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Preface
This book is pedagogical in nature and will provide a firm foundation in the under-
standing of financial economics applied to asset pricing. The covered materials in-
clude analyses of stocks, bonds, futures, and options. Existing highly cited finance
models are explained and useful references are provided. The discussion of theory is
accompanied by rigorous applications of econometrics. Econometrics contain eluci-
dations of both the statistical theory as well as the practice of data analyses. Linear
regression methods and some nonlinear methods are covered.

The contribution of this book, and at the same time, its novelty, is in synergisti-
cally employing materials in probability theory, economics optimization, economet-
rics, and data analyses together to provide for rigorous learning in investment and em-
pirical finance. This book is written at a level that is academically rigorous for masters
level as well as advanced undergraduate courses in finance, financial econometrics,
and quantitative finance. It is also useful for finance and banking professionals who
wish to better equip themselves.

June 2022 Kian Guan Lim
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1 Probability Distributions

1.1 Basic Probability Concepts

Probability is the mathematics of chances defined on possible events happening.
A sample space Ω is the set of all possible simple outcomes of an experiment where
each simple outcome or sample point ωj is uniquely different from another, and each
simple outcome is not a set containing other simple outcomes, i. e., not {ω1,ω2}, for
example. An experiment could be anything happening with uncertainty in the out-
comes, such as throwing of a dice in which case the sample space is Ω = {1, 2, 3, 4, 5, 6},
and ωj = j for j = 1 or 2 or 3 or 4 or 5 or 6, or a more complicated case of in-
vesting in a portfolio of N stocks, in which case the sample space could be Ω =
{(R11, . . . ,R

N
1 ), (R

1
2, . . . ,R

N
2 ), . . . . . .} where R

k
j denotes the return rate of the kth stock un-

der the jth outcome. Another possible sample space could be Ω = {RP1 ,R
P
2 ,R

P
3 , . . . . . .},

where RPj =
1
N ∑

N
k=1 R

k
j denotes the return rate of the equal-weighted portfolio P under

the jth outcome.
Each simple outcome or sample point ωj is also called an “atom” or “elementary

event”. A more complicated outcome involving more than a sample point, such as
{2, 4, 6} or “even numbers in a dice throw” which is a subset of Ω is called an event.
Technically, a sample point {2} is also an event. Therefore, we shall use “events” as
descriptions of outcomes, which may include the cases of sample points as events
themselves.

As another example, in a simultaneous throw of two dices, the sample space con-
sists of 36 sample points in the form (i, j) ∈ Ω where each i, j ∈ {1, 2, 3, 4, 5, 6}. An event
could describe an outcome whereby the sum of the two numbers on the dices is larger
than 8, in which case the event is said to happen if any of the following sample points
or simple outcomes happen, (3, 6), (4, 5), (4, 6), (5, 4), (5, 5), (5, 6), (6, 3), (6, 4), (6, 5), and
(6, 6). This event is describedby the set {(3, 6), (4, 5), (4, 6), (5, 4), (5, 5), (5, 6), (6, 3), (6, 4),
(6, 5), (6, 6)} ⊂ Ω. Another event could be an outcome whereby the sum of the two
numbers on the dices is smaller than 4, in which case the event is described by
{(1, 1), (1, 2), (2, 1)} ⊂ Ω. Another event could be “either the sum is larger than 10 or
smaller than 4”, and represented by {(5, 6), (6, 5), (6, 6), (1, 1), (1, 2), (2, 1)} ⊂ Ω. Thus, an
event is a subset of the sample space.

1.1.1 Collection of Events

Suppose there is a sample space Ω = {a1, a2, a3, . . . , a6}. We may form events Ei as fol-
lows

E1 = {a1, a2}
E2 = {a3, a4, a5, a6}

https://doi.org/10.1515/9783110673951-001
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2 | 1 Probability Distributions

E3 = {a1, a2, a3}

E4 = {a4, a5, a6}

ϕ = { }, or the empty set, and Ω itself are also events. All these events are subsets of Ω.
The set of events is also called a collection of events or a family of events. (It is

really a set of subsets of Ω.) We denote the collection by

ℱ = {ϕ,Ω,E1,E2,E3,E4}

If a collection ℱ satisfies the following 3 properties, it is called an algebra or a
field:
(1a) Ω ∈ ℱ
(1b) If Ej ∈ ℱ , then Ecj ∈ ℱ (Ecj is the complement of Ej.)
(1c) If Ei ∈ ℱ and Ej ∈ ℱ , then Ei⋃Ej ∈ ℱ

If there is an infinite sequence of En ∈ ℱ , and if ⋃∞n=1 En ∈ ℱ , then ℱ is called a
σ-algebra or σ-field in Ω. A σ-field is a field that is closed under countable unions.
A field describes all possible events that can happen, including events that represent
the non-occurrence (complement) of some events. Therefore each event in a field can
be represented by a chance or probability measure. It will include a zero chance if it
is an empty set ϕ.

For association between sets, we need to formalize the idea of mapping. A map
is a function. A function f (x) assigns to an element x ∈ D(f ), where D(f ) is called the
domain set of f , a unique value y = f (x) ∈ R(f ), where R(f ) is called the range set of f .
It is written f : D(f ) → R(f ) (set to set) or equivalently, f : x → y (element to element).

A function f (x) = y is injective if and only if eachunique element inD(f ) ismapped
(paired) to a unique element in R(f ). This is also called one-to-one function. There
may exist elements in R(f ) that are not paired to any element in D(f ). If all elements
in R(f ) are mapped onto from elements of D(f ), the function is surjective. In this case
there may be different elements in D(f ) that mapped onto the same element in R(f ).
A function that is both injective and surjective is called bijective (or one-to-one corre-
spondence).

A probability measure P is a function mapping ℱ into the unit interval [0, 1], P :
ℱ → [0, 1], or equivalently P : E ∈ ℱ → x ∈ [0, 1], such that
(2a) 0 ≤ P(E) ≤ 1 for E ∈ ℱ
(2b) P(Ω) = 1
(2c) For any sequence of disjoint events En of ℱ

P(
∞

⋃
n=1

En) =
∞

∑
n=1

P(En)
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1.1 Basic Probability Concepts | 3

A probability measure is in general neither surjective nor injective. However, there are
examples in which the probability measure is injective, e. g., the number of years n
in which a firm survives before going bankrupt or closing down has a probability of
(1 − p)np where p > 0 is the constant probability of default or closing down given
that it survived the previous year. The triple (Ω,ℱ ,P) is called a probability space.
The probability space is a minimal structure for a formal analysis of events and their
chances of happening in a static framework.

For finite sample space, the probabilitymeasureP poses noproblemas each of the
finite number of outcomes or sample points can carry a strictly positive probability
number or P-measure. For example, if there are N equally likely occurrences in an
experiment, each sample point has probability 1

N > 0, no matter how large N is.
However, in a continuous sample space, where events can be points on a real line

[A,B] ∈ ℛ, A < B, we cannot assign a positive probability measure q to each of the
points like in a finite sample space. We know that a rational number is countably in-
finite or denumerable, which means the set of rational numbers can be put in a one-
to-one correspondence with natural numbers. Real numbers in [A,B] are a lot more
in quantity than natural numbers (1, 2, 3, . . .); they are uncountable or nondenumer-
able. If each point or “elementary event” on [A,B] has a probability q > 0, then the
total of all probabilities of the outcomes of the real numbers in [A,B] is infinite. Hence
P(Ω) = 1 in (2b) is not satisfied.

For continuous sample space, the “elementary events” have to be made up of
something else, e. g., half-open sets (A,B] with A < x ≤ B. In this case, A < B. Each
simple event as in (A,B] has a non-zero length B − A > 0 which can be used to con-
struct the probability measure, no matter how infinitesimally small the measure is.
This “length” is also called a Lebesgue measure. As an immediate application of the
Lebesguemeasure, if an integral is taken over an indicator function f on support [0, 1],
where

f (x) = 1 if x ∈ [0, 1] is a rational number
= 0 otherwise

the Riemann integral cannot be found. However, using the idea that this integral is ba-
sically the sum of 1× the total lengths of the rational numbers on [0, 1], since Lebesgue
measure of all these total lengths is zero, the Lebesgue integral of the above is zero.
Another famous case of measure-zero set is the Cantor set where the elements are in-
finitely many, but they all add up to zero length. Half-open sets ω ⊂ ℛ and events
equal to their intersections or unions that form elements of ℱ are also called Borel
sets on the real line.

In the above, we can define the probability of an event of half-open interval (A,B]
as g(A,B) × (B − A) where g(A,B) < ∞ is a function of A and B. Indeed such a func-
tion g(A,B) can be found using the mean value theorem for integration on a contin-
uous probability distribution, i. e. a continuous sample space on ℛ with a probabil-
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4 | 1 Probability Distributions

ity measure defined on it. Suppose f (x) is the probability density function on x ∈ ℛ.
The mean value theorem states that there exists a real number c ∈ (A,B] such that
∫
B
A f (x) dx ≡ F(B) − F(A) = f (c) × (B − A) where F(⋅) is the cumulative distribution
function (cdf), F(B) − F(A) is the probability of event of half-open interval (A,B] or
P(A < x ≤ B), and g(A,B) = f (c) = F(B)−F(A)

B−A .
Given the probability space (Ω,ℱ ,P) comprising half-open intervals En as “el-

ementary events”, the σ-field ℱ contains events (as its elements) such as ⋃∞n=1 En.
But property (1b) of a σ-field implies (⋃∞n=1 En)

c is also an element of ℱ . By De Mor-
gan’s Law, (⋃∞n=1 En)

c = ⋂∞n=1 E
c
n. If En is an increasing interval, i. e. En+1 ⊃ En, then

P(⋃∞n=1 En) = 1 and P(⋂
∞
n=1 E

c
n) = 0. The latter event is a point. Technically, it is possible

to assign a probability of zero to measurable sets that can be constructed as events in
the field ℱ .

1.1.2 Random Variables

In a horse race involving 6 horses, simply called A, B, C, D, E, and F, a simple outcome
of the race is a 6-tuple or 6-element vector viz. ωB = (B,D, F,A,C,E) denoting horse
B coming in first, D second, and so on. Assuming there is no chance of a tie, and no
horse drops off, there are 6! permutations or 6×5×4×3×2×1 = 720 possible outcomes.
However, for most people going to the Sunday derbies to wager, they are more inter-
ested in some function of the simple outcomes rather than the simple outcome itself.
For example, if they had wagered on horse B for a payout of 3 to 1 for the winner, then
the variables relevant to them are the returns to their wager.

There are 5! = 120 permutations with B as winner or a return rate of 200%. There
are 5 × 5! = 600 permutations where B is not a winner or a return rate of −100%.
The function f : ωB → 200%, if ωB is a 6-tuple (B, . . .), otherwise −100%, is called a
random variable.

Formally, let (Ω,ℱ ,P) be an arbitrary probability space where ℱ is a σ-field or
collection of measurable subsets of Ω, or collection of events. Let X be a real-valued
function on ℱ ; in other words, X : ℱ → ℛ or X : E ∈ Ω → x ∈ ℛ, where E is an event.

X is a random variable (RV) if it is a measurable function from Ω toℛ. It is a mea-
surable function if for any Borel set A ⊂ ℛ, its inverse

X−1(A) = {ω : X(ω) ∈ A} ∈ ℱ

Hence, X−1(A) is seen to be an element ofℱ or a subset of Ω that is measurable or that
can be assigned a suitable probability. (Note thatX−1(A) can beϕ ∈ ℱ .) In otherwords,
if the probability distribution of a RV X is (adequately) defined, there is a surjective
mapping from the ℱ in (Ω,ℱ ,P) to each x ∈ X. If not, the RV is not well-defined.

Sometimes, when a RV is defined, it may not be necessary or convenient to refer to
the more fundamental algebraℱ fromwhich the RV is derived. In the example above,
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1.1 Basic Probability Concepts | 5

each horse race permutation may be the simple event ωk ∈ Ω. However, the relevant
RV outcome is either the return rate −100% or RK % if the bet is on horse K. Or we can
simply take the sample space as Ω = {−100%,RK%}, and directly define probability
on the RV. In the same way that investment problems are studied by considering the
stock i’s return rate ri as a RV taking values in [−1,+∞), we can regard the sample
space as Ω = [−1,+∞) ⊂ ℛ. Now, X is a simple RV if it has a finite number of values of
X(ω) = x, for each real x ∈ ℛ that is finite, and if Ex = {ω : X(ω) = x} ∈ ℱ . Graphically,
this can be depicted in Figure 1.1 as follows.

Figure 1.1: A Simple RV Function.

Anote about the notation of a randomvariable is in order. A RVX takes different possi-
ble values x each with a particular probability P(x). Thus a RV is sometimes differenti-
ated by having a tilde sign above the alphabet. When we take expectation, we usually
write E(X̃); but the equivalence in integration uses ∫ x dF(x) since cdf function F(⋅) is
defined on a value x. However, fixing notations in complicated equations can be te-
dious. We shall typically not use any differentiating signs and let the readers infer if it
is a RV or its value in the context of the equations.

An example of a commonly used simple RV is the indicator variable 1ω∈A where
this RV takes the value 1when realized eventω is in setA, and 0 otherwise. The indica-
tor variable is auseful tool in developing analytical solutions to someprobability prob-
lems. For example, E(1ω∈A) = P(A). This allows the concepts of expectation and prob-
ability distribution to be interconnected. A more general simple RV is X = ∑Ni=1 xi1Ai

where X takes value xi in the event Ai = {ω : X(ω) = xi} ∈ ℱ , and Ai ∩ Aj = ϕ, for i ̸= j.
Simple RVs are easily measurable. Another example is as follows. Since Eb = (−∞, b]
is a Borel set inℛ, a measurable RV X can be defined as a mapping X : Ω → ℛ such
that for any event Eb ∈ Ω, X(Eb) = b ∈ ℛ.

1.1.3 Distribution Function

The probability distribution function, also called cumulative distribution function of
a random variable X is a mapping from ℛ to [0, 1] defined by F(b) = P(X ≤ b). This
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6 | 1 Probability Distributions

distribution is a fundamental tool in statistical analyses. A distribution function has
the following properties:
(3a) F is a nondecreasing (or monotone increasing) function, i. e. if a ≤ b, then F(a) ≤

F(b)
(3b) limb→−∞ F(b) = 0 and limb→+∞ F(b) = 1
(3c) F is right continuous, i. e. ∀b ∈ ℛ, limh↓0 F(b + h) = F(b)

If the cdf is continuous (without jumps), then it is both right continuous and left
continuous, i. e., limh↓0 F(b + h) = F(b) = limh↓0 F(b − h). This allows its derivative
to be obtained at every point x, i. e., dF(x)

dx = f (x) where f (x) is the probability density
function (pdf) of X. f (x) is a non-negative function. To find probabilities of events
on X, we require integration over the pdf, e. g., P(a < x < b) = ∫ba f (x) dx. This is
of course ∫ba dF(x) = F(b) − F(a). Note that the probability of any single point x in a
continuous cdf is zero.

However, sometimes a pdf may not exist even if the cdf exists, e. g., a cdf defined
on a Cantor set where the cdf function has no derivative on the points of the Can-
tor set. Thus cdf is a more general and robust way of defining a probability distribu-
tion that allows for jumps. Right continuity at b in (3c) facilitates a convenient state-
ment of evaluating the probability of a jump occurring at point b, i. e. P(X ≤ b) −
P(X < b) = P(X = b), which is F(b)−F(b−). If we were to use an alternative convention
of left continuity, the probability P(X = b) = F(b) − F(b−) = 0. To capture this prob-
ability under left continuity, one would require use of a different definition such as
P(X ≤ b) = F(b+), which is troublesome.

When a RV X is discrete, X takes only finitely many or countably many values, ai,
i = 1, 2, . . .. The probability of event {X ≤ ai} occurring is cdf F(ai) = ∑x≤ai p(x). The
probability of ai occurring is p(ai) = F(ai) − F(ai−). In the above, p(x) is called the
probability mass function (PMF) for a discrete RV X. Note that pdf does not exist for
discrete distributions.

1.1.4 Some Moments

For a RV X, its nth moment is E(Xn) if it exists. The mean of X is its first moment when
n = 1. For a continuous RV X with pdf f (x)

μ = E(X) =
+∞

∫
−∞

xf (x)dx

In the discrete case, it is given by

μ = E(X) =∑
x
xp(x)
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where p(x) is the PMF. The variance of X is

σ2(X) = var(X) = E(X − μ)2

The moment-generating function (MGF) of RV X is

M(θ) = E(eθX) =
+∞

∫
−∞

eθxdF(x)

DifferentiatingM w. r. t. its argument θ

M′(θ) = d
dθ

E(eθX) = E[ d
dθ
(eθX)] = E[XeθX]

Likewise, the second derivative is

M′′(θ) = d
dθ

M′(θ) = d
dθ

E(XeθX) = E[ d
dθ
(XeθX)] = E[X2eθX]

Similarly, we can show dn
dθnM(θ) = E[XneθX]. Thus, the nth non-central moment

of X can be recovered by putting θ = 0 in the nth derivative of the MGF M(θ).
E(Xn) = E[XneθX]|θ=0. If the moments are unique, then a moment generating function
is uniquely identified with a probability distribution.

The covariance of two jointly distributed (both realizations occurring simultane-
ously) RVs X and Y is

σXY = cov(X,Y) = E(X − μX)(Y − μY )

The correlation coefficient of two RVs X and Y is (σXY )/(σXσY ) where σX , σY are the
standard deviations (square roots of the variances) of RVs X and Y , respectively.

Continuous jointly distributed RVs X and Y have a joint pdf f (x, y). The marginal
distribution of any one of the joint RVs is obtainable by integration, viz.

fX(x) = ∫
y

f (x, y)dy

Likewise for discrete RVs, the marginal PMF of RV X is

PX(x) =∑
y
P(x, y)
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1.1.5 Independence

For discrete RVsX andY , they are independent if andonly if (iff)P(x, y) = PX(x)×PY (y).
For continuous RVs X and Y , they are independent iff f (x, y) = fX(x) × fY (y).

When X and Y are independent, their covariance is

∫
y

∫
x

(x − μX)(y − μY )f (x, y) dx dy

= ∫
y

∫
x

(x − μX)(y − μY )fX(x)fY (y) dx dy

= ∫
y

(y − μY )(∫
x

(x − μX)fX(x)dx)fY (y) dy

= 0

Therefore, independent RVs have zero covariance. However, the converse is generally
not true. For the case of normal RVs, zero correlation does imply independence. More
generally, a sequence of RVs X1,X2, . . . ,Xn are independent if and only if (iff)

P(X1 ∈ A1,X2 ∈ A2, . . . ,Xn ∈ An)
= P(X1 ∈ A1) × P(X2 ∈ A2) × ⋅ ⋅ ⋅ × P(Xn ∈ An)

1.2 Probability Distributions
1.2.1 Binomial Distribution

Supposewehave an experiment or trial inwhich there are only two outcomes.Without
loss of generality, we call the two outcomes “head (H)” or “tail (T)” as in a coin toss.
This type of trial is also called a Bernoulli trial. The probability of H is p, while the
probability of T is therefore 1 − p.

Suppose the experiment is repeated and we perform N independent trials. Let X
equal the number of observed H’s in the N trials. X can take the values (outcomes)
0, 1, 2, . . . ,N . The RV X is a binomial RV B(N , p) with parameters N and p, and the
discrete probability distribution of X is a binomial distribution. Note the surjective
mapping of events ⟨H ,T ,T , . . . ,T⟩, ⟨T ,H ,T , . . . ,T⟩, ⟨T ,T ,H , . . . ,T⟩, . . . , ⟨T ,T ,T , . . . ,H⟩
to X = 1.

For 0 ≤ k ≤ N, P(X = k) = (Nk)p
k(1 − p)N−k .

E(X) =
N
∑
j=0

j(N
j
)pj(1 − p)N−j

=
N
∑
j=1

j N!
j!(N − j)!

pj(1 − p)N−j
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=
N
∑
j=1

N( (N − 1)!
(j − 1)!(N − j)!

)pj(1 − p)N−j

= Np
N
∑
j=1
(
(N − 1)!
(j − 1)!(N − j)!

)pj−1(1 − p)N−j

= Np
N−1
∑
i=0
(
(N − 1)!

i!(N − 1 − i)!
)pi(1 − p)N−1−i

= Np
N−1
∑
i=0
(
N − 1
i
)pi(1 − p)N−1−i = Np

In the same way, we can show σ2X = Np(1 − p). The moment-generating function
of B(N , p) is

M(θ) = E[eθX]

=
N
∑
x=0

eθx(N
x
)px(1 − p)N−x

=
N
∑
x=0
(
N
x
)(peθ)x(1 − p)N−x

= [peθ + (1 − p)]N

From the MGF of X,

μX =
dM
dθ

θ=0
= M′(0) = N[peθ + (1 − p)]N−1(peθ)θ=0 = Np

E(X2) = M′′(0)

= {N(N − 1)[peθ + (1 − p)]N−2(peθ)2 +M′(θ)}θ=0
= N(N − 1)p2 + Np

= (Np)2 + Np(1 − p) = μ2X + Np(1 − p)

Hence, σ2(X) = E(X2) − [E(X)]2 = Np(1 − p).
The Pascal arithmetic triangle shown in Figure 1.2 is closely associated with the

development of the binomial distribution. Each interior number on any line in the
Pascal triangle is the sum of the two adjoining numbers immediately above on the
previous line.

Pascal (1623–1662) showed that numbers on the triangle can be interpreted as
combinatorial numbers as in Figure 1.3. Pascal also showed that n+1Ck = nCk−1 + nCk .
What is interesting is that each nth line on the Pascal triangle contains the (binomial)
coefficients in the expansion of (a + b)n. The binomial distribution probabilities are a
special case of the binomial expansion where a = p and b = 1 − p.
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Figure 1.2: The Pascal Triangle.

Figure 1.3: The Pascal Triangle, in Combinatorial Numbers.

1.2.2 Application: Games of Chance

Games of chance or betting games have been around since the dawn of human his-
tory, and are succinct examples of combinatorial probabilities. In a casino roulette
game, there are usually 38 (sometimes 37) numbers on the wheel, 00,0, 1, 2, . . . , 36.
Even numbers are red and odd numbers are black. “00” and zero are green. There are
18 reds and 18 blacks to bet on. If green shows up, the banker wins all. A $1 bet on
a red (black) returns $2, including the bet amount, if red (black) turns up, or else $0
with the loss of the bet amount. For each color-bet, there are 20 losing numbers to 18
winning ones. John decides to try his luck on red numbers. Hewill put $1 bets 19 times
on red. What is John’s expected gain or loss after 19 games?

Assuming the wheel is fair, the probability of a win for John is 18/38. The proba-
bility of a loss is 20/38. His dollar win in each game is $1. His dollar loss in each game
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is also $1. Thus, John’s outcome in each game is +$1 with probability 18/38 and −$1
with probability 20/38.

Let Z be the number of wins after 19 games. Z can take any of the values 0, 1, 2, . . . ,
19. Let X be John’s dollar gain/loss after 19 games. X = Z × 1 + (19 − Z) × (−1) = 2Z − 19.
Therefore,X takes values−19,−17,−15, . . . ,−1, 1, . . . , 15, 17, 19,with a total of 20possible
outcomes from B(19, 1838 ).

After 19 games, his expected number of wins is E(Z) = 19 × 18
38 = 9. His expected $

gain/loss is E(X) = 2E(Z) − 19 = −1.
In the casino game of craps, two dice are rolled. The rules are that if you roll a

total of 7 or 11 on the first roll, you win. If you roll a total of 2, 3, or 12 on the first roll,
you lose. But if you roll a total of 4, 5, 6, 8, 9, or 10 on your first roll, the game is not
ended and continues with more rolls. The total number in the first roll becomes your
“point”. This “point” is fixed for the game. If in subsequent rolls, you hit your “point”
again before you hit a total of 7, then youwin. If you roll a total of 7 before your hit your
“point”, then you lose. The rolling would continue until your “point” is hit or else 7 is
hit. The game payoff is $1 for a $1 bet. You either win a dollar or you lose a dollar in
each game. One wins or loses against the casino or banker.

First, we list all the possible outcomes in Table 1.1. The outcomes represent the
total of the numbers on the two dice.

Table 1.1: Total of Numbers on Two Dice.

Total 1 2 3 4 5 6

1 2 3 4 5 6 7
2 3 4 5 6 7 8
3 4 5 6 7 8 9
4 5 6 7 8 9 10
5 6 7 8 9 10 11
6 7 8 9 10 11 12

There are 8 outcomes with “7” or “11” out of 36. Thus, the probability of a win out of a
first roll is 8/36. There are 4 outcomeswith a “2”, “3”, or “12”. Thus, the probability of a
loss out of a first roll is 4/36. If the first roll is “4”, the game continues. The probability
of the next roll being “4” and thus a win is 3/36. The probability of the next roll being
“7” and thus a loss is 6/36. The game continues to a third and subsequent roll if the
total is not “4” or “7”. Thus, the probability of an eventual win if the first roll is “4” is
3
36+(1−

3
36−

6
36 )×

3
36+(1−

3
36−

6
36 )

2× 3
36+(1−

3
36−

6
36 )

3× 3
36+⋅ ⋅ ⋅, or

3
36 (1+

27
36+[

27
36 ]

2+[ 2736 ]
3+⋅ ⋅ ⋅) =

3
36 ×

1
1− 2736
= 1

3 . Notice that the idea of independence of the outcome in each roll is

assumed in the probability computations.
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The contingency table of the probabilities of the various outcomes is shown in
Table 1.2. In Table 1.2, the last column shows that the probability of winning equals
the probability of winning given first roll × probability of first roll.

Table 1.2: Outcome Probabilities in Craps.

First roll Probability of first roll Probability of winning given first roll Probability of winning

4 3/36 1/3 1/36
5 4/36 4/10 4/90
6 5/36 5/11 25/396
8 5/36 5/11 25/396
9 4/36 4/10 4/90

10 3/36 1/3 1/36

Thus, the probability of winning in a game of craps by rolling is 8
36 + 2× (

1
36 +

4
90 +

25
396 ).

This is 49.2929%. The probability of loss is 50.7071%. Thus, the casino has a 1.4142%
advantage over your bet.

From a historical perspective, the Franciscan monk Friar Luca Pacioli (1445–1517)
posed the following question in 1494. In those early days there were no computers,
no video games, and no gadgets for people to play with, except perhaps coins. Two
players would spend their leisure time tossing a coin in a match. If a head came up in
a toss, player 1 won the game, otherwise player 2 won the game. The player who was
the first to win a total of 6 games won the match and collected the entire prize pool
that both had contributed to.

This sounds simple enough.However, Pacioli’s questionwas: howwould theprize
pool be distributed if, for some reason, the games had to stop before the final winner
was determined? This problemposed in the late 1400s came to be known as “the prob-
lem of points”, and it remained unsolved for nearly 200 years until Fermat and Pascal
came along. The issue was to decide how the stakes of a game of chance should be
divided if that game was not completed for whatever reason. It appears that Pacioli
had proposed that if player 1 was up by 5 game wins to player 2’s 3 wins, then they
could divide the stakes 5/8 to player 1 and 3/8 to player 2. However, there were fierce
objections to this proposed solution.

Blaise Pascal (1623–1662) and Pierre de Fermat (1601–1665) began a series of let-
ters around 1654 that led to the solution of the problem of points and expansion of
the foundation for classical probability. Pascal’s solution can be represented by a bi-
nomial tree shown in Figure 1.4. The full dot indicates the current state of 5 wins and
3 losses for player 1 (or equivalently 5 losses and 3 wins for player 2). The empty dots
with number j indicate the completion of the match with j as winner.

Assuming that player 1 and 2 each has a probability 1/2 of winning in each game,
player 1 will end upwinning in 3 possibilities: {6wins, 3 losses} with probability 1/2, {6
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Figure 1.4: Binomial Tree for the Solution to the Problem of Points.

wins, 4 losses} with probability 1/4, {6 wins, 5 losses} with probability 1/8, and player
2 will win in only one possibility {6 wins, 5 losses} with probability 1/8. These 4 pos-
sibilities total up to a probability of 1. Hence, after 5 wins and 3 losses, player 1 has a
total probability of winning thematch of 1/2+1/4+1/8 = 7/8while player 2 has a prob-
ability of winning at 1/8. Amore reasonable way of dividing the stakes is therefore 7/8
to player 1 and 1/8 to player 2.

The concept is akin to looking forward in expected risk-return relationships in-
stead of looking backward to sunk costs as in historical accounting.

1.2.3 Poisson Distribution

X is a Poisson RV with parameter λ if X takes values 0, 1, 2, . . . with probabilities

P(X = k) = λ
k

k!
e−λ

If we sum all the probabilities

∞

∑
k=0

P(X = k) = e−λ(1 + λ
1!
+
λ2

2!
+
λ3

3!
+ ⋅ ⋅ ⋅) = e−λeλ = 1

where we have used the Taylor series expansion of the exponential function e.
For a binomial RV B(N , p) where N is large and p small such that the mean of X,

Np = λ is O(1), then

P(X = k) = N!
(N − k)!k!

pk(1 − p)N−k

=
N!
(N − k)!k!

(
λ
N
)
k
(1 − λ

N
)
N−k
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=
N(N − 1) ⋅ ⋅ ⋅ (N − k + 1)

Nk
λk

k!
(1 − λ/N)N

(1 − λ/N)k

≈ 1 × λ
k

k!
e−λ

1

whenN is large. Parameter λ denotes the average number of occurrences over the time
period whereby RV X is measured.

The MGF of a Poisson X(λ) is

M(θ) =
∞

∑
x=0

eθx λ
xe−λ

x!

= e−λ
∞

∑
x=0

(λeθ)x

x!

= e−λeλe
θ
= eλ(e

θ−1)

for all real values of θ.
Thus, the mean and variance of Poisson X(λ) are found, respectively, as

μX = M
′(0) = λeθeλ(e

θ−1)|θ=0 = λ,
σ2X = M

′′(0) − μ2X
= λ[λe2θeλ(e

θ−1) + eθeλ(e
θ−1)]θ=0 − μ

2
X

= λ(λ + 1) − λ2 = λ

The Poisson process can be motivated and derived from a few reasonable axioms
characterizing the type of phenomenon to be modeled.

A counting process N(t), t ≥ 0, taking values 0, 1, 2, . . . at different higher time
units t, is called a Poisson process if it has an occurrence rate λ per unit time, where
at each occurrence the count increases by 1, and
(4a) N(0) = 0
(4b) N(t + h) − N(t) and N(t′ + h) − N(t′) are stationary regardless of t or t′, and are

independent for t′ ≥ t + h.
(4c) P[N(h) = 1] = λh + o(h) for small time interval h
(4d) P[N(h) ≥ 2] = o(h)

Properties (4c) and (4d) indicate that the probability of a single occurrence of event is
approximately proportional to the time that elapsed without an event. During a short
period of timeh, the probability ofmore thanone event occurring is negligible. Clearly,
(4b) indicates that the increments are stationary and independent, and thus memory-
less. In otherwords, what happened in a previous periodwill not affect the probability
of what will happen next.

Now
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P[N(t + h) = 0] = P[N(t) = 0,N(t + h) − N(t) = 0]
= P[N(t) = 0] P[N(t + h) − N(t) = 0]
= P[N(t) = 0] [1 − λh + o(h)]

Then

P[N(t + h) = 0] − P[N(t) = 0]
h

= −λP[N(t) = 0] + o(h)
h

By definition, limh→0
o(h)
h = 0.

Let P0(t) = P[N(t) = 0]. As h ↓ 0,

dP0(t)
dt
= −λP0(t)

Thus, d lnP0(t) = −λdt, hence

P0(t) = exp(−λt) (1.1)

where P0(0) = 1.
More generally

Pn(t + h) = Pn(t)P0(h) + Pn−1(t)P1(h) + Pn−2(t)P2(h)
+ ⋅ ⋅ ⋅ + P0(t)Pn(h)
= (1 − λh)Pn(t) + λhPn−1(t) + o(h)

Then

Pn(t + h) − Pn(t)
h

= −λPn(t) + λPn−1(t) +
o(h)
h

As h ↓ 0

dPn(t)
dt
= −λPn(t) + λPn−1(t).

Thus

eλt[P′n(t) + λPn(t)] = λe
λtPn−1(t)

So

d
dt
[eλtPn(t)] = λe

λtPn−1(t)

Suppose the solution is
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eλtPn(t) =
(λt)n

n!
, for any t (1.2)

To prove bymathematical induction, by first putting n = 0 in Eq. (1.2),P0(t) = exp(−λt)
which is true as in Eq. (1.1). Second, for n = 1

d
dt
[eλtP1(t)] = λe

λtP0(t) = λ

Integrating w. r. t. t, eλtP1(t) = λt + c. At t = 0, probability of n = 1 arrival is zero, so
c = 0. Therefore, P1(t) = λt exp(−λt), which follows Eq. (1.2).

Next, suppose Eq. (1.2) applies for n = k − 1. So

d
dt
[eλtPk(t)] = λe

λtPk−1(t) = λe
λte−λt (λt)

k−1

(k − 1)!
=

λk

(k − 1)!
tk−1

Integrating w. r. t. t,

eλtPk(t) =
(λt)k

k!
+ c

Since Pk(0) = 0, c = 0. Thus, Eq. (1.2) is also satisfied for n = k. By mathematical
induction, since n = 1 in Eq. (1.2) is true, then n = 2 in Eq. (1.2) is also true, and so on,
for all t ≥ 0.

Poisson events occur with a discrete time interval in-between that we call the in-
terarrival or waiting time between events. Let Tn, for n = 1, 2, . . . , be the interarrival
time between the (n − 1)th and the nth Poisson events.

P[T1 > t] = P[N(t) = 0|N(0) = 0] = exp(−λt) where P[N(0) = 0] = 1, from Eq. (1.1).
Then, T1 has an exponential distribution with rate λ. The cdf of RV T1 taking a value
less than or equal to t is F(t) = 1 − exp(−λt) for time t ≥ 0. Differentiating, its pdf is
λ exp(−λt) for time t ≥ 0.

Its mean is

∞

∫
0

tλ exp(−λt)dt = −
∞

∫
0

t d(e−λt) = −[e−λt( 1
λ
+ t)]
∞

0
=
1
λ

The variance is ( 1λ )
2.

From the above, it is seen that when the interarrival time of events or occurrences
is exponentially distributed, the number of occurrences or events in a given time inter-
val has a Poisson distribution, and vice-versa. A Poisson process can also be defined
as an activity whose interarrival time has an exponential distribution. The exponen-
tial distribution is the only continuous distribution that has the memoryless property
in (4b). Here

P[T1 > t,T1 > t + h] = P[T1 > t + h|T1 > t]P[T1 > t]
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or

P[T1 > t + h] = P[T1 − t > h|T1 > t]P[T1 > t]

Since the exponential distribution of the waiting time until an event happens,
P[T1 ≤ t] = 1 − exp(−λt), is only a function of the waiting time t from the time of
the last event regardless of the past, therefore we can also write P[T1 − t > h|T1 > t] =
P[T′1 > h] = exp(−λh) regardless of the time just past, t, and defining T′1 as the new
waiting time starting at t.

1.2.4 Application: Credit Default Swap

A credit default swap (CDS) is a traded market instrument whereby one party agrees
to pay a regular insurance premium X to a counterparty until such a time T1 when the
reference asset defaults, e. g., a bond that fails tomake interest or principal payments.
Upon default of the reference asset, the counterparty pays the insuree a one-time only
fixed compensation amount P and the contract is terminated. If by the maturity of
the CDS contract, T < T1, the reference asset has not yet defaulted, the contract is
terminated. For simplicity, suppose there are only two insurance premium payments
until T, one at time t = 0 (now) and the other at t = 1

2T. If default occurs, it is reported
tohappenpossibly only at t = 1

2T for (0 < T
′ ≤ 1

2T)or at t = T for (
1
2T < T

′ ≤ T). Insurer
pays the compensation at the time when default is reported to have happened.

Using the exponential distribution to model the probability of no default of the
bond by time 1

2T, P(T
′ > 1

2T) = exp(−
1
2λT) where in this application λ is sometimes

called the risk-neutral default intensity parameter. Similarly, the probability of no de-
fault of the bond by time T, P(T′ > T) = exp(−λT). P(T′ = 0) = 0. The probability of
default occurring during t ∈ (0, 12T] is 1−exp(−

1
2λT), and the probability of default oc-

curring during t ∈ ( 12T ,T] is exp(−
1
2λT) − exp(−λT). Hence the total probability of the

mutually exclusive but all-inclusive events {default by 1
2T}, {default during (

1
2T ,T]},

and {no default by T} is 1.
The present value of expected insurance payments by the insurance buyer is

X[1 + δ exp(− 12λT)] where δ is the constant risk-free discount factor on $1 at time
1
2T. The present value of expected compensation payment is δP [1 − exp(− 12λT)] +
δ2P [exp(− 12λT) − exp(−λT)]. At the start of the CDS contract, a fair value of λ is that
which sets the present value of expected payments equal to the present value of
compensation.

1.2.5 Uniform Distribution

A continuous RV X has a uniform distribution over interval (a, b) if its pdf is given
by
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18 | 1 Probability Distributions

f (x) = {
1
(b−a) a < x < b
0 otherwise

E(X) =
b

∫
a

x
b − a

dx = b2 − a2

2(b − a)
=
a + b
2

E(X2) =
b

∫
a

x2

b − a
dx = b3 − a3

3(b − a)
=
a2 + ab + b2

3

Thus

var(X) = E(X2) − [E(X)]2 = a
2 + ab + b2

3
−
(a + b)2

4
=
(b − a)2

12

There is a simple but useful theorem when the uniform distribution appears nat-
urally.

Theorem 1.1. Given any RV X with a distribution function F(X) = U, then U ∈ (0, 1) is a
RV with standard uniform distribution.

We provide proof for a more specific case where X is a continuous RV and F(x) is
continuous strictly increasing. The more general case can also be proved.

Proof. P(F(x) ≤ y) = P(x ≤ F−1(y)). Note that to each y, a unique F−1(y) exists, since
F(y) is continuous strictly increasing. But P(x ≤ F−1(y)) by definition is F(F−1(y)) = y.

If F(X) is a RV denoted as U, then the above shows P(U ≤ y) = y. Note that
0 ≤ y ≤ 1. But this is the characterization of a uniform U(0, 1) distribution. Hence,
F(X) = U is U(0, 1).

A very useful application of this theorem is to enable the generation of random
values of X with any given cdf F(X) where its inverse could be computed. Generate a
random u from U(0, 1), then compute x = F−1(u) to obtain the random value of X.

1.2.6 Normal Distribution

Consider ∫+∞−∞ e1−|y|dy = ∫0−∞ e
1+ydy + ∫+∞0 e1−ydy = [e1+y]0−∞ − [e

1−y]+∞0 = 2e.
For y > 0, y2−2|y|+2 ≡ y2−2y+2 = (y−1)2+1 > 0. For y < 0, y2−2|y|+2 ≡ y2+2y+2 =

(y+1)2+1 > 0. Then, y2−2|y|+2 > 0 for all y. Or, − y
2

2 < 1− |y|. Hence, ∫
+∞
−∞ e−y

2/2dy < 2e,
and is bounded. This gives an idea that ∫+∞−∞ e−y

2/2dy has an interesting value.
We first find I2 = ∫∞−∞ ∫

∞
−∞ exp(−

x2+y2
2 )dx dy. Changing to polar coordinates by

putting x = r cos θ and y = r sin θ

I2 =
2π

∫
0

∞

∫
0

e−r
2/2|J| dr dθ
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where J is the Jacobianmatrix and |J| is its Jacobian determinant or simply “Jacobian”:

|J| =


dx
dr

dx
dθ

dy
dr

dy
dθ


=


cos θ −r sin θ
sin θ r cos θ


= r cos2 θ + r sin2 θ = r

Each bivariate point (x, y) has a one-to-one correspondence to (r, θ) on the polar
coordinate system.1 Now

I2 =
2π

∫
0

∞

∫
0

e−r
2/2r dr dθ = 2π

Hence,

2π =
∞

∫
−∞

∞

∫
−∞

exp(−x
2 + y2

2
)dx dy

=
∞

∫
−∞

exp(−y
2

2
)[
∞

∫
−∞

exp(−x
2

2
)dx]dy

= [
∞

∫
−∞

exp(−y
2

2
)dy]

2

Thus, ∫∞−∞
1
√2π e
− y

2
2 dy = 1. Applying a change of variable y = x−μ

σ , we obtain

∞

∫
−∞

1
σ√2π

exp[− (x − μ)
2

2σ2
]dx = 1

so that the normal pdf is f (x) = 1
σ√2π exp[−

(x−μ)2
2σ2 ].

We shall see that the normal distribution is indeed fascinating, if not one of the
most celebrated results in mathematical statistics, via the central limit theorem. It
comes naturally from commonphenomena such as aggregation and averaging. Its dis-
tribution is also found to describe well the frequencies of occurrences in natural pro-
cesses such as heights of people, IQs of students, spatial densities in plant growth,
and so on. Not surprisingly, it is also used in describing the distributions of stock re-
turns. While this is reasonable in normal times, it would appear from the many inci-
dences ofmarket turbulence inhistory, that unquestionedapplication couldbegreatly
flawed. Even during normal times, stock returns generally display some skewness and

1 See Mood, Graybill, and Boes (1974) for transformations in probability distributions.
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a larger kurtosis or fatter tails than those of a normal distribution. Somemore compli-
cated functions of the normal RV are often used to describe stock returns. In any case,
normal distributions are excellent basic pillars to more complicated constructions.

The MGF of a standardized (or “unit”) normal RV X ∼ N(0, 1) is

M(θ) =
∞

∫
−∞

eθx 1
√2π

e−
1
2 x

2
dx

=
1
√2π

∞

∫
−∞

exp{− (x
2 − 2θx)
2
} dx

=
1
√2π

∞

∫
−∞

exp{− (x − θ)
2

2
+
θ2

2
} dx

= e
1
2 θ

2

Using the MGF, it can be shown that E(X) = 0, E(X2) = 1, E(X3) = 0, and E(X4) = 3.
A related distribution is the lognormal distribution. A RV X has a lognormal dis-

tribution when ln(X) = Y is normally distributed:

Y d
∼ N(μ, σ2)

Then

E(X) = E(eY ) =
∞

∫
−∞

ey 1
σ√2π

e−
1

2σ2
(y−μ)2dy

=
∞

∫
−∞

1
σ√2π

e−
1

2σ2
[(y−μ)2−2σ2y]dy

=
∞

∫
−∞

1
σ√2π

e−
1

2σ2
[(y−(μ+σ2))2−σ4−2μσ2]dy

= eμ+1/2σ
2

Similarly, it can be shown that var(X) = e2μ[e2σ
2
− eσ

2
].

1.2.7 Related Distributions

Let X ∼ N(0, 1) be a standardized or unit normal RV. Then RV X2 has a chi-square
distributionwith one degree of freedom, i. e. χ21 . IfX1,X2, . . . ,Xk are k-independent unit
normal RVs, then∑ki=1 X

2
i has a chi-square distribution with k degrees of freedom, i. e.

χ2k . The degree of freedom here refers to the number of independent observations in
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the sum of squares. If Y2 and Z2 are two independent chi-square RVs with k1 and k2
degrees of freedom, then their sum Y2 +Z2 is χ2k1+k2 . A chi-square RV is always positive
and its pdf has a right skew. The mean of χ2k is k, and its variance is 2k.

An important result for statistical inference is found in the following lemma.

Lemma 1.1. If X ∼ N(μ, σ2), Xi for i = 1, 2, . . . , n are independently identically distributed
RV draws of X, and S2 = (n − 1)−1∑ni=1(Xi − X̄)

2, where X̄ = n−1∑ni=1 Xi, then

(n − 1)( S
2

σ2
) ∼ χ2n−1

Proof. First we need to prove that x̄ and S2 are independent. X̄ ∼ N(μ, σ2/n), so

X̄ − Xj =
1
n
(X1 + ⋅ ⋅ ⋅ + Xj−1 + Xj+1 + ⋅ ⋅ ⋅ + Xn) −

n − 1
n

Xj

∼ N(0, (n − 1)σ
2

n2
+ (n − 1)2 σ

2

n2
) = N(0, n − 1

n
σ2)

for any j = 1, 2, . . . , n. For any such j,

cov(Xj − X̄, X̄) = cov(Xj, X̄) − var(X̄) =
σ2

n
−
σ2

n
= 0

Since X̄ and Xj − X̄ ∀j are normally distributed, zero covariances imply they are statis-
tically independent. Hence, X̄ is also independent of (n − 1)−1∑ni=1(Xi − X̄)

2 = S2.
Next let C = ∑ni=1(

Xi−μ
σ )

2. Then,

C =
n
∑
i=1
(
(Xi − X̄) + (X̄ − μ)

σ
)
2

=
n
∑
i=1
(
Xi − X̄
σ
)
2
+

n
∑
i=1
(
X̄ − μ
σ
)
2
+ 2( X̄ − μ

σ2
)

n
∑
i=1
(Xi − X̄)

The last term above equals to zero (whatever the realizations), so C = ∑ni=1(
Xi−X̄
σ )

2 +
n(X̄−μ)2

σ2 . The latter is equal to (n−1)S
2

σ2 +
(X̄−μ)2
σ2/n . The second term is the square of a unit

normal RV since X̄ ∼ N(μ, σ2/n) and involves X̄. It is a χ21 RV. But C is χ2n. Both these χ
2
1

and χ2n are independent as X̄ and S2 are independent. Hence (n−1)S
2

σ2 is χ2n−1.

We note that X̄−μ
σ/√n ∼ N(0, 1). Another related distribution is obtained when this

unit normal RV is divided by S/σ. We obtain the RV X̄−μ
S/√n . Since S/σ ∼ √

χ2n−1
n−1 , then

X̄−μ
S/√n ∼ N(0, 1)/√

χ2n−1
n−1 . The normal RV in the numerator and the chi-square RV in the
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denominator are statistically independent. N(0, 1)/√ χ
2
n−1
n−1 is a Student’s t-distribution

RV with (n − 1) degrees of freedom, tn−1.
From Lemma 1.1, taking expectations, E[(n − 1)S2/σ2] = E(χ2n−1) = n − 1. Hence,

E(S2) = σ2. Therefore, S2 = (n − 1)−1∑ni=1(xi − X̄)
2 is the unbiased estimator of σ2.

Suppose now X ∼ N(μX , σ2) and Y ∼ N(μY , σ2) where X, Y are independent RVs.
Observations xi and yj are independently drawn from these two RVs. Their unbiased
sample variances are, respectively, RVs S2X = ∑

n
i=1
(Xi−X̄)2
n−1 and S2Y = ∑

m
i=1
(Yi−Ȳ)2
m−1 . Their

ratio is the F-distribution with two degrees of freedom, n − 1 andm − 1, i. e.,

S2X
S2Y
=
∑ni=1(Xi − X̄)

2/(n − 1)
∑mj=1(Yi − Ȳ)2/(m − 1)

∼ Fn,m

The F RV is in fact the ratio of two independent chi-square RVs each divided by their
respective degree of freedom, χ2n−1/(n−1)

χ2m−1/(m−1) . Note that 1/F is also a F RV. There is an inter-
esting relationship between the t-distribution RVwith k degrees of freedom and the F
RV. t2k = F1,k .

1.3 Estimation and Hypothesis Testing

Statistics is a major part of applied probability. A large part of applied statistics is
about estimation of unknown parameters and about testing of statistical hypotheses
concerning the parameter values. Suppose a random variable X with a fixed normal
distribution N(μ, σ2) is given. We do not know the value of the mean μ and the vari-
ance σ2. Therefore the task is to estimate μ and σ2. There are two common types of
estimates – point estimate and interval estimate.

Suppose there is a randomdrawof a number or an outcome from this distribution.
This is the same as stating that random variable X takes a (realized) value x. Let this
value be x1. Suppose we repeatedly make random draws and thus form a sample of n
observations: x1, x2, x3, . . . , xn−1, xn. This is called a random sample with a sample size
of n. Each xi comes from the same distribution N(μ, σ2).

We next consider a statistic, which is a RV and a function of the RVs X1,X2, . . . ,Xn,
that is X̄ = 1

n ∑
n
i=1 Xi. Each time we select a random sample of size n, we obtain a re-

alization of this statistic x̄ = 1
n ∑

n
i=1 xi which is a sample mean. In other words, x̄ is a

realized value of RV X̄. With repeated or different samplings, we can obtain different
values of x̄. The probability distribution of X̄ is called the sampling distribution of the
mean or the distribution of the sample mean.

Another commonsample statistic value is theunbiased sample variance estimator

S2 = 1
n − 1

n
∑
i=1
(Xi − X̄)

2
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Its realized value s2 is an unbiased estimate of the variance. Notewe use “estimator” to
denote the statistic or RV, and estimate to denote the (realized or computed) value of
the statistic. The sample mean and the unbiased sample variance estimates are point
estimates. When the sample size n is large, these estimates may be close to the actual
μ and σ2.

Suppose X ∼ N(μ, σ2), its cdf is

F(X) =

x−μ
σ

∫
−∞

f(x − μ
σ
)dz

where f ( x−μσ ) is the standard normal pdf and z = x−μ
σ . The standard normal cdf f (z) is

often written as Φ(z). For the standard normal Z,

P(a ≤ z ≤ b) = Φ(b) −Φ(a)

The normal distribution is a familiar workhorse in statistical estimation and testing.
The normal distribution pdf curve is “bell-shaped”. Areas under the curve are associ-
ated with probabilities. Figure 1.5 shows a standard normal pdf N(0, 1) and the asso-
ciated probability as area under the curve.

Figure 1.5: Standard Normal Probability Density Function of Z.

The corresponding z values of RV Z can be seen in the following standard normal
distribution Table 1.3. For example, the probability P(−∞ < z < 1.5) = 0.933. This
same probability can be written as P(−∞ ≤ z < 1.5) = 0.933, P(−∞ < z ≤ 1.5) = 0.933,
or P(−∞ ≤ z ≤ 1.5) = 0.933. This is because for continuous pdf, P(z = 1.5) = 0.

From the symmetry of the normal pdf, P(−a < z < ∞) = P(−∞ < z < a), we can
also compute the following:

P(z > 1.5) = 1 − P(−∞ < z ≤ 1.5) = 1 − 0.933 = 0.067.
P(−∞ < z ≤ −1.0) = P(z > 1.0) = 1 − 0.841 = 0.159.
P(−1.0 < z < 1.5) = P(−∞ < z < 1.5) − (−∞ < z ≤ −1.0) = 0.933 − 0.159 = 0.774.

P(z ≤ −1.0 or z ≥ 1.5) = 1 − P(−1.0 < z < 1.5) = 1 − 0.774 = 0.226.
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Table 1.3: Standard Normal Cumulative Distribution Curve.

z Area under curve
from −∞ to z

z Area under curve
from −∞ to z

0.000 0.500 1.600 0.945
0.100 0.539 1.645 0.950
0.200 0.579 1.700 0.955
0.300 0.618 1.800 0.964
0.400 0.655 1.960 0.975
0.500 0.691 2.000 0.977
0.600 0.726 2.100 0.982
0.700 0.758 2.200 0.986
0.800 0.788 2.300 0.989
0.900 0.816 2.330 0.990
1.000 0.841 2.400 0.992
1.100 0.864 2.500 0.994
1.282 0.900 2.576 0.995
1.300 0.903 2.600 0.996
1.400 0.919 2.700 0.997
1.500 0.933 2.800 0.998

Several values of Z under N(0, 1) are commonly encountered, viz. 1.282, 1.645, 1.960,
2.330, and 2.576.

P(z > 1.282) = 0.10 or 10%.
P(z < −1.645 or z > 1.645) = 0.10 or 10%.

P(z > 1.960) = 0.025 or 2.5%.
P(z < −1.960 or z > 1.960) = 0.05 or 5%.

P(z > 2.330) = 0.01 or 1%.
P(z < −2.576 or z > 2.576) = 0.01 or 1%.

The case for P(z < −1.645) = 5% is shown in Figure 1.5.
Supposewe estimated the samplemean of a random sample of size n = 100 drawn

from X ∼ N(μ, σ2) as x̄ = 0.08. This is a point estimate of μ. Suppose the variance is
known, σ2 = 0.25. Then Z = X̄−μ

0.5/√100 =
X̄−μ
0.05 is distributed as N(0, 1). Suppose we

find a > 0 such that P(−a ≤ z ≤ +a) = 95%. Since z is symmetrically distributed,
P(−a ≤ z) = 97.5% and P(z ≤ +a) = 97.5%. Thus a = +1.96.

Then,

P(−1.96 ≤ x̄ − μ
0.05
≤ +1.96) = 0.95
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Re-arranging, P(x̄ − 1.96(0.05) ≤ μ ≤ x̄ + 1.96(0.05)) = 0.95. Or, P(−0.018 ≤ μ ≤ 0.178).
The interval estimate of μ at 95% confidence level is thus (−0.018,0.178). This is also
called the 95% confidence interval estimate of μ based on the observed random sam-
ple. Different samples will give rise to different confidence intervals. Given a sample,
there is 95% probability or chance that the true μ is contained in the estimated inter-
val.

In the above, suppose var(X) is not known. Suppose S2 is the unbiased variance
estimator. Then,

X̄ − μ
S/√n

is distributed as tn−1. We can find a > 0, such that P(−a ≤ tn−1 ≤ +a) = 95%. Since tn−1
is symmetrically distributed about zero, P(−a ≤ t99) = 97.5% and Prob(t99 ≤ +a) =
97.5%. Thus a = +1.9842 (found from a t-distribution table).

Then,

P(−1.9842 ≤ x̄ − μ
s/√100

≤ +1.9842) = 0.95

Re-arranging, P(x̄ − 1.9842(s/10) ≤ μ ≤ x̄ + 1.9842(s/10)) = 0.95. In this case suppose
sample mean and unbiased sample variance are computed as x̄ = 0.08, s2 = 0.36.
Thus P(−0.03905 ≤ μ ≤ 0.19905). The 95% confidence interval estimate of μ based on
the observed random sample is thus (−0.03905,0.19905).

1.3.1 Statistical Testing

In many situations, there is a priori (or ex-ante) information about the value of the
mean μ, and it may be desirable to use observed data to test if the information is cor-
rect. μ is called a parameter of the population or fixed distribution N(μ, σ2). A statis-
tical hypothesis is an assertion about the true value of the population parameter, in
this case μ. A simple hypothesis specifies a single value for the parameter, while a
composite hypothesis will specify more than one value. We will work with the sim-
ple null hypothesisH0 (sometimes this is called the maintained hypothesis), which is
what is postulated to be true. The alternative hypothesis HA is what will be the case if
the null hypothesis is rejected. Together the values specified under H0 and HA should
form the total universe of possibilities of the parameter. For example,

H0 : μ = 1
HA : μ ̸= 1

Given the sample values and sampling distribution, a statistical test of the hypothesis
is a decision rule based on the value of a test statistic to either reject or else not reject
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(informally similar inmeaning to “accept”) the nullH0. The set of sample outcomes or
sample values that lead to the rejection of the H0 is called the critical region. The set
of sample outcomes or sample values that lead to the non-rejection of theH0 is called
the acceptance region. The critical region in many cases can be easily specified when
the test statistic has a continuous distribution.

IfH0 is true but is rejected, a Type I error is committed. In colloquial parlance, this
maybe called a false negative. IfH0 is false but is accepted, a Type II error is committed
or a false positive.

Suppose the test statistic has a tn−1 distribution. The statistical rule on H0 : μ = 1,
HA : μ ̸= 1, is that if the test statistic falls within the critical region (shaded), defined
as {tn−1 < −a or tn−1 > +a}, a > 0, as shown in Figure 1.6, then H0 is rejected in favor of
HA. Otherwise, H0 is not rejected and is “accepted”.

Figure 1.6: Critical Region Under the Null Hypothesis H0 : μ = 1.

If H0 is true, the probability of rejecting H0 would be the area of the critical region,
say 5% in this case. If n = 100, P(−1.9842 < t99 < +1.9842) = 0.95. Moreover, the
t-distribution is symmetrical, so each of the right and left shaded tails has an area of
2.5%. Using a left-tailed and a right-tailed critical region constitutes a two-tailed test
with a significance level of 5%. The significance level is the probability of committing
a Type I error when H0 is true. In the above example, if the sample t-statistic is 1.787,
then it is < 1.9842, and we cannot reject H0 at the two-tailed 5% significance level.
Given a sample t-value, we can also find its p-value which is the probability under H0
of |t99| exceeding 1.9842 in a two-tailed test. In the above two-tailed test, the p-value
of a sample statistic of 1.787 would be 2 × P(t99 > 1.787) = 2 × 0.0385 = 0.077 or 7.7%.
Another way to verify the test is that if the p-value < test significance level, reject H0;
otherwise H0 cannot be rejected.

In theory, if we reduce the probability of Type I error, the probability of Type II
error increases, and vice versa. This is illustrated in Figure 1.7.

Suppose H0 is false, and μ > 1, so the true tn−1 pdf is represented by the dotted
curve in Figure 1.7. The critical region t99 < −1.9842 or t99 > +1.9842 remains the same,
so the probability of committing Type II error is 1− sum of shaded areas. Clearly, this
probability increases as we reduce the critical region in order to reduce Type I error.
Although it is ideal to reduce both types of errors, the tradeoff forces us to choose
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Figure 1.7: Depiction of Type II Error.

between the two. In practice, we fix the probability of Type I errorwhen the prior belief
is that H0 is true, i. e. determine a fixed significance level, e. g., 10%, 5%, or 1%. The
power of a statistical test is the probability of rejectingH0 when it is false. Thus, power
= 1−P(Type II error). Or, power equals the shaded area in Figure 1.7. Clearly, this power
is a function of the alternative parameter value μ ̸= 1. Wemay determine such a power
function of μ ̸= 1.

Reducing significance level also reduces power and vice versa. In statistics, it is
customary to want to design a test so that its power function of μ ̸= 1 equals or exceeds
that of any other test with equal significance level for all plausible parameter values
μ ̸= 1 in HA. If this test is found, it is called a uniformly most powerful test.2

Wehave seen the performance of a two-tailed test. Sometimes, we embark instead
on a one-tailed test such as H0 : μ = 1, HA : μ > 1, in which we theoretically rule out
the possibility of μ < 1, i. e. P(μ < 1) = 0. In this case, it makes sense to limit the critical
region to only the right side. Thus, at the one-tailed 5% significance level, the critical
region under H0 is {statistic value of t99,95% > 1.661} for n = 100.

Further Reading
Hogg, R. V., and A. T. Craig (1978), Introduction to Mathematical Statistics, Macmillan Publishing Co.
Mood, A.M., F. A. Graybill, and D. C. Boes (1974), Introduction to the Theory of Statistics,

McGraw-Hill.

2 See Hogg and Craig (1978) in Further Reading.
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2 Simple Linear Regression

2.1 Simple Linear Regression

A regression is an association between a dependent variable and other explanatory
variables. The idea of checking out the association is basically for twomajor purposes:
to provide some positive theory of how the dependent variable could be explained by,
not necessarily caused by, other variables, and a normative or prescriptive theory of
how to use the association to predict future occurrences of the dependent variable.
In this chapter we consider simple linear regression involving only one explanatory
variable. The dependent RV Yi takes realized values Y1,Y2, . . . where i could denote
time index or cross-sectional index, e. g., different stock i, or different sample points
at different draws in repetitive sampling. The explanatory RV Xi makes sense if the
bivariate cumulative probability distribution function cdf (Xi,Yi) exists and is not null.
The explanatory variable Xi should not be itself explained by Yi nor dependent on
parameters in the model explaining Yi; hence it is often termed as independent or
exogenous. In Figure 2.1, we show sample observations of Y and X variables.

Figure 2.1: An Association Between Variables X and Y .

The bold line shows an attempt to draw a linear line as “close” to the observed occur-
rences as possible. The line is an attempt to provide a model that is able to indicate
what is the associated Yi value if another different Xi value is observed. Or, does it
make sense for us to drawanonlinear line that fits all the sample points exactly as seen
in the dotted curve? Obviously not. This is because the bivariate points are just real-
ized observations of bivariate random variables. Perfect fitting is only possible when
the points are known ex-post. Drawing the dotted curve line through all the current
eight points is like amodel with eight parameters, e. g., an 8-degree polynomial equa-
tion. The dotted curve in-between points is arbitrary here.When another sample point
(X9,Y9) is drawn, the 8-parameter curve clearly will not fit the new sample point. The
8-parameter model is an over-fitted model with no clear economic sense.

https://doi.org/10.1515/9783110673951-002
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What we want is a straight line in a linear model, or else a curve in a nonlinear
model, that is estimated in such a way that whatever the sample, as long as the size
is sufficiently large, the line will pretty much remain at about the same position. This
will then enable purposes of (1) explaining Yi ∈ RVY given any Xi ∈ RVX, and (2)
forecasting givenXi. When the sample size is small, therewill be large sampling errors
of themodel parameter estimates, i. e. the slope and intercept in Figure 2.1 of the fitted
line may change by alot when a different sample is drawn.

Therefore, the ideaof a regressionmodel (neednot be linear),Y = f (X; θ)+ε,where
ε is a randomerror or noise, is onewhereparameter(s) θ are suitably estimatedas θ̂. θ̂ is
“close to” true θ given a sample of {(Xi,Yi)}i=1,...,n, size n, such that∑

n
i=1 g[Yi− f (Xi; θ̂)] is

small in some statistical sensewhere g(.) is a criterion function. For example, g(z) = z2

is one such criterion function. Thus, a linear regression model does not fit random
variables X,Y perfectly, but allows for a residual noise ε in order that the model is not
over-parameterized or over-fitted. This would then serve purposes (1) and (2).

A linear (bivariate) regression model is:

Yi = a + bXi + ei

where a and b are constants. In the linear regression model, Yi is the dependent vari-
able or regressand. Xi is the explanatory variable or regressor. ei is a residual noise,
disturbance, or innovation. The i-subscript denotes a sample datum corresponding to
an ith subject. There could be a sample of N subjects (sample size N) and the regres-
sion is a cross-sectional regression (across the subjects). For example, Yi could repre-
sent the ith country’s labor output, and Xi could represent the ith country’s average
schooling years. If a constant a has been specified in the linear regressionmodel, then
themean of ei is zero. If a constant has not been specified, then et mayhave a non-zero
mean. It is common to add the specification that ei is i. i. d. This means that the prob-
ability distributions of ei, for i = 1, 2, . . . ,N, are all identical, and each is stochastically
(probabilistically) independent of the others.

Often the linear regression is on time series. Thus, Yt = a + bXt + et where t is the
time index taking values t = 1, 2, . . . ,T. In this case, it is common to specify that et is
stochastically independent of all other random variables, including its own lags and
leading terms, implying cov(et , et−k) = 0 and cov(et , et+k) = 0 for k = 1, 2, 3, . . . ,∞.
An even stronger specification is that et is i. i. d. and also normally distributed, and
we can write this as n. i. d. N(μ, σ2e). In trying to employ the model to explain, and
also to forecast, the constant parameters a and b need to be estimated effectively, and
perhaps some form of testing on their estimates could be done to verify if they accord
with theory. This forms the bulk of the material in the rest of this chapter.

It is important to recognize that a linear model provides for correlation between
Yt and Xt (this need not be the only type of model providing correlation, e. g., non-
linear model Yt = exp(Xt) + et also does the job) as we see occurred in joint bivari-
ate distribution (X,Y). For example, in Yt = a + bXt + et, with i. i. d. et, we have
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cov(Yt ,Xt) = b var(Xt) ̸= 0 provided b ̸= 0, and correlation coefficient ρ(Yt ,Xt) =
b√var(Xt)/√var(Yt).

Sometimes, we encounter a timeplot (a timeplot shows a variable’s realized val-
ues against time) or a scatterplot (a graph of simultaneous pairs of realized values of
randomvariables) that does not look linear, unlike Figure 2.1. As an example, consider
the following two regressions both producing straight lines that appear to cut evenly
through the collection of points in each graph if we use the criterion thatminimizes z2.

The point is that using some intuitively appropriate criterion such as least squares
minimization to fit linear lines is not enough. It is important to first establish that the
relationship is plausibly linear before attempting to fit a linear regression model.

In Figure 2.2, the graph Y versus X is clearly a nonlinear curve. If it is quadratic,
then it is appropriate in that case to use a nonlinear regression model such as Y =
a + bX + cX2 + ε. In Figure 2.3, for Y versus X, there is clearly an outlier point with a
very high Y -value. As a result, the fitted line is actually above the normal points that
form the rest of the sample. This can be treated either by excluding the outlier point
if the assessment is that it is an aberration or recording error, or else by providing for
another explanatory variable to explain that point that may be a rare event.

Figure 2.2: A Nonlinear Example.

Figure 2.3: An Example of Outlier.

Thus, a visual check on the data plots is useful to ascertain if a linear regressionmodel
is appropriate andwhether there are outliers. Sometimes, there are theoreticalmodels
that specify relationships between randomvariables that are nonlinear, butwhich can
be transformed to linear models so that linear regression methods can be applied for
estimation and testing. Examples are as follows.
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When Y = aXbε, take log–log transformation (taking logs on both sides), so

lnY = ln a + b lnX + ln ε

Note that here the disturbance noise εmust necessarily be larger than zero, otherwise
ln ε will have non-feasible values. Here, ln ε can range from −∞ to∞. Sometimes,
Y is called the constant elasticity function with respect to X since b is the constant
elasticity (when ln ε is fixed at zero).

When Y = exp(a + bX + ε), taking logs on both sides ends up with a semi-log
transformation, so lnY = a + bX + ε. This is also called a semi-log model.

When eY = aXbε, taking logs on both sides ends up again with a semi-log model
Y = ln a + b lnX + ln ε. Sometimes, when the regressor X is a fast increasing series
relative to Y , then taking the natural log of X as regressor will produce a more stable
result, as long as theory has nothing against this ad hoc data transformation practice.

There are examples of interesting nonlinear curves that are important in eco-
nomics. An example is the Phillips curve shown as follows in Figure 2.4.

Figure 2.4: Philips Curve Relating Short-Run Wage Inflation with Unemployment Level.

Y versus X is highly nonlinear, but we can use a linear regression model on the recip-
rocal of X, i. e. Y = a + b(1/X) + ε or use 1/Y as regressand or the dependent variable,
thus 1/Y = a + bX + ε. A serious econometric study of the Phillips curve is of course
much more involved as it is now known that rational forces cause the curve to shift
over time in the longer run. In other words, observed pairs of wage inflation and un-
employment levels over time belong to different Phillips curves.

Next, we study one major class of estimators of the linear regression model and
the properties of such estimators. This class is synonymous with the criterion method
for deriving the estimates of the model parameters. This is the ordinary least squares
(OLS) criterion.

2.2 OLSMethod
In the linear regression model, the dependent variable is assumed to be a linear func-
tion of one ormore explanatory variables plus a residual error (or noise or disturbance
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or innovation) variable introduced to account for all other factor(s) that are either not
observed or are not known and which are random variable(s). It is important to note
that the dependent variable, the explanatory variable, as well as the residual error
variable are all RVs.

In a two-variable or simple linear regression model

Yi = a + bXi + ei, i = 1, 2, . . . ,N (2.1)

Yi is the dependent variable, Xi is the explanatory variable, and ei is the residual error.
The random variables Yi,Xi’s are observed as sample bivariate points {Xi,Yi} (for

different i). Disturbances or residual errors ei’s are not observed, anda,b are constants
to be estimated. E(ei) = 0, and var(ei) is assumed to be a constant σ2e, which is also
not observed. The task is to estimate parameters a and b and σ2e. Note that we have not
specifically notate a RV with a tilde; the context should be clear which is a random
variable and which is a realized value. Unlike Chapter 1, we do not denote realized
values as lower case letters as otherwise the notations can become quite complicated.

The classical assumptions (desirable conditions) for OLS regression are:
(A1) E(ei) = 0 for every i.
(A2) E(e2i ) = σ

2
e, a same constant for every i.

(A3) E(eiej) = 0 for every i ̸= j.
(A4) Xi and ej are stochastically independent (of all other random variables) for

each i, j

In assumption (A2), the disturbances with constant variance are called homoskedas-
tic.On theflip side, disturbanceswithnon-constant variances are calledheteroskedas-
tic, a subject we shall study in more depth later. Condition (A3) implies zero cross-
correlation if the sample is a cross-section, or zero autocorrelation if the sample is a
time series. Such properties of the disturbance will be seen to simplify the estimation
theory.

Assumption (A4) is perhaps the most critical and important assumption as it af-
fects the feasibility of a good estimator and it also has to do with interpretation of the
estimation and inference. As it is, the linear regression model essentially puts a prob-
ability distribution onXi and ei. Then RV Yi is derived by adding a+bXi to ei. Typically,
but not necessarily, the probability distributions of Xi ∀i are the same, and similarly,
the probability distributions of ei ∀i are the same.We shall assume that sample points
Xi ∀i are from same probability distribution X, and unobserved ei are also from same
probability distribution e.

In addition to assumptions (A1) through (A4), we could also add a distributional
assumption to the random variables, e. g.,
(A5) ei ∼ N(0, σ2e)
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In Figure 2.5, the dots represent the data points (Xi,Yi) for each i. The regression lines
passing amidst the points represent attempts to provide a linear association between
Xi and Yi. The scalar value êi indicate measure of the vertical distance between the
point (Xi,Yi) and the fitted regression line. The solid line provides a better fit than the
dotted line, and we shall elaborate on this.

Figure 2.5: OLS Regression of Observations (Xi , Yi).

The requirement of a linear regression model estimation is to estimate a and b. The
OLS method of estimating a and b is to find â and b̂ so as to minimize the residual
sum of squares (RSS), ∑Ni=1 ê

2
i . Note that this is different from minimising the sum of

squares of random variables ei, which cannot be done as we do not observe the ei’s.
This is an important concept that should not bemissed. Given a particular sample, the
computed numbers â and b̂ are realized values of the estimators, and are called esti-
mates. With different samples and hence different realizations of (Xi,Yi)’s, there will
be different sets of values of â and b̂. These values are realizations from the estima-
tors. Hence when â, b̂ are functions of RVs X,Y , they are themselves RVs. When they
are functions of realizations Xi,Yi, they are estimates. Although the same notation is
used, the context should be distinguished.

The key criterion in OLS is tominimize the sumof the squares of vertical distances
from the realized points (or data) to the fitted OLS straight line (or plane if the problem
is of a higher dimension):

min
â,b̂

N
∑
i=1

ê2i ≡
N
∑
i=1
(Yi − â − b̂Xi)

2

Since this is an optimization problem and the objective function is continuous in â,
and b̂, we set the slopes with respect to â and b̂ to zeros.
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The First Order Conditions (FOC) yield the following two equations.

𝜕∑Ni=1 ê
2
i

𝜕â
= −2

N
∑
i=1
(Yi − â − b̂Xi) = 0

𝜕∑Ni=1 ê
2
i

𝜕b̂
= −2

N
∑
i=1

Xi(Yi − â − b̂Xi) = 0

Note that the above left-side quantities are partial derivatives. The equations above are
called the normal equations for the linear regression of Yi on Xi. From the first normal
equation,

N
∑
i=1

Yi = Nâ + b̂
N
∑
i=1

Xi

we obtain

â = Ȳ − b̂X̄ (2.2)

where Ȳ = 1
N ∑

N
i=1 Yi and X̄ =

1
N ∑

N
i=1 Xi are sample means. It also shows that the fitted

OLS line Y = â + b̂X passes through (X̄, Ȳ), the “centroid”.
From the second normal equation,

N
∑
i=1

XiYi = â
N
∑
i=1

Xi + b̂
N
∑
i=1

X2
i

Using Eq. (2.2) and the latter, we obtain:

b̂ =
∑Ni=1(Xi − X̄)Yi
∑Ni=1(Xi − X̄)2

(2.3)

b̂ can also be expressed as follows.

b̂ =
∑Ni=1(Xi − X̄)(Yi − Ȳ)
∑Ni=1(Xi − X̄)2

=
∑Ni=1 xiyi
∑Ni=1 x2i

where xi = Xi − X̄ and yi = Yi − Ȳ .
Given data set or sample data Xi,Yi for i = 1, 2, . . . ,N, we can always find the esti-

mates â. b̂ via Eqs. (2.2) and (2.3). When we treat Xi,Yi as RVs, then â, b̂ are estimators.
They are RVs as well.

What happens to the estimators â and b̂ when the sample size N goes toward in-
finity? In such a situation when sample size approaches infinity (or practically when
we are in a situation of a very large sample, though still finite sample size), we are
discussing asymptotic (large sample) theory.
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Consider the following samplemoments as sample size increases toward∞. Pop-
ulation means E(X) = μX , E(Y) = μY , and population covariance E(X − μX)(Y − μY ) =
E(XY) − μXμY . The sample means are 1

N ∑
N
i=1 Xi = X̄,

1
N ∑

N
i=1 Yi = Ȳ . From the Law of

Large Numbers, limN→∞ X̄ = μX , limN→∞ Ȳ = μY , when X and Y are stationary. We
deal with some of these statistical laws in more details in Chapter 5.

The sample covariance 1
N−2 ∑(Xi − X̄)(Yi − Ȳ) is unbiased, but we can also em-

ploy 1
N ∑(Xi − X̄)(Yi − Ȳ) = SXY if N approaches∞. Both the unbiased version and

this SXY will converge to population covariance σXY as N → ∞. In dealing with
large sample theory, we shall henceforth use the latter version of divisor N . Sam-
ple variance 1

N ∑(Xi − X̄)
2 = S2X , and observe that S2X also converges to σ2X as N ap-

proaches∞.
The population correlation coefficient is ρXY =

σXY
σXσY

. The sample correlation coeffi-

cient is rXY =
∑(Xi−X̄)(Yi−Ȳ)
√∑(Xi−X̄)2 ∑(Yi−Ȳ)2

= SXY
SXSY

. Likewise, when we take the limit, limN→∞ rXY =

ρXY . Theoretically, ρXY lies within [−1,+1]. Now, sample estimate rXY is defined above
so that it also lies within [−1,+1]. This can be shown using the Cauchy-Schwarz in-
equality:

(∑ xy)
2
≤ (∑ x2)(∑ y2)

Other definitions of sample correlation, though convergent to the population corre-
lation, may not lie within [−1,+1]. One such example is when we use the unbiased
sample covariance divided by the unbiased standard deviations.

Now, from Eq. (2.1), with stochastic Yi and Xi,

cov(Yi,Xi) = cov(a + bXi + ei,Xi)
= b var(Xi) + cov(ei,Xi) = b var(Xi)

since cov(ei,Xi) = 0 via (A4). Thus in terms of population moments, b = cov(Yi,Xi)/
var(Xi). We showed in Eq. (2.3) that

b̂ =
∑Ni=1 xiyi
∑Ni=1 x2i

= SXY /S
2
X

Thus, when N →∞ for large sample, limN→∞ b̂ = b under conditions of stationarity.
If b̂ is an estimator of b, and limN→∞ b̂ = b, b̂ is said to be a consistent estimator. We
can show likewise that limN→∞ â = a, and hence â is also consistent. The concept of
limit of RVs here will become clearer in Chapter 5.

The important question is:what are thedesirable properties of theOLS estimators,
assuming (A1) to (A5), in finite sample?

In Eq. (2.3), using Yi = a + bXi + ei, we have
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b̂ =
N
∑
i=1
(xi/

N
∑
j=1

x2j)(a + bXi + ei)

= b +
N
∑
i=1
(xi/

N
∑
j=1

x2j)ei (2.4)

Taking unconditional expectation and invoking (A4) and (A1), we have E(b̂) = b +
∑Ni=1 E(xi/∑

N
j=1 x

2
j )E(ei) = b since E(ei) = 0.

From Eqs. (2.2) and (2.4):

â = Ȳ − b̂X̄

= Ȳ − (b +
N
∑
i=1
(xi/

N
∑
j=1

x2j)ei)X̄

= Ȳ − bX̄ −
N
∑
i=1
(xiX̄/

N
∑
j=1

x2j)ei

Taking unconditional expectation and invoking (A4) and (A1), we have E(â) = E(Ȳ) −
bE(X̄). Since E(Yi) = a + bE(Xi) (∀i), then E(Ȳ) = a + bE(X̄). Hence E(â) = a.

We just showed that estimators â and b̂ have means at the true parameter values
a and b, using (A4) and (A1). Thus OLS estimators â and b̂ are accordingly unbiased.
This is a desirable property of estimators, noting that X is stochastic.

Now to find the variances of estimators â and b̂ and evaluate their efficiencies
– the question of whether the variances are sufficiently small is more difficult. From
Eq. (2.4), the variance of b̂ is

E(b̂ − b)2 = E[
N
∑
i=1
(xi/

N
∑
j=1

x2j)ei]
2

=
N
∑
i=1
[E(xi/

N
∑
j=1

x2j)
2

E(e2i )]

= σ2e
N
∑
i=1

E[x2i /(
N
∑
j=1

x2j)
2

]

= σ2eE[1/(
N
∑
j=1

x2j)]

using assumptions (A1) to (A4). Note that the unconditional variance involves expec-
tations of functions of RVs X1, X2, and so on. These expectations are complicated mo-
ments of X, even as the distribution of X itself is not specified. It is a similar situation
in the case of the variance of â.
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For inferences and computation of estimator variances in OLS, the conditional
distributions of the estimators given X, i. e. given realized X1,X2, . . . ,XN , are used. The
mean and variance of the estimator under conditional distribution are the conditional
mean and conditional variance, respectively. From Eq. (2.4), conditional mean of b̂ is

E[b̂|X] = b +
N
∑
i=1
(xi/

N
∑
j=1

x2j)E[ei|X] = b

since E[ei|X] = E[ei] = 0 with (A4) and (A1). Note that without (A4), E[ei|X] need not
be equal to E[ei].

Conditional variance of b̂ is

E[(b̂ − b)2|X] =
N
∑
i=1

N
∑
j=1
(xi/

N
∑
k=1

x2k)(xj/
N
∑
k=1

x2k)E[eiej|X]

=
N
∑
i=1
(xi/

N
∑
k=1

x2k)
2

E[e2i |X]

= σ2e/
N
∑
i=1

x2i (2.5)

since E[eiej|X] = 0 via (A4) and (A3), and E[e2i |X] = σ
2
e via (A4) and (A2). Note that

without (A4), E[eiej|X] need not be equal to 0, and E[e2i |X] need not be equal to σ
2
e,

From Eq. (2.2), conditional mean of â is

E[â|X] = E[Ȳ |X] − X̄E[b̂|X] = (a + bX̄) − X̄b = a

since E[Yi|Xi] = a + bXi + E(ei|Xi) and E(ei|Xi) = 0 via (A4) and (A1), for every i. The
conditional variance of â is

var(â|X) = var(Ȳ |X) − 2X̄ cov(Ȳ , b̂|X) + X̄2 var(b̂|X)

=
σ2e
N
− 2 X̄

N
cov(

N
∑
i=1

a + bXi + ei, b +
N
∑
i=1

xiei
∑Nj=1 x2j
|X)

+ X̄2σ2e/
N
∑
i=1

x2i

= σ2e(
1
N
+ X̄2/

N
∑
i=1

x2i) (2.6)

since the middle term gives ∑Ni=1 cov(ei, (xi/∑
N
j=1 x

2
j )ei|X) = 0 as ∑Ni=1 xi = 0. It is also

seen that var(â|X) and var(b̂|X) reduce toward zero as N →∞.
Conditional on X and employing (A1) to (A3), the estimators are unbiased and

their variances can be readily computed as seen in Eqs. (2.5) and (2.6). By (A5), the con-
ditional estimators are normally distributed. Statistical tests can then be conducted.
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Any statistical tests of the estimators using the conditional distributions are valid, al-
though the conditional variances will obviously change with different samples of X.
For example, the distribution ofXi (for every i) may be largely concentrated in a partic-
ular range. If a sample of X is drawn such that its realized values are mostly out of this
range, i. e. ex-ante low probability draws, then the estimator variance conditional on
this sample Xmay be significantly different from conditional variances based onmost
other samples. However, this problem may not materialize in financial economics re-
search dealing withmarket data (non-laboratory data) as the data, e. g. X, occurs only
once and there is no further draw. The conditional variance is constant if there is repet-
itive sampling, i. e. using the same X each time but with different (e1, e2, . . . , eN ) added
to form the Yi’s.

In summary, in linear regression model (2.1), OLS method produces estimators â
and b̂ that are unbiased in finite sample if classical assumptions (A1) to (A4) apply
under the general context of stochastic X and e. The unbiasedness property applies
to both unconditional and also conditional (on X) OLS estimators. When the sample
size N is large, the estimates can be accurate and forecasting can be done using these
estimates of â and b̂. However, testing if the estimates are significantly different from
some hypothesized values, e. g., zeros, requires use of the conditional on X distribu-
tion of the estimators in order to conveniently obtain computed conditional variances.
This is typically not a problem with financial economics data. Together with the use
of (A5), this allows for statistical inferences.

2.2.1 Forecasting

In forecast or prediction of Yi based on an observed Xi, a useful result is that the best
forecast of Yi, in the sense of minimummean square error, is the conditional expecta-
tion E(Yi|Xi).

Lemma 2.1. For a bivariate distribution of RVs Yi and Xi,

E(Yi − g(Xi))
2
≥ E(Yi − E(Yi|Xi))

2

for any function g(Xi).

Proof.

E[(Yi − g(Xi))
2
|Xi] = E[(Yi − E[Yi|Xi] + E[Yi|Xi] − g(Xi))

2
|Xi]

= E[(Yi − E[Yi|Xi])
2
|Xi] + E[(E[Yi|Xi] − g(Xi))

2
|Xi]

+ 2E[(Yi − E[Yi|Xi])(E[Yi|Xi] − g(Xi))|Xi]

Given Xi, E[Yi|Xi] − g(Xi) is a function of Xi and can be considered a constant.
Therefore the last term is zero since E[(Yi − E[Yi|Xi])|Xi] = E(Yi|Xi) − E(Yi|Xi) = 0.
Hence the LHS E[(Yi − g(Xi))2|Xi] is minimized by setting g(Xi) = E[Yi|Xi].
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Note that the lemma does not specify if E[Yi|Xi] is a linear forecast. In the case of
a linear model, however, it becomes a linear forecast. With the result in the lemma,
the best forecast of YN+1 with linear regression model (2.1) is E(YN+1) = a + bXN+1. In
Eq. (2.1) Yi = a + bXi + ei, i = 1, 2, . . . ,N, the OLS estimates â and b̂ are unbiased using
(A1) to (A4).

The OLS forecast of YN+1 given XN+1 is thus:

ŶN+1 = â + b̂XN+1.

The forecast or prediction error is YN+1 − ŶN+1. The forecast is unbiased since the con-
ditional mean of the prediction error is zero, i. e. E(ŶN+1 −YN+1|XN+1) = E(â−a)+E(b̂−
b)XN+1 = 0. This OLS forecast also converges to the best forecast of YN+1 when â and b̂
converges toward a and b, respectively.

Now,

ŶN+1 = â + b̂XN+1 = (Ȳ − b̂X̄) + b̂XN+1 = Ȳ + b̂xN+1

where xN+1 = XN+1 − X̄.
But Eq. (2.1) gives Ȳ = a + bX̄ + 1

N ∑
N
i=1 ei and here we are dealing with a random

variable rather than sample estimate. So,

ŶN+1 = Ȳ + b̂xN+1 = a + bX̄ +
1
N

N
∑
i=1

ei + b̂xN+1

which is again a representation as a randomvariable. However,YN+1 = a+bXN+1+eN+1,
so the forecast (or prediction) error is

YN+1 − ŶN+1 = bxN+1 − b̂xN+1 + eN+1 −
1
N

N
∑
i=1

ei

= −(b̂ − b)xN+1 + eN+1 −
1
N

N
∑
i=1

ei

var(YN+1 − ŶN+1 | xN+1) = x
2
N+1 var(b̂) + σ

2
e +

1
N
σ2e

= σ2e(1 +
1
N
+

x2N+1
∑Ni=1 x2i
)

The forecast error (conditional on xN+1) is normally distributed. So,

YN+1 − ŶN+1

σ̂e√(1 +
1
N +

x2N+1
∑Ni=1 x2i )
∼ tN−2

Therefore, a 90% confidence interval for YN+1 is
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ŶN+1 ± tN−2,95% × σ̂e√(1 +
1
N
+

x2N+1
∑Ni=1 x2i
)

One point to note is that in using the variance of b̂ that is obtained from a sample
X1,X2, . . . ,XN , that variance is a conditional variance on X1,X2, . . . ,XN . There is thus
an assumption that this conditional variance is also the conditional variance when
XN+1 is considered.

2.3 Gauss–Markov Theorem

There is an important result in linear regression called the Gauss-Markov theorem that
justifies the use of OLS in (2.1). Linear estimators of a and b in Eq. (2.1) are those that
take the form Â = ∑Ni=1 θiYi and B̂ = ∑Ni=1 γiYi, respectively, where θi and γi are fixed
or deterministic functions of X only (and not in Y ’s or a or b). The estimators are ex-
pressed as linear functions (conditional on X) of Y .

The Gauss-Markov theorem states that amongst all linear and unbiased (condi-
tional) estimators of the form:

Â =
N
∑
i=1

θi(X)Yi

B̂ =
N
∑
i=1

γi(X)Yi

the OLS estimators â, b̂ have the minimum variances, i. e.

var(â) ≤ var(Â)
var(b̂) ≤ var(B̂)

given the assumptions (A1) to (A4).
To prove the theorem, we develop more general characterizations of the OLS esti-

mators.
From Eq. (2.4), conditional on X, b̂ is a linear estimator with wi’s as fixed weights

(function of X)1 on the Yi’s.

b̂ =
N
∑
i=1

wiYi

where wi = xi/∑
N
i=j x

2
j . It can be seen that the following properties of wi hold. For con-

veniencewe drop the notations of index on the summation signs.We also do not show

1 Using the condition on X is sometimes called regression using “fixed” regressors.
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explicitly the notation of conditioning on X, i. e. “|X”.

∑wi = 0

∑w2
i =

1
∑ x2i

∑wixi = 1

Similarly, conditional on X, â = Ȳ − b̂X̄ is a linear function of Y .
The weights for â, vi’s, are as follows.

â = 1
N

N
∑
i=1

Yi −
N
∑
i=1

wiX̄Yi =
N
∑
i=1

viYi

where

vi = (
1
N
−

xiX̄
∑Ni=1 x2i
)

∑ vi = 1 −
X̄∑ xi
∑ x2i
= 1

∑ viXi = X̄ − X̄
∑ xiXi
∑ xiXi
= 0

∑ v2i =∑(
1
N2 −

2xiX̄
N ∑ x2i
+

x2i X̄
2

(∑ x2i )
2) =

1
N
+

X̄2

∑ x2i

In the above,∑ xi = ∑(Xi − X̄) = NX̄ −∑ X̄ = 0.
Now, for the finite sample properties of the conditional OLS estimators:

b̂ =∑wi(a + bXi + ei) = b +∑wiei

Then, clearly E(b̂) = b. Now, as seen earlier

var(b̂) = E[(b̂ − b)2]

= E(∑wiei)
2
=∑w2

i E(e
2
i ) = σ

2
e(

1
∑ x2i
)

Similarly, â = ∑ vi(a + bXi + ei) = a +∑ viei. Thus, E(â) = a. Then,

var(â) = E[(â − a)2] = E(∑ viei)
2
= σ2e∑ v2i = σ

2
e(

1
N
+

X̄2

∑ x2i
)

The OLS estimators â and b̂ are unbiased.
What is the probability distribution of b̂? Using (A5), since b̂ is a linear combina-

tion of ei’s that are normally distributed, b̂ is also normally distributed.
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b̂ ∼ N(b, σ2e(
1
∑ x2i
))

What is the distribution of â? Similarly, we see that:

â ∼ N(a, σ2e(
1
N
+

X̄2

∑ x2i
))

The covariance between the estimators â and b̂ is obtained as follows.

cov(â, b̂) = E(â − a)(b̂ − b)

= E(∑ viei)(∑wiei) = σ
2
e∑ viwi = σ

2
e(−

X̄
∑ x2i
)

A proof of the Gauss-Markov theorem for the case of b̂ is as follows. Let linear esti-
mator of b be B̂ = ∑Ni=1 γiYi. Since we consider the class of linear unbiased estimators,
let

E(B̂) =∑ γiE(Yi) =∑ γi(a + bXi) = a∑ γi + b∑ γiXi = b

This implies that
(1a) ∑ γi = 0
(1b) ∑ γiXi = 1, and
(1c) var(B̂) = ∑ γ2i varYi = σ

2
e ∑ γ

2
i , given the Xi’s.

Define γi = ci + di. Without loss of generality, let ci = xi/∑ x2i . From (1c), var(B̂) =
σ2e(∑ c

2
i +∑ d

2
i + 2∑ cidi).

But ∑ cidi =∑ ci(γi − ci) =∑ γi
xi
∑ x2i
−∑(

xi
∑ x2i
)
2

= (∑ γiXi − X̄∑ γi)/∑ x2i − 1/∑ x2i

With (1b) and (1a), the RHS in the last equation equals to zero. Thus var(B̂) =
σ2e(∑ c

2
i +∑ d

2
i ). The minimum possible variance of B̂ is to set di = 0 ∀i.

Hence the minimum variance is σ2e ∑(xi/∑ x
2
i )
2 = σ2e(1/∑ x

2
i )which is the variance

of the OLS estimator b̂. We can similarly prove the case for â.
Now the estimated residual êi = Yi − â − b̂Xi. It can be further expressed as:

êi = Yi − (Ȳ − b̂X̄) − b̂Xi = (Yi − Ȳ) − b̂(Xi − X̄) = yi − b̂xi

It is important to distinguish this estimated residual Yi − Ŷi from the actual unob-
served ei. From Eqs. (2.2) and (2.3), we see that:
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N
∑
i=1

êi = 0 and
N
∑
i=1

Xiêi = 0 or
N
∑
i=1
(Xi − X̄)êi = 0

Their population equivalents are, respectively, E(ei) = 0, E(Xiei) = 0 or cov(Xi, ei) = 0.
With the Gauss-Markov theorem, OLS estimators (under the classical conditions)

are called best linear unbiased estimators (BLUE) for the linear regression model in
Eq. (2.1). They are efficient (best) estimators in the class of linear unbiased estimators.
There may be some estimators that have smaller variances but these are biased, e. g.,
the Stein estimators.

2.4 Decomposition

Wenowanalyse the decomposition of the Sumof Squares of∑Ni=1(Yi−Ȳ)
2. Recall that in

the OLS method, we minimize the sum of squares of estimated residual errors∑Ni=1 ê
2
i .

Now,

N
∑
i=1
(Yi − Ȳ)

2 =
N
∑
i=1
(Ŷi − Ȳ + Yi − Ŷi)

2 =
N
∑
i=1
(Ŷi − Ȳ)

2

+ 2
N
∑
i=1
(Ŷi − Ȳ)(Yi − Ŷi) +

N
∑
i=1
(Yi − Ŷi)

2

=
N
∑
i=1
(Ŷi − Ȳ)

2 + 2
N
∑
i=1
(Ŷi − Ȳ)êi +

N
∑
i=1

ê2i

=
N
∑
i=1
(Ŷi − Ȳ)

2 +
N
∑
i=1

ê2i (2.7)

since

N
∑
i=1
(Ŷi − Ȳ)êi =

N
∑
i=1

Ŷiêi =
N
∑
i=1
(â + b̂Xi)êi = 0

Let us define the Total Sumof Squares (TSS) = ∑(Yi−Ȳ)2. Define Explained Sumof
Squares (ESS) = ∑(Ŷi − Ȳ)2. Define Residual Sum of Squares (RSS) = ∑ ê2i = ∑(Yi − Ŷi)

2.
FromEq. (2.7), TSS = ESS +RSS. RSS is also called the unexplained sumof squares

(USS) or sum of squared residuals (SSR). Now,

ESS =∑(Ŷi − Ȳ)
2 =∑(â + b̂Xi − â − b̂X̄)

2 = b̂2∑(Xi − X̄)
2

= r2XY
S2Y
S2X

NS2X = r
2
XYNS

2
Y

TSS =∑(Yi − Ȳ)
2 = NS2Y

So, ESS/TSS = r2XY . In addition, r
2
XY = 1 − RSS/TSS.
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ESS as a fraction of TSS or variation is the square of sample correlation coefficient
in the two-variable linear regression model. But r2XY lies between 0 and 1 inclusive
since rXY lies in [−1,+1]. This term

ESS
TSS
= R2

where 0 ≤ R2 ≤ 1, is called the coefficient of determination. This coefficient R2 deter-
mines the degree of fit of the linear regression line to the data points in the sample.
The closer R2 is to 1, the better is the fit. Perfect fit occurs if all points lie on the straight
line. Then R2 = 1.

ESS
TSS
= R2 = 1 − RSS

TSS

Now, êi = Yi − â − b̂Xi, so êi is a normally distributed random variable since Yi,
â, and b̂, (given Xi) are normally distributed. This is obtained using the result that a
linear combination of normal random variables is itself a normal random variable.
Moreover, E(êi) = E(Yi) − a − bXi = 0. Conditional on Xi,

var(êi) = var(Yi) + var(â) + X
2
i var(b̂) − 2 cov(Yi, â)

− 2Xi cov(Yi, b̂) + 2Xi cov(â, b̂)

= σ2e + σ
2
e(

1
N
+

X̄2

∑ x2i
) + σ2eX

2
i (

1
∑ x2i
)

− 2viσ
2
e − 2Xiwiσ

2
e − 2σ

2
eXi(

X̄
∑ x2i
)

= σ2e[1 +
1
N
+

X̄2

∑ x2i
+

X2
i
∑ x2i
−
2
N
+
2xiX̄
∑ x2i
−
2xiXi
∑ x2i
−
2XiX̄
∑ x2i
]

= σ2e[1 −
1
N
+

1
∑ x2i
(X̄2 + X2

i + 2xiX̄ − 2xiXi − 2XiX̄)]

= σ2e(1 −
1
N
−

x2i
∑ x2i
)

Similarly, we can show that

cov(êi, êj) = cov(Yi − â − b̂Xi,Yj − â − b̂Xj)

= cov([a − â] + [b − b̂]Xi + ei, [a − â] + [b − b̂]Xj + ej)

= σ2e([
1
N
+

X̄2

∑ x2i
] −

XjX̄
∑ x2i
− [

1
N
−

xjX̄
∑ x2i
] −

XiX̄
∑ x2i
+
XiXj
∑ x2i

−
xjXi
∑ x2i
− [

1
N
−

xiX̄
∑ x2i
] −

xiXj
∑ x2i
)
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= σ2e(−
1
N
−

1
∑ x2i
[X̄2 − XiX̄ − XjX̄ + XiXj])

= σ2e(−
1
N
−
xixj
∑ x2i
)

Note that true ei and ej are independent according to the classical conditions, and their

OLS estimates are asymptotically uncorrelated. Note also that ∑
N
i=1 ê2i
σ2e
∼ χ2N−2 is a useful

relationship involving unbiased sample estimate σ̂2e = ∑
N
i=1 ê

2
i /(N − 2) and unknown

population parameter σ2e.
After obtaining the OLS estimates â and b̂, there is sometimes a need to perform

statistical inference and testing, as well as forecasting and confidence interval estima-
tion.

(
â
b̂
) ∼ N(( a

b
) ,(

σ2e[
1
N +

X̄2

∑ x2 ] −σ
2
e[

X̄
∑ x2 ]

−σ2e[
X̄
∑ x2 ] σ2e[

1
∑ x2 ]
))

So, b̂−b
s.e.(b̂)
≡ Z ∼ N(0, 1). For testing null hypothesis H0: b = 1, employ sample estimate

of σ2e using σ̂
2
e. Use

tN−2 =
b̂ − 1

σ̂e√
1
∑ x2

For testing null hypothesis H0: a = 0, use

tN−2 =
â − 0

σ̂e√
1
N +

X̄2

∑ x2

It should be noted that most statistical or econometrics computing packages by de-
fault report tests of coefficients that are based on a null of zero, i. e. H0 : a = 0,
H0 : b = 0.

As a final comment, suppose distributional assumption for ei is made, e. g., nor-
mality, then another important class of estimators – maximum likelihood estimators
(MLE) – can be developed.MLE essentially chooses estimators thatmaximize the sam-
ple likelihood function. There is equivalence of OLS and ML estimators in the specific
case of normally distributed i. i. d. ei’s. However, MLE is in general a nonlinear esti-
mator.

We use the simple regression tools to examine two important applications in fi-
nance: pricing stock index futures and futures hedging.
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2.5 Stock Index Futures

Although the framework of linear regression canbe applied to explain andalso predict
many financial variables, it is usually not enough to know just the econometric the-
ory as seen so far in this chapter. To do a good job of exposition and predicting some
financial variables, there would usually be a finance-theoretic framework and an ap-
propriate way to think about how financial variables may interact and dynamically
change over time as a result of investor actions and market conditions. Therefore, we
will introduce these as the chapters proceed. In the rest of this section, we shall con-
centrate on a very important financial instrument used in the futures market as well
as used by portfolio managers for hedging purposes.

A stock index is weighted average of index portfolio stock prices. The Standard
and Poor’s (S&P) 500 stock index, for example, is a market-capitalization weighted
average price of 500 major stocks trading in U. S. The Nikkei 225 is a price-weighted
average price of major 225 Japanese stocks. The FTSE 100 (The Financial Times and
London Stock Exchange) index is a market-capitalization weighted average price of
100 large UK stocks. There are numerous stock indexes reflecting “average” prices of
stocks in a country, in sectors of a country, and sometimes across bourses in a region.

These stock index numbers change every day, and usually more frequently on an
intraday basis, as long as there is an agency or mechanism that computes the new av-
eragenumber as the constituent stocks change their tradedprices in themarket.While
the index numbers themselves are not directly tradeable, derivatives or contracts writ-
ten on them can be traded. One such type of contract is the stock index futures. Others
include stock index options, exchange-traded funds, and so on.

We shall consider stock index futures that are traded in Stock or Futures Ex-
changes. In September, for example, one can trade on a Nikkei 225 Index futures
contract that matures in December. This is called a December Nikkei 225 Index futures
contract to reflect its maturity. After its maturity date, the contract is worthless. In
September, however, the traded “price” (this is not a currency price, but an index
price or a notional price) of this December contract will reflect how the market thinks
the final at-maturity Nikkei 225 Indexwill be. If the Septembermarket trades the index
futures at a notional price of 12,000, and you know that the December index number
is going to be higher, then you will buy (long) say N of the Nikkei 225 Index December
futures contracts. At maturity in December, if you still have not yet sold your position,
and if the Nikkei 225 Index is really higher at 14,000, then you will make a big profit.
This profit is calculated as the increase in futures notional price or 2000 points in this
case × the Yen value per point per contract × number of contracts N .

Thus, a current stock index futures notional price is related to the index notional
price at a future time. At maturity, the index futures notional price converges to the
underlying stock index number. As stock index represents the average price of a large
portfolio of stocks, the corresponding stock index futures notional price is related
to the value of the underlying large portfolio of stocks making up the index. This
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relationship is sometimes called the no-arbitrage model pricing. It can be explained
briefly as follows.

2.5.1 Cost of Carry Model

Suppose we define the stock index value to be St at current time t. This value is a
weighted average of the underlying portfolio stock prices. The actual market capital-
ization currency value of the portfolio of stocks in the index is of course a very large
multiplier of this index value. We assume that we can create a portfolio of diverse
stocks those return tracks exactly the index return. (In reality, the tracking can be
close for a large index portfolio but is not exact as the weight of each stock in the
portfolio changes over time.) Given the assumption, the percentage return to the in-
dex changes reflects the overall portfolio’s return. Suppose an institutional investor
holds such a large diversified portfolio say of the major Japanese stocks whose portfo-
lio return tracks the N225 index return.

Let the effective risk-free interest rate or the cost of carry be rt,T over [t,T]. An arbi-
trageur could in principle buy or short-sell the portfolio of N225 stocks in proportions
equal to their weights in the index. Let the cost of this portfolio be αSt whereby the
simplifying assumption is that α is a constant multiplier reflecting the proportionate
relationship of theportfolio value to the indexnotional value St . Thepercentage return
on the index is also the same percentage return on the portfolio.

The arbitrageur either carries or holds the portfolio, or short-sells the portfolio un-
til maturity T with a final cost at T of αSt(1 + rt,T ) after the opportunity cost of interest
compounding is added. Suppose the Japanese stocks in theN225 Index issue an aggre-
gate amount of dividendsD over the period [t,T]. Since the N225 Index notional value
is proportional to the overall 225 Japanese stocks’ market value, the dividend yield d
as a fraction of the total market value is the same dividend yield as a fraction of the
N225 Index notional value. Then, the dividends issued to the arbitrageur’s portfolio
amount to d×αSt . Suppose that the dividends to be received are perfectly anticipated,
then the present value of this amount, d∗ ×αSt can be deducted from the cost of carry.
Let D∗ = d∗St . The net cost of carry of the stocks as at time T is then α[St −D∗](1+ rt,T ).

Suppose the N225 Index futures notional price is now trading at Ft,T . The sub-
script notations imply the price at t for a contract that matures at T. The arbitrageur
would enter a buy or long position in the stocks if at t, Ft,T > [St − D∗](1 + rt,T ). At the
same time t, the arbitrageur sells an index futures contract at notional price Ft,T . For
simplicity, we assume the currency value per point per contract is 1. Without loss of
generality, assume α = 1.

At T, whatever the index value, ST = FT ,T , the arbitrageur would sell the portfolio
at ¥ST , gaining

¥ST − [St − D
∗](1 + rt,T )
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Cash-settle the index futures trade, gaining

¥Ft,T − FT ,T or ¥Ft,T − ST

The net gain is the sum of the two terms, i. e. ¥Ft,T − [St − D∗](1 + rt,T ) > 0. Thus, the
arbitrageur makes a riskless profit equivalent to the net gain above.

Conversely, the arbitrageur would enter a short position in the stocks if at t, Ft,T <
[St−D∗](1+rt,T ). At the same time t, the arbitrageurwouldbuyan index futures contract
at notional price Ft,T . At T, whatever the index value ST = FT ,T , the arbitrageur would
buy back the portfolio at ST , gaining

¥[St − D
∗](1 + rt,T ) − ST

Cash-settle the index futures trade, gaining

¥FT ,T − Ft,T or ¥ST − Ft,T

The net gain is the sum of the two terms, i. e. ¥[St − D∗](1 + rt,T ) − Ft,T > 0. Thus, the
arbitrageur risklessly makes a profit equivalent to the net gain above.

We have also ignored transaction costs in this analysis, which would mean that
it is even more difficult to try to make riskless arbitrage profit. An early study by Lim
(1992)2 showed that such risk-free arbitrage in the Nikkei 225 Stock Index futures had
largely disappeared, after transaction costs in the late 1980s. The cost-of-carry model
price of the index futures Ft,T = [St − D∗](1 + rt,T ) is also called the fair value price. At
this fair value price, no riskless arbitrage profit could be made. The fair value price is
also the no-arbitrage equilibrium price.

As an illustration, we employ data from Singapore Exchange (SGX) that contain
daily end-of-day Nikkei 225 Index values and Nikkei 225 Index December 1999 futures
contract prices traded at SIMEX/SGX during the period September 1 to October 15,
1999. During this end 1999 period, the Japan money market interest rate was very low
at 0.5% p. a. We use this as the cost-of-carry interest rate. We also assume the Nikkei
225 stock portfolio’s aggregate dividend was 1.0% p. a. at present value. During these
trade dates, the term-to-maturity on September 1 was 98 calendar days, so we use
term-to-maturity of 98/365 or 0.2685. The term-to-maturity shortened to about 0.1534
on October 15. In addition to the no-arbitrage theory explained earlier, transactions
costs considerations are added. It is assumed that in the arbitrage, if any, any buy/sell
of stocks at t would entail a 0.5% transactions cost (brokerage and exchange fees).
Any subsequent sell/buy at T would also entail a 0.5% transactions cost.

2 Kian Guan Lim (1992), Arbitrage and price behavior of the Nikkei Stock Index Futures, Journal of
Futures Markets, 12 (2), 151–162.
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If cash-and-carry arbitrage takes place, the arbitrageur would gain ¥0.995ST −
[1.005St − D∗](1 + rt,T ) + Ft,T − ST or approximately Ft,T − 1.01[St − D∗](1 + rt,T ). In
this case, the fair price is approximately Ft,T = 1.01[St − D∗](1 + rt,T ). If reverse cash-
and-carry arbitrage takes place, the arbitrageur would gain ¥[0.995St − D∗](1 + rt,T ) −
1.005ST + ST − Ft,T or approximately 0.99[St − D∗](1 + rt,T ) − Ft,T . In this case, the fair
price is approximately Ft,T = 0.99[St −D∗](1+rt,T ). Let τ = T− t be the term-to-maturity
in terms of fraction of a year. Then rt,T ≈ 0.005τ and D∗ ≈ 0.01τ/(1 + 0.005τ).

Based on the finance theory above, we plot in Figure 2.6 the two time series of the
N225 futures price Ft,T , and the fair price F∗t . We also compute a percentage difference
pt = (Ft,T −F∗t )/F

∗
t indicating the percentage deviation from the fair price F∗t . The time

series plot of pt is shown in Figure 2.7.

Figure 2.6: Prices of Nikkei 225 December Futures Contract from 9/1/1999 to 10/15/1999.

Figure 2.7: Percentage Difference Between Futures Price and Fair Price.
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Figure 2.6 shows that both the futures price and the fair value are tracked closely to-
gether. The daily percentage differences pt shown in Figure 2.7 were contained within
1% of the fair value Yen price except for two outliers. The deviation of pt from zero
could be due to existence of arbitrage opportunities or other non-fee-based transac-
tions costs such as bid-ask spread and slippage costs. Cost of bid-ask spread exists
because at the point of selling (buying) futures, simultaneous action to buy (sell) the
stocks need not be at the price indicated at that point in time since a buy (sell) action
may hit a higher (lower) ask (bid) price. If the orders from more than one arbitrageur
are triggered and buy (sell) orders on stocks and futures exceed the ask and bid vol-
umes at the next price queue, then slippage occurs where some orders spill over into
even higher ask or lower bid prices. These other costs and impacts could drive actual
futures price away from the fair futures price but yet do not provide for any arbitrage
profits.

The tendency for pt in Figure 2.7 tomean-revert toward zerowhen it hits about 1%
or −1%may imply that actual arbitrage took place only when the additional 1% non-
fee-based costs are considered. If pt > 0 is too high (or futures price exceeds the fees-
adjusted fair value by 1% in the above context), arbitrageurs would sell the futures
and buy the stocks in a cash-and-carry trade, pushing futures price downward and
stock index upward, thus decreasing pt+1 toward zero. Conversely, if pt < 0 is too low
(or futures price drops below the fees-adjusted fair value by 1% in the above context),
arbitrageurs would buy the futures and short-sell the stocks in a reverse cash-and-
carry trade, pushing futures price upward and stock index downward, thus increasing
pt+1 toward zero. Once pt moves away from the upper and lower bounds of +1% and
−1% respectively, it can move randomly within these no-arbitrage bounds. However,
Figure 2.7 indicates possible negative serial correlation in the change of pt within the
no-arbitrage bounds.3

The time series pattern of pt in Figure 2.7 suggests that if there is practically little
arbitrage, then (2a) deviation of pt from zero is due to random disturbances, and (2b)
change in pt or Δpt, would display negative daily correlation. (2a) is tantamount to a
hull hypothesis H0 : E(pt) = 0, i. e. the expectation or mean of time series pt is zero.

Instead of pt we can use the variable ln(Ft/F∗t ) which is approximately the same
as pt . Their difference is that ln(Ft/F∗t ) has a range (−∞,+∞) whereas pt ∈ (−1,+∞)
since Ft and F∗t have the range (0,+∞). The ranges are theoretical possibilities. If we
require assumption of normal distribution to perform statistical testing, then using
the variable ln(Ft/F∗t ) to construct the test statistic is more suitable as this variable
can be assumed to follow a normal distribution.

3 An early market microstructure study indicates that bid-ask bounce causes negative serial corre-
lations even when there were no information and the market was efficient. See Richard Roll (1984),
A simple implicit measure of the effective bid-ask spread in an efficientmarket, The Journal of Finance,
1127–1139.
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The sample size for the two variables of Ft and F∗t is 30. Assuming qt = ln(Ft/F∗t )
is normally distributed, the t-statistic at d. f. 29, based on the null hypothesis that its
mean is zero is√29× q̄t/s(qt) = −0.0656 where q̄t is the sample mean of qt and s(qt) is
the sample standard deviation of qt . Therefore the null hypothesis cannot be rejected
at any reasonable level of test significance. Since pt is a very close approximation of
qt the implication is that the mean of pt is zero or Ft = F∗t . Thus (2a) is supported.
The futures price and its fees-adjusted fair price are statistically not different. There is
support of the cost of carry model.

(2b) suggests that daily changes in pt or Δpt, are more likely to be negatively cor-
related. We can statistically examine the reversals in Δpt by investigating a regression
of the daily Δpt on its lag. For the same reason, we use qt instead of pt . Specifically, we
perform the linear regression Δqt+1 = a + bΔqt + et+1, where Δqt+1 = qt+1 − qt, a, b are
coefficients, and et+1 is assumed to be an i. i. d. residual error. In this case, the first data
point Δq2 = q2 −q1 is the change in q from 9/1 to 9/2; the last data point Δq30 = q30 −q29
is the change in q from 10/14 to 10/15.

Since we employ a lag for regression, the number of sample observations used in
the regression is further reduced by 1, so there are only N = 28 data points involving
Δq3,Δq4, . . . ,Δq30 as dependent values and Δq2,Δq3, . . . ,Δq29 as explanatory values.
The linear regression would produce t-statistic with N − 2 or 26 degrees of freedom.
The linear regression results are reported in Table 2.1.

Table 2.1: Regression of Δ ln(Ft/F∗t ) on Its Lag: Δqt+1 = a + bΔqt + et+1.

Variable Coefficient Std. Error t-Statistic Prob.

Constant 0.00005 0.0014 0.032 0.9751
Lagged Δqt −0.57340 0.1534 −3.739 0.0009∗∗∗

R-squared 0.3497 F (d. f. 1,26)-statistic 13.98
Adjusted R-squared 0.3247 Prob(F -statistic) 0.0009∗∗∗

S. E. of regression 0.0076 Sum squared resid. 0.00151

Note: ∗∗∗ indicates significance at the 0.1% level whether one-tailed or two-tailed tests.

Table 2.1 shows the usual statistical values reported in most statistical software. The
regression results using the ordinary least squares method show that the estimated
coefficient that is the regression constant a is â = 0.00005 with a two-tailed p-value of
0.9751, i. e. P(|â| > 0.00005) = 0.975. Hence we cannot reject H0 : a = 0 at any reason-
able significance level. The estimated coefficient of lagged Δqt, that is the regression
slope b, is b̂ = −0.57340 with a two-tailed p-value of 0.0009, i. e. P(|b̂| > 0.57340) =
0.0009. Thismeans that the probability of observing any estimate larger inmagnitude
than 0.57340 is very small at 0.09%. If we test the null H0 : b = 0 at 1% significance
level which provides a very small 1% chance of type I error (rejecting when null is
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true), the smaller than 1% p-value means that we reject the null. Thus the statisti-
cal evidence is that b ̸= 0 (basically b < 0 in this case). This shows the presence of
reversals in Δqt across days.

Several notes regarding the relations of the reported numbers in the Table are in
order. The sum of squared residuals SSR or the residual sum of squares RSS is 0.00151.
The residual standard error or the standard error (S. E.) of regression can be found
as σ̂e = √SSR/26 = 0.0076. In this simple two-variable regression, the square of the
t-statistic for the slope coefficient, t226 = (−3.739)

2 = 13.98 which is the F-statistic with
1,26 degrees of freedom. The F-statistic is used to test the null hypothesis H0 : a = 0,
b = 0. The one-tailed (right-tail) p-value of the F-statistic is 0.00092. Hence we can
reject the null for any reasonable significance level. The coefficient of determination
of the linear regression or R-squared is R2 = 0.3497. It is the proportion of the variance
in the dependent variable that is explained by the independent variables.

The problemwith R2 is that its value increases whenmore regressors are added to
the linear regression, regardless of whether the added variables help in fact to explain
the regressand or not. This problem arises when one is comparing different regression
models on the same dependent variable but using different numbers of regressors or
explanatory variables. To mitigate this issue, an adjustment is made to R2 to impose
a penalty when the number of regressors excluding the constant is increased. This
resulted in the adjusted R2 that is equal to 1 − (1−R

2)(N−1)
N−k−1 where k is the number of

regressors excluding the constant. When k = 0, adj R2 = R2. In our case, k = 1, so adj.
R2 = 1− (1−0.3497)27/26 = 0.3247. Adjusted R2 decreases with k if R2 is held constant;
but it may increase when R2 itself increases fast enough with more regressors.

In statistics, quantiles are RV X values that divide the cumulative distribution
function cdf of the RV into equal intervals. If cdf (X = x1) = 0.10, cdf (X = x2) = 0.20,
cdf (X = x3) = 0.30, and so on, then x1, x2, x3, . . . are called the deciles. If cdf (X = x1)
= 0.25, cdf (X = x2) = 0.50, cdf (X = x3) = 0.75, and so on, then x1, x2, x3, . . . are called
the quartiles. In the latter case, x2 is also called the median or the 50th percentile. x1
is called the lower quartile or the 25th percentile. x3 is called the upper quartile or the
75th percentile.

The quantile-quantile (Q-Q) plot is a graphical technique for visually comparing
two probability distributions by plotting their quantiles side by side. A special case
is to check if a sample set of points comes from a particular distribution such as the
normal distribution. Suppose the equidistant points of 1/28, 2/28, . . . , n/28, . . . , 27/28, 1
form the range set of variable X with cdf as the mapping function from xn ∈ X to the
range set. Suppose X follows a normal distribution N(μ, σ2). Then zn = (xn − μ)/σ
are realizations of a standard N(0, 1). cdf (xn) = cdf (zn) ≡ Φ(zn) = n/28. The inverse
function can be obtained as xn = μ + σΦ−1(n/28). Clearly, the series of numbers {xn} is
ordered from low to high.

At the same time, there is an empirical distribution describing the sample set of
points. In our case we try to check if the regression error RV et+1 comes from a normal
distribution. Let the estimated residuals in the regression in Table 2.1 be êt for t =
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1, 2, . . . , 28. Suppose we order the 28 points of êt from low to high as êj. In our case
êj=1 = −0.01098, êj=2 = −0.01023, and so on. êj=27 = 0.01162 and êj=28 = 0.02294. Let
the empirical cdf function beM(⋅) such thatM(êj=n) = n/28. Then êj=n = M−1(n/28).

If êj is normally distributed with a general mean μ and variance σ2, then we can
set êj=n = xn for n = 1, 2, . . . , 28. In other words, M(êj=n) = Φ(zn), so M−1(n/28) =
μ+σΦ−1(n/28) for n = 1, 2, . . . , 28. In a Normal Q-Q plot (or Q-Q plot based on a theoret-
ical normal distribution), the x-axis measures the theoretical quantiles for the stan-
dardized normal variate Φ−1(n/28) while the y-axis measures the sample quantiles
M−1(n/28). Then, each point on the plot corresponds to a value n with coordinates
(Φ−1(n/28),M−1(n/28)), and the points should fall on a straight line with constant μ
and slope σ. However, if the empirical points êt are not normally distributed, then the
Normal Q-Q plot would not produce a straight line. We compute the Normal Q-Q plot
of the estimated residuals from Table 2.1, The plot is shown in Figure 2.8 as follows.

Figure 2.8: Normal Q-Q Plot of Residuals.

There are two outliers with values 0.01162 and 0.02294. Most of the other values of
êt appear to fall on the straight line indicating closeness to the normal distribution.
However, several points with Φ−1(n/28) below −1 have M−1(n/28) values below the
straight line, indicating a fatter left tail than that of the normal distribution. Similarly,
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several points with Φ−1(n/28) above +1 haveM−1(n/28) values above the straight line,
indicating a fatter right tail.

2.6 Hedging

We can also use linear regression to study optimal hedging. Suppose a large institu-
tional investor holds a huge well-diversified portfolio of Japanese stocks that has re-
turns following closely that of the N225 Stock Index return or rate of change. Suppose
in September 1999, the investor was nervous about an imminent big fall in Japan eq-
uity prices, andwished to protect his/her portfolio value over the period September to
mid-October 1999. He/She could liquidate his stocks. But this would be unproductive
since his/hermain business was to invest in the Japanese equity sector. Besides, liqui-
dating a huge holding or even a big part of it would likely result in loss due to impact
costs. Thus, the investor decided to hedge the potential drop in index value by selling
hNikkei 225 Index futures contracts. If the Japanese stock prices did fall, then the gain
in the short position of the futures contracts would make up for the loss in the actual
portfolio value.

The investor’s original stock position has a total current value ¥Vt . For example,
this could be 10 billion Yen. We make the simplifying assumption that his/her stock
position value is a constant factor f× the N225 Index value St . Then, ΔVt+1 = fΔSt+1,
and the portfolio return rate ΔVt+1/Vt = ΔSt+1/St . (In reality, the equivalence of return
is approximate.)

By the simplifying assumption, the investor essentially forms a hedged portfolio
comprising ¥f × St, and h number of short positions in N225 Index futures contracts.
The contract with maturity T has notional traded price Ft,T and an actual price value
of ¥500 ×Ft,T where the contract is specified to have a value of ¥500 per notional price
point. At the end of the risky period, his hedged portfolio ¥ value change would be:

Pt+1 − Pt = f × (St+1 − St) − h × 500 × (Ft+1,T − Ft,T ) (2.8)

In effect, the investor wished tominimize the risk or variance of Pt+1−Pt ≡ ΔPt+1. Now,
simplifying notations, from Eq. (2.8):

ΔPt+1 = f × ΔSt+1 − h × 500 × ΔFt+1

So, var(ΔPt) = f 2 × var(ΔSt)+ h2 × 5002 × var(ΔFt)− 2h× 500f × cov(ΔSt ,ΔFt). Note that
it does not matter here if the subscript is t + 1 or t as we are treating their variances
and covariances as similar whatever the time index. This is a property of a stationary
RV that we shall discuss in a later chapter.

The FOC for minimising var(ΔPt) with respect to decision variable h yields:

2 × h(5002) var(ΔFt) − 2 × (500f ) cov(ΔSt ,ΔFt) = 0
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or a risk-minimising “optimal” hedge of

h∗ = f × cov(ΔSt ,ΔFt)
500 var(ΔFt)

This is a positive number of contracts since St and Ft,T wouldmove together and recall
that at maturity T of the futures contract, ST = FT ,T . h∗ can be estimated by substitut-
ing in the sample estimates of the covariance in the numerator and of the variance in
the denominator.

The optimal hedge can also be estimated through the following linear regression4

employing OLS method:

ΔSt = a + bΔFt + et

where et is residual error that is uncorrelated with ΔFt . We run this regression and the
results are shown in Table 2.2.

Table 2.2: OLS Regression of Change in Nikkei Index on Change in Nikkei Futures Price: ΔSt = a +
bΔFt + et . Sample size = 29.

Variable Coefficient Std. Error t-Statistic Prob.

Constant 4.666338 24.01950 0.194 0.8474
ΔFt 0.715750 0.092666 7.724 0.0000∗∗∗

R-squared 0.6884 F (d. f. 1,27)-statistic 59.6597
Adjusted R-squared 0.6769 Prob(F -statistic) 0.0000∗∗∗

S. E. of regression 129.325 Sum squared resid. 451573.2

Note: ∗∗∗ indicates significance at the 0.1% level whether one-tailed or two-tailed tests.

Theoretically, b = cov(ΔSt ,ΔFt)/ var(ΔFt) = 500/f ×h∗. (Recall that earlier in the chap-
ter, when dealing with two-variable linear regression, b = cov(Xi,Yi)/ var(Xi).) Hence
h∗ estimate is found as b̂× f /500 number of the futures contracts to short in this case.
From Table 2.2, b̂ is 0.71575. With a ¥10 billion portfolio value and spot N225 Index on
September 1, 1999 at 17479, f = 10 billion/17479 = 572,115. Thus the number of futures
contract to short in this case is estimated as:

h∗ = b̂ × f /500 = 0.71575 × 572,115/500 ≈ 819

number of N225 futures contracts.

4 One of the earliest studies to highlight use of least squares regression in optimal hedging is Louis H.
Ederington (1979), The hedging performance of the new futures markets, The Journal of Finance, 34,
157–170.
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3 Capital Asset Pricing Model

A capital asset pricing model (CAPM) is a theoretical model to explain the level of ex-
pected return over a specific horizon of an asset using systematic risks. The asset is
typically a traded financial instrument such as a stock (a major form of equity or own-
ership), a bond, a futures, a swap, an option, etc. A systematic risk is often described
as the expected value of systematic risk factors that are RVs that affect all assetswithin
the market at the same time, although having different degrees of impact on different
assets. The different impacts are due to the different sensitivities of the assets to the
risk factors. In this chapterwe focus on the two-parameter (mean-variance) CAPM that
was themainstreamof financial asset pricing in the sixties through the eighties. This is
often mentioned as the Sharpe–Lintner (sometimes Sharpe–Lintner–Mossin) capital
asset pricing model.1 The theory and the econometrics will be discussed. To provide a
good grasp of the basic theory of supply and demand in the financial economics of as-
set pricing, we lead the readers through some fundamental aspects of microeconomic
decision theory involving utility or preference.

3.1 Expected Utility Theory

A rational framework for decision-making starts with preference – how a consumer
would choose to consume among different consumption bundles, each of which is
affordable by his/her budget. A consumption vector is (x1, x2, . . . , xn) where xi is num-
ber of units consumed of good i, and so on. If the consumer strictly prefers bundle
X = (x1, . . . , xn) to bundle Y = (y1, . . . , yn), then we write X ≻ Y . If consumer indeed
chooses X over Y , this is called his/her revealed preference or choice. If the consumer
has equal preference or is indifferent between bundles X and Y , then we write X ∼ Y .

Suppose there is a utility functionU(⋅) on the vector of consumption goods bundle
such that X ≻ Y if and only if (iff) U(X) > U(Y), X ≺ Y iff U(X) < U(Y), and X ∼ Y iff
U(X) = U(Y). The actual number of the utility function, “utils”, is just an ordering that
indicates which bundle is preferred. Thus U(⋅) is an ordinal or ordering number, and
not a cardinal or counting number (which would have some implications on relative
magnitudes). Note that the assumption of existence of such a utility function U : X →
u ∈ ℛ is not trivial as it projects a consumption vector to a scalar number, i. e., it
collapses a higher dimension object to a single dimension object.

Revealed preferences can in theory be used to build, for example in a two-goods
world, a set of indifference curves quantified by the ordinal numbers of utils for each
consumer. Then, one can tell if another bundle is preferred to existing ones or not by

1 See W. Sharpe (1964), Capital asset prices: A theory of market equilibrium under conditions of risk,
The Journal of Finance, 19, 425–442.

https://doi.org/10.1515/9783110673951-003
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looking at the indifference curves. But this is as far as it gets; there is nothing else in
the cookie jar for understanding choices under uncertainty situations.

3.1.1 Choices Under Uncertainty

In order to build choice theory and decision-making on preferences of risky or uncer-
tain outcomes, the von Neumann–Morgenstern (VM) expected utility representation
or framework is very useful and popular in economics and financial research. A risky
outcome is generically represented by a lottery which is characterized as a chance
game in which there are two probabilistic outcomes: a probability p of winning X and
a probability (1 − p) of winning Y . X and Y can be monetary amounts, need not be
consumption bundles, and can also be lotteries.

The lottery is expressed as [p ⊙ X + (1 − p) ⊙ Y]. Even though X or Y may be a
vector of units of goods, the operation ⊙ is not a multiplication, but simply denotes
the association of probability p with lottery claim X in p ⊙ X and of probability (1 − p)
with claim Y in (1−p)⊙Y . The idea is represented by the lottery diagrams in Figure 3.1.

Figure 3.1: Simple and Compound Lotteries.

The simple lottery diagram, Figure 3.1(a), shows the lottery [p⊙X+ (1−p)⊙Y]. Entities
on the nodes represent consumption bundles or lotteries, while those on the branches
represent probabilities. For the compound lottery diagram, Figure 3.1(b), A and B are
themselves lotteries, withA being [qX⊙X+(1−qX)⊙Y], andB being [qY⊙X+(1−qY )⊙Y].
This compound lottery is the same as [(πqX+(1−π)qY )⊙X+(π(1−qX)+(1−π)(1−qY ))⊙Y]
when we consider that the probability of winning X is now p = πqX + (1 − π)qY .

We require a fewaxioms to construct the useful class of VMutility functions. There
are three assumptions as follows.
(A1) Any two lotteries X, Y can be put into one or both of the preference relations:

X ⪰ Y , X ⪯ Y .
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(A2) If X ⪰ Y , then for any other lottery Z, [p ⊙ X + (1 − p) ⊙ Z] ⪰ [p ⊙ Y + (1 − p) ⊙ Z],
where p ∈ [0, 1].

(A3) Suppose X ≻ Y ≻ Z are any 3 lotteries, then p, q, r ∈ [0, 1] can be found such that
[p ⊙ X + (1 − p) ⊙ Z] ≻ Y ∼ [q ⊙ X + (1 − q) ⊙ Z] ≻ [r ⊙ X + (1 − r) ⊙ Z]

(A1) is called the completeness axiom. It includes the case X ∼ Y when both X ⪰ Y
and X ⪯ Y .

(A2) is sometimes called the substitution axiom or the independence axiom. This
is intuitive, but is not some natural fixture, so it has to be axiomatized. For example,
if I prefer a China holiday to a European holiday, it may also be that I prefer an even
lottery of a European versus Mediterranean holiday to an even lottery of a China ver-
sus Mediterranean holiday, perhaps because of the lesser anxiety in the locational
differences of the lottery outcomes. The axiom does compel some rationality onto the
probability structure so as to make it a bit like a physical fraction p of outcome 1 and
fraction (1 − p) of outcome 2 in the lottery.

In addition, this axiom yields (a) the reflexivity principle, i. e., put p = 0 in (A2),
and for any Z, Z ⪰ Z; and (b) the transitivity principle, i. e., X ⪰ Y ⇒ [p⊙X + (1−p)⊙
Z] ⪰ [p ⊙ Y + (1 − p) ⊙ Z]; Y ⪰ Z ⇒ [p ⊙ Y + (1 − p) ⊙ Z] ⪰ [p ⊙ Z + (1 − p) ⊙ Z] = Z,
hence [p ⊙ X + (1 − p) ⊙ Z] ⪰ Z, and X ⪰ Z by putting p = 1.

(A2) also implies that if X ∼ Y (or {X ≻ Y and X ≺ Y}), then for any other lottery Z,
[p ⊙ X + (1 − p) ⊙ Z] ∼ [p ⊙ Y + (1 − p) ⊙ Z] (or {[p ⊙ X + (1 − p) ⊙ Z] ⪰ [p ⊙ Y + (1 − p) ⊙ Z]
and [p ⊙ X + (1 − p) ⊙ Z] ⪯ [p ⊙ Y + (1 − p) ⊙ Z]}).

(A3) is a continuity axiomand is sometimes called theArchimedeanaxiom. It buys
a lot of things. First, it allows one to put a lottery of X and Z in equal preference with
possibly a non-lotteryY . ThusU(Y) is someweighted average of theU[p⊙X+(1−p)⊙Z]
andU[r⊙X+(1−r)⊙Z]. Thus the utility function cannot be just ordinal as otherwise it is
difficult to define U(Y). The utility function U(⋅), that is continuous and increasing in
the sense thatU(X) ≥ (≤)U(Y) iff X ⪰ (⪯) Y , is now extended to a cardinal utility func-
tion that measures levels of absolute satisfaction or preference such that changes in
the levels are comparable in different situations. The latter comparison is not possible
under ordinal utility function. Measures of level changes also provide for measures of
marginal utility which is an important analytical concept in decision theory. We con-
sider the class of cardinal utility functions under positive affine transformation, i. e. if
U(X) is a feasible utility function, so is V(X) = aU(X) + b (for constants a and b). This
preserves the ranking of marginal utility, i. e. dU(X) > dU(Y) > dU(Z) ⇔ dV(X) >
dV(Y) > dV(Z).

Without loss of generality, we define U : X → [0, 1] ∈ ℛ. Unit utility is associated
with the best or most preferred lottery B, i. e. U(B) = 1, while zero utility is associated
with the worst or least preferred lottery W , i. e. U(W) = 0. Use of these two extreme
reference points simplifies the construction, but are not really necessary. By the affine
transformation, any analytical results obtained using U(X) ∈ [0, 1] can be similarly
obtained using utility V(X) = aU(X) + b ∈ [b, a + b] for arbitrary a, b <∞. Probability
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p lies in [0, 1]. “≻” means strict preference while “⪰” means preference and includes
indifference “∼”.

Using B andW , (A3) allows any lottery to be put into equal preference with a lot-
tery on B andW , i. e. any lottery X ∼ [π ⊙B+ (1−π)⊙W] for a π ∈ [0, 1]. (A3) also gives
rise to the following lemma.

Lemma 3.1. [p ⊙ B + (1 − p) ⊙W] ≻ [q ⊙ B + (1 − q) ⊙W] iff p > q.

Proof. Suppose X ≻ Y . By (A3), ∃ (there exists) pX , pY ∋ (such that)

X ∼ [pX ⊙ B + (1 − pX) ⊙W] ≻ [pY ⊙ B + (1 − pY ) ⊙W] ∼ Y

Since X ≻ Y ≻ W , by (A3) again, ∃ π ∋

[π ⊙ X + (1 − π) ⊙W] ∼ Y

Left-hand side (LHS) is

[π ⊙ X + (1 − π) ⊙W] ∼ [π ⊙ [pX ⊙ B + (1 − pX) ⊙W] + (1 − π) ⊙W]
∼ [πpX ⊙ B + (1 − πpX) ⊙W]

where we have used (A2).
Therefore, [πpX ⊙B+ (1− πpX)⊙W] ∼ Y ∼ [pY ⊙B+ (1− pY )⊙W]. Thus, πpX = pY .

As 0 < π < 1, we have pX > pY , which is the proof of the “only if” part when we put
X = B ≻ W = Y .

Conversely, ifpX > pY , andX ∼ [pX⊙B+(1−pX)⊙W], whileY ∼ [pY⊙B+(1−pY )⊙W],
we can find 0 < π < 1, such that πpX = pY . Thus, Y ∼ [πpX ⊙ B + (1 − πpX) ⊙ W]
∼ [π ⊙ X + (1 − π) ⊙W]. By (A3), X ≻ Y .

Theorem 3.1 (VM Expected Utility Representation). There is a utility function on the
lottery space X, U : X → [0, 1] ∈ ℛ, such that

U(p ⊙ X + (1 − p) ⊙ Y) = pU(X) + (1 − p)U(Y)

where p is the probability of outcome X, and 1 − p is the probability of outcome Y.

Proof. By (A3), we can characterize lotteries X and Y as X ∼ [pX ⊙ B + (1 − pX) ⊙ W]
and Y ∼ [pY ⊙ B + (1 − pY ) ⊙W] for pX , pY ∈ [0, 1]. By Lemma 3.1, X ≻ Y iff pX > pY .
Let function U : X → [0, 1] ∈ ℛ. We can thus fix U(X) = pX and U(Y) = pY without
loss of generality. This preserves the ranking of X ≻ Y given pX > pY , and vice-versa,
X ≻ Y ⇒ U(X) > U(Y)⇒ pX > pY . Next

p ⊙ X + (1 − p) ⊙ Y
∼ p ⊙ [pX ⊙ B + (1 − pX) ⊙W] + (1 − p) ⊙ [pY ⊙ B + (1 − pY ) ⊙W]
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∼ [(ppX + (1 − p)pY ) ⊙ B + (1 − ppX − (1 − p)pY ) ⊙W]
∼ [(pU(X) + (1 − p)U(Y)) ⊙ B + (1 − pU(X) − (1 − p)U(Y)) ⊙W]

Since the LHS lottery is again expressed as a compound lottery of B and W , we can
assign its utility as the probability of B in the compound lottery, i. e.,

U(p ⊙ X + (1 − p) ⊙ Y) = pU(X) + (1 − p)U(Y)

The utility functionU(⋅) that satisfies axioms (A1), (A2), (A3) and thus the relation-
ship U(p ⊙ X + (1 − p) ⊙ Y) = pU(X) + (1 − p)U(Y) is called the VM utility function. It
adds more properties to a primitive ordinal utility function. The VM U(⋅) has a strong
advantage over a primitive ordinal utility as it is able to provide cardinality in terms of
expectation, optimization, and is able to rank preferences by the expected outcome. It
is also characterized as an expected utility function since any utility can be expressed
as an expected utility with a trivial probability of one.

Is U(X) function limited to characterization by pX in X ∼ [pX ⊙ B + (1 − pX) ⊙W]?
We see what happens when we broaden it to be U(X) = apX + bwhere a > 0 and b are
constants. This includes the case when U(X) = pX . Now

p ⊙ X + (1 − p) ⊙ Y

∼ p ⊙ [pX ⊙ B + (1 − pX) ⊙W] + (1 − p) ⊙ [pY ⊙ B + (1 − pY ) ⊙W]

∼ [(ppX + (1 − p)pY ) ⊙ B + (1 − ppX − (1 − p)pY ) ⊙W]

∼ [(p{U(X) − b
a
} + (1 − p){U(Y) − b

a
}) ⊙ B

+ (1 − p{U(X) − b
a
} − (1 − p){U(Y) − b

a
}) ⊙W]

And so

U(p ⊙ X + (1 − p) ⊙ Y)

= a(p{U(X) − b
a
} + (1 − p){U(Y) − b

a
}) + b

= pU(X) + (1 − p)U(Y)

Thus, the expected utility representation is preserved and U(⋅) is unique up to a
positive affine transformation. Any expected utility function or VM function aU(⋅)+b,
where a > 0 and b are constants, is equivalent to expected utility function U(⋅), pro-
ducing the same preference outcomes.

There have been refutations of the VM representation via offered empirical para-
doxes showing inconsistencies of VMutility implications, e. g., the Ellsberg and Allais
paradoxes, being two of the most famous. However, the camp of rationalists remains

 EBSCOhost - printed on 2/8/2023 6:26 PM via . All use subject to https://www.ebsco.com/terms-of-use



62 | 3 Capital Asset Pricing Model

very strong, and VM framework remains a major tool in economics and financial-
theoretic modeling.

Hirshleifer and Riley commented,2 “The dissident literature claims that the dis-
crepancies revealed by these results refute the economist’s standard assumption of
rationality, or at least the expected utility hypothesis as a specific implication of that
assumption.We reject this interpretation. Amuchmore parsimonious explanation, in
our opinion, is that this evidence merely illustrates certain limitations of the human
mind as a computer. It is possible to fool the brain by the way a question is posed, just
as optical illusions may be arranged to fool the eye”.

3.2 Utility Functions

Under market mechanism where goods i = 1, 2, . . . , n are traded, suppose the market
prices {pi}i=1,2,...,n are competitive and strictly positive (taken as given; in other words,
individual consumer choices cannot affect the prices), a representative individual’s
demand on the goods {xi}i=1,2,...,n is restricted by his/her income Y accordingly. Denote
X as the vector (x1, x2, . . . , xn). The budget constraint is

∑
i
pixi ≤ Y

As a consumer, he/she chooses xi’s to

max
X

U(X) subject to ∑
i
pixi ≤ Y and X > 0

Note that vector X ≥ 0 ⇒ any element is either > 0 or = 0. Vector X > 0 ⇒ at least
one element xi > 0 while the others are ≥0. X ≫ 0 ⇒ all xi’s > 0. U as a function of
direct consumption goods amounts is called a direct utility function and the optimal
demands xi as a solution is called the Marshallian demand function.

How do we solve this constrained optimization problem? Let us consider neces-
sary conditions for a maximum. In Figures 3.2(a) and (b), it is seen that keeping all
other variables constant while varying xi, if a maximum point occurs in the closed in-
terior set where xi ≥ 0, as in Figure 3.2(a), then in this case, U ′i = 0 at the maximum
point. However, in Figure 3.2(b), the maximum point occurs at xi = 0. At this point,
the slope U ′i is clearly negative. The slope could also be zero here.

Hence, under constraint xi ≥ 0, U ′i ≤ 0 at the maximum point. This is one neces-
sary condition. In fact, either {U ′i = 0, xi > 0} or {U

′
i ≤ 0, xi = 0}, so we can use another

necessary condition for maximum, i. e. U ′i × xi = 0.

2 J. Hirshleifer and J. G. Riley (1992), The Analytics of Uncertainty and Information, Cambridge Univer-
sity Press, p. 34.

 EBSCOhost - printed on 2/8/2023 6:26 PM via . All use subject to https://www.ebsco.com/terms-of-use



3.2 Utility Functions | 63

Figure 3.2: Unconstrained and Constrained Maximums.

Form the “Lagrangian” function with Lagrange multiplier λ; L ≡ U(X) + λ(Y −∑i pixi).
Then, maximize the objective function

max
X,λ

U(X) + λ(Y −∑
i
pixi) s. t. X > 0

Note that in L, if the maximum occurs within the constraint (Y −∑i pixi) > 0, or in
its interior, then the solution should be as if solving maxU(X)without the constraint,
hence λ necessarily equals zero. If the maximum is right at the boundary where (Y −
∑i pixi) = 0, then λ > 0 since any increase of Y in the constraint set would increase L
by the shadow price λ, which must necessarily be strictly positive in this case.

In fact, either {(Y − ∑i pixi) = 0, λ > 0} or {(Y − ∑i pixi) > 0, λ = 0}, so we can use
another necessary condition for maximum, i. e. (Y −∑i pixi)λ = 0.

The first-order necessary conditions (FOC) are:
(C1) 𝜕L𝜕xi : Ui(X) − λpi ≤ 0, ∀i
(C2) (Ui(X) − λpi)xi = 0, ∀i
(C3) 𝜕L𝜕λ : Y −∑i pixi ≥ 0,
(C4) (Y −∑i pixi)λ = 0
(C5) xi ≥ 0, ∀i, and
(C6) λ ≥ 0.

Second-order conditions for maximum are met as U(⋅) is assumed to be strictly con-
cave.

Conditions (C1) and (C2) follow the same arguments laid out for diagrams in Fig-
ures 3.2(a) and (b) when xi ≥ 0. (C4) is sometimes called the complementary slackness
condition.

Suppose we have an interior solution in (C1)–(C6), then λ > 0, and xi > 0 ∀i.
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(C2)⇒ Ui = λpi. (C4)⇒ Y = ∑i pixi, so λ =
∑i Uixi
Y . Then, we have

Ui =
pi
Y
(∑

i
Uixi) ∀i

anda solution x∗1 , x
∗
2 , . . . , x

∗
n canbe found. Each x

∗
i is a functionofpi’sandY , or x

∗
i (Y ; p)

where p is the vector of pi’s. When expressed in terms of given prices and income Y ,
the demand function is called a Hicksian demand function.3

Utility functionU(Y ; p) based onHicksian demand or income orwealth Y is called
an indirect utility function. It is this indirect form of utility function in terms of avail-
able income or wealth that is most often used in finance theory.

Under preference relations that can be represented as VM expected utility formu-
lated above, an individual determines the probabilities of lottery payoffs, assigns an
index U to each possible payoff, and then makes a decision to maximize the expected
value of the index. The index or sometimes “utils” is a function of income or wealth.
We shall refer to the use of utility under the representation as VM utility function.

Suppose there is an investment A that leads to final wealth WA which is a RV
with probability distribution P(WA). Another investment B leads to final wealth WB
with probability distribution P(WB). A is preferred to B iff E(U(WA)) > E(U(WB)) or
∑U(WA)P(WA) > ∑U(WB)P(WB). Henceforth, we shall use money in the argument of
U(⋅). Even if we use a certain good (say, gold) and its amount x in the argument, we
can treat it as “money” or as a numéraire, so all other goods can be denominated in
terms of the amount of gold.

3.2.1 Taylor Series Expansion

For more analytical development of the utility function, a convergent Taylor series ex-
pansion is required. We explain this as follows. The Taylor series expansion is an im-
portant analytical linear approximation to continuously differentiable functions using
polynomials and plays a major role in mathematical analysis. A polynomial function
in x to degree n can be written in the form

a0 + a1x + a2x
2 + a3x

3 + ⋅ ⋅ ⋅ + an−1x
n−1 + anx

n

where ak ∀k is a constant. The Taylor series expansion is explained by the Taylor’s
Theorem as follows.

Theorem 3.2 (Taylor’s Theorem). Let f be a function that is n+ 1 times differentiable on
an open interval containing points a and X. Then, for a fixed a,

3 For more microeconomics, see Varian (1992).
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f (x) = f (a) + (x − a)f ′(a) + (x − a)2 f
′′(a)
2!
+ (x − a)3 f

′′′(a)
3!

+ ⋅ ⋅ ⋅ + (x − a)n f
(n)(a)
n!
+ Rn(x)

where f (n)(a) is the nth derivative evaluated at point a, and remainder term Rn(x) = (x −
a)n+1 f

(n+1)(y)
(n+1)! for some number y such that a < y < x.

Proof. We can always define a function

F(t) = f (x) − f (t) − (x − t)f ′(t) − (x − t)2 f
′′(t)
2!
− ⋅ ⋅ ⋅ − (x − t)n f

(n)(t)
n!

for a fixed t such that a ≤ t ≤ x. In general, this functionwill contain x and t. However,
specifically, F(x) = 0 and F(a) = f (x)−f (a)−(x−a)f ′(a)−(x−a)2 f

′′(a)
2! −⋅ ⋅ ⋅−(x−a)

n f (n)(a)
n! .

The proof is completed when it can be shown that F(a) = Rn(x) = (x − a)n+1
f (n+1)(y)
(n+1)! for

some number y such that a < y < x. Now

F′(t) = −f ′(t) − (x − t)f ′′(t) + f ′(t) − (x − t)2 f
′′′(t)
2!
+ (x − t)f ′′(t)

− ⋅ ⋅ ⋅ − (x − t)n f
(n+1)(t)
n!
+ (x − t)n−1 f

(n)(t)
(n − 1)!

= −(x − t)n f
(n+1)(t)
n!

Define H(t) = F(t) − ( x−tx−a )
n+1F(a). We have H(a) = 0, and H(x) = F(x) = 0. There

is a y between a and x such that H′(y) = 0 (Rolle’s theorem). But H′(y) = F′(y) +
(n + 1) (x−y)

n

(x−a)n+1 F(a). Hence, F′(y) + (n + 1) (x−y)n(x−a)n+1 F(a) = 0. Or, −(x − y)n f (n+1)(y)n! + (n +

1) (x−y)
n

(x−a)n+1 F(a) = 0.
Hence, F(a) = (x − a)n+1 f

(n+1)(y)
(n+1)! .

The Taylor series expansion is very useful for analysis. When the remainder term
Rn(x) is very small or ≈ 0, then f (x) can bewell approximated by f (a)+(x−a)f ′(a)+(x−
a)2 f

′′(a)
2! + ⋅ ⋅ ⋅+ (x−a)

n f (n)(a)
n! . The Taylor series expansion can also be used to determine

if a stationary point a (when f ′(a) = 0) is a local minimum or a local maximum or a
local point of inflection. The local feature refers to only a section or part of the domain
while a global feature refers to the whole domain of the function. Suppose f ′(a) =
⋅ ⋅ ⋅ = f (n−1)(a) = 0, but f (n)(a) ̸= 0. By Theorem 3.1, f (x) − f (a) = Rn−1(x) = (x − a)n

f (n)(y)
n!

for a < y < x. If n is even, (x − a)n > 0. In this case, if f (n)(y) > 0, and supposing a is
sufficiently close to y, so f (n)(a) > 0, then f (x) > f (a), hencepointa is a localminimum.
The special case of f ′(a) = 0 and f ′′(a) > 0 implies a localminimumat a on f (x). In the
same case, if f (n)(y) < 0, and supposing a is sufficiently close to y, so f (n)(a) < 0, then
f (x) < f (a), hence point a is a local maximum. For a special case such as a quadratic
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function, the local minimum (maximum) is also the global minimum (maximum). If n
is odd, f (x)− f (a) have opposite signs for x < a and for x > a (whichever sign is f (n)(a)).
In this case, point a is a point of inflection.

3.2.2 Maclaurin Series

Theorem 3.1 can be specialized to the case of Maclaurin series which is a particular
power series (a polynomial with an infinitely differentiable function) by fixing a = 0.
Then,

f (x) =
∞

∑
n=0

f (n)(0)
n!

xn

where f (0)(0) is defined as f (0). The infinite Taylor series needs to be convergent so that
when computation is done at a particular cutoff of large n, the resulting polynomial
is a good approximation. If the higher derivative f (n+1)(a) grows at a rate much faster
than n itself, then the series may not converge and the Taylor series is not valid. Many
important convergent Maclaurin series are as follows.

ex = 1 + x + x
2

2!
+
x3

3!
+ ⋅ ⋅ ⋅ =

∞

∑
n=0

xn

n!

ln(1 + x) = x − x
2

2
+
x3

3
− ⋅ ⋅ ⋅ =

∞

∑
n=1

(−1)n+1xn

n

sin x = x − x
3

3!
+
x5

5!
− ⋅ ⋅ ⋅ =

∞

∑
n=0

(−1)nx2n+1

(2n + 1)!

cos x = 1 − x
2

2!
+
x4

4!
− ⋅ ⋅ ⋅ =

∞

∑
n=0

(−1)nx2n

(2n)!

From the last two expressions, one can see that d sin x/dx = cos x.

3.3 Risk Aversion

First, we note that by the basic axiom of nonsatiation in human economic behavior
(generically, excepting some self-sacrificial souls or instances), U(x) > U(y) iff x > y
where x, y are money units. This is because for fixed x greater than fixed y, x ≻ y,
so by VM expected utility (which after this point we shall always assume, unless it is
otherwise indicated), E[U(x)] > E[U(y)]. Hence U(x) > U(y) as x, y are constants in
this case. If for any x > y, U(x) > U(y), then U(⋅) is a strictly increasing function of its
argument. Assuming continuous function U(⋅) with existence of at least the first and
second derivatives, for purposes of easy analysis and exposition of basic theoretical
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results, then clearly, U ′(⋅) > 0. Similarly, if U(x) > U(y) and hence E[U(x)] > E[U(y)],
then x ≻ y.

We shall define that a person (or agent or investor) is risk neutral if he (or she) is
indifferent between doing nothing or value 0 and an actuarially (probabilistically in
the expectations sense) fair amount E(X) = 0 where X is a RV or a lottery, and r > 0:

X = { πr with probability (1 − π)
−(1 − π)r with probability π

Theagent is defined tobe risk averse if he or sheprefers doingnothing to accepting
the gamble, i. e., prefers certainty to an actuarially fair game. He/she is defined to be
risk loving if he or she prefers the gamble to certainty.

Theorem 3.3. An agent is risk averse iff U(W), where W is his or her wealth, is a strictly
concave function.

Proof. By Jensen’s inequality, if U(⋅) is strictly concave (which means −U(⋅) is strictly
convex), E[U(W + X)] < U(E[W + X]) = U(W) since E(X) = 0 for an actuarially fair
lottery. Thus, the agent always prefers certainty to the actuarially fair gamble X, and
is thus risk averse.

For the “only if” part, suppose the agent is risk averse, then

U(W) > πU(W − [1 − π]r) + (1 − π)U(W + πr)

for all r > 0 and π ∈ (0, 1). Since

U(W) = U(π(W − [1 − π]r) + (1 − π)(W + πr))

strict concavity of U(⋅) is shown.

We shall henceforth assume all agents are risk averse unless otherwise specified.
Suppose an agent faces a risky lottery of RV X, with E(X) = 0, so his/her final wealth is
W + X, whereW is a constant. An insurance company charges him/her an insurance
amount I to remove any uncertainty in his/her final wealth. Then

E[U(W + X)] = U(W − I)

Using Taylor series expansion, considering I is small relative to variance in X, then

E[U(W) + XU ′(W) + 1
2
X2U ′′(W) + o(U)] = U(W) − IU ′(W) + o(U)

where o(U) denotes an approximation to a little (small) order, i. e. o(U) tends toward
zero as U grows larger. Conversely, big order O(U) would mean that O(U)/U remains
as some finite constant that does not approach zero. Thus,
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1
2
E[X2]U ′′(W) ≈ −IU ′(W)

or I ≈ − 12
U ′′(W)
U ′(W) var(X).

Intuitively, for any agent,−U
′′(W)

U ′(W) = A(W) is a positive number such that insurance
premium I increases with this numberA(W) for a given risk X. If the agent is willing to
pay a higher risk premium, he/she is more risk averse. Thus,A(W) is a measure of risk
aversion: the higher the A(W), the higher the risk aversion. A(W) > 0 since concave
U(⋅) implies U ′′(⋅) < 0.

A(W) = −U
′′(W)

U ′(W) is called the absolute risk aversion function; T(W) = 1/A(W) is
called the risk-tolerance function; R(W) = W × A(W) is called the relative risk aver-
sion function. In some VM utility, when these functions become constants, we have
the associated “risk aversion coefficients”. For example, U(W) = −e−aW , where a is
a constant, is a negative exponential utility function. U ′ = −aU, and U ′′ = a2U, so
A(W) = −U ′′/U ′ = a, and a > 0 is called the constant absolute risk aversion coeffi-
cient.

Another example is U(W) = W 1−γ−1
1−γ , where γ is a constant, and U is a power utility

function. U ′ = W−γ, and U ′′ = −γW−γ−1. So, R(W) = −WU ′′/U ′ = γ, and γ > 0 is
called the constant relative risk aversion coefficient. Another form or an affine trans-
form of the power utility function isU(W) = W 1−γ

1−γ that is also called an isoelastic utility
function since dU/dW ×W/U = 1 − γ, a constant.

The logarithmic utility function ln(W) is a special case of the power utility, as seen
below, when γ → 1. Apply L’Hôpital’s rule:

lim
γ→1

W 1−γ − 1
1 − γ
= lim

γ→1

d(W 1−γ − 1)/dγ
d(1 − γ)/dγ

= ln(W)

Note d
dW lnW = 1/W > 0, so log utility is increasing inW . Next, d2

dW 2 lnW = −1/W2 < 0,
so log utility exhibits strict concavity and thus risk aversion.

U(W) = t
1−t (

cW
t +d)

1−t,d > 0, is a class of hyperbolic absolute risk aversion (HARA)
utilities. U ′ = c( cWt + d)

−t, and U ′′ = −c2( cWt + d)
−t−1. So, A(W) = −U ′′/U ′ = c( cWt +

d)−1. Thus, T(W) = 1/A(W) = W
t +

d
c . HARA utility functions are linear risk tolerance

functions (in wealth).
It is interesting to note that since the 1980s there have been increasing attempts

to model non-standard utility, i. e. non-VM utility that does not necessarily obey The-
orem 3.1. A non-standard utility may have the advantage of higher flexibility to ex-
plain some of the aberrations or anomalies occurring that could not be satisfactorily
explained by VM-type preferences. An example of non-standard utility is the recur-
sive Epstein–Zin utility function4 that is used frequently in life-cycle modeling where

4 L. G. Epstein and S. E. Zin (1989), Substitution, risk aversion, and the temporal behavior of con-
sumption growth and asset returns I: A theoretical framework, Econometrica, 57(4), 937–969.
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intertemporal substitutional issues are significant. In the Epstein–Zin utility, an extra
elasticity of intertemporal substitution parameter allows its disentanglement from the
coefficient of risk aversion so that both intertemporal substitution or resolution of un-
certainty in near versus far risks and also risk aversion in degree of overall uncertainty
can be separately considered.

3.3.1 Application of VM Expected Utility

Nicholas Bernoulli in 1713 posed the “St. Petersburg Paradox” as follows. It was com-
monly accepted at that time that the price of a lottery would be its expected value. The
lottery pays 2n−1 if the first head occurs in the nth toss of a coin.

The probability of a head at the nth toss follows a geometric distribution (special
case of negative binomial) p(1 − p)n−1 where p = 1/2 is the probability of a head. The
expected payoff of the lottery is then

∞

∑
i=1

1
2
(
1
2
)
i−1
2i−1 =

∞

∑
i=1

1
2
=∞

The paradox is that no one would pay a large amount to buy this lottery with an ex-
pected payoff of∞.

Now suppose people are risk averse and not risk neutral (who would then play
actuarially fair games). Suppose they have log utility ln(W). Then, a fair price π is ∋
(such that):

ln(π) =
∞

∑
i=1

1
2
(
1
2
)
i−1

ln(2i−1) =
∞

∑
i=1
(
1
2
)
i
(i − 1) ln 2 = ln 2

Hence, π = 2 which is amuch smaller sum to pay given the risk aversion, and can thus
explain the paradox!

3.3.2 Value of Information

Suppose a market offers shares that give rise to a payoff (RV Xi) for every $1 invested
in a future state (event) i share as follows. There are N finite states of the world, thus
N types of shares:

$payoff = { Xi with probability pi
0 with probability (1 − pi)
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An investor or individual has a budget of $1 with which to allocate amount ai ≥ 0
to the ith share such that∑Ni=1 ai = 1. His/her payoff if state j occurs next period is $ajXj.
He/she maximizes his/her expected utility subject to budget constraints, i. e.

max
ai

N
∑
i=1

piU(aiXi) s. t.
N
∑
i=1

ai = 1 and ai > 0 ∀i

If Lagrangian function L ≡ ∑Ni=1 pi U(aiXi) + λ(1 − ∑i ai) is maximized, assuming
the budget constraint is exactlymet, and that all ai > 0, then the necessary conditions
(FOCs) are

piXiU
′(aiXi) = λ,∀i, and

N
∑
i=1

ai = 1

For log utility U(⋅), the necessary FOCs are

piXi
1

aiXi
=
pi
ai
= λ,∀i, and

N
∑
i=1

ai = 1

Solving, λ = ∑Ni=1 pi = 1, so ai = pi. Then, the maximum value of the objective function
is

N
∑
i=1

pi ln(piXi) =
N
∑
i=1

pi ln pi +
N
∑
i=1

pi lnXi (3.1)

Now, the uncertainty in the problem has to do with which state i will eventually
occur. Suppose the investor is given an information set onwhich state occurred before
he or shemakes an investment decision about ai. Suppose there is perfect information
(or perfect knowledge) about which state i would occur. Then, the investor’s ex-ante
objective function, given this full information each time before he or she decides, is

max
ai

E(U(aiXi)|X) =
N
∑
i=1

pi ln(1 × Xi) =
N
∑
i=1

pi ln(Xi) (3.2)

where all $1 budget is allocated to state i when X = Xi.
Maximum expected log utility is obtained in (3.1) without information while that

in (3.2) is obtained with full information from X. The information value (in util sense,
not $ sense here) is therefore

[
N
∑
i=1

pi lnXi] − [
N
∑
i=1

pi ln pi +
N
∑
i=1

pi lnXi] = −
N
∑
i=1

pi ln pi > 0
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In statistical information theory, −∑Ni=1 pi ln pi is also called the entropy of RV X
and is a measure of the uncertainty embodied in the randomness of X. For exam-
ple, X = 2 with probability 0.5 and X = 1 with probability 0.5 has an entropy of
− ln 0.5 = 0.6931. Another RV has distribution X = 2 with probability 0.9 and X = 1
with probability 0.1. This has entropy −0.9 ln 0.9 − 0.1 ln 0.1 = 0.3251. Hence the for-
mer X is a lot more uncertain than the latter in that one is more able to predict the
latter with the higher probability of which value will occur.

3.4 Single-Period CAPM

The Sharpe–Lintner CAPM is a single-period model. From about 1964 until the 1980s,
it was a predominantmodel for understanding the pricing of stocks as well as projects
through extensive use of its concept of systematic risk in beta. It is still relevant, al-
though there have been much improvements in the understanding of how stocks are
priced, including behavioral aberrations and extensions to multi-factor models. The
CAPM is a single-factor model relying on the market index to explain systematic vari-
ations in stock returns.

Suppose there areN risky stocks and 1 risk-free bondwith risk-free rate rf over the
period.Utility function is strictly increasing and concave.We shall assume either stock
return rates ri’s are jointly normally distributed5 (which means any portfolio or linear
combination of return rates is normally distributed) and/or the investor has quadratic
utility functions.

Investor kmaximizes expected utility based on current wealthW0 and investment
decisions or portfolio weights (percentage investment) on the stocks, xi:

max
{xi}i=1,2,...,N E[U(W1)]

whereW1 = W0(1 + rP), rP being the portfolio return rate, and

rP =
N
∑
i=1

xiri + (1 −
N
∑
i=1

xi)rf

= rf +
N
∑
i=1

xi(ri − rf )

= rf + x
T (r − rf 1)

5 Amore general class that includes the normal distribution is the class of elliptical distributions. This
assumption has the disadvantage thatW1 may become negative. We can assume that the joint normal
distributions of ri’s produce a negligibly small probability as such, or else useW1 = W0 exp(rP)where
rP is lognormally distributed. However, in the latter, linear combinations of lognormal returns in a
portfolio do not yield exactly a lognormal portfolio return.
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Note that the weights of the N stocks and the risk-free bond sum to 1. In the last step,
we switch to matrix6 notations, where xT = (x1, x2, . . . , xN ), rT = (r1, r2, . . . , rN ), and
1T = (1, 1, . . . , 1)1×N . Note also that the investor’s portfolio defined above consists of
optimal portions of the N risky stocks and also a portion on the risk-free bond.

For the portfolio return rP which is normally distributed, note that

E(rP) = μP = rf + x
T (μ − rf 1),

var(rP) = σ
2
P = x

TΣx

and

cov(r, rP) =(

cov(r1, rP)
cov(r2, rP)

...
cov(rN , rP)

) = Σx

where Σ is the covariance matrix of the N risky stock returns. Note the above results
are obtained even when the portfolio return rP contains a non-zero fraction (1 − xT1)
of the risk-free bond.

Either the multivariate normal return distribution assumption or the quadratic
utility assumption has the effect of ensuring that the investor’s preference ultimately
depends only on the mean and variance of the return distribution. In the multivariate
normal assumption, the third and higher wealth level moments in a Taylor expan-
sion of E[U(⋅)] (assuming the expansion is convergent) based on normally distributed
wealthW1 at end of period, can be expressed as functions of the first two moments of
the normal distribution. Hence, for any arbitrary preferences, the VM expected utility
E[U(W1)] of end-of-period wealth depends only on the mean and variance. However,
there has been strong empirical evidence that stock return distributions tend to be
skewed and have tails fatter than those of a normal distribution.

In the quadratic utility assumption, investor’s preference depends only on the
mean and variance of returns because third and higher orders of derivatives of E[U(⋅)]
in a Taylor expansion of U(⋅) are zeros. Thus, only the first and second moments of
return enter into the VM expected utility E[U(W1)] of end-of-period wealth. However,
quadratic utility has the disadvantage that at some wealth level that is sufficiently
high, expected utility may decrease, thus violating a standing axiom of nonsatiabil-
ity. Moreover, there is increasing absolute risk aversion with respect to wealth, which
is not very intuitive.

Despite the caveats discussed above where we see that mean–variance optimiza-
tion (as in Markowitz’s portfolio optimization)7 may be inconsistent at times with ex-

6 For microeconomic analysis using matrix operations, see Takayama (1985).
7 H.Markowitz (1952), Portfolio Selection, The Journal of Finance, 7, 77–91. See also Huang and Litzen-
berger (1988) for a rigorous discussion of portfolio optimization mathematics.
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pected utility maximization, it is still a very powerful framework to derive meaningful
and positive financial economic theories and understanding. We express E(U) as a
function of only μP and σ2P for the mean–variance analysis. Thus, we maximize VM
expected utility, E[U(W1)] ≡ V(μP , σ2P).

The FOC becomes (in vector notation)

𝜕V
𝜕x N×1
= 0 = 𝜕V
𝜕μP
(μ − rf 1) +

𝜕V
𝜕σ2P
(2Σx) (3.3)

Rearranging,

x = − 1
2
(
𝜕V
𝜕μP
𝜕V
𝜕σ2P

)Σ−1(μ − rf 1)

= tΣ−1(μ − rf 1) (3.4)

where t = − 12 (
𝜕V𝜕μP𝜕V𝜕σ2P ) > 0 since

𝜕V
𝜕μP
> 0 due to nonsatiation, and 𝜕V𝜕σ2P

< 0 due to risk aver-

sion. Thus t = 1
2 (
𝜕σ2P
𝜕μP
) > 0 (holding V constant), which is a measure of risk tolerance.

We see that investors optimally invest in only two funds. The first fund is a portfo-
lio of stocks as given by x in Eq. (3.4), while the second fund is $W0(1−xT1) in risk-free
bonds. This is sometimes called a two-fund separation theorem, and implies that un-
dermean–variance optimization, investors can achieve optimality by simply investing
in two properly construed funds rather than having to worry about deciding weights
for every stock. This has in the past beenused as an argument for passivemarket index
fund investment, such as in Vanguard.

The model is actually not quite complete yet. The optimization above is for a kth
investor in themarket. Suppose there are Z number of non-homogeneous or heteroge-
neous investors in the market. When all their stock demands are aggregated, the total
vector dollar demand on risky stocks is given by

Z
∑
k=1

xkW
k
0

where superscript k denotes association of the quantity with the kth investor. We al-
low different investors to have different original wealth, hence Wk

0 . They may also
have different utility functions V(μP , σ2P), hence different t

k values although they all
have the same information of market return parameters, μ and Σ. Suppose the total
market wealth is M = ∑Zk=1W

k
0 , we can then define N × 1 vector of weights xM =

∑Zk=1 xkWk
0

M . Thus, xM acts like the optimal portfolio of stocks of a representative investor
(or the aggregated average of all non-homogeneous investors), when aggregate de-
mand is equated to aggregate supply of dollars for each security, i. e. the ith element
of∑Zk=1 xkW

k
0 equated to the ith element of xMM.
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This equation of demand and supply is called an equilibrium condition and is
necessary for any good solution to a problem involving the whole set of investors in
the market. xM is the equilibrium market portfolio (weight vector).

xMM =
Z
∑
k=1

xkW
k
0 =

Z
∑
k=1

tkWk
0Σ
−1(μ − rf 1)

Thus

xM = (
∑Zk=1 t

kWk
0

M
)Σ−1(μ − rf 1)

which implies

ΣxM = cov(r, rM) = t
M(μ − rf 1) (3.5)

where tM = (∑
Z
k=1 tkWk

0
M ) > 0 is the market-averaged or representative investor’s risk

tolerance, and rM = rf + xTM(r − rf 1) is the market portfolio return. The market portfolio
in this case consists of a positive supply of all risky stocks as well zero net supply of
the risk-free bond. We may sometimes distinguish the risky part as the risky market
portfolio. It is seen that cov(ri, rM) = cov(ri,∑

N
j=1 xjrj),∀j, where x

T
M = (x1, x2, . . . , xN ).

Multiplying by xTM , Eq. (3.5) becomes

xTMΣxM = σ
2
M = t

M(μM − rf )

or tM =
σ2M
(μM − rf )

(3.6)

Note that xTM(μ − rf 1) = x
T
Mμ − rfX

T
M1 = μM − rf as the expected risky market portfolio

return is E(rM) = μM , and xTM1 = 1 with net zero borrowing and lending.
Substituting Eq. (3.6) into Eq. (3.5), we obtain

μ − rf 1 =
ΣxM
σ2M
(μM − rf ) (3.7)

Eq. (3.7) is the securities market line (SML) of the CAPM. Its ith element is

E(ri) − rf = βi(E(rM) − rf ) (3.8)

where βi =
cov(ri ,rM )

σ2M
.

Equation (3.8) says that the expected excess return of any security is equal to a
risk premium (required compensation by a risk-averse investor for holding risky stock)
which is proportional to its beta, βi, a measure of its systematic risk. Since systematic
risk cannot be diversified away, the CAPM shows importantly that only diversifiable
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risk does not cost, but non-diversifiable risk fetches a positive risk premium. This pos-
itive risk premium is the market risk premium, (E(rM) − rf ).

From Eq. (3.4), for a mean-variance efficient portfolio (i. e. a portfolio return with
minimum variance σp given mean μp),

Σx = t(μ − rf 1) and σ2p = x
TΣx = t(μp − rf )

The last equation is a parabola of μp versus σ2p.
Similarly fromEq. (3.4),wehave xT = t(μ−rf 1)TΣ−1, andevaluate xT (μ−rf 1) = μp−rf

as

t(μ − rf 1)
TΣ−1(μ − rf 1) = td

where d = (μ − rf 1)TΣ−1(μ − rf 1) is a constant. Thus t = (μp − rf )/d.
Then,

σ2p = t(μp − rf ) = (μp − rf )
2/d or (μp − rf )

2 = dσ2p

The last equation is a hyperbola of μp versus σp.8 The hyperbola is shown in Figure 3.3.

Figure 3.3:Mean-Variance Risky Portfolio Efficient Frontier.

Curve A-B-M-V-C is the hyperbola of μp versus σp. Portfolio V is called the minimum
variance (or minimum standard deviation) portfolio as it is formed of all the N risky
stocks and has the minimum variance. Segment of curve A-B-M-V is called the mean-
variance portfolio efficient frontier as no other risky portfolio can be formed whereby

8 See Robert C. Merton (1972), An analytic derivation of the efficient portfolio frontier, The Journal of
Financial and Quantitative Analysis, 7 (4), 1851–1872.
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its variancewould be smaller than that on the efficient frontier for the same given level
of return. Segment VC is the inefficient frontier as for any portfolio on this frontier,
there is another portfolio on the efficient segment with the same variance but higher
mean return.

A geometrical interpretation of the CAPM can be done using this frontier. Sup-
pose an investor invests some amounts in the risk-free asset with return rate rf and
the rest of the wealth in a frontier portfolio. Clearly, his/her optimal risk-return would
now lie on the straight line that has intercept at rf and has the point of tangency atM
on the hyperbola. If all investors behave the same,M is the equilibrium market port-
folio. Points on the tangent line below M comprises lending at the risk-free rate and
buying the risky market portfolio M. Points on the tangent line above M comprises
borrowing at the risk-free rate and buying the risky market portfolioM with leverage,
i. e. investing own wealth plus borrowed money. This tangent line is also called the
Capital Market Line (CML). The equation for the CML is

μp = rf +
E(rM) − rf

σM
σp

where the mean and standard deviation of market portfolio M’s return are μM and σM .

3.4.1 Estimation

The CAPMmodel or the Eq. (3.8) is testable if we can observe the riskymarket portfolio
return as well as the returns of individual stocks or returns of portfolios of stocks.
(CAPM is typically a model used on stock returns instead of general securities such
as bonds or options as these other assets have different return characteristics that are
not consistent with having a normal distribution.)

Equation (3.8) can be expressed as a regression equation that implies (3.8), i. e. is
consistent with (3.8). If returns are multivariate normal, then this regression specifi-
cation is plausible, viz.

rit = rft + βi(rmt − rft) + eit , ∀i, t (3.9)

where E(eit) = 0, and we have added time indexing for the risk-free rate rft and risky
market portfolio return rmt in order to allow the rates to vary over time. The famil-
iar CAPM equation we usually see is the expectation condition (take expectation of
Eq. (3.9):

E(rit) = rft + βiE(rmt − rft) (3.10)

that holds good for each time period t. In other words, this CAPM is actually a single-
periodmodelwhere the cross-sectional expected returns of stocks are related to the ex-
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cess expectedmarket portfolio return. It has become common for empirical reason, as-
suming stationary processes in the returns, to treat the estimation and testing of CAPM
in the time series version of Eq. (3.9) rather than just the expected condition above.

In Eq. (3.9), when we take the covariance of rit with rmt, we obtain

cov(rit , rmt) = cov(rft , rmt) + βi var(rmt) + cov(eit , rmt)

Since rft is supposed to be a constant at t, cov(rit , rft) = 0. By the CAPM model in
Eq. (3.8), in order for βi =

cov(ri ,rM )
σ2M

, we must have cov(eit , rmt) = 0 for each i and t. We
can re-write Eq. (3.9) in a simple linear regression form as:

rit − rft = αi + βi(rmt − rft) + eit , ∀i, t (3.11)

whereαi = 0and cov(eit , rmt) = 0 for each i, t. Hence, Eq. (3.11) provides forOLS estima-
tors that are BLUE under the classical conditions. In particular, estimate α̂i should not
be significantly different from zero under equilibrium situations, and then the stock
i’s beta or βi is estimated as:

̂βi =
∑Tt=1(Xt − X)(Yt − Y)
∑Tt=1(Xt − X)2

where Xt = rmt − rft, Yt = rit − rft, X =
1
T ∑

T
t=1 Xt, and Y =

1
T ∑

T
t=1 Yt . ̂βi is BLUE. It is also

consistent, converging asymptotically to βi =
σim
σ2m
.

The regression version in Eq. (3.11) involves regression of excess stock i return rate
rit − rft on excess market return rate rmt − rft, and a constant. αi is also called the alpha
of stock i. It is theoretically 0 in equilibrium, but could become positive or negative
in actual regression. The interpretation of the latter then becomes one of financial
performance:
αi > 0, positive abnormal return and
αi < 0, negative abnormal return.

In the investment context, suppose rit is the return of a stock or a portfolio over time.
Positive alpha indicates that the stock or portfolio is providing returns above normal
or above the equilibrium which according to CAPM αi should be zero. Negative alpha
indicates that the stock or portfolio is providing returns below normal or below the
equilibriumwhich according to CAPM αi should be zero. Strictly speaking, if the CAPM
is plausible, then this disequilibriumoccurs only for a small number of stocks over the
sample period in which alpha is measured. Stocks with positive (negative) alphas are
said to outperform (underperform) their benchmark returns, i. e. their ex-post realized
returns exceed (undershoot) significantly their ex-ante expected returns as indicated
by the benchmark model, in this case the CAPM (although other benchmark models
may be used.)
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Alpha is also called the Jensen measure in a portfolio context. Good quantitative
strategy portfoliomanagers hunt for stocks with significant positive alphas in order to
form their super-performing portfolio. The advantage of using Eq. (3.11) is not only to
provide for possibility of some stocks in disequilibrium situations and uncovering of
abnormal returns in the form of alphas that are significantly different from zero, but
the use of excess returns as dependent and explanatory variables purges any infla-
tionary components in the return rates. The theoretical model deals strictly with real
rates of returns, so it is good to use real excess rates of returns for this reason.

There are some practical issues. What is the ideal sampling size for estimating
betas, alphas, and the other risk and performance measures? It is observed that in
practice one can only obtain in any case a finite sample. Between 5 years of monthly
data and 10 years ofmonthly data, itmaymake sense to use only 5 years or 60monthly
sampling points. This is because the market changes over time in the sense of chang-
ing its distribution so that beta or the slope may also change over time. An example
is when there were five years of recession followed by five years of boom. In such a
case, taking a sample from the entire 10 years for a simple regression may provide in-
correct inferences. How long should a time series be used in the regression is however
an empirical issue as there is no rigid theory about it. Some studies also recommend
adjustments to the estimation of beta to minimize sampling errors. For details, see
Blume (1975).9

3.4.2 Application: CAPM Regression

Devon Energy Corporation is a large American company that engages in the acquisi-
tion, exploration, development, and production of natural gas and oil in the United
States and Canada. It is involved in the transportation and processing of the oil and
natural gas.Monthly stock returndata ofDevonEnergy andof the Standard andPoor’s
(S&P) 500 index return are collected in the sampling periods January 2005 to De-
cember 2009, and January 2010 to December 2014. Devon Energy Corporation stock
is traded on the New York Stock Exchange. The S&P 500 is a capitalization-weighted
stockmarket index comprising 500 of the largest companies listed on stock exchanges
in theU. S. The risk-free return rate is theU. S. 1-month Treasury bill rate obtained from
the Federal Reserve statistics. The monthly return rates of the stock are obtained by
taking the natural logarithms of the end-of-month stock prices plus any dividends is-
sued during that month relative to the previous end-of-month prices. The S&P 500
index is used as a proxy for the market portfolio. Thus the market portfolio returns
are obtained by taking the natural logarithms of the end-of-month S&P 500 indexes
relative to the previous end-of-month S&P 500 indexes.

9 M. Blume (1975), Betas and their regression tendencies, The Journal of Finance, 10 (3), 785–795.
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To compute the excessmonthly stock returns, we subtract from themonthly stock
returns the monthly 1-month risk-free return rates. Similarly, to compute the excess
monthly market returns, we subtract from the monthly market portfolio returns the
monthly 1-month risk-free return rates. The linear regression model using Eq. (3.11) is
employed to estimate alpha and beta.

The case of Devon Energy Corporation is illustrated as follows. The dependent
variable is the monthly excess return rate of the stock.

The formulae for the various reported statistics in Table 3.1 are explained as fol-
lows. The number of regressors, k = 2, as shown by number of explanatory variables
in the Variable column. α̂ is estimated coefficient of constant term in the table. β̂ is
slope estimate and is reflected as coefficient of the excess market return explanatory
variable. The standard error of α̂ is

σ̂e√
1
T
+

X̄2

∑Tt=1(Xt − X̄)2

where we use Xt = rmt − rft . The standard error of β̂ is

σ̂e√
1

∑Tt=1(Xt − X̄)2

Table 3.1: Regression of Monthly Excess Stock Return of Devon Energy on Monthly Excess Market
Return, Jan 2005–Dec 2009.

Variable Coefficient Std. Error t-Statistic Prob.

Constant 0.0141 0.0108 1.307 0.196
Excess Market Return 1.1871 0.2278 5.211 0.0000∗∗∗

R-squared 0.3189 F (d. f. 1,58)-statistic 27.16
Adjusted R-squared 0.3072 Prob(F -statistic) 0.0000∗∗∗

S. E. of regression 0.0832 Sum squared resid. 0.4013

Note: ∗∗∗ indicates significance at the 0.1% level whether one-tailed or two-tailed tests.

The SSR, or sum of squared residuals, is SSR = ∑Tt=1 = ê
2
t . The standard error of e,

“S. E. of regression”, is σ̂e = √
1

T−2SSR.

“F-statistic” in the table is Fk−1,T−k =
R2/(k−1)
(1−R2)/(T−k) . This is the test statistic under the

null hypothesis H0 : αi = 0, βi = 0 for k = 2. For the case k = 2, the t-statistic for β̂i,
is also the square-root of the F1,T−k statistic where the first degree of freedom in the
F-statistic is one, i. e. t2T−k = F1,T−k . This result does not generalize to k > 2. The“Prob
(F-statistic)” refers to the p-value of the computed F1,58 test-statistic. This p-value is the
probability of the F1,58 RV exceeding the computed statistic. The smaller this p-value,
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the less likely the null H0 : αi = βi = 0 is true. So if we set the significance level as
0.1%, we would only accept H0 if the p-value is larger than this critical value of 0.1%
or 0.001. By setting a lower significance level, we establish a lower type I error. In the
above, clearly the null hypothesis is rejected.

3.4.3 Interpretation of Regression Results

What is the OLS estimate of alpha? α̂i = ri − rf − β̂irm − rf , where the bar denotes the
sampling average. From Table 3.1, alpha was not significantly different from zero at
10% significance level. In the latter period as seen in Table 3.2, estimated alpha is
negative at −0.0143 with a two-tailed p-value of 0.0607. It is significantly negative at
a test significance level of 10%. Thus the stock appeared to underperform in the pe-
riod after the global financial crisis of 2008–2009. Another possible interpretation is
that the benchmark CAPM model was not adequate and the negative alpha could be
explained by missing factors.

Table 3.2: Regression of Monthly Excess Stock Return of Devon Energy on Monthly Excess Market
Return, Jan 2010–Dec 2014.

Variable Coefficient Std. Error t-Statistic Prob.

Constant −0.0143 0.0075 −1.913 0.0607
Excess Market Return 1.3144 0.1943 6.764 0.0000∗∗∗

R-squared 0.4409 F (d. f. 1,58)-statistic 45.75
Adjusted R-squared 0.4313 Prob(F -statistic) 0.0000∗∗∗

S. E. of regression 0.0558 Sum squared resid. 0.1808

Note: ∗∗∗ indicates significance at the 0.1% level whether one-tailed or two-tailed tests.

From Tables 3.1 and 3.2, it is noted that the t-statistics of the beta estimates in both
periods are above 5 with p-values lesser than 0.00005, so the betas are certainly sig-
nificantly positive. The estimated betas of the Devon Energy stock was 1.1871 in the
sample period Jan. 2005–Dec. 2009, but increased to 1.3144 in the sample period Jan.
2010–Dec. 2014. Thus, the stock return is highly positively correlated with market
movements. The F-statistics with degrees of freedom k − 1 = 2 − 1 = 1, and T − k =
60−2 = 58, are 27.16 and 45.75, respectively, in both periods. Notice that the higher the
coefficient of determination R2, the higher the F-value. This is a test on null H0 : αi =
βi = 0. Thus, a good fit with reasonably high R2’s of 0.3189 and 0.4409, respectively,
imply that ̂αi and ̂βi fit well and are unlikely to be zero. Therefore, H0 : αi = βi = 0 is
rejected since p-value for the F1,58 test-statistic is < 0.00005 for both periods.

The estimate of the stock’s systematic risk is
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̂βi√(1/T − 1)
T
∑
t=1
(Xt − X)2

where Xt = rmt − rft .
The estimate of the stock’s unsystematic risk is σ̂e = √RSS/(T − 2). From the stan-

dard error of regression, σ̂e, and the standard error of ̂βi in Table 3.1, we can com-
pute ∑Tt=1(Xt − X̄)

2 = 0.1334. The systematic risk of the stock is thus estimated as
1.1871 ×√0.1334/59 = 0.0564 or 5.64%. Unsystematic risk is estimated as σ̂e = 0.0832
or 8.32%. It is seen that idiosyncratic risk forDevonEnergyduring the 2005 to 2009pe-
riod is larger than the systematic risk induced by market movements. From Table 3.2,
systematic risk of the stock is similarly estimated as 1.3144 × √0.0825/59 = 0.0492 or
4.92%. Unsystematic risk is estimated as σ̂e = 0.0558 or 5.58%. It is seen that idiosyn-
cratic risk for Devon Energy during the 2010 to 2014 period is only slightly larger than
the systematic risk.

The regression line as a result of the OLS method can be written as:

Excess Stock Return = α̂i + β̂i Excess Market Return

This linear relationship, or the line if expressed graphically, is called Devon Energy
Corporation’s (DVN) Security Characteristic Line (SCL). It shows the slope as Devon
Energy stock’s beta, the intercept as its alpha, and indications of unsystematic risks as
dispersions of the returns about the SCL. We produce such plots in Figures 3.4 and 3.5
for the two periods.

Figure 3.4: DVN Characteristic Line 2005–2009.
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Figure 3.5: DVN Security Characteristic Line 2010–2014.

Figure 3.6: Fitted residuals in Tables 3.1 and 3.2.

The stock’s SCL should not be confused with the market’s security market line (SML)
which is represented by a graph of expected returns versus their corresponding be-
tas. We also plot the estimated (or fitted) residuals of the SCL in Figure 3.6. The fitted
residuals êi from Table 3.1 in period 2010–2014, res1, and the fitted residuals êi from
Table 3.2 in period 2005–2009, res2, are shown in Figure 3.6. The fitted residual plot
allows a visual inspection of whether the residuals follow the classical assumptions
of zero mean and constant variance. In Figure 3.6, the higher volatility of the fitted
residuals in the earlier 2005–2009 period is seen. There also appears to be clustering

 EBSCOhost - printed on 2/8/2023 6:26 PM via . All use subject to https://www.ebsco.com/terms-of-use



3.4 Single-Period CAPM | 83

of higher volatility around 2005 to 2006. It could be that the CAPM model is not well
specified during such a period or that the classical assumptions about the residuals
are not appropriate.

3.4.4 Testing

The two-parameter CAPM model or CAPM Eq. (3.8) has been tested in various ways.
Black, Jensen, and Scholes (BJS) (1972)10 used the equal-weighted portfolio of all
stocks traded on the New York Stock Exchange as proxy for the market portfolio. By
sorting the stocks into ranked betas, they also formed 10 portfolios of these stocks
according to the beta ranks. Stocks with the largest betas were put into the first port-
folio; then the next ranked beta stocks were put into the second portfolio, and so on.
The idea in grouping the stocks into portfolios before measuring the betas of the port-
folios (instead of betas of individual stocks) is to reduce measurement or estimation
errors of the betas. The portfolio betas are estimated by averaging the betas of the
individual stocks within each of the 10 portfolios. This has the effect of averaging out
(presumably random) sampling errors of beta estimates of each stock within each
portfolio. The study also considered the higher likelihood of very high betas or very
low betas due to random chance being grouped together, producing selection bias
in the portfolio grouping and portfolio beta estimation. This is mitigated by estimat-
ing each stock beta (before averaging into portfolio betas) using lagged 60 months
for ranking and sorting into portfolios. Subsequent months’ returns are then used to
re-estimate betas of the portfolios. BJS tested the CAPM in Eq. (3.8) using both a time
series approach and a cross-sectional approach.

In the time series approach, BJS ran regressions on each portfolio based on
Eq. (3.11) and tested if the estimated αi for each portfolio i was statistically not sig-
nificantly different from zero. They found that the estimated intercept or α̂i were
consistently negative for the high-beta (β̂i > 1) portfolios and consistently positive for
the low-beta (β̂i < 1) portfolios. BJS also performed cross-sectional regression between
the returns on the 10 portfolios and their estimated betas for different holding periods.
There was some evidence of linearity between the average monthly portfolio returns
and the portfolio betas, indicating significantly positive risk premium of E(rmt − rft) as
in Eq. (3.8).

The cross-sectional regression procedures are further improved by Fama-MacBeth
(1973).11 For each month t of the test period, the beta of each stock is estimated using

10 F. Black, M. Jensen, and M. Scholes (1972), The Capital Asset Pricing Model: Some Empirical Tests,
Studies in the Theory of Capital Markets, Praeger, New York, 79–121.
11 E. F. Fama and James D. MacBeth (FM) (1973), Risk, return, and equilibrium: empirical tests, The
Journal of Political Economy, Vol. 81, No. 3. (May–June, 1973), 607–636. See also E. F. Fama and James
D. MacBeth (1974), Tests of the multiperiod two-parameter model, Journal of Financial Economics, 1,
43–66.
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data from earlier months. At t, the sorted portfolios are used to obtain the average es-
timated beta for each portfolio j of stocks. This portfolio j beta, β̂jt, at t is then used
in the cross-sectional regression Eq. (3.12), i. e. regression across portfolio returns j =
1, 2, . . . ,N at t. FM also used other cross-sectional explanatory variables at t besides β̂jt,
including (β̂jt)2 andalso estimates of the standarddeviationof the residual returns, σ̂jt .

rjt − rft = γ0t + γ1t β̂jt + γ2t(β̂jt)
2 + γ3t σ̂jt + ηjt (3.12)

where ηjt is the residual error of the cross-sectional regression at t. The OLS estimates
of γ̂0t, γ̂1t, γ̂2t, and γ̂3t are collected for each t in the test period. These formed time
series of N months each in the test period. The t-statistics were then computed to test
if themean of each of these time series was zero. For each t, γ̂0t should be zero accord-
ing to CAPM. But since the estimated γ̂0t is a RV with small sample errors, treating
each time estimate as a stationary independent RV in the time series, the t-statistic
testing the samplemean of this time series would indicate if indeed its expected value
is zero according to CAPM.

Likewise, for each t, γ̂1t should be the expected market risk premium according
to CAPM. But since the estimated γ̂1t is itself a RV, treating each time estimate as a
stationary independent RV in the time series, the t-statistic testing the sample mean
of this time series would indicate if indeed its expected market risk premium is not
zero but positive according to CAPM. By CAPM, the t-statistics for the time series tests
of the means of sampling estimates γ̂2t, and γ̂3t should indicate expected values of
zeroes. In general there was support of the CAPM with data from the 1940s through
the 1970s.

We started off in the estimation section by stating that the CAPM model or the
Eq. (3.8) is testable if we can observe the riskymarket portfolio return.Wenote that the
literature hasmostly employed a proxy for themarket return such as return on a broad
liquid index, e. g., S&P 500 index. Roll’s critique12 states that since we cannot actually
observe themarket portfolio return (themarket conceivably could bemuch larger than
stocks on NYSE, including global stocks, bonds, real estates, and other investment
assets), the tests cannot be conclusive. Specifically, as shown in Figure 3.3, if B is any
point on the efficient frontier, then the same CAPM equation E(ri) − rf = βi(E(rB) − rf ),
where now βi = cov(ri, rB)/ var(rB), can be obtained. In other words, if the CAPM test
does not reject the CAPM equation, then it is just a verification that themarket proxy B
lies on the efficient frontier, andnot necessarily that B is equivalent toM.Roll’s critique
leads to the understanding that all CAPM tests may be construed more appropriately
as tests that the market proxy is an efficient portfolio.13

12 Richard Roll (1977), A critique of the asset pricing theory’s tests Part I: On past and potential testa-
bility of the theory, Journal of Financial Economics, 4(2): 129–176.
13 SeeMichael R. Gibbons, Stephen A. Ross, and Jay Shanken (1989), A test of the efficiency of a given
portfolio, Econometrica, 57, 1121–1152.
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3.5 Performance Measures

The Jensen measure of portfolio performance is given by the alpha estimate in regres-
sions similar to Eq. (3.11) where excess return is used as dependent variable, and the
explanatory variablesmay include other risk factors besides the excessmarket return.
Jensen alpha is also called risk-adjusted return or abnormal return.

The Treynormeasure of portfolio performance is given by realized excess portfolio
return rate per unit of estimated beta, over the sampling period, i. e.

rpt − rft
β̂p

where subscript p denotes association with a portfolio. Conditional on the true beta,
the expected Treynor measure is E(rpt − rft)/βp. Theoretically, in equilibrium when
there is no abnormal performance as in zero Jensen measure, the expected Treynor
measure is equivalent to the expected excess market portfolio return rate. Therefore,
the realized Treynor measure shows whether a portfolio is performing better than or
equal to, or worse than the market portfolio when it is compared with the realized
excess market portfolio return rate.

It can be shown that if the Jensen measure, conditional on beta, indicates supe-
rior (inferior) performance, then the expected Treynormeasure indicates performance
better than (worse than) the market’s.

α = E(rpt − rft) − βpE(rmt − rft) > (<) 0

⇔
E(rpt − rft)

βp
> (<) E(rmt − rft)

Hence, conditional on beta, realized Treynor measure exceeding (below) realized ex-
cess market return rate is tantamount to a positive (negative) alpha.

The above performance measures are useful for well-diversified portfolios, but
could also be interpreted for individual stocks. For portfolios that are not well diversi-
fied, their total risk σp becomes important. Realized Sharpe measure or Sharpe ratio
is

rpt − rft
σ̂p

where rpt − rft is realized excess portfolio return rate per unit of estimated standard de-
viationof theportfolio from the samplingperiod. It showshowwell theportfolio is per-
forming relative to the realized capital market line with estimated slope rmt − rft/σ̂m.
Theoretically,
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E(rpt − rft)
σp
> (<)

E(rmt − rft)
σm

⇔ E(rpt − rft) −
σp
σm

E(rmt − rft) > (<) 0

⇒ E(rpt − rft) −
ρpmσpσm

σ2m
E(rmt − rft) > (uncertain) 0

⇔ α > (uncertain) 0

Hence a Sharpe ratio larger than the CML slope implies positive alpha. A smaller
Sharpe ratio does not have any certain implication about alpha. Thus, there is also
some relationship between the expected Sharpe performance measure and the other
two expected measures. All the expected measures identify superior performance
consistently with one another. The realized measures are estimates of the expected
measures and have approximately similar relationships as indicated.

There is also the appraisal ratio αp/σe, which is estimated by α̂p/σ̂e, where the
numerator is Jensen’s measure and the denominator is residual or idiosyncratic risk,
not total risk. The appraisal ratio ranks portfolios or fundswith positive alphas relative
to the specific portfolio risk. The higher the ratio, the better is the portfolio or fund for
investment, all other things being equal. An excellent discussion of some these issues
on performance measures and attribution can be found in Bodie, Kane, and Marcus
(1999).

More recently, sortino ratio has been added to the list of popular portfolio perfor-
mance measures. The sortino ratio, like the Sharpe ratio, is a return-to-risk ratio. It
has realized portfolio return rate less its expected return in the numerator, and square
root of estimated semi-variance in the denominator. The estimated semi-variance in
this case is 1

T ∑
T
t=1[min(rpt − rp,0)]2. The semi-variance is also called a lower partial

moment. It is supposed to measure the downside risk of a portfolio instead of vari-
ance that includes upside variation that strictly is not considered a risk to the investor
(ignoring the utility assumptions). Hence the sortino ratio is meant to rank a portfolio
performance as lower where its Sharpe ratio is similar to another portfolio but where
its downside risk is higher. Many popular sources of investment literature uses the
risk-free rate as the expected return rate. Strictly speaking this is incorrect. An equi-
librium asset pricingmodel accounting for the downside risk should be used to derive
the benchmark expected return.14 However, there are other issues relating to the ap-
propriate utility function supporting such downward risk pricing.

14 SeeW.W.Hogan and J.M.Warren (1974), Toward the development of an equilibrium capitalmarket
model based on semivariance, Journal of Financial and Quantitative Analysis 9, 1–12, and V. S. Bawa
and E. B. Lindenberg (1977), Capital market equilibrium in a mean lower partial moment framework,
Journal of Financial Economics 5, 189–200.
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An early study by Banz (1981)15 documented an important observation that stock
capitalization value or size matters (at least during the sampling period and in many
subsequent studies well into 2000s) during in-sample and also ex-post realized re-
turns. This is an aberration from the CAPM that prescribes the market index as the
only common factor affecting all stock returns. It is also termed the size anomaly.

We employ stock data from the Center for Research in Security Prices (CRSP)
database divided into 10 value-weighted portfolios with each portfolio containing
a decile ranked by capitalization value or firm size. Market returns (S&P 500 index
returns) and one-month U. S. Treasury bill rates of returns for the sampling period
January 2002 to December 2006 are also used. Monthly (end-of-month) return rates
are used in the regression of Eq. (3.11) for each of the portfolio.

The alphas and betas for each sized-portfolio are obtained and plotted in Fig-
ure 3.7 against the size deciles. On the horizontal axis, decile 1 denotes the smallest
capitalization portfolio while decile 10 denotes the largest capitalization portfolio.

Figure 3.7: α̂i ’s and β̂i ’s in CAPM Regressions Using Monthly Returns of 10-Sized-Portfolios in Sam-
pling Period Jan. 2002 to Dec. 2006.

In Figure 3.7, all the betas are significantly different from zero at very small p-values
of less than 0.0005. Only three of the alpha values are significantly different from zero
at the 1% significance level. It is seen that the smallest size firms in decile 1 realizes

15 R.W. Banz (1981), The relationship between return and market value of common stocks, Journal of
Financial Economics, 3–18.
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the largest positive Jensen’s alpha, while the biggest size firms in decile 10 realizes the
only negative alpha among all portfolios. This result appears to be consistent with the
empirical observations by Banz. Betas are seen to fall slightly and converge toward 1
as size increases. However, perhaps due to arbitrageurs, the size anomaly may have
weakened considerably since the 1980s.

The investment performance measures of alpha and also risk measures (system-
atic risk and total risk), however, need to be applied with care, when dealing with
hedge funds and investment strategies such as market timing.

Since the 1990s, hedge funds have become quite fashionable. These funds, unlike
traditional investment funds or unit trusts that go long andhold in selected assets over
selected horizons, can go short, rollover derivatives, and perform all kinds of invest-
ments in virtually any asset classes that are in the financial markets. Therefore, it is
not appropriate to measure the performance of hedge funds using the traditional per-
formance measures described above. The hedge funds may display very high return
to risk (Sharpe) ratio, but a lot of risks could be contained in huge negative skewness
or huge kurtosis that do not show up readily in variance. Fung and Hsieh (2001)16

have described a method using complicated lookback straddles to track these funds
performances. Research in hedge fund strategies has been especially voluminous in
recent years.

Market timing refers to the ability of funds managers to shift investment funds
into the market portfolio when market is rising, and to shift out of the stock market
into money assets or safe treasury bonds when market is falling, particularly if the
market falls below risk-free return. If a particular fund can perform in this way, then
its returns profile over time will look as follows (Figure 3.8).

Figure 3.8: Display of Timing Abilities.

16 W. Fung and D. A. Hsieh (2001), The risk in hedge fund strategies: Theory and evidence from trend
followers, Review of Financial Studies, 14 (2), 313–342.
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Note the nonlinear profile of the returns realizations over time in Figure 3.8. Suppose
we represent the above by a different set of axes as follows by squaring the X variable,
i. e. squaring the excess market returns (see Figure 3.9).

Figure 3.9: Alternative Display of Timing Abilities.

It can be seen that the existence ofmarket timing abilities in a fund portfoliowill show
up as a slope when we regress excess fund return on the square of excess market re-
turn as Figure 3.9 indicates. If there is no market-timing ability, there will be as many
points in the negative fourth quadrant, and the slope of a fitted linewill be flat or close
to zero. This idea was first proposed by Treynor and Mazur (1966).17 Many important
subsequent studies include Merton (1981).18 If we employ a multiple linear regression
using another explanatory variable that is the square of the market excess return,

rit − rft = αi + βi(rmt − rft) + γi(rmt − rft)
2 + eit

where eit is independent of rmt, then market timing abilities in a fund will show up
as a significantly positive γ̂i. Unfortunately, many mutual funds that were studied did
not display such market timing abilities.

Further Reading
Bodie, Z., A. Kane, and A. J. Marcus (1999), Investments, Fourth edition, Irwin McGraw Hill.
Huang, C. F., and R. H. Litzenberger (1988), Foundations for Financial Economics, North-Holland

Publishing.
Takayama, A. (1985),Mathematical Economics, Second edition, Cambridge University Press.
Varian, H. R. (1992),Microeconomic Analysis, Third edition, W.W. Norton.

17 J. L. Treynor andK.Mazur (1966), Canmutual funds outguess themarket?HarvardBusiness Review,
43.
18 R. C. Merton (1981), On market timing and investment performance, I: An equilibrium theory of
value for market forecasts, Journal of Business, 54, 363–406.
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4 Event Studies
Event studies in financial econometrics are about the role of information in affecting
market stock prices. Given new information (or conditional on the new information),
investors adjust their demand and supply of stocks and thus move stock prices into a
new equilibrium if indeed the information has value. If the new information is irrele-
vant or of no economic value to the stock pricing, then the stock price would remain
unchanged. The statistical tool of conditional probability is thus of great importance
in understanding the role of information. We review the fundamental Bayes’ formula,
and then discuss the critical idea of market efficiency related to asset pricing.

4.1 Set Operations

Consider the sample space Ω and events A, B, C represented by sets in the Venn di-
agram, Figure 4.1, shown below. Suppose simple sample points or elements of Ω are
shown as e1, e2, e3, e4, e5, e6. By definition, only one of the sample points can occur in
any one experimental outcome. Events may contain one or more sample points, and
as discussed in Chapter 1, are subsets of the universal set Ω. When e1 occurs, event
A is also said to occur. Likewise, when e2 occurs, event B is said to have occurred.
When e4 occurs, both events A and B are said to have occurred, and we can say that
the intersection event A ∩ B has occurred.

Figure 4.1: Venn Diagram.

De Morgan’s law in set theory states that

(A ∪ B)c = Ac ∩ Bc, and
(A ∩ B)c = Ac ∪ Bc

Event Ω\A is the same as Ac, the complement of set A. A\B is the same as A ∩ Bc.

https://doi.org/10.1515/9783110673951-004
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When e5 occurs, event Ω\(A ∪ B ∪ C) has occurred. Using the above relationship

Ω\(A ∪ B ∪ C) = (A ∪ B ∪ C)c = Ac ∩ Bc ∩ Cc

Hence, e5 ∈ Ac ∩ Bc ∩ Cc.
From the diagram, clearly A ∩ C = B ∩ C = ϕ, where ϕ is the empty or null set.

In addition, D ⊂ B, which means that if event D occurs, then B is also said to have
occurred.

Suppose there are nA\B, nB\A, nA∩B, and nΩ sample points in eventsA\B,B\A,A∩B,
andΩ, respectively. Assumeeach sample point canoccurwith equal probability. Using
the frequentist notion of probability (taking “long-run” relative frequency as probabil-
ity), the probability ofAhappening is (nA\B+nA∩B)nΩ

. That ofBhappening is (nB\A+nA∩B)nΩ
. That

of event A ∩ B happening is (nA∩B)nΩ
. Since A ∪ B = A\B +A ∩ B + B\A, where “+” denotes

union of disjoint sets, then probability of event A ∪ B is (nA\B+nA∩B+nB\A)nΩ
.

Suppose we are given the information that event B has happened. Conditional
on (or given) this information, what is the probability that another event, say A, has
happened?

The conditional probability of A given B is

P(A|B) = P(A ∩ B)
P(B)

(4.1)

which is nA∩B
nB

.
Intuitively this is correct since P(A ∩ B) = P(A|B) × P(B) = nA∩B

nB
× nB

nΩ
= nA∩B

nΩ
. For the

case of D, P(B|D) = P(B∩D)
P(D) = P(D)/P(D) = 1.

Suppose there are disjoint sets Gi, i = 1, 2, 3, . . . ,M, such that B ⊆ ⋃Mi=1Gi. Then,
Bayes’ formula is obtained as follows.

4.1.1 Bayes’ Formula

P(A|B) = P(A ∩ B)
P(B)

=
P(B ∩ A)

P(B ∩ G1) + P(B ∩ G2) + ⋅ ⋅ ⋅ + P(B ∩ GM)

=
P(B|A)P(A)

P(B|G1)P(G1) + P(B|G2)P(G2) + ⋅ ⋅ ⋅ + P(B|GM)P(GM)

=
P(B|A)P(A)
∑Mi=1 P(B|Gi)P(Gi)

(4.2)

The denominator on the right-hand side (RHS) of Eq. (4.2) exists if B ⊆ ⋃Mi=1Gi.
A stronger sufficient condition is that there is apartitionofΩby setsGi, i = 1, 2, 3, . . . ,M,
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i. e., disjoint sets Gi such that ⋃Mi=1Gi = Ω, and hence, necessarily B ⊆ ⋃Mi=1Gi. The
probability of an event B as a union of sub-events (B ∩ Gi), resulting in P(B) =
∑Mi=1 P(B|Gi)P(Gi), is sometimes called the Law of Total Probability.

4.2 Market Efficiency

The concept of (informational)market efficiencywas investigated by Fama (1970)1 and
many others. Fama surveyed the idea of an informationally efficient capital market,
and made the following famous definition: “A market in which prices always ‘fully
reflect’ available information is called ‘efficient’ ”. Three forms of the efficient market
hypothesis (EMH) are often cited. The weak-form asserts that all past market prices
or their history are fully reflected in securities prices. An immediate implication of
this version of the EMH is that charting and technical analyses are of no use in mak-
ing abnormal profit. Technical analysis and charting rely on the belief that past stock
prices show enough patterns and trends for profitable forecasting. This possibility is
opposed to the notion of stock prices “following” random walks (i. e. the next price
change is an independent random movement). When prices adjust instantaneously,
past returns are entirely useless for predicting future returns. The semi-strong form
asserts that all publicly available information, including historical prices, is fully re-
flected in securities prices. The implication is that fundamental analyses such as anal-
yses of a company’s balance sheet, income statement, and corporate news and devel-
opment, are of no use in making abnormal profit. Finally, the strong-form asserts that
all available information including public and private information is fully reflected in
securities prices. If true, the implication is that even insider information is of no use
in making abnormal profit.

We shall consider semi-strong form market efficiency in more detail. The market
is represented by the collective body of investors at time t who make the best use of
whatever available information (thus rational investors) to predict future period stock
price at time t+1, i. e., price St+1. SupposeΦt is all relevant publicly available informa-
tion available at t. Think of information Φt as a conditioning RV (i. e. a RV that takes
a certain value that is being conditioned upon) that is jointly distributed with St+1. In
addition, ΦM is the information actually used by the market, and is at most all of Φt .
The true conditional probability of next period price is P(St+1|Φt) while the market’s
conditional probability is P(St+1|ΦM). The market is semi-strong form informationally
efficient if and only if

P(St+1|ΦM)
d=P(St+1|Φt)

1 E. Fama (1970), Efficient capital markets: A review of theory and empirical work, The Journal of Fi-
nance, 25(2), 383–417.
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i. e. distributionally the same. One implication is that themarket forecastE(St+1|ΦM) =
E(St+1|Φt).

Suppose not all of the available information Φt is used by the market, and
E(St+1|ΦM) ̸= E(St+1|Φt), then the market is informationally inefficient. In this case,
all available information is not instantaneously incorporated into price at t, St . In the
next instance, when more of the information gets absorbed by the market, the price
St will adjust toward equilibrium. Hence, an informationally inefficient market will
see price adjustments over a discrete time interval, and not instantaneously, to any
substantive news.

Many tests of asset pricing in the literature employ the framework of rational
investors and (informational) market efficiency. A framework such as the Sharpe-
Lintner CAPM typically employs additional assumptions such as exogenous price
processes and an explicit or implicit homogeneous preference function (typically
a standard strictly monotone concave utility function) for all investors making up
the market. In addition, explicitly or implicitly, the von Neumann–Morgenstern ex-
pected utility hypothesis is usually employed. Aberrations or non-validation in the
test results were pointed out as evidence of market inefficiencies or sometimes coined
as market anomalies (meaning something yet to be explained). Behavioral finance
arose in this context to help explain the anomalies. It may agree with informational
efficiency, but not with the rationality framework mostly to do with the standard
preference assumption and the expected utility hypothesis. Some examples of early
anomalies were the size effect, day-of-the-week, month-of-the-year effects, value ver-
sus growth premium, and so on. Later anomalies against the implication of random
walk or approximate random walk by rational asset pricing models include contrar-
ian strategies and momentum trading profits.2 We provide an illustration of market
efficiency as follows.

Suppose at time t = 0, there was information about whether the December 2008
GM, Ford, Chrysler bailout plan of $25 billion would pass through Senate. Suppose
GM stock price at t = 0 was $3. If the bailout were successful, the stock price would
increase to either $5 or $4 at t = 1. The latter variation is due to other risk factors and
uncertainties. If the bailout were unsuccessful, the stock price would drop to either $2
or $1 at t = 1. All probabilities of the Bernoulli outcomes were 50%. Assume that the
risk-adjusted discount rate from t = 0 to t = 1 was 0. This is depicted in Figure 4.2.

If the market did not know about the outcome (i. e., did not process the informa-
tion even when it was known), then at t = 0, its expected stock price at t = 1 was
1
4 ($5+$4+$2+$1) = $3. However, if the market was informationally efficient, then at
t = 0+, its conditional (upon the bailout outcome information) expectation of price at

2 A useful undergraduate investment textbook for reference in these background readings is Bodie,
Kane, and Marcus (1999).
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Figure 4.2: Stock Price Changes Contingent on Bailout News.

t = 1 was either $4.50 if the outcome were successful or $1.50 if the outcome were un-
successful. Looking at this simple setup, it is easy to see that if at t = 0+, the stock price
did not quickly move away from $3, then the market was informationally inefficient
as it did not capture the information immediately.

4.3 Conditional Expectation

A conditional probability is constituted by a joint probability and the marginal prob-
abilities. We analyze this from a building-blocks perspective. The automakers’ story is
depicted as follows in a Venn diagram (Figure 4.3).

Figure 4.3: Venn Diagram on Automakers’ Events.

In Figure 4.3, one and only one sample point can occur, represented by the bullets. E
is the event that the automakers’ bailout is successful. We can also represent this by
a RV that is an indicator function, X (or denoted using indicator notation 1E) where
x = 1 if the bailout is successful, i. e. event E, and x = 0 if the bailout is not successful,
i. e. event EC. Let S be the event that a stock takes strictly positive prices, and the RV Y
corresponds to elements of S taking dollar values y ∈ {5, 4, 2, 1}. Let each sample point
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be a joint outcome of the automakers’ bailout and the stock price, (x, y). Note that we
may allow an event Sc to denote the firm’s bankruptcy and hence a stock price of zero.
However, in our probability model here, P(Sc) = 0.

Ω = {(1, 5), (1, 4), (0, 2), (0, 1)}. Each point occurs with equal probability 1/4. There-
fore, conditional probability

P(y ∈ S|x = 1) = P(S ∩ E)
P(E)
=
P(1, 5) + P(1, 4)

1/2
= 1

This may be a trivial exercise in verifying the framework of the Bayesian formula since
the Venn diagram clearly implies that P(S) = 1 independent of whatever the outcome
of X. We had seen that P(Sc) = 0 earlier.

Conditional expectation

E(Y |x = 1) = ∑
y∈S

yP(y|x = 1)

=∑
i
yiP(x = 1, yi)/P(x = 1)

= 5 × P(1, 5)/0.5 + 4 × P(1, 4)/0.5

= 5 × 1
2
+ 4 × 1

2
= 4.50

Similarly, we can show E(Y |x = 0) = 1.50.
In a more general setting involving two random variables X ∈ ℛ and Y ∈ ℛ, the

outcome probabilities may be represented by Table 4.1 and also the Venn diagram in
Figure 4.4. The table shows P(X = x,Y = y).

Table 4.1: Joint Probabilities of Events (x, y).

x = 1 x = 2 x = 3 x = 4 . . .

y = 1 0.02 0.03 0.01 0.05 . . .
y = 2 0.03 0.03 0.02 0.01 . . .
y = 3 0.04 0.03 0.01 0.02 . . .
y = 4 0.05 0.02 0.01 0.05 . . .
...

...
...

...
...

. . .

Sample points in the Venn diagram are (x, y). The set {x = k} denotes {(k, 1), (k, 2), . . .},
and the set {y = j} denotes {(1, j), (2, j), . . .}. Thus in amultivariable sample space, using
the Venn diagram, it is often that we use marginal variable values x = 1, x = 2, etc.
as defining sets, i. e., all elements with x = 1, or with x = 2, etc. It is easily seen that
P(Y = j) = P(1, j) + P(2, j) + ⋅ ⋅ ⋅ etc., and P(X = k) = P(k, 1) + P(k, 2) + ⋅ ⋅ ⋅ etc. P(Y = j|X =
k) = P(k, j)/P(X = k).
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Figure 4.4: Venn Diagram of Joint Probabilities.

When the probability distribution is continuous and that pdf f (x, y) is used, it is often
more convenient to employ analytical methods than use Venn diagrams which are
suitable only for relatively small discrete sets.

For continuous x ∈ R(x) and y ∈ R(y), where R(x), R(y) denote the support sets
over which the integrations take place,

EX,Y (Y) = ∫
R(x)

∫
R(y)

yf (x, y) dy dx

= ∫
R(y)

y( ∫
R(x)

f (x, y) dx)dy

= ∫
R(y)

yfY (y) dy = E
Y (y)

where fY (y) indicates themarginal pdf of RV Y integrated out from the joint pdf f (x, y).
For clarity,wehaveput superscripts on the expectationoperatorE(⋅)denoting the joint
distribution (X,Y) or else the marginal distribution Y underlying the integration.

In addition,

EX,Y (Y) = ∫
R(x)

∫
R(y)

yf (x, y) dy dx

= ∫
R(x)

∫
R(y)

y f (x, y)
fX(x)

fX(x) dy dx

= ∫
R(x)

( ∫
R(y)

yf (y|x) dy)fX(x) dx
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= ∫
R(x)

EY |X(Y |X)fX(x) dx

= EXEY |X(Y |X)

Conditional probability is just a special case of conditional expectation if we put Y =
1y≤k taking values 1 or 0. In this case

EY |X(Y |X) = ∫
R(y)

1y≤kf (y|x) dy = P(Y ≤ k|x)

It should also be noted that EY |X(Y |X) is a RV varying with X, and can be expressed as
a certain function g(X) of X.

4.3.1 Application: Value-at-Risk

Suppose RV X is distributed as N(μ, σ2) and X is the change in capital of a financial
institution as a result of market forces on its investments. If X > (<) 0, there is a
gain (loss). At (1 − q) level of confidence, the worst loss situation is v < 0 whereby
∫v−∞ f (x)dx = q where the left-hand side (LHS) is the area under the curve of the nor-
mally distributed X from −∞ to v. f (x) is the pdf of the normal X. By risk convention,
typically a loss is expressed as a positive number. Hence the absolute value |v| is called
the investment’s (absolute) Value-at-Risk (VaR) at the (1 − q) level of confidence.

Suppose |v| is established as the VaR(q) at qth percentile, or equivalently VaR at
the (1 − q) level of confidence. The expected loss conditional on hitting the VaR or the
tail conditional expectation is by convention the absolute value of

E(X|X < v) =
∫v−∞ xf (x)dx

∫v−∞ f (x)dx

In risk language, this quantity is also called the Conditional Value-at-Risk (CVaR)
or Expected Shortfall. We shall find this quantity as follows, remembering that
X ∼ N(μ, σ2).

First, let z = x−μ
σ , so z ∈ RV Z ∼ N(0, 1). Now,

E(X|X < v) = E(μ + σZ|μ + σZ < v)

= μ + σE(Z|Z < v − μ
σ
)

The second step is to find E(Z|Z < v′) where v′ = v−μ
σ .
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Let c = 1
√2π . Since

d(ce−
1
2 z

2
) = −z(ce−

1
2 z

2
)dz

integrating over (−∞, v′], we have

[ce−
1
2 z

2
]v
′
−∞ = −

v′
∫
−∞

zce−
1
2 z

2
dz + k

Therefore

ϕ(v′) − 0 = −
v′
∫
−∞

zce−
1
2 z

2
dz + k

As v′ ↑ +∞, the LHS approaches zero. First term on the RHS approaches the mean of
the standard normal RV, which is zero. Therefore, constant of integration k = 0. Hence

v′
∫
−∞

zce−
1
2 z

2
dz = −ϕ(v′)

Then,

E(Z|Z < v′) =
∫v
′
−∞ zf (z)dz

∫v
′
−∞ f (z)dz

= −
ϕ(v′)
Φ(v′)

Thus,

E(X|X < v) = μ − σ ϕ(v
′)

Φ(v′)
< v

4.4 Moving Across Time

So far, we have dealt with joint pdf f X,Y (x, y) and conditional pdf f Y |X(y|x)where each
of these yields a certain number inℛ1. Random variables X and Y occur at one point
in time. When we are in a single time period or instance, conditioning is quite simple
using the conditional probability rule in Eq. (4.1) or the extended Bayes’ formula in
(4.2). It all happens within the same time–space and it is easy to visualize on the same
Venn diagram.
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However, when events unfold across time, more apparatus is needed.3 To gener-
ate somemore serious results involving conditional probability distributions (over and
above the conditional probabilities of events shown earlier), and which leads to mar-
tingale theory at a deeper end of probability theories and applications,weneed amore
formal structure and architecturewith regard to the probability space and σ-fields.We
shall more explicitly relate σ-fields to information sets.

First, it is needful to explain some ideas about information structure and infor-
mation sets. Suppose the sample space is Ω = {ω1,ω2,ω3}. The largest field or algebra
is the set

ℱb = {ϕ,Ω, {ω1}, {ω2}, {ω3}, {ω1,ω2}, {ω1,ω3}, {ω2,ω3}}

consisting of 23 = 8 events Ei ∈ ℱ . It is also called a field generated by {{ω1}, {ω2}, {ω3}}
which means the smallest field containing {ω1}, {ω2}, and {ω3}. Thus we can always
findafield bypicking a subset ofΩ andusing it to generate a field satisfying conditions
(1a), (1b), and (1c) of Chapter 1.

Obviously, the bigger the subset, the bigger the generated field. Fields will always
includeϕ andΩ. The largest field associatedwith sample spaceΩ, i. e. generated byΩ,
will contain all elements of Ω and all possible unions of these elements, as well as ϕ.
In a continuous state space, ℱ will be a σ-field. Note that in the above case, ℱb = ℱ ,
the field generated by Ω. The smallest field is ℱ0 = {ϕ,Ω}.

A smaller field than ℱb could be ℱa = {ϕ,Ω, {ω3}, {ω1,ω2}}, being generated by
{{ω3}, {ω1,ω2}}. The fields or algebras are collections of subsets of Ω or more conve-
niently termed as collections of events.

Let there be two time periods, t = 1 followed by t = T = 2. For events Ei ∈ ℱb at
t = 2,

E0 ≡ e
b
0 = ϕ with P(eb0) = P(ϕ) = 0

EΩ ≡ e
b
Ω = Ω with P(ebΩ) = P(Ω) = 1

E1 ≡ e
b
1 = {ω1} with P(eb1 ) = P({ω1}) = p1

E2 ≡ e
b
2 = {ω2} with P(eb2 ) = P({ω2}) = p2

E3 ≡ e
b
3 = {ω3} with P(eb3) = P({ω3}) = p3

E4 ≡ e
b
4 = {ω1,ω2} with P(eb4) = P({ω1,ω2}) = p1 + p2

E5 ≡ e
b
5 = {ω1,ω3} with P(eb5 ) = P({ω1,ω3}) = p1 + p3

E6 ≡ e
b
6 = {ω2,ω3} with P(eb6) = P({ω2,ω3}) = p2 + p3

For events Ei ∈ ℱa at t = 1,

E0 ≡ e
a
0 = ϕ with P(ea0) = P(ϕ) = 0

3 See Pliska (1997) for a more detailed description of some of the concepts here.
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EΩ ≡ e
a
Ω = Ω with P(eaΩ) = P(Ω) = 1

E1 ≡ e
a
1 = {ω1,ω2} with P(ea1 ) = P({ω1,ω2}) = p1 + p2

E2 ≡ e
a
2 = {ω3} with P(ea2 ) = P({ω3}) = p3

Now, over time in the period [0,T], the information structure in the market is a
time-sequence of increasing fields or algebras such that each future field is a superset
of past fields (or past fields are subsets of future fields). An information structure can
be conveniently represented by an evolving tree in Figure 4.5 as follows. The events
corresponding to nodes on the information tree show increasing partitioning of exist-
ing sets as time moves forward into the future.

Figure 4.5: Information Structure.

Clearly, ℱ0 ⊂ ℱa ⊂ ℱb. The information structure, which is assumed to be known by
all investors at the start t = 0, says that at t = 0, there is trivial information: either null
eventϕ or that all future events are possible, i. e. Ω, with probability 1. At t = 1, events
are either ea1 with probability p1 +p2 or e

a
2 with probability p3. Then, at t = 2, it is either

eb1 or e
b
2 if e

a
1 at t = 1, or e

b
3 if e

a
2 at t = 1. Thus, at t = 1, the information set isℱa whereby

investors can tell which event inℱa has occurred. At t = 1, investors cannot tell which
of eb1 or e

b
2 has occurred since these events do not belong toℱa. If an investor at a time

before t = 1 knows that the information set at t = 1 is {{ω1,ω2}, {ω3},ϕ,Ω}, then the
ex-ante probability of occurrence of either event {ω1,ω2} or event {ω3} can be known.
Ex-post, the investor could observe if {ω1,ω2} or {ω3} had occurred at t = 1.

At t = 2, there is greater resolution of uncertainty, and the information set enlarges
to become field ℱb (becoming finer) so that the investors can know which of eb1 , e

b
2 , or

eb3 has occurred.
For the field or algebra on the LHS in Figure 4.6, we can find a RV Y as a mapping

Y : Ei → Y(Ei), for i = 1, 2, 3, . . . .
Clearly, the RV is a function from events in ℱa to ℛ. Sometimes, more than one

sample point maps to the same value that the RV takes. But when we collect all those
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Figure 4.6: Random Variable as a Function Y at t = 1.

sample points that map to the same value on the RHS inℛ, we can group those points
asbelonging to the sameevent and redefine theRV if necessary. Then, there is a one-to-
one correspondence or bijection betweendisjoint events andunique values inℛwhen
the range set is appropriately defined. In the earlier example, a RV can be defined so
that event E1 ≡ ea1 or E1 = {ω1,ω2} is equivalent to RV Y with its value y = 5. Similarly,
event E2 ≡ ea2 or E2 = {ω3} is equivalent to RV Y with its value y = 7.

Thus, P(Y = 5) = P(E1), and P(Y = 7) = P(E2). Since we say field or algebra ℱa is
generated by E1 and E2, we can equivalently say ℱa is generated by Y = 5 and Y = 7.
Thus, in general, we can say a field at t = j is generated by events at t = j or generated
by the RV Y at t = j, i. e., ℱt = σ(Yt). In this case, when we say a RV Y is measurable
on field ℱ , we may also say that it is measurable on σ(Y), the field generated by Y .

For discrete RV, it is mapped onto at most countably infinite numbers in ℛ. For
continuous RVs, a properly defined RVmay be constructed as a bijection from a σ-field
to Borel sets inℛ, so any probability measure p on the events in the σ-field is equiva-
lent to the probability measure p on the corresponding Borel sets inℛ.

We have shown how an information set at time t, Φt, corresponds to a particu-
lar σ-field at t, ℱt . Consider information set Φb ≡ ℱb where ℱb = {ϕ,Ω, {ω1}, {ω2},
{ω3}, {ω1,ω2}, {ω1,ω3}, or {ω2,ω3}}. With a properly defined probability space, we can
always find the conditional probability P(Ei|Φt), or equivalently P(Ei|ℱt), on the mea-
surable events {Ei}.

The probability Table 4.2 for RV X at t = 0 can be shown as follows. The probabil-
ities are in the distribution P(X|ℱ0) or P(X|ϕ,Ω). There is no information about which
event Ei has occurred, so the unconditional probabilities are pi’s.

Table 4.2: Unconditional Distribution.

State ω RV X (ω) Probability

ω1 X1 = X(ω1) p1
ω2 X2 = X(ω2) p2
ω3 X3 = X(ω3) p3
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When we condition on an information set or algebra ℱt, the defined meaning is that
we are conditioning on events inℱt or RV Y that could occur at t. On an ex-ante basis,
the conditioning is done on all events of ℱt so that P(Ei|ℱt) is really a conditional
probability P(Ei|Ej ∈ ℱt) which is a function of Ej.

Based on the last statement, we are looking at a two-sided table as follows forℱa.
The events in ℱa are {ω1,ω2}, and ω3. We omit the trivial events of null and Ω. Each
column in the following Table 4.3 shows conditional probability of a sample point (or
possible future event) given the various events in ℱa.

Table 4.3: Conditional Probabilities Givenℱa.

Event Ei ∈ ℱa: P({ω1}|Ei) P({ω2}|Ei) P({ω3}|Ei)

{ω1,ω2}
p1

p1+p2
p2

p1+p2
0

{ω3} 0 0 1

Note that when event {ω1,ω2} occurred, it is not possible to distinguish which stateω1
or ω2 had occurred.

Earlier we see how events and RV values may be put in one-to-one correspon-
dence. Conditioning on the events of algebra ℱa can also be written as conditioning
on RV Y . In particular, P({ωj}|{ω1,ω2}) ≡ P({ωj}|Y = 5). In addition, P({ωj}|{ω3}) ≡
P({ωj}|Y = 7).

For ℱb, the conditional probabilities are shown in Table 4.4.

Table 4.4: Conditional Probabilities Givenℱb.

Event Ei ∈ ℱb: P({ω1}|Ei) P({ω2}|Ei) P({ω3}|Ei)

{ω1} 1 0 0
{ω2} 0 1 0
{ω3} 0 0 1

For RVX(ωi), wemaydefineP(X|ℱt) as aM×Nmatrix or table inwhich the ijth element
is P({ωj}|Ei), (recall in Table 4.2, ∃ (there exists) RV X ∋ (such that) ωj → x ∈ X) and
there are N simple sample points {ωj} in Ω.M is the number of events, E1,E2, . . . ,EM ,
M ≤ N, excludingϕ,Ω, inℱt . We can also write P(X|ℱt) as P(X|Φt). When ∃ RV Y with
bijection g : Ei → y ∈ Y , then we can also write P(X|ℱt) ≡ P(X|Y).

For conditional expectation, we define E(X|ℱt) ≡ E(X|Φt) ≡ E(X|Y) as a M × 1
vector
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(

E(X|E1)
E(X|E2)

...
E(X|EM)

)

Back to the example of Ω = {ω1,ω2,ω3} in Table 4.2 and information ℱ0, ℱa,
and ℱb, conditional on event E1 = {ω1,ω2} at t = 1,

E(X|{ω1,ω2} ∈ ℱa) =
3
∑
i=1

X(ωi) × P(ωi|E1)

= X1
p1

p1 + p2
+ X2

p2
p1 + p2

+ X3 × 0

=
X1p1 + X2p2
p1 + p2

Conditional on event E2 = {ω3},

E(X|{ω3} ∈ ℱa) =
3
∑
i=1

X(ωi) × P(ωi|E2)

= X1 × 0 + X2 × 0 + X3 × 1
= X3

Hence

E(X|ℱa) = (
X1p1+X2p2
p1+p2
X3
)

If we take the unconditional expectation, the scalar

E[E(X|ℱa)] = P({ω1,ω2}) × E(X|E1) + P({ω3}) × E(X|E2)

= (p1 + p2)
X1p1 + X2p2
p1 + p2

+ p3X3

= p1X1 + p2X2 + p3X3

which is equal to E[X].
Under information set ℱb, E(X|ℱb) is a vector [E(X|Ei ∈ ℱb)]. For event {ω1},

E(X|{ω1} ∈ ℱb) =
3
∑
i=1

X(ωi) × P(ωi|ω1)

= X1 × 1 + 0 + 0
= X1

For event {ω2},
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E(X|{ω2} ∈ ℱb) =
3
∑
i=1

X(ωi) × P(ωi|ω2)

= 0 + X2 × 1 + 0
= X2

For event {ω3},

E(X|{ω3} ∈ ℱb) =
3
∑
i=1

X(ωi) × P(ωi|ω3)

= 0 + 0 + X3 × 1
= X3

Hence, if X is measurable w. r. t. ℱ ≡ σ(X), E(X|X = x) = x or we can write it more
generally as E(X|X) = X. Note that E(X|X) ̸= E(X).

If we take the unconditional expectation

E[E(X|ℱb)] = p1X1 + p2X2 + p3X3

which is equal to E[X]. How about E[E(X|ℱb)|ℱa]? We saw how conditioning on
ℱa ⊃ ℱ0 produces a RV.

LetZ = E(X|ℱb) soZ is a functionZ(ωi).We sawearlier thatZ(ωi) = Xi. Conditional
on event E1 = {ω1,ω2} ∈ ℱa,

E(Z|E1) =
3
∑
i=1

Z(ωi) × P(ωi|E1)

= X1
p1

p1 + p2
+ X2

p2
p1 + p2

+ X3 × 0

=
X1p1 + X2p2
p1 + p2

Conditional on event E2 = {ω3} ∈ ℱa,

E(Z|E2) =
3
∑
i=1

Z(ωi) × P(ωi|E2)

= X1 × 0 + X2 × 0 + X3 × 1
= X3

The probability table for E[E(X|ℱb)|ℱa] can be shown as follows (see Table 4.5).
This is identical with E(X|ℱa). It is important to recapitulate the usage of informa-

tion sets. When we say an investor has an information set Φt equivalent to the field or
algebra ℱt, we mean that the investor will know which particular event will eventu-
ally occur in that set. The vector P(X(ωi)|Φt) ≡ P(X(ωi)|ℱt) provides the conditional
probability on an ex-ante basis of each {ωi} given each event in Φt ≡ ℱt .
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Table 4.5: The probability table for E[E(X |ℱb)|ℱa].

Event Ei ∈ ℱa: E[E(X |ℱb)|ℱa]

{ω1,ω2}
X1p1+X2p2
p1+p2

{ω3} X3

4.4.1 Law of Iterated Expectations

From the previous section, we have the law of iterated expectations. To be more pre-
cise, consider the law as expressed in the following lemma.

Lemma 4.1. Suppose 𝒢 ⊂ ℱ , then

E(E(X|ℱ)|𝒢) = E(X|𝒢) = E(E(X|𝒢)|ℱ)

where 𝒢 is a sub-field of ℱ .

Proof. Let ℱ = σ(W) and 𝒢 = σ(Z) whereW , Z are RVs. Since E(X|W) is a RV inW ,

E(E(X|W)|Z) = ∫
R(w)

( ∫
R(x)

xfX|W (x|w)dx)fW |Z(w|z) dw

= ∫
R(w)

( ∫
R(x)

xfX|W ,Z(x|w, z) dx)
fW ,Z(w, z)
fZ(z)

dw

where we use the fact 𝒢 ⊂ ℱ ⇔ f (x|w, z) = f (x|w) since z yields no additional infor-
mation over w. Then

E(E(X|W)|Z) = ∫
R(w)

( ∫
R(x)

x
fX,W ,Z(x,w, z)
fW ,Z(w, z)

dx)
fW ,Z(w, z)
fZ(z)

dw

= ∫
R(x)

x( ∫
R(w)

fX,W ,Z(x,w, z)
fZ(z)

dw)dx

= ∫
R(x)

x 1
fZ(z)
( ∫
R(w)

fX,W ,Z(x,w, z) dw)dx

= ∫
R(x)

x 1
fZ(z)

fX,Z(x, z) dx

= ∫
R(x)

xfX|Z(x|z) dx = E(X|Z)

Also, E(E(X|Z)|W) = E(h(Z)|W , Z) = h(Z) where h(Z) = E(X|Z).
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Consider another useful result:

E(E[X|Y]g(Y)) = ∫
R(y)

( ∫
R(x)

xf (x|y)dx)g(y)fY (y)dy

= ∫
R(y)

( ∫
R(x)

xg(y)f (x|y)fY (y) dx)dy

= ∫
R(y)

∫
R(x)

yg(y)f (x, y) dx dy

= EXY (Xg(Y)) (4.3)

As a corollary from Eq. (4.3), we put g(Y) ≡ 1.

Corollary 4.1.

E(E[X|Y]) = EXY (X) = E(X) ≜ E(X|ℱ0)

This is sometimes called a smoothing lemma as h(Y) ≡ E(X|Y) could be a
smoother and more convenient function to integrate than E(X).

Corollary 4.2. From Lemma 4.1, we also obtain

E(E(X|Z)|Z) = E(X|Z)

In the earlier discussion, there is a time dimension, and information set ℱ0 =
{ϕ,Ω} occurs at time t = 0, ℱa ≡ ℱ1 at time t = 1, and ℱb ≡ ℱ2 at time t = 2. We can
see that the information sets become finer and richer as time progresses: ℱ0 ⊆ ℱ1 ⊆
ℱ2 . . . . This fits with intuition about how rational agents would know more as time
progresses (assuming no loss of memory)! In such a time setup, the information set
stochastic process (probabilistic process over time)ℱt is called a filtration. Sometimes
the probability space is enhanced to show a filtration, i. e., a filtered probability space
(Ω,ℱ , {ℱt},𝒫).

If there is a sequence of RVs Yt that are measurable with respect to each ℱt, then
we say the sequence {Yt} is adapted w. r. t. the filtration {ℱt}. {ω1,ω2} and {ω3} are
adapted to ℱa, so are {ω1}, {ω2}, {ω3}, {ω1,ω2}, {ω1,ω3}, and {ω2,ω3} adapted to ℱb. If
Ei ∈ ℱa → Ya

i ∈ Y
a and Ei ∈ ℱb → Yb

i ∈ Y
b, then RV Ya is adapted to ℱa and RV Yb is

adapted to ℱb.

4.4.2 Application: Asset Pricing

The Law of Iterated Expectations in application to a filtration says that if ℱt ⊆ ℱt+1 ⊆
ℱt+2 ⊆ . . ., then

E(E(X|ℱt+1)|ℱt) = E(X|ℱt)
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This result is used commonly in testing asset pricing models in the empirical
finance and economics literature. In finance theory under rational expectations, a
traded asset price is determined by

pt = E(mt+1pt+1|Φt)

wheremt+1 = (β
U ′(Ct+1)
U ′(Ct) ) is themarginal rate of substitutionor pricingkernel of an econ-

omy agent consuming Ct with von Neumann–Morgenstern utility function U(⋅), pt is
the asset price and Φt is the agent’s information set. However, in trying to test this
model, an econometrician cannot observe the agent’s information Φt . At time t, pt is
known, so it can be treated as a constant. Then, we can take iterated expectations on
the asset pricing formula to obtain the unconditional version pt = E(mt+1pt+1) consis-
tent with the conditional one, and be able to test it using econometric methods such
as the generalized method of moments.

The Law of Iterated Expectations can also be used to show that the best predictor
(in the sense of minimum mean square error) of a random variable Y that is corre-
lated with random variable X is given by the conditional mean of Y given X = x, or
E(Y |X = x). Y and X are jointly distributed.

Suppose function π(X) is the best predictor of Y . Themean square error of predic-
tion is

E[Y − π(X)]2

= E{[Y − E(Y |X)] + [E(Y |X) − π(X)]}2

= E[Y − E(Y |X)]2 + E[E(Y |X) − π(X)]2

+ 2E{[Y − E(Y |X)][E(Y |X) − π(X)]}

= E[Y − E(Y |X)]2 + E[E(Y |X) − π(X)]2

≥ E[Y − E(Y |X)]2

Therefore, the best predictor in the sense of minimum possible mean square error is
π(X) = E(Y |X) which is a RV varying with X. For now, let E(Y |X) = g(X). In the above
derivation, the middle term becomes zero as seen below:

E{[Y − E(Y |X)][E(Y |X) − π(X)]}
= E{YE(Y |X)} − E{Yπ(X)}
− E{E(Y |X)E(Y |X)} + E{E(Y |X)π(X)}
= E{Yg(X)} − E{Yπ(X)}
− E{E(Yg(X)|X)} + E{E(Yπ(X)|X)}
= E{Yg(X)} − E{Yπ(X)} − E{Yg(X)} + E{Yπ(X)}
= 0

 EBSCOhost - printed on 2/8/2023 6:26 PM via . All use subject to https://www.ebsco.com/terms-of-use



108 | 4 Event Studies

The minimum mean square error criterion allows the simple result of E(Y |X) being
best predictor, and since E(Y |X) is analyticallymore tractablewhen joint distributions
of (X,Y) are provided, the same criterion is used commonly in ordinary least squares
econometric estimation methods.

4.5 Events

In this section, we study how financial events such as dividend payout, rights issue,
bonus issue, earnings announcements, and so on, may affect the market prices of the
corresponding stocks. The change in the probability distribution of the stock return
conditional on the event is measured by t-statistics. The events are usually publicly
available information at the time of announcement or happening. In event study, an
underlying benchmark asset pricing model is assumed in order to make proper or
meaningful inferences about significant return changes.

Event studies are therefore typically not about tests of an asset pricingmodel, but
are tests of (1) whether the market is informationally efficient given the public infor-
mation of the event, assuming the benchmark model, and also assuming we know or
have a prior belief of whether the event has positive, negative, or neutral impact on
returns, or (2) whether and how the event has positive, negative, or neutral impact on
returns, assuming the benchmark model, and also assuming the market is informa-
tionally efficient.

The distinction between (1) and (2) should be kept in view in the interpretation of
event study results in order not to confuse things. In most practical situations dealing
with positive economics and in policy implications, it is usually more useful to apply
(2), i. e. assuming benchmark model and market efficiency. For testing informational
efficiency via (1), it is also common to assume strong-form market efficiency, so that
significant return deviations before the time of the publicly announced event may be
interpreted as information leakage or inside information revelation.

There are three stages in an event study analysis. First, we need to define the event
of interest and identify the period over which the event will be examined. Next, we
have to design a testing framework to define the way to measure impact and to test its
significance. Finally, we need to collect appropriate data to perform the testing of the
event’s impact and draw conclusions in a model-theoretic and statistical sense.

Event studies are of various types. It is typically in the form of an announcement.
(1a) Firm-specific event, e. g., insider trading, announcement of board change, an-

nouncement of major strategic change, unusual rights issue announcement, an-
nouncement to file or seek “Chapter 11” (reorganization in U. S. in a last effort to
avoid bankruptcy and liquidation which is “Chapter 7”), executive stock option
issues, employee stock option issues, etc.

(1b) Across firms system-wide event, e. g., unanticipated better-than-forecast earn-
ings announcement (good news), unanticipated worse-than-forecast earnings
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announcement (bad news), anticipated better-than or else worse-than forecast
earnings announcement (no news). Others include announcement of bonus is-
sues, stock splits, mergers and acquisitions, better than expected dividends or
worse than expected dividends, new debt issues, seasoned equity issues, block
sales, purchase of other companies’ assets and stocks, etc.

(1c) Macro events, e. g., increase in CPF employer contribution, GDP growth and de-
cline projection, regulatory changes, etc.

Event studies focus on the performance of stock prices (or equivalently stock returns)
before, during, and after the event announcement. On the flip side, it is also about the
reaction of stock investors to news or information, if any, from the event.

4.5.1 Testing Framework

The subject of event studies in finance is usually approached using a formal treat-
ment of statistical and data analyses. The sampling frame or study period must also
be clearly designed and stated. The event sampling time frame and the announce-
ment windows/periods are shown graphically in Figures 4.7 and 4.8. The study period
is depicted as follows. The measurement (or estimation) period is used for estimating
the parameters of the stock return process employing historical data during the pe-
riod. Daily (continuously compounded) stock return, i. e., ln(Pt+1/Pt), using typically
end of day prices, is the variable commonly employed in conjunction with the daily
continuously compounded market return, and also the daily risk-free rate.

Figure 4.7: Event Sampling Frame.

Figure 4.8: Announcement Windows.
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Days are measured according to number of trading days before Event Day 0 (the event
announcement day), or number of trading days after Event Day 0. In the above, the
measurement or estimation is about 240 sample points from t = −250 to t = −11.
Sometimes, whenwe suspect that themarket is disruptive and betamay have changed
over thenearly one calendar year (about 250+ tradingdays), thenweuse a shorter time
series, e. g., 60 trading days (t = −70 to −11). During a stable measurement period,
a longer or large sample is better in order to reduce sampling errors in the parameter
estimators.

The post-event period that goes up to one calendar year is less often used except
for studies such as mergers and acquisitions, buyouts, IPOs, when a longer time is
required before the effect of the event is to be seen. The Event Window (or period) is
the most important part of the time frame and is further delineated as follows.

The number of days to use in the event window typically includes two calendar
weeks (or 10 trading days) before the announcement day, the announcement day it-
self, and 10 trading days after the announcement day. This window should be large
enough to show up any possible changes to returns due to the event. The event date
is the day when the event becomes public information, e. g., when the announcement
or news is broadcast as public information. It is denoted as Day 0 in the event study
calendar.

The parameters estimated from themeasurement period are used in the event pe-
riod to compute the defined deviation from normal return as a measure of impact of
event, if any.

4.5.2 Benchmark

A benchmark or conditional expected return rate will have to be defined. Various
benchmark models are used. In what follows, we shall take “returns” to mean return
rates.
(A) Market Model

Suppose rit is the return rate of stock i at time t, and rmt is the market portfolio return
rate (or alternatively return rate of a market index) at time t. If rit and rmt are bivariate
normally distributed (all stock returns being MVN (multivariate normally distributed)
is sufficient to give this bivariate relationship), then conditional probability distribu-
tion of rit |rmt is normal with (conditional) mean and (conditional) variance

E(rit |rmt) = E(rit) +
σim
σ2m
[rmt − E(rmt)]

= [E(rit) −
σim
σ2m

E(rmt)] +
σim
σ2m

rmt (4.4)
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and

var(rit |rmt) = σ
2
i −

σ2im
σ2m

(4.5)

where cov(rit , rmt) = σim, var(rmt) = σ2m, and var(rit) = σ
2
i . Then, we canwrite the linear

regression model of rit on rmt as

rit = ai + birmt + eit (4.6)

where

ai = [E(rit) −
σim
σ2m

E(rmt)], bi =
σim
σ2m
, and E(eit |rmt) = 0 (4.7)

The last condition in (4.7) can be taken as a specification that eit is uncorrelated
with rmt, which in the context ofMVN, amounts to stochastic independence. It also im-
plies via the law of iterated expectations that E(eit) = 0. The above regression model
Eq. (4.6) is called the market model. This is purely a statistical model, but it is consis-
tent with the two-parameter CAPM. The market model does not necessarily imply the
Sharpe-Lintner CAPM as parameter ai is not necessarily constrained to be the CAPM
intercept. Nevertheless, ai is a constant that can possibly follow that constraint. CAPM
does not necessarily imply the market model as quadratic utility and not MVN can be
a sufficient condition for CAPM. But, MVN is both a sufficient condition for CAPM and
for themarket model together with somemild preference conditions. Note that in gen-
eral, cov(eit , eit−1) is not necessarily zero. If we restrict this covariance to zero, then we
are looking at what had been called a single-indexmodel. In the latter case, the index
actually need not be the market portfolio return, although it is natural to identify the
appropriate single index or factor as the market return.

The verification of Eq. (4.4) is straightforward as in a bivariate normal distribution.
If we take the unconditional variance of rit or var(rit) in Eq. (4.6),

σ2i = b
2
i σ

2
m + σ

2
e =

σ2im
σ2m
+ σ2e

where σ2e = var(eit). Now, biσm is called the systematic risk and σe is called the unsys-
tematic or idiosyncratic or diversifiable risk of stock i return. But conditional variance
var(rit |rmt) = σ2e. Hence, by Eq. (4.5), σ

2
e = σ

2
i −

σ2im
σ2m
. This is essentially Eq. (4.6).

Henceforth we construe the market model for stock i return as

rit = αi + βirmt + eit (4.8)

satisfying the following assumed conditions.
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(2a) cov(rmt , eit) = 0;
(2b) var(eit) = σ2i , a constant;
(2c) (eit , eit−k) = 0 for k ̸= 0

Then OLS regression for data set, t = −250 to t = −11, will yield BLUE α̂i and β̂i that are
also consistent. In addition, estimate of σ2i ,

σ̂2i =
1

L − 2

−11
∑

t=−L−10
(rit − α̂i − β̂irmt)

2 =
1

L − 2

−11
∑

t=−L−10
ê2it

is unbiased and consistent. Note that L is number of sample points in the measure-
ment window, and could be 240 or 60 or in-between.

The market model (A) is a more popular benchmark used in event studies. In (A),
the benchmark or normal return during the EventWindow is defined as ̂riτ = α̂i + β̂irmτ
where the time subscript is now τ (to distinguish from t) outside the Event Window.
So, τ = −10 to +10 in the Event Window.

Thenormal return onday τ is an expected return conditional on information avail-
able up to and including day τ. In the case of market model, this relevant information
is just rmτ.

The abnormal return to stock i at time τ ∈ [−10,+10] is

ARiτ = riτ − ̂riτ = riτ − α̂i − β̂irmτ (4.9)

(B) CAPM Equation Model

rit = rft + βi(rmt − rft) + uit

In (B), the normal return during the Event Window is defined as

̂riτ = rfτ + β̂i(rmτ − rfτ)

The abnormal return would then be

ARiτ = riτ − ̂riτ = riτ − (rfτ + β̂i(rmτ − rfτ))

Other supplementarymeasures of abnormal return include the following. They can be
used to check the robustness of the results in case the benchmarkmodel is not correct.
(C) Market Adjusted Excess Return

In (C), the abnormal return during the Event Window is defined as riτ − rmτ. This mea-
sure may be a robustness check of whether the CAPM or Market model may be incor-
rect as it depends on just the market factor, e. g., there could be other factors but with
market as main positive factor. Different abnormal return signs from (A) or (B) may
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warrant relook at those benchmark models. After relook, it could be benchmark mod-
els (A), (B) are correct but market adjusted excess return is too rough without an exact
beta estimate.
(D) Mean Adjusted Excess Return

In (D), the abnormal return is defined as riτ − ri where ri is a an estimate of expected
return based on lagged returns, 1

L ∑
−11
t=−L−10 rit .

Suppose our event is a systematic one such as bonus issue information effect
(whether bonus dividend announcement is good news, bad news, or no news?) We
can test this over not just one firm with a bonus dividend announcement, but over N
(e. g., 30) firms eachwith a bonus dividend announcement not all at the same time but
scattered through time, e. g., all within several years. Figure 4.9 shows how N similar
events (Event date “0”) can take place at different calendar time.

Figure 4.9: Grouping Events.

The announcement date (day of announcement of the bonus dividend event) for each
firm is denoted Event Day 0 even though they are from different calendar dates. Also,
event day −3 would refer to three days before announcement relative to all Day 0 of
each firm event. Note also that we could have two events from the same firm if the
firm happened to make two bonus issue announcements separated by time. Avoiding
clustering of the events in time prevents confounding events, e. g., 9/11when all stocks
dived. If we had done an event study of positive announcements and all firm-events
linedup around themonth of lateNovember–December 2001, then the 9/11would pro-
duce a negative effect on all the stocks that is certainly not due to the event of positive
earnings. Spreading out also has the advantage of ensuring the various ARiτ’s of the
various firms do not correlate so that it is easier to estimate the variance of a portfo-
lio of the ARiτ’s across firms. In other words, if the firm-events all cluster together at
the same time, then since firm returns (even after adjusting for market) may still pos-
sess contemporaneous correlations, the portfolio variance will be harder to measure
because of the covariance terms.

Suppose we use the Market Model (A) as our correct benchmark model. Then, the
ARiτ’s computed during the EventWindow for any day τwould, in a situation without
news impact or no fresh news, be randomly varying about zero provided (a) themodel
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is true (which we assumed already) and (b) themarket is efficient (quick to process in-
formation and update price if there is new information) and rational (will process rel-
evant information correctly if given the information). The implication is that residual
noise does not display a mean > 0 or < 0 when there is no fresh news to alter the firm
or stock’s mean and volatility. In an efficient and rational market, without significant
information impact, the expected value of ARiτ is zero, conditional onmarket informa-
tion up to and including those at τ. However, a zero expected ARiτ despite information
would mean market informational inefficiency.

Significant information in the event announcement is taken to be unanticipated
news that causes the market to either (a) re-evaluate the stock’s expected future earn-
ings (thus also dividends), and/or (b) re-evaluate the stock’s risk-adjusted discount
rate, resulting in the immediate efficient adjustment of the stock price. With signifi-
cant information impact, the expected value of ARiτ is non-zero (positive if good news
on stock and negative if bad news on stock), conditional on market information up
to and including those at τ. Average abnormal return on day τ in the event window
would then be significantly different from zero. The abnormal return essentially re-
flects a change in the conditional expectation of the stock return by the market. Im-
mediate reflection of publicly announced information inprice shows semi-strong form
informational efficiency.

We define the null hypothesis H0: event has no impact on stock returns (or more
specifically – no impact on stock’s abnormal returns). This same hypothesis can be
made more detailed in several ways as follows. From Eq. (4.9) the market model ab-
normal return under the zero impact null is

ARiτ = riτ − α̂i − β̂irmτ

so that

E(ARiτ|rmτ) = E(riτ|rmτ) − E(α̂i|rmτ) − rmτE(β̂i|rmτ)
= E(riτ|rmτ) − α − βrmτ
= 0

and

var(ARiτ|rmτ) = var(riτ|rmτ) + var(α̂i|rmτ) + r
2
mτ var(β̂i|rmτ)

+ 2rmτ cov(α̂i, β̂i|rmτ) − 2 cov(riτ, α̂i|rmτ)
− 2rmτ cov(riτ, β̂i|rmτ)

var(ARiτ|rmτ) = σ
2
i + σ

2
i (

1
L
+

r2m
∑−11t=−L−10(rmt − rm)2

)

+ r2mτσ
2
i

1
∑−11t=−L−10(rmt − rm)2
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− 2rmτσ
2
i

rm
∑−11t=−L−10(rmt − rm)2

= σ2i (1 +
1
L
+
(rmτ − rm)2

∑−11t=−L−10(rmt − rm)2
)

where

rm =
1
L

−11
∑

t=−L−10
rmt

Recall thatwhile t ranges from−L−10 to−11within the estimation period, τ ranges
from −10 to +10 within the event window. The last two terms in var(ARiτ|rmτ), i. e.,
cov(riτ, α̂i|rmτ) and cov(riτ, β̂i|rmτ), are zero because riτ|rmτ involves eiτ whereas α̂i and
β̂i involve eit (t = −L − 10 to −11), and eiτ and eit are uncorrelated or perhaps even
stronger, independent. Note that estimator errors are added to the variance of ARiτ.

4.5.3 Test Statistics

If the estimation period sample size L is large, we can use the argument of asymptotic
result to show var(ARiτ|rmτ) converges to σ2i , or use the latter as an approximation in
the case when L is fairly large, e. g., L = 240.

So,

ARiτ|rmτ
d∼ N(0, σ2i )

Test for each stock i using

ARiτ
σ̂i

d∼ N(0, 1) or more accurately, tL−2 (4.10)

This is sometimes called the SARiτ, the standardized abnormal return. The distribu-
tion is sometimes also interpreted as Student’s t with L − 2 degrees of freedom. This is
because σ̂2i is estimated via

σ̂2i =
1

L − 2

−11
∑

t=−L−10
(rit − α̂i − β̂irmt)

2 ≅
σ2i
L − 2

χ2L−2

and

ARiτ
σ̂i
=
ARiτ
σi
×
σi
σ̂i
= Z/√

σ̂2i
σ2i
≅ tL−2

where Z ∼ N(0, 1).
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If we have N firm-events, at any time τ within the Event Window, the average ab-
normal return (in some instances, it has been called aggregated abnormal return),

AARτ =
1
N

N
∑
i=1

ARiτ

Assuming independence of disturbance across events because they are not clus-
tered, for large L,

var(AARτ|rmτ) ≈
1
N2

N
∑
i=1

σ2i

So,

AARτ|rmτ ≈ N(0,
1
N2

N
∑
i=1

σ2i )

Test for each Event Window day τ using

AARτ
√ 1

N2 ∑
N
i=1 σ̂2i
≈ N(0, 1) (4.11)

There is another way to represent this test statistic in terms of the SARiτ.
√N[ 1N ∑

N
i=1

ARiτ
σ̂i
] ≈ N(0, 1). This is approximately equal to Eq. (4.11).

In order to test for the persistence of the impact of the event during period τk − τ1
(where τ1 is start of Event Window, and τ21 is end of Event Window, and τ1 ≤ τk ≤ τ21),
the abnormal return can be added to obtain the cumulative abnormal return for each i,

CARi(τ1, τk) =
τk
∑
τ=τ1

ARiτ

Assuming independence of disturbance across time viz. cov(eit , eit−k) = 0 for k ̸= 0:

var(CARi(τ1, τk)|rmτk , . . .) =
τk
∑
τ=τ1

var(ARiτ|rmτ) ≈ (τk − τ1 + 1)σ
2
i

So, CARi(τ1, τk)|rmτk ,... ≈ N(0, (τk −τ1 + 1)σ
2
i ). Test for each event window period (τ1, τk)

using

CARi(τ1, τk)

√(τk − τ1 + 1)σ̂2i
≈ N(0, 1) (4.12)

The cumulative average abnormal return
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CAAR(τ1, τk) =
1
N

N
∑
i=1

τk
∑
τ=τ1

ARiτ =
τk
∑
τ=τ1

1
N

N
∑
i=1

ARiτ

var(CAAR(τ1, τk)|rmτk , . . .) ≈
1
N2

N
∑
i=1
(τk − τ1 + 1)σ

2
i

So,

CAAR(τ1, τk)|rmτk . . . ≈ N(0,
1
N2

N
∑
i=1
(τk − τ1 + 1)σ

2
i )

CAAR may be construed as average of CAR or cumulation of AAR. Now test for
each event window period (τ1, τk) using

CAAR(τ1, τk)

√(τk − τ1 + 1)
1
N2 ∑

N
i=1 σ̂2i
≈ N(0, 1) (4.13)

The z-statistics in Eqs. (4.10)–(4.13) can be used to test the H0. The interpretation in
each case will be slightly different. For example, in Eq. (4.10) a rejection says that
there is an unexpected large increase or decrease in return for that event day, while
in Eq. (4.12), a rejection says that there is an unexpected large increase or decrease in
cumulative return.

The tests are based on the null that the returnsmean level and variance or volatil-
ity remain constant. A rejection could mean that the conditional mean had changed
due to the event announcement. On the other hand, it is also possible that a rejection
or non-rejection could be due to a change in volatility due to the event. If we want to
test if there is a conditional mean change considering changed volatility as a result
of the event, then we can use the sample variance of AARτ during the event window,
τ ∈ (1, 21), i. e.,

σ̂2(AAR(1, 21)) = 1
20

21
∑
τ=1
(AARτ − AAR)

2

where

AAR = 1
21

21
∑
τ=1

AARτ

to construct the approximate t20 test statistic

AARτ
√σ̂2(AAR(1, 21))

≈ t20

for testing, where τ ∈ (1, 21). It is important to interpret the CAR or CAAR graph appro-
priately.
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We illustrate how CAR could be interpreted using three events as depicted in Fig-
ure 4.10.

Figure 4.10: Graph of Cumulative Abnormal Returns Based on Events.

The three events in Figure 4.10 show different paths of CAR. In the dotted event path,
CAR is significant only at event date due to a significantly positive AR. After that, AR is
negative, and thus CAR falls back to zero. CAR remains at zero thereafter. This shows
a price pressure effect that could be due to excessive buying (or selling) not because of
information but liquidity. Because of temporary inelasticity, large volume selling will
drive down price temporarily and large volume buying will drive up price temporarily.
As there is no information, the prices will revert, thus showing a reversal in AR over
one or two days: CAR reverts back to zero after that. The positive AR is possibly due to
buying pressure and illiquidity. Such price pressure effects do not last and are said to
be temporary or transitory.

However, if there is excessive buying pressure, but sellers are plentiful and can
easily substitute into other shares, then the supply curve is flat or highly elastic, so
the buying pressure will not force up price. This substitution effect will not produce
any significant AR or CAR in the first place.

Similarly, if there is excessive selling pressure, but buyers are plentiful and can
easily substitute from other shares, then the demand curve is flat or highly elastic de-
mand, so the selling pressure will not force down the market share price. It is more
plausible that the market operates under information effect as well as substitution
effect, so dotted event paths illustrated in Figure 4.10 will be rare.

At times, even when a piece of information is known to produce asset price
changes, but if this information is already known or anticipated, then its announce-
ment at day 0 will not produce any significant AR or CAR.

However, the solid line event shown in Figure 4.10 illustrates significant event
with a positive impact on price and returns, e. g., a positive earnings announcement.
The impact is permanent. The news is also quickly absorbed and the price adjusted
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quickly so that after Day 1 of event, there is no more price adjustment, and AR is zero,
so CAR stays constant thereafter.

In the other small dotted event with positive CAR, the news appeared to hit be-
fore event date, at about τ = −3. The AR and thus CAR are significantly positive. This
may indicate information leakage. It appears that inside information has caused the
significant price changes before the public news. The slow leakage and not one-time
jump may indicate a bit of strong-form market informational inefficiency, but it could
also be efficient but with slow adjustments due to slow release of private information.

In what follows, we study an actual event on a firm, and show how to conduct the
various event study tests. The data is collected from Center for Research in Security
Prices (CRSP) database managed at the University of Chicago.

4.6 Case Study: Bank of America Acquires Merrill Lynch
At about the beginning of the recent global financial crisis, the Bank of America (BOA)
announced on September 15, 2008 (Monday), that she was acquiring Merrill Lynch
(ML) in a $50-billion stock-for-stock exchange. BOA would exchange 0.8595 share for
each ML share. The offer price for ML’s share in terms of the BOA share market value
at that time represented about US$29 a share.

It was to be one of the most tumultuous weeks in the financial history of global
capital markets. Early on that Monday, Lehman Brothers, the Number 4 investment
bank in U. S. had filed for Chapter 11 bankruptcy. Earlier in March, JP Morgan Chase
had bought out ailing Bear Stearns at a deep discount. These investment firms had
gotten into deep trouble by sinking huge chunks of investment capital in real estate
derivatives and collaterized debt obligations (CDOs), and these instruments were ei-
ther becoming a tiny fraction of their original values or could not be traded as liquidity
had dried up upon the fear of troubled mortgages.

Merrill Lynch’s share was last traded the close of the previous week at US$17.05 a
share, so BOA appeared to pay a premium of 70% above the last market price. At its
peak, in 2007, ML’s share was selling above US$98. The deal also carried substantial
risks for BOA as ML had billions of dollars in assets tied to mortgages that had dived
in value. Merrill had reported four straight quarterly losses.

Our task in this single-event single-firm study is to try as scientifically as possible
to test (a) if the acquisition announcement on September 15, 2008 (event day 0) con-
tained significant information whether good news or bad news for the stockholders
and (b) if there was a leakage4 of information during the two weeks (10 trading days)

4 All information and data are collected fromknownpublished sources such as Yahoo Finance, CRSP,
and SGX database. The term “leakage” is purely a technical word denoting information being known
by a subset of investors. There is no connotation of wrong-doing or of issues that would be implicated
by law. The above qualifications apply to the present case.
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before announcement. We use daily traded data during one calendar year (about 252
market price observations) before the event window [−10,+10] to estimate the market
model (A) as benchmark. The α̂i and β̂i estimates of the market model parameters for
BOA are then used to estimate the abnormal returns

ARiτ = riτ − α̂i − β̂irmτ

in the EventWindow. The abnormal returns during the EventWindow 10 days prior to
announcement date until 10 days post-announcement are shown in Figure 4.11. The
cumulative abnormal return is shown in Figure 4.12.

Figure 4.11: Abnormal Returns Around the Event that Bank of America (BOA) Announced Acquisition
of Merrill Lynch on September 15, 2008.

Figure 4.12: Cumulative Abnormal Returns of Bank of America (BOA) from August 29 to September
29, 2008.
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The t-statistics (approximatedby standardnormal variate) inEq. (4.12) for testing if the
CAR is significant are also computed for different event days during the event window.
They are shown in Table 4.6.

Table 4.6: T -Statistics of the CAR from τ = −10 to τ = +9.

Dates N(0, 1) Dates N(0, 1)

Aug 29 0.7719 Sep 15 0.3517
Sep 2 2.1730∗ Sep 16 1.2196
Sep 3 2.6002∗∗ Sep 17 1.3112
Sep 4 1.9566 Sep 18 1.6551
Sep 5 2.5640∗∗ Sep 19 2.9633∗∗

Sep 8 2.9481∗∗ Sep 22 2.6989∗∗

Sep 9 2.7704∗∗ Sep 23 2.6798∗∗

Sep 10 2.3756∗ Sep 24 2.5824∗∗

Sep 11 2.1583∗ Sep 25 2.5253∗

Sep 12 2.2696∗ Sep 26 3.0170∗∗

Note: CAR values that are significantly different from 0 at the 5% two-tailed significance level are
indicated by ∗ whereas those significant at the 1% two-tailed level are indicated by ∗∗.

Figures 4.11, 4.12, and Table 4.6 indicate that BOA’s prices had increased two weeks
prior to announcement date. At event date on September 15, there was a significant
drop in price. There did not appear to be any leakage as the price did not show any
marked changes in the few days before the event date. The significant drop was prob-
ably due to the market taking the news as bad, believing BOAwas undertaking a high
risk in acquiring ML.

However, in the 2–4 days subsequent to announcement, BOA’s prices showed re-
version back to normality and in fact climbed somewhat. This may be due to stock-
holders realising after all that the acquisitionwas actually good for the future business
development of BOA.

The news reported that BOA was combining its own large consumer and corpo-
rate banking business with ML’s global wealth management, advisory expertise, and
financial services capabilities and capacities, creating a huge finance corporation that
would rival Citigroup Inc.5

5 There have been numerous studies on various events of corporate finance involving announcement
effects. Two examples are J. Aharony and I. Swary (1980), Quarterly dividend and earnings announce-
ments and stockholders’ return: An empirical analysis, The Journal of Finance, 35, 1–12, and A. Keown
and J. Pinkerton (1981), Merger announcements and insider trading activity, The Journal of Finance,
36.
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5 Time Series Modeling

A time series is a sequence of random variables at successive times, often, though
not necessarily, at regular time intervals. If the realized values are observed, it is a
realization of the time series and is sometimes called “time series data”. Sometimes
“time series” refers to this realized data series. When we are modeling, we treat it as
a sequence of RVs. But when we are doing estimation, it is a series of data. If the data
is observed continuously, it is a continuous time series. In this chapter we shall study
the probability concepts behind a time series and also discuss time seriesmodels used
to fit time series data for explanation and for forecasting. We begin by considering a
stochastic process that gives rise to a time series. Since the probability results apply
more generally, we shall use study stochastic processes when the sequence is indexed
more generally according to other possible variables and not just time index.

5.1 Stochastic Process

A stochastic process is a sequence of RVs X1, X2, X3, . . ., and so on. Each Xi has a cu-
mulative distribution function (cdf). A common type of sequence is indexed by time
t1 < t2 < t3 < . . . for Xt1 ,Xt2 ,Xt3 , . . . , and so on.

A stochastic process {Xi}i=1,2,... is said to be weakly (covariance) stationary if each
Xi has the same mean and variance, and cov(Xi,Xi+k) = γ(k), i. e. a function only de-
pendent on k. As an example, suppose monthly stock return rates rt where r1 = return
rate in Jan 2009, r2 = return rate in Feb 2009, etc. form a stochastic process that is
weakly stationary. If var(r1) = 0.25, what is var(r5)? Clearly, this is the same constant
0.25. If cov(r1, r3) = 0.10, what is cov(r7, r9)? Clearly, this is 0.10 since the time gap
between the two random variables is similarly two months in either case.

The past history or realized values of the return process, {rt}t=1,2,...,60, e. g., {0.010,
−0.005,0.003,0.008,−0.012, . . . ,0.008} is called a time series, which is a time-indexed
sequence of sample points of each random variable rt in the stochastic process {rt}t .

A stochastic process {Xi}i is said to be strongly stationary if each set of {Xi,Xi+1,
Xi+2, . . . ,Xi+k} for any i and the same k has the same jointmultivariate pdf independent
of i. As an example, consider jointmultivariate normal distribution,MVN. Suppose the
following is strongly stationary,

{r1, r2, r3}
d∼MVN(M3×1, Σ3×3)

then clearly the joint multivariate pdf of {r3, r4, r5} has the same MVN (M, Σ).
There are two very important and essential theorems dealing with stochastic pro-

cesses and, therefore, applicable to the study of time series of empirical data. They
are the Law of Large Numbers and the Central Limit Theorem. For the basic proofs of

https://doi.org/10.1515/9783110673951-005
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some of the probability laws, we also present several lemmas regarding inequalities
and convergences.

5.1.1 Some Important Inequalities

Lemma 5.1 (Markov’s Inequality). If X is a nonnegative RV, then for a > 0,

P(X ≥ a) ≤ E(X)
a

Proof.
E(X) =

∞

∫
0

xf (x)dx ≥
∞

∫
a

xf (x)dx ≥ a
∞

∫
a

f (x)dx = aP(X ≥ a)

Then,

E(X)
a
≥ P(X ≥ a)

Another way to prove makes use of the indicator function and its expectation as
a probability. Suppose RV Y is defined on the same probability space (Ω,ℱ ,𝒫) as X.

Y(ω) = { 1 if X(ω) ≥ a
0 if X(ω) < a

Since X(ω) ≥ 0, Y(ω) ≤ X
a . Thus, E(Y) ≤

E(X)
a . As E(Y) = P(X ≥ a), the inequality

is obtained.

Lemma 5.2 (Chebyshev’s Inequality). If X is a RV with mean μ and variance σ2, then
for a > 0,

P(|X − μ| ≥ a) ≤ σ
2

a2

Proof. Using the Markov inequality, if we use (X − μ)2 > 0 as a nonnegative RV, and
note that (X − μ)2 ≥ a2 if and only if (⇔)|X − μ| ≥ a, then we obtain the result.

Another version is to use (X−μ)
2

σ2 as the nonnegative RV, then P(|X − μ| ≥ aσ) ≤ 1
a2 .

5.2 Law of Large Numbers

Theorem 5.1 (Weak Law of Large Numbers, WLLN). Let {Xi}i=1,2,... be a sequence of un-
correlated identical RVs each with mean μ and variance σ2. Then, for any ϵ > 0,
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P(

X1 + X2 + ⋅ ⋅ ⋅ + Xn

n
− μ

≥ ϵ) ↓ 0, as n ↑∞

Proof. Note that

E(X1 + X2 + ⋅ ⋅ ⋅ + Xn
n

) = μ

and

var(X1 + X2 + ⋅ ⋅ ⋅ + Xn
n

) =
σ2

n

From Chebyshev’s inequality, therefore,

P(

X1 + X2 + ⋅ ⋅ ⋅ + Xn

n
− μ

≥ ϵ) ≤ σ2

nϵ2

Thus, as n ↑ ∞, for any given ϵ > 0, no matter how small, the probability that the
sample mean deviates from μ can be made ever closer to zero.

TheWLLN says that the sample mean in the uncorrelated identical variables case
(and obviously also for the special case of i. i. d.) converges in probability to the pop-
ulation mean μ. RVs X above do not need to be identical. The same WLLN result can
be obtained if the RVs X have constant finite mean and constant finite variance, and
are uncorrelated (but not exactly identical). Stochastic process with constant mean
and variance as well as zero covariance is weakly stationary. The WLLN may hold for
weakly stationary process in general, i. e. allowing some non-zero covariance, as long
as there is some ergodicity, i. e. correlations disappear in longer term. TheWLLN gives
us some degree of confidence in estimating population parameters such as mean or
variance using sample mean or sample variance, respectively, when the sample size
is large and the underlying RV is weakly stationary.

5.2.1 Convergence Concepts

Let x be a real number on (0, 1] ∈ ℛ. Let x be represented by a nonterminating (in the
sense there are no infinite zeros at the end of the expansion) dyadic expansion, where

x =
∞

∑
n=1

dn(x)
2n
=
d1(x)
2
+
d2(x)
22
+
d3(x)
23
+ ⋅ ⋅ ⋅

and dn(x) = 0 or 1. Thus, x = 0.d1(x)d2(x) . . . in base 2, where {d1(x), d2(x), d3(x), . . .} is
an infinite sequence of binary digits 0 or 1. We always use the infinite expansionwhen
there is a choice, e. g., 1/2 = 0.011111 . . . instead of 0.1. Or 3/8 = 0.01011111 . . . instead
of 0.011.
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The probability of drawing a particular number x from (0, 1] ∈ ℛ is thus equiva-
lent to the probability of having a particular infinite sequence of binary digits where
“1”may denote head and “0”may denote tail as in an infinite number of coin tosses of
a fair coin. There will be some elements of x ∈ (0, 1] where the infinite sequence ends
with an infinite number of “1” ’s or the infinite sequence ends with an infinite repeti-
tion of some patterns of “1” ’s and “0” ’s, e. g., 0.001001001001001… These patterned
numbers can be shown as a number indicating fraction of “1” ’s in the total number
of digits. In this case it is 1/3. Since rational numbers are countable, these patterned
numbers form a setM that has zero Lebesgue probability measure.

The event of drawing a particular number x ∈ (0, 1] can be mapped to a partic-
ular fraction of the heads or “1” ’s, i. e. limn→∞

1
n ∑

n
i=1 di(x) associated with a partic-

ular infinite sequence of binary digits. The way to formally relate the event of x ∈ Ω
to the infinite sequence of Bernoulli RVs di(x) and its fraction of “1” ’s is to think of
the probability space (Ω,ℱ ,P) as comprising an outcome x that is bijective with a
time series {d1(x), d2(x), d3(x), . . .}. Subsets of x form the σ-field ℱ . P is the probabil-
ity measure on these subsets. The time series {d1(x), d2(x), d3(x), . . .} itself when each
di(x) is a Bernoulli RV is a stochastic process. But given the realization of time se-
ries {d1(x), d2(x), d3(x), . . .}, it is a sample path. Each sample path maps to a fraction of
“1” ’s. Thus we can evaluate the probability of an event x as probability of a bijective
event limn→∞

1
n ∑

n
i=1 di(x).

For events or numbers inM, it is possible that

lim
n→∞

1
n

n
∑
i=1

di(x) ̸=
1
2

The fraction of “1” ’s for the binary number 0.001001001… is 1/3, while that of
0.100010001000… is 1/4, and so on.

However, outside of setM, i. e. in Ω\M, each di is a Bernoulli RV with probability
1/2 of taking value 1 and probability 1/2 of taking value 0. Thus, if we perform an infi-
nite number of random fair coin tosses and count the fraction of head occurrences as
limn→∞

1
n ∑

n
i=1 di(x1), this limit is 1/2.

Then, for all x ∈ A = Ω\M, di(x) occurs infinitely often as 0 and also infinitely often
as 1 as realizations across i, so:

P([x ∈ A : lim
n→∞

1
n

n
∑
i=1

di(x) =
1
2
]) = 1

We see that for any x ∈ A and therefore any sample path of Bernoulli di(x),
1
n ∑

n
i=1 di(x)

converges to 1/2. Since P(A) = 1, we say that the almost all events (excepting those
with measure zero) are convergences to 1/2, i. e. convergence to 1/2 with probability 1
(w. p. 1).

We also say that 1
n ∑

n
i=1 di(x) converges to 1/2 almost everywhere (a. e.), or almost

surely (a. s.), i. e., it converges to 1/2 except on a set M of probability measure zero.
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The a. e. or a. s. convergence is also called a strong convergence. Note the difference
of the above strong convergence with convergence in probability discussed earlier via
the Chebyshev’s inequality and the WLLN, i. e.

lim
n→∞

P(


1
n

n
∑
i=1

di(x) −
1
2


> ϵ) = 0

for any ϵ > 0.
It is seen that convergence in probability is weaker than the almost sure conver-

gence since a sequence di(x) could have average
1
n ∑

n
i=1(di(x)−

1
2 )with decreasing vari-

ance 1/(4n) (for uncorrelated sequence) toward zero but for anyn, nomatter how large,
there is a non-zero probability that 1

n ∑
n
i=1(di(x)−

1
2 ) ̸= 0. The latter means that conver-

gence to 1/2 is not everywhere, i. e. there is some set with positive probabilitymeasure.
no matter how large n is, where convergence is not to 1/2. But with stronger condition
of i. i. d. sequence, the almost sure convergence implies convergence in probability
since probability of divergence from 1/2 is zero.

In probability, there is another type of convergence in Lp of RVs Xn ≡ fn(x) =
1
n ∑

n
i=1 di(x) to X ≡ f (x) = 1/2, viz.

lim
n→∞

E(|Xn − X|
p) = 0

Xn is said to converge in pthmean toX. For p = 2,Xn is said to converge inmean square

to X, or notationally as is commonly seen, Xn
ℒ2

→X.
As an example of convergence in mean square, consider that

E(


1
n

n
∑
i=1

di(x) −
1
2



2

) = var( 1
n

n
∑
i=1

di(x))

since E( 1n ∑
n
i=1 di(x)) =

1
2 . Now, var(

1
n ∑

n
i=1 di(x)) =

1
4n for the case of i. i. d. Bernoulli

RV di, then

lim
n→∞

E(


1
n

n
∑
i=1

di(x) −
1
2



2

) ≡ lim
n→∞

var( 1
n

n
∑
i=1

di(x)) = 0

The result of convergence in mean square can be obtained as long as var( 1n ∑
n
i=1 di(x))

converges to zero as n ↑∞. By the Chebyshev two-tailed inequality,

lim
n→∞

P(


1
n

n
∑
i=1

di(x) −
1
2


≥ ϵ) ≤

var( 1n ∑
n
i=1 di(x))
ϵ2

Since the numerator on the RHS approaches zero in the limit as n ↑∞, therefore
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lim
n→∞

P(


1
n

n
∑
i=1

di(x) −
1
2


> ϵ) = 0

for any ϵ > 0. In the above, we show that convergence in ℒ2 ⇒ convergence in proba-
bility (in P). More generally, convergence in ℒp(1 ≤ p < ∞) ⇒ convergence in P. The
converse is not necessarily true.

Convergence a. s. ⇒ convergence in P. Hence, convergence a. s. and ℒp conver-
gence are stronger convergence than convergence in P. We show below an example in
which for measurable ω ∈ (0, 1], a sequence of RVs Xn(ω) converges to 0 in P but not
a. e. Note that each eventω gives rise to a sample path of values X1, X2, . . .. In terms of
notations, the event ω here is equivalent to x in the earlier example on convergence
concepts, and Xn(ω) is equivalent to dn(x).

X1 = 1(0,1]
X2 = 1(0, 12 ] X3 = 1( 12 ,1]
X4 = 1(0, 13 ] X5 = 1( 13 , 23 ] X6 = 1( 23 ,1]
⋅ ⋅ ⋅

Each line represents a partition of the interval (0, 1]. For any ω ∈ (0, 1], there is one
Xn(ω) value equal to 1 in each line. Hence, as n → ∞, Xn(ω) will take the value 1
infinitely often. Thus for each ω ∈ (0, 1], Xn(ω) does not converge to 0. Neither does it
converge to 1. It is like an infinitely alternating series between values 0 and 1. Since

P(ω : lim
n→∞

Xn(ω) = 0) = 0

Xn ↛ 0 a. s.
For arbitrarily small ϵ > 0, when n = 1,

P(|X1 − 0| > ϵ) = 1 since all X1(ω) = 1 for all ω ∈ (0, 1]

When n = 2,

P(|X2 − 0| > ϵ) = 1/2 since P(ω : X2 = 1) = 1/2

When n = 4,

P(|X4 − 0| > ϵ) = 1/3 since P(ω : X4 = 1) = 1/3

We can see that as n → ∞, P(ω : Xn = 1) becomes smaller and smaller and tends
toward zero. Hence,

lim
n→∞

P(ω : |Xn(ω) − 0| > ϵ) = 0

Thus, in this case, Xn converges to zero in P.
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A diagrammatic explanation of the two types of a. s. and probability or P conver-
gence of Xn(ω) is shown in Table 5.1. For a. s. or a. e. convergence, Xn(ωi) → X(ωi)
for a set {ωi} ∈ A such that P(A) = 1. For convergence in probability, P(|Xn − X| > ϵ)
converges to zero.

Table 5.1: Illustration of Different Convergence Modes.

Ω 1 ⋅ ⋅ ⋅ i ⋅ ⋅ ⋅ n ∞

ω1 X1(ω1) . . . Xi(ω1) . . . Xn(ω1) → X(ω1)
ω2 X1(ω2) . . . Xi(ω2) . . . Xn(ω2) → X(ω2)
ω3 X1(ω3) . . . Xi(ω3) . . . Xn(ω3) → X(ω3)
...

...
...

...
...

...
...

All ω: P(|X1 − X | > ϵ) . . . P(|Xi − X | > ϵ) . . . P(|Xn − X | > ϵ) → 0

With the concept of a. e. convergence explained, we now present the Borel–Cantelli
lemma before proceeding to the Strong Law of Large Numbers.

Lemma 5.3 (Borel-Cantelli lemma). If the sum of the probabilities of events En ≡ {ω :
Xn(ω) ∈ A}, for A being a set of values, is finite,∑∞n=1 P(En) <∞, then

P(lim sup
n→∞

En) = 0

The limit supremum (lim sup) or limn→∞ supk≥n xk of an infinite sequence of num-
bers {xn} is the least upper bound that occurs infinitely often (i. o.) or else is the limit
itself. The limit infimum (lim inf) or limn→∞ infk≥n xk of an infinite sequence of num-
bers {xn} is the greatest lower bound that occurs infinitely often (i. o.) or else is the
limit itself. However, the limit supremum of an infinite sequence of events Xn ∈ A (or
set {ω} of the σ-field yielding Xn ∈ A) is

lim sup
n→∞

∞

⋂
n=1

∞

⋃
k=n
(Xk ∈ A)

If there are elements {a ∈ A} ∈ ⋃∞k=n Xk ,∀k, then the limit supremum is the set of {a},
the set that occurs infinitely often (i. o.) in the sequence of events (Xn ∈ A).

An example of limit supremum of an infinite sequence of events involving RVs
Xn is as follows. Event En is defined as Xn > 0 with probability P(En) = (

1
2 )
n, so that

∑∞n=1 P(En) = 1 < ∞. (Note that this sum is across infinite number of RVs each with
a total probability of 1, so ∑∞n=1 P(Ωn) = ∞.) The Borel-Cantelli lemma states that as
lim supEn consists of the event that theRV takes value larger than zero, the probability
of this event En ≡ (Xn > 0) is zero in the limit case of (Xn > 0) where n ↑ ∞. This is
obvious since the probability is ( 12 )

n ↓ 0.
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Proof. The sequence of events⋃∞n=k En for increasing k is non-increasing, i. e.

∞

⋃
n=1

En ⊇
∞

⋃
n=2

En ⊇ ⋅ ⋅ ⋅ ⊇
∞

⋃
n=k

En ⊇ ⋅ ⋅ ⋅ lim sup
n→∞

En

Since

P(lim sup
n→∞

En) = lim
k→∞

P(
∞

⋃
n=k

En)

and (by sub-additivity), P(⋃∞n=k En) ≤ ∑
∞
n=k P(En), then if ∑∞n=1 En < ∞,

limk→∞∑
∞
n=k P(En) = 0. Hence

P(lim sup
n→∞

En) = 0

Theorem 5.2 (Strong Law of Large Numbers, SLLN).1 Let {Xi}i=1,2,... be a sequence of
i. i. d. RVs each with finite mean μ and finite second and fourth moments. Then, with
probability 1 or a. s.,

P(ω : lim
n→∞

X1(ω) + X2(ω) + ⋅ ⋅ ⋅ + Xn(ω)
n

= μ) = 1

Proof. Let Sn(ω) = X1(ω)+X2(ω)+⋅ ⋅ ⋅+Xn(ω). Let eventEn be equivalent to |Sn(ω)−nμ| >
nϵ for some small ϵ > 0. By Markov’s Inequality,

P(|Sn(ω) − nμ|
4 ≥ n4ϵ4) ≤ E(Sn(ω) − nμ)

4

n4ϵ4

Finite second and fourth moments of Xn(ω) (for each n across all ω ∈ Ω in the proba-
bility space) implies E(Sn(ω)− nμ)4 ≤ Dn2 for every n and for some constant D. Hence,
for a given small ϵ > 0,

∞

∑
n=1

P(|Sn(ω) − nμ| ≥ nϵ) ≤
D
ϵ4
∞

∑
n=1

1
n2
<∞

since∑∞n=1
1
n2 =

π2
6 <∞.

2 Then apply the Borel-Cantelli lemma to obtain

1 There are many versions of the law as many mathematical results are intertwined. See Billingsley
(2012) for more details.
2 This is the solution by Euler to the Basel problem in 1735. The finiteness on the RHS is not possible
with just assumptiononfinite variance andusingChebyshev’s Inequality as itwill result in summation
∑∞n=1

1
n which is a harmonic series that is divergent.
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P(ω : lim sup
n→∞
(|Sn(ω)/n − μ| ≥ ϵ)) = 0

There is aweak type of convergence – convergence in distribution. First, we define
the empirical distribution function (edf) and visit the Glivenko–Cantelli theorem.

Suppose X1,X2, . . . ,Xn are i. i. d. random variables with a common distribution
function F(X). For a given value y, we can determine if for each i,

1[Xi≤y](ω) = {
1 if Xi(ω) ≤ y
0 otherwise

Note that eachω, e. g., a sample path, constitutes a set of values of the random sample
of size n. Define an edf of F(X) as

F̂n(y,ω) =
1
n

n
∑
i=1

1[Xi≤y](ω)

across all ω ∈ Ω.

Theorem 5.3 (Glivenko–Cantelli). For a sequence of i. i. d. Xi’s, with probability 1 (or for
all ω ∈ A ∋ (such that) P(A) = 1),

lim
n→∞

sup
−∞<y<∞

F̂n(y,ω) − F(y)
 = 0

Clearly, given y, for all y, each 1[Xi≤y](ω) is an i. i. d. Bernoulli RV with probability
F(y) of 1 and probability 1 − F(y) of 0. Then by the SLLN, its average F̂n(y) converges
to the population fraction F(y). The “supremum” tells of a stronger, uniform conver-
gence, or convergence at a rate regardless of point y.

We now show the most important result in the convergence of distribution – the
Central Limit Theorem.

5.3 Central Limit Theorem

Theorem 5.4. Suppose {Xi}i=1,2,... is a sequence of i. i. d. random variables, each having
mean μ and variance σ2. Then, the RV ∑

n
i=1 Xi−nμ
σ√n converges in distribution to the standard

normal RV as n ↑∞.

(Note that the numerator of the RV has mean 0 and the denominator is the stan-
dard deviation of the numerator.)

Proof. We can rewrite the RV ∑
n
i=1 Xi−nμ
σ√n as Yn =d ∑

n
i=1

1
√nZi where Zi =

Xi−μ
σ is i. i. d. with

mean 0 and variance 1. For a given n, the MGF of∑ni=1
Zi
√n is
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MY (θ) = E(exp(θ
n
∑
i=1

Zi
√n
))

= E(
n
∏
i=1
[exp( θ
√n

Zi)])

= [MZ(
θ
√n
)]

n

whereMZ(
θ
√n ) = E(exp(

θ
√nZ)).

Let t = θ/√n and Q(t) = lnMZ(t). Taking derivatives w. r. t. the argument, dM(t)
dt =

M′(t), and so on, we have

Q′(t) =
M′Z(t)
MZ(t)
, and Q′′(t) =

MZ(t)M′′Z (t) − [M
′
Z(t)]

2

[MZ(t)]2

Now, putting t = 0, MZ(0) = 1. Q(0) = lnMZ(0) = ln 1 = 0. M′Z(0) = E(Z) = 0.
Hence Q′(0) = 0. M′′Z (0) = E(Z2) = 1. Hence Q′′(0) = 1. Now, let t = mθ, where
m = 1/√n. Using the L’Hôpital’s rule,

lim
m→0

Q(t)
m2 = limm→0

dt
dm

dQ
dt

2m

= lim
m→0

θdQ/dt
2m

= lim
m→0

θ2d2Q/dt2

2
=
θ2

2

since the argument t in Q goes to zero as m → 0. Re-expressing in terms of n instead
ofm,

lim
n→∞

nQ( θ
√n
) =

θ2

2

or,

lim
n→∞
[MZ(

θ
√n
)]

n
= e

θ2
2

MY (θ) converges to e
θ2
2 which is the MGF of a standard normal RV. Hence Yn converges

to N(0, 1).

The above result is usually called the Lindeberg-Lev́y Central Limit Theorem.
There are other more complicated versions of the CLT, some dealing with weaker
requirements such as independence but allowing heterogeneous variances such as
in the Lindeberg–Levy–Feller theorem. In such cases, the variances also have to be
bounded in some way to enable convergence. The speed toward convergence or rate
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of convergence, i. e. how large nmust be in order to get to within certain probabilistic
deviation or “closeness” of the limit, is obviously slower when the conditions for CLT
becomemore relaxed.WhenE|Xi|3 <∞, i. e., it is bounded, the Berry–Esseen theorem
gives an idea of the rate of convergence in CLT.

We have seen how convergence to 0 of∑ni Xi − nμ is achieved by suitable division
(or “normalization”) by n, and convergence to RVN(0, 1) is achieved by a different nor-
malization by σ√n. Thus, normalization by anything between n and σ√n can produce
interesting results. CLT enables meaningful statistical testing and inference. Another
related law, the law of iterated logarithm deals with characterizing how the partial
sum∑ni Xi − nμ would behave as n increases.

Convergence in distribution or in law is, however, a weak convergence, and gen-
erally does not imply the stronger a. s. convergence or convergence in P. For example,
given a binomial distribution Xn ∼ B(n, p), X′n =

Xn−np
√np(1−p) converges to a standard nor-

mal distribution. But the discrete values of the binomial RV are just a countable set of
points ∈ ℛ with measure zero in continuousℛ. Thus, convergence of RV X′n in distri-
bution to Z ∼ N(0) does not imply that RV X′n converges to Z in probabiliy or converges
a. s. (w. p. 1). On the contrary, convergence in P and also convergencew. p. 1 imply con-
vergence in distribution. Here, unlike convergence a. s. or convergence in probability
where the sample space of general Xn and X are the same, convergence in distribution
does not necessarily imply X′n shares the same sample space as the convergent RV Z
as seen in the binomial case.

We show below how convergence in probability implies convergence in distribu-
tion. The converse is true only when the convergence in distribution is to a constant
or a degenerate distribution. Suppose sequence of RVs Xn converges to RV X in prob-
ability. The corresponding continuous cdfs are Fn(Xn) and F(X).

For any ε > 0, consider joint event {Xn ≤ u,X ≤ u + ε} ⊆ {X ≤ u + ε}, hence
P(Xn ≤ u,X ≤ u + ε) ≤ P(X ≤ u + ε) = F(u + ε). Also consider joint event {Xn ≤ u,X >
u + ε} that implies event {Xn − X < −ε}. The latter implies event {|Xn − X| > ε}. Hence
P(Xn ≤ u,X > u + ε) ≤ P(|Xn − X| > ε). Therefore, for any ε > 0,

P(Xn ≤ u) = P(Xn ≤ u,X ≤ u + ε) + P(Xn ≤ u,X > u + ε)
≤ F(u + ε) + P(|Xn − X| > ε)

Similarly, consider joint event {Xn ≤ u,X ≤ u − ε} ⊆ {Xn ≤ u}, hence P(Xn ≤ u,X ≤
u − ε) ≤ P(Xn ≤ u) = Fn(u). Also consider joint event {Xn > u,X ≤ u − ε} that implies
event {Xn − X > ε}. The latter implies event {|Xn − X| > ε}. Hence P(Xn > u,X ≤ u − ε) ≤
P(|Xn − X| > ε). Therefore, for any ε > 0,

P(X ≤ u − ε) = P(X ≤ u − ε,Xn ≤ u) + P(X ≤ u − ε,Xn > u)
≤ Fn(u) + P(|Xn − X| > ε)

Thus for any ε > 0,
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F(u − ε) − P(|Xn − X| > ε) ≤ Fn(u) ≤ F(u + ε) + P(|Xn − X| > ε)

IfXn converges toX in probability, then limn→∞ P(|Xn−X| > ε) = 0. IfF(⋅) is continuous,
then as n ↑∞, Fn(u) converges to F(u), that is convergence in distribution of Xn.

5.3.1 Applications

The normal distribution can be used as an approximation to both the binomial and
the Poisson distributions . Consider a random sample {Xi}i=1,2,... with each RV Xi = 1 or
0 from a Bernoulli distribution of an event happening, and Xi = 1 has probability p.
The mean and variance of Xi are p and p(1 − p). Suppose the random sample consists
of n such Bernoulli RVs. Then aggregate outcome Yn = X1 + X2 + ⋅ ⋅ ⋅ + Xn follows the
binomial distribution with mean np and variance np(1 − p).

By the CLT, therefore ∑
n
i=1 Xi−np
√np(1−p) or

Yn−np
√np(1−p) converges toward a N(0, 1) as n → ∞.

For large n, therefore, Yn ≈ N(μ, σ2) where μ = np, and σ2 = np(1 − p).
Consider a stock price process that increases in price by factor 1.01 with proba-

bility 0.6 and decreases in price by factor 0.99 with probability 0.4 over each short
time interval. After 60 such intervals, the binomial probability of exactly Y = 40 price
increases (and 20 price decreases) is

P(Y = 40; p = 0.6, n = 60)

= (
60
40
)(0.6)40(0.4)20

= 0.0616

This is also the case that the stock price after 60 intervals had risen by a factor of
1.0140(0.99)20 = 1.2178.

Using normal approximation P(Y = 40) ≈ P(39.5 ≤ Z ≤ 40.5) where Z is normally
distributed with mean 60(0.6) = 36 and variance 60(0.6)(0.4) = 14.4. Hence,

P(Y = 40) ≈ P(39.5 ≤ Z ≤ 40.5)

= P(39.5 − 36
√14.4

≤
Z − 36
√14.4
≤
40.5 − 36
√14.4

)

= Φ(1.185854) −Φ(0.922331) = 0.0603

A Poisson approximation to the binomial problemwould yield P(Y = 40; λ = np =
36) = e−36(36)40/40! = 0.0508. The CLT also affords a way in which the standardized
PoissonRV X−λ

√λ
(whereX is Poisson(λ)) withmean0 and variance 1may approximately

be normal for large λ.
To show this, we consider the MGF of X−λ

√λ
. We use the fact that the MGF of X,

MX(θ), is exp(λ(eθ − 1)). We also employ the Taylor series expansion of an exponential
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function.

E(exp[θ(X − λ
√λ
)])

= exp(−θ√λ)E(exp[ θ
√λ

X])

= exp(−θ√λ) exp(λ(eθ/√λ − 1))

= exp(−θ√λ) exp(λ[θ/√λ + 1
2!
(θ/√λ)2 + 1

3!
(θ/√λ)3 + ⋅ ⋅ ⋅])

= exp(−θ√λ) exp(θ√λ + 1
2!
θ2 + 1

3!
(θ3/√λ) + o(λ))

= exp( 1
2!
θ2 + 1

3!
(θ3/√λ) + o(λ))

→ exp( 1
2
θ2) as λ ↑∞

5.4 Stock Return Rates

In finance, the lognormal distribution is important. A pertinent example is a stock
price at time t,Pt . There are several empirically observed characteristics of stock price
that are neat and could be appropriately captured by the lognormal probability distri-
bution model.
(1a) Pt > 0, i. e. prices must be strictly positive.
(1b) Return rates derived from stock prices over time are normally distributed when

measured over a sufficiently long interval, e. g., a month.
(1c) Returns could display a small trend or drift, i. e., they increase or decrease over

time.
(1d) The ex-ante anticipated variance of return rate increaseswith the holding period.

Weexamine the casewhenPt is lognormally distributed to see if this distributionoffers
the above characteristics. Lognormally distributed Pt means that lnPt

d∼N, Normal.
Thus, Pt = exp(N) > 0 where N is a normal random variable. Hence, (1a) is satisfied.
Likewise, lnPt+1

d∼Normal. Therefore, lnPt+1 − lnPt
d∼Normal or, ln(Pt+1/Pt)

d∼Normal.
Now ln(Pt+1/Pt) ≡ rt,t+1 is the continuously compounded stock return over hold-

ing period or interval (t, t + 1]. If the time interval or each period is small, this is ap-
proximately the discrete return rate (Pt+1/Pt) − 1. However, the discrete return rate is
bounded from below by −1. Contrary to that, the return rt,t+1 has (−∞,∞) as support,
as in a normal distribution.

Wecan justify how rt,t+1 can reasonablybe assumedasbeingnormally distributed,
or equivalently, that the price is lognormally distributed, over a longer time interval.
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Consider a small time interval or period Δ = 1/T, such that ln(Pt+Δ/Pt), the small inter-
val continuously compounded return, is a random variable (not necessarily normal)
with mean μΔ = μ/T, and variance σ2Δ = σ2/T. The allowance of small μ ̸= 0 in the
above satisfies (1c). We may assume that each continuously compounded return over
the small interval is i. i. d.

Aggregating the returns,

ln(Pt+Δ
Pt
) + ln(Pt+2Δ

Pt+Δ
) + ln(

Pt+3Δ
Pt+2Δ
) + ⋅ ⋅ ⋅

+ ln( Pt+TΔ
Pt+(T−1)Δ

) = ln(Pt+TΔ
Pt
) (5.1)

The right-hand side of Eq. (5.1) is simply the continuously compounded return
ln(Pt+1/Pt) ≡ rt,t+1 over the longer period [t, t + 1), where the length is made up of
T = 1/Δ number of Δ periods. The left-hand side of Eq. (5.1), invoking the Central Limit
Theorem, for large T, is N(TμΔ,Tσ2Δ) or N(μ, σ2) since TΔ = 1. Hence, rt,t+1 ∼ N(μ, σ2),
which satisfies (1b) and justifies the use of lognormal distribution for prices.

Moreover, Pt+k = Ptert,t+k > 0 even if return rt,t+k may sometimes be negative. Sup-
pose the returns rt,t+1, rt+1,t+2, rt+2,t+3, . . . , rt+k−1,t+k are independent. Then,

var(ln Pt+k
Pt
) = var(

k−1
∑
j=0

rt+j,t+j+1) = kσ
2

Thus, ex-ante variance of return increases with holding period (t, t + k]. This satisfies
characteristic (1d).

It is important to recognize that the simple holding period return rate (Pt+1/Pt)− 1
does not display some of the appropriate characteristics. The simple returns have to
be aggregated geometrically in the following way.

Pt+1
Pt
= 1 + Rt,t+1

Pt+k
Pt
=

k−1
∏
j=0

Pt+j+1
Pt+j
=

k−1
∏
j=0
(1 + Rt+j,t+j+1) ∈ [0,∞)

The lower boundary of zero is implied by the limited liability of owners of listed
stocks. This return computation is cumbersome and poses analytical intractability
when it comes to computing drifts and variances. It is straightforward to compute the
means and variances of the sums of random variables as in the case of the continu-
ously compounded returns, but not so for the products of randomvariableswhen they
are not necessarily independent, as in the case of the discrete period simple returns
here.
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5.4.1 Test of Normality

Given the importance of the role of the normal distribution in financial returns data,
it is not surprising that many statistics have been devised to test if a given sample of
data {ri} comes from a normal distribution. One such statistic is the Jarque-Bera (JB)
test of normality.3 The test is useful only when the sample size n is large (sometimes,
we call such a test an asymptotic test).

The JB test statistic= n[(γ̂2/6)+((κ̂−3)2/24)]∼d χ22 , where γ̂ is the skewness estimate
of {ri} and κ̂ is the kurtosis estimate of {ri}. Note that the inputs of these measures to
the JB test statistic are sample estimates where

γ̂ =
1
n ∑

n
i=1(ri − r)

3

σ̂3

κ̂ =
1
n ∑

n
i=1(ri − r)

4

σ̂4

r = 1
n

n
∑
i=1

ri

and σ̂2 = 1
n

n
∑
i=1
(ri − r)

2

For {ri} to followanormal distribution, its skewness sample estimate γ̂ should con-
verge toward 0, since the normal distribution is symmetrical with thirdmoment being
zero, and its kurtosis sample estimate κ̂ should converge toward 3. If the JB statistic
is too large, exceeding say the 95th percentile of a χ2 distribution with two degrees of
freedom, or 5.99, then the null hypothesis, H0, of normal distribution is rejected. The
JB statistic is large if γ̂ and (κ̂ − 3) deviate materially from zero.

5.4.2 Case Study: American Express Company Stock Returns

We provide an example of the stock return sample distributions of the American Ex-
press Company. The American Express Company (AXP) is one of the Dow Jones Indus-
trial Average’s 30 companies, and is a large diversified international company spe-
cialising in financial services including the iconic AMEX card services. It is globally
traded. The AXP daily stock returns in a five-year period from 1/3/2003 to 12/31/2007
are collected from public source Yahoo Finance and processed as follows.

The return rates are daily continuously compounded return rates ln(Pt+1/Pt).
Thus, weekly as well as monthly stock returns can be easily computed from the daily

3 See C.M. Jarque and A. K. Bera (1987), A test for normality of observations and regression residuals,
International Statistical Review, 55, 163–172.
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return rates. The continuously compounded weekly return rate would be the sum of
the daily return rates for the week, Monday to Friday. The continuously compounded
monthly return rate would be the sum of the daily return rates for the month. As there
are typically about five trading days in a week, and stocks are traded mainly through
Stock Exchanges that operate on a five-day week, the weekly return is computed from
the sum of five daily return rates. Similarly, there are only about 21 to 22 trading days
on average in a month for adding up to the monthly return. Yearly or annual return
will be summed over about 252–260 trading days in a year. (An outlier of more than
12% drop in a single day in the database on 2005 October 3rd was dropped.)

Tuesday’s (one-day) return rate is usually computed as the log (natural logarithm)
of close of Tuesday’s stock price relative to close of Monday’s price. Unlike other days,
however, one has to be sensitive to the fact that Monday’s return cannot be usually
computed as the log (natural logarithm) of close of Monday’s stock price relative to
close of Friday’s price. The latter return spans three days, and some may argue that
the Monday daily return should be a third of this, although it is also clearly the case
that Saturday and Sunday have no trading. Some may use closing price relative to the
opening price on the sameday to compute daily returns. Open-to-close return signifies
return captured during daytime trading when the Exchange is open. However, close-
to-open return signifies the price change that has taken place overnight. We shall not
be concerned with these issues for the present purpose.

The three series of daily, weekly, and monthly return rates are tabulated in his-
tograms. Descriptive statistics of these distributions such as mean, standard devia-
tion, skewness, and kurtosis are reported. The Jarque-Bera tests for the normality of
the distributions are also conducted.

In Figure 5.1, the JB test statistic shows a p-value of < 0.000, thus normality is
rejected at significance level 0.0005 or 0.05% for the daily returns. The mean return
in the sampling period is 0.0377% per day, or about 252 × 0.0377 = 9.5% per annum.
The daily return standard deviation or volatility is 1.333%.

Figure 5.1: Histogram and Statistics of Daily AXP Stock Return Rates.
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If the continuously compounded return were independently identically distributed,
the annual volatility may be computed as √252 × 0.01333 = 21.16%. Figure 5.1 in-
dicates AXP stock has positive skewness during this sampling period. Its kurtosis of
5.817 exceeds 3.0, which is the kurtosis of a normally distributed random variable.

In Figure 5.2, the JB test statistic shows a p-value of < 0.000, thus normality is also
rejected at significance level 0.0005 or 0.05% for the weekly returns.

Figure 5.2: Histogram and Statistics of Weekly AXP Stock Return Rates.

In Figure 5.3, the JB test statistic shows a p-value of 0.799. Thus, normality is not re-
jected at significance level 0.10 or 10%. (Indeed, it is not rejected even at significance
level of 75%. Sometimes, we may call the p-value the exact significance level.)

Figure 5.3: Histogram and Statistics of Monthly AXP Stock Return Rates.

In the legend boxes of the figures, note that sample size n = 1257 for the daily returns,
n = 251 for the weekly returns, and n = 57 for the monthly returns. It is interesting to
note that daily and weekly stock return rates are usually not normal, but aggregation
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to monthly return rates produces normality as would be expected by our earlier dis-
cussion on Central Limit Theorem. This result has important implications in financial
modelling of stock returns. Short interval return rates such as daily returns should
not be modeled as normal given our findings. In fact, the descriptive statistics of the
return rates for different intervals above show that shorter interval return rates tend
to display higher kurtosis or “fat” tail in the pdf. Many recent studies of shorter inter-
val return rates introduce other kinds of distributions or else stochastic volatility and
jump processes to produce returns with “fatter” tails or higher kurtosis than that of
the normal distribution.

5.5 Time Series Models

In this section,we study theBox-Jenkins approach4 to themodellingof time series. The
approach is systematic, involving a recipe of careful steps to arrive at the appropriate
process for modelling and forecasting purposes. The steps involve identification of
the time series process, making it stationary or making it as some differencings of an
underlying nonstationary process, estimating the identifiedmodel, then validating it.
We shall also study an important application to the modelling of inflation rates in the
economy.

A basic building block of stationary processes is a white noise. A white noise pro-
cess {ut} is one where each ut has zero mean, constant variance σ2u <∞, and in addi-
tion has zero serial correlation. Call this the weak-formwhite noise. It is a special case
of weakly or covariance-stationary process with zero mean and zero autocorrelation.
A stronger version of white noise has ut that is independent of ut−k and ut+k for any
k ̸= 0. Here (probability density function, if it exists), pdf(ut |ut−k , ut+k) ≡ pdf(ut) for
k ̸= 0. An even stronger version is where ut ∼ i. i. d.

Most covariance-stationary processes can be formed from linear combinations of
weak-form white noises. We shall use the covariance-stationary (weak-form) white
noise in the following. The Wold Theorem states that any covariance-stationary pro-
cess can be constructed from white noises.

Theorem 5.5 (Wold Theorem). Any covariance-stationary time series {Yt : t ∈ ℤ} can
be represented in the form

Yt =
∞

∑
j=0

ψjut−j + ηt

where ψ0 = 1, ∑
∞
j=1 ψ

2
j < ∞, ut is white noise and has zero correlation with Yt−j (for

j > 0), and ηt is deterministic.

4 Refer to Box and Jenkins (1970).
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Proof. Given {Yt : t ∈ ℤ} is a covariance-stationary process, define an orthogonal
projection of RV Yt on lagged variables of itself:

P[Yt |Yt−1, . . . ,Yt−n] = b0(n) + b1(n)Yt−1 + ⋅ ⋅ ⋅ + bn(n)Yt−n

for any integer n > 0, where the projection constants bj(n) < ∞ (for 0 ≤ j ≤ n) are
determined by minimizing E(u2t ) where ut = Yt − b0(n) − b1(n)Yt−1 − ⋅ ⋅ ⋅ − bn(n)Yt−n.
Minimization gives first order conditions such that E(ut) = 0 and E(utYt−j) = 0 (for
every j = 1, 2, . . . , n), hence the orthogonality, i. e. ut has zero correlation with all Yt−j
for 1 ≤ j ≤ n. Note also that coefficients bj(n) for 0 ≤ j ≤ nmay be different for different
n as different numbers of lagged variables are used.

Since ut−k = Yt−k −b0(n)−b1(n)Yt−k−1− ⋅ ⋅ ⋅−bn(n)Yt−k−n (for k ≥ 1), cov(ut , ut−k) = 0
as the covariances of ut with all terms involving Yt−k, Yt−k−1 . . . etc. are zeros. Also,
var(ut−k) is a sum involving variances of Yt−k−j and covariances of Yt−k−j’s. This vari-
ance is constant σ2u for every k as Yt is covariance-stationary. Hence ut is a white noise.

We assume the projection limit exists, i. e.

lim
n→∞

P[Yt+k |Yt−1, . . . ,Yt−n] = P[Yt+k |Yt−1,Yt−2, . . .]

or,

Yt = ut + P[Yt |Yt−1,Yt−2, . . .] = ut + b0 + b1Yt−1 + b2Yt−2 + b3Yt−3 + ⋅ ⋅ ⋅

= ut + b0 + b1(ut−1 + b0 + b1Yt−2 + ⋅ ⋅ ⋅) + b2(ut−2 + b0 + b1Yt−3 + ⋅ ⋅ ⋅) + ⋅ ⋅ ⋅

Hence Yt = ut + (ψ1ut−1 + ψ2ut−2 + ψ3ut−3 + ⋅ ⋅ ⋅) + ηt where ηt equals sum of terms
involving products of bj’s (assume this sum converges) and is deterministic. ψ1 = b1,
ψ2 = b21 + b2, and so on. Moreover, var(Yt) = σ

2
u∑
∞
j=1 ψ

2
j <∞, so∑

∞
j=1 ψ

2
j <∞.

The Wold Theorem is sometimes referred to as the “Wold Decomposition Theo-
rem” due to the decomposition into the stochastic sum of white noises and the deter-
ministic part. If we are working with covariance-stationary process {Yt} that has zero
mean, then by Wold theorem, it can be represented by Yt = ∑

∞
j=0 ψjut−j without the

deterministic component.
The use of lag (or backward-shift) and forward-shift operators are convenient in

time series models. A lag operator L is an operation on a time series that shifts the
entire series or else oneRVone stepback in time. For example,LYt = Yt−1. Lag operator
has properties similar to multiplication:
(2a) commutative: L(aYt) = aL(Yt)
(2b) distributive over addition: L(Yt + Xt) = LYt + LXt
(2c) operating on constant c: Lc = c
(2d) operator exists in the limit: limj→∞(1 + ϕL + ϕ2L2 + ⋅ ⋅ ⋅ + ϕjLj) = (1 − ϕL)−1

 EBSCOhost - printed on 2/8/2023 6:26 PM via . All use subject to https://www.ebsco.com/terms-of-use



142 | 5 Time Series Modeling

For any covariance-stationary zero mean time series, the Wold representation Yt =
∑∞j=0 ψjut−j = ψ(L)ut, where ψ(L) = ∑

∞
j=0 ψjLj, has an infinite number of parameters

ψj’s to be estimated, hence it is not feasible for statistical work with finite sample. As
a practical matter, the principle of parsimony advocates using time series models that
have fewer parameters. The Wold representation can be approximated by the ratio of
two finite-lag polynomials:

ψ(L) ≈ θ(L)
ϕ(L)

Suppose a covariance-stationary process is modeled by Yt =
θ(L)
ϕ(L)ut or, ϕ(L)Yt =

θ(L)ut where ut is white noise ∼ (0, σ2u). ϕ(L) = 1 − ϕ1L − ϕ2L2 − ⋅ ⋅ ⋅ − ϕpLp and θ(L) =
1 + θ1L + θ2L2 + ⋅ ⋅ ⋅ + θqLq.

Here process {Yt} is autoregressive (AR) with order p and also has a moving aver-
age (MA) noise with order q, i. e., it is an ARMA(p, q) process.We shall be concerned to
ensure that the {Yt} process we use involving arbitrary θ(L) and ϕ(L)must be station-
ary. For the part on the RHS which is a MA(q) process, θ(L)ut is covariance-stationary
if q is finite since E[θ(L)ut] = 0 and var[θ(L)ut] is a sum of q terms of finite weights θ2j
with σ2u.

But we have to check that the LHS ϕ(L)Yt is indeed covariance-stationary, This is
also a check in general if any AR(p) process, for finite p, is covariance-stationary. Let
ϕ(L)Yt = vt where vt is white noise ∼ (0, σ2v). Thus (1 − ϕ1L − ϕ2L2 − ⋅ ⋅ ⋅ − ϕpLp)Yt = vt .

Replacing the L operator with variable z, 1 − ϕ1z − ϕ2z2 − ⋅ ⋅ ⋅ − ϕpzp = 0 is called
the characteristic equation. The p number of solutions z∗ are called the characteristic
roots. Note that if any root |z∗| = 1 (we use modulus |z| as a measure since some roots
may be complex), the process is non-stationary. For example, for AR(1), if 1 − ϕ1z = 0
has a solution z∗ = 1, then ϕ1 = 1/z∗ = 1. Therefore the process is Yt = Yt−1 + vt . So
var(Yt) increaseswith t, andYt is non-stationary. But if |z∗| > 1 (i. e., characteristic root
is outside the unit circle), thenϕ1 < 1 so Yt = ϕ1Yt−1+vt and var(Yt) = σ2v/(1−ϕ

2
1) <∞.

Hence Yt is covariance-stationary.
In economic and financial modeling, typically a low order ARMA(p, q) process is

used. Consider the following time series process to model how random variable Yt
evolves through time. They are all constructed from the basic white noise process
{ut}t=−∞,...,+∞ where ut has zero mean, variance σ2u, and zero serial correlations. For
estimation purposes, we add the assumption of ut being i. i. d.
(3a) Autoregressive order one, AR(1), process:

Yt = θ + λYt−1 + ut , λ ̸= 0, (5.2)

where Yt depends on or autoregresses on its lag value, Yt−1.
(3b) Moving average order one, MA(1), process:

Yt = θ + ut + αut−1, α ̸= 0 (5.3)
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where the residual is made of a moving average of two white noises ut and ut−1.
(3c) Autoregressive Moving Average order one-one process, ARMA:

Yt = θ + λYt−1 + ut + αut−1, λ ̸= 0, α ̸= 0 (5.4)

where Yt autoregresses on its first lag, and the residual is also a moving average.

5.6 Autoregressive Process
Consider the AR(1) process:

Yt = θ + λYt−1 + ut , (λ ̸= 0), t = −T , . . . ,T (5.5)

where {ut} is i. i. d. with zero mean, i. e. E(ut) = 0 for every t, and var(ut) = σ2u. Note
that this is a regression of a stationary random variable Yt on its lag Yt−1.

It is important to recognize that since the process holds for t = −T , . . . ,T, the pro-
cess is equivalent to a system of equations as follows.

YT = θ + λYT−1 + uT
YT−1 = θ + λYT−2 + uT−1

...
Y1 = θ + λY0 + u1

...
Y−T+1 = θ + λY−T + u−T+1

These equations are stochastic, not deterministic, as each equation contains a random
variable ut that is not observable.

By repeated substitution for Yt in this AR(1) process,

Eq. (5.5)⇒ Yt = θ + λ(θ + λYt−2 + ut−1) + ut

or

Yt = (1 + λ)θ + λ
2Yt−2 + (ut + λut−1)

= ⋅ ⋅ ⋅
= (1 + λ + λ2 + λ3 + ⋅ ⋅ ⋅)θ + (ut + λut−1 + λ

2ut−2 + ⋅ ⋅ ⋅)

For each t,

E(Yt) = (1 + λ + λ
2 + λ3 + ⋅ ⋅ ⋅)θ

=
θ

1 − λ
provided |λ| < 1
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Otherwise if |λ| ≥ 1, either a finite mean does not exist or the mean is not constant
under an initial condition E(Y−T ) = c0 an arbitrary constant not related to θ.

var(Yt) = var(ut + λut−1 + ⋅ ⋅ ⋅ + λ
kut−k + ⋅ ⋅ ⋅)

= σ2u(1 + λ
2 + λ4 + ⋅ ⋅ ⋅)

=
σ2u

1 − λ2
provided |λ| < 1

Otherwise if |λ| ≥ 1, either a finite variance does not exist or the variance is not constant
under an initial condition var(Y−T ) = c1, a constant.

Autocovariance of Yt and Yt−1, or

cov(Yt ,Yt−1) = cov(θ + λYt−1 + ut ,Yt−1)

= λ
σ2u

1 − λ2
.

corr(Yt ,Yt−1) = λ

The autocorrelation coefficient lag k, ρ(k), is obtained by dividing the autocovariance
lag k of Yt and Yt−k, γ(k), by the variance of Yt . As γ(k) = λk σ2u

1−λ2 , corr (Yt ,Yt−k) ≡
ρ(k) = λk .

Hence, we see that the AR(1) Yt process is covariance-stationary with constant
mean = θ/(1 − λ), constant variance = σ2u/(1 − λ

2), and autocorrelation lag k, ρ(k) = λ|k|,
a function of k only, provided |λ| < 1.

As a numerical example, suppose

Yt = 2.5 + 0.5Yt−1 + ut (5.6)

Assume Yt−1 and ut are stationary normally distributed, and not correlated. It is given
that E(ut) = 0, and var(ut) = 3.

Stationarity implies E(Yt) = E(Yt−1) = μY , and var(Yt) = var(Yt−1) = σ2Y . If we take
unconditional expectation on Eq. (5.6),

E(Yt) = 2.5 + 0.5E(Yt−1) + E(ut)

So, μY = 2.5 + 0.5μY , then μY =
2.5
(1−0.5) = 5.

If we take unconditional variance on Eq. (5.6),

var(Yt) = 0.5
2 var(Yt−1) + var(ut)

So, σ2Y = 0.25σ
2
Y + 3. Then, σ

2
Y = 3/(1 − 0.25) = 4.

The first-order autocovariance (or autocovariance at lag 1)
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cov(Yt ,Yt−1) = cov(2.5 + 0.5Yt−1 + ut ,Yt−1)
= 0.5 cov(Yt−1,Yt−1)
= 0.5 × 4 = 2

Since Yt is stationary, cov(Yt+k ,Yt+k+1) = cov(Yt+k ,Yt+k−1) = γ(1) = 2 for any k.
First-order autocorrelation (autocorrelation at lag 1):

corr(Yt+k ,Yt+k+1) = corr(Yt+k ,Yt+k−1) = ρ(1) =
γ(1)
σ2Y
= 0.5

Second-order and higher order autocovariance:

cov(Yt ,Yt−j) = cov(2.5 + 0.5Yt−1 + ut ,Yt−j) = γ(j) ̸= 0 for j > 1

Note that we can also write var(Yt) = σ2Y = γ(0). So in general, ρ(k) =
γ(k)
γ(0) .

5.7 Moving Average Process

Consider the MA(1) process:

Yt = θ + ut + αut−1 (α ̸= 0), t = −T , . . . ,T (5.7)

where {ut} is i. i. d. with zero mean and variance σ2u. We have

E(Yt) = θ
var(Yt) = σ

2
u(1 + α

2)

cov(Yt ,Yt−1) = cov(θ + ut + αut−1, θ + ut−1 + αut−2)
= ασ2u

corr(Yt ,Yt−1) =
α

1 + α2
corr(Yt ,Yt−k) = 0 for k > 1

Hence,we see thatMA(1)Yt is covariance-stationarywith constantmean = θ, constant
variance = σ2u(1 + α

2), and autocorrelation lag k, a function of k only:

ρ(k) = {
α

1+α2 , k = 1
0, k > 1

5.8 Autoregressive Moving Average Process

Consider the ARMA(1,1) process Yt = θ + λYt−1 + ut + αut−1 (λ ̸= 0, α ̸= 0), t = −T , . . . ,T,
where {ut} is i. i. d. with zero mean and variance σ2u. It implies
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Yt = θ + λ(θ + λYt−2 + ut−1 + αut−2) + ut + αut−1
= (1 + λ)θ + λ2Yt−2 + (ut + λut−1) + α(ut−1 + λut−2)
= (1 + λ + λ2 + ⋅ ⋅ ⋅)θ + (ut + λut−1 + λ

2ut−2 + ⋅ ⋅ ⋅)
+ α(ut−1 + λut−2 + λ

2ut−3 + ⋅ ⋅ ⋅)
= (1 + λ + λ2 + ⋅ ⋅ ⋅)θ + ut + (λ + α)ut−1
+ (λ + α)λut−2 + (λ + α)λ

2ut−3 + ⋅ ⋅ ⋅

For each t,

E(Yt) =
θ

1 − λ
provided |λ| < 1,

var(Yt) = σ
2
u[1 + (λ + α)

2 + (λ + α)2λ2 + (λ + α)2λ4

+ (λ + α)2λ6 + ⋅ ⋅ ⋅]

= σ2u[1 +
(λ + α)2

1 − λ2
] provided |λ| < 1,

cov(Yt ,Yt−1) = cov(θ + λYt−1 + ut + αut−1,Yt−1)
= λ var(Yt−1) + α cov(ut−1,Yt−1)
= λ var(Yt−1) + α cov(ut−1, λYt−2 + ut−1 + αut−2)
= λ var(Yt−1) + ασ

2
u,

and cov(Yt ,Yt−k) = λ
k var(Yt−k) + αλ

k−1σ2u for k ≥ 1

Hence, we see that ARMA(1,1) Yt is covariance stationary with constant mean =
θ/(1 − λ), constant variance = σ2u[1 + (λ + α)

2/(1 − λ)2] = σ2Y , and autocovariance lag k,
a function of k only, provided |λ| < 1.

It is important to know that while we are dealing with covariance-stationary pro-
cesses, e. g., AR(1) (|λ| < 1), or MA(1), their conditional mean will change over time.
This is distinct from the constant mean we talk about, which is the unconditional
mean, and the distinction is often a source of confusion among beginning students,
but it is important enough to elaborate.

5.8.1 Changing Conditional Means

Consider AR(1) process Yt = θ + λYt−1 + ut (λ ̸= 0) and also Yt+1 = θ + λYt + ut+1. At t + 1,
information Yt is already known, so

E(Yt+1|Yt) = θ + λYt + E(ut+1|Yt)

The last term is 0 since ut+1 is not correlated with Yt . Therefore, conditional mean at t
is θ+λYt . The conditionalmean also serves as forecast when estimated parameters are
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used, e. g., θ̂+ λ̂Yt . This is different from the constant unconditional mean θ
1−λ . As Yt+k

changes with k, the conditional mean changes with Yt+k . However, the conditional
variance at t is

var(Yt+1|Yt) = var(ut+1|Yt) = σ
2
u

which is still a constant no matter what Yt is.
This conditional variance, however, is smaller than the unconditional variance

σ2u
1−λ2 (|λ| < 1). This is because the unconditional variance includes variance λ

2σ2Y on
the regressor since Yt−1 is not assumed to be known yet.

Next, consider another example, an MA(1) process: Yt+1 = θ + ut+1 + αut (α ̸= 0).

E(Yt+1|ut) = θ + αut ̸= θ
var(Yt+1|ut) = σ

2
u < σ

2
u(1 + α

2)

Likewise for MA(1) covariance stationary process, conditional mean changes at
each t, but conditional variance is constant and is smaller than the unconditional vari-
ance.

Given a time series and knowing it is from a stationary process, the next step is to
identify the statistical time series model or the generating process for the time series.
Since AR andMAmodels produce different autocorrelation function (ACF) ρ(k), k > 0,
we can find the sample autocorrelation function r(k) and use this to try to differentiate
between an AR or MA or perhaps ARMA model. To get to the sample autocorrelation
function, we need to estimate the sample autocovariance function.

5.9 Sample Autocorrelation Function

Given a sample {Yt}, t = 1, 2, 3, . . . ,T, the sample autocovariance lag k is:

c(k) = 1
T

T−k
∑
t=1
(Yt − Ȳ)(Yt+k − Ȳ)

for k = 0, 1, 2, 3, . . . , p. As a rule of thumb, p < T/4, i. e., given a sample size T, we usu-
ally would not want to estimate a sample autocovariance with a lag that is larger than
T/4. To use a larger lagmeanswewill have a lesser number of terms in the summation,
and this may affect convergence.

Note the divisor is T and c(k) is consistent, i. e., limT↑∞ c(k) = γ(k). The sample
autocorrelation lag k is then

r(k) = c(k)
c(0)

for k = 0, 1, 2, 3, . . . , p.
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In the above estimator of autocorrelation function, there are sometimes different
versions in different statistical packages due to the use of different divisors, e. g.,

r(k) =
1

T−k−2 ∑
T−k
t=1 (Yt − Ȳ)(Yt+k − Ȳ)
1

T−1 ∑
T
t=1(Yt − Ȳ)2

which is the ratio of two unbiased estimators of covariances. Asymptotically, there is
no difference as T gets to be very large. However, in finite sample, the estimates will
look slightly different. A more convenient formula is

r(k) =
∑T−kt=1 (Yt − Ȳ)(Yt+k − Ȳ)
∑Tt=1(Yt − Ȳ)2

(5.8)

This formulation implicitly assumes division by T on both the numerator and the
denominator, and thus represents the consistent estimates of both autocovariances,
rather than unbiased finite sample estimates. There may be sampling possibilities
when r(k) lies outside [−1,+1]. c(k) and r(k) are symmetrical functions about k = 0,
i. e., c(k) = c(−k), and r(k) = r(−k).

The sample autocorrelation function r(k) can also be represented as an autocor-
relation matrix. The following may be that of an AR(1) process Yt = 2.5 + 0.5Yt−1 + ut .

corr
Yt
Yt−1
Yt−2
Yt−3

Yt Yt−1 Yt−2 Yt−3

[[[[

[

1 0.53 0.24 0.12
0.53 1 0.53 0.24
0.24 0.53 1 0.53
0.12 0.24 0.53 1

]]]]

]

r(k) is a random variable with a sampling distribution of the autocorrelation.
The general shapes of sample autocorrelation function for AR and MA processes

are depicted in Figure 5.4.

Figure 5.4: Sample Autocorrelation Functions of AR and MA Processes.
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Based on the AR(1) process in Eq. (5.5) and the sample autocorrelationmeasure r(k) in
Eq. (5.8),

var(r(k)) ≈ 1
T
[
(1 + λ2)(1 − λ2k)

1 − λ2
− 2kλ2k]5 (5.9)

For k = 1, var(r(1)) ≈ 1
T [1 − λ

2]. For k = 2,

var(r(2)) ≈ 1
T
[
(1 + λ2)(1 − λ4)
(1 − λ2)

− 4λ4]

=
1
T
(1 − λ2) + 3

T
λ2(1 − λ2) > var(r(1))

5.10 Test of Zero Autocorrelations for AR(1)

For the AR(1) process, autocorrelation lag k, ρ(k) = λk, provided |λ| < 1. Suppose we
test the null hypothesis H0: ρ(k) = 0 for all k > 0. This is essentially a test of the null
hypothesis H0: λ = 0. Then,

var(r(k)) ≈ 1
T

for all k > 0. Under H0, Eq, (5.2) becomes Yt = θ + ut, where {ut} is i. i. d. Hence, {Yt} is
i. i. d.

Therefore, asymptotically as sample size T increases to +∞,

(

r(1)
r(2)
...

r(m)

) ∼ N((

0
0
...
0

) ,
[[[[[

[

1
T 0 0 0
0 1

T 0 0

0 0
. . . 0

0 0 0 1
T

]]]]]

]

)

As T becomes large, the MVN distribution is approached. To test that the jth auto-
correlation is zero, evaluate zj ∼ N(0, 1) statistic as follows.

zj =
r(j) − 0
√ 1

T

Reject H0: ρ(j) = 0 at 95% significance level if the |z| value exceeds 1.96 for a
two-tailed test.

5 For derivation of the var(r(k)) above, see M. S. Bartlett (1946), On the theoretical specification of
sampling properties of autocorrelated time series, Journal of Royal Statistical Society B, 27.
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Since it is known that AR processes have ACF ρ(k), approximated by r(k), that
decay to zero slowly, but MA(q) processes have ACF ρ(k), approximated by r(k), that
are zero for k > q, a check of the autocorrelogram (graph of r(k)) in Figure 5.5 shows
thatwe rejectH0 : ρ(k) = 0 for k > 1 at the 95% significance level for the AR(3) process.
For MA(q) processes where ρ(k) = 0 for k > q,

var(r(k)) ≈ 1
T
[1 + 2

q
∑
j=1

ρ(j)2]

Figure 5.5: Identification Using Sample Autocorrelogram.

Thus, forMA(1), var(r(1))may be estimated by T−1[1+2r(1)2] > 1/T. In Figure 5.5,MA(1)
is identified. Compare this with the AR(3) that is also shown. The standard error used
in most statistical programs is 1/√T. This standard error is reasonably accurate for
AR(1) and for MA(q) processes when q is small.

To test if all autocorrelations are simultaneously zero, H0 : ρ(1) = ρ(2) = ⋅ ⋅ ⋅ =
ρ(m) = 0 (it is common practice to set m at 6, 12, 18, provided T > 4m as a rule of
thumb), we can apply the Box and Pierce (1970) Q-statistic:

Q̂m = T
m
∑
k=1
[r(k)]2 =

m
∑
k=1
[√Tr(k)]2 =

m
∑
k=1

z2k ∼ χ
2
m (5.10)

This is an asymptotic test statistic. The Ljung and Box (1978) test statistic provides for
approximate finite sample correction to the above asymptotic test statistic:

Q̂′m = T(T + 2)
m
∑
k=1

[r(k)]2

T − k
∼ χ2m (5.11)

This Ljung-Box test is appropriate in situations when the null hypothesis is a white
noise or approximately white noise such as stock return rate.
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5.10.1 Invertible MA Processes

TheMA processes can sometimes be represented by infinite order AR processes. As an
example, consider MA(1):

Yt = θ + ut + αut−1 (α ̸= 0), or Yt = θ + (1 + αB)ut

So, (1 + αB)−1Yt = (1 + αB)−1θ + ut .
Note that (1 + x)−1 = 1 − x + x2 − x3 + x4 − ⋅ ⋅ ⋅ for |x| < 1. Also, let constant c =

(1 + αB)−1θ = θ/(1 + α). Then,

(1 − αB + α2B2 − α3B3 + α4B4 − ⋅ ⋅ ⋅)Yt = c + ut

or

Yt − αYt−1 + α
2Yt−2 − α

3Yt−3 + α
4Yt−4 − ⋅ ⋅ ⋅ = c + ut

Thus,

Yt = c + αYt−1 − α
2Yt−2 + α

3Yt−3 − α
4Yt−4 + ⋅ ⋅ ⋅ + ut

which is an infinite order AR process.
This AR(∞) process is not a proper representation that allows infinitely past num-

bers ofYt−k ’s to forecast a finiteYt unless it is stationarywith finitemean and variance.
If it is not stationary, Yt may increase by too much, based on an infinite number of ex-
planations of past Yt−k ’s.

It is covariance-stationary provided |α| < 1. If a stationary MA(q) process can be
equivalently representedas a stationaryAR(∞)process, then theMA(q) process is said
to be invertible. Although all finite order MA(q) processes are stationary, not all are
invertible. For example, Yt = ut −0.3ut−1 is invertible, but Yt = ut − 1.3ut−1 is not. Also,
MA(1) process Yt = θ + ut + αut−1 (α ̸= 0) and another MA(1) process Yt = θ + ut +

1
αut−1

(α ̸= 0) are both stationary and have same lag-one autocorrelation ρ(1) = α
1+α2 , and

ρ(k) = 0 for k > 1, but only the MA(1) with α < 1 is invertible. Invertibility of an MA(q)
process to stationary AR(∞) allows expression of current Yt and future Yt+k in terms
of past Yt−k, k > 0. This could facilitate forecasts and interpretations of past impact.

A mixed autoregressive moving average process of order (p, q) is

Yt = θ + λ1Yt−1 + λ2Yt−2 + ⋅ ⋅ ⋅ + λpYt−p + ut
+ α1ut−1 + α2ut−2 + ⋅ ⋅ ⋅ + αqut−q

Thismay also be invertible to an infinite order AR or less interestingly, an infinite order
MA.
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5.10.2 Yule-Walker Equations

Consider a stationary AR(p) process Yt = θ+ λ1Yt−1 + λ2Yt−2 + ⋅ ⋅ ⋅+ λpYt−p +ut . Note that
ut is i. i. d. and has zero correlation with Yt−k, k > 0. Multiply both sides by Yt−k . Then,

Yt−kYt = Yt−kθ + λ1Yt−kYt−1 + λ2Yt−kYt−2 + ⋅ ⋅ ⋅ + λpYt−kYt−p + Yt−kut

Taking unconditional expectation on both sides, and noting that E(Yt−kYt) =
γ(k) + μ2 where μ = E(Yt−k) for any k, then

γ(k) + μ2 = μθ + λ1[γ(k − 1) + μ
2] + λ2[γ(k − 2) + μ

2] + ⋅ ⋅ ⋅

+ λp[γ(k − p) + μ
2] (5.12)

However, the unconditional mean is

μ = θ + λ1μ + λ2μ + ⋅ ⋅ ⋅ + λpμ

Using this in Eq. (5.12), we have

γ(k) = λ1γ(k − 1) + λ2γ(k − 2) + ⋅ ⋅ ⋅ + λpγ(k − p) for k > 0

Dividing both sides by γ(0),

ρ(k) = λ1ρ(k − 1) + λ2ρ(k − 2) + ⋅ ⋅ ⋅ + λpρ(k − p) for k > 0

If we set k = 1, 2, 3, . . . , p, we obtain p equations. Put ρ(0) = 1. Note also that ρ(k) =
ρ(−k). These equations derived from AR(p) are called the Yule-Walker equations.

ρ(1) = λ1 + λ2ρ(1) + ⋅ ⋅ ⋅ + λpρ(p − 1)
ρ(2) = λ1ρ(1) + λ2 + ⋅ ⋅ ⋅ + λpρ(p − 2)
ρ(3) = λ1ρ(2) + λ2ρ(1) + ⋅ ⋅ ⋅ + λpρ(p − 3)

...
ρ(p) = λ1ρ(p − 1) + λ2ρ(p − 2) + ⋅ ⋅ ⋅ + λp

They solve for the p parameters in λ1, λ2, . . . , λp using ρ(k), k = 1, 2, . . . , p. If we re-
place the ρ(k) by sample r(k) as approximates, then the p Yule-Walker equations can
be solved as follows for the parameter estimates λ̂k ’s.

R =(

r(1)
r(2)
...

r(p)

) Φ =

[[[[[[[[

[

1 r(1) r(2) ⋅ ⋅ ⋅ r(p − 1)
r(1) 1 r(1) ⋅ ⋅ ⋅ r(p − 2)
r(2) r(1) 1 ⋅ ⋅ ⋅ r(p − 3)
...

...
...

. . .
...

r(p − 1) r(p − 2) r(p − 3) ⋅ ⋅ ⋅ 1

]]]]]]]]

]
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Λ̂ =(

λ̂1
λ̂2
...
λ̂p

)

and R = ΦΛ̂. Therefore,

Λ̂ = Φ−1R (5.13)

The other parameters can be estimated as follows.

μ̂ = 1
T

T
∑
t=1

Yt , θ̂ = μ̂(1 − λ̂1 − λ̂2 − ⋅ ⋅ ⋅ − λ̂p)

The estimate of the variance of ut can be obtained from

1
T − p − 1

T
∑

t=p+1
(Yt − θ̂ − λ̂1Yt−1 − ⋅ ⋅ ⋅ − λ̂pYt−p)

2

It is important to note that the identification of the appropriate process must be
done before estimation of the parameters is possible since the correct approach to the
estimation requires knowledge of the underlying process.

5.11 Partial Autocorrelation Function
The sample ACF allows the identification, respectively, of either an AR or an MA pro-
cess depending onwhether the sample r(k)decays (reduces to zero) slowly or is clearly
zero after some lag k. However, even if an AR is identified, it is still difficult to iden-
tify the order of the lag, p, since all AR(p) processes show similar decay patterns of
ACF. A complementary tool using the partial autocorrelation function (PACF) is used
to identify p in the AR(p) process. The PACF also helps to confirm MA(q) processes.

If p = 1, let Yt = θ + λ11Yt−1 + ut, so applying the Yule-Walker Equations for p = 1,
we have (using double subscripts to λ: the first denotes the order of p, and the second
denotes the position of the parameter)

ρ(1) = λ11

If p = 2, let Yt = θ + λ21Yt−1 + λ22Yt−2 + ut, so applying the Yule-Walker Equations
for p = 2, we have

ρ(1) = λ21 + λ22ρ(1)
ρ(2) = λ21ρ(1) + λ22

 EBSCOhost - printed on 2/8/2023 6:26 PM via . All use subject to https://www.ebsco.com/terms-of-use



154 | 5 Time Series Modeling

If p = 3, let Yt = θ + λ31Yt−1 + λ32Yt−2 + λ33Yt−3 + ut, so applying the Yule-Walker
Equations for p = 3, we have

ρ(1) = λ31 + λ32ρ(1) + λ33ρ(2)
ρ(2) = λ31ρ(1) + λ32 + λ33ρ(1)
ρ(3) = λ31ρ(2) + λ32ρ(1) + λ33

Thus we can form k equations using the Yule-Walker equations if p = k.
If p = 1, λ11 is estimated as λ̂11 = r(1) using the Yule-Walker Equations. If p = 2,

λ22 is estimated as λ̂22 =
r(2)−[r(1)]2
1−[r(1)]2 . If p = k, solve for λ̂kk as the last element of Λ̂ in

Λk×1 = Φ−1k×kRk×1.
The estimate λ̂11 is a sample partial autocorrelationofYt with its laggedYt−1. In this

case of p = 1, it is also the sample autocorrelation since there are no other explanatory
variables in AR(1). The estimate λ̂22 is a sample partial autocorrelation of Yt with its
lagged Yt−2. In this case of p = 2, it is partial since the effect by Yt−1 is held constant.
The estimate λ̂kk is a sample partial autocorrelation of Yt with its lagged Yt−k . In this
case of p = k, it is partial since the effect by Yt−1,Yt−2, . . . ,Yt−k+1 is held constant.

What is interesting to note is that given true order p or AR(p), theoretically λ11 ̸= 0,
λ22 ̸= 0, λ33 ̸= 0, . . . , λpp ̸= 0, λp+1 p+1 = 0, λp+2 p+2 = 0, λp+3 p+3 = 0, and so on. Or, λkk ̸=
0 for k ≤ p, and λkk = 0 for k > p. Therefore, while an AR(p) process has a decaying
ACF that does not disappear to zero, it has a PACF that disappears to zero after lag p.

For k > p, var(λ̂kk) = T−1. Therefore, we can apply hypothesis testing to determine
if for a particular k, H0: λkk = 0, should be rejected or not by considering if statistic
| λ̂kk√T−1 | > 1.96 at the 5% level of significance.

For any MA(q) process, if it is invertible, it is an AR(∞), so its PACF will not disap-
pear, but will decay. In addition to the sample ACF shown in Figure 5.5, sample PACF
shown in Figure 5.6 indicates that the AR(3) process is identified as its PACF becomes
insignificant at k = 4.

Figure 5.6: Sample Partial Autocorrelogram.
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5.11.1 Application: GDP Growth

In growing economies, GDP dollars, or the national output, is usually on an upward
trendwith obviously increasingmeans. Thus, the process is not stationary per se, and
some form of transformation is required to arrive at the stationary process. We shall
see how the Box Jenkins approach deals with such a nonstationary process. In Fig-
ure 5.7, we show the quarterly time series US$ per capita GDP graph of a fast-growing
Singapore economy from 1985 to 1995. The data are available from the Singapore Gov-
ernment’s Department of Statistics.

Figure 5.7: Singapore’s Per Capita GDP in US$ from 1985 to 1995.

This is the gross domestic output in an economy, and is seen to be rising with a time
trend. If we input a time trend variable T, and then run an OLS regression on an inter-
cept and time trend, we obtain

Y = 7977.59 + 292.74∗T

where Y is GDP and T = 1, 2, . . . , 44 quarters from 1985 to 1995.
We then perform a time series analysis on the estimated residuals of this regres-

sion, i. e., ê = Y − 7977.59 − 292.74∗T. Sample ACF and PACF correlograms are plotted
for the estimated residuals ê to determine its time series model. This is shown in Fig-
ure 5.8.

Figure 5.8 indicates significant ACF that decays slowly so AR(p) process is sug-
gested. PACF is significant only for lag 1, so an AR(1) is identified. The residual process
is not i. i. d. since the Ljung-Box Q-statistic indicates rejection of zero correlation for
m = 1, 2, 3, . . ., etc. Then, we may approximate the process as

(Yt − 7977.59 − 292.74
∗T)

= 0.573∗(Yt−1 − 7977.59 − 292.74
∗[T − 1]) + ut
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Figure 5.8: Sample Autocorrelation and Partial Autocorrelation Statistics.

where ut is i. i. d. Then, Yt = 3598 + 126T + 0.573Yt−1 + ut . We create a fitted (in-sample
fit) series

Ŷt = 3598 + 126T + 0.573Yt−1

and plot this fitted Ŷt and Yt together, we obtain Figure 5.9.

Figure 5.9: Fitted GDP Equation ̂Yt = 3598 + 126T + 0.573Yt−1, 1985–1995.
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5.12 Autoregressive Integrated Moving Average Process

Suppose for a stationary time series {Yt}, both its ACF and PACF decay slowly or ex-
ponentially without reducing to zero, then an ARMA(p, q), p ̸= 0, q ̸= 0, model is
identified. Sometimes, a time series ACF does not reduce to zero, and yet its PACF also
does not reduce to zero, not because it is ARMA(p, q), but rather it is an autoregressive
integrated moving average process ARIMA(p, d, q). This means that we need to take d
number of differences in {Yt} in order to arrive at a stationary ARMA(p, q). For exam-
ple, if {Yt} is ARIMA(1, 1, 1), then {Yt−Yt−1} is ARMA(1, 1). In such a case,wehave to take
differences and then check the resulting ACF, PACF in order to proceed to determine
ARMA.

There is a special case ARIMA(0, 1, 1) that is interesting, amongst others.

ΔYt ≡ Yt − Yt−1 = ut − αut−1, |α| < 1

Then, (1 − B)Yt = (1 − αB)ut . So,

(1 − B)
(1 − αB)

Yt = ut

⇔
(1 − αB) − (1 − α)B
(1 − αB)

Yt = ut

⇔ [1 − (1 − α)(B + αB2 + α2B3 + ⋅ ⋅ ⋅)]Yt = ut

⇔ Yt = Y
∗
t−1 + ut , Y∗t−1 ≡ δ

∞

∑
j=1
(1 − δ)j−1Yt−j, δ = 1 − α

⇔ E(Yt |Yt−1,Yt−2, . . . , ) = Y
∗
t−1 = δYt−1 + (1 − δ)Y

∗
t−2

Thus, the forecast of next Yt at time t − 1 is the weighted average of last observation
Yt−1 and the exponential-weighted moving average of past observations of Yt−1.

Another special application of ARIMA is deseasonalization. Suppose a time se-
ries {St} is monthly sales. It is noted that every December (when Christmas and New
Year comes around) sales will be higher because of an additive seasonal component X
(assume this is a constant for simplicity). Otherwise, St = Yt . Assume Yt is stationary.

Then, the stochastic process of sales {St} will look as follows.

Y1,Y2, . . . ,Y11,Y12 + X,Y13,Y14, . . . ,Y23,Y24 + X,Y25,Y26, . . . ,Y35,Y36 + X,Y37,Y38, . . .

This is clearly a nonstationary series even if {Yt} by itself is stationary. This is be-
cause the means will jump by X each December. A stationary series can be obtained
from the above for purpose of forecast and analysis by performing the appropriate
differencing.

(1 − B12)St = Yt − Yt−12
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The differenced series becomes

Y13 − Y1,Y14 − Y2, . . . ,Y23 − Y11,Y24 − Y12,Y25 − Y13,Y26 − Y14, . . . ,Y35 − Y23,Y36 − Y24,
Y37 − Y25,Y38 − Y26, . . .

that is stationary provided Yt is stationary.
Suppose (1 − B12)St = ut, a white noise. Then, this can be notated as a (0, 1,0)12

process. If (1−θB12)St = ut, then it is (1,0,0)12. Notice that the subscript 12 denotes the
power of B. If (1−θB)(1−B12)St = ut, then it is (1,0,0)× (0, 1,0)12. (1−B12)St = (1−αB)ut
is (0, 1,0)12 × (0,0, 1).

5.12.1 Application: Modeling Inflation Rates

Modelling inflation rates using the Box-Jenkins approach is an important application
in finance, especially during periods inwhich the economy is experiencing significant
inflation.

We define monthly inflation rate It as the change from month t − 1 to month t in
the natural log of the Consumer Price Index (CPI) denoted by Pt .

It = ln(
Pt
Pt−1
)

Using U. S. data for the period 1953–1977, Fama and Gibbons (1984)6 reported the fol-
lowing sample autocorrelations in their Table 1 (shown as follows in Table 5.2).

Table 5.2: Autocorrelations of Monthly Inflation Rates and Rate Changes.

r(1) r(2) r(3) r(4) r(5) r(6)
It 0.55 0.58 0.52 0.52 0.52 0.52
It − It−1 0.53 0.11 0.06 0.01 0.00 0.03

r(7) r(8) r(9) r(10) r(11) r(12)
It 0.48 0.49 0.51 0.48 0.44 0.47
It − It−1 0.04 0.04 0.06 0.02 0.08 0.09

Given sample size N = 299, the standard error of r(k) is approximately 0.058. Using
95% significance level or a critical region outside of 1.96 standard errors, or about
0.113, r(k)’s for the It process are all significantly greater than 0, but r(k)’s for It − It−1

6 See E. Fama andM. R. Gibbons (1984), A comparison of inflation forecasts, Journal of Monetary Eco-
nomics, 13, 327–348.
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process are all not significantly different from 0 except for r(1). The autocorrelation of
It is seen to decline particularly slowly, suggesting plausibility of an ARIMA process.
The ACF of It − It−1 suggests anMA(1) process. Thus, It is plausibly ARIMA(0,1,1). Using
this identification,

It − It−1 = ut + αut−1, |α| < 1 (5.14)

From Eq. (5.14), Et−1(It) = It−1 + αut−1 since ut is i. i. d. Substitute this conditional fore-
cast or expectation back into Eq. (5.14), then

It = Et−1(It) + ut (5.15)

But Et(It+1) = It + αut and Et−1(It) = It−1 + αut−1 imply that

Et(It+1) − Et−1(It) = It − It−1 + α(ut − ut−1)
= ut + αut−1 + α(ut − ut−1)
= (1 + α)ut (5.16)

Hence the first difference of the forecasts is a white noise (1+α)ut . From Eq. (5.15),
ut = It − Et−1(It) can also be interpreted as the unexpected inflation rate realized at t.

Suppose α is estimated as −0.8. Then, Eq. (5.14) can be written as:

It − It−1 = ut − 0.8ut−1

From Eq. (5.16), the variance in the change of expected inflation is (1 − 0.8)2σ2u or
0.04σ2u, while the variance of the unexpected inflation is σ

2
u. Thus, the latter variance

is much bigger. This suggests that using past inflation rates in forecasting future infla-
tion as in the time seriesmodel (5.15) above is not as efficient. Other relevant economic
information could be harnessed to produce forecast with less variance in the unex-
pected inflation, which is to produce forecast with less surprise. Fama and Gibbons
(1984) show such approaches using the Fisher effect which says that

Rt = Et−1(rt) + Et−1(It)

whereRt is the nominal risk-free interest rate from end of period t−1 to end of period t,
and this is known at t − 1, rt is the real interest rate for the same period as the nominal
rate, and It is the inflation rate.

Notice that the right-side of the Fisher equation contains terms in expectations.
This is because inflation at t − 1 when Rt is known, has not happened, and so is only
an ex-ante conditional expectation. If the real rate rt is knownat t−1, then the equation
wouldbeRt = rt+Et−1(It), and this creates an immediate contradiction in thatEt−1(It) =
Rt − rt becomes known at t − 1 which is not. Thus, at t − 1, real rate, like inflation, is
ex-ante and not known.

 EBSCOhost - printed on 2/8/2023 6:26 PM via . All use subject to https://www.ebsco.com/terms-of-use



160 | 5 Time Series Modeling
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6 Multiple Linear Regression
In this chapter, we consider linear regression models with more than one stochas-
tic explanatory variable. This is called multiple linear regression. Under classical as-
sumptions, including the regressors (explanatory variables) being independent, i. e.
exogenous and not dependent on the regressand (dependent variable) nor the param-
eters, the estimators of the parameters possess desirable properties such as unbiased-
ness and efficiency in finite sample, and consistency and asymptotic efficiency in large
sample. We then consider the estimation and testing issues when some of the classi-
cal assumptions are violated. The latter are called specification errors (deviations from
the classical assumptions) and in their presence the estimators may not have the de-
sirable properties. Adjustment methods are also suggested to show how some of the
problems due to specification errors may be overcome. The background comments in
Chapter 2 regarding the stochastic explanatory variables and use of conditional es-
timators in inferences and efficiency matters as in the Gauss–Markov theorem also
apply in the multiple regression framework.

6.1 Multiple Linear Regression

Whenwe extend the linear regression analyses to more than one random explanatory
variable, we are dealing with multiple linear regression model viz.

Yi = b0 + b1Xi1 + b2Xi2 + b3Xi3 + ⋅ ⋅ ⋅ + bk−1Xi,k−1 + ui (6.1)

where subscripts ij of X denotes the ith sample point for i = 1, 2, . . . ,N, and the jth non-
constant explanatory variable for j = 1, 2 . . . , k − 1. We can also use t instead of i when
we deal with a time series, for t = 1, 2, . . . ,T. Note that, including the constant, there
are k explanatory “variables”. An example of multiple linear regression is when Yi de-
notes a performance measure of factory i for i = 1, 2, . . . ,N, and Xi,j denotes a jth char-
acteristic of factory i, for j = 1, 2, . . . , k − 1. In this case, the multiple linear regression
is a cross-sectional regression explaining the cross-sectional performance of factories
with associated characteristics as explanatory variables. Another example ofmultiple
linear regression is when Yt is return rate of a stock at time t for t = 1, 2, . . . ,T, and Xt,j
denotes a jth characteristic of the stock at time t, for j = 1, 2, . . . , k − 1. In this case, the
multiple linear regression is a time-series regression explaining the stock return per-
formance across time using associated characteristics at each time t as explanatory
variables.

https://doi.org/10.1515/9783110673951-006
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6.1.1 Partial Correlation Coefficient

In a simple two-variable linear regression,

Yi = b0 + b1Xi + ui, for i = 1, 2, . . . ,N

If cov(Xi, ui) = 0, then b1 = cov(Yi,Xi)/ var(Xi) = ρ(Yi,Xi)√var(Yi)/√var(Xi) where
ρ(Yi,Xi) is the (zero order) correlation coefficient between Yi and Xi.

Suppose an additional explanatory variable Zi is introduced. Now there is multi-
ple linear regression:

Yi = c0 + c1Xi + c2Zi + vi, for i = 1, 2, . . . ,N

In this case, even if cov(Xi, vi) = 0, c1 is not equal to cov(Yi,Xi)/ var(Xi) as other ex-
planatory variable is present, except when cov(Xi, Zi) = 0.

The sample correlation coefficients can be more readily evaluated when we con-
sider the linear regressions in deviation forms i. e.

yi = c1xi + c2zi + εi, for i = 1, 2, . . . ,N

where yi = Yi − Ȳ , xi = Xi − X̄, zi = Zi − Z̄, and εi = vi −
1
N ∑

N
i=1 vi. Ȳ =

1
N ∑

N
i=1 Yi,

X̄ = 1
N ∑

N
i=1 Xi, Z̄ =

1
N ∑

N
i=1 Zi, and E(εi) = 0. Also assume for simplicity that εi is inde-

pendent of xi and zi. Assume all the variables are stationary.
The zero order sample correlation coefficient between yi and xi is:

ryx =
∑i yixi
√∑i y2i ∑i x

2
i

where we left out the notation of sample size N . However, the sample partial correla-
tion coefficient between yi and xi after controlling for zi or removing effect of zi (on yi
and on xi) is:

ryx.z =
ryx − ryzrxz

√1 − r2yz√1 − r2xz

It is seen that if the sample correlations of yi and zi and of xi and zi are both positive,
then the partial correlation effect of xi on yi, after removing the effect of zi, is lower
than ryx.

The sample partial correlation coefficient between yi and xi after controlling for zi
can also be computed as follows. First, OLS linear regressions are run of yi on zi, and
also of xi on zi. The fitted errors of these regressions are

êyz,i = yi − (
∑i yizi
∑i z2i
)zi and êxz,i = xi − (

∑i xizi
∑i z2i
)zi
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These fitted residuals contain variations in yi and xi after the effects of zi are re-
moved.

The sample correlation coefficient of êyz,i and êxz,i is:

∑i=1 êyz,iêxz,i
√∑i e2yz,i ∑i e

2
xz,i

that can be shown to be exactly ryx.z, the sample partial correlation coefficient of yi
and xi controlling for effects of zi.

If êyz,i is regressed on êxz,i, the OLS estimate of the slope based on these partial
variables is also the OLS estimate of the partial slope of c1 in the multiple linear re-
gression. Similarly, it can be shown that the OLS estimate of the slope based on the
regression of partial variables êyx,i on êzx,i is also the OLS estimate of the partial slope
of c2 in the multiple linear regression.

The matrix formulation of Eq. (6.1) can be written concisely as:

YN×1 = XN×kBk×1 + UN×1 (6.2)

where

YN×1 =(

Y1
Y2
...
YN

) , XN×k =(

1 X11 ⋅ ⋅ ⋅ X1,k−1
1 X21 ⋅ ⋅ ⋅ X2,k−1
...

...
. . .

...
1 XN1 ⋅ ⋅ ⋅ XN ,k−1

)

Bk×1 =(

b0
b1
...

bk−1

) , and UN×1 =(

u1
u2
...
uN

)

The classical conditions in matrix format are:
(A1) E(U) = 0N×1
(A2) var(U) = σ2uIN×N , where E(u

2
i ) = σ

2
u, a same constant for every i, and E(uiuj) = 0

for every i ̸= j. Thus, this matrix condition provides for both conditions of vari-
ance homoskedasticity (constant variance), and cross-variable zero correlation
that are separately specified in the univariate case in Chapter 2.

(A3) X and U are stochastically independent of each other. Being matrix and vector,
respectively, this means any pairs of elements from X and U are stochastically
independent.

(A4) U ∼ N(0, σ2uI)

The classical conditions (A1), (A2), (A3) can be relaxed (weakened slightly) to
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(A1′) E(U |X) = 0N×1
(A2′) var(U |X) = E(UUT |X) = σ2uIN×N

Note that (A1), (A2), (A3) together are stronger conditions as they imply (A1′) and (A2′).
But (A1′) and (A2′) do not imply (A3) which is a strong independence assumption,
though (A1′) implies (A1) and (A2′) implies (A2).

(A1′) implies E(E(U |X)) = E(U) = 0 by the Law of Iterated Expectations. This
means that E(ui) = 0,∀i. (A1′) also implies E(ui|Xjk) = 0, for any i, j, k. This includes
cov(ui,Xij) = 0 for every i. If i is a time index t, this means E(ut |Xtj) = 0 for every t,
given j = 1, 2, . . . , k − 1. The latter is described as contemporaneous zero correlation
between ut and characteristic Xtj at same time t.

(A2′) gives E(u2i |X) = σ
2
u for every i, and also E(uiuj|X) = 0 for every pair of i, j such

that i ̸= j. By the Law of Iterated Expectations, E(u2i ) = σ
2
u for every i and E(uiuj) = 0

where i ̸= j. It also implies u2i and uiuj, second moments of U, have zero correlations
with any elements of X.

6.1.2 Least Squares Theory

The idea of least squares can be thought of as a linear orthogonal (least distance) pro-
jection. Think of theN ×1 vector of Y as a vector inN-dimensional Euclidean space (or
RN vector space with Cartesian co-ordinates and a distance metric) and vectors XB in
the same N-dimensional space but lying on a subspace which is a k-dimensional hy-
perplane. This is a non-trivial departure in concept. For example, in the two-variable
case, we look at Y versus X in two dimension on a Cartesian plane, but here we think
of Y and XB in N dimension. The idea is to find a projection vector.

If Y −XB̂ is the orthogonal projection from Y to the hyperplane formed byXB, then
(XB)T (Y − XB̂) = 0 or BTXT (Y − XB̂) = 0. Thus, XT (Y − XB̂) = 0. Therefore, we obtain
B̂ = (XTX)−1XTY . The projection represents minimum perpendicular distance from Y
to the fitted vector XB̂. The geometric idea is illustrated as follows in Figure 6.1.

Figure 6.1: Least Squares Theory.
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Now we derive the ordinary least squares estimator B̂ using optimization. Let the es-
timated residuals be Û = Y − XB̂. The sum of squared residuals (or residual sum of
squares RSS) is∑Nt=1 û

2
t = Û

T Û .
Applying the OLS method to obtain the OLS estimate for B:

min
B̂

ÛT Û ≡ (Y − XB̂)T (Y − XB̂) = YTY − 2B̂TXTY + B̂TXTXB

The first-order condition gives:

𝜕ÛT Û
𝜕B̂
= −2XTY + 2XTXB̂ = 0

Therefore,

B̂ = (XTX)−1XT (6.3)

provided that inverse of (XTX) exists. (XTX) is of dimension k × k. For inverse of (XTX)
to exist, (XTX) must have full rank of k. The rank of XN×k is at most min(N , k). Thus,
k must be smaller than N . This means that when we perform a regression involving k
explanatory variables (including the constant), wemust employ at least a sample size
of k and larger.

6.1.3 Properties of OLS Estimators

B̂ = (XTX)−1XT (XB + U) = B + (XTX)−1XTU

If X and U are stochastically independent as in (A3), then E(B̂) = B + E[(XTX)−1XT ] ×
E[U] = B asE[U] = 0with (A1). If we employ (A1′) instead,E(B̂) = B+E[(XTX)−1XTU] =
B + E(E[(XTX)−1XTU |X]) = B + E[(XTX)−1XTE(U |X)] = B.

It is shown that the OLS estimators in B̂ are unbiased. Now,

B̂ − B = (XTX)−1XTU

The k × k covariance matrix of B̂ is

var(B̂) = E(B̂ − B)(B̂ − B)T = E((XTX)−1XTU)((XTX)−1XTU)T

= E[(XTX)−1XTUUTX(XTX)−1]

Applying (A3) and (A2),

var(B̂) = E[(XTX)−1XTE(UUT)X(XTX)−1]
= σ2uE[(X

TX)−1XT IX(XTX)−1]
= σ2uE[(X

TX)−1]

 EBSCOhost - printed on 2/8/2023 6:26 PM via . All use subject to https://www.ebsco.com/terms-of-use



166 | 6 Multiple Linear Regression

If we apply (A2′) instead, we obtain the same result.

var(B̂) = E[E((XTX)−1XTUUTX(XTX)−1|X)]

= E[(XTX)−1XTE(UUT |X)X(XTX)−1]

= σ2uE[(X
TX)−1XT IX(XTX)−1]

= σ2uE[(X
TX)−1]

For statistical inference, we now use conditional variance, so

var(B̂|X) = σ2u(X
TX)−1 (6.4)

By (A4), B̂k×1 ∼ N(Bk×1, σ2u(X
TX)−1).

As in the two-variable case, OLS estimator B̂ is BLUE. Note also that in this case,
there is no restriction on X (i. e., it is not necessary that there must be a constant re-
gressor among X, for B̂ to be BLUE).

Now, the unbiased sample estimate of σ2u is σ̂
2
u =

ÛT Û
N−k . If H0 : Bj = 1, the statistical

distribution of test statistic

B̂j − 1

σ̂u√jth diag element (XTX)−1
is tN−k

6.2 Tests of Restrictions

Consider a linear combination, Rq×kB̂k×1. Suppose the null hypothesis is based on q
linear restrictions on the coefficients,H0 : Rq×kBk×1 = rq×1. Then,Rq×kB̂k×1−rq×1, where
R and r are constants, is normally distributed since B̂ is normally distributed given the
classical assumptions, and conditional on X. The idea is to test if deviation of RB̂ − r
is attributed to insignificant sampling error (i. e., we cannot reject H0) or whether it is
significant (i. e., we reject H0).

E(RB̂) = RB

The covariance matrix of RB̂ − r is the covariance matrix of (RB̂)q×1 since r is con-
stant. This is also the covariance matrix of R(B̂ − B) since B is constant.

var(RB̂ − r) = E[R(B̂ − B)(B̂ − B)TRT] = σ2uR(X
TX)−1RT ,

or

var(RB̂ − r) = R[var(B̂)]RT
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We provide an illustration as follows. Note in what follows that var(R2×3B̂3×1)
yields a 2 × 2 covariance matrix.

var[[
[

(
x1 x2 x3
y1 y2 y3

)(
â
b̂
ĉ
)]]

]

= var[( x1â + x2b̂ + x3ĉ
y1â + y2b̂ + y3ĉ

)]

= [
xTVx xTVy
yTVx yTVy

]

= (
x1 x2 x3
y1 y2 y3

)V(
x1 y1
x2 y2
x3 y3

) = RVRT

where

xT = (x1x2x3), yT = (y1y2y3) and V3×3 = cov(
â
b̂
ĉ
)

Next we discuss some fundamental matrix results before arriving at the distribu-
tion of the test statistic of RB = r. The quadratic form of a square matrix Aq×q is xTAx
where vector x is of dimension q, and xTAx is a quadratic function in the elements of x.
We consider only real matrix A. If A is real symmetric, AT = A. The eigenvalues λi’s of
A are real but not necessarily all distinct for different i. The eigenvalues are found by
solving Avi = λivi where vi is the corresponding q × 1 eigenvector. If the eigenvalues
are distinct, then their eigenvectors (for real symmetric A) are orthogonal. Even when
there are eigenvalues with multiplicity, one can always find eigenvectors such that
they are orthogonal (for real symmetric A).

We can write AV = VΛ where Λq×q is a diagonal matrix with real elements λi in
the diagonal and zeros off-diagonal. Vq×q is the matrix containing the q columns of
eigenvectors v1, v2, . . . , vq. For real symmetric A, we can always find an orthonormal V
such that VTV = Iq×q. The last equality also implies that VT = V−1 or that an inverse
to this orthonormal V exists. Then A = VΛV−1 = VΛVT and Λ = VTAV . The last
two implications given real symmetric A are part of the Spectral Theorem in matrices,
basically allowing a real symmetric A to be diagonalizable.

If for any real x ̸= 0, xTAx > (≥) 0, then A is positive definite (semi-definite).
A positive definite matrix A can be expressed as YTY where Y (not all elements zeros)
has dimensions q × q. Hence a positive definitematrix is also symmetric.We shall now
consider A as a real positive definite matrix. A has real positive eigenvalues. On the
other hand, if all eigenvalues of A are real positive, then A is real positive definite. It is
also diagonalizable, i. e., A = VΛVT .

The covariance matrix Σq×q of a random vector Zq×1 (with elements or RVs that
are not linearly dependent) is always positive definite. This can be easily shown as
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var(xTZ) for any real xq×1 is xTΣx that must be positive. Hence the covariance matrix
can be decomposed as Σ = VΛVT . And Σ−1 = VΛ−1VT = VΛ−

1
2Λ−

1
2 TVT .

If random vector Zq×1 ∼ N(0, Σq×q), then ZTΣ−1Z = PTP where Pq×1 = Λ−
1
2 TVTZ.

Now, P is a linear combination of q RVs, being elements of Z. E[PPT ] = E[Λ−
1
2 TVTZZT×

VΛ−
1
2 ] = Λ−

1
2 TVTE[ZZT ]VΛ−

1
2 = Λ−

1
2 TVTΣVΛ−

1
2 = Iq×q since VTΣV = Λ. Each element

in P has zero correlation (hence independence under normality) with other elements.
Thus

ZTΣ−1Z ∼ χ2q

So,

(RB̂ − r)T[σ2uR(X
TX)−1RT]−1(RB̂ − r) ∼ χ2q

where B̂ is the OLS estimate of B in Y = XB+U . This is also called theWald criterion. It
may be used as a Wald χ2-test if the sample size is very large so that unknown σ2u can
be substituted by estimate σ̂2u.

Now, Û = Y−XB̂ = U+X(B−B̂) = U+X(−(XTX)−1XTU) = (I−X(XTX)−1XT )U . LetM =
I−X(XTX)−1XT . HereM is an idempotentmatrix. By definition, any idempotentmatrix
has the property that when multiplying by itself, the product remains the same as the
original matrix. Here, in addition,M is symmetric:MT = M. Further, for a symmetric
idempotent matrix, it can be shown that in its diagonalization where M = VΛVT ,
Λ diagonal elements are either ones or zeros.

With Û = MU and UN×1 ∼ N(0, σ2uIN×N ),
ÛT Û
σ2u
∼ χ2N−k where the trace ofM is N − k.

Moreover it can be shown that ÛT Û is independent of B̂ and also independent of (RB̂−
r)T [σ2uR(X

TX)−1RT ]−1(RB̂ − r). Thus,

(RB̂ − r)T [R(XTX)−1RT ]−1(RB̂ − r)/q
ÛT Û/(N − k)

∼ Fq,N−k (6.5)

This provides a test of H0 : RB = r.
The test of this restriction, H0 : RB = r, can also be constructed in another way.

Suppose we run OLS on a restricted regression by imposing RB = r. Hence, min(Y −
XB)T (Y − XB) subject to RB = r. Solve the Lagrangian

min
B̂c ,λ̂
(Y − XB̂c)T(Y − XB̂c) + 2λ̂T(RB̂c − r)

where B̂c denotes the constrained estimator.
The first-order conditions are:

−2XT(Y − XB̂C) + 2RT λ̂ = 0

and also 2(RB̂C − r) = 0.
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Therefore,

[
XTX RT

R 0
](

B̂C

λ̂
) = [

XTY
r
]

Then,

(
B̂C

λ̂
) = [

XTX RT

R 0
]
−1

[
XTY
r
]

= [
(XTX)−1(I + RTCR(XTX)−1) −(XTX)−1RTC
−CR(XTX)−1 C

] [
XTY
r
]

where C = (−R(XTX)−1RT )−1 using partitioned matrix inverse.1 Thus,

B̂C = (XTX)−1(I + RTCR(XTX)−1)XTY − (XTX)−1RTCr

= (XTX)−1XTY + (XTX)−1RTC[R(XTX)−1XTY − r]

= B̂ + (XTX)−1RTC(RB̂ − r)

= B̂ − (XTX)−1RT(R(XTX)−1RT)−1(RB̂ − r)

Therefore,

B̂C − B̂ = −(XTX)−1RT(R(XTX)−1RT)−1(RB̂ − r)

Now, constrained estimated residual

ÛC = Y − XB̂ − X(B̂C − B̂) = Û − X(B̂C − B̂)

Hence,

ÛCT ÛC = ÛT Û + (B̂C − B̂)TXTX(B̂C − B̂) since XT Û = 0

Then, ÛCT ÛC − ÛT Û = (RB̂ − r)T (R(XTX)−1RT )−1(RB̂ − r) which is the numerator in
Eq. (6.5) before dividing by q. Hence, we see that

(CSSR-USSR)
q

USSR
(N−k)

∼ Fq,N−k

where CSSR is constrained sum of squared residuals ÛCT ÛC and USSR is uncon-
strained sum of squared residuals ÛT Û .

1 See Johnson and Wichern (2002).
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If we apply R = Ik×k in the restriction RB = 0, then we are really testing H0 : b0 =
b1 = b2 = ⋅ ⋅ ⋅ = bk−1 = 0. The test statistic for this H0 is:

B̂T [(XTX)−1]−1B̂/k
ÛT Û/(N − k)

=
B̂T (XTX)B̂/k
ÛT Û/(N − k)

∼ Fk,N−k

The above is a test of whether the X’s explain Y or allow a linear fitting of Y . Suppose
the X’s do not explain Y . But if the mean of Y is not zero, then the constraint b0 = 0
should not be used as part of the null hypothesis. If used, there will be rejection ofH0,
but this will lead to the wrong conclusion that X’s explain Y .

In other words, if we allow or maintain the mean of Y to be non-zero, a more suit-
able test of whether X’s affect Y is H0 : b1 = b2 = ⋅ ⋅ ⋅ = bk−1 = 0. We leave out the
constraint b0 = 0. How do we obtain such a test statistic?

The restrictions H0 : b1 = b2 = ⋅ ⋅ ⋅ = bk−1 = 0 are equivalent to the matrix restric-
tion of Rk−1×kB = 0k−1×1 where R = [0|Ik−1] with its first column containing all zeros.
Partition X = [1|X∗] where the first column 1 contains all ones, and X∗ is N × (k − 1).
Then

XTX = [1|X∗]T[1|X∗] = [ N 1TX∗

X∗T1 X∗TX∗
]

Now R(XTX)−1RT = [0|Ik−1](XTX)−1[0|Ik−1]T . This produces the bottom right (k − 1) ×
(k− 1) submatrix of (XTX)−1. But by the partitionedmatrix result in linear algebra, this
submatrix is

[(X∗TX∗) − X∗T1( 1
N
)1TX∗]

−1
= [X∗T(I − 1

N
11T)X∗]

−1

where (I − 1/N11T ) ≡ M0 is symmetrical and idempotent, and transforms amatrix into
deviation form, i. e.,

M0X∗ =
[[[[[

[

X11 − X̄1 X12 − X̄2 ⋅ ⋅ ⋅ X1(k−1) − X̄k−1
X21 − X̄1 X22 − X̄2 X2(k−1) − X̄k−1

...
...

. . .
XN1 − X̄1 XN2 − X̄2 ⋅ ⋅ ⋅ XN(k−1) − X̄k−1

]]]]]

]

= X∗∗

Hence R(XTX)−1RT = (X∗TM0X∗)−1 = [X∗∗TX∗∗]−1. So, [R(XTX)−1RT ]−1 = [X∗∗TX∗∗].
It can be shown easily that (I − 1/N11T ) × (I − 1/N11T ) = (I − 1/N11T ).

From the OLS definition of estimated residual Û, Û = Y − XB̂. It can shown that
XT Û = 0. This is because XT Û = XT (Y − XB̂) = XTY − XTX[(XTX)−1XTY] = 0. Hence
[1|X∗]T Û = 0 which gives 1T Û = 01×1 and also X∗

T Û = 0k−1×1.
Now,M0Y = M0XB̂ +M0Û . ButM0Û = (I − 1/N11T )Û = Û − 1[1/N1T Û] = Û . Then,

M0Y = [0|X∗∗]B̂ + Û . Let
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M0Y =
[[[[[

[

Y1 − Ȳ
Y2 − Ȳ

...
YN − Ȳ

]]]]]

]

be Y∗∗

Then, from the above,

Y∗∗ = X∗∗
[[[[[

[

b̂1
b̂2
...

b̂k−1

]]]]]

]

+ Û

where constant estimate b̂0 is left out. If we define

B̂∗∗ =
[[[[[

[

b̂1
b̂2
...

b̂k−1

]]]]]

]

then, Y∗∗ = X∗∗B̂∗∗ + Û . Thus,

Y∗∗TY∗∗ = B̂∗∗TX∗∗TX∗∗B̂∗∗ + ÛT Û

since

X∗∗T Û = (M0X∗)T Û = X∗TM0Û = X∗T Û = 0

Now, using [R(XTX)−1RT ]−1 = [X∗∗TX∗∗],

(RB̂)T[σ2uR(X
TX)−1RT]−1(RB̂) = B̂

∗∗T (X∗∗TX∗∗)B̂∗∗

σ2u

=
(X∗∗B̂∗∗)T (X∗∗B̂∗∗)

σ2u
∼ χ2k−1

Hence, the test statistic is

(X∗∗B̂∗∗)T (X∗∗B̂∗∗)
(k−1)
ÛT Û
(N−k)

∼ Fk−1, N−k

Moreover, the numerator is ESS/(k − 1), then

ESS
[TSS(k−1)]

RSS
[TSS(N−k)]

∼ Fk−1,N−k
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Therefore,

R2
(k−1)
(1−R2)
(N−k)

∼ Fk−1,N−k

Note that if R2 is large, the F statistic is also large. What happens to the test on H0 :
B2 = B3 = ⋅ ⋅ ⋅ = Bk = 0? Do we tend to reject or accept? We reject H0.

While R2 determines howwell is the fit of the regression line XB̂, usually adjusted
R2 or R̄2 is used to check how well Y is explained by the model XB:

R̄2 = 1 −
RSS
(N−k)
TSS
(N−1)

=
1 − k
N − k
+
N − 1
N − k

R2

As we can arbitrarily increase R2 by using more explanatory variables or overfit-
ting, then for any fixed N, increase in k will be compensated for by a reduction to a
smaller R̄2, ceteris paribus.

Three other common criteria for comparing the fit of various specifications or
model XB are:
Schwarz Criterion: SC = −2 L

∗

N +
k
N lnN

Akaike Information Criterion: AIC = −2 L
∗

N +
2k
N

Hannan-Quinn criterion: HQC = −2 L
∗

N +
2k
N ln(lnN),

where

L∗ = ln[(2πσ̂2u)
−N/2 exp(− 1

2σ̂2u

N
∑
i=1

û2i)], and
N
∑
i=1

û2i is SSR

Unlike R̄2, when a better fit yields a larger R̄2 number, here, smaller SC, AIC, and HQC
indicate better fits. This is due to the penalty imposed by larger k.

6.3 Forecasting

For prediction or forecasting involving multiple explanatory variables, let the new
variables be cT = (1X∗2 X

∗
3 ⋅ ⋅ ⋅X

∗
k ). So, the forecast is

Ŷ = cT B̂

The variance of the forecast is var(cT B̂) = cT var(B̂)c. Note that the variance of forecast
is not the variance of forecast error.

However, in terms of prediction or forecast error in the next period
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Y = cTB + U∗1×1
Y − Ŷ = U∗ − cT (B̂ − B)

So, conditional on X,

var(Y − Ŷ) = σ2u[1 + c
T(XTX)−1c]

There is the implicit assumption that this conditional variance also applies to the new
c values. And,

Y − Ŷ

σ̂u√1 + cT (XTX)−1c
∼ tN−k

Thus, the 95% confidence interval of next Y is:

Ŷ ± t0.025σ̂u√1 + cT(XTX)−1c

After considering the desirable properties of OLS estimators of themultiple linear
regression (MLR) under the classical conditions of disturbances, it is time to consider
specification errors. A specification error or a misspecification of the MLR model is a
problem with an assumption of the model such that the problem will lead to OLS not
being BLUE. Some specification errors are practically not serious enough to lose sleep
over, but some can be pretty serious to merit detailed investigation.

We shall consider different types of specification errors as follows, and then sug-
gest remedies. Specifically, we shall consider the misspecifications of disturbances or
residual errors, the misspecifications of explanatory variables, misspecifications of
the relationship between the explanatory variables and disturbances, and misspec-
ifications of coefficients. Special cases of misspecifications of disturbances such as
heteroskedasticity and serial correlations will be considered in more details.

6.4 Misspecification with Disturbances

The classical conditions state that E(UUT |X) = σ2uIN in which the disturbances
are spherical (both homoskedastic and serially uncorrelated). Suppose instead
E(UUT |X) = σ2uΩN×N ̸= σ2uIN , where each element of the covariance matrix ΩN×N
may be a non-zero constant. Taking iterated expectations, E(UUT ) = σ2uΩN×N ̸= σ2uIN .
If ΩN×N is known, i. e.

YN×1 = XN×kBk×1 + UN×1

U ∼ N(0, σ2uΩN×N) and Ω ̸= I

we can apply generalized least squares (GLS) estimation.
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Since Ω is a covariance matrix, any xN×1 vector must yield σ2ux
TΩx ≥ 0 as the

variance of xTU . Hence, Ω is positive definite. In Linear Algebra, there is a theorem
that if Ω is positive definite, then it can be expressed as:

Ω = PPT (6.6)

where P is a N × N non-singular matrix. Note that P is fixed and non-stochastic. Now
Eq. (6.6) implies

P−1ΩP−1T = I (6.7)

and also

Ω−1 = P−1TP−1 (6.8)

Define Y∗ = P−1Y ,X∗ = P−1X, and U∗ = P−1U . Pre-multiply the original model
Y = XB + U by P−1. Then,

P−1Y = P−1XB + P−1U

or Y∗ = X∗B + U∗. Thus,

cov(U∗) = E(U∗U∗T) = E(P−1UUTP−1T) = P−1E(UUT)P−1T

= σ2uP
−1ΩP−1T

By Eq. (6.7), cov(U∗) = σ2uI.
Thus, Y∗ = X∗B + U∗ satisfies the classical conditions. The OLS regression of Y∗

on X∗ gives

B̂ = (X∗TX∗)−1X∗TY∗ (6.9)

This B̂ is BLUE. This is not the original OLS estimator of B̂OLS = (XTX)−1XTY since
the regression is made using transformed Y∗ and X∗. Call this new generalized least
squares estimator B̂GLS.

We can express B̂GLS in terms of the original Y and X. We do this by substituting
the definitions of X∗ and Y∗ into Eq. (6.9) and utilising Eq. (6.8).

B̂GLS = (X
∗TX∗)−1X∗TY∗ = [(P−1X)T(P−1X)]−1(P−1X)T(P−1Y)

= (XTP−1TP−1X)−1XTP−1TP−1Y

Or,

B̂GLS = (X
TΩ−1X)−1XTΩ−1Y
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Note that σ2u does not appear in the formula for B̂GLS. Given Ω, the latter is the
Generalized Least Squares (GLS) estimator of B in the regression of Y on X. This GLS
(exactly the same as B̂ in Eq. (6.9)) is BLUE. It is interesting to note that OLS regression
of Y on X based on YN×1 = XN×kBk×1 + UN×1, with non-spherical disturbances U, pro-
duces OLS estimator B̂OLS that is unbiased, i. e. E(XTX)−1XTY = B, but unlike B̂GLS, is
not best in the sense of efficiency.

Given that Ω is known, an unbiased estimate for σ2u is (since cov(U
∗) is σ2uI)

σ̂2u =
1

N − k
(Y∗ − X∗B̂GLS)

T
(Y∗ − X∗B̂GLS)

=
1

N − k
(P−1Y − P−1XB̂GLS)

T
(P−1Y − P−1XB̂GLS)

=
1

N − k
(Y − XB̂GLS)

TP−1TP−1(Y − XB̂GLS)

=
1

N − k
ÛTΩ−1Û

where above Û = Y − XB̂GLS. Note also that

cov(B̂GLS) = σ
2
u(X
∗TX∗)−1 = σ2u(X

TP−1TP−1X)−1 = σ2u(X
TΩ−1X)−1

Thus, the usual procedures of confidence interval estimation and testing of the pa-
rameters can be carried out.

6.4.1 Heteroskedasticity

Heteroskedasticity (or non-homoskedasticity) refers to the case when the variances
of the disturbances representated as diagonal elements in ΩN×N are not constants.
Suppose

cov(U) = σ2uΩ,

where

ΩN×N =(

X2
1j 0 ⋅ ⋅ ⋅ 0
0 X2

2j ⋅ ⋅ ⋅ 0
...

...
. . .

...
0 0 ⋅ ⋅ ⋅ X2

Nj

)

This is a special case when Ω is of a known form. Here, Y = XB + U, X =
(X1|X2|X3|⋅ ⋅ ⋅|Xk) where the first column of X is X1 = (1 ⋅ ⋅ ⋅ 1 ⋅ ⋅ ⋅ 1)T and the jth col-
umn is Xj = (X1jX2j ⋅ ⋅ ⋅XNj)T . The N disturbances have variances proportional to the
square of a certain jth explanatory variable Xij as follows.
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Now,

Ω−1N×N =(

(

1
X2
1j

0 ⋅ ⋅ ⋅ 0

0 1
X2
2j
⋅ ⋅ ⋅ 0

...
...

. . .
...

0 0 ⋅ ⋅ ⋅ 1
X2
Nj

)

)

Therefore,

B̂ = (XTΩ−1X)−1XTΩ−1Y = (X∗TX∗)−1X∗TY∗,

where

Y∗ =(

(

Y1
X1j
Y2
X2j
...
YN
XNj

)

)

and X∗ =(

(

1
X1j

X12
X1j
. . . X1k

X1j
1
X2j

X22
X2j
. . . X2k

X2j
...

...
. . .

...
1
XNj

XN2
XNj
. . . XNk

XNj

)

)

For the notation in Xij, the first subscript i represents time/cross-sectional posi-
tion 1, 2, . . . ,N, and second subscript j represents the columnnumber ofX or the jth ex-
planatory variable. The aboveGLS estimator B̂ is also called theweighted least squares
estimator since we are basically weighing each observable (Yi,Xi1,Xi2, . . . ,Xij, . . . ,Xik)
by 1/Xij for every i.

Then, to test H0 : Bj = 0, we use

B̂j − 0

σ̂u ×√jth diagonal element of (X∗TX∗)−1

that is distributed as tN−k .
Suppose the N disturbances have variances proportional to the αth power of a

certain jth explanatory variable Xij as follows. X and U are not correlated.

cov(U) = σ2uΩ

ΩN×N =(

Xα
1j 0 ⋅ ⋅ ⋅ 0
0 Xα

2j ⋅ ⋅ ⋅ 0
...

...
. . .

...
0 0 ⋅ ⋅ ⋅ Xα

Nj

)

However, α is not known and has to be estimated.
The suggested estimation procedure is as follows.
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(1a) Use OLS to obtain B̂OLS = (XTX)−1XTY that is unbiased, but not BLUE.
(1b) Find estimated residual ûi = Yi −∑

k
j=1 B̂j,OLSXij (Note: E(Û) = U).

(1c) Since var(ui) = σ2uX
α
ij for i = 1, 2, . . . ,N, then

ln[var(ui)] = ln σ
2
u + α lnXij.

α is estimated by OLS regression using
ln[û2i ] = constant + α lnXij + residual error.

Obtaining α̂, this is used as follows to estimate Ω̂.
(1d)

Ω̂N×N =(

Xα̂
1j 0 ⋅ ⋅ ⋅ 0
0 Xα̂

2j ⋅ ⋅ ⋅ 0
...

...
. . .

...
0 0 ⋅ ⋅ ⋅ Xα̂

Nj

) .

Then, B̂ = (XT Ω̂−1X)−1XT Ω̂−1Y will be approximately BLUE (subject to sampling error
in α̂).

In situations where Ω is unknown and the form is approximately IN×N , then we
may stick to OLS. It is still unbiased, and approximately BLUE.

Suppose the heteroskedasticity implies

ΩN×N =(

σ21 0 ⋅ ⋅ ⋅ 0
0 σ22 ⋅ ⋅ ⋅ 0

0
...

. . . 0
0 0 0 σ2N

)

where σ2u = 1 here, and the {σ2t }t=1,2,3,...,N are not known, but are finite constants.
Assume (A1′) E(U |X) = 0 and (A2′) E(UUT |X) = ΩN×N . The OLS estimator B̂ =
(XTX)−1XTY is still unbiased but inefficient.

The covariance matrix of OLS B̂ conditional on X is

(XTX)−1XTΩX(XTX)−1

Since Ω is diagonal with constants, XTΩX = ∑Nt=1 σ
2
t X

T
t Xt, where

XN×k =
(((

(

X1
X2
...
Xt
...
XN

)))

)
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and Xt is 1 × k vector containing all the explanatory variables at the same time-
point.

White (1980)2 suggests a heteroskedasticity-consistent covariance matrix estima-
tor (HCCME), cov(B̂), as (XTX)−1XT Ω̂X(XTX)−1 that is consistent.

First, run OLS and obtain ût = Yt − XtB̂OLS.
Let

Ω̂ =(

û21 0 ⋅ ⋅ ⋅ 0
0 û22 ⋅ ⋅ ⋅ 0
...

...
. . .

...
0 0 ⋅ ⋅ ⋅ û2N

)

where N is the sample size.
Based on (A1′) and (A2′),

E[XT Ω̂X] = E[
N
∑
t=1

û2tX
T
t Xt]

=
N
∑
t=1

E[û2t ]E[X
T
t Xt]

=
N
∑
t=1

σ2t E[X
T
t Xt]

= E[XTΩX]

where the expectation is taken over each of the N periods, i. e. a multiple integral.
Assume 1

N ∑
N
t=1 σ

2
t E[X

T
t Xt] <∞whenN ↑∞. Thus there is some restriction on the

sum of unconditional moments of σ2t X
T
t Xt . Then,

lim
N→∞

E([ 1
N

N
∑
t=1

û2tX
T
t Xt] − [

1
N

N
∑
t=1

σ2t X
T
t Xt]) = 0

that shows convergence inmean of 1/N ∑Nt=1 û
2
tX

T
t Xt . This implies convergence in prob-

ability. Hence

1
N
(XT Ω̂X) P

→
1
N
(XTΩX)

Conditional on X, we should obtain the same result as above.

2 See Halbert White, A heteroskedasticity-consistent covariance matrix estimator and a direct test for
heteroskedasticity, Econometrica, 48, 817–838, 1980. A reference text book is Halbert White (1984),
Asymptotic Theory for Econometricians, Academic Press.
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Therefore, the OLS estimator covariance matrix in this case is estimated by

(XTX)−1XT Ω̂X(XTX)−1

that is consistent for large N . We can then apply

N(XTX)−1XT Ω̂X(XTX)−1

as the HCCME estimator of the covariance of√NB̂OLS. Thus, statistical inference on B̂
using this HCCME can be done when the sample size is large. In practice, sometimes
a finite-sample correction is used, and HCCME of cov(B̂OLS) is computed as

N
N − k
(XTX)−1XT Ω̂X(XTX)−1

There are several tests of the presence of heteroskedasticity.3 If the form is such
that the disturbance variance is positively associatedwith the corresponding explana-
tory variable level, Goldfeld-Quandt test may be used. In this test, the sample data
is sorted in order of the value of the explanatory variable that is associated with the
disturbance variance, starting with data with the lowest disturbance variance. OLS
regression is then performed using the first third and the last third of this sorted sam-
ple. If the association is true, then the disturbance of the first third will have smaller
variance (approximately homoskedastic) than the variance of the disturbance of the
last third. Since the SSR/(N − k) (or RSS/(N − k)) is the unbiased estimate of the vari-
ance of the residuals, the ratio of SSR(last third)/SSR(first third) × (n1 − k)/(n3 − k),
where n1 and n3 are the sample sizes of the first third and last third, respectively, is
distributed as Fn3−k,n1−k under the null of no heteroskedasticity. If the ratio statistic
under the F-distribution is too large and the null is rejected, then this form of het-
eroskedasticity is detected.

If heteroskedasticity is suspected to be of the form σ2t = f (Zt) linked linearly to
some k − 1 exogenous variables Zt, then the Breusch-Pagan & Godfrey test (LM test)
can be performed. Here estimated û2t is regressed against a constant and Zt and an
asymptotic χ2k−1 test statistic and an equivalent Fk−1,N−k-statistic are reported based
on the null hypothesis of zero restrictions on the slope coefficients of Zt . If the null
hypothesis is rejected, then there is evidence of the heteroskedasticity.

If the form of the heteroskedasticity is unknown, except that {σ2t } for various t =
1, 2, 3, . . . ,N are not constants but are functions of variables possibly dependent on X,
thenWhite’s test can be applied. There are two cases. Either estimated û2t is regressed
against a constant and X and its squared nonconstant terms, e. g., X2

1t ,X
2
2t, etc., or es-

timated û2t is regressed against a constant and X, its squared nonconstant terms, e. g.,

3 For more information, refer to R. Davidson and J. G. MacKinnon (1993), Estimation and Inference in
Econometrics, Oxford University Press, 560–564.
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X2
1t ,X

2
2t, etc., as well as cross-sectional terms, e. g., X1tX2t ,X1tX3t, etc. In either case,

an asymptotic χ2k−1 test statistic and an equivalent Fk−1,N−k statistic are reported based
on the null hypothesis of zero restrictions on the slope coefficients of the k − 1 num-
ber of regressors. If the null hypothesis is rejected, then there is evidence of the het-
eroskedasticity.

6.4.2 Serial Correlation

Disturbances are serially correlated ifut is a time series or cross-correlated ifui is cross-
sectional. For example, if Y ’s, X’s, andU ’s are stochastic processes (over time), then if
ut is AR(1) or MA(1), the autocorrelation is not zero for at least one lag. Then E(UUT ) =
σ2uΩN×N ̸= σ2uIN . Specifically, the off-diagonal elements are not zero.

Suppose disturbance

ut+1 = ρut + et+1

where et+1 is zero mean i. i. d., then

ΩN×N =
((

(

1 ρ ρ2 ⋅ ⋅ ⋅ ρN−1

ρ 1 ρ ⋅ ⋅ ⋅ ρN−2

ρ2 ρ 1 ⋅ ⋅ ⋅ ρN−3
...

...
...

. . .
...

ρN−1 ρN−2 ρN−3 ⋅ ⋅ ⋅ 1

))

)

What happens? If ρ is known, thenwe can applyGLS and obtain a BLUE estimator ofB.
Ifρ canbeaccurately estimated, thenEstimatedor FeasibleGLS canbeapplied. Specif-
ically the Cochrane-Orcutt (iterative) procedure is explained here. It tries to transform
the disturbances into i. i. d. disturbances so that the problem is less severe, and then
FGLS estimators are approximately consistent and asymptotically efficient.

Suppose ρ is known, we transform the data into

Y∗N = YN − ρYN−1
...

Y∗2 = Y2 − ρY1

and

X∗N = XN − ρXN−1
...

X∗2 = X2 − ρX1

 EBSCOhost - printed on 2/8/2023 6:26 PM via . All use subject to https://www.ebsco.com/terms-of-use



6.4 Misspecification with Disturbances | 181

Recall Xt is 1 × k matrix containing all explanatory variables at time t. The system of
regression equations is:

YN = XNB + uN
YN−1 = XN−1B + uN−1

...
Y2 = X2B + u2
Y1 = X1B + u1

Therefore,

Y∗N = YN − ρYN−1 = XNB + uN − ρ(XN−1B + uN−1) = X
∗
NB + eN

...
Y∗2 = X

∗
2 B + e2

Thus, we are back to the classical conditions, and OLS is BLUE on the transformed
data. Of course, this is equivalent to GLS on the original data.

In practice, however, since ρ is not known, it has to be estimated. First run OLS
on the original data. Obtain the estimated residuals

ût = Yt − XtB̂OLS

Next, estimate ρ using

ρ̂ =
1
N ∑

N
t=2 ût ût−1

1
N ∑

N
t=2 û2t−1

Note that the index starts from 2. ρ̂ is the sample first-order autocorrelation coefficient
of residual error ut in U = Y − XB regression.

Then, the transformations are done, viz.

Y∗N = YN − ρ̂YN−1
...

Y∗2 = Y2 − ρ̂Y1

Y∗1 = √1 − ρ̂2Y1
X∗N = XN − ρ̂XN−1

...
X∗2 = X2 − ρ̂X1
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X∗1 = √1 − ρ̂2X1

The last transformation involving X1 may be added to allow an extra sample point;
it approximately keeps the structure of the variance of Xt ’s similar. Then, OLS is run
again using the transformed {Y∗t } and {X

∗
t }. The estimators are approximately consis-

tent and asymptotically efficient. Iterations can be performed using the updated OLS
ût and ρ̂ for another round of OLS regression until the estimates converge.

The presence of serial correlations, hence non-homoskedastic disturbances and
breakdown of the classical conditions, can be tested using the Durbin-Watson (DW)
tests, the Box-Pierce-Ljung Q-tests, and Breusch-Pagan & Godfrey test (LM test).

The DW d-test statistic is reported in most standard regression output tables. It is
related to the estimated ρ̂.

d =
∑Nt=2(ût − ût−1)

2

∑Nt=2
̂u2t

where ût is the estimated residual. d ≈ 2(1 − ρ̂). In a linear regression, when the fitted
residuals indicate a high DW-d statistic above 2, there is negative correlation in the
disturbance. When the fitted residuals indicate a low DW-d statistic below 2, there is
positive correlation in the disturbance. When the DW d-statistic is about 2, there is
zero correlation.

The d-statistic follows a Durbin-Watson distribution when the null is zero correla-
tion. When the null of the disturbance is an AR(1) process, then the Durbin-Watson
h-statistic is used. The DW d-statistic distribution is complex, being dependent on
sample size N, significance level, number of regressors k, and whether there is a con-
stant or not in the regressors. The DW d-distribution is reported in table form giving
two numbers dL and dH where dL < dH under the null hypothesis of H0 : ρ = 0.

If DW d < 2, then if d < dL, reject H0 in favor of alternative hypothesis HA : ρ > 0.
But if DW d > dH , then we cannot reject (thus “accept”) H0. If DW d > 2, then if
4-d < dL, reject H0 in favor of alternative hypothesis HA : ρ < 0. But if DW 4-d > dH ,
then we cannot reject (thus “accept”) H0. If d < 2, and dL < d < dH , or if d > 2, and
dL < 4 − d < dH , then we cannot conclude whether to reject or accept H0.

The other tests of serial correlation viz. the Box-Pierce-Ljung Q-test and Breusch-
Pagan & Godfrey test (LM test) overcome the DW test limitations. The essential idea of
the LM test is to test the null hypothesis that there is no serial correlation in the resid-
uals up to the specified order. Here estimated ût is regressed against a constant and
lagged ût−1, . . . , ût−k+1, and an asymptotic χ2k−1 test statistic and an equivalent Fk−1,N−k
statistic are reported based on the null hypothesis of zero restrictions on the slope co-
efficients of ût−j’s. Strictly speaking, the F-distribution is an approximation since ρ is
estimated.
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6.5 Misspecification with Explanatory Variable

There are several categories of specification errors with explanatory variable X.

6.5.1 Exclusion of Relevant Explanatory Variables

Exclusion or omission of relevant explanatory variables can lead to serious finite sam-
ple bias and also large sample inconsistency. This is sometimes called an error of omis-
sion.

For example, in Singapore, demand (proxied by number of bids for COEs) for car
Dt is specified as follows.

Dt = B0 + B1Pt−1 + ut

where Pt is average price of car at t.What havewe left out?What happens to OLS B̂0, B̂1
if the true model is

Dt = b0 + b1Pt−1 + b2Yt + b3Qt + b4Mt + ξt

where Yt is average income level at t, Qt is the amount of quota allocated for bidding
at t, andMt is unemployment rate in the economy at t. Thus, there is an error of omis-
sion.

E(B̂0) ̸= b0 andE(B̂1) ̸= b1. Thus, theOLS estimators are biased andnot consistent.
An exception when omission is not as problematic is when the omitted explana-

tory variable is orthogonal to all the existing explanatory variables, i. e., the omitted
variable has zero correlations with all the existing explanatory variables.

Suppose the truemodel is YN×1 = XN×kBk×1+ZN×1D1×1+VN×1, but the linear regres-
sion is performed on YN×1 = XN×kBk×1 + UN×1 where the variable Z is omitted. Then,
UN×1 = ZN×1D1×1 + VN×1.

Assume E(V |X, Z) = 0 and E(VVT |X, Z) = σ2uIN×N so that OLS estimators on the
true model are BLUE. But OLS estimator on the performed regression is (XTX)−1XTY .
Now, the expected value of this estimator is:

E[(XTX)−1XTY] = E[(XTX)−1XT (XB + ZD + V)]

= B + E[(XTX)−1XT (ZD + V)]

= B + E[E[(XTX)−1XTZD|X, Z]]

+ E[E[(XTX)−1XTV |X, Z]]

= B + E[(XTX)−1XTZD] ̸= B
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Hence it is seen that the OLS estimator is generally biased. The bias is caused by the
omitted variable that appears in the second term on the RHS above. Assuming X, Z,
and V are stationary, the OLS estimator is also generally not consistent as

lim
N→∞
(XTX)−1XTY = B + lim

N→∞
[(XTX)−1XT (ZD + V)]

= B + Σ−1XXΣXZD + Σ
−1
XX( limN→∞

XTV)

= B + Σ−1XXΣXZD ̸= B

where limN→∞ XTX = ΣXX , limN→∞ XTZ = ΣXZ , and limN→∞ XTV = 0 since E(XTV) =
0k×1.

However, if E(Z|X) = 0 which implies E(XTZ) = 0, i. e. Z and X are orthogonal,
then

E[(XTX)−1XTY] = B + E[E[(XTX)−1XTZD|X]]
+ E[E[(XTX)−1XTV |X]]
= B + E[(XTX)−1XTE[Z|X]D] + 0 = B

in which case the estimator is still unbiased even though there is an omitted orthog-
onal variable. It can be seen that we can re-write the performed regression as Y =
XB + (ZD + V) where E(ZD + V |X) = 0 and E[(ZD + V)(ZD + V)T ] is in general not a
homoskedastic covariance matrix. Hence the OLS estimator is in general not efficient.

6.5.2 Inclusion of Irrelevant Explanatory Variables

The unnecessary inclusion of irrelevant variables for explanation is sometimes called
an error of commission. Suppose the true specification of demand for cars/COEs in
Singapore, Dt, is

Dt = b0 + b1Pt−1 + b2Yt + b3Qt + b4Mt + ξt

but additional explanatory variables

Z1t = number of cars in Hong Kong
Z2t = number of cars in New York
Z3t = number of cars in Tokyo

...
Zkt = number of cars in Mexico City

are employed in the MLR.
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Clearly, the {Zit}i,t variables should have no explanation on Dt . They are irrele-
vant variables. However, given the finite sample size t = 1, 2, . . . ,N, it is highly likely
that some of the irrelevant variables may help to explain the variation in Dt and thus
increase the coefficient of determination, R2, of the MLR.

This is a statistical artifact and has nothing to do with economic theory. If the
sample is sufficiently large relative to the number of included irrelevant variables, we
shouldfind the estimates of their coefficients not to be significantly different fromzero.
Estimates of b0, b1, b2, b3, b4, and σ2u are still unbiased. However, the sampling error
may increase if the superfluous variables are correlated with the relevant ones. If the
estimated regression model is employed to do forecast, then it could lead to serious
errors especially when the variances of the irrelevant variables are large.

One approach to reduce the problem of irrelevant inclusion is to start with a large
set of plausible explanatory variables. Take note of the adjustedR2 or the Akaike Infor-
mation Criteria. Then reduce the number of explanatory variables until the adjusted
R2 is maximized or the AIC is minimized. Since the problem of unnecessary inclusion
is not as serious, it is useful to observe the estimates with the larger set of explanatory
variables, and then compare with estimates of a subset of explanatory variables. If an
appropriate set of explanatory variables is selected, the estimates should not change
much from the results in the regression with the larger set. This procedure is part of
an area in econometrics called model selection.

6.5.3 Multi-collinearity

Supposewe partitionXN×k = (X1|X2|X3| ⋅ ⋅ ⋅ |Xk)whereXj is aN×1 column. If at least one
Xj is nearly a linear combination of other Xi’s, i. e. there is a strong degree of collinear-
ity among the columns ofX, ormulti-collinearity problem, then the determinant |XTX|
is very close to zero which generally means diagonal elements of (XTX)−1 are very
large.

But var(B̂j) = jth diagonal element of σ2u(X
TX)−1 so this would be very large. This

means that the sampling errors of the estimators in B̂ are large in the face of multi-
collinear X. It leads to small t-statistic based on H0 : Bj = 0, and thus the zero null
is not rejected. Hence it is difficult to obtain accurate estimators. Even if Bj is actually
> (or <) 0, we cannot reject H0 : Bj = 0.

What can we do to fix the problem? We can fall back on a priori restrictions
based on theory. For example, if explanatory variable Xj is highly correlated with
X1,X2, . . . ,Xj−1,Xj+1, . . . ,Xk but bj theoretically is close to zero, we can restrict bj = 0
and thus avoid inclusion of Xj. This will eliminate the multi-collinearity problem.

Or else we live with the shortcoming that is a data problem, and not amodel prob-
lem. The problem can of course bemitigatedwhen the sample size increases. It should
be noted that the OLS estimators are still BLUE, and asymptotically, the OLS estima-
tors are still consistent.
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6.5.4 Nonstationarity

When X has a time trend, e. g., Xit = a0+a1t+uit , uit being i. i. d., then it is problematic
to regress Yit on Xit because Xit is not stationary. When Yit is also nonstationary, there
is the problemof “false” correlation betweenYit andXit . This problemwill be explored
more fully in the chapter on unit roots.

6.6 Misspecification of Independence between X and U

When there is dependence between regressor X and disturbance U, this dependence
can take twomajor forms. The twomajormisspecification forms are contemporaneous
zero correlation but stochastic dependence, and contemporaneous non-zero correla-
tion.

6.6.1 Contemporaneous Zero Correlation but Stochastic Dependence

Suppose lagged dependent variableYt−1 is included as an explanatory variable inMLR
with

Yt = B0 + B1Xt1 + B2Xt2 + ⋅ ⋅ ⋅ + Bk−2Xtk−2 + CYt−1 + ut

Then even if Yt−1 and ut are contemporaneously not correlated, because Yt is corre-
lated with ut, then process {Yt} and {ut} are not stochastically independent. (Stochas-
tic independence would require all past and future Yt+k ’s to be uncorrelated with ut .)
What happens? OLS estimator is not BLUE, but is still consistent. This is also referred
to as the lagged endogenous variable problem.

We can show that as follows. In matrix notation, YN×1 = (Y1Y2 ⋅ ⋅ ⋅YN )T . XN×k =
(1|X1|X2| ⋅ ⋅ ⋅ |Y∗) where 1 is N × 1,Xi is N × 1, and Y∗ = (Y0Y1 ⋅ ⋅ ⋅YN−1)T .

UN×1 = (u1u2 ⋅ ⋅ ⋅ uN )
T ⋅ Bk×1 = (B0B1B2 . . .Bk−2C)

T

Then, OLS B̂ = (XTX)−1XTY . The expected value of this OLS estimator is:

E(B̂) = E[(XTX)−1XT (XB + U)] = E[B + (XTX)−1XTU]

= B + E[(XTX)−1XTU]

If {X1,X2, . . .} or XN×k is stochastically independent of U, then the expectation of the
last term above becomes:

E[(XTX)−1XTU] = E[(XTX)−1XT]E(U)

which is 0k×1 since E(U) = 0.

 EBSCOhost - printed on 2/8/2023 6:26 PM via . All use subject to https://www.ebsco.com/terms-of-use



6.6 Misspecification of Independence between X and U | 187

However, if one element of XN×k, e. g. Y∗, is not independent of U, then the term
E[(XTX)−1XTU] is not zero since the expectation cannot be taken as the product of
expectations of (XTX)−1XT and U as some random elements in (XTX)−1XT will be de-
pendent on U . In other words, under this scenario, the assumptions (A3) or else (A1′)
do not hold. Hence dependence even with contemporaneous zero correlation leads to
biased estimator in finite sample as the bias E[(XTX)−1XTU] ̸= 0.

Nevertheless, in large sample, the estimator canbe shown to be consistentwhenX
and U are stationary. The OLS estimator is: B̂ = B+ (XTX)−1XTU . Therefore, if Yt−1 and
ut are contemporaneously uncorrelated, and Xti’s (∀i) are also uncorrelated with ut,
then

XTU
N
=

((((((

(

1
N ∑

N
t=1 ut

1
N ∑

N
t=1 Xt1ut

1
N ∑

N
t=1 Xt2ut
...

1
N ∑

N
t=1 Xtk−2ut

1
N ∑

N
t=1 Yt−1ut

))))))

)k×1

→N ↑∞
((((

(

E(ut)
cov(Xt1, ut)
cov(Xt2, ut)

...
cov(Xtk−2, ut)
cov(Yt−1, ut)

))))

)

= 0k×1

Assume XTX/N converges to a nonsingular k × k matrix, say Q, then:

p lim
N↑∞

B̂ = B + p lim
N↑∞
(
XTX
N
)
−1
p lim
N↑∞

XTU
N
= B + Q ⋅ 0 = B

Thus, zero contemporaneous correlation, but not independence, does not yield BLUE
for OLS B̂, but yields consistency. In other words, B̂ is biased in finite sample but is
consistent.

6.6.2 Contemporaneous Non-Zero Correlation

In addition to Yt = B0 + B1Xt1 + B2Xt2 + ⋅ ⋅ ⋅ + Bk−2Xtk−2 + CYt−1 + ut, suppose ut is AR(1)
process, i. e. ut = ρut−1 + et, then

cov(Yt−1, ut)
= cov(B0 + B1Xt−11 + ⋅ ⋅ ⋅ + Bk−2Xt−1k−2 + ⋅ ⋅ ⋅ + CYt−2 + ut−1, ut)
= cov(ut , ut−1) ̸= 0

Thus, Yt−1 and ut are contemporaneously correlated. What happens? OLS estimator is
not BLUE, and is also not consistent.

There are some special situations as followswhen stochastic dependencebetween
X and U arises and causes problems.
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6.7 Measurement Error Problem

Measurement error problem in X (errors-in-variables problem) occurs when observed
X∗t is not the intended explanatory variable Xt, but is Xt measured with error. Suppose
the true model is Yt = a + bXt + ut, but we employ X∗t as regressor instead.

X∗t = Xt + et

is what is observed and used for the regressor in place of Xt . et is measurement error
from the actual but unobserved Xt, and cov(et , ut) = 0.

Under the true model, Yt = a + bXt + ut ⇔ Yt = a + b(X∗t − et) + ut . Therefore,

Yt = a + bX
∗
t + (ut − bet)

Now cov(X∗t , [ut − bet]) = cov(Xt + et , ut − bet) = −b var(et) ̸= 0 when cov(Xt , ut) = 0.
Thus, theMLRwithmeasurement error induces a contemporaneous non-zero correla-
tion. If we regress Yt on X∗t , the OLS estimator is not BLUE, and is not consistent. Does
measurement error in dependent variable cause inconsistency? No.

6.7.1 Simultaneous Equations Model

Some regression specifications require simultaneous equationsmodel. For example, if
demand Dt is modeled as a regression equation with price Pt as explanatory variable:

Dt = B0 + B1Pt + et

then there could be another simultaneous equation of supply St, viz.

St = A0 + A1Pt + ut

Assume that in general, cov(ut , et) = 0.
The two regressions constitute the simultaneous equations model. In economic

equilibrium, Dt = St . Then,

B0 + B1Pt + et = A0 + A1Pt + ut
or (A1 − B1)Pt = (B0 − A0) + (et − ut)

From the last equation, we have cov(Pt , et) = var(et)/(A1 − B1) ̸= 0 and cov(Pt , ut) =
− var(ut)/(A1 − B1) ̸= 0. Thus, simultaneous equations induce contemporaneous non-
zero correlation whenMLR is performed on only one of the regression equations. This
is called the simultaneous equations bias. If we regress Dt on Pt or else St on Pt, with-
out considering simultaneous equations, the OLS estimator is not BLUE, and not con-
sistent.
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The simultaneous equations bias can be shown graphically in Figure 6.2. The is-
sue of endogeneity bias also arises in structural equations model that may look simi-
lar to simultaneous equations though structural equations are more often used in the
context where explanatory variables contain latent variables that are not directly ob-
servable but whichmay be also explained by the dependent variable. The issue is that
the X variables are endogenous.

Figure 6.2: Simultaneous Equations Bias under Demand and Supply Equations.

In Figure 6.2, Y-axis “P” represents price, and X-axis represents equilibrium quantity
“Q” demanded and supplied. The negatively sloping line represents the demand curve
or demand schedule indicating demand as a decreasing function of price. The posi-
tively sloping line represents the supply curve or supply schedule indicating supply
as an increasing function of price. The intersection of the two lines denotes the equi-
librium price and quantity point “E”. Given Pt, when demand Dt moves right (“up”)
or left (“down”) by disturbance et, and assuming the supply curve is not changed,
then the equilibrium point displaces to “D”. At “D”, the new equilibrium price has in-
creased, i. e. △P > 0. Because of the elastic supply curve, movement in the demand
curve due to et induces equilibrium price change along the supply curve, and thus Pt
also changes. It is seen that cov(Pt , et) ̸= 0. Similarly, supply curve movement induces
price change along the demand curve, hence cov(Pt , ut) ̸= 0.

6.8 Instrumental Variables

To overcome the problem of inconsistency when there is contemporaneous correla-
tion, instrumental variables regression can be performed. Suppose we can find k ex-
planatory variables (maybe including some of the original X columns that do not have
contemporaneous correlation with U) ZN×k such that
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(2a) they are (contemporaneously) correlated with X and
(2b) they are not (contemporaneously) correlated with U .

Property (2a) yields p lim( 1N Z
TX) = ΣZX ̸= 0k×k and assume ΣZX is nonsingular.

Property (2b) yields p lim( 1N Z
TU) = ΣZU = 0k×1.

As p lim( 1N Z
TZ) = ΣZZ ̸= 0k×k, an instrumental variables (IV) estimator is

B̂IV = (Z
TX)−1ZTY

Therefore,

B̂IV = (Z
TX)−1ZTY = B + (ZTX)−1ZTU

and

p lim B̂IV = B + p lim(
1
N
ZTX)

−1
(
1
N
ZTU)

= B + Σ−1ZXΣZU = B + 0k×1 = B

Thus, B̂IV is consistent. The asymptotic covariance of B̂IV conditional on Z,X, is

E[(B̂IV − B)(B̂IV − B)
T |X, Z] = E[(ZTX)−1ZTUUTZ(XTZ)−1|X, Z]
= σ2u(Z

TX)−1ZTZ(XTZ)−1

which in finite sample is approximated by σ̂2u(Z
TX)−1ZTZ(XTZ)−1.

6.9 Misspecification with Coefficients
In the studyofMLRso far,wehaveassumedB is constant.WhenB is not constant, e. g.,
there is a structural break, then not accounting for changing B would yield incorrect
estimates. Other types of nonconstant parameters are when B is a random coefficient,
or when B is a switching regression model within a business cycle. For example, B
could take different values BG or BB conditional on the state of the economy, good or
bad, respectively. The states of the economy could be driven by aMarkov Chainmodel.
Each period the state could be good G or bad B. If the state at t − 1 is G, next period
probability of G is 0.6 and probability of B is 0.4. This is shown in Table 6.1.

Table 6.1: Random Coefficient in Two States.

State G at t State B at t

State G at t − 1 0.6 0.4
State B at t − 1 0.2 0.8
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Assume cov(U) = Ω whatever the state at t − 1. Then

Yt = XtBG + ut with probability 0.6 if state at t − 1 is G
Yt = XtBB + ut with probability 0.4 if state at t − 1 is G
Yt = XtBG + ut with probability 0.2 if state at t − 1 is B
Yt = XtBB + ut with probability 0.8 if state at t − 1 is B

whereXt is the tth row ofXN×k . The estimation can be done to produce estimators with
desirable asymptotic properties using maximum likelihood method if the probability
distribution of U is known.

In simple structural breaks such as a change in B coefficient in Y = XB+U at time
t = N1 + 1, the MLRmay be constructed as follows. Let the slope coefficients before the
break be BBk×1 and those after the break be B

A
k×1. Let XN×k be partitioned into two X

B
N1×k

and XA
N2×k, where N1 + N2 = N, XT = ((XB)T |(XA)T ). Then the MLR is Y = X∗B∗ + U∗

where

X∗N×2k = (
XB
N1×k 0N1×k

0N2×k XA
N2×k
) , and B∗2k×1 = (

BBk×1
BAk×1
)

and cov(U) = Ω∗. The OLS estimators of B∗ under the classical assumptions are BLUE.
We can test if there is a simple structural break at t = N1 + 1 by using Chow’s Test.

There is no structural break under the null hypothesis H0 : BB = BA = B. There are
k constraints in the null hypothesis. We make use of the constrained versus uncon-
strained residual sum of squares error. Under no constraint, USSR = Û∗TU∗. Under
the constraint of the null hypothesis, CSSR = ÛT Û . Hence a test of the null hypothesis
uses test statistic

(CSSR − USSR)/k
USSR/(N − 2k)

that has a F-distribution with k,N − 2k degrees of freedom under the null. If the test
statistic is too large, the null or no structural break is rejected.

Further Reading
Fujikoshi Yasunori, V. V. Ulyanov, and R. Shimizu (2010),Multivariate Statistics: High Dimensional

and Large-Sample Approximations, John Wiley & Sons.
Johnson, Richard A., and D.W. Wichern (2002), Applied Multivariate Statistical Analysis,

Prentice-Hall.
Johnston, J., and J. DiNardo (1997), Econometric Methods, Fourth edition, McGraw-Hill.
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7 Multi-Factor Asset Pricing

In this chapter, we discuss the important topics about arbitrage pricing theory and the
intertemporal asset pricing model and their connection to multi-factor asset pricing
models. The pricing models are at the heart of many quantitative investment strate-
gies aimed at portfolio selection and rebalancing to capture positive alphas and hence
above market returns.

The capital asset pricing model (CAPM) is a single factor asset pricing model with
the market as the factor. The implication is that systematic risk connected to the co-
variation with market returns is the only risk that is priced. However, there is no rea-
son why the universe of assets in the economy could not have their prices and returns
dependent on more than one economy-wide systematic factor.

Several remarks are in order to place the roles of the asset pricing models in the
context of pragmatic investment contexts. We shall mostly apply the results to stocks
as the asset since the nature of the stock returns described in earlier chapters fits the
use of linear regressions.
(1a) If systematic factors are found to explain the stock returns, i. e. factors that af-

fect all stock returns, then knowing what are the factors can help in constructing
profitable portfolios with high positive expected returns in the next period if the
factors can be anticipated.

(1b) If the factors are not contemporaneouswith the dependent stock return in the lin-
ear regression, but are lagged factors, then the latter serves as natural predictors
since they are pre-determined. In general, using lagged explanatory variables has
this advantage, but it also has the disadvantage that the regression has more un-
certain residual noise, having larger variances. Some factors may be associated
with the stock returns contemporaneously but their lags may not.

(1c) Even if next period factors cannot be anticipated, knowing the factors enables
more accurate estimation of stock return covariancematrix that can help in port-
folio risk-return optimization involving the inverse of the covariance matrix as
shown in Chapter 3.4. It can also help in hedging investments.

(1d) An asset pricingmodel provides a benchmark expected return in that if themodel
is correct and correctly estimated, then on average the stock return should equal
to the fitted stock return according to themodel. However, if the time-series stock
return on average is larger (smaller) than the fitted return, e. g., α̂ > (<) 0, as seen
in Chapter 3.5, then there is implication of superior or abnormal return.

(1e) If themodel is correct with the requisite systematic factors that are typically pub-
licly available information, then positive (negative) α̂ is likely due to private in-
formation assuming the market has strong-form efficiency (otherwise the private
information would not be revealed in α̂ different from zero). Thus finding signifi-
cant α̂ is like trying to learn about factors or information affecting the stock return
that are not publicly observed. If it is assumed that this information persists over

https://doi.org/10.1515/9783110673951-007
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the next period, then it makes sense to go long (short) on stocks with positive
(negative) alphas.

In what follows, we describe the framework to think about systematic factors that re-
quire risk-adjusted return compensation, discuss the Arbitrage Pricing Theory and the
Merton’s Intertemporal Capital Asset PricingModel (ICAPM), and thenmove on to em-
pirical spadeworks.

7.1 Arbitrage Pricing Theory

Ross’s Arbitrage Pricing Theory1 (APT) has come to be understood as essentially a sta-
tistical model of equilibrium asset prices. In a very large economy with no friction
and many assets, no-arbitrage argument (without the need to specify investors’ risk-
return preferences) gives rise to equilibrium expected returns. These returns are re-
lated to an unknown number of factors in the economy that exogenously affect the
returns in a statistical way. Merton’s ICAPM2 is an intertemporal equilibrium model
where investors make optimal consumption versus investment decisions constrained
by their preferences and resources. The risks in the economy are driven by some finite
number of economic state factors. Expected returns are related to the nature of these
economic factors as well as investor preferences. Although the characters of both APT
and ICAPM are quite different, they both have a common intention of explaining equi-
librium expected returns based on some systematic factors, whether observed or not.

Assume asset returns Ri’s are generated by a K-factor model (K < N where N is
the total number of assets in the economy):

Ri = E(Ri) +
K
∑
j=1

bijδj + εi, i = 1, 2, . . . ,N (7.1)

where E(Ri) = Ei; δj’s are zero mean common risk factors (i. e., they affect asset i’s
return Ri via bij’s); bij’s are the factor loadings (or sensitivity coefficients to factors) for
asset i, and εi is mean zero asset i’s specific or unique risk.

Also,

cov(εi, εj) = 0 for i ̸= j
cov(εi, δj) = 0 for every i, j

Using matrix notations for Eq. (7.1):

1 See A. S. Ross (1976), The arbitrage theory of capital asset pricing, Journal of Economic Theory, 13,
341–360.
2 SeeRobert C.Merton (1973), An intertemporal capital asset pricingmodel,Econometrica41, 867–887.
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RN×1 = EN×1 + BN×KδK×1 + εN×1
E(εεT) = σ2εIN×N
E(δεT) = 0K×N

An example of Eq. (7.1) for stock returns may be:

Ri = E(Ri) + bigg + bipp + εi

where E(Ri) is the stock’s unconditional expected return in the absence of any other
news, and RVs g and p are unexpected deviations, with zero means, in GDP and in
prime interest rate, that will affect Ri. The factor betas (or factor loadings or sensi-
tivities) are big > 0, and bip < 0. When GDP is unexpectedly high with a booming
economy, the firm’s revenues will unexpectedly rise and give rise to a higher return Ri,
hence positive big . When prime rate or business cost unexpectedly rises, firm’s rev-
enues will suffer unexpectedly, leading to fall in return Ri, hence negative bip.

Suppose we can find a portfolio xN×1 where the element are weights or fractions
of investment outlay, such that

xT l = 0; l =
[[[[[

[

1
1
...
1

]]]]]

]N×1

(7.2)

xTB = 01×K (7.3)

Now Eq. (7.2) implies that x is an arbitrage portfolio, i. e. zero outlay, with zero system-
atic risk via Eq. (7.3).

Suppose that x is awell-diversified portfolio, so xTε ≈ 01×1. Hence, portfolio return
is:

xTR = xTE + xTBδ + xTε .≈ xTE (= xTE as N ↑∞)

But since x is costless and riskless, then to prevent arbitrage profit, the return to xmust
be zero, i. e.

xTE = 0 (7.4)

Since Eqs. (7.2) and (7.3) economically imply Eq. (7.4) always, then

EN×1 = γ0 l
N×1
+ B
N×K

γ (7.5)

where γ0 is a scalar constant and γ is a K × 1 constant vector. To verify Eq. (7.5), pre-
multiply the LHS and RHS by xT :
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xTE = γ0x
T l + xTBγ = 0 + 0 = 0

using Eqs. (7.2) and (7.3).
Equation (7.5) can be explained by the standard linear algebra result that if any

vector orthogonal to l and columns of B is also orthogonal to E, then this implies that
E is a linear combination of l and the columns of B, i. e. Equation (7.5).

Equation (7.5) is sometimes called the Arbitrage Pricing Model. Ex-ante uncondi-
tional expected return, E, is related to economy-wide constant γ0 and to risk premia
γK×1 for each of the K factor risks. If we put B = 0, then clearly γ0 is the risk-free rate.
Note that if B increases, then the systematic risks Bγ increase, and thus E also in-
creases.

For a single asset i, Eq. (7.5) implies:

E(Ri) = rf + bi1γ1 + bi2γ2 + ⋅ ⋅ ⋅ + biKγK (7.6)

Putting Eq. (7.6) side by side the underlying process

Ri = E(Ri) +
K
∑
j=1

bijδj + εi

it is seen that

Ri = rf + bi1(γ1 + δ1) + bi2(γ2 + δ2) + ⋅ ⋅ ⋅ + biK(γK + δK) + εi (7.7)

where γj’s are constants, and δj’s are zero mean r. v.’s.
Equation (7.7) can be expressed in matrix form as:

RN×1 = rf lN×1 + BN×KθK×1 + εN×1 (7.8)

where E(RN×1) = EN×1,

E(θ) = E(γ + δ) = γK×1, a K × 1 vector of risk premia,
E(ε) = 0 (7.9)

E(θεT)K×N = 0

Each equation in the system in Eq. (7.8) at time t is

Ri − rf = bi1θ1 + bi2θ2 + ⋅ ⋅ ⋅ + biKθK + εi (7.10)

for stocks i, where i = 1, 2, . . . ,N .
bij is the sensitivity of stock i to the jth risk premium factor variable θj that is com-

mon to all stocks. We may call θj the jth risk factor, and its mean γj the jth factor risk
premium. bij is the same sensitivity to the risk premium form of the APT equation in

 EBSCOhost - printed on 2/8/2023 6:26 PM via . All use subject to https://www.ebsco.com/terms-of-use



196 | 7 Multi-Factor Asset Pricing

Eq. (7.5). Except for the special case of single-period CAPM where K = 1 and E(θ1) is
themarket premiumor expected excessmarket return, the risk premia factor variables
θj’s, or the common risk factors, are generally not observable nor known.

The APT model is strictly speaking a single period asset pricing model. Equation
(7.6) holds for each period t. Over time t, however, we can put a time series structure
onto each of the variables in Eq. (7.6) in order to be able to use time series data to
estimate and test the model. Thus over time t,

Rit − rft = bi1θ1t + bi2θ2t + ⋅ ⋅ ⋅ + biKθKt + εit (7.11)

where θjt is the jth risk (premium) random factor. Its mean at t is E(θjt) = γj, the jth
risk premium, where θjt = γjt + δjt and also E(εit) = 0. This risk premium γj may vary
over time. In the regression specification in Eq. (7.11), θ1t can be defined as ones, i. e.,
allowing for a constant intercept. We shall add a bit more restrictions to enable nice
econometric results, i. e., we assume E(εitθjt) = 0, for every t, i, and j, var(δjt) is con-
stant over time for each j, and var(εit) is constant over time.

An equivalent specification is:

Rit − rft = bi1γ1t + bi2γ2t + ⋅ ⋅ ⋅ + biKγKt + ξit , (7.12)

where ξit = ∑
K
j=1 bijδjt + εit, and E(ξit) = 0

There are some empirical problems in estimating and testing the APT. Firstly, the
number of factors,K, is not known theoretically. Setting differentK will affect the esti-
mation of the factor loadings B. Secondly, even if K is known, it is not knownwhat the
factors are. One can only make guesses about economic variables that may have an
impact on Rit . Onemay alsomake guesses about the factor loadings instead of the fac-
tors. ThisAPT framework canbe linkedwith the linearmulti-factor asset pricingmodel
that are multiple linear regression models using factors to explain stock returns.

7.2 Merton’s Intertemporal CAPM

Another approach to deriving multi-factor model is to start with a risk-preference
framework in financial economics instead of a statistical specification. Assume the
representative agent in the economy maximizes his/her lifetime [0,T] consumption
as follows.

max
C,w

E0[
T

∫
0

U(Ct , t)dt + B(WT ,T)]

subject to
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dW =
N
∑
i=1

wi(μi − r)Wdt + (rW − C)dt +
N
∑
i=1

wiWσi dzi

where

dPit/Pit = μi(x)dt + σi(x)dzi for i = 1, 2, . . . ,N
dP0t/P0t = r(x)dt

dx = μx(x)dt + σx(x)dzx

x (longer notation: xt) is a state variable at t that affectsN risky asset prices Pit via
their means and volatilities and also the risk-free asset P0 via its mean, over (t, t + dt].
zit and zxt are Wiener processes with product ρixdt.

Indirect utility at any t is

J(W , x, t) = max
C,w

Et[
T

∫
t

U(Cs, s)ds + B(WT ,T)]

Bellman equation at t is

J(W , x, t) = max
C,w
[U(Ct , t) + Et(J(W + dW , x + dx, t + dt)]

Or,

0 = max
C,w
[U(Ct , t) + Et(dJ(W , x, t)]

Applying Itô’s lemma on dJ:

0 = max
C,w
[U(Ct , t) + Jt + JW{

N
∑
i=1

wi(μi − r)W + (rW − C)} + Jxμx

+
1
2
JWWW

2
N
∑
i=1

N
∑
j=1

σijwiwj +
1
2
Jxxσ

2
x + JWxW

N
∑
i=1

wiσix]

The first order conditions w.r.t. C and wi are

0 = UC − JW

0 = JWW(μi − r) + JWWW
2
N
∑
j=1

wjσij + JWxWσix for i = 1, 2, . . . ,N

The second equation can be re-arranged as

wjW = AΣ
−1(μ − rl) + HΣ−1V
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where wj on the LHS is optimal allocation to jth risky asset, A = −JW /JWW , H =
−JWx/JWW , μ is N × 1 vector of {μi}, l is vector of ones, V is N × 1 vector of {σix}, and Σ is
covariance matrix of {σij}.

A > 0 acts like inverse of risk aversion (i. e. risk rolerance): higher tolerance or A
implies more allocations to assets with higher expected returns and less to the risk-
free asset. H = − 𝜕C/𝜕x𝜕C/𝜕W . The second term adjustment to allocation is a hedge demand
against increase in x that reduces C at a givenW . Then H > 0, and more allocation is
given to assets with positive σix that tends to give higher returns when x increases.

Then

Ak(μ − rl) = Σwk
j W

k − HkV

where k is added as superscript to denote that the allocationwj, wealthWk, risk toler-
ance Ak and hedge propensityHk are unique to each individual k out of T. Sum across
all individuals, then divide through by∑Tk=1 A

k .

(μ − rl)N×1 = cΣN×NωN×1 − hVN×1 (7.13)

where c = ∑Tk=1W
k/∑Tk=1 A

k, ω = ∑Tk=1 w
k
j W

k/∑Tk=1W
k, and h = ∑Tk=1 H

k/∑Tk=1 A
k . ω is

the vector of fraction of total market wealth invested in each asset.
Each asset in the market in Eq. (7.13) has excess return as follows.

(μi − r) = cσiM − hσix (7.14)

Pre-multiplying Eq. (7.13) by ω′ we obtain:

(μM − r) = cσ
2
M − hσMx (7.15)

The optimal hedge demand (for maximal correlation with the stochastic factor x in
dollar terms) is HΣ−1V . This can be constructed as an optimal hedge portfolio θ =
Σ−1V/(l′Σ−1V) where the portfolio weights sum to one, i. e., l′θ = 1.

Pre-multiply Eq. (7.13) by θ′:

(μθ − r) = cσθM − hσθx (7.16)

where μθ is the expected return of the hedge portfolio, σθM is covariance between the
optimal hedge portfolio return and market return, and σθx is covariance between the
optimal hedge portfolio return and the state variable x.

Now solve Eqs. (7.15) and (7.16) for values of c and h. Substitute these into Eq. (7.14)
to obtain:

μi − r = β
M
i (μM − r) + β

θ
i (μθ − r) (7.17)

where βMi =
σiMσθx−σixσMθ
σ2Mσθx−σMxσMθ

and βθi =
σixσ2M−σiMσMx
σ2Mσθx−σMxσMθ

.
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Note that when there is no stochastic opportunity set and dx = 0, then σix =
σMx = 0, and so Eq. (7.17) gives:

(μi − r) =
σiM
σ2M
(μM − r)

which is similar in form to the single-period CAPM although this continuous time
CAPM holds over small time intervals dt, but can be aggregated to approximately
the discrete CAPM. More importantly, the continuous time CAPM addresses the multi-
period issue within its theory.

Equation (7.17) can be re-expressed as

μi − r = η1σiM + η2σix (7.18)

where

σix = cov(dPi/Pi, dx)

η1 =
σθx(μM − r) − σMx(μθ − r)

σ2Mσθx − σMxσMθ

η2 =
−σMθ(μM − r) + σ2M(μθ − r)

σ2Mσθx − σMxσMθ

If xt is a vector of S unique state variables, the intertemporal CAPM (ICAPM) can
be derived with S+2 fund separation (or S optimal hedge portfolios +market portfolio
+ risk-free asset):

μi − r = η1σiM + η2σix1 + η3σix2 + ⋅ ⋅ ⋅ + ηS+1σixS (7.19)

where σixj = cov(dPi/Pi, dxj) for j = 1, 2, . . . , S. For xt being a vector S unique state
variables, Eq. (7.17) is also extended to:

μi − r = β
M
i (μM − r) + β

θ1
i (μθ1 − r) + β

θ2
i (μθ2 − r) + ⋅ ⋅ ⋅ + β

θS
i (μθS − r)

Discretization gives, at each end of t − 1 or start of t over period (t, t + △]:

E(Rit+△ − rt+△) =
S+1
∑
k=1

bikγk

where factor γ1 = E(RMt+△ − rt+△), factors γk = E(Rθk t+△ − rt+△) for k = 2, 3, . . . , S + 1.
bi1 = βMi , bik = β

θk−1
i (for k = 2, 3, . . . , S + 1) are stock i’s factor loadings on the unique

state variables. This equation looks similar to the APT Eq. (7.6) for each t. Hence the
ICAPM can also be employed to check out dynamic factors in the form of the market
portfolio (RMt+△ − rt+△) and the hedge portfolios (Rθk t+△ − rt+△) ∀k = 1, 2, 3, . . . , S. Re-
call that each of the additional factors corresponds to a state variable innovation. For
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econometric estimation and testing, we can assume that over the sample data time-
space, joint distributions of stock returns and state vector is stationary, so scalars γk ’s
are intertemporal constants.

In Eq. (7.19), for any state variable xj, given the other state variables are held con-
stant at x, dxjt = μx(xjt , x)dt + σx(xjt , x) dzxjt . Also, dPit/Pit = μi(xjt , x)dt + σi(xjt , x) dzit .
We apply discretization, replacing dt with△ to obtain approximate relationships.

xjt+△ − xjt = μx(xjt , x)△ +σx(xjt , x)△ zxjt (7.20)
Rit+△ = μi(xjt , x)△ +σi(xjt , x)△ zit (7.21)

where Rit+△ = △Pit/Pit . Note return is over period (t, t + △].
The one-period ahead version of Eq. (7.21) is:

Rit+2△ = μi(xjt+△, x)△ +σi(xjt+△, x)△ zit+△ (7.22)

From Eq. (7.22), the intertemporal nature of the model (not a single period model)
implies xjt+△−xjt in Eq. (7.20) has non-zero covariance with Rit+2△ in Eq. (7.22). Thus in
general, covt(RMt+2△, xjt+△ −xjt) ̸= 0, i. e., state variable innovation at t in (t, t +△] can
predict future market returns. See Maio and Santa-Clara (2012)3 for such tests. This
covariance covt(RMt+2△, xjt+△ − xjt) should have the same sign as σixj in Eq. (7.19).

Suppose in Eq. (7.19), stock i return’s covariance with state variable innovation
xjt+△ − xjt (same sign as stock i return’s factor loading on the hedge portfolio return
associated with the state variable) is positive, i. e., σixj > 0. Then covt(RMt+2△, xjt+△ −
xjt) > 0, i. e., positive jth state variable innovation at t in (t, t + △] leads on average
to increase in future market returns. Then, stock i’s return is not a good hedge for the
intertemporal risk since its return as well as the future market’s return increase with
the jth state variable innovation. Investors in stock iwill demand an intertemporal risk
premium, so in Eq. (7.19), ηj > 0. This is similar to single period Sharpe CAPM model
where if stock’s return covariance with the market is more positive, the stock’s risk
premium increases.

But if σixj < 0, then covt(RMt+2△, xjt+△ − xjt) < 0, i. e., positive jth state variable in-
novation at t in (t, t + △] leads on average to decrease in future market returns. Then,
stock i’s return is also not a good hedge for the intertemporal risk since its return as
well as the futuremarket’s return decrease with increase in the jth state variable inno-
vation. Investors in stock iwill demand an intertemporal risk premium, so in Eq. (7.19),
ηj > 0.

Thus an intertemporal theoretical test should include testing if ηj > 0 in Eq. (7.19)
over and above testing for significance in the factor loadings. This is a difference be-
tween testing for multi-factor model Eq. (7.11) under APT or under Merton’s ICAPM.

3 PauloMaio and Pedro Santa-Clara (2012), Multifactormodels and their consistencywith the ICAPM,
Journal of Financial Economics 106, 586–613.
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7.3 Estimating and Testing Multi-Factor Models

Tests of APT tend to utilize statistical methods such as principal components method,
factor analysis, etc. with a view to understand howmany factors there are in the econ-
omy. There have been various debates about whether APT is testable, but we shall
not worry about that here. In some sense, ICAPM is more natural in suggesting a re-
gression relationship between asset returns andmarket variables that are possibly the
ones producing risks that investors must hedge.

We now discuss the estimation and testable specifications of APT in Eqs. (7.11)
and (7.12) when it is extended to a multi-period setting. There are several intuitive ap-
proaches. Supposing K is known. In Eqs. (7.11) and (7.12), suppose we identify the set
of stocks to investigate and this set forms observations for the dependent variable.

Approach (i) is to postulate what the risk factors θjt are, ∀t. Given these, it is not
possible to perform a cross-sectional regression at any t. This is because at t, there are
only K number of observations for explanatory variable θj (left out t subscript) but a
larger NK number of parameters bij’s to be estimated. However, getting the loadings
or bij’s for each t is a necessary step to progress. To get them we can perform time
series regressions based on Eq. (7.11) separately for each stock i using T × 1 Rit − rft
as dependent variable and θjt, j = 1, 2, . . . ,K, and t = 1, 2 . . . ,T as explanatory vari-
ables. The estimated b̂ij (i = 1, 2, . . . ,N ; j = 1, 2, . . . ,K) using sample period [1,T] data
are obtained. In the next step, we can then perform a cross-sectional regression based
on Eq. (7.12) employing N × 1 dependent variable Rit − rft at a time T + 1 and b̂ij, (i =
1, 2, . . . ,N ; j = 1, 2, . . . ,K) as explanatory variables. The coefficient estimates viaOLS are
γ̂jT+1 for j = 1, 2, . . . ,K. The use of time series data over [1,T] but cross-sectional data at
T + 1 outside of [1,T] is intentional. Note that b̂ij estimates from [1,T] involve covari-
ances between stocks’ excess returns and the factor risks θjt . In the cross-sectional
regression of Eq. (7.12), ξit would have dependency with b̂ij if the stock i’s excess re-
turn were from a period in [1,T]. Thus, by using different periods possibly on a rolling
basis, e. g., [2,T + 1], [3,T + 2], etc., we can repeat the steps to perform cross-sectional
regressions at T + 2, T + 3, and so on. Then we would obtain time series of estimates
γ̂jT+n for each j and for n = 0, 1, 2, . . .. We can interpret each γ̂jT+n as a conditional esti-
mate. By taking sample average of these we can arrive at the unconditional estimates.

Approach (ii) is to postulate instead what the risk factor loadings bij (∀i, j) are. In
this case, we can directly perform a cross-sectional regression based on Eq. (7.12) em-
ploying N × 1 dependent variable Rit − rft (∀i = 1, 2, . . . ,N) at time t. The coefficient
estimates via OLS are γ̂jt for j = 1, 2, . . . ,K. For t ∈ [1,T′], we would obtain time series
of estimates γ̂jt for each j and for t = 0, 1, 2, . . . ,T′. We can interpret each γ̂jt as a condi-
tional estimate. By taking sample average of these we can arrive at the unconditional
estimates.

Approach (iii), like in approach (i), is to postulate what the risk factors θjt are,
∀t. Then directly perform time series regressions based on Eq. (7.11) but using portfo-
lio stock returns as dependent variable instead of individual stock returns. θjt, (∀j, t)
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are explanatory variables. OLS estimates b̂ij are then tested for significance where i
is a portfolio. Grouping the stock returns into portfolio returns as dependent variable
has the advantage of reducing the variance of the residual error εit in Eq. (7.11) and
hence also the standard errors of the bij estimators. Portfolios can also be constructed
to maximize the covariation between Rit − rft and θjt (hence increasing slope magni-
tudes), assuming the risk factors are true. (If the risk factors are false, then the ar-
tificial construction of portfolios to heighten the covariations could lead to spurious
results.)

These three approaches to finding the multiple systematic risk factors in asset
pricing are shown in the several studies that we discuss next. As in approach (i),
Chen, Roll, and Ross (1986)4 and others specify macroeconomic and financial mar-
ket variables that intuitively make economic sense in explaining co-movements with
stock returns in a systematic fashion. For example, industrial production in an econ-
omy could increase and correlate with higher stock prices especially for firms that
have business exposures to industrial activities, and this is in addition to the gen-
eral stock market movement. They used the following five macroeconomic variables
in their MLR:
(2a) monthly industrial production growth, MPt
(2b) monthly change in expected inflation, DEIt
(2c) monthly unexpected inflation, UIt
(2d) unexpectedmonthly risk premium, URPt, that is the difference betweenmonthly

yields on long-term Baa corporate bonds and yields on long-term government
bonds. This proxied for default risk premium.

(2e) unexpectedmonthly termstructure factor,UTSt that is thedifferences inpromised
yields to maturity on long-term government bond and short-term Treasury bill,
or approximately the slope of the government yield curve.

Keim and Stambaugh (1986) found5 the following three ex-ante observable variables
that affected risk premia of stocks and bonds:
(3a) differencebetweenyields on long-termBaagrade andbelowcorporate bonds and

yields on short-term Treasury bills (This proxied for default premium.)
(3b) loge of ratio of real S&P composite index to previous long-run S&P level, (This

might proxy for inflationary tendencies.)
(3c) loge of average share price of the lowest market value quintile of firms on NYSE.

There appeared to be some business cycle and size effect.

4 N. F. Chen, R. Roll, and S. A. Ross (1986), Economic forces and the stockmarket, Journal of Business,
59, 383–403.
5 D. B. Keim and R. F. Stambaugh (1986), Predicting returns in the bond and stock markets, Journal of
Financial Economics, 17, 357–390.
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There have been many other similar studies. All suggest that there are at most 3 to
5 significant factors or economic variables that affect variation in the cross-sectional
returns.

Chen, Roll, and Ross (1986) ran the following MLR:

Rit = a + bi,MPMPt + bi,DEIDEIt + bi,UIUIt
+ bi,URPURPt + bi,UTSUTSt + ei,t (7.23)

where the betas are the factor loadings on the state variables (risk factors) MPt, DEIt,
UIt, URPt and UTSt . et is an idiosyncratic (unsystematic) error. Support of the MLR
as consistent with the APT or ICAPM is to check if the identified economic variables
are risk factors that can systematically explain each of the N stock returns (1) cross-
sectionally, i. e., across N at each time t; (2) dynamically over time, i. e., across t for
each stock at a time (here we require to assume the betas bij’s are constant over time),
and that R2 is reasonable indicating the chosen factors can explain well and that pos-
sibly no other explanatory variables are left out.

The cross-sectional test of themulti-factor asset pricingmodel (with identified fac-
tors via economic reasonining or empirical statistical correlations) can be performed
using the Fama-MacBeth (1973) technique.6

7.3.1 Fama-MacBeth Method

Equilibrium expected return of any asset i in any period t is about cross-sectional re-
lationship between all assets’ expected returns at t and the factor risk premiums γK×1
at t. Thus in the Sharpe CAPM, the testable implication is about whether given load-
ings or betas βi,∀i, asset returnsRi ∀i, at t are related cross-sectionally to risk premium
at t via Ri − rf = βiE(RM − rf ) + ei, i. e. Eq. (7.8).

A simple verification would be to find cross-sectional regression of excess returns
Ri − rf on estimated βi and test if the estimated coefficient of b̂ in Ri − rf = a + bβ̂i + ei
is indeed significantly positive. This estimated coefficient is the risk premium at t and
could be interpreted as Et(RM − rf ) at t that may change over time. Simultaneously one
could check if â is not significantly different from 0.

If we perform one cross-sectional regression at each time t, we may have different
risk premium estimates for different t since risk premium can conditionally change
over time. After the cross-sectional estimates of Et(RM − rf ) are obtained for each t in
the sample space [1,T], we can average them over T and find the mean. This mean is

6 E. Fama and MacBeth J. (1973), Risk, return, and equilibrium: Empirical tests, 1973, Journal of Polit-
ical Economy, 81 (3), 607–636.
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an estimate of E[Et(RM − rf )] or the unconditional market risk premium E(RM − rf ). If
this is statistically positive, it is verification of the positive risk premium.

In applying the FMmethod to Eq. (7.23), there are formally three steps. Step one is
data preparation. This involves selecting the sampling period, the stocks to be tested
(as comprehensive as is possible), and the best sources of the data. The stocks are
grouped into 20 equally weighted portfolios formed by size. This is done for different
sub-periods e. g., 1958–84, 1958–67, 1968–77, 1978–84. Using the portfolio returns as
dependent variable allows for beta estimates (of the portfolio – think of each portfolio
as a complex stock) with less sampling error, i. e. a very small standard error, since a
portfolio return’s unsystematic risk is much smaller than that of a single stock return.
Thus using portfolios in the second step of time series regressions to obtain the beta
loadings wouild minimize errors-in-variables bias when the estimated betas are used
as explanatory variables in the third step.7

Step two is time series regressions in the estimation of the factor loadings bi,MP,
bi,DEI, bi,UI, bi,URP, bi,UTS for each i. Five years of monthly data, e. g., year XX + 1 January
to year XX + 5 December, are used to find OLS estimates b̂i,MP, b̂i,DEI, b̂i,UI, b̂i,URP, b̂i,UTS
for each i. These estimates are defined as the betas for cross-sectional regressions on
each months of year XX + 6. The next window of five years data from XX + 2 January
to XX +6 December could be used for the next set of beta estimates for cross-sectional
regressions on each months of year XX + 7, and so on. The rolling window could be
moving forward month by month instead of year by year. For month by month rolling
window, it is then natural to apply the beta estimates for cross-sectional regression of
data in the month immediately after the rolling window, i. e. post-window. Note also
that the estimated betas in post-windows are not constant and would change.

Step three is cross-sectional regression (across portfolios i)month bymonth in the
post-window.

Ri = a + E(MP)b̂i,MP + E(DEI)b̂i,DEI + E(UI)b̂i,UI
+ E(URP)b̂i,URP + E(UTS)b̂i,UTS + ei (7.24)

For each cross-sectional regression using dependent variable and estimated betas de-
fined at time (month) t, a set of OLS estimates of the risk premiums ?E(MPt), ?E(DEIt),
?E(UIt), ?E(URPt), ?E(UTSt) at t is found. For the sub-period, find the time series aver-
ages of these premium estimates. Test for their significance using simple t-statistics
of sample means, i. e., the sample mean divided by sample standard deviation is ap-
proximately distributed as a t-distribution.

7 Fischer Black, Michael C. Jensen, and Myron Scholes (1972), The capital asset pricing model: Some
empirical tests, in M. Jensen, ed., Studies in the Theory of Capital Markets, Praeger, NY, was an early
study to consider reducing error-in-variable bias by forming portfolios stock returns as dependent
variables.

 EBSCOhost - printed on 2/8/2023 6:26 PM via . All use subject to https://www.ebsco.com/terms-of-use



7.3 Estimating and Testing Multi-Factor Models | 205

An abridged illustration of Chen, Roll, and Ross (1986) Table 4B results is shown
in Table 7.1.

Table 7.1: Regression Results of Eq. (7.23) Using Monthly Data.

Period â ?E(MP) ?E(DEI) ?E(UI) ?E(URP) ?E(UTS)

1958–84 4.124 13.589∗∗∗ −0.125 −0.629∗∗ 7.205∗∗∗ −5.211∗

(1.361) (3.561) (−1.640) (−1.979) (2.590) (−1.690)
1958–67 4.989 13.155∗ 0.006 −0.191 5.560∗ −0.008

(1.271) (1.897) (0.092) (−0.382) (1.935) (−0.004)
1968–77 −1.889 16.966∗∗∗ −0.245∗∗∗ −1.353∗∗∗ 12.717∗∗∗ −13.142∗∗

(−0.334) (2.638) (−3.215) (−3.320) (2.852) (−2.554)

Note: The t-statistics are shown in the parentheses. For example, in the sample period 1958–84 (total
of 324 months), t323 can be approximated by the standard normal distribution. ∗∗∗, ∗∗, ∗, indicate
significance at the two-tailed 1%, 5%, and 10% level, respectively, using the normal distribution as
approximation.

To summarize their results, the risk premiums for factors related to industrial growth
and default risk are positive and those for factors related to unexpected inflation
and yield curve slope are negative. The risk premium associated with DEI was found
to be generally not significant. Their results for the sub-period 1978–1984 were not
significant, i. e., coefficient estimates were not significantly different from zeros. The
economic intuition behind these results. similar to the reasoning behind the Sharpe-
Lintner CAPM is as follows.

Equation (7.11) provides the betas or factor loadings bij for all stock i returns at
time t. Pick a factor θj. If stocks have ex-post returns that on average increase with
the jth factor loadings bij, ceteris baribus, then it implies that expected jth risk factor
or the jth risk premium is positive. Higher bij or higher partial correlation of stock i’s
excess return with the jth risk factor means that stock i is less valuable for portfolio
risk diversification, as in highmarket beta stocks. Assumingmost stocks have positive
correlations with the factor, thus it is compensated with a higher expected return for
the higher systematic θj risk.

Examples are the estimated positive risk premiums, ?E(MPt) and ?E(URPt) corre-
sponding to risk factors MPt and URPt . The economic intuition is that higher MPt or
increase in industrial growth leads to higher consumer demands of goods and hence
better profitability and higher stock returns on average. Increases in URPt could be
due to increasing default risks of some firms in the market leading to switch of de-
mand from some bonds to shares that are safe. This flight to quality could drive up
most other shares’ prices while some other shares that are linked to the bonds with
increased default risks would sink in prices.

If stocks have ex-post returns that on average decrease with the jth factor load-
ings bij, ceteris baribus, then it implies that expected jth risk factor or the jth risk
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premium is negative. Lower bij > 0 in this case means contribution to expected re-
turn is more since the premium is negative. If we would explain the risk compensa-
tion in the case of a negative risk premium, it is more convenient to express the MLR
as excess stock return regressed on factor 1/bij multiplied by θ′j where ex-post return
on average now increases with 1/bij (decreases with bij). Risk premium in this repre-
sentation would be E(θ′j ) > 0. Then the usual explanation under positive premium
goes through, i. e., smaller bij increases partial correlation with θ′j , provides less di-
versification, and hence is more risky and is thus compensated with higher expected
returns.

Examples are the estimated negative risk premiums, ?E(UIt) and ?E(UTSt) corre-
sponding to risk factors UIt and UTSt . The economic intuition for mostly negative cor-
relations of stock returns with UIt is due to increases in inflation possibly increasing
firms’ costs and thus reducing profitability. This would decrease market demand of
stocks and hence decrease share prices and returns. Mostly negative correlations of
stock returns with UTSt could be that increasing (decreasing) yield curve slope sig-
nals confidence (diffidence) in borrowing to invest in the long-term, and hence share
prices would be more (less) valuable. Given next period payoff, rising (falling) share
price today would imply a lower (higher) return in the next period.

To find the multiple risk factors, another approach is to look for factors which
represent systematic categorizations of all firms such that identifiable characteristics
of firms, e. g., their financial accounts, impact on returns.

Banz (1981)8 found low (high) market equity ME (number of shares outstanding ×
share price) correlates with high (low) residual error if market return is the only factor.
In other words, if we run cross-sectional OLS

Ri − rf = c0 + c1β̂ + c2MEi + ηi

we would get a significantly negative estimate of c2. Stattman (1980)9 and Rosenberg,
Reid, and Lanstein (1985)10 found that average returns on U.S. stocks are positively
related to the ratio of a firm’s book value of common equity, BE, to its market value.
ME. Chan, Hamao, and Lakonishok (1991)11 found that book-to-market equity, BE/ME,
has a strong role in explaining the cross-section of average returns on Japanese stocks.
In other words, if we run OLS

8 R. Banz (1981), The relation between return andmarket value of common stocks, Journal of Financial
Economics 9,3–18.
9 D. Stattman (1980), Book values and stock returns, The Chicago MBA: A Journal of Selected Papers,
4, 25–45.
10 B. Rosenberg, K. Reid, and R. Lanstein (1985), Persuasive evidence of market inefficiency, Journal
of Portfolio Management 11:9–17.
11 Louis K. C. Chan, Y. Hamao, and J. Lakonishok (1991), Fundamentals and stock returns in Japan,
The Journal of Finance, 46 (5), 1739–1764.
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Ri − rf = c0 + c1β̂ + c2MEi + c3BE/MEi + ηi

across firms denoted i, we would get a significantly positive estimate of c3.
These studies highlighted a firm’s capitalization (size) and its book equity to mar-

ket equity ratio (BE/ME) as important empirical determinants of its ex-post returns.
High BE/ME also implies a value stock, i. e., its traded price is low relative to its ac-
counting fundamentals.

In more results related to multi-factor asset pricing, Basu (1983)12 showed that
earnings-price ratios (E/P) help explain the cross-section of average returns on U.S.
stocks in tests that also include size and market beta. E/P is likely to be higher (prices
are lower relative to earnings) for stocks with higher risks and expected returns. In
other words, if we run cross-sectional OLS

Ri − rf = c0 + c1β̂ + c2MEi + c3E/Pi + ηi

wewould get a significantly positive estimate of c3. Bhandari (1988)13 reportedpositive
relation between leverage and average return. It is plausible that leverage is associated
with risk and expected return.

Like Reinganum (1981),14 and Lakonishok and Shapiro (1986),15 Fama and French
(1992)16 found that the relation between beta and average return disappears during
the more recent 1963–1990 period, even when beta is used alone to explain average
returns. The simple relation between beta and average return is also weak in the 50-
year 1941–1990 period.

At any time t, different firms have different measures of characteristics e. g. size,
book-to-market ratios, earnings-price ratios, etc. Therefore these characteristic mea-
sures are not the systematic factors that affect all the firms. These characteristic mea-
sures behave more like the beta or factor loadings that can differ at different levels for
different firms. But each particular identifiable characteristic, e. g. size, should be re-
lated to a common risk factor such that the realization of the risk factor multiplied by
the loading contributes to the ex-post stock return. For example, the systematic risk
factor linked to the size loading could be variations in economy-wide loanable funds.

12 S. Basu (1983), The relationship between earnings yield,market value and return forNYSE common
stocks: Further evidence, Journal of Financial Economics 12, 129–156.
13 L. Bhandari (1988), Debt/Equity ratio and expected common stock returns: Empirical evidence,
The Journal of Finance, 43, 507–528.
14 M. Reinganum (1981), A misspecification of capital asset pricing: Empirical anomalies based on
earnings yields and market values, Journal of Financial Economics, 9, 19–46.
15 J. Lakonishok and A. C. Shapiro (1986), Systematic risk, total risk and size as determinants of stock
market returns, Journal of Banking and Finance 10, 115–132.
16 E. FamaandK. R. French (1992), The cross-sectionof expected stock returns,The Journal of Finance,
47(2), 427–465.
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More loanable funds for businesses would mean lower interest rates and is generally
good for small businesses, hence positive impact on returns of smaller firms. But in-
sufficient loanable fundsmean high interests and small firms would be negatively im-
pacted. Another intuitive explanation of size effect could be economy-wide distress
risks that would impact on small cap firms more, hence higher expected return as
risk-compensation for the small cap firms. The characteristic of BE/ME or value could
be associated with higher operating leverages, i. e. higher proportion of fixed costs.
Higher fixed cost effect could be linked with risk factors such as business cycles or
economic-wide sales activities.

7.3.2 Cross-Sectional Regressions

In any period t, the ability to explain the cross-sectional expected returns on assets is
the essence of a workable asset pricing model. Suppose we add a regression constant
in Eq. (7.12):

Rit − rft = a + bi1γ1t + bi2γ2t + ⋅ ⋅ ⋅ + biKγKt + ξit

where E(ξit) = 0. As in approach (ii), Fama and French (1992) used U.S. NYSE, AMEX,
and NASDAQ exchange stocks that are recorded in CRSP database for cross-sectional
regressions. Individual stock return is employed as dependent variable, and CAPM
beta b̂i, ln(ME), ln(BE/ME), ln(A/ME), ln(A/BE), E/P Dummy, and E(+)/P of stock i in
month t are used as factor loadings bi1, bi2, bi3, . . . , biK .
ME = market equity $ value is stock i’s last price × number of stock i’s shares out-

standing in the market
BE = book equity value
A = total book asset value is BE + BL where BL is book liability value
E is per share earnings
P is $ price per share

ln(ME) represents size of market equity. Small size firms have lower ln(ME) values
than larger firms. We expect smaller firms to be systematically more risky with higher
distress costs and default risks and thus themarketwill require higher ex-post returns.

ln(BE/ME) represents book-to-market equity value. Higher BE/MEwith higher op-
erating leverages are systematicallymore risky and thus themarketwill require higher
ex-post returns. ln(A/ME) represents relative leverage. Higher ln(A/ME) implies a rela-
tively higher component of debt. This increases beta, but beyond that it also increases
default risk, which leads to higher expected return. E/P Dummy is 0 if E/P is positive
and 1 if E/P is negative. E(+)/P is the ratio of total earnings to market equity, but is
assigned a value of 0 if E/P is negative. High E/P indicates underpriced stock (in the
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case where earnings are not too low due to high stress cost) and will explain higher
expected returns.17

For the dependent variable of stock return measured from July of year n to June
of year n + 1, BE, A, and E for each firm are measured using accounts from the fiscal
year ending in calendar year n − 1. The accounting ratios are measured using market
equity ME in December of year n − 1. Firm size ln(ME) is measured in June of year n.
These accounting variables of eachfirmmeasuredby year endn−1 areusedasmonthly
explanatory variables for themonthly returns in July n to June n+1. Hence the explana-
tory variables are available to investors prior to the returns. Market βi, corresponding
to the excess market portfolio return as factor for each firm, is obtained using esti-
mates based on a portfolio of stocks with approximately similar betas. This beta for
the portfolio is then used as beta for each of the stocks in the portfolio.

In the Fama and French studies on cross-sectional regressions, for each period
such as a month, the cross-sectional multiple linear regression in Eq. (7.12) yields co-
efficient estimates of risk premiums γ̂1, γ̂2, . . . , γ̂K and their t-statistics. The estimated
coefficients at each month t such as γ̂jt form a time series, and its time-averaged
“t-statistics” can be obtained as:

1
√T ∑

T
t=1 γ̂jt

√ 1
T ∑

T
t=1 (γ̂jt −

1
T ∑

T
t=1 γ̂jt)2

to test if the estimates are significantly different from zero assuming they are randomly
distributed about zero over time under the null of zero coefficient values. The test of
the model would include testing if â is not significantly different from zero. Note that
instead of using just one cross-sectional regression at a specific time period, approach
(ii) is used in which many cross-sectional regressions are performed and the tests are
done on the sample averages of the time series of the estimates for each cross-sectional
regression. The approach yields more accurate testing with more data across time.

An abridged illustration of Fama and French (1992) Table 3 result is shown in Ta-
ble 7.2.

The results showed that by itself market beta β does not appear to explain cross-
sectional returns as the t-statistic of 0.46 shows the estimated coefficients were not
significantly different from zeros. However, the estimated risk premiums correspond-
ing to loads ln(M/E) and ln(BE/ME) were, respectively, negatively and positively sig-
nificant. By itself, E/P risk premium also appeared to be positively significant. Esti-
mated risk premium for ln(A/ME) is similar to that of ln(BE/ME) as both the loadings
are strongly correlated. Estimated risk premium for ln(A/BE), which resembled some-
what the size effect, was negative. When ln(ME) and ln(BE/ME) were entered together
in theMLR, their estimated coefficients or risk premiums remained significantly nega-

17 K. Jaffe, D. B. Keim, and R. Westerfield (1989), Earnings yields, market values, and stock returns,
The Journal of Finance, 44, 135–148, suggested a U-shape for average return versus E/P ratio.
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Table 7.2: Average Slopes Using Monthly Regression Results of Eq. (7.12) from July 1963 to December
1990.

β ln(ME) ln(BE/ME) ln(A/ME) ln(A/BE) E/P Dummy E(+)/P

0.15 NA NA NA NA NA NA
(0.46)
NA −0.15 NA NA NA NA NA

(−2.58)
NA NA 0.50 NA NA NA NA

(5.71)
NA NA NA NA NA 0.57 4.72

(2.28) (4.57)
NA −0.11 0.35 NA NA NA NA

(−1.99) (4.44)
NA −0.11 NA 0.35 −0.50 NA NA

(−2.06) (4.32) (−4.56)
NA −0.13 0.33 NA NA −0.14 0.87

(−2.47) (4.46) (−0.90) (1.23)
Note: The t-statistics are shown in the parentheses. For example, in the sample period July 1963 to
December 1990 (330 months), the t-statistics for the slope time series average, t329 can be approxi-
mated by the standard normal distribution.

tive and positive, respectively. Hence Fama and French (1992) showed that there were
at least two significant risk factors closely associated with firms’ characteristics such
as size and value.

In Table 7.3, we show an abridged illustration of Fama and French (1992) Table
5 results. Average Monthly Returns (%) on Portfolios Formed on Size and Book-to-
Market Equity, July 1963 toDecember 1990,were reported. V1, V3, V5, V7, V10 represent
equal-weighted portfolios of the first, third, fifth, seventh, and tenth decile of stocks
sorted by Book equity to Market equity ratios. ME1, ME3, ME5, ME7, and ME10 rep-
resent equal-weighted portfolios of the first, third, fifth, seventh, and tenth decile of
stocks sorted by capitalization or market equity.

Table 7.3: Average Returns of Different Portfolios Formed by the Intersection of the Value and Size
Decile Portfolios.

Book-to-Market Portfolios
All V1 V3 V5 V7 V10

Size Portfolios
All 1.23 0.64 1.06 1.24 1.39 1.63
ME1 1.47 0.70 1.20 1.56 1.70 1.92
ME3 1.22 0.56 1.23 1.36 1.30 1.60
ME5 1.24 0.88 1.08 1.13 1.44 1.49
ME7 1.07 0.95 0.99 0.99 0.99 1.47
ME10 0.89 0.93 0.84 0.79 0.81 1.18
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The averages of portfolio returns in any of the 10 × 10 intersection portfolios of the
value and size decile portfolios are similar to a linear regressionof returns ondummies
denoting each of 10 by 10 deciles based on laggedME, BE/MEmeasures of each stock.
Clearly, the average ex-post returns of stocksdecreasewith size but increasewithbook-
to-market ratio.

In terms of a direct factor modeling approach (iii), Fama and French (1993) pro-
vided such a technique to empirically identify several suitable factors for the multi-
factor asset pricing models.18 This path-breaking technique is also called the Fama-
French 3-factor Model.

7.3.3 Fama-French Three Factor Model

Suppose cov(Rit ,Rjt) ̸= 0 at t for any two stocks i, j. Suppose there exists a group of
stocks j ∈ S with similar characteristics of small capitalizations, and another group of
stocks k ∈ B with big capitalizations. For all small cap stocks, cov(Rit ,

1
N ∑j∈S Rjt) at t

is high and cov(Rit ,
1
N ∑k∈B Rkt) at t is low. The latter is consistent with the empirical

observations of capitalization being a determinant of returns. For all large cap stocks,
cov(Rit ,

1
N ∑j∈S Rjt) at t is low and cov(Rit ,

1
N ∑k∈B Rkt) at t is high.

If we form an index Ft =
1
N ∑j∈S Rjt −

1
N ∑k∈B Rkt, then for small cap stocks,

cov(Rit , Ft) at t is high, while for large cap stocks cov(Rit , Ft) at t is low (possibly nega-
tive). Hence we see that Ft is a good candidate for a systematic risk factor that affects
all stocks cross-sectionally since stocks vary cross-sectionally by capitalizations.

Similarly suppose high value stocks’ (∈ H) returns have high positive correla-
tions, low value stocks’ (∈ L) returns have high positive correlations, but high and
low value stock returns have low correlations. If we form an index Gt =

1
N ∑j∈H Rjt −

1
N ∑k∈L Rkt, then for high value stocks, cov(Rit ,Gt) at t is high, while for low value
stocks cov(Rit ,Gt) at t is low (possibly negative). HenceGt is a another good candidate
for a systematic risk factor that affects all stocks cross-sectionally since stocks vary
cross-sectionally by BE/ME ratios. The factors need not be, but can be constructed as
self-financing portfolios if the outlay on the long positions equal to the shortsale value
of the short positions.

Fama and French (1993) constructedmicmicking portfolios of indexes Ft andGt as
follows. In June of each year n from 1963 to 1991, stocks on NYSE, Amex, and NASDAQ
are divided into a small cap S and a big cap B group. For the size sort, market equity
or capitalization is measured at the end of June. The same stocks are also sorted into
three book-to-market ratio groups comprising bottom 30% ratios (L group), medium
40% (Mgroup), and top 30% ratios (H group). To bemore precise, the ratio in year n is

18 E. Fama and K. R. French (1993), Common risk factors in the returns on stocks and bonds, Journal
of Financial Economics, 33, 3–56.
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formedusing the book common equity for fiscal year ending in calendar year n−1. This
is typically December n−1.Market equity ismeasured at endDecember of year n−1. Six
portfolios are constructed each year from the intersection of these two sorts: S/L, S/M,
S/H, B/L, B/M, and B/H portfolios. Monthly value-weighted returns on the six portfo-
lios are computed from July of year n top June of n + 1. The portfolios are rebalanced
in June of n + 1 based on the yearly updated ME and BE/ME firm numbers. The SMB
(“small-minus-big”) micmicking portfolio monthly return is constructed as the differ-
ence between the simple average of S/L, S/M, S/H monthly returns and the simple
average of B/L, B/M, B/H monthly returns. The HML (“high-minus-low”) micmicking
portfolio monthly return is constructed as the difference between the simple average
of S/H and B/H monthly returns and the simple average of S/L and B/L monthly re-
turns.

The key regression model is:

Rit − rft = a + b(RMt − rft) + sSMBt + hHMLt + et (7.25)

where RMt is a value-weighted market portfolio return, and rft is one-month Treasury
bill rate at month t. et is the residual innovation.

The dependent variable Rit is a portfolio return for the month t. Fama and French
(1993) included studies on bond returns but we shall not discuss them here. In June of
each year n, size sort into 5 quintiles was performed based onmarket equitymeasured
at the end of June. The same stocks are also sorted into 5 quintiles based on book-
to-market ratio groups where BE/ME ratios are measured in the same way as when
constructing the micmicking portfolios. 25 portfolios are constructed each year from
the intersection of these two sorts. Monthly value-weighted returns of stocks in the
25 portfolios are computed from July of year n top June of n + 1. The latter form the
monthly dependent variables.

As in the first and second steps of the macroeconomic factors model above, time
series regression is performed onEq. (7.11) for eachportfolio i of the 25 portfolios. Fama
and French (1993) used this time series regression approach essentially to test for the
significance of factor loadings. Significant factor loadings for stock returns are nec-
essary for showing the selected factors in the regression are systematic according to
APT.

An abridged illustration of Fama and French (1993) Table 6 results is shown in
Table 7.4.Wename their portfolios as follows. Stocks in the ith size quintile aredenoted
as in the group Si, while stocks in the jth BE/ME or value quintile are denoted as in
the group Vj. Stocks in the intersection of the smallest cap and third value quintile are
denoted as in the group S1V3. Thus S1V3 portfolio denotes the value-weighted return
of stocks in the S1V3 group. Each line in the table denotes a regressionusing a different
portfolio return as dependent variable.

The outstanding feature of the results is that all the coefficients are significantly
different from zero at p-values much less than 1% level. The R2 for the regressions are
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very high at close to one.Moreover, the estimated coefficients ̂s on the sizemicmicking
portfolio are significantly positive except that of S5V3 that is significantly negative.
The estimated coefficients reduce in magnitudes as size increases (see S1V3 to S5V3),
indicating that increasing size reduces expected returns. This could be due to smaller
cap firms facing higher (default and other funding) risks, and thus having their stocks
compensated with higher expected returns.

Table 7.4: Regression Results of Eq. (7.25) Using Monthly Data from July 1963 to December 1991.

Dependent Variable b s h R2

S1V3 Portfolio 0.95 1.19 0.26 0.97
(60.44) (52.03) (9.66)

S2V3 Portfolio 1.00 0.88 0.26 0.95
(55.88) (34.03) (8.56)

S3V3 Portfolio −0.98 0.60 0.32 0.93
(50.78) (21.23) (9.75)

S4V3 Portfolio 1.04 0.29 0.30 0.91
(51.21) (9.81) (8.83)

S5V3 Portfolio 0.98 −0.23 0.21 0.88
(46.57) (−7.58) (5.80)

S3V1 Portfolio 1.12 0.76 −0.38 0.95
(56.88) (26.40) (−11.26)

S3V2 Portfolio 1.02 0.65 −0.00 0.94
(53.17) (23.39) (−0.05)

S3V4 Portfolio 0.97 0.48 0.51 0.93
(54.38) (18.62) (16.88)

S3V5 Portfolio 1.09 0.66 0.68 0.93
(52.52) (21.91) (19.39)

Note: The t-statistics are shown in the parentheses. For example, in the sample period July 1963 to
December 1991 (342 months), the t-statistics for the coefficient estimates, t338 can be approximated
by the standard normal distribution.

The estimated coefficients ĥ on the valuemicmicking portfolio increase inmagnitudes
as BE/ME increases (see S3V1 to S3V5), indicating that increasing BE/ME increases
expected returns. This could be due to value or high book-value firms facing higher
operating leverage risks. Market risks as in the Sharpe-Lintner CAPM is also seen as
significant with significantly positive b̂ for all portfolios.

This study suggests that the market beta and two other firm attributes viz. cap-
italization size and book-to-market equity ratio are three variables that correspond
each to a common risk factor affecting the cross-section of stocks. Together with the
earlier 1992 study, Fama and French broke completely new and fascinating ground
in the world of investment finance by pointing out presumably better explanations
for the cross-sectional expected returns of stocks than what single-factor CAPM does.
It is in explaining every stock’s return variations that these risk factors are consid-
ered as systematic across the market. The new proxies of systematic risk factors they
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suggested led to voluminous research that followed. Unlike factors linked to macroe-
conomic variables, these Fama-French risk factors can be constructed like funds that
can be traded and used for hedging. Thus, there is greater plausibility in their use by
the market, and hence their role as systematic risk factors.

Carhart 4-Factor Model19 is an extension of the Fama-French 3-Factor Model to
include a momentum factor. The monthly momentum factor is formed by equal-
weighted average of returns of highest performing firms in the previous year less the
equal-weighted average of returns of the worst performing firms. It is called the win-
ners minus losers or upminus down (UMD) factor. The factor however appeared to re-
verse correlation in events of momentum crashes during strong economic downturns.

Fama and French 5-Factor model20 also extended the 3-Factor Model to include
the return spread between firms with high operating profitability and firms with low
or negative operating profitability, RMW (robust minus weak), as a factor, and also
the return spread between firms that invested conservatively and those that invested
aggressively, CMA (conservativeminus aggressive), as another factor. These factors are
thought to have positive correlations with ex-post stock returns. However including
the latter two factors appeared to dilute the effect of the value factor.

As stock market and portfolio performance research continue, it is interesting to
know that empirical data research oftentimes come up with evidence of new system-
atic factors that are valuable to be considered. Over time some proved to be spurious
results, some due to data-snooping,21 some over-shadowed by new factors that seem
to subsume the old ones, and some disappeared with new and more recent market
development and data.

In recent years, Karolyi and Stijn (2020) discussed that there are hundreds or even
more of so called new anomalies or factors. Many of these may not survive rigorous
empirical tests and many are just linear combinations of other factors. Relatively new
perspectives of cross-sectional and time series analyses of the factor models were dis-
cussed.22

19 M.M. Carhart (1997), Onpersistence inmutual fundperformance,The Journal of Finance, 52, 57–82.
20 E. Fama and K. French (2015), A five-factor asset pricingmodel, Journal of Financial Economics 116,
1–22.
21 This is similar in idea to over-fitting a regression with too many explanatory variables to get a
high R2, but which does not promise, and sometimes work adversely in forecasting. Data snooping is
more about using models and specifications, including searching for constructions of data variables
to try to explain cross-sectional return variations. Heuristically, if a relationship can be rejected at
5% significance level if the null that there is no relationship is true, then there is 5% chance that if
we search hard enough within a dataset, we just may be able to find a relationship that cannot be
rejected 5% of the times..
22 See the special 2020 volume 33 of the Review of Financial Studies. See also G. Andrew Karolyi and
Stijn Van Nieuwerburgh (2020), Newmethods for the cross-section of returns, The Review of Financial
Studies, 33(5), 1879–1890.
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7.4 Forecasting Returns

We discussed the purposes of estimating the mult-factor models and in (1a), (1b), we
indicated how forecasting or prediction of next period returns can be carried out. Con-
sistently better than average predictionwill no doubt be useful for investing decisions.
Lewellen (2015)23 provided some results in forecasting using Fama and French (1992)
approach or approach (ii).

In Lewellen (2015), cross-sectional regressions of stock returns were first run on
their pre-determined or lagged characteristics. HisModel 1 used size, BE/ME, and past
12-month stock returns as characteristics. Model 2 added 3-year share issuance (log
growth in split-adjusted outstanding shares) and one-year accruals, profitability, and
asset growth as characteristics. Model 3 included 8 additional characteristics such as
beta, dividend yield, one-year share issuance, 3-year stock returns, 12-month volatil-
ity, 12-month turnover, market leverage, and sales-to-price ratio. Each month t, esti-
mates of the Fama-MacBeth slopes or premiums related to these characteristics, γ̂jt
(via Eq. (7.12)) are collected, and then used to form ten-year rolling averages or else
cumulative averages.

For example, if monthly (conditional) premiums (corresponding to each charac-
teristic) are estimated via cross-sectional regressions from January 1964 to December
2013, the averages of the estimates from Jan. 1964 to Dec. 1973 over 120 months form
the 10-year averages. It is also the first cumulative averages. The averages of the esti-
mates from Feb. 1964 to Jan. 1974 form the next 10-year average. Jan. 1964 to Jan. 1974
averages are the cumulative averages. Averages of Mar. 1964 to Feb. 1974 are the next
10-year rolling averages. Jan. 1964 to Feb. 1974 are the next cumulative averages. There
are other ways to form rolling averages.

Let the averages (or else cumulative averages) over window [d1, d2] be denoted as
follows.

̂γj[d1, d2] =
1

d2 − d1 + 1

d2−d1+1
∑
t=1

γ̂jt

for each j = 1, 2, . . . ,K. This is used as the expected premium for the futuremonth d2+1.
Equation (7.12) is then used to make a forecast or prediction of stock i excess return at
d2 + 1. The forecast is

Ed2 (Rid2+1) = rfd2+1 + bi1 ̂γ1[d1, d2] + bi2 ̂γ2[d1, d2] + ⋅ ⋅ ⋅ + biK ̂γK[d1, d2]

where bi1, bi2, . . . , biK characteristics or loadings of stock i are pre-determined at a time
just prior to month d2 + 1.

23 J. Lewellen (2015), The cross-section of expected stock returns, Critical Finance Review, 4, 1–44.
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Hence as the window [d1, d2] rolls forward in time to [d1 + 1, d2 + 1], [d1 + 2, d2 +
2], . . . , [d1 + t, d2 + t], we obtain a time series of return forecasts, Fid2+1 = Ed2 (Rid2+1)
for each stock i. We can then compare the realized stock i returns at t + 1 versus the
forecast return for t + 1. This is done for all stocks i. Time series regressions for each
i of Ri,t on Fi,t can be performed and the slope Si is noted. Averages of the slopes and
their t − statistics across i provide an idea of the predictive performances under each
model and eachmethod of rolling or cumulative windows. Good predictive or forecast
performanceswould produce average slopes close to one and high average t-statistics.
Average slopes of between0.63 to0.82were reported in the Lewellen (2015) studyusing
the 3 models and the 2 types of windows.

Another approach to the forecasting could be based on Fama and French (1993)
or approach (iii) for the first step. Assume the time series over window [d1, d2] of the
risk factors θjt are given or observable. For each stock i, employ Eq. (7.11) using time
series regression to estimate the stock’s loadings b̂ij[d1, d2] for j = 1, 2, . . . ,K. These
are constants over [d1, d2]. Use b̂ij[d1, d2] (∀j) as loadings for next month d2 + 1. Also
estimate Ed2 (θjd2+1) = γjd2+1 using a time series model on each θjt over [d1, d2]. Next,
use Eq. (7.12) to forecast next period return for each stock i:

Ed2 (Rid2+1) = rfd2+1 + b̂i1[d1, d2]Ed2 (θ1d2+1) + b̂i2[d1, d2]Ed2 (θ2d2+1) + ⋅ ⋅ ⋅

+ b̂iK[d1, d2]Ed2 (θKd2+1)

This is then repeated as the window [d1, d2] rolls forward in time to [d1 + 1, d2 + 1], [d1 +
2, d2+2], . . . , [d1+t, d2+t].We can then compare the realized stock i returns at t+1 versus
the forecast return for t+1. This is done for all stocks i. Time series regressions for each
i of Ri,t on its forecast can be performed and the slope Si is noted. As the variation in
b̂ij[d1, d2] (∀j) from month to month may be small, much of any predictive accuracy if
any would come from estimating Ed2 (θjd2+1).

7.5 Anomalies and Behavioral Finance

Traditional finance asset pricing models or paradigms based on rationality, i. e., op-
timization (of utility), rational expectations using all available information, and arbi-
traging awaymispricings (no-arbitrage equilibrium) do not appear to explain all asset
pricing aberrations.Manyof these aberrations or anomalies, not currently explainable
by rational equilibriumasset pricingmodels,may be explainable using humanbehav-
iors. Behavioral finance is such an alternative explanation of some systematic cases of
apparent irrationality. What could lead to prices keeping away (at least temporarily)
from no-arbitrage equilibrium or being apparent irrational at any point in time under
behavioral finance are due to three key reasons:
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(4a) Irrationality or else bounded rationality24

(4b) Limits to Arbitrage
(4c) Psychological (behavioral) biases that affect how people make investment deci-

sions despite the information. It is how they add their values/beliefs to the infor-
mation.

Limited investor attention, an aspect of bounded rationality, refers to an anomaly in
which investors purchase attention grabbing stocks that have bigger price changes
and higher trading volumes or are linked with significant press events though the
stocks do not have objective evidence of such movement possibilities. Barber abd
Odean (2008)25 explained that attention-driven buying is caused by the search costs
when investors are faced with an enormous number of stocks they can purchase.
Stocks that caught their attention reduce the search costs but also reduce their ability
to compute rationally.

Limits to arbitrage itself could be due to three sources ofmarket frictions. (1) There
is no perfect substitutes for mispriced security, e. g., Long-Term Capital Management
(LTCM). Buying cheap Russian debt cannot be hedged by selling more expensive US
debt. (2) There are transactions costs including short-selling constraints. The costs
could prevent swift arbitrage. (3) Interruption by noisy traders (or uninformed liquid-
ity traders) can prolong mispricings for a bit. The increased mispricing gap due to
noisy trades in the opposite direction means arbitrageur suffers temporary loss even
while he/she is trying to set up convergence trades. Arbitrageur may not want to take
this risk if his/her trading capital is limited.

Before the 1990s, the Chicago School of full rational expectations modeling dom-
inated the thinking behind asset pricing and investments. As an alternative, the
competing behavioral finance school argues that many financial phenomena can
plausibly be understood using models in which at least some if not many agents are
not fully rational. There are other behavioral schools of thought originating from the
field of psychology that suggest bounded rationality, ecological rationality, and so
on.

One major implication of behavioral finance is that risky arbitrage opportunities
and abnormal profit opportunities may appear to arise in the market because investor
behavior is governed by psychology and behavioral biases. These prompt deviations
from full rationality that wemight otherwise expect. There is a huge variety of psycho-
logical effects modeled to explain aberrations from empirical validations of rational
asset pricing models. Some examples are regret theory, anchoring behavior, prospect

24 See Herbert A. Simon (1957),Models of Man, NY: John Wiley.
25 B.M. Barber and T. Odean (2008), All that glitters: The effect of attention and news on the
buying behavior of individual and institutional investors, The Review of Financial Studies, 21(2),
785–818.
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theory by Kahneman and Tversky (1979),26 mental accounting by Thaler (1980),27 and
so on.

For example, regret theory is a theory that says people expect to regret if theymake
a wrong choice, and the regret will cause aversion especially to the type of decisions
that in the past had produced regrets. It could run both ways, implyingmore risk aver-
sion if in the past the decision-maker had taken risk and suffered heavy losses, or less
risk aversion if in the past the decision-maker had been conservative and regretted
missing multiplying his or her wealth during the boom.

Anchoring behavior is the use of irrelevant information as a reference for estimat-
ing or expecting some unknown quantities. For example, in assessing the fair price
of a small firm’s stock, the investor could be using the price of another small firm’s
stock for comparison, even though the latter information is irrelevant because the two
stocks are in different industries and at different levels of risks.

Prospect theory postulates that preferences will depend on how a problem is
framed. Preference is a function of decision weights on outcomes, and the weights
do not correspond exactly to the outcome probabilities. Specifically, prospect the-
ory predicts that most decision-makers tend to overweigh small probabilities on huge
losses and underweighmoderate and high probabilities onmoderate gains or returns.
Hence, prospect theory is better able to explain phenomenon such as loss aversion,
as in selling stocks after a major drop for fear of further drop.

Mental accounting theorists argue that people behave as if their assets are com-
partmentalized into a number of non-fungible (non - interchangeable) mental ac-
counts such as current income or current wealth. The marginal propensities to con-
sume out of the different accounts are all different, and thus an investor with a larger
mental account in current income may indeed invest more, while a similarly wealthy
investor with a larger mental account in current wealthmay consumemore and invest
less.

As an illustration of loss aversion tendency, Kahneman and Tversky (1979) dis-
cussed – “Would you take a gamble with a 50% chance of losing $100 vs. a 50%
chance of winning $101?Most people would say no. Despite the positive expected pay-
off, the possibility of losing $100 is enough to deter participation”. This explains why
investors hesitate to sell when there is a loss and sell too soon when there is a gain (as
it “costs” more to take loss). Sometimes the tendency to hold on to loss stocks and re-
alize gains too soon in rising stocks is called “Disposition Effect” – seeOdean (1998).28

26 D. Kahneman and A Tversky (1979), Prospect theory: An analysis of decision under risk, Economet-
rica, 47(2), 263–292.
27 See R.H. Thaler (1980), Toward a positive theory of consumer choice, Journal of Economic Behavior
and Organization, 1, 39–60, and also R.H. Thaler (1985), Mental accounting and consumer choice,
Marketing Science, 4, 199–214.
28 Terrance Odean (1998), Are investors reluctant to realize their losses? The Journal of Finance, 53(5),
1775–1798.
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In ambiguity aversion, people do not like situations where they are uncertain
about the probability distribution of a gamble (ambiguity situations). This ambiguity
aversion can be illustrated by the Ellsberg (1961) paradox.

Suppose that there are two urns, 1 and 2. Urn 1 contains a total of 100 balls, 50
red and 50 blue. Urn 2 also contains 100 balls, again a mix of red and blue, but the
subject does not know the proportion of each. Subjects are asked to choose one of the
following two gambles (a1 or a2), each of which involves a possible payoff to subject
of $100, depending on the color of a ball drawn at random from the relevant urn.
a1: a ball is drawn from Urn 1, subject receives $100 if red, $0 if blue,
a2: a ball is drawn from Urn 2, subject receives $100 if red, $0 if blue.

Subjects are then next also asked to choose between the following two gambles (b1
or b2):
b1: a ball is drawn from Urn 1, subject receives $100 if blue, $0 if red,
b2: a ball is drawn from Urn 2, subject receives $100 if blue, $0 if red.

If subject chooses a1 and then b1, the irrationality is as follows. If subject chooses a1
over a2, then by rationality, the subject should believe there are more than 50 blue
balls in urn 2. But given the latter, a rational subject would choose b2 in the second
set of gambles. Subject’s choices of a1 and then b1 clearly are not consistentwith ratio-
nal choices. The choices are, however, due to behavioral biases of ambiguity aversion
since a2 and b2 face uncertain probability distributions.

Investor sentiment is another behavioral factor affecting stock returns. Sentiment
is the propensity to speculate and hence stocks that are more difficult to value (more
speculation required) or stocks that have higher idiosyncratic volatility are more
susceptible to sentiment biases. See Daniel, Hirshleifer, and Subrahmanyam (1998,
2001),29 and Hirshleifer (2001).30 Informed investor can exploit such investor senti-
ments to sell more when the sentiment is to hold and buymore when the sentiment is
to sell. On average, strong sentiments would lead to underperformance, i. e. negative
alpha. Thus informed investors can profit more from trading in hard-to-value and
high idiosyncratic volatility stocks.

Overconfidence is another behavioral trait affecting full rationality. Overconfident
investors assign high chances of obtaining higher returns than indicated by historical
or objective data. Investors exhibit greater overconfidence when the market uncer-
tainty is higher and sometimes also when the most recent returns are higher. Some

29 K. Daniel, D. Hirshleifer, and A. Subrahmanyam (1998), Investor psychology and security market
under- and overreactions, The Journal of Finance, 53, 1839–1885, and K. Daniel, D. Hirshleifer, and
A. Subrahmanyam (2001), Overconfidence, arbitrage and equilibrium asset pricing, The Journal of Fi-
nance, 56, 921–965.
30 David Hirshleifer (2001), Investor psychology and asset pricing, The Journal of Finance, 56,
1533–1597.
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individual investors commit larger investment mistakes and exhibit stronger behav-
ioral biases inmoreuncertain environments. Thus ex-post returns to investing in hard-
to-value and also high idiosyncratic volatility stocks are lower for general market in-
vestors.

7.6 Calendar Effect Anomalies

Someanomalies are specifically related to the calendar suchasdayof theweek,month
of the year, seasons, festive events, or major events tied to specific time of the year.

Many researchers reported that the mean daily stock returns on Monday tended
to be lower than those of other weekdays.31 On average. Monday returns appeared to
be significantly lower than those of Friday returns. This is called the Monday effect or
the weekend effect.

The Monday effect could be due to the practice of firms releasing negative news
on Friday nights so Monday closing stock prices were lower than Friday closing. It
could also be a technical reason that short-selling typically occurs more on Monday
than on Friday as traders need to close the short positions sometimes within a day or
two. There could also be behavioral reasons such as traders experiencing a decline
in optimism over the weekend. However, some studies in the 1990s showed that the
day-of-the-week effect in the U.S. stock market may have largely disappeared in the
1990s.

The January effect32 is when stock prices tended to rise in January, especially the
prices of small firms and firms whose stock price has declined substantially over the
recent years. The significantly positive January return was typically driven by heavy
selling during December and aggressive buying during January. Investors tended to
sell off low-performing stocks at the end of each year and then buy back those stocks
a few weeks later. Investors often sold off underperforming stocks in December so
that they could use the losses to offset capital gains taxes – this is called “tax-loss
harvesting.”33 The “tax-selling” can depress stock prices to low levels where they be-
come attractive to buyers in January. In January, investors who had received year-end
work cash bonuses could also add these to buying shares. Besides the institutional
tax reason, there are plausible pyschological and behavioral reasons. Some investors

31 See M. Gibbons and P. Hess (1981), Day of the week effects and asset returns, Journal of Business,
54, D. Keim, and R. Stambaugh (1984), A further investigation of the weekend effect in stock returns,
The Journal of Finance, 39, J. Jaffe, and R. Westerfield (1985), The weekend effect in common stock
returns: The international evidence, The Journal of Finance, 40, and G.N. Pettengill (2003), A survey
of the Monday effect literature, Quarterly Journal of Economics.
32 R.H. Thaler (1987), Anomalies: The January effect, Journal of Economic Perspectives, 1(1), 197–201.
33 R.H. D’Mello, S. P. Ferris, and C. Y. Hwang (2003), The tax-loss selling hypothesis, market liquidity,
and price pressure around the turn-of-the-year, Journal of Financial Markets, 6(1), 73–98.
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believed that January might be the suitable month to start investing toward some ob-
jectives upon a New Year’s resolution.

InmajorAsian stockmarkets suchas inChina,HongKong, Japan,Malaysia, South
Korea and Taiwan, the Chinese Lunar New Year holiday effect34 during 1999 to 2012
was seen in the form of significantly positive pre-CLNY returns. It would appear that
positive emotion played a role in contributing to the higher returns.

Of course, many anomalies do not survive closer analysis once transaction costs
are taken into account. If a so-called anomaly exists, but which cannot be profitably
exploited because transaction costs are too high, then it cannot be anomalous by def-
inition. Time anomalies are interesting in finance and useful for instruction from the
point of teaching basic econometrics when it comes to using dummy variables. We
provide an example as follows.

7.6.1 Day-of-the-Week Effect

Let the daily continuously compounded return rate Rt of a market portfolio or else a
well traded stock on day t be expressed as

Rt = c1D1t + c2D2t + c3D3t + c4D4t + c5D5t + ut (7.26)

where cj’s are constants and Djt ’s are dummy variables. These dummy variables take
values as follows.

D1t = {
1 if return is on a Monday at time t
0 otherwise

D2t = {
1 if return is on a Tuesday at time t
0 otherwise

D3t = {
1 if return is on a Wednesday at time t
0 otherwise

D4t = {
1 if return is on a Thursday at time t
0 otherwise

D5t = {
1 if return is on a Friday at time t
0 otherwise

ut is a disturbance term that is assumed to be n. i. d. Notice that we choose to regress
without a constant. If we performOLS onEq. (7.26), with a time series sample size ofN,
the matrix form of the regression is:

34 See Tian Yuan and Rakesh Gupta (2014), Chinese Lunar New Year (CLNY) effect in Asian stock
markets, 1999–2012, The Quarterly Review of Economics and Finance, 54(4), 529–537.
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)))))))

)

Y X B U

Each row of the XN×5 matrix contains all zero elements except for one unit element.
Assume U ∼ N(0, σ2u).

The day-of-the-week effect refers to a price anomaly whereby a particular day of
the week has a higher mean return than the other days of the week. To test for the
day-of-the-week effect, a regression based on Eq. (7.26) is performed.

To test if the day-of-the-week effect occurred in the Singapore stock market, we
employ Singapore Stock Exchange data. Continuously compounded daily returns are
computed based on the Straits Times Industrial Index (STII) from July 18, 1994 to Au-
gust 28, 1998 and on the reconstructed Straits Times Index (STI) from September 7,
1998 until the end of the sample period as at October 18, 2002. The data were col-
lected from Datastream. At that time, STI was a value-weighted index based on 45
major stocks that made up approximately 61% of the total market capitalization in
Singapore. Since the STII and STI were indexes that captured the major stocks that
were themost liquidly traded, the day-of-the-week effect, if any, would show up in the
returns based on the index movements.

We use 1075 daily traded data in each period: July 18, 1994 to August 28, 1998
(period 1), and September 7, 1998 to October 18, 2002 (period 2). Table 7.5 shows de-
scriptive statistics of return rates for each trading day of the week. Table 7.6 shows the
multiple linear regression result of daily return rates on the weekday dummies using
returns from period 1.

TheOLS regression result shows that the coefficient ĉ1 = −0.002278 is the only one
that is significantly different (smaller) than zero. This corresponds to D1, the Monday
dummy variable. Thus, there is a significantly negative mean return on Monday. This
Monday day-of-the-week effect in Singapore is similar to evidence elsewhere in the
U.S. and in other exchanges in Asia.

Why do we interpret this as negative mean return on Monday? Equation (7.26) im-
plies that:

Rt = c1D1t + ut

since the other cj coefficients are not significantly different from zero. Then, E(Rt) =
c1D1t . For Mondays, D1t = 1. So, mean Monday return, E(Rt | Monday) = c1. This is
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Table 7.5: Return Characteristics on Different Days of the Week.

Mon Tue Wed Thu Fri

Mean −0.002278 −0.001052 0.001194 −0.000394 −0.000359
Median −0.002272 −0.001255 0.000269 −0.000206 3.71E-05
Maximum 0.160307 0.095055 0.069049 0.040004 0.039870
Minimum −0.078205 −0.092189 −0.039137 −0.079436 −0.069948
Std. dev. 0.018646 0.013078 0.012631 0.013085 0.010729
Skewness 3.192659 0.263696 0.920829 −1.154059 −1.147256
Kurtosis 32.39143 25.84039 8.182601 10.15761 11.22779
Jarque-Bera 8103.961 4675.906 270.9991 506.6721 653.6114
Probability 0.000000 0.000000 0.000000 0.000000 0.000000
Sum −0.489672 −0.226154 0.256656 −0.084740 −0.077153
Sum sq. dev. 0.074401 0.036600 0.034139 0.036640 0.024632
Observations 215 215 215 215 215

Table 7.6: OLS Regression Results of Eq. (7.26), July 18, 1994 to August 28, 1998 (Period 1), 1075
observations Rt = c1D1t + c2D2t + c3D3t + c4D4t + c5D5t + ut .

Variable Coefficient Std. Error t-Statistic Prob.

D1 0.002278 0.000947 −2.404414 0.0164
D2 0.001052 0.000947 −1.110473 0.2670
D3 0.001194 0.000947 1.260246 0.2079
D4 0.000394 0.000947 −0.416095 0.6774
D5 0.000359 0.000947 −0.378842 0.7049

R-squared 0.006554 Mean dependent var −0.000578
Adjusted R-squared 0.002840 S.D. dependent var 0.013909
S.E. of regression 0.013889 Akaike info criterion −5.710774
Sum squared resid 0.206413 Schwarz criterion −5.687611
Log likelihood 3074.541 Durbin-Watson stat 1.678574

estimated by ĉ1 = −0.002278. From Tables 7.5 and 7.6, it is seen that the means of the
returns on Monday, Tuesday, etc. are indeed the coefficient estimates of the dummies
D1t ,D2t , . . . etc. However, if there are other non-dummy quantitative explanatory vari-
ables on Rt, then ĉj is in general not the mean return on the jth day of the week, but
just its marginal contribution.

The negative or lower Monday return effect is sometimes addressed as the week-
end effect due to the explanation that most companies typically put out bad news if
any during the weekends so that Monday prices on average end relatively lower than
on other days of the week. This weekend effect sometimes appears only some months
of the year. In the U.S., the Monday effect does not typically appear in January. It has
also been empirically found that Friday returns on average are the highest in U.S., in
some studies before 2002.
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7.6.2 Test of Equality of Means

We test the null hypothesis that themeans of all weekday returns are equal. This takes
the form of testing if the coefficients to the five dummies are all equal, viz. H0 : c1 =
c2 = c3 = c4 = c5. The results are shown in Table 7.7.

Table 7.7:Wald and F -Test of Equal Mean Returns on All Weekdays.

Equation: PERIOD1_REGRESSION

Null Hypothesis: C(1) = C(5)
C(2) = C(5)
C(3) = C(5)
C(4) = C(5)

F -statistic 1.764813 Probability 0.133652
Chi-square 7.059252 Probability 0.132790

The Wald chi-square statistic is asymptotic, assuming σ̂2u → σ2u in

(RB̂ − r)T [R(XTX)−1RT ]−1(RB̂ − r)
σ̂2u

∼ χ2q

where there are q number of restrictions. The F-statistic, however, is exact. In general,
the asymptotic Wald statistic in more useful in nonlinear constraint and testing. In
Table 7.7, the Wald chi-square statistic (d. f. 4) shows that we can reject H0 only in a
critical region with p-value of 13.28%. The F-test statistic shows that we can reject H0
only in a critical regionwith p-value of 13.36%. Thus, statistical evidence thatMonday
return is different from the rest is not as strong.

For period 2, we run OLS on Rt = c1N1t + c2N2t + c3N3t + c4N4t + c5N5t + ut . Nit is
equivalent to Dit . It is the same dummy. In Table 7.8, however, it is seen that though
the coefficient of Monday dummyN1t is the only negative coefficient, it is nevertheless
not significant with a p-value of 0.41. The test if the coefficients to the five dummies
are all equal, viz. H0 : c1 = c2 = c3 = c4 = c5, does not reject the null hypothesis at
10% significance level. The results are similar to those in Table 7.7 and are not shown
here.

Has the Monday day-of-the-week effect disappeared after August 1998? It seems
so. The day-of-the week effect in U.S. may have disappeared in the late 1990s partly
because arbitrageurs would enter to cream away the profit by buying low at close of
Monday and selling the same stock high on Friday, earning on average above-normal
returns. The arbitrageurs’ activities have the effect of raising Monday’s closing prices
and lowering Friday’s closing prices. This would wipe out the observed differences.
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Table 7.8: OLS Regression Results of Eq. (7.26), September 7, 1998 to October 18, 2002 (Period 2),
1075 observations Rt = c1N1t + c2N2t + c3N3t + c4N4t + c5N5t + ut .

Variable Coefficient Std. error t-Statistic Prob.

N1 0.000877 0.001055 −0.831321 0.4060
N2 0.000799 0.001055 0.756916 0.4493
N3 0.000193 0.001055 0.183048 0.8548
N4 0.001417 0.001055 1.342474 0.1797
N5 0.001840 0.001055 1.743269 0.0816

R-squared 0.003815 Mean dependent var 0.000674
Adjusted R-squared 0.000091 S.D. dependent var 0.015475
S.E. of regression 0.015474 Akaike info criterion -5.494645
Sum squared resid 0.256212 Schwarz criterion -5.471482
Log likelihood 2958.372 Durbin-Watson stat 1.768158

Recently, some studies35 documented high Monday VIX (volatility index) prices rela-
tive to Friday prices, and high fall prices relative to summer prices. This would allow
abnormal trading profit by buying VIX futures at CBOE on Friday and selling on Mon-
day, and buying the same in summer and selling as autumn approaches. The day-of-
the-week and seasonal effects are not explained by risk premia, but perhaps rather
by behavioral patterns exhibiting pessimism or fear of uncertainty, hence greater per-
ceived volatility or VIX index (sometimes called the “Fear Gauge”) on Monday for the
whole working week ahead, and in autumn when the chilly winds start to blow in
North America.

7.6.3 Analysis of Variance

Earlier we saw that E(Rt |Monday) = c1. Hence also E(Rt |Tuesday) = c2, and so on.
Thus, the population means of Monday returns, Tuesday returns, . . . , and Friday re-
turns are c1, c2, c3, c4, and c5, respectively. We can also test for the equality of the
means of each weekday, i. e. c1, c2, c3, c4, and c5, using analysis of variance (ANOVA).

The sum of squares treatments (SST) measuring the variability between the sam-
ple means of the different days/groups is:

SST =
5
∑
i=1

ni(R̄i − R̄)
2

where n1 is the number of Mondays in the sample space, n2 is the number of Tuesdays,
n3 is the number of Wednesdays, and so on. R̄1 is the sample mean of Monday returns,

35 See for example,H. Levy (2010), Volatility RiskPremium,Market Sentiment andMarketAnomalies,
Melbourne Conference in Finance, March.
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R̄2 is the sample mean of Tuesday returns, and so on. R̄ is the sample average return
of all days.

The sum of squares for errors (SSE) measures the variability within the groups.

SSE =
n1
∑
j=1
(R1j − R̄1)

2 +
n2
∑
j=1
(R2j − R̄2)

2 +
n3
∑
j=1
(R3j − R̄3)

2

+
n4
∑
j=1
(R4j − R̄4)

2 +
n5
∑
j=1
(R5j − R̄5)

2

whereR1j is aMonday return for aweek j,R2j is a Tuesday return for aweek j, and so on.
The population means of Monday returns, Tuesday returns, Wednesday returns,

and so on, are c1, c2, . . . , and c5. Intuitively H0 : c1 = c2 = c3 = c4 = c5 is true if the
variability between groups (SST) is small relative to variabilitywithin groups (SSE). H0
is false if the variability between groups is large relative to variability within groups.

Analysis of between-group variance and within-group variance leads to test-
statistic

SST
(g−1)
SSE
(N−g)

∼ Fg−1, N−g (7.27)

where g is number of groups (here g = 5), and total number of days N = n1 + n2 + n3 +
n4 + n5 = 1075.

From the rowof unbiased estimates of standard deviations ofMonday returns, etc.
in Table 7.5, we obtain

SSE = 214∗[0.0186462 + 0.0130782 + 0.0126312

+ 0.0130852 + 0.0107292]
= 0.20642.

SST = 0.001362343

Therefore, via Eq. (7.27), F4,1070 = 1.765. This is identical with the F-test statistic
reported in Table 7.7.
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Duffie, Darrell (2001), Dynamic Asset Pricing Theory, Third edition, Princeton University Press.
Ferson, Wayne (2019), Empirical Asset Pricing: Models and Methods, MIT Press.
Thaler, RichardH., editor (2005), Advances in Behavioral Finance, Vol. II, Princeton University Press.
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8 Euler Condition for Asset Pricing
The main areas of finance have had strong linkages to economics, including microe-
conomics, where the foundations of optimal consumer and investor choices are laid.
Many of the economics giants in the late 1800s and well into the last century labored
on mathematical results prescribing optimal consumption and investment choices
building on fundamental axioms of rationality and non-satiability in human wants.
One key construction is that of a utility function of consumption. Amore positive util-
ity number to a bundle of consumption goods than another bundle is simply another
expression for preference by the individual of the former bundle compared to the lat-
ter. A celebrated study by mathematicians von Neumann and Morgenstern1 produces
theuseful result thatwhenprobability estimates are introduced into consumptionout-
comes or utilities, then an individual will prefer a risky gamble to another provided
the expected utility of the former is larger. Therefore, we can perform optimization on
a set of gambles or choices based on expected outcomes of utility functions of con-
sumption goods.

In this chapter, we consider the necessary Euler condition for utility optimization
that leads to asset price modelling. As the theoretical restrictions on the model are
nonlinear, we apply a nonlinear method, the generalized method of moments, for the
estimation and testing of such models. Many interesting results and constructions in
finance theory are exposited in excellent books such asHuang andLitzenberger (1988)
and Ingersoll (1987). Similarly excellent books in macroeconomics but using utility-
based frameworks are Blanchard and Fischer (1989) and Stokey and Lucas (1989).
These classics are shown in the Further Reading list at the end of the chapter. But
before that, we recall some basic convergence results and also motivate the idea of
method of moments in statistics.

Suppose an infinite sequence of random variables {Xn, n ≥ 1} converges in some
manner to being “close” to X. Convergence almost surely, a. s. or almost everywhere
a. e., or w. p. 1 refers to

P( lim
n→∞

Xn = X) = 1

Convergence in Probability or in “P” refers to

lim
n→∞

P(|Xn − X| ≥ ϵ) = 0 for any ϵ > 0

A consistent estimator is a RV that converges in probability to the population parame-
ter. Convergence in Distribution refers toXn

d
→ X where c. d. f. ofXn converges to c. d. f.

of X, i. e.,

1 J. von Neumann andO.Morgenstern (1953), Theory of Games and Economic Behavior, Princeton Uni-
versity Press.

https://doi.org/10.1515/9783110673951-008
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228 | 8 Euler Condition for Asset Pricing

lim
n→∞

FXn (y) = FX(y) for all y where FX(y) is continuous

The continuousmapping theorem2 states that if Xn
p
→ X, then g(Xn)

p
→ g(X) if g(⋅)

is a continuous bounded function in X except for discontinuity on a set of measure
zero. Similarly, if Xn

d
→ X, then g(Xn)

d
→ g(X) if g(⋅) is such a continuous bounded

function in X. This result is useful for the convergence of sample moments to popula-
tion moments.

8.1 Method of Moments

Usually i. i. d. RV’s or else (strong) stationary and ergodic (more distant RV’s in a
stochastic process tends toward independence) bounded RVs are sufficient to enable
the weak Law of Large Numbers (LLN) or convergence in probability of the sample
mean.3With sufficient bounds on themoments of the RV’s, strong LLN or convergence
a. e. can also be obtained for the sample mean. We assume at least the weak LLN.

Suppose Xt is (strongly) stationary ergodic, and g(Xt , θ) is a continuous bounded
function in Xt and θ. Assume E[g(Xt , θ)] = 0 where θ is unique. A Taylor series expan-
sion of g(Xt , θ) about an estimate θ̂ gives

g(Xt , θ) = g(Xt , θ̂) + (θ − θ̂)g
′(Xt , θ̂) +

(θ − θ̂)2

2!
g′′(Xt , θ̂) + ⋅ ⋅ ⋅

Taking sample average,

1
T

T
∑
t=1

g(Xt , θ) =
1
T

T
∑
t=1

g(Xt , θ̂) + (θ − θ̂)
1
T

T
∑
t=1

g′(Xt , θ̂)

+
(θ − θ̂)2

2!
1
T

T
∑
t=1

g′′(Xt , θ̂) + ⋅ ⋅ ⋅

Supposewe let both LHS andRHS equal to zero, anddefine the solution of θ̂ on the
RHS to be associated with the sample size T. By the LLN, the LHS converges in prob-
ability to the mean zero, so we have no problem with putting the LHS to zero for an
asymptotically large sample size T. For the RHS to be zero, we require that for T ↑∞,
θ̂

p
→ θ. Since θ is unique for the mean of g(⋅) to be zero, there is no other value to

which θ̂ converges that will produce a zero RHS. The other possibility is that θ̂ does
not converge as T increases toward∞. But this cannot be true if the LHS converges to

2 See Jun Shao (2003),Mathematical Statistics, Springer.
3 See Kenneth J. Singleton (2006), Empirical Dynamic Asset Pricing, Princeton University Press.
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zero. Note that in effect 1
T ∑

T
t=1 g(Xt , θ̂)

p
→ 0 on the RHS.Hencewe can solve for the esti-

mate θ̂ by putting 1
T ∑

T
t=1 g(Xt , θ̂) = 0. This estimator is amethod ofmoments estimator

and has the property that it is consistent as θ̂
p
→ θ. This result is consistent with the

continuous mapping theorem since for continuous bounded g(⋅), θ̂
p
→ θ if and only

if g(Xt , θ̂)
p
→ g(Xt , θ). The term “method of moments” has also been used in another

related but different context of identifying distributions with unique moments.
In the linear regression, YN×1 = XN×kBk×1 +UN×1 with E(U) = 0. Given the classical

assumptions of U being independent of X or a more relaxed condition of E(U |X) = 0,
we obtain B̂ = (XTX)−1XTY under OLS. This OLS estimator is unbiased. With the other
classical assumption of var(U |X) = σ2uI, the OLS estimator conditional on X is consis-
tent as var(B̂|X) = σ2u(X

TX)−1 is decreasing toward zero as diagonal elements of XTX
increases toward∞ for stationary ergodic X.

Now consider the same regression YN×1 = XN×kBk×1 + UN×1 with E(U) = 0, and
a similar assumption of independence of U from X. The independence assumption
or the weaker E(U |X) = 0 implies E(Xtjut) = 0 for each j = 1, 2, . . . , k and for each
t = 1, 2, . . . ,N .

HenceE(Xtj(yt−∑
k
j=1 bjXtj)) = 0. This last condition is an “orthogonality condition”

that indicates zero correlations between the disturbances and explanatory variables.
The k associated sample moments of the orthogonality conditions are

1
N

N
∑
t=1
(Xtj(yt −

k
∑
j=1

bjXtj))

for j = 1, 2, . . . , k.
Assuming further that yt and Xtj (for every j) are stationary ergodic (over time),

then for each j = 1, 2, . . . , k

1
N

N
∑
t=1
(Xtj(yt −

k
∑
j=1

bjXtj))
p
→ E(Xtj(yt −

k
∑
j=1

bjXtj)) = 0

Notation-wise, since yt, Xtj are stationary, we could have also used y, Xj within the
expectation operator.

The set of k sample moment conditions can also be written in matrix form as:

1
N
(XTY − XTXB)

p
→ 0

By putting 1
N (X

TY − XTXB) = 0, we solve for the method of moments estimator B̂.

B̂ = ( 1
N
XTX)

−1
(
1
N
XTY)

 EBSCOhost - printed on 2/8/2023 6:26 PM via . All use subject to https://www.ebsco.com/terms-of-use
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This happens to be also the OLS estimator, and as we shall see, also the maximum
likelihood estimator when U is multivariate normal.

Another example of the method of moments estimator is as follows. Suppose the
demand for goods at time t is yt . Suppose the demand quantity is given by

yt = d0 + d1Pt + εt

where Pt is price of the goods, and εt is a disturbance term with zero mean and a con-
stant variance. Typically, d0 > 0 and d1 < 0.

The supply quantity is given by

yt = s0 + s1Pt + ηt

where ηt is a disturbance termwith zeromean and a constant variance. Here cov(ηt , εt)
needs not be zero. Typically, s0 > 0 and s1 > 0.

The demand and supply equations can be represented as follows in Figure 8.1.
At each time t, the equilibrium price and quantity (simultaneously determined) are
reached at the intersection point of the demand and supply at t. At the next time t + 1,
new occurrences of random disturbances εt and ηt would produce a different inter-
section point and hence a different equilibrium price and quantity. The equilibrium
price and quantity at each t are observed price and quantity in the market and is rep-
resented by a black dot in the graph. Over time, observed pairs of price and quantity
are represented by the scatter of black dots. It is seen that the black dots scatter does
not indicate possibility for identifying the demand or supply equations.

Figure 8.1: Equilibrium Price and Quantity with Stochastic Demand and Supply.
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If we solve for the equilibriumprice from the demand and supply equations,we obtain

Pt =
(s0 − d0)
(d1 − s1)

+
(ηt − εt)
(d1 − s1)

It is seen that cov(Pt , ηt) = (d1 − s1)−1(var(ηt) − cov(ηt , εt)). This is in general not equal
to zero. Hence it does not make sense to use OLS to perform regression on the supply
equation as the explanatory variable price is correlated with the disturbance term ηt .
The estimation results would not produce unbiased or consistent estimates. The non-
zero correlation implies that price is an endogenous variable (as it also impacts on the
disturbances). The undesirable effects if indeed OLS is performed is called the endo-
geneity bias. It is more specifically a simultaneous equations bias here as it arises out
of a simultaneous system of demand and supply.

However, suppose the demand for goods at time t is now given by

yt = d0 + d1Pt + d2Zt + εt

where Pt is price of the goods, Zt is an exogenous variable to both demand and supply,
and εt is a disturbance termwith zeromean and a constant variance. Typically, d0 > 0
and d1 < 0. The supply equation remains the same. Importantly, cov(Zt , εt) = 0 and
cov(Zt , ηt) = 0. The new demand and supply equations can be represented as follows
in Figure 8.2.

Figure 8.2: Equilibrium Price and Quantity with Stochastic Demand and Supply but Only Demand
Driven by Exogenous Variable X .

Thedifferent levels ofZt at different t (in addition todifferent realizations of random εt)
produce different demand curves (schedules) as shown corresponding to Z1, Z2, Z3.
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232 | 8 Euler Condition for Asset Pricing

Over time, observed pairs of price and quantity are represented by the scatter of black
dots. Due to additional effect of random Zt, it is seen that the black dots now scatter
along the supply curves (shifted only by random ηt). There is now a possibility for
identifying the supply equation, i. e., estimating the supply equation.

The estimation of the supply curve yt = s0+s1Pt +ηt using themethod ofmoments
can proceed as follows. The exogeneity of Zt provides for E(Zt(yt − s0 − s1Pt)) = 0 as
well as E(yt − s0 − s1Pt) = 0. These two moment conditions help to identify s0 and s1
for estimation.

The two associated sample moments of the orthogonality conditions are

1
N

N
∑
t=1

Zt(yt − s0 − s1Pt)

and

1
N

N
∑
t=1
(yt − s0 − s1Pt)

Assuming further that Zt and ηt are stationary ergodic (over time), then these sam-
ple moments converge to zeros at least in probability. The set of two sample moment
conditions can also be written in matrix form as:

1
N
(ZTY − ZTXB)

p
→ 0

whereZN×2 consists of a first columnof ones anda second columnof {Zt},XN×2 consists
of a first column of ones and a second column of {Pt}, and YN×1 consists of a column
of {Yt}. B = (s0, s1)T .

By putting 1
N (Z

TY − ZTXB) = 0, we solve for the method of moments estimator B̂.

B̂ = ( 1
N
ZTX)

−1
(
1
N
ZTY)

This is identical with the instrumental variables (IV) estimator discussed in Chapter 6.
It is consistent.

Another approach in the use of instrument is the two-stage least-squares (2SLS)
method. Suppose the price in the supply curve Pt is explained by an exogenous vari-
able Zt that has zero correlationswith εt and ηt . Instead of using Zt directly as above in
the IV regression, we perform a linear regression of Pt on Zt in the first stage to obtain
fitted P̂t .

In the new set of demand and supply equations, Pt = c0 + c1Zt + ξt where c0 =
(s1 − d1)−1(d0 − s0), c1 = (s1 − d1)−1d2, and ξt = (s1 − d1)−1(εt − ηt). The estimated
P̂t = ĉ0 + ĉ1Zt . Therefore cov(P̂t , ηt) = ĉ1 cov(Zt , ηt) = 0 for any supply residual noise.
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But cov(Pt , P̂t) = cov(c1Zt + ξt , ĉ1Zt) ̸= 0. Hence P̂t is a reasonable instrument in place
of Pt for the second-stage regression in the supply equation: yt = s′o + s

′
1P̂t + η

′
t .
4

So far, using the method of moments we estimate k number of parameters with k
number of samplemoment conditions, so the system is exactly identified. Supposewe
canfindadditionalmoment conditions that fitwith the theory, i. e., thesemoment con-
ditions should also be true if the theory is correct. Then the system is over-identified.
The method of moments can then be generalized to handle this situation. At the same
time, an interesting test statistic can be developed.

8.2 Consumption-Based Asset Pricing

We saw the intertemporal CAPM that is based on optimizing lifetime consumption.
Particularly, the continuous time modeling using Wiener processes as risk innova-
tions makes only the instantaneous means and variances matter in the pricing. This
allows aggregating across individuals and imposing a market portfolio (just as in sin-
gle period CAPMwith either quadratic utility or joint normal distributionmaking only
means and variancesmatter) that allows linear relationship in the expected individual
stock returns. Suppose we use another approach in intertemporal asset pricing with
discrete time and without specifying the form of the returns distributions except that
they have finitemoments. Then it becomes hard to aggregate across individual portfo-
lios and introduce amarket portfolio return directly into the pricing of individual stock
returns. But it is still about the individual investor’s lifetime consumption optimiza-
tion. We refresh this generic pricing approach that can subsume the other approaches
when more stringent utility or distributional assumptions are added.

This approach has the advantage of not having to specify (hence nomis-specifica-
tion) the cdf of the returns distributions, and not having to specify the utility function
U(⋅), except it needs to be bounded, U ′(C) > 0 and U ′′(C) < 0. The approach allows a
nonlinear generalized method of moments (GMM) econometric method to simultane-
ously (both estimates and test statistic are in one outcome) do estimation and testing
of the pricing model. Disadvantages are that we require to assume a single represen-
tative agent and asymptotic instead of finite sample statistical results.

The representative individual decision-maker (agent)maximizes his/her expected
lifetime utility:

max
{Ct ,wt}

E0[
∞
∑
t=0

ρtU(Ct)]

subject to

4 For a more detailed analysis, see Kian Guan Lim (2021), Endogeneity of commodity price in freight
cost models, Journal of Commodity Markets.
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Wt+1 = (Wt − Ct)
N
∑
i=1

wiRi

and

N
∑
i=1

wi = 1, ∀t

where we assume stationary return distribution of all stock returns Ri and Wt is
wealth at time t, with initial condition asW0. U(⋅) is von Neumann-Morgenstern util-
ity function, on consumption Ct, and we can think of a unit of consumption good as
a numéraire or a real dollar. ρ (0 < ρ ≤ 1) is the time discount factor on utility. It
means that a more distant consumption unit will be preferred less than a more recent
consumption unit. wt = (w1,w2, . . . ,wN ) is the vector of allocation weights of stocks in
the portfolio, where N is the number of stocks. Moreover, returns are independent of
consumption decisions, and limt→∞ U(Ct) <∞.

Assuming there is an optimal solution to this dynamic optimization problem, we
can find a functional equation representation as follows. At each t, there exists a value
function Vt(Wt) (we can think of this as an indirect utility function) such that the in-
dividual maximizes:

Vt(Wt) = max
Ct ,wt

U(Ct) + ρEtVt+1(Wt+1) (8.1)

s. t. Wt+1 = (Wt − Ct)
N
∑
i=1

wiRi and
N
∑
i=1

wi = 1 (8.2)

The above Eq. (8.1) is a recursive equation for each t, and is the Bellman equation.
The value function at time t is equal to the utility of optimal consumption at time t
plus the expected value of the discounted optimal value function at time t+ 1. Assume
derivatives of U(⋅) and V(⋅) exist, the individual’s optimization is reduced to a single-
period problem. The first order conditions (FOC) are as follows.

𝜕
𝜕Ct
: U ′(Ct) − ρEt[V

′
t+1(Wt+1)∑

i
wiRi] = 0

⇒ U ′(Ct) = ρEt[V
′
t+1(Wt+1)∑

i
wiRi] (8.3)

𝜕
𝜕wi
: ρEt[V

′
t+1(Wt+1)(Wt − Ct)Ri] − λ = 0

⇒ ρEt[V
′
t+1(Wt+1)Ri] =

λ
Wt − Ct

(8.4)

where λ is the Lagrange multiplier over the portfolio weight constraint in Eq. (8.2)
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If we sum the last equation over all weights wi in Eq. (8.4):

∑
i
wi(ρEt[V

′
t+1(Wt+1)Ri]) = ρEt[V

′
t+1(Wt+1)∑

i
wiRi] =

λ
Wt − Ct

From Eq. (8.3), LHS is U ′(Ct). So,
λ

Wt−Ct
= U ′(Ct). Using Eq. (8.4), we obtain

U ′(Ct) = ρEt[V
′
t+1(Wt+1)Ri] (8.5)

Consider the Bellman Eq. (8.1). On its LHS, function Vt(Wt) is actually an opti-
mized form of Vt(W∗t+1(Ct),Wt) in whichW∗t+1 is maximized givenWt via control on Ct
and portfolio weightswi. We canmake use of the Envelope theorem. We can therefore
take the derivative w. r. t. Wt on the LHS and also a partial derivative on the RHS of
Eq. (8.1) to obtain

V ′t (Wt) = ρEt[V
′
t+1(Wt+1)

𝜕Wt+1
𝜕Wt
] (8.6)

where the RHS is evaluated at optimal Ct and wt . Employing budget constraint in
Eq. (8.2):

V ′t (Wt) = ρEt[V
′
t+1(Wt+1)∑

i
wiRi] (8.7)

Equations (8.3) and (8.7) imply U ′(Ct) = V ′t (Wt), noting the derivatives are w. r. t.
Ct on the LHS and Wt on the RHS. Thus also, U ′(Ct+1) = V ′t+1(Wt+1). This means the
marginal utility of consuming one real dollar less at time t or marginal cost is equated
to the marginal benefit or expectedmarginal utility from investing one real dollar and
consuming later.

Substitute U ′(Ct+1) for V ′t+1(Wt+1) in Eq. (8.5) to obtain

U ′(Ct) = ρEt[U
′(Ct+1)Ri] (8.8)

Putting Ri =
Pit+1
Pit

where Pit is stock i’s price at time t, then

PitU
′(Ct) = ρEt[U

′(Ct+1)P
i
t+1]

The last equation is called the stochastic Euler equation, and is a necessary but
not sufficient condition for any solution to a rational asset pricing equilibrium. This
necessary condition is a heavily tested condition in much of empirical asset pricing
literature.

We may write the stochastic Euler Eq. (8.8) as

Et[Mt+1Rt+1] = 1 (8.9)
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whereMt+1 = ρ
U ′(Ct+1)
U ′(Ct)

is sometimes called theprice kernel or stochastic discount factor
(as it discounts the future stock price to the current price), and letting Rt+1 denote the
return to any traded security at time t + 1.

The (stochastic) Euler Eq. (8.8) then implies

E(Rt+1)E(Mt+1) + cov(Mt+1,Rt+1) = 1

As the risk-free asset with return Rf also satisfies Eq. (8.9), then

RfE(Mt+1) = 1, or E(Mt+1) = 1/Rf

Hence

E(Rt+1) − Rf = −cov(Mt+1,Rt+1)/E(Mt+1) (8.10)

or

E(Rt+1) = Rf +
cov(−Mt+1,Rt+1)

var(Mt+1)
×
var(Mt+1)
E(Mt+1)

(8.11)

If we define βC =
cov(−Mt+1 ,Rt+1)

var(Mt+1)
, and λM =

var(Mt+1)
E(Mt+1)

in Eq. (8.11), then λM behaves as a
market premium (> 0) or the price of common risk to all assets, and βC is a consump-
tion beta specific to the asset with return Rt+1.

The intuition of the consumptionbeta, βC is as follows. Suppose the asset’s βC > 0,
and thus its return Rt+1 correlates positively with −Mt+1. In turn, this implies a positive
correlation between Rt+1 and Ct+1 since U ′′(Ct+1) < 0. Holding the asset in a portfolio
thus adds to the consumption volatility. Since consumption life-cycle theory suggests
consumption smoothing (less consumption volatility) as desirable for a risk-averse
individual over his/her lifetime, adding to consumption volatility would require risk
compensation in the form of higher expected returns for the asset. This is indeed the
case as λM > 0.

Equation (8.10) can be re-written as

E(Rt+1) − Rf = −ρMRσMσR/E(Mt+1)

where ρMR is the correlation coefficient betweenMt+1 and Rt+1, and σM , σR denote the
respective standard deviations. Then

E(Rt+1 − Rf )
σR

= −ρMR
σM

E(Mt+1)
≤

σM
E(Mt+1)

= RfσM (8.12)

In Eq. (8.12), the LHS is the Sharpe ratio or performance of any stock (including
themarket index) showing its equity premium (or excess return over risk-free rate) di-
videdby its return volatility. TheRHS is called theHansen–Jagannathanbound,which
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provides a theoretical upper bound to the Sharpe ratio or to the equity premium. (Re-
call thatM here refers to the price kernel or stochastic discount factor, and should not
be confused with the market return that also typically uses this notation.) One inter-
esting research agenda in finance is to account for why post World War II U. S. equity
premiums have been observed to be too high and have exceeded empirical measures
of volatility of the stochastic discount factor times risk-free return (factor).

There had been many years in post World War II period when the annual market
Sharpe ratio is well above one but that the volatility of SDF is about 0.8 and risk-free
return is about 1.03. This means that there were many post WorldWar II periods when
the Hansen–Jagannathan rational bound did not hold. This implies too high a volatil-
ity in the per capita consumption on the RHS in order to keep the bound, or else an
unexplained high equity premium puzzle on the LHS. The latter implies an extremely
high investor risk aversion. This high equity premium puzzle is still an ongoing area
of research.

8.3 Generalized Method of Moments (GMM)

The GMM econometric method5 to perform estimation of parameters and to test the
plausibility of a model is based on expectations or moment conditions derived from
the theoretical model itself. Assume a stationary stochastic process {Xt}t=1,2,... where
Xt is vector of random variables at time t. Hence, {Xt} is a stochastic vector process.
Supposewehave a finite sample from this stochastic vector process as {x1, x2, . . . , xT } of
sample size T, where each xt is a vector of realized values at t that are observable. The
subscript t need not be time, and could be in more general context such as sampling
across sections at a point in time.

The model is derived based on a set of K number of moment conditions:

E[f1(Xt , θ)] = 0
E[f2(Xt , θ)] = 0

...
E[fK(Xt , θ)] = 0

(8.13)

where fj(.) is in general a continuous function with discontinuities, if any, on a set of
measure zero, and θ is an m dimension unique vector of unknown parameters with
m < K. The powerful use of this method arises in cases when fj(.) is nonlinear in Xt
and θ, so that linear regression methods cannot be applied.

5 TheGMMisdevelopedbyHansen, L. P. (1982), Large sampleproperties of generalizedmethodofmo-
ments estimators, Econometrica, 50, 1029–1054.
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The essential idea in deriving an estimate of θ lies in finding a vector θ̂ such that
the corresponding sample (empirical) moments are close to zero in some fashion, for
finite T.

1
T

T
∑
t=1

f1(xt , θ̂) ≈ 0

1
T

T
∑
t=1

f2(xt , θ̂) ≈ 0

...

1
T

T
∑
t=1

fK(xt , θ̂) ≈ 0

(8.14)

The Law of Large Numbers would tell us that as T ↑∞, these sample moments would
converge to

E[fj(Xt , θ̂)]

for all j = 1, 2, . . . ,K. Hence, if these conditions are approximately zero, then intuitively
the vector estimator θ̂would also be close to θ in some fashion, given that θ is unique.
We would also assume some regularity conditions on the moments E[fj(.)] such that
E[fj(θ̂)] would behave smoothly and not jump about infinitely often (i. o.) as value θ̂
gets closer and closer to θ. This would ensure θ̂

p
→ θ.

Let all the observable values of sample size T be YT ≡ {x1, x2, . . . , xT }. Let

g(YT , θ̂) ≡(

1
T ∑

T
t=1 f1(xt , θ̂)

1
T ∑

T
t=1 f2(xt , θ̂)...

1
T ∑

T
t=1 fK(xt , θ̂)

)

be a K × 1 vector of sampling moments. Suppose WT is a K × K symmetric positive
definite weighting matrix which may be a function of data YT . The GMM estimator is
found by minimising the scalar function:

min
θ̂

Γ(θ̂) ≡ g(YT , θ̂)
TWT (YT , θ)g(YT , θ̂) (8.15)

Note that if WT (. , .) is any arbitrary symmetric positive definite matrix, then estima-
tors θ̂ will still be consistent though not efficient. However, given some regularity
smoothness conditions about the function fi(. , .), an optimal weighting matrix func-
tionWT (. , .) can be found so that the estimators θ̂ will be asymptotically efficient, or
have the lowest asymptotic covariance in the class of estimators θ̂ satisfying Eq. (8.15)
for arbitraryWT (. , .).
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Let vector function FK×1(Xt , θ) = (f1(Xt , θ), f2(Xt , θ), . . . , fK(Xt , θ))T . Then,

g(YT , θ) =
1
T

T
∑
t=1

F(xt , θ)

Let Σ0 = ∑
N
j=−N E[F(Xt , θ)F(Xt−j, θ)

T ] be a K × K covariance matrix that is the sum
of contemporaneous covariance matrix E[F(Xt , θ)F(Xt , θ)T ] and 2N number of serial
covariance matrices E[F(Xt , θ)F(Xt−j, θ)T ].

It is assumed that beyond a fixed N leads and lags, the covariance matrix E[F(Xt ,
θ)F(Xt−j, θ)T ] = 0 for |j| ≥ N + 1. Assume Σ0 exists and has full rank K.

Note that the covariance matrix of random vector g(YT , θ) = T−1Σ0 for an asymp-
totically large T. By the Central Limit Theorem, as T ↑∞, Tg(YT , θ)TΣ−10 g(YT , θ)→ χ2k .

The minimization of Eq. (8.15) gives first-order condition:

2𝜕g(YT , θ̂)
T

𝜕θ̂
WT (YT , θ)g(YT , θ̂) = 0m×1

conditional onagivenweightingmatrixWT (YT , θ). In principle, the abovem equations
in the vector equation can be solved, i. e.,

𝜕g(YT , θ̂)T

𝜕θ̂
WT (YT , θ)g(YT , θ̂) = 0m×1 (8.16)

to obtain them estimates inm × 1 vector θ̂. In this first step,WT (YT , θ) can be initially
selected as IK×K The solution θ̂1 is consistent but not efficient. The consistent estimates
θ̂1 in this first step are then employed to find the optimal weighting matrixW∗T (YT , θ̂1).

Let g′(YT , θ̂1) =
1
T ∑

T
t=1
𝜕F(xt ,θ̂1)
𝜕θ . Let a consistent estimator of Σ0 be, for T much

larger than N:

Σ̂0(θ̂1) =
1
T

T
∑
t=1

F(Xt , θ̂1)F(Xt , θ̂1)
T

+
N
∑
j=1
(
1
T

T
∑
t=j+1

F(Xt , θ̂1)F(Xt−j, θ̂1)
T)

+
N
∑
j=1
(
1
T

T−j
∑
t=1

F(Xt , θ̂1)F(Xt+j, θ̂1)
T)

T

(8.17)

Then employ W∗T = Σ̂0(θ̂1)
−1 as the optimal weighting matrix in Eq. (8.15) and mini-

mize the function again in the second step to obtain the efficient and consistent GMM
estimator θ̂∗.

The minimized function in Eq. (8.15) is now

ΓT(θ̂
∗) ≡ g(YT , θ̂

∗)
T Σ̂0(θ̂1)

−1g(YT , θ̂
∗)
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where the first-order condition below is satisfied:

𝜕g(YT , θ̂∗)T

𝜕θ̂
Σ̂0(θ̂1)

−1g(YT , θ̂
∗) = 0m×1 (8.18)

As T ↑∞, θ̂1, θ̂∗ → θ, Σ̂0(θ̂1)→ Σ0, and

TΓT(θ̂
∗) ≡ Tg(YT , θ̂

∗)
T Σ̂0(θ̂1)

−1g(YT , θ̂
∗)→ χ2K−m (8.19)

Sometimes the LHS is called the J-statistic, JT ≡ TΓT . Notice that this test statistic is
asymptotically chi-square of K −m degrees of freedom and not K degrees of freedom
when the population parameter θ is in the arguments instead. This is because m de-
grees of freedom were taken up in m linear dependencies created in Eq. (8.19) in the
solution for θ̂∗. Equation (8.19) also indicates that a test is only possible when K > m,
i. e., the number of moment conditions or restrictions is greater than the number of
parameters to be estimated.

We can always create additional moment conditions by using instruments. One
common instrument is lagged variables contained in the information set at t. If the
moment conditions such as those in Eq. (8.13) are generated by conditional moments
such as Eq. (8.9), then it is easy to enter the information variables observed at t into
the expectation operator in Eq. (8.9), and then take iterated expectation on the null
set to arrive at the unconditional moments such as in Eq. (8.13).

For example, a theoretical model may prescribe Et−1[f1(Xt , θ)] = 0 as a conditional
expectation. By the iterated expectation theorem, this leads to moment restrictions
in Eq. (8.13). Since Xt−1 is observed at t − 1, we can add it as an instrument to obtain
Et−1[f1(Xt , θ)Xt−1] = 0, hence another moment restriction E[f1(Xt , θ)Xt−1] = 0. We may
say vector f1(Xt , θ) is orthogonal to Xt−1 for any realization of Xt−1. Thus, such moment
restrictions are sometimes also called orthogonality conditions. The excess number
of moment conditions over the number of parameters is called the number of overi-
dentifying restrictions, and is the number of degrees of freedom of the asymptotic χ2

test.
Now, g(θ̂∗) = g(θ) + 𝜕g(θ̃)𝜕θT (θ̂

∗ − θ) by a linear Taylor series expansion (mean-value
theorem) about the true population parameter θ, where θ̃ is some linear combination
of θ and θ̂∗. θ̃ is also consistent.

Pre-multiplying by them × K matrix, 𝜕g(YT ,θ̂
∗)T

𝜕θ̂
Σ̂−10 , we obtain

𝜕g(YT , θ̂∗)T

𝜕θ̂
Σ̂−10 [g(θ̂

∗) − g(θ)] = 𝜕g(YT , θ̂
∗)T

𝜕θ̂
Σ̂−10
𝜕g(θ̃)
𝜕θT
(θ̂∗ − θ)

Then

[
𝜕g(YT , θ̂∗)T

𝜕θ̂
Σ̂−10
𝜕g(θ̃)
𝜕θT
]
−1 𝜕g(YT , θ̂∗)T

𝜕θ̂
Σ̂−10 [g(θ̂

∗) − g(θ)] = (θ̂∗ − θ)
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Thus,

√T(θ̂∗ − θ) = [𝜕g(YT , θ̂
∗)T

𝜕θ̂
Σ̂−10
𝜕g(θ̃)
𝜕θT
]
−1 𝜕g(YT , θ̂∗)T

𝜕θ̂
Σ̂−10 √T[g(θ̂

∗) − g(θ)]

= [
𝜕g(YT , θ̂∗)T

𝜕θ̂
Σ̂−10
𝜕g(θ̃)
𝜕θT
]
−1 𝜕g(YT , θ̂∗)T

𝜕θ̂
Σ̂−10 √T[−g(θ)]

where we employ Eq. (8.18), 𝜕g(YT ,θ̂
∗)T

𝜕θ̂
Σ̂0(θ̂1)−1g(YT , θ̂∗) = 0m×1, as Σ̂0(θ̂1) → Σ0. Hence

we see that the variance of the estimator θ̂∗ is smallest, hence higher efficiency, with-
out additional noise created by the estimator itself.

Since√T[−g(θ)] ∼ N(0, Σ0), then

cov√T(θ̂∗ − θ)

= cov{[𝜕g(YT , θ̂
∗)T

𝜕θ̂
Σ̂−10
𝜕g(θ̃)
𝜕θT
]
−1 𝜕g(YT , θ̂∗)T

𝜕θ̂
Σ̂−10 √T[−g(θ)]}

= V 𝜕g(YT , θ̂
∗)T

𝜕θ̂
Σ̂−10 Σ0Σ̂

−1
0
𝜕g(YT , θ̂∗)
𝜕θ̂T

VT

= V

where V = [ 𝜕g(YT ,θ̂
∗)T

𝜕θ̂
Σ̂−10
𝜕g( ̂θ∗)
𝜕θT ]
−1 is an m × mmatrix. We replace θ̃ with θ̂∗ as they are

asymptotically equivalent.
Hence asymptotically,

√T(θ̂∗ − θ) d→ N(0,V) (8.20)

where V = [ 𝜕g(YT ,θ̂
∗)T

𝜕θ̂
Σ̂−10
𝜕g(θ̂∗)
𝜕θT ]
−1.

Equation (8.19) is the test statistic measuring the sampling moment deviations
from the means imposed by the theoretical restrictions in Eq. (8.13). If the test statis-
tic is too large and exceeds the critical boundaries of the chi-square random variable,
then the moment conditions of Eq. (8.13) and thus the theoretical restrictions would
be rejected. Equation (8.20) provides the asymptotic standard errors of the GMM esti-
mator θ̂∗ that can be utilized to infer if the estimates are statistically significant, e. g.,
from a null of θ = 0, given a certain significance level.

In estimating Σ0 in Eq. (8.17), the estimator Σ̂0(θ̂1) is consistent. However, in fi-
nite sample, this computed matrix may not be positive semi-definite. This may result
in Eq. (8.19) being negative. Newey-West HACC (heteroskedastic and autocorrelation
consistent covariance) matrix estimator6 provides for a positive semi-definite covari-
ance estimator of Σ0 that can be used. This takes the form

6 See W. K. Newey and K. D. West (1987), A simple, positive semi-definite, heteroskedasticity and au-
tocorrelation consistent covariance matrix, Econometrica, 55(3), 703–708.
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Σ̂0(θ̂1) =
1
T

T
∑
t=1

F(Xt , θ̂1)F(Xt , θ̂1)
T +

N
∑
j=1
(1 − j

N + 1
)(Ω̂j + Ω̂

T
j )

where

Ω̂j = (
1
T

T
∑
t=j+1

F(Xt , θ̂1)F(Xt−j, θ̂1)
T)

8.4 Estimating Preference Parameters in Euler Equation
Hansen and Singleton tested the Euler condition in Eq. (8.8), viz.

Et[ρ(Rt+1)
U ′(Ct+1)
U ′(Ct)
] = 1

where Rt+1 = Pt+1/Pt is the return over [t, t + 1].
The utility function is assumed to be a power function U(Ct)=C

γ
t /γ for γ < 1. The

risk aversion coefficient is 1 − γ > 0. This utility function is also called the Constant
Relative Risk Aversion Utility function as its relative risk aversion parameter −Ct ×
U ′′(Ct)/U ′(Ct) = 1 − γ, is a constant. Suppose the S&P 500 index return is used as a
proxy for themarket value-weighted return. Let this beRt+1. Then the Euler equation is:

Et[ρRt+1Q
γ−1
t+1 ] = 1 (8.21)

where Qt+1 ≡ Ct+1/Ct is the per capita consumption ratio, as U ′(Ct) ≡ γCγ−1t . Since
there are two parameters, ρ and γ, to be estimated, we require at least three mo-
ment restrictions. This will yield one overidentifying restriction. We could employ the
lagged values of Rt ’s or Qt ’s as instruments. Here, we form three moment restrictions:
(a) E[ρRt+1Qδ

t+1 − 1] = 0,
(b) E[ρRt+1RtQδ

t+1 − Rt] = 0,
(c) E[ρRt+1Rt−1Qδ

t+1 − Rt−1] = 0

where we let δ = γ − 1 < 0 when risk aversion is positive.
Using the GMM method discussed in the previous section, the GMM estimation

and test statistics are shown as follows. The quarterly consumption data from 2000 to
2009 used in the analysis are obtained from the public website of the Bureau of Eco-
nomic Analysis of the U. S. Department of Commerce. In particular the real durable
consumption series is divided by population to obtain the per capita durable con-
sumption. Qt measures the quarterly per capita consumption growth.

From Table 8.1, it is seen that the time discount factor estimate ρ̂ is 0.998. The
relative risk aversion coefficient estimate is 1 − γ = −δ = 1.3615. Both are significantly
different from zero at p-values of less than 2%. The J-statistic that is distributed as χ2

with one degree of freedom is 4.12 with a p-value of 0.0425. Therefore, the moment
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Table 8.1: GMM Test of the Euler Equation under Constant Relative Risk Aversion. 37 quarterly ob-
servations are used. 2000–2009. Standard errors and covariance are estimated using Newey-West
HACC. Convergence is obtained after 13 iterations. Instruments are one-period are two-period lagged
market returns.

Coefficient Std. Error t-Statistic Prob.

ρ̂ 0.9980 0.0236 42.30 0.0000
δ̂ −1.3615 0.5149 −2.64 0.0122
Mean dependent var 0.000000 S. D. dependent var 0.000000
S. E. of regression 0.091516 Sum squared resid 0.293129
Durbin-Watson stat 1.897556 J-statistic 4.115583
Instrument rank 3 Prob(J-statistic) 0.042490

restrictions (a), (b), and (c) implied by the model and rational expectations are not
rejected at the 1% significance level, though it would be rejected at the 5% level. The
result is broadly similar to those reported in Hansen and Singleton (1982).7 In this
GMM estimation, the covariance matrix of the sampling moments is estimated using
the Newey-West HACC matrix estimator with six lags.

Another test of Eq. (8.21) is based on Brown and Gibbons (1985).8 The Brown and
Gibbons study employed an assumption9 that aggregate consumption each period is
a constant fraction of aggregate wealth, i. e., Ct = kWt where Wt is aggregate wealth
of all individuals in the market.

Then, Ct = kWt = k[(Wt−1 − kWt−1)(1 + rmt)] = (1 − k)Ct−1(1 + rmt) where rmt is the
market portfolio return rate over [t − 1, t]. Therefore, Ct/Ct−1 = (1 − k)(1 + rmt). We can
now express Eq. (8.21) as:

Et−1[ρ(1 + rt)(1 − k)
γ−1(1 + rmt)

γ−1] = 1 (8.22)

where rt is the return rate of any stock or portfolio (investable asset) over [t − 1, t] that
includes the market portfolio and the risk-free asset with return rate rft .

Using the market portfolio and risk-free asset in Eq. (8.22), we derive

Et−1[(1 + rmt)
γ] = ρ−1(1 − k)1−γ = Et−1[(1 + rmt)

γ−1(1 + rft)]

Since a one period treasury bill with maturity at t has a market price at t − 1, the risk-
free rate rft over [t−1, t] is known at t−1, i. e., rft, unlike other risky asset returns rt, is in
the information set at t−1, then dividing the equations by (1+ rft)γ gives the following.

7 L. P. Hansen and K. Singleton (1982), Generalized instrumental variables estimation of nonlinear
rational expectations models, Econometrica, 50(5), 1269–1286.
8 D. P. Brown andM. R. Gibbons (1985), A simple econometric approach for utility-based asset pricing
models, The Journal of Finance, Vol. 40(2), 359–381.
9 Theoretical justification for this can be found in Hakansson N. (1970), Optimal investment and con-
sumption under risk for a class of utility functions, Econometrica 38, 587–607.
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Et−1[(Xt − 1)X
γ−1
t ] = 0 (8.23)

where Xt = (1 + rmt)/(1 + rft), assuming Xt is stationary ergodic.
Equation (8.23) yields the orthogonality or moment condition E[(Xt − 1)X

γ−1
t ] = 0

which is testable. Directly using the moment condition and the GMM has the advan-
tage of avoiding distributional mis-specification. It also avoids the need to account for
short-term autocorrelation problems if least squares regressions are used (although
we require some form of ergodicity to ensure that sample moments converge).

The sample moment corresponding to Eq. (8.23) is

1
T

T
∑
t=1
(Xt − 1)X

γ−1
t = 0

for asymptotically large sample size T, and relative risk aversion parameter 1 − γ > 0.
More recent development in the consumption asset pricing has also involved fre-

quency domain econometrics whereby consumption growth can be decomposed into
cyclical components with different levels of persistence.10

8.5 Other GMM Applications

There is a copious amount of GMM applications. We look at one here whereby a
seemingly simple linear regression specification of the Kraus-Litzenberger (1976)
three-moment asset pricing model.11

Using Taylor series expansion, a representative agent’s VM utility function can be
expanded as:

U(W) = U(W) + (W −W)U ′(W) + 1
2!
(W −W)2U ′′(W)

+
1
3!
(W −W)3U ′′′(W) + o(W −W)

whereW = E(W). Taking expectations on both sides:

E[U(W)] = U(W) + 1
2!
σ2WU
′′(W) + 1

3!
m3
WU
′′′(W) + o(W) (8.24)

where σ2W = E[(W −W)
2] andm3

W = E[(W −W)
3] are the variance and the third central

moment of end-of-period wealth.

10 See F. Ortu, A. Tamoni, and C. Tebaldi (2013), Long-run risk and the persistence of consumption
shocks, Review of Financial Studies, 26(11), 2876–2915, and R. Bansal and A. Yaron (2004), Risks for
the long run: A potential resolution of asset pricing puzzles, The Journal of Finance 59(4), 1481–1509.
11 See A. Kraus and R.H. Litzenberger (1976), Skewness preference and the valuation of risk assets,
The Journal of Finance, 31, 1085–1100.

 EBSCOhost - printed on 2/8/2023 6:26 PM via . All use subject to https://www.ebsco.com/terms-of-use



8.5 Other GMM Applications | 245

Thesemoments canbederivedmore explicitly as follows. Summation algebras are
used as these are explicitly clearer in the case of higher moments. Let original or start-
ing wealth beW0 and suppose optimal decision is made whereby dollar allocations of
this wealth to the one-period investments areWi in risky asset i (for i = 1, 2, . . . ,N) with
risky return Ri (1 + return rate) and Wf in the risk-free asset with risk-free return Rf .
Thus dollar investment in risky asset i isWi = wi(W0−Wf )wherewi is fraction invested
in the risky asset i, with ∑Ni=1 wi = 1.W0 = ∑

N
i=1Wi +Wf .

Therefore,

W =
N
∑
i=1

WiRi +WfRf = (W0 −Wf )
N
∑
i=1

wiRi +WfRf (8.25)

σW = (W0 −Wf )(
N
∑
i=1

N
∑
j=1

wiwjσij)
1/2

(8.26)

mW = (W0 −Wf )(
N
∑
i=1

N
∑
j=1

N
∑
k=1

wiwjwkmijk)

1/3

(8.27)

where Ri = E(Ri), σij = cov(Ri,Rj), andmijk = E[(Ri − Ri)(Rj − Rj)(Rk − Rk)].
Equations (8.25), (8.26), (8.27) can be re-formulated as the following.

W =
N
∑
i=1

qiRi +WfRf (8.28)

σW = (W0 −Wf )
N
∑
i=1

wi(
N
∑
j=1

wjσij)/σM

=
N
∑
i=1

qiσiM/σM =
N
∑
i=1

qiβiσM (8.29)

mW = (W0 −Wf )(
N
∑
i=1

wi

N
∑
j=1

N
∑
k=1

wjwkmijk)/m
2
M

=
N
∑
i=1

qimiMM/m
2
W =

N
∑
i=1

qiγimW (8.30)

where qi = (W0−Wf )wi,σM = (∑
N
i=1∑

N
j=1 wiwjσij)

1
2 ,σiM = cov(Ri,RM)= cov(Ri,∑

N
j=1 wjRj),

βi = σiM/σ2M , miMM = ∑
N
j=1∑

N
k=1 wjwkmijk, mM = (∑

N
i=1∑

N
j=1∑

N
k=1 wiwjwkmijk)

1
3 , and γi =

miMM/m3
W .

Using the idea of a representative agent (hence market demand and supply are
simple constant multiples of the representative agent’s demand and supply or allo-
cations), we can think of the market portfolio return as RM = ∑

N
j=1 wjRj (aggregate

portfolio of all the risky assets), andmiMM = E((Ri −Ri)(RM −RM)2). The latter divided
by the third central moment of market portfolio return, m3

M , is called co-skewness
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measure, γi, between return Ri and the market return. If this term is positively large
when the market return skewness (third central moment divided by cube of standard
deviation) is positive, it means that at times when the market return RM has large
moves, the stock return tends to be positive. This stock therefore is a good hedge
against a volatile market and is considered a safer stock. Hence it would fetch a lower
risk-adjusted return. On the other hand, when market return tends to be volatile and
the stock return is negative, then this negative co-skewness needs to be compensated
by a higher expected return.

From Eq. (8.24), it is seen that VM expected utility is a function Φ of W , σW ,
andmW , ignoring the smaller terms in o(W). The partial derivatives of Φ with respect
toW , σW , andmW are respectively ΦW > 0, ΦσW < 0, and ΦmW

> 0. The signs are pos-
tulated based on the agent’s preference for more wealth, less risk, and more positive
skewness, everything else being equal.

Then the representative agent would maximize (single-period) expected utility as
follows.

max
qi ,Wf ,λ

Φ(W , σW ,mW ) + λ(W0 −
N
∑
i=1

qi −Wf)

whereW0 is starting dollar amount of wealth and λ is the Lagrange multiplier.
Taking FOCs with respect to qi for every i = 1, 2, . . . ,N:

ΦW
𝜕W
𝜕qi
+ΦσW
𝜕σW
𝜕qi
+ΦmW

𝜕mW
𝜕qi
− λ = 0

and the FOC w. r. t.Wf is

ΦW
𝜕W
𝜕Wf
− λ = 0

The wealth constraint (partial derivative w. r. t. λ) is:

N
∑
i=1

qi +Wf = W0

Using Eqs. (8.28), (8.29), (8.30), we obtain 𝜕W𝜕qi = Ri,
𝜕σW
𝜕qi
= βiσM ,

𝜕mW
𝜕qi
= γimM , and

𝜕W
𝜕Wf
= Rf .
Solving the above three sets of first order equations for all i (noting that the second

order conditions indicate maximum is obtained),

Ri − Rf = −
ΦσW
ΦW

βiσM −
ΦmW

ΦW
γimM (8.31)
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Now, ΦσW
ΦW
< 0 since the numerator is negative and the denominator is positive. Also,

dW
dσW
|Φ,mW
> 0, i. e., when we keep Φ,mW constant. Hence −ΦσW

ΦW
= dW

dσW
|Φ,mW

. We shall

write the latter in short-form: 𝜕W𝜕σW > 0, which is the agent’s marginal rate of substitu-

tion between expected end-period wealth and the standard deviation. Also, ΦmW
ΦW
> 0

since both the numerator and the denominator are positive. dW
dmW
|Φ,σM < 0, i. e., when

we keep Φ, σM constant. Hence −ΦmW
ΦW
= dW

dmW
|Φ,σM . We shall write the latter in short-

form: 𝜕W𝜕mW
< 0, which is the agent’s marginal rate of substitution between expected

end-periodwealth and the cube-root of the third centralmoment of end-periodwealth.
Therefore, Eq. (8.31) can be re-expressed as

Ri − Rf =
𝜕W
𝜕σW

βiσM +
𝜕W
𝜕mW

γimM (8.32)

Equation (8.32) should also hold for the market portfolio where βM = 1 and γM = 1,
hence RM − Rf =

𝜕W
𝜕σM

σM +
𝜕W
𝜕mM

mW .

The twomarginal rates of substitution 𝜕W𝜕σW and 𝜕W𝜕mW
can be reduced to one param-

eter ϕ = − 𝜕W𝜕σW /
𝜕W
𝜕mW
> 0. Note that ϕ is different from −dmW /dσM .

Dividing Eq. (8.32) on both sides by 𝜕W𝜕mW
, we obtain the following.

(
𝜕W
𝜕mW
)
−1
(Ri − Rf ) = −ϕβiσM + γimM

(
𝜕W
𝜕mW
)
−1
(RM − Rf ) = −ϕσM +mM

Now, dividing the first equation by the second, we obtain:

(Ri − Rf ) = (
−ϕσM
−ϕσM +mM

βi +
mM

−ϕσM +mM
γi)(RM − Rf )

Hence,

E(Ri − Rf ) = βi(
ϕσM

ϕσM −mM
E(RM − Rf ))

− γi(
mM

ϕσM −mM
E(RM − Rf )) (8.33)

can be rigorously tested for its full implications using the GMM.12

12 Kian Guan Lim (1989), A new test of the three-moment capital asset pricing model, Journal of Fi-
nancial and Quantitative Analysis, 24 (2), 205–216, is one of the earliest to employ a full test of the
moment implications of such skewness models.
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An interpretation of Eq. (8.33) is that since ϕσM
ϕσM−mM

> 0 ifmW is not too positively
large, higher stock βi leads to higher risk-adjusted expected return (assuming E(RM −
Rf ) > 0). When mW = 0 as in a multivariate normal stock return distribution, then
we obtain the Sharpe-Lintner CAPM. For the second term on the RHS, if market return
has positive skewness, i. e.mW > 0 but is not too large so that

mM
ϕσM−mM

E(RM − Rf ) > 0,
then higher positive co-skewness γi in a stock returnwould reduce the expected return
since it is considered a safer stock.13

Let ri’s and rM be the ith asset’s excess return and the market excess return rates.
μM , σ2M , and m3

M are the mean, variance, and the third central moment of the excess
market return. Note that these moments are also those of market return since the risk-
free return is treated as a constant for the single period.

βi is the usual stock i’s market beta, σiM/σ2M . This provides a moment condition
given by cov(ri, rM) − βi var(rM) = 0. γi is stock i return’s co-skewness with the market
return, E[(Ri − E(Ri))(RM − E(RM))2]/m3

M which is equivalent to E[(ri − E(ri))(rM −
E(rM))2]/m3

M . This provides another moment condition given by E[ri(rM − μM)2] −
E(ri)σ2M − γim

3
M = 0.

The full set of moment specifications in testing the three-moment CAPM, with-
out specifying distributional assumptions (except existence and boundedness of the
moments), is as follows.

E(ri − [
ϕσM

ϕσM −mM
βi −

mM
ϕσM −mM

γi]rM) = 0, ∀i = 1, 2, . . . ,N

E(rirM − μMri − βi[r
2
M − μMrM]) = 0, ∀i = 1, 2, . . . ,N

E(rir
2
M − 2μMrirM + [μ

2
M − σ

2
M]ri − γi[rM − μM]

3) = 0, ∀i = 1, 2, . . . ,N

and

E(rM − μM) = 0,
E([rM − μM]

2 − σ2M) = 0,
E([rM − μM]

3 −m3
M) = 0

There are thus 3N + 3 orthogonality conditions with 2N + 4 parameters (β1, β2, . . . ,
βN , γ1, γ2, . . . , γN , μM , σM ,mM ,ϕ) to be estimated. There areN −1 overidentifying restric-
tions providing a χ2N−1 test of the model.

Since 1982, the GMM technique has been one of the most widely applied meth-
ods for empirical estimation and testing especially of nonlinear rational expectations
models inmany fields of economics and finance. This attests to its usefulness inmany

13 Campbell R. Harvey and A. Siddique (2000), Conditional skewness in asset pricing tests, The Jour-
nal of Finance, 55(3), 1263–1296, also showed that systematic conditional coskewness in stocks is
priced with a negative risk premium in cross-sectional regressions.
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situations when low-order (short-term) serial correlations or lack of distributional in-
formation hampers empirical investigation. However, its drawback is its reliance on
asymptotic theory. Many Monte Carlo and econometric studies had arisen to investi-
gate how inference under the GMM test can be improved in small sample settings.
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9 Maximum Likelihood Methods

In this chapter, we discuss anothermajormethod of estimation and testing in the pres-
ence of explicit distributional assumption – that of the maximum likelihood method.
Thenwe consider a very important application, that of generalized autoregressive con-
ditional heteroskedasticity processes.

9.1 Introduction

Consider a Poisson (discrete) distribution with probability mass function

f (xt ; λ) =
e−λλxt
xt !

where xt ≥ 0 is the number of events occurring each time period [t, t + 1). The RVs xt ’s
are independent across time periods. The average number of events each time period
is characterized by unknown parameter λ. λ = E(xt) = var(xt).

Suppose over T periods, observed xt ’s are x = {x1, x2, . . . , xT }. The likelihood func-
tion of the (observed) sample (or joint probability mass function) is

f (x; λ) =
T
∏
t=1

f (xt ; λ) =
e−Tλλ∑

T
t=1 xt

∏Tt=1 xt !

The question is: what is the value of λ that would make this sample most likely?
The value of λ that maximizes this joint probability is called the Maximum Likelihood
Estimator.

It is like estimating dummy parameter (1 if more balls are blue, 0 otherwise) when
out of 20 draws from an urn, 15 are blue. Selecting parameter value = 1 is intuitive as
it is consistent with what has been observed.

The log likelihood function of the sample is

ln L(λ) = ln
T
∏
t=1

f (xt ; λ) = −Tλ + (
T
∑
t=1

xt) ln λ −
T
∑
t=1

ln(xt !)

First order condition d ln L
dλ : −T + 1

λ (∑
T
t=1 xt) = 0. Hence λ̂ML =

∑Tt=1 xt
T . d ln Ldλ = 0 is called

the likelihood equation. Second order condition d2 ln L
dλ2 = −

∑Tt=1 xt
λ2 < 0 (supposing at

least one of the xt ’s > 0). The SOC ensures the log likelihood function is maximized.
As another example, consider the MLE of independent sampling of size T from a

normal distribution of xt ∼ N(μ, σ2). The joint probability density function of observ-
ing the i. i. d. xt ’s or the likelihood function is

https://doi.org/10.1515/9783110673951-009
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T
∏
t=1

1
√2πσ2

e−
1
2 (

xt−μ
σ )

2

The log likelihood function is

ln L(μ, σ2) = −T
2
ln(2π) − T

2
ln σ2 − 1

2

T
∑
t=1
(
xt − μ
σ
)
2

The FOCs are:

𝜕 ln L
𝜕μ
=

1
σ2

T
∑
t=1
(xt − μ) = 0

and

𝜕 ln L
𝜕σ2
= −

T
2σ2
+

1
2σ4

T
∑
t=1
(xt − μ)

2 = 0

The SOCs satisfy the case for maximum.
Solving, the maximum likelihood estimators are:

μ̂ML =
1
T

T
∑
t=1

xt ≡ x̄

and

σ̂2ML =
1
T

T
∑
t=1
(xt − x̄)

2

TheML estimator μ̂ML is unbiased. It is also consistent. But the σ̂2ML estimator is biased
in small sample as it uses the sample size T instead of T − 1 as the divisor. The differ-
ence from the unbiased variance estimator is however very small when T is large. It is
asymptotically unbiased, i. e. the bias converges to zero when T ↑ ∞. In general, ML
estimators are consistent, but they may be biased in small sample.

Now consider the estimation of a simple linear regression using the maximum
likelihood (ML) method. Estimate a and b in Yt = a + bXt + et where et ∼ N(0, σ2e).
Suppose Xt is given and sampling size is T. The joint probability density function of
observing the i. i. d. et ’s is

T
∏
t=1

1
√2πσ2e

e−
1
2 (

Yt−a−bXt
σe
)2

The log likelihood function is
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ln L(a, b, σ2e) = −
T
2
ln(2π) − T

2
ln σ2e −

1
2

T
∑
t=1
(
Yt − a − bXt

σe
)
2

The FOCs of maximizing the log likelihood function are:

𝜕 ln L
𝜕a
=

1
σ2e

T
∑
t=1
(Yt − a − bXt) = 0

𝜕 ln L
𝜕b
=

1
σ2e

T
∑
t=1

Xt(Yt − a − bXt) = 0

and

𝜕 ln L
𝜕σ2e
= −

T
2σ2e
+

1
2σ4e

T
∑
t=1
(Yt − a − bXt)

2 = 0

Solving:

b̂ML =
∑XtYt − TX̄Ȳ
∑X2

t − TX̄2

âML = Ȳ − b̂MLX̄

σ̂2e,ML =
1
T

T
∑
t=1
(Yt − âML − b̂MLXt)

2

where X̄ and Ȳ are, respectively, the sample means of Xt and Yt . It is seen that under
normality, the ML estimators âML, b̂ML are also the OLS estimators for a and b. As for
the residual variance, the ML estimator σ̂2e,ML is consistent but biased in small sam-
ple as it uses the sample size T instead of T − 1 as the divisor. The difference from
the unbiased residual variance estimator is however very small when T is large. It is
asymptotically unbiased.

9.2 Maximum Likelihood Estimators
Suppose RV Zt is i. i. d., and takes sample values {z1, z2, . . . , zT }. Let the probability den-
sity function of RV Zt in general be f (zt ;Λ) with parameters Λn×1. Function f (⋅) is as-
sumed to be continuous and smooth. f (Zt) are also i. i. d. The independence comes
from the fact that if Zt−1 does not contain information about Zt, i. e. P(Zt |Zt−1) = P(Zt),
then f (Zt−1)would not contain information about f (Zt). Note that the weaker zero cor-
relationofZt,Zt−1 doenot imply zero correlation in f (Zt), f (Zt−1). For example,Z2t could
be correlated with Z2t−1.

Then, for any t

∞

∫
−∞

f (zt ;Λ) dzt = 1
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that is, area under the probability density curve sums to one. Differentiating the above
with respect to parameter Λ,

∞

∫
−∞

𝜕f
𝜕Λ

dzt = 0n×1 (9.1)

If Λ is a vector, i. e. more than one parameter, then the derivative is also a vector. Since
score function 𝜕 ln f𝜕Λ =

1
f
𝜕f
𝜕Λ , then

𝜕f
𝜕Λ = f

𝜕 ln f
𝜕Λ . Thus,

∞

∫
−∞

𝜕 ln f
𝜕Λ

f (zt ;Λ) dzt = 0n×1 (9.2)

Hence E( 𝜕 ln f (Zt ,Λ)𝜕Λ ) = 0n×1 ∀t, where Zt in the argument is a (single) RV.
The joint pdf of {z1, z2, . . . , zT } (or Z) is likelihood function

L(Z;Λ) =
T
∏
t=1

f (zt ;Λ)

and

∫ ⋅ ⋅ ⋅∫ L(Z;Λ) dz1dz2 . . . dzT = ∫ f (z1;Λ)dz1 ∫ ⋅ ⋅ ⋅∫ f (zT ;Λ)dzT = 1

Although likelihood is written as function of Z given Λ, its purpose is really more of
being a function of Λ given the observations Z, so that one can find a maximumwhile
searching over the parameter space of Λ.

Moreover, ln L(Z;Λ) = ∑Tt=1 ln f (zt ;Λ), so
𝜕 ln L(Z;Λ)
𝜕Λ = ∑Tt=1

𝜕 ln f (zt ;Λ)
𝜕Λ . Thus

E(𝜕 ln L(Z1, Z2, . . . , ZT ;Λ)
𝜕Λ

) =
T
∑
t=1

E(𝜕 ln f (Zt ;Λ)
𝜕Λ
) = 0n×1 (9.3)

The expectation operations above are done in short-form. To be precise, the first ex-
pectation is integrationovermultivariateRVZwith independentmarginal RVZt ’s. The
second expectation is integration over individual Zt ’s. It can be readily shown that the
LHS is

E
T
∑
t=1
(
𝜕 ln f (Zt ;Λ)
𝜕Λ
) = ∫ ⋅ ⋅ ⋅∫(

𝜕 ln f (z1;Λ)
𝜕Λ
)f1f2 . . . fT dz1 . . . dzT

+ ⋅ ⋅ ⋅ + ∫ ⋅ ⋅ ⋅∫(
𝜕 ln f (zT ;Λ)
𝜕Λ
)f1f2 . . . fT dz1 . . . dzT

= E(𝜕 ln f (Z1;Λ)
𝜕Λ
)∫ ⋅ ⋅ ⋅∫ f2 . . . fT dz2 . . . dzT
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+ ⋅ ⋅ ⋅ + E(𝜕 ln f (ZT ;Λ)
𝜕Λ
)∫ ⋅ ⋅ ⋅∫ f1f2 . . . fT−1 dz1 . . . dzT−1

=
T
∑
t=1

E(𝜕 ln f (Zt ;Λ)
𝜕Λ
)

Taking the second derivative in Eq. (9.1),

∞

∫
−∞

𝜕2f
𝜕Λ𝜕ΛT dzt = 0n×n

Now for any single RV Zt,

𝜕
𝜕Λ
(
𝜕 ln f (Zt ;Λ)
𝜕ΛT ) =

𝜕
𝜕Λ
(
1
f
𝜕f (Zt ;Λ)
𝜕ΛT )

=
1
f
𝜕2f
𝜕Λ𝜕ΛT −

1
f 2
𝜕f
𝜕Λ
𝜕f
𝜕ΛT

=
1
f
𝜕2f
𝜕Λ𝜕ΛT −

𝜕 ln f
𝜕Λ
𝜕 ln f
𝜕ΛT

So,

E[𝜕
2 ln f (Zt ;Λ)
𝜕Λ𝜕ΛT ] = ∫

1
f
𝜕2f
𝜕Λ𝜕ΛT fdzt − ∫

𝜕 ln f
𝜕Λ
𝜕 ln f
𝜕ΛT fdzt

= −E[𝜕 ln f
𝜕Λ
𝜕 ln f
𝜕ΛT ] (9.4)

Similarly, 𝜕
2 ln L
𝜕Λ𝜕ΛT = ∑

T
t=1
𝜕2 ln f
𝜕Λ𝜕ΛT . Thus,

E[ 𝜕
2 ln L
𝜕Λ𝜕ΛT ] = E[

T
∑
t=1

𝜕2 ln f
𝜕Λ𝜕ΛT ]

=
T
∑
t=1

E[ 𝜕
2 ln f
𝜕Λ𝜕ΛT ]

= −
T
∑
t=1

E[𝜕 ln f
𝜕Λ
𝜕 ln f
𝜕ΛT ]

= −E[𝜕 ln L
𝜕Λ
𝜕 ln L
𝜕ΛT ] (9.5)

Note the expectations operators on the LHS and the last line RHS are integrals
over multivariate Z whereas the other expectations are integrals over independent
marginal Zt ’s. In the last term, E[ 𝜕 ln L𝜕Λ

𝜕 ln L
𝜕ΛT ] = E[∑Ti=1

𝜕 ln f (Zi)
𝜕Λ ∑

T
j=1
𝜕 ln f (Zj)
𝜕ΛT ] =

∑Ti=1∑
T
j=1 E[
𝜕 ln f (Zi)
𝜕Λ
𝜕 ln f (Zj)
𝜕ΛT ] = ∑

T
i=1 E[
𝜕 ln f (Zi)
𝜕Λ
𝜕 ln f (Zi)
𝜕ΛT ] since for i ̸= j,
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E[𝜕 ln f (Zi)
𝜕Λ
𝜕 ln f (Zj)
𝜕ΛT ] = E[

𝜕 ln f (Zi)
𝜕Λ
]E[
𝜕 ln f (Zj)
𝜕ΛT ] = 0

making use of the independence of Zi from Zj and Eq. (9.2).
The termon theRHS in Eq. (9.5),E[ 𝜕 ln L𝜕Λ

𝜕 ln L
𝜕ΛT ], is called Fisher’s informationmatrix

of order (sample size) T. This term is also the covariancematrix of random vector 𝜕 ln L𝜕Λ .
Let cov( 𝜕 ln L𝜕Λ ) = IT (Λ). Hence IT (Λ) is symmetrical. Note also that E[ 𝜕

2 ln L
𝜕Λ𝜕ΛT ] = −IT (Λ).

Let cov( 𝜕 ln f𝜕Λ ) = −E[
𝜕2 ln f
𝜕Λ𝜕ΛT ] = I1(Λ) or information matrix of order 1 as it is based on

only sample size of 1, i. e. f (Zt).
Since Zt ’s are i. i. d., as seen from Eq. (9.5),

E[𝜕 ln L
𝜕Λ
𝜕 ln L
𝜕ΛT ] =

T
∑
t=1

E[𝜕 ln f
𝜕Λ
𝜕 ln f
𝜕ΛT ]

hence IT (Λ) = TI1(Λ). Similarly,

E[ 𝜕
2 ln L
𝜕Λ𝜕ΛT ] =

T
∑
t=1

E[ 𝜕
2 ln f
𝜕Λ𝜕ΛT ]

hence −IT (Λ) = −TI1(Λ).
The higher the sampling variances of elements of 𝜕 ln f𝜕Λ , i. e., the “higher” I1(Λ),

the more information the sample data give concerning the parameter(s). We illustrate
with an example. Consider sampling fromanormal distribution Z ∼ N(μ, σ2). ln f (Z) =
− 12 ln(2πσ

2) − 1
2σ2 (Z − μ)

2. 𝜕 ln f𝜕μ =
1
σ2 (Z − μ). var(

𝜕 ln f
𝜕μ ) =

1
σ2 . Hence when σ2 is very

small, the (1, 1) element of I1(Λ) or var(
𝜕 ln f
𝜕μ ) is very high, indicating a sample point zi

providesmore information about μ than the same sample point providing information
on a normal distribution with much higher σ2.

Recall that theMLE estimator Λ̂ML is that whichmaximizes ln L(Z;Λ) orwhich sets
FOC 𝜕 ln L(Z;Λ)𝜕Λ or∑Tt=1

𝜕 ln f (zt ;Λ)
𝜕Λ to zero. The latter implies setting 1

T∑
T
t=1
𝜕 ln f (zt ,Λ)
𝜕Λ |Λ=Λ̂ML

=0
for all T. Recall the GMM. By the LLN, the samplemoment converges to the population
moment:

1
T

T
∑
t=1

𝜕 ln f (zi,Λ)
𝜕Λ

Λ=Λ̂ML

p
→ E[𝜕 ln f (Zt , Λ̂ML)

𝜕Λ̂ML
]

where Λ̂ML is fixed given T. By setting the LHS to zero, the RHS also equals to zero.
But as we assume in the last Chapter on GMM, together with the smooth regularity
conditions, the moment condition has also a unique Λ. Since E[ 𝜕 ln f (Zt ,Λ)𝜕Λ ] = 0, then
Λ̂ML

p
→ Λ, i. e. ML estimator is consistent.
Next we show the key result about asymptotic normality of MLE. By the mean

value theorem (a similar version uses Taylor series expansion):
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𝜕 ln L
𝜕Λ
(Λ̂ML) =

𝜕 ln L
𝜕Λ
(Λ) + 𝜕

2 ln L
𝜕Λ𝜕ΛT (Λ

∗)(Λ̂ML − Λ)

where each element of Λ∗ lies between corresponding elements of Λ̂ML and Λ. But the
LHS equals to a zero vector. Hence

√T(Λ̂ML − Λ) = −[
1
T
𝜕2 ln L
𝜕Λ𝜕ΛT (Λ

∗)]
−1
√TT−1(𝜕 ln L

𝜕Λ
(Λ)) (9.6)

However, in Eq. (9.6),

√TT−1(𝜕 ln L
𝜕Λ
(Λ)) = √T[ 1

T

T
∑
t=1

𝜕 ln f
𝜕Λ
(Λ)]

Note that E( 𝜕 ln f𝜕Λ (Λ)) = 0, ∀i. The multivariate CLT states that for i. i. d. vectors ui =
𝜕 ln f (Zi)
𝜕Λ (Λ) and Ū =

1
T ∑

T
i=1 ui,√T(Ū − E(U)) converges to N(0, cov(U)). Then

√T[ 1
T

T
∑
t=1

𝜕 ln f
𝜕Λ
(Λ)] d
→ N(0, cov[𝜕 ln f

𝜕Λ
(Λ)]) ≡ N(0, I1(Λ))

The term [ 1T
𝜕2 ln L
𝜕Λ𝜕ΛT (Λ∗)] = 1

T ∑
T
t=1
𝜕2 ln f
𝜕Λ𝜕ΛT (Λ∗) in Eq. (9.6) converges via the weak LLN

or in probability to E[ 𝜕
2 ln f
𝜕Λ𝜕ΛT (Λ∗)]. As Λ̂ML

p
→ Λ, so Λ∗

p
→ Λ, then [ 1T

𝜕2 ln L
𝜕Λ𝜕ΛT (Λ∗)] con-

verges in probability to E[ 𝜕
2 ln f
𝜕Λ𝜕ΛT (Λ)] = −I1(Λ).

Using Slutsky’s theorem,

√T(Λ̂ML − Λ)
d
→ [I1(Λ)]

−1Yn×1

whereY ∼ N(0, I1(Λ)) andn is thedimensionof the vector parameterΛ. The asymptotic
covariance (matrix) of√T(Λ̂ML − Λ) is

[I1(Λ)]
−1 cov(Y)[IT1 (Λ)]

−1
= [I1(Λ)]

−1

Therefore,

√T(Λ̂ML − Λ)
d
→ N(0, I1(Λ)

−1) (9.7)

Hence the maximum likelihood estimator Λ̂ML is asymptotically normal.
Thus asymptotic cov(Λ̂ML) = [TI1(Λ)]−1 = [IT (Λ)]−1. From Eq. (9.7), it is also seen

that the ML estimator is asymptotically unbiased since any bias E(Λ̂ML −Λ) converges
asymptotically to zero by virtue of the asymptotic normality. Note that in general, con-
sistency is not identical with asymptotic unbiasedness.
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9.3 Cramer–Rao Lower Bound and Asymptotic Efficiency

Suppose h(Z) is any unbiased n × 1 vector estimator of Λ. Then, by unbiasedness,

E[h(Z)] = ∫∫ ⋅ ⋅ ⋅∫ h(Z)L(Z;Λ)dz1dz2 . . . dzT = Λ

In differentiating the left-hand side, recall that 𝜕L𝜕Λ = L 𝜕 ln L𝜕Λ . Differentiating the
right-hand side Λ with respect to Λ yields identity matrix I. Therefore, the above be-
comes

∫ ⋅ ⋅ ⋅∫ h(Z)𝜕 ln L(Z;Λ)
𝜕ΛT L(Z;Λ) dZ = E[h(Z)𝜕 ln L(Z;Λ)

𝜕ΛT ] = I

Thus, I is the covariance matrix between h(Z) and 𝜕 ln L(Z;Λ)𝜕Λ since the latter is a
zero-mean vector. Then, we can specify the covariance matrix

cov [ h(Z)𝜕 ln L
𝜕Λ
] = [

cov[h(Z)] I
I IT (Λ)

]

Now Λ is n × 1 vector. h(Z) is also n × 1. 𝜕 ln L𝜕Λ is n × 1. So, the RHS is a 2n × 2n
covariance matrix that contains four elements of n × nmatrices. A covariance matrix
is always positive semidefinite (or positive definite if we rule out zero variance), so
we can choose any arbitrary non-zero vector (pT ,−pT I−1T (Λ)), where p

T is 1 × n and
−pT I−1T (Λ) is also 1 × n, such that

(pT ,−pT I−1T ) [
cov[h(Z)] I

I IT (Λ)
](

p
−I−1T p
)

= pT[cov[h(Z)] − I−1T ]p ≥ 0

The last line above shows the Cramer–Rao inequality. Thus, the covariance matrix
of any unbiased estimator, cov[h(Z)] is “larger than or equal to” the inverse of the
information matrix IT . This means that we can write, for any arbitrary n × 1 vector p,
pT cov[h(Z)]p ≥ pT I−1T p, a 1 × 1 number. Clearly, if we choose pT = (1,0,0, . . . ,0), then
pT cov[h(Z)]p is equal to the variance of the unbiased estimator of the first parameter
in vector Λ, and this is bounded below by the first row-first column element of I−1T ,
say r11.

Suppose

I−1T =
[[[[[[

[

r11 ⋅ ⋅ ⋅
... r22

. . .
rnn

]]]]]]

]
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Then, any unbiased estimators have variances bounded below by the Cramer–Rao
lower bounds (r11, r22, . . . , rnn) respectively. An estimator that attains the lower bound
is said to be a minimum variance unbiased or efficient estimator.

We have seen that the ML estimator is consistent and asymptotically normal. It is
also asymptotically unbiased although in general, it may be biased in small or finite
sample. AsML estimators are asymptotically unbiased, then asymptotically, given the
above result for unbiased estimators (any sample size T), ML estimator variances are
also bounded below by I−1T . But in Eq. (9.7) we see that cov(Λ̂ML) = [IT (Λ)]−1. There-
fore we can conclude that ML estimators are asymptotically efficient, attaining the
Cramer–Rao lower bound. This makes ML a favorite estimation method especially
when the sample size is large.

9.4 Likelihood Ratio Test

There is an important class of test statistics of models related to Maximum Likelihood
estimation. Suppose we are finding ML estimator Λ̂ML given data Z that are assumed
to have known density function f .

Expand using Taylor series around the ML estimator, where higher order terms in
the Taylor series are finite.

ln L(z;Λ) = ln L(z; Λ̂ML) + (Λ − Λ̂ML)(
𝜕 ln L(Λ̂ML)
𝜕Λ
)

+
1
2
(Λ − Λ̂ML)

T(
𝜕2 ln L(Λ̂ML)
𝜕Λ𝜕ΛT )(Λ − Λ̂ML) + o(T)

= ln L(z; Λ̂ML) +
1
2
(Λ̂ML − Λ)

T(
𝜕2 ln L(Λ̂ML)
𝜕Λ𝜕ΛT )(Λ̂ML − Λ)

+ o(T)

The last term o(T) means that as Λ̂ML
p
→ Λ, o(T) becomes negligible with respect to

ln L(z;Λ) for T ↑ ∞. We also use short-cut notations 𝜕 ln L(Λ̂ML)
𝜕Λ and 𝜕

2 ln L(Λ̂ML)
𝜕Λ𝜕ΛT to mean

entering values Λ̂ML into the analytical functions
𝜕 ln L(Λ)
𝜕Λ and 𝜕

2 ln L(Λ)
𝜕Λ𝜕ΛT , respectively, in

place of Λ.
So, asymptotically,

−2[ln L(z;Λ) − ln L(z; Λ̂ML)]

= (Λ̂ML − Λ)
T[−
𝜕2 ln L(Λ̂ML)
𝜕Λ𝜕ΛT ](Λ̂ML − Λ)

= √T(Λ̂ML − Λ)
T[−

1
T
𝜕2 ln L(Λ̂ML)
𝜕Λ𝜕ΛT ]

√T(Λ̂ML − Λ)

 EBSCOhost - printed on 2/8/2023 6:26 PM via . All use subject to https://www.ebsco.com/terms-of-use



9.5 ARCH-GARCH | 259

Now, from Eq. (9.7), √T(Λ̂ML − Λ)
d
→ N(0, I1(Λ)−1). As seen earlier, [−

1
T
𝜕2 ln L(Λ̂ML)
𝜕Λ𝜕ΛT ]

p
→ I1(Λ). From the results in Chapter 6, Section 6.2, we see that the LHS which is a
likelihood ratio

−2 ln[ L(z;Λ)
L(z; Λ̂ML)

]
d
→ χ2n

i. e., it converges to a chi-square RV with n degrees of freedom, n being the dimension
of Λ.

Suppose we want to test H0 : Λ = Θ, i. e., testing if true Λ is a set of values given
by Θ, then if the null hypothesis is true, asymptotically

−2 ln[ L(z;Θ)
L(z; Λ̂ML)

] = T(Λ̂ML − Θ)
T I1(Θ)(Λ̂ML − Θ)

is a test statistic distributed as χ2n. In the above, I1(Θ) is estimated by

−
1
T

T
∑
t=1

𝜕2 ln f (Θ)
𝜕Λ𝜕ΛT

The null is rejected if the test statistic occurs in the right tail of the χ2n distribution at a
p-value smaller than the significance level of the test.

9.5 ARCH-GARCH

The landscape of financial econometrics was forever changed and augmented greatly
when Robert Engle introduced the Autoregressive Conditional Heteroskedasticity
(ARCH) model in 1982. It was an ingeniously embedded tool in specifying the dy-
namics of volatility coupled with the underlying asset price process. This greatly
extended the space of stochastic processes including those in the Box Jenkins ap-
proach. ARCH was very successfully extended to Generalized Autoregressive Condi-
tional Heteroskedasticity (GARCH)model by Bollerslev, and to-date there continues to
be a huge number of variations of processes building on the embedded tooling idea.
We consider such process modelling to be particularly relevant in estimating risks
in market prices and in risk management in today’s market of high and persistent
volatilities. The estimation of GARCH processes using maximum likelihoodmethod is
an important application.

For ARMA(1, 1) which includes AR(1) and MA(1) processes,

yt = θ + λyt−1 + ut + aut−1

the conditional variance var(yt |yt−1) = (1+a2)σ2u is constant. Suppose we condition on
all lagged information available at t, Φt−1, then var(yt |yt−1, ut−1) = σ2u is also constant.
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Note, however, that conditional mean E(yt |yt−1) = θ + λyt−1 changes. Similarly, we can
show that for

yt = θ + λxt + ut (9.8)

where E(ut) = 0, cov(ut , ut−k) = 0, k ̸= 0, and xt, ut are stochastically stationary and
independent, then var(yt |xt) = var(ut) = σ2u is constant. So far we have not modelled
anything about the variance of ut . This is the motivation behind building a condition-
ally changing variance.

Suppose wemodel a process on the variance of ut (not ut itself – note this distinc-
tion) such that:

var(ut) = α0 + α1u
2
t−1 (9.9)

This is an autoregressive conditional heteroskedasticity or ARCH(1) model1 in dis-
turbance ut . Then, in Eqs. (9.8) and (9.9), we show that var(yt |xt) = var(ut) = α0 +
α1u2t−1 ̸= σ

2
u. The conditional variance of yt indeed changes with past levels of ut−1,

although the latter cannot be directly observed.
We can also write Eq. (9.9) in terms of a ut process as follows:

ut = et√α0 + α1u2t−1 (9.10)

where et ∼ N(0, 1). To be precise, Eq. (9.10) implies Eq. (9.9), but the converse is not
necessarily true.

Equation (9.10) can also be written as:

ut = etσt (9.11)

where σt = √α0 + α1u2t−1 = √var(ut).
It is interesting to knowwhat is the nature of the distribution of the disturbance ut .

From Eq. (9.10), it should be evident that ut is unconditionally not a normal distribu-
tion. However, conditional on ut−1, ut is normally distributed. Using Monte Carlo sim-
ulation with a sample size of 10000, and starting value u0 = 0, a histogram of the
distribution of ut is produced as shown in Figure 9.1.

Clearly, unlike unit normal et, unconditional ut ’s empirical distribution as shown
in Figure 9.1 has a larger kurtosis (>3) than a normal randomvariable. The Jarque-Bera
test statistic rejects the null of normal distribution for ut .

1 The seminal article in this area is R. Engle (1982), Autoregressive conditional heteroskedasticitywith
estimates of the variance of United Kingdom inflations, Econometrica, 50, 987–1008. Its significant
generalization is in T. Bollerslev (1986), Generalized autoregressive conditional heteroskedasticity,
Journal of Econometrics, 31, 307–327.
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Figure 9.1:Monte Carlo Simulation of Errors ut = et√α0 + α1u2t−1.

When var(ut) = α0 + α1u2t−1 + α2u
2
t−2 + ⋅ ⋅ ⋅ + αq−1u

2
t−q+1 + αqu

2
t−q, we call the conditional

variance of ut above an ARCH (q) process.
Besides Eq. (9.9), another model of changing conditional variance is

var(ut) = α0 + α1u
2
t−1 + γ1 var(ut−1) (9.12)

This is generalized autoregressive conditional heteroskedasticity or the GARCH(1, 1)
model in ut . It includes a lagged volatility term.

When var(ut) = α0 + α1u2t−1 + α2u
2
t−2 + ⋅ ⋅ ⋅ + αqu

2
t−q + γ1 var(ut−1) + γ2 var(ut−2) +

⋅ ⋅ ⋅ + γp var(ut−p), we call the conditional variance of ut a GARCH(q, p) process with
weighted averages of q lagged u2t−j’s and weighted averages of p lagged var(ut−j)’s.
Due to the large number of parameters that usually has to be estimated in a GARCH
process, parsimony typically dictates modelling with low order GARCH(q, p) such as
GARCH(1, 1) process.

Suppose a yt process contains a disturbance random error that behaves according
to GARCH in Eq. (9.12). Then

var(yt |xt ,Φt−1) = var(ut |xt , ut−1, σ
2
t−1) = α0 + α1u

2
t−1 + γ1 var(ut−1)

is no longer constant, but instead, changes with t or more precisely, the information
available at t, Φt−1, even as ut−1 and also var(ut−1) change over time. Process such as yt
or ut itself is said to exhibit conditional heteroskedasticity or dynamic volatility. How-
ever, conditional on the lagged observations, it is possible to model the conditional
ut ’s and also yt ’s as normally distributed, though their unconditional distributions
are in general not normal.

As an example, if var(ut−1) = 0.2, α0 = 0.01, α1 = 0.3, γ1 = 0.5, ut−1 = 0.3 then
var(ut) = 0.01 + 0.3∗0.32 + 0.5∗0.2 = 0.137. We see that the conditional variance of
ut changes over time with new lagged values of residuals and new lagged values of
conditional variances.
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The GARCH(1, 1) process in Eq. (9.12) can be expressed as

σ2t = α0 + α1u
2
t−1 + γ1σ

2
t−1

where σ2t = var(ut). Using lag or backward shift operator L,

(1 − γ1L)σ
2
t = α0 + α1u

2
t−1

so,

σ2t =
1
(1 − γ1L)

(α0 + α1u
2
t−1)

which is anARCH(∞)model.HenceanyGARCH(q, p)model canalsohaveanARCH(∞)
representation.

In what follows, we illustrate graphically the volatility clustering effect of differ-
ent GARCH processes. We simulate sample paths of a process {yt}t=1,2,...,200 where it is
weakly stationary without conditional heteroskedasticity.

yt = θ + λxt + ut

xt
i. i.d.
∼ N(1,0.4), ut

i. i.d.
∼ N(0, 2), θ = 1

2
, λ = 1

2
(9.13)

Suppose we chart the path of yt .

y0 =
1
2
+
1
2
x0 + u0

y1 =
1
2
+
1
2
x1 + u1

...
yt =

1
2
+
1
2
xt + ut

...

and note that E(yt) = θ+λE(xt) =
1
2 +

1
2 (1) = 1 and var(yt) = λ

2σ2x +σ
2
u =

1
4 ∗0.4+2 = 2.1.

The plot of the time-path of yt is shown in Figure 9.2. It is seen that yt behaves
like a random series with a mean at 1 and the two dotted lines are the two standard
deviations away from the mean. In this case, they are 1 ± 2√2.1 (about 4 and −2, re-
spectively), with 2.28% probability of exceeding each way from the region between
the two dotted lines.

Next, we simulate sample paths of another process {yt}t=1,2,...,200 that follows
Eqs. (9.8) and (9.12) instead.

yt = θ + λxt + ut .
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Figure 9.2: Stationary Process yt ∼ N(1, 2.1).

xt
i. i.d.
∼ N(1,0.4)

var(ut) = α0 + α1u
2
t−1 + γ1 var(ut−1)

We set initial var(u0) = σ20 = 2. Initial u0 may be drawn from N(0, 2), but subsequent
ut ’s are not unconditionally normally distributed. Unlike the constant variance of 2
in the earlier stationary process, this GARCH(1, 1) process will have a changing condi-
tional variance over time.

θ = 1
2
, λ = 1

2
, α0 =

1
2
, α1 =

1
4

and γ1 =
1
2
.

y0 =
1
2
+
1
2
x0 + u0, u0

d
∼N(0, 2)

Once u20 and var(u0) are obtained,we can use Eq. (9.12) to obtain var(u1). Next simulate

u1 = e1√α0 + α1u20 + γ1 var(u0) for e1 ∼ N(0, 1)

Put y1 =
1
2 +

1
2x1 + u1. Next use u

2
1 and var(u1) to obtain var(u2) via Eq. (9.12). Then

simulate u2 = e2√α0 + α1u21 + γ1 var(u1) for e2 ∼ N(0, 1), and so on. In general,

ut = et√α0 + α1u2t−1 + γ1 var(ut−1)

The plot is shown in Figure 9.3.
Figure 9.3 shows a similar yt process as in Figure 9.2, with yt = 1/2 + 1/2xt + ut .

Its unconditional mean and variance are the same as yt in Figure 9.2. Unconditional
mean and variance of yt are 1 and 2.1. However, its variance follows the GARCH error
process: var(ut) = 0.5 + 0.25u2t−1 + 0.5 var(ut−1). The figure shows that yt behaves like a
random series with a mean at 1 and the two dotted lines are the two standard devia-
tions away from themean. In this case, they are 1±2√2.1 (about 4 and−2, respectively),
with 2.28%probability of exceeding eachway from the region between the two dotted
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Figure 9.3: GARCH Error Process: Unconditional yt Has Mean, Variance 1, 2.1. var(ut ) = 0.5+0.25u2t−1+
0.5 var(ut−1).

lines. There appears to be more volatility. At about the 50th observation, the variance
clusters together and y-values persist close to −2.

We provide another simulation using the same yt = 1/2 + 1/2xt + ut with uncon-
ditional mean and variance of yt at the same 1 and 2.1 values, respectively. However,
its variance now follows GARCH error process: var(ut) = 0.1 + 0.25u2t−1 + 0.7 var(ut−1)
where clustering or persistence in volatility should be more evident because of the
higher γ1 = 0.7. This is shown in Figure 9.4.

Figure 9.4: GARCH Error Process: Unconditional yt Has Mean, Variance 1, 2.1. var(ut ) = 0.1+0.25u2t−1+
0.7 var(ut−1).

Indeed Figure 9.4 shows the persistent and much higher volatility with yt ’s exceed-
ing +15 and falling below −15 in the observations from 100 to 150. Thus, we see that
GARCHmodelling of variance is able to produce the kind of persistence and clustering
in volatility sometimes observed in market prices. Similar effects can be observed if in
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Figures 9.2, 9.3, 9.4, we fix the 200 values of xt to be the same. The effects may be even
clearer as remove the “noise” of xt .

In addition tomodels such as Eqs. (9.8) and (9.12), different impacts of lagged pos-
itive and negative ut ’s are alsomodelled by Glosten, Jagannathan, and Runkle (1993),2

viz.

σ2t = α0 + α1u
2
t−1Iut−1≥0 + α2u

2
t−1Iut−1<0 + γ1σ

2
t−1

where ut ∼ N(0, σ2t ), Iut−1≥0 is an indicator variable taking value 1 if ut−1 ≥ 0, and zero
otherwise, and Iut−1<0 is an indicator variable taking value 1 if ut−1 < 0, and zero oth-
erwise. This is also called a threshold GARCH(1, 1) or TGARCH(1, 1) model. The asym-
metric effect is typically shown to be a higher α2 > α1 for stock return conditional
volatilities.

Exponential GARCH(1, 1) or EGARCH(1, 1) is:

ln σ2t = α0 + α1(|ϵt−1| + θϵt−1) + γ1 ln σ
2
t−1

whereut = ϵtσt, ϵt ∼ N(0, 1), and the effect of ϵt−1 onnext periodσ2t is asymmetric, e. g.,
if α1 > 0, θ < −1, then a negative ϵt−1 yields greater increase in σ2t than the decrease
in σ2t by a positive ϵt−1. This models market index price behavior where price level
correlates negatively with next period volatility.

Nonlinear GARCH(1, 1) or NGARCH(1, 1) is:

σ2t = α0 + α1σ
2
t−1(ϵt−1 − θ)

2 + γ1σ
2
t−1

where ut = ϵtσt, ϵt ∼ N(0, 1), and the effect of ϵt−1 on next period σ2t is larger the further
deviation from a threshold θ. This specification produces leptokurtic (fat-tailed) and
skewed distributions in ut .

Another variation is

yt = θ + λxt + γσ
2
t + ut

where σ2t = var(yt |xt , ut−1) = α0 + α1u2t−1. Then the yt process is an ARCH-in-mean
or ARCH-M model. This version basically has the variance σ2t driving the mean effect
E(yt).

It is to be noted that GARCH processes are not easily aggregated. For example,
if daily returns follow GARCH, then week returns do not follow similar GARCH pro-
cess. GARCH is a pre-determined (adapted to filtration or information at current time t)
changing volatility. Hence it is not a stochastic volatility when the volatility is not
adapted to filtration at t.

2 L. Glosten, R. Jagannathan, and D. Runkle (1993), Relationship between the expected value and the
volatility of the nominal excess return on stocks, The Journal of Finance 48, 1779–1801.
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9.6 Estimating GARCH

9.6.1 Stationarity Condition

It is interesting to note that while GARCH processes are conditionally non-stationary
with changing variances, they are still unconditionally stationary processes. For rea-
sons of data analyses, when we have only one time series or one sample path, it is
important to be able to invoke the law of large numbers via stationarity and ergodic-
ity so that sample averages can converge to population moments. We shall show how
GARCH processes are also stationary.

If we expand Eq. (9.12):

var(ut) = α0 + α1u
2
t−1 + γ1 var(ut−1)

= α0 + α1u
2
t−1 + γ1[α0 + α1u

2
t−2 + γ1 var(ut−2)]

= α0(1 + γ1) + α1(u
2
t−1 + γ1u

2
t−2) + γ

2
1 [α0 + α1u

2
t−3 + γ1 var(ut−3)]

= α0(1 + γ1 + γ
2
1 + ⋅ ⋅ ⋅) + α1(u

2
t−1 + γ1u

2
t−2 + γ

2
1u

2
t−3 + ⋅ ⋅ ⋅) (9.14)

We had used the notation var(ut) ≡ σ2t earlier to denote the conditional variance
of ut at t. Let σ2u = E[var(ut)], being the unconditional variance of ut . Taking un-
conditional expectation on both sides, and assuming there exists stationarity so that
σ2u = E(u

2
t−1) = E(u

2
t−2) = E(u

2
t−3) = ⋅ ⋅ ⋅, then

σ2u =
α0
(1 − γ1)

+ α1(σ
2
u + γ1σ

2
u + γ

2
1σ

2
u + ⋅ ⋅ ⋅)

=
α0
(1 − γ1)

+
α1σ2u
(1 − γ1)

=
(α0 + α1σ2u)
(1 − γ1)

, supposing |γ1| < 1

Then, σ2u = α0/(1 − γ1 − α1), supposing α0 > 0 and |γ1 + α1| < 1. In the simulation
example of Figure 9.3, given the parameters α0 = 1/2, α1 = 1/4, and γ1 = 1/2, therefore
the unconditional variance of the GARCH disturbance is σ2u = 0.5/(1 − 0.75) = 2. In the
same way, in the simulation example of Figure 9.4, given the parameters α0 = 1/10,
α1 = 1/4, and γ1 = 7/10, the unconditional variance of the GARCH disturbance is σ2u =
0.1/(1 − 0.95) = 2.

Consider performing a regression of Eq. (9.8)

Yt = θ + λXt + ut

where ut follows GARCH(1, 1) process in Eq. (9.12), i. e.,

ut = etσt (9.15)
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σ2t = α0 + α1u
2
t−1 + γ1σ

2
t−1 (9.16)

where et is i. i. d. N(0, 1) and σ2t = var(ut). The last definition is acceptable since in
Eqs. (9.15), σ2t is pre-determined at t (as it depends on lagged information), and so
var(ut) on the LHS is equal to σ2t var(et) = σ

2
t , given var(et) = 1.

It is interesting to note that if the classical conditions (A1), (A2), (A3) or (A1′) and
(A2′) hold, as seen in Chapter 6, then the OLS estimators of θ and λ are unbiased. This
is due to either the independence between Xt and ut or the conditional moments of
ut ’s being independent of xt ’s.

However, as noted earlier, the dynamic volatility structure of ut means that even
though E(utut−1) = 0 (serially uncorrelated), ut is not serially independent as u2t is
correlated with u2t−1. This non-independence may pose a problem in the convergence
of the sampling moment 1

T ∑
T
t=1 u

2
t to σ

2
u, the unconditional variance. Thus the BLUE

variance result of the OLS estimator is not guaranteed. Even if somehow with more
regularity conditions, OLS estimator variance holds, this is also not ideal since it de-
pends on the unconditional variance that can be quite large especially when α1 and γ1
are large. However, the maximum likelihoodmethod can be used to obtain consistent
and asymptotically efficient estimators.

9.6.2 Maximum Likelihood Estimation

We first consider estimating the GARCH(1, 1) process u in Eqs. (9.15) and (9.16). The
procedure can be similarly applied to GARCH(q, p).

We have seen that ut ’s are not independent, so we do not want to use the likeli-
hood function of unconditional densities of ut . However, from Eq. (9.15), conditional
RV ut+1|σt+1 is independent of RV ut |σt . This is because conditional RV ut+1|σt+1 is con-
stant σ2t+1 times RV et+1, i. e. N(0, σ2t+1). Conditional RV ut |σt is N(0, σ2t ) and et+1 is in-
dependent of et .

The joint density or likelihood function of sample values {u1, u2, . . . , uT } (if they are
observed or if their estimates ût are observed), is expressed as product of conditional
and marginal densities:

f (u1, u2, . . . , uT ) = f (uT |uT−1, uT−2, . . . , u0)f (u0, u1, . . . , uT−1)
= f (uT |uT−1, uT−2, . . . , u0)f (uT−1|uT−2, uT−3, . . . , u0)
× f (u0, u1, . . . , uT−2)
= f (uT |uT−1, uT−2, . . . , u0)f (uT−1|uT−2, uT−3, . . . , u0)
× ⋅ ⋅ ⋅ × f (u1|u0) × f (u0)

We shall assume the initial values u0, σ0 are given. These may be approximated
using u0 = 0 (since E(u0) = 0), and σ0 = √

1
T ∑

T
t=1 u2t .
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The log likelihood function of the sample data is then

ln f (u1, u2, . . . , uT ) = [
T
∑
t=1

ln f (ut |ut−1, . . . , u0)] + ln f (u0)

Since each ut ∼ N(0, σ2t ),

ln f (ut |ut−1, . . . , u0) = −
1
2
ln(2π) − 1

2
ln σ2t −

1
2
u2t
σ2t

(9.17)

and each σ2t at t is a pre-determined linear function of u20, u
2
1 , . . . , u

2
t−1 and σ0.

If we let parameter vector ω = (α0, α1, γ1), and using say GMM in Chapter 8, Sec-
tion 8.1, to find consistent estimates θ̂ and λ̂, then ût = Yt − θ̂ − λ̂Xt can be used as the
observed asymptotic equivalent of ut . We shall keep this in mind when we evaluate
the ML estimator ωML. If z′t = (1, u

2
t−1, σ

2
t−1), then σ

2
t = z
′
tω.

Differentiating the conditional density in Eq. (9.17) with respect to ω:

𝜕 ln f
𝜕ω
=
1
2
σ−2t
𝜕σ2t
𝜕ω
(
u2t
σ2t
− 1) (9.18)

𝜕2 ln f
𝜕ω𝜕ωT = (

u2t
σ2t
− 1) 𝜕
𝜕ωT [

1
2
σ−2t
𝜕σ2t
𝜕ω
] −

1
2
σ−4t

u2t
σ2t

𝜕σ2t
𝜕ω
𝜕σ2t
𝜕ωT (9.19)

and

𝜕σ2t
𝜕ω
= zt + γ1

𝜕σ2t−1
𝜕ω

The maximum likelihood first order conditions are to set

T
∑
t=1

𝜕 ln f
𝜕ω
=

T
∑
t=1

1
2
σ−2t
𝜕σ2t
𝜕ω
(
u2t
σ2t
− 1) = 0 (9.20)

Sometimes 1
T ∑

T
t=1
𝜕 ln f
𝜕ω or “normalized” likelihood is used. However, the solution for

ωML in Eq. (9.20) above is not straightforward since the equation is not analytical inω
as there is an iteration on 𝜕σ

2
t
𝜕ω and σ2t (∀t) in Eq. (9.20) is also a linear function of lagged

u2t−i’s with coefficients in ω. Therefore an iterative numerical technique is called for.
We first consider the familiar Newton-Raphson method for multivariate solu-

tion ω∗ yielding ∑Tt=1
𝜕 ln f
𝜕ω |ω=ω∗ = 0 in Eq. (9.20). This ω∗ is also the vector whereby

∑Tt=1 ln f |ω=ω∗ is maximum.
Suppose we have a value fixed at ωk in the kth iteration such that ∑

T
t=1 ln f |ω=ωk

is
close to maximum, but we require to improve on this estimate to reach the maximum
in the likelihood.Weattempt to find this improved estimate in the neighborhoodofωk .

Using the truncated Taylor series as approximation:
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T
∑
t=1

ln f (ω) ≈
T
∑
t=1

ln f (ωk) + (ω − ωk)
Tgωk
+
1
2
(ω − ωk)

THωk
(ω − ωk)

where gωk
= ∑Tt=1

𝜕 ln f
𝜕ω |ω=ωk

and Hωk
= ∑Tt=1

𝜕2 ln f
𝜕ω𝜕ωT |ω=ωk

. Taking first derivative:

T
∑
t=1

𝜕 ln f
𝜕ω
(ω) ≈ gωk

+ Hωk
(ω − ωk)

treating ωk as a constant vector. Suppose maximum is achieved at new ω, i. e., LHS
∑Tt=1
𝜕 ln f
𝜕ω (ω) = 0. Then let the new ω be next iterate ωk+1, so

ωk+1 = ωk − H
−1
ωk
gωk

Or,

ωk+1 = ωk − (
1
T
Hωk
)
−1
(
1
T
gωk
)

But from Section 9.2 Eq. (9.5), we see that in the case when f is a density func-
tion, asymptotically 1

THω = −
1
T ∑

T
t=1
𝜕 ln f
𝜕ω
𝜕 ln f
𝜕ωT evaluated at ω for conditionally inde-

pendent f . Thus we can approximate 1
THωk
= − 1T ∑

T
t=1
𝜕 ln f
𝜕ω
𝜕 ln f
𝜕ωT |ω=ωk

. As Hωk
is inher-

ently less stable than∑Tt=1
𝜕 ln f
𝜕ω
𝜕 ln f
𝜕ωT , we replace it and use the iterative algorithm

ωk+1 = ωk +
T
∑
t=1

𝜕 ln f
𝜕ω
𝜕 ln f
𝜕ωT

ω=ωk

gωk

The above is essentially the BHHH algorithm applicable in the maximum likelihood
procedure.3 The iteration stops when the revision in the iterates becomes too small
according to criterion set by the econometrician.

The maximum likelihood estimator of θ, λ can also be found. Let β = (θ, λ)T . Note
that 𝜕ut𝜕β =

𝜕(Yt−θ−λXt)
𝜕β = (−1,−Xt)T . Let xt = (1,Xt)T .

Differentiating conditional density in Eq. (9.17) with respect to β,

𝜕 ln f
𝜕β
= σ−2t utxt +

1
2
σ−2t
𝜕σ2t
𝜕β
(
u2t
σ2t
− 1) (9.21)

𝜕2 ln f
𝜕β𝜕βT
= −σ−2t xtx

T
t −

1
2
σ−4t (

u2t
σ2t
)
𝜕σ2t
𝜕β
𝜕σ2t
𝜕βT

− 2σ−4t utxt
𝜕σ2t
𝜕βT
+ (

u2t
σ2t
− 1) 𝜕
𝜕βT
[
1
2
σ−2t
𝜕σ2t
𝜕β
] (9.22)

3 For more details, see E. K. Berndt, B. H. Hall, R. E. Hall and J.A, Hausman (1974), Estimation infer-
ence in nonlinear structural models, Annals of Economic and Social Measurement, 4, 653–665.
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and

𝜕σ2t
𝜕β
= −2α1ut−1xt−1 + γ1

𝜕σ2t−1
𝜕β

In Eq. (9.21), conditional on lagged ut ’s, E(
𝜕 ln f
𝜕β |ut−1, ut−2, . . .) = σ−2t E(utxt |ut−1, ut−2,

. . .) = 0 according to results in Section 9.2, as the conditional expectation of the second
term is zero. Then taking unconditional expectation, E(utxt) = 0. But in Eq. (9.21), first
order condition implies 1

T ∑
T
t=1
𝜕 ln f
𝜕β = 0.Hencewe are solving for β̂ML in

1
T ∑

T
t=1 utxt = 0

which basically gives the same solutions as in the GMMmethod.
In Eq. (9.18) when we take the second partial derivative w. r. t. βT :

𝜕2 ln f
𝜕ω𝜕βT
=
1
2
σ−2t
𝜕σ2t
𝜕ω
[−2σ−2t utx

T
t + 2α1σ

−4
t u2t (ut−1x

T
t−1 + γ1ut−2x

T
t−2

+ γ21ut−3x
T
t−3 + ⋅ ⋅ ⋅)] +

1
2
(
u2t
σ2t
− 1) 𝜕
𝜕β
(σ−2t
𝜕σ2t
𝜕ωT )

The conditional expectation

E( 𝜕
2 ln f
𝜕ω𝜕βT
|ut−1, ut−2, . . .) = σ

−4
t
𝜕σ2t
𝜕ω

α1(ut−1x
T
t−1 + γ1ut−2x

T
t−2 + ⋅ ⋅ ⋅)

Taking unconditional expectation on the above, we have E( 𝜕
2 ln f
𝜕ω𝜕βT ) = E(

𝜕2 ln f
𝜕β𝜕ωT ) = 0.

We can then form the expected Hessian matrix

E(
𝜕2 ln f
𝜕ω𝜕ωT

𝜕2 ln f
𝜕ω𝜕βT

𝜕2 ln f
𝜕β𝜕ωT

𝜕2 ln f
𝜕β𝜕βT

) = (
− 12E[σ

−4
t
𝜕σ2t
𝜕ω
𝜕σ2t
𝜕ωT ] 0

0 E[−σ−2t xtxTt −
1
2σ
−4
t
𝜕σ2t
𝜕β
𝜕σ2t
𝜕βT ]
)

that according to Eq. (9.4) is −I1(ω, β), the Fisher information matrix of order 1. Hence
the ML estimators ω̂ML via Eq. (9.18) and β̂ML via Eq. (9.21) are consistent and asymp-
totically normally distributed with covariance matrix [IT (ω, β)]−1 or [IT (Λ)]−1 where
Λ = (ω, β)T .

In the above MLE, conditional normal distribution is assumed on ut via Eq. (9.15)
where et is i. i. d. N(0, 1). Suppose this assumption or specification of et is incorrect,
and the true i. i. d. et distribution is non-normal. AlthoughEqs. (9.1) and (9.2) are tauto-
logically correct for any density f , Eq. (9.4) becomes problematicwhen the expectation
there is taken with respect to the true density whereas the argument contains the in-
correct normal density f . Expectationunder the true density in Eq. (9.4) is important as
later we need to compute the covariance matrix using the sample moments (that con-
verge to population moments under true densities). Thus, if incorrect normal density
f is assumed, asymptotically 1

T ∑
T
t=1
𝜕2 ln f
𝜕Λ𝜕ΛT ̸= −

1
T ∑

T
t=1
𝜕 ln f
𝜕Λ
𝜕 ln f
𝜕ΛT .
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Using asymptotic theory, however, it can be shown that the ML estimators ω̂ML
and β̂ML derived under the assumption of conditional normality are generally still con-
sistent and follow asymptotic normal distributions. These estimators are called quasi
maximum likelihood (QML) estimators.4

√T(Λ̂QML − Λ)
d
→ N(0,H−1SH−1)

where H = − 1T ∑
T
t=1 E[

𝜕2 ln f
𝜕Λ𝜕ΛT ] and S = 1

T ∑
T
t=1 E[
𝜕 ln f
𝜕Λ
𝜕 ln f
𝜕ΛT ].

The population moments are replaced by the sample moments

Ĥ = − 1
T

T
∑
t=1
[
𝜕2 ln f
𝜕Λ𝜕ΛT ] and Ŝ = 1

T

T
∑
t=1
[
𝜕 ln f
𝜕Λ
𝜕 ln f
𝜕ΛT ]

for independent Zt in the argument of f . It is noted that should the assumed density
is actually normal, then Ĥ = Ŝ, and the asymptotic covariance matrix is Ŝ−1 which is
estimate of the information matrix I−11 .

The QML estimator is however less efficient than the ML estimator if the density
is known, i. e. asymptotic variances of the QML estimators are larger than those of
the ML estimators if f is known. In the GARCH case, for true f that may be highly
leptokurtic (fat tails), the reduction in efficiency can be large. Hence sometimes ut
may be modelled as t-distribution or other distributions with fatter tails. Provided
these are the correct densities, the ML estimators based on these would be more ef-
ficient.

9.6.3 GMM

Another method that we learn in Chapter 8 is the use of generalized method of mo-
ments when the true underlying distribution is not known. Suppose yt = μ + ut (con-
stant mean μ specification), E(ut) = 0, and E(u2t ) = σ

2
t , but the distribution of ut is

unknown.

σ2t = c + αu
2
t−1 + γσ

2
t−1

which is a GARCH(1, 1) process.
We can form the following conditional moments using lagged yt−i’s as instru-

ments:

4 See T. Bollerslev, and J. Wooldridge (1992), Quasi maximum likelihood estimation and inference in
dynamic models with time varying covariances, Econometric Reviews 11, 143–172, and S. Lee, and B.
Hansen (1994), Asymptotic theory for the GARCH(1, 1) quasi maximum likelihood estimator, Econo-
metric Theory, 10, 29–52.
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Et−1[ut] = 0

Et−1[σ
2
t − u

2
t ] = 0

Et−1[(σ
2
t − u

2
t )yt−1] = 0

Et−1[(σ
2
t − u

2
t )yt−2] = 0

Et−1[(σ
2
t − u

2
t )yt−3] = 0

By taking iterated expectations over the null information set, we obtain the orthogo-
nality conditions or unconditional moments for estimating the parameters {μ, c, α, γ}
where there is one overidentifying restriction.

Using the recursive representation of σ2t :

σ2t = c(
1 − γt

1 − γ
) + α

t
∑
j=1

γj−1u2t−j + γ
tσ20

where u0 and σ0 are assumed as given. Thus the orthogonality conditions can be writ-
ten in terms of the parameters {μ, c, α, γ}.

E[yt − μ] = 0

E(c( 1 − γ
t

1 − γ
) + α

t
∑
j=1

γj−1u2t−j + γ
tσ20 − (yt − μ)

2) = 0

E([c( 1 − γ
t

1 − γ
) + α

t
∑
j=1

γj−1u2t−j + γ
tσ20 − (yt − μ)

2]yt−1) = 0

E([c( 1 − γ
t

1 − γ
) + α

t
∑
j=1

γj−1u2t−j + γ
tσ20 − (yt − μ)

2]yt−2) = 0

E([c( 1 − γ
t

1 − γ
) + α

t
∑
j=1

γj−1u2t−j + γ
tσ20 − (yt − μ)

2]yt−3) = 0.

Then the GMM method using sample moments and an optimal weighting matrix can
be found to find the GMM estimates and a χ21 test of the moments, i. e. test if the
GARCH(1, 1) specification of the moment conditions are consistent with the time se-
ries data. However, finding the GMM estimators byminimizing the test statistic in this
case involves an iterative algorithm that can be unstable. This is especially if γ is large
so that large sample convergence is too slow.

9.6.4 Diagnostic for ARCH-GARCH

It is useful to check if a time series {yt} contains conditional heteroskedasticity in its
residuals.Note thatARCH (q) ismodelledbyE(u2t ) = α0+α1u

2
t−1+α2u

2
t−2+⋅ ⋅ ⋅+αq−1u

2
t−q+1+
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αqu2t−q, assuming E(ut) = 0. We may also write this heuristically as a regression of u2t
on its lags up to lag q, adding a white noise et .

u2t = α0 + α1u
2
t−1 + α2u

2
t−2 + ⋅ ⋅ ⋅ + αq−1u

2
t−q+1 + αqu

2
t−q + et

GARCH(q, p) for p ̸= 0 can also have a representation in terms of an infinite number of
lags in squares of the residuals. We show this for the case of GARCH(1, 1) in Eq. (9.14):

var(ut) = α0 + α1u
2
t−1 + γ1 var(ut−1)

= α0 + α1u
2
t−1 + γ1[α0 + α1u

2
t−2 + γ1 var(ut−2)]

= α0(1 + γ1) + α1(u
2
t−1 + γ1u

2
t−2) + γ

2
1 [α0 + α1u

2
t−3

+ γ1 var(ut−3)]
= α0(1 + γ1 + γ

2
1 + ⋅ ⋅ ⋅) + α1(u

2
t−1 + γ1u

2
t−2 + γ

2
1u

2
t−3 + ⋅ ⋅ ⋅)

The last termon the right-hand side shows an infinite number of lags inu2t−j’s. From the
section on stationarity, we see that the GARCH process can be expanded in a similar
way. Thus, heuristically, a GARCHprocessmay be expressed as follows for an arbitrar-
ily large number of lagsN, where we would set u2t−N−1 equal to some constant. The cj’s
are constants:

u2t = c0 + c1u
2
t−1 + c2u

2
t−2 + ⋅ ⋅ ⋅ + cqu

2
t−q + ⋅ ⋅ ⋅ + cNu

2
t−N + et

It is clear from both the expressions of ARCH and GARCH above that there is autocor-
relations (serial correlations) in the square of the residuals. For ARCH(q), autocorre-
lation in u2t is non-zero up to lag q, and becomes zero after that lag. For GARCH(q, p),
p ̸= 0, autocorrelation in u2t is non-zero for an arbitrarily large number of lags.

Considering Eq. (9.8), suppose we estimate via OLS and then obtain the estimated
residuals:

ût = yt − θ̂ − λ̂xt

Compute time series {û2t }. Then using the Ljung and Box Q-test in Chapter 5, Sec-
tion 5.10, on the û2t and its auto-correlogram, to test if correlations H0 : ρ(1) = ρ(2) =
ρ(3) = ⋅ ⋅ ⋅ = ρ(q) = 0. If H0 is rejected for an auto-correlogram that is significant
out to lag q, then ARCH(q) is plausible. If the correlations do not appear to decay or
disappear, then a GARCH process is likely. We should also follow up with the Ljung
and Box Q-test on

[
ût
√ ̂var(ut)

]
2

as a confirmation, using the squared normalized noises.
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9.7 Applications

We discuss in this section two applications of the maximum likelihood estimation
method. The first is to estimate the time discount factor ρ and the risk aversion-related
parameter γ. For power utility U(Ct) = C

γ
t /γ, the risk aversion coefficient is 1 − γ > 0.

The second is to show how the exchange margin can be set to control for risk using
the GARCH process.

9.7.1 Euler Equation Revisited

In Chapter 8, the stochastic Euler equation for asset pricing under power utility as in
Eq. (8.21) is:

Et[(
Ct+1
Ct
)
γ−1

Rt+1] =
1
ρ

where ρ is the timediscount factor, 1−γ is the constant relative risk aversion coefficient,
Ct is per capita consumption at time t, and Rt+1 is the return of an asset, e. g. a stock
or themarket portfolio, over period (t, t+ 1]. MLmethodwould be used to estimate the
parameters ρ and γ and also test the restriction of the Euler equation.

In using the maximum likelihood method, the idea is to formulate a time series
of a RV with a density function that is parameterized by some density parameters as
well as the parameters of interest, i. e. γ and ρ.

For more convenient exposition, let Gt+1 = Ct+1/Ct, gt+1 = lnGt+1, and rt+1 =
lnRt+1. Then the Euler equation can be expressed as:

Et[exp((γ − 1)gt+1 + rt+1)] = exp(− ln ρ)

Assume gt+1 and rt+1 to be normally distributed conditional on information at t that
are restricted to lagged values of gt and rt only. Then,

exp[Et((γ − 1)gt+1 + rt+1) +
1
2
vart((γ − 1)gt+1 + rt+1)] = exp(− ln ρ)

Or,

Et((γ − 1)gt+1 + rt+1) +
1
2
vart((γ − 1)gt+1 + rt+1) = − ln ρ

If we further assume vart((γ − 1)gt+1 + rt+1) = σ2, i. e. a constant ∀t, then

Et((γ − 1)gt+1 + rt+1) + ln ρ +
1
2
σ2 = 0

Or,

 EBSCOhost - printed on 2/8/2023 6:26 PM via . All use subject to https://www.ebsco.com/terms-of-use



9.7 Applications | 275

Et(rt+1) = −(γ − 1)Et(gt+1) − ln ρ −
1
2
σ2

We can use the above information about the linkage between the conditional expec-
tations of return and consumption growth,5 but to simplify we use the unconditional
expectations to perform the MLE, i. e.,

yt = (γ − 1)gt+1 + rt+1 + ln ρ +
1
2
σ2

is normally distributed with mean zero and variance σ2, i. e. N(0, σ2).
Then the density function of yt is

f (yt) = (2π)
−1/2(σ2)−1/2e−[(γ−1)gt+1+rt+1+ln ρ+

1
2 σ

2]/2σ2

The likelihood function of sample {y1, y2, . . . , yT } is

L(γ, ρ, σ2) =
T
∏
t=1

f (yt ; γ, ρ, σ
2)

The log likelihood function is:

ln L(γ, ρ, σ2) = −T
2
ln(2π) − T

2
ln σ2

−
1
2

T
∑
t=1

[(γ − 1)gt+1 + rt+1 + ln ρ +
1
2σ

2]2

σ2
(9.23)

We can then solve for the maximum or first order conditions in Eq. (9.23) to derive
the ML estimators Λ̂ML ≡ (γ̂ML, ρ̂ML, σ̂ML)T . We obtain the asymptotically efficient co-
variance matrix of the estimators as ( 1T ∑

T
t=1
𝜕 ln L
𝜕Λ
𝜕 ln L
𝜕ΛT )
−1 = I1(Θ)−1. We can then apply

the asymptotic likelihood ratio test discussed in Section 9.4, T(Λ̂ML − Θ)T I1(Θ)(Λ̂ML −
Θ) ∼ χ23 where the null hypothesis is H0 : Λ = Θ.

9.7.2 Volatility Clustering and Exchange Margin Setting

Trades at Futures and Options Exchanges are transacted at a fraction of the contract
price due to leverage. A dailymargin account for the trade is required to bemaintained
at the Exchange so that if the derivative price should change to the detriment of the
trader, the deposit in his/her margin account could be withdrawn to cover the mark-
to-market loss before the Exchange is able to enforce the trader to put more money

5 For a more general framework, see Lars Peter Hansen and Kenneth J. Singleton (1983), Stochastic
consumption, risk aversion, and the temporal behavior of asset returns, Journal of Political Economy,
91(2), 249–265.
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into the margin account. Hence Exchanges would on a daily basis, or sometimes on
a more frequent basis if the market is in turmoil, announce to traders the required
margins for each type of derivative contract on a per contract basis. The margins are
required for both long and short positions as losses could be incurred either way. The
Standard Portfolio Analysis of Risk (SPAN) system developed by CME has been used
bymany exchanges worldwide to perform their dailymargin computations. The SPAN
system basically lists an array of margin numbers dependent on scenarios of next day
price level or volatility changes.

However, the SPAN estimates may not explicitly take into account the intraday
derivative price change patterns nor take into account observable situation variables
specific to the local bourse such as trading volumes or frequencies of trades. Since
there is plenty of evidence of volatility clustering and contagion effects when market
prices moved violently over a prolonged period of several days, modelling volatility
as a dynamic process such as in GARCH (including ARCH) is useful for the purpose of
estimating risk and developing margins for risk control at the Exchange. Econometric
methods such as MLE can then be used to estimate the parameters driving the GARCH
process. These estimates can then be used to forecast the volatility for the next day in
order to fix the margins.6

The optimal setting of margins is closely related to the concept of Value-at-Risk
(VaR).7 Given a historical time series of daily futures price {Ft} and its changes {ΔFt},
the probability density function of the daily futures “return” or rate of change may be
assumed to be normal, so ΔFt+1/Ft ∼ N(0, σ2t+1), and is depicted as follows in Figure 9.5.

Figure 9.5: Value-at-Risk.

Strictly speaking, ΔFt+1/Ft (notation of ΔFt+1 here denotes change starting at Ft to Ft+1)
is bounded below by -1 since Ft+1 cannot go below zero. Amore stringent specification
would be ln(Ft+1/Ft) ∼ N(0, σ2t+1) but we shall illustrate using ΔFt+1/Ft .

6 Perhaps one of the earliest applications of GARCH technology to Exchange riskmargin setting could
be found in Kian Guan Lim (1996), Weekly volatility study of SIMEX Nikkei 225 futures contracts using
GARCH methodology, Technical Report, Singapore: SIMEX, December, 15 pp.
7 See J. Philippe, (2007), Value at Risk, Third edition, McGraw-Hill.
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In Figure 9.5, the futures price at end of the previous trading day close is F0. The
uncertain or random next day price is F1. The change is ΔF1 = F1 − F0 which we more
conveniently denote as ΔF.

For a normal distribution ΔF/F0, there is 1% probability or chance that ΔF/F0 <
−2.33σ1 where σ1 denoted by σ is anticipated volatility of next day futures “return”.
See shaded area in Figure 9.5. At 99% confidence level (or 99% probability), loss
ΔF = F1 − F0 would be at most −2.33σF0. This is the daily Value-at-Risk or VaR that
is the maximum loss given the 99% confidence level. The specified confidence level
is important, as higher confidence levels would imply possibly larger losses.8

Suppose for the following day, ΔF/F0 ∼ N(0, σ2), and volatility is forecast as σ̂
in order to estimate the VaR of a long N225 futures contract position. Daily VaR at
99% confidence level is such that Prob(F1 − F0 < −2.33σ̂F0) = 1% or Prob(F1 − F0 ≥
−2.33σ̂F0) = 99%. The VaR is 2.33σ̂F0, assuming Ft index is denominated in $. Note
VaR defines loss as a positive term.

Each day t before the next trading day t + 1, an Exchange has to decide the level
of maintenance margin per contract, $xt, so that within the next day, chances of the
Exchange taking risk of a loss before top-up by the trader, i. e. when event {Ft+1 − Ft <
−xt} or loss exceeding maintenance margin happens, is 1% or less. Then, xt is set by
the Exchange to be large enough, i. e. set xt ≥ 2.33σ̂t+1Ft .

Thus at t, forecasting or estimating σt+1 is an important task for setting Exchange
maintenancemargin for the following day t+1.We canmodel the conditional variance
of daily rates of the futures price change ΔFt+1/Ft as a GARCH(1, 1) process. Assume
E[ΔFt+1/Ft] = 0 over a day.

Let ΔFt+1/Ft = ut+1, ut+1 = et+1σt+1, and

σ2t+1 = α0 + α1u
2
t + γ1σ

2
t

where et+1 ∼ N(0, 1). We estimate the parameters {α0, α1, γ1} using the MLEmethod for
GARCH(1, 1) in Section 9.6.2, and then use them to forecast the following day’s volatil-
ity var(ut+1) or σ2t+1 given observed ut, ut−1, ut−2, and so on.

Further Reading
Campbell, J. Y., Lo, A.W. and A. C. MacKinlay (1997), The Econometrics of Financial Markets,

Princeton University Press.
Tsay, R. S. (2010), Analysis of Financial Time Series, Third edition, John Wiley & Sons.

8 For related bank risk control, it is usual to estimate daily 95%, 97.5%, or 99% confidence level
value-at-risk, sometimes doing this several times in a day or at least at the close of the trading day.
Sometimes a 10-day 95% confidence level VaR is also used.
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10 Unit Roots and Cointegration

In this chapter, we introduce the important topic of non-stationary process and high-
light a major area of econometric research in the last three decades or more on non-
stationary process and cointegration. This research has been important in shedding
light on some spurious regression results if the underlying process dynamics is not
properly understood or investigated. As an application example, we consider pur-
chasing power parity that is one of the tools of determining long-run exchange rate
levels.

10.1 Non-Stationary Process

We already have some ideas about stationary stochastic processes in Chapter 5. A ran-
dom variable that is at least weakly stationary will have constant unconditional mean
and unconditional variance as it moves through time. This means that any deviation
from some mean level is a just a random draw and has no permanent consequence.
If a rate of return goes up this period, at some point in the near enough future, it will
come down. This is unlike prices where the price level can continue to increase or de-
crease without sign of reverting back to old levels. It is in this context that we consider
non-stationary processes, especially in relation to security price levels, index levels,
commodity prices, and so on.

Consider the process Yt = θ + λYt−1 + εt, θ ̸= 0, where εt is a covariance-stationary
process, i. e. E(εt) = 0 and var(εt) = σ2ε , a constant. cov(εt , εt−k) is not necessarily
zero for any k ̸= 0, but is a function of k only. However, as in Chapter 8, for sam-
ple moments to converge to population moments, we require ergodicity of εt in addi-
tion to stationarity. Stronger conditions would be zero autocorrelated identically dis-
tributed εt (weak-form white noise). Even stronger condition would be that εt is i. i. d.
Further, cov(Yt−1, εt) = 0.Yt is covariance stationary provided |λ| < 1. However, if λ = 1,
then in this case,

Yt = θ + Yt−1 + εt (10.1)

Or (1 − B)Yt = θ + εt, so (1 − B) = 0 yields a unit root solution. Thus, Yt is said to
contain a unit root and {Yt} is called a unit root or I(1) process. It is also called a dif-
ference stationary process since ΔYt is stationary with a general stationary noise that
needs not be i.i.d but which should have ergodicity. Some literature defines unit root
process such that εt is i. i. d. (We term this latter case as strong-form white noise.) In-
dependence in εt no doubt buys much convenience as the convergence of the sample
mean of i. i. d. zero mean RVs to zero is quicker and does not need qualifying condi-
tions on stationarity and ergodicity in time series. In the special case if εt is i. i. d. and
also if θ = 0, then Yt is also called a random walk process.

https://doi.org/10.1515/9783110673951-010
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10.1 Non-Stationary Process | 279

For the general stationary-ergodic εt, by repeated substitution in Eq. (10.1):

Yt = θ + (θ + Yt−2 + εt−1) + εt
= 2θ + (θ + Yt−3 + εt−2) + εt + εt−1
...
= tθ + Y0 + εt + εt−1 + εt−2 + ⋅ ⋅ ⋅ + ε2 + ε1

Thus, we see that a unit root process in Yt leads to Yt having a time trend tθ as well as
a stochastic trend ∑t−1j=0 εt−j. Note that for the unit root process in Yt, its starting value
Y0 is still a random variable, although Y0’s variance may be very small. Clearly, if

E(Y0) = μ0,
and var(Y0) = σ

2
0,

then E(Yt) = μ0 + tθ ̸= μ0

provided θ ̸= 0.
Hence, the mean of Yt increases (decreases) with time according to drift θ > (<) 0.

Also,

var(Yt) = σ
2
0 + var[

t−1
∑
j=0

εt−j] ̸= σ
2
0

The variance of Yt changes due to the presence of a stochastic trend in the unit root
process. For stationary-ergodic εt (also, the less general case of εt being white noise),
var(Yt) is increasing in t. Therefore, {Yt} is not covariance-stationary, or we shall sim-
ply call it non-stationary.

Suppose RV Yt is trend stationary, i. e. stationary about a deterministic time trend.
By definition, a trend stationary process , unlike a unit root process, does not have a
stochastic trend, and thus does not display changing variance over time, although its
mean tθ does change over time. The unit root process, however, possesses both a time
trend as in the trend stationary process, and also an additional stochastic trend. The
following is a trend stationary process fluctuating randomly about the deterministic
trend δ + tθ.

Yt = tθ + δ + ηt (10.2)

where t is time, θ and δ are constants, andηt is a stationary-ergodic RVwith zeromean.
var(Yt) = var(ηt) = σ2η.

Then

Yt−1 = (t − 1)θ + δ + ηt−1
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and so

ΔYt = Yt − Yt−1 = θ + Δηt

where we apply the notation ΔYt to denote change of Yt from Yt−1. This notation is
different from the notion of infinitesimal change dYt−1 at t − 1.

Thus

Yt = Yt−1 + θ + Δηt (10.3)

where var(Δηt) = var(ηt − ηt−1). The latter is 2σ2η if we had assumed ηt is i. i. d.
Equation (10.3)may look like theunit root process in Eq. (10.1). However, it is really

not so1 because the stationary noise term Δηt carries a special structure (thus, we do
not call this a difference stationary process). If we iterate the process through time,

Yt = θ + (θ + Yt−2 + Δηt−1) + Δηt
= 2θ + (θ + Yt−3 + Δηt−2) + Δηt−1 + Δηt
...
= tθ + Y0 + Δη1 + Δη2 + ⋅ ⋅ ⋅ + Δηt−2 + Δηt−1 + Δηt
= tθ + Y0 + ηt − η0

where var(ηt − η0) = 2σ2η if ηt is i. i. d. Otherwise this quantity would be finite, that is
different from the infinitely increasing variance of the stochastic trend in a unit root
process.

Here, we may treat the starting value Y0 − η0 as the constant δ. We thus see that
for a trend stationary process, the variance of Yt stays the same even as t increases for
i. i. d. ηt . There is no stochastic trend, and the variance of Yt does not change through
time for i. i. d. ηt . The big difference is that the noise at the end of a trend stationary
process in Eq. (10.3) Δηt does not add up variance as fast as the noise in a unit root
process εt .

Let us recall. A unit root process as in Eq. (10.1) contains a deterministic time trend
plus a stochastic trend. In the special case when θ = 0 in Eq. (10.1), then the unit root
process does not have a time trend. The unit root process has increasing variances
over time. A process with just deterministic time trend plus a stationary noise, but
not a stochastic trend, is called a trend stationary process. Both a trend stationary
process and a unit root process can display similar increasing trend (expected values
or means) if θ > 0, but the unit root process will display increasing volatility over time

1 One of the earliest and exciting papers to point out this difference is C. Nelson and C. Plosser (1982),
Trends and random walks in macroeconomic time series: Some evidence and implications, Journal of
Monetary Economics, 10, 130–162.
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relative to the trend stationary process. This distinction is important to differentiate
the two.

More generally, Eq. (10.1) can be represented byARIMA(p, 1, q)where p and q need
not be zero for a unit root process. More general unit root processes or integrated order
d processes can be modeled by ARIMA(p, d, q), for d > 1.

In Fig. 10.1, we show how the three different processes: a stationary process,
a trend stationary process, and a unit root process, would have looked like. Clearly
the unit root process can produce large deviations away from the mean.

Figure 10.1: Time Series Graphs of Stochastic Processes.

10.2 Spurious Regression

Suppose

Yt = θ + Yt−1 + et , et ∼ stationary-ergodic with mean 0
Zt = μ + Zt−1 + ut , ut ∼ stationary-ergodic with mean 0

and et and ut are independent of each other. They are also not correlatedwith Yt−1 and
Zt−1. {Yt} and {Zt} are unit root processes with drifts θ and μ, respectively. Then,

Yt = tθ + Y0 + (et + et−1 + ⋅ ⋅ ⋅ + e1)
Zt = tμ + Z0 + (ut + ut−1 + ⋅ ⋅ ⋅ + u1)

showing their deterministic aswell as stochastic trends. LetY0 andZ0 be independent.
Then,
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cov(Yt , Zt) = cov(Y0, Z0) + cov(
t
∑
j=1

ej,
t
∑
k=1

uk) = 0

since {et} and {ut} are stochastically independent.
Now, Yt and Zt are independent. Suppose we set up a linear regression of Yt on Zt,

with

Yt = a + bZt + ηt (10.4)

ηt is independent of Zt, and is itself a unit root process, i. e.,

ηt = ηt−1 + ϵt

with stationary-ergodic ϵt, E(ϵt) = 0, and var(ϵt) <∞.
Since cov(Yt , Zt) = 0, the slope b = cov(Yt , Zt)/ var(Zt) = 0. However, if we expand

the regression into its time trend and additive stochastic component, we obtain:

tθ + Y0 +
t−1
∑
j=0

et−j = a + b(tμ + Z0 +
t−1
∑
j=0

ut−j) + (η0 +
t−1
∑
j=0

ϵt−j)

Divide through by t

θ + Y0
t
+
1
t

t−1
∑
j=0

et−j =
a
t
+ bμ + bZ0

t
+ b 1

t

t−1
∑
j=0

ut−j +
η0
t
+
1
t

t−1
∑
j=0

ϵt−j

Now var(Y0/t), var(Z0/t), and var(η0/t) all converge to zero as t ↑ ∞. Thus, as
t ↑∞, the terms Y0/t, Z0/t, and η0/t should approach zero in mean square sense.

As t increases, the time-averages of the noise terms in et, ut, and ϵt also converge
to zeros via some version of the law of large numbers due to their stationarity and er-
godicity. If these residual errors are (weak-form) white noises, then the weak law of
large numbers explained in Chapter 5 implies they would converge to zero in proba-
bility. If these residual errors are i. i. d. or strong-formwhite noises, then the strong law
of large numbers explained in Chapter 5 implies they would converge to zero almost
surely. We are then left with the following.

θ ≈ bμ, so b ≈ θ
μ
̸= 0

Hence, the regression in Eq. (10.4) between two independent unit root processes pro-
duces a slope coefficient b that is non-zero! This is what is termed a spurious2 (seem-
ingly true yet false) regression result: b ̸= 0 is obtained when theoretically b = 0.

2 The spurious regressionproblemwaspointed out in C.W. J. Granger andP.Newbold (1974), Spurious
Regressions in Econometrics, Journal of Econometrics 2, 111–120.
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More specifically, regressionmethod suchasOLS,will provide anon-zero estimate
of b that is spurious. The point to note is that when we perform OLS regression of a
unit root process on another independent unit root process, instead of obtaining the
expected zero slope, we are likely to end up with a spurious non-zero slope estimate.
In other words, under OLS, the sampling estimate of cov(Yt , Zt) will be spurious and
not zero because Yt and Zt are unit root processes.

Only when we perform the OLS regression using stationary first differences, i. e.,

ΔYt = θ + et on ΔZt = μ + ut

or

ΔYt = a + bΔZt + ξt

where ξt is stationary-ergodic, then b = cov(et , ut)/ var(ut) = 0. Thus, we obtain OLS
estimator b̂ that converges to b = 0.

Spurious regression also occurs to Yt and Zt if they are trend stationary instead of
being unit root processes. Consider

Yt = tθ + δ + ηt
Zt = tμ + γ + ξt

where ηt and ξt are mean zero stationary-ergodic RVs. We can also assume they are
white noises. The noises ηt and ξt have zero correlation.

Even though Yt and Zt are not correlated,

Yt = δ + θ[
Zt − γ − ξt

μ
] + ηt

= (δ − θγ
μ
) +

θ
μ
Zt + (ηt −

θ
μ
ξt)

So, OLS regression of Yt on Zt will give a spurious estimate of θ/μ ̸= 0.
It suggests that the spurious non-zero correlation between Yt and Zt (even when

theyare independent processes) comes from their deterministic trend, not the stochas-
tic trend.

Suppose

Zt = μ + Zt−1 + ut , ut ∼ i. i. d. with mean 0
wt = γ + wt−1 + ξt , ξt ∼ i. i. d. with mean 0

are independent unit root processes. Then, in general, a linear combination of the unit
root processes Zt and wt, Yt, is also a unit root process as shown below.
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Yt = c + dZt + wt

= (c + γ) + dμ + dZt−1 + dut + wt−1 + ξt
= (γ + dμ) + Yt−1 + (dut + ξt)

is also a unit root process where c, d ̸= 0. Here, Yt is correlated with Zt due to Yt being
a linear combination involving Zt .

If we perform OLS on Yt = c + dZt + wt , d ̸= 0, the effects are as follows. The
OLS estimate of d will involve cov(Yt , Zt) = cov(c + dZt + wt , Zt) = d var(Zt) + cov(c +
wt , Zt). But the latter is a covariance of two independent unit root processes each with
adeterministic trend (anda stochastic trendaswell), that produces spurious sampling
estimate that is not zero. Thus, the sampling estimate of cov(Yt , Zt)underOLSwill also
be spurious regardless of the value of d.

At this point, we can almost see whenOLS on two related unit root processes such
as Yt and Zt can or cannot be feasible. It has to do with the covariance of the explana-
tory variable and the residual variable, cov(wt , Zt). If both the latter are unit root pro-
cesses, then there is spuriousness.

In summary, suppose unit root processes Yt and Zt are truly related as follows:
Yt = c + dZt + wt, where disturbance wt has a unit root and is not correlated with Zt .
Then, it will not be appropriate to perform OLS of Yt on Zt since wt is not stationary.
The OLS result will be spurious.

Suppose instead, wt is a stationary process, and not a unit root process, indepen-
dent of Zt . Then, the sample estimate of cov(wt , Zt) = 0. This can be seen as follows.

cov(wt , tμ + Z0 + ut + ut−1 + ⋅ ⋅ ⋅ + u1) = 0

since wt is independent of Z0 and all ut ’s. In this case, the OLS estimate of d con-
verges correctly to cov(Yt , Zt)/ var(Zt). In the latter, the regression is not spurious only
if the disturbance is stationary and not a unit root process.We shall consider thismore
closely later on the topic of cointegration.

10.3 Unit Root Test

When a time series or stochastic process in time is to be tested for a unit root, the test
statistic based on the null hypothesis of unit root can have a more general unit root
process as follows. This is on the more general modeling of the residual noise.

Suppose

Yt = Yt−1 + εt , εt ∼ stationary (10.5)

and εt is modeled as AR(k) in ΔYt

εt = β1ΔYt−1 + β2ΔYt−2 + ⋅ ⋅ ⋅ + βkΔYt−k + et

 EBSCOhost - printed on 2/8/2023 6:26 PM via . All use subject to https://www.ebsco.com/terms-of-use



10.3 Unit Root Test | 285

where et is i. i. d. The first difference ΔYt ≡ Yt − Yt−1 = εt is stationary. In this case, Yt
is said to be Integrated order 1 or I(1) process with zero drift. The first difference ΔYt is
integrated order 0 or I(0) process and is stationary.

Suppose

Yt = δ + Yt−1 + εt , εt ∼ stationary (10.6)

and εt is modeled as AR(k) in ΔYt

εt = β1ΔYt−1 + β2ΔYt−2 + ⋅ ⋅ ⋅ + βkΔYt−k + et

where et is i. i. d. Then first difference ΔYt ≡ Yt −Yt−1 = δ+ εt is stationary. In this case,
Yt is said to be I(1) process with drift δ ̸= 0.

Suppose

Yt = δ + θt + Yt−1 + εt , εt ∼ stationary (10.7)

and εt is modeled as AR(k) in ΔYt

εt = β1ΔYt−1 + β2ΔYt−2 + ⋅ ⋅ ⋅ + βkΔYt−k + et

where et is i. i. d. Then first difference ΔYt = δ + θt + εt is trend-stationary. In this case,
Yt is said to be I(1) process with drift δ ̸= 0 and trend slope θ ̸= 0.

The above Eqs. (10.5), (10.6), (10.7) are all unit root processes. The alternative hy-
pothesized stationary autoregressive processes are, respectively,

Yt = λYt−1 + εt (|λ| < 1) (10.8)
Yt = δ + λYt−1 + εt (|λ| < 1) (10.9)
Yt = δ + θt + λYt−1 + εt (|λ| < 1) (10.10)

Howdowe test for unit root processes (10.5), (10.6), or (10.7)? Using the alternative
specifications in Eqs. (10.8), (10.9), and (10.10), we can write:

ΔYt = γYt−1 + εt (10.11)
ΔYt = δ + γYt−1 + εt (10.12)
ΔYt = δ + θt + γYt−1 + εt (10.13)

where γ = λ − 1. For I(1) processes in Eqs. (10.5), (10.6), and (10.7), however, γ ≡
(λ − 1) = 0. Thus, we can test the null hypothesis of a unit root process by testing
H0 : γ = 0. The alternative hypothesis is that the process is stationary, i. e. HA : γ < 0.
The theory of unit root testing ismore popularly developed for the case of unit root null
versus stationary alternative. The case of testing null of stationarity (level stationary
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or more generally trend stationary) against the alternative of a unit root can be found
in KPSS tests.3

In practice, before any test is carried out, specifications (10.11), (10.12), or (10.13)
are generalized to include lags of ΔYt so that stationary-ergodic εt is pre-whitened to
leave a residual error et that is mean zero i. i. d. or strong-formwhite noise.We can use
Akaike Information Criterion (AIC) to choose the number of lags k. More rigorously,
we also follow up to apply Ljung–Box test to ensure the remaining error is serially un-
correlated. (If the error is asymptotically normal, then this also implies independence
or i. i. d. et .)

Equations (10.11), (10.12), and (10.13) in general can then be expressed as:

ΔYt = γYt−1 + β1ΔYt−1 + β2ΔYt−2 + ⋅ ⋅ ⋅ + βkΔYt−k + et (10.14)

(no constant)

ΔYt = δ + γYt−1 +
k
∑
j=1

βjΔYt−j + et (10.15)

(there is constant)

ΔYt = δ + θt + γYt−1 +
k
∑
j=1

βjΔYt−j + et (10.16)

(there is constant and time trend) where et is i. i. d.
To test if Eq. (10.14), (10.15), or (10.16) contains a unit root, i. e., Yt is a unit root

process, we can run OLS on Eq. (10.14), (10.15), or (10.16) for some k. If γ̂ is signifi-
cantly < 0, then we reject H0 of unit root. If not, then there is evidence of a unit root
process. Tests using the specifications with lagged ΔYt as explanatory variables for
pre-whitening are also called Augmented Dickey-Fuller (ADF) tests.

Next, we compute

x = γ̂OLS
OLS s. e. (γ̂OLS)

This is the usual formula for t-value function, but in this case, it is not distributed as
Student’s tT−n statistic where T is the sample size and n is the number of parameters,
i. e.n = k+1 for Eq. (10.14),n = k+2 for Eq. (10.15), andn = k+3 for Eq. (10.16). It is a non-
standardnondegenerate distribution. Theother parameters of constant and slopemay
occur in the computation of the distribution but are themselves not of interest; they
are sometimes termed nuisance parameters .

3 See D. Kwiatkowski, P. C. B. Phillips, P. Schmidt, and Y. Shin (1992), Testing the null hypothesis of
stationarity against the alternative of a unit root, Journal of Econometrics, 54, 159–178.
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Table 10.1: Critical Values for Dickey-Fuller t-Test.

Sample Size p-Values (probability of a smaller test value)
T 0.01 0.025 0.05 0.10

Case: No constant
Eq. (10.14)

25 −2.65 −2.26 −1.95 −1.60
50 −2.62 −2.25 −1.95 −1.61

100 −2.60 −2.24 −1.95 −1.61
250 −2.58 −2.24 −1.95 −1.62
500 −2.58 −2.23 −1.95 −1.62
∞ −2.58 −2.23 −1.95 −1.62

Case: Constant
Eq. (10.15)

25 −3.75 −3.33 −2.99 −2.64
50 −3.59 −3.23 −2.93 −2.60

100 −3.50 −3.17 −2.90 −2.59
250 −3.45 −3.14 −2.88 −2.58
500 −3.44 −3.13 −2.87 −2.57
∞ −3.42 −3.12 −2.86 −2.57

Case: Constant and
time trend
Eq. (10.16)

25 −4.38 −3.95 −3.60 −3.24
50 −4.16 −3.80 −3.50 −3.18

100 −4.05 −3.73 −3.45 −3.15
250 −3.98 −3.69 −3.42 −3.13
500 −3.97 −3.67 −3.42 −3.13
∞ −3.96 −3.67 −3.41 −3.13

Source: W. Fuller, “Introduction to Statistical Time Series,” Second edition, New York: Wiley, 1996.

For a correctly specified k in Eq. (10.14), (10.15), or (10.16), the finite probability distri-
bution of the x-statistic (independent of k) is found by simulations. This is reported
in studies by Dickey and Fuller.4 For some sample sizes, e. g., T = 25, 50, 100, 250, 500
etc., the critical values of x at probability levels 1%, 2.5%, 5%, 10% etc., i. e., P(x ≤
critical value) = probability levels, are reported in tables.5 We therefore use the up-
dated Dickey-Fuller (DF) critical values for inference to test the null hypothesis (Ta-
ble 10.1).

From theDickey-Fuller table, if sample sizeT = 250, and the computed x− statistic
in the case of no constant is less than the critical value of −2.58, then we can reject
H0 : γ = 0 (or λ = 1), i. e., there is no unit root at 1% significance level. From the
Dickey-Fuller table, if sample size T = 250, and the computed x− statistic in the case
of a constant is less than the critical value of −2.88 but greater than −3.14, then we can

4 See D. Dickey (1976), Estimation and Hypothesis Testing in Nonstationary Time Series, PhD Dis-
sertation, Iowa State University andW. Fuller (1976), Introduction to Statistical Time Series, New York:
Wiley. See also an early but important paper on such statistics, D. Dickey andW. Fuller (1979), Distribu-
tion of the estimators for autoregressive time series with a unit root, Journal of the American Statistical
Association, 74, 427–431.
5 See also updated distribution table inW. Fuller (1996), Introduction to Statistical Time Series, Second
Edition, New York: Wiley.

 EBSCOhost - printed on 2/8/2023 6:26 PM via . All use subject to https://www.ebsco.com/terms-of-use



288 | 10 Unit Roots and Cointegration

rejectH0 : γ = 0 (or λ = 1), i. e., there is no unit root at 5% significance level but cannot
reject at 2.5% significance level. From the Dickey-Fuller table, if sample size T = 250,
and the computed x− statistic in the case of constant and time trend is between −3.42
and −3.13, then we cannot reject H0 : γ = 0 (or λ = 1), i. e., cannot reject null of unit
root at 5% significance level. It is seen that the more negative is the x− test statistic
for γ̂OLS, the higher is the probability that the alternative of stationarity is correct.

As another check on whether a process is a unit root process, the autocorrelation
function (ACF) of the process is computed. A unit root process will typically show a
highly persistentACF, i. e., onewhere autocorrelationdecays very slowlywith increase
in the lags.

10.4 Test-Statistic Distribution

Details of the unit root test statistic distribution are beyond the scope of this book, but
a sketch of the theory is provided here.6

Suppose we ignore the augmentation by lagged ΔYt−j’s and consider that the true
data generating process (DGP) of Yt consistent with a unit root process is as follows.

Yt = et + et−1 + et−2 + ⋅ ⋅ ⋅ + e2 + e1 + Y0 (10.17)

where we fix Y0 ≡ 0. Then E(Yt) = 0,∀t. This DGP implies the regression equation

Yt = Yt−1 + et

which is the no constant case in Eq. (10.5). This can be re-expressed as

ΔYt = γYt−1 + et (10.18)

for the testable hypothesis of a unit root process under the null H0 : γ = 0. This is
similar to Eq. (10.11) except that the noise et is specialized to i. i. d.

OLS regression in Eq. (10.18) with no constant of regression yields

γ̂OLS =
∑Tt=1 ΔYtYt−1
∑Tt=1 Y2

t−1

Under the DGP and null hypothesis of unit root process, H0 : γ = 0, Eq. (10.17) shows
that ΔYt = et is an I(0), specifically an i. i. d. process. In the DGP in Eq. (10.17), Yt−1 =

6 For advanced reading, one can consult P. C. B. Phillips (1987), Time series regression with a unit
root, Econometrica, 55, 227–301, P. C. B. Phillips (2002), New unit root asymptotics in the presence of
deterministic trends, Journal of Econometrics 111, 323–353, and P. C. B. Phillips and S. Durlauf (1986),
Multiple time series regression with integrated processes, Review of Economic Studies, 53, 473–496.
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∑t−1t=1 et = Zt−1, an I(1) process without drift or a stochastic trend. Under H0, the OLS
estimate can be written as

γ̂OLS =
∑Tt=1 etZt−1
∑Tt=1 Z2t−1

It can be shown that T−1∑Tt=1 etZt−1 converges in distribution to
1
2σ

2
e(W(1)

2−1), and

T−2∑Tt=1 Z
2
t−1

d
→ σ2e ∫

1
0 W(r)

2dr whereW(r) is Wiener process or Brownian motion such
thatW(r) ∼ N(0, r) for r within the unit interval.

Hence,

Tγ̂OLS
d
→

1
2 (W(1)

2 − 1)

∫
1
0 W(r)

2dr

Tγ̂OLS converges to the nondegenerate distribution at rate T instead of the standard
√T in asymptotic theory. This also means γ̂OLS converges under H0 at a faster rate T
than√T since the variance of γ̂OLS becomes smaller much faster as T increases.

The standard error of γ̂OLS is σe/√∑
T
t=1 Y2

t−1. Hence, the x− statistic is

∑Tt=1 etZt−1
σe√∑

T
t=1 Z2t−1

d
→

1
2 (W(1)

2 − 1)

√∫
1
0 W(r)

2dr

The limiting distribution on the RHS can be numerically evaluated. For finite sample,
the distribution of the x-statistic can also be found via Monte Carlo simulation. These
form the Dickey-Fuller test statistic distributions.

For OLS regression ΔYt = δ+γYt−1+et similar to Eq. (10.12) except noise et is i. i. d.,
the limiting distribution of the x-statistic for γ̂OLS is

1
2 ([W

μ(1)]2 − [Wμ(0)]2 − 1)

√∫
1
0 W

μ(r)2dr

whereWμ(r) = W(r) − ∫10 W(r) dr is a de-meaned Wiener process, i. e. ∫10 W
μ(r) dr = 0.

Note that the asymptotic or limiting distribution in the case of a constant δ ̸= 0 is
different from the case of no constant, but is itself not dependent on the value of δ
that is a nuisance parameter here.

For OLS regression ΔYt = δ + θt + γYt−1 + et similar to Eq. (10.13) except noise et is
i. i. d., the limiting distribution of the x-statistic for γ̂OLS is

1
2 ([W

τ(1)]2 − [Wτ(0)]2 − 1)

√∫
1
0 W

τ(r)2dr
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where Wτ(r) = W(r) − ∫10(4 − 6s)W(s)ds − r ∫
1
0(12s − 6)W(s)ds is a de-meaned and

detrendedWiener process. Note that the asymptotic or limiting distribution in the case
of a constants δ ̸= 0, θ ̸= 0 is different from the case of no constant and the case
of a constant, but is itself not dependent on the value of δ and θ that are nuisance
parameters here.

When we consider the cases of Eqs. (10.11), (10.12), and (10.13) with the more gen-
eral εt that is AR(k) that can also be equivalent to an ARMA(p,q) process, the possi-
bility of augmented testing arises. To show this, we make use of the Beveridge-Nelson
decomposition7 that provides a neat way of characterizing an I(1) process.

Basically, the Beveridge-Nelson decomposition informs that a general I(1) pro-
cess with a stationary ARMA(p, q) noise may be represented equivalently as constant
(or initial condition) plus a linear time-trend plus an I(1) process, that is a zero drift
stochastic trend, plus a stationary process ηt .

Suppose

Yt = Yt−1 + f (t) + ut (10.19)

where ut is ARMA(p, q), i. e., not a white noise, and f (t) is a deterministic function of
t that includes a constant. Let ut = ∑

∞
j=0 ψjξt−j where ξt is i. i. d. (strong-form white

noise) with mean zero and variance σ2ξ . Expanding series Yt in Eq. (10.19), we obtain

Yt =
t
∑
t=1

f (t) + ut + ut−1 + ut−2 + ⋅ ⋅ ⋅ + u1 + Y0 (10.20)

Assume Y0 is given. Consider the sum of series

u1 + u2 + ut−2 + ⋅ ⋅ ⋅ + ut =
∞

∑
j=0

ψjξ1−j +
∞

∑
j=0

ψjξ2−j + ⋅ ⋅ ⋅ +
∞

∑
j=0

ψjξt−j

This sum can also be expressed as

∞

∑
j=0

ψj(ξ1 + ⋅ ⋅ ⋅ + ξt) + ηt − η0

where ηt = ∑
∞
j=0 ajξt−j and aj = −(ψj+1 + ψj+2 + ⋅ ⋅ ⋅). Now to ensure ηt has finite vari-

ance, so that it is well defined in terms of ajξk ’s, we require ∑
∞
j=0 a

2
j < ∞. A sufficient

condition is∑∞j=0 |aj| <∞ since the latter implies

7 See S. Beveridge and C. R. Nelson (1981), A new approach to the decomposition of economic time
series into permanent, and transitory componentswith particular attention to themeasurement of the
business cycle, Journal of Monetary Economics, 7, 151–174.
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(
∞

∑
j=0
|aj|)

2

<∞ ⇒
∞

∑
j=0
|aj|

2 <∞

ηt can also be expressed in terms of ψjξk ’s as ∑
∞
j=0 −(ψj+1 + ψj+2 + ⋅ ⋅ ⋅)ξt−j = −ψ1ξt −

ψ2(ξt + ξt−1) −ψ3(ξt + ξt−1 + ξt−2) + ⋅ ⋅ ⋅. For finite variance of ηt, a sufficient condition is
∑∞j=0 j|ψj| <∞.

Hence

u1 + u2 + ut−2 + ⋅ ⋅ ⋅ + ut =
∞

∑
j=0

ψj(ξ1 + ⋅ ⋅ ⋅ + ξt) + ηt − η0 (10.21)

Equation (10.21) can be verified by expanding the LHS and RHS in terms of ψjξk ’s and
seeing that the expansions match.

Now let Zt = ∑
∞
j=0 ψj(ξ1 + ⋅ ⋅ ⋅ + ξt). We can see that

Zt = Zt−1 + (
∞

∑
j=0

ψj)ξt (10.22)

hence Zt is an I(1) process with zero drift and i. i. d. noise term (∑
∞
j=0 ψj)ξt . Zt is a zero

drift stochastic trend.
Thus, Eq. (10.20) can be re-expressed as

Yt =
t
∑
t=1

f (t) + Zt + ηt + (Y0 − η0) (10.23)

where Zt is I(1) process with no drift (a stochastic trend), ηt is a stationary process,
and Y0 − η0 may be interpreted as a constant.

A side result from Eq. (10.21) for a large sample size T is the characterization of Zt .

1
√T

T
∑
t=1

ut = (
∞

∑
j=0

ψj)
1
√T

T
∑
t=1

ξt +
1
√T
(ηT − η0)

On the RHS, the second term goes to zero since var(ηT ) is bounded. ξt is i. i. d. so the
first term on the RHS converges via the Central Limit Theorem to N(0, [σξ ∑

∞
j=0 ψj]

2),
i. e., in large sample, ΔZt behaves like a normally distributed RV. Let Ψ = ∑∞j=0 ψj and
et = Ψξt . Then (for large sample size T), it is reasonable to assume Zt = Zt−1 + et where
et ∼ i. i. d. N(0, σ2ξΨ

2). The asymptotic normal distribution for ΔZt would provide sup-
port for making simulations of et using the normal distribution for large sample.

Equation (10.23) is a general data generating process that implies

ΔYt = f (t) + et + Δηt
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where we can let Δηt = β1ΔYt−1 + β2ΔYt−2 + ⋅ ⋅ ⋅ + βkΔYt−k, and f (t) = δ + θt. This is
consistent with the use of Eqs. (10.14), (10.15), and (10.16) for testing the presence of
unit root.

10.5 Purchasing Power Parity

Absolute purchasing power parity (PPP) version states that Pt = etP∗t , where Pt is UK
national price index in £,P∗t is the U. S. national price index in USD, and et is spot
exchange rate: number of £ per $.

lnPt = ln et + lnP
∗
t

d lnPt = d ln et + d lnP
∗
t

dPt
Pt
=
det
et
+
dP∗t
P∗t

The Relative PPP version states that UK inflation rate is equal to the U. S. inflation rate
adjusted by the rate of change in the spot rate et:

ΔPt
Pt
=
Δet
et
+
ΔP∗t
P∗t

Thus, if U. S. inflation rate is 5%, UK inflation rate is 10%, both over horizon T years,
then Δet/et = 10%–5% = 5%, and $ is expected to appreciate by 5% over £ over T
years. et is the nominal exchange rate, exchanging et number of pounds for one US$.
The real exchange rate or real £ per $ is the number of units of real good in the UK
that can be obtained in exchange for one unit of the same real good purchased in the
U. S. Here, the number of units of real goods purchased in the U. S. per US$ is 1/P∗t ,
supposing US$ per unit of good is P∗t . The number of units of the same good that can
be obtained in the UK by exchanging one US$ is et/Pt where we suppose the £ price
per unit of good is Pt .

The real exchange rate (real £ per $) is rt = etP∗t /Pt . If the real exchange rate of $ is
rising over time, then it means goods prices in the U. S. are becoming more expensive
relative to the UK as more units of goods in the UK can be obtained in exchange for
one same unit in the U. S. This can happen if nominal et increases, or if inflation in the
U. S. rises relative to that in the UK. If the PPP holds exactly, then real exchange is 1.
Some countries tend to keep their currency’s real exchange rate low by own currency
depreciation or deflating own goods’ prices in order to be competitive in the export
markets.

In log form, real exchange rate is

ln rt = ln et + lnP
∗
t − lnPt = 0 under PPP (10.24)
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In reality, in the short run, ln rt deviates from zero at any t. We can model ln rt either
as a stationary process or a unit root process.

Suppose we test ln et, lnP∗t , and lnPt separately (see Tables 10.2, 10.3, and 10.4)
and they are all unit root processes. Then, it is plausible that ln rt = ln et + lnP∗t − lnPt
is also a unit root process. However, it is also possible that ln rt may be a stationary
process in the following way.

Table 10.2: Augmented DF Unit Root Test of ln et . Δ ln et = δ + θt + γ ln et−1 + ∑j=1 βjΔ ln et−j + ξt .
Sample size 42.

ADF Test Statistic −1.776037 1% Critical Value −4.16
Coefficient Estimate Std. Error t-Statistic Prob.

γ −0.280485 0.157928 −1.776037 0.0859
β1 0.392861 0.192132 2.044747 0.0497
β2 0.121412 0.185310 0.655185 0.5173
β3 −0.191780 0.184113 −1.041640 0.3059
β4 −0.081663 0.187675 −0.435129 0.6666
Constant δ −0.272398 0.178452 −1.526448 0.1374
Time Trend θ 0.004542 0.003192 1.423116 0.1650

R-squared 0.385694 Mean dependent var 1.017981
Adjusted R-squared 0.262833 S. D. dependent var 0.083637
S. E. of regression 0.071809 Akaike info criterion −2.260947
Sum squared resid. 0.154697 Schwarz criterion −1.955179

Table 10.3: Augmented DF Unit Root Test of ln P∗t (U. S. price). Δ ln P
∗
t = δ + θt + γ ln P∗t−1 +

∑j=1 βjΔ ln P
∗
t−j + ξt . Sample size 42.

ADF Test Statistic −1.584216 1% Critical Value −4.16
Variable Coefficient Std. Error t-Statistic Prob.

γ −0.046279 0.029212 −1.584216 0.1236
β1 1.202727 0.175698 6.845443 0.0000
β2 −0.747593 0.280181 −2.668249 0.0122
β3 0.321773 0.275273 1.168924 0.2516
β4 0.122373 0.181003 0.676080 0.5042
Constant δ 0.140211 0.077081 1.819011 0.0789
Time Trend θ 0.002090 0.001575 1.327341 0.1944

R-squared 0.786908 Mean dependent var 0.047083
Adjusted R-squared 0.744290 S. D. dependent var 0.027333
S. E. of regression 0.013822 Akaike info criterion −5.556479
Sum squared resid. 0.005731 Schwarz criterion −5.251711
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Table 10.4: Augmented DF Unit Root Test of ln Pt (U. K. price). Δ ln Pt = δ + θt + γ ln Pt−1 +
∑j=1 βjΔ ln Pt−j + ξt . Sample size 42.

ADF Test Statistic −1.921265 1% Critical Value −4.16
Variable Coefficient Std. Error t-Statistic Prob.

γ −0.062299 0.032426 −1.921265 0.0642
β1 0.799513 0.168266 4.751490 0.0000
β2 −0.065058 0.220216 −0.295427 0.7697
β3 −0.119771 0.218958 1.547006 0.5884
β4 0.350473 0.177426 0.975319 0.0575
Constant δ 0.122348 0.049615 2.465964 0.0196
Time Trend θ 0.004231 0.002647 1.598458 0.1204

R-squared 0.720435 Mean dependent var 0.067708
Adjusted R-squared 0.664522 S. D. dependent var 0.048360
S. E. of regression 0.028011 Akaike info criterion −4.143815
Sum squared resid 0.023538 Schwarz criterion −3.839047

Suppose their linear combination

ln rt = (1 1 − 1)(
ln et
lnP∗t
lnPt
)

is stationary and not a unit root process. Then the processes ln et , lnP∗t , and lnPt are
said to be cointegrated with cointegrating vector (1 1 −1). We shall discuss cointegra-
tion in the next section.

If ln et , lnP∗t , and lnPt are cointegrated and ln rt is stationarywith zeromean, then
ln rt may deviate from zero, but will over time revert back to its mean at 0. This is the
interpretation of PPP (sometimes called the long-run PPP), rather than stating ln rt as
being equal to 0 at every time t. If long-run PPP does not hold, then ln rt may deviate
from 0 and not return to it. It can then be described as following a unit root process,
viz.

ln rt = ln rt−1 + ηt (10.25)

where disturbance ηt is stationary with zero mean.
If Eq. (10.25) is the case, it means that ηt has a permanent effect of causing ln rt to

moveaway from0. This is because ifη1 > 0, then ln r1 = ln r0+η1, sonew ln r2 = ln r1+η2
is a stationary deviation from ln r1 that has permanently absorbed η1. This can be seen
more easily if we consider that Eq. (10.25) is equivalent to process ln rt = ηt + ηt−1 +
ηt−2+ ⋅ ⋅ ⋅where the variance of ln rt increases with t. We can see that the effect of a past
innovation, e. g., ηt−j (j > 0), stays permanently in the data generating process of ln rt .
This is a feature of a longmemory process. Contrast this with a stationary process, e. g.
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ln rt = λ ln rt−1 +ηt , |λ| < 1, where ln rt = ηt + ληt−1 + λ2ηt−2 + ⋅ ⋅ ⋅, and so past innovation
ηt−j (j > 0) effect is transitory as λj reduces toward zero. This is a feature of a short
memory process. If in Eq. (10.25) ln rt has a drift, then the unit root also incorporates
a deterministic trend moving ln rt away from zero deterministically as well.

We check the validity of the long-run PPP using Eq. (10.25) by testing the null of
unit root of ln rt . We run OLS on

Δ ln rt = δ + θt + γ ln rt−1 +∑
j=1

βjΔ ln rt−j + ξt (10.26)

where Δηt = ∑j=1 βjΔ ln rt−j + ξt, ξt is i. i. d., and added a constant and a time trend in
the regression. The null hypothesis of unit root process of ln rt is H0 : γ = 0. If unit
root is rejected (accepted), then long-run PPP holds (does not hold).

Unit root tests of ln et, lnP∗t , and Pt are shown in Tables 10.2, 10.3, 10.4. Table 10.5
shows unit root test of Δ ln et . Table 10.6 shows unit root test of log real exchange rate
ln rt via Eq. (10.26).

Table 10.5: Augmented DF Unit Root Test of Δ ln et , the first difference of ln et . Δ2 ln et = γΔ ln et−1 +
∑j=1 βjΔ

2 ln et−j + ξt . Sample size 41.

ADF Test Statistic −3.689313 1% Critical Value −2.62
Variable Coefficient Std. Error t-Statistic Prob.

γ −1.304453 0.353576 −3.689313 0.0009
β1 0.598698 0.287996 2.078844 0.0460
β2 0.551938 0.238598 2.313254 0.0275
β3 0.234455 0.218309 1.073961 0.2911
β4 0.126253 0.180153 0.700812 0.4886

R-squared 0.441254 Mean dependent var 0.001382
Adjusted R-squared 0.369158 S. D. dependent var 0.097641
S. E. of regression 0.077552 Akaike info criterion −2.147485
Sum squared resid 0.186445 Schwarz criterion −1.927552

We use U. S. CPI and UK CPI annual data from 1960 to 2001 for the price indexes P∗t
and Pt, respectively. We employ £ per $ nominal exchange rate for et . The log real
exchange rate ln rt = ln et + lnP∗t − Pt is shown in Figure 10.2.

From Table 10.2, the ADF test-statistic with constant and trend of −1.7760 > −4.16
(we use a larger sample size of 50 as approximation to our sample size of 42) at 1%
critical level. It is also greater than −3.18 at 10% critical level. Hence, we cannot re-
ject that the ln et during 1960–2001 follows a unit root process. All the ADF tests in
Tables 10.2, 10.3, and 10.4 show that ln et, lnP∗t , and lnPt are unit root processes. Ta-
ble 10.5 where we do not impose drift or trend since innovations in exchange rate are
known to be very efficient shows indeed that Δ ln et is stationary with mean zero.
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Figure 10.2: Log Real Exchange 1960 to 2001, ln rt = ln et + ln P∗t − ln Pt .

Table 10.6: Augmented DF Unit Root Test of ln rt . Δ ln rt = δ + θt + γ ln rt−1 + ∑j=1 βjΔ ln rt−j + ξt vide
Eq. (10.26). Sample size 42.

ADF Test Statistic −3.096016 1% Critical Value −4.16
Variable Coefficient Std. Error t-Statistic Prob.

γ −0.663089 0.214175 −3.096016 0.0042
β1 0.560278 0.192777 2.906358 0.0068
β2 0.360211 0.185043 1.946631 0.0610
β3 0.054125 0.188122 0.287711 0.7755
β4 0.091169 0.188378 0.483969 0.6319
Constant δ 0.006824 0.027781 0.245636 0.8076
Time Trend θ 0.004848 0.002017 2.403897 0.0226

R-squared 0.422015 Mean dependent var 0.002645
Adjusted R-squared 0.306418 S. D. dependent var 0.084680
S. E. of regression 0.070523 Akaike info criterion −2.297094
Sum squared resid 0.149205 Schwarzcriterion −1.992326

The real exchange rate rt tested via Table 10.6 also indicates it is a unit root process.
However, it is borderline at about 10%significance level andother studies usingdiffer-
ent sampling periods and perhaps also different currency pairs have produced results
indicating the real exchange rate is stationary. Real exchange rate rt with a unit root
process implies that long-run PPP does not hold and that disequilibrium from PPP or
deviations rt from zero do not have tendency to revert back toward zero. It should be
noted that the “Prob” p-values in the full regression Tables 10.2 to 10.6 are those of the
standard t-test and not the ADF p-values reported in the topline.

Figure 10.2 shows that log real exchange rate in £ per $ appears to be mostly neg-
ative, indicating better terms of trade and competitiveness favoring the US from 1960
to 2001.
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Sometimes, bank reports show the use of PPP in trying to forecast or make pre-
diction about the future movement of a currency. For example, in the above £ per $
spot rate, actual spot $ value may lie above the theoretical PPP $, and if log real ex-
change is stationary, a bank report may suggest that $ is undervalued and PPP will
bring about a correction soon to see $ trending back to PPP level. However, this could
be misleading if the log real exchange rate is a unit root process during the period,
and the $ value may indeed continue to move downward or not revert up in the short-
term. However, indeed from the 1970s through to the 1990s, the $ did increase in value
versus the pound.

10.6 Cointegration

Sometimes two processesmay be non-stationary such that they carry unit roots. How-
ever, they could have a long-term equilibrium relationship so that over a long time
interval, it can be seen that a linear combination of them behaves like a stationary
process and they do not drift away from each other aimlessly. We say they are cointe-
grated with each other. Or it is said they have a long-run common stochastic trend.

To model such a relationship, we proceed as follows. If Yt , Zt are unit root pro-
cesses,

Yt = c + dZt + wt (10.27)

where d ̸= 0, and if wt is stationary, then Yt and Zt are said to be cointegrated with
cointegrating vector (1,−d), i. e.

(1 − d) [ Yt
Zt
] = c + wt

is stationary. In this case, OLS of Yt on Zt when they are cointegrated indeed produces
OLS estimators that are super-consistent, i. e., they converge even faster thannormally
consistent estimators. In this case, the usual t-statistics inference is valid.

But how do we test for cointegration in Eq. (10.27)? If we know the true parameter
values c, d, as in the case of PPP, then it is simply a test of whether wt = Yt − c − dZt is
stationary (not a unit root process).We often do not know the exact linear relationship
amongunit root variables, i. e., the cointegrating vector, sowe cannot rely on a specific
cointegrating vector to test if the residual is unit root.

Whenmore unit root processes such asXt,Yt, Zt are involved in a possible system,
then there could be more than one independent cointegrating vector. For example, if

Xt = a0 + a1Yt + a2Zt + ut (10.28)

where a1 ̸= 0, a2 ̸= 0, and ut is I(0). Further, if also
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Xt = b0 + b1Yt + b2Zt + vt (10.29)

where b1 ̸= 0, b2 ̸= 0, and vt is I(0). Then Eqs. (10.28) and (10.29) can be solved to
obtain

(a1 − b1)Yt = (b0 − a0) + (b2 − a2)Zt + (vt − ut)

showingYt and Zt are cointegrated since vt−ut is stationary. Similarly. it can be shown
that Xt and Yt, or Xt and Zt, are cointegrated.

If there were only one cointegrating Eq. (10.28), then Xt = a0 + a1Yt + ϵt where
noise ϵt = a2Zt +ut contains a unit root process. Hence any pair of Xt and Yt, or Xt and
Zt, or Yt and Zt, is not cointegrated.

Suppose processes Xt, Yt, Zt can be either I(1) or I(0). If there were three inde-
pendent cointegrating vectors, i. e., if we add Xt = c0 + c1Yt + c2Zt + wt where wt
is I(0), then on solving the three simultaneous regression equations, we can obtain
Xt = constant+stationary noise, and likewise for Yt and Zt . Hence allXt ,Yt , Zt are I(0).

In summary, for three different unit root processes, only one cointegrating vector
implies any linear combination of a pair of the processes will produce an I(1) noise.
With two independent cointegrating vectors, they form a basis for the space of cointe-
grating vectors. When there is more than one cointegrating vector, the OLS method
does its usual job of selecting the best linear fit with least squares deviation (pre-
sumably from a larger basis when there is more than one independent cointegrating
vector). With three different cointegrating vectors, the implication is that the original
processes were actually I(0) and not I(1).

More generally, for n different unit root processes, only one cointegrating vector
implies any linear combination of (n− 1) number of the processes will produce an I(1)
noise. With two independent cointegrating vectors, any linear combination of (n − 2)
number of the processes will produce an I(1) noise, and so on. The basis for the space
of cointegrating vectors would be larger when there are more cointegrating vectors.
This implies it generally leads to a more optimal OLS fit in the cointegration regres-
sions. When there is statistical evidence that there are n cointegrating vectors, the
implication is that the original n processes were actually I(0) and not I(1).

In amore general setup,we could have a vector of either unit root I(1) or stationary
I(0) RVs Xt of order n× 1 whereby there are a number of combinations of the elements
that could be cointegrated. We can employ the Johansen trace test statistic and/or the
Johansen maximum eigenvalue test statistic for the number of cointegrating vectors
present in Xt . The Johansen method uses the idea of maximum likelihood ratio test.

Consider the n × 1 dimension Vector Autoregressive Process VAR(p) Xt as follows,
where we assume that the elements of the vector process are detrended if any has a
time trend.

Xt = μ0 +Φ1Xt−1 + ⋅ ⋅ ⋅ +ΦpXt−p + at (10.30)
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where at is i. i. d. vector with normal distributions and zero means. Elements of Xt are
either I(1) or I(0). Dimension of Φi is n × n.

This VAR(p) process Xt in Eq. (10.30) can be re-arranged as:

△ Xt = μ0 + ΠXt−1 +Φ
∗
1 △ Xt−1 + ⋅ ⋅ ⋅ +Φ

∗
p−1 △ Xt−p+1 + at (10.31)

where Φ∗j = −∑
p
i=j+1Φi, for j = 1, 2, . . . , p−1 and Πn×n = ∑

p
i=1Φi− In×n. Note that if Π and

Φ∗i are estimated, then the original Φi’s can be recovered as follows. Φ1 = I + Π +Φ∗1 ,
and Φi = Φ∗i −Φ

∗
i−1 for i = 2, 3, . . . , p, defining Φ

∗
p ≡ 0n×n.

Equation (10.31) is sometimes called an error correctionmodel (ECM) as it contains
the vector termΠXt−1 on the RHS that is stationary.∑

p−1
k=1 Φ
∗
k △Xt−k (autoregressive dis-

tributed lags) captures short-run impact on LHS△Xt while Π captures the adjustment
toward long-run equilibrium. The latter error correction term can be further charac-
terized as follows. ΠXt−1 represents n linear combinations of the elements in vector
Xt−1. If no Πn×n exists whereby ΠXt−1 is stationary, then clearly there is zero number of
cointegration vector. This is the case when Π = O, the zero matrix. In such a situation,
the rank of Π is zero. It is important to test if the rank of Π is indeed zero since such
a situation means that it is not appropriate to perform OLS linear regression as the
results would be spurious.

If the rank of Π is m where 0 < m < n, then we can always write Πn×n = αβT

where both α and β are of dimension n × m. We can define βT as the m number of
linearly independent cointegrating vectors on Xt−1. α is adjustment factor. Hence we
write Eq. (10.31) as

△ Xt = μ0 + αβ
TXt−1 +Φ

∗
1 △ Xt−1 + ⋅ ⋅ ⋅ +Φ

∗
p−1 △ Xt−p+1 + at (10.32)

where Φ∗j = −∑
p
i=j+1Φi, for j = 1, 2, . . . , p − 1 and Πn×n = ∑

p
i=1Φi − In×n. Hence the rank

of Π in this setup would be the number of independent cointegration vectors.
When Π is of full rank, i. e. exhibiting n independent cointegrating vectors, then

the implication is that all elements ofXt−1 (similarly ofXt) are stationary. It is important
to test if the rank of Π,m, is at least one so that it is appropriate to perform OLS linear
regression. To test for the rank of Π, we proceed as follows.

Consider the maximum likelihood estimation of Eq. (10.32) where residual vector
at is multivariate normal with covariance matrix Ω. Then the log likelihood function
of sample (size T) observations on Xt (t = 1, 2, . . . ,T) is:

ln L(Ω,Φ∗1 ,Φ
∗
2 , . . . ,Φ

∗
p−1, μ0,Π)

= −
Tp
2
ln(2π) − T

2
ln |Ω| − 1

2

T
∑
t=1

aTt Ω
−1at (10.33)

The function ln L can bemaximized with respect to Φ∗1 ,Φ
∗
2 , . . . ,Φ

∗
p−1, μ0 and these

first order conditions are solved, conditional on Ω and Π. The log likelihood function
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conditional on maximized Φ∗1 ,Φ
∗
2 , . . . ,Φ

∗
p−1, μ0 as functions of Ω and Π, ln LC(Ω,Π) is

then obtained. The latter is called a concentrated likelihood function.
Suppose we perform two auxiliary regressions as follows.

△ Xt = μc + C
∗
1 △ Xt−1 + ⋅ ⋅ ⋅ + C

∗
p−1 △ Xt−p+1 + ut (10.34)

and

Xt−1 = μd + D
∗
1 △ Xt−1 + ⋅ ⋅ ⋅ + D

∗
p−1 △ Xt−p+1 + vt (10.35)

From Eqs. (10.34) and (10.35), we can obtain

ut = Πvt + at (10.36)

where μc − Πμd = μ0, and C∗i − ΠD
∗
i = Φ

∗
i (i = 1, . . . , p − 1).

We find the OLS estimates in regressions of Eqs. (10.34) and (10.35), and obtain
fitted residuals ût and v̂t . ût and v̂t have sample means as zeros, and are sample-wise
othogonal to (△Xt−1,△Xt−2, . . . ,△Xt−p+1). Based on the OLS estimates μ̂c, μ̂d, Ĉ∗i , D̂

∗
i for

i = 1, 2, . . . , p − 1, we construct μ̂0 = μ̂c − Πμ̂d and Φ̂∗i = Ĉ
∗
i − ΠD̂

∗
i for i = 1, 2, . . . , p − 1,

and employ these estimates in the concentrated log likelihood function

ln LC(Ω,Π|μ̂0, Φ̂
∗
1 , Φ̂
∗
2 , . . . , Φ̂

∗
p−1)

Equation (10.33) can be re-expressed in an asymptotically equivalent form as:

ln LC(Ω,Π|μ̂0, Φ̂
∗
1 , Φ̂
∗
2 , . . . , Φ̂

∗
p−1)

= −
Tp
2
ln(2π) − T

2
ln |Ω| − 1

2

T
∑
t=1
(ût − Πv̂t)

TΩ−1(ût − Πv̂t) (10.37)

From Eq. (10.37), for a given Π, the maximum likelihood estimator of Ω is

Ω̂ = 1
T

T
∑
t=1
(ût − Πv̂t)(ût − Πv̂t)

T

Substituting Ω̂ into Eq. (10.37), asymptotically

ln LC(Π) = −
Tp
2
ln(2π) − T

2
ln |Ω̂| − Tp

2
(10.38)

We can compute the following sample covariance matrices:

R̂uu =
1

T − p

T
∑

t=p+1
ût û

T
t

R̂uv =
1

T − p

T
∑

t=p+1
ût v̂

T
t
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R̂vu =
1

T − p

T
∑

t=p+1
v̂t û

T
t

and

R̂vv =
1

T − p

T
∑

t=p+1
v̂t v̂

T
t

The divisor can be T since we are dealing with asymptotics.
Asymptotically, Eq. (10.38), ignoring the constant terms, can be re-expressed as:

ln LC(Π) = −
T
2
ln |Ω̂| = −T

2
lnR̂uu − ΠR̂vu − R̂uvΠ

T + ΠR̂vvΠ
T 

When Π is restricted to be αβT , the first order condition by taking derivative with re-
spect to matrix α of

ln LC(Π) = −
T
2
lnR̂uu − αβ

T R̂vu − R̂uvβα
T + αβT R̂vvβα

T 

is

α̂ = R̂uvβ(β
T R̂vvβ)

−1

since the derivative of |f | w. r. t. f is a non-zero constant. Substituting α̂ into ln LC(Π),
we obtain further concentrated likelihood function

ln LC(β) = −
T
2
lnR̂uu − R̂uvβ(β

T R̂vvβ)
−1βT R̂vu



= −
T
2
ln |R̂uu|
β
T(R̂vv − R̂vuR̂

−1
uuR̂uv)β
/
β
T R̂vvβ


The log likelihood function can thus be maximized by minimizing

β
T(R̂vv − R̂vuR̂

−1
uuR̂uv)β

β
T R̂vvβ

−1 (10.39)

We now show how to relate canonical correlations between ut and vt embodied
in Π in Eq. (10.36) to eigenvalues of relevant matrices, and then show the problem of
minimization in Eq. (10.39) to be a similar problem of finding maximum eigenvalues.

From Eq. (10.36), we find the canonical correlations between normal vectors ut
and vt . If elements of random vectors ut and vt have non-zero correlations, canoni-
cal correlation between the vectors is the maximum correlation between any linear
combinations of elements of ut and any linear combinations of elements of vt .

Let cov(ut)n×n = Ruu ∀t, cov(vt)n×n = Rvv ∀t, cov(ut , vt)n×n = Ruv ∀t, and cov(vt ,
ut)n×n = Rvu ∀t. Consider a linear combination of ut, viz. AT1 ut (1 × 1) and a linear
combination of vt, viz. BT1 vt (1 × 1) and their correlation
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corr(AT1 ut ,B
T
1 vt) =

AT1 RuvB1
√AT1 RuuA1√BT1 RvvB1

(10.40)

Without loss of generality, consider onlyA1,B1 or linear combinationswhere their
variances are ones, i. e., AT1 RuuA1 = B

T
1 RvvB1 = 1. Find A1n×1 and B1n×1 that maximizes

the correlation in Eq. (10.40).
Differentiating w. r. t. A1 and then also B1 to obtain the first order conditions:

RuvB1 − A
T
1 RuvB1(RuuA1) = 0 (10.41)

and

RuvA1 − A
T
1 RuvB1(RvvB1) = 0 (10.42)

Let AT1 RuvB1 = √λ1 and solve for Eqs. (10.41) and (10.42) to obtain:

R−1uuRuv[R
−1
vvRvu]A1 = λ1A1 (10.43)

and

R−1vvRvu[R
−1
uuRuv]B1 = λ1B1 (10.44)

But the maximized canonical correlation

corr(AT1 ut ,B
T
1 vt) = A

T
1 RuvB1 = √λ1 (10.45)

Hence square of the canonical correlation (> 0) in Eq. (10.45) is equal to the eigenvalue
of either matrix R−1uuRuv[R

−1
vvRvu] in Eq. (10.43) or of R

−1
vvRvu[R

−1
uuRuv] in Eq. (10.44).

We proceed to find the second largest canonical correlation √λ2 involving AT2 ut
and BT2 vt in the same way, except we add the constraint that corr(AT1 ut ,A

T
2 ut) = 0 and

corr(BT1 vt ,B
T
2 vt) = 0. We can obtain

R−1uuRuv[R
−1
vvRvu]A2 = λ2A2 (10.46)

and

R−1vvRvu[R
−1
uuRuv]B2 = λ2B2 (10.47)

The second maximum canonical correlation

corr(AT2 ut ,B
T
2 vt) = A

T
2 RuvB2 = √λ2 (10.48)

Hence square of the second canonical correlation (> 0) in Eq. (10.48) is equal to
the second largest eigenvalue of either matrix R−1uuRuv[R

−1
vvRvu] in Eq. (10.46) or of

R−1vvRvu[R
−1
uuRuv] in Eq. (10.47).
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Wecandirectly find the estimated eigenvaluesusing the sample covariancematrix
of R̂−1vv R̂vu[R̂

−1
uuR̂uv] in Eqs. (10.44), (10.47), and so on. Let b̂i and λ̂i be the eigenvector and

associated eigenvalue. Let the eigenvalues be ranked from largest for λ̂1. Therefore,

R̂−1vv R̂vuR̂
−1
uuR̂uvb̂i = λ̂ib̂i

or

R̂vuR̂
−1
uuR̂uvb̂i = λ̂iR̂vvb̂i

for i = 1, 2, . . . ,m,m ≤ n. Hence,

R̂vuR̂
−1
uuR̂uvβ̂ = R̂vvβ̂Λ̂

for β̂ = (b̂1, b̂2, . . . , b̂m) and Λ̂ is diagonal matrix with diagonal elements λ̂i.
Now,

β̂T R̂vuR̂
−1
uuR̂uvβ̂ = β̂

T R̂vvβ̂Λ̂

We can always normalize the eigenvectors in β̂n×m so that β̂T R̂vvβ̂ = Im×m. Then,
β̂T R̂vuR̂−1uuR̂uvβ̂ = Λ̂m×m. Therefore, Eq. (10.39) can now be re-expressed as

β̂
T R̂vvβ̂ − β̂

T R̂vuR̂
−1
uuR̂uvβ̂

β̂
T R̂vvβ̂

−1
= |I − Λ̂||I|−1 (10.49)

The RHS is



1 − λ̂1 0 0 ⋅ ⋅ ⋅ 0
0 1 − λ̂2 0 ⋅ ⋅ ⋅ 0
...

...
...

. . .
...

0 0 0 ⋅ ⋅ ⋅ 1 − λ̂m



Hence the problem of maximizing log likelihood

ln LC(λ̂1, λ̂2, . . . , λ̂m) = K −
T
2
ln |I − Λ̂|

where K is a constant, is now maximizing the eigenvalues λ̂1, . . . , λ̂m. However, from
Eq. (10.36), ut = Πvt + at, so

E[utv
T
t ] = E[(Πvt + at)v

T
t ] = ΠE[vtv

T
t ] + E[atv

T
t ] = ΠRvv

Hence Ruv = ΠRvv. As Rank (Π) = m ≤ n, therefore Rank (Ruv) is Rank Rvu = m,
given Rank (Rvv) = n is full. Thus the Rank of R−1vvRvu[R

−1
uuRuv] is also m ≤ n. Therefore

there will be only at most m ≤ n number of non-zero eigenvalues in R−1vvRvu[R
−1
uuRuv].
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Therefore in large sample, the sample covariance matrix R̂−1vv R̂vu[R̂
−1
uuR̂uv] should also

be estimated to have rankm.
Let the estimated non-zero eigenvalues (or the squared canonical correlations) be

λ̂1, λ̂2, . . . , λ̂m. Any sample (m+ 1)th or smaller eigenvalues are likely to be zero or close
to zero. This implies that ln(1− λ̂m+1), ln(1− λ̂m+2) . . . ln(1− λ̂n) are zeros or close to zeros.

In Johansen’s maximum eigenvalue test, the null is H0: Rank (Π) = m versus
HA: Rank (Π) = m + 1. Under H0, the (m + 1)th eigenvalue, λm+1 is zero. Hence
ln(1 − λm+1) = 0. Employing the likelihood ratio test on H0: Rank (Π) = m is similar to
testing the restriction of λm+1 = 0 in the log likelihood versus theunrestricted log likeli-
hood. The restricted log likelihood is ln LrC(λ̂1, λ̂2, . . . , λ̂m) = K−

T
2 ln |Im×m−Λ̂m×m| versus

the unrestricted log likelihood ln LC(λ̂1, λ̂2, . . . , λ̂m, λ̂m+1) = K−
T
2 ln |Im+1×m+1−Λ̂m+1×m+1|

where K is a constant.
The usual likelihood ratio test involving the restricted and the unrestricted log

likelihood functions is −2 ln(LrC/LC). This likelihood ratio test is

T(ln |Im×m − Λ̂m×m| − ln |Im+1×m+1 − Λ̂m+1×m+1|)

which is −T ln(1 − λ̂m+1). This is ≥ 0 since we employ positive eigenvalues < 1.
Under H0, this test statistic should be small and close to zero. However, it has a

non-standard distribution (not chi-square) since unit roots occur in some of the un-
derlying variables. Reject H0 if the test statistic is too large.

In Johansen’s trace cointegration test, the null is H0: Rank (Π) = m versus HA:
Rank (Π) > m. In the alternative hypothesis, the rank is at least m + 1. Under H0, the
sumof all (m+1)th, . . . , nth eigenvalues equals to zero. Hence∑ni=m+1 ln(1−λi) = 0. Sim-
ilarly, a likelihood ratio test statistic would be −T ∑ni=m+1 ln(1− λ̂i). This is ≥ 0 since we
employ positive eigenvalues< 1. UnderH0, this test statistic should be small and close
to zero. However, it has a non-standard distribution (not chi-square) since unit roots
occur in some of the underlying variables. RejectH0 if the test statistic is too large. The
critical values of these cointegration test statistics are provided via simulations and
are available in professional statistical packages.

We illustrate the use of the Johansenmethodwith an application to test the Fisher
hypothesis.8 The Fisher hypothesis posits that in the long run, nominal interest rate
and inflation rate move together, so real interest rate (nominal interest rate less infla-
tion rate) are cointegrated.

In the studybyHjalmassson andPärÖsterholm (2007), theyusedmonthly data on
US short nominal interest rate it and CPI inflation rate πt from January 1974 to October
2006. They found that the null hypothesis of a unit root cannot be rejected for infla-
tion rate. However, they find that the nominal interest rate is “near to unit root”. (The

8 Refer to Erik Hjalmassson and Pär Österholm (2007), Testing for cointegration using the Johansen
methodology when variables are near-integrated, IMF Working Paper WP/07/141.
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power of ADF unit root test is not strong when processes are close to unit root, i. e.,
the test tends to accept unit root when it may not be.) They then set out to estimate the
cointegrating rank of the vector (πt , it). Based on Akaike Information Criterion, they
used p − 1 = 10 distributed lags.

As there are only two stochastic processes, the number of cointegration, r, is 0, 1,
or 2 between the two variables πt and it . Suppose r = 0, then Π = 0 and there is no
cointegration. Suppose r = 2, then this is the case where all elements of Xt, i. e. both
πt and it here, are I(0).

Suppose r = 1, then it − bπt is stationary (ignoring constant and trend) for some
b ̸= 0, i. e., there exists a cointegrating vector βT = (1, b). This is then consistent with
the Fisher hypothesis.

Using Johansen trace andmax eigenvalue tests, the study found one cointegrating
vector, i. e. r = 1, cannot be rejected, where Π = αβT and cointegrating vector βT has
dimension r × n or 1 × 2 in this case. Usually both the Johansen trace test and the
maximum eigenvalue test proceed from a null of r = 0 upward to a null of r = 1, and
so on, until the null is not rejected. The two test results should be consistent and are
complementary (Table 10.7).

Table 10.7: Johansen Cointegration Tests.

Null Hypothesis J trace-statistic J max eigenvalue statistic

r = 0 22.045 16.402
(0.028) (0.042)

r = 1 5.642 5.642
(0.220) (0.220)

Note: The p-values are in the brackets. Source: Erik Hjalmassson and Pär Österholm (2007).

Their Johansen tests showed that the null ofH0 : r = 0 is rejected for trace test (i. e., al-
ternative is r > 0) and rejected for maximum eigenvalue test (i. e., alternative is r = 1).
Next, their Johansen tests showed that the null of H0 : r = 1 is not rejected for trace
test (i. e.. alternative r > 1 is not acceptable) and not rejected for maximum eigenvalue
test (i. e., alternative is r = 2 is not acceptable). Hence the test conclusion is that r = 1.
However, their study indicated that when nominal interest rate is nearly I(1) but could
be I(0), the cointegrating test may have low power.

Further Reading
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University Press.
Fumio Hayashi (2000), Econometrics, Princeton University Press.
Hamilton, J. D. (1994), Time Series Analysis, Princeton University Press.
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11 Bond Prices and Interest Rate Models

Modern interest rate theory uses much of the no-arbitrage condition as a workhorse.
At the same time, the availability of many new market instruments on interest rates
also lends fuel to new models and empirical validation of these models for purposes
of forecasting interest rates, managing bond portfolios, and yield risk management.
We shall first study interest rate models on risk-free bonds. Then we consider default
risks on bonds, and discuss corporate bond yields that include a credit risk spread.
We also see how different interest rate models can be tested.

11.1 Interest Rates

By convention, interest rates on a loan or debt are quoted on a per annum basis. Sim-
ple interest for a loan over a period t years based on interest rate r is computed as
$(1 + r)t per dollar of loan. If t is less than one, e. g., 3 months, then simple interest is
$(1+ r/4). Compound interest is computed based on given rate r, loan period t, as well
as the frequency of compounding that must be stated. For example, if the frequency
is monthly compounding, then over m > 1 months, compounded interest payable is
$(1 + r/12)m. Continuously compounded interest based on r p. a., earns total payoff
(principal plus interest) of $ ert at the end of t years with an initial investment of $1.
The interest component is thus ert − 1 at the end of the period. The amount ert is ob-
tained as a limit, limn→∞(1 +

r
n )

nt . There are many ways of getting the exponent; one
is to put yn = (1+

r
n )

nt, take the natural logarithms of both sides, and apply L’Hôpital’s
rule to obtain limn→∞ ln yn = rt. Then, yn → ert .

A bond is a fixed income contract between a borrower (seller) such as a firm or a
bank, and a lender (buyer) such as a bank or a buy-side institution, e. g., a pension
fund, an investment firm, or a hedge fund. There are many kinds of bonds with dif-
ferent maturities (tenor after which the contract expires) and different payment pro-
cesses. A common typeof Treasury or corporate bond iswhere buyers pay theprincipal
amount at the initiation, and receive periodic interest payments (or coupon interests)
while holding the bond. At maturity of the bond, e. g., end of five years, the borrower
or seller pays back the principal to the lender or buyer. There are also bonds that do
not provide interest payments during tenor. These are called zero-coupon or discount
bonds, and are sold at a discount to the principal value. This discount serves as up-
front interest payment in comparison to the standard coupon bond.

A t-period spot interest rate is an interest rate charged on a loan or an interest rate
received on a deposit or earned on a bond for holding period from the current time 0
until some future time t without any intermediate cashflow payments. For example, a
discount bond bought today at price B(0, t) for redemption at par $1 at maturity time
t in the future (time-to-maturity t in terms of number of years) has an effective return

https://doi.org/10.1515/9783110673951-011
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11.1 Interest Rates | 307

rate (non-annualized) of 1/B(0, t) − 1. The discrete-time spot rate or spot yield p. a. for
the discount bond or zero-coupon (ZC) bond is

y(0, t) = ( 1
B(0, t)
)
1/t
− 1

For notational convenience, we denote the spot rate as y(t) when the start point at
t = 0 is understood.

In most of the advanced analyses of interest rates, due to the heavy use of model-
ing in continuous-time, it is often convenient to employ continuous-time compound-
ing. Hence, the continuously compounded spot rate (or the p. a. rate to be continu-
ously compounded) is

y(t) = 1
t
ln( 1

B(0, t)
) (11.1)

The corresponding effective spot yield factor or return is

Y(0, t) = exp(y(0, t) × t)

The yield-to-maturity (YTM) is an interest rate measure on a bond (whether
coupon bond or zero-coupon bond) that is essentially the internal rate of return
or discount rate equating the present value of all contractual bond payments to the
current bond price. For example, a 2-year coupon bond with half-yearly coupon inter-
est 5% p. a., par value $100, and current price $102, has a current yield-to-maturity
of 3.95%:

102 = 2.5/(1 + .0395/2) + 2.5/(1 + .0395/2)2 + 2.5/(1 + .0395/2)3 + 2.5/(1 + .0395/2)4

The YTMmeasure is a function of the time-to-maturity as well as other factors such as
credit risk of the bond issuer or borrower, liquidity, tax status, currency, and frequency
of coupon interest payments. For a zero-coupon bond with no intermediate interest
payments, the yield-to-maturity is identical to the spot rate of the bond.

At any time t, assume the market is trading a continuous spectrum or series of
discount bonds with different maturities T at prices B(t,T), respectively. We can then
compute from their prices the corresponding spot rates via (11.1). The (T − t) period
spot rate y(t,T) for a particular T provides information on the investment return over
[t,T]. If we plot the graph of y(t,T) against time-to-maturity for the bond or horizon
T − t, the graph is called a spot rate (spot yield) curve. It is also the yield (yield-to-
maturity) curve of the discount bonds. A yield curve is also called the term structure
of the yields. For a yield curve to make sense, i. e., useful for comparing bond yields
across different maturities, the bonds must have similar factors e. g., similar credit
rating, liquidity condition, tax status, currency, and frequency of interest payments,
excepting the maturity.
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Whenbondswith intermediate (or coupon) interest payments are first issued, they
are typically sold at par value or face value of the bond. The par value is also the re-
demption value or principal repayment by the borrower at maturity. On day t, if there
are many bonds issued at par, each with different maturities n and correspondingly
different coupon interest rates yn, then these coupon rates are also the corresponding
yield-to-maturity of the differentmaturities n. Since bonds at issue (on-the-run bonds)
are more liquid, their yield curve (yn versus n) is an accurate characterization of the
maturity effect on the bond yields. This yield curve on par bonds is also called the par
yield curve. However, yield curves can also be computed based on bonds of different
maturities that have been trading, at prices either below par or above par.

For bonds with coupons, their yield curve is in general different from their spot
rate curves.We showhowone canobtain the spot rates from the tradedprices of bonds
on a yield curve. The method is called bootstrapping spot rates. Suppose a 1/2 year
to maturity 3% coupon bond is trading at 99.8% (of par value). Suppose a 1 year to
maturity 2.5% coupon bond is trading at 99% (of par value). Suppose a 1.5 year to
maturity 2.8% coupon bond is trading at 98.5% (of par value). Suppose a 2 year to
maturity 3.2% coupon bond is trading at 98.6% (of par value).

Using the 1/2 year bond, the 1/2-year spot rate y1/2 is obtained as follows: (1.015/
0.998)2 − 1 = 0.03436. Let the 1-year spot rate be y1. Then 0.99 = 0.0125/(1.03436)1/2 +
1.0125/(1 + y1). Hence, y1 = 0.03558. Let the 1.5 year spot rate be y1.5. Then 0.985 =
0.014/(1.03436)1/2 + 0.014/(1.03558) + 1.014/(1 + y1.5)1.5. Hence, y1.5 = 0.03881. Let
the 2-year spot rate be y2. Then 0.986 = 0.016/(1.03436)1/2 + 0.016/(1.03558) +
0.016/(1.03881)1.5 + 1.016/(1 + y2)2. Hence, y2 = 0.03980. Thus we can see an up-
ward sloping spot rate curve with spot rates for 6-month, 12-month, 18-month, and
24-month maturities as 3.436%, 3.558%, 3.881%, and 3.980%.

U. S. Treasury coupon notes and bonds can be stripped into zero-coupon bonds
for trading. Bootstrapping enables spot rates to be available for many maturities, be-
ing derived from traded bond prices, including from ZC bond prices as well as from
discount Treasury bills for maturities shorter than a year. In turn the spot rates enable
no-arbitrage prices of other bonds with contractual cashflows to be determined.

We next consider a discrete model of spot rate dynamics over time and show that
no-arbitrage bond prices can be derived given the spot rate process. We also show the
corresponding dynamics of the spot rate curve.

11.2 No-Arbitrage Dynamics of Spot Rate Curve

For discrete time, t = 0,Δ, 2Δ, . . . , etc., suppose spot rate r(t) ≡ rt at any time t is a spot
rate over horizon or period Δ, and is determined at the start of the period. We switch
notation of spot rate from y(t) to r(t)here to avoid confusionwith the yield-to-maturity
since we are dealingmore generally with spot rates that need not be yield-to-maturity
as the underlying bonds need not be discount bonds.
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Assume the spot rates follow a binomial process where in the next period, the
Δ-period spot rate realizes one of two values either in an up-state (spot rate increases)
or a down-state (spot rate decreases). When the time period or interval Δ shrinks to
zero, the spot rate is instantaneous and is called a short rate.

For now,we shall start themodeling using the evolution of this (discrete) spot rate
rjt where subscript t refers to the time when the spot rate is realized and which applies
over the interval [t, t + Δ), and superscript j refers to the state, u or d. Since the states
follow the binomial tree, at t = Δ, there are two states u and d, and at t = 2Δ, there are
four states, uu, ud, du, and dd.

Associated with the evolution of the spot rates is the evolution of the risk-free ZC
(or discount) bond prices. Assume there are three differentmaturity bonds at the start,
t = 0. See the term structure lattice tree in Figure 11.1.

Figure 11.1: Interest Rate Lattice Tree.

At t = 0, the ZC bond with Δ period to maturity is priced at B(0,Δ) = 1
1+r0

. At
t = Δ, state u, the ZC bond with Δ period to maturity is priced at Bu(Δ, 2Δ) = 1

1+ruΔ
.

At t = Δ, state d, the ZC bond with Δ period to maturity is priced at Bd(Δ, 2Δ) = 1
1+rdΔ

.
At t = 2Δ, state j (uu, ud, du, or dd), the ZC bond with Δ period to maturity is priced at
Bj(2Δ, 3Δ) = 1

1+rj2Δ
.

Now, consider bonds with two periods until maturity. Here, we have to work back-
wards just as in binomial option pricing. Suppose at t = Δ, there is a bond with two
periods until maturity.
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At t = Δ, state u

Bu(Δ, 3Δ) = pB
uu(2Δ, 3Δ) + (1 − p)Bud(2Δ, 3Δ)

1 + ruΔ
(11.2)

At t = Δ, state d

Bd(Δ, 3Δ) = pB
du(2Δ, 3Δ) + (1 − p)Bdd(2Δ, 3Δ)

1 + rdΔ
(11.3)

Thus, bond prices are priced in a no-arbitrage martingale method, where p is the
u-state risk-neutral probability, and 1−p is the d-state risk-neutral probability. Inmore
complicated stochastic process of the spot rates, the probabilities may change over
time. In simpler spot rate processes, the probabilities remain as constants.

Hence, we see that given the spot rate process – how they take values over time
in each possible state – a vector of ZC bond prices of different maturities is also de-
termined via a no-arbitrage equilibrium (whether markets are complete or not). This
follows from the First Fundamental Theorem of asset pricing whereby we assume no-
arbitrage and hence the existence of an equivalent martingale or risk-neutral proba-
bility measure with state probabilities p and 1 − p.1

As seen in Eq. (11.1) and the binomial tree, each time-t state-j vector of ZC bond
prices gives rise to a set of spot rates of differentmaturities at time t and state j. For time
in the future, each of these is a contingent spot rate curve. Thus, given the Δ-period
spot rate process rjt, we see how a no-arbitrage condition can imply a rich stochastic
evolution of spot rate curves.

In actual physical situation or reality, the market can only observe a particular
realized state j at each time t. Thus, at each time t in a realized (vector) time series,
there is only a realized (ex-post) term structure or spot rate curve, although ex-ante
there are contingent spot rate curves, each likely to happen with some risk-neutral
probabilities according to the evolution of the binomial tree.

Given a particular spot rate model or process described by parameterization of
probability p, rate increase factor and rate decrease factor, the no-arbitrage spot rate
curve that is theoretically derived at t = 0 should ideally be consistent with the ob-
served current market spot rate curve. To do this, we calibrate or estimate the parame-

1 See J.M. Harrison and D.M. Kreps (1979) Martingales and arbitrage in multi-period securities mar-
kets, Journal of Economic Theory 20, 381–384; J.M. Harrison, and S. R. Pliska (1981), Martingales and
stochastic integrals in the theory of continuous trading, Stochastic Processes and their Applications,
11, 215–260; J.M. Harrison and S. R. Pliska (1983), A stochastic calculus model of continuous trading:
Complete markets, Stochastic Processes and their Applications, 11, 313–316; S. Ross (1978) A simple ap-
proach to the valuation of risky streams, Journal of Business, 51(3), 453–475; J. Jacod, andA.N. Shiryaev
(1998) Local martingales and the fundamental asset pricing theorems in the discrete-time case, Fi-
nance and Stochastics, 2, 259–273.
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ters of the spot rate process so that the theoretical curve and the empirically observed
curve coincide as closely as possible.

It is instructive to review the pricing of the 2-period ZC bond at time t = Δ for
Eqs. (11.2) and (11.3), respectively, in states u and d. They can be simplified as

Bu(Δ, 3Δ) = p[ 1
(1 + ruΔ)(1 + r

uu
2Δ )
] + (1 − p)[ 1

(1 + ruΔ)(1 + r
ud
2Δ )
]

and

Bd(Δ, 3Δ) = p[ 1
(1 + rdΔ)(1 + r

du
2Δ )
] + (1 − p)[ 1

(1 + rdΔ)(1 + r
dd
2Δ )
]

Then, at current time t = 0, a 3-period ZC bond has price

B(0, 3Δ) = pB
u(Δ, 3Δ) + (1 − p)Bd(Δ, 3Δ)

1 + r0

= p2[ 1
(1 + r0)(1 + ruΔ)(1 + r

uu
2Δ )
]

+ p(1 − p)[ 1
(1 + r0)(1 + ruΔ)(1 + r

ud
2Δ )
]

+ (1 − p)p[ 1
(1 + r0)(1 + rdΔ)(1 + r

du
2Δ )
]

+ (1 − p)2[ 1
(1 + r0)(1 + rdΔ)(1 + r

dd
2Δ )
]

In general, let Ỹ0,T = (1 + r0)(1 + ̃r△)(1 + ̃r2△) × ⋅ ⋅ ⋅ × (1 + ̃rN△), where N△ = T. Then,

ln Ỹ0,T =
N
∑
i=0

ln(1 + ̃ri△)

Let ̃rCi△ = ln(1 + ̃ri△). The LHS is the continuously compounded spot rate, and is the
short rate ru when△ ↓ 0. Then,

ln Ỹ0,T =
N
∑
i=0
̃rCi△ →

T

∫
0

̃rudu

as△ ↓ 0 and N = T
△ ↑ ∞, and where we drop the superscript C for notational conve-

nience. Hence, in continuous-time,

Ỹ0,T = exp(
T

∫
0

rudu)
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Then, it is seen that a T year ZC bond price with redemption par value 1 is

B(0,T) = EQ[ 1
Ỹ0,T
] = EQ(e−∫

T
0 rudu)

whereQ denotes probability under the equivalent martingale or risk-neutral measure.
More generally,

B(t,T) = EQt (e
−∫

T
t rudu) (11.4)

We can see that under no-arbitrage condition, ZC bond prices are indeed related to
future par bond values discounted by expectation of future random spot rates under
the risk-neutral orQ-measure. The risk-neutral rates in the lattice tree can also be used
to compute no-arbitrage or arbitrage-free prices of derivatives on the underlying spot
rates or underlying bond prices. Therefore, using a correct spot rate model (or short
rate model when we refer to instantaneous rt) is key to finding if current bond prices
and interest rate and bond derivatives are correctly priced. Ability to pin-point equilib-
riumno-arbitrage prices and comparingwith actualmarket prices thatmay have devi-
ated in the short-run could facilitate profitable trading by buying market-underpriced
securities and selling market-overpriced ones. Knowing the equilibrium prices and
their parameters could also facilitate construction of accurate hedging positions for
related portfolios. We shall develop the idea of spot rate models and estimating spot
rate model parameters later.

For now, it is important to recognize that actual physical processes such as move-
ments of realized spot rate curves over time can also provide statistical analyses for
risk control. The current spot rate curve (and yield curve of the ZC bonds) can take
nearly any shape as it evolves over time. We have seen how the term structure of spot
rates determines a bond’s price via the present value of sumof discounted bond’s con-
tractual cashflows at the related spot rates. Shaping risk is the sensitivity of a bond’s
price to the changing shape of the term structure of spot rates.More generally, shaping
risk refers to risk when the yield curve changes.

To implement a process to manage the yield curve (YC) shape risk in a portfolio,
one approach is to find a statistical model (YC Factor model) that reduces most of the
possible yield curve movements to a probabilistic combination of a few standardized
yield curve movements. A yield curve factor model is defined as a model or a descrip-
tion of yield curve movements that can be considered realistic when compared with
historical data. One example is the three-factor model of Litterman and Scheinkman
(1991),2 who found that yield curve movements are historically well described by a

2 R. Litterman and J. Scheinkman (1991), Common factors affecting bond returns, The Journal of Fixed
Income, 1, 54–61.
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combination of three independentmovements, which they interpreted as level, steep-
ness, and curvature.

Themethod to determine the number of factors and their economic interpretation
begins with a measurement of the change of key rates on the yield curve. A key rate
is the yield on spaced-out specified maturities on a YC. For example, we could find
the historical time series of the vector of 1/4, 1/2, 1, 2, 3, 5, 7, 10, 20, and 30 years ma-
turity key rates or yields. The daily change in these key rates or yields provides for
computation of the sample 10 × 10 variance-covariance matrix of the yield changes.

The next step is to try to discover a number of independent factors (fewer than the
number of 10 variables in this case) that can explain the observed variance/covariance
matrix. The approach that focuses on identifying the factors that best explain histori-
cal variances is known as principal components analysis (PCA).

11.3 Principal Component Analysis

Suppose random vector XN×1 consists of elements Δrj, each of which is a change in
yield of a certain term on a yield curve. For example, Δr1 could be monthly change in
1/4-year maturity yield, Δr2 could be monthly change in 1/2-year maturity yield, and
so on. Suppose var(Δrj) > 0 and cov(Δrj,Δrk) ̸= 0 for j, k ∈ 1, 2, . . . ,N . Let E(X) = μN×1.
Let covariance matrix of X be ΣN×N where the jkth element is cov(Δrj,Δrk) = σjk . Let λj
be the ordered eigenvalues of ΣN×N from largest λ1 to smallest λN , and γj (N × 1) be the
corresponding eigenvectors such that Σγj = λjγj for j = 1, 2, . . . ,N .

We constrain solutions of eigenvalues and eigenvectors to normalized orthogonal
ones so that γTj γj = 1. and γ

T
j γk = 0 for j ̸= k. At this point, note that since we do not

know the exact Σ and μ, the computed eigenvalues λj and eigenvectors γj are those
of sample estimate Σ̂ based on X and μ̂, and not of Σ and μ. Denote the computed
eigenvalues and eigenvectors as λ̂j’s and γ̂j’s.

Let ΛN×N = diag(λ1, λ2, λ3, . . . , λN ), or columns of N × 1 vectors. Let ΓN×N =
(γ1, γ2, . . . , γN ). ΓTΓ = IN×N , ΓT = Γ−1, so ΓΓT = I. We want to be able to find possi-
bly recognizable factors that can explain the covariance matrix, i. e. variances and
covariances of X in a maximal way, as much as possible. Suppose we form linear
combinations of X, i. e., Yj = γTj (X − μ). This is the jth (scalar) principal component
(PC) of X and there are N of them. Now YN×1 = ΓT (X − μ). The estimated PCs are found
as ŶN×1 = Γ̂T (X − μ̂).

Properties of YN×1 include the following. (a) E(YN×1) = 0N×1; (b) var(YN×1) =
E[YYT ] = E[ΓT (X − μ)(X − μ)TΓ] = ΓTΣΓ = ΛN×N . Hence the N principal components
have zero means and are uncorrelated. The variance of the jth PC is the eigenvalue
λj > 0.

From (b), since λ1 > λ2 > ⋅ ⋅ ⋅ > λN , we can choose Y1 = γT1 (X − μ) with the largest
variance λ1. We can choose Y2 = γT2 (X − μ) with the second largest variance λ2, and so
on.
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NowYN×1 = ΓT (X−μ), so ΓY = ΓΓT (X−μ) = (X−μ). ThenXN×1 = μ+ΓN×NYN×1. From
the latter, taking covariance: ΣN×N = E[ΓY(ΓY)T ] = ΓE[YYT ]ΓT = ΓΛN×NΓT . But trace
(ΣN×N ) = ∑

N
j=1 σ

2
j . Also, tr(ΣN×N ) = tr(ΓΛN×NΓT ) = tr(ΛN×NΓTΓ) = tr(ΛN×N ) = ∑

N
j=1 λj.

Choosing first PC as Y1 = γT1 (X − μ) implies var(Y1) = λ1 has the largest vari-
ance with a percentage of total variance θ1 = λ1/∑

N
j=1 σ

2
j . Thus the jth PC explains

θj = λj/∑
N
j=1 σ

2
j percentage of the total variance of X or∑Nj=1 σ

2
j .

Now, let the jth eigenvector be γj = (γj,1, γj,2, . . . , γj,N )T , for each j. Since XN×1 =
μ + ΓN×NYN×1, we can write:

(

Δr1
Δr2
...

ΔrN

) =(

μ1
μ2
...
μN

) +(

γ1,1 γ2,1 ⋅ ⋅ ⋅ γN ,1
γ1,2 γ2,2 ⋅ ⋅ ⋅ γN ,2
...

...
. . .

...
γ1,N γ2,N ⋅ ⋅ ⋅ γN ,N

)(

Y1
Y2
...
YN

)

The above equation is exact based on the actual means μj’s and actual eigenvectors
of Σ. Since we could only estimate μj’s and the eigenvectors, the relationship is more
usefully expressed as the following.

(

Δr1
Δr2
...

ΔrN

) =(

μ̂1
μ̂2
...
μ̂N

) +(

γ̂1,1 γ̂2,1 ⋅ ⋅ ⋅ γ̂N ,1
γ̂1,2 γ̂2,2 ⋅ ⋅ ⋅ γ̂N ,2
...

...
. . .

...
γ̂1,N γ̂2,N ⋅ ⋅ ⋅ γ̂N ,N

)(

Ŷ1
Ŷ2
...
ŶN

)

as seen earlier viz. ŶN×1 = Γ̂T (X − μ̂).
An alternative estimation of impact on Δrj’s can be developed as follows. It is nei-

ther of the above two representations, but makes use of the estimated PCs Ŷj’s as re-
gressors in linear regressions.

We express Δrj = μj+γ1,jŶ1+e1j where e1j ≈ γ2,jY2+γ3,jY3+⋅ ⋅ ⋅+γN ,jYN is residual error
associated with regression on only the first estimated PC Ŷ1 and with the jth element
of X. In the linear regression, we could usemonthly sample data Δrj observations over
T months. We use the T observations of X to compute μ̂, Σ̂, and Γ̂, hence obtain T
observations of Ŷ1 as explanatory variable. Ŷ1 is the first factor in the regression to
explain changes in Δrj. Thus for j = 1, 2, . . . ,N,N regressions are performed, eachusing
Ŷ1 as explanatory variable.

Similarly, Δrj = μj+γ2,jŶ2+e2j where e2j ≈ γ1,jY1+γ3,jY3+ ⋅ ⋅ ⋅+γN ,jYN is residual error
associated with a regression on only the second estimated PC Ŷ2 or second factor, and
so on.

Note that var(Δrj) = ∑
N
k=1 γ

2
k,j var(Yk), for each j. Employing sample counterparts

for the above equation for j, we obtain the approximate relationship:
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T v̂ar(Δrj) ≈
N
∑
k=1

γ̂2k,jT v̂ar(Ŷk)

where T is the sample size in the simple regression. Recall the total sum of squares
(TSS) and explained sum of squares (ESS) in Chapter 2 for simple regressions. The
LHS is TSS, so the RHS is approximately the TSS.

In the simple regression of Δrj = μj + γ1,jŶ1 + e1j, γ̂21,jT v̂ar(Ŷ1) is the ESS. Hence,
the coefficient of determination of the simple regression, R2 = ESS/TSS ≈ γ̂21,jv̂ar(Ŷ1)/
∑Nk=1 γ̂

2
k,jv̂ar(Ŷk). Suppose γ̂

2
k,j’s (∀k) are approximately equal, then R2 of the regression

on the first estimated PC Ŷ1 is approximately equal to θ1. Similarly, R2 of the regression
on the second estimated PC Ŷ2 is approximately equal to θ2, and so on.

In practice principal component analysis is a method for dimension reduction in
data analysis, so we choose, e. g. only 3 factors, j = 1, 2, 3 such that θ1 + θ2 + θ3 is close
to 1, i. e., the 3 factors explain most of the variations in X. So we can perform a linear
regression with dependent variable Δrj on the first three factors at the same time. If

we normalize each estimated PC as Zj = Ŷj/√λ̂j, so Zj has unit variance, then we can
perform the regression:

Δrj = μj + γ
∗
1,jZ1 + γ

∗
2,jZ2 + γ

∗
3,jZ3 + ξj

where γ∗1,j = γ1,j√λ1, γ
∗
2,j = γ2,j√λ2, γ

∗
3,j = γ3,j√λ3, and residual error ξj is assumed to be

i. i. d. Zj’s are the standardized factors in the YC factor model.
The regression for each j yields estimated coefficients γ̂∗i,j’s shown as columns in

the following table, where i denotes the factor order. μ̂j would likely be ≈ 0 and is not
important in the analysis.

Table 11.1 shows that for a one standarddeviationpositive change in thefirst factor
(normalized to have unit standard deviation), the yield for a 0.25-year bond would
declineby0.21%, that of a0.5-year bondby0.22%, and soonacrossmaturities, so that
a 30-year bond yieldwould decline by 0.31%. Because the responses (change in yield)
are in the same direction and by similar magnitudes across maturities, a reasonable
interpretation of the first factor is that it describes (approximately) parallel shifts up
and down the entire length of the yield curve. Thus a parallel shift down (increase in
factor 1) would lead to downward shifts in all yields across maturities.

Table 11.1: Factors Affecting the Shape of the Yield Curve.

τ 0.25 0.5 1 2 3 5 7 10 20 30

Factor 1 −0.21 −0.22 −0.25 −0.30 −0.33 −0.38 −0.39 −0.38 −0.34 −0.31
Factor 2 0.51 0.45 0.35 0.22 0.15 −0.03 −0.15 −0.27 −0.36 −0.35
Factor 3 0.45 0.26 0.09 −0.34 −0.41 −0.35 −0.18 0.08 0.31 0.42

Note: τ is time-to-maturity in years.
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Examining the second factor, we notice that a unitary positive standard deviation
change appears to raise rates at shorter maturities (e. g., +0.51% for 0.25-year bonds)
but lowers rates at longer maturities (e. g., −0.36% and −0.35% for 20- and 30-year
bonds, respectively). We can reasonably interpret this factor as one that causes
changes in the steepness or slope of the yield curve. This is also called YC tilting.
We note that the θ̂2 associated with this factor is 17%, and is much smaller than the
θ̂1 of 77% associated with the first factor. The relative θ sizes indicate their relative
importance as a factor.

The third factor contributes a much smaller θ̂3 of 3%, and we associate this fac-
tor with changes in the curvature or “twist” in the curve because a unitary positive
standard deviation change in this factor leads to positive yield changes at both short
and long maturities but produces declines at intermediate maturities. It yields more
(convex) curvature.

If a bond portfolio manager anticipates decrease in factor 1 or increase in yield
level, since there is an inverse relationship between bond price and yield, he/she
would hedge possible loss in long bondportfolio positions by either selling away some
bonds to reduce risk exposure and/or sell bond futures or buy puts on bonds. If a bond
portfolio manager anticipates decrease (increase) in factor 2 or increase (decrease) in
YC slope, he/she would hedge possible loss in long bond portfolio positions by ad-
justing the long positions toward a bullet structure. If a bond portfolio manager antic-
ipates decrease (increase) in factor 3 or decrease (increase) in convexity of YC, he/she
would hedge possible loss in long bond portfolio positions by adjusting the long posi-
tions toward a barbell (bullet) structure. Bond portfolio managers may also take spec-
ulative positions based on these views.

11.4 Continuous-Time Short Rate Models
In Figure 11.1, we saw how the spot rate process could drive the yield curve and bond
prices. The instantaneous equivalent is called the short rate. Short rates need not
be the pivot to drive bond prices; it could be instantaneous forward rates as start-
ing points, or even some discrete period interest rates such as LIBOR or the secured
overnight funding rate (SOFR). We shall now examine a few continuous-time short
rate models.

In the early 1980s, banks and financial institutions were hunting for good mod-
els to price bonds with embedded options such as callable bonds, puttable bonds,
and convertible bonds. Good models should be a result of equilibrium condition (no-
arbitrage condition is an equilibrium market condition that is preference-free) and
should also at the start agree or fit with the initially observed market yield curve or
term structure,3 The earliest models start with the modeling of short rate stochastic

3 See T. S. Y. Ho and S. B. Lee (1986), Term structure movements and pricing interest rate contingent
claims, The Journal of Finance, 41, 1011–1029.
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processes, and solving for bond prices under no-arbitrage equilibrium. Calibrating to
existing yield curve as another equilibrium condition led to improvements in themod-
els.

We consider the simplest models – single or one-factor interest rate model,
whereby the interest rate process is driven by a single innovation dWP (WP is Wiener
process) under physical measure or empirical measure P.

A continuous time stochastic process that possesses a strongMarkovproperty and
that has continuous sample paths (continuous observations in time) with no discon-
tinuity or discrete jumps is called a diffusion process.4 The application of continuous
time mathematics to finance has been largely pioneered by Merton.5 Many practical
discrete Markov processes used in financial modelling can be approximated by dif-
fusion process when the time interval between each observation point becomes very
small. Likewise for many diffusion processes, when the interval is very small, we may
sometimes choose to use a discrete process to approximate it.

Diffusion processes can be expressed as a stochastic differential equation (SDE)
suchas the lognormal diffusionprocess (or sometimes calledGeometric BrownianMo-
tion), dSt = μSt dt + σSt dWP

t where St is the underlying asset price at time t, Wt is a
Wiener process with W0 ≡ 0, and (Wt − W0) distributed as N(0, t). μ is the instanta-
neous or infinitesimal mean or drift of the process, and σ is the instantaneous volatil-
ity. This diffusion is often called the lognormal diffusion and is suitable for modeling
stock price St or commodity price or even currencies, but not suitable for modeling
bond prices since bond prices pull to par at maturity. Just as solution of a partial dif-
ferential equation is a multivariate deterministic function, the solution of a stochastic
differential equation is a random variable that is characterized by a probability distri-
bution.

The short rate is the spot interest rate when the term goes to zero. Let the short
rate be r. This is the instantaneous spot rate. An example of a diffusion process of the
short rate is:

drt = (α − βrt) dt + σr
λ
t dW

P
t (11.5)

where, α, β, and λ are constants. In the literature on interest rate modelling, many
differentmodels were applied to study interest rate dynamics and the associated bond
prices.Manyof themodels are subsumedunder the class representedbyEq. (11.5), and
take different forms for different restricted values of the parameters α, β, and λ. When
α = β = 0 and λ = 1, there is the Dothanmodel.6 When just λ = 1, there is the Brennan-

4 Refer to a classic book such as S. Karlin and H.M. Taylor (1981), A Second Course in Stochastic Pro-
cess, Academic Press.
5 See R. C. Merton (1990), Continuous-Time Finance, Basil Blackwell.
6 U. Dothan (1978), On the term structure of interest rates, Journal of Financial Economics, 6, 59–69.
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Schwartz model.7 When just λ = 0, there is the Vasicek model.8 And when λ = 1/2,
there is the Cox-Ingersoll-Ross (CIR) model.9

The Vasicek model drt = (α − βrt) dt + σ dWt, for α > 0 and β > 0, is essentially
a version of the well-established Ornstein-Uhlenbeck process that is known to be a
mean-reverting process with an analytical solution. It can also be rewritten, as

drt = κ(θ − rt) dt + σ dW
P
t (11.6)

where the equivalence is readily seen when we put α = κθ, β = κ. The mean reversion
occurs because when rt deviates from θ, then there is a drift with positive “speed” κ,
that brings future rt+dt back toward θ. The solution to the SDE Eq. (11.6) is:

rt = e
−κtr0 + θ(1 − e

−κt) + σe−κt
t

∫
0

eκu dWP
u (11.7)

where r0 is the short rate at initial time t = 0. The mean or expectation of rt is

E(rt) = θ − e
−κt(θ − r0) (11.8)

and the variance is

var(rt) =
σ2

e2κt

t

∫
0

e2κu du = σ
2

2κ
(1 − e−2κt) (11.9)

Moreover, in the Vasicek model, rt is seen to be normally distributed from Eq. (11.7) as
it is an integral or summation of normal dWu. This last feature of the Vasicek model
is not desirable as it implies that there is non-zero probability that rt can attain some
negative values. Since rt is a nominal interest rate, it is not proper for rt to be negative,
or there will be infinite arbitrage by borrowing at a negative cost of funds.

From themean and variance equations in Eqs. (11.8) and (11.9), it is seen that over
time, as t increases, the short rate rt converges to a stationary random variable about
the long-run mean of θ > 0 regardless of the starting point r0.

Short-rate models in the class of Eq. (11.5) are one-factor models because there
is only one-state variable or source of uncertainty affecting the stochastic changes
in rt, i. e. the source from only dWt . Short-rate models are very important in affecting
bond pricing under no-arbitrage rational expectations framework. This is because if

7 M. J. Brennan and E. S. Schwarz (1977), Savings bonds, retractable bonds, and callable bonds, Jour-
nal of Financial Economics, 3, 133–155.
8 O. Vasicek (1977), An equilibrium characterization of the term structure, Journal of Financial Eco-
nomics, 5, 177–188.
9 J. C. Cox, J. E. Ingersoll, and S. A. Ross (1985), A theory of the term structure of interest rates, Econo-
metrica, 53, 385–407.
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we assume a full spectrum of discount bonds B(0, t) for maturity t in the future where
0 < t < T, then each of these can be priced by the following expectation that we saw
in Eq. (11.4).

B(0, t) = EQ0(exp[−
t

∫
0

ru(α, β, σ, λ) du]) (11.10)

where subscript Q to the conditional expectation at t = 0 denotes employment of the
“risk-neutral” set of probability distributionQ. In the derivatives literature, this is akin
to the no-arbitrage condition. In the process of the derivation, the probabilitymeasure
P is transformed to the Q via the Girsanov Theorem.10

If we look at the solution of a short-rate model such as Eq. (11.7), then the RHS of
Eq. (11.10) intuitively is solvable andwould lead to an expression involving the param-
eters in the short rate. In turn this is the LHS that is the t-period to maturity discount
bond price B(0, t). For many short-rate models, discount bond prices at time t, B(t,T)
can be solved asB(t,T) = exp[ϕ(t,T)−γ(t,T)rt] for functionsϕ(t,T) and γ(t,T) that are
dependent on the short-rate model parameters. Thus, theoretical zero coupon bond
prices and their derivatives, such as coupon bonds and bond derivatives, are related
to the short-rate models and are affected by the parameter values in the short-rate
models. In a similar fashion, with more complicated short rate models such as two-
factor models,11 the bond prices can be solved, whether analytically or via numerical
methods, in terms of the parameters of the short rate process.

Thus equilibriumno-arbitrage interest ratemodels can be constructed to find cur-
rent bond prices, either using a short rate model explicitly specified as in Eq. (11.5) via
a SDE or using a discrete lattice model as seen in Figure 11.1. In the lattice model, it is
usually possible to find enough degrees of freedom to allow calibration of the lattice
parameters to fit the theoretical current bond prices to those observed currently in the
market, i. e., fitting the current term structure or current YC. However, using an analyt-
ically specifiedSDEas inEq. (11.5)where thenumber of parameters are limited, it is not
possible to calibrate the parameters to fit all current bond prices or to fit the current
YC exactly. One advantage, however, with using SDE specification under P-measure
is that we can use historical time series data to directly estimate the parameters and
test the short rate model without invoking the no-arbitrage equilibrium conditions.
Of course, even if the statistical specification of the short rate model is found to be
acceptable in this case, there is still no guarantee that the model can price bonds and
bond derivatives correctly under no-arbitrage conditions.

10 One may refer to M. Musiela and M. Rutkowski (1998),Martingale Methods in Financial Modelling,
Springer, and R. Rebonato (1996), Interest Rate Option Models, 2nd ed., John Wiley & Sons, for more
advanced readings.
11 See D. Brigo and F. Mercurio (2001), Two-Factor Short-Rate Models. In: Interest Rate Models Theory
and Practice, Springer Finance, Berlin, Heidelberg.
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If a short-rate model such as Eq. (11.6) is solved in Eq. (11.7), then the analytical
probability distribution of rt is obtained, and this can be used to estimate the param-
eters via the maximum likelihoodmethod. However, in many cases of short-rate mod-
els, including multi-factor models, complete solution of analytical probability distri-
bution of rt is not possible, and thus the maximum likelihood method cannot be ap-
plied. Some distribution-freemethod, e. g. GMM,may be used. Another approach is to
use discrete approximations of the continuous-time short-rate model.

When the time interval Δ between two observations on the short rate is small,
Eq. (11.5) may be approximated by an empirical discrete process, i. e. a process that
can be tested using empirical data, as follows.

rt+Δ − rt = (α − βrt)Δ + et+Δ (11.11)

where et+Δ is an i. i. d. normally distributed random variable with mean E(et+Δ) = 0,
and var(et+Δ) = σ2r2λt Δ. Equation (11.11) may be expressed alternatively as rt+Δ − rt =
κ(θ − rt)Δ + et+Δ. This approximation was used in Chan, et al. and others.12 We shall
next explore the plausibility of several short rate models using regression analyses
presented by Eq. (11.11).

11.5 Estimation of Discretized Models

Daily one-month Treasury Bill rates in the Secondary Market from August 2001 to
March 2010 are obtained from the Federal Reserve Bank of New York public Web site.
The one-month spot rates are treated as proxies for the short rate rt . The graph of the
time series of this rate is shown in Figure 11.2. Treasury bill trades are quoted in terms
of discount yield (DY) where the equivalent bill price is P = FV(1 − τ

360DY). FV is the
face value of the bill, and τ is the day count to maturity. To put the yield computation
from bills on the same footing as yields from Treasuy notes and bonds, this DY is con-
verted to a bond equivalent yield (BEY). BEY = (FV/P − 1) 365τ . Hence, BEY and DY are
related as BEY = 365DY

360−τDY .
It is seen that the p. a. rates increase spectacularly from 2003 to 2007 when the

U. S. stock and property markets were booming. The rates collapsed in 2008 and 2009
togetherwith the global financial crisis as governments cut central bank interest rates.

We shall use linear regression method to provide preliminary investigation of the
plausibility of the Dothan, Vasicek, Brennan-Schwarz, and the CIR short-rate models.

Dothan’s approximate discrete model is

rt+Δ − rt = σrtηt+Δ (11.12)

12 See K. C. Chan, A. Karolyi, F. A. Longstaff, and A. Saunders (1992), An empirical comparison of
alternative models of the short-term interest rate, The Journal of Finance, 47(3), 1209–1227.
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Figure 11.2: Daily One-Month Treasury Bill Rates in the Secondary Market.

where ηt+Δ ∼ N(0,Δ). The implication is that (rt+Δ − rt)/rt ∼ N(0, σ2Δ). It should be
pointed out here that except for the Vasicek model that is mentioned earlier, all the
other three models including Dothan’s do not imply normal distribution for the short
rates under continuous time. Hence, the discretized version of normal errors is merely
an approximation.

Figure 11.3 and the embedded table show that (rt+Δ − rt)/rt is not normally dis-
tributed. Thus, Eq. (11.12) may not be a good description of the proxy short rates.

Figure 11.3: Test of Normality of (rt+Δ − rt )/rt ∼ N(0, σ2Δ).
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Next, we explore regression using the Vasicek discrete model:

rt+Δ − rt = (αΔ) − (βΔ)rt + et+Δ (11.13)

where et+Δ is i. i. d. normally distributed N(0, σ2Δ). Let a = αΔ, and b = −βΔ. Then, we
perform regression

Δrt = a + brt + et+Δ

The results are shown in Table 11.2. White’s heteroskedasticity consistent adjust-
ment13 is made in estimating the standard errors of estimators. Though the estimates
are not significantly different from zero, they neverthelessly have the correct signs.We
use Δ = 1/365. κ̂ = β̂ = −365 × b̂ = 0.549. θ̂ = 365 × â/κ̂ = 0.0108. If the model is cor-
rect, it suggests a long-run daily mean of 1.08% on an annualized basis, and a mean
reversion adjustment speed of 0.549. However, the residuals are not normal as seen in
Figure 11.4, and this contradicts one implication of the Vasicek model. There is also
strong correlation in the residuals.

Table 11.2: OLS Regression Δrt = a + brt + et+Δ, et+Δ ∼ i. i.d N(0, σ2Δ). Sample size 2171.

Coefficient Estimate Std. Error t-Statistic Prob.

a 1.63E-05 2.81E-05 −0.579256 0.5625
b −0.001504 0.001179 −1.275752 0.2022

R-squared 0.000695 Mean dependent var −1.67E-05
Adjusted R-squared 0.000234 S. D. dependent var 0.000977
S. E. of regression 0.000977 Akaike info criterion −11.02359
Sum squared resid 0.002070 Schwarz criterion −11.01836
Log likelihood 11968.11 Hannan-Quinn criter. −11.02168
F -statistic 1.508434 Durbin-Watson stat. 1.653049
Prob(F -statistic) 0.219512

The discrete approximations of Brennan-Schwarz short-rate model is:

rt+Δ − rt = (αΔ) − (βΔ)rt + rtet+Δ

where et+Δ is i. i. d. normally distributed N(0, σ2Δ).
Let yt+Δ = (rt+Δ − rt)/rt, then the model implies

yt+Δ = −(βΔ) + (αΔ)(1/rt) + et+Δ

13 See HalbertWhite (1980), A heteroskedasticity-consistent covariancematrix estimator and a direct
test for heteroskedasticity, Econometrica, 48(4), 817–838.
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Figure 11.4: Test of Normality of et+Δ ∼ N(0, σ2Δ).

Let a = −βΔ and b = αΔ. Then, we perform regression

yt+Δ = a + b(1/rt) + et+Δ

The results are shown in Table 11.3. White’s heteroskedasticity consistent adjustment
is made in estimating the standard errors of estimators.

Table 11.3: OLS Regression yt+Δ = a + b(1/rt ) + et+Δ, et+Δ ∼ i. i. d. N(0, σ2Δ). Sample size 2170.

Coefficient Estimate Std. Error t-Statistic Prob.

a 0.000216 0.008442 0.025591 0.9796
b 6.73E-05 1.60E-05 4.209572 0.0000

R-squared 0.032504 Mean dependent var 0.027614
Adjusted R-squared 0.032058 S. D. dependent var 0.450052
S. E. of regression 0.442780 Akaike info criterion 1.209432
Sum squared resid 425.0444 Schwarz criterion 1.214669
Log likelihood −1310.233 Hannan-Quinn criter. 1.211347
F -statistic 72.83674 Durbin-Watson stat 2.181601
Prob(F -statistic) 0.000000

In the regression, the sign of the coefficient of the intercept is not negative, and thus
mean reversion adjustment speed is incorrectly estimated as negative.

The discrete approximations of CIR short-rate model is:

rt+Δ − rt = (αΔ) − (βΔ)rt + r
1/2
t et+Δ
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where et+Δ is i. i. d. normally distributed N(0, σ2Δ). Let yt+Δ = (rt+Δ − rt)/r
1/2
t , then the

model implies

yt+Δ = c + (αΔ)(1/r
1/2
t ) − (βΔ)r

1/2
t + et+Δ

We add a constant c which should be insignificantly different from zero. Let b1 = αΔ
and b2 = −βΔ. Then, we perform regression

yt+Δ = c + b1(1/r
1/2
t ) + b2(r

1/2
t ) + et+Δ

The results are shown in Table 11.4. White’s heteroskedasticity consistent adjustment
is made in estimating the standard errors of estimators.

Table 11.4: OLS Regression yt+Δ = c + b1(1/r
1/2
t ) + b2(r

1/2
t ) + et+Δ, et+Δ ∼ i. i. d. N(0, σ

2Δ). Sample size
2170.

Coefficient Estimate Std. Error t-Statistic Prob.

c −0.000630 0.001408 −0.447633 0.6545
b1 7.82E-05 2.64E-05 2.960648 0.0031
b2 −0.000523 0.007337 −0.071293 0.9432

R-squared 0.009705 Mean dependent var 0.000317
Adjusted R-squared 0.008791 S. D. dependent var 0.012484
S. E. of regression 0.012429 Akaike info criterion −5.936154
Sum squared resid 0.334769 Schwarz criterion −5.928298
Log likelihood 6443.727 Hannan-Quinn criter. −5.933281
F -statistic 10.61857 Durbin-Watson stat 2.018086
Prob(F -statistic) 0.000026

In the regression reported in Table 11.4, the estimated coefficients are of the correct
signs and one of them is highly significant.

κ̂ = β̂ = −365 × b̂2 = 0.191, and θ̂ = 365 × b̂1/κ̂ = 0.150

However, the estimate of long-run mean θ̂ appears too high for a Treasury short
rate during this sampling period.

The above preliminary results based on a simple discretized approximation of the
various continuous time short rate models do not appear to provide strong support of
the models. Similar results are found in a study by Nowman (1997).14

14 See K. B. Nowman (1997), Gaussian estimation of single-factor continuous timemodels of the term
structure of interest rates, The Journal of Finance, 52(4), 1695–1706.
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11.5.1 Black-Derman-Toy Model

To continue with the idea of a lattice tree in Figure 11.1, we show below a popular spot
rate model used in industry that carries some of the useful features of the Vasicek
model and also allows for calibration to the current term structure. The continuous-
time representation of the Black-Derman-Toy (BDT) interest rate model is:

d ln rt = (θ(t) − a(t) ln rt)dt + σ(t)dW
Q
t

There are some differences with the original Vasicek model shown in Eq. (11.6).
Firstly, the LHS is the change in log of rt, so that the short rate rt will not be negative.
Secondly, instead of constant long-run mean level and speed of reversion, these are
now functions of time, so at different times, they can take different values. Thirdly, the
variance is also a function of time. Finally, we use the risk-neutral probabilitymeasure
Q here for the innovation since we are directly dealing with no-arbitrage prices. There
is no need to specify the empirical measure as we do not need to use the historical
time series data for estimating the short rate process parameters. The BDT model re-
tains useful features such asmean reversion of the interest rate, and parsimony in the
variance process.

For solution, the discrete version of BDT model is

Δ ln rt+Δ = (θ(t) − a(t) ln rt)Δ + σ(t)ΔW
Q
t (11.14)

where ΔWQ
t is normally distributed asN(0,Δ). The mean and variance at t conditional

on ln rt are EQt (Δ ln rt+1) = (θ(t) − a(t) ln rt)Δ, and var
Q
t (Δ ln rt+1) = σ(t)

2Δ.
Starting at t = 0 in a binomial process, the log spot rate at t = Δ is either

ln ruΔ = ln r0 + (θ(0) − a(0) ln r0)Δ + σ(0)√Δ (11.15)

with risk-neutral probability 1
2 or,

ln rdΔ = ln r0 + (θ(0) − a(0) ln r0)Δ − σ(0)√Δ (11.16)

with risk-neutral probability 1
2 . Then it is seen fromEqs. (11.15) and (11.16) that E(ln rΔ−

ln r0) = (θ(0) − a(0) ln r0)Δ, and var(ln rΔ) = σ(0)2Δ. This is identical with the mean
and variance results in Eq. (11.14). Moreover, it can be seen that the binomial process
approximates the Wiener process as Δ ↓ 0. Therefore, another interpretation of the
lattice structure in Figure 11.1 is that besides a discrete process in its own right, the
discrete lattice process also converges to a continuous-time model as Δ ↓ 0.

The non-recombining lattice tree in Figure 11.1 ismore general and allows formore
parameters, but is computationally very heavy as the number of nodes grows expo-
nentially at 2N when there are N periods. To facilitate computations for a large N (as a
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way of approaching the continuous-time solution), the lattice tree is made to recom-
binewhenever possible, i. e. numerically feasible (so that the risk-neutral probabilities
and the nodal values are all within the feasible spaces), and allows convergence (or
finite approximation) to the desired continuous-time process.

We can consider a recombining binomial lattice tree for BDT model as follows. In
the next time step from Eq. (11.15),

ln rud2Δ = ln r
u
Δ + (θ(Δ) − a(Δ) ln r

u
Δ)Δ − σ(Δ)√Δ

In the next time step from Eq. (11.16),

ln rdu2Δ = ln r
d
Δ + (θ(Δ) − a(Δ) ln r

d
Δ)Δ + σ(Δ)√Δ

For recombining lattice tree, we put ln rud2Δ = ln r
du
2Δ , so we obtain (ln r

u
Δ − ln r

d
Δ)(1 −

a(Δ)Δ) = 2σ(Δ)√Δ. Then, a(Δ)Δ = 1 − σ(Δ)/σ(0). In the BDT model, the volatility pro-
cess {σ(0), σ(Δ), σ(2Δ), . . .} is subjectively specified by the interest rate hedger or else
speculator. This in turn fixes the parameters {a(Δ), a(2Δ), . . .}.

Moreover, ifwe take the value of anupper node less that of a lower node,weobtain
ln ruu2Δ − ln r

ud
2Δ = 2σ(Δ)√Δ. Similarly, ln rdu2Δ − ln r

dd
2Δ = 2σ(Δ)√Δ. This stylized feature of

the BDT latticemakes it very easier to specify all the short rate values on eachnode at a
time twhen the lowest node is established. For example, if at t = kΔ (k > 0), the lowest
nodal value of short rate is rddd...ddkΔ = XkΔ, then the short rates at nodes higher up at
t = kΔ are XkΔ exp(2σ[(k − 1)Δ]√Δ), XkΔ exp(4σ[(k − 1)Δ]√Δ), XkΔ exp(6σ[(k − 1)Δ]√Δ),
and so on until XkΔ exp(2kσ[(k − 1)Δ]√Δ) at the top node.

Given the current termstructure or equivalent the current zero couponbondprices
at t = 0 of {B(0,Δ),B(0, 2Δ),B(0, 3Δ), . . . ,B(0,NΔ)},

B(0,Δ) = 1
(1 + r0)

B(0, 2Δ) = 1
2
[

1
(1 + r0)(1 + XΔ exp(2σ[0]√Δ))

] +
1
2
[

1
(1 + r0)(1 + XΔ)

]

B(0, 3Δ) = 1
4
[

1
(1 + r0)(1 + XΔ exp(2σ[0]√Δ))(1 + X2Δ exp(4σ[Δ]√Δ))

]

+
1
4
[

1
(1 + r0)(1 + XΔ exp(2σ[0]√Δ))(1 + X2Δ exp(2σ[Δ]√Δ))

]

+
1
4
[

1
(1 + r0)(1 + XΔ)(1 + X2Δ exp(2σ[Δ]√Δ))

]

+
1
4
[

1
(1 + r0)(1 + XΔ)(1 + X2Δ)

]

and so on.
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Figure 11.5: Black-Derman-Toy Interest Rate Lattice Tree.

The recombining BDT spot rate tree can be shown in Figure 11.5. We illustrate with
only N = 3 time steps.

Hence, we can bootstrap to solve for XΔ given B(0, 2Δ) (r0 is known and σ(0) is an
input). If we assume θ(0) = 0, then from XΔ we can solve for a(0) using Eq. (11.16).
Next we can solve for X2Δ given B(0, 3Δ). From X2Δ we can solve for θ(Δ). Therefore,
by calibrating the BDT model with inputs of the volatility curve, all the model param-
eters θ(t) and a(t) for t = Δ, 2Δ, . . . can be found in Eq. (11.14). Just as the statistical
spot rate models have the disadvantage of being not calibrated to the current term
structure (partly due to the finite number of parameters in a statistical specification)
or bond prices, the calibrated approach in the lattice tree also has the disadvantage
that it is clumsy when it comes to forecasting as it has possibly an infinite number of
parameters, e. g., {θ(t), a(t)}, ∀t > 0. These implied parameters may also change over
time. There is positive use to understanding how interest rates evolve but normative
use such as in forecasting requires more theoretical and empirical studies.

11.6 Credit Spreads

So far we have discussed risk-free Treasury bonds and their interest rates including
spot rates and yield-to-maturity. Nowwediscuss yield-to-maturity of a corporate bond
that is higher than that of a Treasury bond with the same maturity since investors
would demand compensation of higher yield for bearing default risk in corporate
bonds. The excess of a corporate bond yield over the Treasury bond yield of the same
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maturity is called a credit spread of that maturity. Thus, credit spread also has a term
structure.

In Duffee (1998) and Dufresne, et al. (2001),15 increase in three-month U. S. Trea-
sury bill rate and increase in the slope of the Treasury yield curve both separately
would lead to decrease in the credit spread of corporate bonds, especially bonds with
longer maturity and lower ratings.

One way of understanding this is that when times are good – boom during a busi-
ness cycle peak – and demand for loanable funds are high, the short-maturity Trea-
sury interest rates (and other loanable funds rates as well) go up. Likewise, expected
next period short-term rate is high. The latter implies that today’s long-term rate that
accounts for the high expected next period’s interest rate would also be high. Higher
long-term rates mean that the slope of the yield curve also goes up. In these situation,
themarket’s assessments of the credit risks of corporate bonds are lower, and thus the
credit spread (or credit premium, difference between credit risky bond interest and the
Treasury interest of the same maturity) would narrow.

On the other hand, when the Treasury yield curve slope starts to decrease and
turn negative, then there is expectation of future short rate decreases, a signal of mar-
ket’s negative assessment of future economic prospects.16 Thiswould cause credit risk
premium or credit spread to rise.

To empirically verify this economic intuition, we perform a regression analysis as
follows. Monthly spot interest rates of the U. S. Treasury bills and bonds and also Ba-
rating bonds from February 1992 to March 1998 were obtained from Lehman Brothers
Fixed Income Database. We first construct monthly Ba-rated credit spreads for nine-
year term by finding the difference of Ba-rated nine-year spot rate less the Treasury
nine-year spot rate. We then construct the Treasury yield curve slope (or its proxy
“slope” since the yield curve is not exactly a straight line) by taking the Treasury 10-
year spot rate less the Treasury one-month spot rate.

Finally, we also employ the Treasury one-month spot rate (T1M) as the proxy for
short rate (very short-term Treasury spot rate). A regression of the credit spread πt on
the one-month Treasury spot and the Treasury slope (TERMSLOPE) using the set of 74
monthly observations is performed.

πt = c + b1T1Mt + b2TERMSLOPEt + ξt

where ξt is residual i. i. d. noise.

15 See G. R. Duffee (1998), The relation between treasury yields and corporate bond yield spreads,
The Journal of Finance, LIII(6), 2225–2241. See also P. Collin-Dufresne, R. S. Goldstein, and J. S. Martin
(2001), The determinants of credit spread changes, The Journal of Finance, LVI(6), 2177–2207.
16 A.Ang,M. Piazzesi, andM.Wei (2006),What does the yield curve tell us aboutGDPgrowth? Journal
of Econometrics, 131, 359–403, commented that every recession in the U. S. after the mid-1960s was
predicted by a negative yield curve slope within six quarters.
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The results are shown in Table 11.5. It is indeed seen that the coefficient estimates
on the one-month Treasury spot rate and on the Treasury slope are both negative as
indicated. Regression using the three-month Treasury spot rate as proxy for the short-
rate yields almost similar results. However, the coefficients for this sampling period
are not significantly negative based on the t-tests.

Table 11.5: OLS Regression of Credit Spread πt on Treasury Short Rate and Slope, 2/1992 to 3/1998
(Sample size 74).

Coefficient Estimate Std.Error t-Statistic Prob.

a 0.071755 0.022873 3.137055 0.0025
b1 −0.387103 0.337696 −1.146305 0.2555
b2 −1.120837 0.907097 −1.235631 0.2207

R-squared 0.024888 Mean dependent var 0.043620
Adjusted R-squared −0.002580 S. D. dependent var 0.017919
S. E. of regression 0.017943 Akaike info criterion −5.163593
Sum squared resid 0.022857 Schwarz criterion −5.070185
Log likelihood 194.0529 Hannan-Quinn criter. −5.126331
F -statistic 0.906070 Durbin-Watson stat 2.093021
Prob(F -statistic) 0.408730

The credit spread and the Treasury slope are indeed important factors in the economy.
Other factors are of course included in the residual term ξt . In a related study, Fama
and French (1993)17 found that in cross-sectional regressions, there is positive effect
of term structure slope and also positive effect of default risk premium (credit spread)
on risky bond returns.

Further Reading
Garbade, KennethD. (1999), Fixed Income Analytics, The MIT Press.
Sundaresan, S. (1997), Fixed Income Markets and Their Derivatives, South-Western Publishing.
Fabozzi, Frank J. (2007), Fixed Income Analysis, John Wiley & Sons.

17 Eugene F. Fama and Kenneth R. French (1993), Common risk factors in the returns on stocks and
bonds, Journal of Financial Economics 33, 3–56.

 EBSCOhost - printed on 2/8/2023 6:26 PM via . All use subject to https://www.ebsco.com/terms-of-use



12 Option Pricing and Implied Moments

Just as bond prices are derivatives of short rate processes, option prices are derivatives
of underlying price processes. The Chicago Board of Trade had started trading options
in 1973. The Black–Scholes formula, when endorsed by the academic community, be-
came a popular tool for traders, partly due to its analytical simplicity, and helped in
the expansion of the options market.

12.1 Itô’s Calculus
We first state the important stochastic calculus result. Note that Ws deenotes the
Wiener process at time s.

Theorem 12.1 (Itô–Doeblin Formula). For dXs = μ(s,Xs)ds + σ(s,Xs)dW s,

f (t,Xt) = f (0,X0) +
t

∫
0

ft(s,Xs)ds +
t

∫
0

fX(s,Xs)dXs

+
1
2

t

∫
0

fXX(s,Xs)σ(s,Xs)
2ds

Its differential form is

df (t,Xt) = ft(t,Xt)dt + fX(t,Xt)dXt +
1
2
fXX(t,Xt)(dXt)

2

The latter is often called Itô’s lemma.We show below how the Itô’s lemma can be used
to solve a stochastic differential equation.

Suppose Xt has stochastic differential equation:

dXt = μXtdt + σXtdWt (12.1)

where μ and σ are instantaneous mean and volatility of dXt/Xt that are constants.
Then, putting f (Xt) = lnXt, we have, applying Itô’s lemma:

d lnXt =
1
Xt
dXt +

1
2
(−

1
X2
t
)(dXt)

2

= (μdt + σdW t) −
1
2
σ2dt

= (μ − 1
2
σ2)dt + σdW t (12.2)

using the Wiener process property that (dWt)
2 = dt and also (dt)2 = (dt)(dWt) = 0.

If we take the definite integral on Eq. (12.2) over support [0,T] and defineW0 = 0,

https://doi.org/10.1515/9783110673951-012
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T

∫
0

d lnXt =
T

∫
0

(μ − 1
2
σ2)dt + σ

T

∫
0

dWt

Then

lnXT − lnX0 = (μ −
1
2
σ2)T + σWT

and

XT = X0 exp([μ −
1
2
σ2]T + σWT) (12.3)

This is a strong solution1 to the Geometric Brownian Motion stochastic differential
equation in Eq. (12.1); the solution is a stochastic process Xt(ω)which in this case is a
diffusion process since it is a strong Markov process with continuous sample path. It
has anormal probability distribution at any timepoint t, and is also called a lognormal
diffusion process.

12.2 Martingale Method For Black-Scholes Formula
The GBM has a physical or empirical drift term μdt which makes it difficult to price
an option directly since it is generally difficult to determine a risk-discounted rate for
option returns corresponding to an arbitrary μ ̸= 0. Themethod to price options based
on the underlying stock price process such as the GBM in Eq. (12.1) leads to the path-
breaking Black-Scholesmodel. We introduce the Girsanov theorem and use it to trans-
form theGBMunder physical or empirical probabilitymeasure P to an equivalentmar-
tingale or risk-neutral probability measure Q such that the GBM becomes one with a
risk-neutral drift.

Theorem 12.2 (Girsanov Theorem). Define the process dWQ
t = dW

P
t + γdt, where the

RHS is an SDE under the P-measure. Assume γ satisfies the Novikov condition

E(exp[ 1
2

t

∫
0

|γ|2ds]) <∞

The LHSWQ
t is aWiener process under a different probabilitymeasure Qwheremeasure

Q is related to P by the Radon-Nikodým derivative dQ
dP = exp[−

1
2 ∫

t
0 γ

2
sds − ∫

t
0 γsdWs].

1 Aweak solutiondoes not enable amapping of BrownianMotionpathWt(ω) to solutionXt(ω) though
it may offer a distribution indexed by time. A strong solution would require conditions that initial
X0 has a finite second moment if it is a RV, that Xt has a continuous sample path, and the drift and
diffusion coefficients satisfy the Lipschitz condition, i. e., do not change too fast, |μ(t, y) − μ(t, x)| +
|σ(t, y) − σ(t, x)| ≤ K|y − x|, K finite, for some small displacements in Xt from x to y.

 EBSCOhost - printed on 2/8/2023 6:26 PM via . All use subject to https://www.ebsco.com/terms-of-use



332 | 12 Option Pricing and Implied Moments

The Novikov condition is necessary in order for stochastic integral to be finite.
The Girsanov theorem can be used to change the drift of a diffusion process under
P-measure and to turn it into a martingale under a different Q-probability measure.
Thus, a process dWt + γdt may have a non-zero drift γdt under the P-measure. But
by applying the Q-measure with density dQ/dP = Z(ω) where Q and P are equivalent
probability measures and EP(Z) = 1, we can turn the process into a martingale diffu-
sion processWQ

t now with zero drift under Q-measure.
Consider a money account processMT = M0 exp(rT) where r is the continuously

compounded risk-free rate. M0 is an initial constant, and MT is the money in a risk-
free deposit or money account that accumulates at the rate of r continuously. Then,
employing Eq. (12.3), the discounted price process is

Xt
Mt
=
X0
M0

exp([μ − r − 1
2
σ2]T + σWP

T)

or,

d( Xt
Mt
) =

Xt
Mt
[(μ − r)dt + σdWP

t ]

Hence, under the P-measure where Xt follows the GBM, the discounted price process
has a drift μ − r which is not zero. To apply Girsanov’s theorem and change the drift
to zero, we use γ = μ−r

σ in the Radon-Nikodým derivative dQ
dP to switch to a different

Wiener processWQ
t = W

P
t +

μ−r
σ t. Now,

d( Xt
Mt
) =

Xt
Mt
[(μ − r)dt + σdWP

t ]

=
Xt
Mt
[(μ − r)dt + σ(dWQ

t −
μ − r
σ

dt)]

=
Xt
Mt
[(μ − r)dt + σdWQ

t − (μ − r)dt]

=
Xt
Mt

σ dWQ
t (12.4)

In Eq. (12.4), Xt/Mt is now amartingale under the equivalentQ-measure. UnderQ,
this probability distribution implies a risk-neutral SDE of Xt as follows

dXt = rXtdt + σXtdW
Q
t

There is an important connection between no-arbitrage equilibrium asset pricing and
existence of an equivalent martingale measure Q. As seen in Chapter 11, the first fun-
damental asset pricing theorem by Dybvig and Ross (1987)2 essentially states that no-

2 P.H. Dybvig and Stephen A. Ross (1987), Arbitrage, in J. Eatwell, M. Milgate, P. Newman, eds., The
New Palgrave Dictionary of Economics, London Macmillan.
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arbitrage price obtains if and only if there exists an equivalent martingale measure.
Thus, one can employ expectations on the Q-martingale measure to find the current
no-arbitrage equilibrium price of any security and derivative without having to con-
struct an equilibrium theory of risk premium. Under this Q-measure, all derivative
prices C(Xt) can be solved by taking expectation E0(Ct)w. r. t. the risk-neutral distribu-
tion Xt underQ- measure and discounting by the risk-free return ert . It is as if investors
in the market are all risk-neutral.

The risk-neutral probability distribution of underlying asset price Xt under Q,
N((r − 12σ

2)t, σ2t) is used to price any European derivative C(Xt , t). For a European call,
price C0, on a stock with price S0, let X0 = S0. Time to maturity is τ.

C0 = e
−rτE[max(Sτ − K,0)]
= e−rτ(E[Sτ|Sτ ≥ K]P[Sτ ≥ K] − KP[Sτ ≥ K])

First, Sτ ≡ S0 exp((r − 1/2σ2)τ+σ√τz)where z ∼ N(0, 1). This distribution is under
the Q−measure. Then,

E(Sτ|Sτ ≥ K)

= E(S0 exp((r − 1/2σ
2)τ + σ√τZ)|Z ≥ ln(K/S0) − (r − 1/2σ

2)τ
σ√τ

)

= (
∞

∫
ln(K/S0)−(r−1/2σ2)τ

σ√τ

S0 exp((r − 1/2σ
2)τ + σ√τz)ϕ(z)dz)/P(Sτ ≥ K)

= S0 exp(rτ)[
∞

∫
ln(K/S0)−(r−1/2σ2)τ

σ√τ

exp(− 1
2
σ2τ + σ√τz − 1

2
z2) 1
√2π

dz]/P(Sτ ≥ K)

= S0 exp(rτ)[
∞

∫
ln(K/S0)−(r−1/2σ2)τ

σ√τ

exp(− 1
2
(σ√τ − z)2) 1

√2π
dz]/P(Sτ ≥ K)

Doing a change of variable y = σ√τ − z, we have

E(Sτ|Sτ ≥ K) = S0 exp(rτ)[

ln(S0/K)+(r+1/2σ
2)τ

σ√τ

∫
−∞

exp(− 1
2
y2) 1
√2π

dy]/P(Sτ ≥ K)

Then

E[Sτ|Sτ ≥ K]P[Sτ ≥ K] = S0e
rτN(d1)

where
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d1 =
ln(S0/K) + (r + 1/2σ2)τ

σ√τ

Next,

P(Sτ ≥ K) = P(ln Sτ − ln S0 ≥ lnK − ln S0) = P(ln
Sτ
S0
≥ ln K

S0
)

Since ln Sτ
S0
∼ N((r − 1/2σ2)τ, σ2τ), then

P(ln Sτ
S0
≥ ln K

S0
) = P( ln(Sτ/S0) − (r − 1/2σ

2)τ
σ√τ

≥
ln(K/S0) − (r − 1/2σ2)τ

σ√τ
)

=
∞

∫
ln(K/S0)−(r−1/2σ2)τ

σ√τ

ϕ(z)dz

=

ln(S0/K)+(r−1/2σ
2)τ

σ√τ

∫
−∞

ϕ(z)dz

= N(d2)

where

d2 =
ln(S0/K) + (r − 1/2σ2)τ

σ√τ

Therefore,

C0 = e
−rτ(S0e

rτN(d1) − KN(d2))

or

C0 = S0N(d1) − Ke
−rτN(d2)

This is the Black-Scholes European call price on an underlying stock without divi-
dends.

12.3 Greeks

Greeks refer to the Greek alphabets used to denote the various partial derivatives of
analytical option prices to underlying parameter shifts including changes in the un-
derlying variable. Greeks are (variable) hedging ratios.
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Consider the European Black–Scholes call price Ct at time t with exercise or strike
priceK, maturity at time T > t, and underlying asset price following GBM dS = S(μdt+
σdW). The continuously compounded risk-free rate over [t,T] is r:

C(S, t) = SN(d1) − Ke
−rτN(d2) (12.5)

where N(⋅) is the cdf of a standard normal RV and ϕ(⋅) is its pdf,

τ = T − t

d1 =
ln( SK ) + (r +

1
2σ

2)τ
σ√τ

d2 = d1 − σ√τ

Using put-call parity, the European put price is

P(S, t) = Ke−rτN(−d2) − SN(−d1) (12.6)

We have employed the Black–Scholes option formula so far, and this is in the con-
text of European stock options. There are other types of European-style options involv-
ing commodities, currencies, and futures, which are also based on the Black–Scholes
formulation.

Consider a forward contract with current price F for future delivery of commodi-
ties, including stock, at time-to-maturity τ. By the cost-of-carry no-arbitrage model,
F = Serτ, or S = Fe−rτ. Substituting this into Eq. (12.5), we have the price of a call op-
tion on a forward contract (if we ignore themark-to-market stochastic interest gains or
losses of an otherwise similar futures contract, then this is also the price of a futures
call option):

C(F, t) = e−rτ(FN(d1) − KN(d2)) (12.7)

where

d1 =
ln( FK ) +

1
2σ

2τ
σ√τ

d2 = d1 − σ√τ

We provide a slightly more general version of the Black–Scholes formula of calls
and puts on underlying GBM asset price Z with cost of carry η. Then,

C(Z, t) = e(η−r)τZN(d1) − e
−rτKN(d2) (12.8)

where
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d1 =
ln( ZK ) + (η +

1
2σ

2)τ
σ√τ

d2 = d1 − σ√τ

The put formula is

P(Z, t) = e−rτKN(−d2) − e
(η−r)τZN(−d1) (12.9)

Using Eqs. (12.8) and (12.9), if it is a stock optionwithout dividend, η = r andZ = S.
If it is a stock option with continuous dividend yield δ, then η = r − δ and Z = S. If it is
a futures option, η = 0 and Z = F since there is no carry cost (as the price for futures is
not paid upfront but is settled only at maturity). If it is a currency option priced in US$
for possible gain in currency Y where the domestic US interest rate is r and the foreign
currency Y interest rate is rY , then η = r − rY (this amounts to a replication position of
borrowing US$ and lending in currency Y , thus receiving payout in Y interest while
paying $ interest) and Z is the spot exchange rate in $ per Y .

In the following, we develop the Greeks for the general version of Black–Scholes
in (12.8) and (12.9).

From (12.8) and (12.9),

𝜕d1
𝜕Z
=
𝜕d2
𝜕Z
=

1
Zσ√τ

ϕ(d2) =
1
√2π

exp(− 1
2
(d21 − 2d1σ√τ + σ

2τ))

= ϕ(d1) exp(d1σ√τ −
1
2
σ2τ)

= ϕ(d1)
Z
K
eητ (12.10)

Delta; δ

𝜕C
𝜕Z
= e(η−r)τN(d1) + e

(η−r)τZ ϕ(d1)
Zσ√τ
− Ke−rτ ϕ(d2)

Zσ√τ

= e(η−r)τN(d1) + e
(η−r)τϕ(d1)

σ√τ
− e(η−r)τϕ(d1)

σ√τ
using Eq. (12.10)

= e(η−r)τN(d1) > 0
𝜕P
𝜕Z
= −e(η−r)τN(−d1) < 0

Rho; ρ

𝜕C
𝜕r
= e(η−r)τZϕ(d1)

𝜕d1
𝜕r
− Ke−rτϕ(d2)

𝜕d2
𝜕r
− KN(d2)[−τe

−rτ]

= e(η−r)τZϕ(d1)[
𝜕d1
𝜕r
−
𝜕d2
𝜕r
] + τKe−rτN(d2)
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= τKe−rτN(d2) > 0
𝜕P
𝜕r
= −τKe−rτN(−d2) < 0

Vega; ν

𝜕C
𝜕σ
= e(η−r)τZϕ(d1)

𝜕d1
𝜕σ
− Ke−rτϕ(d2)

𝜕d2
𝜕σ

= e(η−r)τZϕ(d1)[
𝜕d1
𝜕σ
] − Ke−rτϕ(d2)[

𝜕d1
𝜕σ
−√τ]

= e(η−r)τZϕ(d1)√τ > 0

Note that vegas for the BS European call and put are identical.

Gamma; Γ or γ

𝜕2C
𝜕Z2
=
𝜕e(η−r)τN(d1)
𝜕Z

= e(η−r)τϕ(d1)
𝜕d1
𝜕Z

= e(η−r)τ ϕ(d1)
Zσ√τ
> 0

Note that gammas for the BS European call and put are identical. Gamma is the largest
for calls and puts at the money and close to expiry. Next, the time decay, or theta, is
shown as follows.

Theta; θ

𝜕C
𝜕t
= −
𝜕C
𝜕τ

= −((η − r)e(η−r)τZN(d1) + e
(η−r)τZϕ(d1)

𝜕d1
𝜕τ

− KN(d2)[−re
−rτ] − e−rτKϕ(d2)

𝜕d2
𝜕τ
)

= −(η − r)e(η−r)τZN(d1) − re
−rτKN(d2) − e

(η−r)τZϕ(d1)
σ

2√τ
𝜕P
𝜕t
= −
𝜕P
𝜕τ

= (η − r)e(η−r)τZN(−d1) + re
−rτKN(−d2) − e

(η−r)τZϕ(d1)
σ

2√τ

Intuitively,most optionshavenegative θ or timedecay, reflecting the fact that their
value decreases as the expiry date nears. Timedecay is especially fast for at-the-money
options. However, unlike othermajor Greeks, there are exceptions when time decay or
θ can become positive. For example, some in-the-money European puts that cannot
be exercised until maturity behave like holding ZC bonds, where the value increases

 EBSCOhost - printed on 2/8/2023 6:26 PM via . All use subject to https://www.ebsco.com/terms-of-use



338 | 12 Option Pricing and Implied Moments

as expiry date gets closer. In-the-money European calls on currencies yielding very
high interest rates may also have positive thetas. Thus although the sign of θ is mostly
negative, it may be positive in some situations.

12.3.1 Delta Hedging

Delta hedging refers to hedging anopenoptionpositionby taking anopposite position
in theunderlyingwith aquantity equal to delta, thus creating adelta-neutral portfolio.
Hedging a short (long) position in the underlying can be done by taking a long (short)
position in the option by a quantity equal to 1/delta.

Suppose theportfolio is a long (short) position in a stock call option.Deltahedging
this long (short) option position consists of short-selling (buying) δ number of stocks.
Thus, over a small time interval, the change in value of the delta-neutral portfolio of
value Π = C − δS is close to zero:

|△ C − δ△ S| =

△C − 𝜕C
𝜕S
△ S

≈ 0

Dynamic delta hedging refers to a trading strategy that continuously maintains a
delta-neutral portfolio through the life of the option portfolio. In this case, the delta
of the option portfolio is changing continuously and requires the number of stocks
to be continuously adjusted. By continuously maintaining a delta-neutral hedge, the
idea is to keep the portfolio value Π = C − δS approximately constant until the option
reaches maturity. The motivation for doing this may be that at time t after the option
has begun, the owner has gained value in the option equal toCt−C0 > 0. To lock in this
value, without having to liquidate the options for whatever reasons (including reason
of options market being illiquid or having the options as a collateral pledge, and so
on), the owner uses delta hedging to try to lock-in Ct −C0 until maturity of option at T.

Consider the call option priceC(S, t) at time t. Taking the total derivative andusing
Itô’s lemma gives

dCt = Ctdt + CSdSt +
1
2
CSS(dSt)

2

Hence, the hedged portfolio infinitesimal value change (given fixed δ over dt) is

dΠt = dCt − δdSt

= Ctdt + CSdSt +
1
2
CSS(dSt)

2 − δdSt

= Ctdt +
1
2
CSS(dSt)

2 (12.11)

There are two aspects of Eq. (12.11). Over small discrete trading interval△,△Πt ≈
θ△ + 12Γ(△St)

2. Taking expectations on both sides
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E(△Πt) ≈ θ△ +
1
2
ΓE(△St)

2

= θ△ + 1
2
Γσ2S2t△ (12.12)

so a delta-hedged portfolio (e. g., long option short stocks) will still experience some
drift. This is shown in Figure 12.1.

Figure 12.1: Illustration of Delta Hedging.

Figure 12.1 shows the slope of the tangent to the price point S on the upper curve as δ or
CS. At S, if the stock price either increases or decreases, therewill be a gap between the
newpriceC′t and the tangent line representingCt+CS△St . The gap is△Ct−δ△St, which
is driven by Γ or CSS of the call as seen in Eq. (12.11). The gap is sometimes called the
delta-hedging error. Note thatwhicheverway the price St maydeviate, Γ is positive and
is profitable to the trader who is long call and short stock. As time passes, the price
curve shifts to the lower one with time decay that is negative as the call is not deep
in-the-money. The difference between the two price curves represents time decay or
θ < 0, ceteris paribus.

Positive Γ is similar in concept to the convexity in the price-yield relationship of a
bond curve. Theoretically, given a stock price St ∼ GBM, then

dΠt = dCt − δdSt

= Ctdt +
1
2
CSS(dSt)

2

= θdt + 1
2
Γσ2S2t dt

= −[Stϕ(d1)[
σ

2√τ
] + rKe−rτN(d2)]dt + [

1
2
ϕ(d1)
Stσ√τ

σ2S2t ]dt

= −rKe−rτN(d2)dt (12.13)

Hence, a long option delta-neutral portfolio has positive gamma, negative theta,
and net negative drift as seen in (12.13). On the contrary, sell-side bankers who are
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short options and hold a delta-neutral portfolio face negative gamma, positive theta,
and a net positive drift.

It is seen that Γ is small when the stock is deep in-the-money or deep out-of-the-
money, i. e., ϕ(d1) is very small. Thus, a banker holding a delta-neutral portfolio and
short in options would prefer if the options did not end close to being at-the-money
near maturity, so that the negative gammawould be small in magnitude. On the other
hand, an investor holding a delta-neutral portfolio and long in options would prefer if
the options end close to being at-the-money nearmaturity, so that the positive gamma
would be large in magnitude and bring about a positive portfolio return.

As shown in Eq. (12.13), delta-hedging on a continuous-time basis still leaves a
negative drift −rKe−rτN(d2)dt. Where does this come from? If we examine the Black–
Scholes European call option pricing formula

C(S, t) = SN(d1) − Ke
−rτN(d2)

we find that there are two components making up or replicating a call: long position
of N(d1) or CS or δ number of underlying shares, and short position or borrowing of
dollar amount of risk-free bond Ke−rτN(d2).

Delta hedging constitutes only the first component above. That is why there is still
a remaining drift term in Eq. (12.13). If we want to replicate a call option exactly in a
continuous-time dynamic way, we should buy δ orN(d1) number of underlying shares
and shortKe−rτN(d2) amount of risk-free bonds. If wewish to hedge a long call option,
we should short δ or N(d1) number of underlying shares and buy (lend) Ke−rτN(d2)
dollar amount of risk-free bonds. In the latter, the infinitesimal change in the value of
the portfolio (now comprising an additional amount of risk-free bond) is

dΠ∗t = dCt − δdSt + r[Ke
−rτN(d2)]dt = 0

Now, we obtain a dynamically perfect hedge, provided that at every instance t,
we rebalance our portfolio with a new δ = N(d1) and a new amount of risk-free bond
equal to Ke−rτN(d2). It is seen in the replicating portfolio [N(d1)St ,−Ke−rτN(d2)] for a
call option C(St , t) that as maturity approaches, if the call is out-of-the-money (OTM)
or St is below K, then the replicating portfolio behaves more like a bond since N(d1)
is close to zero, and in fact the bond portion is also close to zero. If the call is in-the-
money (ITM) when maturity approaches, i. e., St > K, then N(d1) approaches 1 while
N(d2) also approaches 1, so that the call value tends towards ST − K.

12.4 Numerical Method in Option Pricing and Hedging

The Black-Scholes option price is analytically tractable. However, most stock options
are American style, i. e. the option can be exercised at any time point prior to matu-
rity, unlike the European style options. American options generally do not have closed
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form analytical solutions though there exist many methods of semi-analytical solu-
tions involving some numerical computations. We show below a popular and com-
mon type of numerical method called the lattice tree method. This method is compu-
tationally effective and mostly efficient when the option is not path-dependent and
the underlying asset’s stochastic process is not overly complicated. we show the case
of the lognormal diffusion stochastic stock price process.3

Figure 12.2 shows the binomial (lattice) tree of stock price evolution in time having
two states in each period or interval. The stocks do not issue dividends. In the up-
state U, stock return is a factor u, and in the down-state D, stock return is a factor d.

Figure 12.2: Stock Price Evolution (with no dividend).

The time interval at each decision point is h number of years, where h is a small frac-
tion. At t = 0, an investor buys △0 shares of stock, costing $ △0S0, and borrows $
B0 at risk-free rate (sells $ B0 of risk-free bonds) that requires interest payment at the
continuously compounded rate r% p. a.

At t = 0, total portfolio cost is $ △0S0 − B0. At t = h, the portfolio value can take
one of two possible outcomes. In the up-state U, the portfolio value becomes

U : △0uS0 − B0e
rh

In the down-state D, the portfolio value becomes

D : △0 dS0 − B0e
rh

3 See J. C. Cox, S. A. Ross, and M. Rubinstein (1979), Option pricing: A simplified approach, Journal of
Financial Economics, 7 (3), 229–263.
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If the portfolio is chosen to replicate an option outcome at t = h of option prices Cu at
U and Cd at D, then we equate

U : △0uS0 − B0e
rh = Cu (12.14)

D : △0 dS0 − B0e
rh = Cd (12.15)

Given u, d, r, S0,Cu,Cd, we solve Eqs. (12.4) and (12.5) to obtain

△0 =
Cu − Cd
S0(u − d)

(12.16)

B0 =
uCd − dCu
erh(u − d)

(12.17)

The solutions in (12.16) and (12.17) allow the portfolio to replicate the option outcomes
at t = h. To prevent arbitrage, therefore the total portfolio cost must equal the price of
the option at t = 0, i. e.,

C0 = △0S0 − B0 = e
−rh(

erh − d
u − d

Cu +
u − erh

u − d
Cd) (12.18)

Note that the optionwith prices C0, Cu, Cd are any option that derives values as a func-
tion of the underlying asset or stock price. They can be a call or a put in the current
framework. Their exact type is determined by their boundary value or definition of
value at maturity, e. g. CT = max(ST − K,0) for call, and max(K − ST ,0) for put. To
prevent arbitrage, we must also have

u > erh > d

Equation (12.18) shows that we can put pseudo-probability measure

p = e
rh − d
u − d
∈ (0, 1)

and

1 − p = u − e
rh

u − d
∈ (0, 1).

Let us call these risk-neutral or Q-probability measures. Then

C0 = e
−rhEQ0 (Ch)

where Ch = Cu with probability p, and Ch = Cd with probability 1 − p. Or

C0
er×0
= EQ0(

Ch
erh
)
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which indicates that Ch/erh is a martingale. According to the fundamental theorem of
asset pricing, under this complete market (two states and two securities) where there
is no arbitrage, a unique martingale measure exists – in this case, PQ(U) = p and
PQ(D) = 1− p. These probabilities for the U and D states are unique because of market
completeness.

From Eq. (12.16),△0 =
Cu−Cd
S0(u−d)

is the lattice tree discrete “delta”. This delta on the
lattice tree provides a delta-neutral hedge to the option and the underlying shares.
From the earlier Eqs. (12.14) and (12.15):

△0uS0 − Cu = B0e
rh

and

△0dS0 − Cd = B0e
rh

We can see that a short (long) position of call with current value C0 delta-hedged by
long (short)△0 =

Cu−Cd
S0(u−d)

number of shares would lead to constant plus (minus) B0erh

in both the up-state and the down-state. Thus the hedge is completely effective and
micmics a risk-free bond.

If at t = h, it is state U as in Eq. (12.14), after the portfolio assumes the new value
under the new price uS0, an individual holding this portfolio can then rebalance it
in such a way that it is a self-financing portfolio, in the sense that there is no cash
withdrawal and no fresh capital input. Under state U at t = h, the portfolio would be
rebalanced to a new portfolio (△U1 ,−B

U
1 ) such that

△U1 (uS0) − B
U
1 = Cu (12.19)

On the other hand, if it is state D as in Eq. (12.15), this portfolio would be rebal-
anced in a self-financing way to a new portfolio (△D1 ,−B

D
1 ) such that

△D1 (dS0) − B
D
1 = Cd

Moreover, if it is state U, the portfolio (△U1 ,−B
U
1 ) is selected in such a way that

△U1 u2S0 − B
U
1 e

rh = Cuu (12.20)

and

△U1 udS0 − B
U
1 e

rh = Cud (12.21)

On the other hand, if it is state D, the portfolio (△D1 ,−B
D
1 ) is selected in such a way

that

△D1 duS0 − B
U
1 e

rh = Cdu
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and

△D1 d
2S0 − B

U
1 e

rh = Cdd

Solving Eqs. (12.20) and (12.21) for △U1 and BU1 , and putting the solutions into
Eq. (12.19) gives:

Cu = e
−rh(pCuu + (1 − p)Cud)

showing how the option prices are attained each state in the next period under self-
financing rebalancing. Hence, with no arbitrage there exists Q-measure s. t.

Cu = e
−rhEQh (C2h|U) (12.22)

where C2h = Cuu or Cud, and

PQ(UU) =
erh − d
u − d
∈ (0, 1)

PQ(UD) = 1 − PQ(UU) =
u − erh

u − d
∈ (0, 1)

Similarly we can show that

Cd = e
−rh(pCud + (1 − p)Cdd)

and so with no arbitrage, there exists Q-measure s. t.

Cd = e
−rhEQh (C2h|D) (12.23)

where C2h = Cud or Cdd, and

PQ(UD) =
erh − d
u − d
∈ (0, 1)

PQ(DD) = 1 − PQ(UU) =
u − erh

u − d
∈ (0, 1)

Hence EQ(EQ( C2he2rh |ℱh)|ℱ0) = EQ(
Ch
erh |ℱ0) = C0.

We can always find the present price of an option that matures nh intervals from
now by taking suitable expectations based on the Q-EMM. With no-arbitrage, we
can find a unique self-financing strategy that can replicate the attainable contin-
gent derivative payoffs in this case in every of the complete states. For a European
call for example, the self-financing strategy should end at maturity T with value
CT = max(ST − K,0) where K is the strike price and CT , ST are, respectively, the call
and stock values according to the state at T. If we choose the factor u = exp(σ√h),
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d = u−1, and p = (erh − d)/(u − d), then e−rτEQ(Cτ|ℱ0) would converge, as h ↓ 0, to the
Black-Scholes option price in Eq. (12.8) for an option with time-to-maturity τ.

The binomial lattice tree in Figure 12.2 can be used to find the arbitrage-free
price of a European-style option as well as that of an American-style option. Unlike
European-style options, American-style options are different in that the holder or
buyer need not wait until maturity, but can exercise the option at any time up until
maturity. We show an example of such a pricing in Figure 12.3 as follows.

Figure 12.3: American Option Pricing on Binomial Tree. Note: ∗ in the graph denotes the node
whereby the American put will be exercised.

Consider an American put option on a stock. The initial stock price is S0 = $6. The
risk-neutral probabilities of stock return factors u and d in the next period are p and
q = 1−p, respectively.Weuse theCox,Ross, Rubinstein (1979) binomial tree calibration
employing u = eσ√△, d = u−1, and p = er△−d

u−d . This calibration provides a symmetrical
tree in the log returns of the underlying asset price. The size of factor u corresponds
positively with the volatility of the underlying asset return.

Assume no dividend payouts, and the time-to-maturity is divided into five periods
of equal interval△ year. The evolution of the underlying stock price and the associated
(European put price) at that state are shown on the lattice tree in Figure 12.3. The strike
or exercise price of the American put is $5.60. In the example, let △ = 1/52, σ = 0.5,
r = 2% p. a., so u = 1.072, d = 0.933, and p = 0.486.

The distinction between anAmericanput and aEuropeanput is that theAmerican
put canbe exercised at any time or in this example, at any intervals j△, j = 0, 1, 2, 3, 4, 5.
The exercise gain is K − S > 0 depending on the underlying price S at the particular
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state or node at time j△. In this numerical method, the optimal exercise occurs when
the condition (K − S) > P is satisfied, where P is the European put value, i. e., when
exercise gain is more than its European value. Then it is not worth to keep the put
“alive” by selling it; rather it is more profitable to exercise it. In this case, it happens
at node (4△,UDDD) when the exercise gain is 5.60 − 5.22 = 0.38 which is higher than
selling the put at 0.375, and at node (4△,DDDD)when the exercise gain is 5.60−4.54 =
1.06 which is higher than selling the put at 1.053.

It also happens at node (3△,DDD) when the exercise gain is 5.60 − 4.87 = 0.73 >
0.729. These occurrences are marked with (∗) on the prices that are computed as the
discounted expected values under risk-neutral probabilities (p, q). The backward com-
putation of the American put prices then replaces the European prices with the higher
exercise prices at the nodes with (∗).

It is seen that for this case, the optimal exercise would occur at the earliest in-
stance when exercise gain exceeds the risk-neutral discounted expected price, i. e., at
t = 3△ if state DDDwould be reached, and it would also occur at t = 4△ if state UDDD
is reached without going through DDD. At time t = 0, this American put is priced at
$0.174. An equivalent European put would be priced at $0.172 at time t = 0. Thus, the
early exercise premium of the American put here for the period [0, 5△] is $0.002.

The free boundary in the American put valuation problem is shown on the Fig-
ure 12.3 by a curve. The curve ends at the strike price 5.60 at expiry T. The estimated
boundary curve separates the stopping or exercise region below (in the put case) and
the continuation region above.

While an American put is worth at least as much as, and possibly more than a
European put with the same terms – same underlying stock without dividend, same
strike price, and same maturity, an American call is, however, worth the same as a
European call with the same terms – same underlying stock without dividend, same
strike price, and samematurity. This seems counter-intuitive. But examining the ratio-
nal bound to a European call price at time t, Ct, Ct > St −Ke−rτ since the put-call parity
is Ct = Pt + St − Ke−rτ. So Ct > St − Ke−rτ > St − K (assuming r > 0). The last inequality
shows that a European call on a stock without dividend would always be worth more
“alive” (if sold) than if exercised to obtain St − K at any time t before maturity.

However, when a stock issues dividends, its American call would beworth at least
and possibly more than its European counterpart. Assume that the stock issues con-
tinuously compounded dividend yield q proportional to the stock value. Suppose the
ex-dividend stock prices follow the same up-state factor u and down-state factor d.
The dividends are continuously distributed as cash so that the effective cost of buying
a stock at t = 0 is not S0 in Eq. (12.18) but S0e−qh. Over discrete interval h, the latter
characterization of stock price less the value of dividend gain is an approximation to
the continuous time version.

In replicating the option prices in state U with Cu and in state Dwith Cd based on
the ex-dividend prices, the cost of the replicating portfolio is now
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C0 = Δ0S0e
−qh − B0 = e

−rh(
e(r−q)h − d
u − d

Cu +
u − e(r−q)h

u − d
Cd)

where the no-arbitrage risk-neutral probability measures for states U and D are now

p∗ = e
(r−q)h − d
u − d

and 1 − p∗ = u − e
(r−q)h

u − d

respectively.
This binomial lattice tree can be used in pricing options on stock index, futures,

and foreign exchange. In stock index option pricing, replicating the option involves
long positions on stocks in the index portfolio and thus the cash dividends of those
stocks may be assumed to be continuously received, which reduce the current cost
of the long positions. The index itself, upon which the option is defined, is however,
measured ex-dividend. Hence the current option price C0 can be obtained using the
risk-neutral probabilities p∗, 1−p∗ on theU andD states. For futures options, the com-
putation of option price on the binomial lattice tree can be performed using r as the
dividend yield. In doing so, the net cost of carry is zero, since futures do not require
outfront payments (ignore the margin requirements). For currency options priced in
U. S. dollars, the computation of option price on the binomial lattice tree can be per-
formed using the base (non U. S.) currency’s risk-free interest rate rY as the dividend
yield, so the net cost of carry is r − rY . When h ↓ 0, the binomial model option prices
should converge to those given in Eq. (12.8).

There is however a common situation, particularly for individual stock options,
whereby the underlying stock issues dividends only at discrete points in time and by
which it may not be a good approximation to assume there is continuous distribution
of the cash dividends. This is the case that when an American call is exercised, it is
usually exercised just prior to the ex-dividend date when its value would be larger
than that of the European call. The binomial lattice tree can be used to price both
European and American calls and puts in such a situation. In this tree, an up-state
factor is u and down-state factor is d at all nodes whether there is a dividend issue or
not in that interval, and these are assumed to represent the volatility structure of the
underlying return. However, at a particular interval n, when pre-determined dividend
is issued, it is assumed that the stock price drops at ex-dividend by a constant factor
(1 − c) at whatever stock price at that node. The latter ensures that the lattice tree is
recombining. If there had been j up-states and n − j down-states by that interval, the
stock pricewould be S0ujdn−j just before ex-dividend and S0ujdn−j(1−c) at ex-dividend.
The European option price is computed by using risk-neutral probabilities p and 1−p,
and discounting backward frommaturity until time t = 0. For the American call price,
the value of the option at each node at t < T is set as the maximum of either the
European call value at that node or the exercise value based on the stock price just
before ex-dividend on that node.
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12.5 Implied Volatility

In the Black-Scholes (BS) model in Eq. (12.5), the variables C, S, K, r, τ are observed,
except σ. But using Eq. (12.5), we can imply out the value of σ for any option at any
given time. This value is called Black-Scholes implied volatility (IV). Theoretically, the
GBM that gives rise to the Black-Scholes model has a constant σ. Hence, if BSmodel is
correct, then for any option chain (series of traded options with different strike prices
at the same time point) the IV when plotted against the strike prices should be a flat
line. This is, however, not the case. Since the BlackMonday stockmarket crash of 1987,
it has been increasingly observed that the plot of option IV (of the same underlying
stock) against strike prices often displays a volatility smile.

This means that there is a higher excess demand for ITM or OTM options, thus
higher prices, relative to options that are ATM. When ITM calls and OTM puts (when
strikes are low relative to underlying asset price) display relatively higher IVs than
OTM calls and ITM puts (when strikes are high relative to underlying asset price), the
graphwould be indicative of a volatility smirk (rather than a smile) or negative volatil-
ity skew. It is also recognized that typically OTM puts are priced much higher (termed
put premiumpuzzle). This could be due to very strong hedging demand in timeswhen
the market is anxious about potential market drop. The smirk is observed more often
in index options. When IV is plotted in a 3D graph against strike and against time-
to-maturity, it is called a volatility surface. It is often observed that for the same un-
derlying asset, its longer maturity options typically would yield lower IV relative to
its shorter maturity options. Hence the volatility surface is not flat. More complicated
models have arisen to improve on the BS model since the IV has shown the BS model
to be deficient. There have been subsequent developments in constant elasticity of
variance model, local volatility models, stochastic volatility models, jump-diffusion
models, and so on.4

Though the IV of the BS model may not be the true volatility of the underlying
GBM process, there is some information neverthelss in implied volatility from option
models. Bates (1991)5 derived amodel for pricing American options on jump-diffusion
processes with systematic jump risk and empirically computed the implied volatility
during sample period October 1986 to August 1987. The implied volatility from S&P
500 futures options in Bates’ model included both the diffusion and the jump volatil-
ity. The spikes in Bates’ IV in the 7 months prior to the October 19, 1987 stock mar-
ket crash appeared to foretell the crash. In comparison, the BS IV during the same
7 months period before the crash appeared to be much smaller due to sharply rising

4 See John Hull and Sankarshan Basu (2011), Options, Futures, and Other Derivatives, Tenth edition,
Pearson India; Espen Gaarder Haug (2007), The Complete Guide to Option Pricing Formulas, Second
edition, McGraw-Hill.
5 David S. Bates (1991), The crash of ‘87: Was it expected? The evidence from options markets, The
Journal of Finance, XLVI(3), 1009–1044.
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S&P 500 levels then and the resulting negative volatility skew. The October 19 crash
saw themarket price level fell a whopping 23% over two trading days. The conclusion
was that the market via the S&P 500 futures options evidenced a strong perception
of downside risk during the year preceding the October crash when OTM puts were
unusually expensive. There were also negative jumps in Bates’ model estimates.

12.6 Model-Free Volatility

Investors pay considerable attention to the forecast of future stock index price and
stock index volatility. If the forecast for the future volatility was high, an investors
might demand a higher return as compensation for bearing the higher systematic risk
in future. Thus the volatility forecast over a specified future period is important to
many market players, and a large literature had developed in the estimation of ex-
ante volatility. Day and Lewis (1992) and Christensen and Prabhala (1998),6 for ex-
amples, employ the Black-Scholes model to generate the implied volatilities of stock
index returns as market forecasts of future volatility. However, it has been shown that
the Black-Scholes option IV has inherent flaws due to the assumption that this volatil-
ity is constant across time. This flaw is due to the overly restrictive model, and the
same kind of flaw could occur in anymodel as part of themodel bias unless themodel
is truly correct.

While the Black-Scholes implied volatility continues to be a subject of inter-
est, research has moved on to the study of model-free volatility.7 This is the expected
volatility under risk-neutral equivalentmartingale probabilitymeasure obtained from
option prices without using any option pricing model. Britten-Jones and Neuberger
(2000)8 show that the model-free volatility can be expressed as the weighted sum of
a continuum of call option prices. In their approach, the underlying price process is
not restricted to the log-normal diffusion, thus making the model-free volatility much
more appealing than the Black-Scholes implied volatility. Jiang and Tian (2005)9

and others had introduced a method of estimating the risk-neutral volatility without
having to specify the underlying stochastic price process or the return probability
distribution exactly.

6 See T. E. Day and C.M. Lewis (1992), Stock market volatility and the information content of stock
index options. Journal of Econometrics, 52, 267–287; and B. J. Christensen and N. R. Prabhala (1998),
The relation between implied and realized volatility, Journal of Financial Economics, 50, 125–150.
7 SeeT. G.AndersenandO.Bondarenko (2007), Construction and interpretationofmodel-free implied
volatility. In I. Nelken (Ed.) Volatility as an Asset Class, Risk Publications, 141–184.
8 M. Britten-Jones and A. Neuberger (2000), Option prices, implied processes, and stochastic volatil-
ity, The Journal of Finance, 55, 839–866.
9 George J. Jiang and Y. S. Tian (2005), The model-free implied volatility and its information content,
The Review of Financial Studies, 18(4), 1305–1342.
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Due to its ease of implementation and more importantly its theoretical underpin-
ning,model-free volatility has become an industry standard for constructing volatility
indexes, known on the streets as the barometers of fear. In 2003, the Chicago Board
of Trade (CBOE) switched from the Black-Scholes implied volatility approach to the
model-free methodology to calculate the VIX volatility index. Following the wide ac-
ceptance of the revamped VIX for the S&P 500 index, CBOE introduced other model-
free volatility indexes for the Dow Jones Industrial Average index (VXD), NASDAQ
100 index (VXN), and Russell 2000 index (RVX). The European markets have also es-
tablished volatility indexes based on the same model-free approach. The VDAX-NEW
volatility index forDeutscheBörse’sDAX index,VSMI for Swiss Exchange’s SMI index,
and VSTOXX for the Dow Jones Euro STOXX 50 index are some of the key European ex-
amples. Futures and options written on the volatility indexes had been launched and
the trading volumes of these derivative products have also risen considerably.

However, the VXN index, the VIX index, and most of the Exchanges’ volatility in-
dexes are constructed only for the most active near term and next near term index
options, and thus are indexes of only a 30 day horizon. Moreover, though the index
formula is clearly explained in most official sites of the Exchanges, there is typically
some ambiguity as to which actively traded options are actually selected by the Ex-
change for constructing the index, or which options are left out in the formula. Lim
and Ting (2013)10 show an improved method to calculate the model-free volatility for
up to a distinctly longer horizon of 450 days. The longer horizonwould enable the pric-
ing of index-based derivatives with longmaturities. The study includes exploration of
the term structure of model-free volatility.

12.6.1 Term Structure of Model-Free Volatility

In this section we show how the term structure of model-free volatility of the S&P 100
index can be derived from the prices of traded S&P 100 European-style options. Using
multiple time series of this term structure as it evolves over time, we study some of its
properties.

Specifically we find that changes in model-free volatilities are asymmetrically
more positively impacted by a decrease in the index price level than negatively im-
pacted by an increase in the index price level, that the negative relationship between
daily model-volatility change and daily index level change is stronger in the near term
than the far term, and that the slope of the term structure is positively associated with
the level of index. There is also a tendency toward a negative slope of the volatility
term structure during a bear market and a positive slope during a bull market. These

10 See Kian Guan Lim and Christopher Ting (2013), The term structure of S&P 100 model-free volatil-
ities, Quantitative Finance, 13, 1041–1058.
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significant results have important implications for pricing index derivatives as well as
hedging index portfolios.

Let P(X, S0,T) and C(X, S0,T) be, respectively, the price of European put and call
options with the same time to maturity T and strike price X on the underlying index
with current value or price S0. (Note that the notation of strike or exercise price here
is X instead of K to assist in recognizing different derivations in different parts of this
chapter). We assume that the underlying index value St evolves continuously as an
Itô process with drift r − q and volatility σt . The instantaneous volatility σt can be a
function of state and time, i. e. σ(St , t). The stochastic differential equation for St is as
follows:

dSt
St
= (r − q) dt + σt dWt (12.24)

where dWt is aWiener process, r is the continuously compounded risk-free rate, and q
is the continuously compounded stock index dividend yield.We assume for simplicity
that r and q are constants.

The stochastic process is under risk-neutral probability as the drift is specified to
be risk-free cost of carry r − q. Otherwise the drift should be some other constant that
is the actual empirical mean of the process.

By Itô’s lemma, the function ln St evolves according to

d(ln St) = (r − q −
1
2
σ2t )dt + σt dWt

It follows that

dSt
St
− d(ln St) =

1
2
σ2t dt (12.25)

Next, we consider the integrated variance V(0,T) defined as

V(0,T) ≡
T

∫
0

σ2t dt

The variance V(0,T) is the sum of instantaneous variances σ2t realized over time 0 to
time T. By Eq. (12.25), we obtain

V(0,T) = 2(
T

∫
0

1
St
dSt − log

ST
S0
) (12.26)

Taking the expectation with respect to the risk-neutral probability measure Q on both
sides:
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EQ0 [V(0,T)] = 2E
Q
0[

T

∫
0

dSt/St − ln(ST/S0)]

The first term on the right-hand side is EQ0 [∫
T
0 dSt/St] = (r − q)T. If we let σ2MF be the

annualized model-free variance, then

σ2MFT ≡ E
Q
0 [V(0,T)] = 2(r − q)T − 2E

Q
0 [log

ST
S0
] (12.27)

We consider the forward price of the index with maturity at T, F0, known at time
t = 0, and we express ln(ST/F0) as

ln ST
F0
= ln ST − ln F0 − ST(

1
F0
−

1
ST
) +

ST
F0
− 1

=
ST

∫
F0

1
X
dX − ST

ST

∫
F0

1
X2 dX +

ST
F0
− 1

= −
ST

∫
F0

ST − X
X2 dX + ST

F0
− 1 (12.28)

For any z > −1, ln(1 + z) is a strictly concave function and ln(1 + z) < z. The left side of
Eq. (12.28) is ln(1 + z)with z ≡ ST/F0 − 1. It follows that the integral ∫

ST
F0
(ST − X)/X2 dX

equals −(ln(1 + z) − z) and hence is strictly positive. We can then rewrite the integral
as

ST

∫
F0

ST − X
X2 dX = 1ST>F0

ST

∫
F0

ST − X
X2 dX − 1ST<F0

F0

∫
ST

ST − X
X2 dX

= 1ST>F0

ST

∫
F0

ST − X
X2 dX + 1ST<F0

F0

∫
ST

X − ST
X2 dX

=
∞

∫
F0

(ST − X)+

X2 dX +
F0

∫
0

(X − ST )+

X2 dX

In the last step, we have used the fact that the asset price ST , which is unknown at
time t = 0, is in the range (0,∞).

Therefore, from Eq. (12.28),

EQ0 [ln
ST
F0
] = −erT

∞

∫
F0

C(S0,X,T)
X2 dX − erT

F0

∫
0

P(S0,X,T)
X2 dX
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since EQ0 [ST ] = F0. Now,

ln ST
S0
= ln ST

F0
+ ln F0

S0

Thus,

EQ0 [ln
ST
S0
] = −erT

∞

∫
F0

C(S0,X,T)
X2 dX

− erT
F0

∫
0

P(S0,X,T)
X2 dX + (r − q)T

since F0 = S0 exp((r − q)T). Substituting this equation into Eq. (12.27), we obtain the
following.

σ2MFT ≡ E
ℚ
0 [V(0,T)]

= 2erT(
F0

∫
0

P(X, S0,T)
X2 dX +

∞

∫
F0

C(X, S0,T)
X2 dX) (12.29)

This formula is model-free because it uses option prices directly without having to use
any option pricing formula.

The European option put-call parity states that

C(X, S0,T) − P(X, S0,T) = S0e
−qT − e−rTX = e−rT (F0 − X)

Suppose there is a continuum of options and because put (call) price is a monotoni-
cally increasing (decreasing) function of X, there exists a unique strike price X⋆ such
that C(X⋆, S0,T) = P(X⋆, S0,T). From the put-call parity,

X⋆ = S0 exp((r − q)T)

which is the forward price of the index at t = 0, F0. Thus F0 can be found as the
strike price where the call and put curves intersect. F0 may not be readily observable
otherwise.

The model-free or risk-neutral variance for maturity T in Eq. (12.29) is estimated
using numerical method. Firstly, spline-smoothing or other smoothingmethod is per-
formed to fit a cubic curve on the discrete number of option priceswhere the European
options all have a maturity of T. A small number close to 0 is used as the lower bound
of the call option prices, and similarly a large number several times F0 is used as the
upper bound of the put prices. The intersection point F0 is also determined.
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Secondly, numerical integration is carried out to find the area under the OTMputs
and OTM call price curves divided by square of strike prices. The model-free variance
is shown as the shaded area in Figure 12.4. Model-free volatility is then computed as
the square root of the model-free variance.

Figure 12.4: Computing Model-Free Variance of on S&P 100 Index.

The figure consists of put prices P(X, S0,T) and call prices C(X, S0,T) on December 10,
2003. Their ticker symbol is XEO. The underlying index is OEX or the S&P 100 index
created by CBOE. On this date, the closing value of this index was 525.33. A number of
put and call XEO contracts (cash-settled) based on OEX (S&P 100 Index) are traded or
have dealer quoted prices. For a subset of these derivative contracts with maturity T
on June 9, 2004, about half a year later, the mid-points of bid and ask quotes for the
puts and calls are shown in the figure using circle symbols. The corresponding X-axis
number refers to the strike price X at which the put or call would trade. All option
prices on the curves do not violate the no-arbitrage conditions.

We obtain end-of-day S&P 100 Index option quotes, volume traded, and open in-
terest from Optionmetrics along with the zero-coupon riskfree interest rate curve. Our
sample period starts from July 23, 2001 when the European-style XEO began trading.
After excluding November 3, 2004 as the data for that day are diagnosed to be incor-
rect, we have a total of 2,621 trading days by end of December 2011 for our sample.

For any given trading day, we calculate σMF for each available maturity date of
the options. Suppose σ1 is calculated from the near term options and σ2 from farther
term options. The days tomaturity for these two terms are τ1 and τ2, respectively. Sup-
pose τ1 ≤ z ≤ τ2. Then the annualized z−day model-free variance is estimated using
interpolation as follows.
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σ2MF
z
365
=

τ2 − z
τ2 − τ1

σ21τ1 +
z − τ1
τ2 − τ1

σ22τ2 (12.30)

Using adjacent maturity variances for interpolation, the model-free volatility σMF
is estimated for 8 constant-maturity volatilities of z = 30, 60, 90, 120, 150, 180, 360, and
450days.Weprovide in Table 12.1 summary statistics ofmodel-free volatility estimates
of the 8 different constant maturities.

Table 12.1:Model-Free Volatilities of 8 Different Constant Maturities.

Maturity in Days 30 60 90 120 150 180 360 450

Mean 21.51 21.78 21.95 21.85 21.73 21.62 21.55 21.57
Std. Dev. 9.37 8.63 8.04 7.35 6.73 6.39 5.71 5.64
Minimum 8.64 9.41 10.23 10.69 10.88 11.11 12.26 12.53
5th Percentile 10.94 11.56 12.23 12.58 12.78 12.91 13.44 13.55
10th Percentile 11.92 12.38 12.97 13.24 13.39 13.51 14.10 14.30
25th Percentile 14.77 15.37 15.96 15.97 16.08 16.16 16.46 16.58
Median 19.70 20.38 20.76 20.92 21.03 21.12 21.32 21.41
75th Percentile 25.25 25.68 25.76 25.71 25.96 25.91 25.62 25.44
90th Percentile 34.42 33.20 32.00 31.43 30.73 29.79 28.95 28.70
95th Percentile 39.29 38.65 37.15 35.72 34.23 32.45 31.00 31.38
Maximum 75.38 67.97 60.89 56.72 45.48 45.35 40.32 41.02

This table presents summary statistics of themodel-free volatility estimates σe, in per-
centages onanannualizedbasis, calculateddirectly fromoptionprices. Eight constant
maturities are obtained from linear interpolation over sample period July 23, 2001 to
December 30, 2011. The means and standard deviations (Std. Dev.) along with per-
centiles for the model-free volatility of the different constant maturities are reported.
The table shows that the percentage annualized model-free volatility estimate σe has
an overall mean during the sample period in the range of 21.51 to 21.95 for the eight
different constant maturities. However, the standard deviation or variability of σe de-
creases with a longer constant maturity.

12.6.2 Information in Model-Free Volatility

The S&P100model-free volatility captures information embedded in the series of puts
and calls traded or price-quoted on any trading day. As the European-style puts and
calls have a maturity T, the volatility information is forward-looking and provides a
forecast of the aggregated daily volatility from the trading day until future T. How-
ever, themodel-free volatility estimates are based on a risk-neutral equivalent martin-
gale probabilitymeasure different from the empirical or physical probabilitymeasure.
Therefore the estimates would differ from the physical or empirical measure of future
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volatility by a quantity typically known as the volatility risk premium. However, the
risk-neutral volatility should contain information about future realized volatility up
to time T.

As we have eight different maturity periods, the realized volatilities have to be
computed separately. At time or day t, the ex-post realized volatility for a horizon of τ,
e. g. 30 days, is computed as

1
τ

t+τ
∑
i=t+1
(ln Si/Si−1)

2

Daily mean drift is close to zero and noisy, so the mean adjustment is often not added
in the literature.

Define ex-post realized volatility at t up to horizon τ asRV(t, τ). Let themodel-free
volatility estimate at t of up to horizon τ be denoted as σMF(t, τ). We perform a simple
OLS regression:

RV(t, τ) = a + bσMF(t, τ) + ϵt

where a, b are the constants of intercept and slope respectively, and ϵt is a station-
ary zeromean noise uncorrelated with the explanatory variable. To avoid the problem
of serial correlation in the regression, we use non-overlapping data. Serial correlation
can lead to inefficient forecast in small sample. For τ = 30, we obtained the time series
of the dependent variable as RV(t, 30), RV(t + 30, 30), RV(t + 60, 30), and so on. Cor-
responding explanatory variable values as a time series are σMF(t, 30), σMF(t +30, 30),
σMF(t + 60, 30), and so on. For τ = 60, we obtained time series for the dependent vari-
able asRV(t, 60),RV(t+60, 60),RV(t+120, 60), and so on. Corresponding explanatory
variable values as a time series are σMF(t, 60), σMF(t + 60, 60), σMF(t + 120, 60), and so
on. Regression is performed for τ = 30, 60, 90, 120, 150, and 180. Non-overlapping
data implies fewer than 20 observations for the cases of τ = 360, and 450, so these
cases are not reported.

For comparison,we also compute an empiricalmeasure forecast using theGARCH
method. As estimating accurate GARCH parameters requires a long time series, we
provide one year of past daily returns data for each set of new GARCH parameter es-
timates. The GARCH parameter estimates are then utilized to construct the GARCH
forward-looking forecast of volatility. We follow the methodolgy in Ederington and
Guan (2005).11

The GARCH future volatility estimate at t for horizon τ is denoted as GV(t, τ). We
estimateGV(t, 30),GV(t, 60),GV(t, 90),GV(t, 120),GV(t, 150), andGV(t, 180) for each
t = 1, 180, 360, and so on, i. e. on a half-yearly window rolling forward in time. For

11 See Louis Ederington and Wei Guan (2005), Forecasting Volatility, Journal of Futures Markets, 25,
465–90.
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finding the first set of GARCH parameters, we utilize an extra set of one year daily
index data over the period July 3, 2000 to July 20, 2001. Again, we did not use overlap-
ping data, and pair each GV forecast GV(t, τ) at a time-point t with an ex-post realized
volatility RV(t, τ) and a model-free forecast σMF(t, τ).

Table 12.2 presents results of the regressions of ex-post realized volatility on the
model-free volatility for eight constant maturities over the sample period July 23, 2001
to December 30, 2011. Out-of-sample mean forecast errors and RMFE (root mean fore-
cast errors) are also reported in comparisonwith theGARCH forecastingmethod. From
Table 12.2, it is evident that all the slope estimates are significantly positive at the 1%
level for τ = 30, 60, 90, 120, and significant at the 5% and 10% levels for cases τ = 150
and τ = 180 respectively. In all cases, tests based on the null of slope being one are not
rejected at the 5% level. Except for the case τ = 30, the p-values are all large, above
0.3. Thus there is sufficient statistical evidence that the model-free volatility contains
information and predictability about future realized volatility of the index returns.

Table 12.2: Regression of Ex-Post Realized Volatility on Model-Free Volatility.

Regression 30-day 60-day 90-day 120-day 150-day 180-day

constant −0.058∗∗∗ −0.005 −0.023 0.007 0.022 0.042
(t-value) (−3.066) (−0.181) (−0.585) (0.092) (0.265) (0.525)
slope 1.142∗∗∗ 0.879∗∗∗ 0.978∗∗∗ 0.858∗∗∗ 0.757∗∗ 0.682∗

(t-value) (13.587) (7.034) (5.486) (2.509) (2.030) (1.89)
R2 0.602 0.452 0.436 0.249 0.186 0.166

average RV 18.26 18.52 18.73 19.51 18.35 18.72
mean (RV-MFV) −0.31 −0.62 −0.32 0.16 −0.44 −0.01
mean (RV-GV) −0.34 −0.10 0.63 0.65 0.22 0.66
RMFE (RV-MFV) 7.68 8.57 8.24 10.46 10.14 9.73
RMFE (RV-GV) 5.08 5.38 6.33 6.60 5.86 5.85

Note: ∗∗∗, ∗∗, and ∗ denote significance levels of 1%, 5%, and 10% respectively based on two-tailed
tests of the null of zero.

RV,MFV, and GV denote realized volatility, model-free volatility, and GARCH volatility
forecast in annualized percentage terms. Across time series indexed by t for the re-
spective matched pairs of RV-MFV and RV-GV, we report the means T−1∑Tt [RV(t, τ) −
σMF(t, τ)] and T−1∑Tt [RV(t, τ) − GV(t, τ)], as well as the square roots of the means
of the squares of the out-of-sample forecast errors or root-mean-forecast-square-error
(RMFE). The results in the last five rows of Table 12.2 show that the GARCH volatility
forcasts have lower RMFE than that of MFV when compared with realized volatility.
Strictly speaking, themodel-free volatility estimates are based on a risk-neutral equiv-
alent martingale probability measure different from the empirical or physical proba-
bility measure of the GARCH estimates and the realized volatility estimates. Therefore
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the comparisonwith GARCH is on a different footing as the volatility risk premium en-
ters into the model-free volatility estimates before it can be compared with a physical
measure statistics. In this sense, it is not surprising that RMFE(RV-GV) is smaller than
RMFE(RV-MFV) due to the presence of the volatility risk premium.

Next, we study the relationship between the estimated term structure of model-
free volatility and the underlying stock index dynamics, thus providing a better un-
derstanding of the fear gauge. Figure 12.5 shows the time series of S&P 100 index in
Panel A, and the time series of constant-maturity volatilities for T = 30, 60, 90, 120,
150, 180, and 360, in the other 7 panels of B to H. To save space, we do not show the
case of T = 450. It is noticeable that when the S&P 100 index is on a down trend,
the model-free volatility is on the up trend, and vice-versa. For example, there is a
sharp market decline in August 2001 and this is accompanied by a sharp rise in the
model-free volatility from about 20% to more than 40% in Panel B for 30-day con-
stant maturity. This sudden increase in volatility is smaller for other maturities, yet
still quite substantial with the volatility reaching 25% and above.

We also observe that in July 2008, the S&P 100 index drops to 320 points while
at the same time volatilities for various maturities rise to 40 and over 70 points. By
the end of 2011, the index rises to 600 points while model-free volatilities across all
maturities fall to about 20 points. These observations suggest that a bullish (bearish)
market is accompanied by decreasing (increasing) model-free volatility.

Panels B toHof the figure show that the pattern of time series ofmodel-free volatil-
ity for different constant maturities are qualitatively the same. Their average daily val-
ues are also close to each other in a tight range though the range of values shortens
as maturity increases. The key observation is that there appears to be an inverse rela-
tionship between the level of the S&P100 stock index and the level of its model-free
volatility.

To analyze properties of the model-free term structure with respect to exogenous
explanatory variables, an obvious candidate is the level of the index itself and the
change of the index levels. In Table 12.3, we report the correlation between the day-to-
day change in the model-free volatility Δσt,τ (rewriting σMF(t, τ) as σt,τ) and the day-
to-day change in the S&P100 index level ΔLt . Note that we drop the subscript MF to
model-free volatility at time t to simplify notation. Table 12.3 also reports sample esti-
mates of the first-order serial correlation of Δσt,τ.

Table 12.3 shows that Δσt,τ is negatively correlated with ΔLt for all 8 constant ma-
turities, τ. This evidence of “fear gauge” is well documented for VIX and the S&P500
index, and appears also to hold for the S&P100 index. The contemporaneous correla-
tion coefficients are significant at the 1% level. The negative correlations for the vari-
ous constantmaturities are in the range−0.708 to−0.532, anddoes not becomeweaker
at longer term maturity, though the variability of the model-free volatility appears to
decrease in maturity with increasing smoothness with maturity.

There is also evidence of a significant negative correlation with laggedmodel-free
volatilities, though the negative correlations in the range −0.222 to −0.046 across ma-
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Figure 12.5: The Figure consists of 8 panels. Each panel shows a plot of the time series. The annu-
alized model-free volatilities are in percentages. The horizontal axis shows the calender years in
2-digit convention. The sample period is from July 23, 2001 through December 30, 2011.

 EBSCOhost - printed on 2/8/2023 6:26 PM via . All use subject to https://www.ebsco.com/terms-of-use



360 | 12 Option Pricing and Implied Moments

Table 12.3: Autocorrelations of Model-Free Volatility.

Constant maturity Correlation with ΔLt First-lag auto-correlation

30-day −0.655∗∗∗ −0.202∗∗∗

60-day −0.600∗∗∗ −0.222∗∗∗

90-day −0.708∗∗∗ −0.176∗∗∗

120-day −0.679∗∗∗ −0.117∗∗

150-day −0.629∗∗∗ −0.123∗∗∗

180-day −0.532∗∗∗ −0.144∗∗∗

360-day −0.596∗∗∗ −0.048∗

450-day −0.650∗∗∗ −0.046∗

Note: ∗, ∗∗, and ∗∗∗ indicate 1% , 5%, and 10% levels of significance, respectively.

turities are weaker in magnitudes compared with the correlations with ΔLt . The nega-
tive autocorrelations in Δσt,τ also reduces in magnitude when the maturities increase
above 180-day.

The preliminary evidence in Table 12.3 indicates that the daily change in model-
free volatility, Δσt,τ, co-varies negatively in a significant way with the daily change in
index level, ΔLt . For each trading day, we could form an OLS estimate of the slope of
the model-free volatility term structure by regressing the volatility on the term. This
is a crude estimate as the number of observations per day in the regression is small at
eight data points. We then run an OLS regression of the slope estimates on the index
levels across all the trading days. The OLS estimate of this slope of slopes is a positive
0.00010with a standard error of 0.00014. Thus there is somepreliminary evidence that
the volatility term structure slope varies positively with index level. When the stock
market is bullish, it appears the volatility term structure slope becomes slightly pos-
itive. When the stock market is bearish, it appears the volatility term structure slope
becomes slightly negative.

We run the following panel regression to determine a linear relationship ofmodel-
free volatility with index level and other relevant explanatory variables:

σt,τ = δ0 + δ1t + δ2τ + δ3Lt + δ4σt−1,τ + δ5σt−2,τ + ut (12.31)

where τ takes the various annualized values 30/365,60/365, 90/365, 120/365, 150/365,
180/365, 360/365, and 450/365, t is number of days into the sample divided by 365, and
ut is a zero mean noise that is independent of Lt .

Furthermore, we specify δ2 = θ0 + θ1Lt + vt where θ0 and θ1 are constants, and vt
is a zero mean noise that is independent of Lt for all t and τ. The other coefficients of
δ0, δ1, δ3, δ4, and δ5 are constants.

Substituting the dynamics of δ2 into Eq. (12.31), we obtain:

σt,τ = a0 + a1t + a2τ + a3[τLt] + a4Lt + a5σt−1,τ + a6σt−2,τ + ϵt,τ (12.32)
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where a0 = δ0, a1 = δ1, a2 = θ0, a3 = θ1, a4 = δ3, a5 = δ4, a6 = δ5, and ϵt,τ = ut +τvt has
zeromean, is stochastically independent of Lt and assumed to be contemporaneously
uncorrelated with σt−1,τ and σt−2,τ.

The panel data has trading days t = 1, 2, . . . ,T (T = 2622) during sample period July
23, 2001 to December 30, 2011.For each trading day t, there are cross-sectional data
associated with each of the constant maturity, τ = 30/365, 60/365, . . . , 450/365. The
time-series cross-sectional or panel regression of Eq. (12.32) has dependent variable
values stacked as

Y8T′×1 =

(((((((((((((((((((((

(

σ3,1
σ3,2
...

σ3,8
σ4,1
σ4,2
...

σ4,8
σ5,1
...
...

σT ,8

)))))))))))))))))))))

)

, X8T′×7 =

((((((((((((((((((((((((

(

1 3
365

30
365

30
365L3 L3 σ2,1 σ1,1

1 3
365

60
365

60
365L3 L3 σ2,2 σ1,2

...
...

...
...

...
...

...
1 3

365
450
365

450
365 L3 L3 σ2,8 σ1,8

1 4
365

30
365

30
365L4 L4 σ3,1 σ2,1

1 4
365

60
365

60
365L4 L4 σ3,2 σ2,2

...
...

...
...

...
...

...
1 4

365
450
365

450
365 L4 L4 σ3,8 σ2,8

1 5
365

30
365

30
365L5 L5 σ4,1 σ3,1

...
...

...
...

...
...

...
...

...
...

...
...

...
...

1 T
365

450
365

450
365 LT LT σT−1,8 σT−2,8

))))))))))))))))))))))))

)

with parameter vector B7×1 = (a0, a1, a2, a3, a4, a5, a6)′, and where T′ = T − 2. The sub-
script τ is represented by a group number, e. g., 1 associated with 30/365, 2 associated
with 60/365, 3 associated with 90/365, and so on.

In the regression, Y = XB+E where E8T′×1 = (ϵ3,1, ϵ3,2, . . . , ϵ3,8, ϵ4,1, ϵ4,2, . . . , ϵ4,8, ϵ5,1,
. . . , ϵT ,8), and E has covariance matrix IT′×T′ ⊗ Σ8×8. Σ is the covariance matrix of ϵt,τ
for each t, and has its ijth element as cov(ut + τivt , ut + τjvt). Note that we assume ϵt,τ
has cross-sectional heteroskedasticity, but that ϵt+k,τ and ϵt,τ are not correlated for any
k ̸= 0 and any τ.

The best linear unbiased estimate B̂′ = (â0, â1, â2, â3, â4, â5, â6) is found via gener-
alized least squares (GLS) as

B̂ = (X′[I ⊗ Σ]−1X)−1X′[I ⊗ Σ]−1Y

The estimates are conditional on estimated Σ̂ based on the initial estimated residu-
als. The estimates B̂ are reported in Panel A of Table 12.4. The table also reports the
Durbin-Watson (DW) statistics, indicating negative residual error correlation at 5%
significance level. To ensure the regressions are not spurious due to any presence of
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unit roots, we also test the fitted residuals for unit roots using the Augmented Dickey-
Fuller (ADF) test statistic. In all cases, the presence of unit root is rejected at less than
1% significance level, indicating stationarity in the regression or else a cointegrating
relationship that enables OLS to be an appropriate tool.

We perform a second GLS regression to confirm results by taking the first differ-
ence of Eq. (12.32):

Δσt,τ = b0 + b1[τΔLt] + b2ΔLt + b3Δσt−1,τ + b4Δσt−2,τ + ξt,τ (12.33)

where b0 = δ1, b1 = θ1, b2 = δ3, b3 = δ4, b4 = δ5, and ξt,τ = Δϵt,τ. The results are shown
in Panel B of Table 12.4. Finally, we consider if asymmetric changes in Lt may impact
changes in the model-free volatility differently. To model this, we separated ΔLt into
its positive and negative parts:

Δσt,τ = c0 + c1[τΔLt] + c2ΔL
+
t + c3ΔL

−
t

+c4Δσt−1,τ + c5Δσt−2,τ + ηt,τ (12.34)

where ΔL+t = max(ΔLt ,0) and ΔL−t = min(ΔLt ,0). The results are reported in Panel C of
Table 12.4.

Table 12.4: Panel Regression Results Explaining Changes in Model-Free Volatilities.

Panel A a0 a1 a2 a3 a4 a5 a6
Estimate 0.9505∗∗∗ 0.0010∗∗∗ −0.1385 0.0003 −0.0013∗∗∗ 0.8846∗∗∗ 0.1001∗∗∗

(t-value) (6.309) (7.696) (−1.271) (1.268) (−4.812) (128.75) (14.593)
Adjusted R2 0.99
DW-Statistic 2.39
ADF-Statistic −90.85
Panel B b0 b1 b2 b3 b4
Estimate 0.0014 0.0398∗∗∗ −0.0957∗∗∗ −0.0947∗∗∗ −0.0005
(t-value) (0.351) (22.479) (−44.792) (−16.105) (0.931)
Adjusted R2 0.291
DW-Statistic 2.28
ADF-Statistic −90.59
Panel C c0 c1 c2 c3 c4 c5
Estimate −0.0361∗∗∗ 0.0400∗∗∗ −0.0874∗∗∗ −0.1033∗∗∗ −0.0995∗∗∗ −0.0055
(t-value) (−6.709) (22.644) (−38.038) (−45.819) (−16.896) (−0.939)
Adjusted R2 0.294
DW-Statistic 2.27
ADF-Statistic −90.88

Note: ∗, ∗∗, and ∗∗∗ indicate test significance levels at 1%, 5%, and 10%, respectively.
Unit root tests of the fitted regression residuals based on Augmented Dickey-Fuller statistics are also
reported. Null of unit root is strongly rejectedwith p-values smaller than 0.01 for all panel regressions.

 EBSCOhost - printed on 2/8/2023 6:26 PM via . All use subject to https://www.ebsco.com/terms-of-use



12.6 Model-Free Volatility | 363

The results in Table 12.4 show strong evidence of negative contemporaneous relations
between changes in daily index price returns and changes in the model-free volatility
across all maturities. Specifically, estimates b̂2 in Panel B and estimates ĉ2 and ĉ3 in
Panel C are all significantly negative at significance levels of less than 1%. The results
are consistent with a significantly negative â4 in Panel A. This result for S&P100 is
consistent with results using implied volatilities on the S&P500 as inWhaley (2000)12

and Ostdiek and Whaley (1995).13

In Panel C, we see that ĉ2 = −0.0874 while ĉ3 = −0.1033. Their average is about
the same as estimate b̂2 in Panel B. The results indicate that a 1% decrease in index
price level is associated with a larger positive increase in the fear gauge or model-
free volatility of 0.1033% than a 1% increase in index price level leading to a lesser
decrease of 0.0874% in model-free volatility. This asymmetric impact is tested under
the null of H0 : c2 = c3. Using the covariance matrix of estimates obtained in Panel C
GLS regression, the t-statistic, d. f. 2619, for the difference in the coefficient is 0.0159

0.00158 =
10.070. Thus ĉ2 is significantly different from ĉ3.

When we combine the estimated coefficients, ĉ1[τΔLt] + ĉ2ΔL+t in Panel C pro-
duces negative impacts onmodel-free volatility of−0.0841,−0.0808,−0.0775,−0.0743,
−0.0710, −0.0677, −0.0480, and −0.0381 for the various maturities of τ = 30/365, . . . ,
450/365. Similarly, when we combine the estimated coefficients, ĉ1[τΔLt] + ĉ3ΔL−t
in Panel C produces negative impacts on model-free volatility of −0.1001, −0.0967,
−0.0934, −0.0902, −0.0869, −0.0836, −0.0639, and −0.0540 for the various maturi-
ties of τ. Thus, it is seen that the negative partial correlations between changes in
index price level, whether positive or negative changes, and changes in model-free
volatilities, becomes weaker as the horizon increases. Again, this could be due to the
smoothing effect of changes in longer maturity model-free volatilities.

Finally, we see that the expected slope of the term structure conditional on infor-
mation at time t is Et(δ2) = θ̂0 + θ̂1Lt = −0.1385 + 0.0003Lt (from Panel A) at time t.
Thus, for index level higher than 0.1385/0.0003 ≈ 462, the conditional expected term
structure of model-free volatility slope is positive, while for index level below ≈ 462,
the conditional expected term structure of model-free volatility slope is negative. This
would suggest that upward sloping term structure occurs during a bullish market,
which is characterized by low volatility and more days with positive daily returns. On
the contrary, downward sloping term structure of model-free volatility tends to be as-
sociated with a bearish market. The implications are similar to those of the interest
yield curve.

The above stacked regression in Eq. (12.32) can also be re-arranged as:

12 See R. E. Whaley (2000), The investor fear gauge, Journal of Portfolio Management, 26, 12–27, 2000.
13 Fleming J. Ostdiek andR. E.Whaley (1995), Predicting stockmarket volatility: A newmeasure, Jour-
nal of Financial Markets, 15, 265–302.
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(

Y1
Y2
...
Y8

) =(

X1 0 . . . 0
0 X2 . . . 0
...

...
. . .

...
0 0 . . . X8

)(

B1
B2
...
B8

) +(

e1
e2
...
e8

) (12.35)

where Yi = (σ3,i, σ4,i, σ5,i, . . . , σT ,i)′, ei = (ϵ3,i, ϵ4,i, ϵ5,i, . . . , ϵT ,i)′,

Xi =
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1 3
365

τi
365

τi
365L3 L3 σ2,i σ1,i

1 4
365

τi
365

τi
365L4 L4 σ3,i σ2,i
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365

τi
365

τi
365L5 L5 σ4,i σ3,i

...
...

. . .
...

...
...

...
1 T

365
τi
365

τi
365LT LT σT−1,i σT−2,i

))

)

and Bi(7 × 1) = (a0i, a1i, a2i, a3i, a4i, a5i, a6i)′, for i = 1, 2, 3, . . . , 8. Assume cov(ei) =
σ2i IT′×T′ . If we perform eight separate OLS time series regressions Yi = XiBi + ei for
each i = 1, 2, 3, . . . , 8, the OLS estimates B̂i for each i are consistent, conditional on
estimated σ̂2i using the initial fitted residuals.

By stacking up the individual OLS equations into Eq. (12.35), lettingB1 = B2 = B3 =
⋅ ⋅ ⋅ = B8 = B7×1, theX∗8T′×7matrix becomesX∗ = (XT

1 ,X
T
2 , . . . ,X

T
8 )

T . The stacked residual
vector U = (e1, e2, . . . , e8)T now has a covariance matrix cov(U)8T′×8T′ = Σ8×8 ⊗ IT′×T′ .
Applying GLS, the estimates for B̂ = (X∗′[Σ̂⊗ I]−1X∗)−1X∗′[Σ̂⊗ I]−1Y conditional on esti-
mate Σ̂ based on initial fitted residuals. The covariance Σ ̸= I8×8 provides information
additional to those used in the separate individual OLS regressions, and leads to GLS
that is consistent and more efficient than the individual OLS estimates. The use of in-
formation Σ in the stacked regression of Eq. (12.35) is sometimes called the Seemingly
Unrelated Regression (SUR).14

The time series plot of the S&P100 index price levels together with the estimated
volatility term structure slope θ̂0 + θ̂1Lt are shown in Figure 12.6.

The figure plots the time series of S&P 100 index and the time series of the Esti-
mated Slope of the Model-Free Volatility Term Structure obtained from the Panel Re-
gression results. The horizontal axis shows the calender years in 2-digit convention.
The figure shows that the estimated volatility term structure slope tends to move in
tandem with the index price level.

During the period July 2001 to March 2003, in the aftermath of 9/11, the Enron
scandal, and the Second Gulf War in the spring of 2003, S&P100 index stayed on the
low side of 500 andbelow500 for themost partwhile the daily volatility term structure
estimated slopes were mostly negative. During the boom period or easy credit period
from mid-2003 to July 2008, the S&P100 rose steadily past 600 while the volatility

14 See A. Zellner (1962), An efficient method of estimating seemingly unrelated regressions, and tests
for aggregation bias, Journal of the American Statistical Association, 57, 348–368.
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Figure 12.6: S&P 100 Index and Estimated Slope of the Model-Free Volatility Term Structure.

term structure slope became highly positive. Thus there is clear evidence that upward
sloping volatility term structure occurred during boom times. The collapse of the U. S.
housing mortgage market and subsequent global financial crisis from August 2008
to September 2010 ushered a bear market seeing the index plunged below 500 and
the volatility term structure slope slipping into negative territory throughout. From
September 2010 to 2012, there hadbeen some stabilization and ahalf-hearted recovery
in the market before the onslaught of the European debt crisis, and the index had
climbed back above 500 while the volatility slope rose into the positive territory.

12.7 The Bakshi-Kapadia-Madan (BKM) Model

Besides model-free volatility, the second, third, and fourth distribution-free moments
of the underlying stock or else index return could be implied simultaneously from an
option chain, i. e., at any time, there exists traded option prices on the underlying
with different strike prices. The method is slightly different from that in the previous
section.15

15 See G. Bakshi, N. Kapadia, and D. Madan (2003), Stock return characteristics, skew laws and the
differential pricing of individual equity options, Review of Financial Studies 16, 101–143.
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The fundamental theorem of calculus implies that for any fixed F:

f (S) − f (F) =
S

∫
F

df
du

du =
S

∫
F

f ′(u)du

Hence,

f (S) = f (F) + 1S>F

S

∫
F

f ′(u)du − 1S<F

F

∫
S

f ′(u)du

= f (F) + 1S>F

S

∫
F

[f ′(F) +
u

∫
F

f ′′(ν)dν]du

− 1S<F

F

∫
S

[f ′(F) −
F

∫
u

f ′′(ν)dν]du

Note that f ′(F) is independent of u. (The assumption of smooth derivatives of the
f -function may impose some limitations on the model-free processes such as exclud-
ing those with discontinuities.) Then,

f (S) = f (F) + f ′(F)(S − F) + 1S>F

S

∫
F

S

∫
ν

f ′′(ν) dudν

+ 1S<F

F

∫
S

ν

∫
S

f ′′(ν) dudν

Performing the integration over u yields:

f (S) = f (F) + f ′(F)(S − F) + 1S>F

S

∫
F

f ′′(ν)(S − ν) dν

+ 1S<F

F

∫
S

f ′′(ν)(ν − S) dν

= f (F) + f ′(F)(S − F) +
∞

∫
F

f ′′(ν)(S − ν)+ dν

+
F

∫
0

f ′′(ν)(ν − S)+ dν
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Now let f (S) = [ln(FT/Ft)]m, form = 1, 2, 3, 4, where current index futures price Ft
is given, and FT is random index futures price at maturity time T. FT replaces S. Let Ft
replace F. The f function becomes contingent claims payoffs based on FT given Ft .

Then f (F) = f (Ft) = [ln(Ft/Ft)]m = 0. Also f ′(F) = df /dS|S=F = m[ln(FT/Ft)]m−1(1/
FT )|F(T)=F(t) = 0.

Let ν = K (exercise price). Then

f ′′(K) = d2f /dS2|S=K
= m(m − 1)[ln(FT/Ft)]

m−2(1/FT )
2 −m[ln(FT/Ft)]

m−1(1/FT )
2S=K

= (1/K)2[m(m − 1)[ln(K/Ft)]
m−2 −m[ln(K/Ft)]

m−1]

So, for m = 2, f ′′(K) = (1/K)22[1 − ln(K/Ft)]. For m = 3, f ′′(K) = (1/K)2[6 ln(K/Ft) −
3[ln(K/Ft)]2]. Form = 4, f ′′(K) = (1/K)2[12[ln(K/Ft)]2 − 4[ln(K/Ft)]3].

Suppose we let RT = ln(FT/Ft). Then form = 2,

R2T ≡ [ln(FT/Ft)]
2

=
∞

∫
Ft

2(1 − ln(K/Ft))
K2 (FT − K)

+dK

+
Ft

∫
0

2(1 + ln(Ft/K))
K2 (K − FT )

+dK

Form = 3,

R3T ≡ [ln(FT/Ft)]
3

=
∞

∫
Ft

6 ln(K/Ft) − 3(ln(K/Ft))2

K2 (FT − K)
+dK

−
Ft

∫
0

6 ln(Ft/K) + 3(ln(Ft/K))2

K2 (K − FT )
+dK

Form = 4,

R4T ≡ [ln(FT/Ft)]
4

=
∞

∫
Ft

12(ln(K/Ft))2 − 4(ln(K/Ft))3

K2 (FT − K)
+dK

+
Ft

∫
0

12(ln(Ft/K))2 + 4(ln(Ft/K))3

K2 (K − FT )
+dK
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Now let τ = T − t, and let Vt(T) = EQt (e
−rτR2T ), Wt(T) = EQt (e

−rτR3T ), and Xt(T) =
EQt (e
−rτR4T ). Also, E

Q
t (e
−rτ(FT − K)+) = Ct(τ,K), and EQt (e

−rτ(K − FT )+) = Pt(τ,K).
Then we obtain

Vt(τ) =
∞

∫
Ft

2(1 − ln(K/Ft))
K2 Ct(τ,K)dK

+
Ft

∫
0

2(1 + ln(Ft/K))
K2 Pt(τ,K)dK

Wt(τ) =
∞

∫
Ft

6 ln(K/Ft) − 3(ln(K/Ft))2

K2 Ct(τ,K)dK

−
Ft

∫
0

6 ln(Ft/K) + 3(ln(Ft/K))2

K2 Pt(τ,K)dK

Xt(τ) =
∞

∫
Ft

12(ln(K/Ft))2 − 4(ln(K/Ft))3

K2 Ct(τ,K) dK

+
Ft

∫
0

12(ln(Ft/K))2 + 4(ln(Ft/K))3

K2 Pt(τ,K) dK

So μt(τ) ≡ E
Q
t (RT ) ≈ e

rτ(−
1
2
Vt(τ) −

1
6
Wt(τ) −

1
24

Xt(τ)). (12.36)

varQt (τ) = e
rτVt(τ) − μt(τ)

2 (12.37)

SkewQ
t (τ) =

erτWt(τ) − 3μt(τ)erτVt(τ) + 2μt(τ)3

[erτVt(τ) − μt(τ)2]3/2
(12.38)

KurtQt (τ) =
erτXt(τ) − 4μt(τ)erτWt(τ) + 6μt(τ)2erτVt(τ) − 3μt(τ)4

[erτVt(τ) − μt(τ)2]2
(12.39)

12.8 Intraday Moments and Trading

To show how we can utilize the implied moments for intra-day trading, we perform
back-testing using intra-day E-mini S&P 500 European-style options time-stamped (to
the second) traded price data on weekly index futures series (EW1, EW2, EW4) from
August 2009 to December 2012. Transactions data are also obtained on the E-mini fu-
tures prices. These options typically trade actively 2 weeks before their expiry. Con-
sider only the E-mini futures options data on trades between 0830 and 1500h due to
less liquidity outside the regular trading hours. Riskfree rates are based on 4-weeks
Treasury bill rates reported in the Fed Res Report H. 15. We use as many strike prices
within each 10-minute trading interval. We use at least 2 OTM and 2 OTM puts for con-
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structing the moments in each 10-minute interval. As the theory requires an infinite
number of options, it is necessary to use numerical method to find the smoothed OTM
call and OTM put price curves against exercise price K. We use piece-wise hermite in-
terpolation which is more stable compared to cubic splines. The smoothed curves are
used for finding thenumerically integratedvalues forVt(τ),Wt(τ), andXt(τ). These are
then used to compute the risk-neutral mean EQt (RT ), risk-neutral volatility √var

Q
t (τ),

risk-neutral skewness SkewQ
t (τ), and risk-neutral kurtosis Kurt

Q
t (τ) from Eqs. (12.36) to

(12.39).
Table 12.5 shows averages of moments across all 10-minute intervals on all dates,

sorted by their different time-to-maturity (in days n). Annualized mean risk-neutral
(RN) volatility is quite stable across n. RN skewness is negative. RN kurtosis exceeds 3
and decreases with maturity.16

Wehave each trading day, a 10-minute interval time series of estimated RNV, RNS,
and RNK. We test to ensure each of the series is I(0) by using the Augmented Dickey-
Fuller tests. Unit root is rejected for all cases at < 1% significance level, i. e., their
non-standard “t-value” is highly negative.

We fit the intraday time-series moments data using eight competing models: a
benchmark Random Walk Model (RW), an Autoregressive (AR) lag-one Model, an
Autoregressive Moving Average Model (ARMA(1, 1)), an Autoregressive (AR(1)) Model
with GARCH (generalized autoregressive conditional heteroskedastic) error – AR(G),
Vector Autoregressive (VAR) lag-one Model where all three lagged risk-neutral mo-
ments (RNMs) enter as regressors, Vector Autoregressive (VAR) lag-one Model with
GARCH errors for each of the three vector elements – VAR(G), Vector Error Correction
Model (VECM), and the Local Autogressive (LAR) lag-one Model. Experimenting with
higher lag-orders generally does not yield any clearer results or improvement in anal-
yses. As the lag-order is understood, we do not clutter the notation and leave out the
lag-one notation. In what follows, each interval [t, t + 1) is 10-minute within a trading
day.

For the RWModel, for each RNM:

RNMt+1(τ) = RNMt(τ) + ϵt+1

where ϵt+1 is an i. i. d. noise.
For the AR Model, for each RNM:

RNMt+1(τ) = b0 + b1RNMt(τ) + ϵt+1

where b0 and b1 < 1 are constants and ϵt+1 is i. i. d.

16 See Kian Guan Lim, Ying Chen, and Nelson Yap (2019), Intraday information from S&P 500 Index
futures options, Journal of Financial Markets, 42, 29–55.

 EBSCOhost - printed on 2/8/2023 6:26 PM via . All use subject to https://www.ebsco.com/terms-of-use



370 | 12 Option Pricing and Implied Moments

Table 12.5: Descriptive Statistics of S&P 500 Risk-Neutral Moments.

Time-to-Maturity n 1 Day 2 Days 3 Days 4 Days 5 Days 6 Days 7 Days 8 Days 9 Days 10 Days

Risk-Neutral Volatility√varQt (τ) (%)
No. of Obs. 2628 2769 2594 2277 1920 1987 1784 1471 1205 1224
Mean 21.05 19.85 18.97 19.07 20.49 20.31 20.35 20.89 20.43 21.41

Risk-Neutral Skewness SkewQ
t (τ)

No. of Obs. 2628 2769 2594 2277 1920 1987 1784 1471 1205 1224
Mean −1.01 −1.03 −1.07 −1.17 −1.26 −1.12 −1.08 −1.05 −1.03 −1.02

Risk-Neutral Kurtosis KurtQt (τ)
No. of Obs 2628 2769 2594 2277 1920 1987 1784 1471 1205 1224
Mean 6.28 5.72 5.76 6.28 6.53 5.16 4.68 4.49 4.37 4.14

For the ARMA Model, for each RNM:

RNMt+1(τ) = b0 + b1RNMt(τ) + ϵt+1

where b0 and b1 < 1 are constants and ϵt+1 is MA(1), with ϵt+1 = αϵt + εt+1, α < 1, and
εt i. i. d.

For the AR(G) Model, for each RNM:

RNMt+1(τ) = b0 + b1RNMt(τ) + ϵt+1

where b0 and b1 < 1 are constants and var(ϵt+1) = α0+α1 var(ϵt)+α2ϵ2t+1 with constants
α0 > 0, and α1 + α2 < 1.

For the VAR Model:

(
RNVt+1(τ)
RNSt+1(τ)
RNKt+1(τ)

) = B0 + B1(
RNVt(τ)
RNSt(τ)
RNKt(τ)

) + et+1

where B0 is a 3 × 1 vector of constants, B1 is a 3 × 3 matrix of constants, and et+1 is a
3 × 1 vector of i. i. d. disturbance terms.

For the VAR(G) Model: the above VAR Model is used except that each element of
the vector error et+1 is modelled as GARCH(1, 1).

For the VECM Model:

(
△RNVt+1(τ)
△RNSt+1(τ)
△RNKt+1(τ)

) = Γ0 + Γ1(
RNVt(τ)
RNSt(τ)
RNKt(τ)

) + Γ2(
△RNVt(τ)
△RNSt(τ)
△RNKt(τ)

) + et+1

where Γ0 is a 3 × 1 vector of constants, Γ1 and Γ2 are 3 × 3 constant matrices, and et+1
is a 3 × 1 vector of i. i. d. disturbance terms.
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For the LAR Model:

RNMt+1(τ) = b0,Id + b1,IdRNMt(τ) + ϵt+1

where Id denotes a subset of the sample points on day d. In the current context,
this subset consists of sample data from the latest time point before forecasting, i. e.
12:00 pm, to a lagged time point not earlier than 8:40 am. The statistical procedure
in which this subset Id is selected is explained in the next subsection. LAR basically
selects an optimal local window to perform the regression fitting where structural
breaks do not occur. While it has the advantage of providing a better fit and possibly
better forecast in time series that are not smooth and that may have breaks, the dis-
advantage is that if the time series is not smooth, the shorter sampling window may
yield forecasts and estimates with larger standard errors. The maximum likelihood
regression method, equivalent to least squares in cases of normal random errors, is
utilized, except that in the LAR case, the selection of window adds to the regression
procedures.

12.8.1 Forecasting Performance

After the regression models are estimated, the estimated coefficients are used to pro-
vide a fitted model for the purpose of predicting the next period or future RNMs. Pa-
rameters are estimated in thewindow on the same day from 8:40 am to 12:00 pm, after
which the fitted model is used for forecasting during 12:10 pm to 2:50 pm. Unlike daily
orweeklymethods, we do not use rollingwindows over the 10-minute intervals within
a trading day. This helps in focusing on days with highly liquid transactions at start
of day trading to fix the parameters for forecast and trading for the rest of the day. As
mentioned before, some days whereby there are insufficient risk-neutral moments for
estimation during 8:40 am to 12:00 pm are excluded from the sample.

Forecasts are made for RNMs pertaining to different horizons τ of one up to ten
days. The various models are as follows.

For the RWModel:

Et(RNMt+1(τ)) = RNMt(τ)

where the subscript to the expectation operator denotes a condition on the informa-
tion at t.

For the AR Model, for each RNM:

Et(RNMt+1(τ)) = b̂0 + b̂1RNMt(τ)

where b̂0 and b̂1 are estimated parameters.
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For the ARMA Model, for each RNM:

Et(RNMt+1(τ)) = b̂0 + b̂1RNMt(τ) + α̂ϵ̂t

where ϵ̂t = RNMt(τ) − b̂0 − b̂1RNMt−1(τ).
For the AR(G) Model, for each RNM:

Et(RNMt+1(τ)) = b̂
G
0 + b̂

G
1 RNMt(τ)

where b̂G0 and b̂
G
1 are estimated parameters based onmaximum likelihood procedures

recognizing the GARCH variance in the residuals.
For the VAR Model, for all three RNMs at once:

Et(
RNVt+1(τ)
RNSt+1(τ)
RNKt+1(τ)

) = B̂0 + B̂1(
RNVt(τ)
RNSt(τ)
RNKt(τ)

)

where B̂0 and B̂1 are the estimated parameters.
For the VAR(G) Model, for all three RNMs at once:

Et(
RNVt+1(τ)
RNSt+1(τ)
RNKt+1(τ)

) = B̂G0 + B̂
G
1 (

RNVt(τ)
RNSt(τ)
RNKt(τ)

)

where B̂G0 and B̂
G
1 are the estimated parameters based on GARCH(1, 1) errors et+1.

For the VECM Model, for all three RNMs at once:

Et(
RNVt+1(τ)
RNSt+1(τ)
RNKt+1(τ)

) = Γ̂0 + (Γ̂1 + I)(
RNVt(τ)
RNSt(τ)
RNKt(τ)

) + Γ̂2(
△RNVt(τ)
△RNSt(τ)
△RNKt(τ)

)

where Γ̂0, Γ̂1, and Γ̂2 are the estimated parameters.
For the LAR Model:

Et(RNMt+1(τ)) = b̂0,In + b̂1,InRNMt(τ)

where b̂0,In and b̂1,In are the estimated parameters in In.

12.8.2 Error Metrics

Tomeasure the forecasting performances of these models, we employ three error met-
rics or loss functions.
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The root mean square error (RMSE) is defined as:

RMSE = √ 1
T − 1

T−1
∑
t=1
(RNMt+1(τ) − Et(RNMt+1(τ)))

2

where T is the number of periods of forecasts, each period being a 10-minute interval.
The mean absolute deviation (MAD) is defined as:

MAD = 1
T − 1

T−1
∑
t=1

RNMt+1(τ) − Et(RNMt+1(τ))


The mean correct prediction (MCP) percentage is defined as:

MCP = 1
T − 1

T−1
∑
t=1

Jt+1 × 100

where indicator Jt+1 = 1 if (RNMt+1(τ) − RNMt(τ))(Et(RNMt+1(τ)) − RNMt(τ)) > 0, and
Jt+1 = 0 otherwise.

Table 12.6 reports the out-of-sample statistical performances of all themodels. The
autoregressivemodels are lag-onemodels. Results are reported for each of theRNMsof
volatility, skewness, and kurtosis. For each RNM category, the regression results of all
maturities are pooled. There is a total of 8,534 observations for each RNM regression.
Every trade day from August 24, 2009 to December 31, 2012, the RNMs computed in
each 10-minute intervals from8:40 am to 12:00 pmareused to estimate the parameters
of each model. The estimated or fitted model is then used to forecast the RNMs for
each 10-minute interval from 12:10 pm to 2:50 pm. The error metrics or loss functions
of RMSE, MAD, and MCP are shown in the table. The MCP is the percentage of times
that the forecast of directional change in the RNM is correct.

Table 12.6: Out-of-Sample Error Metrics for Forecasting Models.

Risk-Neutral Volatility Risk-Neutral Skewness Risk-Neutral Kurtosis
RMSE MAD MCP % RMSE MAD MCP % RMSE MAD MCP %

RW 0.662 0.174 50.00 0.647 0.463 50.00 4.001 2.490 50.00
AR 0.580 0.175 58.15 0.511 0.374 70.75 3.252 2.174 68.98
ARMA 0.598 0.175 59.66 0.581 0.424 69.44 3.619 2.373 68.10
AR(G) 0.498 0.162 61.18 0.521 0.378 70.27 3.230 2.131 69.63
VAR 0.654 0.210 58.35 0.541 0.387 69.87 3.465 2.255 68.40
VAR(G) 0.569 0.182 63.04 0.625 0.433 67.83 3.387 2.209 68.27
VECM 3.619 0.396 60.36 1.358 0.544 63.20 7.995 3.092 61.99
LAR 0.526 0.159 68.67 0.535 0.374 71.01 3.391 2.110 70.23
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The results in Table 12.6 provide clear indications of the following. Firstly, the VECM
performs the worst; this shows that more complicated models with more than one lag
could yield less accurate forecasts. Similarly, the VARModel does not perform well as
theremay bemulti-correlation of the RNMs in a finite sample setting. Secondly, across
all RNMs, the AR(G) Model, the LARModel, and the ARModel perform better than the
rest in terms of lower RMSE, lower MAD, and higher MCP. For the more volatile RNV
processes, the LAR appears to perform slightly better in MAD and MCP. These latter
models are all autoregressive in nature. Remarkably, all methods perform better than
the RW in terms of MCP higher than 50%. In summary, there is statistical evidence of
a lot of intraday information that can be utilized to successfully make rather accurate
predictions of next period RNMs over short intervals of 10-minutes.

12.8.3 Option Trading Strategies

Using the forecasts generated by the seven competing models of AR lag-one,
ARMA(1, 1), AR(1) with GARCH error, VAR lag-one, VAR(1) with GARCH errors, VECM,
and LAR, we attempt to construct a trading strategy to benefit from the accurate fore-
cast of the various futuremoment changes. RW is excluded as it has served its purpose
for benchmark comparison in the forecast assessments. We now add the benchmark
case of perfect knowledge forecast (PK) whereby prediction of moment increase or
decrease is 100% correct.

We construct three different trading strategies corresponding to the forecasts of
the three RNMs. The trading strategies are designed to capture option price changes
consistent with the forecast changes in the RNMs.

Table 12.7 reports the average $ trading profit per trade according to the differ-
ent forecasting methods on risk-neutral volatility and according to threshold signals.
Trading cost per option contract is $0.225, and this has been deducted to arrive at the
net trading profit. The trading strategy involves creating a volatility portfolio each 10-
minute interval as follows: long an OTM call and short delta amount of underlying
asset, together with long an OTM put and short a delta amount of underlying index
futures. The respective deltas are based on the strike prices of the call and the put,
and are computed using the Black-Scholesmodel. Since option price depends on both
underlying and volatility, the use of delta is to hedge option price change due to un-
derlying and not volatility.

At the end of the interval the positions are liquidated at market prices. Prediction
is done onmoments with the samematurity. If the predicted next interval risk-neutral
volatility is higher (lower) than the current risk-neutral volatility by at least the thresh-
old percentage, the aboveportfolio of long (short) call and long (short) put is executed.
The execution now and liquidation next interval constitute one trade. There can be
more than one trade per interval if different maturity moment forecasts exceed the
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Table 12.7: Profitability of Trading Strategy using Risk-Neutral Volatility Prediction.

Threshold Signal 0.0% Signal 5.0% Signal 7.5% Signal 10.0%
Profit #Trades Profit #Trades Profit #Trades Profit #Trades

PK 1.91∗∗ 7137 2.56∗∗ 2152 3.39∗∗ 1264 4.31∗∗ 773
(7.86) (4.51) (3.98) (4.50)

AR −1.01 7137 −0.32 1403 0.46 921 0.87 664
(−4.14) (−0.52) (0.56) (0.90)

ARMA −0.96 7137 −1.40 1175 −0.54 719 −0.56 457
(−3.92) (−2.08) (−0.55) (−0.46)

AR(G) −1.06 6455 −0.90 1243 −0.21 806 0.24 570
(−4.14) (−1.34) (−0.23) (0.24)

VAR −0.71 7137 −0.61 3121 −0.05 1962 0.59 1296
(−2.88) (−1.66) (−0.09) (0.91)

VAR(G) −0.69 6455 −0.69 2817 −0.07 1754 0.61 1144
(−2.68) (−1.80) (−0.14) (0.90)

VECM −0.87 7137 −0.80 2175 −0.64 1265 −1.30 954
(−3.57) (−1.26) (−0.74) (−1.31)

LAR −0.20 7137 0.09 2050 1.33 1235 0.84 884
(−0.80) (0.15) (1.55) (0.98)

Note: ∗∗, ∗ denote significance at the one-tailed 1%, and 2.5% significance levels, respectively.
#Trades refers to number of trades.

threshold, or there may be no trade in a particular interval if a non-zero threshold sig-
nal is used. The portfolio has zero cost as the net balance of the cost in the call, put,
and underlying asset is financed by borrowing at risk-free rate. The overall cost of the
portfolio can be expressed as:

πVolat = Ct,OTM − ΔCt,OTMFt + Pt,OTM − ΔPt,OTMFt − Bt

Bt is chosen such that πVolat = 0. Outlay for Ft the index futures is assumed to be zero
for the initial futures position. The numbers within the parentheses are the t-statistics
based on bootstrapped variances calculated for the average profit. The bootstrap is
carried out over 2,000 iterations. Overall, the table results show that risk-neutral
volatility forecasts cannot lead to a profitable options trading strategy.

Table 12.8 reports the average $ trading profit per trade according to the differ-
ent forecasting methods on risk-neutral skewness and according to threshold signals.
Trading cost per option contract is $0.225, and this has been deducted to arrive at the
net trading profit. The trading strategy involves creating a skewness portfolio each 10-
minute interval as follows: long an OTM call and short a number of OTM puts equal to
the ratio of the call vega to put vega. Also short a number of underlying assets equal
to the call delta less the same vega ratio times put delta. The respective vegas and
deltas are based on the strike prices and other features of the call and the put and are
computed using the Black-Scholesmodel. The portfolio is hedged against option price
change due to underlying and due to volatility.
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Table 12.8: Profitability of Trading Strategy using Risk-Neutral Skewness Prediction.

Threshold Signal 0.0% Signal 10.0% Signal 20.0% Signal 50.0%
Profit #Trades Profit #Trades Profit #Trades Profit #Trades

PK 2.81∗∗ 7137 2.97∗∗ 5657 3.00∗∗ 4291 2.68∗∗ 2406
(9.33) (8.98) (7.96) (5.56)

AR 1.42∗∗ 7137 1.74∗∗ 5178 1.88∗∗ 3290 1.16 1507
(4.76) (5.01) (4.30) (1.81)

ARMA 1.39∗∗ 7137 2.01∗∗ 4101 1.84∗∗ 2645 0.52 1384
(4.65) (5.04) (3.73) (0.76)

AR(G) 1.48∗∗ 6455 1.80∗∗ 4661 1.97∗∗ 2928 1.03 1317
(4.66) (4.85) (4.21) (1.46)

VAR 1.59∗∗ 7137 1.94∗∗ 5246 1.75∗∗ 3336 1.02 1562
(5.28) (5.58) (4.18) (1.67)

VAR(G) 1.62∗∗ 6455 1.91∗∗ 4710 1.78∗∗ 2961 0.91 1372
(5.19) (5.23) (3.96) (1.39)

VECM 0.45 7137 0.91∗∗ 5115 0.53 3439 0.02 1685
(1.50) (2.55) (1.21) (0.03)

LAR 1.40∗∗ 7137 1.62∗∗ 5458 1.83∗∗ 3647 1.06 1622
(4.65) (4.67) (4.43) (1.67)

Note: ∗∗, ∗ denote significance at the one-tailed 1%, and 2.5% significance levels, respectively.
#Trades refers number of trades.

At the end of the interval the positions are liquidated at actual market prices. Predic-
tion is done on moments with the same maturity. If the predicted next interval risk-
neutral skewness is higher (lower) than the current risk-neutral skewness by at least
the threshold percentage, the above portfolio of long (short) call and short (long) puts
is executed. The execution and liquidation next interval constitute one trade. There
can be more than one trade per interval if different maturity moment forecasts exceed
the threshold, or there may be no trade in a particular interval if a non-zero thresh-
old signal is used. The portfolio has zero cost. The overall cost of the portfolio can be
expressed as:

πSkewt = Ct,OTM − (
υCt,OTM
υPt,OTM
)Pt,OTM

− (ΔCt,OTM − (
υCt,OTM
υPt,OTM
)ΔPt,OTM)Ft − Bt

Bt is chosen such that πSkewt = 0. Outlay for Ft the index futures is assumed to be zero
for the initial futures position. The numbers within the parentheses are the t-statistics
based on bootstrapped variances calculated for the average profit. The bootstrap is
carried out over 2,000 iterations.

Except for VECM, all other forecasting models, with thresholds < 50%, yield sig-
nificantly positive profits per trade at 1% significance level. Persistence of RN skew-
ness over the 10-minute intervals could be a reason for the predictable profits.
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Table 12.9 reports the average $ trading profit per trade according to the differ-
ent forecasting methods on risk-neutral kurtosis and according to threshold signals.
Trading cost per option contract is $0.225, and this has been deducted to arrive at
the net trading profit. The trading strategy involves creating a kurtosis portfolio each
10-minute interval as follows: long X at-the-money (ATM) calls and X ATM puts and
simultaneously short one out-of-the-money (OTM) call and one OTM put, where X =
(Ct,OTM+Pt,OTM)/(Ct,ATM+Pt,ATM). The ATM (OTM) options are chosen as far as possible
to have similar strikes. Aït-Sahalia et al. (2001)’s study shows for a predicted increase
in kurtosis, RN probability would increase in prices closer to ATM strike and decrease
in prices at far OTM. Hence we expect increase in kurtosis to lead to increase in ATM
options relative to their counterparts.17 The overall cost of the portfolio is:

X(Ct,ATM + Pt,ATM) − (Ct,OTM + Pt,OTM) = 0

Table 12.9: Profitability of Trading Strategy using Risk-Neutral Kurtosis Prediction.

Threshold Signal 0.0% Signal 10.0% Signal 20.0% Signal 50.0%
Profit #Trades Profit #Trades Profit #Trades Profit #Trades

PK 2.92∗∗ 682 2.70∗ 377 3.53 228 4.35 87
(2.98) (2.01) (1.86) (1.15)

AR 0.71 682 2.82 319 5.78∗ 137 4.00 33
(0.71) (1.72) (2.09) (0.63)

ARMA 0.55 682 2.85 241 1.99 128 5.33 41
(0.55) (1.44) (0.68) (0.82)

AR(G) 0.60 623 2.57 286 5.72 121 4.64 29
(0.56) (1.43) (1.85) (0.63)

VAR 1.37 682 2.16 328 4.42 142 4.18 38
(1.39) (1.33) (1.52) (0.74)

VAR(G) 1.36 623 2.22 301 3.93 129 4.52 36
(1.28) (1.27) (1.25) (0.76)

VECM 0.79 682 3.82∗∗ 374 3.75 192 1.10 60
(0.79) (2.69) (1.75) (0.32)

LAR −0.89 682 1.64 374 3.65 188 2.25 45
(−0.88) (1.17) (1.65) (0.38)

Note: ∗∗, ∗ denote significance at the one-tailed 1%, and 2.5% significance levels, respectively.
#Trades refers to number of trades.

At the end of the interval the positions are liquidated at actual market prices. Predic-
tion is done on moments with the same maturity. If the predicted next interval risk-
neutral kurtosis is higher (lower) than the current risk-neutral kurtosis by at least the

17 See Y. Aït-Sahalia, Y. Wang, and F. Yared (2001), Do optionmarkets correctly price the probabilities
of movement of the underlying asset? Journal of Econometrics, 102, 67–110.
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threshold percentage, the above portfolio of long (short) ATMcalls andputs, and short
(long) OTM call and put is executed. The execution and liquidation next interval con-
stitute one trade. There can be more than one trade per interval if different maturity
moment forecasts exceed the threshold, or there may be no trade in a particular in-
terval if a non-zero threshold signal is used. The portfolio has zero cost. The numbers
within the parentheses are t-statistics based on bootstrapped variances calculated for
the average profit. The bootstrap is carried out over 2,000 iterations.

From Table 12.9, it is shown that there are only two cases of significant profits.
However, there is no evidence of consistent profits.

The empirical results indicate that forecasting risk-neutral volatility and kurtosis
maynot lead to anyprofitable options trading strategies. However, real-time statistical
forecast of risk-neutral skewness may be profitable in options trading.
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