Let n c. Ifil. n = 2 or 3 be open bounded and of cl ass e2• 

There exists a scale invariant constant Co such that. for every 

J = 1.2 •••• the eigenvalues Aj of the Stokes operator satisfy 

(4.21) 

Proof. Let wk(x) be the sequence of the corresponding eigenfunctions. 
j 

Let a1 ••••• aJ. be arbitrary real numbers and let w = I ~wk. Thus. 
k=1 

applying (4.20) with t' = 0 and consequently t = n~2 = i we get 
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By Proposition 

2 j 2 
Iwl = L ~ because wk are orthonormal. Also 

k=1 
2 ~ 22 2 J 2 

IAwl = , Akak < A ( 'ak) because wk are eigenfunctions and 
k~1 - j k~i 

39 

But 

Ak ~ Ak+1· It follows that IIwll < C3An/4(~ a~). It follows that 
j L ""( II) - J r 

Iw(x)1 2 5 C4A~/2(L a~) almost everywhere. Actually. since H2(Il)C CO(Il). 
1 

the inequality holds for all x. Let 1 ~ i ~ n. Let us denote by 

w~i)(x) the i-th component of the vector wk(x). Then 

Choosing ak = w~i)(x) we obtain 

1 Iw~i)(x)12 ~ C4A~/2. 
k=1 

Summi ng in i 

Integratiny over II we obtain j < nC4An/211l1 and thus 
- J 

(4.22) 

The scale invariance follows from the scale invariance of the constants 

c1.c2 •.•• and from (4.15). (4.16). 

Proposition 4.12. Let II C IR'1. n = 2 or 3 be an open bounded set of 

class ct. t ~ 2. Then 

(4.23) Hm(n)n n Hm-1( )n n V ""(Am/ 2) of ° .. ° II C 6-' • 1 m 1S even 
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(4.24) H~(n)nnV Cb(Am/ 2). if m is odd 

(4.25) /j(Am/2) C (Hm(n»n ("I V provided m ~ 1. m S 1.. 

Proof. Let u E Hm(n)n" H~-1(n)n ("I V. m = 2p. Then 

(_lI)ku EH~-1-2k(n)n for k = O ••••• P-l. Moreover. div(-lI)KU = O. 

Therefore (-lI)KU E H. P(-lI)KU = (-lI)Ku• k S p-l. Let Wj be an 

eigenfunction. Then 

A~/2(U.Wj) = (U.APWj ) = (U.P(-lI)P(-lI)",P(-lI)Wj ) = ((-lI)P-1u.- lIWj ). 

Now since (_lI)p-1u E H2(n)nn H~(n)1 and since Wj E H2(n)n" H6(n)n. 

integrating twice by parts we get 

and thus 

or 

(4.26) 

m 2 P 2 2 L I..I(u.w·)1 < II h) u II 0 < lIull m " J J - .n - ... 

2 
<u.u>m/2 ~ lIull m.n 

for all u E H~-1(n)n II Hm(n) " V. if m = 2p. If m = 2p+1 for some 

integer p ~ O-then we assume that u EH~(n)n. div u = O. Then 

)K m-2k()n ()k ()k (-lI u EHO n. k = O.1 ••••• p and thus P -ll U = -ll U. 

K = O.1 ••••• p. Then 

Now (-lI)PU E H6(n)n. div(-lI)Pu = 0 and therefore (-lI)PU EV and thus 

IA1/ 2((-lI)Pu)1 = II (-lI)PU II S lIullm.n. The rest follows as in the even 

case: (4.26) is true for m = 2p+1. u E H~(n)n("lV. 
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Let us prove now (4.25). Let u E b(Am/ 2). We know. form = 0 and 

m = 1 that 

(4.27) 

Suppose by induction that (4.27) is true for m' ~ m-1. m' ~ 1. Let 

UE .D(Am/2). Then Au = ro.o(A(m-2)/2). Moreover UE V. Since IIfllm_2 

~ C(g)IAm/ 2ul by (4.27) for m-2 it follows from (3.40) that (4.27) is 

true. lbe proof is complete. 

The difference between the Laplacian for the Dirichlet problem and 

the Stokes operator ori~inates from the fact that Leray's projector P and 

(-~) do not commute. in general. In the absence of boundaries. however. 

P and -~ commute. By absence of boundaries we mean either the case 

g= IR" and usual SObolev spaces or the case g= 1" the n-th dimensional 

torus. Let us describe the latter situation. Let L > 0 be a real. We 

denote by QL = {XE IR"I IXil < L/2} = (-L/2.L/2)n. For each kE fl. k;' 0 

we define 

(4.28) 

where eJ = (6kJ)k=1 ••••• n are the canonical basis in IR". 

we define. for a.B E en. 

n 
(4.29) <a.s> = L a· B· 

J=1 J J 

/-T. and 

(Note the absence of complex conjugate in 4.29.) We shall consider 

complex valued periodic functions of period L. We shall denote by wk(X) 

the vector wk(X) = (wk.j)j=1 ••••• n. Then a vector valued periodic 

function u will have an expansion 

(4.30) 
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If we want u to be real we need to impose uk = u_k for all k <Zn. For 

each ~ > 0 we define, for a periodic function u 

(4.31) 

where 

(4.32) uk = f <u,w_k>dx. 
QL 

Note that uk scales like Ld/ 2 so (4.31) agrees with (4.14). The space of 

functions u such that II ull~,L < ~ is denoted H~,l" 

We define H,V now by the conditions 

(4.33) 

(4.34) 

We set A: b(A) + H. 

(4.35) 

(4.36) 

i.e. , 

(4.37) 

We note that Leray' s projector Pacts on components 

(4.38) (Pu)k = Pkuk 

(4.39) Pku k = uk -
k k 

<uk' W> W for k < Zn\ 0 

(4.40) Pouo = 0 at k = o. 
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Clearly the operator -~ is given by (4.36) only that its domain is not 

restricted to div u ; 0 elements. 

Remark 4.13. The projector P commutes with ~. 

In this case. the spaces V(Aa/2) are easily identifiable 

The eigenvalues of A are 

2 
{A 1- ; {±!L Ikl21 

m m-1.2.... L2 k.Zn\{O} 
(4.42) 

Clearly. for each k. Zn\{O} there are 2(n-1) eigenfunctions corresponding 

to it: they are of the form cWk + <:W_k where the vector c .Cn satisfies 

the equati ons 

<c,k> ; 0 

Since -k and k have exactly the same eigenfunctions we see that the 

multiplicity of each eigenvalue Aj is 

Proposition 4.14. The asymptotic behavior of the eigenvalues Aj is given 

by 

(4.43) 

Proof. Let N" # {m I Am ~ A}. Cl early, 

For each k with integer coordinates there will be a box of unit volume 
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that contains no other point with integer coordinates: 

Bk = k + (-1/2,1/2)n. This box is included in a ball of radius In/2 

around k. Thus 

{X I Ixl < II + 2,m}. 
- '1).1 

The first inclusion follows from the fact that the distance from any 

point X' IJt1 to Zn is at most ,m/2. Since the volume of 

U N 
B = _A_ + 1 it foll ows that 

.1- k n-1 I k I ''1AIA1 
N { fl:... _ Iii)n < _A + 1 < (fL + Iii )n 

"'n VAi 2 - n-1 - "'n 1/>:]. 2 • 

Now, if A' < Aj ~ A" then N(A') < j ~ N(A") and thus 

Allowing A' + Aj' A"+ Aj we get 

f5. /lin f5. liin 
(n-1)["'n(1~ -~) - 1] ~ j ~ (n-1)[", (V~ +~) - 1]. 

"1 n Al 

From this inequality it follows that 

(4.44) 

The result of Proposition 4.14 and actually even (4.44) remain true for 

the Stokes operator in a bounded C~ domain n ([Ko 1]) provided we replace 

A1 by its large volume asymptotic value, Inl-2/n (2,,)2. Of course, in 
2 

the periodic case Al = IQLI-2/n (2,,)2 = 42 • 
L 
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THE NAVIER-STOKES EQUATIONS 

Let Q C uf be an open set. The Navier-Stokes equations are a n+1 

by n+1 system of equations for the unknowns u1(t.x) ••••• un(t.x) 

representing a velocity vector and p(t.x) representing specific 

pressure. The variables (t.x) E IR.. x Q represent time and position. The 

equat ions are 

( 5.1) 

( 5.2) 

aUi au. 
- - \It:.u,. + u. -' + ~ = f, .• 
~ J a~ Pi 

aUi 
div u = - = o. aXi 

1 •••• ,n, 

au. 
The vector (u. -') i = 1 ••••• n is denoted (u.'l)u or U''lU. The 

J aXj 
functions fi(t.x) are given specific body forces. The coefficient \I> 0 

is called the kinematic viscosity coefficient. The equations are 

supplemented by boundary conditions. We shall treat "no-slip" boundary 

conditions 

(5.3) u(t.x) = 0 for XEaQ 

or periodic boundary conditions 

(5.3') u(t,x+Lei) = u(t.x). L > O. ei the canonical basis in uf. 

The initial value problem consists in solving (5.1)-(5.3) together with 

the initial condition 

45 
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(5.4) u(O,x) = uO(x) 

where Uo is a given vector function. 

The Navier-Stokes equations possess important scaling properties. 

Suppose that the functions v(s,y), q(s,y) solve the system 

{~ - ~(:,v. + v ~ + l.L = 9.(S,y) 
as 1 J ay J ay i 1 

~= 0 
aYi 

1, ... ,n 

for s > 0, Y ED C JR'l. Then for L > 0, T > a the functions 

( 5.5) u(t,x) 

( 5.6) p(t,x) 

solve the equations 

{ ~~ - v{:,u + (u·v)u + VP 

div u = a 

f 

inn = LD for t > 0 with 

(5.1) f = L2 g(t ' -C) 
T 

and 

( 5.8) 

We refer to (5.5)-(5.6) as the scaling properties of the Navier-

Stokes equations. All statements about Navier-Stokes equations must be 

made bearing these scaling properties in mind. We say that u has the 
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scaliny dimension L/T, p has the dimension L2/T2, f the dimension L/T2 

and v the dimension L2/T. The dimension of the variable t is T and that 

of xis L. 

Applying Leray's projector P to (5.1) we obtain for smooth functions 

u(t,x), p(t,x) satisfying (5.1), (5.2) that 

( 5.9) ~ + vAu + B(u,u) = Pf dt 

where A is the Stokes operator and 

(5.10) B(u,u) = P(u.vu). 

The procedure of applying P eliminates the pressure from the 

equations. In (5.9) the term vAu is the dissipative term. Its effect is 

one of dissipating energy and smoothing. The term B(u,u) is the 

nonlinear term and Pf is the forcing term. 
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6 

INEQUALITIES FOR THE NONLINEAR TERM 

We first recall the Sobolev imbedding inequalities. 

If ~ is an open set in rrf of class C1 then for m < n/2 one has 

(6.1) 

with continuous inclusion 

(6.2) IluIILq(~) 5 cm lIullm.~. 

Note that (6.1) is the only possible definition of a q that makes 

(6.2) scale invariant. If ~ is bounded and is of class C~ then 

for ~ ~ m > n/2, Hm(n) C Ck((i) where k = m - [~] - 1 > 0 and 

(6.3) 
1.. (m- .'! _ I "I) 

II D"u IIL~(n) ~ C",mlnln 2 Ilullm,~ 

for all 1,,1 ~ k. 

In the case ~ = rrf the spaces HS can be easily defined, via Fourier 

transform, for noninteger values of s and we have 

(6.4) 

(6.5) II D"u II .nIl < c sllull s.nIl' S > n/2, I "I < s - -2n 
L~(IK) - ", H (IK) 

Using them we can introduce noninteger valued Sobolev morms on n. Let us 

48 
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note that ER.I +1 = i Et.+1 where i R.:Ht.+1(lR") L..--.HR.(lR") is the 
Ht (0) R. 

inclusion. Let uEHR.+l(o), nof class CR.+1. Then one can tal<e for 

s = (1- tJt.+ t(R.+1), t. (0,1) 

(6.6) 

We note that, for every u. Ht.+1( 0), R. < s < t.+1 

with t = s - R.. Indeed 

and the properti es of Et.+1 assure II E t.+1u III< ,Rn ~ cl<lIulll< ,n 

for I< ~ R.+1. We shall avoid using the spaces obtained by completing 

HR.+1(0) with tne norms (6.6) and state our inequalities in terms of the 

right-hand side of (6.7) when, in fact, the left-hand side would do. 

Let us define first a trilinear form by 

av. 
b(u,v,w) = f u. -; widx = f <u.VV,w>dx. 

o J a J 0 
(6.8) 

We assume n is bounded and of class CR. with R. sufficiently large. The 

expression (6.8) surely mal<es sense for functions U,V,w. C"'(n)n. 

Proposition 6.1. Let n c lR" be bounded, open and of class CR.. Let 

sl,s2,s3 be real numbers, 0 ~ sl ~ R., 0 ~ s2 ~ I.-I, 0 ~ s3 ~ I.. Let us 

assume that 

(i) 1,2,3 

or 

(ii) sl + s2 + s3 > n/2 if si n/2 for at least one i. 

49 
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50 Chapter Six 

(In other words, we assume 51 + 52 + 53 ~ n/2 and (51,52,53) F (O,O,n/2), 

(O,n/2,O), (n/2,O,O)). 

Then there exists a constant depending on sl,s2,s3,g, scale 

invariant, such that 

for all u,v ,w E c~(ii.,n. 

Remark. The estimate (6.9) is the extrapolated version of 

(6.10) Ib(U,V,w)1 ~ Clgl 

Proof. Let us set IT = Eiu, V = Eiv, w = Eiw. Let us consider first the 

case 

si < n/2 for all i = 1,2,3. Oefining qi by i. = i - ~i i = 1,2,3 and 
1 1 1 1 .' q4 (1 < q4 < ~) by -- + -- + -- + -- = 1 wh,ch is possible since 

- - q1 q2 q3 q4 
3 1 3 L si L -- = - - -- < 1 we have, by Holder's inequality 

i=lqi 2 n-
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This proves (6.10) in this case. 

If one of the si -s is larger than n/2 we replace the corresponding 

qi by ~ and use (6.5) for a = O. This would prove 

Ib(u,v,w)1 < kll u lis II Vi lis II Iii lis 
- 1 2 3 

with k dependi ng on n, sl' s2' s3 but not seal e i nv ari ant. The reason is 

that (6.5) is not dilation invariant. In order to obtain a scale 

invariant estimate we use Lemma 4.9 because (4.19) is dilation invariant. 

Suppose for example sl > n/2. s2 < n/2. s3 < n/2. Then write 

n/2 = (l-t)O + tS1 for t. (0.1). We use 

1-t t 
II u IIL~(IItl) ~ II u II L2(n(I)1I u IIS1 • IItl 

(see 4.19). 

Then use the extrapolation. since II u IIL2(n(I) ~ cjlullo.n: 

(6.11) 

and also 
[Sl ] 

lIuIlL2(1l) ~ IIlI n lI ull[Sl].Il' 

[sl ]+1 

lIuli 2 ~ I III n lI ull[s ]+1 Il 
L (Il) 1 • 

(see the definition (4.13) of Ilullm.Il). We obtain. because 

(1 + [sl] - sl) + sl - [sl] = 1 

1+[s ]-s s -[s ] 
(6.12) lIuli 2 = lIuli 2 1 1 lIuli ~ 1 

L (Il) L (0) L ([I) 

[sl] [sl]+l 

Inl-n- • (1+[sl]-sl) + --n- (sl- [sl]) l+[sl]-sl sl-[sl] 
~ .. lIuli [sl]'O lIuli [sl]+l.1l 
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Then, from (6.11) and (6.12) we get 
sl 1 
- - - l+[s ]-s sl-[Sl] 

(6.13) lIull L'"(n) ~ clnl n 2 lIull[Sl]~n 1 I1u11[Sl]+1,n· 

Indeed t = n/2s1 and 

[s ] [sl] + 1 sl 
~ (1 + [sl] - sl) + n (sl - [sl]) = n- . 

In this case, using (6.13), q2' q3 defined as usual and ~ + ~ + ~ = 
q2 q3 q4 

defining q4 we get (6.9). 

The case in which more than one of the si is larger than n/2 is 

treated in the same way. If one or more of the si = n/2 and sl + s2 + s3 

> n/2 we can modi fy si to si ' si ~ si' si + s2 + s3 > n/2 , si F n/2 

all i = 1,2,3. We write then (6.9) for the si and note that it implies 

the one for si because 
m-m l 

if m ~ m'. 

Let us note that (6.9) permits us to define b(u,v,w) for u,v,w such that 

the right-hand side of (6.9) is finite. 

Remark 6.2. The case in which (sl' s2' s3) is one of the vectors 

(n/2,0,0), (0,n/2,0) or (0,0,n/2) corresponds to an estimate of the type 

L'" (for the two remaining places) Combining with Lemma 4.10 we get 

estimates of the type 

(6.14) 

for n/2 (l-t)R.' + tR., t (0,1), n of class CR. at least 

(6.15) 1-t t Ib(u,v,w)1 < cnuliO IIvll1 IIWII < cnuII0,,,UVi1,,,IIWU,,,,,RWI 
,~1 110. LOG - u U JI. U 

and 
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Until now we did not assume that any of u,v or w is divergence free. 

Clearly, if div u = 0 and <yow. yov> • yU = 0 (i.e., <w,v> <u.ng> = 0 

on ag, ng being the normal) then 

In particular, if u,v,w • 'l/" 

(6.17) b{u,v,w) = -b{u,w,v) 

(6.18) b{u,v,v) 0 

The properties (6.17), (6.18) hold of course for u,v,w .V. 

In Proposition 4.12 we proved that, as long as 0 ~ m ~ t and n is 

bounded and of class Ct , .f)(Am/2) C Hm(n)n. We can extend this result 

to noninteger values of m. The proof of this statement lies outside the 

scope of this work; we shall give however an indication of its flavor. 

First we remark that .ll(Aa/ 2) is the interpolation space 
[a]+1 

[ "'(A[a]/2) .b(A-2-)] [X Y] denoting complex interpolation 
N , a-[a]" 

(See [Be-Lo]). This follows from the fact that "(A~/2) are isomorphic 

to spaces l'~:{(uj)1 I A1u~ < .. } through the obvious map u ~ ({u,wj)j) 

and from the fact that the interpolation space 

[ ,2,m 2,m'] _ 2,(1-a)m+am' Then we observe that the definition " ,t a - t • 

where Et:Ht(g)n + Hi(rnr) is our extension map (recall Et:Hm(n)n + 

Hm(rnr)n, 0 ~ m ~ t is bounded) agrees with 
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This can be proven as a consequence of the fact that 

Ha(Rn)n = [H[a](Rn)n,H[a]+1(Rn)n] • Indeed if [a]+l ~ t then, from 
a-[a] 

the interpolation theorem it follows that 

is bounded and thus 

inclusion follows using the interpolation theorem for the (obviously 

bounded) restriction operator R:H[a]+l(Rn) + H[a]+1(n)n, 

R:H[a](Rn)n + H[a](n)n. This operator is then bounded 

R: Ha(Rn)n + [(H[a](n))n(H[U]+1(n))n] and therefore, if 
a-[a] 

u • Ha(n)n then by definition Et(u) • Ha(Rn) and u = R(Etu) belongs to 

[H[u](n),H[a]+l(o)] . Now, the inclusion map 
m+ 1 'l-[a] 

i: .o(A2 ),"-Hm+1(o)n and i: 1'0 (Am/ 2) 4Hm(o)n is bounded if l+m ~ 

t by Proposition 4.12. If [a] = m, [a]+1 = m+1 if follows that i is 

bounded from 

m m+1 
i:[ J:)(l), b(A-2-)] 

i.e., that Jfj (Aa/2) c.- Ha(n) for all a such that [a]+1 

Definition 6.3. Let u,v' Coo(;j)n. We define B(u,v) by 

(6.19) B(u,v) = P(u.vv) 

where P is Leray's projector. 
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Proposition 6.4. Let g C mr be bounded, open, of class ct. Let 

51'52,53 be real numbers such that 0 ~ 51 ~ t, 0 ~ 52 ~ t-1, 0 ~ 53 ~ t. 

Assume that 51 + 52 + 53 ~ n/2 and that (51,52,53) is neither of the 

triplets (n/2,O,O), (O,n/2,O), (O,O,n/2). Then there exists a constant 

c = c(sl,s2,s3,1l) scale invariant, such that, for all U,V E c~(il)n, 

(6.20) 

Remark. The right-hand side of (6.20) can be replaced by 

cllli 

Proof of Proposition 6.4. 
-5 3/2 

A B(u,v) belongs to 

Clearly, since B(u,v) is an element of H, 

5 /2 
V(A 3 ). Let WE H be arbitrary. Then 

-53/2 -53/2 
(A B(u,v),w) = (B(u,v),A w). 

Since P(A-s3/ 2w) = A- s3/ 2w it follows that 

Now by (6.10) 

-5 /2 
Ib(u,v,A 3 wi 

-53/2 -53/2 
(A B(u,v),w) = b(u,v,A w). 
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From Proposition 4.12, if 53 is an integer and from the discussion pre-
-5 /2 5 /2 5 

cedin~ Definition 6.3, it follows that A 3 W' f,)(A 3 ) C H 3(o)n and 

Thus 
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7 

STATIONARY SOLUTIONS TO THE NAVIER-STOKES EQUATIONS 

Stationary (steady state, equilibrium) solutions of the Navier-

Stokes equations are time independent solutions: 

(7.1) vAu + B(u,u) = f, u E l'(A) 

for f I H, given. 

In this section g C IJi1 n = 2 or 3, and g is of class CR., R. ~ 2. 

If u E fJ(A) then B(u,u) I H so (7.1) is an equation in H. Moreover, if 

u I .o(A) then (7.1) can be written as the Stokes system 

-vau + grad p f - (u.'l)u 

div u = 0 

u I 0 ag 

and we see that p E H1(n). 

We discuss first existence solutions to (7.1) in fJ(A). We call 

them simply solutions or strong solutions. As in the case of the Stokes 

system, we can use a variational approach and define weak solutions. By 

this we mean solutions u EV of the equation 

(7.2) v((u,v)) + b(u,u,v) = (f,v), for all VI V. 

This formulation (7.2) makes sense for fl V'. 

57 
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Lemma 7.1. Let UE V. Let us define the map K(u):V + V by K(u)v 

A- IB(u.v). Then the map K(u):V + V is compact. More precisely. 

K(u):V + .o(A3/ 4 ) is bounded and 

(7.3) for some c > 0.' 

Proof. A3/ 4K(u)V = A3/ 4A- IB(u.v) = A-1/ 4B(u.v). The inequality (7.3) 

follows thus from (6.20) with sl = 1. s2 = O. s3 = 1/2. and ~ ~ ~ for 

n = 2 or 3. We omit the dependence of the constant on u and do not write 

(7.3) in scale invariant form. Compactness follows from the fact that 

,t')(A3/ 4) C H3/2(u)n and the inclusion V n(H3/2(u))nc.....,V is compact by 

Rellich's selection theorem. 

Lemma 7.2. Let B be a closed ball in mr. Suppose ~:B + I~ satisfies: 

<p conti nuous and <<p(v).v > < 0 for all v E aB. Then there exi sts v E B such 

that <p(v) = O. 

Proof. Let us assume that R is the radius of the ball. Assume that 

<p(v) F 0 for all VE B. Then the map v ~ R ~ is a map from B into 
I ~\V) I 

aBo As a continuous map from B to B it has a fixed point by Brouwer's 
~(v 0) 

theorem Vo = R ~. Moreover Vo E aBo But this is absurd since 

<~(vo)·Vo> 
<vo.vo> l<p(v o) R < O. 

dx ...,n Remark. This proves that the system dt = t(x(t)) in 11< has a fixed 

poi nt Xo E B. 

Let us introduce some notation. Let m be an integer. We denote by 

Pm the projection in H on the span of wl.w2 ••••• wm. the first m 

eigenfunctions of A. In this section we consider also the corresponding 

obJect in V and denote it by Since (wk) are orthogonal in 
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v = kl(Al / 2) we have the formulae 

m 
(7.4) P f = I (w . ,f)w., f E H 

m j=l J J 

V m_l 
P f = I).· ((w.,f)w., fE V 
m j=l J J J 

(7.5) 

(Remark: Pmf = P~f for f E V). 

Theorem 7.3. Let f EH. There exists a solution u E /:leA) of (7.1). 

Proof. Let m > 0 be an integer. We first remark that (7.1) is 

equiv alent to 

(7.6) vU + K(u)u = A-lf = g. 

We shall approximate (7.6) by 

The first step is to prove that for every m > 0 integer, there exists a 

solution um E P~(V) of (7.7). 

Let - ~m(u) = vU + P~(K(U)U) - P~(g), for UE P~(V). Then 

V V 
((vu,u» + ((K(u)u, Pmu)) - ((Pmg,u» 

~lu112 + ((K(u)u,u» - ((g,u». 

Now (B(u,v) ,v) = 0 for all v E V means 

(7.8) ((K(u)v,v)) = 0 for all v V. 

So ((<Pm(u),u» = _~luI12 + ((g,u». Therefore, according to Lemma 7.2 

there exists u = um such that ~m(u) = 0 provided we choose the ball in 

pV of radius R > ~ • 
m v 

59 
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We ootain thus a solution urn' P~{V) of (7.7). Moreover 

(7.9) 
-1 I -1/2 I 

Ilu II S~=A f 
m v v 

Now, using (7.3) it follows that 

vlA3/4u I < IA3/4pVK{U )u I + IA-1/4fl = IP VA3/4K{u )u I + IA-1/4fl m m mm m mm 

-1/2 12 
< ell urn 112 + IA- 1/ 4fl + c IA 2 f + IA- 1/4fl. 

v 

We used implicitly the fact that urn EJj{A). But the space P~V = PmH is 

the span of {wl' ••• 'Wm} and thus is contained in Jj{ACI) for all {l> O. 

We have thus 

(7.l0) < c 

Now from (7.9) it follows that the sequence urn is bounded in V. There 

exists a subsequence urn' which is weakly convergent in V to some element 

u. We could use the information given by (7.l0) and improve the conver-

gence but we refrain from doing so, for the moment. 

Passing to a subsequence if necessary, we may assume that urn' + U in 

H strongly. Then we claim that P~'K{Um' )um' converges to K{u)u in V, 

weakly. Indeed, this statement is equivalent to Al/2p~'K{Um' )um' 

converges to Al / 2K{u)u in H, weakly. Let h, H be arbitrary. Then 

112 V 1/2 -1/2 -1/2 (A Pm,K{um, )um' - A K{u)u,h) = b{um, ,urn' ,Pm,A h) - b{u,u,A h) 

-1/2 -1/2 ) -1/2 b{um,- u,um"A h) + b{u,um,- u,A h) + b{um, ,um,,(1 - Pm' A h) 
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Now we use estimate (7.9) in conjunction with (6.9) with sl = 1/2, 

s2 = 0, s3 = 1 for the fi rst term in the sum, sl = 1, s2 = 0, s3 = 1/2 

for the second and third terms in the sum 

1/2 V 1/2 I(A Pm,K(um,),um, - A K(u)u,h)1 

-1/2 -1/2 112 
< ciA fl (IA fl + lIull) lu ,_uI 1/2 Ihl 
-"" m 

Now, since IA- 1/2(1 - Pm,)hI 1/2 ~ ~~!1IhI1/2 it follows that indeed 

P~'K(Um"Um') converges weakly in V to K(u)u. 

Since p~, (A -If) converges (strongly even) in V to A-If it 

follows, passing to the (weak) limit in V in (7.7) that U' V solves 

(7.6). Then using (7.10) and passing to lim sup we deduce that 

u • .P (A31 4) and 

(7.11) 3/4 IA-1/2f1 2 + IA- 1/4fl IA ul 5 c 3 J..!..!..._,,--'--'-

" 

61 

Now AK(u)u = B(u,u) and using (6.9) with sl = 1, s2 = 1/2 and (7.11) it 

follows that 

1 A-If 
Then since u = --;;K(U)U +-,,- it follows that u.p(A) and that 

(7.12) 

This concludes the proof of the theorem. 
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Remark. (1) If f V', i.e., if A-1/2f~ H the same proof provides a 

IA-1/2fl 
solution to (7.2) which satisfies \lull ~ \I. 

(2) If the boundary of g is of class CII., II. ~ 2, and if fE HCI(g)n, 

CI ~ !I. then UE HCI+2(g)n. 

 EBSCOhost - printed on 2/10/2023 4:11 PM via . All use subject to https://www.ebsco.com/terms-of-use



8 

WEAK SOLUTIONS OF THE NAVIER-STOKES EQUATIONS 

We consider n c uf, d ; 2 or 3 a bounded open set of class C~, 

~ ~ 2 1 arye enough. The Nav i er-Stokes equat ions wi 11 be written in the 

form 

(8.1) du dt + vAu + B ( u , u ) f 

(8.2) u(O) uO • 

The function f ; f(t) is a given vector valued function. The function Uo 
is given and so is v> O. The solution will be a vector valued function 

u(t) such that Au(t) and B(u(t),u(t)) ; P(u(t).vu(t)) make sense. We 

shall make this more precise later. 

The need to study weak solutions arises mainly for d ; 3 because 

even if uo and f are very nice functions, in this case the existence of a 

classical solution of the Navier-Stokes equations is known, in general, 

only for short time intervals. 

The method of proof of existence of solutions to (8.1) that we 

present is based on Galerkin approximations and energy estimates. First 

we describe the Galerkin approximations. These are systems of Ordinary 

Oifferential Equations. Let m be a positive integer. We consider 

wl' ••• 'wm, the first m eigenfunctions of A. (The Galerkin method can be 

devised startin~ from a different basis, also.) We consider the 

projector Pm:H + H onto the space of wl, ••• ,wm• Applying Pm to (8.1) 

would yield the equation 

63 
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The Galerkin system of order m is the system 

(8.3) 
dUm 
F + ,,"urn + PmB(Um,um) = gm 

(8.4) 

The function um(t) belongs to PmH. 

More preci sely, let us denote by ~j = ~j( t) the jth component of 

um(t) : 

Also, let nj(t) = (gm(t),Wj) be the components of gm. Then (8.3) is 

equivalent to 

(8.5) ~dt~" + >. ~ + ~ b( wk ,w ,wJ" hk ~ = 
v j j k .i=1 .f. .t nj' 

1, •.. ,m 

The initial data u~ has coefficients (u~'Wj) 

equivalent to 

(8.6) o 
~j j = 1, ••• ,m. 

o 
~j and (8.4) is 

Thus the Galerkin system of order m is a quadratic, constant coefficient 

m x m ODE system. If the function gm and thus the vector n are time 

independent the system is autonomous. We shall derive some bounds for 

solutions of (8.3) and (8.4). Our goal is to have enough control on the 

solutions of (8.3) to be able to let m tend to infinity and obtain a 

solution to (8.1). We shall consider an arbitrary T> 0 and fix it 

throughout this section. Let us assume that the function gm(t) is 

continuous on [O,T] with values in VI. Since WjE V this guarantees that 

the function n:[O,T] + ~ is continuous. From the theory of ordinary 

differential equations we know that (8.5), (8.6) have a unique solution 
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«t) defined for t in a neighborhood of t = O. The tensor b(Wk'WR"Wj) 

is, for each fi xed k, anti symmetri c in R, and j: 

This pro~erty implies that the maximal interval of existence of «t) 

coi nc i des wi th that of n. In other words, if n woul d be defi ned (and 

continuous) for all t so would be 1;. Indeed, taking the scalar product 

of (8.5) with 1; in IlfI we obtain 

(8.7) 

oecause 

(8.8) 

Toyether with Gronwall's inequality, (8.7) would prove that il;(t)i 

65 

is bounded as lon9 as i n( t) i is bounded. (In parti cuI ar, for neg at i ve t, 

too.) For positive t we can use the fact that Aj > 0 to estimate 

Let us estimate the right-hand side of (8.7) differently 

We return to the notation 

m 
L n·(t)w. 

J= 1 J J 

Then we \let from (8.7): 
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(8.9) i ~t IUml2 + ,jl um 112 ~ W1/ 2gmlll vm II ~ I II vm 112 

+ L IA- 1/ 2 12 
2\1 gm 

Thus we obtain from (8.9) and Gromwall's lemma 

(8.10) 

We use the notation Ihlv' = IA- 1/ 2hl, meaning that we identify the 

dual V' of V with D(A- 1/ 2). 

Let us assume that the sequence u~ is bounded in H and that the 

sequence gm is bounded in L2(O,T;V'). We denote by LP(I,X) for Ie lR, 

1 S P S ~, X a Banach space, the space of vector valued functions x(t), 

x:I+ X such that the scalar function II x(t) Ilx is measurable and 

{ Ilx(t) II ~ dt < ~ for p <~, ess sup IIx(t)1I < ~ for p <~. Thus, if 
tEl 

T 2 T 2 
(8.11) 6 Igm(s)lv,ds ~ 6 Ig(s)lv,ds 

for some gE L2(0,T,V') and if 

(8.12) 

as is the case if Ym = Pmg, uO = P uO then (8.10) means that m m 

(8.13) The sequence um is bounded in L~(O,T;H). 

This fact is not yet sufficient for passing to the limit. Let us 

integrate (8.9) between 0 and some t S T. 

(8.14) 

In particular, 

(8.15) 
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That is, 

(8.16) The sequence urn is bounded in L2(O,T;V). 

We need to have some uniform bound on dum/dt. First let us consider 

the equation (8.3): 
du 
dtm = -v AUm - PmB(um,um) + gm. 

Since urn is bounded in L2(0,T,V) it follows that AUm is bounded in 

L2(O,T,V'). Actually, 

T 2 T 2 6 IAum(s)lv,ds = 6 II um(s) Ilv' ds 

Moreover, by assumption gm is bounded in L2(0,T;V'). It remains to 

investiyate the term PmB(um,um). Now 

Usiny (6.20) with s3 = 1, sl = 1/2, s2 = 0 we get 

Since lum(s)1 are bounded uniformly and since II um(s)112 are uniformly 

inteyrable we obtain 

(8.17) :~m are bounded in L4/ 3(O,T;V'). 

We proved therefore 

mOm 0 I n·(t)w. and urn = I ~.w. be given. Assume 
j=l J J j=l J J m 

Lemma 8.1. Let gm(t) 

that (8.11) and (8.12) hold. Then the solution u (t) = I ~J.(t)w, to 
m j=l J 

the Galerkin system (8.3), (8.4) exists and is unique on [O,T]. 

Moreover, the sequence urn is uniformly bounded in L~(O,T;H) and in 

L2(0,T;V). The sequence dum/dt is uniformly bounded in L4/ 3(0,T;V'). 
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All we need now is some kind of compact imbedding theorem, of the 

type of the Rellich Lemma but for vector valued functions. 

Lemma 8.2. 

(8.18) 

(8.19) 

Let um be a sequence of functions satisfying 

T 
f II um( s) II~ ds ~ M 
U 

T d 
f II d u (s) IIPv,dS < M 
U s m 

for some 0 < M, P > 1 and all m = 1,2, ... Then there exists a 

subsequence um" of um which is convergent in L2(O,T;H) to some function 
J 

u L2(O,T;H), i.e., 

T 2 
1 i m r I um (s) - u (s) I H ds = O. 

J + ~ 6 J 

In order to clarify what are the properties needed for this 

selection theorem we shall prove it in an abstract version. Instead of 

the spaces VC He V'we shall consider three separable reflexive Banach 

spaces X1'-+ XOc....X_ 1• 

We wi 11 assume that the i ncl usi ons Xl ~ Xo is compact and that the 

inclusion XU~X_1 is continous. If u:[O,T] + Xo is a strongly 

measurable function we say that du/ds belongs to LP(O,T;X_ 1) for some 

1 < P < 00 if there exists VE LP(O,T;X_ 1) such that 

t2 
u(t 2) - u(t 1) = I v(s)ds 

1 
t2 

for almost all t 1,t2 in [U,T]. The element I v(s)ds 

1 
usin~ the duality: 

t2 t2 
L(f v(s)ds) f L(v(s))ds 

t1 t1 

for every L E (X_ 1)' (the dual of X_ 1). 

can be defined 
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Lemma 8.3. For every E > 0 there exists cE > 0 such that, for each XE Xl 

Proof. Assume not. There exists a sequence xmE Xl such that 

IIYmlll = 1. Since Xl is reflexive the unit ball is weakly compact. We 

may assume (by passing to a subsequence) that Ym converges weakly in Xl 

to y. Since the inclusion Xl~ Xo is compact, Ym converges strongly to 

Y in XO. Since IIYmilo is bounded it follows that lIymll_l converges to O. 

Thus lIyll- l = 0 and Y must equal o. But IIYmilo ~ E implies lIyllo ~ E, absurd. 

Lemma 8.4. Let um be a bounded sequence in LPl(O,T;Xl ). Assume that 

dum/dt is bounded in LP2 (O,T;X_ l ). Here 1 < PI < ~, 1 < P2 <~. Then 

there exists a subsequence um' of um' converging in LPl(O,T;XO). 

Proof. The spac~ LPl(O,T;Xl ) is separable, reflexive. (The dual of 
PI PI, 1 1 L (O,T,X l ) = L (O,T,X l ) where -+ -,- = I, Xi is the dual of Xl). 

PI PI 
Therefore there exists a subsequence of um which is weakly convergent in 

LPI(O,T;XI ). Subtracting the limit we may assume that um' converges 

weakly in LPI(O,T;XI ) to O. We want to prove that the convergence is 

strong in LPI(O,T;Xo). Using Lemma 8.3 we see that it is enough to prove 

that um' converges strongly to 0 in LP2 (O,T;X_ I ). Indeed since 

IIxll xPl + Co P IIxll ~l 
I ~'l -1 

for all x EXI , E> 0 and since 
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T PI 6 l\um,(t)1\ Xl dt 

is bounded it follows that, for every E 

Now if 1 is any subinterval of [D,T] the sequence {Um(S)dS is 

weakly convergent in Xl to O. Indeed denoting by Xl the characteristic 

function of I, for any element L of the dual Xi, xl(S)L is an element 

of the dual of LPI(O,T;XI ) and 

converges to zero. Thus since the inclusion Xlc:....XO is compact we know 

that {U (s)ds converges strongly to zero in Xo and ~ fortiori 
m t dUm 

Let t be any number in [D,T]. um(t) - um(t l ) = [ ~ ds. Let 

an average in tl over an interval IE of size E: I 

I tIt du , 
um,(t) =-;[ um,(tl)dt l +-;[ (s - t + E) dsm ds 

-e -g 

Using Holder's inequality 

where ~ + L = 1 • 
P2 P2 

For given EO > 0 choose E such that 

follows that 

in X_I' 

us take 

Since the second term on the right-hand side of this inequality tends to 
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m' zero as m' + ~ we proved that, for each t, Ilum,(t)11 -.. O. The 
X_I 

result follows from the Lebesgue dominated convergence theorem. 

Remark. Actually we proved also that urn' converges to zero in C[O,T;X_ l ] 

i.e., that sup lIum,(t)lIx + O. This follows from the fact that 
tE [O,n -1 

there is pointwise convergence and the uniform Halder continuity 

Definition 8.5. A weak solution of the Navier-Stokes equations (8.1), 

(8.2) is a function u EL2(O,T;V) n Cw(O,T;H) satisfying ~~E Lioc(O,T,V') 

and 

(8.20) du < dt ,v> + v((u,v)) + b(u,u,v) (f,v) a.e. in t, for all v E V. 

(8.21) u(O) Uo 

The space ~(O,T;H) is a subspace of L~(O,T;H) consisting of 

functions which are weakly continuous: (u(t),h) is a continuous function, 

for all hE H. In particular (8.21) is taken in this sense. 

Theorem (Leray). There exists at least a weak solution of (8.1), (8.2) 

for every Uo E H, f E L2(O,T;V'). Moreover, 

~ EL4/3(0 T·V') for d = 3 dt ' , 

~~ E L2(O,T;V') for d = 2 

and the energy inequality 
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t t 
~ lu(t)1 2 + v I lIu(s)112ds 5 ~ lu(to )1 2 + I < f(s),u(s» ds 

a 0 

(8.22) 

holds for all a 5 to 5 t 5 T, to a.e. in [O,T]. 

Proof. Let um(t) be solutions of the Galerkin equations (8.3), (8.4) with 

o 0 9m ~ Pmf, urn ~ Pmu. From Lemma 8.1 and 8.4 we may assume that urn" a 

subsequence of urn converges weakly in L2(O,T;V) strongly in L2(O,T,H) and 

in C[O,T;V'] to some u. Moreover, dum,/dt converges weakly in 

L4/ 3(O,T;V') to du/dt. Let v • V be arbitrary. Take the scalar product of 

(8.3) with v and integrate 

t t 
(um,(t),v) + v I ((um,(s),v))ds + I b(um,(S),um,(s),Pmv)dS 

a t 0 

~ (um,(to),v) + I <f(s),PmV>dS. 

a 

Since urn' converges to u in L2(O,T;V) weakly, by extracting a subsequence, 

relabeled urn' we may assume that um(tO) converges to u(tO) weakly in V for 

all to' [O,T] \ E, for some E of Lebesgue measure O. Thus 

lim um(t O) u(tO) strongly in H, for to IE. Now clearly 
m+~ 

t t 
lim I ((um(s),v))ds ~ I ((u(s),v))ds. 

o a 
A simple argument shows that 

t 
lim I b(um(s),um(s),Pmv)ds 
m .... oo 0 

t 
f b(u(s),u(s),v)ds. 

to 

It follows that for t ~ to and t,tol E 

t t t 
(u(t),v)-(u(to)'v)+ vf ((u(s),v))ds+l b(u(s),u(s),v)ds ~ I <f(s),v>ds. 

to 0 0 

This implies the weak continuity of u(t) in H because V is dense in Hand 

sup lu(t)1 is finite. Also the last relation implies (8.20). 
t.[D,T] 
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For the energy inequality take the inequalilty 

i lum(t)1 2 + ,,/IIUm(S) 112 ~ i lum(to)1 2 + /<f(S),Um(S» ds. 

o 0 

Assume that to IE. The ri ght-hand side has for 1 i mi t as m .. 00, 
t i lu(tu)1 2 + «f(s),u(s»ds. Passing to lim using 

to ~oo 

73 

TTm (am + bm) ~ TTm am + ~ bm and the fact that if xm .. x weakly in a 

Hilbert space X then IIxll ~ l!E! IIxmll we obtain the energy inequality 

t 2 t i lu(tll 2 + " f Ilu(s)11 ds s i lu(to)1 2 + f <f(s),u(s»ds 
to to 

f or to' E, t ~ to. 

The fact that du/dt belonys to L2(O,T,V') for d ; 2 follows from the 

fact that one can estimate in d ; 2 IA- 1/ 2B(u,u)1 ~ cluiliuli. Indeed 

(A- 1/ 2B(U,u),v) ; B(u,u,A- 1/2v) b(u,A- 1/ 2v,u) and thus 

I(A- 1/ 2B(u,u),v)1 ~ cluillulllvi. This together with the fact that urn is 

bounded in L2(O,T,V) and Loo(O,T,H) makes A- 1/ 2B(Um,Um) bounded in 

L2(O,T ,V'). 
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(9.1) 

(9.2) 

9 

STRONG SOLUTIONS 

Let urn be a solution of the Galerkin system 

dUm 
~ + vAum + PmB(um,um) = Pmf 

We take the scalar product of (9.1) with urn and obtain (see (8.8)) 

since 

(9.3) 

A11uml2 S Il uml1 2 it follows that 

d 2 2l...!t 
dt I uml + vII umll S VA 

1 

and thus 

and 

(9.5) 

Let us take the scalar product of (9.1) with Aum• We get 

We will describe separately the cases of spatial dimensions two and 

three. 

74 
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The two dimensional case 

Our aim is to give a bound on sup Ilum(t) II which is independent on m. 
O~t 

For this purpose let us first assume that fE L~(IR+,H) and denote by 

(9.7) 

The estimates (9.4) and (9.5) become 

t I fl2 
(9.8) v 6 Ilum(s)112 5 IUol2 + VA1~ t 

2 
2 2 Ifl~ 

lum(t)1 5 IUol + 22 . (9.9) 

" Al 

Inteyrating (9.3) between t and t + , and using (9.9) we get 

(9.10) 

2 
t+, 2 2 I f I 1 "r lIum(s)11 ds < IUol + --~ (, + -). 

f. - VAl VAl 

Therefore, denoti ng by A the Lebesgue measure on IR, we get 

and therefore that 

(9.11) 

In every interval of length, there exists a time to' [t,t+,J 

such that 

Remark that unt il now the reasoni ng di d not depend on the spat i a I 

dimension d. The two sides of (9.11) scale like Ld/ T2. Now let us 
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estimate in (9.6) the term 

Thus (9.6) becomes 

Integrating we obtain 

t 
(9.14) lIumll2 ~ lIum(to)112 exp([ c3luml2l1uml12dS) 

o " 
21 fl2 t 

+ 7 (t - to)exp [ ~ IUml211 umll2 ds 

o " 

The inequality (9.14) is valid for 0 ~ to ~ t. Now we estimate the 

exponential using (9.10) and (9.9): 

If to is chosen in the interval [t-"t] (assuming t ~ ,) such that (9.11) 

be valid we get 
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where A is the right-hand side of (9.11) and B is 

2 2 
c 2 Iflro 2 Iflro 1 
-4 [Iuol + -2 2 ][Iuol + -- (, + -)]. 
v v Al VAl VAl 

Assume now that, ~ 1/vA1' Then we get, for t , 

This bound is not only uniform for mE Nand t ~ , but also does not 

involve the quantity I\uol\. In other words, although l\um(O)II are finite, 

sup II um(O) II is not requi red to be fi nite. If we allow II uoll to enter the 
m 

estimate we can fix, = 1/vA1 for instance and use (9.14) with to = 0 to 

estimate lIum(t)1\ for 0 ~ t ~ l/vA!" However, we can avoid this in the 

. 1 111 
following way: Let us use (9.15) on an lnterval [-. k+1' - • k] 

VAl 2 VAl 2 
. 1 1 1 1 

wlth ,= -. k+1' If t < - • k then , ~ t ~ 2, and thus (9.15) 
VAl 2 - VAt 2 

implies, for t, [_1 __ 1_ L -] that 
2k+1 VAl' 2k VAl 

IUol2 21fl2 
(9.16) tllum(t) 112 S (4[-v- + 3T ] 

V Al 

Since the estimate (9.16) is independent of k we proved that (9.16) is 

true for any t, 0 < t ~ 1/ vA1' Summarizing we obtain: 

Proposition 9.1. Let m ~ 1 be an integer. Let uo' H, f, Lro(IR.H). Let um 

be the solution of the Galerkin system 

rdU (' 
There exists a constant PO depending on v. AI' IUol and sup If(t)1 only 

t)O 
such that 

 EBSCOhost - printed on 2/10/2023 4:11 PM via . All use subject to https://www.ebsco.com/terms-of-use



78 Chapter Ni ne 

(9.17) 

(9.18) 

If uo· V, there exists a constant PI depending on \luO!!' v, Al and 

su~ !f(t)! only such that, in addition to (9.18), 
t 

holds. 

Passiny to the limit we obtain 

Theorem 9.2. Let n be an open bounded set of class C2 included in uf. 

Let uO' H, fE L~(IRr,H). Let T > O. There exists a solution u of the 

Navier-Stokes equation 

r ~~ + vAu + B( u, u) 

1 uta) Uo 

f 

satisfying u EL1oc(O,T;V)'-' L~oc(O,T;..e(A)) n L~(O,T,H) ("\ L2(O,T;V). 

Moreover, 

(9.20) 

where PO depends on !ua!,V'Al' and sup!f(t)! but not on T. 
t 

If Uo belonys to V then u. L~(O,T;V) n L2(O,T, D(A)) and 

wi th C dependi ny on v, AI' !! uO!! and sup !f(t)! 
t 

but not on T. 
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An upper bound for PO is 

(9.21) 

Let us consider now 

The th ree di mens i ona 1 case. 

We return to the Galerkin system (9.1), (9.2). Let us assume that 

f eL2(O,T;H) for some T > 0 and Uo eV. We shall estimate in (9.6) 

l(f,Aum)1 ~ * IAUml2 + If~2. In order to estimate the term b(um,um,Aum) 

we use (6.9) with sl ; 1, s2 ; 1/2, s3; 0 

It follows from (9.6) that 

2 
< .l!. I Au 12 + ill + ~ II u 116 
-2 m v 3 m 

v 
Thus 

(9.23) 

Let us assume that 

(9.24) 
2 2 T 2 c- l / 2 2 1/2 

lIum(O)1I + -; 6 If(t)1 dt ~ -2- v Ai 

Then we claim, for all T ~ t ~ 0 

Indeed, from (9.24) it follows that Ilum(O) 112 < c-l/2}A~/2. Since 

Ilum(t)1I is smooth lIum(t)112 < c-l/2}A~/2 for small t. As long as 

Ilum(t)112 < c-l/2}A~/2 it follows that viAUml2 - c311uml16 is positive. 
v 
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Indeed, 

Chapter Hi ne 

viAUml2 - c3 lIumll6 ~ vAlliumll2 - c311umll6 
v v 

= vAlllumIl2[1- +lIumIl4] > o. 
v Al 

Therefore the least upper bound of the set of t ~ T such that (9.25) is 

satisfied must be T. 

Passing to the limit in m we obtain: 

Theorem 9.3. Let g be an open bounded set in IRl of class C2• There 

exists a scale independent positive constant C such that, for Uo E V and 

fE L2(O,T;H) satisfying 

(9.26) 

there exists a solution u(t) of 

(9.27) du dt + vAu + 8(u,u) = f 

(9.28) u(O) = Uo 

belonging to L"'(O,T;V) 1\ L2(O,T, J::l(A)) and satisfying 

(9.29) 
2 T 

iU(t)U~ + _1_ ( IAu(s)1 2dS < L 
2T12 1/2 ~ - Ii<C v Al VAl f" 

for all 0 ~ t ~ T. 
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The condition (9.26) is a nondimensional smallness condition. It can 

be interpreted in various ways: small initial data and f but arbitrary T, 

or large v but arbitrary data and T. It would appear from it that II uoll2 

small with respect to v2Ai/ 2 is necessary for local existence. This, of 

course, is not the case. Indeed, in the inequality (9.23) we have, 

ignoring viAuml2 

(9.30) d I 112 ~ c 116 dt I urn S v + 3" II urn • 
v 

Let us introduce the nondimensional quantities 

Then from (9.30) we get 

Introducing the nondimensional time s = vA1t we get, for y(s) = y(t) 

y(-v~ ), g(s) = 9'(_5_) 
Al VAl 

(9.31) 

If y(so) is finite then for s near sO' y(s) will be finite. Indeed, 
5 

dividing by (1 + y)3 we get, after integration f da 
So 
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and therefore 

(l + y(s)) 

Then 

We need to impose the restriction (1 + y(so))2E(s,sO) < 1. Let us assume 

thus 

s 1 
4 f g(o)do + 2c(s - sO) ~ 2 

So 2(1 + y(so)) 

Then y(s) ~ 12 (y(so) + 1). 

We proved: 

Theorem 9.4. Let!l C !R3 be a bounded open set of class C2• Let Uo E V. 

Let f EL2(O,To;H) satisfy 

(4 + 2C)-1 

(9.32) 

Then there exists a solution u(t) of (9.27), (9.28) belonging to 

L~(O,TO;V) n L2(O,TO; PtA)) satisfying 

2 u 2 J!.lilllL HOi 
(9.33) 2 1/2 ~ 12 (2l72+ 1) 

" Ai " Ai 

for 0 5 t 5 TO. 
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FURTHER RESULTS CONCERNING WEAK ANO STRONG SOLUTIONS 

We address first the question of uniqueness of weak solutions. In 

two dimensions weak solutions are unique. 

Theorem 10.1. Let g C ~ be open, bounded, of class C2• Let 

f. L2(O,T,V'). Two solutions belonging to L2(O,T;V) r\ Cw(O,T;H) of 

( 10.1) 

(10.2) 

du + vAu + B(u,u) = f dt 

u(O) = uo' H 

must coincide. 

Proof. Let us call the two solutions Uj' j = 1,2. Let w denote their 

difference w = u1 - u2' We obtain for w the equation 

(10.3) 

(lU.4) w(O) 0 

Taking the scalar product of (10.3) with w we obtain 

(10.5) dw 2 <dt ,w> + -Ilwl\ + B(w,u2,w) = a 

83 
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Indeed, from (10.3) and the assumptions on f, u1' u2 it follows that 
du , 
~, j = 1,2 and thus dw/dt all belong to L2(O,T,V'). Then (10.5) 

takes place almost for every t. Moreoyer, because of the estimate 

we see that <~~ ,w> = t ~t Iwl2 belongs to L1(O,T). From (10.5) we 

deduce 

and by Gronwall's inequality 

(10.6) 

Since Iw(O)1 = 0 it follows w = O. The theorem is proven. 

This theorem together with the existence theorems settle the situa-

tion in the case of two-dimensional Navier-Stokes in a satisfactory 

manner. If Uo is in H there exists a unique global weak solution. At 

time 0+ (i.e., for any t > 0) this solution becomes strong provided the 

forcing term is in H. Genuine weak solutions are generated only by 

singular forcing terms. 

In the three-dimensional case, the uniqueness of the weak solutions 

is not known. What is known is the uniqueness of strong solutions. 

Theorem 10.2. Let n C ~ be open, bounded, of class c2• Let 

f. L2(O,T;H) and uo ' V. Two solutions belonging to L2(O,T; D(A» () 

Cw(O,T;V) of (10.1), (10.2) must coincide. 

Proof. One proceeds as in the proof of Theorem (10.1). The term 

B(w,u2'w) in (10.5) can be estimated by ((6.9) with 51 = 52 = 53 = 1/2) 
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The equation (10.5) yields 

(10.7) 

From Gronwall's inequality 

t 
Iw(t)1 2 5 IW(0)1 2 exp 6 ~ Ilu2(s)IIIAu2(s)lds 

Since u2' LOO(O,T;V) n L2(0,T;.o(A)) the integral is finite. The proof 

is concluded by not i ng that w( 0) = a imp 1 i es w( t) = a for a ~ t ~ T. 

Remark 10.3. a) It is clear from this formal proof that we can assume 

that only one of the two solutions is strong, the other being only a weak 

solution: in other words, strong solutions are unique in the larger 

class of weak solutions. 

b) The method of proof gives sufficient conditions for uniqueness. For 

instance, estimating the term B(w,u2 ,w) differently 

IB(w,u2,W)1 ~ clwI 1/ 21I wll3/2l1 u2 115 t IIwl12 + c3 Iwl211 u2114 
v 

we obtain ~t Iwl 2 S c311u21141wl2 and therefore, uniqueness provided 

T 4 . v 4 f II u211 dt < 00, , .e., u2' L (O,T;V) 
u 

The rest of this sections will be devoted to a few of the aspects of 

the basic question: do solutions of three-dimensional Navier-Stokes 

equat ions lose regul ari ty or not? Suppose uo is a very ni ce funct ion, 

say Uo E V. Suppose n C Iff is a bounded set wi th smooth bounda ry. 

Moreover, suppose that the drivi ng force f is time independent and very 

smooth, (e.g. f = a!). Then we know, for fixed v> a that there exists a 

solution u(t) for a ~ t ~ TO of (10.1), (10.2) which is 
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a strong solution, i.e., uOE Cw(O,TO;V) (') L2(0,T;.0(A)). In particular 

sup Ilu(s) \I is finite. 
O,sdU 

Let T > TU. We know that, starting from Uo there exists a weak 

solution IT EL2(U,T;V) A Cw(O,T;H). Moreover, from the preceding Remark 

10.3 a) it follows that ~ and u coincide on [O,TOJ. Let us consider for 

fixed uo' f and v the maximal time of existence of a strong solution 

T* = Max[T > 0; there exist u E L~(O,T;V) n L2(0,T;t:)(A), solution of 

(10.2), (10.2)}. Because of the uniqueness of strong solutions if T* < ~ 

then limsupllu(t)II=~and sup Ilu(t)II<~ for all TO<T*. Indeed, 
t .. T* t,T 

if lim sup lIu(t)11 < ~ then for aR appropriate constant c and t as close 
t .. T* 

to T* as we please we would have lIu(t) II ~ c. From the local existence 

theorem (Theorem 9.4) we would be able to find v(s) solution (10.1) and 

v(O) = u(tO) E V. The solution v(s) of (10.1) would be a strong solution 

defined for a time interval [O,TOJ whose length depends on the size of 

If I and of IIv(O)11 = Ilu(to)11 (see (9.32)) Since Ilu(to)11 is bounded from 

above as tu .. T* the corresponding TO is bounded below, i.e., can be 

chosen uniformly for to near T*. If T* - to < TO' we obtain, since f is 

time independent, a strong solution [(s) = v(s + to) of (10.1) which in 

view of Theorem 10.2 coincides with u for t < T*. We were able thus to 

extend u(t) beyond T* (namely to TO + to > T*) contradicting the 

definition of T*. 

We see thus that the quant i ty II u ( .) II becomi ng i nfi ni te is a 

necessary condition for loss of regularity. One could ask oneself: why 

identify "regularity" with "strong solutions"? After all, a strong solu-

tion is not yet a classical solution of the Navier-Stokes system. The 

reason is that if a solution is strong then u(t) will be as smooth as Uo 

provided the boundary an and f are smooth enough. 
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We will t~eat this question in absence of bounda~ies. In this case, 

as we pointed out in Remark 4.13, the operator A coincides on its domain 

with (-a)P = P(-a). 

Lemma 10.4. Let u,v be two finite sums 

2 ' 
u = I ukexp(~L' <x,k» 

k • zn 

(2n i k) v = I v k exp -L- <x, > 
k. zn 

satisfying Uo = Vo = 0, uk u_ k' vk = v_k (uk,vk _en) and <uk,k> = 0 = 

<vk,k>. Let s > ¥- be a real number. Then, denoting B(u,v) = P(u.vv), 

we have the estimates 

(l0.8) 

(l0.9) 

for s > !!. 
2 

ifS>¥-+l. 

Proof. Without loss of generality we may assume L = 1 since (10.8) and 

(10.9) are scale invariant. Since A and P commute we can estimate the 

left hand side of (10.8) as sup 
w-H 

(A S/ 2B(U,v),W) 

Iwl=l 

AS/ 2B(U,v) = P(_a)s/2(u.v)v 

si nce Pw = w we have 

Now 

(u·v)v = I (2ni) ( I <u "R.>V )ini<x,k> 
k. zn j+ R.=k J R. 

so 
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(AS/ 2B(U,v) ,w) 2 2 5/2 . I <U.,R.> <v ,wk>(4"lkl) (2,,1) 
j+ R.+k=O J R. 
j,R.,k ,Zn 

Now we use the inequality 

valid for any j,R.' IR", Q> O. The first part is trivial and the second 

is just the boundedness of f(x) = (x + l)Q , X > O. Therefore we 

estimate 

5/2 5+ 1 5 . 5 
I(A B(u,v),w)1 ~ (2,,) cs I lu·llv IlwkllR.I[IR.1 + IJI ] 

j+R.+k=O J R. 

= (2,,)s+\C I IUjl(lvR.IIR.ls+1Iwkl) +. I IVR.IIR.llujlljISlwkl) 
J+R.+k=O J+R.+k=O 

5+1 

~ (2,,)S+lCs( I nlu.I)lwIIA2vl + (2,,)5+\( I nlvR.IIR.I)(\wIIAs/2ul). 
j'Z J i'Z 

All we need now is to observe that 
5+1 

L nlR.llv I ~ CIA2 VI. Indeed, 
R. ,Z R. 

since 25 > n. Also 

L I R.II v R.I = t I R.I - 5 1 R.I 5+ 11 v R. I 

s+l 

~ ClA2 Vl 

This proves (10.8). Moreover, we note that (10.8) is true for 5 > n/2. 

 EBSCOhost - printed on 2/10/2023 4:11 PM via . All use subject to https://www.ebsco.com/terms-of-use



Further Results Concerning Weak and Strong Solutions 89 

Now for the proof of (10.9). We have, since (B(u,As/ 2v),A2/ 2v) = 0 

We wi 11 prove 

Ayain we check (10.11) by estimating sup I(As/ 2B(U,V) - B(u,As/ 2v),w)l. 
Iwl=l 

(AS / 2B(U,v) ,w) 

(B(u,AS/ 2v) ,w) 

Takiny the difference 

(10.12) (As/ 2B(U,v) _ B(u,As/ 2v),w) 

Now, for any s ~ 1 there exists cs such that 

I s sl s-l I S- 1 (10.13) I~I - I~I S csl~ - nl[lE; - nl + In ] 

for any ~,n E !If. 

Indeed, 

s s 1d IS 
I ~ I - I n I = 6 dt It (~ - n) + n dt 

and 

dis s-l <t\£ - n) + n f - n> 
dt t(~ - n) + nl = slt(~ - n) + nlt(~ - n} +'n 

Thus using a < t < 1 and (10.10) 
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Now in (10.12), \~\ = \J + k\ and using (10.13) wit"h I; = j+k, n = k we get 

Let us estimate the first sum: 

We yet, thus 

Simi larly, 

Now since s > I + 1 we have 

L \k\\v k \ L \k\s\v \\k\l-S~ (L \k\2S\v \2)1/2( L Ik\2-2S)1/2 
kEZn\U kEZn\U k kEZn\O k kEZn\O 

( L \k\2S\v \2)1/2( L \k\2-2S)1/2 5 c\As/2v\. 
k EZn\O k kE zn\o 
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This means 

The proof of (10.11) and therefore of (10.9) is complete. 

Remark 10.5. Estimates of the type of (10.8), (10.9), and (10.11), 

suitably modified, are valid for IRl replacing Tn, the unit torus. 

Now we are going to make more precise the statement about higher 

regularity of strong solutions. Let us return to n ; 3 and assume that 

is (for simplicity) time independent and uO,f, are smooth. Let us con­

sider the periodic case and fix v > 0, L > O. Let us assume that u(t) 

91 

solution of (10.1), (10.2) is a strong solution on [O,T]: u E LOO(U,T;V) () 

L2(U,T; peA)). Let us first assume that f,uO EHS(T3)3 with s > 3/2. 

Since the estimate (10.8) is valid for s > n/2 we get from (10.1), multi­

plying scalarly by ASu: 

s+l 3 s+l 

i ~t IAs/ 2u1 2 + vlA~ul2 < IA s/ 2fIIA s/ 2ul + CLs- 21 A--2--u 1 IAs/ 2ul. 

Using by now familiar manipulations we deduce that 

Thus by Gronwall's inequality 

s+l 
(10.15) Ue LOO (0,T;J:)(As/ 2) r-. L2(0,T;t)(A--2--)) 

~rovided u e L2(U,T; J:) (As/ 2)). If 3/2 < s ~ 2 then u e L2(0,T:P(A)) II 

L2(O,T; b(As/ 2)). It follows that, if u is a strong solution with uo' 
s+l 

f e HS(T3)3 for s «3/2,2] then Ue LOO(O,T;b(As/ 2)) n L2(0,T; 1J(A2 )). 
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In particular u(t) is bounded in HS• Now, if s «2,5/2] then s+l 

s' = s - t (t,2] and therefore a strong solution UEL2(O,T; ~(A 2 » 

Since S'~1 = t + i > t it follow~+rrom (10.15) that 

uELOO (O,T;!l(As/ 2» n L2(O,T;~(A2» for sE(2,5/2]. We can go on 

like this forever. 

These were formal considerations but can be easily made rigorous. 

Theorem 10.6. Let s > 3/2. Assume f,u O E P(As /2) = V () HS(T3)3. 

Assume that u(t), solution of (10.1), (10.2) (periodic case) is a strong 

solution, i.e., u ELOO(O,T;V) f") L2(0,T; J:l(A». Then 
s+l 

u ELOO(O,T; .f)(As / 2» n L2(0,T; e(A-2- ». 

Corollary 10.7. Let s > 3/2. Assume f,uO E /?J(As / 2). Then a necessary 

and sufficient conditions for a weak solution u E LOO(O,T;H) n L2(0,T;V) of 

(10.1), (10.2) (periodic case) to belong to 
l+s 

LOO(O,T; b(As / 2» f") L2 (O,T; ~(A2» is that u. L4(0,T; ~(A1/2». 

Proof. Clearly, if s > 3/2, 

formally 

v 

T 
Since f II ul1 4dt < 00 we deduce that u is a strong solution on [O,T]. The 

o 
rest follows from Theorem 10.6. To make this into a bona fide proof we 

observe that, because of the local existence theorem (10.16) is true for 
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t ~ Tu' We use the local existence and uniqueness theorem to prove 

Su~{Tu > olu is a strong solution on [O,TOJ} ~ T. We omit further 

details. 

93 

We presented Theorem 10.6 and Corollary 10.7 as justifications of the 

importance of the question: do strong solutions lose regularity? We do 

not, as yet, know the answer to this question. We saw that loss of regu-

larity occurs only if \lu(t)11 becomes infinite. The set of singular times 
T 

of a weak solution is clearly of Lebesgue measure 0 since J Ilu(t) \l 2dt is 

finite. Actually more is true: The set of singular times of a weak solu-

tion has Hausdorff dimension not larger than 1/2. 

Let us assume that uO ' V and f. H (for simplicity). Let u(t) be a 

weak solution of (10.1), (10.2). Assume that u(tO)' V for some to' Then, 

the local existence theorem (Theorem 9.4) and the uniqueness result 

(Remark lll.3 a)) imply that ul[to,tO+TOJ is a regular solution 

(i.e., u. L~(to,to+TO;V) (') L2(to ,tO+TO,'o(A)) for some positive TO 

depending on \lu(to ) II· Actually, from (9.32) it follows that 

~ 
2 

(10.17) 
ilU(t O)II -2. 

VAl TuO + -4 3/2 ) ~ cO + ~) 
V Al V Al 

for each to such that II u(to) II is finite we consider a maximal 

interval Ie [O,Tj on which u is regular. More precisely, I maximal with 

the properties: I is an interval included in [O,T], to' I, and for any 

closed interval J C. I, ul • L~(J,V)n L2(J,l'(A)). The existence of a 
J 

maximal interval with these properties follows from the fact that the set 

of intervals with these properties is nonempty and is inductively ordered 

under inclusion. I is necessarily open at the right end if the right end 

is not T. Clearly there are at most count~bly many distinct intervals of 

this type, I J , 

obvious since 

and the measure of [ll, TJ \ U I 
T J=l J J II u( t) 112 < ~ and thus II u( to) II 

is zero. ( Thi sis 

< ~ for almost all to)' 
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Let 

Chapter Ten 

be one of the intervals Ij • From (10.17) it follows that for any 

2 
~ IIU(tO)II -2 

VA1(b - to)(l + 4 3/2) ~ c(l + 2 1/2 ) 
v Al v Al 

if b is the least upper bound of I. It follows that 

2 
1 uu(tO) II 1/2 + ~)1/2 

(10.18) -- < (1 + 2 1/2 )( vA1) (1 4 3/2 
~ - v Al VAl 

Inteyrating (10.18) on I we get 

Summing over j we obtain 

Let X C M be a compact subset of a metric space. We define the 

d-dimensional (outer) Hausdorff measure of X by 

(10.20) ~~(X) = lim ~~ r(X) 
r + 0 ' 

where 

(10.21 ) 
k d . {k d ~H r(X) = 1nf .L ri I XC US., 

, 1=1 i=l 1 

radius ri ~ r} Si open balls in M of 

The Hausdorff dimension of X is 

let us consider a weak solution u(t) defined on [O,T] of (10.1), (10.2). 
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Let {IJ }. be the collection of maximal intervals of regularity in 
J E IN 

[O,T] described earlier. Let us denote by aj and bj their ends: 

Clearly aj and bj are singular times, in particular, lIu(bj) II = ~ (if you 

prefer lim sup lIu(t)1I = + ~ ). 
t + bj 

Theorem 10.B. Let u be a weak solution of (10.1), (10.2) on [O,T]. There 

exists a set E, closed, of 1/2-dimensiona1 Hausdorff measure 0, outside 

which u is regular, i.e., 

ul ELioc((O,T)\E;V)l' L~oc((O,T)\E n PtA)). 
[O,n\E 

Proof. E will be defined as E = [O,n \ U ~J' where Ij on the maximal 
j=l 

o 
intervals of regularity constructed above and I means interior of 1. In 

order to compute the 1/2-dimensional Hausdorff measure of E, let us first 

make the observation that in the definition of d 
~H we can use closed 

intervals instead of open intervals in the case the metric space M ~s IR. 

Let then m be a positive integer. Let Em be the set Em = [O,T] \ U ~.; 
j=l J 

Em J E. Clearly Em is the union of a finite number of closed intervals 

km 

E = LJ K(m) The intervals K(m) are closed and diSjoint. Since the 
m J=l J • J 

Lebesgue measure of 0 1. is T it follows that the measure of any of 
j=l J 

the ~i),s (i.e, its length) is not larger than the sum of the measure of 

the I j that touch it. From the construction of the K~m).S if an inteval 

IJ with J ~ m+1 touches 

sets N(m) = {j > m+l 
i 

a K(m) then it is included in it. Thus, the 

I. C K(m)} are 
i 

1. " K (m) F tl} = {j ~ m+ 1 
J i J i 
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disjoint. Denoting by IFI = the Lebesgue measure of F we have 

and also 

Then 

km 

Since U K(m) is a cover of.E with intervals of radius less than Em/2, 
i=l i 

we proved here that 

< Ii = 'i' 1I·1 1/ 2• 
m j=m+1 J 

In view of (10.19), om + 0 and thus ~~/2(E) = O. 

The next result shows that if the enstrophy II u(t) 112 of a solution of 

the three-dimensional Navier-Stokes equations (10.1) becomes infinite in 

infinite time then there are solutions [(t) of the same equations for 

which the enstrophy becomes infinite in finite time. 

Theorem 10.9. Let u(t) be a solution of the three-dimensional Navier­

Stokes equations (10.1) in a domain rI C rR3 with C2 boundary. Assume f. H 

is time independent (for simplicity). Assume u(t) is a strong soution for 

each T > 0; u(O) = uO' V; u. L"(O,T;V) r) L2(0,T; f;)(A)) for all T> O. 

Assume also that lim sup lIu(t) II = +". Then, for any T1 > 0 there exists 
t + " 

vO' V such that the solution to (10.1) having vo as initial data blows up 

before T1 > 0, i.e., v is not a stong solution on [0,T1]. 
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Proof. We use (9.11) which is valid for 3-dimensional Navier-Stokes 

too. Let tj .. ~ be such that l,im lIu(t j ) II =~. From (9.11) we find 
J"~ 

aj E [trTl'tj] such that 
K 

lIu(aj)112 < ~+ K2 = K 
- 1 

for appropriate constants K1, K2,K which are j independent. 

Passing to a subsequence we may assume that u(aj) converges weakly il 

V and strongly in H to an element Vo of V. Now let us consider the func­

tions Vj(s) = Uj(s + aj) and the function v(s) defined by solving the 

Navier-Stokes equation (l0.1) with initial data Vo EV. By the local 

existence theorem v(s) is a strong solution for some TO = ToUlvoll). 

Our claim is that v cannot be a strong solution on [O,T1]. Indeed, 

assume by contradiction that u is a strong solution. Forming the 

differences wj(s) = Vj(s) - v(s) we have 

d dt Wj + \lAWj + B(Wj,v) + B(V,wj ) + B(wj,wj ) = 0 

Wj(O) = Vj(O) - yO. 

Taking the scalar product of the first equation with Wj(s), we get 

t ~t Iwj (t)1 2 + \I IIWj(t)112 5 cllvllllwjll3!2l wjl1/2 

~ I IIwjl12 + c311 v ll41 wjl2 
\I 

From Gronwa 11 

Iwj (t)1 2 ~ IWj (0)1 2 exp 6t ) IIvll4dS 

Tl 
Since by assumption 6 IIv 11 4dS is finite and v j(O) - Vo .. 0 in H it 

follows that wj(t) .. 0 in H for all tE [O,T1]. Also since 
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T 
it follows that f IIwJ (sll12ds tends to zero. Thus IIWj(tlll + 0 a.e. for 

o 

Take any t < [U.T1] such that IIWj(tlll ~ 1. Then Ilvj(tlll ~ l+r. By the 

local existence theorem. (Theorem 9.4l there exists a time interval 

[t.t+T2] with T2 depending on r and I fl. v. 1.1 only. but independent of t 

such that 

for all s, [t.t+T2]. 

Let I be the set of t <[0.T1] such that .lim IIwj(tlll = O. Clearly 
J + ~ 

there exists finitely many ti < I. i = 1 •...• m such that 

m 
[To.T1] C U Ct .• t.+ T2] where T2 is defined above. Therefore. there 

i =1 ' , 
exists jo ~ 1 such that for tE [0.T1]. j ~ jO' IIvj(tlll ~ c. absurd. since 
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VANISHING VISCOSITY LIMITS 

Let us consider solutions of 

( ll.l) du dt + vAu + B(u,u) = f 

( 1l.2) u(O) = Uo 

where the problem is set in the periodic n-dimenisonal case (n = 2,3). 

The function f is, for simplicity, assumed to be time independent. We 

reca 11 that the peri od of the funct ions u( t, .) is denoted by L. Let us 

assume that f E fJ(As/2) and Uo E J:;(As/ 2) for some s > 1 + ~. Let us 

multiply (11.1) by ASu and use (10.9): 

(11.3) 

Let us define the scale independent quantities 

( 1l.4) 

(11. 5) 

(11.6 ) 9 s 

s- .!!. +3 
L 2 

2 
v 

Multiplying (11.3) by L2s-n+4/v3 we get 

(ll.l) 

99 
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(In order to obtain (11.7) one neglects the nonnegative term 
s+l 
-2- 2 L 2s-n+4 

viA ul· --3- and divides by !Y.) Let us drop, for simplicity, the 
v 

index s. 

(11.8 ) 

We infer from (11.7) that 

<!i 
_d_t _ < 1 

2 - • 
g + cy 

Integrating between 0 and t we obtain 

arctanJf y(t) - arctan ~ y(O) < .;cg t. 

Therfore, if 

( 11.9) {C9 t + arctan4 y(O) 

we obtain 

< 2!. 
2 

Using a well known trigonometric formula 

( 11.10) 
tan(.;-cg t) + ~I y(O) 

s 1 - tan(.;cg t) !fJ y(O) 

If g 0 we get, directly from (11.8) that 

We get, in the g 0 case, if 

(11.12) tY(O)c 5 1/2 

that 

(11.13) y(t) 52y(O). 
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This means, going back to the scale dependent quantities that, for f = 0, 

prov ided 

s- .!!. -1 
(11.15) cL 2 \As/ 2u(0)\t ~ t 

Note that condition (11.15) is independent of v. If g F 0 then we 

find & > 0 such that, if 

(11.16) Cy(O)T S 1/4 

(11.17) J'C9 T S & 

then 

(11.18) y(T) S 2(2Tg + y(O)). 

(The number & is determined here by the requirement tan x < 2x for 

U < x < g.) Going back to scale dependent quantities, we get that 

(11.19) 

prov i ded that 

(11.20) 

Estimates of the type (11.19) and the vanishing viscosity limit were 

obtained for the L = ~ case in ([K1]). 

Theorem 11.1. Let f E l' (As/ 2) and UOE fJ(As/ 2) for s > 1 + f and A 

defined in the L-periodic, n-dimensional case. There exists T > 0 depend 
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ing on L, s, uo' and f (T given by the right-hand side of (11.20)) such 

that for every" > 0 and corresponding solution u(t) = u)t) of (H.l) and 

(11.2) , the bound (11.19) is valid. 

Moreover, if s > 3 + ; then as " converges to 0 the functions u" 

converge uniformly in L~(O,T; .o(As '/2)), 1 +; s' ~ s-2, to a function v, 

a solution of the Euler equations 

(H.21) dv dt + B(v,v) = f 

(11.22) v(O) = Uo 

Proof Let us take two solutions u)t) and u~(t) of (H.l), (H.2). Let 

us assume" >~. Then forming the difference w(t) = u,,(t) - u~(t) we 

obtain the equation 

{~~ + "Aw + B(W,u~) + B(U~,w) + B(w,w) = (~ - ,,)Au~, 

w(O) = 0 

Taking the scalar product with As '/2w and using (10.8), (10.9) we obtain 

S' 5 1+1 s· s· s· s· 

i ~t IA2 wl2 ~ k[IA~ u~IIA2 wl 2 + IA2 u~IIA2 wl2 + IA2 w1 3] 

The constant k depends on L, s'. Now since s'+2 ~ s we can bound 
~'+l ~'~'+ 1-

IA2 uland thus IA2 u I, IA2 2u 1 uniformly on [O,T], using 
~ ~ ~ 

(11.19). Dividing by IAs '/2wl we get for y = IAs '/2wl an inequality of 

the type 

£t ~ K(y + y2 + ,,) 
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for t E [O,T]. Multiplying by e- Kt and considering z = e-Kty we get 

( 11.23) {

dZ 2 
dt ~ Mz + Mv 

z(O) = 0 

for t ~ T, and some M depending on L,T. This inequality is of the same 

type as (1l.7). Therefore, if v is small (see (11.17) i.e., if 

2 
(11.24) v ~ ~ 

M T 

then from (11.18) we deduce 

(11.25) z(t) ~ 4TMv 

for all t E[O,T]. 

Form (11.25) we deduce that 

(11.26 ) 

for all t STand v S e2/(M2T2), ~ < v. 

The inequality (11.26) enables us to pass to the limit in (10.1). We 

omit further details. 

The same technique is used in [e1] to prove that if uo is smooth 

enough, and if the solution v(t) to the Euler equations (11.21), (11.22) 

is smooth on an interval [O,T1] then the solutions Uv of (11.1), (11.2) 

will be smooth on the same interval [O,T1] for all 0 < v S vO where vo is 

a positive number determined by the solution v(t). 
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ANAlYTICITY AND BACKWARD UNIQUENESS 

We discuss first analyticity of stong solutions as D(A) valued 

functions of time ([T.2]). Let us consider a Galerkin system 

r dt m + "Aum + PmB(um,um) P mf 
(12.1) 

um(O) PmuO 

where f E H, UOE V, m ~ 1 and the system originates from any of the n = 2,3 

Dirichlet or periodic cases. 

We want to extend (12.1) for complex t. In order to do so we need to 

complexify the spaces H,Hm,V, b(A) and the corresponding operators. For 

instance, the complexification of H is 

HC = {U1 + i u21 u1 E H, u2 E H} • 

The scalar product will be 

The system (12.1) admits a unique solution um(t) for t in a complex neigh­

borhood of the origin. Since f and Uo are real, the solution um(t), for t 

real, is real and coincides with the usual Galerkln approximation. We 

want to prove that the complex domain of definition of um(t) can be chosen 

independently of m and that a.!. priori bounds can assure passage to the 

1 i mit in m .. 00, 

104 
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Analyticity and Backward Uniqueness 105 

Let us fix 6 E (- f ,f) and take t of the form t sei 6 for s > o. 
We want to compute 

d . d . . 
d'S II um(se16 ) 112 = d'S (um(se16),AUm(se16)). 

We get 

Thus, multiplying (12.1) scarlarly by Aum(t) and by ei6 and taking the 

real part we obtai n 

(12.2) i ~s II um(sei6 ) 112 + " cos 6 IAum(se i6 )1 2 

= Re{ei6[(B(Um,Um),AUm)c + (f,AUm)C]}· 

Now we use the estimates 

(12.3) 

which follow from corresponding estimates for the real case. 

The term involving (f,Aum)C will be estimated 

2 
l(f,Aum)1 <~ IAu 12 +~. 

- 4 m " cos 6 

Also from (12.3) we get 

(12.4) 

We deduce the inequality 

(12.5) 
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The inequality (12.5) is valid for all the cases (n = 2,3, Dirichlet 

or periodic). We see that on a time ray of fixed angle e the role of the 

viscosity is played by v cos e. 

We obtain a bound for lIum(t) 112, t seie of the type 

provided t = se ie satisfies 

(12.7) ~ 2C 1 
s( + 3 3) < 2 2 

v cos e v (cos e) - 2(1 + IIUOII ) 

(see (9.31) and the proof of Theorem 9.4). (The inequality (12.7) is not 

nondimensional.) Fixing the parameters If I 'v, Iluoll, we see that (12.6) 

amounts to a uniform bound for lIum(t)1I for all m ~ and t in a region 

D = D(v,lIuoll,lfl) c C described in (12.7). 

The open set 

D O(v,IIUoll,lfl)={t seie lei <rr/2, 

o < s(~ + 2C 3) < 1 } 
v cos e }(cos e) 2(1 + IIUOIl2 )2 

is therefore a domain of analyticity of the functions um(t). It is 

symmet ri c about the real axi s and thus is a nei ghborhood of all its real 

points. The origin 0 belongs to its closure. 

In order to obtain~priori bounds for IAum(t)1 for tE D we use first 
du 

the Cauchy formula to obtain ~ pri ori bounds for II dt m II. Indeed, let y 

be a small circle contained in D. Then, for t inside the circle 

(12.8) 
dku kl, um(z) 
__ m (t) J d 
dtk = 2rri y ~_ t)k+1 Z 

and therefore 

(12.9) 
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Here ry is the radius of y and we used the estimate (12.6) for Ilum(z)ll, 

Z E y. 

If M is a compact subset of D then denoting by rM = dist(M,aD) we 

obtain from (12.9) the estimates 

for all to Me CD and k = 0,1,2, ••• In particular, taking k 1 and 

usiny the equation (12.1) we deduce that 

for all toM, m ~ 1. The positive number E depends on \I, If I, Iluoll, the 

set M, but not on toM, nor m. 

The proof of (12.11) is straightforward; one uses the equation 

(12.1), the estimate IB(um,um)1 ~ cll umll3/2lAuml 1/2 and (12.10). Now we 

can use (12.11) instead of (12.6) in the estimate of the Cauchy integral 

(12.8) • 

(12.12) 

We obtain, for every compact set L a constant EL such that 

dku 
IAT(t)I<E ~ 

dt L rk 

for all to L, k ~ 0, m ~ 1. The constant r is smaller than the distance 

from L to aD and EL is the constant E of (12.11) for a set M such that 

{ZOe I dist(z,L) ~ q = MeeD 

We can pass to the limit in m. We observe that, since the domain 

D(\I,lluoll, If I) depends on the size of Iluoll we can repeat this 

construction with to 0 R+ instead of 0 as vertex. We obtain 

Theorem 12.1 (Time analyticity). Let f oH, Uo 0 V, \I> O. Let n C Ilf be 

an open bounded set with an of class C2 • Then 
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(i) If n = 2, there exists an open neighborhood D of (O,M) in C such that 

the solution u(t) O{f~~ + v Au + 

(12.13) 

u(O) = uo 

is analytic u:D + b(A). 

B(u,u) f 

(ii) If n = 3 there exists TO > a and an open neighborhood in C of 

(O,Tu)' DTO' such that the solution of (12.13) is analytic u:DTO + t>(A). 

Remarks. 1. The same result holds in the periodic case. 

2. In the n = 2 case, we can allow uo' H. 

We are going to use this result in order to deduce backward 

uniqueness of strong solutions. 

Theorem 12.2 (Backward uniqueness) Let ul,u2 be two strong solutions of 

the Nav i er-Stokes system 

(12.14) du dt + vAu + B(u,u) f 

(i) The two-dimensional case: We assume that f, ul(O), u2(0) are in H. 

Suppose there exists tu ~ 0 such that ul(tO) = u2(tO). Then ul(t) = u2(t) 

for all t ~ O. 

(ii) The three-dimensional case: We assume that f.H, ul(O), u2(0) 

belong to V. There exists TO > 0 (a common time of existence and 

analyticity of strong solutions) such that, if, for some to' [O,TO)' 

ul(tO) = u2(tO) then it follows that ul(t) = u2(t) for all t. [O,TO). 

Proof. From Theorem 12.1 (and the Remark following it in the case ul(O), 

u2(O) belonging only to H) the functions ul(t), u2(t) are analytic in 
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(O,TU) for the n = 3 case and in (O,~) for the n = 2 case. If u1(tO) = 

u2(tO) then from the uniqueness of strong solutions to (12.14) it follows 

that u1(t) = u2(t) for t ~ to' From the analyticity, u1(t) = u2(t) for 

all t > O. But u1(t), u2(t) tend strongly in H to u1(0), u2(0) as t • O. 

Thus, u1(O) = u2(O) must occur, too. 
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EXPONENTIAl DECAY OF VOLUME ELEMENTS 

Let u(t) be a solution of the Navier-Stokes equations 

(13.1) du 
dt + vAu + B(u,u) = f 

(13.2) u(O) = uo 

Suppose that the i ni t i a 1 data depends on a parameter "E IR. 

Oifferentiating (13.1) with respect to this parameter we obtain the 

equations governing the time evolution of infinitesimal displacements: 

(13.3) dv dt + vAv + B(u,v) + B(v,u) 0 

(13.4) v(O) = vo 

In (13.3) the function u(t) is playing the role of a known coefficient in 

the equation. Standard energy methods together with the ~ pri ori bounds 

for u(t) described in previous sections will provide estimates for the 

solutions of (13.3). 

To fix ideas we will consider the two-dimensional Navier-Stokes 

equations. The concepts that we are gOing to define and study in this and 

the next sections are quite general. The common theme of these last 

sections is the study of long time behavior of solutions to (13.1) or 

similar equations. Let us denote by S(t)uO = u(t) the solutions to 

110 
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(13.1), (13.2). We view S(t) as a map from H into H. The following are 

known properties of S(t): 

Proposition 13.1. 

(i) S(t + s)uo = S(t)S(s)uo t ,s ~ 0, uo' H 

(ii) lim S(t)uO = Uo in H 
t + 0 

(iii) S:(O, .. ) + lJ(A) is analytic 

(iv) S(t) is injective for t ~ 0 

(v) There exists B~ = {ul lIuli ~ p} c V which is an absorbing set, 

i.e., for every uo' H, there exists to(luol) such that, for t ~ 

t( luol), S(t)uO E BV. 
p 

(vi) S(t):H + H are continuous, for t ~ O. 

Proof. Property (i) follows from uniqueness of solutions and the fact 

that f is time independent. Property (iii) is a restatement of the result 

of Theorem 12.1. Property (iv) follows from the Backward Uniqueness 

Theorem (Theorem 12.2). Property (v) is a straightforward consequence of 

the first two energy estimates: 

(13.5) 

(13.6) 

We obtai n 

(13.7) 

From (13.7) we deduce first that 

(13.8) 
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and also, using IIull2 ~ A11ul2 that 

-vAl t 2 A t 
lu(t1l 2 ~ IUol2e + 1~12 (1 - e- v 1 ). 

v A1 
(13.9) 

From (13.10) it follows that, for any Uo E H, if t ~ to(luol) then 

(13.10) 2lfi. I u(t) I ~ 2 2 2 • 
v A1 

Now we deduce from (13.6) that 

If t ~ to we obtain, from Gronwall's inequality and (13.10) an a 

priori bound on the growth of lIull2 on bounded time intervals. Let us take 

a time length of, say 2/ VA1 • For t ~ to it follows from (13.8), (13.10) 

that 
t + _2_ 

VAl 
f 
T 

2 2 2 
--.£. I 12 II 112d < ~ illL':. (l!.L _2_ + lliL ) 3 u u a - 3· 2 2 VA • 2 3 2 
V V v Al 1 v Al v Al 

Denoting by G the nondimensional number 

(13.12) 

we get that, for T ~ to(luol) 

T + _2_ 

f VAl c3 lul 2 lIull2da S (8c)G4 • 
T v 

Then from (13.11) we deduce, using Gronwall's inequality that, for T ~ 

toU uol) and t. [T,T + _2_] we have 
VAl 
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On the other hand, from (13.8) we infer that in any interval of length 

l/"A1' [t,t+l/"A1J with t ~ to we find at least some, such that Ilu(,)1I2 S 

6iAl G2 

Now let us cover [to'oo) by the intervals [tk ,tk+1J where 

k tk = to + -, k = 0,1, •••• In each such interval, we find 
"Al 

'k' [t k,t k+1J such that lIu('k)1I2 ~ 6iA1G2 

Since the distance between successive 'k's does not exceed 2/"Al it 

follows from (13.13) that, for t, ['k,1k+1 J 

Therefore the estimate (13.14) holds for all t ~ 10 and in particular for 

all t ~ tot IUol) + 1/,,1.1 = t 1 • 

Since the condition determining to was 

property (v) is proven with p given by 

and to given by 

(13.16 ) 

If f = 0 then for any uo ' S(t)uO tend exponentially to zero in both 

the H and V norms. 

For uO' V, let us denote by A( t) the operator 

(13.17) A(t)v = "Av + B(S(t)uO'v) + B(v,S(t)uO). 

A proper notation would be A(t,uO). Thus (13.3) can be written as 

(13.18) ~v+ A(t)v + O. 
dt 

 EBSCOhost - printed on 2/10/2023 4:11 PM via . All use subject to https://www.ebsco.com/terms-of-use



114 Chapter Thi rteen 

Proposition 13.2. Let uo. V, YO' H. There exist constants k1,k2 

depending on v, IluolI, If I such that the solution v(t) to (13.3), (13.4) 

satisfies 

(i) vis a real analytic t)(A) valued function for t > 0 

(ii) Iv (t) I 
k1 VAl t 

e IVol for all t ~ 0 

Jl'U.tJJ. < 
/ k VA t 

(iii) (k + _1 )1 2 1 1 I I forallt>O. 

F1 
2 VAl t e v 0 ' 

Proof. We will give only a sketch of the proof because it is very similar 

to the proof of the corresponding result for S(t)uO = u(t). The existence 

of solutions follows from linear theory. One can easily devise a Galerkin 

ap~roximation, also. The estimate (ii) follows from the first energy 

est i mate 

(13 .19) 
d 2 2 2 2 
dt Ivl + vllvll 5 c ~- Ivl • 

Thus kl can be chosen to be 

c 
k1 = -2 sup 

t ) 0 

The proof of (v) of Proposition 13.1 shows how to bound k1 in terms of 
"UO" I fl 
------ and ~. The estimate (iii) follows from the second energy 
V -v'Ai V 1.1 
est i mate: 

i ~t IIvll2 + vlAv 12 5 IB(v ,u,Av) I + IB(u,v ,Av) I 

5 c(1I~J4 + lul1/2I1un1/2)lIvI11/2IAVI3/2 
1.1 

5 I IAvl2 + c3 [ ~~~ + lul1/2I1uIl1/2J4I1vI12 
V 1.1 
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The second energy inequality is 

(13.20) 

with 
1/2 1/2 

k2 = sup [J.l!L + lui nUll ]4 
t ' 0 1/2 1/4 , VAl VAl 

Fr~n (13.9) and (ii) we obtain 

Thus 

(13.21) 

Integrating (13.20) we get 

Using (13.21) 

IIv(t2)1I2 - IIv(t1)1I2 < k2A1v {2 IIvll2 
1 

t 
Integrating 6 2 dt 1 we obtain 

Iv 12 2k VA t 2k VA t 
t Ilv(t )112 < _0_ ell 2 + kAt Iv 12 ell 2 
2 2 - V 2120 

Multiplying by V: 

wh i ch i s (i i i ) • 

115 

Let now $ be a smooth function defined on an open set 0 C ~. N ~ 1 

and taking values in V. Let EO be the image of $. Let Et = S(t)EO. Let 
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us denote oy (.;.) and 1.1 the scalar product and norm in ANH (the N-th 

exterior product of H). The volume element in Et is 

I~ {S{t)~{"))A _3_ (S{t)~{")),, ... " _3_ (S{t)~{,,))ldN" , 
0"1 3"2 3"N 

where d N" = d"l ... d"N is the volume element in I~. The functions 

vi{t) = _3_ (S{t)~{,,)), i = 1,2, ••• ,N 
3"i 

satisfy the linearized equation (13.3) along u{t) = S{t)~{,,). Therefore 

in order to study the time evolution of the volume element of an 

N-dimensional surface transported oy S{t) we are lead to study the time 

evolution of 

where vl' ••• ,v N satisfy equation (13.3) along some u{t) S{t)uO' 

Let us recall the formula 

(13.22) (v 1" ... "v N;w1" ...... wN) = det{v i ,wj)i 1, ... ,N' 

j = 1, ... ,N 

If vl' .. .,v N are elements of H we denote oy Q{vl' •• .,vN) the orthogonal 

projector in H onto the linear space spanned oy the vectors v1' .... vN. If 

T: fj (T) C H .. H is an operator in H then we define an operator in ANH oy 

TN wi 11 act on a monome v 1 " ••• " v N as 

TN{v 1" ... "v N) = Tv 1" v 2" ••• " v N + ... + v 1" ... " TV N • 

The following formula is proven in [CF1] 

Lemma 13.3. let vl' •• .,v N De elements of b{T). Then 

(13.23) 
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As a consequence we can write the equation satisfied by the Wronskian 

Lemma 13.4. Let v1(t), ••• ,.v N(t) be solutions of 

{

dV' 
-a:i- + A( t )v i : 0 

vitO) = vi 

1, ••• ,N 

where A(t)v = vAv + B(S(t)uO'v) + B(v,S(t)uO) and uOE V. Then the 

Wronskian !v1(t)" •• oJ,vN(t)! is either identically zero or never vanishes 

and satisfies 

( 13.24) o 

Proof. The equation satisfied by v 1 " ... " vN is 

ThUS (13.14) is a consequence of (13.23). 

Denotiny the lower order term in A(t) by 

(13.25) L(t)v = B(S(t)uO'v) + B(v,S(t)uO) 

we have 

Now Tr AQ(v1, ••• ,vN) can be computed, using again (13.23) 
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Now the fi rst ei genv a 1 ue of AN is Al + A2 + ••• + AN. Therefore 

Let us remark here that we could have derived enti rely similar 

results in V instead of H. The volume element would have to be computed 

in ANV• The orthogonal projection Q(vl ••••• vN) will have to be orthogonal 

with respect to the scalar product in V. The first eigenvalue of AN in 

A NV is st ill Al + ••• + AN. 

From Theorem 4.11. we know that Aj ~ cOjAl (we are in the 

two-dimensional case). Thus 

We will give lower bounds for 

1 t 
t 6 Tr(A(s)Q(V 1(s) ••••• VN(S))dS. 

From (13.24) it follows that 

(13.29) 

o 0 where YN(t) is a function depending actually on N. t. UO. v1 ••••• v N! 

(13.30) 
1 t 

YN(t) = t 6 Tr(A(s)Q(V 1(s) ••••• vN(S))dS. 

It is clear that a lower bound of the type 

for all t ~ to = to(lIuoll). and cN > 0 will imply exponential decay for 

volume elements. 

We wi 11 present two ways of est i mat i ng the averages 

1 t 
t 6 Tr(A(s)Q(v 1(s) ••••• vN(sllds. 
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Let us first observe that, since B(S(t)uO' .) is an antisymmetric operator 

in H the trace 

Tr( L(s)Q(v 1 (s), ••• ,vN(s)) 

is equal to 

Let us fix s > 0 and omit the dependence on s of various quantities, for 

the moment. 

N 
=.L B('I'i' u,'I'i)' 

1=1 

Here '1'1"" 'I'N are an orthonormal family of functions 'I'i E V, ('I' i' 'I'j) 

6iJ spannin~ the linear span of vl(s), ••• ,vN(s). The element 

u = S(s)uu' A di rect estimate would give 

N N 
!JB('I'i,u,'I'i)1 < L IB('I'.,U,'I'·I 
1 =1 - i =1 1 1 

N N 
S c.L I 'I'i 111'1' i 1111 u II = c.L II 'I'i 1111 u II 

1=1 1=1 

N 
S c( L 11'1'.112 )1/2 N1/ 211 ull· 

i=l 1 

On the other hand 

N 
L (A '1'. , 'I' .) 

i=l 1 1 
Therefore, 

(13.32) ITr L(S)Q(V 1 (s), ••• ,vN(s))1 

N 2 
L Il<Pill· 

i=l 

~ CN1/2I1S(s)uoll.(Tr AQ(vl,···,vN(s)))1/2 
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From (13.22) it follows that 

1 t 
t J ITr L(S)Q(V 1(s), ••• ,v N(s))ldS 

t 
~ CNl/2(t J IIS(s)uoI12ds 

1/2 1 t 1/2 
) (t J Tr AQ(v 1(s), ••• ,v N(s))ds) • 

Therefore 

1 t 1 t 
t J Tr A(S)Q(v 1(s), ••• ,v N(s)) = t J Tr vAQ(v 1(s), ••• ,v N(S))dS 

1 t 
+ t J Tr L(S)Q(v 1(s), ••• ,V N(S))dS 

v 1 t c2N 1 t 2 
~"2 t J Tr(AQ(v 1(s), ••• ,v N(s)) - 2:;- t J IIS(s)uoll ds 

2 1 t 2 
~ Z (A1 + ••• + AN) - L Nt J IIS(s)uoll ds 

C VA 2 t 
~ ~ N(N+l) - L Nt J II S(s) uo I1 2dS. 

Now, from the first energy inequality (13.7) 

We obtai n 
1 t 
t 6 Tr(A(s)Q(v 1(s), ••• ,V N(S))dS 

We take to = to(luol) to be defined by 

IUol2 1 
VA1t O = -2- .2". 

v Ii 
(13.33) 

 EBSCOhost - printed on 2/10/2023 4:11 PM via . All use subject to https://www.ebsco.com/terms-of-use



Exponential Decay of Volume Elements 121 

We proved 

(13.34) 
1 t 2 
t J Tr(A(s)Q(v 1(s) ••••• vN(s))ds ~ c2NvA1 (N+l -c3G ) 

for all t ~ to(luol). The constants are c2 = cO/4. c3 = 4c2/cO' with Co 

the constant occurring in Theorem 4.11 and c the constant in the estimate 

IB('I'.u. '1')1 S C 1'1' I 11'1' IIlIuli. The estimate (13.34) implies that. 

This would mean that the exponential decay of volume elements would 

start at di mens i ons ~ c3G2 

Actually. replacing the Sobolev estimates at one step in the preced­

ing argument by a Lieb-Thirring inequality yields an improvement. The 

Lieb-Thirring inequality we refer to is the following [L-T]. 

Theorem 13.5 (A Lieb-Thirring Inequality). Let '1'1 ••••• 'l'N be H1(I~) 

functions. Assume that the 'l'i's are orthonormal in L2: 

Then there exists a constant cL' independent of N. such that 

( 13.36) 
N 2 2 N 2 

f U I 'l'i (x) I ) dx ~ cL .I f I V'I' i I dx. 
1=1 1=1 

We will use (13.36) with 'l'i E V which implies 'l'i E H6(fl)2. fl C I~ 

bounded. We return to the estimate of YN(t). We compute 

N N 
Tr L(S)Q(V 1(s) ••••• vN(s)) = I B( 'l'i' U ' 'l'i) = I f <vu(x) 'l'i' 'l'i> 

i=l i=1 fl 

Therefore 
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N 2 
< f \ \7U (x) \ ( l: \ ",. (x l\ )dx 

Q i=l 1 

N 
< [ f( l: \ ",.(X)\2l l1/2\\U\\ 

Q i=l 1 

Thus the Lieb-Thirring inequality (13.36) allows us to replace (13.32) by 

(13.37) \Tr L(S)Q(V 1 (s), ••• ,vN(s))\ 

S c~/2 \\S(s)uOIl(Tr AQ(V 1(S), ••• ,v N(s)l)1/2 

Notice that the difference between (13.32) and (13.37) is in the absence 

of N1/ 2 in (13.37). (Aslo the constant is now the one appearing in 

(13.36).) We can repeat exactly the steps which followed (13.32) using 

(13.37). We keep the same definition (13.33) of to and get that 

( 13.38) 

We proved 

Theorem 13.6. Let Q C I~ be bounded, open, of class C2• Let uo' V. Let 

S(t)uO = u(t) be a solution of the Navier-Stokes equations 

{~~ + vAu + B(u,u) 

u(O) = Uo 

= f 

with f. H. Denote by G 

G = .-ltl 2 • 
v '"1 

Let N be a positive integer satisfying 
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with c4 an absolute constant 

solutions of the linearized equation 

~ + vAv + B(u,v) + B(v,u) 0 dt 

with initial data 

i = 1, •• , .N. 

Then the volume elements IV1(t)" ••• "vN(t)1 decay exponentially. More 

precisely 

(13.40 ) 

for all t ~ to(luol) defined by 

2 I Uo I 1 
(13.41) = -3-2' 

v Al G 

123 

If G = 0 the exponential decay starts at N = 1 and to may be chosen 
2 I Uo I Co 

to be -3--' 2C . 
v Al l 

Now we will present an improvement of the result in Theorem 13.6 in 

the case of periodic boundary conditions. The result will be that 

exponential decay of volume elements starts at N _ G2/ 3(log G)1/3. the 

idea of the proof is to compute everything in V instead of H and use the 

lieb-Thirrin9 inequality used before together with another inequality [C2] 

which is an l~ generalization of some lP inequalities of lieb [ll]. 

As we mentioned earlier we can compute volume elements in V. We 

consider the equation 

(13.42) ~~ + vAv + B(u,v) + B(v,u) 0 
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alony the solution u(t) of 

{~~ + vAu + B(u.u) f 

(13.43) 

uta) = ua 

in the two-dimensional periodic case. Let N be a positive integer and let 

vO eV for i = 1 ••••• N. We recall the notation «v.w)) for the scalar 
1 

product in V 

We consider the volume elements 

computed for viet) = vi solutions of (13.42). Then. as in (13.24) we have 

(13.44) 

where QV(vl ••••• vN) is the orthogonal projection in V on the linear space 

spanned by the vectors vl ..... vN. The operator A(t) is still given by the 

expression 

(13.45) A(t)v vAv + B(S(t)ua'v) + B(v.S(t)ua) 

but it is viewed as an operator in V. We need to give a lower bound for 

1 t V t J Tr(A(s)Q (v1(s) ••••• vN(s))ds. 

Let us note first that. in the periodic case the identity 

(13.46) (B(v.v).Av) = 0 

holds for all v ,.EI(A). The proof is done by integration by parts. 
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~ifferentiating (13.46) we obtain 

(13.47) (B{u,v),Av) + (B{v,u),Av) + (B{v,v),Au) = O. 

Let "'1"'" "'N be a fami ly of orthonormal elements of V 

such that their linear span coincides with the span of the vectors 

vl{s), ... ,vN{s). In order to compute Tr L{S)QV{vl{s), ... ,vN{s)) we use 

(13.48) : 

Now, since we are in the periodic case 

N 
l: (B{u,,,,o) + B{ ",o,u),A",o) 

i =1 1 1 1 

N 
l: B{ '" i' "'i ,Au). 

i=1 

N N 
- l: B{ "'i' "'i,Au) =l: f (",o,'y",o)"u 

i =1 i =1 1 1 

Let us denote by p{x) the function 

(13.49 ) 
N 2 

p(x) = l: I '" i (x) I 
i=1 

and by a{x) the function 

(13.50) a{x) 

We have 

(13.51) 

125 
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Notice that, since ~i are orthonormal in V 

and therefore from the Lieb-Thirring inequality (13.36) for (" ~i) it 

follows that 

(13.52) V 1/4 c(Tr AQ (v 1(s), ••• ,v N(s)) • 

On the other hand, in order to estimate IpIL~ we use an inequality 

([C2]) of the following type: 

Lemma 13.7. Let {~i}i=l, ••• ,N be a sequence of functions belonging 
N 2 

to ptA) and orthonormal in V. Let p be defined by p(x) = .I 1 ~i(x)1 
1=1 

There exists a constant, independent of N such that 

(13.53) 
1 N 2 

IpIL~ ~ c(l + log - I IA~il ). 
1.1 i =1 

The proof of this lemma is rather technical and will not be given 

here. We estimate the term 18Ul 4/3 by 
L 

-1/4 1 (13.54) 18U l 4/3 S cAl Aul 
L 

Now, combining (13.51), (13.52), (13.53), and (13.54) we get 

(13.55) ITr L(s)Q(s)1 

This is the analogue of the estimates (13.32) and (13.37). We denoted, 

for simplicity Q(s) = QV(vl(s), ••• ,vN(s)). Let us denote, in order to 

alleviate the computation by 
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(13.56) 1 V x(s) = ~ Tr (AQ (v 1 (s), .• ,vN(s))). 

Note that, in view of (13.28) 

(13.57) 
Co 

x(s) ? 2" (N+l)N. 

Let us assume that N is chosen such that 

c 
(13.58) 20 N(N+l) > 1. 

In the following string of inequalties we will use, at some point, 

the concavity of the function g(x) = x1/2 (1 + log x) for x ~ 1 > lie (the 

function g(x) is concave for x > lie) and Jensen's inequality 

t t 
t J g(x(s))ds s g(t J x(s)ds) 

which can be applied since x(s) ~ 1 on [O,t]. The inequalities are as 

follows: 

1 t V 
t J Tr AQ (v 1(s), ••• ,V N(S))dS 

t t 
= f J Tr AQ(s)ds + t J Tr L(s)Q(s) ? (with (13.55)) 

~ V~l JtX(S)dS - c5 t Jt (l + log x(s))1/2(x(s))1/4 IA(S(s)uo)ldS 

VA t t t 
~ ~ 6 x(s)ds - C5(t J IAS(s) uoI2dS)1/2(t J g(X(S))dS)1/2 

~ (with Jensen's inequality) 

VA t t t 1/2 
~ ~ 6 x(s)ds - C5(t 6 IA(S(S)uo)1 2dS)1/2(g(t 6 x(s)ds) ). 
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Let us denote 

(13.59) 

and 

t 
(13.60) t 6 x(s)ds = m(t) = m. 

Then we have 

1 t V 1/4 1/2 m3/ 4 
t ( Tr AQ (v 1 (s) ••••• vN(s))ds ~ vAlm (l+log m) ( 1/2 - ---IL) o (l+log m) VAl 

c 
and therefore. since m ~ 20 N(N+l) ~ 1. we will have 

(13.61) 

provided 

3/4 
Now the function h(m) = m 1/2 satisfies h'(m) > 0 for m ~ 1 and 

(1 + log m) 
h(l) = 1. Therefore. h(m) > ~+ if m ~ mO where rna is the solution 

- VAl m3/ 4 
of h(m) =...JL + 1. Now if 0 = ...JL + 1 then 

OVAl (1 + log m )1/2 VAl o 
rna = (...JL + 1)4/3(1 + log ~)2/3. Thus 

VAl U 

log m = ± log(~ + 1) + -32 10g(1 + log mOl < ±3 log (---IL + 1) + -32 log mo· o 3 VAl - VAl 

It follows that log mO < 4 log( ...JL + 1) and consequently that 
- VAl 

(13.62) 

 EBSCOhost - printed on 2/10/2023 4:11 PM via . All use subject to https://www.ebsco.com/terms-of-use



Exponential Decay of Volume Elements 129 

Let us denote by 

( 13.63) 

Note that a = ~ lim sup a(t.uo). The preceding argument shows that 
5,,1.1 t + ~ 

the inequality (13.61) is valid provided 

In order of magnitude terms. (16.64) implies that exponential decay 

of volume elements (in V) along a trajectory S(t)uO takes place if the 

dimension N of the volume element is at least of the order of 

a2/ 3(10g a)1/3 when a is the time average of IAS(t)uol defined in (13.63). 

We can give easily an upper bound for a. Taking the second energy 

equation for u(t) = S(t)uO' that is taking the scalar product of (13.43) 

with Au(t) and using (13.64) we obtain 

t 2 
(13.65) "6 IAu(s)1 2dS ~ lIu(o) 112 + t ~ • 

Dividing by t and taking lim sup we infer 
t + ~ 

(13.66) a(uO) ~ G. 

Note that G = 1fL- is independent of uO. Also note that (13.65) implies 
" Al 

that the expression a(t) can be bounded from above by (c5"A1)-l a(uo) + 6. 

for any <5 > O. provided t ~ t1 (6.11 uoll); thus uniformly for Uo in bounded 

sets of V. We proved 
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Theorem 13.7. Let u(t) = S(t)ua be a solution of the two-dimensional 

Navier-Stokes equation with periodic boundary conditions 

Assume f Efland 1 et G 

satisfies 

r:: • "'" • __ B(U,U) = f 

t uta) a 

= -}fl. Assume that the positive 

v '1 

integer N 

with an appropriate absolute constant c6' Let v1(t), ••• ,vN(t) be 

solutions of the linearized equation along S(t)ua = u(t) 

~~ + vAv + B(u,v) + B(v,u) = a 

with initial data vitO) = v~ belonging to V, i = 1, .. ,N. Then the volume 

elements I!v1(t)" ••• l\vN(t) II decay exponentially. More precisely 

We conclude this section with a brief description of the 

three-dimensional Navier-Stokes case. Let us take a strong solution 

u(t) = S(t)ua of the Navier-Stokes equation in n CIRl. Let us work 

in fl. Taking the linearized equation and computing the volume elements 

IV1(t)" ... t. vN(t)1 we arrive at the same equation as in the 

two-dimensi onal case (( 13.24)). In order to estimate 

Tr(L(s)Q(v1(s), ••• ,vN(s))) we proceed as in the two-dimnensional case 

N 
Tr(L(s)Q(s)) I B(ep . ,u, ep .) 

i =1 1 1 
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with (rp i 'I' j) = 0i j' {rp 1 ..... rp N} spanni ng the same 1 i near subspace of H 

as {V1(s) ••••• v N(s)}. Then we use (6.20) with sl = 3/4 = s3' s2 = 0 

USing Young's inequality. it follows that 

1 t 
t 6 Tr A(s)Q(V 1(s) ••••• v N(s))dS 

t t 
= t 6 Tr AQ(s)ds + t 6 Tr L(s)Q(s)ds 

t t N 1 t 
~ t 6 Tr AQ(s)ds - 2t 6 Tr AQ(s)ds - C7 ,,3 t J II u(s) 11 4ds 

t t 

= TI- 6 Tr AQ(s)ds - C7 > t 6 Ilu(s)114ds. 

Now Tr AQ(s) > A1 + ••• + AN and from Theorem 4.11. 

> (1 2/ 3 + 22/ 3 + N2/ 3) A1 + ••• + AN _ cOAl ••• 

so 

Therefore 

(13.69 ) 
1 t 
t 6 Tr A(s)Q(v1(s)····~N(s))dS 

3 2/3 1 1 t 4 
~ VA1N(TO CON - c7 -4- f 6 Ilu(s) II ds) 

A A1 

Clearly. if 

( 13.70) 
t 

.L c N2/ 3 _ c _1_!. r II u(s) 114ds ~ 1 
10 0 7 4 t 0 

v A1 
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then 

( 13.71) 

Now, for an arbitrary uo. V (or even smoother) we have, at this 
t 

moment, no way of giving an ~ priori bound on t J II S(s)uoI14dS. Note 

that this is the very same quantity that controls global existence of 

strong solutions and uniqueness of weak solutions. Thus, decay of volume 

elements can be obtained without other requirements that the ones needed 

for ylobal regularity. 

Theorem 13.8. Let u(t) = S(t)uO be a solution to the three-dimensional 

Navier-Stokes equations 

Let us assume that the 

{~~ + ,Au + B(u,u) 

u(O) = 0 

Iluant i ty n( uo) 

= f 

t 
(13.72) n(uu) = lim sup + t ( IIS(s)uoIl4ds 

t .. ~ v A1 a 
is finite. Let N be a positive integer satisfying 

with c8 an appropriate absolute constant. Let v1, ••• ,vN be solutions of 

the linearized equation along S(t)uO: 

dv dt + ,Av +B(u,v) + B(v,u) = 0 

with initial data vitO) = V~E H, i = 1, ••• ,N. Then the volume elements 

Iv 1(t)" ..... vN(t)1 decay exponentially. More precisely, 

( 13.74) 
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GLOBAL LYAPUNOV EXPONENTS. HAUSDORFF AND FRACTAL DIMENSION 
OF THE UNIVERSAL ATTRACTOR 

The objects of study of this section are bounded invariant 

(S(t)Z Z) sets Z C H. We will prove that if Z is bounded and invariant 

then Z has finite fractal and a fortiori Hausdorff dimensions. We 

consider first the case of two dimensional Navier-Stokes equations in 

order to fix ideas. In view of the property (v) of the solution map S(t) 

(Proposition 13.1) there exists p > 0 and a ball in V such that 

S(t)uo E BV = {UE V I II ull ~ p} 
p 

for all UOE H and all t ~ to(luol). Let us observe that BV is bounded 
p 

(actually compact) in H and therefore there exists T > 0 such that 

S(t)BV C SV for all t ~ T. Let us consider the set 
p p 

(14.1) x = n S(s)SV. 
s>o p 

Let t > O. We claim S(t)X = X. Indeed, if XE X then S(t)x = S(t)S(o)y 

with y = Y • SV. From the semigroup property of S, S(t)x = S(t+o)Y. Thus 
o p 

S(t)XE n S(s)SV. Now if s ~ t then S(t)x = S(s)S(t-s)x and it is enough 

to chec~)~hat S~t-S)x E SV. Sut x = S(T+s)y for some y E BV and thus 
p p 

S(t-s)x = S(t-s + T+s)y = S(T+t)YE SV since S(T+t)SV C BV. Thus 
p p p 

S(t)x En S(S)B V, that is S(t)XC X. Reciprocally, if XE X then 
s>o p 

133 
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x; S(t)y with some YEBV We want to prove that actually YEX. In 
p 

order to check thi s we take s > 0 and fi nd Z E B V such that S( t+s) Z x. 
p 

This means that S(t)S(s)z ; S(t)y. From the injectivity property of S(t) 

it follows that y; S(s)z and thus yE S(S)B V• Since s was arbitrary, yE X 
P 

and thus S(t)X ~ X. 

Next we claim that if Z CHis bounded and S(t)Z ; Z for all t ~ 0 it 

follows that Z C X. Indeed, if Z is bounded in H there exits t z such 

that S(t)uu E B~ for all t ~ t z, Uo EZ. Then, let uo. Z be arbitrary. 

We want to show that for every s > 0, Uo ; S( s)y for some y E B V From 
p 

the invariance property of Z it follows that uO ; S(s + tZ)z with z EZ. 

Thus Uo ; S(s)(S(tZ)z) and y ; S(tZ)z belongs to BV. This proves that 
p 

Uo En S(S)BV and thus that UOEX. Let us now take UOEH, arbitrary. 
s>O p 

Let us define w(uO) by 

w(u o ) {U EHI there exists Sj + ~ such that 

u ; lim S(Sj )uo' the limit being taken in H}. 
J-

First since S(t)UOEBV for t > to(luol), w(uO) is nonempty and bounded. 
p -

For each t ~ 0, S(t)L,,(uo)) ; w(uO). Indeed, if u E w(uO) then 

u ; lim S(sJ)u o and therefore S(t)u; lim S(t+sj)uo • Reciprocally if 
J J-

u EW(UO) and S(sJ)uo tend to u then we consider the sequence 

Since BV is compact and since S(s .-t)uO E BV 
p J p 

for all but finitely many j's it follows that, passing to a subsequence 

S(Sjk- t)uO converge to an element v E B~. Now clearly S(t)(S(Sjk- t)uO) 

; S(Sjk)uO converges to u and S(t)v simultaneously, thus u ES(t)(W(uO)). 
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Proposition 14.1. Let S(t) satisfy properties (i)-(vi) of Proposition 

13.1. Let 

x = n S(t)BV 

Then t>O P 

( i ) Xis compact in H 

(ii) S(t)X = X for all t ~ 0 

(iii) If Z is bounded in H and satisfies S(t)Z Z for all t ~ 0 

then Z C X. 

(iv) For every uoEH 

lim dist(S(t)uo'X) 0 
t + ~ 

(v) X is connected. 

135 

Proof. The claims (i i) and (i i i) were proven above; (iv) follows from 

(iii) applied to Z = w(uO)' Indeed. if dist(S(tj)uO'X) ~ € > 0 for a 

sequence tj + ~. then because of the compactness of B~ the sequence 

S(tJ)uo will have a converging subsequence. defining an element of w(uO) 

which would have to lie outside X. absurd. Property (i) follows form the 

fact that BV and thus S(t)BV are all compact. For the proof of the 
p " 

fact that Xis connected we reason by cont radi ct ion. Assume that 01 and 

02 are two open (i n H) di sjoi nt sets such that X C 01 u °2, Assume 

Xl EX n 01 and x2 E X f'\ °2, Let t > 0 be arbit rary. Then there exi st 

Y1 = Y1(t). Y2 = Y2(t) in BV such that Xl = S(t)Y1' x2 = S(t)Y2' Let us 
P 

join Y1 to Y2 in BV by a straight line.y. The image under S(t) of y. 
p 

S(t)y. is a continuous curve joining Xl to x2' Therefore there exists at 

least one pOint on it which is neither in 01 nor in 02' Let us denote it 

by x(t) = S(t)y(t). y(t) or C BV. x(t) E H\(Ol v 02) = F. The set F is 
P 

closed and F" X =~. Since for t large x(t) E BV (S(t)BV C BV for t 
,) P P 

larger than T) there then exist tj + ~ such that x(t j ) is convergent in H 

to some x. Clearly. since x(t j ) E F and F is closed. XE F. We claim X EX. 
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Indeed, let s > 0 be arbitrary. Take the sequence S(tj - s)y(tj)' for 

tj ~ s+T. Since y(t j ) Eye B~ it follows that S(t j - s)y(t j ) E B~ for 

tj ~ s+T. Since B~ is compact there exists a subsequenct tjk + ~ such 

that S(t jk- s)y(t jk ) converges to some YE B~. Thus S(s)(S(t jk- s)y(t jk ) 

converges to S(s)y and S(s)(S(tjk-s)y(t jk )) = S(tjk)y(t jk ) converges to x 

as a subsequence of S(tj)y(t j ). Thus x = S(s)y with y E B~, for arbitrary 

s > 0 and therefore x EX. This is absurd since x EX n F and X'" F is 

empty. 

Definition 14.2. The set X is called the universal attractor of the 

equat ion (13.1). 

We introduce now global Lyapunov exponents ([CF1]). Let t > 0, 

UOE V. We define the linear operator S'(t,uO):H + H by 

(14.2) S'(t,uO)~ = v(t,uO'~) 

where v(t,uO") is the solution of 

(14.3) dv dt + vAv + B(S(t)uO'v) + B(v,S(t)uO) = 0 

(14.4) v(O) = ~ 

computed at t. 

From Proposition 13.2 it follows that S'(t,uO):H + V is bounded and 

therefore S'(t,uO) is a compact operator in H. Let us denote by 

(14.5) 

M(t,uO) is compact selfadjoint, nonnegative. We denote by mj(t,uo) the 

eigenvalues of M counted according to their multiplicities: 
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The numbers mj(t,uo) are called the singular values of S'(t,uO). Let us 

consider an orthonormal family ~j(t,uo) of eigenvectors for M(t,uO) 

corresponding to the eigenvalues mj(t,uo). From the uniqueness of solu­

tions of (14.3) and the semigroup property of S(t) it follows that 

(14.6) S'(t+s,uO)~ = S'(t,S(s)uO)S'(s,uO)~ 

for all ~E H, t,s ~ O. Therefore, if S'(s,uO)~ = 0 for some s > 0 it will 

remain zero for all ~ ~ s. From property (i) of Proposition 14.2, it 

follows that S'(t,uO)~ = 0 for all t > 0 and from strong continuity ~ = O. 

Therefore, M(t,uO) is injective for every t > 0 and oI>j(t,uo) form a basis. 

Let us denote by Wj(t,uo) the vectors 

(14.7) 

Then 

(14.8) 

(We will omit the dependence of ~j' $j' mj on t and Uo when no confusion 

can arise from the omission.) We obtain thus a representation of S'(t,uo) 

as the sum 

(14.9) 

Lemma 14.3. There exists a positive continuous function c(t) defined for 
V every t > 0, depending on v, I fl and p such that, for every u1'uO E B p the 

following estimate holds 
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Proof. One considers the difference w(t) = S(t)u1 - S(t)uO -

S'(t,uO)(u1 - uO) and uses the first energy equation for w(t). We omit 

further details. 

The inequality (14.10) implies that S'(t,uo) is the Frechet 

derivative ~(~~l of S(t). 

V Lemma 14.4. Let U1'UOEB p and let N ~ 1 be an integer. Then 

(14.11) 

< (m N+1(t,uO) + c(t)lu1 - uol)lu1 - uol 

Proof. Combine (14.10) with 
~ 2 2 2 

I. ) ( ~J. ,d 1/>J·1 ~ mN+ 11 ~ 1 • 
J=~+l 

The geometrical interpretation of (14.9) and (14.10) is that, up to 

an error of order r2, S(t) transforms a ball in H centered at Uo and of 

radius r into an infinite dimensional ellipsoid, centered at S(t)uO and 

with semi axes on the directions 1I>j(t,uo) and of lengths rmj(t,uo). We 

consider the N dimensional ellipsoid 

(14.12) 

Its N dimensional volume is less than the volume of the corresponding box: 

(14.13) 

The classical Lyapunov exponents are numbers ilj(UO) such that, 

asymptotical1y mj(t,uo) - exp t"j(uo). We want to define global Lyapunov 

exponents. 
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Let PN(t,uO) denote the number 

We observe that 

(14.15) PN(t,uO) = ~up IS'(t,uO)~I" ••• AS'(t,uO)~NI 
~i EH,l=I, .. ,N 

Indeed I~i I ~ 1 

= det (M(t,uO)~i' M(t'UO)~j) 
i ,j 

2 
= IM(t,uO)~1 A ..... M(t,uO)~NI 

139 

2 2 2 
~ m1 (t,uo) f\ ... ,. mN(t,uo)I~1" ... ,.. ~NI • 

The supremum is achieved for ~i = ~i(t,uO)' It follows from (14.15) and 

(14.6) that 

Let us set 

(14.17) PN(t) = sup V PN(t,uO) 
Uo E B p 

(14.18) m(t) = sup V m.(t,uo)· 
J u E B J o p 

the numbers PN(t) and mj(t) are finite 

m.(t) < m1(t). 
J -

The fact that m1(t) is finite is a consequence of Proposition 13.2, (ii); 

m1(t) ~ exp(k1vA1t). 
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From (14.16) it follows that the function log PN(t) is subadditive. 

The numbers PN(t). mj(t) are never zero because M(t.uO) are injective. 

Definition 14.5. Let ~ 1 be an integer. We define global Lyapunov 

eXjJonents ~ J' PJ by 

(14.19) ~j lim sup t log mj(t) 
t + m 

(14.20) lim 1 P j (t) "J t + m 

t log 

(14.21) {:, . "1' and inductively 

~j+1 "j+1 - "j . ~ 

Note that. from these definitions it follows that 

(14.22) j > 

and clearly ~1 + ••• + ~j "j. 

Proposition 14.6. For every N there exists a positive continuous function 

V cN(t) defined for t > 0 such that. for u1.U 2 E B 
P 

(14.23) 

Proof. Since the linear operator M(t.uj ) j = 1.2 have norms (as operators 
k1 \lA1 t 

in H) bounded by e (Proposition 13.2.(ii» it follows that. for 

I~il ~ 1. i = 1 ••••• N. 
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< YN(t) \I M(t,u1) - M(t,u2) \I 
- .t(H,H) 

NVA k t 
where YN(t) is of the form YNe 1 1 with YN a constant. 

Usiny the representation (14.15) we deduce that 

Now for any two bounded, nonnegative, selfadjoint operators Ml and M2 

where II II means the norm as an operator. It foll ows that 

k VA t/2 
II M(t,u 1) - M(t,u 2) 1I.t:(H,H) ~ ~ e 1 1 IIS'(t,ul) - S'(t,u2) Ill~~H,H) 

Finally, we estimate 

by standard energy estimates. 

As a consequence we have 

Lemma 14.7. For every t > 0, N ~ I, let 

'!IN(t) = inf V mN(t,uO) 
Uo Bp 

The number ~(t) is strictly positive 

~(t) > 0 

Proof. Indeed, assume that for some N ~ 1 and t > 0, ~(t) = O. Then, in 

2(N-l)k VA t 
view of P~(t,uo) ~ elI m~(t,uo)' the compactness of B~ and the 

V 2() _ continuity of PN(t,.) there would exist Uo EBp such that PN t,uo - O. 
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But this implies mJ(t,uO) ; 0 for some j, 1 ~ j ~ N, contradicting the 

fact that M(t,uO) is injective. 

In the lanyuage of 910bal Lyapunov exponents ~j' ~j the statements 

of exponential decay of volume elements of Section 13 become negative 

u~per bounds for ~1 + ••• + ~j for j large. For instance, from Theorem 

13.6 we infer that 

(14.24) 

for j ~ c4G, J positive integer. (See (13.40).) 

Actually, in the ~roof of Theorem 13.6 we showed that 

Co 2 
for t ~ tot,,) with YN ; (-4 N(N+1) - cLG )vA1' In view of (14.15), the 

definition of PN(t), ~N and ~i we deduce that in the two dimensional 

Navier-Stokes case 

c 
(14.25) J~J 5 ~1 + ••• + ~j < VA1(cLG2 - 40 j(j+1)) 

for all J ; 1,2, .... 

Estimates of the type of (14.25) are valid for the periodic two 

di mens i ona 1 case too. Defi ni ng the Lyapunov exponents in V instead of H 

would improve, in the periodic case, estimates (14.24) and (14.25). 

Let us recal the definitions ((10.20), (10.21)) of Hausdorff dimen-

sion and define the fractal dimension. Let Z C H be a compact set. The 

Hausdorff dimension of Z is 

(14.26) 

where 

( 14.27) 
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and 

(14.28) 
D k D Uk 
~H,r(Z) = inf{ I r. I Z C B., Bi balls in H of radii ri ~ q. 

i =1 1 i =1 1 

The fractal dimension of Z is defined as 

(14.29) 
. log nZ (r) 

dM(Z) = 11m sup 1 1/ 
r + 0 og r 

where 

(14.30) nZ(r) = minimal number of balls in H of 

radii ~ r needed to cover Z. 

Let us observe that an alternative and equivalent definition of 

(14.31) dM(Z) inf{D > 0 I ~~(Z) O} 

where 

(14.32) ~~(Z) = lim su~ rDnz(r). 
r + 0 

This second way of defining dM(Z) shows clearly the difference between 

Hausdorff and fractal dimension. First 

because, for each r > 0 

However, the inequality (14.33) can be strict. Actually, there are 

examples of compact sets Z C H with dH(Z) = 0 and dM(Z) = ~! ([CFl]). The 

difference originates from the fact that for fractal dimension a fine cover 

Z C UBi with Bi balls of radii ri ~ r, has the same weight in the 
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computation as the coarser cover when all the balls Bi are dilated to have 

radius r. 

The method of estimate of both the Hausdorff and the fractal dimen-

sions that we will use is roughly the following. Suppose the set X is 

covered by a fi ni te number of balls of radi us 1 ess than r. Let S( t) 

transport each ball for a very long time. Then each ball becomes a 

slightly distorted ellipsoid whose semi axes have lengths of of the size 

mJ(t,uo)r. Cover these ellipsoids by smaller balls. In this process of 

coverin~ again, the control on the volumes implies control on the number 

of balls. 

Lemma 14.8. Let ~ N be an N dimensional ellipsoid with semi axes of 

lengths rmJ , J = 1, ••• ,N where r> 0 and m1 ~ m2 >_ ••• ~ mN > O. Let a 

be a positive number. Then the number of balls of radius ra needed to 

cover EN does not exceed 

(14.35) 

where i is the largest number 

then one ball suffices. 

~ i < N such that ~ < m • 
IN i 

If ~ > m 
,iN - 1 

Proof. The ellipsoid eN is included in a box whose sides have lengths 

2rmJ , J = 1, ••• ,N. We will cover this box with N dimensional cubes of 

side lengths ~ Then each such cube will be contained in a ball of 
IN 

radius ra. We count how many cubes we need. 

Each side of the box will be divided in 
2rmj 

[----zral +2 subdivision 

poi nts where [ denotes integer part, yielding 

m m m 
([IN f] + l)(C/N a2] + 1) ••• ([IN aN ] + 1) 

m. 
cubes. In this product only the factors where IN -1 > 1 contribute. 

a -

For such J we maJorize 
m. m· 

[/fl f] + 1 by 2IN f. This yields (14.35). 
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Let uU' X where X is the universal attractor (or any other bounded 

invariant set, for that matter; however since the universal attractor is 

the largest such set, upper bounds on its dimensions are upper bounds for 

the dimensions of any bounded invariant set). Let BH(uO,r) denote a ball 

in H of radius r around uU. Let t > 0 be a large time, to be fixed later. 

Let us consider S(t)BH(uO,r). Let E:N(t,uO,r) be the N dimensional 

ellipsoid defined in (14.12). The estimate (14.11) of Lemma 14.4 implies 

that the distance between any point S(t)u1 of S(t)BH(uO,r) to ! N(t,uO,r) 

is bounded by 

Let us call e the stretching factor in (14.36) 

Lemma 14.9. Let N be a positive integer and D a positive number 

satisfyin!:l 

(i) 

(ii) 

(iii) 

~N+1 < 0 

N ~ D ~ N+1 

Then 

(D - N) ~N+ 1 + ~1 + ••• + ~N < U 
D 

~H(X} = U. 

Theorem 14.1U (Kaplan-Yorke formula). Let 

(14.38) JU = max{JI~l + ••• + ~j ~ 0 

Then 

(14.39 ) 

 EBSCOhost - printed on 2/10/2023 4:11 PM via . All use subject to https://www.ebsco.com/terms-of-use



146 Chapter Fourteen 

Proof. If 0 ~ JU+1 then we can apply Lemma 14.9 with N = [D]. Assumption 

(iii) is true because ~1 + ••• + ~N < 0, ~N+1 < O. If D satisfies 

~1 + ••• + ~. 
J O 

J + ------,-----,--- < D ~ j 0+ 1 
U 1 ~J + 11 o 

we can apply Lemma 14.9 with N = jU' Since 
~1 + ••• + ~N+ 1 

~N+ 1 ~ -~--- and 

by the definition of JU' ~1 + ••• + ~ < 0 we check (i). Assumption 
jO+1 

(iii) is valid because \ llj +1\ = -~J +1' Thus ~~(X) = 0 for 
~1 + ••• + ~J 0 0 

JO + . 0 < D and and therefore (14.39) is true. 
I ~J +11 u 

Theorem 14.11. 

(a) In the two dimensional Dirichlet boundary conditions case 

(b) In the two dimensional periodic boundary conditions case 

Proof. The inequality ~1 + ••• +~. + il 1 < 0 implies 
~1 + ••• + ~ JU JO+ 

I I JU < 1 since ~JO+1 is negative. Thus, from (14.39), 
~JU+l 

(14.42) dH(X) ~ JU + 1. 

Now (14.4U) and (14.41) are obtained from (14.42) and the upper 

bounds (13.3~) and (13.67) for JO+1. In the periodic case all operations 

are in V. A simple lemma is required, to prove that the dimension of X 

when computed in V is the same as when computed in H. 
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Proof of Lemma 14.9. Let us take 8 > 0 such that 

(14.43) (0 - N)~N+1 + ~1 + ... + ~N + 38 < O. 

Let us choose t 1 arye enough to satisfy 

(14.44 ) 1.1'1 
2 log 1'1 + (N + 1) 1 og 2 + D loy 3 < et 

(14.45) e- Et ~ 1/2 

(14.46) mN+1 (t) ~ 1/8 

(14.47 ) 
flOg PN(t) 

~ ~1 + ••• + ~N + 8 t 

110g 
PN+1 (t) 

~ ~1 + ••• + ~N+ 1 + t 

The requirements (14.44), (14.45) are only largeness assumptions. The 

requirement (14.47) can be achieved in view of the definition of the 

ylobal Lyapunov exponents ~i' Requirement (14.46) follows from assumption 

(i) of the lemma. We fix t with these properties. We choose now rO > 0 

such that 

(14.48) 
c(t)ro 

+ --(t-) ~ 2. 
I!iN+ 1 

Recall that ~+1 (t) = inf V mN+1 (t,u O) > O. (Lemma 14.7). From the 
Uo E B p 

definition (14.37) for the stretching factor e e(t,uo,r) it follows that 

for any and r ~ rU 

(14.49) 

Let us consider the image S(t)BH(uO,r) of a ball of radius r ~ rO centered 

at Uo E X. Since the distance from S(t)BH(uO,r) to C N(t,uO,r) is not 
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laryer than 2mN+1(t,uO)r ((14.36), (14.37), (14.49» if follows that a 

coveriny of!N(t,uO,r) with balls of radii rffiN+l(t,uO) will yield by 

dilation a covering with balls of same centers and radii 3rmN+1(t,uO) of 

S(t)BH(uO,r). Now by Lemma 14.8 with a = mN+1(t,uO) we obtain that 

(14.50) the number of balls of radii 3mN+1(t,uO)r needed to cover 

S(t)BH(uO,r) does not exceed 

N PN(t,uO) 
(21N) N • 

(mN+1 (t,uO» 
Note that the radii 3mN+1(t,uO)r are not larger than r/2 by (14.46). Now 

let us take a finite cover of X by balls BH(ui,ri)' 1 ~ i ~ k, 

ri ~ r ~ rOo From the invariance property of X 
k 

Xc W S(t)BH(ui,ri )· 
1=1 

We cover each set S(t)BH(ui ,ri) with balls of radi i 
r. 

3mN+1(t,ui )ri ~ f ~ i· We obtain a new cover of X with balls of radii 

not larger than i Then we compute ~D r(X): 
H'"2 

D k N PN(t,ui ) D D 
~ r(X) 5 .I (2/N) N (3ri ) (mN+1 (t,ui » • 
H'"2 1=1 (mN+1(t,u i » 

( 14.51) 

The exponents l+N-D and D-N are both nonnegative and thus from (14.47) it 

follows that 

in view of (14.43). 

 EBSCOhost - printed on 2/10/2023 4:11 PM via . All use subject to https://www.ebsco.com/terms-of-use



Global ~apunov Exponents 149 

On the other hand. the numerical constant in (14.51). (2/N)N3D is 

maJorized by 

because of (14.44). 

Combining we get. in view of (14.45) 

D e- gt 
k 

rD 1 k D 
~ r(X) < 

ill 
< - z: r i • 

H. 2" - 1 - 2 i =1 

Since the cover BH(ui .ri) was arbi t rary we obtai ned 

D Since the function r + ~H.r(X) is nonincreasing it follows that 
lJ 
~H(X) = O. The proof of Lemma 14.9 is complete. 

We pass now to the fractal dimension. 

Lemma 14.12. Let N be an integer and D a real number. Assume 

(i) 

(ii) 

(i i i ) 

Then 

Proof. 

D ~ N 

(lJ - t)~N+1 + ~1 + ••• + ~t < 0 for all t = 1.2 ••••• N 

~N+ 1 < 0 
o 
~M(X) = O. 

Let us choose g > 0 such that 

(14.52) (D - t)~N+1 + ~1 + ••• + ~t + (D - t + 3), S 0 

for all t = O. 1. 2 ••••• N. (For t = O. ~1 + ••• + ~t is taken = 0). 

We choose t large enough to insure the validity of (14.44)-(14.46) 

and also 
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(14.53) 
{

lOg mN+1 (t) _ 
t ~ ~N+ 1 + £ 

log P t(t) 
--t-- ~ ~ 1 + ... + ~t + 8 for t = 1 ..... N. 

Let uU' X and BH(uO.r) with r ~ rOo rO defined in(14.48). We take 

S(t)BH(uu.r) and cover it with balls of radius 3mN+1(t)r. Applying Lemma 

14.8. with a = mN+1(t) we deduce that 

(14.54) The number of balls of radii 3mN+1(t)r needed to cover 

S(t)BH(uO.r) does not exceed 

for some t = t(N.uO)' 1 ~ t ~ N. Considering the minimal number of balls 

of radii ~ 3mN+1(t)r needed to cover X we obtain the relation 

Multiplying by (3mN+1 (t)r)D we get 

Now the quantity in square brackets is less than 1/2. 

The function ~(r) = rDnx(r) satisfies 

(a) 

(b) 

SUP{ ~ (r) I 3mN+1 (t)ro < r < rO} < ~ 
- 1 

~(3mN+l (t)r) ~ 2~(r). for all r 5 roo 

It is elementary to check that such a function ~ (r) must have 

This proves the lemma. 

lim rp(r) O. 
r .. 0 
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Theorem 14.13. Let jo be defined as in (14.38) 

jo = Max {J 1 ~1 + ••• + ~j > o}. 

Then 

(14.55) 

Proof. 
~1 + ••• + ~ 

If 0 > Max (R. + R.) Then 0 > j 0 because 
l~WO I~j +11 o 

ill + ••• + ~ju > O. (0 - t)~jO+1 + ~1 + ••• + ~t < 0 

for all t = 1 ••••• Jo. because ~ is negative. Therefore the 
JO+1 

conclusion of the theorem follows directly from Lemma 14.12. applied with 

N = JO. 

Now. from (14.25) we know that 

for all t. 

Assume N is such that 

( 14.56) 

It follows that 

(14.57) 

Take 0 ~ 2N+2. Then 

for all R. =1.2 ••••• N+1. 

We can apply Lemma 14.12 for N+1: 
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Theorem 14.14. 
(a) In the two dimensional Dirichlet boundary conditions case 

(b) In the two dimensional periodic boundary conditions case 

For the three dimensional Navier-Stokes equations the previous 

results work under the assumption of regularity. For instance, if Z is a 

bounded invariant set in V then one can define the quantity (see (13.72)) 

(14.58) 
1 1 t 

n = lim sup (sup -4- t r IIS(s)uoIl4dS) 
t .. ~ uo • Z ,,1.1 () 

App1yiny Theorem 13.8 and the Lemmas 14.9, 14.12 one can prove 

(see [CFTlj) 

Theorem 14.15. Let Z C V be bounded. Assume Z invariant. Then 

The above bounds can be understood in the context of the traditional 

estimates of the number of de~rees of freedom of turbulent flows 

([L-L], [K]). This number is 

(14.6U) 

where tu is the linear size of the region occupied by the fluid, d = 2 or 

3 is the spatial dimension and tc is a small 

effects determine entirely the motion. Thus 

account of the number of mesh points dividing 

scale, below which viscosity 

N = (R.O)d is simply an 
R.c 

a cube of side length to 

into divisions of length tc. The scale R.c is defined differently for d = 2 
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and d = 3. If d = 3 then ic is defined via an energy dissipation flux 

(14.61) E = V <vu>2 

where < > denotes ensemble averaging. By dimensional analysis the only 

lenyth one can form with v, E is 

3/4 
(14.62) ic = ~ • 

EO 

In the two-dimensional case, d 2, the role of E is played by an 

enst roVhy fl ux 

The only lenyth one can form with v, X is 

(14.64 ) 
3 

i = (.'L) 1/6 
c X 

It is very significant that the estimates of the fractal dimension of 

the attractor in d = 3 (14.59) and d = 2 (13.64) can be expressed in the 

form (14.60) provided the average operation is defined as a time average 

on the attractor. For instance, if the quantity 

(see (13.63)) is taken to represent the average of the Laplacian then 

(13.64) implies that the fractal dimension of the universal attractor for 

2U Nav i er Stokes equat ions is bounded by 

(14.66 ) 

with i = _1_ and ic given by (14.64) via (14.63) and (14.65). 
lJ /Xl 

For more details see [CFTl] for d = 3 and [CFT2] for d = 2. 
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INERTIAL MANIFOLDS 

In this section we study the question: can one imbed the universal 

attractor X into a finite dimensional, regular manifold Y which is 

invariant (forward in time) and which attracts exponentially all 

trajectories? If one could find such Y and if would be smooth enough 

then the restriction of the PDE to Y would be an ODE, called an inertial 

form of the PDE, whose dynamics would contain all the information about 

the long time behavior of the solutions to the PDE. The manifold Y is 

called an inertial manifold. The existence of such inertial manifolds for 

the Navier-Stokes equations, even in the two dimensional case, is unknown. 

A certain number of dissipative PDE's do possess inertial manifolds 

([F-S-T], [CFNTJ). Among them, a number are one dimensional as the 

Kuramoto-Sivashinski, nonlocal Burgers, Cahn-Hilliard equations are. 

Reaction diffusion equations can be treated in one and two spatial 

dimensions. There are, to present, two techniques of constructing 

inertial manifolds. The one that we present here ([CFNT]) constructs the 

inertial manifold as an integral manifold starting from an explicit, 

simple, smooth finite dimensional manifold of initial data and integrating 

forward in time. The strong dissipative linear principal part of the 

equation helps to control the time evolution of the position of the tan­

gent space to the integral surface. We will present here the method of 

[CFNT] illustrated on a simple example, 

154 
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(15.1 ) au at - t,u + 

(15.2) div u = U 

with periodic boundary conditions in Iff. 

We chose the example (15.1), (15.2) rather than one of the more 

physically significant equations for which the same construction works 

because the notation and background of the Navier-Stokes equations 

established in the previous sections can be used. The equation (15.1), 

(15.2) has thus the form 

(15.3) du 2 df + EA u + Au + B(u,u) f 

( 15.4) u(O) = o. 

155 

We take the two dimensional periodic case; we take the period to be 2n so 

that A1 = 1. We will give first some bounds for u(t) = S(t)uo' Clearly, 

since 

(15.5) (~(u,u) ,u) = 0 and 

(15.6 ) (B(u,u),Au) = U 

we have 

(15.7) 

(15.1l) 

Then taking the scalar product of (15.3) with A2u we get 
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Usin~ (6.2U) with s3 = 0, sl = 1/2, s2 = 1/2 we get 

We obtain 

(1~.9) 

IB(U,u,A2u)1 s clull/2I1ulll/2I1ulll/2IAull/2IA2ul 

2 2 
S clull/2I1uIlIA2uI3/2 S "lA.~ + c"lulllull4 

We could have gotten a much better dependence of If I on the right hand 

side of (15.9) but we do not attempt to optimize results here. 

From (15.9) and the estimate 

( 15.10) 

where loy+ A = log A for A ~ 1 and log+ A = 0 for 0 < A < 1 it follows 

that 

(15.11) I u(t) I 
L'" 

2 
s c(lIuoll + If I )(1 10g+[IAul + .1.!f- + c,,(lIuoIl2 + IfI 2)3]) 

" 
First we define and study some objects of independent interest. 

Let Qo:H + H be a projector of N dimensional range. We think of this 

ranye as beiny the tangent space at some uO• H to an N dimensional surface 

•• We let the solution map S(t) transport this surface. At each t > 0 

the tangent space to S(t). at S(t)uO determines uniquely an orthogonal 

proJector Q(t). We call the pair (uO,QO) a contact element. 

Proposition 15.1. The contact element (u(t),Q(t)) evolves acording to the 

equati ons 
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(15.12) u(t) = S(t)uu 

(15.13) ~t Q(t) + (I Q(t))T(t)Q(t) + Q(t)T(t)*(l - Q(t)) a 

(15.14) Q(O) = Qa 

Here T(t) depends on ua also and is the linearized operator 

(15.15) T(t)v = EA2v + Av + B(S(t)ua'v) + B(v,S(t)ua) 

Proof. Let Vo be a fixed element in H. Let v1(t), ••• ,vN(t) be solutions 

of 

(15.16) dv + T( t)v = U 
dt 

with initial data v~, i = 1, ••• ,N. Assume that QO is the orthogonal 

projector in H onto the linear span of v~, ••• ,v~. Then Q(t) will be the 

orthoyonal projector onto the linear span of vl(t), ••• ,vN(t). From 

(13.24) we know that 

(15.17) 

Let us consider the element of AN+1H 

Its time evolution is given by 

Therefore 

1 ct 2 2 
2" ctt IVa" v1"'''' vNI + Tr(T(t)Q(t)) IVa' ••• ,vNI 
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where Q is the orthogonal projector on the span of vO,v 1(t), ••• ,vN(t). 

(It was denoted Q(v O,v 1(t), ••• ,v N(t)) in section 13.) The notation TN+l 

stands for TN+1 = T /\ 1/\ ... " 1" + ••• + 11\ ••• 1 ... T and was introduced in 

section 13. 

We remark that 

Now 

(lS.Hl) 

Uifferentiatiny both sides with respect to t we yet 

1 d 2 2 2 2" dtl(l - Q)vul = -Tr(TQ)IO - Q)vol +((1 - Q)TvO,vO)+Tr(TQ) I 0 - Q)vol 

-(Tr T(Q -Q))I(l - Q)vOI2 + ((1- Q)TvO'v O) 

Since VUe H is time independent and arbitrary, it follows from the 

parallelogram identity that 

~t (1 - Q(t)) = (1 - Q(t))T(t)Q(t) + Q(t)T(t)*(l - Q(t)) 

which establishes (15.13) 

Now we are going to inVestigate the time evolution of the position of 

the range of Q(t) relative to the fixed coordinate system given by the 

functions w1, ••• ,wk, ••• (eigenfunctions of A). Let Q be a N-dimensional 

orthoyonal ~roJector. We define the numbers A(Q), .(Q) by 
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( 15 .1'1) A(Q) = maX{(Ag,g) 1 191 1, Qg = g, 9 • Il(A)} 

(15.20) ,(Q) = min{(Ag,g)1 Igl = 1, Qg = 0, g • .Il(A)}. 

From the minimax and maximin theorems it follows that 

(15.21) 

(15.22) 

where d~a in, N is the di mens i on of Q and {'j} is the sequence of repeated 

ei yenva I ues of A. 

Suppose Q(t) evolves according to (15.13). Then the numbers 

A(t) = A(Q(t)) and ,(t) = ,(Q(t)) will satisfy certain differential 

i neLjua 1 it i es that we wi sh to investigate. We wi 11 study A( t) , the study 

of ,(t) being entirely similar. Let to> a be fixed. Then A(tO) is 

actually the lar~est eigenvalue of the operator Q(tO)AQ(tO). Assume that 

~ is an ei~envector corresponding to it. Thus 

(15.23) 

The equality (15.23) is valid at t = to. We do not vary g. For t close to 

~ to we consider the vector 1 Q( t) gr. From the defi nit i on of A( t) it 

fo 11 ows that 

At t = to we have equality. Therefore for t < to 

A(t) - A(tO) E(t) - E(tO) 
----- < -----

t - to - t - to 

ConseLjuently, if we denote by d t the derivative 

_ . A(t) - A(tO) 
d (A(t))! = 11m sup ------

t t=to t + to t - to 

t < to 
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we obtain 

d (A( t)) \ ~ ~t E( t) \ 
I. t=to t=to 

Now, it is easy to compute ~t E(t)lt=t. In order to make the computation 
o 

easier let us note that 

( 15.24) d 2 
dt I Q( t hl!! = o. 

t=to 

Indeed, using (15.13), we have 

d 2 d * dt IQ(t)gl = 2(dt Q(t)g,g) = -2«(1 - Q)TQg - QT (1 - Q)g,g) 

= -4«(1- Q)g,TQg). 

At t = to' (1 - Q)g = o. 

Differentiating Q(t) and setting t = to we get 

d • • • 
dt E( t) \ = (AQg ,g) + (Ag ,Qg) = 2(Ag ,Qg) = -2(Ag ,( 1 -Q) Tg) • 

t=to 

We used Q for DQ/dt and (15.13). We obtained the inequality 

d (A(t»! < -2(Ag,(1 - Q)Tg) 
I. t=t-o 

(15.25) 

Now T9 = ei\ 29 + Ag + B( S( to) Uo ,g) + B( 9 ,S( to) uo). Si nce (1 - Q) is 

selfadjoint we have 

-2(Ag ,( 1 - Q)Tg) = -2( (1 - Q)Ag, Tg) = -2( (A - A(tO))9, Tg) 

= -2d(A - A)g,A2g) - 2«A - A)9,A9) - 2«A - A)g,B(u,g) + B(g,u». 

We denoted S(tO)uO = u and dropped the to dependence in A = A(tO). 

We compute the term -2 g( (A - A) g,A 2g) fi rst. Let us remark that 

«A - A)9,9) = 0 
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This follows from the fact that 

A = (Ag,g), Igl = 1. 

This means that we can substitute A2g by (A2 - c)y in «A - A)g,A2g) for 

any constant c. We take this constant to be A2: 

Now A2 - A2 = (A + A)(A - A). Therefore we obtain 

(15.26) 

On the other hand, we estimate the term 

-2«A - A)Y, B(u,y) + B(g,u)) 

as follows 

21«A - A)y, B(u,g) + B(y,u))1 S 21(A - A)gIlB(g,u)1 + 21(A - A)gIlB(u,g)I 

Now lIyll = Al/2 since 119112 = (Ag,g) = A. Moreover, IgI L .. S cllgll(1 + 

10y+IAyl) (see 15.10) and since Ag = (A - A)9 + A9 we get an estimate of 

the type 

1/2 Iyl .. ~ CA [1 + 10g+(I(A - A)gl + A)] 
L 

On the other hand, the estimates (15.11), (15.8) for u(t) = S(t)uO are of 

the form 

(15.27) 

(15.2!!) 

with kl' k2 constants dependiny on lIuolI, e and If I only. Combining all 
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these toyether we yet 

Let us denote I(A - A)gl = 5. Then 

(10.29) 

Now we note that A ~ 1 because of the Poincar~ inequality. Therefore 

10~(A + 5) ~ 10Y(A + 5A) = lo~ A + 10g(1 + 5) 

~ log A + 109(5 IA +1) ~ log A + (5 /K)1/2 

(We used the ine4uality 10g(1 + x) S IX. valid for x ~ 0.) Then 

1/2 1/2 1/2 1/2 3/2 ck 1A 5(1 + 109(A + 5)) 5 (Ck 1109 A)A 5 + ck 1A 5 + (Ck 1)(A 5) 

~ 2 2( )2 (4 2) ~ 2 A5 + c£k 1 log A + c£ k1 + k1 • 

From (15.29) we obtain 

2 2 2 Now 5 = I(A - A)gl ~ dist(A.cr(A)) where cr(A) = {A1.A2 ..... Aj .... }. 

Indeed. since Iyl = 1 we have 

We proved therefore 
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Proposition 15.2. Let Uu E PtA). Let S(t)uO = u(t) be a solution of 

(15.3), (15.4). Let QU be an arbitrary N dimensional projector. Let Q(t) 

evolve accordiny to (15.13), (15.14). Let A(t) = A(Q(t)), A(t) A(Q(t)) 

where A(Q), A(Q) are defined in (15.19). (15.20). Denote by 

o(A) = dist(A,,,(A)) = min IA - A ·1. 
J=1,2.... J 

There exist constants k3 , k4 dependiny on Iluoli. £, If I only such that 

(15.31) 2 2 2 
( -A£(o(A)) + k3 [10g A + 10g(1 + IAuol )) + k4 

(15.32) 2 2 2 
£A(O(A)) - k3[log A + 10g(1 + IAuol )) - k4 

Theorem 15.3 (Spectral Blockiny Property). Let Uo E ,f>(A). Assume 

(15.33) 

(15.34) 

There exist constants k3(RO' £, Ifl), k4 (RO' £. If I) (independent of R) 

such that if Am satisfies the gap condition 

(b.35) 

then 

(a) If QU is a projector of dimension N 5 m such that 

A(QO) S 
Am + Am+1 

2 

then 

~(Q(t) ) 
Am + Am+1 

(----
- 2 

for all t U. 
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(b) It QU is a ~roJector of dimension N ~ m such that 

then 

for all t ~ U. 

A(Q(t) ) 
Am + \n+1 
-2--

Let us note that the gap condition (15.35) can e easily fulfilled, 

tor infinitely many Am's. Indeed, the Am's are sums of squares and as 

such they have discrete gaps and behave like multiples of the index m. 

Actually a much stronger ~roperty holds ([R1]) 

(15.36) Am+1 - Am ~ c log Am 

for infinitely many m's. We do not use this property for the present 

equat ion. All we use is Am+ 1 - Am ~ <I > 0 for i nfi nite ly many m' sand 
Am 

-----2 +~, that is Am +~. Of course, implicit in the proof is the 
(lo~ Am) 
fact that A2 has large enough gaps to dominate the nonlinearity. However, 

it the nonlinearity would have been of reaction-diffusion type (no 

derivatives) then the gap condition requirement would have been much 

weakened. 

The proof of the theorem is immediate form (15.31) and (15.32) 
Am + A 

because they imply that the point --~ is a repelliny point for the 
2 

evolution of ,,(t) from left to right and for the evolution of A(t) from 

ri~ht to left. 

In the construction of the inertial manifold we will have to let R to 

2 _ 2 I I de~end on Am: R - AmRa. Since the constants k2' k3 depend on RO and f 

only, condition (15.35) with R AmR~ creates no difficulty. 

Theorem 15.3 has important consequences. First let us discuss the 

consequence of point (a) of the theorem for N = 1. Let vItI be a solution 
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of 

(15 ;37) dv Z 
dt + ,jI. v + Av + B(S(t)UO'V) + B(V,S(t)UO) = 0 

(15.38) v(O) = Vo 

where Uo satisfies lIuoll ~ Ro ' IAuol ~ R. Then the projection on the 

direction v(t) constitutes Q(t) for N = 1. The quantity 

A(Q(t) ) 

Let us assume that (~TI'~n.q) is any of the gaps satisfying (15.35). 

Point (a) of Theorem 15.3 is an invariance statement about the locally 

compact cone in H 

(15.39) 

165 

If v(tO) belongs to Km then v(t) belongs to Km for all t ~ to. Now, there 

are two possibilities: either v(t) stays outside Km for all t ~ 0 or it 

enters Km in finite time, never to leave it again. We will show that the 

first alternative implies very strong exponential decay of Iv(t) I. In 

other words, Km are "slow cones" and their complements "fast cones". 

Indeed, from the first energy equation for v(t): 

We used (6.Z0) with Sz = s3 = l/Z, Sz = O. Now from (15.8),lIu 

liZ S R~ + IfIZ. We infer 
d Z v Z 
dt Ivl + (~ -

Therefore, if 

rnZ 
":\1'\0 + 

(15.40) 1m + Am+l Z Z 
--Z-- > ZC(RO + I fl ) 
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Hvn2> 1m + 1m+1 then. as long as we have 
Iv 12 2 

(1~.41) 

The condition (15.40) is a only largeness condition on m and it can be 

aChieved simultaneously with (15.35) even in the case R2 = XmR~. 

The property just described is called "strong squeezing" in [CFNT]. 

We have the similar property for differences S(t)uo - S(t)u1 if both 

lIuull ~ Ru' Ilulll ~ Ro. IAuol ~ R. IAu11 ~ R. 

Theorem 15.4 (lnvariance of the slow cones ~). Let uO.u1E ~(A). Assume 

lIuull ~ Ru' lIulll ~ RU' IAuol ~ R. IAu11 ~ R. Let vet) denote either the 

solution of the linearized equation (15.37) or the difference 

S(t)uu - S(t)u1• Let (Xm'Am+l) be a gap satisfying (15.35) and assume 

that the gap is located far enough so that (15.40) be valid. Then. if 

vet) E Km then v(s) E Km' for all s ~ t. Moreover. either 

1m + X 
(a) Iv(t)1 2 ~ Iv(0)1 2exp(- 4 m+l t) for all t ~ 0 

or 

(b) There exists U ~ tu < ~ such that the inequality in (a) is valid 

for t ~ tu and. for t ~ to' vet) E ~. 

Let us consider now a different type of cones 

(b.42) 

where y > U and Pm is the projection onto the linear span of the first m 

eigenfunctions of A. Let vet) be a solution of (15.37) where lIuoll ~ RO' 

IAuul ~ R. Let us denote by q(t) = (1 - Pm)v(t) and by pet) = Pmv(t). 
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Then 

(b.43) 1 d 222 222 2 dt [\ q\ - -y \ p\ ] + e\Aq\ - -y e\Ap\ 

+ I\ql\2 - lIIpl\2 + (B(u,v) + B(v,u), q-ip) = 0 

Now 

\(B(U,v) + B(v,u),q-/Pli S c~\u\\[\\q\\ + I\p\lJe\q\ + \\p\] 

S \(R~ + \f\2)1/2 (\\ql\ + I\p\\](\q\ + \p\] 

~ 11\~1\2 + ~e C~(R~+ \f\2)(\q\2+ \p\2) + \(R~+ \f\2)1/2I\p\\(\q\ + \p\] 

Therefore computiny ~ ~t [\q\2 - y2\p\2] at a point where \q\ = -y\p\ 

yields 

1d 2 2 2 2 2 2 2 2" dt [\q\ - -y \p\ ] ~ -e\Aq\ + y e\Ap\ + 1I\q\\ 
\q\=y\ p\ 

+ k5 \p\2 + k6 ~/2\p\ + p4\p1\2 _\\qI\2. 

Here k5 and k6 depend on RO' \ f\, e and -yalone. Now 

S (-e\nt1 - 1 + 1 l1 \q1\2 + /(e~ + ~)\p\2 5 

2 2 2 2 
~ (-e\nt1 - 1 + 1)\nt1\q\ + -y (e~ + ~)\p\ 
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Thus 

2 
1 k6 

where K7 = :z (k~ + 2;). Therefore 
y 

(15.44) 

prov i ded 

(15.45) 

This condition can be fulfilled easily, for instance, if Am+1 - Am ~ 1 

(which in our case requires only Am+1 1- Am since Aj are integers) and if 

( lS.46) 

We have therefore 

Theorem 15.5 (Invariance of the slow cones Cm ). Let uO,u1 be in .y 

.b (A). Assume Iluull ~ RO' lIu111 ~ RO. Let v(t) denote either the solution 

of the linearized equation (15.37) or the difference S(t)uO - S(t)u1. 

There exists k7 = k7(RO,lfl,y, g) such that if Am+1 > Am 
Am+1 + Am 

and 2 ~ k7 then the cones Cm.y are invariant: if v(t O) E Cm,y 

then v(t) ECm,y for all t ~ tU. 

We have at this stage all the ingredients for the construction of 

inertial manifolds for the equation (15.1). Let us check some of the 

consequences of Theorems (15.3)-(15.5) for the universal attractor X. 

First let us estimate the dimension of the attractor and the decay of 
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volume elements. Let 'P1' •••• 'PN be orthonormal in H. Let Q be the 

1 i near space spanned by 'Pl.···. 'PN. 

Let T be the linearized (15.15) 

Tv = eA2V + Av + B(u.v) + B(v.u). 

Then 
N 2 N 

Tr(Tll) ~ e L (A 'P.' 'P.) + L B( 'P .• u''P.). 
i=l 1 1 i=1 1 1 

N N 
Tr(TQ) ~ e.L IA'P i 12 -cllull .L II'Pili. 

1 =1 1=1 
Thus 

Thus 

other hand. because 'Pi are orthonormal 

Therefore 

(15.47) 

it t ~ tlJ(RlJ). 

This estimate implies (see section 14) 

(ltl.4B) 

169 

for all N = 1.2..... Now since AJ ~ Coj. the right-hand side of (15.48) 

becomes negative for 
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(15.49) 

Therefore we have 

Theorem 15.6. Let X be the universal attractor of equation (15.3). 

(15.5U) 

Now let us fix RO large enouyh so that 

2 sup II u II ~ RU 
u, X 

From (15.8) it follows that Ro = 21fl would do. 

Let (Am'Am+l) be a yap (i.e., Am+l > Am) and assume that (15.46) is 

satisfied for the constant k7 determined by RO' If I and y = 1/3 (we choose 

y = 1/3 rather arbitrarily). Assume also that N = m-1 satisfies (15.49). 

From the assumption (15.46) it follows that for any two u1,u2' X, 

u1 - u2' Cm,l/3. This is a direct consequence of the fact that outside 

Cm,1/3 there is exponential decay for differences S(t)u~ - S(t)u~, just 

as in the case of the cones ~. 

Proposition 15.7. Let y = 1/3 (for the sake of being specific). Let 

Am < Am+l' and assume Am satisfy (15.46). Then the set 

(15.52) Cm,X = {UIU - x,Cm,l/3 for all X'X} 

is i nvari ant 

(15.53) S(t)(Cm,X () BV ) 
RU 

C Cm,x • 

Moreover, for arbitrary V either uo ' BR 
0 

Am + A 
(a) dist(S(t)uO'X) ~ max lu - uolexp(- m+l t) for all t 

u, X 4 
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(0) the ineljuality in (a) is valid for t ~ to < ~ and for t ~ to' 

s( t) uu E Cm,X. 

We are goi ng to consider the set E = U S( t) r where r wi 11 be a 
t > 0 

171 

simple N-l dimensional smooth compact surface in the N dimensional space 

HN = PNH. Our aim is to show that E = Y is an inertial manifold. 

Definition 15.8. A set Y CHis an inertial manifold for the equation 

( 15 .3) if 

(i) S( t) y C Y for all t ~ 0 

(ii) Y is a finite dimensional, Lipschitz manifold 

( iii) There exi sts a constant cY such that for every Uo E H there exi sts 

C, tu depending on IUu l such that 

(15.54) 

Actually the inertial manifold that we construct will satisfy several 

other important properties. Let us prepare first the initial data set r. 

We take r to Oe an ell i psoi din Hm. 

(15.55) 

The number RU can be chosen 

(15.56) RO = 411 fll 

The number m is going to be determined below. 

Let u E r. We cons i der the vector 

( 15 .57) N(u) = eJl.2u + Au + B(u,u) - f 

We consider the linear space Tu( r), tangent to r in Hm = PmH at u. We 

take the direct sum Tu( r} E!:> N(u)lR. This is the initial tangent space at 

our integral manifold. Let us denote by Q(u} the orthogonal projector in 
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H from H onto Tu(r) ® N(u)lR. The requirements that we wish to impose on r 

are 

(1) J\(Q( u)) 

(II) >,(Q( u)) 

Am + Am+1 
<--2--

Am + Am+1 
> 2 

for all UE r 

for all UE r 

(III) (N(u),v(u)) > 0 for all u or, where v(u) is the e)(ternal 

normal to r in PmH at u. 

(IV) r C Cm,X 

(V) Tu(r)®N(u)IRCCm,X 

The condi t ions (I) and (I I) wi 11 insure that the integral manifol d 

E = U S(t)r is "spectrally blocked". Condition (III) is a coercivity 
t > 0 

condition. We check first what kind of restrictions do conditions (I)-(V) 

impose on m. 

We start by showing that in our case condition (III) is automatically 

fulfilled without restriction for m. Indeed, the normal v(u) can be 

computed in our case 

(15.58) v(u) = A fur 
Indeed, II u\l = RO is an ellipsoid in Hm: 

m 2 2 L >, u = R 
j= 1 J J 0 

Now, in view of the identity 

B(u,U,Au) 0 

we have 

(15.59 ) foralluEr. 

We used here IAu I ~ 21 f I for u E r. In order to check (1) and (I I) we 
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denote by Ai ~ A2 ~ ••• ,~ the eigenvalues of Q(u)AQ(u). In particular, 

t\n = A(Q(U)). We know A(U) ~ ~ so 

because 

Ai + ••• ~-1 ~ Al + ••• + ~-1· 

Thus 

(15.6U) u ~ A(U) - ~ ~ Tr Q(u)AQ(u) - Tr PJ-Pm• 

Simi 1 arly 

(15.61) U ~ ~1 - ).(u) ~ Tr Q(u)AQ(u) - Tr PJ.Pm 

Now we decompose Q(u): 

(15.62) 

where QT is the orthogonal projector from H onto the tangent space Tu( r) 

at r to u. The vector to is the normalized component of N(u) orthogonal to 

(1 - Q )N(u) 
(15.63) '"=~~rr 

T 

The notation", ® '" stands for the one dimensional projector in the 

di recti on '" 

V f---1o (""v) '" • 
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On the other hand. obviously 

(1!i.64) 

Then 

Now. from (l!i.64). 1 - llT = 1 - Pm + v(u) GIl v(u). Since v(u) EPmH it 

to 11 ows that 

(1!i.65) 1 (1 - QT)N(U) 12 = 1 (1 - Pm)N(u) 12 + (N(u) .v(u»2 

(l!i.66) 11(1 - QT)N(ullIl2 = 11(1 - Pm)N(u)112 + (N(u).v(u)21Iv(u)1I2 

In the computation ot 11",112 - lIu(u) 112 the cross terms (N(u).v(u»21Iv(u) 112 

cance"' each other: 

Thus 

(15.67) 
1(1 - P )N(ull 2 

Tr Q(u)AQ(u) - Tr P APm < m 2 
m - (N(u),v(u» 

The conditions (I) and (II) will be fulfilled if 

(1!i.6!l) 

Now the quantity 

(1 - Pm)(B(u,u) - f) 

si nce u E PmH. So 
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Now 

Usiny the ineljuality IAB(u,u) I ~ clAullA 3/ 2ul (see (10.8) with s = 2) we 

yet 

On the other hand, from (15.59) 

Thus 

11(1 - Pm) N( u) q2 2 2 cR 2 2 2 
------ < _c_ I u 12 + ~l!.Jtl.I!l':. < _~ + ~_ = !6.c;.i!.L + .! 
(N(u) ,,,(u))2 - >m+l IAul 4 - Am+l R~ Am+l 4· 

Since if >m+l - Am> 0 we have >m+1 - Am ~ I, condition (15.68) will be 

fulfi lied if >m+l is large enough: 

( 15.69) 

We see thus that conditions I, II, III can be fulfilled if (Am' >m+1) is a 

yap, situated far enough. No requirement of largeness on the gap is 

needed. Now (IV) and (V) are easier to realize than (I) and (II). 

Let us check IV: First let us note that from (15.8) it follows that 

(15.7U) sup II x II ~ I fl· 
X E X 

Take u E r, x EX. We need 

1(1 - Pm)(u - x)1 
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Now (1 - Pm)(u - x) = -(1 - Pm)x since UE PmH. Thus 

\(1 - Pm)(u - xli = \(1 - Pm)x\ ~ ~i2l1Xi ~ ~i2\f\. 
On the other hand 

~\Pm(u - xli ~ ~1/2~\\Pm(u - x) II ~ ~1/2~[IIPmull-IIPmxll] 

-1/2 

~1/2t[lIull-\\Pmxll] ~ ~1/2iIlU\\-~\f\. 

Thus u - XE Cm,1/3 ~rovided 

-1/2 

(~i2 + ~ )\f\ ~ i ~1/~o· 
Mul tl" plYl" ny by 11/2 and US1" n9 < we see that U x C "m >m _ >m+l - E m,1/3 

provi ded 

No extra requirement is needed. 

Finally, let us check (V). Let v EN(u)1R + Tu(r). Thus v = a w+ 6T 

with TETu(r), wdefined in (15.63) and a,a real numbers. 

(1- Pm)v = a(1 - Pm)w; Pmv = aPmw + aT. Since \Pmv\2 = i\Pm .. \2 + a2h\2 

~ a2\Pmw\2 it is enough to check that 

Now we use the decomposition (15.64) and (15.65) 
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Therefore what we need is 

(15.71) 1 1(1 - Pm)N(u)1 ~ 3" (N(u),v(u» 

But condition (15.6~) will imply (15.70) if 

(15.72) 

This ayain is a mild requirement: 

(10.73) 

Summarizing we ~roved 

Lemma 10.~. Let m be such that Am+1 > Am and Am+1 is large enough: 

(15.74) 

Then the flat m-1 dimensional ellipsoid 

(10.75) 

with 

(15.76) RU = 411fll 

satisfies properties (I)-(V). 

Let us fix RO = 411fll. Let us seek m ~ 1 satisfying (15.35) with R2 = 

and (15.4U), (15.46), (15.74). Assume also that m is large enough so that 

N = m-l satisfies (15.49). The conditions (5.40), (15.46), (15.74) are 
Am+1 + ~n . 

all of the form 2 ~ k where k = k(RO'E' Ifl). S,nce RO' E are 
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fixed, k = k(llfll) depends on IIfll alone. Condition (15.77) is of the type 

Decause Am+1 - Am ~ 1 if Am+1 > Am. Condition (15.49) is expressed in 

terms of m, 

Since Am ~ cOm it follows that we can fulfill simultaneously conditions 

(15.4U), (15.46), (lb.74), (15.77) provided 

(15.78) Am+1 > Am 

(1b.7Y) 
A + A 
---'!).~>c(lIfll) 2 - g 

with cg(lIfll) a sufficiently large positive constant. We fix now m such 

that (Am'Am+l) satisfy (15.78) and (15.79). Thus the spectral blocking 

~ro~erty (Theorem 15.4) the Cm,l/3 cone invariance (Theorem 15.5) are 

valid. Moreover, surfaces of dimension m-1 decay exponentially ((15.48), 

(lb.4Y)) and the initial surface r = {U E PmH I lIuli = RO} has the 

~ro~erties (I)-(V). 

We start studying the m dimensional surface E = ~ S(t)r. Let us 
t > 0 

consider the ma~s s and a given by 

s:(u,~) x r + E C H, s(t,uU) = S(t)uO 

The map s is a C~ map when viewed as a map of ~ x r in H. The Jacobian 

of a at some point to' Uo is given by 
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where N(u) = €A2u + Au + B(u,u) - f and where S'(to'uO) is the 

application that assiyns to Vo the value v(tO) of the solution of (15.37), 

(15.38), the linearized equation along S(t)uO' Now assume that for some 

tu > U, Uu e r, (Da)(tu,uo) would not be invertible. Then there would 

exist a tanyent vector to r, Vu e PmH and a real number ~ such that the 

vector w(t) = ~N(S(t)uO) + S'(t,uu)vo satisfies Pmw(t O) = O. Now let Q(t) 

be the vroJector on the linear space N(S(t)uO)m + S'(t,Uo)(Tuo(r». 

Observe Q(t)w(t) = w(t). Also Q(t) solves the transport equations 

(1~.13), (15.14) with QO = Q(uO) the vrojector on the space m N(uO) + 

Tu (r). The choice of r (property (I» implies A(QO) 
Am + Am+1 

< - 2 
U 

< Am+Am+l the spectral blockiny ~roperty (Theorem 15.3) A(Q(t) ) 
- 2 

the other hand, since Q(tu)w(tO) = w(tO) we get by the definition of 

A(Q(t» that 
2 

IIW(tO) ! 

Iw(t~ ~ 
Am + Am+l 

A(Q(t» ~ --2-

From 

On 

Now at t u' Pmw(tO) was assumed to be zero. Thus IIw(to) 112 ~ Am+1Iw(to) 12 
Am + Am+l 

and we arrive at the contradiction Am+1 ~ 2 • Thus we proved 

(15.8U) a is reyular at each (t,uO) e (U,,,,) x r. 

It follows that a is locally invertible. The local inverses of a form an 

at"las for E. Thus E is a smooth manifold. Also, clearly PmE is open in 

PmH. Now, from proverty (IV) and Proposition 15.7, E C Cm,X' Moreover, 

EI"'\X = 1.1. Indeed, if XeEf'X then x = S(t)uO with uOe r. But since 

S(t)X = X it would follow that x = S(t)y with ye X and, from the 

inJectivity of S(t) that uOe r 1"'\ X. Now this is absurd because r was taken 

to be far away from X. But l: C' Cm,X and l: !') X = YJ imply Pml: ('\ PmX = fJ 

(Just use the definition of Cm,X)' Now let p ePml: = the closure in Hm of 

Pml:. Thus p = l~m PmS(tk)uk with tk e (0,,,,)' uk e r. Assuminy that uk 
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converyes to u it follows that p is either in PmX (if tk have ~ as cluster 

\Joint), or in r (if a is a cluster point of t k) or in Pm E (if a finite 

nonzero number is a cluster point for the tk's.) SO PmE C PmX v PmE U r 

and the union is diSjoint. Now we claim that 

We aryue by contradiction and assume that a small open ball 

{P EPmHiip - poi < d = Be is contained in IiPmii < RO but does not 

intersect PmE. It follows that Bell PmS(t)r = l!l for all t > O. Now, from 

the isoperimetric inequality 

Now the riyht-hand side decreases exponentially as t + ~ and the left-hand 

side is a positive number, absurd. (Here we used the fact that m-1 dimen-

sional volume elements decay exponentially, that r is compact and that Pm' 

as an orthoyonal proJector, does not increase volumes). Now E is arcwise 

connected, obvi ously. Thus Pm E is connected ,open. Thus, si nce C1 is 

reyular, E is a coveriny space of PmE. Therefore the cardinal of 

p~l {P} ("\ E is equal to the number of connected components of E, that is, 

it is equal to one. Thus Pm:E + Pm E is injective. Now we define the map 

~ by t:S,m(RO) + H 

f-' 
if PEr 

t(p) if p • PmE, PmU = p 

u • X if P • PmX, Pmu = p 

The map tis cl early well defi ned. Now we wi 11 show that tis Li pschitz. 

Let Pi ,P2 • & m( RO)' Let us take the strai ght line that joi ns them, 
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p( ,) = P1 + ,( P2 - P1)' ,< [0 ,1]. IIssume fi rst that p( ,) iPmX for all 

,< (U,l). (Since dMX = m-1 this is the case for most points.) Then, for 

each, <[0,1], p( ,) = Pmu( ,), with u( .,) '" u( ,) a smooth curve. Now u( ,) 

= S(t)uo for some t > 0, Uo < r depending on ,. It follows that the 

tanyent du/d, to u(,) is the transported S'(t,uO)v for some v <Tu (r) + 
o 

N(uO)IR. Since this space is in Cm,l/3 by assumption (V) and since Cm,l/3 

is invariant to S'(t,uO) by Theorem 15.5 it follows that du/d,< Cm,1/3. 

Therefore, 

1 d 
1(1 - Pm)(u(l) - u(O))1 ~ J 1(1 -Pm) d~ Id, 

1 1 du 1 1 1 
~ 3" J IPm ~ (,)Id, = 3" J \P2- P1Id , = Z\P2- P11• 

Thus 

(l~ .81) 

On the other hand, if p(,)< PmX for some ,,'(0,1), say p(,) = Pmu~, then 

since E C Cm,X' it follows .p(P1) - u~ <Cm,1/3 and .p(P2) - u~ <Cm,l/)" 

Thus 

The I ast equal i I ty is true because P1' p( r), P2 are on a strai ght line 

with p( rl between Pl and P2. Thus (15.81) is valid for every P1,P2. 

Finally, let us consider the problem of uniform exponential conver­

gence of trajectories to -;;. Let Uo < Ii be arbitrary and let us consider 
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S(t)uo • If S(t)uu stays outside Cm•x for all t ~ 0 then. according to 

proposition (15.7) 

>m + Am+ 
dist(S(t)uo'X) ~ c exp(- --~ t) 

with c = Max Ix - uol. Since Xc. E. (this follows from Pmt:> PmX and 
x .X_ 

the fact that E C Cm•1/ 3 • thus Pmu = Pmx. u. E. x. X implies u = x), 

clearly ex~onential decay towards X implies exponential decay towards E. 

We may assume therefore that S(t)uO • Cm•x for t ~ to (again from 

Proposition (15.7)). If we take t lar~e enough then PmS(t)uO belongs to 

E:m(RU)' clearly. (See (15.8)). It follows that PmS(t)uO belongs to 

PmE. Indeed the other two possibilities. namely PmS(t)uO in PmX and 

PmS(t)u ll in r are excluded easily. If PmS(t)uO' PmX, since S(t)uO' Cm•X' 

it follows that S(t)uO • X and the distance to -;: (and X) are O. If t is 

lar~e enouyh II PmS(t)uoll < RO so PmS(t)uO i r. Now. since PmS(t)uO • PmE. 

there exists ul' ~ such that Pm(S(t)uO) = Pm(ul). We claim that. for each 

X • X. 

lUI - S( t) Uo I < I S( t ) Uo - x I • 

Indeed. since S(t)uO' Cm•X we have 

and d 1 so since l: C Cm•X 
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since En x = 0. Thus, for each fixed S(t)uO for t sufficiently large, 

the distance between S(t)uo and E must be attained on E. Let us fix t and 

consider u = S(t)uo and u1 E E such that dist(U;E) = lu - u11. Let Q(u 1) 

be the projector on the tangent space at u1 to E. Clearly 

On the other hand, si nce E is an integral surface 

because of property (II) and the spectral blocking property. From the 

definition of A(Q(u 1)) it follows that 

2 
>m + Am+1 
--2--~~> 

lu- ul I2 -

Let us consider u(s) = S(s)u, u1(s) = S(s)u1• Clearly, u(s) = S(s + t)uO 

and u1(s) E E. Forminy the difference v(s) = u(s) - u1(s) and taking the 

fi rst ener~y estimate we ~et 

Thus 

Computiny at s = 0 we yet 

Since 

d 2 
dS Iv(s)1 I 

s=o 

2 >m + Am+1 2 
< -I v I [--2- - CRo 1 < 0 

d - 2 d 2 
ds Idist(S(t+s)uO' E)I \ = dS Iv(s)1 \ 

s=o s=o 

we obtain the desired uniform exponential decay 
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dist(S(t)UO•E ) 5 c exp(- Am +4 'm+1 t) 

for t ~ to. 

We proved therefore 

Theorem 15.9. Let RO = 411f II. Let m be such that "rnt 1 > Am and 

Am ~ c (1\ fll) where c g (1\ fll) is a positive constant depending on II fll. 

Let 

E= U S(t)r. ThenEis an inertial 
t>O 

manifold for the equation (15.3). Moreover. ~: € m(Ro) .. E defi ned 

I>y ~(p) = u if u E E. Pmu = P. is Lipschitz 

Also E is a C~ manifold and the projectors Q(u) onto the tangent space to 

Eat u satisfy 

For any Uo E H. there exi sts to and c dependi n9 on \ Uo \ only such that 

'm+1 + Am 
dist(S(t)uO.E) 5 c exp(- ---4-- t) 

One can prove also 

Theorem 15.10. The inertial manifold E has the following asymptotic 

compl eteness property. For each Uo E H. there exi sts t1 and u1 E E such 

that 

1 i m \ 5( t) Uo - S( t - t 1 ) u 1\ 0 
t .. ~ 
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