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Preface
To many students, as well as to many teachers, mathematics may seem like a mun-
dane discipline, filled with rules and algorithms and devoid of beauty, culture and
art. However, the world of mathematics is populated with true gems and results that
astound. In our series Highlights in Mathematics we introduce and examine many of
thesemathematical highlights, thoroughly developingwhatevermathematical results
and techniques we need along the way.

We regard our Highlights as books for graduate studies and planned it to be used
in courses for teachers and for general mathematically interested, so it is somewhat
between a textbook and a collection of results. We assume that the reader is familiar
with basic knowledge in algebra, geometry and calculus, as well as some knowledge
of matrices and linear equations. Beyond these the book is self-contained. The chap-
ters of the book are largely independent, and we invite the reader to choose areas to
concentrate on.

We structure our book in 11 chapters that are arranged in three parts: In the first
seven chapters we examine results which are related to geometry. In Chapter 8 we
give a connection of geometric ideas and combinatorically defined objects. In the last
three chapters we further investigate topics in combinatorics, discuss a glimpse of fi-
nite probability theory and end our book with Boolean algebras and Boolean lattices.

In Chapter 1 we look at general geometric ideas and techniques. In the second
edition we added a primer on curves in the real spaceℝ3 to this chapter to give a little
insight into the richness of differential geometry.

In Chapter 2 we discuss the isometries in Euclidean vector spaces and their classi-
fication in ℝn. We realize that the study of planar Euclidean geometry depends upon
the knowledge of the group of all isometries of the Euclidean plane and hence devote
a section to them. The study of geometry using isometries and groups of isometries
was developed by F. Klein, and this approach is fundamental in the modern applica-
tion to geometry. A first application is in Chapter 3 where we give a classification and
a geometric description of the conic sections.

In Chapter 4 we describe certain special groups of planar isometries, more pre-
cisely, we describe the fixed point groups and classify the frieze groups and the pla-
nar crystallographic groups. This especially leads to a classification of the regular tes-
sellations of the plane. In this second edition we included a beautiful non-periodic
tessellation of the real plane ℝ2, the Penrose tiling which gets along with only two
prototiles.

In Chapter 5 we present graph theory and graph theoretical problems. In partic-
ular, we discuss colorings, matchings, Euler lines and Hamiltonian lines along with
their rich and current applications such as the marriage problem and the travelling
salesman problem. In contrast to the first edition of this book the chapter on graph
theory is now an extended stand-alone chapter and the discussion of spherical geom-
etry and the Platonic solids takes place in a new Chapter 6.

https://doi.org/10.1515/9783110740783-201
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There, we discuss the Platonic solids which historically have played an outsider’s
role in our view of the universe. For the description and the classification of the Pla-
tonic solids we use Euler’s formula for planar, connected graphs and the spherical ge-
ometry of the sphere S2. In Chapter 7 we complete the discussion of planar geometries
with the introduction of a model for a hyperbolic plane and a look at the development
and properties of hyperbolic geometry.

In the second edition we added a new Chapter 8 on simplicial complexes and
topological data analysis – two important concepts from the emerging field of applied
topology.

Chapter 9 gives a detailed path through combinatorics, combinatorial problems
and generating functions. Finite probability theory is heavily dependent on combina-
torics and combinatorial techniques. Hence in Chapter 10 we examine finite probabil-
ity theory with a special focus on the Bayesian analysis.

Finally, in Chapter 11 we consider Boolean algebras and Boolean lattices and give
aproof of the celebrated theoremofM. Stonewhich says that aBoolean lattice is lattice
isomorphic to a Boolean set lattice. Hence, Boolean algebras and Boolean lattices are
crucial in both pure mathematics, especially discrete mathematics, and digital com-
puting.

We would like to thank the many people who were involved in the preparation of
themanuscript aswell as thosewhohave used the first edition in classes and seminars
for their helpful suggestions. In particular, we have to mention Anja Rosenberger for
her dedicated participation in translating and proofreading. We thank Yannick Lilie
for providing us with excellent diagrams and pictures. Those mathematical, stylistic,
and orthographic errors that undoubtedly remain shall be charged to the authors. Last
but not least, we thank De Gruyter for publishing our book. We hope that our readers,
old and new, will find pleasure in this reviewed and extended edition.

Benjamin Fine
Anja Moldenhauer

Gerhard Rosenberger
Annika Schürenberg

Leonard Wienke
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1 Geometry and Geometric Ideas

1.1 Geometric Notions, Models and Geometric Spaces

Geometry roughly is that branch of mathematics which deals with the properties of
space: points, lines, angles, shapes, etc. However, the definitions and implications of
these concepts will depend on the chosen axioms as we now explain.

To understand modern geometry we must look at the historical development. Ge-
ometry means earth measure in Greek. Historically geometry was developed by the
ancient Egyptians, Chinese, Babylonians, Greeks, Hindus and others into an ad-hoc
system of formulas and observations to find areas and volumes of plane and solid
figures. The ancient Greeks were the first to try to arrange this material in a rigorous
fashion. This work culminated in Euclid’s Elements from about 300 BC.

This famous set of books attempted to give a completely rigorous treatment to
planar geometry. It sets the pattern for not only the study of geometry but the study of
mathematics in general. After the Bible it is the most widely read book in the Western
world.

The basic plan of Euclidwas that geometry consisted of certain undefined notions:
points and lines, together with certain assumptions, the axioms. From these all other
geometrical facts could be proven as theorems in a sequential manner using rules of
logic. A geometrical “fact” is not a fact unless it can be deduced in the above manner.

Euclid used certain common notions on equality together with five basic axioms.

Euclid’s Axiom 1. For every point P and for every point Q with P ̸= Q there exists a
unique linePQpassing throughP andQ. (Twodistinct points determine a unique line.)

Euclid’s Axiom 2. For every line segment AB and for every line segment CD there ex-
ists a unique point E such that B is between A and E and the line segment CD is con-
gruent to BE. It follows that any line segment AB can be extended by a line segment
BE congruent to a given line segment CD, see Figure 1.1.

A B E

C D

Figure 1.1: Line Extension.

Euclid’s Axiom 3. For every point O and every point A ̸= O there exists a circle with
center O and radius OA.

Euclid’s Axiom 4. All right angles are congruent.

https://doi.org/10.1515/9783110740783-001
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2 | 1 Geometry and Geometric Ideas

Note. In Axiom 4 a right angle is defined as an angle which is congruent to its supple-
mentary angle.

Euclid’s Axiom 5. In a plane, for every line ℓ and for every point P not on ℓ there exists
a unique lineM through P and parallel to ℓ, that is, ℓ ∩M = 0.

Note. Axiom 5 is called the Euclidean Parallel Postulate. Euclid’s original formulation
was somewhat different and we will describe it later in this chapter.

Asmathematicians over the centuries lookedat Euclid’smethod, theynoticed that
thereweremany shortcomings in Euclid’s Elements. First, therewas the problemof di-
agrams. Euclid relied extensively on diagrams or ideas from diagrams. When working
on the foundations of geometry, nineteenth century geometers discovered that the use
of these diagrams did not all follow from the five basic axioms. Thereforemore axioms
are necessary to justify Euclid’s Theorems. There are now several sets of (equivalent)
formulations of complete sets of axioms for Euclidean geometry. Ironically these defi-
ciencies in the axioms for Euclidean geometry were only discovered after the discov-
ery of non-Euclidean geometry. We will discuss complete sets of axioms for Euclidean
geometry in Section 1.3.

The next and perhaps more serious problem was the problem with the parallel
postulate. Axioms 1 through 4 are concepts that can be “verified” by straightedge and
compass construction. Axiom 5 is qualitatively different. Euclid himself seemed to
have a problemwith Axiom 5 and did not use it until rather late in his theorems. There
were many attempts to prove Axiom 5 in terms of Axioms 1 through 4. Actually, what
these attempts led to were alternative equivalent forms of the parallel postulate. We
mention several of these and discuss them later.
(1) If two lines are cut by a transversal in such a way that the sum of 2 interior angles

on one side of the transversal is less than 180° then the lineswill meet on that side
of the transversal (Euclid’s original form).

(2) Parallel lines are everywhere equidistant.
(3) The sum of the angles of a triangle is 180°.
(4) There exists a rectangle.

In the nineteenth century, N. I. Lobachevsky (1792–1856), J. Bolyai (1802–1860) and
C. F. Gauss (1777–1855) working independently discovered that by assuming other par-
allel postulates a geometry can be developed, that is, every bit is logically consistent
as Euclidean geometry. Their work was the basis for non-Euclidean geometry.

The discovery of non-Euclidean geometry had a profound effect on human think-
ing. Essentially it said that geometry is dependent on the axioms chosen and nothing
is a priori true. This type of thinking led almost directly to the discoveries in modern
physics highlighted by relativity theory.

The proper modern approach to the study of geometry is that Euclidean geometry
is only one geometry among infinitely many. Further there is some evidence that our
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1.2 Overview of Euclid’s Method and Approaches to Geometry | 3

universe is non-Euclidean! In addition, geometry, through transformation groups, is
intricately tied to group theory.

In the modern approach a geometry or geometric spacewill consist of a set whose
elements will be called points. There will be other notions defined on this set – lines,
incidence, congruence, betweenness, distance, planes and dimension.

Note that not every one of these notions will be present in every geometry.
After the basic concepts there will be axioms describing the properties and rela-

tionships of these ideas.
The theory of this geometry will consist of the theorems proved about the basic

concepts.

1.1.1 Geometric Notions

The basic elements of a geometry or geometric space are called points. The set of lines
of a geometrywill be a distinguished class of subsets of points. A point will be incident
with a line if it is an element of that line.

A geometric figure is a subset of the set of points of the geometry. The study of the
geometry will be about congruence of geometric figures where congruence is a specific
equivalence relation on the class of geometric figures.

A metric geometry is one where there is a function which allows the measure of
distance. Distance or metric is a real-valued function d defined on pairs of points of
the geometry satisfying the ordinary distance properties:
(i) d(x, y) ≥ 0 and d(x, y) = 0 if and only if x = y;
(ii) d(x, y) = d(y, x);
(iii) d(x, y) ≤ d(x, z) + d(z, y).

If a geometry has a metric on it, it is a metric geometry. Otherwise it is a non-metric
geometry.

The class of planes of a geometry is another class of subsets of points. If there
is only one plane comprising the whole geometry, it is a planar geometry. The whole
geometry is called space. Important in this regard is the concept of dimension. Dimen-
sion is a positive integer-valued function on certain subsets of the geometry describing
a “size”. If there is a dimension function, usually a line will be 1-dimensional and a
plane 2-dimensional.

1.2 Overview of Euclid’s Method and Approaches to Geometry

Euclid’s Elements introduced the axiomatic method to the study of geometry and
mathematics in general. Besides this there are several different approaches to the
study of geometry.
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4 | 1 Geometry and Geometric Ideas

Thefirst is theaxiomatic approachwhichwas themethod applied by Euclid. In the
axiomatic approach the undefined notions are given, the axioms chosen and theorems
proven in the spirit of Euclid. In general, an axiom system and the axiomatic method
consists of:
(i) A set of undefined terms; all other terms are to be defined from these.
(ii) A set of axioms.
(iii) A set of theorems which are logical consequences of the axioms. The undefined

terms and the axioms are subject to the interpretation of the reader.

Important to the axiomatic approach is the concept of models. An interpretation of
an axiom system is giving a particular meaning to the undefined terms. If all axioms
are true in an interpretation then it’s a model. If there exists a bijection between the
sets of interpretations of undefined terms which preserves each relationship between
undefined terms then we get isomorphic models. In isomorphic models there is a bi-
jection between themwhich preserves geometric structure, that is, the bijection takes
congruent figures to congruent figures.

Models serve as testing grounds for potential theorems. If it is true in the geometry,
it must be true in every model. Hence if we have an assertion about a geometry and
we find a model where this assertion is false then this assertion cannot be a theorem
in the geometry.

A set of axioms is consistent if there are no contradictory theorems. The exis-
tence of a concretemodel establishesabsolute consistency. The existence of anabstract
model (an interpretation in another abstract system) establishes relative consistency.

An axiom is independent if it cannot be logically deduced from the other axioms
in the system. An axiom system is independent if it consists of independent axioms.
To determine the independence of an axiom, produce a model in which one axiom is
incorrect and the others are correct.

An axiom system is complete if it is impossible to add an additional consistent and
independent axiom without adding additional undefined terms.

Finally, a system is categorical if all models are isomorphic. Categorical implies
completeness.

The second approach to geometry was introduced by F. Klein (1849–1925) in his
Erlanger Programm in 1885. This is called the transformation group approach. In this
method a geometry is defined on a set by those properties of the set which are invari-
ant or unchanged under the action of some group of transformations of the set. This
group of transformations is called the group of congruence motions of the geometry
and in this approach knowing the geometry is equivalent to knowing the congruence
group.

For example, in this approach planar Euclidean geometry would consist of those
properties of the Euclidean plane, defined as real two-dimensional space equipped
with the ordinarymetric, that are invariant under a group called the group of Euclidean
motions. This group consists of all the isometries or distance preserving mappings
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1.2 Overview of Euclid’s Method and Approaches to Geometry | 5

of the plane to itself. In this geometry two figures would be congruent if one can be
mapped to the other by an isometry or congruence motion.

A final approach to geometry is by imposing a coordinate system. This is called
analytic geometry and uses linear algebra.

In the analytic geometry approach, a coordinate system is placed on the geometry.
It is then considered as part of a vector space over some field. Geometric notions are
then interpreted in terms of the linear algebraic properties of the coordinates.

The analytic approach leads to the same theorems as the other approaches but
often makes the proofs much simpler.

If there is no coordinate system, a geometry is known as a synthetic geometry. The
following is a very elementary theorem of Euclidean geometry. We give two proofs –
one synthetic and one analytical to show the difference.

Theorem 1.1. If A and B are two points in the Euclidean plane and ℓ is the perpendicular
bisector of the line segment AB then any point on ℓ is equidistant from A and B.

In school geometry this theorem is often stated as: The perpendicular bisector of
AB is the locus of points equidistant from A and B.

We give a synthetic proof as well as an analytic one.

Proof. (synthetic) Let ℓ be the perpendicular bisector of AB. Recall that this means ℓ
goes through the midpoint of AB and is perpendicular to line segment AB. We then
have the diagram with P any point on ℓ and C the midpoint of AB, see Figure 1.2.

P

ℓ

A BC
⋅⋅

Figure 1.2: Any point P is equidistant from A and B.

Then ‖AC‖ = ‖BC‖ by the definition of the midpoint. We denote the length of the line
segment AB by ‖AB‖. We later also write ‖AB‖ = ‖→AB‖ if we consider the line segment
AB as a vector→AB. Further,∢(CA,CP) = ∢(CB,CP) for the angles between the respective
line segments since all right angles are congruent. Finally, ‖CP‖ = ‖CP‖. Hence the
trianglesACP andBCP are congruent by the side–angle–side criterionor SAScriterion.
Then ‖AP‖ = ‖BP‖ using corresponding parts of congruent triangle being equal.

Proof. (analytic) We impose the standard coordinate system on the Euclidean plane.
Without loss of generality, we can place A at (−1,0) and B at (1,0). The perpendicular

 EBSCOhost - printed on 2/10/2023 4:13 PM via . All use subject to https://www.ebsco.com/terms-of-use



6 | 1 Geometry and Geometric Ideas

bisector ℓ of AB is then the y-axis and hence a general point P on ℓ has coordinates
(0, y). Then

‖AP‖ = √(−1)2 + y2 = √1 + y2

and

‖BP‖ = √(1)2 + y2 = √1 + y2.

Therefore ‖AP‖ = ‖BP‖.

1.2.1 Incidence Geometries – Affine Geometries, Finite Geometries, Projective
Geometries

Perhaps the simplest type of geometry is an incidence geometry. An incidence geometry
is a geometry satisfying the following three incidence axioms:

Incidence Axiom 1. For every point P and point Q ̸= P there exists a unique line ℓ
through P and Q.

Incidence Axiom 2. For every line ℓ there are at least two distinct points incident
with ℓ.

Incidence Axiom 3. There exist three distinct points such that no line is incident with
all three of them.

On a basic incidence geometry we impose some further conditions. An affine ge-
ometry is an incidence geometry which satisfies the Euclidean parallel postulate, that
is, given a point P and a line ℓ not containing P, there exists a unique line through P
parallel to ℓ. By parallel we mean that the lines ℓ and k are coplanar and ℓ ∩ k = 0.

The parallel postulate is tied to solving linear equations. Hence given an n-dimen-
sional vector space over a fieldA, we can always build an affine geometry on it defining
lines in terms of linear equations. HenceAnwithout anymetric is called affine n-space.

The elliptic parallel postulate for an incidence geometry assumes that there are
no parallel lines. A projective geometry is an incidence geometry which satisfies the
elliptic parallel postulate and assumes that every line has at least three points on it.

Given an affine (n + 1)-space An+1, we can build a projective n-space Pn by consid-
ering points as 1-dimensional subspaces of it. We pursue this further in the exercises.

Classical projective geometry grew out of the perspective problem in art and is
constructed by adding ideal points to Euclidean geometry.

A finite incidence geometry is an incidence geometry with finitely many points. In
an affine geometry we have the following theorem.
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1.3 Euclidean Geometry | 7

Theorem 1.2. In any affine geometry a line parallel to one of two intersecting lines must
intersect the other. This implies that in an affine geometry parallelism is transitive.

Being a finite affine geometry restricts the number of points that can be in it.

Theorem 1.3. In a finite affine geometry the following is true:
(a) All lines contain the same number of points.
(b) If each line has n points then each point is on exactly n + 1 lines.
(c) If each line has n points then there exist exactly n2 points and n(n + 1) lines.

Proof. Let ℓ be a line in a finite affine geometry. Suppose that ℓ = {p1, p2, . . . , pm} and
q ∉ ℓ. Let ℓ1 be the unique line through q which is parallel to ℓ. We claim that q is on
exactly m + 1 lines. Each point pi ∈ ℓ defines a unique line qpi. We claim that the set
of lines {ℓ1, qp1, . . . , qpm} is the complete set of lines containing q. Let ℓ2 be any other
line containing q. If ℓ2 is parallel to ℓ then ℓ = ℓ2 by the Euclidean axiom. If ℓ2 is not
parallel to ℓ then they intersect at some point pi. But then pi, q ∈ ℓ2 and hence ℓ2 = qpi.
The result then follows. If ℓ1 = {q1, q2, . . . , qt} then q is on exactly t + 1 lines as above.
Thus m + 1 = t + 1 and m = t. Therefore each line has the same number of points,
and if this number is n, we have also proved that each point is on n + 1 lines. This
proves (b).

For (c) there are n points and n+1 lines, hence there are at least n(n+1) points. But
here we have counted each point n times. It follows that the total number of points is
n(n + 1) − n = n2.

Similar results follow for finite projective geometries where a projective geometry
is an incidence geometry with no parallel lines.

Theorem 1.4. In a finite projective geometry the following is true:
(1) All lines contain the same number of points.
(2) If each line has n points then each point is on exactly n lines.
(3) If each line has n points then there exist exactly n2 − n+ 1 points and n2 − n+ 1 lines.

1.3 Euclidean Geometry

As we have remarked, mathematicians in the nineteenth century realized that there
were many shortcomings in Euclid’s treatment. In the latter part of the century
D. Hilbert (1862–1943) gave a modern treatment in the spirit of Euclid and provided a
complete set of axioms for Euclidean geometry. Undefined terms are point, line, plane,
incidence, between, and congruence. Hilbert presented five groups of axioms: axioms
of incidence, axioms of order, axioms of congruence, axioms of parallels, and axioms
of continuity.
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8 | 1 Geometry and Geometric Ideas

Axioms of Incidence. These are the three basic incidence axioms to make Euclidean
geometry an incidence geometry.

Axioms of Order. Axioms to describe betweenness. We write A−B−C to indicate that
A,B,C are pairwise distinct collinear points and that B is between A and C.

(1) Order Axiom 1. If A − B − C then C − B − A.

(2) Order Axiom 2. For each A ̸= C there exists a B such that A − C −B; this is the line
extension axiom.

(3) Order Axiom 3. IfA,B,C are collinear thennotmore than one is between the other
two.

(4) Order Axiom 4 (Pasch’s Axiom after M. Pasch (1843–1930)). If A,B,C are non-
collinear and ℓ is a line not incident with any of them then if ℓ passes through AB
it will pass through AC or BC. This indicates that if a line enters a triangle it must
leave it.

(5) Order Axiom 5. Given A ̸= C there exists a B such that A − B − C; that is, lines are
infinite.

Axioms of Congruence. Axioms to describe the congruence relation ≡.

(1) Congruence Axiom 1. Given AB with A ̸= B and a point A′, there exists a B′ such
that AB ≡ A′B′.

(2) Congruence Axiom 2. Congruence is an equivalence relation on line segments
and angles.

(3) Congruence Axiom 3. If AB ∩ BC = B and A′B′ ∩ B′C′ = B′ then if AB ≡ A′B′,BC ≡
B′C′ then AC ≡ A′C′.

(4) Congruence Axiom 4. In a plane, given an angle ∢(BA,BC) and a line B′C′, there
exists exactly one line segment B′A′ on each side of B′C′ such that∢(B′A′,B′C′) =
∢(BA,BC).

(5) Congruence Axiom 5. Side–angle–side, or SAS, criterion for the congruenceof tri-
angles.

Axioms of Continuity. Axioms to describe the completeness properties of lines, re-
lated to the completeness of the real numbers.

(1) Continuity Axiom 1 (Archimedean Axiom). If AB and CD are line segments then
there exists an integer n such that n copies of CD constructed contiguously from A
along line AB will pass point B.
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(2) Continuity Axiom 2 (Line Completeness Axiom). Any extension of a set of points
on a linewith its order and congruence relation thatwould preserve all the axioms
is impossible.

Axiom of Parallels. Axiom to describe the Euclidean parallel property – In a plane,
given a line ℓ and a point P ∉ ℓ, there exists exactly one line ℓ′ through P parallel to ℓ,
that is, ℓ ∩ ℓ′ = 0.

Remark 1.5. This is, in the context of Euclidean geometry, with just the other four ax-
iom sets, equivalent toPlayfair’s axiom, named after F. Playfair (1748–1819). In a plane,
given a line ℓ and a point P ∉ ℓ, there exists at most one line ℓ′ through P parallel to ℓ.

1.3.1 Birkhoff’s Axioms for Euclidean Geometry

In the 1930s G. Birkhoff (1911–1996) devised a shorter complete set of axioms for Eu-
clidean geometry. He based his axioms, however, on algebra and on measurement.
Birkhoff shifted the axioms from geometric axioms to algebraic axioms and results on
the real number system.

The undefined terms in the Birkhoff system are point, line, distance and angle.
He then has the following axiom system in addition to the completeness of the real
number system. Again we write AB for a line and AB for a line segment.
(1) Axiom 1 (Line measure–ruler axiom). The points on any line can be placed in one-

to-one correspondence with the real numbers such that d(A,B) = |B − A|.

(2) Axiom 2. There exists a unique line on any two distinct points.

(3) Axiom 3 (Protractor axiom). We call a straight line extending infinitely in a single
direction fromapoint, a half-line. In a plane, a set of half-lines {ℓ,m, n, . . .} through
any point O can be put into one-to-one correspondence with the real numbers a
modulo 2π so that if A and B are points, not equal to O, of ℓ and m respectively,
the difference am − aℓ mod 2π of the numbers associated with the half-lines is
∢(OA,OB).

(4) Axiom 4 (Axiom of Similarity). Given two trianglesABC andA′B′C′ and some con-
stant k > 0 such that d(A′,B′) = kd(A,B), d(A′,C′) = kd(A,C) and ∢(A′B′,A′C′) =
±∢(AB,AC), we have d(B′,C′) = kd(B,C), ∢(B′C′,B′A′) = ±∢(BC,BA) and ∢(C′A′,
C′B′) = ±∢(CA,CB).

1.4 Neutral or Absolute Geometry

From Euclid’s time until the discovery of non-Euclidean geometry there weremany at-
tempts to prove that the parallel axiom is not independent of the other axioms. One of
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10 | 1 Geometry and Geometric Ideas

the strongest such attempts was by G. G. Saccheri (1667–1733) in the 1700s. Hewas a Je-
suit priest and began looking at what is now called neutral geometry and proved a col-
lection of startling theorems. Although he said that many of these had to be false and
therefore disproved Euclidean geometry, what he actually did was lay out the founda-
tion of non-Euclidean and hyperbolic geometry.

Neutral geometry, which is also called absolute geometry, is the incidence geome-
try formed by assuming all the Euclidean axioms except the parallel postulate. A the-
orem that can be provedwithout recourse to the Euclidean parallel postulate or any of
its equivalent formulations is a neutral geometric theorem, while a Euclidean result is
one which requires the Euclidean parallel postulate. Note that any neutral theorem is
also a Euclidean theorem.

Wefirst show that inneutral geometryparallel linesdo exist.Wedo this byproving
the alternate interior angles theorem in one direction. We need certain preliminaries.

Theorem 1.6 (Exterior Angle Theorem). The exterior angle of a triangle is greater than
either of the nonadjacent interior angles.

Note that each of our proofs is the same as the corresponding Euclidean proofs,
however, we cannot use either the parallel postulate or any of its equivalent formula-
tions.

Proof. Recall that we cannot use the Euclidean parallel postulate. However, it can be
shown that assuming SAS, the angle–side–angle (ASA), side–angle–angle (SAA) and
side–side–side (SSS) criteria are all valid congruence conditions. Let ABC be any tri-
angle as in the diagram below. LetD be on the extension of side BC. We first show that
the exterior angle ∢(CA,CB) is greater than angle ∢(AB,AC). Consider Figure 1.3.

A

B C
D

E

F

Figure 1.3: Diagram for the exterior angle theorem.

Let E be themidpoint ofAC and letBE be extended its own length through E to F. Then
AE = EC,BE = EF and∢(EA,EB) = ∢(EC,EF) since vertical angles are equal. Therefore
△AEB ≡ △CEF by SAS, and hence ∢(AB,AE) = ∢(FC, FE) by the corresponding parts
of congruent triangles. Since∢(CA,CD) > ∢(CF,CE), the whole being greater than one
of its parts, it follows that ∢(CA,CD) > ∢(AB,AE).

We do an analogous construction to show that

∢(CA,CD) > ∢(BA,BC).
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1.4 Neutral or Absolute Geometry | 11

We now prove in neutral geometry one direction of the alternate interior angle
theorem. From this we can derive the existence of parallels.

Theorem 1.7 (The Alternate Interior Angle Theorem). If the alternate interior angles
formed by a transversal cutting two lines are congruent then the lines are parallel.

We note that in school geometry this theorem is usually stated as an “if and only
if”. However, the other direction is equivalent to the Euclidean parallel postulate.

Proof. Recall that two lines in a plane are parallel if they do not meet. Let the line AB
cross lines ℓ andm so that the alternate interior angles are equal. Suppose that ℓ and
mmeet at a point C as in Figure 1.4.

ℓ ℓ

m m
C C

A A

B B
α β

Figure 1.4: Alternate interior angles.

Then angle α is an exterior angle of the corresponding triangle ABC and therefore by
the exterior angle theorem, angle α is greater than angle β, contradicting that they are
equal. Therefore ℓ andmmust be parallel.

Since all right angles are congruent the following corollary is immediate.

Corollary 1.8. Two lines perpendicular to the same line are parallel.

From this we obtain the existence of parallels.

Corollary 1.9. Given a line ℓ and a point P ∉ ℓ, there exists a line ℓ1 through P and
parallel to ℓ. Therefore parallels exist in neutral geometry.

Proof. From point P drop a perpendicular to ℓ with foot Q and at P erect a linem per-
pendicular to PQ. From the previous corollarym is parallel to ℓ, see Figure 1.5.

As we will see, the angle sum of a triangle will be crucial to distinguish Euclidean
from non-Euclidean geometry. We prove one other neutral geometric theorem along
these lines.

Theorem 1.10. In neutral geometry the angle sumof a trianglemust be less than or equal
to 180°.

Proof. From the exterior angle theorem (Theorem 1.6), the sum of any two angles of a
triangle is less than 180°. Assume there exists a triangleABCwith angle sum 180°+p°,
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Q ℓ

mP
⋅

⋅

Figure 1.5: Parallels in neutral geometry.

p > 0. From exercise 13 we can find a triangle A1B1C1 with the same angle sum as ABC
but

∢(A1B1,A1C1) ≤
1
2
∢(AB,AC).

Now build a sequence of triangles AnBnCn with the same angle sum as ABC but with

∢(AnBn,AnCn) ≤
1
2n
∢(AB,AC).

So,

lim
n→∞
∢(AnBn,AnCn) = 0

which means that

∢(BnAn,BnCn) + ∢(CnAn,CnBn) ≥ 180°

for large n which contradicts the above.

1.5 Euclidean and Hyperbolic Geometry

As we have seen in the previous section, given all the axioms of Euclidean geometry,
there are only two possibilities for parallels. In a plane, given a point P and a line ℓ
with P ∉ ℓ, either there is a unique parallel to ℓ through P or more than one parallel
through P.

Theorem 1.11. In neutral geometry, in a plane, if there exists a point P and a line ℓ so
that there exists a unique parallel to ℓ through P then this property holds for any point P
and any line ℓwith P ∉ ℓ. Further, in a plane, if there exists a point P and a line ℓ so that
there are more than one parallel to ℓ through P then this property holds for any point P
and any line ℓ with P ∉ ℓ.

If two lines ℓ and m have a line that is perpendicular to both lines then the lines
are parallel. Suppose that given a point P and a line ℓ there is a unique parallel. Then
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1.5 Euclidean and Hyperbolic Geometry | 13

if a line is perpendicular to one of the two lines it must be perpendicular to the other
by the uniqueness of parallels. It follows that if there is more than one parallel there
must be a line which is parallel to one line with an angle less than 90° to the other
line. Therefore there must be a minimal such angle. This is called the angle of par-
allelism. From this we can deduce the following. The proof we outline in the exer-
cises.

Theorem 1.12. In a neutral geometry, in a plane, given a point P and a line ℓwith P ∉ ℓ, if
there existmore thanoneparallel to ℓ throughP then there exist infinitelymanyparallels.

From these results we see that in a neutral geometry, given a point P and a
line ℓ with P ∉ ℓ, there are exactly two possibilities: there is a unique parallel line
to ℓ through P or there are two or more parallels to ℓ through P. Furthermore, this
property is uniform throughout neutral geometry.

We now define two parallel postulates for a neutral geometry.

The Euclidean Parallel Postulate. Given a neutral geometry, the Euclidean parallel
postulate, that we will abbreviate EPP, is that in a plane if P is a point and ℓ a line with
P ∉ ℓ then there exists a unique parallel to ℓ through P.

The Hyperbolic Parallel Postulate. Given a neutral geometry, the hyperbolic parallel
postulate, that wewill abbreviate HPP, is that in a plane if P is a point and ℓ a line with
P ∉ ℓ then there exists at least 2 parallels to ℓ through P.

A non-Euclidean geometry is any geometry which does not satisfy the Euclidean
parallel postulate. A hyperbolic geometry is a neutral geometry together with the hy-
perbolic parallel postulate.

We thus have the following theorem.

Theorem 1.13. A neutral geometry is either Euclidean geometry or hyperbolic geometry.

Results that are true in Euclidean geometry but not in hyperbolic geometry are
called purely Euclidean results, while results that are true in hyperbolic geometry but
not in Euclidean geometry are called purely hyperbolic results.

Many of these types of results are tied to the angle sum of a triangle. The following
theorem is crucial.

Theorem 1.14. In Euclidean geometry the angle sum of any triangle is 180°, while in
hyperbolic geometry the angle sum of any triangle is strictly less than 180°.

1.5.1 Consistency of Hyperbolic Geometry

We have seen that given a neutral geometry it is either Euclidean or hyperbolic. How
do we know that hyperbolic geometry is actually consistent, that is, perhaps there
exist theorems that are both true and false in hyperbolic geometry.
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14 | 1 Geometry and Geometric Ideas

This was handled by C. F. Gauss (1777–1855), N. I. Lobachevsky (1792–1856) and
J. Bolyai (1802–1860), who are considered the discoverers of non-Euclidean geometry,
by building a model of hyperbolic geometry within Euclidean geometry. Hence the
consistency of Euclidean geometry implies the consistency of hyperbolic geometry.
The particular planar models they constructed we will study in Chapter 8. Somewhat
later E. Beltrami (1835–1900) and F. C. Klein (1849–1925) constructed a model of Eu-
clidean geometry within hyperbolic geometry and thus the consistency of hyperbolic
geometry implies the consistency of Euclidean geometry. We say that Euclidean ge-
ometry and hyperbolic geometry are co-consistent.

1.6 Elliptic Geometry

After the discovery of hyperbolic geometry B. Riemann (1826–1866) proposed a geom-
etry which differed from both of these.

The Elliptic Parallel Postulate, or Riemann Parallel Postulate, which we abbreviate
RPP, is that in the planar geometry there are no parallel lines.

There were historical reasons for studying this. When geometers studied projec-
tions of one plane onto another, they built a geometry that had no parallel lines. Every
pair of lines either met in the plane or at a point at infinity. This was called projective
geometry. Further, if we consider the surface of a sphere as a plane and lines as be-
ing great circles on a sphere then there are no parallel lines. This is called spherical
geometry.

An elliptic geometry is a geometry which satisfies the elliptic parallel postulate.
We note that elliptic geometry cannot be a neutral geometry. Something must be

lost from the neutral axioms. In spherical geometry, the geometry on a sphere, lines
becomegreat circles, butweeither lose thebetweenness axioms ifwemaintain axioms
for an incidence geometry or we lose incidence geometry by allowing lines to intersect
at two points – the antipodal points of great circles.

We will examine spherical geometry closely in Chapter 6. As we will see, whereas
in hyperbolic geometry the angle sum of any triangle is less than 180°, the angle sum
in any elliptic geometry is greater than 180°.

1.7 Differential Geometry

We close this chapter by mentioning briefly differential geometry. This is the study of
geometry by using differential and integral calculus methods. Classically it was the
study of curves and surfaces in Euclidean space. Differential geometry is a vast and
important subject in modern mathematics.
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1.7 Differential Geometry | 15

We here consider curves in the real spaceℝ3, equipped with the canonical scalar
product

⟨→x ,→y ⟩ = x1y1 + x2y2 + x3y3

where

→x =(
x1
x2
x3
) and →y =(

y1
y2
y3
) .

More on the scalar product in general can be found in [12]. Curves are of course
geometric objects. The area of differential geometry has wide-ranging applications
in both other areas of mathematics and physics. The geometry of curves has been
extended beyond real spaces to what are called manifolds. Roughly speaking a real
n-manifold is a topological space that locally looks like a real n-space.Wewill not look
at general manifolds but we will examine the basic differential geometry of curves in
ℝ3 to give a little insight into the richness of differential geometry and theway ofwork-
ing in this field, especially in that of curves in ℝ3.

Curves in ℝ3 and the Serret–Frenet apparatus
First, we have to introduce the cross-product of two vectors →u and →w from ℝ3.
The cross product is a bilinear map which assigns a new vector to →u and →w,

ℝ3 × ℝ3 → ℝ3, (→u ,→w) → →u × →w.

This map is uniquely characterized by the following properties:
1. If φ ∈ [0,π] is the angle between →u and →w then ‖→u × →w‖ = ‖→u ‖‖→w‖ sin(φ).
2. If ‖→u × →w‖ ̸= 0 then →u × →w ⊥ →w and further det(→u ,→w,→u × →w) > 0.

We remark that we discuss determinants later in Chapter 2.
But anyway, for convenience we give here directly det(→u ,→w,→u × →w) via the Sarrus

principle. Let →u = (
u1
u2
u3
), →w = (

w1
w2
w3
) and →u × →w = (

v1
v2
v3
). Then det(→u ,→w,→u × →w) =

u1w2v3 + u2w3v1 + u3w1v2 − u1w3v2 − u2w1v3 − u3w2v1.

Remark 1.15. Property 1. fixes the length of the vector →u × →w and property 2. its direc-
tion.

We get

→u × →w = ‖→u × →w‖ sin(φ)→m

where→m is a unit vector perpendicular to theplane containing→u and→w in thedirection
given by the right hand rule:

If →u = (
u1
u2
u3
) and →w = (

w1
w2
w3
) then →u × →w = (

u2w3−u3w2
u3w1−u1w3
u1w2−u2w1

).
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16 | 1 Geometry and Geometric Ideas

As already mentioned, curves in ℝ3 are geometric objects. Traditionally, to study
these objects, methods from calculus are employed. We now start with the concept of
a curve in ℝ3. Certainly, this includes the case of a curve in ℝ2.

Definition 1.16.
1. A parameterized curve is a continuous map c : [a, b] → ℝ3 where [a, b] is an

interval in ℝ. The parameter t ∈ [a, b] is called time. The position vector at the

time t is →c(t) = (
c1(t)
c2(t)
c3(t)
). We call the image of c the path of c.

2. A parameterized curve c : [a, b] → ℝ3 is differentiable if c is differentiable on the
open interval (a, b).

Recall, if →c(t) = (
c1(t)
c2(t)
c3(t)
) then
→
c′(t) = (

c′1(t)
c′2(t)
c′3(t)
) stands for the derivative.

Definition 1.17.
1. A curve c : [a, b] → ℝ3 is n times continuously differentiable on (a, b) if it has

continuous derivatives on (a, b) up to the order n.
2. A curve c : [a, b] → ℝ3 is regular if it is at least two times continuously dif-

ferentiable on (a, b) with nonvanishing derivatives
→
c′(t) and

→
c′′(t) for each time

t ∈ (a, b).

Agreement:
In what follows we only consider regular curves with the described properties. In

the literature the definition is often a bit different than the one given here. One has to
consider especially times with

→
c′′(t) = →0. We want to avoid parts of the curve that are

straight lines.

Definition 1.18. Let c : [a, b]→ ℝ3 be a curve.
1. The velocity vector →vc(t) at t is the derivative

→
c′(t) of the position vector at t, that

is, →vc(t) =
→
c′(t). We call vc the velocity of c.

2. The speed at time t is the length ‖→vc(t)‖ of the velocity vector
→vc(t), and is a scalar

quantity.
3. The accelerative vector →ac(t) at time t is the derivative of the velocity vector →vc(t)

at time t, that is,

→ac(t) =
→
v′c(t) =
→
c′′(t).

We call ac the acceleration of c.

Remark 1.19. It is useful to think of t as a time parameter and picture a curve as a
particle moving along the path. Given a point P then t is the time it gets to point P.
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Examples 1.20.
1. Let c : [0, 2π]→ ℝ3,

→c(t) =(
r cos(t)
r sin(t)

0
) , r ∈ ℝ, r > 0.

Then

→
c′(t) =(

−r sin(t)
r cos(t)

0
) and 

→
c′(t) = r (constant).

2. Let c : [0, 2π]→ ℝ3,

→c(t) =(
r cos(t)
r sin(t)
ht
) , r, h constant, r, h > 0.

Then

→
c′(t) =(

−r sin(t)
r cos(t)

h
) and 

→
c′(t) = √r2 + h2 (constant).

Definition 1.21. Let c : [a, b]→ ℝ3 be a regular curve. Then length of c is defined by

length of c =
b

∫
a


→
c′(t)dt,

that is, to get the length we integrate speed with respect to time.

Example 1.22. Let →c(t) = (
r cos(t)
r sin(t)

0
), 0 ≤ t ≤ 2π. Then

length of c =
2π

∫
0


→
c′(t)dt =

2π

∫
0

r dt = 2πr

Definition 1.23. Let c : [a, b]→ ℝ3 be a regular curve. Then c is a constant speed curve
if ‖
→
c′(t)‖ = const =: k for all times. It is a unit speed curve if ‖

→
c′(t)‖ = 1 for all times.

Reparameterizations
Given a regular curve c : [a, b]→ ℝ3.
Traversing the same path at a different speed (and perhaps in the opposite direc-

tions) amounts what is called reparameterization.
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Definition 1.24. Let c : [a, b] → ℝ3 be a regular curve. Let h : [d, e] → [a, b] be a
continuous map such that h : (d, e) → (a, b) is a diffeomorphism between (d, e) and
(a, b).

Then c̃ = c ∘ h : [d, e]→ ℝ3 is a regular curve, called a reparameterization of c. We
have →c̃(u) = →c(h(u)) where t = h(u).

Example 1.25. Let c : [0, 2π] → ℝ3, →c(t) = (
cos(t)
sin(t)
0
). Take the reparameterization func-

tion h : [0,π]→ [0, 2π], t = h(u) = 2u. Then

→c̃(u) = →c(t), →c̃(u) =(
cos(2u)
sin(2u)

0
) .

Note, c̃ describes the same circle, but traversed twice as fast, so speed of c = ‖
→
c′(t)‖ = 1

and speed of c̃ = ‖
→
c̃′(u)‖ = 2.

Remarks 1.26.
1. The curves c and c̃ describe the same path in ℝ3, just traversed at different speed

(and perhaps in opposite directions).
2. Compare velocities: Let →c̃(u) = →c(h(u)). By the chain rule, recall t = h(u), we get

d→c̃(u)
du
=
d→c(t)
dt
⋅
dt
du
=
d→c(t)
du

h′.

If h′ > 0 then we have an orientation preserving reparametrization, and if h′ < 0
an orientation reversing one.

Lemma 1.27. The length formula is independent of parameterization, that is,
if c̃ : [d, e]→ ℝ3 is a reparameterization of c : [a, b]→ ℝ3 then

length of c̃ = length of c.

Lemma 1.28. Regular curves always admit a very important reparameterization. They
can always be parameterized in term of arc length which we define now.

Along a regular curve c : [a, b] → ℝ3 there is a distinguished parameter called arc
length parameter or the natural parameter. Fix t0 ∈ [a, b]. Define the following function
(arc length function)

s = s(t), t ∈ [a, b], s(t) =
t

∫
t0


→
c′(τ) dτ.

Thus, if t > t0, then s(t) = length of c from t0 to t, and if t < t0, then s(t) = − length of c
from t0 to t.
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By the fundamental theorem of calculus s = s(t) is strictly increasing and so can
be solved for t in terms of s, t = t(s) (reparameterization function). Then →c̃(s) = →c(t(s))
is the arc length reparameterization of c. Hence, we get the following.

Theorem 1.29. A regular curve admits a reparameterization in terms of arc length.

Example 1.30. Reparameterize the circle

→c(t) =(
r cos(t)
r sin(t)

0
) , t ∈ [0, 2π],

in terms of arc length parameter, that is, up to a trivial translation of parameters, s = t.
Hence unit speed curves are already parameterizedwith respect to arc length (asmea-
sured from some point). Conversely, if c is a regular curve parameterized with respect
to arc length s then c is unit speed, that is, ‖

→
c′(s)‖ = 1 for all s. Hence, the phrases

“unit speed curve” and “curve parameterized with respect to arc length” are used in-
terchangeably.

We may rewrite that in the following theorem.

Theorem 1.31. Any regular curve c : [a, b] → ℝ3 has a unit speed parameterization.
The parameterization is in terms of the arc length parameter.

In the followingwe introduce the Serret–Frenet apparatus. It is named after J. Ser-
ret (1819–1885) and J. E. Frenet (1816–1902). Because of all the details of calculations
we relax the notation and write c for the curve and often →c for the position vector at a
time t. The Serret–Frenet apparatus consists of three vector functions and two scalar
functions which provide a complete characterization of a regular curve. Also for these
and related vectors wemostly write just →x instead of →x(t) if there is the time parameter
t for them.

We first introduce the Frenet vectors which provide a rectangular frame at every
point on the curve that is calledmoving trihedron.

We will assume that we have a unit speed curve c parameterized by the natural
parameter which is now called t.

The first vector is the unit tangent vector →tc(t) at the point
→c(t). This is the normal-

ized velocity vector at time t, so that

→tc =
→
c′


→
c′
=
→vc
‖→vc‖

(at time t).

Since→tc is a unit vector, we have ⟨
→tc ,
→tc⟩ = 1 and hence the derivate of ⟨

→tc ,
→tc⟩ is 0. Then

we have by the product rule ⟨→tc ,
→
t′c⟩ = 0, and therefore

→
t′c is a perpendicular to

→tc . The
vector
→
t′c is called the curvature vector (at time t).
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The direction of
→
t′c tells us whichway the curve is bending. Its magnitude ‖

→
t′c‖ tells

us how much the curve is bending, ‖
→
t′c‖ is called the curvature (at time t). Recall that

‖
→
t′c‖ ̸= 0 at each time by agreement.

Definition 1.32. Let c be a unit speed curve. The curvature κ = κ(t) of c is

κ = κ(t) = 
→
t′c
 =

→
c′′ ̸= 0.

Conceptually, the definition of curvature is the right one.
Using the chain rule one canobtain a formula for computing curvaturewhichdoes

not require that the curve be parameterized with respect to arc length.
Let c : [a, b]→ ℝ3 be a regular curvewith time t. We reparameterize cwith respect

to the arc length s:

c : [d, e]→ ℝ3, s = s(t).

So by the chain rule

→tc(t)
dt
=
d→tc(s)
ds
⋅
ds
dt
=
d→tc(s)
ds
⋅


d→c(t)
dt


.

Hence,



d→tc(t)
dt


=


d→c(t)
dt


⋅


d→tc(s)
ds

⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
=κ

.

Lemma 1.33. It holds

κ =
‖ d
→tc(t)
dt ‖

‖ d
→c(t)
dt ‖
.

We choose →nc to be a principal unit normal vector along t as

→nc =
→
t′c
‖
→
t′c‖
=

→
t′c
κ
.

To define the final Frenet vector we choose →bc =
→tc × →nc. This is called the binormal

vector. As already mentioned, at each time these three vectors are mutually perpen-
dicular unit vectors which form a moving trihedron.

We now describe a set of relations between Frenet vectors and their derivatives,
called the Serret–Frenet formulas.

Note, that the definition of →nc implies
→
t′c = κ
→nc. The plane formed by →tc and →nc is

called the kissing plane or osculating plane for c. We finally choose →bc =
→tc × →nc (at
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time t). This →bc is called the binormal vector (at t). As a unit vector the unit normal
vector
→
n′c is orthogonal to

→nc, and so
→
n′c is in the (

→tc ,
→bc)-plane.

This implies
→
n′c = α
→tc + β
→bc for some scalar functions α and β. Now the binormal

vector is →bc =
→tc × →nc.

Then ‖→bc‖ = 1, so
→
b′c is orthogonal to

→bc. But

→
b′c =
→tc ×
→
n′c +
→
t′c ×
→nc =
→tc ×
→
n′c

by the definition of →nc and
→
t′c ×
→
t′c =
→0. Then

→tc ×
→
n′c =
→tc × (α
→tc + β
→bc) = −τ→nc

for a scalar function τ. This function τ = τ(t) is called the torsion.
Finally, →nc =

→bc ×
→tc which gives

→
n′c =
→bc ×
→
t′c +
→
b′c ×
→tc = −κ
→tc + τ
→bc.

Hence we have the following Theorem.

Theorem 1.34 (Serret–Frenet formulas for unit speed curves).

→
t′c = κ
→nc,

→
n′c = −κ
→tc + τ
→bc,

→
b′c = −τ
→nc.

Theoretically, any question about regular curves can be answered using the
Serret–Frenet apparatus.

In the next subsection we continue to consider some important examples using
the Serret–Frenet apparatus.

Remark 1.35. For a general speed curvewe just get the Serret–Frenet formulas bymul-
tiplying by the speed (see Lemma 1.33).

Then we get the following corollary.

Corollary 1.36 (Serret–Frenet formulas for general speed curves).

→
t′c = κ

→
c′
→nc

→
n′c = −κ

→
c′
→tc + τ

→
c′
→bc

→
b′c = −τ‖

→
c′‖→nc.
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If we look at the Taylor series, named after B. Taylor (1685–1731), expansion for a
unit speed curve we gain a better understanding of the curvature and the torsion. The
first two terms give the best linear approximation and involve the unit tangent →t(0).
The first three terms give the best quadratic approximation.

This appears in the (→tc ,→nc)-plane and is controlled by the curvature. The torsion τ
controls the twisting orthogonal to the kissing plane.

1.7.1 Some Special Curves

In this subsection we consider general speed curves. We use the Serret–Frenet appa-
ratus to study special curves inℝ3. The first question we look at is to determine when
a curve is planar, that is, lies completely in a plane. Since the torsion measures the
twisting out of a plane the answer easily is that a curve will be planar if and only if
its torsion is τ = 0. Without loss of generality we may assume that the curve is of unit
speed.

Theorem 1.37. A unit speed curve c lies completely in a plane if and only if its torsion is
τ = 0.

Proof. A plane E is determined by a point P0 ∈ E and a normal vector →v orthogonal
to E. Suppose that c : [a, b]→ ℝ3 is a unit speed curve and planar.

Then there exists a fixed vector →q such that ⟨(→c(t) − →c(a)),→q ⟩ = 0. This implies on
taking derivatives that ⟨

→
c′(t),→q ⟩ = 0, that is, ⟨→tc ,→q ⟩ = 0. Differentiating again gives

⟨
→
c′′(t),→q ⟩ = 0, that is, ⟨→nc,→q ⟩ = 0.

Therefore, →q is always orthogonal to →tc and →nc, and hence in the direction of
→bc.

Since →q is fixed this implies that →bc is constant, so
→
b′c =
→0. Since

→
b′c = −τ

→nc, it
follows that τ = 0.

Conversely, suppose τ = 0. Then →bc is a constant. Let g(t) = ⟨(
→c(t) − →c(a)),→bc(t)⟩.

Then g′(t) = ⟨→tc(t),
→bc(t)⟩ = 0. Therefore g(t) is a constant and since g(a) = 0 we have

g(t) = 0 for all t and hence →c(t) is planar with binormal vector →bc (in fact, it lies in the
kissing plane).

The next question we look at is when a curve is circular or part of a circle. Again
we may assume that the curve is of unit speed.

Theorem 1.38. A unit speed curve c is part of a circle of radius r if and only if τ = 0 and
κ = 1

r .

Proof. It is straightforward to see that τ = 0 and κ = constant ̸= 0. Now, suppose τ = 0
and κ is constant. Then consider

→g(t) = →c(t) + 1
κ
→nc(t).
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Then we get

→
g′ =
→
c′ + 1

κ
→
n′

= →tc +
1
κ
(−κ→tc + τ

→bc)

= →tc −
→tc = 0 at time t.

Therefore→g(t) = →p is a constant. Hence→c(t)+ 1κ
→nc(t) = →p and further→c(t)−→p = − 1κ

→nc(t).
Thus, ‖→c(t) − →p ‖ = 1

κ . Therefore c lies on a circle with center
→p and radius 1

κ .

A curve c : [a, b] → ℝ3 is a cylindrical helix if there exists a fixed vector →u and a
fixed angle α such that ⟨→tc ,→u ⟩ = cos(α) at each point on the curve, that is, →u makes
the same angle with the tangent →tc at each point. We next completely characterize
cylindrical helixes. Again we may assume that the curve is of unit speed.

Theorem 1.39. A unit speed curve c : [a, b] → ℝ3 is a cylindrical helix if and only if the
ratio κ

τ is constant.

Proof. Certainly, we have τ ̸= 0 for a unit speed cylindrical helix.
Suppose c is a cylindrical helix. Then there exists an angle α and a fixed vector

→u with ⟨→tc ,→u ⟩ = cos(α) for each time t. Hence, ⟨κ→nc,→u ⟩ = 0 for each t, so →u is a unit
vector in the (→tc ,

→bc)-plane. Therefore →u = cos(θ)
→tc + sin(θ)

→bc. Taking ⟨
→tc ,→u ⟩ = cos(α)

implies θ = α and →u = cos(α)→tc(t) + sin(α)
→bc(t).

Differentiating gives

0 = cos(α)κ→nc − sin(α)τ→nc
= (cos(α)κ − sin(α)τ)→nc

and, hence,

cos(α)κ − sin(α)τ = 0

and κ
τ = cot(α) is a constant.
Conversely, suppose κ

τ is a constant. Then there exists an angle with cot(α) = κ
τ .

Let

→U = cos(α)→tc + sin(α)
→bc.

Then
→
U ′ = →0, so →U is constant and ⟨→tc ,

→U⟩ = cos(α) by the Serret–Frenet formulas.
Therefore c is a cylindrical helix.

In theory, the Serret–Frenet formulas can answer any question involving curves.
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1.7.2 The Fundamental Existence and Uniqueness Theorem

In this subsection we prove that a regular curve is completely determined, except for
the position in space, by its natural parameters, that is, its curvature and its torsion.
Using the chain rule we may calculate curvature and torsion for an arbitrary param-
eterized regular curve (Lemma 1.33). Hence, the above statement holds for regular
curves in general (see Theorem 1.29). Hence, we now assume that c : [a, b] → ℝ3

is a unit speed curve.
The intrinsic equations for c are the curvature and torsion functions. With respect

to the positions we need isometries. We consider isometries in general in Chapter 2.
For this subsection we just need the special case ℝ3.

An isometry of ℝ3 is a mapping f : ℝ3 → ℝ3 with ‖→x − →y ‖ = ‖→f (x) − →f (y)‖ for all
→x ,→y ∈ ℝ3, that is, f preserves distances. Two curves c1 and c2 are congruent if there
exists an isometry f with c2 = f (c1) for the paths of c1 and c2.Wewill discuss isometries
in a more general setting in the next chapter.

Theorem 1.40 (Fundamental existence and uniqueness theorem for curves). Let κ(t),
τ(t) be arbitrary continuous functions on [a, b]. Then except for the position in space
there exists a unique unit speed curve with curvature κ(t) and torsion τ(t) as functions
of a natural parameter.

Proof. We prove the uniqueness first. Suppose that c : [a, b] → ℝ3 is a unit speed
curve with curvature κ(t) and torsion τ(t) at time t. We show that any unit speed curve
on [a, b] with the same curvature and torsion is congruent to c.

Suppose that c∗ : [d, e]→ ℝ3 is another unit speed curve with the same curvature
and torsion. Move c∗ so that

→
c∗(d) = →c(a). Next rotate →tc∗ ,→nc∗ and

→bc∗ so that they
coincide at t = a with →tc , →nc and

→bc.
Let c∗∗ be the new curve. We show that

→
c∗∗(t) = →c(t). Now

d
dt
⟨→tc ,
→tc∗∗⟩ = ⟨κ→nc,

→tc∗∗⟩ + ⟨κ
→tc ,→nc∗∗⟩,

d
dt
⟨→nc,→nc∗∗⟩ = ⟨−κ

→tc + τ
→bc,→nc∗∗⟩ + ⟨→nc,−κ

→tc∗∗ + τ
→bc∗∗⟩,

d
dt
⟨
→bc,
→bc∗∗⟩ = ⟨−τ→nc,

→bc∗∗⟩ + ⟨−τ→nc∗∗ ,
→bc⟩.

These then sum to zero, so

d
dt
(⟨→tc ,
→tc∗∗⟩ + ⟨→nc,→nc∗∗⟩ + ⟨

→bc,
→bc∗∗⟩) = 0.

Hence

⟨→tc ,
→tc∗∗⟩ + ⟨→nc,→nc∗∗⟩ + ⟨

→bc,
→bc∗∗⟩ = m = constant,
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but →tc(a) =
→tc∗∗ (a),

→nc(a) =
→nc∗∗ (a) and

→bc(a) =
→bc∗∗ (a), som = 3. However ‖⟨

→tc ,
→tc∗∗⟩‖ ≤

1, ‖⟨→nc,→nc∗∗⟩‖ ≤ 1, ‖⟨
→bc,
→bc∗∗⟩‖ ≤ 1 and so ⟨→tc ,

→tc∗∗⟩ = 1 and since →tc and
→tc∗∗ are unit

vectors, it follows that →tc =
→tc∗∗ . Now

→tc =
d→c(t)
dt
=
d
→
c∗∗(t)
dt
= →tc∗∗ .

Hence →c(t) =
→
c∗∗(t) + →k1,

→k1 is a constant, but
→c(a) =
→
c∗∗(a), so →k1 =

→0.
Given κ(s) and τ(s), the existence of a unit speed curvewith this curvature and tor-

sion follows from the existence theorem for ordinary differential equations (see [26]).
(In fact, the Serret–Frenet equations give nine scalar differential equations. From

the fundamental existence theorem for ordinary differential equations there exist so-
lutions. Then given →tc we define

→c(t) = ∫ta
→tc(σ)dσ.)

1.7.3 Computing Formulas for the Curvature, the Torsion and the Components of
Acceleration

Using the velocity and the acceleration there are some straightforward formulas for a
regular curve. First, let vc be the velocity and ac the acceleration. Then

→tc =
→vc
‖→vc‖

.
We now assume that the regular curve is in addition three times continuously dif-

ferentiable. We differentiate the velocity vc to get the acceleration ac. We have then
→vc = ‖→vc‖

→tc and further

→ac = ‖→vc‖
→
t′c +

→
v′c

→tc ,

and hence

→ac = κ‖→vc‖
2→nc +
→
t′c at time t.

This gives

→vc × →ac = ‖→vc‖
→tc × (κ‖→vc‖

2→nc +
→
t′c) = κ

→vc

3→bc at time t.

Therefore →bc is in the direction of →vc × →ac at time t.
Since →bc(t) is a unit vector, we get then

→bc(t) =
→vc(t) ×
→ac(t)

‖→vc(t) ×
→ac(t)‖
.

Further examination will lead us to how to compute the curvature and the torsion. We
have

‖→vc × →ac‖ = κ‖→vc‖
3,
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that is,

κ = ‖
→vc × →ac‖
‖→vc‖3

at time t.

To find the torsion, we consider
→
c′′′, what we assume to exist in this subsection. We

get
→
c′′′ = κ‖→vc‖

2→n′c + (κ‖→vc‖
2)
′ →nc +

→
v′c

→
t′c +

→
v′′c

→tc

= α→tc + β→nc + κτ‖→vc‖
3→bc,

hence

⟨→vc × →ac,
→
c′′′⟩ = κ2τ‖→vc‖

6 at time t,

and therefore

τ = ⟨
→vc × →ac,

→
c′′′⟩

κ2‖→vc‖6

6

=
⟨→vc × →ac,

→
c′′′⟩

‖→vc × →ac‖2
.

Example 1.41. Consider the curve c with →c(t) = (
2
t2
1
3 t

3 ) and compute the Serret–Frenet

apparatus.

→vc =(
2
2t
t2
) , →ac =(

0
2
2t
) , →tc =

1
t2 + 2
(

2
2t
t2
) ,

→vc × →ac =(
2t2

−4t
4
) , ‖→vc × →ac‖ = 2t

2 + 4, →bc =
1

2t2 + 4
(

2t2

−4t
4
)

and hence

κ = 2t2 + 4
(2t2 + 2)3

.

Now

→
c′′′ =(

0
0
2
) , τ = ⟨

→vc × →ac,
→
c′′′⟩

‖→vc × →ac‖2
,

and hence

τ = 8
(2t2 + 4)2

.
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1.7.4 Integration of Planar Curves

We consider plane curves, so that τ = 0. For such curves it is always possible to inter-
pret the Serret–Frenet equations to obtain the parameterization of the curve. Let ϕ be
the angle that is made by →tc with the x-axis. For planar curves the slope of this is the
derivation (considering the plane as the (x, y)-plane). Then ϕ = ∫ κ(t)dt + γ1, where
dϕ
dt = κ(t).

Example 1.42. We show that the equations κ(t) = 1
t , τ = 0, t > 0 are the intrinsic

equations of a logarithmic spiral. We have dϕ
dt = κ(t) =

1
t , then ϕ = log(t) + γ1, while

this implies that t = eϕ−γ1 . This leads to κ(t) = 1
t = e
−(ϕ−γ1).

Then by integrating the Serret–Frenet equations for planar curves (τ = 0 implies
planarity):

→c(ϕ) = ∫ 1
κ(ϕ)
(
cos(ϕ)
sin(ϕ)
) dϕ = ∫ eϕ−γ1 (cos(ϕ)

sin(ϕ)
) dϕ

= (
1
2e

ϕ−γ1 (cos(ϕ) + sin(ϕ))
1
2e

ϕ−γ1 (sin(ϕ) − cos(ϕ))
) + γ2.

Choose γ1 =
π
4 ,
→γ2 =
→0, ϕ = Θ + 1

4 .
Then

→c(ϕ) = 1
√2

eΘ (cos(Θ)
sin(Θ)
)

which in polar coordinates is

r(Θ) = 1
√2

eΘ

and hence a log spiral.

Exercises

1. Given an affine (n + 1)-space An+1, show that we obtain a projective n-space Pn by
considering points as 1-dimensional subspaces of it.

2. Prove Theorem 1.2, that is, in any affine geometry a line parallel to one of two
intersecting lines must intersect the other. This implies that in an affine geometry
parallelism is transitive.

3. Prove the following theorem.

Theorem. In a finite projective geometry the following are true:
(a) All lines contain the same number of points.
(b) If each line has n points then each point is on exactly n lines.
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(c) If each line has n points then there exists exactly n2 − n + 1 points and n2 − n + 1
lines.

(Hint: Follow the proof for a finite affine geometry modified in that there are no
parallel lines.)

4. Show that the minimal model for a planar affine geometry (the affine geometry
with the smallest number of points) has 4 points and 6 lines.

5. Let K be a field. We define the affine plane A2(K) by taking as points the pairs
(x, y) ∈ K2 and as lines the sets

ℓc = {(x, y) ∈ K
2 | x = c} with c ∈ K

and

ℓm,b = {(x, y) ∈ K
2 | y = mx + b} withm, b ∈ K.

Show that A2(K) satisfies the axioms of a planar affine geometry. In particular,
show that A2(ℤ2) represents the minimal model of a planar affine geometry.

6. Show that in a neutral geometry, given a point P and a line ℓwith P ∉ ℓ, if there is
more than one parallel to ℓ through P, there must be infinitely many parallels.
(Hint: As discussed, if there is more than one parallel there is an angle of paral-
lelism which is less than 90°. Show that any line which is interior to the angle of
parallelism is also parallel to ℓ.)

7. In Euclidean geometry, given three lines l, g and k such that k intersects l and g,
assume that one external angle is equal to the inner one opposite on the same side
or that the sum of the inner angles on the same side is 180°. Show that l and g are
parallel.

8. Complete the proof of Theorem 1.6. Show that

∢(CA,CD) > ∢(BA,BC).

9. Show that in a neutral geometry the following are equivalent:
(a) The Euclidean Parallel Postulate.
(b) The angle sum of any triangle is 180°.

10. Given a finite set S of points in the Euclidean planeℝ2, either all points are on one
line, or there exists one linewhich contains exactly two of the points (J. J. Sylvester
(1814–1987)).
(Hint: Assume that not all points are on one line and that each line through two
points of S contains a third point of S. Let L be the set of connecting lines which
contain at least two points of S. Show that there cannot exist a line ℓ from L and
a point P from S which is not on ℓ such that the distance from ℓ to P is minimal
under all distances from such line–point distances.)
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11. Each set of n > 2 points in the Euclidean plane which are not all in one line deter-
mines at least n distinct connecting lines (P. Erdős (1913–1996)).
(Hint: Use Exercise 10 and induction on n.)

12. Show that, in the context of Euclidean geometry, with the other four axiom sets,
the axiom of parallels is equivalent to the existence of non-congruent similar tri-
angles, that is, non-congruent triangles for which the corresponding angles have
the same measure.

13. In neutral geometry, given triangle ABC and angle ∢(AB,AC). Then there exists a
triangle A1B1C1 with the same angle sum as a triangle ABC and

∢(A1B1,A1C1) ≤
1
2
∢(AB,AC).

(Hint: Let E be the midpoint of BC. Construct F such that AE ≡ EF. Show that
AEB ≡ CEF.)

14. Prove Lemma 1.27.
(Hint: Use the fact that ‖

→
c′(t)‖ > 0.)

15. Reparameterize the curve c : [0, 2π] → ℝ3, →c(t) = (
r cos(t)
r sin(t)
ht
), r, h > 0, in terms of

arc length parameter.
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2 Isometries in Euclidean Vector Spaces and their
Classification inℝn

2.1 Isometries and Klein’s Erlangen Program

In the previous chapter wementioned an approach to geometry introduced by F. Klein
(1849–1925) in his Erlanger Programm in 1885. This is called the transformation group
approach. In this method, a geometry is defined on a set by those properties of the set
which are invariant or unchanged under the action of some group of transformations
of the set. This group of transformations is called the group of congruence motions of
the geometry and in this approach knowing the geometry is equivalent to knowing the
congruence group.

For example, in this approach, planar Euclidean geometry would consist of those
properties of the Euclidean plane, defined as a real two-dimensional space equipped
with the ordinarymetric, that are invariant under a group called the group of Euclidean
motions. This group consists of all the isometries or distance preserving mappings
of the plane to itself. In this geometry two figures would be congruent if one can be
mapped to the other by an isometry or congruence motion. In this chapter we consider
the transformation group approach to Euclidean geometry by studying the Euclidean
group of motions [5]. This chapter can be considered as the bridge to the book [12]. In
[12] we considered the algebraic part of Euclidean vector spaces. Here we start with
their geometric part.

In order to form the Euclidean group, we start with Euclidean vector spaces V ,
which are real vector spaces equipped with a scalar product. We then consider isome-
tries which are mappings f : V → V which preserve distance.

If, in addition, we define F : V → V , F(v⃗) := f (v⃗) − f (0⃗), then F preserves angles
and hence maps geometric figures to congruent geometric figures.

Recall that distance in a Euclidean vector space can be computed via the scalar
product or inner product. We then define an isometry via scalar products.

Definition 2.1. Let V be a Euclidean vector space with scalar product ⟨ , ⟩. Let f :
V → V be a mapping and F : V → V , F(v⃗) = f (v⃗) − f (0⃗). We call f an isometry if

⟨F(v⃗), F(w⃗)⟩ = ⟨v⃗, w⃗⟩ for all v⃗, w⃗ ∈ V .

An isometry f : V → V is called a linear isometry if in addition f (0⃗) = 0⃗.

If f is an isometry then certainly F is a linear isometry.

Lemma 2.2. Each isometry f : V → V is injective.

Proof. Consider v⃗, w⃗ ∈ V with f (v⃗) = f (w⃗). Then also F(v⃗) = F(w⃗), and

0 = ⟨F(v⃗) − F(w⃗), F(v⃗) − F(w⃗)⟩

https://doi.org/10.1515/9783110740783-002
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32 | 2 Isometries in Euclidean Vector Spaces and their Classification in ℝn

= ⟨F(v⃗), F(v⃗)⟩ − 2⟨F(v⃗), F(w⃗)⟩ + ⟨F(w⃗), F(w⃗)⟩
= ⟨v⃗, v⃗⟩ − 2⟨v⃗, w⃗⟩ + ⟨w⃗, w⃗⟩
= ⟨v⃗ − w⃗, v⃗ − w⃗⟩.

Hence, v⃗ = w⃗. Therefore f is injective.

Remark 2.3. If V is infinite-dimensional, then an isometry f : V → V is not necessar-
ily surjective. The reason is the following.

Let ℬ be an infinite basis of V and e⃗ ∈ ℬ. Then there is a bijection φ : ℬ → ℬ \ {e⃗}.
But we have the following.

Lemma 2.4. If G = {f : V → V | f an isometry and bijective} then G is a group with
respect to the composition.

Proof. We have G ̸= 0 because the identity idV is in G.
Let f ∈ G and F : V → V , F(v⃗) = f (v⃗) − f (0⃗). F is a linear isometry and bijec-

tive. Hence, if f ∈ G then also F ∈ G, and vice versa. Therefore it is enough to prove
Lemma 2.4 for linear isometries. Let f , g ∈ G be linear isometries. The composition of
the two elements f , g ∈ G is in G, because

⟨f ∘ g(v⃗), f ∘ g(w⃗)⟩ = ⟨f (g(v⃗)), f (g(w⃗))⟩ = ⟨g(v⃗), g(w⃗)⟩ = ⟨v⃗, w⃗⟩,

and f ∘ g is bijective.
The associative rule holds in general for the composition of maps.
The identity idV is the identity element of G.
Let f ∈ G be a linear isometry. We finally have to show that the inverse mapping

f −1 : V → V is an isometry, that is, we have to show that

⟨f −1(v⃗), f −1(w⃗)⟩ = ⟨v⃗, w⃗⟩.

Since f is bijective there exist x⃗, y⃗ ∈ V with f (x⃗) = v⃗, f (y⃗) = w⃗. This gives

⟨f −1 ∘ f (x⃗), f −1 ∘ f (y⃗)⟩ = ⟨x⃗, y⃗⟩ = ⟨f (x⃗), f (y⃗)⟩,

which holds because f is a linear isometry.
Therefore

⟨f −1(v⃗), f −1(w⃗)⟩ = ⟨v⃗, w⃗⟩.

Hence, G is a group.

We next show how isometries preserve distance and angle.

Lemma 2.5. Let V be an Euclidean vector space, f : V → V be an isometry on V and
F : V → V, F(v⃗) = f (v⃗) − f (0⃗). Then f preserves distance, and F preserves distance
and angle. That is, if u⃗, v⃗ ∈ V then ‖u⃗ − v⃗‖ = ‖f (u⃗) − f (v⃗)‖ = ‖F(u⃗) − F(v⃗)‖ and ∢(u⃗, v⃗) =
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∢(F(u⃗), F(v⃗)). It follows that if M is any geometric figure in V then f (M) ≡ M, that is, f
maps a geometric figure to a congruent geometric figure.

Proof. Let f : V → V be an isometry and v⃗ ∈ V . We may assume that f is a linear
isometry. Then

‖v⃗‖ = √⟨v⃗, v⃗⟩ = √⟨f (v⃗), f (v⃗)⟩ = f (v⃗)
.

Hence a linear isometry preserves norm and so directly preserves distance and angle,
which are defined in terms of scalar product and norm.

Lemma 2.6. Let f : V → V be a linear isometry.
(a) If f (v⃗) = λv⃗ for some λ ∈ ℝ, v⃗ ̸= 0⃗, then |λ| = 1.
(b) v⃗ ⊥ w⃗ ⇔ f (v⃗) ⊥ f (w⃗) for all v⃗, w⃗ ∈ V.

Proof. Claim (b) holds by definition, but follows also from Lemma 2.5. We now prove
claim (a):

Suppose f (v⃗) = λv⃗ with v⃗ ̸= 0⃗. Since f is injective we have λ ̸= 0. Then

‖v⃗‖ = f (v⃗)
 = ‖λv⃗‖ = |λ|‖v⃗‖,

hence |λ| = 1.

Remark 2.7. Since isometries are not necessarily bijective, from now on we always
assume that V is a finite-dimensional Euclidean vector space. In this case we have
that isometries are not only injective, they are already bijective.

Theorem 2.8. Let V be a finite-dimensional Euclidean vector space with scalar product
⟨ , ⟩. Then the following hold:
(1) Let f : V → V be an isometry with v⃗0 = f (0⃗). We define τ ⃗v0 : V → V, v⃗ → f (v⃗) + v⃗0.

Let f ′ be the map defined by f = τ ⃗v0 ∘ f
′, that is, f ′ : V → V, v⃗ → f (v⃗) − v⃗0. Then f ′

is a linear isometry.
(2) Let f : V → V be a linear isometry. Then f is a linear transformation of V.
(3) Let f : V → V be an isometry. Then f is bijective.

Recall that a map f : V → V is a linear transformation if f (v⃗ + w⃗) = f (v⃗) + f (w⃗),
f (rv⃗) = rf (v⃗) for all v⃗, w⃗ ∈ V and r ∈ ℝ.

Proof. (1) Since v⃗0 = f (0⃗) and f is an isometry, we get

⟨f ′(v⃗), f ′(w⃗)⟩ = ⟨f (v⃗) − v⃗0, f (w⃗) − v⃗0⟩
= ⟨f (v⃗) − f (0⃗), f (w⃗) − f (0⃗)⟩
= ⟨v⃗, w⃗⟩.

Hence, f ′ is a linear isometry.
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(2) Letℬ = {b⃗1, b⃗2, . . . , b⃗n} be an orthonormal basis ofV and b⃗′i = f (b⃗i) for i = 1, 2, . . . , n.
Then ℬ′ = {b⃗′1, b⃗

′
2, . . . , b⃗

′
n} also is an orthonormal basis of V because certainly

⟨b⃗′i , b⃗
′
j⟩ = ⟨f (b⃗i), f (b⃗j)⟩ = ⟨b⃗i, b⃗j⟩ = δij,

and by [12, Lemma 14.24], b⃗′1, b⃗
′
2, . . . , b⃗

′
n are linearly independent and therefore

form a basis of V . Hence, if v⃗ ∈ V , we have a linear combination

v⃗ =
n
∑
i=1

xib⃗i, xi ∈ ℝ and f (v⃗) =
n
∑
j=1

λjb⃗
′
j , λj ∈ ℝ.

We calculate the λj. From

⟨f (v⃗), b⃗′i⟩ =⟨
n
∑
j=1

λjb⃗
′
j , b⃗
′
i⟩

=
n
∑
j=1

λj⟨b⃗
′
j , b⃗
′
i⟩

= λi

we get

λi = ⟨f (v⃗), f (b⃗i)⟩ = ⟨v⃗, b⃗i⟩ = xi, i = 1, 2, . . . , n,

which is independent of f .
For each i the map

v⃗ → ⟨v⃗, b⃗i⟩b⃗
′
i

is a linear transformation, andhence f is a linear transformation as a sumof linear
transformations.

(3) In any case f is injective by Lemma 2.2. Consider v⃗0 = f (0⃗), τ ⃗v0 : V → V , v⃗ → v⃗+ v⃗0
and f ′ defined by f = τ ⃗v0 ∘ f

′, that is, f ′ : V → V , v⃗ → f (v⃗) − v⃗0.
By (1) and (2) then f ′ is an injective linear transformation. Since V is finite-
dimensional, f ′ (as a linear transformation) is in fact bijective (recall if ℬ =
{b⃗1, b⃗2, . . . , b⃗n} is a basis of V then also ℬ′ = {f ′(b⃗1), f ′(b⃗2), . . . , f ′(b⃗n)} is a basis
of V because f ′ is an injective linear transformation). Therefore also f is bijec-
tive.

Remark 2.9. We call a map τ ⃗v0 : V → V , v⃗ → v⃗ + v⃗0, a translation by v⃗0.
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Corollary 2.10. Let f : V → V be an isometry, where V is as in Theorem 2.8. Then there
exists a translation τ : V → V and a linear isometry f ′ : V → V such that f = τ ∘ f ′.

Before proceeding to describe the various different types of isometries, we recall
the importance that triangles play in the congruence theory of planar Euclidean ge-
ometry (see Chapter 1). The next theorem explains why in terms of isometries.

Theorem 2.11. Let ℝ2 be the two-dimensional real vector space equipped with the
canonical scalar product. Then an isometry f : ℝ2 → ℝ2 is completely determined by
its action on three non-collinear points, that is, on a triangle.

Proof. Let f : ℝ2 → ℝ2 be an isometry and A, B, and C three non-collinear points.
First we show that if f (A) = A, f (B) = B, f (C) = C then f (P) = P for any point. Suppose
P ̸= f (P). Then, since f preserves distance, the distance from A to P is the same as the
distance from f (A) = A to f (P). Therefore A is equidistant from P and f (P) and hence
on the perpendicular bisector of Pf (P). The same is true forB andC andhence all three
are on the perpendicular bisector of Pf (P), contradicting that they are non-collinear.
Hence P = f (P). Now suppose that g is another isometry with f (A) = g(A), f (B) = g(B),
f (C) = g(C). As explained, isometries have inverses and therefore

f ∘ g−1(A) = A, f ∘ g−1(B) = B, f ∘ g−1(C) = C.

It follows from the first argument that f ∘ g−1(P) = P for any point P and therefore
f (P) = g(P) for any point P.

Remark 2.12. In what follows we need some facts about linear transformations and
matrices which we describe now.

Letℬ = {b⃗1, b⃗2, . . . , b⃗n} be a basis ofℝn. Let f : ℝn → ℝn be a linear transformation,
that is, we have f (v⃗ + w⃗) = f (v⃗) + f (w⃗), f (rv⃗) = rf (v⃗) for all v⃗, w⃗ ∈ ℝn, r ∈ ℝ. Since ℬ is a
basis we have representation

f (b⃗1) =
n
∑
i=1

ai1b⃗i,

f (b⃗2) =
n
∑
i=1

ai2b⃗i,

...

f (b⃗n) =
n
∑
i=1

ainb⃗i

with uniquely determined aij ∈ ℝ. This means, that f is, with respect to the fixed ba-
sis, uniquely characterized by the real numbers aij, and these we may pool as a ma-
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trix

Aℬ(f ) = A =(

a11 a12 . . . a1n
a21 a22 . . . a2n
...

...
. . .

...
an1 an2 . . . ann

) ∈ M(n × n,ℝ).

We often write just A = (aij) and denote the special matrix

((((

(

1 0 . . . . . . 0

0 1
. . .

...
...

. . . . . . . . .
...

...
. . . 1 0

0 . . . . . . 0 1

))))

)

,

the nth unit matrix, by En. If f , g : ℝn → ℝn are linear transformations, and if, with a
fixed basis ℬ, f corresponds to A ∈ M(n × n,ℝ) and g corresponds to B ∈ M(n × n,ℝ),
then the matrix

AB =(

a11 a12 . . . a1n
a21 a22 . . . a2n
...

...
. . .

...
an1 an2 . . . ann

)(

b11 b12 . . . b1n
b21 b22 . . . b2n
...

...
. . .

...
bn1 bn2 . . . bnn

) =(

c11 c12 . . . c1n
c21 c22 . . . c2n
...

...
. . .

...
cn1 cn2 . . . cnn

)

with

cij =
n
∑
k=1

aikbkj, i = 1, 2, . . . , n; j = 1, 2, . . . , n,

corresponds to the linear transformation f ∘ g.
The linear transformation f : ℝn → ℝn is bijective if and only if f is injective and

surjective; moreover, the matrix A, which corresponds to f with respect to the fixed
basis ℬ, is invertible, that is, there exists a C ∈ M(n × n,ℝ) with AC = CA = En; C is
called the inverse matrix of A, denoted by C = A−1.

Now if x⃗ = ∑ni=1 xib⃗i, with the basis ℬ = {b⃗1, b⃗2, . . . , b⃗n}, then we have a representa-
tion

y⃗ = f (x⃗) =
n
∑
i=1

yib⃗i = f(
n
∑
i=1

xib⃗i)

=
n
∑
i=1

xif (b⃗i) =
n
∑
i=1

xi(
n
∑
j=1

ajib⃗i)

=
n
∑
j=1
(

n
∑
i=1

ajixi)b⃗j.
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Hence, the coordinate vector

x⃗ℬ =(

x1
x2
...
xn

)

is mapped onto the coordinate vector

y⃗ℬ =(

y1
y2
...
yn

) =(

∑ni=1 a1ixi
∑ni=1 a2ixi

...
∑ni=1 anixi

) = A ⋅ x⃗ℬ ,

thematrix product ofAwith the columnvector x⃗ℬ. Inwhat followsweneed somemore
properties and facts about matrices ofM(n × n,ℝ).

Definition 2.13.
(1) If

A =(

a11 a12 . . . a1n
a21 a22 . . . a2n
...

...
. . .

...
an1 an2 . . . ann

)

then the matrix

(

a11 a21 . . . an1
a12 a22 . . . an2
...

...
. . .

...
a1n a2n . . . ann

)

is called the transpose of A denoted by AT .
We have the following facts for A,B ∈ M(n × n,ℝ):
(1) (AT )T = A;
(2) (AB)T = BTAT ;
(3) If A is invertible, then (AT )−1 = (A−1)T .
Also, if

x⃗ =(

x1
x2
...
xn

)
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is a column vector, then the transpose

x⃗T = (x1, x2, . . . , xn)

is a row vector, and we have the property that (A ⋅ x⃗B)T = x⃗TB ⋅ A
T is the product of

the row vector x⃗TB with the matrix AT .
(2) Let A ∈ M(n × n,ℝ). An important invariant of A is its determinant det(A).

Let Sn be the symmetric group on n letters. We define the sign of a permutation
σ ∈ Sn by

sign(σ) = {
−1, if σ ∈ An,
+1, if σ ∉ An.

Here An is the alternating subgroup of Sn (see [12, Chapter 8]).
If

A =(

a11 a12 . . . a1n
a21 a22 . . . a2n
...

...
. . .

...
an1 an2 . . . ann

) ∈ M(n × n,ℝ)

then the determinant det(A) is defined by

det(A) = ∑
σ∈Sn

sign(σ)a1σ(1)a2σ(2) ⋅ ⋅ ⋅ anσ(n).

In the special cases n = 2 and n = 3 we get:
(a)

det((a11 a12
a21 a22

)) = a11a22 − a12a21;

(b)

det((
a11 a12 a13
a21 a22 a23
a31 a32 a33

))

= a11a22a33 + a12a23a31 + a13a21a32 − a31a22a13 − a11a23a32 − a12a21a33.

We have the following facts. Let A,B ∈ M(n × n,ℝ). Then these five statements hold:
(1) det(En) = 1.
(2) det(AB) = det(A) ⋅ det(B).
(3) det(AT ) = det(A).
(4) det(A) ̸= 0⇔ A is invertible.
(5) If A is invertible then det(A−1) = 1

det(A) .
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The set of the invertible matrices forms a group under the matrix multiplication, de-
noted byGL(n×n,ℝ), the general linear group. The subset of GL(n×n,ℝ) of thematrices
Awith det(A) = 1 forms a subgroup of GL(n×n,ℝ), denoted by SL(n×n,ℝ), the special
linear group. Let A ∈ GL(n × n,ℝ). There are several possibilities to calculate A−1. The
easiest way is probably with help of the Gauss–Jordan elimination which is an algo-
rithm that can be used to determine whether a givenmatrix ofM(n×n,ℝ) is invertible
and to find the inverse if it is invertible. We here just give the analytic solution. Let
A ∈ GL(n × n,ℝ). We define the adjugate adj(A) via the cofactors

ãij = (−1)
i+j det
(((((

(

(((((

(

a11 . . . a1,j−1 a1,j+1 . . . a1n
...

...
...

...
ai−1,1 . . . ai−1,j−1 ai−1,j+1 . . . ai−1,n
ai+1,1 . . . ai+1,j−1 ai+1,j+1 . . . ai+1,n
...

...
...

...
an1 . . . an,j−1 an,j+1 . . . an,n

)))))

)

)))))

)

,

and

adj(A) =(

ã11 ã12 . . . ã1n
ã21 ã22 . . . ã2n
...

...
. . .

...
ãn1 ãn2 . . . ãnn

) .

Then A−1 = 1
det(A)adj(A).

As a reference we give [5].
In what follows we consider linear isometries f : V → V , V a Euclidean vector

space with scalar product ⟨ , ⟩ and dim(V) = n. We know that f is bijective. Let ℬ =
{b⃗1, b⃗2, . . . , b⃗n} be now any orthonormal basis of V . Let

x⃗ = x1b⃗1 + x2b⃗2 + ⋅ ⋅ ⋅ + xnb⃗n and y⃗ = y1b⃗1 + y2b⃗2 + ⋅ ⋅ ⋅ + ynb⃗n.

Then

⟨x⃗, y⃗⟩ = x1y1 + x2y2 + ⋅ ⋅ ⋅ + xnyn

because

⟨b⃗i, b⃗j⟩ = δij = {
1, if i = j,
0, if i ̸= j.
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This we may write a bit differently. Let

y⃗ℬ =(

y1
y2
...
yn

)

and

x⃗Tℬ = (x1, x2, . . . , xn).

Then ⟨x⃗, y⃗⟩ = x⃗Tℬ ⋅ y⃗ℬ, the matrix product of a row vector with a column vector.
Now, let f : V → V be a linear isometry. Let Aℬ(f ) = A be the matrix which

corresponds to f with respect to ℬ. Then

⟨f (x⃗), f (y⃗)⟩ = (f (x⃗))Tℬ ⋅ (f (y⃗))ℬ = (Ax⃗ℬ)
T ⋅ (Ay⃗ℬ) = x⃗

T
ℬ ⋅ A

TAy⃗ℬ = x⃗
T
ℬ ⋅ y⃗ℬ = ⟨x⃗, y⃗⟩

because f is a linear isometry.

Remark 2.14. In the following the orthogonal matrices A ∈ GL(n,ℝ) play an impor-
tant part. These are exactly those matrices which, for a fixed orthonormal basis, are
allocated in a unique way to linear isometries.

Definition 2.15. A matrix A ∈ GL(n,ℝ) is called orthogonal if A−1 = AT , where A−1 is
the inverse and AT the transposed matrix of A.

Theorem 2.16. Let A ∈ GL(n,ℝ) be orthogonal. Then |det(A)| = 1.

Proof. From ATA = En, En the identity matrix in GL(n,ℝ), we get

1 = det(ATA) = det(AT)det(A) = (det(A))2

because det(AT ) = det(A). It follows that det(A) = ±1.

Remark 2.17. IfO(n) = {A ∈ GL(n,ℝ) | A orthogonal} thenO(n) is a groupwith respect
to matrix multiplication. If A,B ∈ O(n) then

(AB)−1 = B−1A−1 = BTAT = (AB)T .

Theorem 2.18. Consider an A ∈ M(n × n,ℝ), and letℝn be equipped with the canonical
scalar product. Then the following are equivalent:
(1) A is orthogonal.
(2) The rows of A form an orthonormal basis of ℝn.
(3) The columns of A form an orthogonal basis of ℝn.

Proof. Transition from A to AT shows the equivalence of (2) and (3).
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(1) means ATA = En, that is, A−1 = AT .
(2) means AAT = En, that is, A−1 = AT .

This gives the equivalence of (1) and (2).

Theorem 2.19. LetV beafinite-dimensional Euclidean vector spacewith scalar product
⟨ , ⟩. Let ℬ be an orthonormal basis of V. Let f : V → V be a linear transformation and
Aℬ(f ) the matrix allocated to f with respect to ℬ. Then

f is a linear isometry ⇔ Aℬ(f ) is orthogonal.

Proof. Let n = dim(V) andA := Aℬ(f ) ∈ M(n×n,ℝ). Sinceℬ is an orthonormal basiswe
get ⟨v⃗, w⃗⟩ = x⃗Tℬ y⃗ℬ for all v⃗, w⃗ ∈ V , where x⃗ℬ and y⃗ℬ are the vectors of the coordinates
with respect to ℬ (written as rows) of v⃗ and w⃗, respectively.

If f is a linear isometry then

x⃗Tℬ y⃗ℬ = (Ax⃗ℬ)
T ⋅ Ay⃗ℬ = x⃗

T
ℬA

TAy⃗ℬ

for all rows x⃗ℬ , y⃗ℬ ∈ ℝn, and hence, ATA = En, that is, A is orthogonal. The fact that
ATA = En follows from the following observation:

If C,D ∈ M(n × n,K), K a field, and if v⃗TCw⃗ = v⃗TDw⃗ for all v⃗, w⃗ ∈ ℝn (written as
rows), then C = D.

Proof of the fact. Let C = (cij) and D = (dij). If we take the canonical basis

e⃗k = (0, . . . ,0, 1⏟⏟⏟⏟⏟⏟⏟
kth place
,0, . . . ,0)

of Kn then

cij = e⃗
T
i Ce⃗j = e⃗

T
i De⃗j = dij

for all i, j = 1, 2, . . . , n.

Now, let A be orthogonal. Then

⟨v⃗, w⃗⟩ = x⃗Tℬ y⃗ℬ = x⃗
T
ℬA

TAy⃗ℬ = (Ax⃗ℬ)
TAy⃗ℬ = ⟨f (v⃗), f (w⃗)⟩,

that is, f is a linear isometry.

Remark 2.20. LetV be afinite-dimensional Euclidean vector spacewith a scalar prod-
uct ⟨ , ⟩. Let ℬ be a fixed orthogonal basis of V . Then we have essentially all linear
isometries f : V → V , if we have all orthogonal matrices A ∈ O(n), where n = dim(V).
Together with Corollary 2.10, we then have essentially all isometries by the transla-
tions and the linear isometries.
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We can obtain better geometrical insight by a suitable choice of an orthonormal
basis, which then gives for each linear isometry a suitable normal form for the respec-
tive orthogonal matrix.

Let f : V → V be a linear isometry. Let ℬ1, ℬ2 be two orthonormal bases of V and
let A1 = Aℬ1

(f ), A2 = Aℬ2
(f ) be the matrices for f relative to ℬ1 and ℬ2, respectively. If

ℬ1 = {b⃗1, b⃗2, . . . , b⃗n}, ℬ2 = {b⃗′1, b⃗
′
2, . . . , b⃗

′
n} and

b⃗′j =
n
∑
i=1

xijb⃗i, C = (xij),

then as is well known

A2 = C
−1A1C.

The point is to find for f an orthonormal basis ℬ such that Aℬ(f ) is an orthogonal
matrix which describes f geometrically in a suitable manner.

By Theorem 2.19 and its proof, it is enough to assume that V = ℝn equipped with
canonical scalar product

⟨x⃗, y⃗⟩ = x1y1 + x2y2 + ⋅ ⋅ ⋅ + xnyn = x⃗
T y⃗,

where

x⃗ =(

x1
x2
...
xn

) , y⃗ =(

y1
y2
...
yn

) ∈ ℝn

(written as columns).
This we assume from now on for the following parts in this chapter. We proceed

in steps and consider first the most interesting cases n = 2 and n = 3. Finally, we give
a complete description of the linear isometries for general n.

We remark that the ℝn is equipped with an Euclidean geometry with respect to
the canonical scalar product.

2.2 The Isometries of the Euclidean Planeℝ2
In the space ℝ2 and ℝ3 isometries are also often calledmoves or congruence motions.
For consistency we always speak about isometries. We first describe the orthogonal
matrices of O(2). Let A = ( a b

c d ) ∈ O(2). Then det(A) = ±1. Let first det(A) = 1. Then

A−1 = ( d −b
−c a

) = AT = (a c
b d
) ,
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and therefore

1 = ad − bc = a2 + b2.

Hence, there exists an α ∈ [0, 2π) with a = cos(α), c = sin(α), and we get

A = (cos(α) − sin(α)
sin(α) cos(α)

) =: Dα.

The linear isometry f which corresponds toDα (with respect to {e⃗1, e⃗2}) is a rotation
(counterclockwise) with angle α and center 0⃗ = (0,0), see Figure 2.1.

x
e⃗1

e⃗2

y

f (e⃗2)
f (e⃗1)

⋅
α

α

0⃗
Figure 2.1: Linear isometry f corresponding to Dα .

f (e⃗1) = cos(α)e⃗1 + sin(α)e⃗2,
f (e⃗2) = − sin(α)e⃗1 + cos(α)e⃗2.

Now, let det(A) = −1. Then

A−1 = (−d b
c −a
) = (

a c
b d
) = AT .

Hence, −a = d and b = c, and therefore det(A) = −1 = −a2 − c2 and

A = (cos(α) sin(α)
sin(α) − cos(α)

) =: Sα

for some α ∈ [0, 2π).
The linear isometry which corresponds to Sα with respect to {e⃗1, e⃗2} is a reflection

at the line ℓ through the center 0⃗ andwhichhas the angle α
2 to the x-axis, see Figure 2.2.

We call α the reflection angle.

f (e⃗1) = cos(α)e⃗1 + sin(α)e⃗2,
f (e⃗2) = sin(α)e⃗1 − cos(α)e⃗2.

This can be seen as follows (see Figures 2.3 and 2.4).
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x
e⃗1

e⃗2

y

f (e⃗2)

f (e⃗1)

ℓ

⋅
α
2

α

0⃗

Figure 2.2: A reflection at the line ℓ through the center 0⃗.

x
e⃗1

e⃗2

y

f (e⃗1)

α
⋅0⃗

Figure 2.3: Calculation for f (e⃗1).

f (e⃗1) = cos(α)e⃗1 + sin(α)e⃗2. (2.1)

x
e⃗1

e⃗2

y

f (e⃗2)

f (e⃗1)

ℓ

⋅
α
2

α

0⃗

Figure 2.4: Calculation for f (e⃗2).

f (e⃗2) = cos(
π
2
− α)e⃗1 − cos(α)e⃗2

= sin(α)e⃗1 − cos(α)e⃗2.
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Hence we have the following result.

Theorem 2.21. A linear isometry of the plane ℝ2 is either a rotation or a reflection at a
line ℓ through 0⃗, that is, at a one-dimensional subspace.

Remark 2.22. In the case of a reflection at a line ℓ through 0⃗, we may choose an or-
thonormal basis. Such a basis we get from a given one just by a rotation, where one
vector of the basis is on the line ℓ, see Figure 2.5.

α
2

0⃗

ℓ

b⃗′1

b⃗′2

Figure 2.5: Orthonormal basis with one
vector on a line ℓ.

For this orthonormal basis {b⃗′1, b⃗
′
2}, the corresponding orthogonalmatrix for the reflec-

tion at the line ℓ is just ( 1 0
0 −1 ). We keep this in mind for later use.

Now we consider arbitrary isometries of the plane ℝ2.
We have to add to the linear isometries for each vector v⃗ ∈ ℝ2 the translation

τ ⃗v : ℝ2 → ℝ2, w⃗ → w⃗+v⃗. Let f : ℝ2 → ℝ2 bean isometrywith f (0⃗) = v⃗. Let τ ⃗v : ℝ2 → ℝ2,
w⃗ → w⃗+ v⃗; τ ⃗v be a translation and f = τ ⃗v ∘ f ′ where f ′ is a linear isometry. We just write
f ′ = Dα and f ′ = Sα if the corresponding matrix (with respect to {e⃗1, e⃗2}) is Dα and Sα,
respectively.

First, let f ′ = Dα for some α ∈ [0, 2π). We begin with the remark that τ ⃗v ∘ Dα ∘ τ− ⃗v
is a rotation with center (v1, v2) = v⃗T , where v⃗ = (

v1
v2 ) ∈ ℝ

2. Here we consider v⃗T as the
point with the plane coordinates v1 and v2.

If α = 0, then f = τ ⃗v is a translation.
Now, let α ̸= 0, that is, Dα is a nontrivial rotation. We show that there exists a

vector u⃗ = ( u1u2 ) ∈ ℝ
2 such that

τu⃗ ∘ Dα ∘ τ−u⃗ = τ ⃗v ∘ Dα,

that is,

τu⃗−Dα(u⃗) = τ ⃗v .
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For this, we have to show that for each v⃗ = ( v1v2 ) there exists a u⃗ = (
u1
u2 ) such that

u⃗ − Dα(u⃗) = v⃗. This is equivalent with the solution of the linear system of equations:

(cos(α) − 1)u1 − (sin(α))u2 + v1 = 0,
(sin(α))u1 + (cos(α) − 1)u2 + v2 = 0.

This system always has a solution because

(cos(α) − 1)2 + sin2(α) > 0

if α ∈ (0, 2π) or, in general, if α is not a multiple of 2π. Hence, f = τ ⃗v ∘ Dα, α ∈ (0, 2π),
is a rotation with rotation center u⃗ ∈ ℝ2.

Now, let f ′ = Sα for some α ∈ [0, 2π). Then Sα is a reflection at a line g0 through
the center 0⃗.

Choose a normed direction vector u⃗ for g0, that is, g0 = ℝu⃗ with ‖u⃗‖ = 1. Add a
vector w⃗ to u⃗ such that {u⃗, w⃗} is an orthonormal basis for ℝ2. Then there exist λ, μ ∈ ℝ
with v⃗ = λu⃗ + μw⃗.

Therefore we get

f = τ ⃗v ∘ Sα = τλu⃗+μw⃗ ∘ Sα = τλu⃗ ∘ (τμw⃗ ∘ Sα).

Since w⃗ is orthogonal to u⃗, we have that τμw⃗ ∘ Sα is a reflection S at the line
τ 1

2 μw⃗
(g0) =: g.
If λ = 0, then f is just a reflection at g, g is the line parallel to g0 and τμw⃗(g0) and

halfway between them.
If λ ̸= 0, then f is a glide reflection, that is, an isometry consisting of a reflection S

at the line g = τ 1
2 μu⃗
(g0) followed by a nontrivial translation τλu⃗, where u⃗ is parallel to

a direction vector for g0.
This we can also see as follows.
We have

f 2 = τ ⃗v ∘ Sα ∘ τ ⃗v ∘ Sα = τ ⃗v ∘ τ ⃗v1 ∘ S
2
α = τ ⃗v+ ⃗v1 ,

for some v⃗1 ∈ ℝ2.
If τ ⃗v+ ⃗v1 = idℝ2 , then f is just a reflection at the line g = τ 1

2 ⃗v
(g0). Now let τ ⃗v+ ⃗v1 ̸= idℝ2 .

Then f 2 is a nontrivial translation, and f 2 fixes the two lines ℓ1 = Pf 2(P) and ℓ2 =
f (P)f 3(P), P ∈ ℝ2, and therefore ℓ1 and ℓ2 are parallel (but not necessarily distinct).
Moreover, f interchanges ℓ1 and ℓ2, and hence f leaves invariant the line ℓ parallel to
ℓ1 and ℓ2 and halfway between them, see Figure 2.6.

Hence f is a reflection at ℓ followed by a translation τw⃗, where w⃗ is parallel to a
normed direction vector for ℓ, that is, f is a glide reflection, see Figure 2.7.
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ℓ

ℓ1

ℓ2

P

f (P)

f 2(P)

f 3(P)

Figure 2.6: Invariant line ℓ.

ℓ

Figure 2.7: Glide reflection.

Theorem 2.23 (Classification of the isometries of the plane ℝ2). An isometry of the
Euclidean plane ℝ2 has one of the following forms:
(1) a rotation,
(2) a translation,
(3) a reflection,
(4) a glide reflection.

Example 2.24.
1. Let f : ℝ2 → ℝ2 be an isometry given by

(
x
y
) → (

3
5 −

4
5

4
5

3
5

)(
x
y
) + (

1
1
)
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(with respect to e⃗1, e⃗2).
Since

(
x
y
) → (

3
5 −

4
5

4
5

3
5

)(
x
y
)

is a rotation with center 0⃗, then f is a rotation with a rotation center u⃗ = ( u1u2 ). We
calculate u⃗ by solving the system

(
3
5
− 1)u1 −

4
5
u2 = −1,

4
5
u1 + (

3
5
− 1)u2 = −1.

This system has the unique solution u1 = −
1
2 , u2 =

3
2 . Hence the rotation center of

f is u⃗T = (− 12 ,
3
2 ).

2. Let f : ℝ2 → ℝ2 be an isometry given by

(
x
y
) → (

0 1
1 0
)(

x
y
) + (

1
2
)

(with respect to e⃗1, e⃗2).
Certainly, f is a glide reflection. We calculate the reflection line g and the transla-
tion vector x⃗ parallel to ℓ.
The reflection line for the linear isometry

(
x
y
) → (

0 1
1 0
)(

x
y
) = S (x

y
)

is g0 = ℝ( 11 ). As a direction vector for g0 we may take ( 11 ). The vector w⃗ = ( 1−1 ) is
orthogonal to u⃗. We calculate λ, μ ∈ ℝ such that v⃗ = ( 12 ) = λμ⃗+μw⃗, that is, we have
to solve the system

λ + μ = 1,
λ − μ = 2.

We get λ = 3
2 and μ = −

1
2 , that is, v⃗ =

3
2 u⃗ −

1
2 w⃗.

Since w⃗ is orthogonal to u⃗, we get that τ− 12 w⃗ ∘ S is a reflection at the line g = ℝ(
1
1 )−

1
4 (

1
−1 ) or y = x +

1
2 . The translation vector x⃗ parallel to g then is x⃗ = λu⃗ =

3
2 (

1
1 ).

Remark 2.25. If P is a polygon in the Euclidean planeℝ2 and f : ℝ2 → ℝ2 an isometry,
then P and f (P) are of equal area.
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From the definitions of length and anglewe automatically get the congruence the-
orems for triangles in the Euclidean plane ℝ2. Hereby two triangles are congruent if
they are equal in the form and area.

Theorem 2.26 (Congruence Theorem 1, or SSS Criterion). Two triangles, which coin-
cide in the three side lengths, are congruent.

Theorem 2.27 (Congruence Theorem 2, or ASA Criterion). Two triangles, which coin-
cide in two angles and the included side length, are congruent.

Theorem 2.28 (Congruence Theorem 3, or SAS Criterion). Two triangles, which coin-
cide in two side lengths and the included angle, are congruent.

Theorem 2.29 (Congruence Theorem 4, or SAA Criterion). Two triangles, which coin-
cide in one side length, one included angle and the excluded angle, are congruent.

With these observations wemay provemany results in the Euclidean Geometry of
the planeℝ2 just by using isometries.We demonstrate this via two proofs of the Gougu
Theorem (Theorem of Pythagoras).

1. Proof (China ca. 2000 BC). The four boundary triangles are all congruent (see Fig-
ure 2.8). Hence all have the area 1

2ab.

C A

B

b

b

b

b

a

a

a

a

c

c

c

c

⋅⋅

⋅ ⋅

Figure 2.8: Classical proof of the Gougu
Theorem.

For the area of the boundary square we get

(a + b)2 = a2 + 2ab + b2 = 4 ⋅ 1
2
ab + c2,

hence

a2 + b2 = c2.
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2. Proof (James Garfield 1875).

C B

A′C′

B′ = A

a

b c

a′ c′

b′

⋅

⋅

α

β

γ

β′

α′

Figure 2.9: Garfield’s proof of the Gougu Theorem.

Moving the triangle ABC along the line segment AB together with a rotation with cen-
ter A and angle 90° gives the triangle A′B′C′. These two triangles are congruent (see
Figure 2.9). Hence, a = a′, b = b′, c = c′. Further, α + β = 90°, α′ + β′ = 90°, and
therefore γ = 90°. Therefore all three triangles are right triangles. The area F of the
trapezoid is therefore

F = a + b
2
⋅ height = 1

2
(a + b)(a + b).

We get

1
2
(a + b)2 = 1

2
ab + 1

2
ab + 1

2
c2

using the three triangles. This gives

a2 + b2 = c2.

Remark 2.30. We here used that the sum of the interior angle of a triangle in the Eu-
clidean plane ℝ2 is 180°. This can be seen as follows

We have α′ = α and β′ = β by the alternate angle theorem (see Figure 2.10).
Hence we have α + β + γ = α′ + β′ + γ = 180°.
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α β

γ β′α′

Figure 2.10: Sum of the interior angles of a triangle.

We finally want to give the elegant proof by A. Einstein (1879–1955, Nobel Prize in The-
oretical Physics 1921) although it does not use isometries. We consider the following
Figure 2.11 of right triangles.

C

B

A

D

a

b

c2

c1

c1 + c2 = c

d

Figure 2.11: Right triangles.

The three right triangles in Figure 2.11 are similar, hence

ab
c2
=
dc1
a2
=
dc2
b2
.

Now dc1 + dc2 = ab. Hence

ab = ab
c2
(a2 + b2), that is, c2 = a2 + b2.

We close this section with some number theoretical problems related to right tri-
angles.

Let Δ be a right triangle with length c of the hypothenuse and a, b the two lengths
of the legs. Then a2 + b2 = c2.

If a, b, c are positive integers then we call the triple (a, b; c) a Pythogarean triple.
We consider the triples (a, b; c) and (b, a; c) as equal.
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A Pythagorean triple is called primitive, if gcd(a, b, c) = 1. To classify all Pythag-
orean triples we may restrict ourselves to the primitive Pythagorean triples.

The following theorem from the book Arithmetica by Diophantus (300 BC) classi-
fies all primitive Pythagorean triples.

Theorem 2.31 ([12]). Let x, y be two relatively prime natural numbers with positive and
odd difference x − y. Then (x2 − y2, 2xy; x2 + y2) is a primitive Pythagorean triple, and
further each primitive Pythagorean triple can be obtained in this manner.

If only a and b are positive integers then c = √a2 + b2 which is not necessarily an
integer.

The question arises when c2 is an integer, that is, we ask, given a positive integer
n, when is n a sum of two squares, that is, when is n = a2 + b2 for two positive integers
a and b. The answer is given by P. Fermat (1601–1655).

Theorem 2.32 (see[12]). Let n ∈ ℕ, n ≥ 2. Then there exist a, b ∈ ℤ with n = a2 + b2 if
and only if

n = 2αpβ11 p
β2
2 ⋅ ⋅ ⋅ p

βk
k q

γ1
1 q

γ2
2 ⋅ ⋅ ⋅ q

γr
r

with α ≥ 0, pi ≡ 1 mod 4 for i = 1, 2, . . . , k and qj ≡ 3 mod 4, γj even for j = 1, 2, . . . , r.

The next number theoretical question related to right triangles is the following.
When is the area 1

2ab a natural number if a, b, c are positive integers?
The following theorem gives a particular answer.

Theorem 2.33. Let Δ be a right triangle with a, b, c positive integers, as above. Then the
area of Δ is never the square of a natural number.

Proof. Assume that the area of Δ is a square k2 with k ∈ ℕ. Thenwe have the following
equations

c2 = a2 + b2 and ab = 2k2.

If gcd(a, b) = d ≥ 2 then necessarily d|k.
Hence, wemay assume that gcd(a, b) = 1. Then (a, b; c) is a primitive Pythagorean

triple. From Theorem 2.31 we know that one of a, b is even, so we may assume that
a = 2r even. Then we have rb = k2. Since gcd(a, b) = 1 we have gcd(r, b) = 1. From
Euclid’s Lemma (see Theorem 2.32 and exercise 2.3 in [12]) we see that r and b are both
perfect squares, that is, r = m2 and b = n2 for some natural numbersm, n. Going back
toa, b, we havea = 2m2,b = n2. Now the PythagoreanEquation becomes 4m4+n4 = c2,
that is, (2m2)2 + (n2)2 = c2.

Now, (2m2, n2, c) is a primitive Pythagorean triple. We nowmay use the method of
infinite descent analogously as in the proof of Theorem 5.5 in [12]. This shows that the
equation 4m4 +n4 = c2 has no solution in natural numbers. This gives a contradiction
and proves Theorem 2.33.
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The general questionwhether a natural number n is the area of some integral right
triangle seems to be very difficult.

To get some information we should extend the questioning. Suppose we have a
natural number n which is the area of some integral right triangle with side lengths
a, b, c as above, and suppose that n has a square factor k2, k ∈ ℕ, so n = k2m with
m ∈ ℕ. We may scale down the triangle by a factor of k to get a triangle with side
lengths a

k ,
b
k ,

c
k . But these quotients may be not integers.

Example 2.34. Take the right trianglewith side lengths (8, 15, 17), its area is 60 = 22 ⋅15.
The triangle with half side lengths (4, 152 ,

17
2 ), which are rational and not all integral,

has area 15.

This leads to the following definition.

Definition 2.35. A natural number which is the area of a right triangle with rational
sides is called a congruent number.

From Theorem 2.33 we know that 1 and 4 are not congruent numbers. It is easy to
check that 2 and 3 are not congruent numbers. The smallest congruent number is 5.
The area of the right triangle with rational sides 20

3 ,
3
2 ,

41
6 is 5 = 1

2 ⋅
20
3 ⋅

3
2 .

The problem of determining congruent numbers is related to study of rational so-
lutions to certain cubic equations.

Theorem 2.36. Let n ∈ ℕ. There is a one-to-one correspondence between the following
sets:

V = {(a, b, c) ∈ ℚ3  a
2 + b2 = c2, 1

2
ab = n}

and

W = {(x, y) ∈ ℚ2 | y2 = x3 − n2x, xy ̸= 0}.

The correspondence is given by

f : V → W ,

(a, b, c) → ( nb
c − a
,
2n2

c − a
)

and

g : W → V ,

(x, y) → (x
2 − n2

y
,
2nx
y
,
x2 + n2

y
).

The proof is straightforward, and we leave it to the reader.
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Corollary 2.37. A natural number n is a congruent number if and only if the equation
y2 = x3 − n2x has some rational solutions (x, y) with xy ̸= 0.

Example 2.38. The equation y2 = x3 − 900x has a solution (x, y) = ( 1694 ,
1547
8 ). From

Theorem 2.36 we obtain a right triangle with sides

(a, b, c) = ( 119
26
,
1560
119
,
42961
3094
)

and area 30.

2.3 The Isometries of the Euclidean Spaceℝ3
In general, in an analogous manner we can describe all isometries of ℝ3 if we can
determine all linear isometries of ℝ3.

We need some preliminarymaterial because there are some additional situations.

Definition 2.39. Let f : ℝ3 → ℝ3 be a linear transformation. An element λ ∈ ℝ is
called an eigenvalue of f if there exists a vector v⃗ ∈ ℝ3, v⃗ ̸= 0⃗, such that f (v⃗) = λv⃗.

The vector v⃗ with f (v⃗) = λv⃗, v⃗ ̸= 0⃗, is then called an eigenvector of f for the given
value λ.

Let ℬ = {v⃗1, v⃗2, v⃗3} be a basis ofℝ3 and v⃗ = x1v⃗1 + x2v⃗2 + x3v⃗3. Let A ∈ M(3 × 3,ℝ) be
the matrix which is allocated to f with respect to ℬ. Then f (v⃗) = λv⃗ is equivalent to

A(
x1
x2
x3
) = λ(

x1
x2
x3
) ,

that is,

(A − λE3)(
x1
x2
x3
) =(

0
0
0
) .

This systemof linear equations has a nontrivial solution (x1, x2, x3) if and only if det(A−
λE3) = 0.

The polynomial χA(x) = det(A − xE3) is called the characteristic polynomial of A.
The eigenvalues of f are the real zeros of χA(x). In general, if we extend the concept to
the general spaceℝn, χA(x)may have no real zeroes. But if A ∈ M(3 × 3,ℝ), then χA(x)
is a polynomial of degree 3, and hence χA(x) has a real zero. This gives the following.

If λ ∈ ℝ is a zero of χA(x), then there exists a v⃗ ∈ ℝ3, v⃗ ̸= 0⃗, with f (v⃗) = λv⃗.
This we now want to apply for linear isometries of ℝ3.
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Theorem 2.40. Let f : ℝ3 → ℝ3 be a linear isometry. Then there exists a v⃗1 ∈ ℝ3 with
‖v⃗1‖ = 1 and f (v⃗1) = ±v⃗1. If we choose v⃗2 and v⃗3 so that {v⃗1, v⃗2, v⃗3} is an orthonormal basis
of ℝ3, then the matrix A which belongs to f with respect to this basis {v⃗1, v⃗2, v⃗3} is of the
block form

(
±1 0 0
0 a22 a23
0 a32 a33

)

where

(
a22 a23
a32 a33

)

is amatrix which corresponds to a linear isometry of the plane (more precisely, the plane
spanned by the two orthonormal vectors v⃗2 and v⃗3, the v⃗2v⃗3-plane).

Proof. We know by the above remarks that there are a λ ∈ ℝ and a v⃗1 ∈ ℝ3, v⃗1 ̸= 0⃗,
with f (v⃗1) = λv⃗1. Since f is bijective, we have λ ̸= 0. By Lemma 2.6 we get λ = ±1. By
normalization we may assume ‖v⃗1‖ = 1.

Starting with v⃗1 we apply the Gram–Schmidt orthonormalization procedure to get
an orthonormal basis {v⃗1, v⃗2, v⃗3} of ℝ3. The matrix for f with respect to this basis has
the block form

(
±1 0 0
0 a22 a23
0 a32 a33

) .

This can be seen as follows. Since f (v⃗1) = ±v⃗1, the first row has the form

(
±1
0
0
) .

For the second and third rows we remark the following:
If w⃗ = r2v⃗2 + r3v⃗3, then ⟨w⃗, v⃗1⟩ = 0, and since f is an isometry, we get

⟨f (w⃗), v⃗1⟩ = ⟨f (w⃗),±v⃗1⟩ = ⟨f (w⃗), f (v⃗1)⟩ = ⟨w⃗, v⃗1⟩ = 0.

This gives the desired form of the matrix A.

We may use this to classify the linear isometries f : ℝ3 → ℝ3 geometrically. We
may choose an orthonormal basis ℬ = {v⃗1, v⃗2, v⃗3} of ℝ3 such that the (orthogonal) ma-
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trix A of f with respect to the basis ℬ has the form

A =(
±1 0 0
0 a22 a23
0 a32 a33

) ,

where

Ã = (a22 a23
a32 a33

)

is the matrix of a linear isometry of the plane spanned by the orthonormal basis
{v⃗2, v⃗3}. Now, there are four possibilities:
(1) f (v⃗1) = v⃗1 and Ã = Dα is the matrix of rotation in the plane spanned by v⃗2, v⃗3; f is

called a rotation around the axis given by v⃗1.
(2) f (v⃗1) = v⃗1 and Ã = Sα is the matrix of a reflection at a line ℓ in the plane spanned

by v⃗2, v⃗3; f is called a reflection at the plane through v⃗1 and ℓ.
(3) f (v⃗1) = −v⃗1 and Ã = Dα is the matrix of a rotation in the plane spanned by v⃗2, v⃗3; f

is then a rotation around the axis given by v⃗1 followed by a reflection at the plane
spanned by v⃗2, v⃗3 which is orthogonal to v⃗1; f is called a rotation reflection.

(4) f (v⃗1) = −v⃗1 and Ã is the matrix of a reflection at a line ℓ spanned by v⃗2, v⃗3. As
already mentioned, we may choose now v⃗2 and v⃗3 so that f (v⃗2) = −v⃗2 and f (v⃗3) =
v⃗3, that is, Ã = ( −1 00 1 ). The matrix A for f (with respect to the chosen orthonormal
basis v⃗1, v⃗2, v⃗3) is then

A =(
−1 0 0
0 −1 0
0 0 1

) .

Now f is a rotation with angle 180° around the axis given by v⃗3.

Summarizing we get the following

Theorem 2.41. Let f : ℝ3 → ℝ3 be a linear isometry. Then f has one of the following
forms:
(1) f is a rotation,
(2) f is a reflection,
(3) f is a rotation reflection.

Using Theorem 2.41, we now may describe all isometries f : ℝ3 → ℝ3.

Case 1. f has afixedpoint, that is, there exists a v⃗ ∈ ℝ3with f (v⃗) = v⃗. Then ̃f = τ− ⃗v∘f ∘τ ⃗v
is a linear isometry. Hence ̃f , and therefore also f = τ ⃗v ∘ ̃f ∘ τ− ⃗v, is of one of the three
types in Theorem 2.41.
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Case 2. f has no fixed point. As in the 2-dimensional case, we let v⃗ = f (0⃗). Then
f = τ ⃗v ∘ ̃f , where ̃f is a linear isometry. If we argue analogously as for ℝ2, we get the
following two new possibilities (instead of one possibility of ℝ2):
(1) f = τ ⃗v ∘ Dℓ,α, where Dℓ,α is a rotation with angle α around an axis ℓ, and the

line given by v⃗ is parallel to ℓ, that is, f is a screw displacement or rotary trans-
lation.

(2) f = τ ⃗v ∘SM , where SM is a reflection at a planeM, and the line given by v⃗ is parallel
to the planeM (that is, to all lines inM), that is, f is a glide (plane) reflection.

This can be seen as follows. Let first ̃f be a rotation around the axis v⃗1 with rotation
angle α. We have f = τ ⃗v ∘ ̃f . Wewrite v⃗ = λ1v⃗1+λ2v⃗2+λ3v⃗3. In the v⃗2v⃗3-plane the isometry
τλ2 ⃗v2+λ3 ⃗v3 ∘

̃f is a rotation around some center u⃗. Hence in ℝ3 the isometry τλ2 ⃗v2+λ3 ⃗v3 ∘
̃f

is a rotation around some axis ℓ through u⃗ and parallel to v⃗1. If λ1 ̸= 0 then we get a
rotary translation τλ1 ⃗v1 ∘ (τλ2 ⃗v2+λ3 ⃗v3 ∘

̃f ).
The second possibility is that ̃f is a reflection at a plane spanned by v⃗1 and a line

g in the v⃗2v⃗3-plane. Again, let v⃗ = λ1v⃗1 + λ2v⃗2 + λ3v⃗3. In the v⃗2v⃗3-plane then τλ2 ⃗v2+λ3 ⃗v3∘ ̃f
is a glide reflection with a reflection line g′ in the v⃗2v⃗3-plane followed by a translation
τu⃗ with u⃗ parallel to g′ in the v⃗2v⃗3-plane.

Then f = τ ⃗v ∘ ̃f is a reflection at the plane spanned by v⃗1 and g′ followed by the
translation τu⃗+λ1 ⃗v1 , and u⃗ + λ1v⃗1 is parallel to the plane spanned by g′ and v⃗1. Hence,
here f is a glide reflection.

Example 2.42.
(1) Let f : ℝ3 → ℝ3 be given by

(
x
y
z
) →(

1 0 0
0 −1 0
0 0 −1

)(
x
y
z
) +(

2
1
1
)

(with respect to e⃗1, e⃗2, e⃗3).
Certainly, f is a rotary translation. The rotation axis is given by

(
1 0 0
0 −1 0
0 0 −1

)(
x
y
z
) +(

0
1
1
) =(

x
y
z
) ,

that is, y = z = 1
2 and x arbitrary. Hence, the rotation axis ℓ is

ℝ(
1
0
0
) +(

0
1
2
1
2

) .
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The translation vector parallel to ℓ is then

(
2
0
0
) .

(2) Let f : ℝ3 → ℝ3 be given by

(
x
y
z
) →(

1 0 0
0 1 0
0 0 −1

)(
x
y
z
) +(

2
1
1
)

(with respect to e⃗1, e⃗2, e⃗3).
Since ( 1 0

0 −1 )(
y
z ) is a reflection in the plane spanned by e⃗2 and e⃗3, we get that f

is a glide reflection, and the reflection line g0 in this plane is the y-axis, the line
spanned by e⃗2. Hence, the reflection line of

(
y
z
) → (

1 0
0 −1
)(

y
z
) + (

1
1
)

is the line g′ given by

ℝ(
1
0
) + (

0
1
2
) .

Therefore the reflection plane for f is the plane

ℝ(
1
0
0
) + ℝ(

0
1
0
) +(

0
0
1
2

)

spanned by g′ and e⃗1, and the reflection is followed by the translation τ2e⃗1+e⃗2 .
(3) Let f : ℝ3 → ℝ3 be given by

(
x
y
z
) →(

−1 0 0
0 0 −1
0 1 0

)(
x
y
z
) +(

2
1
2
)

(with respect to e⃗1, e⃗2, e⃗3).
We get that f has to be a rotation reflection, more precisely, f is a rotation around
an axis g parallel to the axis spanned by e⃗1 (with rotation angle

π
2 ) followed by a

reflection at a planeM parallel to the plane spanned by e⃗2 and e⃗3. To get g andM
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we have to find the fixed point

x⃗ =(
x
y
z
)

of f . From

f (x⃗) =(
−1 0 0
0 0 −1
0 1 0

)(
x
y
z
) +(

2
1
2
) =(

x
y
z
)

we get x = 1, y = − 12 and z =
3
2 . Hence, g is the axis

ℝ(
1
0
0
) +(

0
− 12
3
2

) ,

andM is the plane

ℝ(
0
1
0
) + ℝ(

0
0
1
) +(

1
0
0
) .

(4) Let f : ℝ3 → ℝ3 be given by

(
x
y
z
) →(

−1 0 0
0 1 0
0 0 −1

)(
x
y
z
) +(

0
0
1
)

(with respect to e⃗1, e⃗2, e⃗3).
We get that f is a rotation with rotation axis

ℝ(
0
1
0
) +(

0
0
1
2

)

and rotation angle π.
Now let g : ℝ3 → ℝ3 be given by

(
x
y
z
) →(

1 0 0
0 −1 0
0 0 −1

)(
x
y
z
)
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(with respect to e⃗1, e⃗2, e⃗3), g is a rotation around the axis

(
1
0
0
) .

Now f ∘ g : ℝ3 → ℝ3 is the isometry

(
x
y
z
) →(

−1 0 0
0 −1 0
0 0 1

)(
x
y
z
) +(

0
0
1
) .

Hence f ∘ g is a rotary translation with rotation axis

ℝ(
0
0
1
)

and translation vector

(
0
0
1
) .

(5) Let f : ℝ3 → ℝ3 be given by

(
x
y
z
) →(

−1 0 0
0 −1 0
0 0 1

)(
x
y
z
) +(

0
2
0
)

(with respect to e⃗1, e⃗2, e⃗3).
We get that f is a rotation with rotation axis

ℝ(
0
0
1
) +(

0
1
0
)

and rotation angle π. Now let g : ℝ3 → ℝ3 be given by

(
x
y
z
) →(

−1 0 0
0 −1 0
0 0 1

)(
x
y
z
)
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(with respect to e⃗1, e⃗2, e⃗3). Then f ∘ g : ℝ3 → ℝ3 is a translation τ ⃗v0 : ℝ
3 → ℝ3,

v⃗ → v⃗ + v⃗0 with

v⃗0 =(
0
2
0
) .

2.4 The General Caseℝn with n ≥ 2
The arguments for cases n = 2 and n = 3 can be taken as the start for an inductive
procedure.

We have to extend the preparations of the case n = 3.
Let f : ℝn → ℝn be a linear transformation. An element λ ∈ ℝ is called an eigen-

value of f if there exists a vector v⃗ ∈ ℝn, v⃗ ̸= 0⃗, such that f (v⃗) = λv⃗. The vector v⃗ is then
again called an eigenvector of f for the eigenvalue λ. Let ℬ = {v⃗1, v⃗2, . . . , v⃗n} be a basis
ofℝn and v⃗ = x1v⃗1+x2v⃗2+ ⋅ ⋅ ⋅+xnv⃗n. LetA ∈ M(n×n,ℝ) be thematrix which is allocated
to f with respect to the basis ℬ. Then f (v⃗) = λv⃗ is equivalent to

A(

x1
x2
...
xn

) = λ(

x1
x2
...
xn

) ,

that is,

(A − λEn)(

x1
x2
...
xn

) =(

0
0
...
0

) .

The system of linear equations has a nontrivial solution (x1, x2, . . . , xn) if and only if
det(A−λEn) = 0. Again, the polynomial χA(x) = det(A−xEn) is called the characteristic
polynomial of A.

We remark that if we change the basis ℬ to a basis ℬ′, then the matrix A′ for f
with respect to ℬ′ is of the form A′ = D−1AD for a D ∈ GL(n × n,ℝ), and therefore
χA(x) = χA′ (x), that is, the characteristic polynomial is independent of the choice of
the basis. The eigenvalues of f are the real zeros of χA(x). If λ ∈ ℝ is a zero of χA(x) then
there exists a v⃗ ∈ ℝn, v⃗ ̸= 0⃗, with f (v⃗) = λv⃗.

Now let f : ℝn → ℝn be a linear isometry. Letℬ = {b⃗1, b⃗2, . . . , b⃗n}be an orthonormal
basis for ℝn and A be the matrix for f with respect to ℬ. By the fundamental theorem
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of algebra (see [12]), the characteristic polynomial χA(x) can be written as

χA(x) = p1(x)p2(x) ⋅ ⋅ ⋅ pℓ(x)q1(x)q2(x) ⋅ ⋅ ⋅ qk(x),

0 ≤ ℓ, k and ℓ + 2k = n, and the p1(x), p2(x), . . . , pℓ(x) are linear polynomials over ℝ,
the q1(x), q2(x), . . . , qk(x) are quadratic polynomials overℝwhich have no zeroes inℝ.

If ℓ ≥ 1 then there exists a real zero of χA(x), that is, a real eigenvalue, and therefore
there exists a one-dimensional subspaceW of ℝn with f (W) = W .

Now let ℓ = 0. We consider the quadratic polynomial q1(x) as an element of ℂ[x].
If α ∈ ℂ \ ℝ is a zero of q1(x) in ℂ, then also α is a zero of q1(x) in ℂ. The system

A(

z1
z2
...
zn

) = α(

z1
z2
...
zn

)

of equations has a nontrivial solution

(

z1
z2
...
zn

) ∈ ℂn.

Then

(

z1
z2
...
zn

)

is a solution of the system of equations

A(

z1
z2
...
zn

) = α(

z1
z2
...
zn

) .

Let zj = xj + iyj, j = 1, 2, . . . , n and α = a + ib, then zj = xj − iyj, j = 1, 2, . . . , n. We get

A(

x1
x2
...
xn

) =(

ax1 − by1
ax2 − by2

...
axn − byn

)
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and

A(

y1
y2
...
yn

) =(

bx1 + ay1
bx2 + ay2

...
bxn + ayn

) .

Let v⃗ = x1b⃗1 + x2b⃗2 + ⋅ ⋅ ⋅ + xnb⃗n and w⃗ = y1b⃗1 + y2b⃗2 + ⋅ ⋅ ⋅ + ynb⃗n. Then the above
considerations give

f (v⃗) ∈ span(v⃗, w⃗) and f (w⃗) ∈ span(v⃗, w⃗).

Here span(v⃗, w⃗) is the subspace ofℝn generated by v⃗ and w⃗. So we got a 2-dimensional
subspaceW ⊂ ℝn with f (W) ⊂ W . Since f is bijective, we get f (W) = W .

So, altogether there is a 1- or 2-dimensional subspaceW ⊂ ℝn with f (W) = W .
LetW⊥ be the orthogonal complement ofW , that is,W⊥ = {v⃗ ∈ ℝn|{v⃗} ⊥ W}. Since

f −1 is also an isometry, we get

⟨f (v⃗), w⃗⟩ = ⟨(f −1 ∘ f (v⃗)), f −1(w⃗)⟩ = ⟨v⃗, f −1(w⃗)⟩ = 0

for w⃗ ∈ W and v⃗ ∈ W⊥. Therefore f (W⊥) = W⊥, too. By induction hypothesis, we have
a suitable orthonormal basis forW⊥ which we may extend by a suitable orthonormal
basis forW to a suitable orthonormal basis for ℝn (see [5]). Altogether, maybe after a
suitable renumbering of the basis elements, we get the following result.

Theorem 2.43. Let f : ℝn → ℝn, n ≥ 2, be a linear isometry. Then there exist an or-
thonormal basis ℬ of ℝn such that the matrix allocated to f with respect to ℬ has the
form

((((((((((((((((((

(

1 0 . . . . . . . . . . . . . . . . . . 0

0
. . . . . .

...
...

. . . 1
. . .

...
...

. . . −1
. . .

...
...

. . . . . . . . .
...

...
. . . −1

. . .
...

...
. . . A1

. . .
...

...
. . . . . . 0

0 . . . . . . . . . . . . . . . . . . 0 Ak

))))))))))))))))))

)
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where

Ai = (
cos(αi) − sin(αi)
sin(αi) cos(αi)

) , αi ∈ [0, 2π) for i = 1, 2, . . . , k.

Remark 2.44. Again, an arbitrary isometry f : ℝn → ℝn can be described as f = τ ⃗v ∘ f ′

where τ ⃗v : ℝn → ℝn, w⃗ → w⃗ + v⃗ is a translation and f ′ : ℝn → ℝn is a linear isometry.

Exercises

1. (a) Let f : ℝn → ℝn be a linear mapping and {b⃗1, b⃗2, . . . , b⃗n} an orthonormal basis
of ℝn.
(i) Show that f is an isometry if and only if ⟨b⃗i, b⃗j⟩ = ⟨f (b⃗i), f (b⃗j)⟩ for all i, j ∈
{1, 2, . . . , n}.

(ii) Consider the following linear mappings and decide which of them are
isometries:
(A) n = 2, f (b⃗1) = 2b⃗1 + b⃗2, f (b⃗2) = −b⃗1;
(B) n = 2, f (b⃗1) =

1
2 b⃗1 −

1
2
√3b⃗2, f (b⃗2) =

1
2
√3b⃗1 +

1
2 b⃗2;

(C) n = 3, f (b⃗1) = −b⃗1, f (b⃗2) = −b⃗2, f (b⃗3) = b⃗3;
(D) n = 3, f (b⃗1) = b⃗1, f (b⃗2) = −b⃗2, f (b⃗3) = b⃗1 + b⃗3.

(b) Let f : ℝn → ℝn be a linear mapping. Show that

f is injective ⇔ f is surjective ⇔ f is bijective.

(Hint: Use the fact that any two basesℬ1,ℬ2 ofℝn have exactly n elements and
that n linearly independent vectors form a basis of ℝn.)

2. (a) Let f : ℝ2 → ℝ2 be an isometry given by

(
x
y
) → (

3
5 −

4
5

4
5

3
5

)(
x
y
) + (

2
1
) .

Is f a rotation? If yes, determine the center of the rotation.
(b) Let f : ℝ2 → ℝ2 be a glide reflection given by

(
x
y
) → (

0 1
1 0
)(

x
y
) + (

1
2
) .

Write f in the form f = τx⃗ ∘ S, whereby S is a reflection at a line g and x⃗ is
parallel to a direction vector of g. Find the reflection line g and the vector x⃗.

(c) Consider an f : ℝ2 → ℝ2 with

(
x
y
) → (

0 −1
1 0
)(

x
y
) − (

3
2
) .
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Is f a rotation? If yes, find the center of the rotation.
(d) Consider an f : ℝ2 → ℝ2 with

(
x
y
) → (

1
2
√3 1

2
1
2 − 12√3

)(
x
y
) + (

2
−1
) .

Show that f is a glide reflection and determine the reflection line and transla-
tion vector.

(e) Let f : ℝ2 → ℝ2 be an isometry with

(
x
y
) → (

3
5 −

4
5

4
5

3
5

)(
x
y
) + (

1
1
) .

Is f a rotation? If yes, determine the rotation center.
(f) Let f : ℝ2 → ℝ2 be a glide reflection with

(
x
y
) → (

0 1
1 0
)(

x
y
) + (

1
2
) .

Write f in the form f = τx⃗∘S,whereby S is a reflectionat a line g and x⃗ is parallel
to a direction vector of g. Determine the reflection line g and the vector x⃗.

3. Let f1, f2 : ℝ2 → ℝ2 be linear isometries.
(a) Describe f1 ∘ f2, if both f1 and f2 are rotations.
(b) Describe f1 ∘ f2, if both f1 and f2 are reflections.
(c) Describe f1 ∘ f2, if one of f1 and f2 is a rotation and the other one is a reflection.
(d) When does f1 ∘ f2 = f2 ∘ f1 hold?

4. (a) Consider an f : ℝ3 → ℝ3 with

(
x
y
z
) →(

−1 0 0
0 0 −1
0 1 0

)(
x
y
z
) +(

2
1
2
) .

What kind of mapping is f ? Determine the fixed point of f , that is,

x⃗ =(
x
y
z
)

with f (x⃗) = x⃗.
(b) Consider an f : ℝ3 → ℝ3 with

(
x
y
z
) →(

1 0 0
0 0 −1
0 1 0

)(
x
y
z
) +(

1
1
1
) .
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Then f is a rotary translation. Find the rotation axis and the translation vector.
(c) Consider an f : ℝ3 → ℝ3 with

(
x
y
z
) →(

1 0 0
0 1 0
0 0 −1

)(
x
y
z
) +(

1
1
0
) .

Calculate the reflection plane.
5. (a) Consider an f : ℝ3 → ℝ3 with

(
x
y
z
) →(

−1 0 0
0 −1 0
0 0 1

)(
x
y
z
) +(

0
2
0
) .

(i) Show that f is a rotation and calculate the rotation axis.
(ii) Let g : ℝ3 → ℝ3 be a linear isometry with

(
x
y
z
) →(

−1 0 0
0 −1 0
0 0 1

)(
x
y
z
) .

Show that the product f ∘ g is a translation.
(b) Consider an f : ℝ3 → ℝ3 with

(
x
y
z
) →(

−1 0 0
0 1 0
0 0 −1

)(
x
y
z
) +(

0
0
1
) .

(i) Show that f is a rotation and determine the rotation axis and rotation
angle.

(ii) Let g : ℝ3 → ℝ3 be a linear isometry with

(
x
y
z
) →(

1 0 0
0 −1 0
0 0 −1

)(
x
y
z
) .

Then g is a rotation around the axis

(
1
0
0
) .

Show that the product f ∘ g is a rotary translation.
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6. Let

A :=(
−2 0 3
2 4 0
1 0 0

) .

(a) Determine the characteristic polynomial χA(x) and the eigenvalues λ1, λ2 and
λ3 of A.

(b) Calculate the corresponding eigenvectors for each eigenvalue.
7. Let

A =(
1 0 0
0 3

5 −
4
5

0 4
5

3
5

)

be given. Show thatA has exactly one real eigenvalue λ. Calculate one eigenvector
for λ.

8. Let A ∈ M(n × n,ℝ) be a real (n × n)-matrix. Then A is called symmetric, if A = AT .
Show the following:
(a) ⟨Ax⃗, y⃗⟩ = ⟨x⃗,Ay⃗⟩ for all x⃗, y⃗ ∈ ℝn.

(Hint: Use the equation ⟨Ax⃗, y⃗⟩ = (Ax⃗)T y⃗ = x⃗T (AT y⃗).)
(b) Letn = 3 andA ∈ M(3×3,ℝ)bea symmetricmatrix. Let λ andμbe twodifferent

eigenvalues of A and v⃗ and w⃗ be the eigenvalues for λ and μ, respectively.
Show that v⃗ and w⃗ are perpendicular to each other, that is, ⟨v⃗, w⃗⟩ = 0.

9. Let G be a group. A subgroup N of G is called a normal subgroup of G, if gN = Ng
for all g ∈ G, with gN = {gh | h ∈ N} and Ng = {hg | h ∈ N}. Therefore, if N is a
normal subgroup of G, then there is for each g ∈ G and h ∈ N an element h′ ∈ N
with gh = h′g.
Let O+(n) be the set of all matrices A in O(n) with det(A) = 1.
Show that O+(n) is a normal subgroup of O(n).

10. (a) Let

A =(

1
√2 −

1
√2 0

1
√3

1
√3

1
√3

1
√6

1
√6 −

2
√6

) .

Determine if A is orthogonal.
(b) Let

A = a(6 −8
c 6
)

with a, c ∈ ℝ. For which values a and c is the matrix A orthogonal?
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(c) For which k ∈ ℝ is the matrix

A = (1 k
k 1
)

orthogonal?
11. Let T be the set of translations in the group G of all isometries of ℝn. Show that:

(a) T is an Abelian group with respect to the concatenation.
(b) T is a normal subgroup of G (see Exercise 9 for a definition).

(Hint: If f ∈ G, then f = τ ∘ f ′ with f ′ a linear isometry and a translation.
Therefore, it is enough to show that, if f is a linear isometry and τ ∈ T, then
f −1 ∘ τ ∘ f ∈ T.)
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3 The Conic Sections in the Euclidean Plane
3.1 The Conic Sections
To the classical Greek geometers the simplest geometric curve was a line. After a line
their most studied geometric curves were the conic sections. The work of the ancient
Greek mathematicians on conic sections culminated around 200 BC, when Appollo-
nius of Perga (ca. 265–190 BC) undertook a systematic study of their properties.

The aim of this chapter is to give a classification and a geometric description of
the planar conic sections.

In a Euclidean plane there are four conic sections: a circle, an ellipse, a parabola
and a hyperbola, with the circle being a special type of an ellipse, see Figures 3.1
and 3.2. They are curves of intersection of a plane and a double circular cone which
we define below.

circle ellipse

Figure 3.1: Conic sections: circles and ellipses.

parabola hyperbola

Figure 3.2: Conic sections: parabolas and hyperbolas.

A (double circular) cone is a pair of circular cones meeting at their common vertex.
Formally, we give the following definition.

Definition 3.1.
(1) A (double circular) cone K ⊂ ℝ3 is the rotation surface of a line g around an axis h

which g cuts and which is not orthogonal to g, see Figure 3.3.
We call S the peak of the cone.

https://doi.org/10.1515/9783110740783-003
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h

S

Figure 3.3: Double circular cone.

(2) A conic section (or simply a conic) is a curve obtained as the intersection of the
surface of a double circular cone with a plane E.

Remark 3.2. For a geometric visualization we often assume that the axis h is the x3-
axis in ℝ3 and the cone is symmetric with respect to the x1x2-plane. If we suppose in
addition that the plane E does not contain the peak S of the cone, then our classifica-
tion result will give the following:
(1) If the plane E is parallel to the x1x2-plane then the resulting conic section is a

circle.
(2) If the plane E is not parallel to the x1x2-plane, not parallel to a line g′ on the cone

and not parallel to the x3-axis h, then the resulting conic section is an ellipse.
(3) If the plane E is parallel to a line g′ on the cone then the resulting conic section is

a parabola.
(4) If the plane E is parallel to the x3-axis h then the resulting conic section is a hy-

perbola.

We work in the Euclidean spacesℝ2 andℝ3 which we consider equipped with the
canonical scalar product

⟨x⃗, y⃗⟩ for x⃗, y⃗ ∈ ℝn, n = 2 or 3.

Our aim is to give a classification and a geometric description of the planar conic
sections.

Remark 3.3. Before we start with this project, we need to develop theHessian Normal
Form for a plane in the Euclidean space ℝ3.
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A plane E ⊂ ℝ3 is explained by a supporting vector p⃗ ∈ ℝ3 (considered as a point
on E) and two linearly independent plane indication vectors u⃗, v⃗ ∈ ℝ3:

E = {p⃗ + su⃗ + tv⃗ | s, t ∈ ℝ}.

A vector n⃗ ∈ ℝ3, n⃗ ̸= 0⃗, is a normal vector to E if ⟨n⃗, u⃗⟩ = ⟨n⃗, v⃗⟩ = 0, that is, n⃗ is
orthogonal to u⃗ and v⃗ and, hence, to E, see Figure 3.4. Such an n⃗ always exists by the
Gram–Schmidt orthonormalization procedure (see [12]).

→v

→n

→p

→u

O Figure 3.4: Hessian Normal Form.

Fact. E = {x⃗ ∈ ℝ3 | ⟨x⃗, n⃗⟩ = d}, where d = ⟨p⃗, n⃗⟩, p⃗ ∈ E (considered again as a vector
p⃗ = →OP from the center O = 0⃗ to a point P ∈ E), and n⃗, n⃗ ̸= 0⃗, is a normal vector to E.

Proof of the fact. We have to show that

E = {x⃗ = p⃗ + su⃗ + tv⃗ | s, t ∈ ℝ} = {x⃗ | ⟨x⃗, n⃗⟩ = d}.

“⊂”

⟨x⃗, n⃗⟩ = ⟨p⃗ + su⃗ + tv⃗, n⃗⟩ = ⟨p⃗, n⃗⟩ + ⟨su⃗, n⃗⟩ + ⟨tv⃗, n⃗⟩ = ⟨p⃗, n⃗⟩ = d.

“⊃”

⟨x⃗, n⃗⟩ = d = ⟨p⃗, n⃗⟩⇔ ⟨x⃗ − p⃗, n⃗⟩ = 0⃗.

Then (x⃗ − p⃗) ⊥ n⃗, and hence there exist s, t ∈ ℝ with x⃗ − p⃗ = su⃗ + tv⃗.

The form E = {x⃗ ∈ ℝ3 | ⟨x⃗, n⃗⟩ = d} where d = ⟨p⃗, n⃗⟩, p⃗ ∈ E and n⃗ ̸= 0⃗, a normal
vector to E, is called the Hessian normal form for the plane E ⊂ ℝ3.
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Lemma 3.4. Consider a conic section, which is formed by the cone K and the plane E. If
E contains the peak S of the cone, then K ∩ E is a single point, a line or a pair of lines.

Proof. We may assume that the axis h is equal to the x3-axis in ℝ3 and the peak S is
equal to the center O = (0,0,0) =: 0. Then the equation for the cone is given by

x21 + x
2
2 = kx

2
3, k > 0,

since the points on the cone, which have the same x3-coordinate, are on a circle par-
allel to the x1x2-plane.

Further, wemay assume that the plane E is orthogonal to the x2x3-plane. A normal
vector n⃗ to E then is of the form (0, n2, n3)T , and the Hessian normal form for E is n2x2+
n3x3 = d. The peak S = O = 0 of the cone is in E. Therefore d = 0.

If n3 ̸= 0 then x3 = λx2 with λ = − n2n3 . Then K ∩ E is given by x21 + x
2
2 = kx

2
3, and

therefore x21 = (kλ
2 − 1)x22 . Now, if kλ

2 < 1, then K ∩ E = {0}. If kλ2 = 1 then K ∩ E is the
line x3 = λx2, x1 = 0.

Finally, if kλ2 > 1 then the intersection K ∩ E is the pair of lines given by

x3 = λx2, x1 = ±√(kλ2 − 1) ⋅ x2.

Now let n3 = 0. Then the intersection K ∩ E is the pair of lines x2 = 0, x1 = ±√kx3.

Remark 3.5. If S ∈ E, then we showed that K ∩ E is a point, that is, K ∩ E = {S}, a line
or a pair of lines.

We call these cases the degenerate conic sections.
From now on for the rest of this chapter, we do not consider the degenerate cases,

that is, we only consider the case with S ̸∈ E.
We call these cases regular conic sections, that is, those with S ̸∈ E.
To get a general equation for the (regular) conic sectionsK∩E,we choose a suitable

system of coordinates. As the center O = 0 of the coordinate systemwe choose a point
of K ∩ E which has the smallest distance from the peak S of the cone, and as x1-axis
the lineOA throughO and A, where A is the intersection point of the axis h of the cone
with the plane E. In addition, the point A shall be on the positive ray of the x1-axis.

Agreement. As already done in earlier chapters, we now write (x, y, z) instead of
(x1, x2, x3) for the points in ℝ3. The points X = (x, y, z) we also may consider as the
vectors →OX. By CDwe denote the line through the points C and D inℝ3, and by CD the
line segment from C to D (this we may also interpret as the connection vector from C
to D with starting point C).

We now choose as the y-axis the line in E through O which is orthogonal to the
x-axis. As the z-axis we take the line through O which is orthogonal to E.

There are two cases to consider:
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Case 1. The plane E cuts the cone K only in one half, see Figure 3.5.

β
O

z

x

y S = (xS ,0, zS)

α α

A
P

Figure 3.5: Case 1.

Case 2. The plane E cuts both halves of the cone K, see Figure 3.6.

x

z y

Sα

180° − α

P A

β

0

Figure 3.6: Case 2.

Since the plane E is identical to the xy-plane, we have z = 0 for each point P of the
intersection K ∩ E. Since the center O is chosen as the point of K ∩ E which has the
smallest distance from S, the perpendicular from S onto the xy-plane is the line OA,
that is, on the x-axis. Hence, ys = 0.

Hence we know about the coordinates of the points S and P that S = (xs,0, zs) and
P = (x, y,0), where P ∈ K ∩ E is arbitrary.
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Since P ∈ K ∩ E, we have either ∢(→SP,→SA) = α (Case 1) or ∢(→SP,→SA) = 180° − α
(Case 2), where α is half of the opening angle of the cone. Hence,

cos(α) = cos(∢(→SP,→SA)) = ⟨
→SP,→SA⟩
‖→SP‖‖→SA‖

and

cos(180° − α) = − cos(α) = cos(∢(→SP,→SA)) = ⟨
→SP,→SA⟩
‖→SP‖‖→SA‖

.

Let n⃗ =
→SA
‖→SA‖

. Then ⟨→SP, n⃗⟩ = ‖→SP‖ ⋅ cos(α), respectively ⟨→SP, n⃗⟩ = −‖→SP‖ cos(α).
In both cases we get

(⟨→SP, n⃗⟩)2 = 
→SP

2 cos2(α).

Since also O is a point of the cone with ∢(→SO,→SA) = α, we have

⟨→SO, n⃗⟩ = 
→SO cos(α).

Since ⟨→SP, n⃗⟩ = ⟨→SO, n⃗⟩ + ⟨→OP, n⃗⟩, it follows that


→SP

2 cos2(α) = (
→SO cos(α) + ⟨

→OP, n⃗⟩)2. (3.1)

We now continue with the coordinates. Since S = (xs,0, zs) and P = (x, y,0), we
get →SO = (−xs,0,−zs)T ,

→OP = (x, y,0)T and →SP = (x − xs, y,−zs)T .
Since the y-component of n⃗ must also be 0, we may represent n⃗ by n⃗ = (xn,0, zn)

with x2n + z
2
n = 1, because ‖n⃗‖ = 1. Hence, ⟨

→OP, n⃗⟩ = xxn. If we plug this into (3.1), we get

(x2 + x2s − 2xxs + y
2 + z2s) cos

2(α) = (x2s + z
2
s) cos

2(α) + 2xxn cos(α)√x2s + z2s + x
2x2n.

By solving this equation for y2, we get

y2 = 2( xn
cos(α)
√x2s + z2s + xs)x + (

x2n
cos2(α)

− 1)x2. (3.2)

We define ϵ := xn
cos(α) and p := ϵ√x

2
s + z2s + xs.

The quantity ϵ is called the numerical eccentricity and p the parameter of the reg-
ular conic section. Altogether we have the following.

Theorem 3.6 (Vertex equation of regular conic sections). A regular conic section with
numerical eccentricity ϵ and parameter p is described by the equation

y2 = 2px + (ϵ2 − 1)x2. (3.3)
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Remark 3.7. In fact, ϵ = cos(β)
cos(α) where β is the cutting angle between the plane E and

the cone axis and 2α the opening angle of the cone (see Figures 3.5 and 3.6). This we
see as follows.

From the choice of the coordinate system, β is the angle between n⃗ and the unit
vector in the direction of the x-axis. Since ‖n⃗‖ = 1, we get cos(β) = ⟨n⃗, (1,0,0)T⟩ = xn
and hence, ϵ = cos(β)

cos(α) .
Since α is a sharp angle or a right angle, we have ϵ ≥ 0.

We now consider the vertex equation subject to ϵ. This is how we get a geometric
description of the respective curve.

Case 1 (ϵ = 0). Because of ϵ = cos(β)
cos(α) ,weget in this case cos(β) = 0, that is,β =

π
2 = 90°,

the cone axis is orthogonal to the cutting plane, and the conic section is a circle.
If we consider the vertex equation (3.3) with ϵ = 0, we get

y2 = 2px − x2 = p2 − (x − p)2 or (x − p)2 + y2 = p2,

that is, the equation of a circle with centerM = (p,0) and radius p.

Case 2 (0 < ϵ < 1). In this case cos(β) < cos(α), and hence β > α. With k := −(ϵ2 − 1),
which gives k > 0, the vertex equation (3.3) has the form

y2 = 2px − kx2 = p
2

k
−
p2

k
+ 2px − kx2 = p

2

k
− k(x − p

k
)
2
,

that is,

y2 + k(x − p
k
)
2
=
p2

k
or
(x − p

k )
2

p2
k2
+
y2
p2
k

= 1.

This is by definition an ellipse in a position with one axis parallel to the x-axis and the
other parallel to the y-axis.

We define a := p
k and b :=

p
√k
, and may assume that a > 0, b > 0. Then

(x − a)2

a2
+
y2

b2
= 1,

and we get Figure 3.7.
The value a is called the semi-major axis, and b the semi-minor axis of the ellipse.

By a translation we get the standard position defined by

x2

a2
+
y2

b2
= 1

of the ellipse with center (0,0).
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x

y

0 a a
b

b

Figure 3.7: Ellipse.

Case 3 (ϵ = 1). In this case we get α = β, and the vertex equation (3.3) becomes

y2 = 2px,

and this equation by definition describes a parabola.

Case 4 (ϵ > 1). In this case β < α. If k := ϵ2 − 1, then k > 0, and we get the vertex
equation (3.3) in the form

y2 = 2px + kx2 = −p
2

k
+
p2

k
+ 2px + kx2 = −p

2

k
+ k(x + p

k
)
2
,

that is,

k(x + p
k
)
2
− y2 = p

2

k
or
(x + p

k )
2

p2
k2
−
y2
p2
k

= 1.

We define a = p
k and b =

p
√k
, and may assume that a > 0, b > 0. Then

(x + a)2

a2
−
y2

b2
= 1.

This is by definition a hyperbola where the principle axis is the x-axis, and we get the
following Figure 3.8.

Again, a is called the semi-major axis and b the semi-minor axis. By a translation
we get the standard position defined by

x2

a2
−
y2

b2
= 1

of the hyperbola with center (0,0).

Summary. In standard position we have the following equations:
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x

y
y = − ba (x + a)

y = b
a (x + a)

−2a 0

Figure 3.8: Hyperbola.

(1) Ellipse:

x2

a2
+
y2

b2
= 1

with a, b > 0. If a = b we have a circle.
(2) Hyperbola:

x2

a2
−
y2

b2
= 1,

with a, b > 0.
(3) Parabola:

y2 = 2px

with p ̸= 0.

Remark 3.8. We explained and described the conic sections by cuts of a plane E with
a cone K. This legitimates the name conic sections for the circle, ellipse, hyperbola
and parabola.

The conic sections can also be introduced, especially in school mathematics or in
special courses, in a more natural and elementary manner.

We do this in the next three sections and show the correspondence with the pre-
vious definitions.

3.2 Ellipse

The ellipse is the locus of all points P in the Euclidean space ℝ2 for which the sum of
the distances ‖→PF1‖+‖

→PF2‖ from twofixedpointsF1 and F2, the focal points, is constant:

Kell = {P ∈ ℝ
2 | 
→PF1
 +

→PF2
 = 2a},

where F1, F2 ∈ ℝ2 and 0 < ‖
→F1F2‖ < 2a, see Figure 3.9.
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A B

C

F1 F2

b

M
e

a

Figure 3.9: A, B, C ∈ Kell (A, B on the line F1F2).

We define the following:
A,B,C ∈ Kell with A,B on the line F1F2; M the center of the line segment F1F2;

e := ‖→F1M‖ = ‖
→MF2‖ the linear eccentricity; a := ‖

→MA‖ = ‖→MB‖ the semi-major axis; and
b := ‖→MC‖ the semi-minor axis.

From this we analytically derive the equation for Kell. We take the coordinate sys-
tem with F1 = (−e,0), F2 = (e,0), e > 0 in the xy-plane. For a point P = (x, y) on the
ellipse Kell, we have


→PF1
 +

→PF2
 = 2a,

that is,

√(x + e)2 + y2 +√(x − e)2 + y2 = 2a

from the Theorem of Pythagoras. By changing around and squaring, we get

(x + e)2 + y2 = 4a2 − 4a√(x − e)2 + y2 + (x − e)2 + y2,

that is,

ex − a2 = −a√(x − e)2 + y2.

If we square again

e2x2 + a4 − 2exa = a2((x − e)2 + y2),

0 = a2x2 − e2x2 + a2y2 − a4 + a2e2,

0 = x2(a2 − e2) + a2y2 − a2(a2 − e2).

Since ‖→CF1‖ = ‖
→CF2‖ = a, we have

a2 − e2 = b2
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by the Theorem of Pythagoras, again. Therefore, 0 = x2b2 + a2y2 − a2b2, and hence

x2

a2
+
y2

b2
= 1,

the ellipse in standard position.
The characterization of an ellipse as the locus of points so that the sum of the

distances to the focal points is constant leads to a method of drawing one using two
drawing pins, a length of strings, and a pencil. In this method, pins are pushed into
the paper at two points, which become the focal points of the ellipse. A string is tied at
each end of the two pins and the tip of a pen is pulled to make the loop taut to form a
triangle. The tip of the pen then traces an ellipse if it is movedwhile keeping the string
taut. Using two pegs and a rope, gardeners use this procedure to outline an elliptical
flower bed, thus it is called the gardener’s ellipse construction.

We now determine the area I of the ellipse

x2

a2
+
y2

b2
= 1

in standard position. We get

I = 4b
a

∫
0

√1 − ( x
a
)
2
dx = 4ab

1

∫
0

√1 − x2 dx = 4ab

π
2

∫
0

cos2(t) dt = πab

by the rule of substitution and the fact that

π
2

∫
0

cos2(t) dt =

π
2

∫
0

(
1
2
cos(2t) + 1

2
) dt = π

4
.

If the focal points of an ellipse are allowed to coincide then the ellipse is the locus
of points equidistant from the single focal point and therefore a circle with center at
this focus. It follows that a circle is a special typeof an ellipsewith only one focal point,
and with equal major semi-axis a andminor semi-axis b. In the standard equation we
then have a = b and the circle in standard position is given by

x2 + y2 = r2,

where r is the radius.

3.3 Hyperbola

The hyperbola is the locus of all points P in ℝ2, for which the absolute value of the
difference of the distance |‖→PF1‖ − ‖

→PF2‖| from two fixed points F1 and F2, the focal
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points, is constant:

Khyp = {P ∈ ℝ
2 | 

→PF1
 −

→PF2

 = 2a},

where F1, F2 ∈ ℝ2 and 0 < 2a < ‖
→F1F2‖, see Figure 3.10.

F1 A M B F2

P

a
e

Figure 3.10: A, B, P ∈ Khyp (A, B on the line F1F2).

Let A,B ∈ Khyp. Again we define M to be the center of the line segment F1F2, e :=
‖→MF1‖ = ‖M⃗F2‖ the linear eccentricity, a := ‖

→AM‖ = ‖→BM‖ the semi-major axis, b :=
√e2 − a2 > 0 the semi-minor axis.

For the analytic determination of the equation for Khyp, we take the coordinate
system with F1 = (−e,0) and F2 = (e,0), e > 0. For a point P = (x, y) on the hyperbola
Khyp, we have



→PF1
 −

→PF2

 = 2a,

that is,


√(x + e)2 + y2 −√(x − e)2 + y2

 = 2a,

or equivalently,

±(√(x + e)2 + y2 −√(x − e)2 + y2) = 2a.

By changing around and squaring, we get

(x + e)2 + y2 = 4a2 + 4a√(x − e)2 + y2 + (x − e)2 + y2,

that is,

ex − a2 = a√(x − e)2 + y2.

If we square again, we get

0 = x2(a2 − e2) + a2y2 − a2(a2 − e2).
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Now, for the hyperbola, we define b by b = √e2 − a2, that is, b2 = e2 − a2. Therefore
0 = −b2x2 + a2y2 + a2b2, and finally, x2

a2 −
y2
b2 = 1, the hyperbola in standard position.

3.4 Parabola

The parabola is the locus of all points P in ℝ2, which have the same distance from a
fixed point F ∈ ℝ2, the focal point, and a fixed line ℓ in ℝ2 with F ̸∈ ℓ, ℓ is called the
directrix.

Remark 3.9. The distance of a point P (as a vector →OP inℝ2) from a line ℓ is discussed
in [12, Chapter 14].

Here it is enough to take for the distance of P and ℓ the equivalent version

d(P, ℓ) = inf
Q∈ℓ

→PQ.

This infimum is realized by the nearest point Qℓ from P on ℓ. It is the point at which
the line segment from it to P is perpendicular to ℓ, that is,

d(P, ℓ) = 
→PQℓ
.

We have

Kpar = {P ∈ ℝ
2 | 
→PF = d(P, ℓ)},

where F ∈ ℝ2, ℓ ⊂ ℝ2, F ̸∈ ℓ.

ℓ L

S

F
P

Qℓ

p

Figure 3.11: P, S ∈ Kpar.

Parameter p = ‖→PL‖ = d(F, ℓ) is called the focal parameter; it is the distance from the
focal point to the directrix; L is the nearest point from F on ℓ, the foot of the perpen-
dicular from F to the directrix ℓ.

The center of the line segment FL is called the vertex S.
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For the analytic determination of the equation for Kpar, we take the coordinate
system with F = (0, p2 ), S = (0,0) = O and ℓ : y = − p2 , see Figure 3.11.

For a point P = (x, y) on the parabola Kpar, we have ‖
→PF‖ = d(P, ℓ), that is,

√x2 + (y − p
2
)
2
= √(y + p

2
)
2
.

By changing around and squaring, we get x2 = 2py as the equation for the parabola.
Reflection at the line x = y, that is, exchanging the axes, gives the parabola in

standard position, that is, y2 = 2px.
We remark that the reflection at the y-axis gives the parabola y2 = 2kxwith k = −p.

3.5 The Principal Axis Transformation
We now consider a general equation of the form

a′x2 + b′xy + c′y2 + d′x + e′y + f ′ = 0

with a′, b′, c′, d′, e′, f ′ ∈ ℝ. This equation describes a quadric over ℝ, that is, the set

{(x, y) ∈ ℝ2 | a′x2 + b′xy + c′y2 + d′x + e′y + f ′ = 0, a′, b′, c′, d′, e′, f ′ ∈ ℝ}.

If not all coefficients are 0, then the quadric may be transformed by isometries of ℝ2

(see Chapter 2), so by translations, reflections and rotations, into
(a) the empty set ( x

2

a2 +
y2
b2 = −1),

(b) one point ( x
2

a2 +
y2
b2 = 0),

(c) a line (ax + by + c = 0),
(d) a pair of lines ( x

2

a2 −
y2
b2 = 0),

(e) an ellipse ( x
2

a2 +
y2
b2 = 1),

(f) a hyperbola ( x
2

a2 −
y2
b2 = 1) or

(g) a parabola (y2 = 2px).

We now consider a quadric overℝ as above such that not all coefficients are 0.Wemay
transform the quadric by isometries ofℝ2 into one of the forms (a) to (g). In the cases
(b), (c) and (d) the quadric represents a degenerate conic section.

We now assume that the quadric represents a regular conic section. Wemay write
the quadric in matrix form,

(x y)(
a′ b′

2
b′
2 c
)(

x
y
) + (d′ e′) (xy

) + f ′ = 0
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or

(x y 1)(

a′ b′
2

d′
2

b′
2 c′ e′

2
d′
2

e′
2 f ′
)(

x
y
1
) = 0.

The regular conic sections described by the quadric can be classified in terms of the
value b′2 − 4a′c′, called the discriminant of the regular conic section.

Theorem 3.10. A regular conic section is
(1) an ellipse if b′2 − 4a′c′ < 0,
(2) a circle if a′ = c′ and b′ = 0,
(3) a parabola if b′2 − 4a′c′ = 0 and
(4) a hyperbola if b′2 − 4a′c′ > 0.

We leave the proof of Theorem 3.10 as exercise 7.
The discriminant b′2 − 4a′c′ of the regular conic section and the quantify a′ + c′

are invariant under arbitrary rotations and translations of the coordinate axes.

Applications
Regular conic sections are important in physics, optics and astronomy. Circles are ap-
plicable in uniform circular motions, and parabolas are applicable in kinematic prob-
lems. An object that is moving laterally with constant velocity traces a parabolic path
subject to gravity. The shape of a planet around the sun is described by Kepler’s law
(named after J. Kepler, 1571–1630) as an ellipse with the sun as a focal point. More
generally the orbits of two massive objects that interact according to Newton’s law
of universal gravitation (named after I. Newton, 1643–1727) are conic sections if their
common center of mass is considered to be rest. If they are bound together, they will
trace out ellipses; if they aremoving apart, theywill both followparabolas or hyperbo-
las. Parabolas are used in optics. A parabola is a two-dimensional, mirror-symmetric
curve. A mirror that has a cross-sectional parabolic shape has the property that a ray
of light directly towards the mirror will be reflected towards the focal point of the
parabola. A parabolic reflector is a mirror that uses this property to concentrate re-
flected light onto a single point. These kinds of mirrors are used in mircrophone and
satellite technology. More generally, the reflective properties of the conic sections are
used in the design of searchlight, radiotelescopes and optical telescopes. A search-
light uses a parabolic mirror as a reflector. An optical telescope often uses a primary
parabolic mirror to reflect light towards a secondary hyperbolic mirror which reflects
it again to a focal point behind the first mirror.
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Exercises

1. Let a plane E ⊂ ℝ3 be given by the supporting vector p⃗ = (1, 1,−1) and the plane
indication vectors u⃗ = (0, 1, 3) and v⃗ = (2,−1,0). Find a normal vector to E and the
Hessian normal form for E.

2. Let CS be a conic section in standard position, that is,
– CS = {(x, y) ∈ ℝ2 | x

2

a2 +
y2
b2 = 1} if CS is an ellipse,

– CS = {(x, y) ∈ ℝ2 | x
2

a2 −
y2
b2 = 1} if CS is a hyperbola and

– CS = {(x, y) ∈ ℝ2 | y2 = 2px, p ̸= 0} if CS is a parabola.
Let P0 = (x0, y0) ∈ CS. Calculate the tangent t = {(x, y) ∈ ℝ2 | y = mx + n} of CS
at P0.

3. Let CS be an ellipse with focal points F1, F2, semi-major axis a and eccentricity ϵ,
0 < ϵ < 1.
Show that there exists a line ℓ with the following property:
The points P ∈ CS are exactly those points in the plane with

‖→PF1‖
‖Pℓ‖
= ϵ = ‖
→F1F2‖
2a

where ‖Pℓ‖ = inf{‖→PQ‖ | Q ∈ ℓ}.
4. Let CS be an ellipse with focal points F1, F2, and let P ∈ CS. Show that the normal

vector n⃗ to CS at P bisects the angle ∢(→PF1,
→PF2).

5. Let CS be a parabola with focal point F, and let P ∈ CS. Let L be the foot of the
perpendicular from P to the directrix ℓ.
Show that the tangent line t to CS at P bisects the angle between the line segments
PF and PL.

6. Show the statement in Section 3.5 in detail.
7. Prove Theorem 3.10.
8. Describe the quadric defined by the equation

(a) x2 + y2 − xy − x − y = 0,
(b) x2 + y2 − xy − x − y + 1 = 0,
(c) x2 + y2 − 3xy = 0,
(d) x2 + y2 − 3xy − 1 = 0,
(e) xy − 1 = 0.

9. Let CS be an ellipse in standard position

{(x, y) ∈ ℝ2 
x2

a2
+
y2

b2
= 1}.

Show that CS can be written parametrically as (x, y) = (a cos(Θ), b sin(Θ)).
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10. Let CS be a hyperbola in standard position

{(x, y) ∈ ℝ2 
x2

a2
−
y2

b2
= 1}.

Show that CS can be written parametrically as (x, y) = (±a cosh(u), b sinh(u)).
We remind that the hyperbolic functions are defined as

cosh(u) = 1
2
(eu + e−u) and sinh(u) = 1

2
(eu − e−u).

11. Let CS be a parabola in standard position

{(x, y) ∈ ℝ2 | y2 = 2px, p ̸= 0}.

Show that CS can be written parametrically as (x, y) = ( p2 t
2, pt).
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4 Special Groups of Planar Isometries
In Chapter 2 we saw that the study of planar Euclidean geometry depended upon
the knowledge of the Euclidean group, the group of all isometries of the Euclidean
planeℝ2. In this chapter we describe certain special groups of planar isometries, that
is, certain special subgroups of the Euclidean group. These special groups are tied in
many cases to chemistry and physics, especially the structure of crystals.

In order to proceed, we need to explain some basic group-theoretical material.
For details see, for instance, [8] or [13]. We first explain presentations of groups by
generators and relations. Let G be a group and X ⊂ G. The elements of X are called a
set of generators of G if every element of G is expressible as a finite product of their
powers (including negative powers). Here X is almost always a finite subset of G, and
then G is finitely generated. Each element w ∈ G can be written in the form

w = xα11 x
α2
2 ⋅ ⋅ ⋅ x

αk
k ,

xi ∈ X, αi ∈ ℤ \ {0}, k ≥ 0 with i = 1, 2, . . . , k.
Recall that k = 0meansw = 1, the identity element in G. Now, let {x1, x2, . . . , xn} be

a generating set of G. There are always relations of the type xix−1i = x
−1
i xi = 1. These we

do not count, they are trivial. A set of relations ri = ri(x1, x2, . . . , xn) = 1, i ∈ I, satisfied
by the generators x1, x2, . . . , xn of G is called a defining set of relations (with respect
to X) of G if every relation satisfied by the generators is an algebraic consequence of
these particular relations ri, i ∈ I. Here I is almost always finite, say I = {1, 2, . . . ,m},
and we call then G finitely presented if |X| <∞ and |I| <∞.

Let X = {x1, x2, . . . , xn} be a set of generators of G, and R = {r1, r2, . . . , rm} be a set of
defining relations of G. Then we write

G = ⟨X | r1 = r2 = ⋅ ⋅ ⋅ = rm = 1⟩ or just G = ⟨X | R⟩

and call G presented by the set X of generators and the set R of defining relations. If
R = 0, we write G = ⟨X | ⟩ instead of G = ⟨X | 0⟩. We call G = ⟨X | R⟩ commutative or
Abelian, after N.H. Abel (1802–1829), if aba−1b−1 = 1 is a relation for all a, b ∈ X.

The group G is completely described by the set X and R. The presentation of G is
very helpful, but certainly not unique. For instance, we may change the generating
system and then the defining relations system, respectively.

Example 4.1. We consider some basic examples of Abelian groups:
(1) ℤ = ⟨x | ⟩.
(2) Let Cn be a cyclic group of order n <∞. Then Cn = ⟨x | xn = 1⟩.
(3) Let G = ℤ ×ℤ be the Cartesian product. Then G becomes a group via the multipli-

cation (m, n)(p, q) = (m + p, n + q). Let a = (1,0) and b = (0, 1). Then

G = ⟨a, b | aba−1b−1 = 1⟩.

https://doi.org/10.1515/9783110740783-004
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88 | 4 Special Groups of Planar Isometries

More generally, if H and K are groups and G = H × K their Cartesian product then
G becomes a group via the multiplication (h1, k1)(h2, k2) = (h1h2, k1k2). G is called the
direct product of H and K.

Remark 4.2. If in a presentation some relation ri is given as ri = uv−1 = 1, then we also
write in the presentation u = v instead of ri = 1. In this sense

G = ℤ ×ℤ = ⟨a, b | ab = ba⟩.

Occasionally, we need isomorphisms between groups.
Let G and H be groups. A map f : G → H is called a homomorphism if f (gh) =

f (g)f (h) for all g, h ∈ G, that is, f respects the multiplication in G. The homomorphism
f is called an isomorphism if f is bijective; we call groups G and H isomorphic and
write G ≅ H. In case H = G, we also call f an automorphism of G.

We remark that certainly f (G) is a subgroup of H. The kernel ker(f ) is defined as
ker(f ) = {g ∈ G | f (g) = 1 in H}. Then ker(f ) is a normal subgroup of G. Recall that a
subgroupN ofG is a normal subgroup ofG if gN = Ng for all g ∈ G, and we denote this
by N ⊲ G. Here gN and Ng are the cosets of N in G defined by gN = {gn | n ∈ N} and
Ng = {ng | n ∈ N}. Since (gN)(hN) = ghNN and NN = {nn′ | n, n′ ∈ N} = N, we have
that the set G/N is a group under the multiplication (gN)(hN) = ghN, the factor group
or quotient of G by N . Now let f : G → H be again a homomorphism between groups.
Wementioned that ker(f ) is a normal subgroup ofG. Then G/ker(f ) is isomorphic to f (G),
written as G/ker(f ) ≅ f (G) (for more details, see [8] or [13]).

More generally, if U is a subgroup of a group G then the number (or cardinality)
of left cosets gU is equal to the number of right cosets Ug of U in G, and this number
is called the index |G : U | of U in G.

Finally, we need the notation of a semidirect product of two groups. Consider a
group G with identity element 1, a subgroup H, and a normal subgroup N ⊲ G.

If N ∩ H = {1}, and if G is generated by H and N, then G is called the (inner)
semidirect product of N and H written G = N ⋉ H.

In this chapter we again consider the planeℝ2 as a two-dimensional vector space
equipped with the scalar product (inner product)

⟨x⃗, y⃗⟩ = x1y1 + x2y2

for vectors x⃗ = (x1, x2), y⃗ = (y1, y2).
In Chapter 2 we saw that an isometry ofℝ2 is a rotation, a translation, a reflection

or a glide reflection.
If φ : ℝ2 → ℝ2 is an isometry then φ = τ ⃗v ∘ f with f a linear isometry and τ ⃗v a

translation. We call φ oriented if det(A) = 1 for the orthogonal matrix A ∈ O(2) of f
(with respect to an orthogonal basis of ℝ2), otherwise non-oriented.

Hence, rotations and translations are oriented, reflections and glide reflections
are non-oriented. Geometrically, an oriented isometry φ preserves the cyclic order of
vertices around a triangle and a non-oriented isometry does not, see Figure 4.1.
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oriented
1 2

3

1 2

3
ϕ

non-oriented
1 2

3

1 2

3ϕ

Figure 4.1: Oriented and non-oriented isometries.

If G is a group of isometries of ℝ2 then the set of oriented isometries in G forms a
subgroup G+ of G of index |G : G+| ≤ 2, and hence G+ is a normal subgroup of G; G+

is called the oriented subgroup of G. If φ = τ ⃗v ∘ f , with f oriented, then det(A) = 1
for the matrix A which belongs to f (with respect to an orthonormal basis of ℝ2). The
elements A ∈ O(2) with det(A) = 1 therefore form a subgroup SO(2) of O(2) of index 2,
the special orthogonal group.

Before we consider special groups of isometries of ℝ2, we make some group-
theoretical remarks. We call an isometry ofℝ2 now a planar isometry and denote by E
the set of all planar isometries and by E+ the set of the oriented elements of E. As seen
more generally, E+ is a normal subgroup of E of index 2. Let T be the set of all planar
translations.

Let τ1, τ2 ∈ T. If τ1 ̸= τ−12 then τ1 ∘ τ2 is a nontrivial translation since τ1 ∘ τ2 is not
the identity 1 and has no fixed points. Recall that P ∈ ℝ2 is a fixed point of the planar
isometry φ if φ(P) = P.

Hence T forms a subgroup of E+. In fact, T is Abelian because τ1 ∘ τ2 = τ2 ∘ τ1
for τ1, τ2 ∈ T. If α ∈ E and τ ∈ T, τ ̸= 1, then α ∘ τ ∘ α−1 is a translation. This can be
seen as follows. Let P,Q ∈ ℝ2 with τ(P) = Q, we have Q ̸= P because τ ̸= 1. Then
α ∘ τ ∘ α−1(α(P)) = α(Q), that is, α ∘ τ ∘ α−1 maps α(P) to α(Q). Since τ is a translation,
α ∘τ ∘α−1 must also be a translation. Therefore T is a normal subgroup of E, and hence
also of E+.

As a conclusion, we get the chain E ⊃ E+ ⊃ T ⊃ {1} of normal subgroups. The
factor groups have the structures

E/E+ ≅ ℤ2, E/T ≅ O(2), E+/T ≅ SO(2) and T = T/{1} ≅ ℝ2,
where ℝ2 means the additive group under vector addition.

The purpose of this chapter is to consider symmetry groups of figures in ℝ2 and
groups which act discontinuously on ℝ2. Certainly there are many overlappings be-
tween these two concepts. The main reference for this chapter is the book [21].
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Definition 4.3. A (plane) figure F is just a subset of ℝ2. A symmetry of F is a planar
isometry α with the property that α(F) = F.

The set of all symmetries of F forms a group which we denote by Sym(F).

Example 4.4.
(1) If F = ℝ2 then Sym(F) = E.
(2) Sym(F) = {1, γ} where γ is the reflection at g, and F is as in Figure 4.2.

g

Figure 4.2: Reflection at g.

(3) Sym(F) = {1, γ, δ, γ ∘ δ}where γ is a reflection at g, δ is a reflection at h, and γ ∘ δ is
a rotation with center M and rotation angle π, and F is as in Figure 4.3. We have
γ2 = δ2 = (γ ∘ δ)2 = 1, hence Sym(F) is the Klein four group (see Section 4.1).

M

h

g

Figure 4.3: Reflections at g and h.

(4) Sym(F) = {1}, and F is as in Figure 4.4.

Figure 4.4: Only trivial symmetry.

Definition 4.5. A subgroup G of E is discontinuous if, for every point P ∈ ℝ2, there
is some disc D with center P that contains no image α(P), α ∈ G, of P other than P
itself.
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We note that this condition is equivalent to the following:
If P ∈ ℝ2 is any point and G(P) = {α(P) | α ∈ G} the orbit of P, and if D is any disc

in ℝ2, then the intersection G(P) ∩ D consists of only finitely many points.

Remarks 4.6.
(1) If G is a discontinuous subgroup of E, then every subgroup H of G is also discon-

tinuous, in particular TG = G ∩ T is discontinuous.
(2) Let G be discontinuous and α ∈ G be a rotation around P ∈ ℝ2. Assume that α has

infinite order. Let D be a disk in ℝ2 with center P and positive radius. Then, for
each Q ∈ D \ {P}, all αn(Q) ∈ D, n ∈ ℕ, are in D and pairwise different, which gives
a contradiction. Hence we get the following.

Theorem 4.7. Let G be discontinuous and α ∈ G be a rotation. Then α has finite order.

A fixed point group is a subgroup of the Euclidean group for which there exists a
common fixed point for all elements.

Curiously, only fewfixedpoint groups, that is, groups forwhich there exists a com-
mon fixed point for the elements, are found to be compatible with nontrivial transla-
tions to generate discontinuous groups, more precisely, frieze groups and wallpaper
groups or planar crystallographic groups. In fact, lattice compatibility implies such a
severe restriction that we have only 7 geometrically distinct frieze groups and 17 geo-
metrically distinct wallpaper groups (see Sections 4.5 and 4.6).

Some art historians claim that all 17 wallpaper designs are present in the mosaic
tiles found in the Alhambra in Granada, Spain, constructed in the 13th century.

Discontinuous groups play a fundamental role throughout this chapter. We start
with the consideration of symmetry groups of regular polygons and regular tessella-
tions of the plane ℝ2.

4.1 Regular Polygons

A regular polygon in ℝ2 is a polygon that is equiangular (all interior angles are equal
in measure) and equilateral (all sides have the same length). If n ∈ ℕ, n ≥ 3, we call a
regular polygon a regular n-gon if it has n sides.

Let F be a regular n-gon, n ≥ 3. The sum of the interior angles of a polygon is
(n − 2)π, hence, each interior angle is (n−2)πn = π −

2π
n .

All vertices of a regular n-gon, n ≥ 3, lie on a common circle, the circumscribed
circle. Together with the property of equal-length sides, this implies that every regular
n-gon, n ≥ 3, also has an inscribed circle that is tangent to every side at the midpoint.

If n = 3 we have an equilateral triangle and if n = 4 we have a square.
Now, let the figure F be a regular n-gon, n ≥ 3, and G = Sym(F).
Let O be the center of F. Then F has a rotational symmetry of order n, that is, G

contains a rotation σ around O of order n. This rotation forms a cyclic group of order
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n, that is, {1, σ, σ2, . . . , σn−1} = ⟨σ | σn = 1⟩. There is no other rotation, because G does
not contain a translation.

Figure F also has reflection symmetry in n axes that pass through the centerO of F.
If n is even then half of these axes pass through two opposite vertices, and the other
half through the midpoints of opposite sides.

If n is odd all axes pass through a vertex and the midpoint of the opposite side. In
any case, G contains n rotations and n reflections.

Since G+ = ⟨σ | σn = 1⟩ and |G : G+| = 2 for the index, we get |G| = 2n. Let δ ∈ G be
one fixed reflection. Then necessarily

G = {1, σ, σ2, . . . , σn−1, ρ, ρ ∘ σ, ρ ∘ σ2, . . . , ρ ∘ σn−1}.

All ρ ∘ σk, 0 ≤ k ≤ n − 1, are reflections, that is,

(ρ ∘ σk)2 = 1, or equivalently, ρ ∘ σk ∘ ρ = σ−k .

But, for every k, ρ ∘ σk ∘ ρ = (ρ ∘ σ ∘ ρ)k = σ−k . Hence, (ρ ∘ σk)2 = 1 is a consequence of
the relation (ρ ∘ σ)2 = 1.

Hence, we have the following result.

Theorem 4.8. Let F be a regular n-gon, n ≥ 3, and G = Sym(F). Then

G = ⟨σ, ρ | σn = ρ2 = (ρ ∘ σ)2 = 1⟩ = ⟨ρ1, ρ2 | ρ
2
1 = ρ

2
2 = (ρ1 ∘ ρ2)

n = 1⟩,

where ρ1 = ρ and ρ2 = ρ ∘ σ.

A group with a presentation

⟨x, y | x2 = y2 = (xy)n = 1⟩, n ≥ 3,

is called the dihedral group Dn.
Hence, up to isomorphism, G = Sym(F) is a dihedral group Dn, n ≥ 3.
We extend the notation.
If n = 2 we define

D2 = ⟨x, y | x
2 = y2 = (xy)2 = 1⟩.

We also define the dihedral group D2 to be the Klein four group. D2 is Abelian but not
cyclic.

If n = 1 we define D1 = ⟨x | x2 = 1⟩ ≅ ℤ2. The group D∞ = ⟨x, y | x2 = y2 = 1⟩
is called the infinite dihedral group. We remark that D2 ≅ S3, the symmetric group on
{1, 2, 3}; S3 is the smallest non-Abelian group.
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4.2 Regular Tessellations of the Plane

A tessellation (tiling) of the plane ℝ2 is a division of ℝ2 into non-overlapping closed
regions, which we shall always assumed to be bounded by finite polygons. A tessel-
lation is regular if all the faces (tiles) into which it divides the plane are bounded by
congruent regular n-gons, n ≥ 3.

Let F be a regular tessellation by regular n-gons with n ≥ 3. Since all the interior
angles of a regular n-gon are equal, there must be the same number m ≥ 3 of such
n-gons at each vertex. Hence the interior angle of the n-gon must be 2π

m . On the other
hand, we know that the interior angle of the n-gon is π − 2π

n . Hence,
2π
m = π −

2π
n or

1
m +

1
n =

1
2 . There are exactly three solutions:

(n,m) = (3, 6), (4, 4), (6, 3).

This means that there are only three types under similarity, that is, maps f : ℝ2 → ℝ2

with ‖f (P) − f (Q)‖ = k‖P − Q‖ for some real k > 0 and all P,Q ∈ ℝ2 of regular tes-
sellations F. Here P and Q just denote the local vectors →OP and →OQ, respectively, and
‖ ‖ denotes the length of a vector. For each of these, we determine its symmetry group
G = Sym(F). To determine the structure of G, we could start with its translation sub-
group TG and extend TG by adding rotations, reflections and glide reflections. How-
ever, at this stage we would like to introduce an important method by Poincaré, by
which we obtain a presentation of G from more intrinsic geometrical considerations.

We confine the attention to the tessellation by squares, the most visualized case.
The treatment of the other two cases, the tessellation by equilateral triangles and the
tessellation by regular hexagons, follows exactly the same pattern. After having done
the presentations using the method by Poincaré, we continue with the classification
of the discontinuous subgroups of E starting with the translation subgroups.

Hence let F be a regular tessellation of the plane by squares. Wemay assume that
we have unit squares, that is, squares with side length 1.

Theorem 4.9. The symmetry group G = Sym(F), F being a regular tessellation of the
plane by squares, has the presentation

G = ⟨α, β, γ | α2 = β2 = γ2 = (γ ∘ β)4 = (α ∘ γ)2 = (β ∘ α)4 = 1⟩.

Proof. As already mentioned we may assume that we have a regular tessellation by
unit squares. Let Q be a single square. It is incidental that we get G by the translations
of the squares and the symmetry group GQ = Sym(Q) ≅ D4 of the single square Q, see
Figure 4.5.

We have

ℝ2 = ⋃
g∈G

g(Δ)
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Δ
ab

cA

B

CQ

Figure 4.5: Fundamental region for G.

and ̊̂g(Δ) ∩ ̊̂h(Δ) = 0 if g ̸= h, where ̊̂g(Δ) = g(Δ) \ ϑ(g(Δ)) and ϑ(g(Δ)) = g(a) ∪ g(b) ∪
g(c).

This, in fact, means that Δ is a fundamental region for G.
Let α, β, γ be the reflections at the sides a, b, c of Δ, respectively. Certainly

α, β, γ ∈ G.

Claim. G = ⟨α, β, γ⟩.

Proof of the claim. Let H = ⟨α, β, γ⟩, H is a subgroup of G. Assume that H ̸= G.
Let

U = ⋃
h∈H

h(Δ).

By assumption we have U ̸= ℝ2. Thus some side s of some triangle h(Δ), h ∈ H, must
lie on the boundary of U, separating h(Δ) from some g(Δ), g ∈ G, g ̸∈ H.

Now s is the image h(a), h(b), h(c) of a side a, b, c of Δ, and the reflection ρ in s is
the corresponding element h ∘ α ∘ h−1, h ∘ β ∘ h−1 or h ∘ γ ∘ h−1. Since h, α, β, γ ∈ H, we
get that ρ ∈ H and g = ρ ∘ h ∈ H, which gives a contradiction. Therefore H = G, which
proves the claim.

We now seek a set of defining relations among α, β and γ. Since α, β and γ are
reflections, we have the relations α2 = β2 = γ2 = 1. Further, γ ∘ β is a rotation at A
through an angle twice the interior angle 2π

8 of Δ at A, that is, through 2π
4 , therefore

(γ ∘ β)4 = 1.
Similarly, (α ∘ γ)2 = 1 and (β ∘ α)4 = 1.
We show now that these six relations form a full set of defining relations.
Let D be the tessellation of ℝ2 by the regions g(Δ), g ∈ G. Let O be the center of

Δ, that is, the intersection of lines joining vertices to midpoints of opposite sides. We
join g(O) and h(O) with an (directed) edge e if and only if g(Δ) and h(Δ) have a side s
in common. This way we constructed a graph C with vertices being all centers g(O) of
triangles g(Δ) and edges as described above, see Figure 4.6. For a general discussion
of graphs, see Chapter 5.

We assign to e the label λ(e) = α, β, γ if s is the image g(a), g(b), g(c) of the side a,
b, c of Δ, respectively.
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s
e

g(O)

h(O)

Figure 4.6: Dual graph C.

Let p = e1e2 ⋅ ⋅ ⋅ en, n ≥ 1, be a path in C, that is, a sequence of edges such that ei+1
begins where ei ends for 1 ≤ i < n. Let the path p begin at some g0(O) and have
successive vertices g0(O), g1(O), . . . , gn(O), see Figure 4.7.

s1

sn

g0(O)

g1(O)

g2(O)

gn−1(O)

gn(O)

e1

e2

en

Figure 4.7: Path from g0(O) to gn(O).

Let xi = λ(ei) = α, β, γ, 1 ≤ i ≤ n, respectively.
The reflection ρ at the edge si between gi(Δ) and gi+1(Δ) is ρ = gi ∘ xi+1 ∘ g−1i , hence

gi+1 = ρ ∘ gi = gi ∘ xi+1. It follows that gn = g0 ∘ x1 ∘ x2 ∘ ⋅ ⋅ ⋅ ∘ xn.
We define λ(p) = x1 ∘ x2 ∘ ⋅ ⋅ ⋅ ∘ xn, and hence, gn = g0 ∘ λ(p).
Now, if p is a closed path, that is, g0(O) = gn(O), then g0 = gn, and we have the

relation λ(p) = 1.
On the other hand, if w = x1 ∘ x2 ∘ ⋅ ⋅ ⋅ ∘ xn = 1 in G and g0 ∈ G arbitrary,

then there exists a unique closed path p at g0(O) such that λ(p) = 1 = x1 ∘ x2 ∘
⋅ ⋅ ⋅ ∘ xn.

Now we have to show that each relation is a consequence of the described 6
relations. For this we consider the graph C and the closed paths in C more carefully.

The graph C divides the plane into regions Δ∗ which are square or octagonal, and
defines a tessellation D∗ of ℝ2 (the dual of D). Suppose that a path p runs between
points P and Q along an arc on side of the boundary of a region Δ∗. Let p′ be the path
between P and Q obtained from p by replacing this arc by the other side of Δ∗.
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Wehave λ(p) = λ(p′) because running around the boundary of Δ∗ is one of (γ∘β)±4,
(α ∘ γ)±2, (β ∘ α)±4, see Figure 4.8.

p

p′

Figure 4.8: Replacing p by p′.

The relation α2 = β2 = γ2 = 1 corresponds to modifying p by deleting or inserting
a spine, that is, an edge ei followed by an edge ei+1, that is, the same edge except
traversed in the opposite direction, see Figure 4.9.

ei
ei+1

p Figure 4.9: Cutting spines.

Showing that the given relations define G is therefore equivalent to showing that any
closed path p in C can be reduced to the trivial path at some point (with n = 0 edges)
by a succession of modifications of the two kinds from above. But this is clear. Induc-
tively, by running around the other side of some region Δ∗, we can reduce the number
of regions and spines enclosed by p, and finally reduce to the case that p is a simple
loop.

For the regular tessellation F of type (n,m) = (3, 6), by equilateral triangular re-
gions, six at each vertex, the argument differs from the case above only in that the
interior angles of Δ are different.

We find a presentation

G = ⟨α, β, γ | α2 = β2 = γ2 = (γ ∘ β)3 = (α ∘ γ)2 = (β ∘ α)6 = 1⟩.

The remaining regular tessellation F of type (6, 3) is dual to the one of type (3, 6), and
hence has the same groupG = Sym(F). This can be seen also from the fact that a single
fundamental region Δ serves for both cases, see Figure 4.10.
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Δ

Figure 4.10: Dual types (6, 3) and (3,6).

Remark 4.10. The triples (2, 4, 4), (2, 3, 6) and (2, 6, 3) satisfy the equation

1
p
+
1
q
+
1
r
= 1 where p, q, r ∈ ℕ \ {1}.

For this equation, only one case remains, namely (3, 3, 3). The corresponding group is

G = ⟨α, β, γ | α2 = β2 = γ2 = (γ ∘ β)3 = (α ∘ β)3 = (β ∘ α)3 = 1⟩.

This group is evidently a subgroup of index 2 of the full symmetry group of the regular
tessellation of ℝ2 by equilateral triangles.

Hence every group

G = ⟨α, β, γ | α2 = β2 = γ2 = (γ ∘ β)p = (α ∘ γ)q = (β ∘ α)r = 1⟩,

with p, q, r ∈ ℕ \ {1} and 1
p +

1
q +

1
r = 1, can be considered as a subgroup of E, generated

by three reflections α, β, γ. The subgroup G+ is generated by the rotations x = γ ∘ β,
y = β ∘ α and z = α ∘ γ and has a presentation

G+ = ⟨x, y, z | xp = yr = zq = x ∘ y ∘ z = 1⟩ = ⟨x, y | xp = yr = (x ∘ y)q = 1⟩.

This can be easily seen if we go through the above proofs by deleting spines, that is,
by deleting the elements α2, β2 and γ2. In fact, for instance, we have just to consider
Δ ∪ α(Δ).

A group

⟨x, y | xp = yr = (x ∘ y)q = 1⟩, 2 ≤ p, q, r,

is called a triangle group.
The connection with a triangle is given as follows:
Let p, q, r ∈ ℕ \ {1} and 1

p +
1
q +

1
r = 1. We consider in the plane a triangle Δ with

interior angles π
p ,

π
q ,

π
r , see Figure 4.11.
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a

c

b

π
q

π
p

π
r

Figure 4.11: Triangle Δ with interior angles π
p ,

π
q ,

π
r .

Let G be the group generated by the reflections at the three sides a, b, c of Δ. Then G
has a presentation

G = ⟨α, β, γ | α2 = β2 = γ2 = (β ∘ α)p = (α ∘ γ)q = (γ ∘ β)r = 1⟩.

This certainly works for the cases (p, q, r) = (4, 2, 4) and (3, 2, 6), up to the ordering in
the triples, aswehave seen from the symmetry groups of regular tessellations. It works
also for the case (p, q, r) = (3, 3, 3) if we consider an equilateral triangle, see Figure 4.12.

ab

c Figure 4.12: Equilateral triangle.

We now argue analogously as in the proof of Theorem 4.9.

4.3 Groups of Translations in the Planeℝ2
Wenowcontinue to consider discontinuous groupsof isometries of theplane.Wewant
to classify these via their translation subgroups.

Let G be a discontinuous group of isometries of the plane. Let TG = T ∩ G be the
translation subgroup.

In this section we describe all possible groups TG.
To do this, let G = TG in this section.
A translation τ : ℝ2 → ℝ2 is given by v⃗ → v⃗ + v⃗0 for some fixed vector v⃗0 ∈ ℝ2.

Theorem 4.11. Let G ⊂ T be a discontinuous group of translations of the plane. Then
one of the following cases occur:
(i) G = {1}, that is, G contains only the identity map.
(ii) G = {τ | τ(v⃗) = v⃗ + nv⃗0, n ∈ ℤ} for some v⃗0 ̸= 0⃗, that is, G is infinite cyclic. Such G is

called a nontrivial simple-periodic group.
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(iii) G = {τ | τ(v⃗) = v⃗+mw⃗1 +nw⃗2, n,m ∈ ℤ} for two linearly independent vectors w⃗1, w⃗2.
Such group is called a double-periodic group.

Proof. Suppose that G ̸= {1}. If τ1, τ2 ∈ G with τ1(v⃗) = v⃗ + w⃗1 and τ2(v⃗) = v⃗ + w⃗2 then
also all translations τ with τ(v⃗) = v⃗ + nw⃗1 +mw⃗2, n,m ∈ ℤ are in G.

For a translation τ with τ(v⃗) = v⃗ + c⃗ and v⃗ ̸= 0⃗ we call c⃗ a period for G.
We consider for G the setM = {‖c⃗‖ | c⃗ is a period for G} for periods for G.
Since G is discontinuous, the setM cannot have an accumulation point ‖c⃗‖ (here

‖c⃗‖ is the length of the vector c⃗ ∈ ℝ2).
Hence there exists a period w⃗1 forGwithminimal length ‖w⃗1‖. All transformations

τ with τ(v⃗) = v⃗ +mw⃗1,m ∈ ℤ, belong to G.
Let τ ∈ G with τ(v⃗) = v⃗ + rw⃗1, r ∈ ℝ. Then necessarily r ∈ ℤ because otherwise

there exists a m ∈ ℤ with 0 < |r′| = |r − m| < 1 and τ′ with τ′(v⃗) = v⃗ + r′w⃗1 belongs to
G, contradicting the minimality of ‖w⃗1‖.

Suppose now that G contains a translation τ with τ(v⃗) = v⃗ + b⃗, and b⃗ is not of the
form b⃗ = rw⃗1, r ∈ ℝ. Then w⃗1 and b⃗ are linearly independent.

Again, since G is discontinuous, there is a period w⃗2 of this kind, for which ‖w⃗2‖
is minimal. We have the following relations:
(1) 0 < ‖w⃗1‖ ≤ ‖w⃗2‖,
(2) ‖a⃗‖ ≥ ‖w⃗1‖ for all periods a⃗ ̸= 0⃗ for G,
(3) ‖b⃗‖ ≥ ‖w⃗2‖ for all periods b⃗ for G which are not of the form b⃗ = mw⃗1 for some

m ∈ ℤ.

Claim. Let c⃗ be an arbitrary period for G. Then necessarily

c⃗ = nw⃗1 +mw⃗1 for some n,m ∈ ℤ.

Proof of the claim. First of all, c⃗ = rw⃗1 + sw⃗2 for some r, s ∈ ℝ because w⃗1 and w⃗2 form
necessarily a basis of the vector space ℝ2. We have

r = m + r1, −
1
2
< r1 ≤

1
2
, m ∈ ℤ,

s = n + s1, −
1
2
< s1 ≤

1
2
, n ∈ ℤ.

Let c⃗1 = r1w⃗1 + s1w⃗2. If c⃗1 ̸= 0⃗ then c⃗1 is a period for G.
If s1 = 0, then also r1 = 0 by the above arguments (r1 has to be an integer). Analo-

gously, if r1 = 0 then also s1 = 0 using the above relations.
Now, let r1 ̸= 0 ̸= s1. Then

‖c⃗1‖ < |r1|‖w⃗1‖ + |s1|‖w⃗2‖ ≤
1
2
‖w⃗1‖ +

1
2
‖w⃗2‖ ≤ ‖w⃗2‖

because w⃗1, w⃗2 are linearly independent. This contradicts relation 3 from above.
Hence, we can not have r1 ̸= 0 ̸= s1. It follows r1 = s1 = 0, and therefore Theo-

rem 4.11 is proven.
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4.4 Groups of Isometries of the Plane with Trivial Translation
Subgroup

Let G be a discontinuous group of isometries of the plane with TG = T ∩ G = {1}. By
Theorem 4.7, we know that G does not contain rotations of infinite order.

Theorem 4.12. G is a fixed point group, that is, there exists a P ∈ ℝ2 with f (P) = P for
all f ∈ G.

Proof. Since TG = T ∩ G = {1}, G also does not contain a glide reflection. This can be
seen as follows. Assume that G contains a glide reflection ρ. Then we may express ρ
as ρ = τ ∘ f with τ ̸= 1 a translation and f a reflection such that τ ∘ f = f ∘ τ. Then

ρ2 = (τ ∘ f ) ∘ (τ ∘ f ) = τ2 ̸= 1

is a nontrivial translation contradicting TG = {1}.

Suppose now that G contains a nontrivial rotation σ. Without loss of generality,
we may assume that σ has the center 0⃗ = (0,0).

Let α ∈ G. Then α ∘ σ ∘ α−1 is a rotation with center α(0⃗). Assume that α(0⃗) ̸= 0⃗.
If α is oriented, then α ∘ σ ∘ α−1 ∘ σ−1 is a nontrivial translation giving a contradic-

tion. If α is not oriented, then necessarily α is a reflection, and then α ∘ σ ∘ α−1 ∘ σ is a
nontrivial translation giving a contradiction. Hence, α(0⃗) = 0⃗.

Therefore, if G contains a nontrivial rotation, then G has a fixed point. Now, sup-
pose that G does not contain a nontrivial rotation. Now, since the product of two dis-
tinct reflections is a nontrivial translation or a nontrivial rotation, G can contain at
most one reflection ρ.

Therefore, G = {1} or G = {1, ρ}, ρ a reflection, and G fixes many points.

Theorem 4.13. G is cyclic or a dihedral group Dn, n ≥ 2.

Proof. We know that TG = {1}, and therefore G has a fixed point by Theorem 4.12. If G
does not contain a nontrivial rotation, then G = {1} or G = {1, ρ}, ρ a reflection, and G
is cyclic.

Suppose that G contains a nontrivial rotation. Since G is discontinuous, G con-
tains a rotation σ with smallest possible, positive angle θ for G. Especially, G does not
contain a rotationwith an angle θ1 such that nθ < θ1 < (n+1)θ, n ∈ ℤ. Hence,G+ = ⟨σ⟩,
and therefore G = G+ or G ≅ Dn for some n ∈ ℕ.

Corollary 4.14. Let H be a finite subgroup of E. Then H is cyclic or a dihedral group.

Proof. SinceH is finite, it is discontinuous with TH = {1}. Now, the result follows from
Theorem 4.13.
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4.5 Frieze Groups

We now consider discontinuous subgroups G of E such that the translation subgroup
TG = T ∩ G is infinite cyclic, that is, TG = ⟨τ | ⟩.

Such groups are the symmetry groups of certain infinite plane figures admitting
as translation symmetries only powers of some translation τ along an axis (line) ℓ.
Such figures are called friezes, and their symmetry groups are the frieze groups. In this
sectionwe enumerate the types of frieze groups and illustrate themby giving, for each
type, a frieze whose symmetry group is of that type.

Let G be a frieze group, and let τ be a generator of TG. Let τ : ℝ2 → ℝ2, v⃗ → v⃗ + v⃗0.
The vector v⃗0 determines the direction of the translation. Let ℓ be the line through the
origin 0⃗ and v⃗0 (as a point in ℝ2). We call the line ℓ the translation axis; ℓ (and each
parallel line) is mapped by the elements of TG onto itself.

Case 1
G does not contain a nontrivial rotation. Then G+ = G ∩ E+ = TG. If G = TG = ⟨τ | ⟩,
then we have the first type.

Now let G ̸= TG. If α ∈ G, α ̸∈ TG, then α ∘ τ ∘ α−1 is a translation with translation
axis α(ℓ). Since TG = ⟨τ⟩ we must have α(ℓ) = ℓ.

Since G does not contain a nontrivial rotation, we therefore must have G = ⟨τ, ρ⟩,
where ρ is a reflection or a glide reflection. This follows from the fact that |G : G+| = 2.
Let ρ ∈ G, ρ ̸∈ TG, a reflection or a glide reflection. Then necessarily TG = ⟨τ⟩ =
⟨ρ ∘ τ ∘ ρ−1⟩, which gives ρ ∘ τ ∘ ρ−1 = τ or ρ ∘ τ ∘ ρ−1 = τ−1, which means that ρ has a
reflection axis parallel or orthogonal to ℓ. We cannot have elements ρ of both kinds,
for then their product would be a nontrivial rotation. If ρ is a reflection, it can be of
either kind.

If ρ is a glide reflection, then ρ2 is a nontrivial translation, hence ρ2 = τh for some
h ̸= 0, and ρ has, without loss of generality, reflection axis ℓ. Now ρ commutes with τ,
and (ρ ∘ τk)2 = τh+2k . Replacing ρ by ρ ∘ τk for a suitable k, we may suppose that either
ρ2 = 1 and ρ is a reflection, or that ρ2 = τ and ρ is a glide reflection. In the latter case F
contains no reflection.

We have obtained four geometrically different types:

G1 = ⟨τ | ⟩ ≅ ℤ,

G1
1 = ⟨τ, ρ | ρ

2 = 1, ρ ∘ τ ∘ ρ−1 = τ⟩ ≅ ℤ ×ℤ2,

G2
1 = ⟨τ, ρ | ρ

2 = 1, ρ ∘ τ ∘ ρ−1 = τ−1⟩ ≅ D∞,

G3
1 = ⟨τ, ρ | ρ

2 = τ, ρ ∘ τ ∘ ρ−1 = τ⟩ ≅ ℤ.

We emphasize that G1 and G3
1 are isomorphic as abstract groups, but are not geomet-

rically equivalent since G1 preserves orientation while G3
1 does not.
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Case 2
Group G contains a nontrivial rotation σ. Again, σ ∘τ ∘σ−1 must generate σTGσ−1 = TG,
and hence σ ∘ τ ∘ σ−1 = τ or σ ∘ τ ∘ σ−1 = τ−1. Since σ ̸= 1, we cannot have σ ∘ τ ∘ σ−1 = τ.
Therefore, σ ∘ τ ∘σ−1 = τ−1, and σ is a rotation of order 2. Without loss of generality, we
may assume that the rotation center O of σ is on the axis ℓ. If σ′ is any other rotation
in G, then it also must have order 2, hence σ′ ∘ σ is a translation, that is, σ′ ∘ σ = τh for
some h ∈ ℤ, and therefore σ′ = τh ∘ σ.

Thus

G+ = ⟨τ, σ | σ2 = 1, σ ∘ τ ∘ σ−1 = τ−1⟩.

If G = G+, then we have a first type.
Now let G+ ̸= G. Then G = ⟨τ, σ, ρ⟩, where ρ is a reflection or a glide reflection

because |G : G+| = 2. As before, the axis of ρmust be either parallel or orthogonal to ℓ.
If ρ has axis orthogonal to ℓ, then ρ′ = σ ∘ ρ has axis parallel to ℓ. Thus, replacing ρ by
ρ′, if necessary, wemay suppose that ρ has axis ℓ′ parallel to ℓ. If ℓ′ ̸= ℓ, then ρ(O) ̸= O,
and the line segment Oρ(O) is orthogonal to ℓ. Now σ and ρ ∘ σ ∘ ρ−1 are rotations of
order 2 with rotation centerO and ρ(O), respectively. Then ρ ∘σ ∘ρ−1 ∘σ is a translation
in the direction of →Oρ(O), meaning that the axis of ρ ∘σ ∘ ρ−1 ∘σ is orthogonal to ℓ. This
contradicts TG = ⟨τ | ⟩. Therefore ℓ′ = ℓ, which means that ρ has reflection axis ℓ.

If ρ is a reflection, then ρ1 = σ ∘ρ is also a reflectionwith reflection axis orthogonal
to ℓ through O. If ρ is a glide reflection, we may suppose as in case 1 that ρ2 = τ or
(ρ ∘ τk)2 = 1 for some k ∈ ℤ.

If (ρ ∘ τk)2 = 1 then ρ ∘ τk is a reflection.
Now let ρ2 = τ and letm be the perpendicular bisector of the line segment Oρ(O),

see Figure 4.13.

O ρ(O) τ(O)

ρ ∘ σ(p) = p

σ(p)

m

Figure 4.13: Bisectorm.
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Let ρ2 = ρ ∘ σ; ρ2 fixes all points of m, that is, ρ2(Q) = Q for all Q ∈ m. Hence ρ2 is a
reflection with reflection axism.

In this case G contains no reflection ρ1 with axis orthogonal to ℓ at O, since ρ2 ∘ ρ1
would then be a translation τ0 carrying O to ρ(O), hence τ20 = τ which contradicts
TG = ⟨τ | ⟩.

Hence altogether we have obtained three geometrically different types of group G
containing a nontrivial rotation:

G2 = ⟨τ, σ | σ
2 = 1, σ ∘ τ ∘ σ−1 = τ−1⟩ ≅ D∞,

G1
2 = ⟨τ, σ, ρ | σ

2 = ρ2 = 1, σ ∘ τ ∘ σ−1 = τ−1, ρ ∘ τ ∘ ρ−1 = τ, ρ ∘ σ ∘ ρ−1 = σ⟩
≅ D∞ ×ℤ2,

G2
2 = ⟨τ, σ, ρ | σ

2 = 1, ρ2 = τ, σ ∘ τ ∘ σ−1 = τ−1, ρ ∘ τ ∘ ρ−1 = τ, σ ∘ ρ ∘ σ−1 = ρ−1⟩

= ⟨σ, ρ | σ2 = 1, σ ∘ ρ ∘ σ−1 = ρ−1⟩ ≅ D∞.

We remark that G2 and G2
2 are abstractly isomorphic, but geometrically different,

since G2 preserves orientation while G2
2 does not. We summarize the result in the fol-

lowing Theorem.

Theorem 4.15. There are exactly 7 geometrically different types of frieze groups with
representation G1, G1

1, G
2
1 , G

3
1 , G2, G1

2, G
2
2 as given above.

They fall algebraically into the four isomorphisms typesℤ, D∞,ℤ×ℤ2 and D∞×ℤ2.

In the following Figure 4.14 we show friezes with symmetry groups of the seven
types. In these figures, τ is a horizontal translation.

Broken lines indicate axes of reflection or glide reflections. Small circlesmark cen-
ters of rotational symmetry.

4.6 Planar Crystallographic Groups
In this section we consider discontinuous groups G of E such that the translation sub-
group TG = T ∩ G is a double-periodic group. We have nontrivial translations

τ1 : ℝ
2 → ℝ2, v⃗ → v⃗ + w⃗1

and

τ2 : ℝ
2 → ℝ2, v⃗ → v⃗ + w⃗2,

such that

TG = {τ ∈ T | τ(v⃗) = v⃗ +mw⃗1 + nw⃗2 for somem, n ∈ ℤ}

where w⃗1 ̸= 0⃗ ̸= w⃗2 and w⃗1, w⃗2 are linearly independent.
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G1

G1
1

G2
1

G3
1

G2

G1
2

G2
2

Figure 4.14: Friezes with symmetry groups of the seven types.

We may assume, without loss of generality, ‖w⃗1‖ ≤ ‖w⃗2‖, or more precisely, ‖w⃗1‖ is
minimal among all ‖w⃗‖ for nontrivial periods w⃗ of TG, and ‖w⃗2‖ is minimal among all
‖w⃗‖ for all nontrivial periods w⃗ which are not of the formmw⃗1 for somem ∈ ℤ (see the
proof of Theorem 4.11). In particular, we have

TG = ⟨τ1, τ2 | τ1 ∘ τ2 = τ2 ∘ τ1⟩ ≅ ℤ ×ℤ.

When a base point O has been chosen, the group TG determines a lattice L, the orbit
L = {τ(O) | τ ∈ TG} of O under TG, and indeed the set V(TG) of vectors

→Oτ(O), τ ∈ TG,
as a subset of ℝ2, does not depend on the choice of O.

The first result is that a rotation contained in G can have only one of the orders 1,
2, 3, 4 or 6. This limitation is called the crystallographic restriction.
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Theorem 4.16. G+ is generated by TG together with a single rotation of order n where
n = 1, 2, 3, 4 or 6, and is one of the following types (up to isomorphisms):

G1 = TG = ⟨τ1, τ2 | τ1 ∘ τ2 = τ2 ∘ τ1⟩,

G2 = ⟨τ1, τ2, σ | τ1 ∘ τ2 = τ2 ∘ τ1, σ
2 = 1, σ ∘ τ1 ∘ σ

−1 = τ−11 , σ ∘ τ2 ∘ σ
−1 = τ−12 ⟩,

G3 = ⟨τ1, τ2, σ | τ1 ∘ τ2 = τ2 ∘ τ1, σ
3 = 1, σ ∘ τ1 ∘ σ

−1 = τ−11 ∘ τ2, σ ∘ τ2 ∘ σ
−1 = τ−11 ⟩,

G4 = ⟨τ1, τ2, σ | τ1 ∘ τ2 = τ2 ∘ τ1, σ
4 = 1, σ ∘ τ1 ∘ σ

−1 = τ2, σ ∘ τ2 ∘ σ
−1 = τ−11 ⟩,

G6 = ⟨τ1, τ2, σ | τ1 ∘ τ2 = τ2 ∘ τ1, σ
6 = 1, σ ∘ τ1 ∘ σ

−1 = τ2, σ ∘ τ2 ∘ σ
−1 = τ−11 ∘ τ2⟩.

Proof. Suppose that G+ contains a rotation σ of order n ≥ 2, say with rotation center
O ∈ ℝ2. Then the n points τ1(O), σ ∘ τ1(O), . . . , σn−1 ∘ τ1(O) are evenly spaced around the
circle at O of radius r = ‖w⃗1‖ (recall that τ1(v⃗) = v⃗ + w⃗1 for v⃗ ∈ ℝ2).

Assume that n > 6. The isometries τ1, σ ∘ τ1 ∘ σ−1 and σ ∘ τ1 ∘ σ−1 ∘ τ−11 are all in TG.
Now σ ∘ τ1 ∘ σ−1 ∘ τ−11 (τ1(O)) = σ ∘ τ1(O), see Figure 4.15.

π
nO

σ(τ1(O))

τ1(O)

Figure 4.15: No rotation of order n > 6.

Let v⃗1 be the vector from τ1(O) to σ(τ1(O)), v⃗1 is a period of TG. But ‖v⃗1‖ = 2‖w⃗1‖ sin(
π
n ) <

‖w⃗1‖ = r because sin(
π
n ) <

1
2 for n ≥ 7. This gives a contradiction to the minimality

of ‖w⃗1‖. Hence, n ≤ 6.
Now we assume that n = 5. Then we have the following situation given in Fig-

ure 4.16.
We have

σ3 ∘ τ−11 ∘ σ
−3 ∘ τ−11 (τ1(O)) = σ

3 ∘ τ−11 (O),
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2π
5

O

σ3 ∘ τ−11 (O)

τ1(O)τ−11 (O)

Figure 4.16: No rotation of order 5.

and σ3 ∘ τ−11 ∘ σ
−3 ∘ τ−11 is in TG. Hence the vector v⃗1 from τ1(O) to σ3 ∘ τ−11 (O) is a period

of TG, and ‖v⃗1‖ = 2‖w⃗1‖ sin(
π
10 ) < ‖w⃗1‖ = r. This gives a contradiction to the minimality

of ‖w⃗1‖. Hence, n ̸= 5.
Therefore, σ can only have order 2, 3, 4 or 6 if n ≥ 2, whichmeans that all rotations

in G+ have order 1, 2, 3, 4 or 6.
If G+ contains a rotation σ1 with angle 2π

2 and a rotation σ2 with angle 2π
3 , then

σ−12 ∘ σ1 is a rotation with angle 2π
6 . Thus if G

+ contains rotations of order 2 and 3, it
contains rotations of order 6.

If G+ contains a rotation σ1 with angle 2π
3 and a rotation σ2 with angle 2π

4 , then
σ−12 ∘σ1 is a rotation with angle

2π
12 , and hence of order 12. But this gives a contradiction

because the maximal order in G+ is 6. Thus G+ cannot contain rotations of order 3
and 4.

We conclude that if n is the greatest order of a rotation σ in G+, then all other
rotations σ1 in G+ have order n1 dividing n. Let σ be a rotation with angle 2π

n and σ1
be a rotation with angle 2π

n1
where n1 ⋅ m = n. Then σm has the angle 2π

n1
, and hence

σ−m ∘ σ1 = τ is a translation. Therefore σ1 is in the group generated by TG together
with σ. This shows that G+ is generated by TG together with σ.

We continue and let n = 1, 2, 3, 4 or 6 be the greatest order of a rotation in G+, and
write Gn for G+ according to the case.

If n = 1 then G+ = G1 = TG. If n = 2, then σ of order 2 has angle π, whence
σ ∘ τ ∘ σ−1 = τ−1 for all τ in TG, and G2 has the given presentation. The presence of σ of
order 2 imposes no condition on the lattice L.

Let n = 4 and let σ be a rotation of order 4 and center O. Since σ has angle π
2 , we

get that σ ∘ τ1 ∘ σ−1 is a translation in a direction orthogonal to that of τ1. Since the
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period for σ ∘ τ1 ∘ σ−1 has the same length ‖w⃗1‖, w⃗1 being the period for τ1, we may
choose τ2 = σ ∘ τ1 ∘ σ−1. Then σ ∘ τ2 ∘ σ−1 = τ−11 and G4 has the given presentation.

We have the situation given in Figure 4.17 and the lattice is a square lattice.

O

τ2(O) τ2 ∘ τ1(O)

τ1(O) Figure 4.17: Square lattice.

Suppose now thatG+ contains a rotation σ ofmaximal order 3 and centerO. The angle
between the vectors →Oτ1(O) and

→
Oσ ∘ τ1 ∘ σ

−1(O) is 2π
3 , and the length of the period of

σ ∘ τ1 ∘ σ−1 is the same as that of τ1. Therefore the three points O, σ ∘ τ1 ∘ σ−1(O) and
τ1 ∘ σ ∘ τ1 ∘ σ−1(O) are the vertices of an equilateral triangle, see Figure 4.18.

O

σ ∘ τ1 ∘ σ−1(O) τ1 ∘ σ ∘ τ1 ∘ σ−1(O)

τ1(O) Figure 4.18: Triangular lattice.

Thus the length of the period of τ1 ∘ σ ∘ τ1 ∘ σ−1 is the same as that of τ1, and we may
choose τ2 = τ1 ∘ σ ∘ τ1 ∘ σ−1, which gives σ ∘ τ1 ∘ σ−1 = τ2 ∘ τ−11 and σ ∘ τ2 ∘ σ−1 = τ−11 . In
this case the lattice L is a triangular lattice.

If n = 3, then G3 has the given presentation.
If n = 6, then σ2 has order 3, whence the lattice is triangular. Now σ has angle 2π

6 ,
whence σ∘τ1 ∘σ−1 = τ2 and σ∘τ2 ∘σ−1 = τ2 ∘τ−11 , which gives the presentation forG6.

From now on we suppose that G ̸= G+. Hence G is generated by G+ together with
any element ρ of G that is not in G+. Now ρ is a reflection or a glide reflection, and in
either case ρ2 ∈ TG.

Lemma 4.17. If ρ ∈ G, ρ ∉ G+, then exactly one of the following conditions holds:
(T1) TG is generated by elements τ1 and τ2 such that ρ ∘τ1 ∘ρ−1 = τ1 and ρ ∘τ2 ∘ρ−1 = τ−12 .
(T2) TG is generated by elements τ1 and τ2 such that ρ ∘ τ1 ∘ ρ−1 = τ2 and ρ ∘ τ2 ∘ ρ−1 = τ1.

Proof. We first show that (T1) and (T2) are incompatible.
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Suppose that (T2) holds and TG is generated by τ1 and τ2 such that ρ ∘ τ1 ∘ ρ−1 = τ2
and ρ ∘ τ2 ∘ ρ−1 = τ1. Assume that α, β are elements of TG such that ρ ∘ α ∘ ρ−1 = α and
ρ ∘ β ∘ ρ−1 = β−1.

If α = τh1 ∘ τ
k
2 for some integers h and k, then ρ ∘ α ∘ ρ−1 = τk1 ∘ τ

h
2 and ρ ∘ α ∘ ρ

−1 = α
implies h = k and α = (τ1 ∘ τ2)h.

If β = τm1 ∘τ
n
2 for some integers n andm, then ρ ∘β ∘ρ−1 = τn1 ∘τ

m
2 , and ρ ∘β ∘ρ

−1 = β−1

impliesm = −n and β = (τ1 ∘ τ−12 )
m.

Now α and β are both in the subgroup generated by τ1 ∘ τ2 and τ1 ∘ τ−12 , which is a
proper subgroup of TG. Thus α and β do not generate TG.

The other case can be handled analogously.
Now we want to show that (T1) or (T2) occurs.
Suppose TG = ⟨τ1, τ2⟩ with

τ1 : ℝ
2 → ℝ2, v⃗ → v⃗ + w⃗1

and

τ2 : ℝ
2 → ℝ2, v⃗ → v⃗ + w⃗2

as above. Again we may assume that 0 < ‖w⃗1‖ is minimal among all ‖w⃗‖ for nontrivial
periods w⃗ of TG, and ‖w⃗2‖ is minimal among all ‖w⃗‖ for all nontrivial periods w⃗ which
are not of the formmw⃗1 for somem ∈ ℤ.

We choose a base point O ∈ ℝ2 for the lattice L for TG. Without loss of generality,
we may assume that O = 0⃗, the zero vector. Then, if γ ∈ TG, we may consider both
the line segment Oγ(O) and γ(O) ∈ ℝ2 as a vector →γ(O) := →Oγ(O). If γ ∈ TG, then we
write →γ(O)

⊥
and →γ(O)

||
for the components of →γ(O) orthogonal and parallel to →τ1(O),

respectively.
We now impose some supplementary conditions. After replacing τ1 by τ−11 , if nec-

essary, we may assume that the angle between the vectors →τ1(O) and
→τ2(O) is some

Θ with Θ ≤ π
2 . The minimality of ‖→w2‖ requires that ‖

→τ2(O)‖ ≤ ‖
→τ2(O) −

→τ1(O)‖ =

‖
→
τ−11 ∘ τ2(O)‖. Therefore ‖

→τ2(O)
||
‖ ≤ 1

2 ‖
→τ1(O)‖ =

1
2 ‖w⃗1‖, that is, τ2(O) is either on the

perpendicular bisector of →Oτ1(O) or on the same side of it as O, see Figure 4.19.

π
3

O

→τ2(O)

→τ1(O) Figure 4.19: Location of τ2(O).
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This, together with the condition


→τ1(O)
 = ‖w⃗1‖ ≤ ‖w⃗2‖ =


→τ2(O)
,

implies that Θ ≥ π
3 . Thus

π
3 ≤ Θ ≤

π
2 .

Suppose first that ρ ∘ τ1 ∘ ρ−1 = τ1, whence ρ has its axis parallel to
→τ1(O) = w⃗1.

If Θ = π
2 , then ρ ∘ τ2 ∘ ρ

−1 = τ−12 , and (T1) holds.
If Θ < τ

2 , then

→
ρ ∘ τ2 ∘ ρ

−1(O)
⊥
=
→
τ1 ∘ τ
−1
2 (O)
⊥

and

→
ρ ∘ τ2 ∘ ρ

−1(O)
||
= →τ2(O)

||
.

Since 0 < ‖→τ2(O)
||
‖ ≤ 1

2 ‖
→τ1(O)‖ implies that 1

2 ‖
→τ1(O)‖ ≤ ‖

→
τ1 ∘ τ
−1
2 (O)
||
‖ < ‖→τ1(O)‖, we

conclude that ρ ∘ τ2 ∘ ρ−1 can only be

ρ ∘ τ2 ∘ ρ
−1 = τ1 ∘ τ

−1
2 ,

see Figure 4.20. Let α = τ2 and β = τ1∘τ−12 , then τ1 and τ2 generateTG while ρ exchanges
them, and (T2) holds.

O

τ2(O)

τ1(O)

τ1 ∘ τ−12 (O)ρ ∘ τ2 ∘ ρ−1(O)
τ−12 (O)

Figure 4.20: (T2) for ρ ∘ τ1 ∘ ρ−1 = τ1.

Suppose next that ρ ∘ τ1 ∘ ρ−1 = τ−11 , whence ρ has its axis orthogonal to w⃗1 =
→τ(O).

If Θ = π
2 , then ρ ∘ τ2 ∘ ρ

−1 = τ2, and (T1) holds with τ1 and τ2 exchanged.

If Θ < π
2 , then

→τ2(O) −
→
ρ ∘ τ2 ∘ ρ

−1(O) is parallel to →τ1(O) and of length 2‖→τ2(O)
||
‖ ≤

‖τ1(O)‖ = ‖w⃗1‖, whence by minimality of ‖→τ1(O)‖, it must have length ‖→τ1(O)‖, and
ρ ∘ τ2 ∘ ρ−1 = τ2 ∘ τ−11 , see Figure 4.21. We have TG = ⟨τ2, τ2 ∘ τ−11 ⟩.

Now ρ ∘ τ2 ∘ ρ−1 = τ2 ∘ τ−11 and ρ ∘ τ2 ∘ τ−11 ∘ ρ
−1 = τ2 ∘ τ−11 ∘ τ1 = τ2, and (T2) holds.

Suppose finally that ρ ∘ τ1 ∘ ρ−1 ̸= τ1, τ−11 , whence ρ ∘ τ1 ∘ ρ−1 is not a power of

τ1, but ‖
→
ρ ∘ τ1 ∘ ρ

−1(O)‖ = ‖→τ1(O)‖. We take α = τ1, β = ρ ∘ τ1 ∘ ρ−1. Even though the
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O

→τ2(O)

→τ1(O)
→
τ−11 (O)

→
ρ ∘ τ2 ∘ ρ

−1(O)

Figure 4.21: (T2) for ρ ∘ τ1 ∘ ρ−1 = τ−11 .

supplementary conditions fromabove need not be fulfilled, theminimality conditions
are satisfied, whence α and β generate TG and (T2) holds.

Enumeration of the cases

We now enumerate the possible types of G ̸= G+ = Gn, according to n = 1, 2, 3, 4, 6. As
for Gn we may take O = 0⃗ as the center of the rotation σ (if n ≥ 2).

Case n = 1
Here G1 = TG.

If ρ1, ρ2 are elements of G, not in G+, then ρ2 = τ ∘ ρ1 for some τ ∈ TG, whence
ρ1 ∘ τ ∘ ρ−11 = ρ2 ∘ τ ∘ ρ

−1
2 for all τ ∈ TG.

If G contains any reflection, we choose ρ to be a reflection, with ρ2 = 1. It is clear
that both cases (T1) and (T2) from Lemma 4.17 can be realized, for example (after
stretching w⃗1 and w⃗2 if necessary), with a square lattice, see Figure 4.22.

ρ

ρ

Figure 4.22: Realization of (T 1) and (T2).

Weobtain two groupsG1
1 andG

2
1 with presentation obtained fromG1 = TG by adjoining

the new generator ρ, a relation ρ2 = 1, and two relations giving the values of ρ ∘ τ1 ∘ ρ−1

and ρ ∘ τ2 ∘ ρ−1.
Suppose now that G contains no reflection, whence we must choose ρ as glide

reflection with ρ2 = τ ̸= 1 in TG. If (T1) holds, then ρ ∘ τ ∘ ρ−1 = τ implies that τ = τh1 for
some integer h. If ρ1 = τm1 ∘ ρ, then ρ

2
1 = τ

h+2m
1 , and replacing ρ by ρ1 for suitablem we

may suppose that ρ2 = 1 or ρ2 = τ1. Since ρ2 = 1 implies that ρ is a reflection, we must
have ρ2 = τ1. Thus ρ is a reflection at an axis ℓ parallel to τ1 followed by a translation
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along ℓ through a distance 1
2 ‖
→τ1(O)‖. We must verify that this group G3

1 is new, that is,
that it does not contain a reflection. Now every element of G = G3

1 , not in G
+, has the

form ρ2 = τm1 ∘ τ
n
2 ∘ ρ for some integersm and n, and we find that

ρ22 = τ
m
1 ∘ τ

n
2 ∘ ρ ∘ τ

m
1 ∘ τ

n
2 ∘ ρ

= τm1 ∘ τ
n
2 ∘ τ

m
1 ∘ τ
−n
2 ∘ ρ

2

= τ2m+11 ̸= 1,

whence ρ2 is not a reflection.
There remains the possibility that G contains no reflection and (T2) holds. Now

ρ2 = τ and ρ ∘ τ1 ∘ ρ−1 = τ2 , ρ ∘ τ2 ∘ ρ−1 = τ1 implies that τ = (τ1 ∘ τ2)h for some integer
h, and we can suppose that ρ2 = τ1 ∘ τ2. Now let ρ2 = τ−11 ∘ ρ. Then

ρ22 = τ
−1
1 ∘ ρ ∘ τ

−1
1 ∘ ρ

= τ−11 ∘ ρ ∘ τ
−1
1 ∘ ρ
−1 ∘ ρ2

= τ−11 ∘ τ
−1
2 ∘ τ1 ∘ τ2 = 1

and G contains a reflection, contrary to the hypothesis. We get the following theorem.

Theorem 4.18. If G ̸= G+ = G1 = TG, then there are exactly three possible isomorphism
types for G:

G1
1 = ⟨τ1, τ2, ρ | τ1 ∘ τ2 = τ2 ∘ τ1, ρ

2 = 1, ρ ∘ τ1 ∘ ρ
−1 = τ1, ρ ∘ τ2 ∘ ρ

−1 = τ−12 ⟩,

G2
1 = ⟨τ1, τ2, ρ | τ1 ∘ τ2 = τ2 ∘ τ1, ρ

2 = 1, ρ ∘ τ1 ∘ ρ
−1 = τ2, ρ ∘ τ2 ∘ ρ

−1 = τ1⟩,

G3
1 = ⟨τ1, τ2, ρ | τ1 ∘ τ2 = τ2 ∘ τ1, ρ

2 = τ1, ρ ∘ τ1 ∘ ρ
−1 = τ1, ρ ∘ τ2 ∘ ρ

−1 = τ−12 ⟩.

Case n = 2
Here G2 is generated by τ1, τ2, σ where σ2 = 1 and σ ∘ τ1 ∘ σ−1 = τ−11 , σ ∘ τ2 ∘ σ−1 = τ−12 .

We first suppose thatG contains a reflection ρ and that (T1) holds, with ρ∘τ1 ∘ρ−1 =
τ1, ρ ∘ τ2 ∘ ρ−1 = τ−12 . This implies that →τ1(O) and

→τ2(O) are orthogonal. Then ρ has its
axis parallel to τ1.

Let ρ1 = ρ ∘ σ; then ρ1 ∘ τ2 ∘ ρ−11 = τ2, and ρ1 has its axis parallel to
→τ2(O), and so

ρ21 = τ
k
2 for some integer k. Replacing ρ1 by τm2 ∘ρ1 for some integerm, we can suppose,

according to the parity of h, that ρ21 = 1 or ρ
2
1 = τ2. If ρ and ρ

′ are any two reflections
with axis parallel to →τ1(O), then ρ ∘ ρ′ = τm2 for some integerm and ρ′ = ρ ∘ τm2 , whence
different choices of ρ yield the same cases ρ21 = 1 or ρ

2
1 = τ2 and the two cases are

distinct.
The two cases G1

2 and G2
2 are easily realized with the square lattice L, see Fig-

ure 4.23. For the first we take ρwith axis ℓ, the line throughO and τ1(O). For the second
we take the axis ℓ parallel to →τ1(O), at a distance of

1
4 ‖
→τ2(O)‖ in the direction of

→τ2(O).
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→τ2(O)

→τ1(O)
O

ℓ

→τ2(O)

→τ1(O)
O

ρ(O)

ℓ

Figure 4.23: Types G12 and G
2
2.

In the second ρ1(O) = ρ ∘ σ(O) = ρ(O) is the midpoint of the line segment from O to
→τ2(O), and ρ1, which has as axis the line throughO and→τ2(O), carriesO to ρ(O), whence
ρ21 = τ2.

We remark that G1
2 is isomorphic to a semidirect product TG ⋊ D2.

Suppose now thatG contains a reflection ρ and that (T2)holds,with ρ∘τ1∘ρ−1 = τ2,
ρ ∘ τ2 ∘ ρ−1 = τ1, whence ρ has the axis parallel to

→τ1 ∘ τ2(O).
If ρ1 = ρ∘σ, then ρ1 ∘τ1 ∘ρ−11 = τ

−1
2 and ρ1 ∘τ2 ∘ρ−11 = τ

−1
1 and ρ1 ∘τ2 ∘τ−11 ∘ρ

−1
1 = τ

−1
1 ∘τ2.

Hence ρ1 = ρ ∘ σ has the axis parallel to
→
τ−11 ∘ τ2(O) and ρ21 = (τ

−1
1 ∘ τ2)

h for some
integer h. Replacing ρ1 by (τ−11 ∘τ2)

m ∘ρ1 for some integerm, wemay assume, according
to the parity of h, that ρ21 = 1 or ρ

2
1 = τ
−1
1 ∘ τ2.

If ρ21 = τ
−1
1 ∘ τ2, then let ρ2 = τ1 ∘ ρ1. Then ρ

2
2 = τ1 ∘ ρ1 ∘ τ1 ∘ ρ1 = τ1 ∘ τ

−1
2 ∘ τ
−1
1 ∘ τ2 = 1,

and ρ2 is a reflection.
In either caseG contains two reflectionswith orthogonal axes parallel to→τ1 ∘ τ2(O)

and
→
τ−11 ∘ τ2(O) (the lines containing the diagonals of the rhombus in the figure) whose

product is a rotation of order 2, see Figure 4.24.

ℓ1

ℓ

Figure 4.24: Type G32.

We get the group G3
2 which can be realized with a rhombus lattice.

In fact G3
2 is a semi-direct product TG ⋊ GO with GO ≅ D2, the Klein four group.

Finally, suppose that G contains no reflection. If (T1) holds for τ1, τ2, wemay sup-
pose that ρ2 = τ1. If ρ1 = ρ ∘ σ, then ρ1 ∘ τ1 ∘ ρ−11 = τ

−1
1 and ρ1 ∘ τ2 ∘ ρ−11 = τ2, and we may

likewise suppose that ρ21 = τ2. To check that the group G
4
2 , defined that way, does not
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contain reflections, we verify that

(τm1 ∘ τ
n
2 ∘ ρ)

2
= τ2m+11 ̸= 1

and that

(τm1 ∘ τ
n
2 ∘ ρ1)

2
= τ2n+12 ̸= 1.

This group is easily realized in the square lattice L by taking ρ and ρ1 with axes parallel
to→τ1(O) and

→τ2(O), respectively, at a distance
1
2 ‖
→τ1(O)‖ =

1
2 ‖
→τ2(O)‖, andwith translation

displacement 1
2 ‖
→τ1(O)‖ =

1
2 ‖
→τ2(O)‖, see Figure 4.25.

ℓ1

ℓ

Figure 4.25: Type G42.

If (T2) holds, with ρ ∘ τ1 ∘ ρ−1 = τ2 and ρ ∘ τ2 ∘ ρ−1 = τ1, we may suppose, as before, that
ρ2 = τ1 ∘ τ2, and for ρ1 = ρ ∘ σ, that ρ21 = τ

−1
1 ∘ τ2.

As before, ρ2 = τ1 ∘ ρ1 is then a reflection, contrary to the hypothesis. Altogether
we get the following.

Theorem 4.19. If G ̸= G+ = G2, there are exactly four possible isomorphisms types for G:

G1
2 = ⟨τ1, τ2, ρ, σ | τ1 ∘ τ2 = τ2 ∘ τ1, σ

2 = ρ2 = (ρ ∘ σ)2 = 1, σ ∘ τ1 ∘ σ
−1 = τ−11 ,

σ ∘ τ2 ∘ σ
−1 = τ−12 , ρ ∘ τ1 ∘ ρ

−1 = τ1, ρ ∘ τ2 ∘ ρ
−1 = τ−12 ⟩,

G2
2 = ⟨τ1, τ2, ρ, σ | τ1 ∘ τ2 = τ2 ∘ τ1, σ

2 = ρ2 = 1, (ρ ∘ σ)2 = τ2, σ ∘ τ1 ∘ σ
−1 = τ−11 ,

σ ∘ τ2 ∘ σ
−1 = τ−12 , ρ ∘ τ1 ∘ ρ

−1 = τ1, ρ ∘ τ2 ∘ ρ
−1 = τ−12 ⟩,

G3
2 = ⟨τ1, τ2, ρ, σ | τ1 ∘ τ2 = τ2 ∘ τ1, σ

2 = ρ2 = (ρ ∘ σ)2 = 1, σ ∘ τ1 ∘ σ
−1 = τ−11 ,

σ ∘ τ2 ∘ σ
−1 = τ−12 , ρ ∘ τ1 ∘ ρ

−1 = τ2, ρ ∘ τ2 ∘ ρ
−1 = τ1⟩,

G4
2 = ⟨τ1, τ2, ρ, σ | τ1 ∘ τ2 = τ2 ∘ τ1, σ

2 = 1, ρ2 = τ1, (ρ ∘ σ)
2 = τ2, σ ∘ τ1 ∘ σ

−1 = τ−11 ,

σ ∘ τ2 ∘ σ
−1 = τ−12 , ρ ∘ τ1 ∘ ρ

−1 = τ1, ρ ∘ τ2 ∘ ρ
−1 = τ−12 ⟩.

Case n = 4
Here G+ = G4 is generated by τ1, τ2 and σ with σ4 = 1, σ ∘ τ1 ∘σ−1 = τ2, σ ∘ τ2 ∘σ−1 = τ−11 ,
and the lattice L is a square.

Let ρ ∈ G, ρ ∉ G4. If ρ satisfies (T1), that is, ρ ∘ τ1 ∘ ρ−1 = τ1, ρ ∘ τ2 ∘ ρ−1 = τ−12 ,
and if ρ1 = ρ ∘ σ, then ρ1 ∘ τ1 ∘ ρ−11 = τ

−1
2 , ρ1 ∘ τ2 ∘ ρ−11 = τ

−1
1 , and whence ρ1, which
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exchanges the two generators τ1 and τ−12 , satisfies (T2). Thus the cases (T1) and (T2)
coincide, and we may suppose that ρ satisfies (T1), where ρ is either a reflection or a
glide reflection.

The set of four elements {τ1, τ−11 , τ2, τ
−1
2 } is uniquely determined by the facts that σ

permutes them and that they generate TG.
We show that if G contains a reflection with axes parallel to one of →τ1(O),

→τ2(O),
then it also contains a reflection with axes parallel to the other.

By symmetry, it suffices to consider the case that G contains a reflection ρ with
axis parallel to →τ1(O), hence satisfying (T1).

Since ρ1 = ρ ∘ σ satisfies ρ1 ∘ (τ−11 ∘ τ2) ∘ ρ
−1
1 = τ

−1
1 ∘ τ2, the axis of ρ1 is parallel to→

τ−11 ∘ τ2(O), and ρ
2
1 = (τ

−1
1 ∘ τ2)

h for some integer h. Now, τ−h2 ∘ ρ1 has the axis parallel to
that of ρ1, hence to the axis of τ−11 ∘τ2, and (τ

−h
2 ∘ρ1)

2 = τh1 ∘τ
−h
2 ∘ρ

2
1 = (τ

−1
1 ∘τ2)

h−h = 1. We
have therefore two reflections with axes meeting at some point O1 with an angle 2π

8 .
Hence, their product σ1 is a rotation about O1 of order 4. The group G then is a semi-
productG1

4 = TG⋊GO1
withGO1

≅ D4. This group is easily realized on the square lattice.
In particular, it contains a reflection with an axis parallel to →τ2(O).

We remark that G1
4 is exactly the symmetry group of a regular tessellation of the

plane by squares (see Section 4.2).
Suppose now that G contains a glide reflection ρ with axis parallel to →τ1(O), but

no reflection with axis parallel to →τ1(O). Then G = G2
4 is not isomorphic to G1

4. To find
a presentation for G2

4, after replacing ρ by τ
m
1 ∘ ρ for some integerm, we can suppose,

as before, that ρ2 = τ1. If we now replace ρ by some τn2 ∘ ρ, the relation ρ
2 = τ1 remains

valid because (τn2 ∘ρ)
2 = ρ2 = τ1, while, as before, for a proper choice of nwe canmake

ρ21 = 1, where again ρ1 = ρ ∘ σ. Thus we have the relation (ρ ∘ σ)2 = 1 or ρ ∘ σ ∘ ρ−1 =
σ−1.

This group can be realized on the square lattice as follows.
Let σ have center O = 0⃗ = (0,0), and let →τ1(O) = (1,0),

→τ2(O) = (0, 1). If ρ is chosen
with axis ℓ parallel to →τ1(O) and through the point (

1
4 ,

1
4 ), then the axis ℓ1 of ρ1 = ρ ∘ σ

will also pass through this point. In the figure, points marked ⋅ are centers of rotations
of order 4, points marked × are centers of rotations of order 2, oblique solid lines \ ; /
are axes of reflections, and horizontal or vertical broken lines –– ; ¦ are axes of glide
reflections, see Figure 4.26.

Theorem 4.20. If G ̸= G+ = G4, there are exactly two possible isomorphism types for G:

G1
4 = ⟨τ1, τ2, σ, ρ | τ1 ∘ τ2 = τ2 ∘ τ1, σ

4 = ρ2 = (ρ ∘ σ)2 = 1, σ ∘ τ1 ∘ σ
−1 = τ2,

σ ∘ τ2 ∘ σ
−1 = τ−11 , ρ ∘ τ1 ∘ ρ

−1 = τ1, ρ ∘ τ2 ∘ ρ
−1 = τ−12 ⟩,

G2
4 = ⟨τ1, τ2, σ, ρ | τ1 ∘ τ2 = τ2 ∘ τ1, σ

4 = 1, ρ2 = τ1, (ρ ∘ σ)
2 = 1, σ ∘ τ1 ∘ σ

−1 = τ2,

σ ∘ τ2 ∘ σ
−1 = τ−11 , ρ ∘ τ1 ∘ ρ

−1 = τ1, ρ ∘ τ2 ∘ ρ
−1 = τ−12 ⟩,
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Figure 4.26: Type G24.

Case n = 3
HereG+ = G3 is generatedby τ1, τ2 andσwithσ3 = 1,σ∘τ1∘σ−1 = τ−11 ∘τ2,σ∘τ2∘σ

−1 = τ−11 ,
and the lattice L is triangular.

Wefirst show that ifG contains a glide reflection ρwith axis ℓ, thenG also contains
a reflection ρ1 with an axis ℓ1 parallel to ℓ. Let ρ = τ0 ∘ ρ0, where ρ0 is a reflection at ℓ
and τ0 is a translation along ℓ; here τ0 and ρ0 are not necessarily in G.

Thus ρ2 = τ20 = τ in TG. Let ℓ1 be a line parallel to ℓ and at a distance √32 ‖
→τ0(O)‖

from ℓ, on the left side as one faces in the direction of →τ(O). Let P be a point on ℓ1,
considered also as a vector →OP = P⃗, analogously we regard ρ0(P) and ρ(P) as vectors→ρ0(P) and

→ρ(P), respectively.
Then ‖P⃗ − →ρ0(P)‖ = √3‖

→τ0(O)‖ and ‖
→ρ0(P) −

→ρ(P)‖ = √3‖→τ0(O)‖. Hence, the points
P, ρ0(P), ρ(P) form a right angle triangle with hypotenuse, the line segment from P to
ρ(P), of length 2‖→τ0(O)‖ = ‖

→τ(O)‖ at an angle of 2π
3 from the direction of →τ(O) along ℓ.

Therefore σ ∘ τ ∘ σ−1 carries ρ(P) to P, and σ ∘ τ ∘ σ−1 ∘ ρ(P) = P. We have shown that
ρ1 = σ ∘ τ ∘σ−1 ∘ρ fixes every point P of ℓ1, whence ρ1 is a reflection with axis ℓ1 parallel
to ℓ, see Figure 4.27.

LetG be generated byG+ = G3 and some ρ that satisfies (T1), and let ρ∘τ1 ∘ρ−1 = τ1.
Then the axis of ρ is parallel to →τ1(O) and the axis of ρ ∘ σ is parallel to

→
τ1 ∘ τ
−1
2 (O).

We get ρ ∘ τ2 ∘ ρ−1 = τ1 ∘ τ−12 because τ2 = σ−1 ∘ τ−11 ∘ σ and (ρ ∘ σ)
2 = 1, and therefore

ρ ∘ τ2 ∘ ρ−1 = σ ∘ τ−11 ∘ σ
−1.

By the same argument above, G contains reflections ρ and ρ′ with axes parallel to
→τ1(O) and

→τ2(O), respectively. The axes of ρ and ρ′meet at a pointO1, and σ1 = ρ′ ∘ρ is a
rotation aboutO1 of order 3. ThusG = TG ⋊GO1

, a semi-direct product, whereGO1
≅ D3.

If ρ satisfies (T2), then it has an axis parallel to →τ1 ∘ τ2(O), and the same argument
shows againG = TG ⋊GO1

, a semi-direct product, but nowwith the three axes of reflec-
tions through O1 in a different position relative to →τ1(O) and

→τ2(O). We have thus two
types of G1

3 and G
2
3, see Figure 4.28.
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2π
3

ℓ1

ℓ

P

ρ(P)ρ0(P)
‖→τ0(O)‖

2‖→τ0(O)‖

√3‖→τ0(0)‖

Figure 4.27: Existence of a reflection.

G1
3 G2

3

Figure 4.28: Two types of G13 and G
2
3.

Theorem 4.21. If G ̸= G+ = G3, there are exactly two isomorphism types for G:

G1
3 = ⟨τ1, τ2, ρ, σ | τ1 ∘ τ2 = τ2 ∘ τ1, σ

3 = ρ2 = (ρ ∘ σ)2 = 1, σ ∘ τ1 ∘ σ
−1 = τ−11 ∘ τ2,

σ ∘ τ2 ∘ σ
−1 = τ−11 , ρ ∘ τ1 ∘ ρ

−1 = τ1, ρ ∘ τ2 ∘ ρ
−1 = τ1 ∘ τ

−1
2 ⟩,

G2
3 = ⟨τ1, τ2, ρ, σ | τ1 ∘ τ2 = τ2 ∘ τ1, σ

3 = ρ2 = (ρ ∘ σ)2 = 1, σ ∘ τ1 ∘ σ
−1 = τ−11 ∘ τ2,

σ ∘ τ2 ∘ σ
−1 = τ−11 , ρ ∘ τ1 ∘ ρ

−1 = τ2, ρ ∘ τ2 ∘ ρ
−1 = τ1⟩.

Case n = 6
If ρ is a reflection or glide reflection with axis ℓ, then ρ1 = ρ ∘ σ has an axis ℓ1 making
an angle of 2π

12 with ℓ.
Since G contains the rotation σ2 of order 3, from the discussion of the case n = 3,

we get that G contains reflections ρ and ρ′ with axes making an angle of 2π
12 whence

σ1 = ρ′∘ρ is a rotation of order 6 about their pointO1 of intersection. ThusG1
6 = TG⋊GO1

,
a semi-direct product, where GO1

≅ D6. Among the six reflections with axes passing
through O1, there is one satisfying (T1) and another one satisfying (T2). Hence, G is
always of the form G1

6.
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Theorem 4.22. If G ̸= G+ = G6, then there is exactly one isomorphism type for G, namely

G1
6 = ⟨τ1, τ2, ρ, σ | τ1 ∘ τ2 = τ2 ∘ τ1, σ

6 = ρ2 = (ρ ∘ σ)2 = 1, σ ∘ τ1 ∘ σ
−1 = τ2,

σ ∘ τ2 ∘ σ
−1 = τ−11 ∘ τ2, ρ ∘ τ1 ∘ ρ

−1 = τ1, ρ ∘ τ2 ∘ ρ
−1 = τ1 ∘ τ

−1
2 ⟩.

We remark that G1
6 is exactly the symmetry group of a regular tessellation of the

plane by equilateral triangles, and hence also by regular hexagons.

Summary. We have seen that there are in all 17 isomorphism types of wallpaper
groups:

G1,G
1
1 ,G

2
1 ,G

3
1 ,G2,G

1
2,G

2
2 ,G

3
2 ,G

4
2 ,G4,G

1
4,G

2
4,G3,G

1
3,G

2
3,G6,G

1
6.

From the proofs we realize that these 17 groups are also pairwise geometrically-
different types. The following figures (see Figure 4.29), which have to be extended pe-
riodically in an obvious way, are figures in the plane which have the respective groups
as symmetry groups.

Final remark. Crystallographic groups of dimensions 2 and 3 arose from their connec-
tions with chemistry and physics.

They came intomathematical prominence in 1900withHilbert’s famous list of im-
portant outstanding mathematical problems. We have seen that in dimension 2 there
are 17 types of cryptographic group.We remark that in dimension 3 there are 219 types
of crystallographic group (see, for instance, [25]).

4.7 A Non-Periodic Tessellation of the Planeℝ2
So far we considered the periodic tessellation of the plane. As is usually done, we
now use the word tiling for tessellation. Here, we describe one beautiful non-periodic
tiling by Sir Roger Penrose (1931, Nobel Prize for Physics in 2000) which is his second
tiling and uses only two tiling types called the kite and dart which may be combined
to make a rhombus. However, the matching rules for periodic tilings (tessellations)
prohibit such a combination.

The kite is a quadrilateral whose four interior angles are 72°, 72°, 72° and 144°. The
kite may be bisected along its axis of symmetry to form a pair of triangles (with angles
of 36°, 72° and 72°), see Figure 4.30.

The dart is a non-convex quadrilateral whose four interior angles are 36°, 72°, 72°
and 144°. The dart may be bisected along its axis of symmetry to form a pair of obtuse
triangles (with angles of 36°, 36° and 108°), which are smaller than the acute triangles,
see Figure 4.31.

Amatching rule is, for instance, to color the verticeswith two colors (e.g., blue and
red) and to require that adjacent tiles have matching vertices, see Figure 4.32.
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R
G1
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G1
1

R
R

G2
1 G3
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Z
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G1
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R

G2
2

Z
Z

G3
2

Z

Z

G4
2

R R

R R
G4 G1

4 G2
4

G3 G1
3 G2

3

G6 G1
6

Figure 4.29: 17 isomorphism types of wallpaper groups.

Theorem 4.23 (Penrose).
1. Taking into account the matching rules it is possible to tile the plane with kites and

darts completely.
2. It is not possible to find a periodic tiling with kites and darts.

Proof. We prove the theorem in four steps.
(a) If we pay attention to which angle of a kite and which angle of a dart together can

result in 360°, we see that there are exactly seven possibilities to combine kites
and darts to a complete vertex v, that is, the angle sum of the angles with the
neighbors is 360°, see Figure 4.33.
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72°

72°

144°

72°

Figure 4.30: The kite.

216°

36°

72°

36°

Figure 4.31: The dart.

(b) If we have a given tiling then wemay produce from this a coarser tiling and a finer
tiling which consist of kites and darts which are larger and smaller, respectively,
by the factor ϕ = 1

2 (√5 + 1) than in the original tiling. In coarsening, a bigger kite
arises from two smaller kites and two half smaller darts, see Figure 4.34(a), and a
bigger dart arises froma smaller kite and twohalf smaller darts, see Figure 4.34(b).
The situation is opposite in the refinement. From the seven possibilities in step
(a) we see that the smaller and bigger figures, respectively, come together to a new
tiling by the definedmatching rules. This already shows thatwemay tile the plane
with kites and darts. If we start with the suitable starting configuration and then
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72°

72°

144°

72°

216° 72°

36°

36°

Figure 4.32:Matching rule.

Figure 4.33: Possible vertices.

first refine and then enlarge by the stretch factorϕ, and if we continue the process
again and again, then we cover each point of the plane.

(c) If we consider an area with x kites and y darts and refine as in step (b) we get from
one kite two new kites and 2

2 new darts, altogether 2x new kites and x new darts.
From one dart we get one new kite and 2

2 new darts, altogether y new kites and y
new darts.
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(a) (b)

Figure 4.34: Coarsening of a tiling.

Altogether, we get X = 2x + y new kites and Y = x + y new darts. If we repeat
this refinement process n times and with xn kites and yn darts, then we get the
recursion formulas

Xi+1 = 2xi + yi and Yi+1 = xi + yi

for i = 0, 1, 2, . . . . Then

lim
i→∞

xi
yi
= ϕ = 1

2
(√5 + 1) ≈ 1.6180.

This fact is independent of the starting values xi and yi, if both are not zero.
Let qi = ϕ + fi with a rounding error for i ≥ 0. Then, using the recursion formulas,
for i ≥ 0, we get

fi+1 = −ϕ + qi+1

= −ϕ + xi+1
yi+1

= −ϕ + 2xi + yi
xi + yi

= 1 − ϕ + xi
xi + yi

= 1 − ϕ + 1
1 + yi

xi

= 1 − ϕ + 1
1 + 1

qi

= 1 − ϕ + 1
1 + 1

ϕ+fi

= 1 − ϕ + ϕ + fi
1 + ϕ + fi

=
1 + ϕ − ϕ2 + (2 − ϕ)fi

1 + ϕ + fi
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=
2 − ϕ

1 + ϕ + fi
fi

because 1 + ϕ − ϕ2 = 0 by the golden equation (see [10]). Hence, we have

0 < 2 − ϕ
1 + ϕ + fi

≤
2 − ϕ

1 + ϕ − ϕ + 1
<
2 − ϕ
2
< 0.5

where we recall that 1 − ϕ ≈ −0.4. Hence,

lim
i→∞

fi = 0

which gives

lim
i→∞

xi
yi
= 0.

(d) We have finally to show that there is no periodic tiling with kites and darts. We
first assume that such a tiling exists. Then the assumed periodicity is based on
some basic tile G with u kites and v darts, which is mapped over the entire plane
by the two generating tessellations. Each figure, which will be enlarged by a cen-
tric stretching with stretch factor d → ∞ contains a square-increasing number
of complete basic tiles whereby the number of the basic tiles out from the edge
of the figure increases only linearly. For the quotient of the numbers x(d) of kites
and y(d) of darts, which are inside the figure, we get

x(d)
y(d)
→

u
v

for d →∞.

The limit is a rational number. Now, in step (c) we have shown that the quotient
of these numbers converges to the golden number ϕwhich is irrational. Hence, a
periodic tiling with kites and darts does not exist.

Remark 4.24.
1. There is a fascinating ongoing work done in non-periodic tilings, and there ex-

ists several examples. Some of them can be considered as realistic models for the
growth of quadrilaterals.

2. The described Penrose tiling is realized at the TU Dortmund where the foyer of
the AuditoriumMaximum is designed with a non-periodic Penrose tiling, see Fig-
ure 4.35.
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Figure 4.35: Penrose tiling at TU Dortmund.

Exercises

1. LetG be a group andH < G be a subgroup ofG of index 2. Show thatH is a normal
subgroup of G.

2. Let G be a finite group and H < G be a subgroup of index [G : H]. Show the
Theorem of Lagrange:

|G| = [G : H] ⋅ |H|.

3. Let G = ⟨g | gn = 1⟩, n ≥ 2, be a cyclic group of order n. Show that:
(a) For each divisor m of n, 1 ≤ m ≤ n, there exists exactly one subgroup U of G

with orderm, and U is cyclic.
(b) An element gk ̸= 1 generates G if and only if gcd(k, n) = 1.
(c) For each divisor m of n, 1 ≤ m ≤ n, there exists exactly one factor group of G

of orderm.
(d) Let f : ℝ2 → ℝ2 be a rotation with center 0⃗ = (0,0) and rotation angle α = 2π

n .
Show that G is isomorphic to ⟨f ⟩.

4. Let Dn = ⟨a, b | an = b2 = (ab)2 = 1⟩, n ≥ 3, be the dihedral group of order 2n.
(a) LetU < Dn be a subgroup of Dn. Show thatU is either cyclic, a dihedral group

Dm withm | n,m ≥ 3, or the Klein four group if n is even.
(b) Show that D3 is isomorphic to the symmetric group S3 on {1, 2, 3}.
(c) Show that Dn, n ≥ 4, is isomorphic to a proper subgroup of the symmetric

group Sn on {1, 2, . . . , n}.
(Hint: Consider in Sn the two permutations (written as cycles)

g = (1, 2, . . . , n) and h = (2, n)(3, (n − 1)) ⋅ ⋅ ⋅ (i, (n + 2 − i)) ⋅ ⋅ ⋅ .

For the required details on symmetric groups, see, for instance, [12].)
5. Show that the set of all symmetries of a figure F forms a group.
6. Let G be a subgroup of the group E of the planar isometries. We call G discrete if

there is no sequence (φn)n∈ℕ of pairwise distinct φn ∈ G such that the sequence
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(‖φn(P)‖)n∈ℕ converges toP for eachP ∈ ℝ2 (considered as local vectors
→OP). Show

that a discontinuous subgroup of E is discrete.
7. Given the two planar isometries

τ : ℝ2 → ℝ2, (x
y
) → (

x + y
y
)

and

ρ : ℝ2 → ℝ2, (x
y
) → (

x + y
−y
) .

Let G1 = ⟨τ⟩ and G2 = ⟨ρ⟩. Show that G1 and G2 are algebraically isomorphic but
geometrically distinct. Find in ℝ2 figures F1 and F2 such that G1 = Sym(F1) and
G2 = Sym(F2).

8. (a) In the plane ℝ2 consider the rotation

σ : (x
y
) → (
−1 0
0 −1
)(

x
y
)

and the translation

τ : (x
y
) → (

x
y
) + (

1
0
) .

Let G = ⟨σ, τ⟩. Describe G by generators and relations.
Find a figure F in ℝ2 with G = Sym(F). Mark the rotation centers in F.

(b) In the plane ℝ2 consider the reflection

ρ : (x
y
) → (
−1 0
0 1
)(

x
y
)

and the translation

τ : (x
y
) → (

x
y
) + (

1
0
) .

Let G = ⟨ρ, τ⟩. Describe G by generators and relations.
Find a figure F in ℝ2 with G = Sym(F). Mark the reflection lines in F.

9. In the plane ℝ2 consider the translations

τ1 : (
x
y
) → (

x
y
) + (

1
0
)
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and

τ2 : (
x
y
) → (

x
y
) + (

0
1
) .

Let G = ⟨τ1, τ2⟩. Describe G by generators and relations and find a figure F in ℝ2

with G = Sym(F).
10. (a) In the plane ℝ2 consider the reflection

ρ : (x
y
) → (

0 1
1 0
)(

x
y
)

and the two translations

τ1 : (
x
y
) → (

x
y
) + (

1
0
)

and

τ2 : (
x
y
) → (

x
y
) + (

0
1
) .

Let G = ⟨ρ, τ1, τ2⟩. Describe G by generators and relations and find a figure F
in ℝ2 with G = Sym(F).

(b) In the plane ℝ2 consider the rotation

σ : (x
y
) → (
−1 0
0 −1
)(

x
y
)

and the two translations

τ1 : (
x
y
) → (

x
y
) + (

1
0
)

and

τ2 : (
x
y
) → (

x
y
) + (

0
1
) .

Let G = ⟨σ, τ1, τ2⟩. Describe G by generators and relations and find a figure F
in ℝ2 with G = Sym(F).
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5 Graph Theory and Graph Theoretical Problems

In this chapter we give an introduction to graph theory. Our aim is to present some
basicmaterial togetherwith a variety of applications.We remark that graph theoretical
results and techniques are often used in the forthcoming chapters. Graphs serve the
description and illustration of relations between objects. The idea is to represent the
objects by points, and if there is a connection between two objects, we draw a line
between them. The objects are denoted as vertices and the connections between them
as edges.

The sets of vertices and edges formagraph. Throughabstractionwemay represent
many coherences using graphs. For instance, we may take all cities as vertices and
the road network as edges, that is, we draw an edge between two cities if they are
connected via a road. We will use this model when we discuss the Taveling Salesman
Problem in the last section of this chapter. Another example appears with movies and
actors as set of vertices.We draw an edge between an actor x and amovie y, if x played
a part in y. We also may regard the game positions of a game as vertex set. We draw
an edge from a game position x to a game position y if x gets converted to y by one
move.

In such a manner, different facts can be modeled by graphs. In general, any rela-
tionR ⊂ A×B can be considered as a graphwith a vertex setA∪B and an edge between
x, y ∈ A∪B if (x, y) ∈ R. This type of presentation has several advantages. First, graphs
can be illustrated figuratively. Second, we can use existing results and methods from
graph theory for the solution of problems. Last but not least, graph theory allows uni-
form terminology.

5.1 Graph Theory

We begin with the definition of a graph. The graphs we define here are called simple
and undirected in the literature.

Definition 5.1. A (simple) graph is a pair G = (V ,E), consisting of a nonempty set V of
vertices and a set E of unordered pairs of distinct elements of V , which we call edges
and denote by k = {x, y}, x, y ∈ V , x ̸= y. Typically, a graph is depicted in diagrammatic
form as a set of dots for the vertices, joined by lines or curves for the edges.

Remarks 5.2.
(1) In simple graphs, we do not allow loops and we do not allow more than one edge

between two elements of V . In an undirected graph an edge has no direction.
(2) An edge k = {x, y} is called a connecting edge from x to y, and x, y are named as

the termini (or end points) of k. We say that k connects the vertices x and y.
(3) Examples for graphs are certainly the known geometric figures like triangles, rect-

angles, n-polygons, tetrahedrons, cubes and so on, but also the Hasse diagrams

https://doi.org/10.1515/9783110740783-005

 EBSCOhost - printed on 2/10/2023 4:13 PM via . All use subject to https://www.ebsco.com/terms-of-use

https://doi.org/\global \c@doi \c@chapter \relax \global \advance \c@doi \c@parttext \relax 10.1515/9783110740783-000


128 | 5 Graph Theory and Graph Theoretical Problems

of finite partial orders over a set M. Recall that a partial order over M is a binary
relation ≤ over M which is reflexive, antisymmetric and transitive, that is, which
satisfies for all a, b, c ∈ M:
(a) a ≤ a,
(b) a ≤ b and b ≤ a, then a = b,
(c) a ≤ b and b ≤ c, then a ≤ c.

The Hasse diagram, named after H. Hasse (1898–1979), is a type of mathematical
diagram to represent a finite partially ordered set. For a finite partially ordered set
(M,≤), one represents each element ofM as a vertex in the plane ℝ2 and draws a line
segment upwards from a to b whenever a < b and there is no c such that a < c < b.
These line segments may cross each other but must not touch any vertices other than
their endpoints. Such a diagram,with labeled vertices, uniquely determines its partial
order. We consider examples of Hasse diagrams:
(1) Let M = {1, 2, 3}. Then we have the following possible Hasse diagrams, see Fig-

ure 5.1.

Figure 5.1: Hasse diagrams.

(2) LetM = {1, 2, . . . , 10} be equipped with the divisor relation as the partial order, see
Figure 5.2.

1

23

4

5

6

7

89

10

Figure 5.2: Diagram with divisor relation as partial order.

(3) Let Bn, n ≥ 1, be the n-fold Cartesian product of B = {0, 1}, that is, the set of the
n-digit 0–1-sequences (a1, a2, . . . , an) with ai = 0 or 1 for i = 1, 2, . . . , n.
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Bn can be partially ordered by

(a1, a2, . . . , an) ≤ (b1, b2, . . . , bn) ⇔ ai ≤ bi for i = 1, 2, . . . , n

and

(a1, a2, . . . , an) < (b1, b2, . . . , bn) ⇔ ai ≤ bi for i = 1, 2, . . . , n and
ai < bi for at least one i.

The Hasse diagrams for B1, B2 and B3 are shown in Figure 5.3.

1

0

B = B1

(0,0)

(0, 1)

(1, 1)

(1,0)

B2

(0,0,0)

(0,0, 1)

(0, 1, 1)

(1, 1, 1)

(1, 1,0)

(1,0,0)

(1,0, 1)

(0, 1,0)

B3

Figure 5.3: Hasse diagrams for B1, B2 and B3.

These examples already show that it is custom to realize graphs in the planeℝ2 or the
space ℝ3.

Definition 5.3.
(1) Two edges k, k′ are called adjacent (neighboring) in G, if they have a common

terminus (end point), see Figure 5.4.
(2) x ∈ V is called isolated if it is not incident to an edge.
(3) A graph G = (V ,E) is called finite if both V and E are finite.

x

y

z

k k′
Figure 5.4: Adjacent edges.
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Remark 5.4. Since we only consider simple graphs, then certainly |E| <∞ if |V | <∞.

Agreement. From now on all graphs are finite.

Definition 5.5. Let G = (V ,E) be a graph and x ∈ V . Then

d(x) = {u ∈ E | x ∈ u, that is, u = {x, y} for some y ∈ V}

is called the degree of x.

Remark 5.6. If x ∈ V is isolated then d(x) = 0, if d(x) = 1 then we call x a final vertex.
Certainly we have

|E| = 1
2
∑
x∈V d(x).

Definition 5.7. Let G = (V ,E) be a graph. An edge sequence with start vertex x0 and
end vertex xn is a sequence of edges of the form u1 = {x0, x1}, u2 = {x1, x2}, . . . , un =
{xn−1, xn}.

An edge line is an edge sequence where all edges are distinct.
An edge path is an edge line u1 = {x0, x1}, u2 = {x1, x2}, . . . , un = {xn−1, xn} with

xi ̸= xj for i ̸= j, 0 ≤ i, j ≤ nwith the possible exception x0 = xn. If x0 = xn then the edge
sequence (line or path, respectively) is called closed or an edge circle.

Remarks 5.8.
(1) From an edge sequence from x0 to xn we get by reduction an edge line, and finally

an edge path from x0 to xn.
(2) By the definition

x0 ∼P xn ⇔ there exists an edge path from x0 to xn

we get an equivalence relation ∼P on the vertex set V of G = (V ,E).

Definition 5.9. Let G = (V ,E) be a graph.
(1) A graph (V ′,E′) is called a subgraph of G if V ′ ⊂ V and E′ ⊂ E.

A subgraph (V ′,E′) of G is called a section graph of G if E′ is composed exactly of
those edges of G for which both termini are in V ′.
The section graph is uniquely determined byV ′ and is called the spanning section
graph of V ′.

(2) A connected component ofG is the spanning section graph of an equivalence class
of V with respect to the equivalence relation ∼P on V .

Example 5.10. Figure 5.5 shows a graph with three connected components.

Definition 5.11. G is called connected if G has exactly one connected component.
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Figure 5.5: Graph with three connected components.

Theorem 5.12. If G = (V ,E) is connected, then |E| ≥ |V | − 1.

Proof. We proof the theorem by induction on n = |V |.
If n = 1, then V = {x} and hence |E| = 0 ≥ |V | − 1 = 0.
If n ≥ 2 and d(x) ≥ 2 for all x ∈ V , then |E| ≥ n because

|E| = 1
2
∑
x∈V d(x).

Now let n ≥ 2 and x0 be a vertex with d(x0) = 1 (the case d(x0) = 0 cannot hold,
because G is connected). Let u be an edge with x0 as a terminus vertex.

The subgraph (V \ {x0},E \ {u}) is connected. By the induction hypothesis, we have

E \ {u}
 ≥
V \ {x0}

 − 1,

that is,

|E| − 1 ≥ |V | − 2, and hence |E| ≥ |V | − 1.

Definition 5.13. Let G = (V ,E) be a graph. G is called a tree if G is connected and has
no edge circle. A vertex of a tree is called a leaf if it has atmost degree 1. Verticeswhich
are not leaves are called the inner vertices.

In trees withmore than one vertex the leaves are exactly those vertices of degree 1.

Example 5.14.
(1) All trees with |V | = 5, see Figure 5.6.

Figure 5.6: All trees with |V | = 5.
(2) Binary trees (V ,E).

These are trees with the following properties:
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(a) There exists a distinguished vertex x0 with d(x0) ≤ 2; x0 is called a root of the
tree, and

(b) d(x) ≤ 3 for all x ∈ V . These may occur in several situations:
(i) Decision tree; see Figure 5.7.

0

a

a n

n

a n Figure 5.7: Decision tree.

(ii) Probability tree; see Figure 5.8.

0

1
4

3
4

2
5

2
4

2
4

3
5

Figure 5.8: Probability tree.

(iii) Binary search tree of an ordered setM = {x1, x2, . . . , xn}. ForM = {21, 17, 6,
3, 7, 25, 12, 11, 19, 30, 29, 27, 14, 35}we see an example (with the given order-
ing) in Figure 5.9:

21

17 25

6 19 30

3 7 29 35

12
27

11 14 Figure 5.9: Example of a binary search
tree.
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(iv) Brackets for multiple products, see Figures 5.10 and 5.11.

0

x1 x2 x3 x4 x5 Figure 5.10: Brackets for multiple products (x1 x2)(x3 x4 x5).
0

x1 x2 x3 x4 Figure 5.11: Brackets for multiple products (x1 x2)(x3 x4).
Theorem 5.15. Let G = (V ,E) be a graph. Then the following are equivalent:
(1) G is a tree.
(2) G is connected and |E| = |V | − 1.
(3) Any two distinct vertices in G are connected by exactly one path.

Proof. (1) ⇒ (2) A tree is connected by definition. Let n, m be the number of vertices
and edges of G, respectively. We show m = n − 1 by induction. If n = 1 then m = 0,
hence,m = n − 1.

Now let n ≥ 2 and u = {a, b} be an edge. Let G′ = (V ,E \ {u}). Then G′ is not con-
nected, and G′ comprises two connected components, G′1 = (V1,E1) and G′2 = (V2,E2),
see Figure 5.12.

u

a b

Figure 5.12: Components G′1 and G′2.
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G′i is a tree with, say a ∈ G′1, b ∈ G′2. By induction hypothesis, |Ei| = |Vi| − 1, hence
|E| = m = |E1| + |E2| + 1 = |V1| + |V2| − 2 + 1,

that is,m = n − 1.
(2)⇒ (3) We have

2|E| = ∑
x∈V d(x) = 2|V | − 2.

If |V | = 1, there is nothing to prove. Now let |V | ≥ 2. Then there exists a final vertex
x ∈ V with d(x) = 1. Let u = {x, y} be the edge to which x is incident.

Then G′ = (V \ {x},E \ {u}) also is connected and satisfies the condition in (2).
Let a, b ∈ V \ {x}. A path from a to b in G cannot contain u because d(x) = 1. Then,

inductively, there exists exactly one path in G′ which connects a and b. A path from x
to amust start with u, which gives the uniqueness of the path from x to a in G.

(3)⇒ (1) From the existence of a closed path, which contains a, b ∈ V , we get the
existence of two distinct paths between a and b.

Remark 5.16. From Theorem 5.15 we automatically get the following statements.
(1) Let G = (V ,E) be a graph with |V | ≥ 2. Then the following are equivalent:

(a) G is a tree.
(b) G contains no closed path, and for any x, y ∈ V , x ̸= y, with {x, y} ∉ E, the

graph (V ,E ∪ {x, y}) contains a closed path.
(2) Each tree has a leaf. Especially, each tree with at least two vertices has at least two

leaves.

Definition 5.17. Let G = (V ,E) be a graph. A subgraph of G which is a tree and which
contains all vertices of G is called a spanning tree of G.

Theorem 5.18. A graph G = (V ,E) has a spanning tree if and only if G is connected.

Proof. “⇒” This is clear, because a spanning tree is connected.
“⇐” Let G be connected. Starting with G0 = (V , 0), we construct a chain

G0 ⊂ G1 ⊂ ⋅ ⋅ ⋅

of subgraphs, where Gk = (V ,Ek) for k ≥ 1 is formed from Gk−1 by adding an edge
u in such a manner that Gk does not contain an edge circle. After |V | steps, we get a
spanning tree.

Definition 5.19. The graph Kn = (V ,E) with |V | = n ≥ 2 and |E| = ( n2 ) edges, that is,
every pair of distinct vertices is connected by a unique edge, is called the complete
graph on n vertices.
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The Cayley formula (after A. Cayley, 1821–1895) determines the number of span-
ning trees in Kn, n ≥ 2.

Theorem 5.20 (Cayley formula). Let n ≥ 2. The number of spanning trees in Kn is nn−2.
Proof. LetKn = (V ,E) be the complete graph on n vertices.We assume that the vertices
are arranged linearly. Let (V ,T) with T ⊂ E be a spanning tree of Kn. We encode T by
a sequence in Vn−2 using a method of E. P. H. Prüfer (1896–1934). If n = 2, then this is
the empty sequence, and this matches the only spanning tree with T = E.

Now, let b1 ∈ V be the smallest leaf of (V ,T). The essential trick is to note down
the neighbor p1 of b1 and not the leaf itself. Hence, {b1, p1} ∈ T. Let V ′ = V \ {b1}
and T′ = T \ {{b1, p1}}. Then (V ′,T′) is a spanning tree of a complete graph with n − 1
vertices. By induction there exists a sequence (p2, . . . , pn−2)which encodes (V ′,T′). We
define the encoding of (V ,T) by the sequence (p1, p2, . . . , pn−2) and call this sequence
the Prüfer code of (V ,T). We see by induction that {p1, . . . , pn−2} is exactly the set of the
inner vertices of T. Especially, some of the pi’s may be equal. We now can discern the
leafb1 from the sequence (p1, . . . , pn−2), it is the smallest element inV\{p1, . . . , pn−2}.We
know that {b1, p1} ∈ T. Inductively,wemay reconstruct from {p2, . . . , pn−2} the spanning
tree T′ of V ′ = V \ {b1}. We get T = T′ ∪ {{b1, p1}}.

The assignmentwhich assigns eachT the Prüfer code is therefore an injectivemap
from the set of all spanning trees of (V ,E) in the set Vn−2.

It remains to show that each sequence (p1, . . . , pn−2) is a Prüfer code of some span-
ning tree. Let b1 be the smallest element ofV \ {p1, . . . , pn−2}. By induction, the residual
sequence (p2, . . . , pn−2) is the Prüfer code of a spanning tree T′ of V ′ \ {b1}. Therefore,
(V ′,T′) is connected and T′ has n − 2 edges. We set T = T′ ∪ {{b1, p1}}, then (V ,T) is
connected and T has n − 1 vertices. Hence, (V ,T) is a spanning tree with Prüfer code
(p1, . . . , pn−2).
Examples 5.21.
(1) We consider the tree with Prüfer code (2, 7, 7, 1, 7, 1), see Figure 5.13.

3 2 7

4

6

1

8

5

Figure 5.13: Tree with Prüfer code (2, 7, 7, 1, 7, 1).

(2) All spanning trees with edge set {1, 2, 3}, see Figure 5.14.
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1 2

3

1 2

3

1 2

3

Figure 5.14: Spanning trees with edge set {1, 2, 3}.
Remark 5.22. If a graph G = (V ,E) is realized in the plane ℝ2, then in general inter-
sections of edges occur at points which are not vertices of G.

Definition 5.23.
(1) A graph G = (V ,E) in the plane ℝ2 is called crossing-free if intersections of edges

are only at their endpoints. In other words, no edges cross each other.
(2) Two graphs G = (V ,E) and G′ = (V ′,E′) are called isomorphic if their exists a

bijection f : V → V ′ such that
{x, y} ∈ E ⇔ {f (x), f (y)} ∈ E′,

f then is called a graph isomorphism.
(3) A graph G = (V ,E) is called planar if it is isomorphic to a crossing-free graph in

the plane ℝ2.

Example 5.24. Let Kn = (V ,E) be the complete graph with |V | = n and |E| = (n2).
K2 and K3 are certainly planar, see Figure 5.15.

K2 K3

Figure 5.15: K2 and K3.

K4 is also planar, see Figure 5.16.

isomorphic to

Figure 5.16: K4.
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We will show that K5 is not planar. Then in general Kn, n ≥ 5, is not planar.

To prove this, we need Euler’s formula for planar, connected graphs.

Agreement. If in what follows we call a graph G = (V ,E) planar then we mean that G
already is realized in ℝ2 as crossing-free.

Definition 5.25. Let G = (V ,E) be a planar graph in the plane ℝ2.
(1) x ∈ ℝ2 is called distinct from G if x is neither a vertex of G nor an element of an

edge of G. Diagrammatically, x is not a vertex and not on a line or curve joining
two vertices.

(2) Let x ∈ ℝ2 be different from G. A face F(x) containing x is the set of all points from
ℝ2 which can be reached from x by a finite polygonal chain, whose points are all
distinct from G.

Remark 5.26. This defines an equivalence relation:
x ∼ y ⇔ x and y are distinct from G and can be connected by a finite polygonal

chain, whose points are all distinct from G.
The equivalence classes are called the faces of G. There is always the external or

unbounded face.

Example 5.27. We give an example in Figure 5.17.

F(x)

x
y

Figure 5.17: Face F (x).
We are now prepared to prove Euler’s polyhedra formula (L. Euler, 1707–1783).

Theorem 5.28 (Euler’s formula). Let G be a connected, planar graph in the plane ℝ2.
Let n,m and f be the number of vertices, edges and faces of G, respectively.

Then

n −m + f = 2.

Proof. We give the proof by induction on m. If m = 0, then n = 1 because G is con-
nected, and f = 1 (there is only the unbounded face). Therefore

n −m + f = 1 − 0 + 1 = 2

form = 0.
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Now let m ≥ 1 and assume that Euler’s formula holds for all respective graphs
withm − 1 edges.

First, if G is a tree, then f = 1 because we only have the unbounded face, and
m = n − 1 by Theorem 5.15, which gives n − m + f = n − (n − 1) + 1 = 2. Therefore
Theorem 5.28 holds if G is a tree.

Now assume G is not a tree. Let e be an edge of an edge circle of G, see Fig-
ure 5.18.

e

Figure 5.18: An edge circle and an edge e.

Then G \ {e} := (V ,E \ {e}) is a connected planar graph with n vertices,m− 1 edges and
f − 1 faces, and hence,

n − (m − 1) + (f − 1) = n −m + f = 2,

by the induction hypothesis.
Altogether n −m + f = 2.

Corollary 5.29. Let G be a connected, planar graph with n, n ≥ 3, vertices and m edges.
Then m ≤ 3n − 6.

Proof. Since each face is bounded by at least three edges, and each edge bounds at
most two faces, we get 3f ≤ 2m. This gives

6 = 3n − 3m + 3f ≤ 3n −m,

and hencem ≤ 3n − 6.

Corollary 5.30. K5 is not planar.

Proof. Assume that K5 is planar. Then, by Corollary 5.29, we get

10 = m ≤ 3n − 6 = 15 − 6 = 9

which gives a contradiction. Hence, K5 is not planar.

Corollary 5.31. Each planar graph has a vertex x with d(x) ≤ 5.
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Proof. Without loss of generality, let the graph be connected and have at least 3 ver-
tices.

If d(x) ≥ 6 for all vertices x, then 6n ≤ 2m with n and m the number of vertices
and edges, respectively. By Corollary 5.29, we have then 3n ≤ 3n − 6 which gives a
contradiction.

5.2 Coloring of Planar Graphs

Definition 5.32. A C-coloring of a graph G = (V ,E) is a map c : V → C with c(x) ̸= c(y)
for all {x, y} ∈ E. Here C is the set of colors. We say that G is k-colorable if there exists
a C-coloring with |C| = k.

Remark 5.33. We give the following application for graph coloring in the context of
school timetables. We consider the graph G = (V ,E) where the vertices present the
lessons and two lessons are connected by an edge if they cannot take place at the same
time. There are many practical reasons for this: A teacher cannot teach two lessons at
the same time and a class cannot attend two lessons simultaneously, andmanymore.
If the graph admits a k-coloring, then there exists a time table for all courses with k
time slots.

The famous Four Color TheorembyK. Appel (1932–2013) andW.Haken (born 1928)
says that each planar graph is 4-colorable, see [2]. In the context of geographic maps
this means that four colors are enough to color the regions of a map so that adjacent
regions have different colors. Here we consider a planar graph G = (V ,E) where the
vertices present the regions and two regions are connected by an edge if they have a
common border.

We only showhere that each planar graph is 5-colorable. First, we check that each
planar graph is 6-colorable. Let v ∈ V be a vertex ofGwith d(v) ≤ 5. Such a v ∈ V exists
by Corollary 5.31. The graph without the vertex v (and the edges {v, x} ∈ E) is assumed
to be 6-colorable by induction. Since v has 5 neighbors x with {v, x} ∈ E, we need for
these neighbors x at most five colors. If we add again v, then one of the six colors is
left for v. We use this idea for the proof of the next theorem.

Theorem 5.34. Each planar graph is 5-colorable.

Proof. Wemake induction on the number of vertices and show that each planar graph
is colorable using colors C with |C| = 5.

Let G = (V ,E) be a planar graph. By Corollary 5.31, there exists a vertex v ∈ V with
degree d(v) ≤ 5. If d(v) ≤ 4 thenwe consider the spanning section graph ofV \ {v} ofG.
This has by induction a C-coloring with |C| = 5. We add again v to get G and may take
for v one of the five colors which was not used. The colors of the remaining vertices
are not changed. This gives a 5-coloring for G.
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Now, let d(v) = 5, and let a, b, c, d, e be the neighbors of v ordered clockwise, see
Figure 5.19. It is impossible for both edges {a, c} and {b, d} to exist because otherwise
theywould intersect.Without loss of generality, let {a, c} not be in E, that is, {a, c} does
not exist.

a

b

c

d

e

v

Figure 5.19: Five neighbors of v.

We remove from G the vertex v and all the edges {v, a}, {v, b}, {v, c}, {v, d} and {v, e}.
Now we shift the vertices a and c together and join them up to a single vertex

zac ∉ V .
This gives a planar graph without two vertices. By induction, there exists a

5-coloring c′ for the resulting graph. We now construct a coloring c : V → C of G
in such a way that the vertices a and c both get the color c′(zac). The remaining ver-
tices of G keep their color. We only have to color the vertex v. Since the five neighbors
of v need at most four colors, there is one color left, which we may use for v.

5.3 The Marriage Theorem

Let A and B be non-empty, disjoint sets and let G = (A ∪ B,E) be a bipartite graph,
that is, each edge in E connects a vertex in A with a vertex in B. A subset M ⊂ E is a
matching if no two edges in M have a common vertex. M is called a perfect matching
for A if each vertex from A is on an edge fromM.

In Figure 5.20 we present an example of a matching and a perfect matching for a
bipartite graph.

We remark that in the exercises, we will also study complete bipartite graphs.
A graph G = (V ,E) is called complete bipartite if V = A ∪ B with A ∩ B = 0 and
E = {{a, b} | a ∈ A, b ∈ B}. If |A| = m and |B| = n, then we write Km,n for G.

Themarriage theoremspecifies a conditionwhenexactly aperfectmatching exists
forA. LetNG(a) = {b ∈ B | {a, b} ∈ E} be the set of neighbors of a ∈ A inG. This notation
canbe extendedbyNG(X) = ⋃a∈XNG(a) to subsetsX ⊂ A. Themarriage conditionholds
if |NG(X)| ≥ |X| for all subsets X ⊂ A.

If |B| < |A| then there cannot exist a perfect matching. Also the marriage condi-
tion must hold. The marriage theorem says that the reverse is true: If the marriage
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(a) Bipartite graph

d

c

b

a 1

2

3

4
(b) A matching
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a 1

2

3

4
(c) A perfect matching

Figure 5.20: A matching and a perfect matching for a bipartite graph.

condition holds, then there exists a perfect matching for A. In this form, the marriage
theorem was proved in 1935 by P. Hall (1904–1982). In a slightly different form it was
proved in 1931 independently by D. König (1884–1944) and J. Egerváry (1891–1958).
Nevertheless, it is now customary to attribute the marriage theorem to Hall.

The name giver for themarriage theorem is the following situation:Wemay imag-
ine the set A as a set of women and B as a set of men. An edge between a woman and a
man exists if a marriage is possible. A perfect matching then means that it is possible
for all women in A to get married under the condition that no man gets married with
more than one women.

Theorem 5.35 (Marriage theorem). Let G = (A ∪ B,E) be a bipartite graph. Then there
exists a perfect matching for A if and only if |NG(X)| ≥ |X| for all X ⊂ A.

Proof. IfM is a perfect matching, then the graph (A∪B,M) satisfies the marriage con-
dition, and, hence, also G. Now, let G satisfy the marriage condition. If for each non-
empty proper subset X of A the inequality |NG(X)| > |X| holds, then we may remove
any arbitrary edge e from G. The remaining graph still satisfies the marriage condi-
tion and has, by induction on the number of edges, a perfect matching. This is also a
perfect matching of G. If the above case does not hold then there exists a non-empty
proper subset X of A with |NG(X)| = |X|.

Let G1 be the subgraph of G induced by X ∪ NG(X), and let G2 be the subgraph
induced by the remaining vertices (outside of X ∪ NG(X)). The graph G1 satisfies the
marriage condition because NG1

(X′) = NG(X′) for all X′ ⊂ X. We have to show that
G2 satisfies the marriage condition. Then by induction, both G1 and G2 have perfect
matchings, and so their union is a perfect matching for A. Let G2 = (A′ ∪ B′,E′) with
A′ ⊂ A and B′ ⊂ B. For X′ ⊂ A′ we have

NG2
(X′) + NG(X)

 ≥
NG(X

′ ∪ X) ≥ |X′ ∪ X| = |X′| + |X|,
and hence, |NG2

(X′)| ≥ |X′|. Therefore G2 satisfies the marriage condition.
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A frequent application of the marriage theorem is the case when |X| = |B|. Then
each perfect matching for A in the bipartite graph G = (A ∪ B,E) is also a perfect
matching for B. Compare the example for a perfect matching above.

5.4 Stable Marriage Problem

Let two equally sized sets A and B be given, with an ordering of preference for each
element. A matching between A and B is stable when there does not exist any match
(a, b), a ∈ A, b ∈ B, for which both a and b prefer each other to their current part-
ners under the matching. A stable marriage problem is the problem of finding a stable
matching between A and B.

Originally the stable marriage problem is as follows: Given n men and n women,
where each person has ranked all members of the opposite sex in order of preference.
When there are no pairs of people that prefer each other to their current partners, the
set of marriages is considered stable.

Algorithms for finding solutions to the stable marriage problem have many appli-
cations, for instance, in the assignment of graduating medical students to their first
hospital appointments. In 2012, the Nobel Prize in Economics was given to L. S. Shap-
ley (1923–2016) and A. E. Roth (born 1951) for the theory of stable allocations and the
design of certainmarkets. In this sectionwewant to describe the underlying algorithm
of D. Gale (1921–2008) and Shapley which is central for Roth’s empiric work and appli-
cations in real world situations. Let A and B be sets of n persons each. Without loss of
generality let A be the women and let B be the men. For each a ∈ A we define a linear
relation Pa on the set B by bi > bj if and only if a prefers bi over bj. In this case we
also write Pa(bi) > Pa(bj). Analogously, each man b ∈ B has a list Pb of preferences.
A marriage (or the matching M ⊂ A × B) is stable if all women are married and there
are no divorces. If there is one divorce then there exist two couples (a, b′), (a′, b) with
Pa(b) > Pa(b′) and Pb(a) > Pb(a′). Then a and b are getting divorced from their part-
ners and form a new married couple. If afterwards a′ and b′ get together then again
all are married. Then the satisfaction of a and b is increased while those of a′ and b′
may be decreased.

The situation of two couples is easy to analyze. There are two women a, a′ and
twomen b, b′. Let us first consider the case in which there exists a couple which gives
each other the highest preference. Without loss of generality, let (a, b) be this couple.
Hence Pa(b) > Pa(b′) and Pb(a) > Pb(a′). Then (a, b), (a′, b′) is stable, and this is the
only stable marriage. If there is no such couple, then the preferences cross each other.
Say, a has favorite b, but b favors a′ which now prefers b′, for which finally the woman
a is of the highest preference. We get a circular arrangement of highest preferences,
see Figure 5.21.

In this case both possible pairings are stable; the difference between them is that
either both men or both women marry their favorites. Anyway, also in more compli-
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a

a′
b

b′
Figure 5.21: Circular arrangement of highest preferences.

cated situations there is a stable marriage possible, however only under the prefer-
ences of one party. In general, a stablemarriage does not appear if partners meet each
other in random order and, with appropriate preferences, split up from their current
partner and remarry. In the previous situation first (a, b) could bemarried, then (a′, b),
then (a′, b′), then (a, b′) and finally (a, b) again. Here, the remaining two persons are
unmarried at time. In our consideration of a stable marriage, there are no unmarried
persons, so we add an additional woman a0 and an additional man b0 which always
have the lowest preference among the earlier men and women, respectively. Unmar-
ried persons in the above example get married now with a0 or b0. This provides an
infinite sequence of unstable marriages in each of which all persons are married. Fig-
ure 5.22 illustrates a run; the dashed edge always contradicts the stability.

a

a′
a0

a

a′
a0

b

b′
b0

a

a′
a0

b

b′
b0

a

a′
a0

b

b′
b0

b

b′
b0

a

a′
a0

b

b′
b0

Figure 5.22: Illustration of a run.

When calculating a stable marriage it is customary to differentiate getting engaged
and getting married from each other, so as not to have divorced couples. Engaging
means provisional selection of a partner while getting married is final.
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The Gale–Shapley algorithm calculates a marriage as follows:
(1) At the beginning nobody is engaged or married.
(2) As long as there is an unengaged man b ∈ B, he makes a proposal to that woman

a ∈ A he had not yet proposed to and that is for him of the highest preference
among these women. The woman a accepts the proposal and gets engaged to b if
she does not have a partner or if she prefers b to her current fiancé. If necessary,
an engagement is broken off in order to enter into another.

(3) If all men are engaged, then everyone marries their fiancée.

In what follows we denote each pass through of step (2) as a circuit.

Theorem 5.36. The Gale–Shapley algorithm calculates a stable marriage in at most n2

circuits.

Proof. Engaged women remain engaged in each circuit. A woman only gets engaged
again if she improves. Especially each woman gets engagedmaximally n times. At the
latest, each woman gets a proposal after n2 circuits, and all women (and therefore
also all men) are engaged. Assume that the marriage, calculated by the Gale–Shapley
algorithm, is unstable, that is, there are two married couples (a, b′) and (a′, b) with
Pa(b) > Pa(b′) and Pb(a) > Pb(a′). But then a had, before the engagement of b with
a′, either rejected an application from b or had left him. The reason for this was an
engagement with a man b′′ with Pa(b′′) > Pa(b). But since women only improved as
the process progresses, we have Pa(b′) > Pa(b′′). This contradicts Pa(b) > Pa(b′).
Remark 5.37. Especially, there exists always a stable marriage. The marriage calcu-
lated by the Gale–Shapley algorithm can be described a little more precisely. The
Gale–Shapley algorithm is optimal for the men. They each receive the one partner
who has the highest preference among all women with which a stable pairing is even
possible. For this, it is enough to show that a couple (a, b′) ∈ A × B is in no marriage
realizable, if the woman a has either an application from b′ rejected or left him in
the Gale–Shapley procedure. To get a contradiction, we consider the first moment t
at which either a woman a or a man is rejected or left, although there exists a stable
marriageM with (a, b′) ∈ M. In both cases the reason is a man b with Pa(b) > Pa(b′).
We have (a′, b) ∈ M for a woman a′ ̸= a. If we would have Pb(a) < Pb(a′), then b had
received a negative reply from a′ or would be left by a′ already before the moment t.
But this is not possible by the choice of (a, b′). Hence, Pb(a) > Pb(a′). Thus, if (a, b′)
and (a′, b)meet each other, then a and b leave their partners and form a new couple
(a, b). As a resultM is not stable, which gives a contradiction.

5.5 Euler Line
With Euler’s formula we are now essentially prepared for the classification of the Pla-
tonic solids. But before we do this in the next chapter, we want, for historical reasons,
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to talk about a problemwhichwas solvedbyEuler. His solution is the reasonwhyEuler
often is considered as the founder of graph theory.

Definition 5.38. A (closed) edge line C in the graph G = (V ,E) is called an Euler line
(Euler cycle, respectively) if C contains each edge of G exactly one time.

Remarks 5.39.
(1) This is certainly only meaningful in connected graphs.
(2) The naming is after Euler who in 1736 solved the famous problem of the Seven

Bridges of Königsberg. Its negative solution by Euler laid the foundation of graph
theory.
The city of Königsberg was set on both sides of the Pregel River, and included
two large islands which where connected to each other and to the two mainland
portions of the city by seven bridges, see Figure 5.23.

Figure 5.23: Seven bridges of Königsberg.

The problem was to devise a walk through the city that would cross each of those
bridges once and only once.
By way of specifying the logical task unambiguously, solutions involving either
– reaching an island or mainland bank other than via one of the bridges, or
– accessing any bridge without crossing to its other end
are unacceptable.
Euler pointed out that the choice of route inside each land mass is irrelevant. The
only important feature of a route is the sequence of bridges crossed.
In modern terms, or in graph-theoretical interpretations, one replaces each land
mass with an abstract vertex (or node), and each bridge with an abstract edge,
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which only serves to record which pair of vertices (land masses) are connected by
that bridge. The resulting structure is shown in Figure 5.24.

Figure 5.24: Resulting graph with multiple edges.

This structure has multiple edges between two vertices. To bring this in line with
our definition of a graph, we may introduce additional vertices and edges so that
the problem now is equivalent to the original one, see Figure 5.25.

Figure 5.25: Resulting simple graph.

The task is now to find an Euler cycle in this extended graph. The following The-
orem 5.40 tells us that this is not possible.

(3) For an example of an Euler line, see Figure 5.26.

4

28

3

7
5

1

6

Figure 5.26: House of Nicolaus.

This is the house of Nicolaus (one edge for each syllable).

Theorem 5.40. A graph G = (V ,E) contains an Euler line (Euler cycle) if and only if G is
connected and the number of vertices with an odd degree is less than or equal to 2 (= 0,
respectively).

Before we prove Theorem 5.40 we describe a necessary lemma.

Lemma 5.41. Let G = (V ,E) be a connected graph with d(x) even for all x ∈ V. If a ∈ V
and u ∈ E with a as one terminus, then G′ = (V ,E \ {u}) is connected.
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Proof. Let b be the second terminus of u. Assume that G′ is not connected. Then G′
comprises two connected components, one of which contains a and the other con-
tains b.

Let G1 = (V1,E1) be that component which contains a, and let d1 be the degree
function of G1.

We have that d1(a) is odd, and d1(x) is even for all x ∈ V1, x ̸= a, from the condition
on d. This contradicts

|E1| =
1
2
∑
x∈V1

d1(x).

Hence, G′ is connected.
We now give the proof of Theorem 5.40.

Proof. “⇒” Let G contain an Euler line (Euler cycle). Each passage through one vertex
x gives a contribution of 2 to the value d(x), with a possible exception of the beginning
vertex and the ending vertex of the line, these two vertices are equal in a cycle.

“⇐” Let G be connected, and let the number of vertices with an odd degree be ≤ 2
or 0. Then thenumber of verticeswith anodddegree is 0or 2 because |E| = 1

2 ∑x∈V d(x).
We may reduce the case with two vertices with an odd degree to the case where all
vertices have even degree. This we can see as follows. Let a and b be two vertices with
an odd degree. We extend G by adding an additional vertex c and two edges {a, c} and
{b, c} to a graph G′ = (V ∪ {c},E ∪ {a, c}∪ {b, c}); and each Euler cycle in G′ corresponds
to an Euler line in G from a to b. Now let the number of vertices with an odd degree
be 0.

The following algorithm provides an Euler cycle:
(1) Choose any arbitrary vertex a as the start vertex.
(2) Choose any arbitrary edge u1 from the set of edges with a as an end vertex. By

Lemma 5.41, the graph (V ,E \ {u1}) is connected.
(3) If u1, u2, . . . , un are iteratively already chosenwith final vertex xn, then choose from

the set of unused edges with xn as terminus an edge un+1 in such a way that the
remaining graph Gn+1, formed from a and those edges which are distinct from
u1, u2, . . . , un+1 and their vertices, is connected.

An example for (3) is given in Figure 5.27.
In Figure 5.27, u1, u2, . . . , u6 are chosen. The remaining graphG6 after the choice of

u1, u2, . . . , u6 is given in Figure 5.28.
Edge u′ is not allowed to be chosen as u7, because then G7 is not connected; u′′

can be chosen.

This procedure gives an Euler cycle.
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a
u1u2

u3

u4

u6

u5
Figure 5.27: Example for (3).

a

u′′
u′

Figure 5.28: Remaining graph.

Proof. Case 1. xn = a
If all edges are used then we have an Euler cycle. If Gn still contains edges, then

among them there is one (for degree reasons, even two) with a as terminus, since Gn
is connected, and among those we may choose any as un+1 by Lemma 5.41.

Case 2. xn ̸= a
Then dn(xn) and dn(a) are odd (here dn is the degree function for Gn), and in any

case Gn still contains edges.
If dn(xn) = 1, then this one edge is acceptable as un+1. Now let dn(xn) ≥ 3 and let

u = {xn, y} be an edge which is not acceptable as un+1.
By removing u, we get thatGn comprises two connected components, one ofwhich

contains xn and the other contains y. For degree reasons, a and y are in the same com-
ponent, and the componentwhich contains xn has only vertices of evendegree.Hence,
each edge with terminus xn and different from u is acceptable as un+1.
5.6 Hamiltonian Line

In an analogous manner to the Euler line we may introduce Hamiltonian lines (or
Hamiltonian paths) and Hamiltonian cycles. They are named after W. R. Hamilton
(1805–1865).

Definition 5.42. A Hamiltonian line in a graph is an edge line that visits each vertex
exactly once. A Hamiltonian cycle is a Hamiltonian line that is a cycle.
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Determining whether such lines or cycles exist in graphs is the Hamiltonian line
problem, which is considered to be a hard problem that can be used in cryptology.

Examples 5.43.
1. The complete graph Kn, n ≥ 3, always has a Hamiltonian cycle. Certainly, if n = 2

then we have a Hamiltonian line.
2. The edge graph of a dodecahedron (see the next chapter on Platonic solids) has a

Hamiltonian cycle. It is indicated in Figure 5.29 by thick edges.

Figure 5.29: The edge graph of a dodecahedron.

Theorem 5.44 (Theorem of Ore). If d(x) + d(y) ≥ n = |V | for all pairs of non-adjacent
vertices x, y of the connected graph G = (V ,E), then G is Hamiltonian, that is, G has a
Hamiltonian cycle.

Proof. We consider cyclic arrangements of the vertices

x1, x2, . . . , xn−1, xn (xn+1 = x1) (Z)

and call a consecutive pair xk , xk+1 a gap, if xk and xk+1 are not adjacent in the graph.
Assume that G does not have a Hamiltonian cycle. Then each cycle arrangement has
at least one gap. Now, let (Z) be a cyclic arrangement with a minimal number of gaps,
and let xk , xk+1 be herein a gap. We claim that then d(xk) + d(xk+1) ≤ n − 1. If d(xk) = 0,
then this is correct because the degree of each vertex is at most n−1. Now, let d(xk) > 0
and xj be a neighbor of xk . Then xk+1 and xj+1 cannot be adjacent because otherwise
the cyclic arrangement

x1, . . . , xk , xj, xj−1, . . . , xk+1, xj+1, . . . , xn (Z’)
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if j > k, respectively

x1 . . . , xj, xk , xk−1, . . . , xj+1, xk+1, . . . , xn (Z”)

if j < k has at least one gap less. Hence, if xk has m neighbors (m ≤ n − 1), then it has
m forbidden adjacencies as a consequence. From this we get d(xk+1) ≤ n − 1 − m and
therefore the statement.

Palmer [24] describes an algorithm for constructing a Hamiltonian cycle which
reflects the arguments in the proof of Ore’s theorem:
1. Take a cycle arrangement of the vertices, ignoring adjacencies in the graph.
2. If the cycle arrangement contains a gap xk, xk+1, perform the following two steps:

(a) Search for an index i such that the four vertices xk , xk+1, xi and xi+1 are all dis-
tinct and such that the graph contains edges from xk to xi and from xi+1 to
xk+1.

(b) Reverse the part of the cycle between xk+1 and xj+1 (inclusive).
Each step increases thenumber of consecutivepairs in the cyclic arrangement that
are adjacent, by one or two pairs (depending on whether xi and xi+1 are already
adjacent). The desired index imust exist, or else the non-adjacent vertices xi and
xi+1 would have a too small total degree.

This algorithm certainly terminates.We close this sectionwith the sufficient condition
by G. A. Dirac (1925–1984).

Theorem 5.45. Let G = (V ,E) be a graph with |V | ≥ 3 and let δ = δ(G) be the minimum
degree. If δ ≥ |V |2 , then G has a Hamiltonian cycle.

Proof. Suppose that the statement is false, and let G be a maximal graph with |V | ≥ 3
and δ ≥ |V |2 which has no Hamiltonian cycle. Since |V | ≥ 3, G cannot be complete. Let
u and v be non-adjacent vertices in G. By the choice of G then G′ = (V ,E ∪ {u, v}) has
a Hamiltonian cycle. Moreover each Hamiltonian cycle of G′ must contain the edge
{u, v}. Thus there is a Hamiltonian line {v1, v2}, . . . , {vk−1, vk} in G from u = v1 to v = vk .

Let S = {vi | {u, vi+1} ∈ E} and T = {vi | {vi, v} ∈ E}. Since vk ∉ S ∪ T, we have
|S∪T| < |V |. Furthermore, |S∩T| = 0, since if S∩T contained somevertex vi, theGwould
have a Hamiltonian cycle {v1, v2}, {v2, v3}, . . . , {vi, vk}, {vk , vk−1}, . . . , {vi+1, v1} contrary to
the assumption, see Figure 5.30.

Hence, we obtain

d(u) + d(v) = |S| + |T| = |S ∪ T| < |V |.

But this contradicts the hypothesis that δ ≥ |V |2 .
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u = v1 v2 vi vi+1 vk−1 vk = vv3

Figure 5.30: Hamiltonian cycle for Dirac’s theorem.

5.7 The Traveling Salesman Problem

In this section we discuss the traveling salesman problem, its connection to Hamil-
tonian cycles, and have a glance at algorithms and applications. One considers the
following situation: A salesman needs to visit a list of cities connected by routes of
certain lengths and asks for the shortest route that connects these cities. As we have
pointed out in the beginning of this chapter, it is customary to model this geographic
data as a graph G with the cities as vertices and edges connecting two cities if there is
a road between these cities. In order to model the lengths of the roads we introduce
weighted graphs.

Definition 5.46. A weighted graph G = (V ,E,w) is a graph (V ,E) together with a func-
tion w:E → ℝ+.

We remark that we interpret the weight of an edge as the length of a road. Of
course, depending on the application, this could also be regarded as the travel time
or costs between the respective cities. Let p = (e1, . . . , en) be a sequence in a weighted
graph G = (V ,E,w). Then we understand that w(p) = ∑ni=1 w(ei) is the weight of p.

With these notions at hand, we can formulate the traveling salesman problem in
a graph-theoretic manner. We just take the list of cities as the vertex set V ; if there is a
road between cities A and Bwe add {A,B} to our edge set E and encode the lengths of
the road as a weight function w:E → ℝ+. Hence, a traveling salesman problem (TSP)
is completey determined by a weighted graph G = (V ,E,w).

Definition 5.47. Let G = (V ,E,w) be a TSP. A solution of the TSP is a sequence

p = ({v1, v2}, {v2, v3}, . . . , {vn−1, vn})
in G with v1 = vn that contains all vertices and that is of minimal length among all
those sequences.

We restrict ourselves to the following kind of TSPs.

Remark 5.48. We remark that what we consider in the following is called a metric,
symmetric TSP in the literature. That is, we assume that the distance from cityA to B is
always the same as from B to A (this yields an undirected graph) and that it is always
longer to take a detour through a city C than to use the direct connection between A
and B (in fact, we assume the Euclidean metric, that is the Euclidean distance).
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For theoretical considerations and for practical computations it is customary to
give an alternative description of the traveling salesman problem in terms of complete
graphs and Hamiltonian cycles. However, we have not found a rigorous treatment of
this equivalence in the literature, so we discuss it in the following.

We first consider a new graph associated to a TSP.

Definition 5.49. Let G = (V ,E,w) be a TSP. We then consider the graph

G′ = (V ,E ∪ E′,w′)
where E′ is the set of edges that completes the graph G and w′ is the weight function
with w′(e) = w(e) for e ∈ E and for an edge e = {u, v} ∈ E′ we set w′(e) = w(p) where p
is any sequence of minimal weight in G that connects u and v.

That is, in G′ we add the necessary edges such that G becomes a complete graph.
Note that these edges are ’artifical’ in the respect that they do not represent real roads.
We then extent the weight function in such a way that a new edge e gets assigned the
minimal length of a sequence of old edges (the actual roads) that connects the start
and end point of e.

We now discuss how to translate between solutions p of a TSP and Hamiltonian
cycles of least weight in the graph G′.
Definition 5.50. Let G = (V ,E,w) be a TSP.
1. For a solution p of the TSP we define a Hamiltonian cycle φ(p) in G′ as follows:

Read p from left to right and replace any subsequence

({v, v1}, {v1, v2}, . . . , {vn−1, vn}, {vn, v′}),
where v1, . . . , vn have already been part of the sequence but v, v′ have not or v has
not and v′ is the end vertex of p, by the edge {v, v′} in E′.

2. For a Hamiltonian cycle h in G′ we define the sequence ψ(h) in G as follows:
Replace any edge {u, u′} ∈ E′ by a sequence p′ = ({u, u1}, {u1, u2}, . . . , {un, u′}) of
least weight.

We remark that in Definition 5.50.1 the edge {v, v′} is indeed in E′ because if the
edge already existed in E, replacing the subsequence ({v, v1}, {v1, v2}, . . . , {vn−1, vn},
{vn, v′}) by the edge {v, v′} would yield a path that is of less weight (metric TSP) but
that still contains all cities because v1, . . . , vn have already been visited before. We
also remark that the choice of p′ in the definition of ψ is not unique and that φ is not
injective.

We observe the following:

Lemma 5.51. Let G = (V ,E,w) be a TSP. For a solution p of the TSP and a Hamiltonian
cycle h of least weight in G′ we have
1. w(p) = w′(φ(p)) and
2. w′(h) = w(ψ(h)).
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Proof. For the first equation we have already seen that the subsequences

({v, v1}, {v1, v2}, . . . , {vn−1, vn}, {vn, v′})
we replace are paths of minimal weight from v to v′. Hence, by definition ofw′({v, v′}),
theHamiltonian cycleφ(p) is of the sameweight as p. For the second equation observe
that the artificial edges have by definition the weight of any sequence of least weight
that connects their vertices.Hence replacing themby sucha sequencedoesnot change
the weight.

We now give our main theorem that shows the equivalence of the approaches.

Theorem 5.52. Let G = (V ,E,w) be a TSP.
1. If p is a solution of the TSP, then φ(p) is a Hamiltonian cycle of least weight in the

associated graph G′.
2. If h is a Hamiltonian cycle in G′ of least weight, then ψ(h) is a solution of the TSP.
Proof.
1. If p is a solution of the TSP, then φ(p) is certainly a Hamiltonian cycle in G′. Now

assume that there is a Hamiltonian cycle h of less weight than φ(p), that is,

w′(h) < w′(φ(p)).
Then by Lemma 5.51 we have

w(ψ(h)) = w(h) < w′(φ(p)) = w(p)
contradicting the minimality of p.

2. On the other hand, let h be a Hamiltonian cycle of least weight, then ψ(h) cer-
tainly visits all cities and has identical start and end point. Now assume that
there is such a sequence p of less weight, that is, w(p) < w(ψ(h)). Then again
by Lemma 5.51 we have

w′(φ(p)) = w(p) < w(ψ(h)) = w′(h)
contradicting the minimality of h.

We illustrate these correspondences in Figure 5.31 that could model the situation
of two islands connected by a bridge (we remark that the arrows donot describe edges,
they just mean possible flows). Note that in the visualization of the graph G′ we will
omit the artificial edges that are not part of φ(p).

An optimal solution of the traveling salesman problem is often out of sight as the
number of possible routes onehas to consider depends overexponentially on thenum-
ber of cities. The characterization with respect to Hamiltonian cycles shows that in a
symmetric TSP in n > 2 cities there are (n − 1)!/2 cycles to consider. Even for eleven
cities there are 1814400 possible cycles. If we now consider the 275 cities in America
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p = ψ(h) h = φ(p)
G: : G′

ψ

φ

Figure 5.31: Example of the graphs G,G′ and the correspondences φ,ψ.
with a population of more than 100000, we already get approx. 1.8 ⋅ 10550 possible
routes. For the reader who knows about complexity classes we mention that the trav-
eling salesmanproblem is NP-hard. Under the assumptionNP ̸=P thismeans that there
is no algorithm that computes every instance of a TSP in polynomial time.

This is why in applications one aims for approximation algorithms with reason-
able running time. Here, one distinguishes between heuristic opening or construction
algorithms and post-optimization algorithms. In the following we will present an ex-
ample for each one of them and give a sample calculation.

Example 5.53 (Nearest neighbor algorithm). As an opening method we present the
nearest neighbor algorithm. Here, one starts with an arbitrary city and then continues
with the nearest unvisited city and so forth. This algorithm may result in arbitrarily
bad solutions. As a sample calculation we consider the cities Chicago (C), Houston
(H), Los Angeles (LA), New York City (NY) and Philadelphia (P), and ask for a short
traffic route connecting all of them.

As a starting point we choose New York City and proceed according to the near-
est neighbour algorithm. We finally find a route of 6262 miles that goes through NY–
P–C–H–LA–NY (see Figure 5.32, distances in miles).

C

P

NY

H

LA

2015

10
83

1547

2778

2713

790

154
5

95

759

162
7

Figure 5.32: Sample calculation for the nearest neighbour algorithm.

We now try to post-optimize this route with the so-called 2-opt algorithm.
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Example 5.54 (2-opt algorithm). As a post-optimization method we present the 2-opt
algorithm. Here, one has to realize the graphG as a Euclidean graph, that is, one takes
the vertices as points with suitable coordinates in the real plane and draw the edges
according to their weight with respect to the Euclidean metric. Now we step-by-step
delete two edges {A,C}, {B,D} that cross each other and replace them by edges {A,B},
{C,D} that do not intersect.

We apply this algorithm to our running example. We first delete the crossing P–C,
LA–NY (seeFigure 5.32), and replace themwith edgesP–LAandC–NY (seeFigure 5.33).
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Figure 5.33: Sample calculation for the 2-opt algorithm (step 1).

Then we replace the new crossing P–LA, H–C by the edges P–H and LA–C. Our algo-
rithm terminates at step 2 because there are no further crossings. We obtain the route
NY–P–H–LA–C–NY with the length of 5992 miles, see Figure 5.34.
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Figure 5.34: Sample calculation for the 2-opt algorithm (step 2).
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In this small example one can in fact apply a brute-force method and give the optimal
solution which indeed is the one we have obtained in Example 5.54 after two steps of
the 2-opt method. In general, the solution found by an iterative application of 2-opt
moves for n cities could be up to (4√n)-times longer than the optimal solution. If 2-opt
moves do not improve the route, there might be more general k-opt moves that do so.
For completeness we finally mention that the worst route in our running example has
the length of 8960 miles and is realized by the route NY–LA–P–C–H–NY.

Apart from the applications of finding shortest routes between cities that we dis-
cussed above, there are many useful real world applications for a TSP, for instance,
in DNA sequencing, the design of microchips and shortest routes between stars in the
context of astronomy. For general reading, more applications and algorithms we refer
the reader to [9].

We once againmention that we restricted ourselves tometric, symmetric traveling
salesman problems. Depending on the application context there are several variants
of the TSP, for instance, the asymmetric TSP where one assumes that the route from A
to B takes longer than from B to A (this yields a directed graph), or the multiple TSP
with more than one salesman. Another variant is to consider transport capacities or
timewindows. Both of these are relevant, e. g., for breakdown and parcel services and
remain an important and lively field of scientific research.

Exercises

1. Show that there are (up to isomorphisms) exactly eleven graphswith four vertices.
2. Draw all sixteen spanning trees of K4.
3. Let δ = δ(G) be the minimum degree of a graph G. Show that G contains a cycle if

δ ≥ 2.
4. How many graphs with n vertices do exist?
5. Let G = (V ,E) be a connected graph. We call an edge e ∈ E a bridge if G′ = (V ,E \
{e}) is non-connected.
Show that:
(a) If e is a bridge then G′ = (V ,E \ {e}) has two connected components.
(b) A graph G = (V ,E) with d(x) even for all x ∈ V does not have a bridge.

6. (a) Let G = (V ,E) be a graph with d(x) ≥ 4 for each x ∈ V . Show that |E| ≥ 2|V |.
(b) Does each graph with n ≥ 2 vertices have at least two vertices with the same

degree?
7. Let Vn be the set of all subsets of {1, 2, . . . , n}, n ≥ 1. Let Gn be the graph with Vn as

the set of vertices and let vertices A,B ∈ Vn be connected by an edge if and only if
A ∩ B = 0. Draw the graph G3.
Is G3 connected or planar?

8. How many edges does the complete bipartite graph Km,n have? Draw the graphs
K1,n, K2,n and K3,3.
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9. Let G be a connected planar graph with n, n ≥ 3, vertices andm edges.
Suppose that G does not contain a triangle, that is, no edge circle of the form

u1 = {x0, x1}, u2 = {x1, x2}, u3 = {x2, x0}

with x0 ̸= x1 ̸= x2 ̸= x0. Show thatm ≤ 2n − 4.
Use this to show that the complete bipartite graph Km,n, 3 ≤ m, n, is not planar.

10. Prove Remark 5.16 in detail.
11. Determine the number of perfect matchings with k edges in the complete graph

K2n and the complete bipartite graph Kn,n.
12. Show that:

(a) The complete graph Kn, n ≥ 3, is a Hamiltonian graph.
(b) The complete bipartite graph Km,n, m, n ≥ 2, has a Hamiltonian cycle if and

only ifm = n.
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6 Spherical Geometry and Platonic Solids

In three-dimensional space, a Platonic solid is a regular, convex polyhedron. It is con-
structed by congruent (identical in shape and size) regular (all angles equal and all
sides equal) polygonal faces with the same number of faces meeting at each vertex.
There are only five solids thatmeet these criteria: the tetrahedronwhichhas four faces,
the cubewhich has six faces, the octahedronwhich has eight faces, the dodecahedron
which has 12 faces and the icosahedron which has 20 faces.

The ancient Greek geometers extensively studied the Platonic solids. They are
namedafter Plato (428–348BC)whowrote about them in thedialogueTimaeus around
360BC. In this dialogue Plato associated each of the four classical elements (earth, air,
water and fire) with one of the Platonic solids.

Euclid (ca. 300BC) completely described the Platonic solids in the Elements. Book
XIII is devoted to their properties. Much of the information by Euclid is probably de-
rived from the work of Theaitetus (415–369 BC) who first described all five Platonic
solids and may have proved that they are the only regular solids.

When Kepler (1571–1630) in the seventeenth century began to study the Solar Sys-
tem, he attempted to relate the five extraterrestrial planets known at that time (Mer-
cury, Venus, Mars, Saturn and Jupiter) to the five Platonic solids. InMysteriumCosmo-
graphicum, published in 1596, Kepler proposed amodel of the Solar System, in which
the five solids were set inside one another and separated by a series of inscribed and
circumscribed spheres.

The purpose of this chapter is to describe and to classify the Platonic solids, that
is, to show that the fivewe havementioned are the only ones. For the proof of this clas-
sification, we use Euler’s formula for planar, connected graphs via the stereographic
projection from the sphere S2 to the extended complex plane. Hence,we take this as an
opportunity to give some principles of spherical geometry of the sphere S2 and show
some beautiful results in this area.

6.1 Stereographic Projection

Before we start with the classification of the Platonic solids, we need as a technical
tool Riemann’s number sphere and the stereographic projection.

B. Riemann (1826–1866) introduced a model of the complex numbers (see [12,
Chapter 10]), which allows a visualization of the point∞. The complex numbers ℂ
here will be identified with the points of the equator plane x3 = 0 of the spaceℝ3. The
complex numbers z = x + iy ∈ ℂ with x, y ∈ ℝ will be mapped onto the unit sphere

S2 = {(x1, x2, x3) ∈ ℝ
3 

3
∑
i=1

x2i = 1} ⊂ ℝ
3

https://doi.org/10.1515/9783110740783-006
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by doing the intersection Z of S2 with the line through the north pole

N =(
0
0
1
) and P =(

x
y
0
) ,

see Figure 6.1.

Figure 6.1: Stereographic projection.

Applying

Z =(
x1
x2
x3
) = λ(

x
y
0
) + (1 − λ)(

0
0
1
) , λ ∈ ℝ, λ > 0,

to the equation x21 + x
2
2 + x

2
3 = 1 of the unit sphere gives λ =

2
x2+y2+1 . This leads to

x1 =
2x

x2 + y2 + 1
=

z + z
zz + 1
,

x2 =
2y

x2 + y2 + 1
=
i(z − z)
zz + 1
,

x3 =
x2 + y2 − 1
x2 + y2 + 1

=
zz − 1
zz + 1
,

and we get the stereographic projection τ fromℂ onto S2 \ {N}. This is a bijection. The
inverse map is given by

x = x1
1 − x3
, y = x2

1 − x3
,

that is,

z = x1 + ix2
1 − x3
.
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By construction, the stereographic projection maps

E = {z ∈ ℂ | |z| < 1} ⊂ ℂ

onto the southern hemisphere and

F = ℂ \ {z ∈ ℂ | |z| ≤ 1} ⊂ ℂ

onto the northern hemisphere.
The points from K = {z ∈ ℂ | |z| = 1} are mapped onto itself, that is, they are fixed

points of τ. Further, as |z| → ∞, the images Z = τ(z) tend to the north pole N . If we
extend ℂ by∞ to be the extended, closed complex plane ℂ̂ := ℂ ∪ {∞} (one-point
compactification), then wemay extend the stereographic projection τ via∞ → N to a
bijective map from ℂ̂ to S2, which we also name by τ. We mention the usual rules
– z +∞ =∞, z ∈ ℂ;
– z ⋅ ∞ =∞, z ∈ ℂ \ {0};
– z
∞ = 0, z ∈ ℂ;

– z
0 =∞, z ∈ ℂ \ {0};

– ∞ +∞ =∞ in ℂ̂.

6.2 Platonic Solids

Recall that in the three-dimensional space ℝ3, a Platonic solid is a regular, convex
polyhedron. It is constructedby congruent regular polygonal faceswith the samenum-
ber of facesmeeting at each vertex, andnone of its faces intersect except at their edges.
There are five Platonic solids whichmeet these criteria: tetrahedron (four faces), cube
(six faces), octahedron (eight faces), dodecahedron (12 faces) and icosahedron (20
faces). Themost important aim in this section is to show that these five Platonic solids
are all one can get. The Platonic solids have been known since antiquity.

The attraction and fascination of the Platonic solids can be seen not only in an-
cient treatises or in more modern publications of, for instance, Pythagoras (570–510
BC), Plato (428–348 BC), Archimedes (287–212 BC), Euclid (ca. 300 BC), Leonardo da
Vinci (1452–1519), Kepler (1571–1630) and Euler (1707–1783), but also in the frequent
treatment in classes at schools and universities.

The ancient Greeks studied the Platonic solids extensively. Some sources credit
Pythagoras (580–500BC) to be familiarwith the tetrahedron, cube anddodecahedron.
The discovery of the octahedron and icosahedron is due to Theaitetos (415–369 BC).
He gave a mathematical description of all five and may have been responsible for the
first known proof that no other convex regular polyhedra exist.

The Platonic solids are prominent in the philosophy of Plato, their namesake. He
wrote about them in his dialogue Timaios (360 BC), in which he associated each of
the five Platonic solids to the five elementary elements of the world (earth, air, water,
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fire and heaven). The dodecahedron, in fact, was in a sense obscurely related by Plato
to the heaven. A formal connection between the dodecahedron and the heaven was
made by Aristotle (384–322 BC).

Euclid completely mathematically described the Platonic solids in the Elements,
the last Book XIII, which is devoted to their properties. Euclid also argues that there
are no further convex regular polyhedra. Much of the information in Book XIII is prob-
ably derived from thework of Theaitetos. Kepler (1571–1630) attempted to relate the five
extraterrestrial planets known at that time to the five Platonic solids. He postulated a
model of the Solar System inwhich the five Platonic solids were set inside one another
and separated by a series of inscribed and circumscribed spheres, see Figure 6.2.1 Ke-
pler proposed that the distance relationship between the six planets known at that
time could be understood in terms of the five Platonic solids enclosed within a sphere
that represented the orbit of Saturn. The six spheres correspond to each of the planets:
Mercury, Venus, Earth, Mars, Jupiter and Saturn.

Figure 6.2: Kepler’s Platonic solid model of the Solar System,
from Mysterium Cosmographicum (1596).

The solids were ordered with the innermost being the octahedron, followed by the
icosahedron, dodecahedron, tetrahedron and cube, thereby dictating the structure of
the solar system and the distance relationship between the planets by the Platonic
solids. In the end, after some discrepancies found by Brahe (1546–1601) between the
reality and the model, Kepler’s original idea had to be abandoned.

We now describe the five known Platonic solids, which are the cube, tetrahedron,
octahedron, icosahedron and dodecahedron, before we show that there are exactly
five Platonic solids.

Definition 6.1. As in the plane ℝ2, a figure F in the space ℝ3 is just a subset of ℝ3.
A symmetry of F is an isometry α of ℝ3 with the property that α(F) = F. The set of all
symmetries of F forms a group which we again denote by Sym(F).

1 The figure is fromWikipedia, see https://en.wikipedia.org/wiki/Johannes_Kepler
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Recall that α = τ∘ f with τ a translation and f a linear isometry; α is called oriented
if det(A) = 1 and non-oriented if det(A) = −1, where A ∈ GL(3,ℝ) is the matrix which
corresponds to f (with respect to an orthonormal basis of ℝ3).

6.2.1 Cube (C)

The cube (or hexahedron) is a three-dimensional regular solid object bounded by six
congruent square faces, with three meeting at each vertex. It has 6 faces, 12 edges and
8 vertices, see Figure 6.3.

Figure 6.3: Cube, six faces.

Wenowconsider the symmetries of the cube. First, there is the identity. Then, the cube
contains three different types of symmetry axes for rotations:
– three 4-fold axes, each of which passes through the centers of opposite faces,
– four 3-fold axes, each of which passes through two opposite vertices,
– six 2-fold axes, each of which passes through the midpoint of two opposite edges.

Hence, altogether, we have 24 oriented symmetries. Certainly, we have a reflection,
for instance, at a plane through four vertices, given by the opposite diagonals of two
opposite faces. Hence, altogether |Sym(C)| = 48.

6.2.2 Tetrahedron (T )

A tetrahedron is a three-dimensional regular solid object bounded by four regular tri-
angular faces with three meeting at each vertex. It has 4 faces, 6 edges and 4 vertices,
see Figure 6.4.

Figure 6.4: Tetrahedron, four faces.
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We now consider the symmetries of the tetrahedron. First, there is the identity. The
tetrahedron has only two different types of symmetry axes for rotations:
– four 3-fold axes, each of which passes through one vertex and the center of the

opposite face,
– three 2-fold axes, each of which passes through midpoints of two edges.

Hence, altogether, we have 12 oriented symmetries.

The latter three 2-fold axes give rise to three rotation-reflection planes. Hence,
|Sym(T)| = 24.

6.2.3 Octahedron (O)

An octahedron is a three-dimensional regular solid object bounded by eight regular
triangular faceswith fourmeeting at each vertex. It has 8 faces, 12 edges and 6 vertices,
see Figure 6.5.

Figure 6.5: Octahedron, eight faces.

We now consider the symmetries of the octahedron. First, there is the identity. The
octahedron has three different types of axes for rotations:
– three 4-fold axes, each of which passes through two opposite vertices,
– four 3-fold axes, each of which passes through the centers of two opposite faces,

and
– six 2-fold axes, each ofwhich passes through themidpoints of two opposite edges.

Hence altogether we have 24 oriented symmetries.
Certainly, we have a reflection, for instance, at a plane through any four vertices.
Hence, we get |Sym(O)| = 48. The octahedron is dual to the cube in the following

sense.
Starting with any regular polyhedron, its dual can be constructed in the following

manner:
(1) Place a point in the center of each face of the original polyhedron.
(2) Connect each new point with the new points of its neighboring faces.
(3) Erase the original polyhedron, see Figures 6.6 and 6.7.
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Figure 6.6: Octahedron in a cube.

This gives in particular Sym(C) ≅ Sym(O). We remark that the tetrahedron is dual to
itself.

Figure 6.7: Tetrahedron in tetrahedron.

6.2.4 Icosahedron (I)

An icosahedron is a three-dimensional regular solid object bounded by 20 regular tri-
angular faceswith fivemeeting at each vertex. It has 20 faces, 30 edges and 12 vertices,
see Figure 6.8.

Figure 6.8: Icosahedron, 20 faces.

We now consider the symmetries of the icosahedron.
First, there is the identity. The icosahedron has three different types of axes for

rotations:
– ten 3-fold axes, each of which passes through the centers of two opposite faces,
– six 5-fold axes, each of which passes through two opposite vertices, and
– fifteen 2-fold axes, each of which passes through the midpoints of two opposite

edges.

Hence altogether we have 60 oriented symmetries.
The 2-fold axes give rise to rotation-reflection planes. Hence, |Sym(I)| = 120.
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6.2.5 Dodecahedron (D)

The dodecahedron is a three-dimensional regular solid object bounded by 12 regular
pentagon faces with three meeting at each vertex. It has 12 faces, 30 edges and 20
vertices, see Figure 6.9.

Figure 6.9: Dodecahedron, 12 faces.

We now consider the symmetries of the dodecahedron.
First, there is the identity. The dodecahedron has three types of axes for rotations:

– ten 3-fold axes, each of which passes through two opposite vertices,
– six 5-fold axes, each of which passes through the center of two opposite faces, and
– fifteen 2-fold axes, each of which passes through the midpoints of two opposite

edges.

Hence altogether we have 60 oriented symmetries.
Again, the 2-fold axes give rise to rotation-reflection planes. Hence, |Sym(D)| =

120. The dodecahedron is dual to the icosahedron, see Figure 6.10.

Figure 6.10: Dodecahedron in icosahedron.

This gives in particular Sym(D) ≅ Sym(I).
In Section 6.4 we will classify the Platonic solids and show that we have exactly

those five solids just described.
Also we will give presentations of the symmetry groups by generators and rela-

tions.
For both proposes we need some geometry on the sphere S2, the spherical geom-

etry on S2.
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6.3 The Spherical Geometry of the Sphere S2

In this section, spherical geometry is the geometry of the two-dimensional surface

S2 = {v⃗ ∈ ℝ3 | ‖v⃗‖ = 1} ⊂ ℝ3,

where v⃗ = (v1, v2, v3) and ‖v⃗‖ = √v21 + v22 + v
2
3 as usual.

It is an example of a non-Euclidean geometry, in fact, a non-neutral geometry. In
planar geometry, the basic concepts are points and lines. On the sphere S2 points are
defined in the usual sense, and the lines are the great circles.

Definition 6.2.
(1) A point is a vertex v⃗ ∈ ℝ3 with ‖v⃗‖ = 1, that is, the intersection of S2 with a

1-dimensional half-subspace of ℝ3, that is, the intersection of S2 with a half-line
starting at the center O = 0⃗.

(2) A line is the intersection of S2 with a 2-dimensional subspace of ℝ3.

In this sense, we consider points P on S2 as vectors v⃗ = →OP ∈ ℝ3 with O = 0⃗ the
center of the ball B = {x⃗ | ‖x‖ ≤ 1}; and a great circle on S2 determines a plane through
O in ℝ3.

Remarks 6.3.
(1) All lines have finite length, and the lengths are all equal. Since the circumference

of the unit circle is 2π, we define the length of a line as 2π.
(2) Other geometric concepts are defined as in planar geometry butwith straight lines

replaced by great circles. The spherical geometry has all the important axiomatic
properties of the planar geometry inℝ2 except for the parallel axiomwhich holds
in ℝ2: If g is a line in ℝ2 and P ∈ ℝ2 a point with P ∉ g, then there exists exactly
one line h in ℝ2 with g ∩ h = 0, and the incidence axiom 1: For any two distinct
points P and Q in ℝ2 there exists a unique line through P and Q.
In spherical geometry any two lines (great circles) have a nonempty intersection,
and there are infinitelymany lines through twodistinct pointswhichare antipodal
to each other. Recall that the antipodal point of a point on S2 is the point which is
diametrically opposite to it.

(3) A line segment between two non-antipodal points on S2 is a segment between
these points on the great circle through these points.
Each spherical figure can be decomposed into spherical triangles. Hence, it is of-
ten enough just to consider spherical triangles.

Definition 6.4.
(1) Let P,Q ∈ S2. The (spherical) distance d(P,Q) is given by the angle between the

vectors →OP and →OQ, given in radian measure, see Figure 6.11.
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Figure 6.11: Spherical distance.

(2) The (spherical) angle between two great circles (lines) on S2 is the dihedral angle
between the planes in ℝ3 determined by the great circles.
This is the Euclidean angle formed by the two tangents on the great circles in a
cusp.

Remark 6.5. This defines also the angle between two line segments of S2.

Theorem 6.6. Let P,Q ∈ S2. Then

cos(d(P,Q)) = ⟨→OP,→OQ⟩

where ⟨→OP,→OQ⟩ is the canonical scalar product of →OP and →OQ.

Proof. Let k be the great circle in S2 through P and Q, see Figure 6.12.

Figure 6.12: Great circle through P and Q.

By the Cauchy–Schwarz inequality (see [12, Chapter 14]), we get

cos(Θ) = cos(d(P,Q)) = ⟨→OP,→OQ⟩

because ‖→OP‖ = ‖→OQ‖ = 1.

Definition 6.7. A spherical move is the restriction L : S2 → S2 of a linear isometry
f : ℝ3 → ℝ3, that is, L = f |S2 .

We considered linear isometries f : ℝ3 → ℝ3 in Chapter 2 in detail and classified
them. From the definition of the distance and the angle in S2, we get that spherical
moves are length- and angle-preserving. From this definition it is also clear what we
meanby a reflection at a spherical line (great circle) in S2 and a rotation around a point
of S2. Moreover, we may distinguish between oriented and non-oriented moves.
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Theorem 6.8. The area F of a spherical triangle with interior angles α, β, γ is given as
F = α + β + γ − π.

Proof. The area of the unit sphere S2 is 4π = 2 ⋅ 2π. Also the area of a spherical bigon
with interior angle α is 2α. To each angle of the spherical triangle there is a pair of
spherical bigons because two great circles cut themselves in two points, that is, they
form two bigons, one ahead and one behind.

The great circles, which define the triangle PQR, induce a triangulation of S2 with
8 triangles, four in each hemisphere, see Figure 6.13.

P
Q

R

P′Q′

R′

Figure 6.13: Induced triangulation.

The triangles PQR and P′Q′R′ have the same area.
We have pairs of spherical bigons with angular apertures α, β, γ, hence, altogether

6 bigons. These overlap the triangle PQR three times. They also overlap the opposite
triangle P′Q′R′ three times. Otherwise the bigons overlap the whole sphere.

The area of the sphere is therefore the sum of the areas of all bigons reduced by
the four extra triangles that form the overlappings. It follows that

4π = 2 ⋅ 2α + 2 ⋅ 2β + 2 ⋅ 2γ − 4F,

where F is the area of the spherical triangle.
Altogether F = α + β + γ − π.

Corollary 6.9. The sum of the interior angles of a spherical triangle is bigger than π.

Proof. This follows from Theorem 6.8 because F > 0.

Corollary 6.10. Spherical moves are area-preserving.

Proof. If P,Q ∈ S2, then we write PQ for the spherical line segment from P to Q. Let
L : S2 → S2 be a spherical move. Let Δ = ABC be a spherical triangle and Δ′ = A′B′C′

with A′ = L(A), B′ = L(B), C′ = L(C).
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Then Δ′ = L(Δ) and

∢(AB,AC) = ∢(A′B′,A′C′), ∢(BA,BC) = ∢(B′A′,B′C′),

∢(CA,CB) = ∢(C′A′,C′B′),

because L is length- and angle-preserving.
By Theorem 6.8, we get that Δ and Δ′ have the same area.
Since all polygons may be decomposed into triangles, we get the statement.

6.4 Classification of the Platonic Solids

The key here is the translation of Euler’s formula for planar, connected graphs to an
Euler formula for Platonic solids. For this we give two proofs, one which uses the
spherical geometry for S2 and one more general proof for convex polyhedra in ℝ3.

Definition 6.11. A polyhedron P in ℝ3 is a figure in the Euclidean space ℝ3 which is
bounded by a finite set of faces, and these faces are bounded by line segments as
edges such that none of its faces intersect except at their edges. The intersections of
the edges are the vertices of P.

A polyhedron P is convex if for any two points within P there is a line segment
within P between these two points.

Theorem 6.12. Let P be a convex polyhedron with n vertices, m edges and f faces. Then

n −m + f = 2.

Proof. We describe the convex polyhedron as a planar, connected graph G in ℝ2 with
n vertices,m edges and f − 1 bounded faces.

Thiswe do in the followingmanner.We remove one face from the polyhedron, and
thenwepull it straight so, that the edges donot overlap. The vertices of the polyhedron
correspond to the vertices of the graph, and the edges of the polyhedron correspond
to the edge of the graph. The face, removed from P, corresponds to the unbounded
(external) face, and the other faces of the polyhedron correspond to the bounded faces
of the graph.

By Theorem 5.28 (Euler’s formula), we get

n −m + f = 2

as stated.

We now give a different proof for Platonic solids which also gives some insight
into their symmetry groups.

We now give again a definition for Platonic solids (in a more concrete manner).
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Definition 6.13. A Platonic solid is a convex polyhedron whose faces are congruent
regular polygons with the same number of faces meeting at each vertex.

Hence, the combinatorial properties are described as follows.
A convex polyhedron is a Platonic solid if and only if

(1) all its faces are congruent regular polygons and
(2) the same number of faces meet at each of its vertices.

The Platonic solids all posses three concentric spheres:
– the circumscribed sphere that passes through all the vertices,
– the midsphere that is tangent to each edge at the midpoint of the edge, and
– the inscribed sphere that is tangent to each face at the center of the face.

Important for us is the circumscribed sphere, its radius is called the circumradius. We
now give a direct proof of Theorem 6.12 for Platonic solids.

Theorem 6.14. Let P be a Platonic solid with n vertices, m edges and f faces. Then

n −m + f = 2.

Proof. We project P onto its circumscribed sphere, starting from its center. We may
assume,without loss of generality, that its circumradius is 1. The image of P on S2 (this
is now the circumscribed sphere) is a tessellation of S2 by spherical faces bounded by
spherical line segments. We choose the midpoint of one of these faces as the north
pole of S2. Then we apply the stereographic projection to this image of P and project it
into the Euclidean plane. The image now is a planar, connected graphwhose vertices,
edges and faces correspond exactly to the vertices, edges and faces, respectively, of the
tessellation. The unbounded face of the graph corresponds here to the spherical face
whose midpoint is the north pole of S2. Nowwemay apply Euler’s formula as given in
Theorem 5.28.

Theorem 6.15. There are exactly five Platonic solids: cube, tetrahedron, octahedron,
icosahedron and dodecahedron.

Proof. Certainly, thementioned solids arePlatonic solids in the sense of thedefinition.
Now let P be a Platonic solid. Let p be the number of vertices (which is also the

number of edges) of one face, and let q be the number of edges at one vertex.
Recall that n,m, f denote the number of vertices, edges, faces, respectively, of the

Platonic solid.
If we sumup over all faces, thenwe get p⋅f edges. Here each edge is counted twice.

Hence, p ⋅ f = 2m.
If we sum up over all vertices then we get q ⋅ n edges. Here each vertex is counted

twice. Hence, qn = 2m.
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From Theorem 6.14 we get therefore

1
p
+
1
q
=
1
2
+

1
m
.

If p, q ≥ 3, then this equation has exactly five solutions (p, q) which describe Platonic
solids. These are

(q, p) = (3, 3), (3, 4), (3, 5), (4, 3), (5, 3).

If (q, p) = (3, 3), we have the tetrahedron with (n,m, f ) = (4, 6, 4). If (q, p) = (3, 4),
we have the cube with (n,m, f ) = (8, 12, 6). If (q, p) = (4, 3), we have the octa-
hedron with (n,m, f ) = (6, 12, 8). If (q, p) = (3, 5), we have the icosahedron with
(n,m, f ) = (12, 30, 20). Finally, if (q, p) = (5, 3), we have the dodecahedron with
(n,m, f ) = (20, 30, 12).

We now give a group-theoretical description of the symmetry groups of the five
platonic solids.

We remark that dual Platonic solids have isomorphic symmetry groups. Hence we
get three non-isomorphic group presentations. The faces of the Platonic solids are reg-
ular polygons in the planeℝ2. We described the symmetry groups of regular polygons
in Chapter 4 and showed that these are dihedral groups.

With respect to the action of the dihedral groups on a planar regular polygon, a
regular k-gon gets decomposed into 2k triangles. We now come back to the Platonic
solids.

Let P be a Platonic solid. As in the proof of Theorem 6.14, we project P, starting
from its center, onto its circumscribed sphere. Without loss of generality, we may as-
sume that this is the sphere S2.

The image of P gives a regular spherical tessellation of S2 by regular spherical
polygons which are the image of the faces of P. We remark that a regular spherical
tessellation S2 is analogously defined as in the plane ℝ2. A regular spherical tessel-
lation of S2 is a division of S2 into non-overlapping congruent regular spherical poly-
gons.

We fix one of these regular spherical polygons, and in this one we label one of the
spherical triangles (these triangles are images of the Euclidean triangles of the face of
P as described above).

Let Δ be the labeled spherical triangle. Then the symmetry group of the regular
spherical tessellation is generated by the reflections at the edges of Δ, and it is isomor-
phic to the symmetry groups Sym(P) of the Platonic solid P. Hence, we get for Sym(P)
a presentation of the form

Sym(P) = ⟨α, β, γ | α2 = β2 = γ2 = (β ∘ γ)p = (γ ∘ α)q = (α ∘ β)r = 1⟩
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with 2 ≤ p, q, r, 1
p +

1
q +

1
r > 1 and at most one of p, q, r equal to 2. The proof and the

arguments are exactly as in the case of a regular tessellation of the Euclidean planeℝ2

using the Poincaré method. Also, as in the case of Euclidean plane ℝ2, the subgroup
Sym+(P) of the oriented symmetries then is the triangle group

Sym+(P) = ⟨x, y | xp = yq = (x ∘ y)r = 1⟩

with x = β ∘ γ and y = γ ∘ α.
We know that x and y are rotations. Whenwe described the single Platonic solids,

we always determined the orders of the rotations and the orders of the symmetry
groups.

Hence, we get the following.

Theorem 6.16.
(1) Let P be a tetrahedron. Then

Sym(P) = ⟨α, β, γ | α2 = β2 = γ2 = (β ∘ γ)2 = (γ ∘ α)3 = (α ∘ β)3 = 1⟩

and

Sym+(P) = ⟨x, y | x2 = y3 = (x ∘ y)3 = 1⟩.

Further, |Sym(P)| = 24 and |Sym+(P)| = 12.
(2) Let P be a cube or an octahedron. Then

Sym(P) = ⟨α, β, γ | α2 = β2 = γ2 = (β ∘ γ)2 = (γ ∘ α)3 = (α ∘ β)4 = 1⟩

and

Sym+(P) = ⟨x, y | x2 = y3 = (x ∘ y)4 = 1⟩.

Further, |Sym(P)| = 48 and |Sym+(P)| = 24.
(3) Let P be an icosahedron or dodecahedron. Then

Sym(P) = ⟨α, β, γ | α2 = β2 = γ2 = (β ∘ γ)2 = (γ ∘ α)3 = (α ∘ β)5 = 1⟩

and

Sym+(P) = ⟨x, y | x2 = y3 = (x ∘ y)5 = 1⟩.

Further, |Sym(P)| = 120 and |Sym+(P)| = 60.
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Remarks 6.17.
(1) With the help of a computer algebra system like GAP it is easy to write down in

each case a group table (or to do this by hand). Comparing these tables with those
of the alternating groupsA4 andA5, and the symmetric group S4 (see [12, Chapter 8
and the respective exercise]), one gets:

Theorem 6.18.
(a) ⟨x, y | x2 = y3 = (x ∘ y)3 = 1⟩ ≅ A4,
(b) ⟨x, y | x2 = y3 = (x ∘ y)4 = 1⟩ ≅ S4,
(c) ⟨x, y | x2 = y3 = (x ∘ y)5 = 1⟩ ≅ A5.

(2) From the definition of the spherical moves, we also get that the groups A4, S4 and
A5 may be realized as subgroups of the special orthogonal group SO(3) = O+(3).
We also may realize the dihedral group Dn = ⟨x, y | x2 = y2 = (x ∘ y)n = 1⟩, n ≥ 2,
as a subgroup of SO(3).
We take a spherical triangle Δ on S2with spherical sides a, b, cmeetingwith angles
π
2 ,

π
2 ,

π
n . We get such a triangle if we choose one side on the equator and the other

two sides orthogonal to the first one and meeting at the north pole with angle π
n .

Let G be the group generated by the reflections at the sides a, b, c. It is clear that
then g(Δ), g ∈ G, provides a tessellation of S2. Analogously as in the Euclidean
case, we get a presentation

G = ⟨α, β, γ | α2 = β2 = γ2 = (β ∘ γ)2 = (γ ∘ α)2 = (α ∘ β)n = 1⟩,

and G+ = G ∩ SO(3) ≅ Dn, n ≥ 2.
Certainly, all finite cyclic groups can be realized as subgroups of SO(3).

Remark 6.19. In Chapter 8 we show the following classification.

Theorem 6.20. Let G be a finite subgroup of SO(3). ThenG is isomorphic to a finite cyclic
group, a dihedral group Dn, n ≥ 2, the alternating group A4, the symmetric group S4 or
the alternating group A5.

Exercises

1. Show that Platonic solids, considered as graphs, are Hamiltonian. Are they also
Eulerian?

2. Given the ellipse

CS = {(x, y) ∈ ℝ2

x2

16
+
y2

4
= 1}.

Describe the image of CS in S2 under the stereographic projection.
(Hint: Write CS parametrically as (x, y) = (4 cos(Θ), 2 sin(Θ)).)
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3. Given a spherical triangle as in Figure 6.14.

P α R

Q

Figure 6.14: Spherical triangle.

Show the spherical law of cosines, namely that

cos(d(Q,R)) = cos(d(P,Q)) ⋅ cos(d(P,R)) + sin(d(P,Q)) ⋅ sin(d(P,R)) ⋅ cos(α).

Conclude from this the spherical theorem of Pythagoras, namely that

cos(d(Q,R)) = cos(d(P,Q)) ⋅ cos(d(P,R)) for α = π
2
.

(Hint: Ifα ≡ 0 mod 2π orα ≡ π mod 2π, then the spherical lawof cosines follows
from the trigonometric addition formula for cosine. If α ̸≡ 0 mod 2π or α ̸≡ π
mod 2π, then the vectors →QR, →PQ and →PR are linearly independent, and we may
argue as for the cosine rule in ℝ3 as given in [12].)

4. Deduce a spherical law of sines from the spherical law of cosines.
5. Show that the angle sum of a spherical triangle is greater than π and less than 3π.
6. Show that there is an upper bound for the area of a spherical triangle.
7. Prove Theorem 6.18 in detail. Realize the groups ⟨x, y | x2 = y3 = (x ∘ y)3 = 1⟩,
⟨x, y | x2 = y3 = (x ∘ y)4 = 1⟩ and ⟨x, y | x2 = y3 = (x ∘ y)5 = 1⟩ as groups of
permutations.

8. Show that:
(a) S4 contains the Klein four group as a normal subgroup.
(b) If N ⊲ A5, then N = {1} or N = A5.

9. Determine (eventually with help of a computer algebra system) the subgroups of
A4, S4 and A5.

10. If we just cancel the condition that at each vertex the same number of faces meet
in Definition 6.13, then there are five additional solids which are bounded by con-
gruent equilateral triangles, see Figure 6.15.
Find these solids by a suitable modification of Theorem 6.15.
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Figure 6.15: Five additional solids.
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7 Linear Fractional Transformation and Planar
Hyperbolic Geometry

As we saw in Chapter 1, given a neutral geometry, there are only two possibilities for
the parallel postulate. These are the Euclidean parallel postulate, or EPP, which states
that given a line ℓ and a point P ∉ ℓ there exists a unique parallel to ℓ through point
P and the hyperbolic parallel postulate, or HPP, which states that given a line ℓ and a
point P ∉ ℓ there exist more than one parallel to ℓ through point P. In the latter case
we saw that then there are infinitely many parallels through P. Neutral geometry with
EPP is standardEuclideangeometrywhile neutral geometrywith theHPP ishyperbolic
geometry. Hyperbolic geometrywas introduced in the early part of the nineteenth cen-
tury by C. F. Gauss (1777–1855), N. I. Lobachevsky (1792–1856) and J. Bolyai (1802–1860)
all working independently. The discovery of hyperbolic geometry was a major step in
the development of mathematics since so much work has gone into trying to prove
the uniqueness of Euclidean geometry, that is, proving that the EPP follows from the
other Euclidean axioms.

The main reason for this chapter is to introduce a model for a planar hyperbolic
geometry.

As introduced in Chapter 5, let ℂ̂ = ℂ ∪ {∞} be the one-point compactification
of the complex numbers ℂ, realized in the Gaussian plane. We repeat the rules for
calculations with∞; these are
– z +∞ =∞, z ∈ ℂ;
– ∞ +∞ =∞;
– z ⋅ ∞ =∞, z ∈ ℂ∗ = ℂ \ {0};
– z
∞ = 0, z ∈ ℂ; and

– z
0 =∞, z ∈ ℂ

∗.

Terms as 0 ⋅ ∞, 0
0 ,∞ −∞ and ∞∞ are not defined.

7.1 Linear Fractional Transformations

Definition 7.1. A linear fractional transformation (LFT) is a map f : ℂ̂ → ℂ̂, z → az+b
cz+d

with a, b, c, d ∈ ℂ, ad − bc ̸= 0.

Proposition 7.2. If ad − bc = 0, then f is a constant map.

Proof. Let ad − bc = 0. Since f is not defined for a = b = c = d = 0, at least one of
a, b, c, and d is not zero.

If c ̸= 0, then we may rewrite f as f (z) = bc−ad
c2 (z +

d
c )
−1 + a

c , that is, f (z) =
a
c . Now

let c = 0. Then a = 0 or d = 0.
If a = d = 0, then b ̸= 0 and f (z) =∞.

https://doi.org/10.1515/9783110740783-007

 EBSCOhost - printed on 2/10/2023 4:13 PM via . All use subject to https://www.ebsco.com/terms-of-use

https://doi.org/\global \c@doi \c@chapter \relax \global \advance \c@doi \c@parttext \relax 10.1515/9783110740783-000


178 | 7 Linear Fractional Transformation and Planar Hyperbolic Geometry

If a = 0 and d ̸= 0, then f (z) = b
d .

If d = 0 and a ̸= 0, then f (z) =∞.

The LFTs form a group Aut(ℂ̂) of bijective maps from ℂ̂ to ℂ̂with the composition
as operation.

Remark 7.3. We remark that in general an automorphism of ℂ̂ is defined to be amero-
morphic bijection f : ℂ̂→ ℂ̂. In fact, an automorphism in this general sense is indeed
an LFT f : ℂ̂ → ℂ̂ (see [1] or [16] for this and also for the discussion on meromorphic
functions).

If f (z) = az+b
cz+d and g(z) = αz+β

γz+δ are LFTs, then f
−1(z) = dz−b

−cz+a and

g ∘ f (z) = (αa + βc)z + (αb + βd)
(γa + δc)z + (γb + δd)

. (7.1)

The coefficients of g ∘ f arise from (7.1) by the multiplications of the matrices ( α β
γ δ ) and

( a b
c d ) corresponding to g and f , respectively.

Each matrix ( a b
c d ) ∈ GL(2,ℂ) is assigned to the LFT f (z) = az+b

cz+d , and we have a
homomorphism φ : GL(2,ℂ) → Aut(ℂ̂), that is, a map φ : GL(2,ℂ) → Aut(ℂ̂) with
φ(AB) = φ(A) ∘ φ(B) where A,B ∈ GL(2,ℂ).

We define

ker(φ) = {(a b
c d
) ∈ GL(2,ℂ)

 φ((
a b
c d
)) = idℂ̂} .

Let az+b
cz+d = z for all z ∈ ℂ̂. Then cz

2 + (d − a)z = b for all z ∈ ℂ̂. Thus, necessarily,
b = c = 0 and a = d, that is,

ker(φ) = {(a 0
0 a
)
 a ∈ ℂ \ {0}} .

We consider some special LFTs. Let z ∈ ℂ̂. Themap f (z) is a homothety if f (z) = az,
a ∈ ℝ \ {0}; a rotation if f (z) = cz, c ∈ ℂ, |c| = 1; a translation if f (z) = z + b, b ∈ ℂ,
the inversion if f (z) = 1

z ; and a spiral similarity, if f (z) = az, a ∈ ℂ \ ℝ. We call these
elementary LFTs.

Theorem 7.4. Every LFT is a composition of elementary ones.

We note that this theorem is the analog of the classification of planar Euclidean
isometries and the fact that any planar Euclidean isometry is the product of three or
fewer reflections (see Chapters 3 and 4).
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Proof. This is clear for c = 0. Now, let c ̸= 0. Then we consider the chain

z → z + d
c
→ (z + d

c
)
−1
→

bc − ad
c2
(z + d

c
)
−1

→
bc − ad

c2
(z + d

c
)
−1
+
a
c
=
az + b
cz + d
= f (z).

Corollary 7.5. An LFT is angle-preserving and oriented, that is, preserves oriented an-
gles between curves.

Recall that the angle between two curves is the angle subtended by tangent lines
where the curves intersect. Here, as usual, a curve is defined by a continuous function
γ : I → ℂ from an interval I ⊂ ℝ (see [12, Chapter 12] for this type of functions), and
we call γ(I) a curve.

Proof. Weneed to prove this only for the elementary LFTs. But for the elementary LFTs
the statement is clear.

Theorem 7.6. An LFT takes lines or circles in ℂ onto lines or circles.

Here we agree that each (Euclidean) line always contains∞.

Proof. Circles and lines satisfy exactly the equations

azz + bz + bz + c = 0 (7.2)

with a, c ∈ ℝ, b ∈ ℂ, and bb−ac > 0. It is enough to prove this for the elementary LFTs.
The statement is clear for homotheties, rotations, translations and spiral similarities.
We now consider the inversion z → 1

z = z
′. Then equation (7.2) becomes

cz′z′ + bz′ + bz′ + a = 0.

Remark 7.7. The lines and circles are the images of the circles on S2 under the stereo-
graphic projection (see Chapter 5).

Definition 7.8. Let f (z) = az+b
cz+d be an LFT. An element z0 ∈ ℂ̂ is called a fixed point of f

if f (z0) = z0.

Lemma 7.9. If f (z) = az+b
cz+d is an LFT which is unequal to idℂ̂, then f has exactly one or

two fixed points.

Proof. Let first c = 0. If a
d = 1, then necessarily a = d = ±1 because ad = 1, and then∞

is the only fixed point. If a
d ̸= 1, then∞ and z = b

d−a are two fixed points.
Now let c ̸= 0. Then

z = a − d
2c
±

1
2c
√(a + d)2 − 4
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holds for a fixed point of f , and f has one fixed point if (a+d)2 = 4 and two fixed points
if (a + d)2 ̸= 4.

Theorem 7.10. An LFT is uniquely determined by its images at three distinct points.

Proof. Let f , g be two LFTs with f (zi) = g(zi), i = 1, 2, 3.
Then g−1 ∘ f has three fixed points if z1, z2, z3 are pairwise distinct, which means

then that g−1 ∘ f = idℂ̂.

Theorem 7.11. Let f , g be two LFTs with f ̸= idℂ̂ ̸= g. We have f ∘ g = g ∘ f if and only if
f and g have the same fixed points or f 2 = g2 = (f ∘ g)2 = idℂ̂.

Proof. The proof follows from a simple calculation.

Theorem 7.12. Let G be a finite subgroup of Aut(ℂ̂). Then one of the following cases
occur:
(1) G is finite cyclic of order m ≥ 1.
(2) G = ⟨f , g | f 2 = g2 = (f ∘g)n = 1⟩, n ≥ 2, that is, G is isomorphic to the dihedral group

Dn, n ≥ 2 (here D2 is the Klein four group).
(3) G = ⟨f , g | f 2 = g3 = (f ∘g)3 = 1⟩, that is, G is isomorphic to the alternating group A4.
(4) G = ⟨f , g | f 2 = g3 = (f ∘ g)4 = 1⟩, that is, G is isomorphic to the symmetric group S4.
(5) G = ⟨f , g | f 2 = g3 = (f ∘g)5 = 1⟩, that is, G is isomorphic to the alternating group A5.

Proof. Let G be a finite subgroup of Aut(ℂ̂). Let f ∈ G, f ̸= idℂ̂. Then f has two distinct
fixed points. This can be seen as follows. It is an easy calculation that there exists an
LFT g such that g ∘ f ∘ g−1(z) = az+b

d , and f has two fixed points if and only if g ∘ f ∘ g−1

has two fixed points. Now assume that f has only one fixed point. Then necessarily
a = d = ±1 (see proof of Lemma 7.9), but this implies that f has infinite order which
contradicts the fact that f ∈ G. So f has two fixed points.

We say that v ∈ ℂ̂ is a vertex if v is fixed by some g ∈ G, g ̸= idℂ̂. We denote the set
of vertices by V . Now consider the number |E| of elements of the finite set

E = {(g, v) | g ∈ G, g ̸= idℂ̂, v ∈ V , g(v) = v}.

As seen before, g fixes exactly two vertices, and we have |E| = 2(|G| − 1).
Let Gv = {g ∈ G | g(v) = v} be the stabilizer of a vertex v.
Then we also have

|E| = ∑
v∈V
(|Gv| − 1).

The set V is portioned by G into disjoint orbits V1,V2, . . . ,Vs. Recall that the orbit G(v)
of v ∈ V is the subset of V defined by G(v) = {g(v) ∈ V | g ∈ G}.
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As the stabilizer of each v in Vj has the same number, say nj, of elements, we have

|E| =
s
∑
j=1
∑
v∈Vj

(|Gv| − 1) =
s
∑
j=1
|Vj|(nj − 1).

Finally, each orbit G(v) is in a 1–1 correspondence with the class of cosets gGv, g ∈ G,
so for v in Vj we have

|Vj| =
|G|
|Gv|
=
|G|
nj
.

Eliminating |Vj| we obtain

2(1 − 1
|G|
) =

s
∑
j=1
(1 − 1

nj
). (7.3)

We shall exclude the trivial group, so |G| ≥ 2 and 1 ≤ 2(1− 1
|G| ) < 2. By definition, nj ≥ 2,

so

1
2
s ≤

s
∑
j=1
(1 − 1

nj
) < s.

These inequalities, together with (7.3), show that s = 2 or s = 3.
Case 1. s = 2.
In this case (7.3) becomes

2 = |G|
n1
+
|G|
n2
,

and hence

|G| = n1 = n2, |V1| = |V2| = 1

because |nj| ≤ G.
In this case there are only two vertices and each is fixed by every element of G. By

conjugation (as above), we may take the vertices to be 0 and∞, and G is then a finite,
cyclic group of rotations.

Case 2. s = 3.
In this case (7.3) becomes

1
n1
+

1
n2
+

1
n3
= 1 + 2
|G|
,
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and we may assume that n1 ≤ n2 ≤ n3. Clearly, n1 ≥ 3 leads to a contradiction, thus
n1 = 2 and

1
n2
+

1
n3
=
1
2
+

2
|G|
.

Now necessarily n2 = 2 or 3.
The case n2 = 2 leads to

(|G|, n1, n2, n3) = (2n, 2, 2, n), n ≥ 2,

and G is isomorphic to the dihedral group Dn.
The remaining cases are those with s = 3, n1 = 2, n2 = 3 and

1
n3
=
1
6
+

2
|G|
, n3 ≥ 3.

The integer solutions are
(1) (|G|, n1, n2, n3) = (12, 2, 3, 3);
(2) (|G|, n1, n2, n3) = (24, 2, 3, 4);
(3) (|G|, n1, n2, n3) = (60, 2, 3, 5).

These groups are isomorphic to A4, S4 and A5, respectively.

Remark 7.13.
(1) The finite groups in Theorem 7.12 may be realized as follows.

(a) Consider an f ∈ Aut(ℂ̂) with

f (z) = − 1
z + 2 cos( πm )

, m ≥ 2.

Then ⟨f ⟩ is cyclic of orderm.
(b) Consider f , g ∈ Aut(ℂ̂) with

f (z) = − 1
z
, g(z) = −ρ

−1

ρz
, ρ + ρ−1 = 2 cos(π

n
),

n ≥ 2. Then ⟨f , g⟩ is isomorphic to Dn.
(c) Consider f , g ∈ Aut(ℂ̂) with

f (z) = − 1
z
, g(z) = − ρ−1

ρz + 1
, ρ + ρ−1 = 1.

Then ⟨f , g⟩ is isomorphic to A4.
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(d) Consider f , g ∈ Aut(ℂ̂) with

f (z) = − 1
z
, g(z) = − ρ−1

ρz + 1
, ρ + ρ−1 = √2.

Then ⟨f , g⟩ is isomorphic to S4.
(e) Consider f , g ∈ Aut(ℂ̂) with

f (z) = − 1
z
, g(z) = − ρ−1

ρz + 1
, ρ + ρ−1 = 2 cos(π

5
).

Then ⟨f , g⟩ is isomorphic to A5.
We remark that 2 cos( π5 ) =

1
2 (1+√5),which is related to thegolden section

1
2 (√5−1),

see [12].
(2) Via the stereographic projection we get that a finite subgroup of SO(3) = O+(3) is

isomorphic to a finite subgroup of Aut(ℂ̂). On the other hand, each finite group
which occurs in Theorem 7.12 can be realized as a subgroup of SO(3) (see Chap-
ter 5). Hence we get the following.

Corollary 7.14 (see Theorem 6.20). Let G be a finite subgroup of SO(3) = O+(3). Then G
is isomorphic to a finite cyclic group, a dihedral group Dn, n ≥ 2, the alternating group
A4, the symmetric group S4 or the alternating group A5.

Remark 7.15. We also get Corollary 7.14 directly by amodification of the proof of Theo-
rem 7.12 for SO(3) operating on S2. We only have to remark the following. If G is a finite
subgroup of SO(3) then each nontrivial element of G fixes the center O⃗ = (0,0,0) of
the ball {x⃗ ∈ ℝ3 | ‖x⃗‖ ≤ 1} and exactly one point of S2, and G operates on {O⃗} ∪ S2.

We saw in Theorem 7.10 that an LFT is uniquely determined by the images of three
distinct points. We now show the implication in the other direction that we get an LFT
if we provide the images of three distinct points.We first give an LFTwhichmaps three
pairwise distinct complex numbers z1, z2, z3 onto 0, 1,∞, respectively.

We define

f (z) =
z−z1
z−z3
z2−z1
z2−z3

,

where f (∞) = z2−z3
z2−z1

. We have indeed that f (z1) = 0, f (z2) = 1 and f (z3) = ∞. The term
on the right side is called the cross-ratio (or double ratio) of the four points z, z1, z2, z3
with z1, z2, z3 pairwise distinct; written as

DV(z, z1, z2, z3) =
z−z1
z−z3
z2−z1
z2−z3

, if z ̸=∞
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and

DV(∞, z1, z2, z3) =
z2 − z3
z2 − z1
.

If now one of the zi, i = 1, 2, 3, is∞, then we write as usual zi =
1
ti
and form the limit as

ti → 0.
This gives the following cross-ratios:

DV(z,∞, z2, z3) =
z2 − z3
z − z3
,

DV(z, z1,∞, z3) =
z − z1
z − z3

and

DV(z, z1, z2,∞) =
z − z1
z2 − z1
.

With this modification we get that the map z → DV(z, z1, z2, z3) in each case is an
LFT which maps the three distinct points z1, z2, z3 in ℂ̂ onto 0, 1,∞, respectively.

Lemma 7.16. If (z1, z2, z3) and (w1,w2,w3) are two triples of distinct points in ℂ̂, then
there exists exactly one LFT f with f (zi) = wi for i = 1, 2, 3.

This is the analog for hyperbolic geometry of the fact that Euclidean isometries
are determined by their action on triangles.

Proof. Let f1(z) = DV(z, z1, z2, z3) and f2(z) = DV(z,w1,w2,w3). Then f1 maps (z1, z2, z3)
onto (0, 1,∞), and f2 maps (w1,w2,w3) onto (0, 1,∞). Hence f := f −12 ∘ f1 is the desired
LFT.

Theorem 7.17. Let z, z1, z2, z3 ∈ ℂ̂ with z1, z2, z3 pairwise distinct. Then

DV(z, z1, z2, z3) = DV(f (z), f (z1), f (z2), f (z3))

for each f ∈ Aut(ℂ̂).

Proof. We consider the map g : z → DV(f (z), f (z1), f (z2), f (z3)); g is the composition of
f and h : z → DV(z, f (z1), f (z2), f (z3)), and hence an LFT. Further, g(z1) = 0, g(z2) = 1
and g(z3) =∞. Therefore g is the LFT z → DV(z, z1, z2, z3).

Remark 7.18. We saw that f ∈ Aut(ℂ̂) is determined by the pairwise distinct elements
z1, z2, z3 ∈ ℂ̂ and their images, and f can be realized by the relation DV(z, z1, z2, z3) =
DV(f (z), f (z1), f (z2), f (z3)). We know that, given three distinct points z1, z2, z3, there ex-
ists exactly one circle or line which passes through z1, z2, z3. This also follows from the
following construction for the case that z1, z2, z3 are not collinear, see Figure 7.1.

Lemma 7.19. Let z1, z2, z3 ∈ ℂ̂ be three distinct points. A point z ∈ ℂ̂ is on the circle or
line K determined by z1, z2, z3 if and only if DV(z, z1, z2, z3) ∈ ℝ ∪ {∞}.
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z2

z1 ⋅

z3
⋅

Figure 7.1: Circle through three distinct points.

Proof. Let f be the LFT with (z1, z2, z3) → (0, 1,∞). By Theorem 7.6, we have that z ∈ K
if and only if f (z) ∈ ℝ ∪ {∞}. Since f (z) = DV(f (z),0, 1,∞), the statement follows from
Theorem 7.17.

7.2 A Model for a Planar Hyperbolic Geometry

In this section we use LFTs to present a model of planar hyperbolic geometry. To be
precise, the points are the points of the Euclidean upper half-plane and the lines are
the intersectionswith the upper half-plane of circles orthogonal to the real line aswell
as rays orthogonal to the real line.

Remark 7.20.
(1) From now on, we norm the LFT f (z) = az+b

cz+d so that ad − bc = 1. This is possible by
cancellation because

ker(φ) = {(a 0
0 a
)
 a ∈ ℂ, a ̸= 0} .

(2) Letℍ = {z ∈ ℂ | Im(z) > 0} be the upper half-plane. Let f (z) = az+b
cz+d with a, b, c, d ∈

ℝ and ad − bc = 1.

Lemma 7.21. We have
(i) f (r) ∈ ℝ ∪ {∞} for r ∈ ℝ ∪ {∞}.
(ii) f (z) ∈ ℍ for z ∈ ℍ.

Proof. (i) is obvious because a, b, c, d ∈ ℝ.
We show (ii).
Let z ∈ ℍ and f (z) = az+b

cz+d . Then

f (z) = az + b
cz + d
=
(az + b)(cz + d)
(cz + d)(cz + d)

=
1
|cz + d|2

(aczz + adz + bcz + bd)

=
1
|cz + d|2

(aczz + z + bc(z + z) + bd)

because ad − bc = 1.
Hence, Im(f (z)) = Im(z)

|cz+d|2 > 0.

 EBSCOhost - printed on 2/10/2023 4:13 PM via . All use subject to https://www.ebsco.com/terms-of-use



186 | 7 Linear Fractional Transformation and Planar Hyperbolic Geometry

Conclusion. f maps ℝ ∪ {∞} onto itself and alsoℍ onto itself.

(3) The LFTs f : ℍ→ ℍ, z → az+b
cz+d , a, b, c, d ∈ ℝwith ad − bc = 1, form a group which

we denote by Aut(ℍ), and we have

Aut(ℍ) ≅ SL(2,ℝ)/{±E2} =: PSL(2,ℝ)
where again E2 = ( 1 0

0 1 ).

We are now prepared to introduce amodel of a planar hyperbolic geometry. For histor-
ical reasons one often calls this geometry the planar non-Euclidean geometry but we
use here the term planar hyperbolic geometry. The planar hyperbolic geometry, which
we consider, is the geometry on the upper half-planeℍ.

Definition 7.22.
(1) A point z is an element ofℍ.
(2) A line g in ℍ is either the intersection ℓ ∩ ℍ, with ℓ being a line parallel to the

imaginary y-axis or the intersection k ∩ ℍ with k being a circle with center in ℝ
(ortho-circle on ℝ), see Figure 7.2.

x

y ℓ

M0

Figure 7.2: Hyperbolic lines.

Remark 7.23.
(1) If z1, z2 ∈ ℍ then there exists exactly one line through z1 and z2.

If Re(z1) = Re(z2) then the line is parallel to the y-axis defined by Re(z1).
If Re(z1) ̸= Re(z2), then we see this from the construction in Figure 7.3.
a and b are the intersection of the ortho-circle through z1 and z2 with the x-axis.

(2) Other geometric concepts are defined as in planar geometry butwith straight lines
replaced by lines inℍ. The planar hyperbolic geometry has all the important ax-
iomatic properties of planar geometry in ℝ2 except for the parallel axiom which
holds in ℝ2.
If g is a line inℍ and z ∈ ℍ a point with z ̸∈ g then there exist (at least) two lines
inℍ which have empty intersection with g.
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x

y

a b

z2

z1 ⋅

0

Figure 7.3: Hyperbolic line through z1 and z2.

This can be seen as follows. From the preliminary material we may assume that
g = ℓ ∩ℍ where ℓ is the y-axis and z = 2 + i.
Then z is on the line g1 parallel to g and given by Re(z) = 2, and z is on the ortho-
circle g1 with center 2 and radius 1. We have g ∩ g1 = 0 and g ∩ g2 = 0.

We now define the hyperbolic distance δ(z1, z2) of two points z1, z2 ∈ ℍ.
Let first z1 ̸= z2 and assume Re(z1) ̸= Re(z2). Then we consider, as in Figure 7.3, the

ortho-circle through z1 and z2, and the intersections a and b with the x-axis. With the
prescribed order, starting with a, we have DV(z1, a, z2, b) > 0. The hyperbolic distance
then is defined as δ(z1, z2) = | ln(DV(z1, a, z2, b))|.

Now let Re(z1) = Re(z2) = x. Then z1 = x + iy1, z2 = x + iy2, y1 ̸= y2. Let y1 < y2. Then
take a = x and b =∞ so that

DV(z1, a, z2, b) = DV(z1, x, z2,∞) > 0,

and again we may define the hyperbolic distance as

δ(z1, z2) =
ln(DV(z1, a, z2, b))

.

If z1 = z2, then we define δ(z1, z2) = 0.

Remark 7.24. We always must take the prescribed order between a, z1, z2 and b.

From the properties of the cross-ratio and Theorem 7.17, we get the following.

Lemma 7.25. Let z1, z2, z3 ∈ ℍ. Then
(1) δ(z1, z2) > 0 if z1 ̸= z2, and δ(z1, z2) = 0 if z1 = z2;
(2) δ(z1, z2) = δ(z2, z1);
(3) δ(z1, z2) ≤ δ(z1, z3) + δ(z2, z3);
(4) δ(z1, z2) = δ(f (z1), f (z2)) for f ∈ Aut(ℍ).

Proof. (1) is clear. For (2) we only have to make sure that we also interchange a and b
if we interchange z1 and z2.

(4) follows directly from Theorem 7.17.
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To prove (3), we may map z1, z2, z3 with an f ∈ Aut(ℍ) onto the y-axis; (3) now
follows from the position of the image points under f to each other.

So far, we have constructed a model for a planar hyperbolic geometry with a suit-
able distance between two points.

From Lemma 7.25 and Corollary 7.5, we know the following.
Each f ∈ Aut(ℍ) is oriented, angle-preserving and length-preserving.
Hence it is reasonable to define Aut(ℍ) as the group of oriented isometries for the

planar hyperbolic geometry on ℍ (see [4] for a verification). As usual, we call a part
of a hyperbolic line a hyperbolic line segment. We denote a hyperbolic line segment
from z1 to z2 by z1z2. A hyperbolic polygon in ℍ is a figure bounded by a finite set of
hyperbolic line segments as edges.

We want to determine the hyperbolic area of a hyperbolic polygon inℍ.
For this we need some preparations.
Let f : D → D be a function with D ⊂ ℂ. We say that f is (complex) differentiable

in z0 ∈ D if

lim
z→z0

z∈D\{z0}

f (z) − f (z0)
z − z0

= f ′(z0)

exists.
Let f ∈ Aut(ℍ), f (z) = az+b

cz+d , and D = ℍ in the above definition.
Then f is differentiable in each z ∈ ℍ, and we get

|f ′(z)|
Im(f (z))

=
1
y

if z = x + iy

for each z ∈ ℍ.
This leads to the following definition.

Definition 7.26. Let γ : [0, 1] → ℍ be a curve such that γ is differentiable on [0, 1]
and γ′ : [0, 1] → ℂ is continuous (see [12, Chapter 12]). We say that γ is continuously
differentiable.

Then the hyperbolic length of γ is defined as

Lh(γ) =
1

∫
0

|γ′(t)|
Im(γ(t))

dt.

As usual, we write

Lh(γ) = ∫
γ

|dz|
y
.
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If γ : [0, 1]→ ℍ is continuously differentiable curve and f ∈ Aut(ℍ). Then,

Lh(f ∘ γ) = Lh(γ).

Now let z1, z2 ∈ ℍ, z1 ̸= z2. Let γ be the hyperbolic line segment between z1 and z2, and
let a and b be defined as above. We map a, z1, z2, b with a f ∈ Aut(ℍ) onto 0, i, is and
∞, where s > 1.

Then

∫
γ

|dz|
y
=

s

∫
1

dt
t
= ln(s) = ln(DV(1,0, s,∞))

 = δ(z1, z2).

Using this we may define the hyperbolic area Fh of a hyperbolic polygon P as Fh =
∬ dx dy

y2 , where the integral is taken over the polygon.
Before we calculate Fh in detail, we apply the above description for δ(z1, z2) to

show the hyperbolic Theorem of Pythagoras.

7.3 The (Planar) Hyperbolic Theorem of Pythagoras inℍ

Theorem 7.27. A neutral geometry satisfying the (Euclidean) Pythagorean theorem is
Euclidean.

Proof. One of the equivalences for a Euclidean geometry is certainly the existence of
non-congruent similar triangles (see Exercise 12 of Chapter 1). Here two triangles are
similar if the corresponding angles have the same measure. Consider a right triangle
in a neutral geometry where the Pythagorean theorem holds. Connect themidpoint of
the hypotenuse to the midpoint of one of the sides. Using the Pythagorean theorem
the resulting triangle is similar, but not congruent to the big triangle.

We nowwant to explain a hyperbolic theorem of Pythagoras. For this we first con-
sider the hyperbolic functions. Recall that the hyperbolic cosine is

cosh(x) = 1
2
(ex + e−x),

and the hyperbolic sine is

sinh(x) = 1
2
(ex − e−x)

for x ∈ ℝ. We have in particular

cosh(−x) = cosh(x),
sinh(−x) = − sinh(x) and

cosh2(x) − sinh2(x) = 1 for x ∈ ℝ.
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Further, cosh(x) is strictly monotonically increasing on [0,∞).

Theorem 7.28. For all z1, z2 ∈ ℍ we have

cosh(δ(z1, z2)) = 1 +
|z1 − z2|2

2 Im(z1) ⋅ Im(z2)
.

Proof. As above, we may assume that z1 = i and z2 = i ⋅ s with s > 1. Then δ(z1, z2) =
ln(s). Hence,

cosh(δ(z1, z2)) =
1
2
(eln(s) + e− ln(s)) = 1

2
(s + 1

s
) =
(s − 1)2 + 2s

2s
= 1 + (s − 1)

2

2s
,

which proves the statement.

Theorem 7.29 (Hyperbolic Theorem of Pythagoras). Let Δ be a hyperbolic rectangular
triangle with endpoints z1, z2, z3, catheti z1z2, z1z3 and hypotenuse z2z3. Then

cosh(δ(z2, z3)) = cosh(δ(z1, z2)) ⋅ cosh(δ(z1, z3)).

Proof. Let Δhave the endpoints z1, z2, z3with δ(z1, z2) = a, δ(z1, z3) = band δ(z2, z3) = c.
As above we may assume z1 = i and z2 = k ⋅ i with k > 1.
Since Δ has a right angle at i, we must have that z3 = s + i ⋅ t is on unit circle, that

is, s2 + t2 = 1. We may assume that s > 0.
By Theorem 7.28 we have

cosh(a) = 1 + (k − 1)
2

2k
=
1 + k2

2k
,

cosh(b) = 1 + | − s + i(1 − t)|
2

2t
=
2t + s2 + (1 − t)2

2t
=
1
t

and

cosh(c) = 1 + |s + i(t − k)|
2

2tk
=
2tk + s2 + (t − k)2

2tk
=
1 + k2

2tk

because s2 + t2 = 1. This gives

cosh(c) = cosh(a) ⋅ cosh(b).

7.4 The Hyperbolic Area of a Hyperbolic Polygon

An important part of planar Euclidean geometry is the theory of area. An area function
or measure on the Euclidean plane ℝ2 is a function A from subsets of ℝ2 to the reals
ℝ satisfying
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(1) A(S) ≥ 0 for all subsets of ℝ.
(2) A(∪Ai) = ∑i Ai for any countable collection {Ai} of disjoint sets.

We note that the set of functions to which the measure function applies is usually re-
stricted to what are called measurable sets. We refer to [11] for a discussion of this.
An area in the Euclidean plane is usually constructed using integration starting with
the area of a rectangle. We now determine the hyperbolic area of hyperbolic poly-
gons.

Theorem 7.30. Let P be a hyperbolic polygon inℍ. Let n be the number of vertices of P
and let α1, α2, . . . , αn be the interior angles at the vertices. Then the hyperbolic area Fh of
P is

Fh = (n − 2)π − (α1 + α2 + ⋅ ⋅ ⋅ + αn).

Proof. It is enough to prove Theorem 7.30 for hyperbolic triangles.
Also the vertices of the triangle may in part lie on ℝ ∪ {∞}. This does not change

the area Fh.
Let α1 = α, α2 = β, α3 = γ.

Case 1.
The triangle may have the angles 0, π

2 , α and the form as in Figure 7.4.

x

y
C

ρ
B

A

a0 Figure 7.4: Triangle with angles 0, π
2 , α.

Then

Fh =
a

∫
0

dx ∫

√ρ2−x2

dy
y2
=

a

∫
0

dx
√ρ2 − x2

= arcsin(a
ρ
) =

π
2
− α = π − (0 + π

2
+ α).

Case 2.
The triangle has the angles 0, α, β and the form in Figure 7.5.
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βα

C

BA Figure 7.5: Triangle with angles 0, α, β.

The hyperbolic area of the triangle is the sum of the areas of the two triangles, given
as in Case 1, and we get

Fh = π − (α +
π
2
) + π − (β + π

2
) = π − (0 + α + β).

Case 3.
The triangle has an angle 0, and one of the vertices is on ℝ, that is, the triangle

has a cusp on ℝ.
By an f ∈ Aut(ℍ) we may move this cusp to∞, and the result follows because P

and f (P) have the same hyperbolic area.

Case 4.

γ

α
β

η

δ

ϵ

δ = 0

B
A

C

Figure 7.6: Triangle completely contained inℍ.

The triangle in Figure 7.6 is completely contained inℍ. We get

Fh = (π − (α + γ + ϵ)) − (π − (ϵ + η)) = η − (α + γ) = π − (α + β + γ)

because β + η = π.

Corollary 7.31.
(1) Aut(ℍ) is area-preserving with respect to the hyperbolic area.
(2) The sum of the interior angles α + β + γ is smaller than π for a hyperbolic triangle.
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Remark 7.32. Let Ãut(ℍ) be the group which is generated by Aut(ℍ) and the reflec-
tion z → −z at the y-axis.Wedefine Ãut(ℍ) to be the groupof thehyperbolic isometries
of planar hyperbolic geometry onℍ (see [4] for a verification).

Ãut(ℍ) is composed of the maps

z → az + b
cz + d
, a, b, c, d ∈ ℝ, ad − bc = 1,

and

z → az + b
cz + d
, a, b, c, d ∈ ℝ, ad − bc = −1.

All elements of Ãut(ℍ) preserve angles, hyperbolic lengths and hyperbolic areas.
We remark that hereby we have explained what we understand under a reflection

at hyperbolic lines inℍ.

We now describe, analogously as we have done it for the Euclidean triangles inℝ2

and the spherical triangles in S2, a tessellation of thehyperbolic planeℍbyhyperbolic
triangles.

Theorem 7.33. LetΔbeahyperbolic trianglewith interior angles π
p ,

π
q ,

π
r ; p, q, r ∈ ℕ\{1},

1
p +

1
q +

1
r < 1. Let G be the group generated by the reflections α, β, γ at the sides a, b, c of

Δ, respectively.
The images g(Δ), g ∈ G, form a non-overlapping division ofℍ, a hyperbolic tessel-

lation ofℍ, and G has a presentation

G = ⟨α, β, γ | α2 = β2 = γ2 = (α ∘ β)p = (β ∘ γ)q = (α ∘ γ)r = 1⟩.

Proof. The arguments are exactly as in the case of the Euclidean planeℝ2, and we get
automatically the desired tessellation and the presentation for G (for more details in
the case of hyperbolic triangles, see [4]).

Certainly, G is infinite. The subgroup G+ = G ∩ Aut(ℍ) has a presentation

G+ = ⟨x, y | xp = yq = (x ∘ y)r = 1⟩

with x = α ∘ β and y = β ∘ γ. The elements x and y are (hyperbolic) rotations with
rotation angles 2π

p and 2π
q , respectively (see Figure 7.7).

The subgroup G+ is called a hyperbolic triangle group and can be realized as a
group generated by A,B ∈ Aut(ℍ) with

A : z → − 1
z + 2 cos( πp )

and B : z → − ρ−1

ρz + 2 cos( πq )
with ρ + ρ−1 = −2 cos(π

r
).
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π
r

π
r

π
p

π
p

π
q

π
q

ab

c

(α ∘ β)p = (α ∘ γ)q = (γ ∘ β)r=1.α(Δ)Δ

Figure 7.7: Δ′ = Δ ∪ α(Δ) for a hyperbolic triangle group.

Remark 7.34. We may allow some of the interior angles to be 0, that is, we allow ver-
tices at ℝ ∪ {∞}. For instance, the classical modular group

Γ = {S ∈ Aut(ℍ)
 S : z →

az + b
cz + d
, a, b, c, d ∈ ℤ and ad − bc = 1}

is generated by the LFTs

T : z → − 1
z

and R : z → − 1
z + 1
,

and has a presentation

Γ = ⟨T ,R | T2 = R3 = 1⟩.

This can be seen as follows. It is easy to see that Γ is generated by T and U : z →
z + 1. Then Γ is also generated by T and R because U = T ∘ R.

Theorem 7.35. Γ is generated by T and U.

Proof. If A : z → az+b
cz+d is in Γ and k ∈ ℤ then

T ∘ A : z → −cz − d
az + b

and Uk ∘ A = (a + kc)z + b + kd
cz + d

.

We assume that |c| ≤ |a| (for if this is not true for A, then we start with T ∘ A).
If c = 0, then A = Uq0 , for some q0 ∈ ℤ.
If, however, c ̸= 0, we apply the Euclidean algorithm (see [12]) to a and c (in mod-

ified form):

a = q0c + r1, −c = q1r1 + r2, r1 = q2r2 + r3, . . . , (−1)
rrn−1 = qnrn + 0
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which ends with rn = ±1, since gcd(a, c) = 1. Premultiplying

T ∘ U−qn ∘ T ∘ ⋅ ⋅ ⋅ ∘ T ∘ U−q0 by A,

we obtain Uqn+1 with qn+1 ∈ ℤ.
Thus we have, the case |c| > |a| included:

A = Tm ∘ Uq0 ∘ T ∘ Uq1 ∘ ⋅ ⋅ ⋅ ∘ T ∘ Uqn ∘ T ∘ Uqn+1
withm = 0 or 1, q0, q1, . . . , qn+1 ∈ ℤ and q0, q1, . . . , qn ̸= 0.

We now give a direct proof that Γ has a presentation

Γ = ⟨T ,R | T2 = R3 = 1⟩.

Theorem 7.36. The modular group Γ has a presentation

Γ = ⟨T ,R | T2 = R3 = 1⟩

with T : z → − 1z and R : z → −
1
z+1 .

Proof. Γ is generated by T and R. We know that R3 = T2 = 1 = id. We show that these
relations are defining relations for Γ. Letℝ− = {x ∈ ℝ | x < 0} andℝ+ = {x ∈ ℝ | x > 0}.
Then T(ℝ−) ⊂ ℝ+ and Rα(ℝ+) ⊂ ℝ− for α = 1, 2.

Let S ∈ Γ. Applying the relations T2 = R3 = 1, we get that S = 1 is a consequence
of T2 = R3 = 1, or that S = Rα1 ∘ T ∘ ⋅ ⋅ ⋅ ∘ Rαn ∘ T ∘ Rαn+1 with 1 ≤ αi ≤ 2 (eventually after
a suitable conjugation). In the latter case, let x ∈ ℝ+. Then S(x) ∈ ℝ−, so in particular
S ̸= 1. Therefore Γ = ⟨T ,R | T2 = R3 = 1⟩.

From the proof of Theorem 7.36, we automatically get the following.

Corollary 7.37. An element of finite order in Γ is either conjugate to T or to a power of R.

We remark that a suitable triangle Δ which corresponds to Γ has a vertex at∞,
which comes from the fact that we get z → z + 1 for the product U = T ∘ R, a vertex at i
and a vertex at 1

2 +
i
3
√3. The hyperbolic polygon Δ′ = Δ∪ α(Δ)where α is the reflection

z → −z at the y-axis looks like that in Figure 7.8.
We have z0 = e

2πi
3 = − 12 +

1
2
√3 i, a cubic root of 1.

Δ′ = Δ∪α(Δ) forms a fundamental domain for Γ, that is, if z1, z2 ∈ ℍwith |Re(zi)| <
1
2 and |zi| > 1 for i = 1, 2, then there is no S ∈ Γ, S ̸= idℍ, with S(z1) = z2.

We complete this chapter with a nice number-theoretical application of the mod-
ular group.

Let H be the subgroup of Γ generated by

A = T ∘ R ∘ T ∘ R−1 and B = T ∘ R−1 ∘ T ∘ R.
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0

∞

α(Δ) Δ

−z0z0

Figure 7.8: Hyperbolic polygon Δ′ = Δ ∪ α(Δ) with α a reflection z → −z at the y-axis.

Now,

T ∘ A ∘ T = A−1, T ∘ B ∘ T = B−1, R ∘ A ∘ R−1 = A−1 ∘ B, R−1 ∘ A ∘ R = B−1,

R ∘ B ∘ R−1 = A−1 and R−1 ∘ B ∘ R = B−1A.

Hence H is a normal subgroup of Γ with the factor group Γ/H ≅ C6, the cyclic group of
order 6, and by Theorem 7.36 we get that H has a presentation

H = ⟨A,B | ⟩,

that is, H is a (so-called) free group of rank 2, freely generated by A and B (see, for
instance, [22] or [7]). In fact,H is the commutator subgroup Γ′ of Γ, which is generated
by all commutators P ∘ S ∘ P−1 ∘ S−1, P, S ∈ Γ. An automorphism of H is an isomor-
phism φ : H → H. The set of automorphisms of H forms a group under composition,
the automorphism group Aut(H) of H; Aut(H) is generated by the elementary Nielsen
transformations

α : (U ,V) → (V ,U),

β : (U ,V) → (V ∘ U ,U−1) and

γ : (U ,V) → (V ∘ U ∘ V ,V−1),

{U ,V} a (free) generating pair of H (see, for instance, [22] or [7]). Certainly, if {U ,V} is
a generating pair of H, then the map A → U, B → V defines an automorphism of H
because H = ⟨A,B | ⟩. Hence a pair {U ,V} ⊂ H is a generating pair of H if and only
if there is a sequence of elementary Nielsen transformations from {A,B} to {U ,V}. We
then say that {U ,V} is Nielsen equivalent to {A,B}.

If P, S ∈ H, let [P, S] := P ∘ S ∘ P−1 ∘ S−1 be the commutator of P and S. Since

[S,P] = [P, S]−1, [S ∘ P,P−1] = P−1 ∘ [P, S] ∘ P, and [S ∘ P ∘ S, S−1] = [P, S]−1,

we get the following.
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If {U ,V} is a generating pair of H then [U ,V] = W ∘ [A,B] ∘W−1 for someW ∈ H.
In fact, a pair {U ,V} ⊂ H is a generating pair of H if and only if

[U ,V] = W ∘ [A,B]±1 ∘W−1

for someW ∈ H (see, for instance, [22] or [7]).
We now come back to our realization of H = ⟨A,B | ⟩ as a subgroup of Aut(ℍ).

As mentioned above, Aut(ℍ) ≅ PSL(2,ℝ). In this sense Γ ≅ PSL(2,ℤ), and we identify
Γ with PSL(2,ℤ).

Then T = ±( 0 1
−1 0 ) and R = ±( 0 −11 1 ), and we get A = ±( 2 11 1 ), B = ±( 1 11 2 ) and AB

−1 =
±( 3 −11 0 ).

We consider the subgroup H̃ of SL(2,ℤ), generated by ( 2 11 1 ) and ( 1 11 2 ). Without any
misunderstanding, we also just write

A = (2 1
1 1
) and B = (1 1

1 2
)

for the corresponding matrices.
Since the subgroup H of Γ contains only products of commutators of Γ, we also

have that H̃ has a presentation H̃ = ⟨A,B | ⟩, that is, also H̃ is a free group of rank 2.
As constructed,A = ( 2 11 1 ),B = ( 1 11 2 ) andAB

−1 = ( 3 −11 0 ), and tr(A) = tr(B) = tr(AB
−1) = 3.

Thismeans especially that (tr(A), tr(B), tr(AB−1)) is a solution of the diophantine equa-
tion x2 + y2 + z2 − xyz = 0 because 9 + 9 + 9 − 27 = 0.

Now let {U ,V} be a generating pair of H̃. Then [U ,V] = W[A,B]±1W−1 for some
W ∈ H̃. Hence, tr([U ,V]) = tr([A,B]) = −2. From the trace formula

tr([U ,V]) = (tr(U))2 + (tr(V))2 + (tr(UV))2 − tr(U) ⋅ tr(V) ⋅ tr(UV) − 2,

which is easy to compute, we get that also (tr(U), tr(V), tr(UV−1)) is a solution of the
diophantine equation x2 + y2 + z2 − xyz = 0.

We define

E = {{U ,V} | {U ,V} is Nielsen equivalent to {A,B}}

and

L = {(tr(U), tr(V), tr(UV)) | {U ,V} ∈ E}.

Since H̃ = ⟨U ,V⟩ and tr([U ,V]) = tr([A,B]) for all {U ,V} ∈ E, the ternary form

F(x, y, z) = x2 + y2 + z2 − xyz
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is invariant under the automorphism of H̃. As mentioned, the automorphism group of
H̃ is generated by the elementary Nielsen transformations

α : (U ,V) → (V ,U),

β : (U ,V) → (VU ,U−1) and

γ : (U ,V) → (VUV ,V−1).

These induce birational transformations of L by

φ : (x, y, z) → (y, x, z),

ω : (x, y, z) → (z, x, y) and

ψ : (x, y, z) → (x′, y, z) with x′ = yz − x.

LetM be the permutation group of L generated by φ, ω and ψ.

Theorem 7.38. Group M has a presentation

M = ⟨φ,ω,ψ | φ2 = ω3 = ψ2 = (φ ∘ ω)2 = (ψ ∘ φ ∘ ω)2 = 1⟩.

Proof. All relations in the presentation are evident by definition ofφ,ω andψ.Wenow
show that these relations formacomplete set of relations.We letψ0 = ψ,ψ1 = ω∘ψ∘ω−1

and ψ2 = ω−1 ∘ ψ ∘ ω. We get

ψ1(x, y, z) = (x, y
′, z) with y′ = xz − y

and

ψ2(x, y, z) = (x, y, z
′) with z′ = xy − z.

Assume that r = r(φ,ω,ψ) = 1 is an additional relation which is independent of the
given relations for φ,ω and ψ, and in which ψ occurs. If we apply the given relations
for φ,ω and ψ, we may write r as r = γ ∘ ψrm ∘ ⋅ ⋅ ⋅ ∘ ψr1 = 1 with γ ∈ ⟨φ,ω⟩, which
is isomorphic to the permutation group S3, m ≥ 1, rj ∈ {0, 1, 2} for j = 1, 2, . . . ,m and
ri ̸= ri−1 ifm > 1, for i = 2, 3, . . . ,m (otherwise there is a cancellation possible).

For (x, y, z) ∈ Lwe define the height h(x, y, z) = x+y+z. Since x2 +y2 +z2 −xyz = 0,
we have 2 < x, y, z for (x, y, z) ∈ L. We choose (x, y, z) ∈ L so that the components
of (x, y, z) are pairwise distinct and that the (r1 + 1)th component of (x, y, z) is not the
biggest component (this is certainly possible after an application of φ,ω,ψ).

Then we get

h(ψr1 (x, y, z)) > h(x, y, z),
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the components of ψr1 (x, y, z) are pairwise distinct, and the (r1 + 1)th component of
ψr1 (x, y, z) is here the biggest component. This is clear because if, for instance, x < y
then x′ = yz − x > x, y, z.

Ifm > 1 then we get inductively that

h(γ ∘ ψrm ∘ ⋅ ⋅ ⋅ ∘ ψr1 (x, y, z)) > h(x, y, z),

which contradicts γ ∘ ψrm ∘ ⋅ ⋅ ⋅ ∘ ψr1 = 1.
This proves Theorem 7.38.

Corollary 7.39.

M ≅ PGL(2,ℤ) = {±(a b
c d
)
 (

a b
c d
) ∈ GL(2,ℤ)}

and

M0 ≅ PSL(2,ℤ) ≅ Γ,

where M0 is the subgroup of M generated by ω and ρ = ψ ∘ φ ∘ ω.

Proof. If we extend PSL(2,ℤ) by the element Z = ±( −1 00 1 ), we get easily the presenta-
tion

⟨X,Y , Z | X2 = Y3 = Z2 = (XY)2 = (ZXY)2 = 1⟩

for PGL(2,ℤ), where

X = ±(−1 −1
0 1
) , Y = ±(−1 −1

1 0
) , Z = ±(−1 0

0 1
) .

The mapping

φ → X, ω → Y , ψ → Z

defines an isomorphism betweenM and PGL(2,ℤ). Then certainly

M0 ≅ PSL(2,ℤ) ≅ Γ.

We now describe the announced number-theoretical application of the modular
group Γ.

Theorem 7.40. The natural numbers x, y, z are solutions of the equation x2 + y2 + z2 −
xyz = 0 if and only if there exists a generating pair {U ,V} of H̃ with tr(U) = x, tr(V) = y
and tr(UV) = z.
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Proof. Let x, y, z ∈ ℕ with x2 + y2 + z2 − xyz = 0. Certainly, 2 < x, y, z. Let

L′ = {(x, y, z) ∈ ℕ3 | x2 + y2 + z2 − xyz = 0}.

We have to show that L = L′. Starting with (x, y, z) ∈ L′, we may apply the above
defined transformationsφ,ω andψ also to L′, andwe get ongoing new triples from L′.
We apply φ, ω and ψ in a minimizing manner. With this we get a triple (x, y, z) ∈ L′

with 2 < x ≤ y ≤ z and h(x, y, z) = x + y + z minimal for all triples from L′.
With this we get z ≤ xy − z. Hence altogether we get

2 < x ≤ y ≤ z ≤ xy
2
.

Since x ≤ y ≤ z, we also have 1
3 ≤ z. Hence

1
3xy ≤ z ≤

1
2xy, that is, also

1
2xy − z ≤

1
6xy.

From this we get

0 = x2 + y2 + z2 − xyz = x2 + y2 + ( 1
2
xy − z)

2
− (

1
2
xy)

2

≤ 2y2(1 − 1
9
x2).

This gives x = 3, and further y ≤ z = 3
2y−

1
2√5y

2 − 36, that is, y2 ≤ 9, and therefore also
y = 3, and finally, z = 3. But for this solution we have the above matrices A,B−1 ∈ H̃
with tr(A) = tr(B−1) = tr(AB−1) = 3. This givesL = L′ from thepreparing considerations.

Exercises

1. Prove Theorem 7.11.
2. Verify statement (1) in Remark 7.13.
3. Give a proof of Corollary 7.14 along the lines in Remark 7.15.
4. Let f ∈ Aut(ℍ), f (z) = az+b

cz+d , z ∈ ℍ.
(a) Show that

|f ′(z)|
Im(f (z))

=
1

Im(z)
.

(b) Let γ : [0, 1]→ ℍ be a continuously differentiable curve.
Show that

Lh(f ∘ γ) = Lh(γ).

5. Let f , g ∈ Aut(ℍ), f ̸= idℍ ̸= g. Show that f ∘ g = g ∘ f if and only if f and g have
the same fixed points.

 EBSCOhost - printed on 2/10/2023 4:13 PM via . All use subject to https://www.ebsco.com/terms-of-use



Exercises | 201

6. Show that
(a) cosh(x1 + x2) = cosh(x1) ⋅ cosh(x2) + sinh(x1) ⋅ sinh(x2) for all x1, x2 ∈ ℝ.
(b) cosh(x1 − x2) = cosh(x1) ⋅ cosh(x2) − sinh(x1) ⋅ sinh(x2) for all x1, x2 ∈ ℝ.

7. (a) Consider z1, z2 ∈ ℍ, z1 ̸= z2. Describe the construction of the hyperbolic per-
pendicular bisector {z ∈ ℍ | δ(z1, z) = δ(z2, z)} of the line segment z1z2.

(b) Let z0 ∈ ℍ. The hyperbolic circle with center z0 and hyperbolic radius r ∈ ℝ,
r ≥ 0, is defined as

Ch = {z ∈ ℍ | δ(z0, z) = r}.

Show that the hyperbolic circles are Euclidean circles, possibly with a dif-
ferent center. Give an example where the centers are equal and an example
where the centers are different.

8. Consider two hyperbolic lines ℓ1, ℓ2 and complex numbers z, z1, z2, s1, s2, s′1, s
′
2 as in

Figure 7.9.

s1 s2 s′1 s′2

z1 z2
zℓ1 ℓ2

α

Figure 7.9: Hyperbolic lines ℓ1, ℓ2 and complex numbers z, z1, z2, s1, s2, s′1, s
′
2.

Let α be the angle between the hyperbolic line segments zz1 and zz2. Show that

cos(α) =
(s1 − s′2)(s

′
1 − s2) + (s1 − s2)(s

′
1 − s
′
2)

(s1 − s′1)(s2 − s′2)
.

(Hint: Apply the Euclidean Cosine rule in a suitable manner.)
9. Given a hyperbolic triangle with endpoints z1, z2, z3, line segments z1z2, z1z3, z2z3

and opposite angles α, β, γ, respectively.
Let a = δ(z1, z2), b = δ(z2, z3) and c = δ(z2, z3).
Show the
(a) rule of sine:

sinh(a)
sin(α)

=
sinh(b)
sin(β)

=
sinh(c)
sin(γ)
,

(b) first cosine rule:

cosh(c) = cosh(a) ⋅ cosh(b) − sinh(a) ⋅ sinh(b) cos(γ),
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(c) second cosine rule:

cos(γ) = − cos(α) ⋅ cos(β) + sin(α) ⋅ sin(β) ⋅ cosh(c).

(Hint: Let the triangle be given with vertices as in Figure 7.10.

z1

z2
z3

Figure 7.10: Hyperbolic triangle with endpoints z1, z2, z3.

Consider the two rectangular triangles which we get if we draw the line through
z1 orthogonal to the line z2z3.)

10. The hyperbolic congruence axiom 4 says that two hyperbolic triangles z1z2z3 and
w1w2w3 are congruent if

δ(z1, z2) = δ(w1,w2), δ(z1, z3) = δ(w1,w3) and ∢(z1z2, z1z3) = ∢(w1w2,w1w3).

Show that two hyperbolic triangles are congruent if they coincide in all three an-
gles.

11. (a) Let α : ℍ→ ℍ, α(z) = −z = −x + iy, if z = x + iy, be the reflection at the y-axis.
Show that

δ(α(z1), α(z2)) = δ(z1, z2) for all z1, z2 ∈ ℍ.

(b) Show that Ãut(ℍ) is composed of the maps

z → az + b
cz + d
, a, b, c, d ∈ ℝ, ad − bc = 1

and

z → az + b
cz + d
, a, b, c, d ∈ ℝ, ad − bc = −1.

12. The Hecke group G(q), q ∈ ℕwith q > 2, is a subgroup of Aut(ℍ), which is gener-
ated by the two linear fractional transformations

T : z → − 1
z

and U(q) : z → z + 2 cos(π
q
).
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It is named after E. Hecke (1887–1947).
Show that G(q) has a presentation

G(q) = ⟨T ,R(q) | T2 = R(q)q = 1⟩,

with R(q) = TU(q).
(Hint: Proceed as in the proof of Theorem 7.36.)

13. Let K be a field and X,Y ∈ SL(2,K). Show the trace identities:
(a) tr(XY−1) = tr(X) ⋅ tr(Y) − tr(XY),
(b) tr([X,Y]) = (tr(X))2 + (tr(Y))2 + (tr(XY))2 − tr(X) ⋅ tr(Y) ⋅ tr(XY) − 2.

14. Let X = ±( −1 −10 1 ), Y = ±( −1 −11 0 ) and Z = ±( −1 00 1 ).
Show that the PGL(2,ℤ) is generated by X,Y and Z and has the presentation

⟨X,Y , Z | X2 = Y3 = Z2 = (XY)2 = (ZXY)2 = 1⟩.

(Hint: Use that PGL(2,ℤ) = PSL(2,ℤ) ∪ X PSL(2,ℤ) and the known presentation
for PSL(2,ℤ) = ⟨X,Y | X2 = Y3 = 1⟩ ≅ Γ.)
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8 Simplicial Complexes and Topological Data
Analysis

In Chapter 5 we have discussed a principle to model data in the form of objects and
relations between them as the vertices and edges of a graph, respectively. In this chap-
ter we aim at higher-dimensional data, that is, for instance, a point cloud in someℝn.
By nature of things, this data is very complex. Sometimes one is only interested in the
‘shape’ of the data. This boils down the task to a purely topological question. Topology
is a rather young branch of mathematics with rich applications in pure and applied
mathematics. Roughly speaking, in topology we only investigate features of geomet-
ric figures that do not change under continuous deformation, that is, no gluing and
cutting is allowed. However, wewill not give an introduction to topology here; instead
our exposition will be laid out on a purely combinatorial level. We use methods from
Combinatorial Algebraic Topology and we apply them to give a little insight in the
emerging field of Topological Data Analysis.

8.1 Simplicial Complexes

For standard references concerning the following sectionswe refer to the classical [23]
as well as to the recent [20]. We will start with the combinatorial definition of a sim-
plicial complex that can be understood as a higher-dimensional analogue of a graph.

Definition 8.1. An abstract simplicial complex on a finite set V is a collection K of sub-
sets of V such that whenever σ ∈ K and τ ⊂ σ, then also τ ∈ K.

We sometimes leave the ground set V implicit. We call the elements σ ∈ K with
|σ| = n + 1 the n-simplices. If τ ⊂ σ and |τ| = k + 1 we call τ a k-face of σ. We denote
the set of n-simplices of K by K(n). In particular, if |σ| = 4, |σ| = 3, |σ| = 2, or |σ| = 1,
we call σ a tetrahedron, a triangle, an edge or a vertex, respectively. We will see in
the following that there is a geometric intuition for these notions but first we will give
some examples of abstract simplicial complexes.

Example 8.2. The following collections of subsets are simplicial complexes on [n] =
{0, 1, . . . , n} for a suitable n:
1. K1 = {{0}, {1}, {2}, 0},
2. K2 = {{0, 1, 2}, {0, 1}, {1, 2}, {0, 2}, {1, 3}, {0, 3}, {0}, {1}, {2}, {3}, 0}, and
3. Δn = {A ⊂ [n]}, the standard n-simplex.

Recall that we have implicitly visualized graphs by assigning a point in some ℝn

to each node and connecting two adjacent points by a line segment between them.
This procedure is called geometric realization. We will describe a standard procedure
to do this in higher dimensions.

https://doi.org/10.1515/9783110740783-008
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To this end, we discuss the concepts of affine independence and convex hulls.
Recall that vectors v1, v2, . . . , vn ∈ ℝn are linear independent if for λ1, λ2, . . . , λn ∈ ℝ the
equation λ1v1 + ⋅ ⋅ ⋅ + λnvn = 0 implies λ1 = λ2 = ⋅ ⋅ ⋅ = λn = 0. We now define a stronger
concept.

Definition 8.3. Vectors v0, . . . , vn ∈ ℝn are affinely independent if for λ0, . . . , λn ∈ ℝ and
∑ni=0 λi = 0 the equation λ0v0 + ⋅ ⋅ ⋅ + λnvn = 0 implies λ0 = ⋅ ⋅ ⋅ = λn = 0.

We give the following characterization of affinely independent vectors.

Lemma 8.4. Let v0, v1, . . . , vn ∈ ℝn. Then v0, v1, . . . , vn are affinely independent if and
only if v1 − v0, . . . , vn − v0 are linearly independent.

Proof. First assume that v0, . . . , vn are affinely independent and that∑ni=1 λi(vi−v0) = 0
for λ1, . . . , λn ∈ ℝ. Then∑

n
i=1 λi =: −λ0 ∈ ℝ and∑

n
i=0 λi = 0. We have

n
∑
i=0

λivi =
n
∑
i=1

λi(vi − v0) + (
n
∑
i=0

λi)v0 = 0

and hence, as v0, . . . , vn are affinely independent, it follows that λi = 0 for all 0 ≤ i ≤ n.
Conversely, assume that v1 − v0, . . . , vn − v0 are linearly independent and that

∑ni=0 λivi = 0 with λ0, . . . , λn ∈ ℝ and ∑ni=0 λi = 0. Then also (∑ni=0 λi)v0 = 0 and
∑ni=1 λi(vi − v0) = 0 by the above equation. Hence λi = 0 for all 1 ≤ i ≤ n by linear
independence and thus also λ0 = 0.

We now consider the convex hull of vectors.

Definition 8.5. Let S = {v0, . . . , vn} ⊂ ℝn. Then their convex hull is defined as

conv(S) := conv(v0, . . . , vn) = {
n
∑
i=0

λivi
 λi ∈ ℝ,

n
∑
i=0

λi = 1, λi ≥ 0}.

This, together with the above characterization gives us the following geometric
intuition: If vectors v0, . . . , vn are not affinely independent but v1, . . . , vn are, then we
have for their convexhulls conv(v0, . . . , vn) = conv(v1, . . . , vn). Hence,we see that inℝN ,
N large enough, one vector is affinely independent, two distinct vectors are affinely
independent, the convex hull of three vectors needs to constitute a triangle and the
convex hull of four vectors needs to give a tetrahedron.

This is why we work with affinely independent vectors in the following in order to
have convex hulls uniquely defined by their spanning vectors. We now give a canoni-
cal recipe to geometrically realize abstract simplicial complexes.

Definition 8.6 (Canonical geometric realization). Given an abstract simplicial com-
plex K on some set V with K(0) = {v1, . . . vn}. Then its canonical geometric realization
is the union of {e1, . . . en}, where ei denotes the ith standard vector in ℝ|K(0)|, and
{conv(ei0 , . . . , eik ) | {vi0 , . . . , vik } ∈ K}.
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By abuse of notation, for an abstract simplicial complex K we will denote its ge-
ometric realization also by K. It will always be clear from the context if we consider
the abstract or geometric versions. We get the pictures in Figure 8.1 for the geometric
realization of the low-dimensional standard simplices Δ0, Δ1, and Δ2.

(a) Δ0

(b) Δ1 (c) Δ2

Figure 8.1: Canonical geometric realizations of the first three standard simplices Δ0, Δ1, and Δ2.

We already see that this canonical construction does not yield a minimal embedding
dimension as the examples could be visualized in lower dimensions. We will address
this issue below but we note that the canonical geometric realization of the standard
simplices and of a general complex K are instances of geometric simplices and geo-
metric simplicial complexes, respectively.

Definition 8.7.
1. A geometric n-simplex σ in ℝN is the convex hull conv(v0, . . . , vn) of affinely inde-

pendent vectors v0, . . . , vn ∈ ℝN with n ≤ N .
2. A k-face τ of a geometric n-simplex σ = conv(v0, . . . , vn) is the convex hull τ =

conv(S) with S ⊂ {v0, . . . , vn} and |S| = k + 1.
3. A geometric simplicial complex L inℝN is a collection of geometric simplices inℝN

such that
(a) every face of a simplex is also a simplex and
(b) the intersection of two simplices is a face of each of them.

4. For a geometric simplicial complex L we define its polyhedron as |L| = ∪σ∈Lσ.

To get some intuition we give non-examples of simplicial complexes in Figure 8.2.

We have seen how to obtain a geometric simplicial complex from an abstract one.
Wewould now like to reverse this process and define the vertex scheme of a geometric
simplicial complex.

Definition 8.8. Given a geometric simplicial complex L = {σ1, . . . , σn}, we then define
its vertex scheme as {{v0, v1, . . . , vk} | conv(v0, v1, . . . , vk) ∈ L}.

With this notion we can give the general definition of geometric realizations.
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(a) Intersection is not a common edge (b) Intersection is not a common vertex

Figure 8.2: Non-examples of geometric simplicial complexes.

Definition 8.9. LetLbeageometric simplicial complex andK beanabstract simplicial
complex. Then L is a geometric realization of K if K is the vertex scheme of L.

Wewould like to recall Example 8.2.1 and 8.2.2. In this case, the canonical geomet-
ric realization would yield geometric realizations inℝ3 andℝ4. However, in Figure 8.3
we see that both can be realized in ℝ2.

(a) Geometric realization of K1 (b) Geometric realization of K2

Figure 8.3: Geometric realizations of Examples 8.2.1 and 8.2.2.

We end this section with the following remark.

Remark 8.10. Any abstract simplicial complex K of dimension d, that is,

max{|σ| | σ ∈ K} = d + 1,

can be embedded intoℝ2d+1, see [22]. This bound is sharp in the sense that there exist
abstract simplicial complexes of dimension d that cannot be geometrically realized
in ℝ2d. More explicitely, the latter assertion is known as the van Kampen–Flores the-
orem (first version proved 1932 by E. Kampen and independently 1933 by A. Flores)
which states that the d-skeleton of a (2d + 2)-simplex, that is,

skd Δ
n = {σ ⊂ [n] | |σ| ≤ d + 1},

cannot be geometrically realized in ℝ2d.
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8.2 Sperner’s Lemma

We do a little detour and present a beautiful lemma that is broadly used in important
proofs in Combinatorial Topology. In order to formulate the lemma we need some ad-
ditional concepts concerning simplicial complexes.

We introduce the subdivision of the (geometric) standard simplex.

Definition 8.11. Let Δn denote a geometric realization of the standard n-simplex and
let L be a geometric simplicial complex. Then L is called a subdivision of Δn if |L| = Δn.

In Figure 8.4we present two-dimensional instances of the barycentric subdivision
that plays an important role in the simplicial approximation theorem in topology, and
its chromatic analogue, the standard chromatic subdivision, that occurs within the
context of distributed computing as a protocol complex and that is a subject of current
research. In order to give a general definition of the barycentric subdivision, and for
further reference, we would like to take the opportunity to introduce the face poset of
a simplicial complex and the notion of a flag complex.

(a) Barycentric subdivision Bary(Δ2) (b) Chromatic subdivision χ(Δ2)

Figure 8.4: Examples of subdivisions.

Definition 8.12.
1. Let K be an abstract simplicial complex. Then we define P(K) to be the partially

ordered set with elements being the simplices and the order is induced by the
inclusion relation. We call P(K) the poset of K.

2. If P is a partially ordered set, we define F(P) to be the abstract simplicial complex
with vertex set P, and a set of vertices {v0, . . . , vn} constitutes an n-simplex if and
only if v0 < ⋅ ⋅ ⋅ < vn with respect to the partial order.

Observe that P(K) always contains 0 if K ̸= 0. We will later see examples of face
posets of abstract simplicial complexes when we take a look at discrete Morse the-
ory, named after M. Morse (1892–1977). For nowwewill just give the following general
definition of the barycentric subdivision of a simplex.
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Definition 8.13. The barycentric subdivision Bary(Δn) of the standard simplex Δn is a
geometric realization of the abstract simplicial complex F(P(Δn)).

For a general combinatorial definition and a proof of the subdivision property of
the chromatic subdivision we refer the reader to [19].

We now discuss a Sperner labeling for a subdivision of the standard simplex,
named after E. Sperner (1905–1980).

Definition 8.14. Let L be a subdivision of Δn. A Sperner labeling is a function f : L(0)→
[n] that assigns to each x ∈ |L| with x ∈ conv(S), S ⊂ [n], a value in S. We call f (x) the
color of x.

In particular, the vertices of Δn have distinct labels and any vertex in a face gets
labelled with the spanning vertices of that face. Sperner’s lemma is the following:

Lemma 8.15 (Sperner’s lemma). Let L be a subdivision of Δn and f : L(0) → [n] be a
Sperner labeling. Then there exists an odd number of simplices σ ∈ L, and at least one,
with f (σ) = [n].

Proof. We give a direct combinatorial proof of the lemma in the general case by induc-
tion over n. The case n = 1 is immediate: If we consider a subdivided interval with the
endpoints labeled 0 and 1 wemust switch the labeling at least once and obtain an odd
number of colored edges.

We now assume that the lemma holds for n − 1 and consider a Sperner labeling
f of L. Let C denote the set of colored simplices and D denote the set of the simplices
that admit all colors but n. We let A be the set of (n − 1)-dimensional colored faces in
the interior of L and B their analogue in the boundary. We set a = |A|, b = |B|, c = |C|,
and d = |D|. Observe that each σ ∈ D contributes two elements to A∪B and each σ ∈ C
exactly one. However, elements σ ∈ A are the faces of either two simplices τ, τ′ ∈ D or
of simplices τ ∈ C and τ′ ∈ D. Either way they get counted twice. Hence we obtain

c + 2d = b + 2a.

But b is an odd number by the induction hypothesis and so is c. This shows the asser-
tion for all dimensions.

In Figure 8.5 we demonstrate the lemma with respect to different Sperner label-
ings on our subdivisions. For the Sperner labeling f3 we see that all triangles obtain
all colors. Observe that this is not possible for Bary(Δ2).

We have already mentioned that Sperner’s lemma has rich applications in math-
ematics. We end this section by presenting two of them. First, we state that Sperner’s
lemma is equivalent to a famous theorem by L. E. J. Brouwer (1881–1966):

Theorem 8.16 (Brouwer fixed point theorem). Any continuous map f :Dn → Dn has a
fixed point. Here Dn = {x ∈ ℝn | ‖x‖ ≤ 1}.
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0 2

1

2
1 1

0
(a) Sperner labeling f on Bary(Δ2)

0 2

1

0 1

2

0

1

2

1

0 2
(b) Sperner labeling f1 on χ(Δ2)

0 2

1

0 2

1

0

1

1

2

2 0
(c) Sperner labeling f2 on χ(Δ2)

0 2

1

2 0

1

1

0

1

2

2 0
(d) Sperner labeling f3 on χ(Δ2)

Figure 8.5: Examples of Sperner labelings f , f1, f2, f3.

The second application we would like to give here is the board game Hex, see Fig-
ure 8.6, for two players. Here, in each turn a player places a stone in his or her color on
an arbitrary hexagon upon the board. The game ends if all stones are placed and/or a
player wins if he or she obtains a connected path from his or her side to the opposite
side. The hexagons of the four corners belong to both players.

Theorem 8.17. The game of Hex always has a winner.

We would also like to hint at [15] that shows how one can prove Hall’s Marriage
Theorem 5.35 using Sperner’s lemma. See also [6] for the other direction.

8.3 Simplicial Homology

We now discuss an algebraic tool to determine the shape of a simplicial complex that
is called simplicial homology. Again, we will work completely combinatorially and
define our theory for abstract simplicial complexes. However, we first need to enhance
them with a notion of orientation.
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Figure 8.6: The game of Hex.

Definition 8.18. An ordered abstract simplicial complex is an abstract simplicial com-
plex K with a total order on its vertex set K(0).

We remark that if the vertex set of an abstract simplicial complex K is [n], we have
a total order inherited from the natural numbers.

Definition 8.19. Let K be an ordered abstract simplicial complex and σ = (v0, . . . , vn)
be an ordered n-simplex, that is, v0 < ⋅ ⋅ ⋅ < vn. We define the nth boundary 𝜕n(σ) as
follows:

𝜕n(σ) =
n
∑
i=0
(−1)i(v0, . . . , v̂i, . . . , vn)

where v̂i says that vi should be omitted.

We next define the group of n-chains which are instances of free Abelian groups.
We recall Remark 4.2 where we described some fundamental definitions and facts
in group theory. In addition to those we need some more notations in the following.
A group G is called free Abelian of rank n, n ∈ ℕ ∪ {0}, if G is isomorphic toℤn. Recall
that the Cartesian productℤn is an Abelian group with componentwise addition, that
is,

(z1, . . . , zn) + (u1, . . . , un) = (z1 + u1, . . . ., zn + un).

In general, the rank of a finitely generated group G is the minimal cardinality of a
generating set of G and is denoted by rk(G).

In Chapter 4 we have already seen how to present a group G with respect to a set
of generators X and defining relations R, that is, G = ⟨X | R⟩. If our group G is Abelian
we use G = ⟨X | R⟩ab to denote that G has generators X and its set of defining relations
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is the union of R and the commutators. As a prototypical example we consider

ℤ ×ℤ = ⟨x, y | xy = yx⟩ = ⟨x, y | ⟩ab.

Definition 8.20. Given an ordered abstract simplicial complex K. Then its nth chain
group Cn(K) is the free Abelian group generated by the ordered n-simplices.

We look at the boundary map again. As we apply it to n-simplices we can linearly
extend it to the nth chain group of a simplicial complex K and thus obtain a map:

𝜕n:Cn(K)→ Cn−1(K).

We check the following assertion that will be of use when we take the quotient of
certain subgroups of Cn(K).

Lemma 8.21. For an n-simplex σ = (v0, . . . , vn) ∈ K we have (𝜕n−1 ∘ 𝜕n)(σ) = 0.

Proof. The proof is a direct calculation:

𝜕n−1(𝜕n(σ)) = 𝜕n−1(
n
∑
i=0
(−1)i(v0, . . . , v̂i, . . . , vn))

=
n
∑
i=0
(−1)i𝜕n−1(v0, . . . , v̂i, . . . , vn)

=
n
∑
i=0
(−1)i(

i−1
∑
j=0
(−1)j(v0, . . . , v̂j, . . . , ̂vi, . . . , vn)

+
n
∑
j=i+1
(−1)j−1(v0, . . . , v̂i, . . . , v̂j, . . . , vn))

= ∑
0≤k<i≤n
((−1)k+l + (−1)k+l−1)(v0, . . . , v̂k , . . . , v̂l, . . . , vn)

= 0.

We define two more groups associated to Cn(K) as well as their quotient.

Definition 8.22. Let K be an ordered abstract simplicial complex. Then we define
1. the nth cycle group Zn(K) as ker 𝜕n,
2. the nth boundary group Bn(K) as im 𝜕n+1, and
3. the nth homology group Hn(K) as Zn(K)/Bn(K).

Note that a factor group is not necessarily well-defined, also see Remark 4.2. How-
ever, as Zn(K) and Bn(K) are subgroups of Abelian groups we just need to check that
Bn(K) is a subset of Zn(K) but this is just the assertion of Lemma 8.21.

We will now study a collection of examples.
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Example 8.23.
1. Consider the simplicial complex K1 = {{0}, {1}, {2}, 0} of three isolated vertices. We

immediately see that we have no simplices in dimensions 1 or higher. Hence we
just calculate ker 𝜕0 and this trivially consists of linear combinations of the ver-
tices (0), (1) and (2). Hence Hn(K) = {0} for all n ̸= 0 and

H0(K) = ⟨(0), (1), (2) | ⟩ab ≅ ℤ
3.

2. Nowwe consider the abstract simplicial complexwhere the three vertices ofK1 are
connected, that is, a hollow triangle. We set 𝜕Δ2 = {{0, 1}, {1, 2}, {0, 2}, {0}, {1}, {2}, 0}
andwrite (vw) for the ordered simplex (v,w), v < w. This timewe need to calculate
which 1-chains are cycles. We have

𝜕1(a(01) + b(12) + c(02)) = a(1) − a(0) + b(2) − b(1) + c(2) − c(0)
= −(a + c)(0) + (a − b)(1) + (b + c)(2)

= 0

if and only if a = −c, a = b, and b = −c because (0), (1), (2) cannot cancel each
other. That is, we haveH1(𝜕Δ2) = ⟨(01)+(12)−(02) | ⟩ab as all cycles aremultiples
of (01) + (12) − (02) and there are no relations (no 2-simplices). We immediately
see that Z0(𝜕Δ2) = ⟨(0), (1), (2) | ⟩ab, but this time we have boundaries 𝜕(01) =
(1) − (0), 𝜕(12) = (2) − (1) and 𝜕(02) = (2) − (0), and thus H0(𝜕Δ2) = ⟨(0), (1), (2) |
(0) − (1), (1) − (2), (0) − (2)⟩ab ≅ ⟨(0) | ⟩ ≅ ℤ.

3. We now consider the solid triangle Δ2. We see that this calculation is almost ver-
batim but we have to pay attention to 2-cycles and 1-boundaries. The calculation
𝜕2(012) = (12) − (02) + (01) ̸= 0 shows that we have no 2-cycles, but that the 1-cycle
from the previous example is now ‘bounded’. That is, H1(Δ2) = ⟨(01) + (12) − (02) |
(01)+(12)−(02)⟩ab ≅ {0}andalso all other homologygroupsbutH0(Δ2) ≅ ℤvanish.

We give geometric realizations of the complexes in Example 8.23 in Figure 8.7.

(a) K1 (b) 𝜕Δ2 (c) Δ2

Figure 8.7: Geometric realizations of the complexes in Example 8.23.

We just discuss the intuition we should have gained from the sample computation. In
the first example, the rank ofH0(K1)was equal to the number of vertices. In the second
example we have computed the homology of a connected complex, that is, there is a
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path from one point to another. The rank of H0(𝜕Δ2) reflected this fact. Also H1(𝜕Δ2)
counted the number of 1-dimensional ‘holes’ the complex has. In the third example
there was no homology at all expect for H0(Δ2) which again reflected the connected-
ness of the complex.

This observation is best phrased with the Betti numbers βi(K) = rk(Hi(K)), named
after B. Betti (1823–1892). In the above sense, β0 counts the number of connected com-
ponents, β1 the number of one-dimensional or circular holes, and β2 the number of
two-dimensional holes or voids. We will summarize, and make precise, these obser-
vations in the following theorem.

Theorem 8.24. Let k ≤ n and skk Δn = {σ ⊂ [n] | |σ| ≤ k + 1} be the k-skeleton of Δn.
Then
1. for 0 < d = n we have Hd(Δn) = {

{0} for d ̸= 0,
ℤ for d = 0,

2. for 0 < k < n we have Hd(skk(Δn)) =
{
{
{

{0} for d ̸= k, d ̸= 0,
ℤ for d = 0,
( nk+1) for d = k,

and

3. for k = 0 we have Hd(sk0 Δn) = {
ℤn+1 for d = 0,
{0} for d ̸= 0.

Theorem 8.24.1 follows from the fact that the standard simplex is an instance of
a cone, that is a simplicial complex K with a vertex v ∈ K(0) such that for σ ∈ K we
also have {v}∪σ ∈ K, and these have trivial homology but in degree 0. Theorem 8.24.3
is immediate and Theorem 8.24.2 follows from the beautiful Euler–Poincaré formula,
named after L. Euler (1707–1783) and J. H. Poincaré (1854–1912):

Theorem 8.25 (Euler–Poincaré). For a simplicial complex K of dimension n we have
n
∑
i=0
(−1)iK(i) =

n
∑
i=0
(−1)iβi(K).

We leave the proof as an exercise. We are now ready to prove Theorem 8.24.2.

Proof. We assume k = d and derive from Theorem 8.25 that

1 + (−1)kβk(K) =
k
∑
i=0
(−1)i(n + 1

i + 1
)

= 1 + (−1)k( n
k + 1
),

where the last equality follows from induction, and hence βk(K) = ( nk+1), that is,
Hk(skk(Δn)) = ℤ(

n
k+1).

We close this section with two more examples that we will compute in a different
way and this way gives an outlook to the recent field of the discrete Morse theory.

Consider again the simplicial complex K2 of Example 8.2.2. Just by looking at its
geometric realization we see that the complex is connected and has a 1-dimensional
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hole. We already might feel that the solid triangle does not add to homology. Hence,
we conjecture that the homology groups will be H1(K) ≅ H0(K) ≅ ℤ and all other ho-
mology groups will vanish. A topological way to justify this observation is the concept
of deformation retracts that we will not discuss. However, we will quote a main defi-
nition of discrete Morse theory that will shorten our computation and we follow [20]
for the following definition and theorem, though in a special case.

Definition 8.26. Let P := P(K) be the poset of an abstract simplicial complex K. Then
we write x ≺ y if x < y and there is no z ∈ P with x < z < y. A matching on P is a
matchingM ⊂ E of the underlying graph G = (V ,E). We call a matching on P acyclic if
there are no edges e1 = {b1, b′1}, e2 = {b2, b

′
2}, . . . , en = {bn, b

′
n}, n ≥ 2, and no chain

b1 ≻ b
′
1 ≺ b2 ≻ b

′
2 ≺ ⋅ ⋅ ⋅ ≺ bn ≻ b

′
n ≺ b1.

If for P such an acyclic matching exists, we call the unmatched simplices critical.
We give the following special case of a main theorem of discrete Morse theory, see for
instance Theorem B in [20], in order to keep our exposition at a purely combinatorial
and simplicial setting.

Theorem 8.27. Let K be an abstract simplicial complex.
1. If K has a complete acyclic matching, then Hn(K) ≅ {0} for all n ̸= 0 and H0(K) = ℤ.
2. If K has an acyclic matching with all critical cells in dimension d, d ≥ 1, and their

number is l, then Hd(K) = ℤl, H0(K) ≅ ℤ and Hn(K) ≅ {0} for all n ̸= 0, d.
3. If K has an acyclic matching with all critical cells in even dimensions, then the ho-

mology is also concentrated in even dimensions.

We consider the following applications.

Example 8.28.
1. We consider the complex K2 and the acyclic matching on its face poset given in

Figure 8.8.
We conclude by Theorem 8.27.2 that H1(K2) ≅ ℤ ≅ H0(K2) and Hn(K2) ≅ {0} for all
n ̸= 0, 1.

2. We consider Δ3 and the acyclic matching in Figure 8.9. We conclude by Theo-
rem 8.27.1 that Hn(Δ3) ≅ {0} for all n ̸= 0 and H0(Δ3) ≅ ℤ.

The face poset P(Δ3) and the partially ordered subset of P(K2) that corresponds to
the copy of Δ2 are instances of Boolean algebras that we will consider in Chapter 11.

This section just gave a little insight into simplicial homology theory and a spe-
cial case of an important theorem in discrete Morse theory. In particular we have only
considered the so-called homology with integer coefficients and just applied discrete
Morse theory to the purely simplicial setting. Just going beyond these restrictions gives
a much richer setting to investigate the shape of data. Furthermore, many algebraic,
combinatorial or topological theories that are in connection with homology theories
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0 1

2

3

01 12 02 03 23

012

0 1 2
3

0

Figure 8.8: Acyclic matching for the complex K2.

0

1 2

3

01 02 03
12 13

0 1 2 3

0

23

012 023 013 123

0123

Figure 8.9: Acyclic matching for the complex Δ3.

are out of the scope of our book. Our aim here is just to equip the reader with some
intuition that will be helpful to understand the following section.

8.4 Persistent Homology

In the last section we have settled the theory and intuition to study and understand
first examples and applications in the emerging field of topological data analysis.
Here, we aim to understand data in the form of a point cloud in a metric space, as-
sociate to it a family of simplicial complexes and study its homology. These results
then are visualized in a suitable way such that we read off so-called persistent fea-
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tures of the data and give a conjecture about its shape. This procedure is sometimes
referred to as the ‘TDA pipeline’.

We first gather the remaining notions and then discuss an instructive example.

Definition 8.29. A (finite) filtration of an abstract simplicial complex K is a family
{K0, . . . ,Kn} of simplicial complexes with the property

0 = K0 ⊂ K1 ⊂ ⋅ ⋅ ⋅ ⊂ Kn−1 ⊂ Kn = K.

We consider an example in Figure 8.10.

Figure 8.10: Filtration of a complex.

We recall the notion of a metric space.

Definition 8.30. Let X be set. A map d:X × X → ℝ is called a metric on X if for all
x, y, z ∈ X we have:
1. d(x, y) ≥ 0 and d(x, y) = 0 if and only if x = y,
2. d(x, y) = d(y, x),
3. d(x, y) ≤ d(x, z) + d(z, y), the triangle inequality.

The pair (X, d) is called ametric space.

We will discuss metric spaces in the exercises. Now we define an abstract sim-
plicial complex associated to a point cloud that we consider as a finite metric space
(X, d).

Definition 8.31. Let (X, d) be a finite metric space and ε > 0. Then we define the ab-
stract simplicial complex Vε, the Vietoris–Rips complex after L. Vietoris (1891–2002)
and E. Rips (born 1948), with respect to ε as follows: The vertex set of Vε is X and the
simplex set is {σ ⊂ X | d(x, y) < ε for all x, y ∈ σ}.

Wewill show that for a finite sequence ε1, . . . , εn the associated Vietoris–Rips com-
plexes yield a filtration.

Lemma 8.32. For ε1 < ε2 we have Vε1 ⊂ Vε2 .

Proof. If σ ∈ Vε1 , then σ ∈ Vε2 , because for x, y ∈ σ we have d(x, y) < ε1 < ε2.
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(a) ε1 = 0.8
(b) ε2 = 1

(c) ε3 = 1.8 (d) ε4 = 2.25

Figure 8.11: Examples of (underlying graphs) of Vietoris–Rips complexes.

We give an example of such a filtration in Figure 8.11.
Now, a naive approach would be to compute homology of each Vr . However, per-

sistant homology ismore subtle andmakes use of the filtration property. The inclusion
of the complexes gives rise to maps f i,jp :Hp(Ki)→ Hp(Kj) for i ≤ j.

Definition 8.33. Given a filtration {Ki}0≤i≤n of a simplicial complexK, we define its pth
persistant homology group as H i,j

p (K) = Zp(Ki)/(Bp(Kj) ∩ Zp(Ki)) for i ≤ j.

We can interpret H i,j
p (K) as the group of all homology classes of Ki that are still

present in Kj. This enables us to record which topological features, in terms of homol-
ogy generators, persist.

We use the following terms:

Definition 8.34. We say that a homology class [c] ∈ Hp(Ki)
1. is born in Ki if [c] ∉ H i−1,i

p (K), and
2. dies in Kj if f i,j−1p ([c]) ∉ H

i−1,j−1
p (K) and f i,jp ([c]) ∈ H

i,j
p (K).

In the case of the Vietoris–Rips complexes we say that a class [c] that is born in
Vε1 and that dies in Vε2 has persistance p([c]) = ε2 − ε1. The persistance of homology
generators is often visualized in so-called barcode, compare Figure 8.12.
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β0

31 2 ε

β1

31 2 ε

Figure 8.12: Barcode for the running example.

Example 8.35. We discuss the barcode of our running example. We see that from the
beginning (V0 = 0) we have seven generators for the zeroth homology group. But for
ε1 = 1 they all get identified, so six of them die at K2.

However, at K2 a generator for the first homology group is born that persists until
K4 where it becomes bounded. In this situation one would hence conjecture that the
point cloud comes from a circle as its features persist.

We have seen a glimpse of topological data analysis that is a very active field
of research and also developed outside academia with a plethora of real world ap-
plications. From the mathematical point of view we would just like to mention that
there are many variants (alternative complexes to construct, different metrics to use,
or even a manipulation of the initial point cloud itself) that are suited for certain sit-
uations.

A big topic within TDA is the computability of persistant homology within a
reasonable amount of time. Here, the project Ripser seems to be one of the most
widely used packages for the computation of barcodes using the Vietoris–Rips com-
plexes.

 EBSCOhost - printed on 2/10/2023 4:13 PM via . All use subject to https://www.ebsco.com/terms-of-use



Exercises | 221

Exercises

1. The mesh of a geometric simplicial complex K is the length of its longest edge.
Let BaryN (Δn) be the Nth iterated barycentric subdivision of Δn and let mN de-
note its mesh. Prove that the barycentric subdivision is mesh-shrinking, that is,
limN→∞mN = 0.

2. Show that H0(K) is always free Abelian for a simplicial complex K.
3. Find a simplicial complex K with H1(K) = ℤ/2ℤ ⊕ℤ.
4. Show the induction in the proof of Theorem 8.24.
5. Prove Theorem 8.25.
6. Recall that a simplicial complex K is a cone if there exists a vertex v ∈ K(0) with

the following property: If σ ∈ K, then σ ∪ v ∈ K. Show that for a cone K we have
H0(K) ≅ ℤ and Hn ≅ {0} for all n ̸= 0.

7. Show that in the definition of a metric space, the property d(x, y) ≥ 0 follows from
the other axioms.

8. Show that, if d:X × X → ℝ is a metric, then also
(a) k ⋅ d with k > 0 is a metric,
(b) d

1+d is a metric.
9. Prove that d:ℝ × ℝ→ ℝ with d(x, y) = ln(1 + |x + y|) is a metric on ℝ.
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9 Combinatorics and Combinatorial Problems

9.1 Combinatorics

Combinatorics is the area of mathematics that is primarily concerned with counting
and the structure of finite sets. Finite probability theory that we examine in the next
chapter is heavily dependent on combinatorics and combinatorial techniques. A com-
binatorial problem is one that involves combinatorics. Combinatorial problems arise
in many areas of both pure and applied mathematics. The portion of combinatorics
that deals with counting and finding the sizes of finite sets is usually referred to as
enumerative combinatorics.

In this chapter we give some overview about enumerative combinatorics. We start
with elementary counting problems, consider the sieve method, partitions of sets and
numbers, recursion and generating functions. This is just an overview of some prin-
ciples and material a mathematics teacher and working mathematicians just should
know. Some people consider graph theory as part of combinatorics but we already
considered some of the most important principles in graph theory in Chapter 5.

9.2 Basic Techniques and the Multiplication Principle

For the most part of this chapter we will consider finding the sizes of finite sets and
combinations of finite sets. We make the following notational conventions.

If {a1, . . . , an} is a finite indexed set of real numbers then

n
∑
i=1

ai = a1 + a2 + ⋅ ⋅ ⋅ + an

is the sum of these elements and

n
∏
i=1

ai = a1 ⋅ a2 ⋅ ⋅ ⋅ an

is the product of these elements. Then we note that

n
∑
k=m

ak = 0 and
n
∏
k=m

ak = 1

ifm, n ∈ ℕ0 andm > n.
IfM is a set then |M| denotes its cardinality or the number of elements inM. Now

letM1, . . . ,Mr be finite sets. We have the following straightforward results.

https://doi.org/10.1515/9783110740783-009
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(1)



r
⋃
k=1

Mk


=

r
∑
k=1
|Mk |

if the setsMi are pairwise disjoint, that is,Mi ∩Mj = 0 for i ̸= j.
(2)

|M1 ×M2 × ⋅ ⋅ ⋅ ×Mr | =
r
∏
k=1
|Mk |.

The first of these is called the basic rule of summation or summation rule. The contra-
position of the rule of summation is the rule of difference or difference rule. It is the
idea that if we have nways of doing something where exactlym of the nways have an
additional property, then n −m ways do not have this additional property.

The second is called the multiplication principle or multiplication rule and is the
basic idea in most enumerative techniques. It is usually described in terms of choices.

Suppose a choice is to be made in two steps. If the first step hasm choices and the
second step has n choices then there is a total of mn choices, that is, we multiply the
numbers of choices at each step.

The idea in the multiplication principle can be extended to more than two steps.
We give some illustrations.

Example 9.1. There are 8 applicants for one job and 12 applicants for a second job. In
how many ways can these people be hired?

Here the final choice is in two steps, fill the first job and then fill the second. In the
first case there are 8 choices while in the second we have 12. Therefore by the multi-
plication principle there are a total of 8 ⋅ 12 = 96 choices.

Example 9.2. A hospital cross-classifies patients in three ways: gender, age and type
of payment. There are 2 gender classifications, 6 age classifications and 4 payment
type classifications. In how many ways can the patients be cross-classified?

Here a cross-classification consists of a choice for gender, followed by a choice for
age, followed by a choice for type of payment. There are 2 choices in the first step, 6 in
the second and 4 in the third. Thus by themultiplication principle there are 2 ⋅6 ⋅4 = 48
cross-classifications.

Example 9.3. The elements of the set {A,B} can be combined with the elements of the
set {1, 2, 3} in six different ways, see Figure 9.1.

The multiplication principle is a special case of a more general counting tech-
nique known as a tree diagram. In this type of diagram, the decision maker or choice
maker is represented as the trunk of a tree. The initial choices are represented by
branches. A branch terminates at a node where further branching is possible. If there
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A A2

A1

A3

B B2

B1

B3

Figure 9.1: Combination of two sets.

is no branching at a node it is called a leaf . The total number of leaves gives the total
number of choices. We illustrate this in the example below.

Example 9.4. Aproduction itemhas 4weight classifications,W1,W2,W3,W4, 3 length
classifications, L1, L2, L3, and 2 hardness classifications, H1, H2. The heaviest weights
W1, W2 are made with all lengths and hardnesses while the lighter weights are only
made inL3;W3 ismadewithbothhardness classificationsbutW4 is onlymadewithH2.
How many cross-classifications are there of this item?

The tree diagram for this situation is given in Figure 9.2 below. At the first stage
we can make all 4 weight choices but at the first set of nodes the possible branchings
are different. From theW1 andW2 nodes all 3 length choices are possible but at theW3
andW4 nodes only the L3 choice is possible. Finally, at branches which begin withW1
orW2 both hardness classifications are possible while at branches beginning withW4
only H2 is possible.

From the tree we see that there are 15 cross-classifications. This is found by count-
ing the number of leaves on the tree. Each path – such as W1L1H1 – corresponds
to a cross-classification. The example given by W1L1H1 corresponds to the cross-
classification of weight factorW1, length factor L1 and hardness factor H1.

There are some basic results that follow directly from the above.

Theorem 9.5. Let R be a relation between two finite sets M and N, that is, R ⊂ M × N.
For x ∈ M let r(x) be the number of y ∈ N which are related to x, that is,

r(x) = {y ∈ N | (x, y) ∈ R}
.

Analogously, let s(y), y ∈ N, be the number of x ∈ M which are related to y. Then

∑
x∈M

r(x) = ∑
y∈N

s(y).

Proof. For (x, y) ∈ M × N we define

a(x, y) = {
1, if (x, y) ∈ R,
0, if (x, y) ∉ R.
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Then

r(x0) = ∑
y∈N

a(x0, y), x0 ∈ M,

and

s(y0) = ∑
x∈M

a(x, y0), y0 ∈ N .

Hence we get

∑
x∈M

r(x) = ∑
(x,y)∈M×N

a(x, y) = ∑
y∈N

s(y).

W4

L3

H2

W2

W1

W3

L3

L1

H1 H2

L1

H1

L2

H2

H1

L2

L3

H1

H2

L3

H2

H2

H1

H2

H1

H2

H1

Figure 9.2: Tree diagram.
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This double counting, or counting in two ways, is a combinatorial proof technique
for showing that two expressions are equal by demonstrating that they are two ways
of counting the size of one set. In this method one describes a finite set X from two
perspectives, leading to two expressions for the size ofX. Since both expressions equal
the size of the same set X, they are equal to each other.

Remarks 9.6.
(1) Let M = {x1, x2, . . . , xm} and N = {y1, y2, . . . , yn} be given by a concrete listing. The

characteristic function a : M ×N → {0, 1} for the subset R ⊂ M ×N corresponds to
an (m × n)-matrix over {0, 1}, the incidence matrix of the relation R.
The proof of Theorem 9.5 implies that one goes once column-by-column and the
other time row-by-row through the matrix.

(2) Counting arguments are often used to give existential (non-constructive) proofs.
The basic principle here is often the drawer principle of Dirichlet (pigeonhole prin-
ciple):
If one distributes n objects into k drawers and if n > k, then there exists one drawer
which contains at least two objects.

Let us state this principle in a mathematical way.

Theorem 9.7. Let f : X → Y be a map between two finite sets, and let |X| > |Y |. Then
there exists a y ∈ Y with |f −1(y)| ≥ 2.

Example 9.8.
(1) A library hasmore than4000books. None of the books hasmore than4000pages.

Then there are (at least) two books with the same number of pages.
(2) The friendship problem. In each set ofn ≥ 2 persons there are at least twopersons

which have the samenumber of friends (herewe assume the relation of friendship
is symmetric).

Proof. If a person has n − 1 friends, then each person is his/her friend, hence no-
body is friendless. This means, that 0 and n − 1 do not occur simultaneously as
numbers of friends. Hence we have to distribute only n − 1 possible numbers of
friends to n persons. By the principle of Dirichlet, at least two persons have the
same number of friends.

(3) In each set A ⊂ {1, 2, . . . , 2m} with at least m + 1 elements there are two numbers
a, b such that a | b, that is, a is a divisor of b.

Proof. Let {a1, a2, . . . , am+1} ⊂ M. Wewrite each ai in the form ai = 2riqi with qi odd.
There are onlym odd numbers inM. Hence, by the principle of Dirichlet, at least
one of the qi occurs for two distinct ai and aj, that is, ai = 2riq and aj = 2rjq with
q = qi = qj. If ai < aj, then ai | aj.
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9.3 Sizes of Finite Sets and the Sampling Problem

Dealingwith counting in finite sets is related to twobasic problems: the sampling prob-
lem and the occupancy problem. They turn out to be equivalent. We describe the sam-
pling problem first.

Themultiplication principle can be used to determine the number of ways one set
of items can be sampled out of a larger set of items. Specifically, we suppose that we
have a total of n items and k items are to be sampled from them. The question of inter-
est is in how many ways this can be done. The answer to this depends on the manner
in which the sampling is done. In particular, the sampling can be done with replace-
ment, meaning the items are put back after they are sampled, orwithout replacement,
meaning they are not put back. In addition, we can have ordered samples, that is, sam-
ples in which the ordering of the sample is relevant, or unordered samples where the
ordering is irrelevant. Therefore to answer the question of howmanyways x items can
be sampled from n items, we must consider four situations:
(1) Case 1. Ordered Samples Without Replacement.
(2) Case 2. Unordered Samples Without Replacement.
(3) Case 3. Ordered Samples With Replacement.
(4) Case 4. Unordered Samples With Replacement.

We concentrate first on the case of sampling without replacement. The number of or-
dered samples of k items that can be taken from n items without replacement is called
the number of permutations of k items out of n. This is denoted by nPk or P(n, k). An
ordered sample of k items taken from n items is called a k-permutation.

The number of unordered samples of k items that can be taken from n items with-
out replacement is called the number of combinations of k items out of n. This is de-
noted by nCk, or most commonly by (nk), which is called a binomial coefficient because
these numbers appear in the expansion of a binomial expression (a + b)n. An un-
ordered sample of k items taken from n items is called a k-combination.We summarize
these definitions:

nPk = number of permutations of k objects out of n
= number of ways to sample k objects out of n objects
without replacement but with order.

nCk = (
n
k
) = number of combinations of k objects out of n

= number of ways to sample k objects out of n objects
without replacement and without order.
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The multiplication principle can be applied to determine formulas for both per-
mutations and combinations. First of all,

nPk = n(n − 1)(n − 2) ⋅ ⋅ ⋅ (n − k + 1).

This expression nPk = (n)(n−1) ⋅ ⋅ ⋅ (n−k+1) is also referred to as the falling factorial
and denoted (n)k .

Example 9.9. Compute 7P3.
From the formula for nPk we have 7P3 = 7 ⋅ 6 ⋅ 5 = 210. Thus there are 210 differ-

ent ways to choose ordered samples of size 3 from a collection of 7 objects without
replacement.

Example 9.10. Howmany 1–2–3 finishes are possible in a horse race with 11 entries?
A 1–2–3 finish consists of a choice of 3 objects from the total of 11 objects. The

order is certainly relevant and therefore the number of these choices is

11P3 = 11 ⋅ 10 ⋅ 9 = 990.

Example 9.11. Howmany unordered samples of size 6 are there out of 49 numbers?
Here the result is 49C6 = (496 ) = 1398316.

If all n objects are chosen from the total of n objects what is really being done is
that the items are being rearranged. Thus nPn counts the total possible rearrangements
of n objects. We see that

nPn = n(n − 1)(n − 2) ⋅ ⋅ ⋅ 1.

This expression is given the name n factorial and is denoted by n!. Then

n! = n(n − 1)(n − 2) ⋅ ⋅ ⋅ 1 = number of ways to rearrange n objects.

Example 9.12.
(a) 6! = 6 ⋅ 5 ⋅ 4 ⋅ 3 ⋅ 2 ⋅ 1 = 720, so there are 720 different ways to rearrange 6 objects.
(b) 3! = 6 so there are 6 different ways to rearrange 3 objects. For example, suppose

the 3 objects were A,B,C. Then the six rearrangements are ABC, ACB, BAC, BCA,
CAB and CBA.

To see how the formula for permutations is derived, consider sampling k objects
from n objects. At the first step there are n choices. At the second there are only (n − 1)
choices since the sampling is done without replacement. At the third step there are
(n− 2), and so on down for k choices, the final number being (n− k + 1). Finally, by the
multiplication principle, these numbers would be multiplied, yielding the result.
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By algebraic manipulation it is clear that the formula for permutations can also
be expressed in factorial notation as

nPk =
n!
(n − k)!

= (n)k .

To determine a method for computing combinations we reason in the following
manner. Each choice of an unordered sample of k objects from n objects can be rear-
ranged in k! different ways. Therefore the total number of rearrangements multiplied
by the total number of unordered samples will give the total number of ordered sam-
ples. Writing this in terms of permutations and combinations we have nCk ⋅ k! = nPk .
Solving this for nCk gives us the following formula:

nCk = (
n
k
) = nPk

k!
=
n(n − 1) ⋅ ⋅ ⋅ (n − k + 1)

k!
=

n!
k!(n − k)!

.

Example 9.13. Compute (94). From the formula for nCk,

(
9
4
) = 9P4

4!
=
9 ⋅ 8 ⋅ 7 ⋅ 6
4 ⋅ 3 ⋅ 2 ⋅ 1

= 126.

Example 9.14. Howmany 3-person committees can be chosen from among 8 people?
In choosing a committee the order of choice is irrelevant so that we are choosing

an unordered sample of size 3 from 8 objects without replacement. The number of
ways to do this is then 8C3, and therefore the number of possible committees is

8C3 = (
8
3
) =

8 ⋅ 7 ⋅ 6
3 ⋅ 2 ⋅ 1
= 56.

We now turn our attention to sampling with replacement, that is, where the ob-
jects are replacedafter eachpick. If order counts, thenat every stage there aren choices
and there are a total of k stages. Therefore by the multiplication principle the number
of ordered samples of size k chosen from n objects with replacement is given by

nk = number of ordered samples of size k
chosen from n objects with replacement.

We call an ordered sample of size k chosen with replacement from n objects a
k-variation.

In a somewhatmore complicatedmanner, the number of unordered samples with
replacement is determined by

(
n + k − 1

k
) = number of unordered samples of size k

chosen from n objects with replacement.
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We call an unordered sample of size k chosen with replacement from n objects a
k-repetition.

To see how this last formula is derived, consider, without loss of generality,
M = {1, 2, . . . , n}. Then M is ordered in a natural manner. We write respectively each
k-repetition, which is unordered, as a monotonically decreasing sequence

a1 ≤ a2 ≤ ⋅ ⋅ ⋅ ≤ ak , where a1, a2, . . . , ak ∈ M.

The assignment

(a1, a2, . . . , ak) → (a1 + 1, a2 + 2, . . . , ak + k)

defines a map of the set N1 of the monotonically increasing k-sequences of elements
ofM onto the setN2 of strictlymonotonically increasing k-sequences of elements from
{2, 3, . . . , n, n + 1, . . . , n + k}. This map is bijective, and N2 corresponds to the set of all
k-subsets of {2, 3, . . . , n + k}.

We now give a short recapitulation of the different sampling problems in the form
of the following theorem.

Theorem 9.15. Let M be a set with |M| = n and k ∈ ℕ with 1 ≤ k ≤ n.
(1) A k-combination of M is a k-subset of M. Their number is (nk) = nCk .
(2) A k-permutation of M is an ordered k-tuple of distinct elements fromM. Their num-

ber is

n!
(n − k)!

= n(n − 1) ⋅ ⋅ ⋅ (n − k + 1) = (n)k = (
n
k
)k! = nPk .

(3) A k-repetition of M is an unordered choice of k not necessarily distinct elements
from M. Their number is (n+k−1k ).

(4) A k-variation of M is an ordered k-tuple of elements fromM which are not necessar-
ily distinct. Their number is nk .

This is summarized in Table 9.1.

We close the section sizes of finite sets with three further examples.

Table 9.1: Summary of Theorem 9.15.

Choice of k elements from n elements unordered ordered

without replacement k-combination k-permutation
(nk) = nCk (n)k = nPk

with replacement k-repetition k-variation
(n+k−1k ) nk
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Example 9.16. LetM = {a, b, c}, n = |M| = 3 and k = 2. Then we get
(1) k-combination

ab
ac
bc

(2) k-permutation

ab ac
ba bc
ca cb

(3) k-repetition

aa bb
ab bc
ac cc

(4) k-variation

aa ba ca
ab bb cb
ac bc cc

Example 9.17.
(1) Suppose 5 members of a group of 12 are to be chosen to work as a team. The num-

ber of distinct 5-person teams is (125 ) = 792.
(2) Now suppose two members A and B of the group of 12 refuse to work together on

a team. The number of distinct 5-person teams that do not contain both A and B
is (125 ) − (

10
3 ) = 792 − 120 = 672, where (

10
3 ) is the number of distinct 5-person teams

that contain both A and B (difference rule).
(3) Now suppose the group of 12 consists of 5 men and 7 woman.

The number of 5-person teams that contain 3 men and 2 women is

(
5
3
) ⋅ (

7
2
) = 210

(multiplication rule).
The number of 5-person teams that contain at least one men is (125 ) − (

7
5) = 792 −

21 = 771, where (75) is the number of 5-person teams that do not contain any man
(difference rule).
Hence, the number of 5-person teams that contain at most oneman is (75)+(

5
1)(

7
4) =

21 + 175 = 196. Here (51)(
7
4) is the number of 5-person teams with one man (multi-

plication rule).
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Example 9.18. Given a dice with 6 numbers, the number t of possible occurrences in
case of five times rolling is as follows:
(1) Without chronological order

t = (6 + 5 − 1
5
) = (

10
5
) = 252;

(2) With chronological order

t = 65 = 7776.

9.3.1 The Binomial Coefficients

The number of combinations of k objects out of n is given by the binomial coeffi-
cients (nk). These have many important properties and applications that we explore
in this subsection.

The basic properties of the binomial coefficients are:
(1) (nk) =

n!
k!(n−k)! for k, n ∈ ℕ0, n ≥ k;

(2) (nk) = 0 for k, n ∈ ℕ0, n < k;
(3) (n0) = (

n
n) = 1 for n ∈ ℕ0;

(4) (nk) = (
n

n−k) for k, n ∈ ℕ0, k ≤ n.

We have the following recursion formula.

Theorem 9.19 (Recursion formula).

(
n + 1
k + 1
) = (

n
k + 1
) + (

n
k
).

A proof is given in [12, Chapter 12.2].
This formula can be visualized through Pascal’s triangle which is named after

B. Pascal (1623–1662).

(00)

(10) (
1
1)

(20) (
2
1) (

2
2)

(30) (
3
1) (

3
2) (

3
3)

(40) (
4
1) (

4
2) (

4
3) (

4
4)

(50) (
5
1) (

5
2) (

5
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4) (

5
5)
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and so on; or in concrete numbers

1

1 1

1 2 1

1 3 3 1

1 4 6 4 1

1 5 10 10 5 1

and so on.
The binomial coefficients can be used to count the number of subsets of size k in

a set with n elements.

Theorem 9.20. Let M be a finite set with |M| = n, n ∈ ℕ0, elements. A subset of M with
exactly k elements is called a k-subset of M. The number of k-subsets of M is (nk).

Proof. Let a(n, k) be the number of k-subsets ofM.
Certainly, a(0, k) = (0k) for k > 0 and a(n,0) = 1 = (n0) for all n. In particular,

the statement holds for n = 0. Now if |M| = n + 1 and x ∈ M, then for an arbitrary
(k + 1)-subset N exactly one of the following holds:
(1) x ∉ N;
(2) x ∈ N .

If x ∉ N, then N is a (k + 1)-subset ofM \ {x}.
There is a bijection between the (k + 1)-subsets of M which contain x and the

k-subsets ofM \ {x}.
Hence we have

a(n + 1, k + 1) = a(n, k + 1) + a(n, k).

Therefore, the a(n, k) satisfy the same recursion formula and the same initial condi-
tions as the binomial coefficients (nk). Hence a(n, k) = (

n
k).

Remark 9.21. The idea to get a suitable recursion formula for numbersan by case anal-
ysis is typical for counting problems.

The numbers (nk) are called binomial coefficients because of their role in the bino-
mial theorem, or binomial expansion.
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Theorem 9.22 (Binomial formula). Let R be an integral domainwith unity 1 and n ∈ ℕ0.
Then

(a + b)n =
n
∑
k=0
(
n
k
)akbn−k for a, b ∈ R.

Recall that an integral domain with unity 1 is a commutative ring R with a unity 1 ̸= 0
and the property that if ab = 0 ∈ R then a = 0 or b = 0.

Proof. This is correct for n = 0 because x0 = 1 for all x ∈ R by definition.
Let now n > 0. By the expansion of

(a + b)n = (a + b)(a + b) ⋅ ⋅ ⋅ (a + b)⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
n-times (a+b)

we have to decide either for a or b in each factor (a + b). If we decide in the factors
with the numbers 1 ≤ i1 < i2 < ⋅ ⋅ ⋅ < ik ≤ n for a, then each such choice corresponds
uniquely to a k-subset of {1, 2, . . . , n}. For this we have by Theorem 9.20 exactly (nk) pos-
sibilities. If we decide k times for a, then b occurs exactly n − k times. Hence, we have
exactly (nk) summands akbn−k . This means for the whole sum that

(a + b)n =
n
∑
k=0
(
n
k
)akbn−k .

From the binomial theorem we can prove that the total number of subsets of a set
with n elements is 2n.

Corollary 9.23. A set M with n elements, n ∈ ℕ0, has 2n subsets, that is,

𝒫(M)
 = 2

n if |M| = n.

Here 𝒫(M) is the power set ofM.

Proof. By Theorem 9.20, we get

𝒫(M)
 =

n
∑
k=0
(
n
k
)

and

n
∑
k=0
(
n
k
) = (1 + 1)n = 2n

by Theorem 9.22.
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Corollary 9.24. For all n ∈ ℕ we have

n
∑
k=0
(
n
k
)(−1)k = 0.

Proof. Take a = −1, b = 1 in Theorem 9.22.

Corollary 9.25.

(
m + n
m
) =

m
∑
k=0
(
m
k
)(

n
m − k
)

for all n,m ∈ ℕ0.

Proof. We apply Theorem 9.22 for both sides of the equation

(1 + t)m+n = (1 + t)m(1 + t)n

and compare the coefficients of tm.

Remark 9.26. We get

m
∑
k=0
(
m
k
)(

n
m − k
) =
↑

let j=m−k

m
∑
j=0
(

m
m − j
)(

n
j
) =

m
∑
k=0
(
m
k
)(

n
k
)

because ( mm−j) = (
m
j ).

9.3.2 The Occupancy Problem

The sampling problem is equivalent to the occupancy problem. Here we have n distin-
guishable cells and k particles. In how many ways can the particles be distributed in
the cells?

The solution to this is equivalent to sampling k objects out of n objects with the
following translations:

distinguishable particles ≡ ordered sample
with exclusion ≡ without replacement

This is illustrated in the following Table 9.2.
The occupancy problem plays a role in atomic structure, in particular, in find-

ing how electrons are distributed among the atomic orbitals. The names in the ta-
ble indicate the physical model for this: F. C. Maxwell (1831–1879), C. Boltzmann
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Table 9.2: Occupancy Problems.

Distribute k objects
in n cells

distinguishable
particles

indistinguishable
particles

without exclusion nk (n+k−1k ) with replacement
Maxwell–Boltzmann
statistics

Bose–Einstein
statistics

with exclusion nPk = (n)k nCk = (nk) without replacement
Fermi–Dirac statistics

ordered sample unordered sample sample k objects
out of n objects

(1849–1906), S. Bose (1894–1974), A. Einstein (1879–1974), E. Fermi (1901–1954), and
P. Dirac (1902–1984).

9.3.3 Some Further Comments

We have some further interpretations of the basic sampling formulas in terms of maps
between sets.

Let k, n ∈ ℕ.
(1) n!
(n−k)! = nPk is the number of all injective maps of k-set A into an n-set B. To see
this, consider, without loss of generality, A = {1, 2, . . . , k} and B = {a1, a2, . . . , an}.
For each a ∈ A there is an arrow starting at a, and for each b ∈ B, which is affected,
there is exactly one arrow ending at b. We have necessarily 1 ≤ k ≤ n.

⋅ ⋅ ⋅

a1

a2 a3 an ⋅ ⋅ ⋅

an

a1 a2 an−1

⋅ ⋅ ⋅

1

1. arrow

2. arrow

Figure 9.3: Injective maps.

There are n possibilities for the first arrow. There are n − 1 possibilities for the
second arrow. There are n − k + 1 possibilities for the kth arrow, see Figure 9.3.
Hence altogether

nPk = n(n − 1) ⋅ ⋅ ⋅ (n − k + 1) = (n)k .

 EBSCOhost - printed on 2/10/2023 4:13 PM via . All use subject to https://www.ebsco.com/terms-of-use



238 | 9 Combinatorics and Combinatorial Problems

Remark 9.27. If n = k, then each injective map f : A→ B is already bijective, and
there are n! bijective maps.
If A = B, then these form a group, isomorphic to the permutation group Sn. If
n > k, then (n)k may be considered as the number of k-tuples of B, in which all
elements are pairwise distinct (k-permutations of B).

Application. Pigeonhole principle
If |A| balls are put into |B| drawers, and if m ⋅ |B| < |A| < ∞, m ∈ ℕ, then there is
one drawer withm + 1 or more balls.

(2) nk is the number of allmaps froma k-set to an n-set. Let, without loss of generality,
A = {1, 2, . . . , k} and B = {a1, a2, . . . , an}.

⋅ ⋅ ⋅

1

a1 a2 an ⋅ ⋅ ⋅

k

a1 a2 an

⋅ ⋅ ⋅

Figure 9.4: All maps.

For each a ∈ A there are n possibilities to choose the image of a, and there are k
elements in A, hence we have

n ⋅ n ⋅ ⋅ ⋅ n⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
k times

= nk possibilities, see Figure 9.4.

Application. Let |M| = n. For each subset A ⊂ M there exists a unique character-
istic function

χA : M → {0, 1},

χA(a) = {
1, if a ∈ A,
0, if a ∉ A.

This means that there exists a bijection between𝒫(M) and the set𝒜 of maps from
M into {0, 1}. In particular,

𝒫(M)
 = |𝒜| = 2

n.

(3) (nk) = nCk is the number of injective, monotonically increasing maps from {1, 2, . . . ,
k} to {1, 2, . . . , n}.
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We necessarily have 1 ≤ k ≤ n. This we see as follows. We may order the images
f (i) = ai by size as

a1 < a2 < ⋅ ⋅ ⋅ < ak .

(4) (n+k−1k ) is the number of monotonically increasing maps from {1, 2, . . . , k} to
{1, 2, . . . , n}. This we see as follows.
As in part 3, we may order the images f (i) = ai by size, but the images this time
are not necessarily distinct so that

a1 ≤ a2 ≤ ⋅ ⋅ ⋅ ≤ ak .

Hence thenumber ofmonotonically increasingmaps from {1, 2, . . . , k} to {1, 2, . . . , n}
is equal to the number of k-repetitions of {1, 2, . . . , n}, which is (n+k−1k ).

9.4 Multinomial Coefficients

An extension of the binomial coefficients are themultinomial coefficientswhich count
the number of ways to partition a set with n elements into k subsets of respective sizes
n1, . . . , nk with n1 + ⋅ ⋅ ⋅ + nk = n.

Definition 9.28. Let n1, n2, . . . , nk ∈ ℕ0, k ∈ ℕ and n = n1 + n2 + ⋅ ⋅ ⋅ + nk . Then

(
n

n1, n2, . . . , nk
) =

n!
n1!n2! ⋅ ⋅ ⋅ nk!

is called themultinomial coefficient. If n = k +m, then

(
n

k,m
) = (

n
k
) = (

n
m
).

The following extension of the binomial theorem is called the multinomial theo-
rem.

Theorem 9.29 (Multinomial Theorem). Let x1, x2, . . . , xk , k ≥ 1, be elements of an inte-
gral domain with unity 1, and let n ∈ ℕ0. Then

(x1 + x2 + ⋅ ⋅ ⋅ + xk)
n = ∑

n1 ,n2 ,...,nk≥0
n1+n2+⋅⋅⋅+nk=n

(
n

n1, n2, . . . , nk
)xn11 x

n2
2 ⋅ ⋅ ⋅ x

nk
k .

Proof. The proof uses the binomial theorem (Theorem 9.22) and induction on k.
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First, for k = 1, both sides are equal xn1 since there is only one term n1 = n. For the
induction step, suppose the multinomial theorem holds for k. Then

(x1 + x2 + ⋅ ⋅ ⋅ + xk + xk+1)
n = (x1 + x2 + ⋅ ⋅ ⋅ + xk−1 + (xk + xk+1))

n

= ∑
n1+n2+⋅⋅⋅+nk−1+m=n

(
n

n1, n2, . . . , nk−1,m
)xn11 x

n1
2 ⋅ ⋅ ⋅ x

nk−1
k−1 (xk + xk+1)

m

by the induction hypothesis. Applying the binomial theorem to the last factor, we get

(x1 + x2 + ⋅ ⋅ ⋅ + xk + xk+1)
n

= ∑
n1+n2+⋅⋅⋅+nk−1+m=n

(
n

n1, n2, . . . , nk−1,m
)xn11 x

n2
2 ⋅ ⋅ ⋅ x

nk−1
k−1 ∑

nk+nk+1=m
(

m
nk , nk+1
)xnkk xnk+1k+1

= ∑
n1+n2+⋅⋅⋅+nk+1=n

(
n

n1, n2, . . . , nk
)xn11 x

n2
2 ⋅ ⋅ ⋅ x

nk+1
k+1 ,

which completes the induction. The last step follows because

(
n

n1, n2, . . . , nk−1,m
)(

m
nk , nk+1
) = (

n
n1, n2, . . . , nk+1

).

Theorem 9.30. Consider n objects of k varieties, where nj (not distinguishable) elements
from the jth variety exist (j = 1, 2, . . . , k). We call (n1, n2, . . . , nk) the specification of the n
objects. Then the number of the possible arrangements of the n objects as a n-sequence
is given by

(
n

n1, n2, . . . , nk
).

Proof. Consider a fixed specification (n1, n2, . . . , nk). Let a be the wanted number. If we
replace the n1 elements of the first variety by n1 distinguishable elements, then the
number of the possible arrangements increases by the factor n1!. The same holds if we
do that for all varieties, and we finally get a ⋅ n1! ⋅ n2! ⋅ ⋅ ⋅ nk! possibilities. Since now all
elements are distinct, we get

a ⋅ n1! ⋅ n2! ⋅ ⋅ ⋅ nk! = n!,

which gives

a = ( n
n1, n2, . . . , nk

).

Example 9.31. For four objects with specification (1, 1, 2), we have the following 12 ar-
rangements:

a b c c
a c b c
a c c b

b a c c
b c a c
b c c a

c b c a
c c a b
c c b a

c a b c
c a c b
c b a c.
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9.5 Sizes of Finite Sets and the Inclusion–Exclusion Principle

The inclusion–exclusion principle is a counting technique which generalizes the fa-
miliar method of obtaining the numbers of elements in the union of two finite sets. Let
A,B be two finite sets. If A ∩ B = 0, then

|A ∪ B| = |A| + |B|.

But, if A ∩ B ̸= 0, then

|A ∪ B| = |A| + |B| − |A ∩ B|.

A B

Figure 9.5: Intersection of two sets.

This expresses the fact that the sumof |A| and |B|maybe too large since some elements
maybe counted twice. Thedouble-counted elements are those in the intersectionA∩B,
and the count is corrected by subtracting the size of A ∩ B, see Figure 9.5.

The principle is more clearly seen in the case of three finite sets A,B and C. We
then get

|A ∪ B ∪ C| = |A| + |B| + |C| − |A ∩ B| − |A ∩ C| − |B ∩ C| + |A ∩ B ∩ C|.

A

B

C

Figure 9.6: Intersection of three sets.

When removing the contributions of the over-counted elements in the pairwise in-
tersections, the number of elements in the mutual intersection of the three sets has
been subtracted too often, so must be added back in to get the correct total, see Fig-
ure 9.6.

 EBSCOhost - printed on 2/10/2023 4:13 PM via . All use subject to https://www.ebsco.com/terms-of-use



242 | 9 Combinatorics and Combinatorial Problems

Example 9.32. How many integers in {1, 2, . . . , 1000} are divisible by 3, 5 or 8. Define
A and B and C to be the sets of numbers in {1, 2, . . . , 1000} divisible by 3 and 5 and 8,
respectively. Then

|A| = ⌊1000
3
⌋ = 333,

|B| = ⌊1000
5
⌋ = 200,

|C| = ⌊1000
8
⌋ = 125,

|A ∩ B| = ⌊1000
15
⌋ = 66,

|A ∩ C| = ⌊1000
24
⌋ = 41,

|B ∩ C| = ⌊1000
40
⌋ = 25 and

|A ∩ B ∩ C| = ⌊1000
120
⌋ = 8.

Here ⌊x⌋means the biggest integer less than or equal to x (Gauss bracket). Hence

|A ∪ B ∪ C| = 333 + 200 + 125 − 66 − 41 − 25 + 8 = 534.

Consequently, the number of integers in {1, 2, . . . , 1000}, which are not divisible by 3, 5
or 8, is then

1000 − 534 = 466.

Generalizing the result of these examples gives the principle of inclusion–exclu-
sion. To find the number of elements of the union of r finite setsM1,M2, . . . ,Mr:
(1) Include the numbers |Mi|,
(2) Exclude the numbers |Mi ∩Mj| for i ̸= j,
(3) Include the numbers |Mi ∩Mj ∩Mk | for i ̸= j ̸= k ̸= i,
(4) Exclude the numbers of elements of the quadruple-wise intersections,
(5) Include the numbers of elements of the quintuple-wise intersections,
(6) Continue, until the number of elements of the r-tuple-wise intersections is in-

cluded (if r is odd) or excluded (if r is even).

The name comes from the idea that the principle is based on over-generous inclu-
sion, followed by compensating exclusion. The concept is attributed to A. de Moivre
(1667–1754), but it first appears in a paper of D. da Silva (1814–1878) and later in a pa-
per by J. J. Sylvester (1814–1897). Often the principle is referred to as the formula of
Sylvester.
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Theorem 9.33. Let M1,M2, . . . ,Mr be finite subsets of the set M. Then

|M1 ∪M2 ∪ ⋅ ⋅ ⋅ ∪Mr | =
r
∑
k=1
(−1)k+1 ∑

1≤i1<⋅⋅⋅<ik≤r
|Mi1 ∩ ⋅ ⋅ ⋅ ∩Mik |.

Proof. The proof uses the formula for two sets and induction on r.
The statement holds for r = 1 and r = 2. Now, let r ≥ 3. Then

|M1 ∪M2 ∪ ⋅ ⋅ ⋅ ∪Mr | =
(M1 ∪M2 ∪ ⋅ ⋅ ⋅ ∪Mr−1) ∪Mr


= |M1 ∪M2 ∪ ⋅ ⋅ ⋅ ∪Mr−1| + |Mr | −

(M1 ∩M2 ∩ ⋅ ⋅ ⋅ ∩Mr−1) ∩Mr


= |M1 ∪M2 ∪ ⋅ ⋅ ⋅ ∪Mr−1| + |Mr | −
(M1 ∩Mr) ∪ (M2 ∩Mr) ∪ ⋅ ⋅ ⋅ ∪ (Mr−1 ∩Mr)

.

Now we use the induction hypothesis for the first and third term in the last sum. The
third term gives the summands for which k ≥ 2 and Mr is present. This finally gives
the result.

Remark 9.34.
(1) In applications it is common to see the principle in its complementary form. That

is, letM be a finite set andM1,M2, . . . ,Mr be subsets ofM. Then

M \ (M1 ∪M2 ∪ ⋅ ⋅ ⋅ ∪Mr)


= |M| − |M1 ∪M2 ∪ ⋅ ⋅ ⋅ ∪Mr |

= |M| +
r
∑
k=1
(−1)k ∑

1≤i1<i2<⋅⋅⋅<ik≤r
|Mi1 ∩Mi2 ∩ ⋅ ⋅ ⋅ ∩Mik |.

More precisely, let M be a finite set. We ask for the number of all elements of M
which do not have certain properties E1,E2, . . . ,Er . We then define

Mi = {x | x ∈ M | x has property Ei}

and ask for |M \ (M1 ∪M2 ∪ ⋅ ⋅ ⋅ ∪Mr)|.
(2) LetM be a finite set andM1,M2, . . . ,Mr be subsets ofM. Let G be an Abelian group

with addition +. Suppose there exists a weight function ω : M → G with ω(A) =
∑x∈A ω(x) for A ⊂ M. Then

ω(M1 ∪M2 ∪ ⋅ ⋅ ⋅ ∪Mr) =
r
∑
k=1
(−1)k+1 ∑

1≤i1<i2<⋅⋅⋅<ik≤r
ω(Mi1 ∩Mi2 ∩ ⋅ ⋅ ⋅ ∩Mik ).

In Theorem 9.33 we have G = ℤ and ω(x) = 1 for each x ∈ M.
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Applications.
(1) Let n = pα11 p

α2
2 ⋅ ⋅ ⋅ p

αr
r , r ∈ ℕ0, αi ∈ ℕ for i = 1, 2, . . . , r, and p1 < p2 < ⋅ ⋅ ⋅ < pr be

prime numbers, the prime factorization of n ∈ ℕ, where n = 1 if r = 0 (see [12]).
Let φ(n) be the number of elements a in the set {1, 2, . . . , n} which are coprime to
n, that is,

φ(n) = {a | a ∈ {1, 2, . . . , n} and gcd(a, n) = 1}
.

The function φ : ℕ→ ℕ is called Euler’s φ-function (see [12]). Then

φ(n) = n(1 − 1
p1
)(1 − 1

p2
) ⋅ ⋅ ⋅(1 − 1

pr
).

Proof. This is clear for n = 1. Now let n ≥ 2. We first remark that, if d ∈ ℕ is a
divisor of n, then there are exactly n

d numbers in {1, 2, . . . , n} which are divisible
by d. This holds because from d ≤ md ≤ n we get 1 ≤ m ≤ n

d .
Now define

M = {1, 2, . . . , n} and Mi = {x | x ∈ M and pi | x} for i = 1, 2, . . . , r.

We ask for |M \ (M1 ∪M2 ∪ ⋅ ⋅ ⋅ ∪Mr)|, which we get from

M \ (M1 ∪M2 ∪ ⋅ ⋅ ⋅ ∪Mr)
 = |M| +

r
∑
k=1
(−1)k ∑

1≤i1<i2<⋅⋅⋅<ik≤r
|Mi1 ∩Mi2 ∩ ⋅ ⋅ ⋅ ∩Mik |

= n +
n
∑
k=1
(−1)k ∑

1≤i1<i2<⋅⋅⋅<ik≤r

n
pi1pi2 ⋅ ⋅ ⋅ pik

= n(1 − 1
p1
)(1 − 1

p2
) ⋅ ⋅ ⋅(1 − 1

pr
).

(2) Let M1,M2, . . . ,Mr be finite subsets of the set M. The number of elements of M
which belong to exactlym of the subsets (1 ≤ m ≤ r) is given by

r
∑
k=m
(−1)k+m(k

m
) ∑
1≤i1<i2<⋅⋅⋅<ik≤r

|Mi1 ∩Mi2 ∩ ⋅ ⋅ ⋅ ∩Mik |.

Proof. Let x ∈ M be an element which belongs to exactly s of the subsets
(0 ≤ s ≤ r). We count what x contributes to the above sum.
If s < m then x does not contribute anything to the sumbecause k ≥ m and, hence,
x does not belong to a k-tuple-wise intersection.
If s ≥ m then the contribution is

s
∑
k=m
(−1)k+m(k

m
)(

s
k
).
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This can be seen as follows: x belongs to exactly (sk) of the k-tuple-wise intersec-
tions of those sets, in which x is an element. If s = m then this sum is equal to 1.
If s > m we get 0 (which proves the statement):

s
∑
k=m
(−1)k+m(k

m
)(

s
k
) =

s−m
∑
ℓ=0
(−1)ℓ(ℓ +m

m
)(

s
ℓ +m
)

= (
s
m
)
s−m
∑
ℓ=0
(−1)ℓ (s −m)!
ℓ!(s − ℓ −m)!

= 0,

by Corollary 9.24.

(3) Here we start with a classical problem, the “Problème de recontres” of R. deMont-
mart (1678–1719):
nmarried couples meet together for a dancing party. Howmany possibilities exist
to form dancing couples so that no married couple dances together? This prob-
lem will be solved by an interpretation through the number of permutations of
{1, 2, . . . , n} with no fixed point.
We repeat some of the definitions from [12].
(a) LetM be a set and f : M → M be a bijection. We call f a permutation of M.
(b) An element x ∈ M is called a fixed point of the permutation f : M → M if

f (x) = x.
(c) A permutation f : M → M is called a derangement if f has no fixed point, that

is, f (x) ̸= x for all x ∈ M.
(d) The set of all permutations of {1, 2, . . . , n} forms a group Sn with respect to the

function composition, the symmetric group Sn. The order of Sn is n!.
The number of derangements in Sn is

Dn = n!
n
∑
k=0

(−1)k

k!
.

The numbers Dn are called Recontres numbers.

Proof. Let M = {1, 2, . . . , n}, and let Pk be the set of all permutations which fix k;
Pk is a subgroup of Sn. Then

Dn =
Sn \ (P1 ∪ P2 ∪ ⋅ ⋅ ⋅ ∪ Pn)



= n! +
n
∑
k=1
(−1)k ∑

1≤i1<i2<⋅⋅⋅<ik≤n
(n − k)!

= n! +
n
∑
k=1
(−1)k(n

k
)(n − k)!

= n!
n
∑
k=0
(−1)k 1

k!
.
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We give a different interpretation. A person writes n letters and the corresponding
envelops. Then he randomly puts the letters into the envelopes. What is the prob-
ability that no recipient gets the letter which is meant for him? This probability is
given by

pn =
Dn
n!
=

n
∑
k=0

(−1)k

k!
→

1
e

as n→∞ (see [12]).
For a formal definition of a finite probability, we refer to the following Chapter 10.
The number of permutations of Sn with exactlym fixed points is

Dn,m =
n!
m!

n−m
∑
k=0
(−1)k 1

k!
.

Proof. For the choice of m fixed points we have (nm) possibilities, the remaining
elements have to be mapped then without fixed points.
Hence, Dn,m = (nm)Dn−m which gives the statement.

(4) Let M,N be sets with |M| = m and |N | = n where 1 ≤ n ≤ m. The number of
surjective maps f : M → N is given by

n
∑
k=0
(−1)k(n

k
)(n − k)m.

Proof. Without loss of generality, let N = {1, 2, . . . , n}. Let A be the set of all map-
pingsM → N and Ak the set of mappings f ∈ A with k ∉ f (M).
Then A \ (A1 ∪ A2 ∪ ⋅ ⋅ ⋅ ∪ An) is the set of all surjective maps and their number is

Sm,n = n
m +

n
∑
k=1
(−1)k ∑

1≤i1<i2<⋅⋅⋅<ik≤n
|Ai1 ∩ Ai2 ∩ ⋅ ⋅ ⋅ ∩ Aik |.

HereAi1 ∩Ai2 ∩ ⋅ ⋅ ⋅∩Aik is the set of all mappingsM → N \{i1, i2, . . . , ik}; their number
is (n − k)m. Hence

Sm,n = n
m +

n
∑
k=1
(−1)k(n

k
)(n − k)m =

n
∑
k=0
(−1)k(n

k
)(n − k)m.

Theorem 9.35 (Inversion formula). Let R be an integral domain with unity 1 and φ :
ℕ0 → R. Define ψ(k) := ∑kℓ=0 (kℓ)φ(ℓ) for k ∈ ℕ0. Then

φ(k) =
k
∑
ℓ=0
(−1)ℓ(k
ℓ
)ψ(k − ℓ).
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Proof.

k
∑
ℓ=0
(−1)ℓ(k
ℓ
)ψ(k − ℓ) =

k
∑
ℓ=0

k−ℓ
∑
r=0
(−1)ℓ(k
ℓ
)(

k − ℓ
r
)φ(r)

= ∑
ℓ,r

0≤ℓ,r≤k

(−1)ℓ(k
ℓ
)(

k − ℓ
r
)φ(r)

=
k
∑
r=0

φ(r)(
k
∑
ℓ=0
(−1)ℓ(k
ℓ
)(

k − ℓ
r
)).

Now

(
k
ℓ
)(

k − ℓ
r
) = {

0 if k − ℓ < r, that is, ℓ > k − r,
(kr)(

k−r
ℓ ) if ℓ ≤ k − r.

If we plug this into the above equation, we get

k
∑
ℓ=0
(−1)ℓ(k
ℓ
)ψ(k − ℓ) =

k
∑
r=0

φ(r)(
k−r
∑
ℓ=0
(−1)ℓ(k − r

ℓ
))

⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

={
1 if k = r,
0 if k > r.

by Corollary 9.24

(
k
r
) = φ(k).

Applications.
(1) Let k, n ∈ ℕ with k ≤ n. We denote the number of surjective maps

f : {1, 2, . . . , n}→ {1, 2, . . . , k}

by Sn,k and define numbers S(n, k) by S(n, k) = 1
k!Sn,k . We will see in the next sec-

tion that the S(n, k) are the Stirling numbers (of the second type). We have the
relation

kn =
k
∑
ν=0

k!
(k − ν)!

S(n, ν).

Proof. We consider the maps

f : {1, 2, . . . , n}→ {1, 2, . . . , k}.

There are kn of them. Now we split these as follows:
For a ν-subset of {1, 2, . . . , k} there areSn,ν =ν!S(n, ν) surjectivemaps from {1, 2, . . . , n}
onto this ν-subset, and there are (nν) such ν-subsets of {1, 2, . . . , k}. Hence

kn =
k
∑
ν=0

k!
(k − ν)

S(n, ν).
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Now k!
(k−ν)! = (

k
ν)ν!, and from the inversion formula we get

k!S(n, k) =
k
∑
ν=0
(−1)ν(k

ν
)(k − ν)n = Sn,k

for the number of surjective maps {1, 2, . . . , n}→ {1, 2, . . . , k}. This we got also with
the inclusion–exclusion principle.

(2) Let Dn be the number of σ ∈ Sn without fixed points, that is, the Recontres num-
bers. We know that

Sn =
n
⋃
k=0
{σ | σ as exactly k fixed points}⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

=:Fk

.

We have from above that

|Fk | = Dn,k = (
n
k
)Dn−k ,

where Dn,k is the number of permutations in Sn with exactly k fixed points. Hence

n! =
n
∑
k=0
(
n
k
)Dn−k =

n
∑
k=0
(
n
k
)Dk .

From the inversion formula we now get

Dn =
n
∑
k=0
(−1)k(n

k
)(n − k)! = n!

n
∑
k=0
(−1)k 1

k!
.

This we also got with the inclusion–exclusion principle.

9.6 Partitions and Recurrence Relations

In this section we consider the number of possible partitions of a finite set. We recall
some definitions.

LetM ̸= 0 be a set and S ⊂ 𝒫(M). If
(1) 0 ̸∈ S,M = ⋃X∈S X and
(2) X ∩ Y = 0 for X,Y ∈ S, X ̸= Y ,

then S is called a partition of M.

Remark 9.36. A partition S defines an equivalence relation onM by

a ∼ b ⇔ a, b ∈ X for some X ∈ S (a, b ∈ M).
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Conversely, if∼ is an equivalence relation onM, then the set of the equivalence classes
defines a partition ofM.

Hence the partitions of a nonempty setM correspond uniquely to the equivalence
relations onM.

Definition 9.37. LetM ̸= 0 be a set and k ∈ ℕ.
(1) A k-partition of M is a partition which is composed of k nonempty subsets of M,

that is,

M =
k
⋃
i=1

Mi withMi ⊂ M,Mi ̸= 0

for i = 1, 2, . . . , k andMi ∩Mj = 0 for i ̸= j.
(2) Let |M| = n ∈ ℕ. We denote the number of distinct k-partitions ofM as S(n, k).

Further, we set S(0,0) := 1, S(n,0) = 0 for n > 0 and S(n, k) = 0 for 0 ≤ n < k. The
numbers S(n, k) are called Stirling numbers (of the second kind).

From the discussion above we get the following.

Theorem 9.38. Let M be a nonempty set and |M| = n. The number of equivalence rela-
tions with exactly k equivalence classes of M is S(n, k).

We now give a recursion formula for the Stirling numbers. They are named after
J. Stirling (1692–1770).

Theorem 9.39 (Recursion formula). Let k, n ∈ ℕ. Then

S(n, k) = S(n − 1, k − 1) + k ⋅ S(n − 1, k).

Proof. The formula is correct for k = 1 because S(n, 1) = 1 for n = 1 and

1 = S(1, 1) = S(0,0) + S(0, 1) = 1 + 0

and

1 = S(n, 1) = S(n − 1,0) + S(n − 1, 1) = 0 + 1

for n ≥ 2.
If k > n, then the formula is correct because

0 = S(n, k) = S(n − 1, k − 1) = S(n − 1, k).

Hence, let now |M| = n ≥ 2 and 1 < k ≤ n.
Let x ∈ M. We divide the k-partitions ofM into two distinct types:
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(1) {x} is an element of the k-partition. Then the remaining elements of the partition
form a (k − 1)-partition ofM \ {x}. Hence, the number of k-partitions of this type is
S(n − 1, k − 1).

(2) x ∈ Awhere |A| ≥ 2 and A is an element of the k-partition. If we remove x fromM,
then we get a k-partition ofM \ {x}. On the other hand, if

M \ {x} =
k
⋃
i=1

Ni

is a k-partition ofM\{x}, thenwemay extend each of theNi by x to get a k-partition
ofM of the second type.
Therefore, the number of k-partitions of this second type is kS(n − 1, k). Hence,

S(n, k) = S(n − 1, k − 1) + kS(n − 1, k).

Example 9.40.
(1) S(n, n) = 1 for n ∈ ℕ0.
(2) S(4, 2) = 7.
(3) S(4, 3) = 6.
(4) S(n, n − 1) = (n2) for n ≥ 2.

Proof. We prove this by induction on n. If n = 2, then S(2, 1) = 1 = (22). Now, let
n ≥ 3 and suppose the statement is correct for n − 1. Then

S(n, n − 1) = S(n − 1, n − 2) + (n − 1)S(n − 1, n − 1)

= (
n − 1
2
) + (n − 1) = (n − 1)!

2!(n − 3)!
+ (n − 1)

=
(n − 1)!
2!(n − 3)!

(1 + 2
n − 2
)

=
n!

2!(n − 2)!
= (

n
2
).

(5) S(n, 2) = 2n−1 − 1 for n ≥ 1.

Proof. We prove this by induction. The statement is correct for n = 1.
Now, let n ≥ 2. Then

S(n, 2) = S(n − 1, 1) + 2S(n − 1, 2) = 1 + 2(2n−2 − 1) = 2n−1 − 1

using the induction hypothesis.

Theorem 9.41. Let n, k ∈ ℕ. Then
(1) S(n, k) = ∑n−1i=0 k

n−i−1S(i, k − 1).
(2) S(n, k) = ∑n−1i=0 (n−1i )S(i, k − 1).
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Proof.
(1) The statement follows directly by induction from the recursion formula.
(2) Weprove this combinatorially by counting the k-partitions of ann-set in adifferent

manner.
Let x ∈ M be chosen fixed. For each i ∈ {0, 1, . . . , n − 1} there are ( n−1n−1−i) = (

n−1
i )

possibilities to choose a subset A ofM with x ∈ A and |A| = n − i.
For each of these subsets, the number of (k − 1)-partitions of M \ A is equal to
S(i, k − 1).

Theorem 9.42. Let k, n ∈ ℕ. The number Sn,k of surjective maps from an n-set onto a
k-set is Sn,k = k!S(n, k).

Proof. If k > n, then there does not exist any surjective maps from an n-set to a k-set,
in other words, S(n, k) = 0.

Now let 1 ≤ k ≤ n.
Let f : {1, 2, . . . , n}→ {1, 2, . . . , k} be surjective; f defines a k-partition of

{1, 2, . . . , n} =
⋅

⋃
1≤i≤k

f −1({i}).

Each k-partitionof {1, 2, . . . , n}provides k! surjectivemaps from {1, 2, . . . , n} to {1, 2, . . . , k}
given by the k! permutations of {1, 2, . . . , k}.

Hence the number Sn,k of surjective maps of an n-set onto a k-set is Sn,k =
k!S(n, k).

Remark 9.43. This shows howmeaningful the definition of S(n, k)was in the last sec-
tion:

S(n, k) = 1
k!
Sn,k

for k, n ∈ ℕ, 1 ≤ k ≤ n.

Definition 9.44. Let n ∈ ℕ0. Then

Bn :=
n
∑
k=0

S(n, k)

is called the nth Bell number; we have B0 = S(0,0) = 1. It is named after E. T. Bell
(1883–1960) who wrote science fiction books with the pseudonym John Taire.

Theorem 9.45.

Bn+1 =
n
∑
k=0
(
n
k
)Bk for n ∈ ℕ0.
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Proof. Let M = {1, 2, . . . , n + 1}. For each k ∈ {0, 1, . . . , n} there are (nk) possibilities to
choose a subset A ofM with |A| = k + 1 and (n + 1) ∈ A. Further, there are Bn−k possi-
bilities to partition the remaining setM \ A.

The following formula is due to G. Dobinski who found it in 1877.

Theorem 9.46.

Bn =
1
e

∞

∑
k=0

kn

k!
.

Proof. We use the formula

k!S(n, k) =
k
∑
ν=0
(−1)ν(k

ν
)(k − ν)n,

n, k ∈ ℕ, 1 ≤ k ≤ n, from the last section.
This formula certainly also holds for n = k = 0.
Now let N ≥ n. Then

Bn =
n
∑
m=0

S(n,m) = ∑
0≤m≤N
(

1
m!

N
∑
k=0
(−1)m−k(m

k
)kn)

= ∑
0≤m≤N
(
1
m!
∑

0≤k≤m
(−1)m−k m!

k!(m − k)!
kn)

= ∑
0≤k≤N
(
kn

k!
∑

k≤m≤N
(−1)m−k 1

(m − k)!
)

= ∑
0≤k≤N
(
kn

k!
∑

0≤ℓ≤N−k

(−1)ℓ

ℓ!
).

Since e−1 = ∑∞ℓ=0
(−1)ℓ
ℓ! , we get the statement with N →∞.

Remark 9.47. So far, we introduced the Stirling numbers S(n, k) of the second type.
There exist also Stirling numbers s(n, k) of the first type.
To introduce these, we have to recall some facts about permutations from Sn

(see [12]).

Definition 9.48. LetM = {1, 2, . . . , n}. A cycle is a permutation σ ofM which maps the
elements of some subset A ofM to each other in a cyclic fashion, while fixing all other
elements ofM. If A has k elements, the cycle is called a k-cycle.

In other words, if A = {a1, a2, . . . , ak} ⊂ M, then for each i ∈ {1, 2, . . . , k} there exists
a j with σj(a1) = ai, and σ(ν) = ν for all ν ∉ A.

Example 9.49. LetM = {1, 2, . . . , 7} and A = {2, 4, 5, 6, 7}. Let σ be given as in Table 9.3.
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Table 9.3: Values for σ.

i 1 2 3 4 5 6 7

σ(i) 1 5 3 7 4 2 6

Now

2 = σ0(2), 5 = σ(2), 4 = σ(5) = σ2(2),

7 = σ(4) = σ3(2) and 6 = σ(7) = σ4(2).

Hence σ is a cycle.
We just write σ = (2, 5, 4, 7, 6) for the cycle σ (recall that, with this writing, we may

cyclically permute in (2, 5, 4, 7, 6)).

The set A is called the orbit of the cycle. Every permutation of Sn can be decom-
posed into a collection of cycles on disjoint orbits (see [12]).

Example 9.50. LetM = {1, 2, . . . , 8} and σ ∈ S8 be given as in Table 9.4.

Table 9.4: Values for σ.

i 1 2 3 4 5 6 7 8

σ(i) 3 5 1 2 4 8 7 6

Then σ = (1, 3)(2, 5, 4)(6, 8)(7).

Now we may define the Stirling numbers s(n, k) of the first type.

Definition 9.51. The number of permutations from Sn, n ∈ ℕ, which are composed of
k cycles, is called the Stirling number s(n, k) of the first kind.

In addition, we define s(0,0) = 1, s(n, k) = 0 for k = 0, n ≥ 1, or 0 ≤ n < k.

Remarks 9.52.
(1) Since n! is the number of all permutations in Sn, n ∈ ℕ, we get

n
∑
k=1

s(n, k) = n!.

This gives in particular that s(n, k) ≤ n!.
(2) We have s(n, n) = 1 for n ∈ ℕ0. This is clear by definition for n = 0.

Now let n ≥ 1. Let σ ∈ Sn be composed of n cycles. Then each cycle must have
length 1, that is, each element ofM is fixed. Then σ is the identity.
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Theorem 9.53 (Recursion formula). Let n, k ∈ ℕ. Then

s(n, k) = s(n − 1, k − 1) + (n − 1)s(n − 1, k).

Proof. This is clear for k > n by definition.
Now let 1 ≤ k ≤ n. The proof is analogous to that of Theorem 9.38.
On the left side of the equation we have all permutations ofM = {1, 2, . . . , n} with

k cycles. There are two types of them:
(1) (n) is one of the cycles.

A permutation of this type arises by adding (n) to a permutation of the set
{1, 2, . . . , n − 1} with n − 1 cycles. Here there are s(n − 1, k − 1) possibilities.

(2) (n) is not one of the cycles.
All such permutations arise by inserting the element n to a permutation of
{1, 2, . . . , n − 1} with k cycles. There are s(n − 1, k) of such permutations, and for
each of these we may insert in a cycle the element n after any element of the n − 1
remaining elements.
Hence there are (n − 1)s(n − 1, k) possibilities. Altogether we get the recursion for-
mula.

Corollary 9.54. Let n ∈ ℕ. Then

s(n, 1) = (n − 1)!.

Proof. This is correct for n = 1. Now let n ≥ 2. Then s(n − 1, k − 1) = s(n − 1,0) = 0 for
k = 1, and

s(n, 1) = (n − 1)(n − 2) ⋅ ⋅ ⋅ 2 ⋅ 1 = (n − 1)!,

by induction.

Remarks 9.55.
(1) We consider the polynomial

f (x) = x(x − 1) ⋅ ⋅ ⋅ (x − n + 1).

By expanding this polynomial we get

f (x) =
n
∑
k=1
̃s(n, k)xk .

We further define ̃s(0,0) = 1, ̃s(n,0) = 0 for n ≥ 1 and ̃s(n, k) = 0 for n ∈ ℕ0, k > n.
Via the recursion formula for s(n, k) we get

̃s(n, k) = (−1)n−ks(n, k) for n, k ∈ ℕ0.
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(2) In many books one uses the Karamata notation

S(n, k) = {n
k
} , s(n, k) = [n

k
] ,

which is named after J. Karamata (1902–1967), to demonstrate the analogy to the
recursion formula for the binomial coefficients.

9.7 Decompositions of Naturals Numbers, Partition Function

So far we have considered decomposition of nonempty sets M with |M| = n ∈ ℕ. Let
M = M1 ∪ M2 ∪ ⋅ ⋅ ⋅ ∪ Mk be a k-partition of M with k ≥ 1 nonempty, pairwise disjoint
sets. This k-partition induces a decomposition of n into k positive summands:

n = |M1| + |M2| + ⋅ ⋅ ⋅ + |Mk |.

Wedescribed thenumber of k-partitions ofM by theStirlingnumbersS(n, k) (of second
type). Nevertheless, distinct k-partitions may generate the same decomposition of n
into the same k summands. In general, a partition of a natural number n is a way of
writing n as a sum of positive integers where two sums that differ only in the order
of their summands are considered the same partition. Hence we make the following
definition.

Definition 9.56. A partition of n ∈ ℕ into k, 1 ≤ k ≤ n, positive summands is a se-
quence (n1, n2, . . . , nk) ∈ ℕk with n1 ≥ n2 ≥ ⋅ ⋅ ⋅ ≥ nk ≥ 1 and n = n1 + n2 + ⋅ ⋅ ⋅ + nk .

Example 9.57. Number 4 can be partitioned in five distinct ways:

4, 3 + 1, 2 + 2, 2 + 1 + 1, 1 + 1 + 1 + 1.

Definition 9.58.
(1) A summand in a partition is called a part.
(2) Let k, n ∈ ℕ0.

If 1 ≤ k ≤ n then p(n, k) denotes the number of partitions of nwith exactly k parts.
Further we define p(0,0) = 1 and p(n, k) = 0 for k = 0, n ≥ 1 or for n < k.
The numbers p(n, k) are called the (arithmetic) partition numbers.

Example 9.59.
(1) p(4, 2) = 2 with 4 = 3 + 1 = 2 + 2,
(2) p(7, 3) = 4 with 7 = 5 + 1 + 1 = 4 + 2 + 1 = 3 + 3 + 1 = 3 + 2 + 2.

Theorem 9.60 (Recursion formula). If 1 ≤ k ≤ n then

p(n, k) = p(n − 1, k − 1) + p(n − k, k).
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Proof. The partitions of n into exactly k parts fall into two types:
(1) 1 is a part.

If we cancel the part 1, thenwe get a partition of n−1 into exactly k−1 parts. There
are p(n − 1, k − 1) possibilities.

(2) 1 is not a part.
Then wemay subtract 1 from each part, and we get a partition of n− k into exactly
k parts. There are p(n − k, k) possibilities. These types together give the recursion
formula.

There is a common diagram method to represent partitions as Ferrers diagrams,
named after N.M. Ferrers (1829–1903), which is given by the points (i, j) with i ∈
{1, 2, . . . , k}, j = {1, 2, . . . , ni}.

Example 9.61.

15 = 5 + 3 + 3 + 2 + 1 + 1

Figure 9.7: Ferrers diagram.

Reflection at the angle bisector of the quadrant translates a Ferrers diagram into a
Ferrers diagram (for the same number n), see Figure 9.7. This way we get a bijection
between the set of partitions of nwith exactly k parts and the set of partitions of nwith
k as the biggest part.

Hence p(n, k) are the partitions of n with k as the biggest part.

Finally, we define the summary partition function

p : ℕ→ ℕ,

p(n) =
n
∑
k=1

p(n, k).

Example 9.62. p(4) = 5.
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9.8 Catalan Numbers

In this section, we finally just mention the Catalan numbers. The Catalan numbers
form a sequence of natural numbers that occur in various counting problems, often
involving recursively defined objects. They are named after E. C. Catalan (1814–1894).
There are several ways to define the Catalan numbers.

Definition 9.63. Let n ∈ ℕ0. Then Cn is the number of different ways n + 1 factors
can be completely parenthesized, in pairs if n ≥ 1, omitting the pair of a right-most
and left-most bracket (or the number of ways of associating n applications of a binary
operator).

The Cn, n ∈ ℕ0, are called the Catalan numbers.

Certainly, C0 = 1 becausewe then have only one factor x1. To illustrate this we give
the list for 1 ≤ n ≤ 3 explicitly:

n = 1 : x1x2
n = 2 : (x1x2)x3, x1(x2x3)
n = 3 : ((x1x2)x3)x4, (x1x2)(x3x4), (x1(x2x3))x4, x1((x2x3)x4), x1(x2(x3x4)).

Hence, C1 = 1, C2 = 2, C3 = 5.

Theorem 9.64 (Recurrence relation).

C0 = 1 and Cn+1 =
n
∑
k=0

CkCn−k for n ≥ 0.

Proof. This is clear for n = 0. Now let n ≥ 1. An (n + 2)-fold product, provided accord-
inglywith brackets, combines a (k+1)-fold productwith an (n+2)−(k+1)-fold product,
where k ∈ {0, 1, 2, . . . , n}. For these partial products there are Ck and Cn−k possibilities,
respectively. Hence, for the complete (n + 2)-fold product there are

Cn+1 =
n
∑
k=0

CkCn−k possibilities.

There aremany counting problems in combinatorics, solutions of which are given
by the Catalan numbers. We give here three more examples:
(1) A Dyck word of length 2n is a string consisting of n X’s and n Y ’s such that no

initial (of the first half) segment of the string has more Y ’s than X’s. Cn denotes
the number of Dyck words of length 2n. These are named after W. F. A. von Dyck
(1856–1934).
For example, the following are the Dyck words of length 6:

XXXYYY , XYXXYY , XYXYXY , XXYYXY , XXYXYY .
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(2) Cn is the number of rooted binary treeswith n internal nodes. Here, we consider as
binary trees those in which each node has zero or two children, and the internal
nodes are those that have children.
The binary trees corresponding to n = 3 are the following, see Figure 9.8.

Figure 9.8: Binary trees corresponding to n = 3.

(3) Cn is the number of different ways a convex polygon with n + 2 sides can be cut
into triangles by connecting vertices with straight lines. Figure 9.9 illustrates the
case n = 3.
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3
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Figure 9.9: Cutting of convex polygons into triangles for n = 3.

Formore details and information on the Catalan numberswe refer, for instance, to [18]
or [10].
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9.9 Generating Functions

9.9.1 Ordinary Generating Functions

The term ordinary generating function is used to describe an infinite sequence of (real
or complex) numbers (an)n∈ℕ0 by treating them as the coefficients of a power series
expression. This (formal) infinite series is the generating function:

a(t) :=
∞

∑
n=0

ant
n.

When the termgenerating function is usedwithout qualification, it is taken tomeanan
ordinary generating function. Unlike an ordinary series, this formal series is allowed
to diverge, meaning that the generating function is not always a true function and the
variable t is actually an indeterminate with

∞

∑
n=0

ant
n +
∞

∑
n=0

bnt
n =
∞

∑
n=0
(an + bn)t

n

and

(
∞

∑
n=0

ant
n) ⋅ (

∞

∑
n=0

bnt
n) =

∞

∑
n=0

cnt
n where cn = ∑

i+j=n
i,j≥0

aibj,

the (formal) generating functions over ℝ (or ℂ) form a commutative ring ℝ[[t]] (or
ℂ[[t]]) with unity 1. With the addition and the scalar multiplication

r
∞

∑
n=0

ant
n =
∞

∑
n=0

rant
n

they also form a vector space over ℝ (or ℂ).
In what follows we assume that there exists a real number a > 0 with |an| < an

for all n ∈ ℕ0. In this case the generating function is a true function which converges
absolutely for |x| < 1

a , where x ∈ ℝ (or ℂ). More precisely, if there exists

r = (lim sup
n→∞

n√|an|)
−1

such that r > 0 then the generating function converges absolutely for all x ∈ ℝ (or ℂ)
with |x| < r. In addition, if an ̸= 0 for almost all n, that is, for all n up to at most finitely
many, and if limn→∞ |

an
an+1
| exists, then also r = limn→∞ |

an
an+1
|. This r is called the radius

of convergence. Hence, more precisely, we assume that the generating function has a
positive radius of convergence. This includes the case that the radius is∞. In that case
we may apply the known results from real (or complex) analysis.
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In particular, if a(t), b(t) are the generating functions of (an)n∈ℕ0 , (bn)n∈ℕ0 , respec-
tively, and if ra, rb > 0 for their radii of convergence, then the following hold:
(1) a(x) = b(x) for all x with

|x| < min(ra, rb)⇔ an = bn for all n ∈ ℕ0.

(2) an =
a(n)(0)
n! .

The latter is a consequence of the fact that the nth derivative of the generating function
(around 0) is

a(n)(x) = n!∑
k≥n
(
k
n
)akx

k−n.

Example 9.65.
(1) Let a be a constant with a ̸= 0, and an = an for all n ∈ ℕ0. Then a(t) = ∑

∞
n=0 a

ntn =
1

1−at has radius of convergence r =
1
|a| .

In particular,

a(t) =
∞

∑
n=0

tn = 1
1 − t

for a = 1

and

a(t) =
∞

∑
n=0
(−1)ntn = 1

1 + t
for a = −1.

(2) If an = n for all n ∈ ℕ0, then

a(t) =
∞

∑
n=0

ntn = t ⋅
∞

∑
n=1

ntn−1

= t(
∞

∑
n=0

tn)
′

= t( 1
1 − t
)
′

=
1
(1 − t)2

with radius of convergence r = 1.
(3) an = (mn),m ∈ ℕ fixed, n ∈ ℕ0. Then an = 0 for n > m, and hence

a(t) =
∞

∑
n=0
(
m
n
)tn =

m
∑
n=0
(
m
n
)tn = (1 + t)m

with radius of convergence r =∞.
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We now calculate the generating functions for some concrete examples.

Theorem 9.66. Let N be a given (finite or infinite) subset ofℕ. The generating function
for the number of all partitions of n in summands of N (without consideration of the
order) is given by

∏
m∈N

1
1 − tm
.

Proof. Let N consist of the numbersm1 < m2 < m3 < ⋅ ⋅ ⋅ .
We know that

1
1 − tm
=
∞

∑
n=0
(tm)n

has radius of convergence r = 1.
Hence

∏
m∈N

1
1 − tm
= (1 + tm1 + t2m1 + ⋅ ⋅ ⋅)(1 + tm2 + t2m2 + ⋅ ⋅ ⋅) ⋅ ⋅ ⋅ .

Expansion of the product shows that tn occurs as often as there exist sequences
(r1, r2, . . .) of numbers fromℕ0 with n = r1m1 + r2m2 + ⋅ ⋅ ⋅, and that is the number of all
partitions of n in summands of N (without consideration of the order).

Example 9.67 (Example for nostalgists). In howmany ways may we change 1 DM into
smaller coins?

Let cn be the number for an amount of n pennies.
At the time of the German mark there existed coins with values of 1, 2, 5, 10 and

50 pennies.
Hence the generating function for the number of all partitions of n in summands

of {1, 2, 5, 10, 50} is given by

∞

∑
n=0

cnt
n =

1
(1 − t)(1 − t2)(1 − t5)(1 − t10)(1 − t50)

= (1 + t + t2 + ⋅ ⋅ ⋅)(1 + t2 + t4 + ⋅ ⋅ ⋅) ⋅ ⋅ ⋅ (1 + t50 + t100 + ⋅ ⋅ ⋅).

We ask for c100 and get c100 = 2498.

Remark 9.68. To calculate c100 we may argue also successively.
We start with 1

1−t = 1 + t + t
2 + ⋅ ⋅ ⋅ and divide successively the other polynomials

subject to the general method:

(a0 + a1t + a2t
2 + ⋅ ⋅ ⋅) : (1 − tk) = b0 + b1t + b2t

2 + ⋅ ⋅ ⋅
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with

bn = {
an for n = 0, 1, . . . , k − 1,
an + bn−k for n ≥ k.

Corollary 9.69.
(a) The generating function for the summary partition function p(n) is∑∞m=1

1
1−tm .

(b) The generating function of the partitions of n in natural summands, which are not
bigger than k ∈ ℕ, is

k
∏
m=1

1
1 − tm
.

(c) The generating function for the partition numbers p(n, k) is

k
∏
m=1

t
1 − tm
.

Proof. (a) and (b) are special cases of Theorem 9.66. For (a) we may take N = ℕ, and
for (b) we may take N = {1, 2, . . . , k}.

(c) From Ferrers diagram we know that p(n, k) is the number of partitions of n − k
in natural summands which are not bigger than k. Hence (c) follows from (b) through

tk
k
∏
m=1

1
1 − tm
=

k
∏
m=1

t
1 − tm
.

Remark 9.70. (nk) is the number of k-combinations of elements of an n-set.
Let u1, u2, . . . , un be n pairwise distinct real numbers and t be an indeterminate.

Then

(1 + u1t)(1 + u2t) ⋅ ⋅ ⋅ (1 + unt)

is a polynomial of ℝ[t]. Expansion of the product leads to

1 +
(u1 + u2 + ⋅ ⋅ ⋅ un)t +

(u1u2 + u1u3 + ⋅ ⋅ ⋅ + u2u3 + ⋅ ⋅ ⋅ + un−1un)t
2 +

...
u1u2 ⋅ ⋅ ⋅ unt

n.

Hence, the coefficient of tk is the sum of all k-combinations of elements from
{u1, u2, . . . , un}.
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If we put

u1 := u2 := ⋅ ⋅ ⋅ := un := 1,

then the coefficient of tk is the number of these k-combinations, that is, (nk). This shows
that sometimes we can give the generating function directly and afterwards we can
calculate the coefficients.

We generalize this as follows.

Theorem 9.71. The generating function for the number of those k-repetitions from an
n-set (1 ≤ k ≤ n), for which the multiplicity of the jth element (j = 1, 2, . . . , n) is from a
given set Nj ⊂ ℕ0, is

n
∏
j=1
(∑
ν∈Nj

tν).

Proof. Let againu1, u2, . . . , un bepairwisedistinct real numbers. Expansionof theprod-
uct

( ∑
ν∈N1

uν1 t
ν)( ∑

ν∈N2

uν2t
ν) ⋅ ⋅ ⋅( ∑

ν∈Nn

uνnt
ν)

leads to a sum or (if at least one Nj is infinite) a series where the coefficient of tk is
the sum of all those repetitions of {u1, u2, . . . , un} for which the multiplicity of uj (j =
1, 2, . . . , n) is given by a number from the set Nj. If we put u1 = u2 = ⋅ ⋅ ⋅ = un = 1, then
the resulting coefficient is the number of those k-repetitions.

Example 9.72. Calculate the number of all 4-repetitions of elements from {a1, a2, a3,
a4} in which a1 occurs 0, 1 or 2 times, a2 occurs exactly twice, a3 occurs arbitrarily
often and a4 does not occur.

Hence, we have N1 = {0, 1, 2}, N2 = {2}, N3 = ℕ0 and N4 = {0}.
We get the generating function

(1 + t + t2) ⋅ t2 ⋅ (
∞

∑
ν=0

tν) = t2 + 2t3 + 3t4 + 3t5 + ⋅ ⋅ ⋅ .

The number of acceptable 4-repetitions is 3, which we get by looking at 3t4, and we
have

a1a2a2a3, a2a2a3a3, a1a1a2a2.
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Corollary 9.73. The generating function for the number of all k-repetitions of elements
from an n-set is

n
∏
j=1
(
∞

∑
ν=0

tν) = 1
(1 − t)n

=
∞

∑
k=0
(
n + k − 1

k
)tk .

Theorem 9.74 (Fibonacci numbers). The Fibonacci numbers fn, n ≥ 0, are given by
f0 = 0, f1 = 1 and fn = fn−1 + fn−2 for n ≥ 2 (see [12] for properties of the fn). Let
f (t) = ∑∞n=0 fnt

n be the generating function of (fn)n∈ℕ0 . Then
(1) f (t) = t

1−t−t2 ;
(2) fn =

1
√5 ((

1+√5
2 )

n − ( 1−√52 )
n).

Proof. Let f (t) = ∑∞n=0 fnt
n. This series converges for |x| < 1

2 . To calculate f (t) we use
the recursion formula for fn. Then

f (t) = t +
∞

∑
n=2

fnt
n = t +

∞

∑
n=2

fn−1t
n +
∞

∑
n=2

fn−2t
n

= t + tf (t) + t2f (t),

and hence

f (t) = t
1 − t − t2

= −
t

t2 + t − 1
.

The zeros of the denominator of f (t) are − 12 +
√5
2 and −( 12 +

√5
2 ).

Hence partial fraction decomposition leads to

f (t) = 1
√5
(

1
1 − 1+√5

2 t
−

1
1 − 1−√5

2 t
).

We apply

1
1 − at
=
∞

∑
n=0

antn =
∞

∑
n=0
(
a
2
)
n
(2t)n

to both terms in the bracket and get

fn =
1
√5
((

1 +√5
2
)
n
− (

1 −√5
2
)
n
).

Theorem 9.75. Let the sequence (an)n∈ℕ0 be recursively defined by

a0 = 0, an = 2an−1 + 1, n ≥ 1.

Let a(t) = ∑∞n=0 ant
n be its generating function. Then
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(a) a(t) = t
(1−t)(1−2t) ,

(b) an = 2n − 1 for n ≥ 0.

Proof. Let a(t) = ∑∞n=0 ant
n. This series converges for |x| < 1

2 . Then

a(t) =
∞

∑
n=0

ant
n =
∞

∑
n=0
(2an + 1)t

n+1

= 2ta(t) + t
1 − t
.

Therefore,

a(t) = t
(1 − t)(1 − 2t)

= −
1

1 − t
+

1
1 − 2t

= −
∞

∑
n=0

tn +
∞

∑
n=0

2ntn

=
∞

∑
n=0
(2n − 1)tn,

and so an = 2n − 1.

Theorem 9.76. Let the sequence (an)n∈ℕ0 be recursively defined by a0 = 2, a1 = 5 and
an+2 = 5an+1 − 6an for n ≥ 0. Let a(t) = ∑

∞
n=0 ant

n be the generating function. Then
(a) a(t) = 2−5t

1−5t+6t2 .
(b) an = 2n + 3n.

Proof. Let a(t) = ∑∞n=0 ant
n. The series converges for |x| < 1

3 . Now

a(t) = a0 + a1t +
∞

∑
n=2
(5an−1 − 6an−2)t

n

= 2 − 5t + 5ta(t) − 6t2a(t).

It follows that

a(t) = 2 − 5t
1 − 5t + 6t2

=
1

1 − 2t
+

1
1 − 3t
.

Therefore,

an = 2
n + 3n.

Theorem 9.77 (Stirling numbers of the second kind). Let k ∈ ℕ0 be fixed. For this fixed
k we define Sk(t) = ∑

∞
n=0 S(n, k)t

n, where S(n, k) are the Stirling numbers of second kind,
and call Sk(t) the generating function for S(n, k) (with fixed k). Then S0(t) = 1 and Sk(t) =

tk
(1−t)(1−2t)⋅⋅⋅(1−kt) for k ≥ 1.

 EBSCOhost - printed on 2/10/2023 4:13 PM via . All use subject to https://www.ebsco.com/terms-of-use



266 | 9 Combinatorics and Combinatorial Problems

Proof. Certainly S0(t) = S(0,0) = 1 because S(n,0) = 0 for n ≥ 1. Now, let k ≥ 1 and

Sk(t) =
∞

∑
n=0

S(n, k)tn.

The series converges for |x| < 1
k , since at least S(n, k) ≤

kn
k! (see Theorem 9.42). Now

Sk(t) =
∞

∑
n=0

S(n, k)tn =
∞

∑
n=k

S(n, k)tn

= tk +
∞

∑
n=k+1

S(n − 1, k − 1)tn + k
∞

∑
n=k+1

S(n − 1, k)tn

= tk + t
∞

∑
n=k

S(n, k − 1)tn + kt
∞

∑
n=k

S(n, k)tn

= ktSk(t) + tSk−1(t),

that is,

Sk(t) =
tSk−1(t)
1 − kt
.

From this we get recursively

Sk(t) =
tk

(1 − t)(1 − 2t) ⋅ ⋅ ⋅ (1 − kt)
.

The Stirling numbers of the first kind may be considered analogously.

Remark 9.78 (The Chebyshev polynomials (of the second kind)). TheChebyshevpoly-
nomials Tn(x), n ∈ ℕ0, are defined recursively by T0(x) = 0, T1(x) = 1 and Tn(x) =
xTn−1(x) − Tn−2(x) for n ≥ 2. These polynomials satisfy some interesting identities:
(1) Tn+m(x) = Tn(x)Tm+1(x) − Tm(x)Tn−1(x),
(2) T2n(x) − Tn+1(x)Tn−1(x) = 1 and
(3) Tmn(x) = Tm(Tn+1(x) − Tn−1(x))Tn(x).

If now x ∈ ℝ, x ≥ 0, then we have the following:
(a) If 0 ≤ x < 2 then there is a Θ ∈ ℝ, 0 < Θ ≤ π

2 with x = 2 cos(Θ), and we have

Tn(x) =
sin(nΘ)
sin(Θ)
, n ∈ ℕ0.

(b) If x = 2 then Tn(x) = n for n ∈ ℕ0.
(c) If x > 2 then there is a Θ ∈ ℝ with x = 2 cosh(Θ), and we have

Tn(x) =
sinh(nΘ)
sinh(Θ)

.
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Let U(x)(t) = ∑∞n=0 Tn(x)t
n, x ∈ ℝ, be the generating function of the sequence

(Tn(x))n∈ℕ0 , x ∈ ℝ.

Theorem 9.79. Let U(x)(t) = ∑∞n=0 Tn(x)t
n, x ∈ ℝ, be the generating function of the

sequence (Tn(x))n∈ℕ0 , x ∈ ℝ. Then

U(x)(t) = t
t2 − xt + 1

, x ∈ ℝ.

Proof. Let U(x)(t) = ∑∞n=0 Tn(x)t
n, x ∈ ℝ. From the definition (and properties) of Tn(x),

we get that for a fixed x ∈ ℝ the series U(x)(t) has a positive radius of convergence.
Then

U(x)(t) = t +
∞

∑
n=2

Tn(x)t
n

= t +
∞

∑
n=2
(xTn−1(x) − Tn−2(x))t

n

= t + xtU(x)(t) − t2U(x)(t),

and hence

U(x)(t) = t
t2 − tx + 1

.

Remark 9.80 (The Catalan numbers Cn). Recall that, by Theorem 9.64, C0 = 1 and
Cn+1 = ∑

n
k=0 CkCn−k, n ≥ 0. Let C(t) = ∑

∞
n=0 Cnt

n be the generating function for the
series (Cn)n∈ℕ0 . From the recurrence relation we get inductively that Cn ≤ 4n. Hence
the series converges for x < 1

4 .
Now we form

C2(t) =
∞

∑
n=0
(

n
∑
k=0

CkCn−k)t
n.

Since C0 = 1 and Cn+1 = ∑
n
k=0 CkCn−k for n ≥ 0, we get

tC2(t) =
∞

∑
n=0

Cn+1t
n+1 = −1 +

∞

∑
n=0

Cnt
n = C(t) − 1,

hence C(t) satisfies the functional equation tC2(t) − C(t) + 1 = 0.
Therefore either

C(t) = 1 +
√1 − 4t
2t

or C(t) = 1 −
√1 − 4t
2t
.
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Only the function

C(t) = 1 −
√1 − 4t
2t
=

2
1 +√1 − 4t

has a power series at 0 and its coefficients must therefore be the Catalan numbers.
Therefore

C(t) = 1 −
√1 − 4t
2t
.

The chosen solution satisfies

lim
x→0
x>0

C(x) = C0 = 1.

The square-root term can be expanded as a Taylor power series using the identity

√1 + y =
∞

∑
n=0

(−1)n+1

4n(2n − 1)
(
2n
n
)yn = 1 + 1

2
y − 1

8
y2 + ⋅ ⋅ ⋅ ,

see [17].
Setting y = −4t and substituting this power series into the expression for C(t) and

shifting the summation index n by 1, the expansion simplifies to

C(t) =
∞

∑
n=0
(
2n
n
)

tn

n + 1
.

The coefficients are the Cn, hence Cn =
1

n+1 (
2n
n ), n ∈ ℕ0. Hence we get the following.

Theorem 9.81. Let C(t) = ∑∞n=0 Cnt
n be the generating function of the sequence (Cn)n∈ℕ0

of the Catalan numbers. Then
(a) C(t) = 1

2t (1 −√1 − 4t).
(b) Cn =

1
n+1 (

2n
n ), n ∈ ℕ0.

We remark that also

Cn = (
2n
n
) − (

2n
n + 1
), n ∈ ℕ0

because

(
2n
n + 1
) =

n
n + 1
(
2n
n
).

This last equation gives also

(n + 2)Cn+1 = (
2n + 2
2 + 1
) =

n + 2
n + 1
(
2n + 2
n + 2
) =

2(2n + 1)
n + 1
(
2n
n
),

hence we have the following.
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Corollary 9.82.

C0 = 1 and Cn+1 =
2(2n + 1)
n + 2

Cn for n ≥ 0.

9.9.2 Exponential Generating Functions

If we have a combinatorial sequence (an)n∈ℕ0 , then the values an grow often very fast.
This happens, for instance, if the values are related to permutations. In such a situa-
tion the ordinary generating function for (an)n∈ℕ0 diverges for each x ∈ ℝ, x > 0.

Hence in such a case we do not get new information for the an. One obvious case
for this is an = n! for n ∈ ℕ0. This leads to the concept of exponential generating
functions.

Let (an)n∈ℕ0 be a sequence of real (or complex) numbers. Then the (formal) series

A(t) =
∞

∑
n=0

an
n!
tn

is the exponential generating function for the series (an)n∈ℕ0 . The rules for addition and
multiplication are given (formally) by

∞

∑
n=0

an
n!
tn +
∞

∑
n=0

bn
n!
tn =
∞

∑
n=0

(an + bn)
n!

tn

and

(
∞

∑
n=0

an
n!
tn)(

∞

∑
n=0

bn
n!
tn) =

∞

∑
n=0

1
n!
(

n
∑
k=0
(
n
k
)akbn−k)t

n.

In what follows we assume that there exists a real number a > 0 with |an| ≤ (an)n for
all n ∈ ℕ0. In this case the exponential generating function is a true function which
converges absolutely for |x| < 1

ae (because
nn
n! ≤ ne

n). In particular, the series has a
positive radius of convergence (this includes the case that the radius is∞). Then the
derivative of the exponential generating function (around 0) is

A′(x) =
∞

∑
n=0

an+1
n!

xn.

Examples 9.83.
(1) Let an = n! for all n ∈ ℕ0. Then A(t) = ∑

∞
n=0 t

n = 1
1−t .

(2) Let I(n,m),m, n ∈ ℕ0, be the number of injectivemaps froman n-set into anm-set.
Then, by Theorem 9.15 and the interpretation, I(n,m) = (m)n = n!(mn). We choose
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m to be fixed, and then (an)n∈ℕ0 , an = I(n,m), is a sequence in n, and we get

A(t) =
∞

∑
n=0

I(n,m)
n!

tn =
∞

∑
n=0
(
m
n
)tn = (1 + t)m.

(3) The Bell numbers Bn. We remind that Bn = ∑
n
k=0 S(n, k) where S(n, k) are the Stir-

ling numbers of the second type.
From S(n, k) ≤ kn

k! (see Theorem 9.42) we see that the series

B(t) =
∞

∑
n=0

Bn
n!
tn

has a positive radius of convergence. We already know that

Bn+1 =
n
∑
k=0
(
n
k
)Bk

for all n ∈ ℕ0. Using the above rules we get

B′(t) =
∞

∑
n=0

Bn+1
n!

tn

=
∞

∑
n=0
(
1
n!

n
∑
k=0
(
n
k
)Bk)t

n

= (
∞

∑
n=0

tn

n!
)(
∞

∑
n=0

Bn
n!
tn)

= etB(t).

Hence B′(t) = etB(t). We now want to solve this type of differential equation. The
function ee

t
also satisfies this differential equation. Now let B1(t) and B2(t) be two

solutions of this differential equation with B1(x) > 0 and B2(x) > 0 for all x ∈ ℝ,
x > 0. Then

(ln ∘ B1)
′(t) =

B′1(t)
B1(t)
=
B′2(t)
B2(t)
= et .

Hence, B1(t) and B2(t) differ only by a constant factor because the derivative of
B1(t)
B2(t)

is zero.

Hence B(t) = cee
t
for a constant c ∈ ℝ, c > 0. Because of B(0) = 1 we get c = 1

e .
Therefore B(t) = ee

t−1.
In particular, the series

B(t) =
∞

∑
n=0

Bn
n!
tn

converges for all x ∈ ℝ.
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Now

B(t) = ee
t−1 =

1
e

∞

∑
k=0

1
k!
(
∞

∑
n=0

tnkn

n!
)

=
∞

∑
n=0
(
1
e

∞

∑
k=0

kn

n!
)
tn

n!
.

If we compare the coefficients, we get again the Dobinski formula (Theorem 9.46):

Bn =
1
e

∞

∑
k=0

kn

k!
.

Altogether we have the following beautiful result.

Theorem 9.84. Let (Bn)n∈ℕ be the sequence of the Bell numbers. Then
(a) The exponential generating function of (Bn)n∈ℕ0 is B(t) = e

et−1.
(b) Bn =

1
e ∑
∞
k=0

kn
k! .

Exercises

1. (a) Consider a triangle in the planeℝ2 with vertices A,B,C. A line g intersects the
triangle, but not at one of the vertices A,B,C.
Show that two of the vertices are in one of the half-planes determined by g.

(b) 9 students are sitting in a row with 12 chairs.
Show that there are at least three consecutive chairs which are occupied.

(c) Consider 12 pairwise distinct binary natural numbers.
Show that there are two among them whose difference is a binary number
whose both digits are equal.

2. (a) There are 3 routes from Passau to Dortmund and 4 routes from Dortmund to
Hamburg. How many routes do there exist altogether to drive from Passau to
Hamburg via Dortmund?
Realize the situation in a tree diagram.

(b) How many 0–1-sequences of length 8 do there exist?
3. (a) Let p be a prime number. Show that p | (pk) for all 1 ≤ k < p. Conclude from

this that

(x + y)p ≡ xp + yp mod p

for all x, y ∈ ℤ.
(b) Let 0 ≤ k ≤ n. Show that

(
n
k
) =

n − k + 1
k
(

n
k − 1
).
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4. LetM be a nonempty finite set. Let E be the set of subsets ofM with an even num-
ber of elements and O be that with an odd number of elements.
Show that |E| = |O|.

5. (a) How many natural numbers with 9 digits do there exist, in which each digit
between 0 and 9 occurs at most once and the 0 occurs at least once?

(b) Howmany possibilities do there exist to have at least four correct numbers in
the lottery 6 from 49?

6. In a group of 20 persons there are 7 chosen which should form a working team.
(a) How many different teams with 7 persons do there exist?
(b) Two persons A and B refuse to cooperate in one team. How many different

teams do there exist which do not contain both A and B?
(c) Suppose that the group has 12 men and 8 women.

– How many different teams do there exist with 5 men and 2 women?
– How many different teams do there exist with at least 1 man?
– How many different teams do there exist with at most 1 man?

7. (a) We consider the natural numbers between 1001 and 2000.
How many of these numbers are divisible by 3 or 5 or 8?

(b) Let S be the set of all students which registered for all exams.
Let D be the set of students from S registered for Discrete Mathematics, A the
set of students from S registered for Algebra and G the set of students from S
registered for Geometry.
Further, let

|D| = 60, |A| = 50, |G| = 40,
|D ∩ A| = 40, |D ∩ G| = 30, |A ∩ G| = 20 and
|D ∩ A ∩ G| = 10.

– Howmany students are registered for at least one exam in Discrete Math-
ematics, Algebra or Geometry?

– Howmany students are registered for exactly two of the exams inDiscrete
Mathematics, Algebra or Geometry?

– Howmany students are registered for exactly one of the exams inDiscrete
Mathematics, Algebra or Geometry?

8. In a class, a group of 28 students celebrate the pre-Christmas Secret Santa. Each
student puts one gift into a big box. If all gifts are in the box then each student
randomly takes one gift from the box.
Howmany possibilities do there exist that at least one student gets that gift he put
himself/herself into the box?

9. Let n ∈ ℕ. Show that
– S(n, 3) = 1

2 (3
n−1 − 2n + 1) for n ≥ 3,

– S(2n, n) ≥ nn
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(Hint: Compare the surjectivemaps {1, 2, . . . , 2n}→ {1, 2, . . . , n}with the combi-
nations of permutations of {1, 2, . . . , n} and arbitrarymaps {n+1, n+2, . . . , 2n}→
{1, 2, . . . , n}),

– s(n, n − 1) = 1
2n(n − 1),

– s(n, 2) = (n − 1)!(1 + 1
2 + ⋅ ⋅ ⋅ +

1
n−1 ) for n ≥ 2,

– S(n, k) ≤ s(n, k) for 0 ≤ k ≤ n.
10. Let y1, y2, . . . , yn, n ∈ ℕ, be real numbers and

f (x) = (x − y1)(x − y2) ⋅ ⋅ ⋅ (x − yn)

=
n
∑
i=0
(−1)iaix

n−i, a0 = 1.

Show that
(a)

a1 = y1 + y2 + ⋅ ⋅ ⋅ + yn,
a2 = y1y2 + y1y3 + ⋅ ⋅ ⋅ + yn−1yn,
a3 = y1y2y3 + ⋅ ⋅ ⋅ + yn−2yn−1yn,

...
an = y1y2 ⋅ ⋅ ⋅ yn.

(b)

an−k = s(n, k), 0 ≤ k ≤ n,

if we take

y1 = 0, y2 = 1, y3 = 2, . . . , yn = n − 1.

11. Let n ∈ ℕ. Show that
– p(n, n) = p(n, 1) = 1,
– p(n, 1) = 1 for n ≥ 2,
– p(n, 2) = ⌊ n2 ⌋ where ⌊

n
2 ⌋ is the biggest natural number less than or equal to n

2 ,
– p(n, n − 2) = 2 for n ≥ 4,
– p(n + k, k) = ∑kj=1 p(n, j) for k ≥ 1.

12. (a) Let q ∈ ℝ, q ̸= 1, and n ∈ ℕ. Let S(n) = 1 + q + q2 + ⋅ ⋅ ⋅ + qn. Show that
– S(n) = 1−qn+1

1−q ,
– limn→∞ S(n) =

1
1−q if |q| < 1.

(b) Let f (x) = x2 + px + q ∈ ℝ[x]. Suppose that f (x) has two distinct real zeros x1
and x2. Show that there exist real numbers a and b with

1
f (x)
=

a
x − x1
+

b
x − x2
.
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13. (a) Let an be the number of words of length n from an alphabet with m letters.
Show that

∞

∑
n=0

ant
n =

1
1 −mt
.

(b) Assume that the sequence (an)n∈ℕ0 has the generating function

A(t) =
∞

∑
n=0

ant
n =

1
t2 − 5t + 6

.

Show that

an =
1

2n+1
−

1
3n+1
,

and conclude from that

a0 =
1
6
, a1 =

5
36

and an =
5
6
an−1 −

1
6
an−2 for n ≥ 2.

14. (a) The Lucas numbers ℓn, n ∈ ℕ0, are defined by

ℓ0 = 2, ℓ1 = 1 and ℓn = ℓn−1 + ℓn−2 for n ≥ 2.

Show that:
(i) ℓn = fn−1 + fn+1 for n ≥ 1, where the fi are the Fibonacci numbers.
(ii) The generating function for the sequence (ℓn)n∈ℕ0 is

L(t) =
∞

∑
n=0
ℓnt

n =
2 − t

1 − t − t2
.

Conclude from this that

ℓn = (
1 +√5

2
)
n
+ (

1 −√5
2
)
n
.

(b) The number Wn of possibilities to construct a wall of length n and height 2
with dominoes is given by the recursive formula

w0 = 1, w1 = 1, wn = wn−1 + wn−2 for n ≥ 2.

Show that the generating function for the sequence (wn)n∈ℕ0 is

W(t) =
∞

∑
n=0

wnt
n =

1
1 − t − t2

=
1

2√5
(

1 +√5
1 − 1+√5

2 t
+
√5 − 1
1 − 1−√5

2 t
).

Conclude that wn is approximately 1+√5
2 fn for large n.
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15. (a) Given the sequence (vn)n∈ℕ0 with

v0 = 2, v1 = 3 and vn = 3vn−1 − 2vn−2 for n ≥ 2.

Show that vn = 2n + 1 for n ∈ ℕ0.
Give two proofs, one by induction and the other with help of the generating
function V(t).
Prove that

V(t) =
∞

∑
n=0

vnt
n =

2 − 3t
2t2 − 3t + 1

.

(b) Given the sequence (an)n∈ℕ0 with

a0 = 0, a1 = 1, and an = 7an−1 − 12an−2 for n ≥ 2.

Show that the generating function A(t) for the sequence (an)n∈ℕ0 is

A(t) = 1
1 − 7t + 12t2

.

Conclude from this that

an = 4
n − 3n for n ∈ ℕ0.

(c) Consider the sequence (bn)n∈ℕ0 with

b0 = 0, b1 = 1 and bn = 5an−1 − 6an−2 for n ≥ 2.

Determine the generating function B(t) of the sequence (bn)n∈ℕ0 and show
that

bn = 3
n − 2n for n ∈ ℕ0.

16. (a) Determine the number of possibilities to write 32 as a sum of natural numbers
(without the consideration of the natural order), first with help of the recur-
sive formula and second with help of the generating function.

(b) Determine the number of possibilities to exchange a 20-cent coin into smaller
coins.
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10 Finite Probability Theory and Bayesian Analysis

10.1 Probabilities and Probability Spaces

Probability theory deals with the modeling and analysis of random events. It has
a long history: Gambling is one of the oldest human endeavors, and anyone who
gambles must consider probabilities. Insurance also depends upon probabilities, and
insurance was already being offered during the Renaissance. The beginnings of the
mathematical theory of probability were in a series of letters called the Pascal–Fermat
letters betweenP. Fermat (1607–1665) andB. Pascal (1623–1662). These letters explored
the heavy reliance of finite probabilities on combinatorics. During the eighteenth and
nineteenth centuries these ideas were extended to uses of probability in science
and continuous spaces by T. Bayes (1702–1761), P. S. Laplace (1749–1827), C. F. Gauss
(1777–1855), P. L. Chebyshev (1821–1899) and others. A rigorous mathematical clas-
sification of the concept of probabilities was first worked out by A.N. Kolmogorov
(1903–1987).

In this chapter we introduce basic probability theory and Bayesian analysis. For
the most part we will be dealing with finite probability spaces.

The concept of probability begins with probability spaces and probability func-
tions.

Definition 10.1. A probability space consists of a triple (S, ℰ ,P) where
(1) S is a set called the sample space. The individual elements ofS are calledoutcomes.
(2) ℰ is a distinguished collection of subsets of S called the class of events (which

contain S and are closed under complements and unions). ℰ is often called the
event space.

(3) P is a function P : ℰ → ℝ called a probability measure on ℰ satisfying:
(a) P(E) ≥ 0 for all events E ∈ ℰ;
(b) P(S) = 1;
(c) P(E1 ∪ E2 ∪ ⋅ ⋅ ⋅ ∪ En ∪ ⋅ ⋅ ⋅) = ∑i P(Ei) for any finite or countable collection of

mutually disjoint events.

Remark 10.2. Here, if the sample space S is finite then each individual element s ∈ S
is an event.

In probability theory the empty set 0 is called the empty event. The following theo-
rem summarizes the basic properties of probability functions and probability spaces.
Here Ec indicates the complement of the event E.

Theorem 10.3. Let (S, ℰ ,P) be a probability space then
(1) 0 ≤ P(E) ≤ 1 for any every event E.
(2) P(0) = 0.
(3) P(E) + P(Ec) = 1 for any event E.

https://doi.org/10.1515/9783110740783-010
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(4) If E ⊂ F then P(E) ≤ P(F).
(5) P(E ∪ F) = P(E) + P(F) − P(E ∩ F) for any two events E, F (general rule of addition).

Proof. Since E ∪ 0 = E for any event E, we have

P(E ∪ 0) = P(E) = P(E) + P(0) ⇒ P(0) = 0,

proving (2).
Further E ∪ Ec = S and E ∩ Ec = 0 so P(E) + P(Ec) = P(S) = 1.
If E ⊂ F then F = E ∪ (Ec ∩ F). Because E ∩ (Ec ∩ F) = 0, we have

P(F) = P(E) + P(Ec ∩ F) ≥ P(E) since P(Ec ∩ F) ≥ 0.

We leave the remainder of the proof as an exercise.

A discrete sample space is one which is countable, otherwise it is a continuous
sample space. A finite sample space has a finite number of outcomes.

If S is a finite sample space with |S| = nwhere as before |S| stands for the number
of elements in S; S then has equiprobable outcomes if P({s}) = 1

n for all s ∈ S. A fi-
nite sample space with equiprobable outcomes is often called a Laplace space. The
following is straightforward.

Theorem 10.4. If S is a finite sample space with equiprobable outcomes and E is an
event then

P(E) = |E|
|S|
.

In this chapter we will concentrate for the most part on finite sample spaces with
equiprobable outcomes. Thus computing probabilities involves finding the sizes of
sample spaces and the relevant subsets. Hence the use of combinatorics.

Before moving on, we mention that probability theory is actually a part of real
analysis where it is a special case of measure theory. Let S be a set. A collection of
subsets ℰ of S is a σ-algebra if it contains S and is closed under complements and
countable unions (it follows also that it is closed under countable intersections).

Definition 10.5. Ameasure space consists of a set S, a σ-algebra ℰ of subsets of S and
a functionm : ℰ → ℝ called ameasure satisfying
(1) m(E) ≥ 0 for all E ∈ ℰ;
(2) m(0) = 0;
(3) m(E1∪E2∪ ⋅ ⋅ ⋅∪En∪ ⋅ ⋅ ⋅) = ∑im(Ei) for any finite or countable collection of pairwise

disjoint sets in ℰ .

 EBSCOhost - printed on 2/10/2023 4:13 PM via . All use subject to https://www.ebsco.com/terms-of-use



10.2 Some Examples of Finite Probabilities | 279

There are many examples of measure spaces, for example, consider the real line
with the length measure. In this more general context a probability space is just a
general measure space where the measure of the whole space is 1.

10.2 Some Examples of Finite Probabilities

In this section we present some examples of finite probabilities.
(1) The dice problem

Supposewe roll a pair of fair dice as inMonopoly or backgammon. Then the possi-
ble numbers are 2 through 12.Wefind the probabilities of each. A dice has six faces
numbered 1 through 6. We generally throw two dice and consider the sum. This
becomes crucial in many gambling games such as craps and backgammon. Since
each dice has six faces, the size of the sample space is the size of pairs of numbers
(n1, n2) with each ni = 1, . . . , 6. The size of the sample space is then 6 ⋅ 6 = 36. To
get a 2, for example, the only possibility is (1, 1) and therefore the probability of a
2 is the 1

36 . We summarize all the probabilities:

P(2) = 1
36
, P(12) = 1

36
,

P(3) = 2
36
, P(11) = 2

36
,

P(4) = 3
36
, P(10) = 3

36
,

P(5) = 4
36
, P(9) = 4

36
,

P(6) = 5
36
, P(8) = 5

36
,

P(7) = 6
36
.

(2) Matches in lotto
We ask about the possibilities to have exactly 4 correct matches in a lotto. This
means that there are 4 of the 6 winning numbers marked with a cross, and 2 of
the marked numbers are from the remaining 49 − 6 = 43 non-winning numbers.
By the multiplication rule, the number of possibilities to have marked 4 of the 6
winning numbers is

(
6
4
)(

43
2
) =

6!
4! ⋅ 2!
⋅

43!
2! ⋅ 41!
= 15 ⋅ 903 = 13545.

Hence the probability to have exactly 4 of the 6 winning numbers is 13545
13983816 ≈

0.00097.
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If we have exactly 5 of the 6 winning numbers and the bonus number, then the
probability is

(65)(
1
1)(

42
0 )

13983816
=

6
13983816

≈ 0.000000429.

(3) The birthday problem
In a group of n people we ask for the probability that at least two of them have
the same birthday. It is higher than most people expect. In a group of 40 people
there is almost a 90% probability that at least two have the same birthday. The
complete solution is given in the following theorem.

Theorem 10.6 (The birthday problem). The probability p(n) that out of n persons at
least 2 have birthday at the same day is

p(n) = 1 −
n−1
∏
k=1
(1 − k

365
),

where we assume that there is an equipartition of the birthdays of all persons over a year
with 365 days.

As a first approximation we get

p(n) ≈ 1 − e
−n(n−1)
730 .

Proof. Altogether there are 365n possibilities for the birthdays of n persons, and we
have

365 ⋅ 364 ⋅ ⋅ ⋅ (365 − n + 1)

possibilities that no person out of the n has the same birthday as one of the others.
Hence the probability that all n persons have different birthdays is

P(B) = 365!
(365 − n)!365n

where B is the subset of the setM of all n persons which have different birthdays (here
we assumed that we have a sample space with equiprobable outcomes). Let Bc = M \B
be the complement of B inM. Then we get

p(n) = P(M \ B) = 1 − P(B) = 1 − 365!
(365 − n)!365n

= 1 −
n−1
∏
k=1
(1 − k

365
).

If we take the linear approximation

1 − k
365
≈ e−

k
365 ,
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then we get

p(n) ≈ 1 − e
−(1+2+⋅⋅⋅+n−1)

365 = 1 − e−
n(n−1)
730 .

Numerically we get:

p(23) ≈ 0.507,
p(30) ≈ 0.706,
p(50) ≈ 0.970.

10.3 Random Variables, Distribution Functions and Expectation

A crucial concept in dealing with probabilities is that of a random variable. If S is a
probability space then a random variable on S is a function X : S → ℝ which is mea-
surable, that is, for all real numbers t the set {s ∈ S|X(s) ≤ t} is an event in S.

Intuitively, a random variable assigns real numbers to the outcomes of a chance
phenomenon.

Example 10.7.
(1) ABernoulli process, namedafter J. Bernoulli (1655–1705), is any randomeventwith

only two outcomes that we call success and failure. Consider a Bernoulli process
with n independent trials and probability p of success on each trial. Let X be the
number of successes obtained. Then X is called a binomial random variable with
parameters n, p.

(2) Suppose we have a container withM balls of which R are red andM − R are non-
red. Suppose n are sampled and let X be the number of red balls in the sample.
Then X is called a hypergeometric random variable with parametersM, R, n.

(3) Suppose we have a process which generates discrete occurrences over a continu-
ous interval with a fixed average λ per unit interval. This is called a Poisson pro-
cess, named after S. D. Poisson (1781–1840), with parameter λ. LetX be the number
of occurrences in the unit interval. Then X is a Poisson random variable with pa-
rameter λ.

(4) Let 𝒫 be a population of some measured variable such as height, weight or time.
Let X be the particular measurements. Then X is the population random variable.

If X is a random variable then X is a discrete random variable if the range of X is a
discrete set in ℝ (contains no interval); X is a continuous random variable if the range
of X is either an interval or a union of intervals. If the range of X contains both discrete
and continuous sections, X is called amixed random variable.
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Actually we are not interested in the random variable itself but rather the proba-
bilities that it takes on its values. To this end we study several related functions: dis-
tribution functions,mass functions for discrete random variables and density functions
for continuous random variables.

The distribution function of the random variable X is the function F : ℝ → ℝ
defined by

F(x) = P(X ≤ x) = Probability that X takes on a value ≤ x.

That is, F(x) measures how much of the random variable accumulates less than or
equal to x. A distribution function is also called a cumulative distribution function ab-
breviated c.d.f.

The following theorem gives a complete characterization of a distribution func-
tion.

Theorem 10.8. A function F : ℝ → ℝ is the distribution function of some random vari-
able if and only if it satisfies the following five properties:
(1) 0 ≤ F(x) ≤ 1.
(2) F(x) is monotonically non-decreasing.
(3) limx→∞ F(x) = 1.
(4) limx→−∞ F(x) = 0.
(5) F(x) is right continuous, that is,

lim
h→0+

F(x + h) = F(x).

Example 10.9.
(1) If λ > 0 show that F(x) = 1 − e−λx if x > 0 and 0 elsewhere is the distribution

function for some random variable X. We must show that F(x) satisfies each of
the 5 properties in the theorem. Showing this is direct.

(2) If λ = 2, what is P(X ≤ 4) and what is themedian of this random variable.

P(X ≤ 4) = F(4) = 1 − e−2⋅4 = 0.997.

The median is the valuem such that F(m) = 0.5. Then

F(m) = 0.5 = 1 − e−2m ⇒ m = ln(0.5)
−2
= 0.3466.

Two random variables X,Y are identically distributed if they have the same dis-
tribution function. Often it is easier to work with other functions rather than directly
with the distribution function.

If X is a discrete random variable assuming the values x1, x2, . . . , xn, . . . , then its
mass function, also called its probability mass function, abbreviated p.m.f., is the func-
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tion

p(x) = {
P(X = xi), if x = xi,
0, otherwise.

As with distribution functions there is a complete characterization of mass func-
tions.

Theorem 10.10. A function p : ℝ → ℝ is the mass function of some discrete random
variable if and only if it satisfies the following three properties:
(1) p(x) = 0 except at discrete points x1, x2, . . . , xn, . . . .
(2) p(x) ≥ 0.
(3) ∑xi p(xi) = 1.

If X is a continuous random variable with distribution function F(x) then f (x) is
its density function, also called its probability density function, abbreviated pdf , if for
all x ∈ ℝ

F(x) =
x

∫
−∞

f (t)dt.

Roughly, the density function is the function whose curve is the normalized fre-
quency curve.

Theorem 10.11. A function f : ℝ→ ℝ is the density function of some random variable if
and only if it satisfies the following properties:
(1) f (x) ≥ 0,
(2) ∫∞−∞ f (x)dx = 1.

Notice that if X is a continuous random variable with distribution function F(x)
then its density function f (x) is given by the derivative of the distribution function

f (x) = F′(x).

Example 10.12. Let X be the random variable which picks a point at random from the
interval [a, b] and all points are equally likely. X is called a uniform random variable
with parameters a, b.
(1) The distribution function for X, called the uniform distribution, is given by

F(x) =
{{{
{{{
{

0, if x ≤ a,
x−a
b−a , if a < x ≤ b,
1, if x > b.
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(2) The density function for X, called the uniform density, is given by the derivative of
the distribution function. Therefore:

f (x) = {
1

b−a , if a ≤ x ≤ b,
0, otherwise.

Finally, random variables are described by their expectation or expected value.

Definition 10.13. If X is a random variable then its expectation or expected value, de-
noted E(X), is

E(X) =∑
x
xp(x)

if X is discrete and p(x) is its mass function, or

E(X) =
∞

∫
−∞

xf (x)dx

if X is continuous and f (x) is its density function.
If g(x) : ℝ→ ℝ then g(X) is a random variable and

E(g(X)) =∑
x
g(x)p(x)

if X is discrete and p(x) is its mass function, or

E(g(X)) =
∞

∫
−∞

g(x)f (x)dx

if X is continuous and f (x) is its density function.

Expectation is a linear operator on random variables. That is,

E(αg(X) + βh(X)) = αE(g(X)) + βE(h(X))

for real numbers α, β and functions g(X), h(X).
Further the expectation of a constant random variable is that constant, that is,

E(c) = c.
The kth population moment of a random variable denoted mk(X) is E(Xk). The

first population moment E(X) is called the population mean or population average de-
noted μ.

E((X−μ)k) is called the kth centralmoment. The second centralmoment E((X−μ)2)
is the variance denoted var(X) or σ2(X). The square root of the variance is the standard
deviation denoted σ(X).
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10.4 The Law of Large Numbers

In ordinary language we often say that things tend to average out. By this we mean
mathematically that in a limiting sense random events converge to their mean. For-
mally, this is called the law of large numbers which we will describe in this section.

First, we show the importance of the mean as described in the next theorem,
calledChebyshev’s theorem. It says in essence that for anypopulationwithfinitemean
and variance the population will cluster about the mean.

Theorem 10.14 (Chebyshev’s Theorem). Let X be a random variable with finite expec-
tation E(X) = μ and finite variance V(X) = σ2. Let k > 0 be any positive real number.
Then

P(|X − μ| ≥ kσ) ≤ 1
k2
.

Proof. We first prove the discrete case and then do the continuous case. Let X be a
discrete random variable with discrete values {xi}, mass function p(x) = P(X = x) and
finite mean μ and finite standard deviation σ. Let k > 0 be any positive real number.
Then

σ2 = E((X − μ)2) =∑
xi
(xi − μ)

2p(xi).

Now the set {xi | |xi − μ| > kσ} is contained in the whole range {xi}, so adding over this
set the result is smaller than when adding over the whole range. Hence

σ2 ≥ ∑
{xi||xi−μ|>kσ}

(xi − μ)
2p(xi).

However, on this set (xi − μ)2 > k2σ2 and therefore replacing this in the sum we get

σ2 ≥ ∑
{xi||xi−μ|>kσ}

k2σ2p(xi) = k
2σ2 ∑
{xi||xi−μ|>kσ}

p(xi).

However, p(x) is the mass function so

∑
{xi||xi−μ|>kσ}

p(xi) = P(|X − μ| > kσ).

Combining these gives

σ2 ≥ k2σ2P(|X − μ| > kσ)

and hence
1
k2
≥ P(|X − μ| > kσ),

proving the theorem in the discrete case.
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The continuous case is analogous with the mass function replaced by the density
function and summation replaced by integration. Let X be a continuous random vari-
able with density function f (x) and finite mean μ and finite standard deviation σ. Let
k > 0 be any positive real number. Then

σ2 = E((X − μ)2) = ∫
ℝ

(x − μ)2f (x)dx.

Now the set {x | |x − μ| > kσ} is contained in the whole range (−∞,∞), so integrating
over this set the result is smaller thanwhen integrating over thewhole real line. Hence

σ2 ≥ ∫
{x||x−μ|>kσ}

(x − μ)2f (x)dx.

However, on this set (x − μ)2 > k2σ2 and therefore replacing this in the integral we get

σ2 ≥ ∫
{x||x−μ|>kσ}

k2σ2f (x)dx = k2σ2 ∫
{x||x−μ|>kσ}

f (x)dx.

However, f (x) is the density function, so integrating over a set gives the probability of
that set. Hence

∫
{x||x−μ|>kσ}

f (x)dx = P(|X − μ| > kσ).

Combining these yields

σ2 ≥ k2σ2P(|X − μ| > kσ)

and hence

1
k2
≥ P(|X − μ| > kσ),

proving the theorem in the continuous case.

From Chebyshev’s theorem we get the law of large numbers.

Theorem 10.15 (The law of large numbers). Let (Xi)i∈ℕ be a sequence of independent
and identical distributed random variables Xi with common expectation E(Xi) = μ <∞
and common variance V(Xi) = σ2 <∞. If Sn = X1 + X2 + ⋅ ⋅ ⋅ + Xn, then

lim
n→∞

P(


Sn
n
− μ

≥ ϵ) = 0

for all real ϵ > 0.
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Proof. From the linearity of the expectation we get

E(Sn
n
) =

E(Sn)
n
=
nμ
n
= μ.

From the properties of the variance and independence of the Xi, we get

V(Sn
n
) =

V(Sn)
n2
=
nσ2

n2
=
σ2

n
.

Let ϵ > 0 be given. Then for some k > 0 we have ϵ = k√V( snn ) =
kσ
√n . From Chebyshev’s

Theorem we obtain

P(


Sn
n
− μ

≥ ϵ) = P(



Sn
n
− μ

≥ k σ
√n
) ≤

σ2

nϵ2

Taking the limit as n→∞ finishes the proof.

Remark 10.16.
(1) Theorem 10.15 goes back to J. Bernoulli (1654–1705).
(2) Theorem 10.15 is sometimes called the weak law of large numbers. A stronger re-

sult can be found in [3].

Example 10.17. We roll with fair dice. Let the (discrete) random variable X be 1 if we
roll a six, and 0 otherwise. We get an expectation

E(X) = 1
6

and the variance

V(X) = 5
6
(0 − 1

6
)
2
+
1
6
(1 − 1

6
)
2
=

5
36
.

We throw the dice n times. Then Bn = X1 + X2 + ⋅ ⋅ ⋅ + Xn is the number of sixes that
appear. The expectation is E(Bn) =

n
6 , and the variance is V(Bn) =

5n
36 .

We consider the relative frequency Bn
n of the sixes, and we get

E(Bn
n
) =

1
6

and V(Bn
n
) =

5
36n
.

From Theorem 10.14 and the proof of Theorem 10.15, we obtain

P(


Bn
n
−
1
6


≥ ϵ) ≤ 5

36nϵ2
.
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Hence the probability that the relative frequency of the sixes is by at least ϵ away from
1
6 goes to0with an increasingquantity of the casts of thedice. In this sense, the relative
frequency converges to the expectation.

10.5 Conditional Probabilities

In the followingwe use the notationA∩B for the event that both eventsA and B occur.
Analogously, A1 ∩ A2 ∩ ⋅ ⋅ ⋅ ∩ An denotes the event that all events A1,A2, . . . ,An occur.
Again, if A ⊂ M then we write Ac for the complementM \ A of A.

Definition 10.18. Let P be a probability on a setM. If A and B are events then the con-
ditional probability ofA given Bwith P(B) > 0, which is denoted by P(A | B), is defined
as

P(A | B) = P(A ∩ B)
P(B)
.

The conditional probability P(A | B) can be interpreted as the probability that A
will occur given that B has occurred. To see how this becomes an appropriate defini-
tion, recall that A ∩ B is the event that both A and B will occur. If B has occurred and
A is to occur then A ∩ B will occur. This describes the proposition of times that A ∩ B
occurs among all possible times that B has occurred. This would then be the ratio in
the definition. Conditional probability can also be thought of as the effect the event B
(which has occurred) has on the event A.

Example 10.19. Table 10.1 below represents a cross-classification of male and female
smokers.

Table 10.1:Male and female smokers.

Smokers Non-Smokers Total

Male 34 66 100
Female 23 87 110
Total 57 153 210

Then we get

P(Male) = 100
210
,

P(Male | Smoker) = 34
57
,

P(Male ∩ Smoker) = 34
210
,

which agrees with the definition.
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The events A and B are independent if and only if

P(A) = P(A | B).

This follows from the definition and the fact that A and B are independent if and only
if

P(A ∩ B) = P(A) ⋅ P(B)

using themultiplication rule. In this case, the eventB has no influence for the eventA.
Using these definitions we get the Bayes Expansion and then Bayes Theorem.

These were originally written by T. Bayes who was a British clergyman and amateur
mathematician. His original motivation was to use conditional probability to prove
the existence of God. The original motivation was the clockmaker argument. Suppose
someone is stranded on a desert island and finds a clock. There are two possible ex-
planations. There was a clockmaker who was on the island first or random particles
came together to form a clock. The probability is much higher that there was a clock-
maker. Putting this in probability terms and applying it to the universe, much more
complicated than a clock, leads to an extremely high probability, in Bayes view, of the
existence of God.

Bayes expansion given below expresses the probability of an event A in terms of
another event B and its complement Bc.

Theorem 10.20 (Bayes Expansion). If A,B are any two events with P(B) > 0, we have

P(A) = P(A | B)P(B) + P(A | Bc)P(Bc).

Proof. We have A = (A ∩ B) ∪ (A ∩ Bc). Since A ∩ B and A ∩ Bc are disjoint, we then get

P(A) = P(A ∩ B) + P(A ∩ Bc).

From the definition we have

P(A ∩ B) = P(A | B)P(B) and P(A ∩ Bc) = P(A | Bc)P(Bc).

This can be extended as follows. Let ℰ be the event space and let the collection of
events Bi partition the sample space so that S = ⋃iBi with Bi ∩ Bj = 0 if i ̸= j. Then for
any event A we have

P(A) =∑
i
P(A | Bi)P(Bi).

Theorem 10.21 (Bayes Formula). Let A, B be two events with P(B) > 0. Then

P(A | B) = P(B | A) ⋅ P(A)
P(B)

.
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Proof. If P(A) = 0 then also P(A ∩ B) = 0 and P(A | B) = 0, and the equation holds.
Now, let P(A) > 0. Then

P(A | B) = P(A ∩ B)
P(B)
=

P(A∩B)
P(A) ⋅ P(A)
P(B)

=
P(B | A) ⋅ P(A)

P(B)
,

and the equation holds.

For illustration see Figure 10.1, where Ac = M \ A.

B

A ∩ B AC ∩ B

P(B)

P(A | B)
P(Ac | B)

Figure 10.1: Illustration of Bayes Formula.

Corollary 10.22. Let {Bi | i = 1, 2, . . . , n} be a partition of the sample space S, that is,

S =
n
⋃
i=1

Bi and Bi ∩ Bj = 0 for i ̸= j

where Bi are events. Then

P(Bj | A) =
P(A | Bi)P(Bi)
∑nj=1 P(A | Bj)P(Bj)

if P(A) > 0.

In particular, if A is an event with P(A) > 0, then

P(B | A) = P(A | B)P(B)
P(A | B)P(B) + P(A | Bc)P(Bc)

.

Proof. We have

P(A) = P(
n
⋃
i=1
(Bi ∩ B)) =

n
∑
i=1

P(Bi ∩ A)
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=
n
∑
i=1

P(A | Bi)P(Bi).

Further,

P(Bi | A) =
P(A ∩ Bi)
P(A)

=
P(A | Bi)P(Bi)

P(A)

by Theorem 10.21.
Now, we plug in this value of P(A) into this last equation.
The additional statement follows because S = B ∪ Bc and B ∩ Bc = 0.

Example 10.23.
(1) Consider two urns A and B, each containing 10 balls. In A there are 7 red and

3 white balls, in B there is one red and 9 white balls. We move one ball from a
randomly chosen urn.
Here the probability for picking urn A and urn B is the same. The result of the
drawing is that the ball is red.
We want to find the probability that this red ball is from urn A.
We define:
– A is the event that the ball is from the urn A.
– B is the event that the ball is from urn B.
– R is the event that the ball is red.
Then we have:

P(A) = P(B) = 1
2
, P(R | A) = 7

10
, P(R | B) = 1

10
.

Hence,

P(R) = P(R | A)P(A) + P(R | B)P(B) = 7
10
⋅
1
2
+

1
10
⋅
1
2
=
2
5

is the total probability to move a red ball.
Then

P(A | R) = P(R | A) ⋅ P(A)
P(R)

=
7
10 ⋅

1
2

2
5
=
7
8
.

Hence the conditional probability that the red ball is from urn A comes to 7
8 .

(2) Assume that there are two coins in a pot. One coin (A1) is fair with heads and tails,
the other coin (A2) has two heads. Now we choose randomly one coin and throw
it. Suppose we get heads (K).
The probability that the coin is fair comes to

P(A1 | K) =
P(A1)P(K | A1)

P(A1)P(K | A1) + P(A2)P(K | A2)
=

1
2 ⋅

1
2

1
2 ⋅

1
2 +

1
2 ⋅ 1
=
1
3
.

 EBSCOhost - printed on 2/10/2023 4:13 PM via . All use subject to https://www.ebsco.com/terms-of-use



292 | 10 Finite Probability Theory and Bayesian Analysis

Hence the probability that we get the coin with two heads comes to P(A2 | K) =
2
3 .

Remark 10.24. The formula of Bayes allows us in a certain sense to reverse the con-
clusion.

We start with a known value P(B | A), but actually we are interested in the value
P(A | B). For instance, it is of interest to know how big the probability is that a person
carries a certain illness if a special quick test for this illness has a positive result.

From empirical studies one normally knows the probability for a positive test if
the person carries the illness. The desired conversion is possible if one knows the (ab-
solute) probability for the presence of the illness in the whole population.

Example 10.25. Acertain illness is carriedwith a frequency 20 of 100000persons. The
event K, a person carries the illness, has therefore the probability

P(K) = 0.0002.

Then

P(Kc) = 1 − P(K) = 0.9998

where Kc is the complement of K, the event that a person does not carry the illness.
Let T be the event that the test is positive.
It is known that P(T | K) = 0.95, which means that if a person carries the illness

then the test is positive with a probability of 0.95.
Sometimes the test is positive for a person who does not carry the illness. In fact,

P(T | Kc) = 0.01

for the respective conditional probability.
Then

1 − P(T | Kc) = 1 − 0.01 = 0.99.

We are interested in the conditional probability P(K | T) that a person carries the
illness if the test is positive.

By the Bayes formula

P(K | T) = P(T | K)P(K)
P(T | K)P(K) + P(T | Kc)P(Kc)

=
0.95 ⋅ 0.0002

0.95 ⋅ 0.0002 + 0.01 ⋅ 0.9998
≈ 0.0186.
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Example 10.26 (Hemophilia problem). A woman with no known history of hemophil-
ia inher family has a sonwithhemophilia. She reasons that a genemust havemutated,
which has a tiny probability m. What is the probability that her second son has the
disease given the first son has it.

The second son will have hemophilia if one of her X chromosomes mutated to
the complement Xc. Let A1 be the event that the first son has it, A2 the event that the
second son has it and B the event that she is a carrier, that is, one of her chromosomes
has mutated.

Let P(B) be the probability that one of her chromosomes has mutated. Each
woman has two X chromosomes, and they would mutate independently. The proba-
bility that one chromosome does not mutate is 1 −m. Hence the probability that both
do not mutate is (1 − m)2. Therefore, the probability that at least one chromosome
mutates is 1 − (1 −m)2. However,

1 − (1 −m)2 = −m2 + 2m ≈ 2m,

sincem is tiny. Then

P(B) ≈ 2m and P(Bc) ≈ 1 − 2m.

Now

P(A1 | B) = P(A2 | B) =
1
2

and P(A1 | B
c) = P(A2 | B

c) = m.

This can be seen as follows. We have

P(A1 | B) = P(A2 | B) =
1
2

because the mother has two X chromosomes, and one is mutated. We have

P(A1 | B
c) = P(A2 | B

c) = m

because, if none of her chromosomes is mutated, the only way a son is hemophilic is
that a gene is mutated in the child which has probabilitym. Therefore,

P(A1 ∩ A2 | B) =
1
4

and P(A1 ∩ A2 | B
c) = m2.

We want

P(A2 | A1) =
P(A1 ∩ A2)
P(A1)

.

Then, using Bayes expansion,

P(A1) = P(A1 | B)P(B) + P(A1 | B
c)P(Bc) ≈ 1

2
2m +m(1 − 2m) ≈ 2m
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and

P(A1 ∩ A2) = P(A1 ∩ A2 | B)P(B) + P(A1 ∩ A2 | B
c)P(Bc) ≈ 1

4
(2m) + (1 − 2m)m2 ≈

m
2
.

Then our final computation is

P(A2 | A1) ≈
m
2
2m
=
1
4
,

which is surprising. For medical reasons the 1
4 is easy to understand.

Example 10.27 (Pareto analysis). Pareto analysis is a method used in quality control
to reason backwards to find the cause of an industrial problem.

Suppose we are constructing an item and D is the event that there is a defect.
Suppose that the defect can be caused by
– bad raw material, denoted by B,
– bad settings, denoted by S,
– worker error, denoted byW , or
– everything else, denoted by E.

Suppose that by experiment (Pareto analysis) you find the following conditional prob-
abilities:

P(D | B) = 0.15,
P(D | S) = 0.10,
P(D | W) = 0.05 and
P(D | E) = 0.005.

Suppose that we have for the total probabilities:

P(B) = 0.01,
P(S) = 0.05,
P(W) = 0.05 and
P(E) = 0.89.

Then the probability for a defect is

P(D) = P(D | B)P(B) + P(D | S)P(S) + P(D | W)P(W) + P(D | W)P(E)
= 0.1345,

using Bayes expansion.
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Hence, given a defect D, using Bayes formula gives

P(B | D) = P(D | B)P(B)
P(D)

=
0.15 ⋅ 0.1
0.01345

= 0.112,

P(S | D) = P(D | S)P(S)
P(D)

=
0.10 ⋅ 0.05
0.01345

= 0.372,

P(W | D) = P(D | W)P(W)
P(D)

=
0.05 ⋅ 0.05
0.01345

= 0.186,

P(E | D) = P(D | E)P(E)
P(D)

=
0.005 ⋅ 0.89
0.01345

= 0.331.

Therefore, one checks bad settings first, then everything else, then worker error, and
finally bad material.

10.6 The Goat or Monty Hall Problem

The Monty Hall or goat problem is a brain teaser, loosely based on the game show
“Let’s Make a Deal” and named after its host, Monty Hall.

The problem was originally posed in a letter by S. Selvin to the American Statis-
tician in 1975. It became famous as a question from a letter quoted in M. vos Savant’s
column in Parade magazine in 1990:

Suppose you are on a game show, and you have the choice of three doors: Behind one door is
a car; behind the others are goats. You pick a door, say No. 1, and the host, who knows what is
behind the doors, opens another door, say No. 3, which has a goat. He then says to you “Do you
want to pick now door No. 2?” Is it to your advantage to switch your choice?

The answer is that the contestant should switch to the other door. Under the standard
assumptions, contestants who switch have a 2

3 chance of winning the car, while con-
testants who stick to their initial choice have only a 1

3 chance.
We now give the solution using the formula of Bayes:
We have the followings events:

– Gi, the win is behind door i, i = 1, 2, 3.
– Mj, the host opens doorMj, j = 1, 2, 3.

The contestant opens one door, and for his first choice we have

P(G1) = P(G2) = P(G3) =
1
3
.

Say, the contestant chooses door No. 1.
Now, the host chooses a door such that a goat is behind it. If the win is behind

door No. 1, then the host has two possibilities, namely door No. 2 or door No. 3. Hence,

 EBSCOhost - printed on 2/10/2023 4:13 PM via . All use subject to https://www.ebsco.com/terms-of-use



296 | 10 Finite Probability Theory and Bayesian Analysis

for the choice of door No. 3 we have

P(M3 | G1) =
1
2
.

If the win is behind door No. 2, then the host has to choose door No. 3, that is,

P(M3 | G2) = 1.

If the win is behind door No. 3 then the host cannot choose door No. 3. Hence,

P(M3 | G3) = 0.

Now, the contestant switches to door No. 2.
We ask for the conditional probability P(G2 | M3) if the host chooses door No. 3.

By the Bayes formula, we get

P(G2 | M3) =
P(M3 | G2)P(G2)

P(M3 | G1)P(G1) + P(M3 | G2)P(G2) + P(M3 | G3)P(G3)

=
1 ⋅ 13

1
2 ⋅

1
3 + 1 ⋅

1
3 + 0 ⋅

1
3

=
2
3
.

If the contestant continues with his initial choice, then he has only a 1
3 chance to win.

We now give a different proof for the goat problemusing probability trees together
with the multiplication and addition rules, see Figure 10.2.

10.7 Bayes Nets

Bayes formula can be used to utilize amounts of data (big data) when we describe the
data in a Bayes net.

At this stage, to introduce Bayes nets we need some more graph theory than we
had in Chapter 5 to classify Platonic solids.

Definition 10.28. A directed graph or digraph is a pair G = (V ,E) consisting of a
nonempty set V of vertices and a set E ⊂ V × V of oriented edges or arcs.

We write k = (x, y) for k ∈ E.

Remark 10.29.
(1) In other words, a digraph is a nonempty set V equipped with a relation in V .
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Constant
chooses door

Car is behind
door

Host opens

door
Success with
switching

Success without
switching

C

D
No. 1

No. 1

No. 2

No. 3

No. 2

No. 3

No. 3

No. 2

1
6

1
6

1
3

1
3

1
3

1
3

1
3

1
2

1
2

1

1

no

no

yes

yes

yes

yes

no

no

1
3

2
3

Figure 10.2: Proof for the goat problem using probability trees together with the multiplication and
addition rules.

Representation.
y

x

for k = (x, y) ∈ E, x ̸= y.k

x

if k = (x, x) ∈ E (here k = (x, x) is called a loop).
k

y

x

if k = (x, y) ∈ E and k′ = (y, x) ∈ E, x ̸= y.k
k′

(2) We do not allowmultiple oriented edges between two vertices x, y ∈ V , that is, we
do not allow situations given in Figure 10.3.
Then we call the digraph simple.

(3) If V is finite then we say that the digraph is finite.

y

x

k
k′

Figure 10.3: Oriented edges.
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Agreement. In what follows we only consider finite, simple digraphs.

Definition 10.30. LetG = (V ,E) be a digraph and x ∈ V . The output degree d+(x) (input
degree d−(x)) of x is defined as the number of directed edgeswith x as beginning vertex
(ending vertex, respectively).We define d(x) = d+(x)+d−(x). If we have a loop at x then
this loop contributes two times for d(x).

If G = (V ,E) is a digraph, then

|E| = ∑
x∈V

d+(x) = ∑
x∈V

d−(x) =
1
2
∑
x∈V

d(x).

Remark 10.31. In case of a digraph we use the notations edge sequence, edge line,
edge path, edge circle of arcs disregarding the direction of the arcs.

If the beginning vertex of each arc is equal to the ending vertex of the previous
arc, that is, all arcs are directed in the running through direction, then we talk about
directed edge sequences, directed edge line, directed edge path, directed edge circle.

Example 10.32. In Figure 10.4 we have
– u1u4u5u3u6 is an (undirected) line,
– u1u3u7u1u6 is a directed edge sequence,
– u1u3u2u6 is a directed edge line and
– u1u6 is a directed edge path from a to b.

a

b

u2 u3

u7

u1

u6

u5

u4

Figure 10.4: Example of a digraph.

Analogously, connected components and connection of a digraph are defined as in an
undirected graph.

Definition 10.33. A digraph is called strongly connected if for each pair a, b of vertices
there exists a directed path from a to b.
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In general, an Euler line and Euler cycle are defined for a digraph if we do not
consider the direction of the graph.

Theorem 5.40 of Chapter 5 holds analogously for digraphs if we consider them as
undirected graphs with, eventually, two edges between two vertices.

Definition 10.34. A closed directed edge line C in a digraph is called a directed Euler
cycle if C contains each arc of G exactly one time.

Analogously as in Theorem 5.40 of Chapter 5 we get the following.

Theorem 10.35. A digraph G = (V ,E) has a directed Euler cycle if and only if G is
strongly connected and d+(x) = d−(x) for all x ∈ V.

We now give an application.

Theorem 10.36. For each n ∈ ℕ there exists a cyclic ordering of 2n numbers0 and 1 such
that the 2n n-tuples of consecutive elements represent each integer k with 0 ≤ k < 2n

exactly once as binary numeral.

Example 10.37. Let n = 3, thus 23 = 8. Therefore we get in this example the circle
given in Figure 10.5.

0

0

0

1
0

1

1

1

Figure 10.5: Cyclic ordering of 23 with numbers 0 and 1.

The triples of consecutive elements are

(0,0,0), (0,0, 1), (0, 1,0), (1,0, 1),
(0, 1, 1), (1, 1, 1), (1, 1,0), (1,0,0)

where (x, y, z)means x ⋅ 22 + y ⋅ 2 + z.

Proof. We construct a digraph G = (V ,E) with V the set of the 2n−1 (n − 1)-tuples a =
(a1, a2, . . . , an−1), ai ∈ {0, 1} for i = 1, 2, . . . , n − 1, and E the set of the pairs (a, b) with
a2 = b1, a3 = b2, . . . , an−1 = bn−2.

Then d+(a) = d−(a) in G for all vertices a; indeed, the neighbors of a are exactly
as given in Figure 10.6.
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(0, a1, a2, . . . , an−2) (a2, a3, . . . , an−1,0)

(a1, a2, . . . , an−1)

(1, a1, a2, . . . , an−2) (a2, a3, . . . , an−1, 1)

Figure 10.6: Neighbors of a.

Then we have |E| = 2n.
Graph G is strongly connected because for arbitrary a, b ∈ V we have the directed

connecting line

(a1, a2, . . . , an−1)→ (a2, . . . , an−1, b1)→ (a3, . . . , an−1, b1, b2)→ ⋅ ⋅ ⋅→ (b1, b2, . . . , bn−1).

Hence, by Theorem 10.35, there exists a directed Euler cycle. The allocation

(a, b) → (a1, a2, . . . , an−1, bn−1)

defines a mapping f : E → {0, 1}n. We have that f is injective because f (a, b) = f (c, d)
means a = c and bn−1 = dn−1, which gives b = d by definition, and therefore (a, b) =
(c, d). Hence, f is bijective because |E| = 2n. By writing one behind the other coordi-
nates, we get the desired ordering, corresponding to the iteration of the directed Euler
cycle.

Example 10.38. Let n = 3 and see Figure 10.7 with the directed Euler cycle abhgcdef.

(00,00) → (0,0,0),
(00,01) → (0,0, 1),
(01, 10) → (0, 1,0),
(01, 11) → (0, 1, 1),
(11, 11) → (1, 1, 1),
(11, 10) → (1, 1,0),
(10,00) → (1,0,0).

We now come to the final definition we need for a digraph.

Definition 10.39. Let G = (V ,E) be a digraph.
(1) G is called a directed cyclic graph, or cyclic digraph, if G contains a closed directed

edge line, or, in other words, if G contains a directed edge circle.
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0 0

1 0 0 1

1 1

a

b

h

c

d

e

f

g

Figure 10.7: Directed Euler cycle is the
path abhgcdef.

(2) G is calledadirectedacyclic graph,oracyclic digraph, ifGdoesnot contain a closed
directed edge line.

Example 10.40. We give three examples, see Figures 10.8, 10.9 and 10.10.

Figure 10.8: Directed acyclic graph.

Figure 10.9: A directed loop is a directed circle.
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Figure 10.10: Digraph with a closed directed line in
gray.

Remark 10.41. An acyclic digraph does not contain a directed loop and, more gener-
ally, does not contain a directed circle.

Now we are prepared to introduce Bayes nets.
A Bayes net, or Bayes network, is a probabilistic graphical model that represents

a set of random events and their conditional dependence via a directed acyclic graph
(DAG) or acyclic digraphs. For instance, it can represent the probabilistic relationship
between diseases and symptoms. Given symptoms, the net can be used to compute
the probabilities of the presence of various diseases (see also the examples for the use
of Bayes formula for the probability to carry a certain illness). More generally, Bayes
nets are a probabilistic method to conclude results under uncertainties.

Practically, in all real-life problems certain unknown and random influences
play an essential role. These influences obliterate technically the connection to mod-
els. The resulting uncertainties can be regarded by modeling with Bayes probabili-
ties. The Bayes probability method makes available, on the one hand, a consistent
mathematical basis and, on the other hand, a comprehensible possibility to describe
stochastic coherences.

We now give a more formal definition.

Definition 10.42. A Bayes net is made of an acyclic digraph G and conditional proba-
bilities such that:
– The vertices describe events and the edges conditional probabilities;
– The edges are directed and establish respectively the causal effect of the event at

the beginning vertex of the edge on the event at the ending vertex of the edge.

Remark 10.43.
(1) It is possible that there exist several undirected paths from one event to another

event.
(2) Since unconnected subgraphs are completely independent from each other, we

can always assume that the graph is connected as an undirected graph.
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From the graph structure, an event (vertex) A has a set of parent events (parent
vertices) pa(A). This set involves all those events fromwhichan edge startswith ending
vertex A. It is possible that pa(A) = 0, which has to be for at least one vertex.

Analogously, there exists for each eventAa set of child events ch(A)which involves
all events which are ending events of an edge which starts at A.

For each event A of G, the conditional probability distribution P(A | pa(A)) has to
be given. With P(A | pa(A)) we mean the following.

If pa(A) = {X1,X2, . . . ,Xn} then

P(A | pa(A)) = P(A | X1 ∩ X2 ∩ ⋅ ⋅ ⋅ ∩ Xn) =: P(A | X1,X2, . . . ,Xn), (10.1)

which is the probability of A under the condition that X1,X2, . . . ,Xn arose. If pa(A) = 0
then the total probability P(A)must be given.

If X1,X2, . . . ,Xn are events in G (which are closed among adding of parent events),
then we calculate the common occurrence as follows:

P(X1 ∩ X2 ∩ ⋅ ⋅ ⋅ ∩ Xn) =: P(X1,X2, . . . ,Xn) =
n
∏
i=1

P(Xi | pa(Xi)). (10.2)

If some Xi has no parent events then we take the total probability for Xi.
This formula is a consequence of the multiplication rule.
We now give an example which explains in detail the above description.

Example 10.44. Suppose that there are two events which could cause grass to be wet:
either the sprinkler is on or it is raining. Also, suppose that the rain has direct effect
on the use of the sprinkler. If it rains, the sprinkler is usually not turned on.

The situation can be modeled with a Bayes net.
All three events have two possible values, T (for true) and F (for false).
We denote the event grass wet byW , the event sprinkler by S and the event rain

by R.
The Bayes net looks like that in Figure 10.11.

W

RS

Figure 10.11: Bayes net.

We have the following conditional probability tables see Tables 10.2, 10.3 and 10.4.
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S
R T F
F 0.4 0.6
T 0.01 0.99

Table 10.2: Conditional probabilities for the sprinkler.

R
T F
0.2 0.8

Table 10.3: Probabilities of rain.

W
S R T F
F F 0.0 1.0
F T 0.8 0.2
T F 0.9 0.1
T T 0.99 0.01

Table 10.4: Conditional probabilities of wet grass.

From (10.2), the joint probability function is

P(W , S,R) = P(W | S,R)P(S | R)P(R).

Now the model can answer the question “what is the probability that it is raining,
given the grass is wet?”

By Bayes formula, we get

P(R = T | W = T) = P(W = T | R = T) ⋅ P(R = W)
P(W = T)

=
P(W = T ,R = T)

P(W = T)
.

By the above rule (10.1) we have to sum over the nuisance variables and get

P(W = T ,R = T) = ∑
S∈{T ,F}

P(W = T , S,R = T)

and

P(W = T) = ∑
S,R∈{T ,F}

P(W = T , S,R).

Hence,

P(R = T | W = T) =
∑S∈{T ,F} P(W = T , S,R = T)
∑S,R∈{T ,F} P(W = T , S,R)

.
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Then the numerical results (subscripted by the empirical values from the tables above)
are:

P(W = T , S = T ,R = T) = P(W = T | S = T ,R = T)P(S = T|R = T)P(R = T)
= 0.99 ⋅ 0.01 ⋅ 0.2 = 0.00198,

P(W = T , S = F,R = T) = 0.1584,
P(W = T , S = W ,R = F) = 0.288 and
P(W = T , S = F,R = F) = 0.

Using these values we obtain

P(W = T | G = T) = 0.00198 + 0.1584
0.00198 + 0.288 + 0.1584 + 0

=
891
2491

≈ 0.3577.

Hence, the probability that it would rain, given the grass is wet, is 0.3577.

Exercises

1. (a) We throw four identical fair six-side dice and take care of the order of the re-
alized numbers. What is the probability that all four numbers are different?
What is the probability that all numbers are equal?

(b) What is the probability
(i) to have at least four correct figures in the lottery 6 of 49?
(ii) to have exactly four correct figures in the lottery 6 of 49?

2. (a) Agroupof fourwomenandonemanare arranged randomly for a groupphoto.
What is the probability that the only man stands in the center?

(b) A fair coin will be tossed three times. What is the probability to get
(i) three times heads?
(ii) at least two times heads?
(iii) at least one time head?

3. Complete the proof of Theorem 10.3.
4. (a) A hunter has themarksmanship 1

2 . What is the probability that he has at least
3 hits after 10 shots?

(b) A family has four children. The probability to have a girl is 1
2 . Compute the

probability that
(i) the family has exactly four girls?
(ii) the first and the second child of the family is a boy?
(iii) the family has at least two boys?

5. (a) There are 5 red, 3 white and 2 green balls in a box. What is the probability to
have
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(i) 3 white balls after three drawings with replacement?
(ii) 1 red, 1 white and 1 green ball after three drawings with replacement and

considering the order?
(iii) 1 red, 1 white and 1 green ball after three drawings with replacement and

not considering the order?
(b) A person writes 12 letters and the related envelops. He puts the letters ran-

domly into the envelopes. What is the probability that no recipient gets the
intended letter for him/her?

6. Let m, n ∈ ℕ with n < m. Alice and Bob independently each make up a number
from the setM = {1, 2, . . . ,m}.
What is the probability that the two numbers differ in at most n?
(Hint: Calculate the cardinality of the set

{(a, b) | a, b ∈ M and |a − b| ≤ n}.

Make for this purpose the case analysis
– a = b,
– a < b ≤ n,
– a < b and n + 1 ≤ b ≤ m.)

7. (a) A single roll of a fair six-sided dice produces one of the numbers 1, 2, 3, 4, 5
or 6. Show, using the law of large numbers, that the relative frequency (some-
times called the sample mean) is likely to be close to 3.5 if a large number of
such dice are rolled.

(b) We consider the case of tossing a coin n times with Sn the number of heads
that turn up. Show that for large n the relative frequency is close to 1

2 .
8. Prove Theorem 10.35.
9. (a) A schoolgirl takes the bus on 70%of the school days. If she takes the bus then

she is on time in school on 80% of days. On average, she arrives on time at
the school only on 60% of the school days. Today she is on time. What is the
probability that she took the bus?

(b) The red–green blindness is an inborn defect of sight which appears in 9% of
the boys but only in 0.6% of the girls.
We assume that a newborn is a boy for 51% and a girl for 49% of instances.
A mother is having her baby which has the red–green blindness.
What is the probability that her baby is a boy?

10. A machine can recognize a counterfeit banknote. We define event A as “The ma-
chine gives an alarm” and event F as “The banknote is counterfeit”. The machine
was tested by means of many real banknotes and many fake banknotes. Thereby
one got P(A | F) = 0.96 and P(A | Fc) = 0.01 for the relative probabilities.
Additionally, it is known that P(F) = 0.001, that is, 0.1% of the circulating ban-
knotes are counterfeit.
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Determine P(F | A), that is, the probability that a banknote is a counterfeit if the
machine gives an alarm.
Give an explanation for the terrifying low value for P(F | A).

11. Three death rowprisoners –Anton, Bernd andClemens– are located in individual
cells when the governor decides to pardon one of them. He writes their names on
three slips of paper, puts them into a hat and pulls one randomly out. He makes
known the name of the lucky prisoner to the jail guard. Rumors about that reach
Anton.
Heasks the jail guard to tell himwhowill be givenapardon. The jail guard refused.
Now Anton makes the following suggestions to the jail guard:
Give me the name of one of the other prisoners who will be executed. If Bernd
will be pardoned then name Clemens. If Clemens will be pardoned then name
Bernd. If I will be pardoned then toss a fair coin to decide between naming Bernd
or Clemens. After a while the jail guard agrees with the procedure and tells Anton
that Bernd will be executed. What is the probability that Anton survives? What is
the probability that Clemens survives?

12. Students’ humor in the afternoon often depends on the weather and the quality
of the lunch in the commons. We have three events: weather (W), lunch in the
commons (M) and humor (H).
We say thatW is true if the sun is shining and false if it is raining. We say thatM
is true if lunch is eatable and false if lunch is not eatable.
Finally, we say that H is true if humor is good and false if humor is bad. As usual,
we denote true by T and false by F.We have the following graphical situationwith
the respective conditional dependence, see Figure 10.12.

Humor

Lunch in the MensaWeather

Figure 10.12: Graphical situation for Exer-
cise 12.

Consider Tables 10.5, 10.6 and 10.7.

P(W = T ) P(W = F )
0.4 0.6

Table 10.5: Probabilities for weather.
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P(M = T ) P(M = F )
0.9 0.1

Table 10.6: Probabilities for lunch at the commons.

Table 10.7: Conditional probabilities for humor depending on weather and lunch at the commons.

W M P(H = T | W ,M) P(H = F | W ,M)
T T 0.95 0.05
T F 0.70 0.30
F T 0.75 0.25
F F 0.1 0.9

What is the probability that the sun is shining if humor is good?What is the prob-
ability that lunch in the commons is eatable if humor is good?

13. We consider a person who might suffer from a back injury, an event represented
by the back (B). Such an injury can cause a backache, an event represented by
ache (A). The back injury might result from a wrong sport activity, an event rep-
resented by sport (S) or from new uncomfortable chairs installed at the person’s
office, represented by chair (C). In the latter case, it is reasonable to assume that
a coworker will suffer and report a similar backache syndrome, an event repre-
sented by worker (W).
All events are either true, denoted by T, or false, denoted by F. We have the fol-
lowing graphical situation together with respective conditional dependence, see
Figure 10.13:

Sport

Back

Ache

Chair

Worker

Figure 10.13: Graphical situation for Exercise 13.
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Consider Tables 10.8, 10.9, 10.10, 10.11 and 10.12.

P(C = T ) P(C = F )
0.8 0.2

Table 10.8: Probabilities for chair.

P(S = T ) P(S = F )
0.02 0.98

Table 10.9: Probabilities for sport.

C P(W = T | C) P(W = F | C)
T 0.9 0.1
F 0.01 0.99

Table 10.10: Conditional probabilities for chair and worker.

B P(A = T | B) P(A = F | B)
T 0.7 0.3
F 0.1 0.9

Table 10.11: Conditional probabilities for back and ache.

C S P(B = T | C , S) P(B = F | C , S)
T T 0.9 0.1
T F 0.2 0.8
F T 0.9 0.1
F F 0.01 0.99

Table 10.12: Conditional probabilities for chair, sport
and back.

Calculate the common occurrences

P(A,B,W , S,C) = P(A | B) ⋅ P(B | S,C) ⋅ P(W | C) ⋅ P(S) ⋅ P(C).

What is the probability that the chair is uncomfortable in case of a backache?
(Hint: Make the calculation in steps.)
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11 Boolean Lattices, Boolean Algebras and Stone’s
Theorem

11.1 Boolean Algebras and the Algebra of Sets

In mathematics and mathematical logic, Boolean algebra is a branch of algebra in
which the values of elements and variables are the truth values true and false, usually
denoted 1 and0, respectively. Themain operations of Boolean algebra are the conjunc-
tion and, the disjunction or, and the negation not. Boolean algebra is a formalism for
describing logical relations in the same way that ordinary algebra describes numeric
relations.

Boolean algebra was introduced by G. Boole (1815–1864) in his book The Mathe-
matical Analysis of Logic (1847), and set forth more fully in his next book An Investi-
gation of the Laws of Thought (1854). The name Boolean algebrawas first suggested by
H.M. Sheffer (1882–1964) in 1913.

The operation of almost all modern digital computers is based on two-valued or
binary systems. Binary systemswere known in the ancient Chinese civilization and by
the classical Greek philosophers who created a well structured binary system, called
propositional logic. Propositionsmay be TRUE or FALSE, and are stated as functions of
other propositions which are connected by the three basic logical connectives: AND,
OR, and NOT.

In the 1930s, while studying switching circuits, C. Shannon (1916–2001) observed
that one could apply the rules of Boolean algebra in this setting, and he introduced
switching algebra as a way to analyze and design circuits by algebraic means in terms
of logic gates. Shannon already had at his disposal the abstract mathematical appara-
tus, thus he cast his switching algebra as the two-element Boolean algebra. Because
of Shannon’s work, the operation of all digital computers depends on Boolean alge-
bras. Boolean algebras are provided in all modern programming languages. They are
also used in set theory and statistics.

Boolean algebras are related to the algebra of sets with disjunction analogous
to union, conjunction analogous to intersection and negation analogous to comple-
ment. A highlight of this chapter will be to prove a celebrated theorem of M. Stone
(1903–1989) which is that any Boolean algebra is equivalent to an algebra of sets.

11.2 The Algebra of Sets and Partial Orders

In this section we start with a set M with a partial order and then develop Boolean
algebras step by step. As a first highlight we will show in Section 11.5 the theorem of
Stone that each finite Boolean algebra can be realized as a power set algebra. In par-
ticular each finite Boolean algebra with at least two elements has exactly 2n elements
for some natural number n.

https://doi.org/10.1515/9783110740783-011
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We start with a set M and let 𝒫(M) be its power set, that is, the collection of all
subsets ofM. The set operations intersection ∩ and union ∪ provide binary operations
on 𝒫(M) that satisfy a whole collection of nice properties which we describe in detail
in this section.We start first by discussing partial orders. We need the basic properties
of relations.

Recall that a relation ℛ on a set M is a subset of the Cartesian product M × M. If
(a, b) ∈ ℛ then we say that a is related to b and write a ∼ b.

Letℛ be a relation on a setM. Then:
(a) ℛ is reflexive if and only if (x, x) ∈ ℛ for all x ∈ M. That is, an element x is related

to itself.
(b) ℛ is symmetric if and only if whenever (x, y) ∈ ℛ then (y, x) ∈ ℛ for all x, y ∈ M.

That is, if an element x is related to y then y is related to x.
(c) ℛ is transitive if and only if whenever (x, y) ∈ ℛ and (y, z) ∈ ℛ then (x, z) ∈ ℛ for

all x, y, z ∈ M. That is, if an element x is related to y and y is related to z then x is
related to z.

(d) ℛ is an equivalence relation if and only if it is reflexive, symmetric and transitive.
Equivalence relations mimic the properties of equality and define a partition of
the setM.

(e) ℛ is antisymmetric if and only if whenever (x, y) ∈ ℛ and (y, x) ∈ ℛ then x = y.
(f) Ifℛ is a relation onM then the inverse relation toℛ, denotedℛ−1, is defined by

ℛ−1 = {(y, x) | (x, y) ∈ ℛ, x, y ∈ M}.

For Boolean algebras we need partial order and order relations.

Definition 11.1. A partial order onM is a relationℛ, which is reflexive, antisymmetric
and transitive. A setM with a partial orderℛ is called a partially ordered set or poset.

Two elements x, y in a partially ordered setM with partial orderℛ are comparable
if either (x, y) ∈ ℛ or (y, x) ∈ ℛ.

A partial order is called an order if any two elements are comparable.
A set with an orderℛ on it is called an ordered set.

Remarks 11.2.
(1) If not stated otherwise, we denote a partial order by ≤, that is, x ≤ y if (x, y) ∈ ℛ.

If x ≤ y and x ̸= y then we write also x < y.
(2) If ℛ is a partial order then the inverse relation ℛ−1 is also a partial order called

the dual partial order of ℛ. We write ≥ for the inverse relation of ≤. In particular
we use x ≥ y as the equivalent formulation for y ≤ x.
We have the duality principle for order theory. If we interchange in a valid theorem
for each partial order consistently ≤ and ≥ then we again get a valid theorem for
each partial order.
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Example 11.3.
(1) The division relation on the natural numbersℕ. Here x|y if and only if y = kx for

some k ∈ ℕ. This is a partial order relation onℕ.
(2) For each setM, inclusion ⊂ is a partial order on the power set 𝒫(M).
(3) In the set of real numbers ℝ the usual size ≤ is an order relation.
(4) Let M = ℝn. Let x = (x1, x2, . . . , xn), y = (y1, y2, . . . , yn). Define x ≤ y if and only if

xk ≤ yk for k = 1, 2, . . . , n. This defines a partial order onM.
(5) Let (M,≤) be an ordered set and let F(M) be the set of all finite sequences of ele-

ments fromM. The lexicographic order onM is a partial order on F(M) defined by

(x1, x2, . . . , xm) ≤ (y1, y2, . . . , yn)

=
{{{
{{{
{

m ≤ n and
xk = yk , for k = 1, 2, . . . ,m or
xk < yk for the smallest k with xk ̸= yk , 1 ≤ k ≤ m.

This is the alphabetic order of words in a dictionary.

The element a is called a lower-neighbor of b, written as a <N b, if and only if a < b
and {x | x ∈ M and a < x < b} = 0; b is then called an upper-neighbor of a denoted by
b >N a.

Remark 11.4.
(1) It is possible that there do not exist neighboring elements. For example, in (ℝ,≤)

for the usual size ≤.
(2) IfM is finite then there donot exist neighboring elements if andonly if≤ is a subset

of the relation IM defined by (x, y) ∈ IM if and only if x = y. Here certainly IM is a
partial order.

(3) We may represent a finite partially ordered set by a mathematical diagram, the
Hasse diagram, namedafterH.Hasse (1898–1979). For a finite partially ordered set
(M,≤), one represents each element ofM as a vertex in the plane ℝ2 and draws a
line segment upward from a to bwhenever a <N b. These line segmentsmay cross
each other but must not touch any vertices other than their endpoints. Such dia-
grams with labeled vertices uniquely determine its partial order a < b if and only
if, starting from the bottom up there is a sequence of line segments from a to b.

Example 11.5.
(1) Let M = {1, 2, 3}. Then we have the following possible Hasse diagrams in Fig-

ure 11.1.
(2) Let M = {1, 2, . . . , 10} be equipped with the division relation as the partial order.

Then we have the following possible Hasse diagram, see Figure 11.2.
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We now discuss maximal and minimal elements together with upper and lower
bounds.

Definition 11.6. Let (M,≤) be a partially ordered set and a ∈ M, D ⊂ M. Then:
(a) a is called amaximal element if {x | x ∈ M, x > a} = 0.
(b) a is called a greatest element if {x | x ∈ M, x ≤ a} = M.
(c) a is called aminimal element if {x | x ∈ M, x < a} = 0 and a is a smallest element if
{x | x ∈ M, x ≥ a} = M.

(d) If a is a smallest element then the elements b ∈ M with a <N b are called the atoms
ofM.

(e) An element b ∈ M is an upper bound for D if x ≤ b for all x ∈ D. An element b ∈ M
is a least upper bound, written as lub(D), or sup(D), if b is an upper bound for D
and b ≤ c for any other upper bound c for D.

(f) An element b ∈ M is a lower bound for D if x ≥ b for all x ∈ D. An element b ∈ M is
a greatest lower bound, written as glb(D), or inf(D), if b is a lower bound for D and
b ≥ c for any other lower bound c for D.

(g) The subset D is called directed if for any x, y ∈ D there exists a z ∈ D with x ≤ z
and y ≤ z.

(h) The partially ordered set (M,≤) is complete if each directed subset D of M has a
least upper bound inM.

Remarks 11.7.
(1) IfD ⊂ M then it is possible that sup(D) or inf(D)does not exist. For instance, sup(0)

exists if and only ifM has a smallest element and inf(0) exists if and only ifM has
a greatest element.

(2) It is possible that there do not exist a smallest or greatest element and also not a
minimal ormaximal element. For instance this is the case for (ℝ,≤)with the usual
size ≤.

(3) In each partially ordered set there exists at most one smallest and at most one
greatest element.

(4) A complete partially ordered set (M,≤) has a uniquely determined smallest ele-
ment sup(0) = 0.

(5) Each finite partially ordered set contains minimal elements. If it contains exactly
one minimal element then this is the smallest element. The analogous statement
holds for maximal elements.

Figure 11.1: All Hasse diagrams with three elements.
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1

23

4

5

6

7

89

10

Figure 11.2: Hasse diagram with divisor relation
as partial order on {1, 2, . . . , 10}.

Theorem 11.8 (Adjunction of a smallest element). Let (M,≤) be a partially ordered set.
Let N be a set with N ̸= M and let a ∈ N \ M. We extend the partial order ≤ to the set
M ∪ {a} by setting a ≤ a and a ≤ x for all x ∈ M. Then M ∪ {a} is a partially ordered
set which has a as the smallest element. Analogously, we may adjoin a greatest element
to M.

Example 11.9. ℕ ∪ {0} ∪ {∞} is a partially ordered set with smallest element 0 and
greatest element∞.

If we adjoin the smallest element a to a finite partially ordered set (M,≤) then we
draw a under the Hasse diagram for (M,≤) and connect awith each minimal element
of (M,≤) by a line segment.

In the following we call a partially ordered set (M,≤) just a partial order.

Definition 11.10. Let (M,≤) be a partial order.
(1) We call a partial order (N ,≤) a partial suborder of (M,≤) ifN ̸= 0,N ⊂ M and if and

only if a ≤ b in N then a ≤ b inM for a, b ∈ N .
(2) For a, b ∈ M we call the subset

[a, b] = {x | x ∈ M and a ≤ x ≤ b}

an interval inM.
(3) A chain inM is a subset C ⊂ M in which any two elements are comparable.
(4) A chain C in M is called maximal if and only if whenever a, b are neighbors in C

then a, b are neighbors inM.
(5) The length of a chain C denoted ℓ(C) is the number of elements in C minus 1.
(6) IfM has a smallest element 0 then

d(x) = sup{ℓ(C) | C a chain from 0 to x} ∈ ℕ0 ∪ {∞}

is called the dimension of x ∈ M.

Intervals and chains are special partial suborders of (M,≤).
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Example 11.11.
(1) Suppose that we have the Hasse diagram given in Figure 11.3.

0

a

b

c

g

(smallest element) Figure 11.3: A Hasse diagram with maximal dimension 6.

Then

d(c) = 6, d(g) = 5, d(b) = 4, d(a) = 1, d(0) = 0.

The induced partial suborder on {a, b, c, g} is given by the Hasse diagram in Fig-
ure 11.4.

c

b

a

g

Figure 11.4: Induced partial suborder on {a,b, c,g}.

The interval [a, c] is given by Figure 11.5.

a

c

Figure 11.5: Interval [a, c].

There are three maximal chains from a to c with lengths 3, 4, 5, respectively.
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(2) We considerℕ with the divisor relation. Here 1 is the smallest element.
If x = pn11 p

n2
2 ⋅ ⋅ ⋅ p

nk
k is the prime factorization of x ∈ ℕ then

d(x) = n1 + n2 + ⋅ ⋅ ⋅ + nk

is the dimension of x.

Definition 11.12. Let (M,≤) be a finite partial order. A map g : M → ℤ is called a
gradation of (M,≤) if and only if x <N y implies that g(x) + 1 = g(y) for all x, y ∈ M.

Theorem 11.13. Let (M,≤) be a finite partial order with smallest element 0 ∈ M. Then
the following are equivalent:
(1) Any two maximal chains with the same endpoints have the same length.

This is called the Jordan–Hölder chain condition named after C. Jordan (1838–1922)
and O. Hölder (1853–1937).

(2) The dimension is a gradation.

Proof. Suppose that a <N b and that C is a maximal chain from 0 to a. Then C ∪ {b} is
a maximal chain from 0 to b. By definition then ℓ(C) = d(a) and ℓ(C ∪ {b}) = d(b). This
gives d(b) = d(a) + 1, showing that (1) implies (2).

Conversely, we first show that if a, b ∈ M and C is a maximal chain from a to b,
then ℓ(C) = d(b)− d(a). This means that ℓ(C) is independent of the particular chain C.
For this we let a ∈ M be arbitrary but fixed. Let b ∈ M and let C be a maximal chain
from a to b. If d(a) − d(b) = 0 then a = b and certainly d(b) − d(a) is the length of C.

Now if d(b) − d(a) ≥ 1, and let the statement hold for all b1 ∈ M and all maximal
chains C from a to b1 with d(b1) ≤ d(b). Let b2 ∈ C with b2 <N b. Then C2 = C \ {b} is a
maximal chain from a to b2. By assumption d(b2) − d(a) is the length of C2. From the
second induction principle we get that d(b2) + 1 − d(a) is the length of C. Now d is a
gradation, that is d(b2) + 1 = d(b) and therefore d(b) − d(a) is the length of C.

We now define various types of maps between partial orders.

Definition 11.14. Let (M,≤) and (N ,≤) be partial orders. A map f : M → N is called
(1) an order homomorphism, or isotone map, if a ≤ b implies f (a) ≤ f (b) for all

a, b ∈ M.
(2) an order antihomomorphism, or antitone map, if a ≤ b implies f (a) ≥ f (b) for all

a, b ∈ M.
(3) If f is a bijective order homomorphism and if also f −1 is an order homomorphism

then F is called an order isomorphism. Analogously, we define an order antihomo-
morphism.

(4) If (M,≤) and (N ,≤) are both complete and f : M → N is an order homomorphism
then f is called continuous if sup(f (D)) = f (sup(D)) for each nonempty directed
subset D ⊂ M.
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Example 11.15.
(1) The identity map id : ℕ → ℕ gives an order homomorphism from (ℕ, |) to (ℕ,≤)

where | is the divisor relation and ≤ is the usual size. This is not an order isomor-
phism because the inverse function is not an order homomorphism.

(2) LetM be a set and (𝒫(M),⊂) be the partial order on the power set ofM with con-
tainment. Thenϕ : (𝒫 ,⊂)→ (ℕ0,≤) given byϕ(A) = |A| for eachA ⊂ M is an order
homomorphism.

(3) Let (M,≤) be a partial order. The identity map gives an order isomorphism of the
partial order.

Theorem 11.16. Let (M,≤) be a finite partial order. Then there is an isotone and injective
map (M,≤)→ (ℕ,≤) where ≤ is the usual size onℕ.

Proof. Without loss of generality, we may assume from Theorem 11.8 that M has a
smallest element a0. Now let d : M → ℕ0 be the dimension map. The relation x ∼ y if
and only if d(x) = d(y) defines an equivalence relation onM. We have x < y if and only
if d(x) < d(y) and any two disjoint elements from the same equivalence class are not
comparable. Let n be the maximal dimension inM and let Aν denote the equivalence
class of those elements with dimension ν.

We now define

kν = |A0| + |A1| + ⋅ ⋅ ⋅ + |Aν| for ν = 0, 1, . . . , n.

We have |Aν| = kν − kν−1 for ν = 1, 2, . . . , n. The map a0 → 1 and Aν with ν = 1, 2, . . . , n
bijective onto the number set {kν−1 + 1, kν−1 + 2, . . . , kν}. This defines an isotone and
bijective mapM → {1, 2, . . . , kn}.

Note that in the theoremwemay replace finite by countable. Further wemaymap
each finite partial order isotonely and injectively into an ordered set. With this proce-
dure we map elements with the same dimension onto a block of consecutive integers.
Wemay also construct an isotone and injectivemap successively by the following rule:
(a) Map a minimal element of (M,≤) onto 1.
(b) If the images of a nonempty subset N ⊂ M are already defined, then map a mini-

mal element of the partial suborder (M \ N ,≤) onto |N | + 1.

11.3 Lattices

Let (M,≤) be a partial order. We now call an element b an upper element of a and a a
lower element of b if a ≤ b.

Definition 11.17. A partial order (M,≤) is called a lattice if for any two elements a, b of
M there exists inM a greatest common lower element called the conjunction of a and
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b and denoted by a ∧ b and a smallest common upper element called the disjunction
of a and b and denoted by a ∨ b.

Example 11.18.
(1) Let n ∈ ℕ and M = {m | m ∈ ℕ, m|n}. In ℕ we have a partial order with the

divisor relation m1 ≤ m2 if and only if m1|m2. The given two natural numbers the
greatest common divisor gcd(m1,m2) is the greatest common lower element and
the least commonmultiple lcm(m1,m2) is the smallest common upper element for
m1,m2 ∈ M. Recall that gcd(m1,m2) and lcm(m1,m2) are elements ofM.

(2) SupposeM ⊂ ℝ with the usual size is a lattice with a ∧ b = min(a, b) and a ∨ b =
max(a, b) for a, b ∈ M. Analogously each order (M,≤) is a lattice with a ∧ b being
the smaller element of the two and a∨b the larger element of the two for a, b ∈ M.

(3) Let M be a set and (𝒫(M),⊂) the partial order on the power set with the order
relation containment. This is then a lattice since any two subsets A, B of M one
can define A ∧ B = A ∩ B and A ∨ B = A ∪ B.
We note that (ℳ,⊂) withℳ ⊂ 𝒫(M) is not a lattice, in general.

(4) The Hasse diagrams for all lattices with at most five elements are given in Fig-
ure 11.6.

N5 M5

Figure 11.6: Hasse diagrams for all lattices with at most five elements.

(5) If (M1,≤) and (M2,≤) are partial orders then the Cartesian productM1×M2 together
with the componentwise comparison

(x1, x2) ≤ (y1, y2) :⇔ x1 ≤ y1 inM1 and x2 ≤ y2 inM2

is also a partial order. If both (M1,≤) and (M2,≤) are lattices then (M1 × M2,≤) is
also a lattice with

(x1, x2) ∧ (y1, y2) = (x1 ∧ x2, y1 ∧ y2)

and

(x1, x2) ∨ (y1, y2) = (x1 ∨ x2, y1 ∨ y2).

An analogous result follows for more than two factorsM1,M2, . . . ,Mn.
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Theorem 11.19. Let (M,≤) be a lattice. Then the following hold:
(1) If M is finite then there exists a smallest element 0 and a greatest element 1 in M.
(2) Let x, y, z ∈ M. Then we have the following rules:

(L1) x ∧ x = x and x ∨ x = x. This is called idempotence.
(L2) x ∧ y = y ∧ x and x ∨ y = y ∨ x. This is commutativity.
(L3) (x ∧ y) ∧ z = x ∧ (y ∧ z) and (x ∨ y) ∨ z = x ∨ (y ∨ z). This is associativity.
(L4) x ∧ (y ∨ z) = x and x ∨ (y ∧ z) = x. This is absorbtion.

(3) For x, y ∈ M then x ≤ y if and only if x ∧ y = x if and only if x ∨ y = y.

Proof. Lattices are sets with special partial orders. Hence by the definition of a∧b and
a ∨ b we use the duality principle for ∧ and ∨. For this we have to interchange ≤ and
≥, ∧ and ∨ and also 0 and 1 if they exist. Therefore we must only prove the existence
of 0 ifM is finite, and for (L1) through (L4) only one equation and for (3) only the first
equivalence.
(1) SinceM is finite, there exists at least one minimal element and at most one mini-

mal element because we have a ∧ b for all a, b ∈ M. Altogether there must exist a
minimal element 0 inM.

(2) The rules (L1) and (L2) are obvious. We prove (L3). Here y ∧ z is a common lower
element of y and z and hence x ∧ (y ∧ z) is a common lower element of x, y and z.
By the definition of the greatest common lower element, wemust have x∧ (y∧z) ≤
(x ∧ y) ∧ z. Analogously, we get the same result for ≥.
Rule (L4) follows directly from (3) since x ≤ x ∨ y and x ∧ y ≤ x.

(3) We now prove the first part of (3) and show that x ≤ y if and only if x = x ∧ y.
Suppose that x ≤ y. Then we get that x ≤ x ∧ y. Further, x ∧ y ≤ x from the
definition. Hence x = x ∧ y.
Suppose that x ∧ y = x. Then x ≤ y follows from x ∧ y ≤ y.

Lattices are not only sets with special partial orders, they are also algebraic struc-
tures with two binary operations ∧ and ∨. We may take this idea as a characterization
of lattices.

Theorem 11.20. Let M be a nonempty set equipped with two binary operations ∧ : M ×
M → M and ∨ : M ×M → M which satisfy rules (L1) through (L4). If we define x ≤ y if
and only if x ∧ y = x for all x, y ∈ M then (M,≤) is a lattice such that ∧ and ∨ have the
meaning of the greatest common lower element and smallest common upper element,
respectively.

Proof. We first show that x ∧ y = x if and only if x ∨ y = y for all x, y ∈ M (∗). We then
have y = y∨ (y∧x) = y∨ (x∧y) by (L2) and (L4). But then y = y∨x = x∨y from x∧y = x,
which proves the result in one direction.

In the other direction, from x ∨ y = y we get that x = x ∧ (x ∨ y) = x ∧ y. This shows
that (∗) holds.

We now show the properties of a partial order for ≤.
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From (L1) we get that ≤ is reflexive.
If x ≤ y and y ≤ x, that is, x = x ∧ y and y = y ∧ x = x ∧ y, we get x = y, and hence

≤ is antisymmetric.
If x ≤ y and y ≤ z then x ≤ z because

x = x ∧ y = x ∧ (y ∧ z) = (x ∧ y) ∧ z = x ∧ z,

and hence ≤ is transitive.
We finally have to show that ∧ and ∨ have the meaning of greatest common lower

element and smallest common upper element, respectively. By the duality principle,
it is enough to consider the statement for ∧.

Let x, y ∈ M. Then:
(1) (x ∧ y) ∧ x = x ∧ (x ∧ y) = (x ∧ x) ∧ y = x ∧ y, that is, x ∧ y ≤ x.
(2) (x ∧ y) ∧ y = x ∧ (y ∧ y) = x ∧ y, that is, x ∧ y ≤ y.

Therefore x ∧ y is a common lower element of x and y.
Now let z ∈ M be any common lower element of x and y. Then z ≤ x and z ≤ y.

Therefore y ∧ z = z and x ∧ z = z. Then we get

z ∧ (x ∧ y) = (x ∧ y) ∧ z = x ∧ (y ∧ z) = x ∧ z = z,

and hence z ≤ x ∧ y.

Theorem 11.21 (Calculations in lattices). Let (M,≤) be a lattice. Then for all a, b, c, d ∈
M the following hold:
(1) a ≤ b implies that a ∧ c ≤ b ∧ d and a ∨ c ≤ b ∨ d.
(2) a ≤ b and c ≤ d imply that a ∧ c ≤ b ∧ d and a ∨ c ≤ b ∨ d.
(3) The distributivity inequalities

a ∧ (b ∨ c) ≥ (a ∧ b) ∨ (a ∧ c),
a ∨ (b ∧ c) ≤ (a ∨ b) ∧ (a ∨ c).

(4) The modular inequality

a ≤ c implies a ∨ (b ∧ c) ≤ (a ∨ b) ∧ c.

Proof. By the duality principle, it is enough to show only one inequality in (3).
(1) Since always x ≤ x ∨ y, we get that

a ≤ b ≤ b ∨ c and c ≤ c ∨ b = b ∨ c if a ≤ b.

Therefore a∨c ≤ b∨c since a∨c is the smallest common upper element of a and c.
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Analogously we get

a ∧ c ≤ a ≤ b and a ∧ c ≤ c if a ≤ b

and

b ∧ c ≤ b and b ∧ c ≤ c.

Therefore a ∧ c ≤ b ∧ c by the maximality of b ∧ c.
(2) This follows from (1) by doing it twice.
(3) By (1) we have

(a ∧ b) ∨ (a ∧ c) ≤ a ∨ (a ∧ c) = a.

Then by (2) we have

(a ∧ b) ∨ (a ∧ c) ≤ b ∨ c.

Combining these we get the statement of (3) because a ∧ (b ∨ c) is the greatest
common lower element of a and b ∨ c.

(4) We have a ≤ c and also a ≤ a ∨ b. Therefore a ≤ (a ∨ b) ∧ c. Further from (1) we
have b ∧ c ≤ (a ∨ b) ∧ c. Together this means that

a ∨ (b ∧ c) ≤ (a ∨ b) ∧ c

by the minimality of a ∨ (b ∧ c).

We note that there are already lattices with five elements, for which equality in (3)
or (4) of Theorem 11.21 does not hold, see Figure 11.7.

a b c

1

0

M5

a

b
c

1

0

N5 (here a ≤ c)

Figure 11.7: Lattices with five elements for which equality in (3) or (4) of Theorem 11.21 does not
hold.
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InM5 we have

0 = (a ∧ c) ∨ (a ∧ b) < a ∧ (b ∨ c) = a.

In N5 we have

a = a ∨ (b ∧ c) < (a ∨ b) ∧ c = c.

Definition 11.22. Let (V ,≤) and (V ′,≤) be lattices. Then a map f : V → V ′ is a lattice
homomorphism if and only if

f (x ∧ y) = f (x) ∧ f (y) and f (x ∨ y) = f (x) ∨ f (y).

Lemma 11.23. A lattice homomorphism is also an order homomorphism.

Proof. From x ≤ y if and only if x = x ∧ y if and only if y = x ∨ y we have

f (x) = f (x ∧ y) = f (x) ∧ f (y),
f (y) = f (x ∨ y) = f (x) ∨ f (y),

and hence f (x) ≤ f (y).

A lattice isomorphism is a bijective lattice homomorphism.

Lemma 11.24. A lattice isomorphism is also an order isomorphism.

Proof. Since a lattice isomorphism is also an order homomorphism, we have to show
that f −1 is also an order homomorphism.

Let f : V → V ′ be a bijective lattice homomorphism and let a, b ∈ V ′. Suppose
that f (x) = a and f (y) = b with x, y ∈ V and f (x) ≤ f (y). Then

f −1(a ∧ b) = f −1(f (x) ∧ f (y)) = f −1(f (x ∧ y)) = x ∧ y = f −1(a) ∧ f −1(b).

Analogously f −1(a ∨ b) = f −1(a) ∨ f −1(b).

Definition 11.25. Let (V ,≤) be a lattice and V ′ ⊂ V . Then V ′ is a sublattice of V if V ′ is
closed under the binary operations ∧ and ∨.

Example 11.26.
(1) Let (V ,≤) be a lattice. Then:

(a) Each interval [a, b] in V is a sublattice. From a ≤ x ≤ b and a ≤ y ≤ b we get
that a ≤ x ∧ y ≤ x ∨ y ≤ b.

(b) Each chain in V is a sublattice since x ≤ y implies x = x ∧ y and y = x ∨ y.
(2) Let M be a nonempty set and M ⊂ 𝒫(M). Then M is a sublattice of 𝒫(M) if it is

closed under intersection and union.
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11.4 Distributive and Modular Lattices

In this section we discuss certain special types of lattices.

Theorem 11.27. Let (V ,≤) be a lattice.
(1) The following two conditions are equivalent:

(D) x ∨ (y ∧ z) = (x ∨ y) ∧ (x ∨ z) for all x, y, z ∈ V.
(D′) x ∧ (y ∨ z) = (x ∧ y) ∨ (x ∧ z) for all x, y, z ∈ V.

(2) If (D) holds, and hence also (D′), then we have
(M) x ≤ z ⇒ x ∨ (y ∧ z) = (x ∨ y) ∧ z for all x, y, z ∈ V.

Proof.
(1) It is enough to show that (D) ⇒ (D′). The implication (D′) ⇒ (D) follows by

the duality principle.
Suppose (D) is true and let a, b, c ∈ V with x = a ∧ b, y = a and z = c. Then

(a ∧ b) ∨ (a ∧ c) =
(D)
((a ∧ b) ∨ a) ∧ ((a ∧ b) ∨ c)

=
(L2),(L4)

a ∧ ((a ∧ b) ∨ c)

=
(L2)

a ∧ (c ∨ (a ∧ b)).

We apply (D) once more, this time with x = c, y = a and z = b, to obtain

a ∧ (c ∨ (a ∧ b)) =
(D),(L2)

a ∧ ((a ∨ c) ∧ (b ∨ c))

=
(L3)
(a ∧ (a ∨ c)) ∧ (b ∨ c)

=
(L4)

a ∧ (b ∨ c).

This gives (D′) with a, b, c for x, y, z.
(2) If x ≤ z then (M) follows from (D):

x ≤ z ⇔ z = x ∨ z ⇒ x ∨ (y ∧ z)
=
(D)
(x ∨ y) ∧ (x ∨ z) = (x ∨ y) ∧ z.

Definition 11.28. A lattice (V ,≤) is adistributive lattice if (D), and therefore (D′), holds.
It is amodular lattice if (M) holds.

In general, a modular lattice is not distributive. As an example, we have already
seen that M5 in Figure 11.7 is not distributive but modular. M5 is also shown in Fig-
ure 11.8.

M5 is not distributive since

0 = (a ∧ c) ∨ (a ∧ b) < a ∧ (b ∨ c) = a,

but it is modular.
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a b c

1

0

M5 Figure 11.8: LatticeM5.

Because of the equivalence of (D) and (D′) and the self-duality of (M) (replacing ≤
with ≥ and ∧ by ∨ gives the same equality with z and x interchanged) we also have the
duality principle for both distributive lattices and modular lattices.

Theorem 11.29 (J.W. R. Dedekind (1831–1916)). Let (V ,≤) be a lattice. Then the follow-
ing are equivalent:
(1) V is modular.
(2) The modular cancellation rule holds:

If x ≤ y and a ∧ x = a ∧ y and a ∨ x = a ∨ y then x = y.

(3) V does not contain a sublattice that is lattice-isomorphic to N5.

Proof. (1) ⇒ (2) Let x ≤ y. Then

x = x ∨ (x ∧ a) = x ∨ (y ∧ a)
=
(M)
(x ∨ a) ∧ y = (y ∨ a) ∧ y = y.

(2) ⇒ (3) We have to show that the modular cancellation rule does not hold in
N5, see Figure 11.9.

x

a
y

1

0

N5 Figure 11.9: Lattice N5.

We have x ≤ y. Now a ∧ x = a ∧ y and a ∨ x = a ∨ y but x ̸= y.
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(3) ⇒ (1) Assume that (V ,≤) is not modular. Then there exist a, b, c ∈ V with

a ≤ c and a ∨ (b ∧ c) < (a ∨ b) ∧ c.

Let x = a ∨ (b ∧ c), y = b, z = (a ∨ b) ∧ c, n = b ∧ c and e = a ∨ b. We then have
n ≤ x < z ≤ e and n ≤ y ≤ e. We cannot have x ≤ y because if x ≤ y then a ≤ b and,
together with a ≤ c, we get

b ∧ c = a ∨ (b ∧ c) < (a ∨ b) ∧ c = b ∧ c.

We cannot have y ≤ z because if y ≤ z then b ≤ c and, together with a ≤ c, we get

a ∨ b = a ∨ (b ∧ c) < (a ∨ b) ∧ c = a ∨ b.

From these facts we get that y ∉ {n, x, z, e} and that y is comparable neither with x
nor z. In particular, the five elements n, x, y, z, e are pairwise distinct.

Further

x ∨ y = a ∨ (b ∧ c) ∨ b = a ∨ b = e,
z ∧ y = (a ∨ b) ∧ c ∧ b = b ∧ c = n.

This means, on the one hand, that y is comparable with neither x nor with z and, on
the other hand, that {n, x, y, z, e} is closed under ∧ and ∨.

Therefore {n, x, y, z, e} is a sublattice of V which is lattice-isomorphic to N5.

We saw that the lattice M5 is modular but not distributive. If both M5 and N5 do
not appear then the lattice is distributive. This characterizes distributive lattices.

Theorem 11.30 (G. Birkhoff (1911–1996)). Let (V ,≤) be a lattice. Then the following are
equivalent:
(1) V is distributive.
(2) In V the cancellation rule holds:

if a ∧ x = a ∧ y and a ∨ x = a ∨ y then x = y

for all x, y, a ∈ V.
(3) V does not contain a sublattice which is lattice-isomorphic to either M5 or N5.

Note that for the cancellation rule we need both equations a ∧ x = a ∧ y and a ∨ x =
a ∨ y.

Proof. (1) ⇒ (2)

x =
(L4)

x ∨ (x ∧ a) = x ∨ (a ∧ y)

=
(D)
(x ∨ a) ∧ (x ∨ y) = (a ∨ y) ∧ (x ∨ y)
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=
(D)
(a ∧ x) ∨ y

=
(L4)

y.

(2) ⇒ (3) We have to show that the cancellation rule does not hold in M5 and
N5, which are given in Figure 11.10.

a x y

1

0

M5

x

a
y

1

0

N5

Figure 11.10: LatticesM5 and N5.

In both cases we have a ∧ x = a ∧ y and a ∨ x = a ∨ y but x ̸= y.
(3) ⇒ (1) Assume that (V ,≤) is not distributive and does not contain a sublattice

that is lattice isomorphic toN5. Hence (V ,≤) is modular by Theorem 11.29. Since (V ,≤)
is not distributive there exist a, b, c ∈ V with

(a ∧ b) ∨ (a ∧ c) < a ∧ (b ∨ c).

We define

n = (a ∧ b) ∨ (a ∧ c) ∨ (b ∧ c),
e = (a ∨ b) ∧ (a ∨ c) ∧ (b ∨ c),
x = (a ∧ e) ∨ n,
y = (b ∧ e) ∨ n,
z = (c ∧ e) ∨ n.

Then we have n ≤ x, y, z. From (M), which holds since (V ,≤) is modular, we get

a∧n = a∧ ((a∧b)∨ (a∧ c)∨ (b∧ c)) = ((a∧b)∨ (a∧ c))∨ (a∧ (b∧ c)) = (a∧b)∨ (a∧ c).

This, together with a ∧ e = a ∧ (b ∨ c), leads to n < e. From this we get x, y, z ≤ e. To
see, for instance, x ≤ e, we note that a ∧ e ≤ e and n < e.
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To show that {n, e, x, y, z} forms a sublattice ofV which is lattice-isomorphic toM5,
it is enough to show that

x ∧ y = x ∧ z = y ∧ z = n

and

x ∨ y = x ∨ y = x ∨ z = e.

We show that x ∧ y = n. The other cases are analogous.
We have

x ∧ y = ((a ∧ e) ∨ n) ∧ ((b ∧ e) ∨ n)
=
(M)
((a ∧ e) ∧ ((b ∧ e) ∨ n)) ∨ n

=
(M)
((a ∧ e) ∧ ((b ∨ n) ∧ e)) ∨ n

=
(L2)
((a ∧ e) ∧ e ∧ (b ∨ n)) ∨ n

=
(L1)
((a ∧ e) ∧ (b ∨ n)) ∨ n

=
(L4)
((a ∧ (b ∨ c)) ∧ (b ∨ (a ∧ c))) ∨ n

=
(M)
(a ∧ (b ∨ ((b ∨ c) ∧ (a ∧ c)))) ∨ n

= (a ∧ (b ∨ (a ∧ c))) ∨ n (using a ∧ c ≤ c ≤ b ∨ c)
=
(L1)

n.

This proves Theorem 11.30.

11.5 Boolean Lattices and Stone’s Theorem
We are now almost ready to describe the Boolean lattices. The standard example is
the lattice (𝒫(M),⊂) where M is a set. Here the empty set 0 is the smallest and M the
greatest element. It is possible that M = 0. In what follows we always assume that a
lattice (V ,≤) has a smallest element 0 and a greatest element 1. If V is finite then these
elements exist by Theorem 11.19.

Definition 11.31. Let (V ,≤) be a lattice with smallest element 0 and greatest element 1.
If V is finite these exist automatically.
(a) Elements x, y ∈ V are called complementary to each other if and only if x ∧ y = 0

and x ∨ y = 1. We call y a complement of x.
(b) (V ,≤) is called a complementary lattice if each element in V has at least one com-

plement.
(c) (V ,≤) is a Boolean lattice, or just Boolean, if (V ,≤) is distributive and complemen-

tary.
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Remark 11.32.
(1) For distributive lattices we know that the duality principle holds. From the defini-

tion it also holds for complementary lattices if we interchange ∧ and ∨ and also 0
and 1. Hence the duality principle holds for Boolean lattices.

(2) A chain in a lattice is always a distributive sublattice since if, for instance, y ≤ z
then x ∨ y ≤ x ∨ z and x ∨ (y ∧ z) = x ∨ y = (x ∨ y) ∧ (x ∨ z).

(3) A complementary lattice is in general not distributive; M5 provides an example,
see Figure 11.11.

a b c

1

0

M5 Figure 11.11: LatticeM5.

We know thatM5 is not distributive but modular.M5 is complementary. Certainly
0 ∧ 1 = 0 and 0 ∨ 1 = 1 and, for example, a ∧ b = 0 and a ∨ b = 1.

(4) A chain with more than two elements is distributive but not complementary.

Theorem 11.33. Let (V ,≤) be a distributive lattice with the smallest element 0 and the
greatest element 1. Then each element of V has at most one complement.

Proof. Let y1 and y2 be complementary to x. Then

x ∧ y1 = x ∧ y2 = 0 and x ∨ y1 = x ∨ y2 = 1.

Therefore y1 = y2 by the cancellation rule.

It follows from the theorem that in a Boolean lattice for each element a there exists
exactly one complement a. Hence in a Boolean lattice we have besides (L1)–(L4) and
(D)–(D′) also the rule: For each a ∈ V a unique complement a exists with a ∧ a =
0, a ∨ a = 1.

Further in a Boolean lattice we get De Morgan’s laws, named after A. De Morgan
(1806–1871), relating conjunction, disjunction and complement.

Theorem 11.34 (De Morgan’s Laws). In a Boolean lattice (V ,≤) we have
(1) (a ∧ b) = a ∨ b,
(2) (a ∨ b) = a ∧ b.
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Proof. Here

(a ∧ b) ∧ (a ∨ b) = a ∧ ((b ∧ a) ∨ (b ∧ b)) = a ∧ a ∧ b = 0 ∧ b = 0

and

(a ∧ b) ∨ (a ∨ b) = ((a ∨ a) ∧ (a ∨ b)) ∨ b = (a ∨ b) ∨ b = a ∨ 1 = 1.

Hence a∨b = (a ∧ b) by the uniqueness of the complement. The second of DeMorgan’s
laws follows from the duality principle.

We now define a Boolean algebra.

Definition 11.35. A Boolean algebra consists of a nonempty set B together with the
following axioms:
(1) There exist in B two distinguished elements, the zero element 0 and the unity ele-

ment 1.
(2) There exists in B a unary operation , which assigns to each element a ∈ B a

unique element a, called the complement of a.
(3) There exists in B a binary operation ∧.
(4) There exists in B a second binary operation ∨.
(5) The operations ∧, ∨ and satisfy the following axioms:

(a) a ∧ a = a and a ∨ a = a for all elements a ∈ B.
(b) a ∧ b = b ∧ a and a ∨ b = b ∨ a for all a, b ∈ B.
(c) a ∧ (b ∧ c) = (a ∧ b) ∧ c and a ∨ (b ∨ c) = (a ∨ b) ∨ c for all a, b, c ∈ B.
(d) a ∧ (b ∨ c) = (a ∧ b) ∨ (a ∧ c) and a ∨ (b ∧ c) = (a ∨ b) ∧ (a ∧ c) for all a, b, c ∈ B.
(e) a ∧ (a ∨ b) = a and a ∨ (a ∧ b) = a for all a, b ∈ B.
(f) a ∧ a = 0 and a ∨ a = 1 for all a ∈ B.
(g) a ∧ 0 = 0, a ∨ 0 = a, a ∨ 1 = 1, a ∧ 1 = a for all a ∈ B.

Remark 11.36.
(1) As an example, if M is a set, then the power set 𝒫(M) is a Boolean algebra with

0 = 0, 1 = M and A = Ac = M \ A. Here ∧ = ∩ and ∨ = ∪.
By definition the duality principle holds for Boolean algebras. If we interchange
consistently ∧ and ∨ as well as 0 and 1 in a statement which is true for all Boolean
algebras then we again get a true statement for all Boolean algebras.

(2) With the same proof as for Boolean lattices, for Boolean algebras we get De Mor-
gan’s laws:
(a) (a ∧ b) = a ∨ b,
(b) (a ∨ b) = a ∧ b.

(3) Boolean lattices and Boolean algebras denote the same (discrete) algebraic struc-
ture. We talk about lattices if we want to emphasize the order, and we talk about
algebras if we want to emphasize the algebraic operations.
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In a Boolean algebra with the operations ∧, ∨ and , we get a partial order by
defining

a ≤ b if and only if a = a ∧ b.

In what follows we want to describe and classify the finite Boolean lattices (fi-
nite Boolean algebras). We show that they are lattice-isomorphic to a Boolean lattice
(𝒫(M),⊂) for a nonempty setM. This is the theorem of M.H. Stone (1903–1989).

Definition 11.37. Let (V ,≤) be a finite lattice. An element a ∈ V is called irreducible
(or more concrete V-irreducible) if and only if a is not a minimal element and for all
b, c ∈ V we get from a = b ∨ c that a = b or a = c.

Let ℐ(V) denote the set of irreducible elements of V .

Remark 11.38. Each finite lattice (V ,≤) with more than one element contains irre-
ducible elements. Recall that a finite lattice V has exactly one minimal element 0 and
the elements a with dimension d(a) = 1 are irreducible.

There do exist infinite lattices without irreducible elements. An example for this
is the Cartesian product ℤ × ℤ with componentwise comparison. This follows from
(m, n) = (m − 1, n) ∨ (m, n − 1) form, n ∈ ℤ.

Example 11.39.
(1) In a chain each a ̸= 0 is irreducible.
(2) In the Hasse diagram in Figure 11.12 all elements except 0 are irreducible:

a = x ∨ y ⇒ x = y = a or x = 0 or y = 0,

that is, a = x or a = y.

a b c

0 Figure 11.12: Hasse diagram with three irreducible elements.

(3) In the Hasse diagram in Figure 11.13 the irreducible elements are the four circled
elements.

Definition 11.40.
(1) A lattice (V ,≤) is called a set lattice if V is lattice-isomorphic to a sublattice of a

power set lattice 𝒫(M) for some setM.
Each set lattice is certainly distributive since distributivity follows in sublattices.
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Figure 11.13: Hasse diagram in which irreducible elements are the
four circled elements.

(2) A Boolean set lattice or Boolean set algebra is a set lattice V of a power set lattice
𝒫(M) for some set M with 0,M ∈ V and for A,B ∈ V then Ac,A ∨ B and A ∧ B are
all in V .

Theorem 11.41. Let (V ,≤) be a finite distributive lattice. For a ∈ V we define

ρ(a) = {x | x ∈ ℐ(V) and x ≤ a}

if a ̸= 0 and ρ(a) = 0 if a = 0.
Then the following hold:

(1) ρ(V) = {ρ(a) | a ∈ V} is a set lattice with respect to the inclusion ⊂ and with the
union ∪ and the intersection ∩ as the operations.

(2) The allocation a → ρ(a) defines a lattice isomorphism (V ,≤)→ (ρ(V),⊂).

Proof.
(1) In any case (ρ(V),⊂) is a partial suborder of the lattice (P,⊂). It may be that ρ(V) =
0,namely ifV = 0. However, for each a ̸= 0we get ρ(a) ̸= 0 because either dim(a) =
1 or if dim(a) ≥ 2 then a maximal chain from 0 to a contains an element with
dimension 1. (Such a maximal chain exists.) We have to show that ρ(V) is closed
under ∩ and ∪. Let a, b ∈ V with a ̸= 0, b ̸= 0. Then

(1) ρ(a) ∩ ρ(b) = {x | x ∈ ℐ(V) and x ≤ a, x ≤ b} = ρ(a ∧ b) ∈ ρ(V).

(2) ρ(a) ∪ ρ(b) = {x | x ∈ ℐ(V) and x ≤ a or x ≤ b} ⊂ {x | x ∈ ℐ(V) and x ≤ a ∨ b}

= ρ(a ∨ b).

On the other hand, let x ∈ ρ(a ∨ b). Then by definition x ≤ a ∨ b. Now

x = x ∧ (a ∨ b) =
(D)
(x ∧ a) ∨ (x ∧ b).

From x ∈ ℐ(V) we get x = x ∧ a or x = x ∧ b. Hence x ≤ a or x ≤ b, and finally
x ∈ ρ(a) ∪ ρ(b). Altogether we get ρ(a) ∪ ρ(b) = ρ(a ∨ b) ∈ ρ(V).
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(2) Since ∧ and ∨ are associative, for finitely many a1, a2, . . . , an we may write

n
⋁
i=1

ai

instead of a1 ∨ a2 ∨ ⋅ ⋅ ⋅ ∨ an. Also if A = {a1, a2, . . . , an} we may just write

⋁
ai∈A

ai.

The analogous representation we may use for ∧.
With this setting we get

a = ⋁
x∈ρ(a)

x

for a ∈ V \ {0}.
This shows the injectivity of the map ρ : V → ρ(V) given by a → ρ(a). The map ρ
is surjective by definition.
The equations ρ(a ∧ b) = ρ(a) ∩ ρ(b) and ρ(a ∨ b) = ρ(a) ∪ ρ(b) were shown al-
ready.

Definition 11.42. Let (M,≤) be a partial order with smallest element 0. The atoms of
M are those elements b with 0 <N b. These are exactly those elements b ∈ M with
d(b) = 1.

Theorem 11.43. Let (V ,≤) be a finite Boolean lattice with a ∈ V , a ̸= 0. Then a is irre-
ducible if and only if a is an atom.

Proof. It is clear that atoms are irreducible. Now let a ∈ V , a ̸= 0, not be an atom. Then
there exists an a1 ∈ V with 0 < a1 < a, and we get

a1 ∨ (a ∧ a1) =(D) (a1 ∨ a) ∧ (a1 ∨ a1) = a ∧ 1 = a.

We claim that a ∧ a1 < a.
For this claim first we have a∧ a1 ≤ a. Assume that a∧ a1 = a. By De Morgan’s law

we get

a ∧ a1 = a ∨ a1 = a ∨ a1 = a,

and therefore a1 ≤ a. It follows that a1 ≤ a ∧ a = 0, that is, a1 = 0, which gives a
contradiction. Hence a ∧ a1 < a and a is not irreducible.

We now come to the main result of this section Stone’s theorem for finite lattices.
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Theorem 11.44 (Stone’s theorem). Each finite Boolean lattice (V ,≤) is lattice-isomor-
phic to a power set lattice (𝒫(M),⊂).

More concrete, let A be the set of atoms in V. Then (𝒫(A),⊂) and (V ,≤) are lattice-
isomorphic.

Proof. V is distributive and hence by Theorem 11.41 we have that V is lattice-isomor-
phic to (ρ(V),⊂) where

ρ(V) = {ρ(a) | a ∈ V}

with

ρ(a) = {x | x ∈ ℐ(V), x ≤ a}.

By Theorem 11.43 we have ℐ(V) = A, and hence ρ(V) ⊂ ρ(A). If a ∈ A then ρ(a) =
{a},whichmeans that all setswith one element fromAbelong to ρ(V). SinceV is closed
under ∧, we finally have ρ(V) = 𝒫(A).

Corollary 11.45. Let V be a finite Boolean algebra. Then |V | = 2n where n = |A| where A
is the set of the atoms in V.

Remark 11.46.
(1) In the opposite direction, ifM is a finite setwith |M| = n then (𝒫(M),⊂) is aBoolean

lattice with 2n elements. Hence for each k = 2n, n ∈ ℕ0, there exists a Boolean
lattice with exactly k elements, and this is uniquely determined up to lattice iso-
morphism.

(2) We note further that Theorem 11.44 does not hold in general for infinite sets. We
give an example. Let M be the set of all subsets of ℕ which are either finite or
cofinite, that is, have a finite complement.
We claim that M is a distributive lattice with respect to inclusion ⊂ and with the
operations ∪ and ∩. To see this we have:
(a) A,B ∈ M ⇒ A∪B ∈ M. This is clear if both A,B are finite. If A is infinite then

Ac is finite and hence

(A ∪ B)c = Ac ∩ Bc is finite.

Therefore A ∪ B ∈ M.
The case where B is infinite is analogous.

(b) A,B ∈ M ⇒ A ∩ B ∈ M. If either A or B is finite then A ∩ B is finite, and
hence A ∩ B ∈ M. If both A and B are infinite then both Ac and Bc are finite,
and hence (A ∩ B)c = Ac ∪ Bc is finite. Therefore A ∩ B ∈ M.

(c) Since M ⊂ 𝒫(ℕ), all the rules for ∪ and ∩ hold in M, and hence M is a dis-
tributive lattice.
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Wenext claim thatM is a complementary lattice. For this claimwemust show that
if A ∈ M then Ac ∈ M. If A is finite then Ac is cofinite, and hence Ac ∈ M. If A is
infinite then Ac is finite, and hence Ac ∈ M.
Hence M is a distributive, complementary lattice, and therefore M is a Boolean
lattice. FurtherM is an infinite Boolean lattice andM is countable.
Now let N be any set, then 𝒫(N) is either finite or uncountable. It follows that
(M,⊂) is not lattice-isomorphic to a power set lattice (𝒫(N),⊂) for some set N .
We now state the general theorem of Stone which we will prove in Section 11.8.

Theorem 11.47 (General Stone’s theorem). Each Boolean lattice (V ,≤) is a Boolean set
lattice, that is, lattice-isomorphic to a Boolean sublattice of a power set lattice (𝒫(N),⊂)
for some set N.

11.6 Construction of Boolean Lattices via 0–1 Sequences

Besides the trivial Boolean lattice where {0} = {1}, the Boolean lattice containing only
the two elements 0 and 1 with 0 ̸= 1 is the simplest.

Let B = {0, 1} with 0 ̸= 1. For the operations ∧ and ∨ we give the following tables,
see Table 11.1.

Table 11.1: Operations ∧ and ∨.∧ 0 1

0 0 0
1 0 1

∨ 0 1

0 0 1
1 1 1

For the complement in B we have 1 = 0 and 0 = 1. We now consider {0, 1} as a subset
of ℤ, and here {0, 1} is closed under multiplication in ℤ and the S-sum defined by

a +
S
b = {

0, if a = b = 0 and
1, otherwise

with a, b ∈ {0, 1}.
Now ∧ coincides with the multiplication in {0, 1} and ∨with the S-sum or Boolean

sum:

a ∧ b = ab and a ∨ b = a +
S
b

for a, b ∈ {0, 1} ⊂ ℤ.
Starting with B we may construct each finite Boolean lattice.
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Let Bn be the n-fold Cartesian product of B, that is, the set of n-digit 0–1 sequences
(a1, a2, . . . , an) with ai ∈ {0, 1}, i = 1, 2, . . . , n, equipped with the componentwise multi-
plication and Boolean addition:

(a1, a2, . . . , an) ∧ (b1, b2, . . . , bn) := (a1, a2, . . . , an) ⋅ (b1, b2, . . . , bn)
:= (a1b1, a2b2, . . . , anbn)

(a1, a2, . . . , an) ∨ (b1, b2, . . . , bn) := (a1, a2, . . . , an) +S
(b1, b2, . . . , bn)

:= (a1 +S
b1, a2 +S

b2, . . . , an +S
bn)

with all ai, bi ∈ {0, 1}. We have |Bn| = 2n and define

(a1, a2, . . . , an) ≤ (b1, b2, . . . , bn)

if and only if

(a1, a2, . . . , an) = (a1, a2, . . . , an)(b1, b2, . . . , bn) = (a1b1, a2b2, . . . , anbn).

With 0 = (0,0, . . . ,0) and 1 = (1, 1, . . . , 1) we get that 0 ≤ (a1, a2, . . . , an) ≤ 1 for all
(a1, a2, . . . , an) ∈ Bm and certainly (a1, a2, . . . , an) ≤ (b1, b2, . . . , bn) if and only if ai ≤ bi
for i = 1, 2, . . . , n.

Theorem 11.48. Bn with n ≥ 1 is a Boolean algebra, that is, (Bn,≤) is a Boolean
lattice with the zero element 0 and the unity 1. Further if (a1, a2, . . . , an) ∈ Bn then
(a1, a2, . . . , an) = (a1, a2, . . . , an) is the complement of (a1, a2, . . . , an). Each Boolean
algebra (lattice) with 2n, n ≥ 1, elements is lattice-isomorphic to Bn.

Proof. LetM = {1, 2, . . . , n}. For A ⊂ M we define

χA = (χA(1), χA(2), . . . , χA(n))

with

χA(j) = {
0, if j ∉ A and
1, if j ∈ A.

We then have the relations

χA∩B = χA ⋅ χB

and

χA∪B = χA +S
χB.
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The allocation A→ χA defines a bijective map ϕ : (𝒫(M),≤)→ (Bn,≤) with

ϕ(A ∩ B) = ϕ(A) ⋅ ϕ(B)

and

ϕ(A ∪ B) = ϕ(A) +
S
ϕ(B).

The rules for a Boolean lattice now come from (P(M),⊂) to (Bn,≤)

Definition 11.49. A Boolean function is a map F : Bn → Bm with m, n ∈ ℕ. A map
Bn → B is called a switching function.

A Boolean function describes how to determine a Boolean-valued output based
on some logical calculations from Boolean inputs. Such functions play a basic rule in
questions of complexity theory as well as in the design of computer chips for digital
computers.

The properties of Boolean functions also play a role in cryptology, particularly in
the design of symmetric key protocols and their algorithms. Boolean arithmetic on
{0, 1} is called the XOR operation.

Each Boolean function Bn → Bm is uniquely determined by them switching func-
tion which belong to the single coordinates in Bm.

The 22
n
= 2|B

n| switching functions form a Boolean lattice with respect to

(f ⋅ g)(x) = f (x) ⋅ g(x),
(f +

S
g)(x) = f (x) +

S
g(x)

and

f (x) = f (x)

where x = (x1, x2, . . . , xn) ∈ Bn. Here f (0,0, . . . ,0) = 0 and f (1, 1, . . . , 1) = 1.
The rules for a Boolean algebra extend to the set of switching functions.
As an example for n = 1 we have the 4 switching functions, see Table 11.2.

Table 11.2: 4 switching functions for n = 1.

For n = 1 function values

variable value 0 0 0 1 1
variable value 1 0 1 0 1
function 0 x x 1

zero function identity complement unit function
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If n ≥ 2 then we have the special switching functions (x1, x2, . . . , xn) → xν the projec-
tion onto the νth coordinate. We denote these simply by xν. If z = (z1, z2, . . . , zn) ∈ Bn

arbitrary but fixed we define

fz(x) =
n
∏
ν=1
(xνzν +S

xν zν).

We have

fz(x) = 1 if and only if x = z

and

fz(x) = 0 if and only if x ̸= z

because

xνzν +S
xν zν = 0 if and only if xν ̸= zν .

This gives the following theorem.

Theorem 11.50. Each switching function f : Bn → B has a unique representation of the
form

f (x) = ∑
S

z∈Bn

λ(z)fz(x)

with λ(z) = 0 or 1. This is the disjunctive normal form.

The uniqueness of the representation follows directly from λ(z) = f (z) for each
z ∈ Bn.

11.7 Boolean Rings

Let M be a set and 𝒫(M) its power set. We construct a ring structure on 𝒫(M). For a
discussion of rings see, for example, [13].

First we define multiplication by intersection. That is, if A,B ∈ 𝒫(M) then AB =
A ∩ B. For addition we use the symmetric difference of two sets. By this we mean

A△ B = (A ∪ B) \ (A ∩ B) = (A ∩ Bc) ∪ (Ac ∩ B).

On 𝒫(M) we define for any two sets A,B ∈ 𝒫(M) their sum as

A + B = A△ B.

With these operations we get the following result.
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Theorem 11.51. Let M be a set and R = 𝒫(M). Then R with addition and multiplication
as defined above forms a commutative ring with unity. The zero element is 0 and the
unity is M. The additive inverse of any subset A is A itself. The ring R is finite if and only
if M is finite. If M = 0 then R is the null ring {0}.

Proof. The proof that R forms a ring under the given operations consists of verifying
the ring axioms. This is very straightforward and we omit here the easy calculations.
The other assertions follow directly from set properties.

If M is finite then 𝒫(M) is also finite while if M is infinite its power set is also
infinite.

Any subring of𝒫(M) is called a ring of sets. Recall that a nonempty subset of a ring
forms a subring if it is closed under addition, multiplication and additive inverses.
For subsets of 𝒫(M) to be a ring it is sufficient that this subset is closed under union,
intersection and complement since symmetric difference is defined in terms of union,
intersection and complement.

Lemma 11.52. Let R1 ⊂ 𝒫(M) be a nonempty collection of subsets of the set M. Then R1
forms a subring of𝒫(M), and hence a ring of sets, if it is closed under union, intersection
and complement.

From Lemma 11.52 we get the following:

Lemma 11.53. Let R1 ⊂ 𝒫(M) be a ring of sets. Then R1 forms a Boolean lattice under
union, intersection and complement.

Let A ∈ R = 𝒫(M). Then AA = A2 = A ∩ A = A. Hence the square of any element in
a ring of sets is itself. Further A is its own additive inverse since A +A = 2A = 0. Hence
for any A ∈ R we have 2A = 0 where R is any ring of sets.

The property A2 = A for any A in a ring of sets we abstract to define a special type
of ring.

Definition 11.54. A Boolean ring R is a ring where x2 = x for all x ∈ R.

We now show that any Boolean ring is commutative and 2x = 0 for any x ∈ R.

Theorem 11.55. Let R be a Boolean ring. Then R is commutative and 2x = 0 for any
x ∈ R.

Proof. If R consists of just the zero element 0 then the assertions are clear. Assume
then that R has at least two elements. Let x, y ∈ R. Then x2 = x and y2 = y. Consider
(x + x)2 = x + x. On the other hand,

(x + x)2 = x2 + x2 + x2 + x2 = x + x + x + x.
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This implies that x + x = 0 or 2x = 0. This implies that −x = x for any x ∈ R. Now
consider (x + y)2 = x + y and get

(x + y)2 = x2 + xy + yx + y2 = x + y ⇒ xy + yx = 0 or xy = −yx.

However, we have shown that −yx = yx, therefore xy = yx, and hence R is commuta-
tive.

If R is a Boolean ring, thenwe define x ≤ y if x = xy. This relation is a partial order.
It is reflexive because x2 = x, it is antisymmetric since R is commutative, and finally it
is transitive because

xz = xyz = xy = x for x = xy and y = yz.

Theorem 11.56. Let R = (R,+, ⋅,0, 1) be a Boolean ring, and let x ≤ y if and only if x = xy.
Then (R,≤) is a Boolean lattice. In this lattice we have:
(a) 0 is the smallest element and 1 is the greatest element.
(b) x ∧ y = xy.
(c) x ∨ y = x + y + xy.
(d) x = 1 + x.

Proof. We have already seen that (R,≤) is a partial order. The statement (a) is obvious.
(b) We have xy ≤ x and xy ≤ y since xyx = xy = xyy.
Now let z ≤ x, z ≤ y, that is, z = zx and z = zy. It follows that z = zy = zxy, and

therefore z ≤ xy. Hence x ∧ y = xy, the greatest common lower element.
(c) We have

x(x + y + xy) = x2 + xy + x2y = x + 2xy = x

and analogously

y(x + y + xy) = y.

Therefore x ≤ x + y + xy and y ≤ x + y + xy.
Now let x ≤ z and y ≤ z. Then x = xz and y = yz. Then

(x + y + xy)z = xz + yz + xyz = x + y + xy.

Hence x+y+xy ≤ z and therefore x∨y = x+y+xy the smallest commonupper element.
(d) Now x + (1 + x) = 1 and x(1 + x) = 0. Therefore x = 1 + x.
This shows that (R,≤) is a complementary lattice. The distributive law is satisfied

because

(x ∨ y) ∧ z = (x + y + xy)z = xz + yz + xyz = (x ∧ y) ∨ (y ∧ z).

Hence (R,≤) is a Boolean lattice.
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Theorem 11.57. Let (V ,≤) be a Boolean lattice with minimal element 0 and maximal
element 1. We define addition and multiplication by
(a) x + y = (x ∧ y) ∨ (x ∧ y),
(b) xy = x ∧ y.

Then (V ,+, ⋅,0, 1) is a Boolean ring and x ≤ y if and only if x = xy.

Proof. Immediately we have that x + x = 0, x + 0 = x, xx = x and x ⋅ 1 = x. Further
x + y = y + x and xy = yx, as well as x(yz) = (xy)z.

We show that addition is associative:

(x + y) + z = (x ∧ y ∧ z) ∨ (x ∧ y ∧ z) ∨ (x ∧ y ∧ z) ∨ (x ∧ y ∧ z)
= x + (y + z).

Finally, we must show that

(x + y)z = xz + yz.

We have

(x + y)z = ((x ∧ y) ∨ (x ∧ y)) ∧ z = (x ∧ y ∧ z) ∨ (x ∧ y ∧ z).

Further

xz + yz = (x ∧ z ∧ y ∧ z) ∨ (y ∧ z ∧ x ∧ z)
= (x ∧ z ∧ (y ∨ z)) ∨ (y ∧ z ∧ (x ∧ z))
= (x ∧ y ∧ z) ∨ (x ∧ y ∧ z).

Both calculations together prove that (x + y) ⋅ z = (xz + yz).
This proves the statement.

We note that the concepts Boolean lattice, Boolean algebra and Boolean ring are
entirely equivalent. This leads to the second version of Theorem 11.44.

Theorem 11.58 (Stone’s theorem for Boolean rings). Each finite Boolean ring R is ring-
isomorphic to a power set ring 𝒫(M) for a set M.

11.8 The General Theorem of Stone

We now use the theory of Boolean rings, which is equivalent to the theory of Boolean
lattices, to prove the general theorem of Stone.We recall that x ≤ y if and only if x = xy
via the mentioned equivalence. Let R = (R,+, ⋅,0, 1) be a Boolean ring. A subset F ⊂ R
is called a filter if the following four conditions are satisfied:
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(a) F ̸= 0.
(b) 0 ∉ F.
(c) x = xy implies that y ∈ F for all x ∈ F and y ∈ R.
(d) xy ∈ F for all x, y ∈ F.

Remark 11.59.
(1) From (c) we have that 1 ∈ F.
(2) If 0 ̸= x ∈ R then Fx = {y ∈ R | x ≤ y} is a filter called a principal filter generated

by x. If {Fi | I ∈ I} is a family of filters with I a linearly ordered index set and if
Fi ⊂ Fj for all i ≤ j then ⋃i∈IFi is a filter. This means that in the set of all filters in
R each chain {Fi | i ∈ I} has a smallest upper element ⋃i∈IFi. By Zorn’s lemma,
named after M. Zorn (1906–1993), each filter is contained in a maximal filter, that
is, in a filterU ⊂ Rwith the property that each filter F withU ⊂ F ⊂ R is alreadyU .

Zorn’s lemma is equivalent to the axiom of choice (see [14]). Here we may take
Zorn’s lemma as an axiom. We denote the maximal filter as an ultrafilter.

Now filter F ⊂ R cannot contain both x and x = 1 + x for otherwise 0 = x(1 + x) is
in F, which is impossible.

This observation provides a nice characterization of ultrafilters.

Lemma 11.60. A filter F ⊂ R is an ultrafilter if and only if either x ∈ F or x ∈ F, x = 1 + x,
for each x ∈ R.

Proof. Let x ∈ Rand letF ⊂ Rbeafilter. AsmentionedF cannot containboth x and 1+x.
Assume that F contains neither x nor 1 + x. We show that F is not maximal. We

define

F′ = {z ∈ R | xy = xyz for some y ∈ F}.

We have F ⊂ F′ and x ∈ F′ since F is not empty. Therefore F ̸= F′.
We must show that F′ is a filter. Assume that 0 ∈ F′. Then xy = xy ⋅ 0 = 0 for some

y ∈ F and therefore y(1 + x) = y which gives y ≤ 1 + x = x ∈ F, which is impossible.
Hence 0 ∉ F′.

Let z ∈ F′ and z = zz′. For some y ∈ F we have the equation

xy = xyz = xy(zz′) = (xyz)z′ = xyz′

and then z′ ∈ F′. Hence F′ is a filter.

The set 𝒰 of ultrafilters is therefore exactly the set of filters which contain either x
or 1 + x for each x ∈ R.

We now allocate to each a ∈ R a set ρ(a) ⊂ 𝒰 of ultrafilters and we define

ρ(a) = {U ∈ 𝒰 | a ∈ U}.
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This gives us the general Stone’s theorem.

Theorem 11.61. Let R be a Boolean ring and let 𝒰 be the set of ultrafilters of R. The
allocation a → ρ(a) defines an injective map R → 𝒫(𝒰). In particular, the Boolean ring
R is ring-isomorphic to a subring of 𝒫(𝒰), and therefore each Boolean lattice is lattice-
isomorphic to a Boolean set lattice.

Proof. Directly we have ρ(0) = 0 and ρ(1) = 𝒰 . We show that ρ is injective.
Let a, b ∈ R with a ̸= b. By symmetry we may assume that a ̸= ab because either

a ̸= ab or b ̸= ba = ab. Then a(1 + ab) = a + ab ̸= 0.
Therefore there exists an ultrafilter Uc which contains the principal filter {y ∈ R |

c ≤ y}where c = a(1+ab). The ultrafilterUc contains a and 1+ab but it cannot contain
b because otherwise ab ∈ U contradicting 1 + ab ∈ Uc.

We finally have to show that

ρ(ab) = ρ(a) ∩ ρ(b)

and

ρ(a + b) = ρ(a)△ ρ(b).

The ultrafilters which contain ab are exactly those which contain a and b. Hence
we have ρ(ab) = ρ(a) ∩ ρ(b). We now consider an ultrafilter U which contains a + b.

Assume thatU contains neither a nor b. SinceU is an ultrafilter then 1+a and 1+b
are contained in U by Lemma 11.60. Hence

(a + b)(1 + a)(1 + b) ∈ U .

However, this is not possible since

(a + b)(1 + a)(1 + b) = (a + b)(1 + a + b + ab) = a + a + ab + ab + b + ab + b + ab = 0.

This shows that ρ(a + b) = ρ(a) ∪ ρ(b).
Now assume that U contains both a and b. Then ab ∈ U . This also is impossible

because

(a + b)ab = ab + ab = 0.

Hence ρ(a + b) ⊂ ρ(a)△ ρ(b).
The last thing we must show is that

ρ(a)△ ρ(b) ⊂ ρ(a + b).
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For this we start with an ultrafilterU which contains a and 1+b. We have to show that
a+b is inU . If not, then a, 1+b and 1+a+b are all inU . Again this is impossible since

a(1 + b)(1 + a + b) = (a + ab)(1 + a + b) = a + a + ab + ab + ab + ab = 0.

Altogether we have ρ(a + b) = ρ(a)△ ρ(b), proving the theorem.

Wenote that for finiteBoolean rings theultrafilters are exactly thefilters generated
by the atoms.

Hence Theorem11.44 andTheorem11.58 are indeed special cases of Theorem11.61.

Exercises

1. Let Bn, n ≥ 1, be the n-fold Cartesian product of B = {0, 1}, that is, the set of the
n-digit 0–1-sequences (a1, a2, . . . , an) with ai = 0 or 1 for i = 1, 2, . . . , n.
Show that Bn is partially ordered by

(a1, a2, . . . , an) ≤ (b1, b2, . . . , bn) ⇔ ai ≤ bi for i = 1, 2, . . . , n and
(a1, a2, . . . , an) < (b1, b2, . . . , bn) ⇔ ai ≤ bi for i = 1, 2, . . . , n and

ai < bi for at least one i.

Give the Hasse diagrams for B1, B2 and B3.
2. Let (M,≤) be a finite partially ordered set.

Show thatM contains minimal elements and, ifM contains exactly one minimal
element, then this is the smallest element.

3. Let (M,≤) be a partial order
(a) Show that sup(0) exists if and only if M has a smallest element, and then

sup(0) =: 0 is the smallest element.
(b) Show that inf(0) exists if and only if M has a greatest element, and then

inf(0) =: 1 is the greatest element.
4. Let (M,≤) be a complete partial order. Show that (M,≤) has a uniquely determined

smallest element, and this is sup(0) =: 0.
5. Let (M,≤) be a complete partial order and f : M → M be continuous. Show that

xf = sup{f
i(sup(0)) | i ≥ 0}

is the uniquely determined smallest fixed point of f .
(Hint: An element x ∈ M is a fixed point of f if f (x) = x.
Show first that

sup(0) ≤ f (sup(0)) ≤ f 2(sup(0)) ≤ ⋅ ⋅ ⋅ .

This is the fixed point theorem of S. C. Kleen (1909–1994).)
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6. Show the existence of an infinite set lattice which does not contain irreducible
elements.

7. Let (V ,≤) be a Boolean lattice and a ∈ V .
Show the general statement that a is an atom if and only if a is irreducible.

8. (a) Let (V ,≤) be a complete lattice, that is, a lattice and a complete partial order.
Show that in V each subset D has a greatest lower bound

inf(D) = sup{x ∈ V | x ≤ y for all y ∈ D}.

In particular, each complete lattice has a smallest and a greatest element.
(b) Show that each finite lattice is complete.

9. Let (V ,≤) be a complete lattice (see Exercise 8) and f : V → V be a lattice homo-
morphism.
Then the set

P(f ) = {y ∈ V | f (y) = y}

of the fixed points of f is a complete sublattice. In particular, there exist uniquely
determined smallest and greatest fixed points.
This is the fixedpoint theoremof B. Knaster (1893–1980) andA. Tarski (1901–1983).

10. Show in detail that each switching function f : Bn → B has a unique representa-
tion of the form

f (x) = ∑
S

z∈Bn

λ(z)fz(x), λ(z) = 0 or 1.

11. LetM be any nonempty set. In the power set 𝒫(M) we define addition and multi-
plication by

A + B = (A ∪ B) \ (A ∩ B) and
A ⋅ B = A ∩ B.

(a) Show that R = 𝒫(M) forms a commutative ring with unity.
(b) Explain why we will not get a ring if we define operations in 𝒫(M) by

A + B = A ∪ B and
A ⋅ B = A ∩ B.

12. Let R be a ring such that

x3 = x for all x ∈ R.

Show that R is commutative.
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absorbtion 320
abstract face 205
abstract simplices 205
abstract simplicial complex 205
accelerative vector 16
acyclic digraph 301
acyclic matching 216
adjacent 129
adjugate adj(A) 39
affine independence 206
antisymmetric 312
antitone map 317
arc length parameter 18
area function or measure 190
(arithmetic) partition numbers 255
(arithmetic) partition numbers recursion formula

255
atoms 314

barcode 219
Bayes net 302
Bayes network 302
Bell-number 251
Bernoulli process 281
Betti numbers 215
bijective 36
binomial coefficient 228
binomial formula 235
binormal vector 20, 21
bipartite graph 140
Boolean algebra 311
Boolean function 337
Boolean lattice 328
Boolean ring 339
Boolean set algebra 332
Boolean set lattice 332
boundary group 213

C-coloring 139
c.d.f. 282
canonical geometric realization 206
Catalan numbers 257
Catalan numbers recurrence relation 257
chain 315
chain group 213
characteristic polynomial 54

child events 303
closed 130
combinations 228
commutative 87
comparable 312
complement 328
complement of a 330
complementary 328
complementary lattice 328
complete 314
complete bipartite graph 140
complete graph 134
conditional probability 288
cone of a simplicial complex 215
congruence motion 31, 42
congruent 31
congruent number 53
congruent triangle 49
conic section 69, 70
connected 130
connected component 130
connecting edge 127
constant speed curve 17
continuous 317
continuously differentiable 188
convex hull 206
convex polyhedron 170
critical simplices 216
cross-product 15
cross-ratio 183
crossing-free 136
cube 159
cumulative distribution function 282
curvature 20
curvature vector 19
cycle 252
cycle group 213
cyclic digraph 300

degenerate conic sections 72
degree of x 130
derangement 245
determinant det(A) 38
difference rule 224
digraph 296
dihedral group Dn 92
direct product 88
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directed acyclic graph 301
directed cyclic graph 300
directed Euler cycle 299
directed graph 296
directrix 81
discontinuous 90
discrete random variable 281
discriminant 83
distinct from G 137
distributive lattice 324
distributivity inequalities 321
dodecahedron 159
(double) cone 69
double periodic group 99
double ratio 183
drawer principle of Dirichlet 227

earth measure 1
edge circle 130
edge line 130
edge path 130
edge sequence 130
edges 127
eigenvalue 54, 61
eigenvector 54, 61
elementary Nielsen transformations 196
ellipse 77
empty event 277
equivalence relation 312
Erlanger Programm 31
Euclidean group 87
Euclidean group of motions 31
Euclidean parallel postulate or EPP 177
Euclid’s Axiom 1 1
Euclid’s Axiom 2 1
Euclid’s Axiom 3 1
Euclid’s Axiom 4 1
Euclid’s Axiom 5 2
Euclid’s Elements 1
Euler cycle 145
Euler line 145
Euler–Poincaré formula 215
Euler’s φ-function 244
event space 277
exponential generating function 269

faces of G 137
factor group 88
factorial 229

figure 162
filter 341
filtration 218
final vertex 130
finite digraph 297
finite graph 129
finitely presented 87
fixed point group 91
fixed point of f 179
fixed point of the permutation 245
focal points 77, 80
free Abelian 212
frieze groups 101
friezes 101
fundamental region for G 94

Gale–Shapley algorithm 144
general linear group 39
generators 87
geometric face 207
geometric realization 208
geometric simplex 207
geometric simplicial complex 207
geometry 1
glide reflection 46
gradation 317
graph 127
greatest element 314
greatest lower bound 314
group of congruence motions 31
group of Euclidean motions 31

Hamiltonian cycle 148
Hamiltonian line 148
Hasse diagram 128
Hessian normal form 70, 71
homology group 213
homomorphism 88
homothety 178
hyperbola 77, 79
hyperbolic distance 187
hyperbolic geometry 177
hyperbolic length 188
hyperbolic line segment 188
hyperbolic parallel postulate or HPP 177
hyperbolic polygon 188
hyperbolic theorem of Pythagoras 190
hyperbolic triangle group 193
hypergeometric random variable 281
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icosahedron 159
idempotence 320
identically distributed 282
Incidence Axiom 1 6
Incidence Axiom 2 6
Incidence Axiom 3 6
incidence matrix 227
infinite dihedral group 92
inner vertex 131
input degree 298
intrinsic equations 24
invariant 31
inverse matrix 36
inverse relation 312
inversion 178
invertible 36
irreducible (or V -irreducible) 331
isolated 129
isometries 31
isometry 24, 31
isomorphic graphs 136
isomorphism 88
isotone map 317

Jordan–Hölder chain condition 317

k-colorable 139
k-combination 231
k-cycle 252
k-permutation 231
k-repetition 231
k-subset ofM 234
k-variation 231
Karamata-notation 255
ker(f ) 88
kissing plane 20
Klein four group 92

label 94
Laplace space 278
lattice 318
lattice homomorphism 323
leaf 131
least upper bound 314
length of c 17
lexicographic order 313
line 167
linear eccentricity 78
linear fractional transformation (LFT) 177

linear isometry 31
loop 297
lower bound 314
lower element 318
lower-neighbor 313

marriage condition 140
marriage theorem 141
mass function 282
matching 140
matching on a poset 216
maximal chain 315
maximal element 314
measure space 278
mesh 221
metric 218
metric space 218
minimal element 314
modular inequality 321
modular lattice 324
moves 42
moving trihedron 19
multinomial coefficient 239
multinomial theorem 239

Nielsen equivalent 196
non-oriented 88
normal subgroup 67
numerical eccentricity 74

octahedron 159
orbit 253
order 312
order antihomomorphism 317
order homomorphism 317
order isomorphism 317
ordered samples 228
ordered set 312
ordered simplicial complex 212
ordinary generating function 259
oriented 88, 163
orthogonal matrix 40
osculating plane 20
outcomes 277
output degree 298

p.m.f. 282
parabola 77, 81
parameter 74
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parameterized curve 16
parent events 303
parent vertices 303
Pareto analysis 294
part 255
partial order 312
partial suborder 315
partially ordered set 312
partition 255
partition ofM 248
path 16
perfect matching 140
permutation ofM 245
permutations 228
persistance 219
pigeonhole principle 227, 238
planar 136
planar isometry 89
(plane) figure 90
Platonic solid 171
point 167
polyhedra 170
polyhedron 207
poset 312
position vector 16
probability mass function 282
probability measure 277
probability space 277
“Problème de recontres” 245
Prüfer code 135

rank of a group 212
Recontres-numbers 245
recursion formula 233
reflection angle 43
reflection at the plane through ⃗v1 and ℓ 56
reflexive 312
regular 16
regular conic sections 72
regular polygons 91
relationℛ 312
ring of sets 339
rotary translation 57
rotation 178
rotation about an axis 56
rotation reflection 56
rule of difference 224

sample space 277
sampling with replacement 228

sampling without replacement 228
screw displacement 57
section graph 130
semi-major axis 78
semi-major axis of the ellipse 75
semi-minor axis of the ellipse 75
semidirect product 88
set lattice 331
sign of a permutation 38
simple digraph 297
smallest element 314
solution of a TSP 151
spanning section graph of V ′ 130
spanning tree 134
special linear group 39
special orthogonal group 89
speed 16
Sperner labeling 210
Sperner’s lemma 210
(spherical) angle 168
(spherical) distance 167
spherical law of cosines 175
spherical move 168
spherical theorem of Pythagoras 175
spiral similarity 178
stable marriage problem 142
stable matching 142
Stirling number s(n, k) of the first kind 253
Stirling numbers recursion formula 249
Stirling-numbers of the second kind 249
strongly connected 298
subdivision of a simplex 209
subgraph 130
sublattice 323
switching function 337
Sym(F ) 90
symmetric 312
symmetric matrix 67

tangent vector 19
tessellation (tiling) 93
tetrahedron 159
time 16
torsion 21
transformation group approach 31
transitive 312
translation 178
translation axis 101
translation by ⃗v0 34
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transpose of A, AT 37
Traveling Salesman Problem (TSP) 151
tree 131
tree diagram 224
triangle group 97
triangle inequality 218

ultrafilter 342
unchanged 31
unit normal vector 20
unit speed curve 17

upper bound 314
upper element 318
upper-neighbor 313

velocity 16
velocity vector 16
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