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Preface
Numerical analysis is an extremely important field in mathematics and other natural
sciences. Almost all real life problems that are modeled mathematically do not have
exact solutions. Moreover, the mathematical models often have a nonlinear structure
which makes them even more difficult to solve analytically. In this sense, the devel-
opment and construction of efficient numerical methods gain a big significance. Mo-
tivated by this fact, the studies related to the development of new powerful numerical
methods or improvement of the existing ones are still continuing.

In particular, numerical solutions of differential equations are of great importance
sincemanyprocesses innature are timedependent and theirmathematicalmodels are
usually described by partial or ordinary differential equations and often, by difference
equations. The theory of time scales and dynamic equations, on the other hand, uni-
fies the continuous and discrete models, thus providing a more general view to the
subject.

Dynamic equations, which describe how quantities change across the time or
space, arise in any field of study where measurements can be taken. Most realistic
mathematical models cannot be solved using the traditional analytical methods for
dynamic equations on time scales. They must be handled with computational meth-
ods that deliver approximate solutions.

Until recently, there were very few studies related to numerical methods on time
scales. In the last few years, some initial results on the subject have been published,
which initiated the development of numerical analysis on time scales.

This book is devoted to designing, analyzing, and applying computational tech-
niques for dynamic equations on time scales. The book provides material for a typical
first course. This book is an introduction to numerical methods for initial value prob-
lems for dynamic equations on time scales.

The book contains 12 chapters. In Chapter 1, the Lagrange, σ-Lagrange, Hermite,
and σ-Hermite polynomial interpolations are introduced. From these interpolations,
approximations for the delta derivative of continuously delta-differentiable functions
are deducted. In Chapter 2, formulae for numerical integration on time scales are de-
rived and the associated approximation errors are estimated. In Chapter 3, linear in-
terpolating splines, linear interpolating σ-splines, cubic and Hermite splines are in-
troduced. Chapter 4 is presented as a study of the Euler method. Chapters 5 and 6
consider the Taylor series methods of order-2 and order-p and analyze convergence of
thesemethods. Linearmultistepmethods are investigated in Chapter 7. Chapter 8 con-
tains the analysis of Runge–Kutta methods. Chapter 9 deals with the series solution
method for fractional dynamic equations and dynamic equations on time scales. The
Adomian polynomials method is investigated in Chapter 10. Chapter 11 is devoted to
weak solutions and variational methods for some classes of linear dynamic equations
on time scales.Nonlineardynamic equations andvariationalmethods are investigated
in Chapter 12.

https://doi.org/10.1515/9783110787320-201
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VI | Preface

We presume that the readers are familiar with the basic notions on time scales
such as forward and backward jump operators, graininnes function, right and left
scattered, dense and isolated points, as well as with the basic calculus concepts on
time scales such as the delta differentiation and integration and their properties, el-
ementary functions on time scales, Taylor formula. For the readers who are studying
the time scales for the first time, we suggest learning these basic notions and concepts
from the numerous references given in this book and elsewhere.

The text material of this book is presented in a highly readable, mathematically
solid format. Many practical problems are illustrated, displaying a wide variety of so-
lution techniques. The authors welcome any suggestions for the improvement of the
text.

Paris/Ankara, July 2022 Svetlin Georgiev
İnci Erhan
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1 Polynomial interpolation

Polynomial interpolation is a very useful tool employed in many areas of science in
which a given set of data needs to be represented by a function, in particular, by a
polynomial taking the given values at the points of the given data set. From the classi-
cal numerical analysis we know that there is a unique polynomial satisfying the given
conditions which can be constructed in different ways. The Lagrange interpolation
polynomial is one of the most used. For more details we refer the reader to the books
[5] and [16].

In some physical problems, together with the values of a certain quantity, the val-
ues of the rates of change of this quantity, that is, the derivative values at a given set of
points are also known. In such applications the polynomial representing this data is
also required to match the derivatives. The Hermite interpolation polynomial is used
for such problems.

In this chapter, we consider the problem of polynomial interpolation on time
scales. This problem involves finding a polynomial that agrees with some information
that we have for a given real-valued function f of a single real variable x. We construct
the Lagrange, σ-Lagrange, Hermite, and σ-Hermite interpolation polynomials for a
given real-valued function f defined on an arbitrary time scale.

Throughout this chapter, we assume that 𝕋 is a time scale with forward jump op-
erator σ, delta differentiation operator Δ and graininess function μ.

1.1 Lagrange interpolation

In this section, we construct the Lagrange interpolation polynomial on an arbitrary
time scale. We present the theoretical background of this construction and solve nu-
merical examples.

Let 𝒫n, n ∈ ℕ0, denote the set of all polynomials of degree ≤ n defined over the
set ℝ of real numbers. Let n ∈ ℕ and xi ∈ 𝕋, i ∈ {0, 1, . . . , n}, be distinct and yi, i ∈
{0, 1, . . . , n}, be given real numbers. We will find pn ∈ 𝒫n such that pn(xi) = yi, i ∈
{0, 1, . . . , n}. Below we introduce the form of a polynomial taking the given values yi at
the points xi for i ∈ {0, 1, . . . , n}.

Theorem 1.1. Suppose that n ∈ ℕ. Then there exist polynomials Lk ∈ 𝒫n, k ∈ {0, 1, . . . , n},
such that

Lk(xi) = {
1 if i = k,
0 if i ̸= k,

i, k ∈ {0, 1, . . . , n}. Moreover,

https://doi.org/10.1515/9783110787320-001
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2 | 1 Polynomial interpolation

pn(x) =
n
∑
k=0

Lk(x)yk , x ∈ 𝕋,

satisfies the condition pn(xi) = yi, i ∈ {0, 1, . . . , n}, pn ∈ 𝒫n.

Proof. Define

Lk(x) = Ck
n
∑

i=0,i ̸=k
(x − xi), x ∈ 𝕋,

where Ck ∈ ℝ, k ∈ {0, 1, . . . , n}, will be determined below. We have Lk(xi) = 0, i ∈
{0, 1, . . . , n}, i ̸= k, and

Lk(xk) = Ck
n
∏

i=0,i ̸=k
(xk − xi) = 1, k ∈ {0, 1, . . . , n}.

Thus,

Ck =
1

∏ni=0,i ̸=k(xk − xi)
, k ∈ {0, 1, . . . , n},

and

Lk(x) =
n
∏

i=0,i ̸=k

x − xi
xk − xi
, x ∈ 𝕋, k ∈ {0, 1, . . . , n}. (1.1)

We have that Lk ∈ 𝒫n, k ∈ {0, 1, . . . , n}, and pn ∈ 𝒫n. This completes the proof.

The uniqueness of the polynomial given in the previous theorem is proved next.

Theorem 1.2. Assume that n ∈ ℕ0. Let xi ∈ 𝕋, i ∈ {0, 1, . . . , n}, be distinct and yi ∈ ℝ,
i ∈ {0, 1, . . . , n}. Then there exists a unique polynomial pn ∈ 𝒫n such that

pn(xi) = yi, i ∈ {0, 1, . . . , n}.

Proof. The existence of the polynomial pn follows by Theorem 1.1. Suppose that there
exist two polynomials pn, qn ∈ 𝒫n such that

pn(xi) = qn(xi) = yi, i ∈ {0, 1, . . . , n}.

Then the polynomial hn = pn − qn has n + 1 distinct roots. Therefore, hn ≡ 0 or pn ≡ qn.
This completes the proof.

Now, we formally define the polynomial in the above theorems.

Definition 1.3. Assume that n ∈ ℕ0. Let xi ∈ 𝕋, i ∈ {0, 1, . . . , n}, be distinct and yi ∈ ℝ,
i ∈ {0, 1, . . . , n}. The polynomial
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1.1 Lagrange interpolation | 3

pn(x) =
n
∑
k=0

Lk(x)yk , x ∈ 𝕋,

where Lk, k ∈ {0, 1, . . . , n}, are defined in (1.1), will be called the Lagrange interpolation
polynomial of degree n with interpolation points (xi, yi), i ∈ {0, 1, . . . , n}.

Definition 1.4. Assume that n ∈ ℕ0. Let xi ∈ [a, b] ⊂ 𝕋, i ∈ {0, 1, . . . , n}, be distinct and
f : [a, b]→ ℝ be a given function. The polynomial

pn(x) =
n
∑
k=0

Lk(x)f (xk), x ∈ 𝕋,

where Lk, k ∈ {0, 1, . . . , n}, are defined in (1.1), will be called the Lagrange interpolation
polynomial of degree nwith interpolation points xi, i ∈ {0, 1, . . . , n}, for the function f .

Example 1.5. Let 𝕋 = ℤ. We will construct the Lagrange interpolation polynomial for
the set

{(−3,0), (−2, 2), (0, 1), (1, 1)}.

Here

x0 = −3, x1 = −2, x2 = 0, x3 = 1,
y0 = 0, y1 = 2, y2 = 1, y3 = 1, n = 3.

Then

L0(x) =
3
∏
i=1

x − xi
x0 − xi
=
(x + 2)x(x − 1)
−1 ⋅ (−3) ⋅ (−4)

= −
(x − 1)x(x + 2)

12
,

L1(x) =
3
∏

i=0,i ̸=1

x − xi
x1 − xi
=
(x + 3)x(x − 1)
1 ⋅ (−2) ⋅ (−3)

=
(x − 1)x(x + 3)

6
,

L2(x) =
3
∏

i=0,i ̸=2

x − xi
x2 − xi
=
(x + 3)(x + 2)(x − 1)

3 ⋅ 2 ⋅ (−1)
= −
(x − 1)(x + 2)(x + 3)

6
,

L3(x) =
2
∏
i=0

x − xi
x3 − xi
=
(x + 3)(x + 2)x

4 ⋅ 3 ⋅ 1
=
x(x + 2)(x + 3)

12
, x ∈ 𝕋.

Hence,

p3(x) = y0L0(x) + y1L1(x) + y2L2(x) + y3L3(x)

= 2(x(x − 1)(x + 3)
6

) −
(x − 1)(x + 2)(x + 3)

6
+
x(x + 2)(x + 3)

12

=
(x − 2)(x − 1)(x + 3)

6
+
x(x + 2)(x + 3)

12
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4 | 1 Polynomial interpolation

=
(x + 3)(2(x − 1)(x − 2) + x(x + 2))

12

=
(x + 3)(3x2 − 4x + 4)

12
, x ∈ 𝕋.

Exercise 1.6. Let 𝕋 = 2ℕ0 . Construct the Lagrange interpolation polynomial for the
set

{(1,−1), (4,0), (8, 1), (16, 2)}.

Suppose that n ∈ ℕ0 and xj ∈ 𝕋, j ∈ {0, 1, . . . , n}, are distinct points. For x ∈ 𝕋, we
define the polynomials

πn+1(x) =
n
∏
j=0
(x − xj), Πk

n+1(x) = π
Δk
n+1(x), k ∈ ℕ0,

which will be employed in the error analysis of polynomial interpolation.

Example 1.7. Let 𝕋 = 2ℕ0 , x0 = 1, x1 = 2. Here

n = 1, σ(x) = 2x, x ∈ 𝕋.

Then

π2(x) = (x − 1)(x − 2) = x
2 − 3x + 2, x ∈ 𝕋,

and

Π1
2(x) = π

Δ
2 (x) = σ(x) + x − 3 = 3x − 3,

Π2
2(x) = π

Δ2
2 (x) = 3, x ∈ 𝕋.

Example 1.8. Let 𝕋 = ℤ and

x0 = 1, x1 = 2, x2 = 3.

Then

π3(x) = (x − 1)(x − 2)(x − 3)

= (x2 − 3x + 2)(x − 3)

= x3 − 6x2 + 11x − 6, x ∈ 𝕋.

We have

σ(x) = x + 1, x ∈ 𝕋,

 EBSCOhost - printed on 2/10/2023 4:40 PM via . All use subject to https://www.ebsco.com/terms-of-use



1.1 Lagrange interpolation | 5

and

Π1
3(x) = π

Δ
3 (x)

= (σ(x))2 + xσ(x) + x2 − 6(σ(x) + x) + 11

= (x + 1)2 + x(x + 1) + x2 − 6(x + 1 + x) + 11

= 3x2 − 9x + 6,

Π2
3(x) = π

Δ2
3 (x)
= 3(σ(x) + x) − 9
= 6x − 6,

Π3
3(x) = π

Δ3
3 (x) = 6, x ∈ 𝕋.

Exercise 1.9. Let 𝕋 = ( 14 )
ℕ0 ,

x0 =
1
64
, x1 =

1
16
, x2 =

1
4
, x3 = 1.

Find π4(x), Π1
4(x), Π

2
4(x), Π

3
4(x), Π

4
4(x), x ∈ 𝕋.

The following theoremgives the error in approximating a function f by a Lagrange
polynomial.

Theorem 1.10. Suppose that n ∈ ℕ0, a, b ∈ 𝕋, a < b, xj ∈ [a, b], j ∈ {0, 1, . . . , n}, are
distinct and f : [a, b] → ℝ, f Δ

k
(x) exist for any x ∈ [a, b] and k ∈ {1, . . . , n + 1}. Then for

any x ∈ [a, b] there exists ξ = ξ (x) ∈ (a, b) such that

f (x) − pn(x) =
f Δ

n+1
(ξ )

Πn+1
n+1(ξ )

πn+1(x), x ∈ [a, b],

or

Fmin,n+1(ξ ) ≤
f (x) − pn(x)
πn+1(x)

≤ Fmax,n+1(ξ ), x ∈ [a, b],

where

Fmax,n+1(ξ ) = max{ f
Δn+1 (ξ )
Πn+1
n+1(ξ )
,
f Δ

n+1
(ρ(ξ ))

Πn+1
n+1(ρ(ξ ))

},

Fmin,n+1(ξ ) = min{ f
Δn+1 (ξ )
Πn+1
n+1(ξ )
,
f Δ

n+1
(ρ(ξ ))

Πn+1
n+1(ρ(ξ ))

}.

Proof. Let pn be the Lagrange interpolation polynomial for the function f with inter-
polation points xj, j ∈ {0, 1, . . . , n}. Define the function

 EBSCOhost - printed on 2/10/2023 4:40 PM via . All use subject to https://www.ebsco.com/terms-of-use



6 | 1 Polynomial interpolation

ϕ(t) = f (t) − pn(t) −
f (x) − pn(x)
πn+1(x)

πn+1(t), t ∈ [a, b].

Then

ϕ(xj) = f (xj) − pn(xj) −
f (x) − pn(x)
πn+1(x)

πn+1(xj)

= f (xj) − f (xj)
= 0, j ∈ {0, 1, . . . , n},

and ϕ(x) = 0. Thus, ϕ : [a, b] → ℝ has at least n + 2 generalized zeros (GZs). Hence,
by Rolle’s theorem (see Theorem A.6 of Appendix A), it follows that ϕΔn+1 has at least
one GZ on (a, b). Therefore, there exists an ξ = ξ (x) ∈ (a, b) such that

ϕΔn+1 (ξ ) = 0 or ϕΔn+1(ρ(ξ ))ϕΔn+1 (ξ ) < 0.
Note that

ϕΔn+1 (t) = f Δn+1 (t) − f (x) − pn(x)
πn+1(x)

πΔ
n+1

n+1 (t), t ∈ [a, b].

We now consider each case separately.
1. Let ϕΔn+1 (ξ ) = 0. Then

f Δ
n+1
(ξ ) = f (x) − pn(x)

πn+1(x)
πΔ

n+1
n+1 (ξ ),

or

f (x) − pn(x) =
f Δ

n+1
(ξ )

πΔn+1n+1 (ξ )
πn+1(x) =

f Δ
n+1
(ξ )

Πn+1
n+1(ξ )

πn+1(x).

2. Let

ϕΔn+1(ρ(ξ ))ϕΔn+1 (ξ ) < 0.
Then

ϕΔn+1(ρ(ξ )) = f Δn+1(ρ(ξ )) − f (x) − pn(x)
πn+1(x)

πΔ
n+1

n+1 (ρ(ξ ))

= f Δ
n+1
(ρ(ξ )) − f (x) − pn(x)

πn+1(x)
Πn+1
n+1(ρ(ξ )),

and

ϕΔn+1 (ξ ) = f Δn+1 (ξ ) − f (x) − pn(x)
πn+1(x)

Πn+1
n+1(ξ ).
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1.1 Lagrange interpolation | 7

Hence,

0 > ϕΔn+1(ρ(ξ ))ϕΔn+1 (ξ )
= (f Δ

n+1
(ρ(ξ )) − f (x) − pn(x)

πn+1(x)
Πn+1
n+1(ρ(ξ )))

× (f Δ
n+1
(ξ ) − f (x) − pn(x)

πn+1(x)
Πn+1
n+1(ξ ))

= (
f (x) − pn(x)
πn+1(x)

)
2
Πn+1
n+1(ρ(ξ ))Π

n+1
n+1(ξ )

−
f (x) − pn(x)
πn+1(x)

(Πn+1
n+1(ρ(ξ ))f

Δn+1 (ξ ) + Πn+1
n+1(ξ )f

Δn+1(ρ(ξ )))
+ f Δ

n+1
(ρ(ξ ))f Δ

n+1
(ξ ).

We conclude that

Fmin,n+1(ξ ) ≤
f (x) − pn(x)
πn+1(x)

≤ Fmax,n+1(ξ ).

This completes the proof.

Note that, as stated in the next remark, the error vanishes if the number of data
points increases to infinity.

Remark 1.11. Suppose that all the conditions of Theorem 1.10 hold. If

lim
n→∞

max
x∈[a,b]
(
f Δ

n+1
(ξ )

Πn+1
n+1(ξ )

πn+1(x)) = 0

and

lim
n→∞

max
x∈[a,b]
(
f Δ

n+1
(ρ(ξ ))

Πn+1
n+1(ρ(ξ ))

πn+1(x)) = 0,

then

lim
n→∞

max
x∈[a,b]
f (x) − pn(x)

 = 0.

Example 1.12. Let 𝕋 = {0, 16 ,
1
4 ,

1
2 , 1, 2, 3, 4}. Let

a = x0 = 0, x1 =
1
4
, x2 = 1, x3 = 3, b = 4,

and
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8 | 1 Polynomial interpolation

f (x) = x + 1
x2 + x + 6

, x ∈ 𝕋.

We will construct the Lagrange interpolation polynomial p3 of f for the points x0, x1,
x2, x3 and compare the graphs of p3 and f . First, note that

f (x0) = f (0) =
1
6
, f (x1) = f(

1
4
) =

20
101
,

f (x2) = f (1) =
1
4
, f (x3) = f (3) =

2
9
.

Also, we compute

L0(x) =
(x − 1

4 )(x − 1)(x − 3)
(0 − 1

4 )(0 − 1)(0 − 3)
= −

4
3
(x − 1

4
)(x − 1)(x − 3),

L1(x) =
(x − 0)(x − 1)(x − 3)
( 14 − 0)(

1
4 − 1)(

1
4 − 3)
=
64
33

x(x − 1)(x − 3),

L2(x) =
(x − 0)(x − 1

4 )(x − 3)
(1 − 0)(1 − 1

4 )(1 − 3)
= −

2
3
x(x − 1

4
)(x − 3),

L3(x) =
(x − 0)(x − 1

4 )(x − 1)
(3 − 0)(3 − 1

4 )(3 − 1)
=

2
33
x(x − 1

4
)(x − 1), x ∈ 𝕋.

Then the Lagrange interpolation polynomial p3 of f for the points 0,
1
4 , 1, 3 is

p3(x) = f (0)L0(x) + f(
1
4
)L1(x) + f (1)L2(x) + f (3)L3(x)

=
1
6
(−

4
3
(x − 1

4
)(x − 1)(x − 3)) + 20

101
(
64
33

x(x − 1)(x − 3))

+
1
4
(−

2
3
x(x − 1

4
)(x − 3)) + 2

9
(
2
33
x(x − 1

4
)(x − 1))

= −
2
9
(x − 1

4
)(x − 1)(x − 3) + 1280

3333
x(x − 1)(x − 3)

−
1
6
x(x − 1

4
)(x − 3) + 4

297
x(x − 1

4
)(x − 1), x ∈ 𝕋.

The graphs of f and p3 are compared in Figure 1.1. Moreover, the values of f and p3 at
noninterpolatingpoints of the time scale are compared in Table 1.1. FrombothTable 1.1
and Figure 1.1, we observe a good approximation at noninterpolation points inside the
interval [a, b] = [0, 4].
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1.2 σ-Lagrange interpolation | 9

Figure 1.1: The graphs of f and the Lagrange polynomial p3.

Table 1.1: The values of f and p3 at noninterpolating points of𝕋.

x f (x) p3(x)

1/6 0.1883 0.1884
1/2 0.2222 0.2218
2 0.2500 0.2513

1.2 σ-Lagrange interpolation

In this section, we will show that a given function can be approximated with the so-
called σ-Lagrange polynomials. We will show that there are classes of time scales for
which the Lagrange interpolation polynomials and the σ-Lagrange interpolation poly-
nomials are different, and there are classes of time scales for which the Lagrange in-
terpolation polynomials and the σ-Lagrange interpolation polynomials coincide.

In the following, we define the σ-polynomials. With 𝒫σ
n , n ∈ ℕ0, we will denote

the set of all functions in the form

g(x) = an(σ(x))
n
+ an−1(σ(x))

n−1
+ ⋅ ⋅ ⋅ + a1σ(x) + a0, x ∈ 𝕋,

where aj ∈ ℝ, j ∈ {0, 1, . . . , n}. Let a, b ∈ 𝕋, a < b. A function g ∈ 𝒫σ
n will be called

a σ-polynomial. To define a σ-Lagrange polynomial, we have a requirement that the
points in the data set should be σ-distinct.

Definition 1.13. Let n ∈ ℕ0. The points xj ∈ [a, b), j ∈ {0, 1, . . . , n}, will be called
σ-distinct if σ(xn) ≤ b and
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10 | 1 Polynomial interpolation

σ(x0) < σ(x1) < ⋅ ⋅ ⋅ < σ(xn).

Example 1.14. Let𝕋 = {−1, 1} ∪ {1 + ( 12 )
n : n ∈ ℕ0} ∪ {3, 4, 5} and a = −1, b = 5. Take the

points

x0 = −1, x1 = 1, x2 = 3.

Then

σ(x0) = 1, σ(x1) = 1, σ(x2) = 4.

Thus, the points {x0, x1, x2} are not σ-distinct.

Example 1.15. Let 𝕋 = 2ℕ0 , a = 1, b = 16. Take the points

x0 = 1, x1 = 2, x2 = 4.

Then

σ(x0) = 2, σ(x1) = 4, σ(x2) = 8.

Therefore, {x0, x1, x2} are σ-distinct points.

As in the previous section, one can prove the following result.

Theorem 1.16. Suppose that n ∈ ℕ and xj ∈ 𝕋, j ∈ {0, 1, . . . , n}, are σ-distinct. Then
there exist unique σ-polynomials Lσk ∈ 𝒫σ

n , k ∈ {0, 1, . . . , n}, such that

Lσk(xi) = {
1 if i = k,
0 if i ̸= k,

i, k ∈ {0, 1, . . . , n}. Moreover,

pσn(x) =
n
∑
k=0

Lσk(x)yk =
n
∑
k=0
(

n
∏

j=0,j ̸=k

σ(x) − σ(xj)
σ(xk) − σ(xj)

)yk , x ∈ 𝕋,

satisfies the condition pσn(xi) = yi, i ∈ {0, 1, . . . , n}, pσn ∈ 𝒫σ
n .

Based on the statement of the above theorem, we define the σ-Lagrange interpo-
lation polynomials as follows.

Definition 1.17. Assume that n ∈ ℕ0. Let xi ∈ 𝕋, i ∈ {0, 1, . . . , n}, be σ-distinct and
yi ∈ ℝ, i ∈ {0, 1, . . . , n}. The σ-polynomial

pσn(x) =
n
∑
k=0

Lσk(x)yk , x ∈ 𝕋,
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1.2 σ-Lagrange interpolation | 11

where Lσk, k ∈ {0, 1, . . . , n}, are defined in Theorem 1.16, will be called the σ-Lagrange
interpolationpolynomial of degreenwithσ-interpolationpoints (xi, yi), i ∈ {0, 1, . . . , n}.

Definition 1.18. Assume that n ∈ ℕ0. Let xi ∈ [a, b] ⊂ 𝕋, i ∈ {0, 1, . . . , n}, be σ-distinct
and f : [a, b]→ ℝ be a given function. The σ-polynomial

pσn(x) =
n
∑
k=0

Lσk(x)f (xk), x ∈ 𝕋,

where Lσk, k ∈ {0, 1, . . . , n}, are defined in Theorem 1.16, will be called the σ-Lagrange
interpolation polynomial of degree nwith σ-interpolation points xi, i ∈ {0, 1, . . . , n}, for
the function f .

In the following, we will compute the Lagrange and σ-Lagrange polynomials for
a given set of data on a time scale and compare them.

Example 1.19. Let 𝕋 = {−2,−1,0, 3, 7},

a = −2, x0 = −2, x1 = 0, b = 7,

and assume f : 𝕋→ ℝ is defined by

f (x) = x + 3, x ∈ 𝕋.

We will find the σ-Lagrange interpolation polynomial for the function f with σ-inter-
polation points {x0, x1}. We have

σ(x0) = σ(−2) = −1,
σ(x1) = σ(0) = 3,

Lσ0(x) =
σ(x) − σ(x1)
σ(x0) − σ(x1)

= −
1
4
(σ(x) − 3),

Lσ1(x) =
σ(x) − σ(x0)
σ(x1) − σ(x0)

=
1
4
(σ(x) + 1), x ∈ 𝕋,

f (x0) = f (−2) = 1,
f (x1) = f (0) = 3.

Thus,

pσ1(x) = f (x0)Lσ0(x) + f (x1)Lσ1(x)

= −
1
4
(σ(x) − 3) + 3

4
(σ(x) + 1)

=
1
2
(σ(x) + 3), x ∈ [−2, 7].

Note that
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12 | 1 Polynomial interpolation

pσ1(0) =
1
2
(σ(0) + 3) = 3 = f (0),

pσ1(−2) =
1
2
(σ(−2) + 3) = 1 = f (−2).

Also, we have

pσ1(−1) =
1
2
(σ(−1) + 3) = 3

2
.

Now, we will find the Lagrange interpolation polynomial for the function f with inter-
polation points {x0, x1}. We have

L0(x) =
x − x1
x0 − x1

= −
1
2
x,

L1(x) =
x − x0
x1 − x0

=
x + 2
2
, x ∈ [−2, 7].

Therefore,

p1(x) = f (x0)L0(x) + f1(x)L1(x)

= −
1
2
x + 3x + 2

2
= x + 3, x ∈ [−2, 7].

Then

p1(0) = 3 = f (0), p1(−2) = 1 = f (−2).

We also have

p1(−1) = −1 + 3 = 2 ̸= pσ1(−1) =
3
2
.

Remark 1.20. In the above example we see that, in general, the Lagrange and σ-La-
grange interpolation polynomials for a function f are different.

Exercise 1.21. Let 𝕋 = {−1,− 14 ,−
1
8 ,0, 2, 3, 7},

a = x0 = −1, x1 = −
1
8
, x2 = 3, b = 7.

Find the σ-Lagrange and Lagrange interpolation polynomials for the function f :
𝕋→ ℝ defined by

f (x) = x + 1
x2 − x + 1

+ 3x, x ∈ [−1, 7],

with σ-interpolation and interpolation points x0, x1, x2.
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1.2 σ-Lagrange interpolation | 13

In the following example, we see that on some time scales, the Lagrange and
σ-Lagrange polynomials are the same.

Example 1.22. Let 𝕋 = ℤ,

a = x0 = −1, x1 = 1, x2 = 3, b = 4,

and f : 𝕋→ ℝ be defined by

f (x) = x2 + x + 1, x ∈ 𝕋.

We will find the σ-Lagrange interpolation polynomial with σ-interpolation points
x0, x1, x2. We have σ(x) = x + 1, x ∈ 𝕋, and

σ(x0) = σ(−1) = 0,

σ(x1) = σ(1) = 2,

σ(x2) = σ(3) = 4.

Then

σ(x0) < σ(x1) < σ(x2),

i. e., x0, x1, x2 are σ-distinct points. We have

Lσ0(x) =
(σ(x) − σ(x1))(σ(x) − σ(x2))
(σ(x0) − σ(x1))(σ(x0) − σ(x2))

=
(x + 1 − 2)(x + 1 − 4)
(0 − 2)(0 − 4)

=
(x − 1)(x − 3)

8
,

Lσ1(x) =
(σ(x) − σ(x0))(σ(x) − σ(x2))
(σ(x1) − σ(x0))(σ(x1) − σ(x2))

=
(x + 1 − 0)(x + 1 − 4)
(2 − 0)(2 − 4)

= −
(x − 3)(x + 1)

4
,

Lσ2(x) =
(σ(x) − σ(x0))(σ(x) − σ(x1))
(σ(x2) − σ(x0))(σ(x2) − σ(x1))

=
(x + 1 − 0)(x + 1 − 2)
(4 − 0)(4 − 2)

=
(x − 1)(x + 1)

8
, x ∈ [−1, 4],
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14 | 1 Polynomial interpolation

f (x0) = f (−1) = 1,

f (x1) = f (1) = 3,

f (x2) = f (3) = 13.

Hence,

pσ2(x) = f (x0)Lσ0(x) + f (x1)Lσ1(x) + f (x2)Lσ2(x)

=
(x − 1)(x − 3)

8
− 3 (x − 3)(x + 1)

4
+ 13 (x − 1)(x + 1)

8

=
x2 − 4x + 3 − 6x2 + 12x + 18 + 13x2 − 13

8
= x2 + x + 1, x ∈ [−1, 4],

is the σ-Lagrange interpolation polynomial for the function f .
Now, we will find the Lagrange interpolation polynomial for the function f with

interpolation points x0, x1, x2. We have

L0(x) =
(x − x1)(x − x2)
(x0 − x1)(x0 − x2)

=
(x − 1)(x − 3)

8
,

L1(x) =
(x − x0)(x − x2)
(x1 − x0)(x1 − x2)

= −
(x + 1)(x − 3)

4
,

L2(x) =
(x − x0)(x − x1)
(x2 − x0)(x2 − x1)

=
(x + 1)(x − 1)

8
, x ∈ [−1, 4].

Hence,

p2(x) = f (x0)L0(x) + f (x1)L1(x) + f (x2)L2(x)

=
(x − 1)(x − 3)

8
− 3 (x + 1)(x − 3)

4
+ 13 (x + 1)(x − 1)

8

=
x2 − 4x + 3 − 6x2 + 12x + 18 + 13x2 − 13

8
= x2 + x + 1, x ∈ [−1, 4].

Moreover,

p2(x) = pσ2(x) = f (x), x ∈ [−1, 4].
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Exercise 1.23. Let 𝕋 = 2ℕ0 ,

a = 1 = x0, x1 = 2, x2 = 8, x3 = 32 = b,

and f : 𝕋→ ℝ be defined by

f (x) = x3 + x2 − x + 4, x ∈ 𝕋.

Find the σ-Lagrange interpolation polynomial for the function f with σ-interpolation
points x0, x1, x2.

Now, we will describe the classes of time scales for which the σ-Lagrange and
Lagrange interpolation polynomials coincide.

Theorem 1.24. Let 𝕋 be a time scale such that σ(t) = ct + d for any t ∈ 𝕋 and some
constants c, d. Let also, n ∈ ℕ and

a = x0 < x1 < ⋅ ⋅ ⋅ < xn = b, xj ∈ 𝕋, j ∈ {0, 1, . . . , n},

be σ-interpolation and interpolation points. Then

Lk(x) = Lσk(x), x ∈ [a, b], k ∈ {0, 1, . . . , n}.

Proof. Since σ(t) = ct + d for any t ∈ 𝕋, we get

Lσk(x) =
n
∏

j=0,j ̸=k

σ(x) − σ(xj)
σ(xk) − σ(xj)

=
n
∏

j=0,j ̸=k

(cx + d) − (cxj + d)
(cxk + d) − (cxj + d)

=
n
∏

j=0,j ̸=k

x − xj
xk − xj

= Lk(x), k ∈ {0, 1, . . . , n}, x ∈ [a, b].

This completes the proof.

Remark 1.25. From Theorem 1.24, it is clear that the uniqueness of interpolation poly-
nomial of degree n is not violated. Indeed, if σ is not a linear function, the σ-Lagrange
interpolation polynomial of a function f is not a polynomial of degree n or not a
polynomial at all. For instance, if 𝕋 = ℕ20, then σ(t) = (√t + 1)2, t ∈ 𝕋, and the
σ-Lagrange interpolation polynomial is not a polynomial. Therefore, for any func-
tion f , or any data set on a time scale𝕋, there is a unique interpolation polynomial of
degree n.
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16 | 1 Polynomial interpolation

Suppose that n ∈ ℕ0 and xj ∈ 𝕋, j ∈ {0, 1, . . . , n}, are σ-distinct points. For x ∈ 𝕋,
define the σ-polynomials

πσn+1(x) =
n
∏
j=0
(σ(x) − σ(xj)), Πk

σn+1(x) = π
Δk
σn+1(x), x ∈ 𝕋, k ∈ ℕ0.

These functions are employed in the error estimate for the σ-Lagrange interpolation.

Example 1.26. Let 𝕋 = {0, 16 ,
1
3 ,

1
2 , 1 +

1
2n : n ∈ ℕ0},

a = 0, x0 = 0, x1 =
1
3
, b = 1.

We will compute πσ2(x), πσ2(
1
2 ), and Π

1
σ2(

1
2 ).

We have

σ(x0) =
1
6
, σ(x1) =

1
2
,

σ( 1
2
) = 1, σ(1) = 1.

Hence,

πσ2(x) = (σ(x) − σ(x0))(σ(x) − σ(x1)) = (σ(x) −
1
6
)(σ(x) − 1

2
), x ∈ 𝕋,

πσ2(
1
2
) = (σ( 1

2
) −

1
6
)(σ( 1

2
) −

1
2
) = (1 − 1

6
)(1 − 1

2
) =

5
12
,

Π1
σ2(

1
2
) = πΔσ2(

1
2
)

=
(σ2( 12 ) −

1
6 )(σ

2( 12 ) −
1
2 ) − (σ(

1
2 ) −

1
6 )(σ(

1
2 ) −

1
2 )

σ( 12 ) −
1
2

=
(σ(1) − 1

6 )(σ(1) −
1
2 ) − (σ(

1
2 ) −

1
6 )(σ(

1
2 ) −

1
2 )

σ( 12 ) −
1
2

=
(1 − 1

6 )(1 −
1
2 ) − (1 −

1
6 )(1 −

1
2 )

1 − 1
2

= 0.

Exercise 1.27. Let 𝕋 = {0, 2, 3, 5, 9, 16, 18},

a = 0, x0 = 0, x1 = 3, x2 = 9, b = 18.

Find Π2
σ2(3).

The error in the σ-Lagrange interpolation is given in the next theorem.
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Theorem 1.28. Suppose that n ∈ ℕ0, a, b ∈ 𝕋, a < b, xj ∈ [a, b], j ∈ {0, 1, . . . , n}, are
σ-distinct and f : [a, b]→ ℝ, f Δ

k
(x) exist for any x ∈ [a, b] and for any k ∈ {1, . . . , n + 1}.

Then for any x ∈ [a, b] there exists ξ = ξ (x) ∈ (a, b) such that

f (x) − pσn(x) =
f Δ

n+1
(ξ )

Πn+1
σn+1(ξ )

πσn+1(x), x ∈ [a, b],

or

Fσmin,n+1(ξ ) ≤
f (x) − pσn(x)
πσn+1(x)

≤ Fσmax,n+1(ξ ), x ∈ [a, b],

where

Fσmax,n+1(ξ ) = max{ f
Δn+1 (ξ )

Πn+1
σn+1(ξ )
,
f Δ

n+1
(ρ(ξ ))

Πn+1
σn+1(ρ(ξ ))

},

Fσmin,n+1(ξ ) = min{ f
Δn+1 (ξ )

Πn+1
σn+1(ξ )
,
f Δ

n+1
(ρ(ξ ))

Πn+1
σn+1(ρ(ξ ))

}.

Proof. Let pσn be the σ-Lagrange interpolation polynomial for the function f with
σ-interpolation points xj, j ∈ {0, 1, . . . , n}. Define the function

ϕ(t) = f (t) − pσn(t) −
f (x) − pσn(x)
πσn+1(x)

πσn+1(t), t ∈ [a, b].

From here, the proof repeats that of Theorem 1.10 and we omit it.

Remark 1.29. Suppose that all conditions of Theorem 1.28 hold. If

lim
n→∞

max
x∈[a,b]
(
f Δ

n+1
(ξ )

Πn+1
σn+1(ξ )

πσn+1(x)) = 0

and

lim
n→∞

max
x∈[a,b]
(
f Δ

n+1
(ρ(ξ ))

Πn+1
σn+1(ρ(ξ ))

πσn+1(x)) = 0,

then

lim
n→∞

max
x∈[a,b]
f (x) − pσn(x)

 = 0.

The last example clearly shows the difference between Lagrange and σ-Lagrange
polynomials on a time scale whose forward jump operator is not a linear function. The
computed polynomials are also compared graphically.
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Example 1.30. Let 𝕋 = {√2n + 1, n ∈ ℕ0} = {1,√3,√5, . . .}. Take

a = x0 = √3, x1 = √7, x2 = √11, x3 = √17, b = √23,

and

f (x) = x2 + 1
2x2 + 5
, x ∈ 𝕋.

Wewill construct the Lagrange interpolation polynomial p3 and the σ-Lagrange inter-
polation polynomial pσ3 interpolating the function f at the points x0, x1, x2, x3. We will
also compare the graphs of the two types interpolating polynomials for the function f .
Notice that, on the given time scale we have

σ(x) = √x2 + 2, x ∈ 𝕋.

Also,

f (x0) = f (√3) =
3 + 1
6 + 5
=

4
11
,

f (x1) = f (√7) =
7 + 1
14 + 5
=

8
19
,

f (x2) = f (√11) =
11 + 1
22 + 5
=
4
9
,

f (x3) = f (√17) =
17 + 1
34 + 5
=

6
13
.

First, we compute L0(x), L1(x), L2(x), and L3(x) as follows:

L0(x) =
(x −√7)(x −√11)(x −√17)
(√3 −√7)(√3 −√11)(√3 −√17)

,

L1(x) =
(x −√3)(x −√11)(x −√17)
(√7 −√3)(√7 −√11)(√7 −√17)

,

L2(x) =
(x −√3)(x −√7)(x −√17)

(√11 −√3)(√11 −√7)(√11 −√17)
,

L3(x) =
(x −√3)(x −√7)(x −√11)

(√17 −√3)(√17 −√7)(√17 −√11)
, x ∈ 𝕋.

Then the Lagrange interpolation polynomial p3 interpolating the function f at the
points√3,√7,√11,√17 is obtained as

p3(x) = f (√3)L0(x) + f (√7)L1(x) + f (√11)L2(x) + f (√17)L3(x)

=
4
11
(x −√7)(x −√11)(x −√17)
(√3 −√7)(√3 −√11)(√3 −√17)

 EBSCOhost - printed on 2/10/2023 4:40 PM via . All use subject to https://www.ebsco.com/terms-of-use



1.2 σ-Lagrange interpolation | 19

+
8
19
(x −√3)(x −√11)(x −√17)
(√7 −√3)(√7 −√11)(√7 −√17)

+
4
9
(x −√3)(x −√7)(x −√17)

(√11 −√3)(√11 −√7)(√11 −√17)

+
6
13
(x −√3)(x −√7)(x −√11)

(√17 −√3)(√17 −√7)(√17 −√11)
, x ∈ 𝕋.

Next, we compute Lσ0(x), Lσ1(x), Lσ2(x), and Lσ3(x) as follows:

Lσ0(x) =
(σ(x) − σ(√7))(σ(x) − σ(√11))(σ(x) − σ(√17))
(σ(√3) − σ(√7))(σ(√3) − σ(√11))(σ(√3) − σ(√17))

=
(√x2 + 2 − 3)(√x2 + 2 −√13)(√x2 + 2 −√19)
(√5 − 3)(√5 −√13)(√5 −√19)

,

Lσ1(x) =
(σ(x) − σ(√3))(σ(x) − σ(√11))(σ(x) − σ(√17))
(σ(√7) − σ(√3))(σ(√7) − σ(√11))(σ(√7) − σ(√17))

=
(√x2 + 2 −√5)(√x2 + 2 −√13)(√x2 + 2 −√19)

(3 −√5)(3 −√13)(3 −√19)
,

Lσ2(x) =
(σ(x) − σ(√3))(σ(x) − σ(√7))(σ(x) − σ(√17))

(σ(√11) − σ(√3))(σ(√11) − σ(√7))(σ(√11) − σ(√17))

=
(√x2 + 2 −√5)(√x2 + 2 − 3)(√x2 + 2 −√19)
(√13 −√5)(√13 − 3)(√13 −√19)

,

Lσ3(x) =
(σ(x) − σ(√3))(σ(x) − σ(√7))(σ(x) − σ(√11))

(σ(√17) − σ(√3))(σ(√17) − σ(√7))(σ(√17) − σ(√11))

=
(√x2 + 2 −√5)(√x2 + 2 − 3)(√x2 + 2 −√13)
(√19 −√5)(√19 − 3)(√19 −√13)

, x ∈ 𝕋.

Hence, the σ-Lagrange polynomial pσ3 interpolating the function f at the points
√3,√7,√11,√17 is obtained as

pσ3(x) = f (√3)Lσ0(x) + f (√7)Lσ1(x) + f (√11)Lσ2(x) + f (√17)Lσ3(x)

=
4
11
(√x2 + 2 − 3)(√x2 + 2 −√13)(√x2 + 2 −√19)
(√5 − 3)(√5 −√13)(√5 −√19)

+
8
19
(√x2 + 2 −√5)(√x2 + 2 −√13)(√x2 + 2 −√19)

(3 −√5)(3 −√13)(3 −√19)

+
4
9
(√x2 + 2 −√5)(√x2 + 2 − 3)(√x2 + 2 −√19)
(√13 −√5)(√13 − 3)(√13 −√19)

+
6
13
(√x2 + 2 −√5)(√x2 + 2 − 3)(√x2 + 2 −√13)
(√19 −√5)(√19 − 3)(√19 −√13)

, x ∈ 𝕋.
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It is clear that p3(x) ̸= pσ3(x), x ∈ 𝕋. Moreover, pσ3 is not a polynomial. Figure 1.2 shows
the graphs of f and p3 and Figure 1.3 presents the graphs of f and pσ3. In addition, we
compare the graphs of f , p3, and pσ3 in Figure 1.4. The values of f , p3, and pσ3 at some
noninterpolating points are compared in Table 1.2.

Figure 1.2: The graphs of f and the Lagrange polynomial p3.

Figure 1.3: The graphs of f and the σ-Lagrange polynomial pσ3.
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Figure 1.4: The graphs of the Lagrange polynomial p3 and σ-Lagrange polynomial pσ3.

Table 1.2: The values of f , p3, and pσ3 at some noninterpolating points of𝕋.

x f (x) p3(x) pσ3(x)

√5 0.4000 0.3997 0.3993
3 0.4348 0.4349 0.4350
√15 0.4571 0.4569 0.4567
√19 0.4651 0.4657 0.4665
√21 0.4681 0.4699 0.4719

1.3 Hermite interpolation

The ideaof Lagrange interpolationandσ-Lagrange interpolation canbegeneralized in
various ways. Here, in this section, we consider one simple extension where a polyno-
mial p is required to take given values and delta derivative values at the interpolation
points. For given σ-distinct points xj, j ∈ {0, 1, . . . , n}, and two sets of real numbers yj,
zj, j ∈ {0, 1, . . . , n}, n ∈ ℕ0, we need to find a polynomial p2n+1 ∈ 𝒫2n+1 satisfying the
conditions

p2n+1(xj) = yj, pΔ2n+1(xj) = zj, j ∈ {0, 1, . . . , n}.

The construction of such a polynomial is similar to that of the Lagrange interpolation
polynomial and it is given in the following theorem.

Theorem 1.31 (Hermite interpolation theorem). Let n ∈ ℕ0 and let a, b ∈ 𝕋, a < b, and
xj ∈ [a, b] ⊂ 𝕋, j ∈ {0, 1, . . . , n}, be σ-distinct and xj ̸= σ(xk) for all j, k ∈ {0, 1, . . . , n}. Let
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also yj, zj ∈ ℝ, j ∈ {0, 1, . . . , n}. Then there exists a unique polynomial p2n+1 ∈ 𝒫2n+1 such
that

p2n+1(xj) = yj, pΔ2n+1(xj) = zj, j ∈ {0, 1, . . . , n}. (1.2)

Proof. For x ∈ [a, b], define the polynomial

Mk(x) =
n
∏

j=0,j ̸=k

x − σ(xj)
xk − σ(xj)

, k ∈ {0, 1, . . . , n}.

We have

Mk(σ(xj)) = 0, Mk(xk) = 1, j, k ∈ {0, 1, . . . , n}, j ̸= k.

We will search for a polynomial p2n+1 ∈ 𝒫2n+1 in the following form:

p2n+1(x) =
n
∑
j=0
(yj + (x − xj)(αjyj + βjzj))Mj(x)Lj(x), x ∈ [a, b],

where αj, βj ∈ ℝ, j ∈ {0, 1, . . . , n}, will be determined by conditions (1.2). We have

p2n+1(xk) =
n
∑
j=0
(yj + (xk − xj)(αjyj + βjzj))Mj(xk)Lj(xk) = yk ,

pΔ2n+1(x) =
n
∑
j=0
(αjyj + βjzj)Mj(σ(x))Lj(σ(x))

+
n
∑
j=0
(yj + (x − xj)(αjyj + βjzj))(M

Δ
j (x)Lj(x) +Mj(σ(x))L

Δ
j (x)),

pΔ2n+1(xk) =
n
∑
j=0
(αjyj + βjzj)Mj(σ(xk))Lj(σ(xk))

+
n
∑
j=0
(yj + (xk − xj)(αjyj + βjzj))(M

Δ
j (xk)Lj(xk) +Mj(σ(xk))L

Δ
j (xk))

= (αkyk + βkzk)Mk(σ(xk))Lk(σ(xk)) + yk(M
Δ
k (xk) +Mk(σ(xk))L

Δ
k (xk))

= zk

or, equivalently,

(αkyk + βkzk)Mk(σ(xk))Lk(σ(xk)) = zk − yk(M
Δ
k (xk) +Mk(σ(xk))L

Δ
k (xk)),

or

αkyk + βkzk =
zk − yk(MΔ

k (xk) +Mk(σ(xk))LΔk (xk))
Mk(σ(xk))Lk(σ(xk))

,
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and

p2n+1(x) =
n
∑
j=0
(yj +

zj − yj(MΔ
j (xj) +Mj(σ(xj))LΔj (xj))

Mj(σ(xj))Lj(σ(xj))
(x − xj))Mj(x)Lj(x)

=
n
∑
j=0
((1 −

MΔ
j (xj) +Mj(σ(xj))LΔj (xj)
Mj(σ(xj))Lj(σ(xj))

(x − xj))yj

+
zj

Mj(σ(xj))Lj(σ(xj))
(x − xj))Mj(x)Lj(x), x ∈ [a, b].

Now, suppose that there are two polynomials such that p2n+1, q2n+1 ∈ 𝒫2n+1 and

p2n+1(xk) = q2n+1(xk) = yk , pΔ2n+1(xk) = q
Δ
2n+1(xk) = zk , k ∈ {0, 1, . . . , n}.

Let h2n+1 = p2n+1 − q2n+1. Then h2n+1 ∈ 𝒫2n+1 and it has at least 2n + 2 GZs. Thus,

h2n+1 ≡ 0 or p2n+1 ≡ q2n+1 on [a, b].

This completes the proof.

Next, we give the definition and the general structure of a Hermite interpolation
polynomial.

Definition 1.32. Let n ∈ ℕ0 and let a, b ∈ 𝕋, a < b, and xj ∈ [a, b] ⊂ 𝕋, j ∈ {0, 1, . . . , n},
be σ-distinct. Let also yj, zj ∈ ℝ, j ∈ {0, 1, . . . , n}. Then the polynomial

p2n+1(x) =
n
∑
j=0
((1 −

MΔ
j (xj) +Mj(σ(xj))LΔj (xj)
Mj(σ(xj))Lj(σ(xj))

(x − xj))yj

+
zj

Mj(σ(xj))Lj(σ(xj))
(x − xj))Mj(x)Lj(x), x ∈ [a, b],

is called the Hermite interpolation polynomial for the set of values given in

{(xj, yj, zj) : j ∈ {0, 1, . . . , n}}.

In the next remark, we prove that the Hermite interpolation polynomial given in
Definition 1.32 reduces to the classical Hermite interpolation polynomialwhenever the
time scale is the set of real numbers.

Remark 1.33. If 𝕋 = ℝ, then

MΔ
j (xj) = M

′
j (xj) = L

′
j (xj),

LΔj (xj) = L
′
j (xj),

Mj(σ(xj)) = Lj(σ(xj)) = Mj(xj) = Lj(xj) = 1, j ∈ {0, 1, . . . , n}.
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Hence,

p2n+1(x) =
n
∑
j=0
((1 − 2L′j (xj)(x − xj))yj + zj(x − xj))(Lj(x))

2
, x ∈ [a, b].

Thus, we get the classical Hermite interpolation polynomial.

Example 1.34. Let 𝕋 = 2ℕ0 ,

x0 = 1, x1 = 4, y0 = 1, y1 = −1, z0 = 1, z1 = 2.

Here n = 1, σ(x) = 2x, x ∈ 𝕋. Then

L0(x) =
x − x1
x0 − x1

= −
1
3
(x − 4), LΔ0(x) = −

1
3
, L0(σ(x0)) = L0(2) =

2
3
,

L1(x) =
x − x0
x1 − x0

=
1
3
(x − 1), LΔ1 (x) =

1
3
, L1(σ(x1)) = L1(8) =

7
3
,

M0(x) =
x − σ(x1)
x0 − σ(x1)

= −
1
7
(x − 8), MΔ

0 (x) = −
1
7
, M0(σ(x0)) = M0(2) =

6
7
,

M1(x) =
x − σ(x0)
x1 − σ(x0)

=
1
2
(x − 2), MΔ

1 (x) =
1
2
, M1(σ(x1)) = M1(8) = 3, x ∈ 𝕋.

Hence,

p3(x) = (y0 +
z0 − y0(MΔ

0 (x0) +M0(σ(x0))LΔ0(x0))
M0(σ(x0))L0(σ(x0))

(x − x0))M0(x)L0(x)

+ (y1 +
z1 − y1(MΔ

1 (x1) +M1(σ(x1))LΔ1 (x1))
M1(σ(x1))L1(σ(x1))

(x − x1))M1(x)L1(x)

= (1 +
1 − (− 17 +

6
7 (−

1
3 ))

6
7 ⋅

2
3

(x − 1))(− 1
7
(x − 8))(− 1

3
(x − 4))

+ (−1 +
2 + ( 12 + 3 ⋅

1
3 )

3 ⋅ 73
(x − 4))( 1

2
(x − 2))( 1

3
(x − 1))

=
1
21
(1 + 5

2
(x − 1))(x − 4)(x − 8) + 1

6
(−1 + 1

2
(x − 4))(x − 1)(x − 2)

=
1
42
(5x − 3)(x − 4)(x − 8) + 1

12
(x − 6)(x − 1)(x − 2), x ∈ [1, 8].

Exercise 1.35. Let 𝕋 = 2ℤ. Find the Hermite interpolation polynomial for the set

x0 = −4, x1 = 0, x2 = 4,
y0 = −1, y1 = 1, y2 = −1,
z0 = 1, z1 = −1, z2 = 1.
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In some applications, instead of a data set of points, function values, and delta
derivative values at these points, a function itself may be given. The Hermite polyno-
mial for this function, that is, the polynomial which takes the same values as the func-
tion and whose delta derivative takes the values of the delta derivative of the function
at given points, is defined below.

Definition 1.36. Let n ∈ ℕ0 and let a, b ∈ 𝕋, a < b, and xj ∈ [a, b] ⊂ 𝕋, j ∈ {0, 1, . . . , n},
be σ-distinct. Let also, f : [a, b] → ℝ be delta differentiable on [a, b]. Then the poly-
nomial

p2n+1(x) =
n
∑
j=0
((1 −

MΔ
j (xj) +Mj(σ(xj))LΔj (xj)
Mj(σ(xj))Lj(σ(xj))

(x − xj))f (xj)

+
f Δ(xj)

Mj(σ(xj))Lj(σ(xj))
(x − xj))Mj(x)Lj(x), x ∈ [a, b],

is called the Hermite interpolation polynomial for the function f .

Exercise 1.37. Let 𝕋 = 3ℕ0 and f : 𝕋→ ℝ be given by

f (x) = x3 + 3x2 + e2(x, 1), x ∈ 𝕋.

Let also,

x0 = 1, x1 = 9, x2 = 81.

Find the Hermite interpolation polynomial for the function f .

Let n ∈ ℕ0 and a, b ∈ 𝕋, a < b, and xj ∈ 𝕋, j ∈ {0, 1, . . . , n}, be σ-distinct. Define
the polynomials

ζn(x) =
n
∏
j=0
(x − σ(xj)), x ∈ [a, b].

The error in the Hermite interpolation is given in the following theorem.

Theorem 1.38. Suppose that n ∈ ℕ0, a, b ∈ 𝕋, a < b, xj ∈ [a, b], j ∈ {0, 1, . . . , n}, are
σ-distinct and f : [a, b]→ ℝ, f Δ

k
(x) exist for any x ∈ [a, b] and for any k ∈ {1, . . . , 2n+ 2}.

Then for any x ∈ [a, b] there exists ξ = ξ (x) ∈ (a, b) such that

f (x) − p2n+1(x) =
f Δ

2n+2
(ξ )

πn+1(x)ζn+1(x)
(πn+1ζn+1)

Δ2n+2 (ξ ), x ∈ [a, b],

or

Gmin,2n+2(ξ ) ≤
f (x) − p2n+1(x)
πn+1(x)ζn+1(x)

≤ Gmax,2n+2(ξ ), x ∈ [a, b],
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where

Gmax,2n+2(ξ ) = max{ f Δ
2n+2
(ξ )

(πn+1ζn+1)Δ
2n+2 (ξ ) , f Δ

2n+2
(ρ(ξ ))

(πn+1ζn+1)Δ
2n+2 (ρ(ξ ))},

Gmin,2n+2(ξ ) = min{ f Δ
2n+2
(ξ )

(πn+1ζn+1)Δ
2n+2 (ξ ) , f Δ

2n+2
(ρ(ξ ))

(πn+1ζn+1)Δ
2n+2 (ρ(ξ ))}.

Proof. Let p2n+1 be the Hermite interpolation polynomial for the function f with inter-
polation points xj, j ∈ {0, 1, . . . , n}. Define the function

ψ(t) = f (t) − p2n+1(t) −
f (x) − p2n+1(x)
πn+1(x)ζn+1(x)

πn+1(t)ζn+1(t), t ∈ [a, b].

Then

ψ(xj) = f (xj) − p2n+1(xj) −
f (x) − p2n+1(x)
πn+1(x)ζn+1(x)

πn+1(xj)ζn+1(xj)

= f (xj) − f (xj)
= 0, x ∈ [a, b], j ∈ {0, 1, . . . , n},

and ψ(x) = 0, x ∈ [a, b]. Thus, ψ : [a, b] → ℝ has at least n + 2 GZs. Hence, by Rolle’s
theorem (see Theorem A.6 in Appendix A), it follows that ψΔ has at least n + 1 GZs on
(a, b) that do not coincide with xj, j ∈ {0, 1, . . . , n}. Next,

ψΔ(t) = f Δ(t) − pΔ2n+1(t) −
f (x) − p2n+1(x)
πn+1(x)ζn+1(x)

(πn+1ζn+1)
Δ(t)

= f Δ(t) − pΔ2n+1(t)

−
f (x) − p2n+1(x)
πn+1(x)ζn+1(x)

(πΔn+1(t)ζn+1(σ(t)) + πn+1(t)ζ
Δ
n+1(t)), t ∈ [a, b].

Hence,

ψΔ(xj) = f
Δ(xj) − p

Δ
2n+1(xj)

−
f (x) − p2n+1(x)
πn+1(x)ζn+1(x)

(πΔn+1(xj)ζn+1(σ(xj)) + πn+1(xj)ζ
Δ
n+1(xj))

= 0, j ∈ {0, 1, . . . , n},

i. e., ψΔ has at least n + 1 GZs at xj, j ∈ {0, 1, . . . , n}. Therefore, ψΔ has at least 2n + 2 GZs
in [a, b]. Then ψΔ2n+2 has at least one GZ in (a, b) and there exists a ξ = ξ (x) ∈ (a, b)
such that

ψΔ2n+2 (ξ ) = 0 or ψΔ2n+2(ρ(ξ ))ψΔ2n+2 (ξ ) < 0.
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Observe that

ψΔ2n+2 (t) = f Δ2n+2 (t) − f (x) − p2n+1(x)
πn+1(x)ζn+1(x)

(πn+1ζn+1)
Δ2n+2 (t), t ∈ [a, b].

Now we consider each case separately.
1. Let ψΔ2n+2 (ξ ) = 0. Then

f Δ
2n+2
(ξ ) = f (x) − p2n+1(x)

πn+1(x)ζn+1(x)
(πn+1ζn+1)

Δ2n+2 (ξ ), x ∈ [a, b],

or

f (x) − p2n+1(x) =
f Δ

2n+2
(ξ )

(πn+1ζn+1)Δ
2n+2 (ξ )πn+1(x)ζn+1(x), x ∈ [a, b].

2. Let

ψΔ2n+2(ρ(ξ ))ψΔ2n+2 (ξ ) < 0.
Then

ψΔ2n+2(ρ(ξ )) = f Δ2n+2(ρ(ξ )) − f (x) − p2n+1(x)
πn+1(x)ζn+1(x)

(πn+1ζn+1)
Δ2n+2(ρ(ξ )), x ∈ [a, b],

and

ψΔ2n+2 (ξ ) = f Δ2n+2 (ξ ) − f (x) − p2n+1(x)
πn+1(x)ζn+1(x)

(πn+1ζn+1)
Δ2n+2 (ξ ), x ∈ [a, b].

Then we have,

0 > ψΔ2n+2(ρ(ξ ))ψΔ2n+2 (ξ )
= (f Δ

2n+2
(ρ(ξ )) − f (x) − p2n+1(x)

πn+1(x)ζn+1(x)
(πn+1ζn+1)

Δ2n+2(ρ(ξ )))
× (f Δ

2n+2
(ξ ) − f (x) − p2n+1(x)

πn+1(x)ζn+1(x)
(πn+1ζn+1)

Δ2n+2 (ξ ))
= (

f (x) − p2n+1(x)
πn+1(x)ζn+1(x)

)
2
(πn+1ζn+1)

Δ2n+2 (ξ )(πn+1ζn+1)Δ2n+2(ρ(ξ ))
−
f (x) − p2n+1(x)
πn+1(x)ζn+1(x)

((πn+1ζn+1)
Δ2n+2(ρ(ξ ))f Δ2n+2 (ξ )

+ (πn+1ζn+1)
Δ2n+2 (ξ )f Δ2n+2(ρ(ξ )))

+ f Δ
2n+2
(ρ(ξ ))f Δ

2n+2
(ξ ), x ∈ [a, b].

Hence,
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Gmin,2n+2(ξ ) ≤
f (x) − p2n+1(x)
πn+1(x)ζn+1(x)

≤ Gmax,2n+2(ξ ), x ∈ [a, b].

This completes the proof.

Remark 1.39. Suppose that all the conditions of Theorem 1.38 hold. If

lim
n→∞

max
x∈[a,b]
(

f Δ
2n+2
(ξ )

(πn+1ζn+1)Δ
2n+2 (ξ )πn+1(x)ζn+1(x)) = 0

and

lim
n→∞

max
x∈[a,b]
(

f Δ
2n+2
(ρ(ξ ))

(πn+1ζn+1)Δ
2n+2 (ρ(ξ ))πn+1(x)ζn+1(x)) = 0,

then

lim
n→∞

max
x∈[a,b]
f (x) − p2n+1(x)

 = 0.

In the following example, we compute the Hermite polynomial for a given func-
tion and compare it graphically with the function itself.

Example 1.40. Consider the time scale 𝕋 = 2ℤ = {. . . ,−4,−2,0, 2, 4, . . .}. Let a = x0 =
−4, x1 = 0, x2 = 4, b = 6, and f (x) =

1
x2+1 , x ∈ 𝕋.

We will compute the Hermite polynomial p5(x) and compare the graphs of p5
and f .

On this time scale, we have σ(x) = x + 2, x ∈ 𝕋, so that σ(x0) = −2, σ(x1) = 2, and
σ(x2) = 6. We have

f Δ(x) =
1

(x+2)2+1 −
1

x2+1
x + 2 − x

= −
2x + 2

(x2 + 1)(x2 + 4x + 5)
, x ∈ 𝕋.

Hence,

y0 = f (x0) = f (−4) =
1
17
,

y1 = f (x1) = f (0) = 1,

y2 = f (x2) = f (4) =
1
17
,

z0 = f
Δ(x0) = f

Δ(−4) = 6
85
,

z1 = f
Δ(x1) = f

Δ(0) = − 2
5
,

z2 = f
Δ(x2) = f

Δ(4) = − 10
629
.
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First, we compute Li andMi for i = 0, 1, 2,

L0(x) =
(x − 0)(x − 4)
(−4 − 0)(−4 − 4)

=
1
32
(x2 − 4x),

L1(x) =
(x + 4)(x − 4)
(0 + 4)(0 − 4)

= −
1
16
(x2 − 16),

L2(x) =
(x + 4)(x − 0)
(4 + 4)(4 − 0)

=
1
32
(x2 + 4x),

M0(x) =
(x − σ(0))(x − σ(4))
(−4 − σ(0))(−4 − σ(4))

=
(x − 2)(x − 6)
(−4 − 2)(−4 − 6)

=
1
60
(x2 − 8x + 12),

M1(x) =
(x − σ(−4))(x − σ(4))
(0 − σ(−4))(0 − σ(4))

=
(x + 2)(x − 6)
(0 + 2)(0 − 6)

= −
1
12
(x2 − 4x − 12),

M2(x) =
(x − σ(−4))(x − σ(0))
(4 − σ(−4))(4 − σ(0))

=
(x + 2)(x − 2)
(4 + 2)(4 − 2)

=
1
12
(x2 − 4), x ∈ 𝕋.

Let

h(x) = x2, x ∈ 𝕋.

Then,

(h(x))Δ = x + σ(x) = x + x + 2 = 2x + 2, x ∈ 𝕋.

We compute LΔi andM
Δ
i for i = 0, 1, 2,

LΔ0(x) =
1
32
(2x + 2 − 4) = 1

16
(x − 1),

LΔ1 (x) = −
1
16
(2x + 2) = − 1

8
(x + 1),

LΔ2 (x) =
1
32
(2x + 2 + 4) = 1

16
(x + 3),

MΔ
0 (x) =

1
60
(2x + 2 − 8) = 1

30
(x − 3),

MΔ
1 (x) = −

1
12
(2x + 2 − 4) = − 1

6
(x − 1),

MΔ
2 (x) =

1
12
(2x + 2) = 1

6
(x + 1), x ∈ 𝕋.

The values involved in the Hermite polynomial are computed as

L0(σ(x0)) = L0(−2) =
1
32
(4 + 8) = 3

8
,

LΔ0(x0) = L
Δ
0(−4) =

1
16
(−4 − 1) = − 5

16
,

L1(σ(x1)) = L1(2) = −
1
16
(4 − 16) = 3

4
,
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LΔ1 (x1) = L
Δ
1 (0) = −

1
8
(0 + 1) = − 1

8
,

L2(σ(x2)) = L2(6) =
1
32
(36 + 24) = 15

8
,

LΔ2 (x2) = L
Δ
2 (4) =

1
16
(4 + 3) = 7

16
,

and

M0(σ(x0)) = M0(−2) =
1
60
(4 + 16 + 12) = 8

15
,

MΔ
0 (x0) = M

Δ
0 (−4) =

1
30
(−4 − 3) = − 7

30
,

M1(σ(x1)) = M1(2) = −
1
12
(4 − 8 − 12) = 4

3
,

MΔ
1 (x1) = M

Δ
1 (0) = −

1
6
(0 − 1) = 1

6
,

M2(σ(x2)) = M2(6) =
1
12
(36 − 4) = 8

3
,

MΔ
2 (x2) = M

Δ
2 (4) =

1
6
(4 + 1) = 5

6
.

The Hermite polynomial p5(x) is computed as

p5(x) = [(1 −
− 7
30 −

8
15 ⋅

5
16

8
15 ⋅

3
8
(x + 4)) ⋅ 1

17
+

6
85

8
15 ⋅

3
8
(x + 4)]L0(x)M0(x)

+ [(1 −
1
6 −

4
3 ⋅

1
8

4
3 ⋅

3
4
(x − 0)) ⋅ 1 +

− 25
4
3 ⋅

3
4
(x − 0)]L1(x)M1(x)

+ [(1 −
5
6 +

8
3 ⋅

7
16

8
3 ⋅

15
8
(x − 4)) ⋅ 1

17
+
− 10629
8
3 ⋅

15
8
(x − 4)]L2(x)M2(x), x ∈ 𝕋,

which after simplification becomes

p5(x) = [
1
17
+
8
17
(x + 4)] 1

32
(x2 − 4x) 1

60
(x2 − 8x + 12)

+ [1 − 2
5
x] 1

16
(x2 − 16) 1

12
(x2 − 4x − 12)

+ [
1
17
−

84
3145
(x − 4)] 1

32
(x2 + 4x) 1

12
(x2 − 4), x ∈ 𝕋.

In Figure 1.5, the graphs of f and p5 are given. It is clear that f and p5 coincide at the
points −4,0, 4 and also at σ(−4), σ(0), σ(4).
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Figure 1.5: The graphs of the Hermite polynomial p5 and the function f .

1.4 σ-Hermite interpolation

In this section,wewill constructσ-Hermite interpolationpolynomials.Wewill demon-
strate the difference between Hermite and σ-Hermite interpolation polynomials. As
was mentioned in the previous sections, the σ-interpolation polynomials provide an
alternative way to interpolate a given set of data. They may coincide with the inter-
polation polynomials in certain cases and differ in others. The numerical examples
presented in this section demonstrate these situations.

Theorem 1.41. Let n ∈ ℕ0 and let a, b ∈ 𝕋, a < b, and xj ∈ [a, b] ⊂ 𝕋, j ∈ {0, 1, . . . , n}, be
σ-distinct, the forward jump operator σ be delta differentiable on [a, b] and σΔ(xj) ̸= 0,
j ∈ {0, 1, . . . , n}. Let also, yj, zj ∈ ℝ, j ∈ {0, 1, . . . , n}. Then there exists a unique
σ-polynomial pσ2n+1 ∈ 𝒫σ

2n+1 such that

pσ2n+1(xj) = yj, pΔσ2n+1(xj) = zj, j ∈ {0, 1, . . . , n}.

Proof. LetMk, k ∈ {0, 1, . . . , n}, be the polynomials as in the proof of Theorem 1.31. We
will find a polynomial pσ2n+1 ∈ 𝒫σ

2n+1 in the following form:

pσ2n+1(x) =
n
∑
j=0
(yj + (σ(x) − σ(xj))(αjyj + βjzj))Mj(x)Lj(x), x ∈ [a, b],

where αj, βj ∈ ℝ, j ∈ {0, 1, . . . , n}, will be determined below. We have
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pσ2n+1(xk) =
n
∑
j=0
(yj + (σ(xk) − σ(xj))(αjyj + βjzj))Mj(xk)Lj(xk) = yk ,

pΔσ2n+1(x) =
n
∑
j=0

σΔ(x)(αjyj + βjzj)Mj(σ(x))Lj(σ(x))

+
n
∑
j=0
(yj + (σ(x) − σ(xj))(αjyj + βjzj))

× (MΔ
j (x)Lj(x) +Mj(σ(x))L

Δ
j (x)),

pΔσ2n+1(xk) =
n
∑
j=0

σΔ(xk)(αjyj + βjzj)Mj(σ(xk))Lj(σ(xk))

+
n
∑
j=0
(yj + (σ(xk) − σ(xj))(αjyj + βjzj))

× (MΔ
j (xk)Lj(xk) +Mj(σ(xk))L

Δ
j (xk))

= σΔ(xk)(αkyk + βkzk)Mk(σ(xk))Lk(σ(xk))

+ yk(M
Δ
k (xk) +Mk(σ(xk))L

Δ
k (xk))

= zk ,

or, equivalently,

σΔ(xk)(αkyk + βkzk)Mk(σ(xk))Lk(σ(xk)) = zk − yk(M
Δ
k (xk) +Mk(σ(xk))L

Δ
k (xk)),

or

αkyk + βkzk =
zk − yk(MΔ

k (xk) +Mk(σ(xk))LΔk (xk))
σΔ(xk)Mk(σ(xk))Lk(σ(xk))

,

and

pσ2n+1(x) =
n
∑
j=0
(yj +

zj − yj(MΔ
j (xj) +Mj(σ(xj))LΔj (xj))

σΔ(xj)Mj(σ(xj))Lj(σ(xj))
(σ(x) − σ(xj)))

×Mj(x)Lj(x)

=
n
∑
j=0
((1 −

MΔ
j (xj) +Mj(σ(xj))LΔj (xj)

σΔ(xj)Mj(σ(xj))Lj(σ(xj))
(σ(x) − σ(xj)))yj

+
zj

σΔ(xj)Mj(σ(xj))Lj(σ(xj))
(σ(x) − σ(xj)))Mj(x)Lj(x), x ∈ [a, b].

Now, suppose that there are two σ-polynomials such that pσ2n+1, qσ2n+1 ∈ 𝒫σ
2n+1 and

pσ2n+1(xk) = qσ2n+1(xk) = yk , pΔσ2n+1(xk) = q
Δ
σ2n+1(xk) = zk , k ∈ {0, 1, . . . , n}.
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Let hσ2n+1 = pσ2n+1 − qσ2n+1. Then hσ2n+1 ∈ 𝒫σ
2n+1 and it has at least 2n + 2 GZs. Thus,

hσ2n+1 ≡ 0 or pσ2n+1 ≡ qσ2n+1 on [a, b].

This completes the proof.

Taking into account the last theorem, the σ-Hermite interpolation polynomials for
a given data set on a time scale and for a given function on an arbitrary time scale are
defined as follows.

Definition 1.42. Let n ∈ ℕ0 and let a, b ∈ 𝕋, a < b, and xj ∈ [a, b] ⊂ 𝕋, j ∈ {0, 1, . . . , n},
be σ-distinct, the forward jump operator σ be Δ-differentiable on [a, b] and σΔ(xj) ̸= 0,
j ∈ {0, 1, . . . , n}. Let also, yj, zj ∈ ℝ, j ∈ {0, 1, . . . , n}. The polynomial

pσ2n+1(x) =
n
∑
j=0
((1 −

MΔ
j (xj) +Mj(σ(xj))LΔj (xj)

σΔ(xj)Mj(σ(xj))Lj(σ(xj))
(σ(x) − σ(xj)))yj

+
zj

σΔ(xj)Mj(σ(xj))Lj(σ(xj))
(σ(x) − σ(xj)))Mj(x)Lj(x), x ∈ [a, b],

will be called the σ-Hermite interpolation polynomial for the set

{(xj, yj, zj) : j ∈ {0, 1, . . . , n}}.

Definition 1.43. Let n ∈ ℕ0 and let a, b ∈ 𝕋, a < b, and xj ∈ [a, b] ⊂ 𝕋, j ∈ {0, 1, . . . , n},
be σ-distinct, the forward jump operator σ be Δ-differentiable on [a, b] and σΔ(xj) ̸= 0,
j ∈ {0, 1, . . . , n}. Let also, f : [a, b]→ ℝ be Δ-differentiable. The polynomial

pσ2n+1(x) =
n
∑
j=0
((1 −

MΔ
j (xj) +Mj(σ(xj))LΔj (xj)

σΔ(xj)Mj(σ(xj))Lj(σ(xj))
(σ(x) − σ(xj)))f (xj)

+
f Δ(xj)

σΔ(xj)Mj(σ(xj))Lj(σ(xj))
(σ(x) − σ(xj)))Mj(x)Lj(x), x ∈ [a, b],

will be called the σ-Hermite interpolation polynomial for the function f .

The next example demonstrates that on a general time scale, the Hermite and
σ-Hermite polynomials may be different.

Example 1.44. Let 𝕋 = {−1, 1, 2, 5, 9, 10},

a = −1, n = 1, x0 = −1, x1 = 5, b = 9, y0 = y1 = 0, z0 = z1 = 1.

We have
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σ(x0) = σ(−1) = 1, σ(x1) = σ(5) = 9,

L0(x) =
x − x1
x0 − x1

= −
1
6
(x − 5), L0(σ(x0)) = L0(1) =

2
3
, LΔ0(x) = −

1
6
,

L1(x) =
x − x0
x1 − x0

=
1
6
(x + 1), L1(σ(x1)) = L1(9) =

5
3
, LΔ1 (x) =

1
6
,

M0(x) =
x − σ(x1)
x0 − σ(x1)

= −
1
10
(x − 9), M0(σ(x0)) = M0(1) =

4
5
, MΔ

0 (x) = −
1
10
,

M1(x) =
x − σ(x0)
x1 − σ(x0)

=
1
4
(x − 1), M1(σ(x1)) = M1(9) = 2, MΔ

1 (x) =
1
4
,

σΔ(x0) =
σ(σ(x0)) − σ(x0)

σ(x0) − x0
=
σ(1) − 1
1 − (−1)

=
2 − 1
2
=
1
2
,

σΔ(x1) =
σ(σ(x1)) − σ(x1)

σ(x1) − x1
=
σ(9) − 9
9 − 5
=
1
4
.

Hence, using that y0 = y1 = 0, z0 = z1 = 1, we get

pσ3(x) =
z0

σΔ(x0)M0(σ(x0))L0(σ(x0))
(σ(x) − σ(x0))M0(x)L0(x)

+
z1

σΔ(x1)M1(σ(x1))L1(σ(x1))
(σ(x) − σ(x1))M1(x)L1(x)

=
1

1
2 ⋅

4
5 ⋅

2
3
(σ(x) − 1)(− 1

10
(x − 9))(− 1

6
(x − 5))

+
1

1
4 ⋅ 2 ⋅

5
3
(σ(x) − 9)( 1

6
(x + 1))( 1

4
(x − 1))

=
1
16
(σ(x) − 1)(x − 9)(x − 5) + 1

20
(σ(x) − 9)(x + 1)(x − 1), x ∈ 𝕋,

pσ3(2) =
1
16
(σ(2) − 1)(2 − 9)(2 − 5) + 1

20
(σ(2) − 9)(2 + 1)(2 − 1)

=
1
16
⋅ (5 − 1) ⋅ (−7) ⋅ (−3) + 1

20
⋅ (5 − 9) ⋅ 3

=
21
4
−
3
5
=
105 − 12

20
=
93
20
,

and

p3(x) =
z0

M0(σ(x0))L0(σ(x0))
(x − x0)M0(x)L0(x)

+
z1

M1(σ(x1))L1(σ(x1))
(x − x1)M1(x)L1(x)

=
1

2
3 ⋅

4
5
(x + 1)(− 1

10
(x − 9))(− 1

6
(x − 5))

+
1

2 ⋅ 53
(x − 5)( 1

6
(x + 1))( 1

4
(x − 1))

=
1
32
(x + 1)(x − 9)(x − 5) + 1

80
(x − 5)(x + 1)(x − 1), x ∈ 𝕋,
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p3(2) =
1
32
(2 + 1)(2 − 9)(2 − 5) + 1

80
(2 − 5)(2 + 1)(2 − 1)

=
63
32
−

9
80
=
315 − 18
160
=
297
160
.

Consequently, we have

p3(2) ̸= pσ3(2).

Exercise 1.45. Let 𝕋 = {−4,−1,0, 12 ,
5
6 , 1,

4
3 , 2, 7},

a = −4, x0 = −4, x1 = 0, x2 =
5
6
, b = 7,

and let the function f : 𝕋→ ℝ be defined by

f (x) = x + 1
x2 + 4x + 7

+ 1, x ∈ 𝕋.

Find the σ-Hermite interpolation polynomial for the function f .

In the next theorem, we will give some criteria for the coincidence of the Hermite
and σ-Hermite interpolation polynomials.

Theorem 1.46. Assume that𝕋 is a time scale such that σ(t) = ct+d, for any t ∈ 𝕋and for
some real constants c, d. Let n ∈ ℕ0 and let a, b ∈ 𝕋, a < b, and xj ∈ 𝕋, j ∈ {0, 1, . . . , n},
be σ-distinct. Let also yj, zj ∈ ℝ, j ∈ {0, 1, . . . , n}. Then

pσ2n+1 ≡ p2n+1.

Proof. Letσ(t) = ct+d for any t ∈ 𝕋 and for some real constants c andd. ThenσΔ(t) = c,
t ∈ 𝕋, and

pσ2n+1(x) =
n
∑
j=0
((1 −

MΔ
j (xj) +Mj(σ(xj))LΔj (xj)

σΔ(xj)Mj(σ(xj))Lj(σ(xj))
(σ(x) − σ(xj)))yj

+
zj

σΔ(xj)Mj(σ(xj))Lj(σ(xj))
(σ(x) − σ(xj)))Mj(x)Lj(x)

=
n
∑
j=0
((1 −

MΔ
j (xj) +Mj(σ(xj))LΔj (xj)
cMj(σ(xj))Lj(σ(xj))

(cx + d − (cxj + d)))yj

+
zj

cMj(σ(xj))Lj(σ(xj))
(cx + d − (cxj + d)))Mj(x)Lj(x)

=
n
∑
j=0
((1 −

MΔ
j (xj) +Mj(σ(xj))LΔj (xj)
Mj(σ(xj))Lj(σ(xj))

(x − xj))yj
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+
zj

Mj(σ(xj))Lj(σ(xj))
(x − xj))Mj(x)Lj(x)

= p2n+1(x), x ∈ [a, b].

This completes the proof.

As we have proved in Theorem 1.38, one can deduct the following result regarding
the error in σ-Hermite interpolation.

Theorem 1.47. Suppose that n ∈ ℕ0, a, b ∈ 𝕋, a < b, xj ∈ [a, b], j ∈ {0, 1, . . . , n}, are
σ-distinct and f : [a, b]→ ℝ, f Δ

k
(x) exist for any x ∈ [a, b] and for any k ∈ {1, . . . , 2n+ 2}.

Then for any x ∈ [a, b] there exists ξ = ξ (x) ∈ (a, b) such that

f (x) − pσ2n+1(x) =
f Δ

2n+2
(ξ )

πn+1(x)ζn+1(x)
(πn+1ζn+1)

Δ2n+2 (ξ ), x ∈ [a, b],

or

Gmin,2n+2(ξ ) ≤
f (x) − pσ2n+1(x)
πn+1(x)ζn+1(x)

≤ Gmax,2n+2(ξ ), x ∈ [a, b],

where Gmin,2n+2(ξ ) and Gmax,2n+2(ξ ) are defined as in Theorem 1.38.

In the following example, we consider a time scale with a nonlinear forward jump
operator. We show the difference between Hermite and σ-Hermite polynomials graph-
ically.

Example 1.48. Let 𝕋 = ℕ20 = {0, 1, 4, 9, 16, . . .} and [a, b] = [1, 49]. Let

x0 = 1, x1 = 9, x2 = 25.

We will find the Hermite interpolation polynomial p5(x) and the σ-Hermite interpola-
tion polynomial pσ5(x) for a function f satisfying

f (1) = 2, f (9) = 4, f (25) = 10,

and

f Δ(1) = 3, f Δ(9) = 6, f Δ(25) = 7.

On this time scale, we have

σ(x) = (√x + 1)2,

σΔ(x) = σ(σ(x)) − σ(x)
σ(x) − x

=
2√x + 3
2√x + 1

, x ∈ 𝕋.

We first compute the polynomials Lk andMk for k = 0, 1, 2,
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L0(x) =
(x − 9)(x − 25)
(−8)(−24)

=
x2 − 34x + 225

192
,

L1(x) =
(x − 1)(x − 25)
(8)(−16)

= −
x2 − 26x + 25

128
,

L2(x) =
(x − 1)(x − 9)
(24)(16)

=
x2 − 10x + 9

384
,

M0(x) =
(x − 16)(x − 36)
(−15)(−35)

=
x2 − 52x + 576

525
,

M1(x) =
(x − 4)(x − 36)
(5)(−27)

= −
x2 − 40x + 144

135
,

M2(x) =
(x − 4)(x − 16)
(21)(9)

=
x2 − 20x + 64

189
, x ∈ [1, 49].

Let

g1(x) = x
2, g2(x) = x, x ∈ 𝕋.

Then

gΔ1 (x) = x + σ(x) = 2x + 2√x + 1,

gΔ2 (x) = 1, x ∈ 𝕋.

We compute, for x ∈ [1, 49],

LΔ0(x) =
2x + 2√x − 33

192
, LΔ1 (x) = −

2x + 2√x − 25
128

, LΔ2 (x) =
2x + 2√x − 9

384
,

MΔ
0 (x) =

2x + 2√x − 51
525

, MΔ
1 (x) = −

2x + 2√x − 39
135

, MΔ
2 (x) =

2x + 2√x − 19
189

.

Then we have

L0(σ(x0)) = L0(4) =
35
64
, LΔ0(x0) = L

Δ
0(1) = −

29
192
,

L1(σ(x1)) = L1(16) =
135
128
, LΔ1 (x1) = L

Δ
1 (9) =

1
128
,

L2(σ(x2)) = L2(36) =
315
128
, LΔ2 (x2) = L

Δ
2 (25) =

17
128
,

M0(σ(x0)) = M0(4) =
128
175
, MΔ

0 (x0) = M
Δ
0 (1) = −

47
525
,

M1(σ(x1)) = M1(16) =
16
6
, MΔ

1 (x1) = M
Δ
1 (9) =

1
9
,

M2(σ(x2)) = M2(36) =
640
189
, MΔ

2 (x2) = M
Δ
2 (25) =

41
189
.

Using these values, for x ∈ [1, 49], we compute
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p5(x) = (2 +
17
2
(x − 1))(x

2 − 34x + 225
192

)(
x2 − 52x + 576

525
)

+ (4 + 44
15
(x − 9))(x

2 − 26x + 25
128

)(
x2 − 40x + 144

135
)

+ (10 + 1
25
(x − 25))(x

2 − 10x + 9
384

)(
x2 − 20x + 64

189
),

and

pσ5(x) = (2 +
51
10
((√x + 1)2 − 4))(x

2 − 34x + 225
192

)(
x2 − 52x + 576

525
)

+ (4 + 308
135
((√x + 1)2 − 16))(x

2 − 26x + 25
128

)(
x2 − 40x + 144

135
)

+ (10 + 11
325
((√x + 1)2 − 36))(x

2 − 10x + 9
384

)(
x2 − 20x + 64

189
).

The example above shows that the Hermite and σ-Hermite interpolation polyno-
mials can be different and,moreover, the σ-Hermite interpolation polynomialmay not
be apolynomial in the classical sense. On the other hand, the difference between these
polynomials is not very large, as can be seen from Figure 1.6.

Figure 1.6: The graphs of the Hermite and σ-Hermite polynomials.
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1.5 Delta differentiation

We conclude this chapter with a theoretical discussion of the error in the delta deriva-
tive of a function when it is approximated by the delta derivative of the related inter-
polation polynomial.

Theorem 1.49. Suppose that n ≥ 0, a, b ∈ 𝕋, a < b, xj ∈ [a, b], j ∈ {0, 1, . . . , n}, are
distinct, f : [a, b] → ℝ, pn : [a, b] → ℝ is a polynomial of degree n interpolating f
at the points xj ∈ [a, b], j ∈ {0, 1, . . . , n} and f Δ

k
(x) exist for any x ∈ [a, b] and for any

k ∈ {1, . . . , n + 1}. Then for any x ∈ [a, b] there exist ξ = ξ (x) ∈ (a, b) and distinct points
ηj, j ∈ {1, . . . , n}, in (a, b) such that

f Δ(x) − pΔn(x) =
f Δ

n+1
(ξ )

π∗Δn+1n (ξ )
π∗n (x), x ∈ [a, b],

or

Hmin,n+1(ξ ) ≤
f Δ(x) − pΔn(x)

π∗n (x)
≤ Hmax,n+1(ξ ), x ∈ [a, b],

where

Hmax,n+1(ξ ) = max{ f
Δn+1 (ξ )

π∗Δn+1n (ξ )
,
f Δ

n+1
(ρ(ξ ))

π∗Δn+1n (ρ(ξ ))
},

Hmin,n+1(ξ ) = min{ f
Δn+1 (ξ )

π∗Δn+1n (ξ )
,
f Δ

n+1
(ρ(ξ ))

π∗Δn+1n (ρ(ξ ))
},

π∗n (x) = (x − η1) ⋅ ⋅ ⋅ (x − ηn), x ∈ [a, b].

Proof. Let pn be the Lagrange interpolation polynomial for the function f with inter-
polation points xj, j ∈ {0, 1, . . . , n}. Then the function f − pn has at least n + 1 GZs in
[a, b]. Hence, by Rolle’s theorem, it follows that there exist ηj, j ∈ {1, . . . , n}, in (a, b)
which are GZs of the function f Δ − pΔn. Define the function

χ(t) = f Δ(t) − pΔn(t) −
f Δ(x) − pΔn(x)

π∗n (x)
π∗n (t), t ∈ [a, b].

Then

χ(ηj) = f
Δ(ηj) − p

Δ
n(ηj) −

f Δ(x) − pΔn(x)
π∗n (x)

π∗n (ηj)

= f Δ(ηj) − p
Δ
n(ηj)

= 0, x ∈ [a, b], j ∈ {0, 1, . . . , n},
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and χ(x) = 0, x ∈ [a, b]. Thus, χ : [a, b] → ℝ has at least n + 1 GZs. Hence, by Rolle’s
theorem, it follows that χΔ

n
has at least one GZ on (a, b). Therefore, there exists ξ =

ξ (x) ∈ (a, b) such that

χΔ
n
(ξ ) = 0 or χΔ

n
(ρ(ξ ))χΔ

n
(ξ ) < 0.

Note that

χΔ
n
(t) = f Δ

n+1
(t) −

f Δ(x) − pΔn(x)
π∗n (x)

π∗Δ
n

n (t), t ∈ [a, b].

We now consider the two cases separately.
1. Let χΔ

n
(ξ ) = 0. Then

f Δ
n+1
(ξ ) =

f Δ(x) − pΔn(x)
π∗n (x)

π∗Δ
n

n (ξ ), x ∈ [a, b],

or, equivalently,

f Δ(x) − pΔn(x) =
f Δ

n+1
(ξ )

π∗Δnn (ξ )
π∗n (x) =

f Δ
n+1
(ξ )

π∗Δnn (ξ )
π∗n (x), x ∈ [a, b].

2. Let

χΔ
n
(ρ(ξ ))χΔ

n
(ξ ) < 0.

Then

χΔ
n
(ρ(ξ )) = f Δ

n+1
(ρ(ξ )) −

f Δ(x) − pΔn(x)
π∗n (x)

π∗Δ
n

n (ρ(ξ )), x ∈ [a, b],

and

χΔ
n
(ξ ) = f Δ

n+1
(ξ ) −

f Δ(x) − pΔn(x)
π∗n (x)

π∗Δ
n

n (ξ ), x ∈ [a, b].

Hence,

0 > χΔ
n
(ρ(ξ ))χΔ

n
(ξ )

= (f Δ
n+1
(ρ(ξ )) −

f Δ(x) − pΔn(x)
π∗n (x)

π∗Δ
n

n (ρ(ξ )))

× (f Δ
n+1
(ξ ) −

f Δ(x) − pΔn(x)
π∗n (x)

π∗Δ
n

n (ξ ))

= (
f Δ(x) − pΔn(x)

π∗n (x)
)
2
π∗Δ

n

n (ρ(ξ ))π
∗Δn
n (ξ )
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−
f Δ(x) − pΔn(x)

π∗n (x)
(π∗Δ

n

n (ρ(ξ ))f
Δn+1 (ξ ) + π∗Δnn (ξ )f

Δn+1(ρ(ξ )))
+ f Δ

n+1
(ρ(ξ ))f Δ

n+1
(ξ ), x ∈ [a, b].

Therefore,

Hmin,n+1(ξ ) ≤
f Δ(x) − pΔn(x)

π∗n (x)
≤ Hmax,n+1(ξ ), x ∈ [a, b].

This completes the proof.

Remark 1.50. Suppose that all the conditions of Theorem 1.49 hold. If

lim
n→∞

max
x∈[a,b]
(
f Δ

n+1
(ξ )

π∗Δnn (ξ )
π∗n (x)) = 0

and

lim
n→∞

max
x∈[a,b]
(
f Δ

n+1
(ρ(ξ ))

π∗Δnn (ρ(ξ ))
π∗n (x)) = 0,

then

lim
n→∞

max
x∈[a,b]
f
Δ(x) − pΔn(x)

 = 0.

1.6 Advanced practical problems

Problem 1.51. Let𝕋 = ( 13 )
ℕ0 . Construct the Lagrange interpolation polynomial for the

set

{(
1
27
, 1),( 1

9
,0),( 1

3
,−1), (1, 2)}.

Problem 1.52. Let 𝕋 = 4ℕ0 , and suppose f : 𝕋→ ℝ is defined by

f (x) = e1(x, 1) + sin2(x, 4) + x
2 + x, x ∈ 𝕋.

Find the Lagrange interpolation polynomial for the function f with interpolation
points

a = x0 = 1, x1 = 4, x2 = 16, x3 = 64, x4 = 256 = b.
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Problem 1.53. Let 𝕋 = 3ℕ0 ,

x0 = 1, x1 = 3, x2 = 9, b = 27.

Find π3(x), Π2
3(x), x ∈ 𝕋.

Problem 1.54. Let 𝕋 = 3ℕ0. Check if the points

x0 = 0, x1 = 3, x2 = 27, x3 = 180

are σ-distinct points.

Problem 1.55. Let 𝕋 = 4ℕ0 . Check if the points

x0 = 1, x1 = 16, x2 = 256

are σ-distinct points.

Problem 1.56. Let 𝕋 = ( 13 )
ℕ0 ,

a = x0 =
1
81
, x1 =

1
9
, x2 = 1 = b,

and suppose f : 𝕋→ ℝ is defined by

f (x) = x4 + x3 + 1
x5 + x2 + x + 1

, x ∈ 𝕋.

Find the σ-Lagrange interpolation polynomial for the function f with σ-interpolation
points x0, x1, x2.

Problem 1.57. Let 𝕋 = {0, 14 ,
1
3 ,

1
2 ,

5
6 , 1, 4, 5, 12},

a = 0, x0 = 0, x1 =
1
3
, x2 = 4, b = 12.

Find the σ-Lagrange and Lagrange interpolation polynomials for the function f :
𝕋→ ℝ defined by

f (x) = x + 1
x2 − 2x + 7

+ 4x + 1, x ∈ 𝕋,

with σ-interpolation and interpolation points x0, x1, x2.

Problem 1.58. Let 𝕋 = {0, 12 , 3, 11, 19, 108},

a = 0, x0 = 0, x1 =
1
2
, x2 = 11, b = 108.

Find Π3
σ3(19).

 EBSCOhost - printed on 2/10/2023 4:40 PM via . All use subject to https://www.ebsco.com/terms-of-use



1.6 Advanced practical problems | 43

Problem 1.59. Let 𝕋 = 4ℤ. Find the Hermite interpolation polynomial for the set

x0 = −24, x1 = −4, x2 = 16,
y0 = 1, y1 = −3, y2 = −1,
z0 = −1, z1 = 1, z2 = −1.

Problem 1.60. Let 𝕋 = 2ℤ and f : 𝕋→ ℝ be defined by

f (x) = x + 1
x2 + 1
+ x3, x ∈ 𝕋.

Let also,

x0 = −4, x1 = 0, x2 = 8, b = 10.

Find the Hermite interpolation polynomial for the function f .

Problem 1.61. Let 𝕋 = {−3,−1,0, 7, 8, 19, 29},

a = −3, x0 = −3, x1 = 0, x2 = 8, b = 29,

and f : 𝕋→ ℝ be defined by

f (x) = e1(x,0) + x
2 + x + 1, x ∈ 𝕋.

Find the σ-Hermite interpolation polynomial for the function f .
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2 Numerical integration

Numerical integration is as a significant subject as the integration itself. Almost all
real life problems represented by mathematical models require computation of cer-
tain definite integrals. In many cases, these integrals cannot be evaluated exactly. For
this reason, development and use of efficient and reliable numerical methods which
provide a good approximation to a given integral are among the main tasks in numer-
ical analysis and methods.

The main purpose of this chapter is to approximately evaluate the Cauchy time
scale integral. One natural approach is to apply the results of the previous chapter on
polynomial interpolation to derive formulae for numerical integration. Therefore, we
will give the detailed theoretical base and the derivation of some quadrature rules, as
well as explain how one can estimate the associated approximation error.Wewill also
give illustrative numerical examples.

Throughout this chapter, we assume that 𝕋 is a time scale with forward jump op-
erator σ and delta differentiation operator Δ. We also assume that [a, b] ⊂ 𝕋 for some
finite a, b ∈ 𝕋.

2.1 Newton–Cotes formulae

First, we give the derivation of the so-called Newton–Cotes integration formulae, as
they are called in classical numerical analysis [6, 7].

Suppose that f : 𝕋 → ℝ is rd-continuous. We assume that the integral ∫ba f (x)Δx
may not be evaluated exactly and wish to find its approximate value.

Let n ∈ ℕ0, xj ∈ [a, b], j ∈ {0, 1, . . . , n}, be distinct. With pn ∈ 𝒫n we will denote the
Lagrange interpolation polynomial for the function f . Then

pn(x) =
n
∑
k=0

Lk(x)f (xk), x ∈ [a, b],

and

b

∫
a

f (x)Δx ≈
b

∫
a

pn(x)Δx =
n
∑
k=0
(

b

∫
a

Lk(x)Δx)f (xk).

Set

wk =
b

∫
a

Lk(x)Δx, k ∈ {0, 1, . . . , n}.

Therefore,

https://doi.org/10.1515/9783110787320-002
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2.1 Newton–Cotes formulae | 45

b

∫
a

f (x)Δx ≈
n
∑
k=0

wkf (xk). (2.1)

Definition 2.1. The values wk, k ∈ {0, 1, . . . , n}, are called the quadrature weights,
while the interpolation points xk, k ∈ {0, 1, . . . , n}, are called the quadrature points or
nodes.

Definition 2.2. The numerical quadrature rule (2.1) is said to be the Newton–Cotes
formula.

Now, for t, s ∈ 𝕋, we recall the definition of the time scale monomials, which was
given as follows [1, 2]:

h0(t, s) = 1, hk+1(t, s) =
t

∫
s

hk(τ, s)Δτ, k ∈ ℕ0.

The two basic Newton–Cotes formulas are known as trapezoid and Simpson rules. We
will first derive these rules for a Cauchy integral on an arbitrary time scale. Consider
the case n = 1, so that we take

a = x0, b = x1.

Then

p1(x) = L0(x)f (a) + L1(x)f (b)

=
x − b
a − b

f (a) + x − a
b − a

f (b)

=
1

b − a
((b − x)f (a) + (x − a)f (b)), x ∈ [a, b].

Hence,

b

∫
a

p1(x)Δx =
1

b − a
(f (a)

b

∫
a

(b − x)Δx + f (b)
b

∫
a

(x − a)Δx)

=
1

b − a
(f (a)

a

∫
b

(x − b)Δx + f (b)
b

∫
a

(x − a)Δx)

=
1

b − a
(f (a)h2(a, b) + f (b)h2(b, a))

and

b

∫
a

f (x)Δx ≈ 1
b − a
(f (a)h2(a, b) + f (b)h2(b, a)). (2.2)
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Definition 2.3. The numerical integration formula (2.2) will be called the trapezoid
rule.

Below we apply the trapezoid rule to particular examples.

Example 2.4. Let 𝕋 = 2ℕ0 , a = 1, b = 8, and f : 𝕋→ ℝ be defined as

f (t) = t − 1
t + 1
, t ∈ 𝕋.

We will evaluate ∫81 f (t)Δt. Here σ(t) = 2t, t ∈ 𝕋. Let

f1(t) =
1
3
t2 − t, f2(t) =

1
3
t2 − 8t, t ∈ 𝕋.

Then

f Δ1 (t) =
1
3
(σ(t) + t) − 1 = 1

3
(2t + t) − 1 = t − 1,

f Δ2 (t) =
1
3
(σ(t) + t) − 8 = 1

3
(2t + t) − 8 = t − 8, t ∈ [1, 8],

h2(a, b) =
1

∫
8

(t − 8)Δt =
1

∫
8

f Δ2 (t)Δt = f2(1) − f2(8)

= (
1
3
− 8) − (64

3
− 64) = 1

3
− 8 − 64

3
+ 64 = 35,

h2(b, a) =
8

∫
1

(t − 1)Δt =
8

∫
1

f Δ1 (t)Δt = f1(8) − f1(1)

= (
64
3
− 8) − ( 1

3
− 1) = 64

3
− 8 − 1

3
+ 1 = 14,

f (1) = 0, f (8) = 7
9
.

Thus,

8

∫
1

t − 1
t + 1

Δt ≈ 1
7
(
7
9
⋅ 14) = 14

9
.

Example 2.5. Let 𝕋 = 3ℕ0 and f : 𝕋→ ℝ be defined by

f (t) = t3 − 1
t3 + t + 1

+ e1(t, 1), t ∈ 𝕋.

We will evaluate the integral ∫91 f (t)Δt. Here
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σ(t) = 3t, t ∈ 𝕋, a = 1, b = 9.

Let

f1(t) =
1
4
t2 − t, f2(t) =

1
4
t2 − 9t, t ∈ 𝕋.

Then

f Δ1 (t) =
1
4
(σ(t) + t) − 1 = 1

4
(3t + t) − 1 = t − 1,

f Δ2 (t) =
1
4
(σ(t) + t) − 9 = 1

4
(3t + t) − 9 = t − 9, t ∈ 𝕋,

h2(9, 1) =
9

∫
1

(t − 1)Δt =
9

∫
1

f Δ1 (t)Δt = f1(9) − f1(1)

=
81
4
− 9 − 1

4
+ 1 = 12,

h2(1, 9) =
1

∫
9

(t − 9)Δt =
1

∫
9

f Δ2 (t)Δt = f2(1) − f2(9)

= (
1
4
− 9) − (81

4
− 81) = 1

4
−
81
4
− 9 + 81 = 52,

f (1) = 1,

f (9) = 729 − 1
729 + 9 + 1

+ e1(9, 1) =
728
739
+ e1(9, 1).

Now, using the trapezoid rule, we get

9

∫
1

f (t)Δt ≈ 1
8
(52 + 12 ⋅ (728

739
+ e1(9, 1))) =

1
2
(13 + 3 ⋅ (728

739
+ e1(9, 1))).

Exercise 2.6. Let 𝕋 = 2ℤ. Using the trapezoid rule, evaluate the integral

8

∫
1

(
t + 1

t2 + 3t + 4
+ e2(t, 1))Δt.

Next, we will derive the Simpson rule. In its derivation we need the following def-
inition and lemma.

Definition 2.7. For t, s ∈ 𝕋, define the monomials

H0(t, s) = 1, Hk+1(t, s) =
t

∫
s

hk(σ(τ), s)Δτ, k ∈ ℕ0.
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Lemma 2.8. Let t, s ∈ 𝕋 and suppose t1, t2 ∈ 𝕋 are between s and t. Then

t

∫
s

(y − t1)(y − t2)Δy = h2(t, t2)h1(t, t1) − h2(s, t1)h1(s, t2)

+ H3(s, t1) − H3(t2, t1) − H3(t, t2).

Proof. We have

t

∫
s

(y − t1)(y − t2)Δy

=

t1

∫
s

(y − t1)(y − t2)Δy +
t2

∫
t1

(y − t1)(y − t2)Δy +
t

∫
t2

(y − t1)(y − t2)Δy

= −
s

∫
t1

(y − t1)(y − t2)Δy +
t2

∫
t1

hΔ2 (y, t1)(y − t2)Δy +
t

∫
t2

hΔ2 (y, t2)(y − t1)Δy

= −
s

∫
t1

hΔ2 (y, t1)(y − t2)Δy + h2(y, t1)(y − t2)|
y=t2
y=t1

−

t2

∫
t1

h2(σ(y), t1)Δy + h2(y, t2)(y − t1)|
y=t
y=t2 −

t

∫
t2

h2(σ(y), t2)Δy

= −h2(y, t1)(y − t2)|
y=s
y=t1 +

s

∫
t1

h2(σ(y), t1)Δy

− H3(t2, t1) + h2(t, t2)(t − t1) − H3(t, t2)
= −h2(s, t1)h1(s, t2) + H3(s, t1) − H3(t2, t1) + h2(t, t2)h1(t, t1) − H3(t, t2).

This completes the proof.

Now, take n = 2 in the Newton–Cotes formulae (2.1), that is, we take three points

a = x0 < x1 < x2 = b.

For x ∈ [a, b], using Lemma 2.8, we get

b

∫
a

L0(x)Δx =
1

(x0 − x1)(x0 − x2)

x2

∫
x0

(x − x1)(x − x2)Δx

=
1

(x0 − x1)(x0 − x2)
(h2(x2, x2)h1(x2, x1) − h2(x0, x1)h1(x0, x2)
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+ H3(x0, x1) − H3(x2, x1) − H3(x2, x2))

=
1

(x0 − x1)(x0 − x2)
(−h2(x0, x1)h1(x0, x2) + H3(x0, x1) − H3(x2, x1)),

b

∫
a

L1(x)Δx =
1

(x1 − x0)(x1 − x2)

x2

∫
x0

(x − x0)(x − x2)Δx

=
1

(x1 − x0)(x1 − x2)
(h2(x2, x2)h1(x2, x0) − h2(x0, x0)h1(x0, x2)

+ H3(x0, x0) − H3(x2, x0) − H3(x2, x2))

= −
H3(x2, x0)
(x1 − x0)(x1 − x2)

,

b

∫
a

L2(x)Δx =
1

(x2 − x0)(x2 − x1)

x2

∫
x0

(x − x0)(x − x1)Δx

=
1

(x2 − x0)(x2 − x1)
(h2(x2, x1)h1(x2, x0) − h2(x0, x0)h1(x0, x1)

+ H3(x0, x0) − H3(x1, x0) − H3(x2, x1))

=
1

(x2 − x0)(x2 − x1)
(h2(x2, x1)h1(x2, x0) − H3(x1, x0) − H3(x2, x1)).

Hence, using (2.1), we find

b

∫
a

f (x)Δx ≈ f (x0)
(x0 − x1)(x0 − x2)

(−h2(x0, x1)h1(x0, x2) + H3(x0, x1) − H3(x2, x1))

− f (x1)
H3(x2, x0)
(x1 − x0)(x1 − x2)

+
f (x2)

(x2 − x0)(x2 − x1)
(h2(x2, x1)h1(x2, x0) − H3(x1, x0) − H3(x2, x1)). (2.3)

Definition 2.9. The numerical integration formula (2.3) is said to be the Simpson rule.

We apply the Simpson rule to specific examples.

Example 2.10. Let 𝕋 = 2ℕ0 , a = 1, b = 8, and f : 𝕋→ ℝ be defined as

f (t) = t − 1
t + 1
, t ∈ 𝕋.

Wewill evaluate ∫81 f (t)Δt using the Simpson rule. For this problem, we have σ(t) = 2t,
μ(t) = 2t − t = t, t ∈ 𝕋. Let

g1(t) =
t2

3
, g2(t) =

t3

7
, t ∈ 𝕋.
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We have

gΔ1 (t) =
σ(t) + t

3
= t, gΔ2 (t) =

(σ(t))2 + tσ(t) + t2

7
= t2, t ∈ 𝕋.

Then we compute

h0(t, s) = 1, h1(t, s) =
t

∫
s

Δτ = t − s,

h2(t, s) =
t

∫
s

(τ − s)Δτ

=
t

∫
s

gΔ1 Δτ − s(t − s)

= g1(τ)|
τ=t
τ=s − st + s

2 =
τ2

3



τ=t

τ=s
− st + s2 = t

2

3
− st + 2s

2

3
,

H3(t, s) =
t

∫
s

h2(σ(τ), s)Δτ

=
t

∫
s

(
(2τ)2

3
− s(2τ) + 2s

2

3
)Δτ

=
t

∫
s

(
4
3
gΔ2 − 2sg

Δ
1 +

2s2

3
)Δτ

= (
4
3
g2(τ) − 2sg1(τ) +

2s2

3
τ)


τ=t

τ=s

=
4
21
(t3 − s3) − 2s

3
(t2 − s2) + 2s

2

3
(t − s)

=
4
21
t3 − 2

3
st2 + 2

3
s2t − 4

21
s3, t, s ∈ 𝕋.

We will apply the Simpson rule with a = x0 = 1, x1 = 4, x2 = b = 8. Using the values
f (1) = 0, f (4) = 3

5 , and f (8) =
7
9 , we compute

8

∫
1

f (t)Δt ≈ f (1)
(1 − 4)(1 − 8)

(−h2(1, 4)h1(1, 8) + H3(1, 4) − H3(8, 4))

−
f (4)

(4 − 1)(4 − 8)
H3(8, 1)

+
f (8)

(8 − 1)(8 − 4)
(h2(8, 4)h1(8, 1) − H3(4, 1) − H3(8, 4))

= 0 −
3
5
−12

60 +
7
9
28
(−4) = 26

9
≈ 2.88889.
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Recall that the approximate value of the same integral computed by using the trape-
zoid rule was obtained in Example 2.4 as 14

9 ≈ 1.55556. In fact, it is possible to compute
the exact value of the given integral as

8

∫
1

f (t)Δt =
σ(1)

∫
1

f (t)Δt +
σ(2)

∫
2

f (t)Δt +
σ(4)

∫
4

f (t)Δt

= f (1)μ(1) + f (2)μ(2) + f (4)μ(4)

= 0 + 2 1
3
+ 43

5
=
2
3
+
12
5
=
46
15
≈ 3.06667.

This example demonstrates that the Simpson rule ismore accurate than the trape-
zoid rule since we approximate the function to be integrated by a polynomial of one
higher degree.

Exercise 2.11. Let 𝕋 = 3ℤ. Using the Simpson rule, evaluate the integral

9

∫
−6

Δt
t2 + t + 1

.

2.2 σ-Newton–Cotes formulae

Recalling the alternative interpolation defined in Chapter 1, called σ interpolation,
we consider an alternative to the Newton–Cotes formulae which we will call σ-New-
ton–Cotes formulae. In this section, we describe this approach and evaluate approxi-
mately a Cauchy time scale integral using the σ-Lagrange interpolation polynomial.

Suppose that f : 𝕋 → ℝ is rd-continuous, n ∈ ℕ0, a, b ∈ 𝕋, σ(a) < b, xj ∈
[a, b] ⊂ 𝕋, j ∈ {0, 1, . . . , n}, are σ-distinct points. Then

pσn(x) =
n
∑
k=0

Lσk(x)f (xk), x ∈ [a, b],

and

b

∫
a

pσn(x)Δx =
n
∑
k=0
(

b

∫
a

Lσk(x)Δx)f (xk).

Hence,

b

∫
a

f (x)Δx ≈
b

∫
a

pσn(x)Δx =
n
∑
k=0
(

b

∫
a

Lσk(x)Δx)f (xk).
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Denote

wσk =
b

∫
a

Lσk(x)Δx, k ∈ {0, 1, . . . , n}.

Then

b

∫
a

f (x)Δx ≈
n
∑
k=0

wσkf (xk). (2.4)

Definition 2.12. The values wσk, k ∈ {0, 1, . . . , n}, will be called the σ-quadrature
weights and the σ-interpolation points xj, j ∈ {0, 1, . . . , n}, will be called the σ-quadra-
ture points (nodes).

Definition 2.13. The numerical quadrature formula (2.4) is said to be σ-Newton–Cotes
formula.

Next, we recall the definition of the polynomials [1, 2, 8]

g0(t, s) = 1, gk+1(t, s) =
t

∫
s

gk(σ(τ), s)Δτ, k ∈ ℕ0,

for t, s ∈ 𝕋. First, we take n = 1 in the σ-Newton–Cotes formula given in (2.4), that is,
we take

a = x0 ≤ σ(x0) < x1 ≤ σ(x1) = b.

Then

pσ1(x) = Lσ0(x)f (x0) + Lσ1(x)f (x1)

=
σ(x) − σ(x1)
σ(x0) − σ(x1)

f (x0) +
σ(x) − σ(x0)
σ(x1) − σ(x0)

f (x1)

=
σ(x) − b
σ(a) − b

f (a) + σ(x) − σ(a)
b − σ(a)

f (x1)

=
1

b − σ(a)
(−(σ(x) − b)f (a) + (σ(x) − σ(a))f (x1)), x ∈ [a, b],

and

b

∫
a

pσ1(x)Δx =
1

b − σ(a)
(−f (a)

b

∫
a

(σ(x) − b)Δx + f (x1)
b

∫
a

(σ(x) − σ(a))Δx)

=
1

b − σ(a)
(f (a)

a

∫
b

(σ(x) − b)Δx + f (x1)
σ(a)

∫
a

(σ(x) − σ(a))Δx
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+ f (x1)
b

∫
σ(a)

(σ(x) − σ(a))Δx)

=
1

b − σ(a)
(f (a)g2(a, b) + f (x1)μ(a)(σ(a) − σ(a)) + f (x1)g2(b, σ(a)))

=
1

b − σ(a)
(f (a)g2(a, b) + f (x1)g2(b, σ(a))).

Consequently, we get

b

∫
a

f (x)Δx ≈ 1
b − σ(a)

(f (a)g2(a, b) + f (x1)g2(b, σ(a))). (2.5)

Definition 2.14. The numerical integration formula (2.5) will be called the σ-trapezoid
rule.

Below, we apply the σ-trapezoid rule to an example.

Example 2.15. Let 𝕋 = { 14 ,
1
3 ,

1
2 , 1},

a = 1
4
= x0, x1 =

1
2
, b = σ( 1

2
) = 1,

and suppose that the function f : 𝕋→ ℝ is defined by

f (t) = t − 1
t + 1
, t ∈ 𝕋.

We will evaluate

1

∫
1
4

f (t)Δt.

We have

σ(x0) = σ(
1
4
) =

1
3
< b, μ( 1

4
) = σ( 1

4
) −

1
4
=
1
3
−
1
4
=

1
12
,

σ( 1
3
) =

1
2
, μ( 1

3
) = σ( 1

3
) −

1
3
=
1
2
−
1
3
=
1
6
,

σ(x1) = σ(
1
2
) = 1, μ( 1

2
) = σ( 1

2
) −

1
2
= 1 − 1

2
=
1
2
.

Furthermore,
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g2(a, b) =

1
4

∫
1

(σ(t) − 1)Δt

= −
1

∫
1
4

(σ(t) − 1)Δt

= − μ( 1
4
)(σ( 1

4
) − 1) − μ( 1

3
)(σ( 1

3
) − 1)

− μ( 1
2
)(σ( 1

2
) − 1)

= −
1
12
(
1
3
− 1) − 1

6
(
1
2
− 1) − 1

2
(1 − 1)

= −
1
12
(−

2
3
) −

1
6
(−

1
2
) =

5
36
,

g2(b, σ(a)) =
1

∫
1
3

(σ(t) − 1
3
)Δt

=

1
2

∫
1
3

(σ(t) − 1
3
)Δt +

1

∫
1
2

(σ(t) − 1
3
)Δt

= μ( 1
3
)(σ( 1

3
) −

1
3
) + μ( 1

2
)(σ( 1

2
) −

1
3
)

=
1
6
(
1
2
−
1
3
) +

1
2
(1 − 1

3
) =

13
36
,

f (a) = f( 1
4
) =

1
4 − 1
1
4 + 1
= −

3
5
, f (x1) = f(

1
2
) =

1
2 − 1
1
2 + 1
= −

1
3
.

Hence,

1

∫
1
4

t − 1
t + 1

Δt ≈ 1
1 − σ( 14 )

(f( 1
4
)g2(

1
4
, 1) + f( 1

2
)g2(1,

1
3
))

=
1

1 − 1
3
(−

3
5
⋅
5
36
−
1
3
⋅
13
36
)

=
3
2
(−

1
12
−

13
108
) = −

11
36
.

Exercise 2.16. Let

𝕋 = {−2,−3
2
,−1,− 5

6
,−

1
2
,−

1
3
,0, 1

8
,
1
4
,
3
2
, 2},
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a = −2 = x0, x1 = −
5
6
, b = 2,

and suppose that f : 𝕋→ ℝ is defined by

f (t) = t4 + t3 + t + 1
t2 + 1
, t ∈ 𝕋.

Using the σ-trapezoid rule, evaluate the integral ∫2−2 f (t)Δt.

We proceed with the following definition and lemma which are needed to derive
the σ-Simpson rule.

Definition 2.17. For s, t ∈ 𝕋, define the polynomials

G0(t, s) = 1, Gk+1(t, s) =
t

∫
s

gk(τ, s)Δτ, k ∈ ℕ0.

Lemma 2.18. Let t, s ∈ 𝕋 and t1, t2, σ(t1), σ(t2) be between s and t. Then

t

∫
s

(σ(y) − σ(t1))(σ(y) − σ(t2))Δy

= −g2(s, σ(t1))g1(s, σ(t2)) + g1(t, σ(t1))g2(t, σ(t2))

+ G3(s, σ(t1)) − G3(σ(t2), σ(t1)) − G3(t, σ(t2)).

Proof. We have

t

∫
s

(σ(y) − σ(t1))(σ(y) − σ(t2))Δy

=

σ(t1)

∫
s

(σ(y) − σ(t1))(σ(y) − σ(t2))Δy

+

σ(t2)

∫
σ(t1)

(σ(y) − σ(t1))(σ(y) − σ(t2))Δy +
t

∫
σ(t2)

(σ(y) − σ(t1))(σ(y) − σ(t2))Δy

= −
s

∫
σ(t1)

gΔ2 (y, σ(t1))(σ(y) − σ(t2))Δy

+

σ(t2)

∫
σ(t1)

gΔ2 (y, σ(t1))(σ(y) − σ(t2))Δy +
t

∫
σ(t2)

(σ(y) − σ(t1))g
Δ
2 (y, σ(t2))Δy
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= −g2(y, σ(t1))(y − σ(t2))

y=s
y=σ(t1) +

s

∫
σ(t1)

g2(y, σ(t1))Δy

+ g2(y, σ(t1))(y − σ(t2))

y=σ(t2)
y=σ(t1) −

σ(t2)

∫
σ(t1)

g2(y, σ(t1))Δy

+ (y − σ(t1))g2(y, σ(t2))

y=t
y=σ(t2) −

t

∫
σ(t2)

g2(y, σ(t2))Δy

= −g2(s, σ(t1))(s − σ(t2)) + g2(σ(t1), σ(t1))(σ(t1) − σ(t2)) + G3(s, σ(t1))

+ g2(σ(t2), σ(t1))(σ(t2) − σ(t2))

− g2(σ(t1), σ(t1))(σ(t1) − σ(t2)) − G3(σ(t2), σ(t1))

+ (t − σ(t1))g2(t, σ(t2)) − (σ(t2) − σ(t1))g2(σ(t2), σ(t2)) − G3(t, σ(t2))

= −g2(s, σ(t1))g1(s, σ(t2)) + g1(t, σ(t1))g2(t, σ(t2))

+ G3(s, σ(t1)) − G3(σ(t2), σ(t1)) − G3(t, σ(t2)).

This completes the proof.

Let now

a = x0 < x1 ≤ σ(x1) < x2 ≤ σ(x2) = b.

Then, using Lemma 2.18, we get

σ(x2)

∫
x0

Lσ0(y)Δy =
1

(σ(x0) − σ(x1))(σ(x0) − σ(x2))
(−g2(x0, σ(x1)), g1(x0, σ(x2))

+ g1(σ(x2), σ(x1))g2(σ(x2), σ(x2))

+ G3(x0, σ(x1)) − G3(σ(x2), σ(x1)) − G3(σ(x2), σ(x2)))

=
1

(σ(x0) − σ(x1))(σ(x0) − σ(x2))
(−g2(x0, σ(x1))g1(x0, σ(x2))

+ G3(x0, σ(x1)) − G3(σ(x2), σ(x1))),
σ(x2)

∫
x0

Lσ1(y)Δy =
1

(σ(x1) − σ(x0))(σ(x1) − σ(x2))
(−g2(x0, σ(x0))g1(x0, σ(x2))

+ g1(σ(x2), σ(x0))g2(σ(x2), σ(x2))

+ G3(x0, σ(x0)) − G3(σ(x2), σ(x0)) − G3(σ(x2), σ(x2)))

= −
1

(σ(x1) − σ(x0))(σ(x1) − σ(x2))
G3(σ(x2), σ(x0)),
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σ(x2)

∫
x0

Lσ2(y)Δy =
1

(σ(x2) − σ(x0))(σ(x2) − σ(x1))
(−g2(x0, σ(x0))g1(x0, σ(x1))

+ g1(σ(x2), σ(x0))g2(σ(x2), σ(x1))

+ G3(x0, σ(x0)) − G3(σ(x1), σ(x0)) − G3(σ(x2), σ(x1)))

=
1

(σ(x2) − σ(x0))(σ(x2) − σ(x1))

× (g1(σ(x2), σ(x0))g2(σ(x2), σ(x1))

− G3(σ(x1), σ(x0)) − G3(σ(x2), σ(x1))).

Hence and (2.4), we get

b

∫
a

f (x)Δx ≈ f (x0)
(σ(x0) − σ(x1))(σ(x0) − σ(x2))

(−g2(x0, σ(x1))g1(x0, σ(x2))

+ G3(x0, σ(x1)) − G3(σ(x2), σ(x1)))

−
f (x1)

(σ(x1) − σ(x0))(σ(x1) − σ(x2))
G3(σ(x2), σ(x0))

+
f (x2)

(σ(x2) − σ(x0))(σ(x2) − σ(x1))
(g1(σ(x2), σ(x0))g2(σ(x2), σ(x1))

− G3(σ(x1), σ(x0)) − G3(σ(x2), σ(x1))). (2.6)

Definition 2.19. The numerical integration formula (2.6) will be called the σ-Simpson
rule.

Example 2.20. Consider the time scale 𝕋 = 2ℕ0 and let [a, b] = [1, 32]. We have σ(t) =
2t, μ(t) = t, t ∈ 𝕋. On this time scale, we compute

g0(t, s) = 1,

g1(t, s) =
t

∫
s

g0((σ(τ), s)Δτ = t − s,

g2(t, s) =
t

∫
s

g1((σ(τ), s)Δτ

=
t

∫
s

(2τ − s)Δτ = (2τ
2

3
− sτ)


τ=t

τ=s

=
2t2

3
− st + s

2

3
,
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G3(t, s) =
t

∫
s

g2(τ, s)Δτ

=
t

∫
s

(
2t2

3
− st + s

2

3
)Δτ

= (
2
21
τ3 − 1

3
sτ2 + s

2

3
τ)


τ=t

τ=s

=
2
21
t3 − 1

3
st2 + 1

3
s2t − 2

21
s3, t, s ∈ 𝕋.

Let a = x0 = 1, x1 = 16, σ(x1) = b = 32. Applying the σ-trapezoid rule for any function
f : 𝕋→ ℝ gives

32

∫
1

f (t)Δt ≈ 1
32 − 2
(f (1)g2(1, 32) + f (16)g2(32, 2)).

Let a = x0 = 1, x1 = 4, x2 = 16, σ(x2) = b = 32. The σ-Simpson rule for any function
f : 𝕋→ ℝ yields

32

∫
1

f (t)Δt ≈ f (1)
(2 − 8)(2 − 32)

(−g2(1, 8)g1(1, 32) + G3(1, 8) − G3(32, 8))

−
f (4)

(8 − 2)(8 − 32)
G3(32, 2)

+
f (16)

(32 − 2)(32 − 8)
(g2(32, 8)g1(32, 2) − G3(8, 2) − G3(32, 8)).

It is easy to compute the exact value of the integral as

32

∫
1

f (t)Δt = f (1)μ(1) + f (2)μ(2) + f (4)μ(4) + f (8)μ(8) + f (16)μ(16)

= f (1) + 2f (2) + 4f (4) + 8f (8) + 16f (16).

The σ-trapezoid rule will give the exact value of the integral if the integrand function
is a linear polynomial. Taking f (t) = 2t + 5, t ∈ 𝕋, we compute the integral with the
σ-trapezoid rule as

32

∫
1

(2t + 5)Δt ≈ 1
30
(7g2(1, 32) + 37g2(32, 2)) = 837,

and with the σ-Simpson rule as
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32

∫
1

(2t + 5)Δt ≈ 7
180
(−g2(1, 8)g1(1, 32) + G3(1, 8) − G3(32, 8))

+
13
144

G3(32, 2) +
37
720
(g2(32, 8)g1(32, 2) − G3(8, 2) − G3(32, 8))

= 837.

The exact value of the integral is

32

∫
1

(2t + 5)Δt = 7 + 18 + 52 + 168 + 592 = 837.

The σ-Simpson rule will give the exact value of the integral if the integrand function
is a second degree polynomial. Taking f (t) = t2 + t + 2, t ∈ 𝕋, we compute the integral
with the σ-trapezoid rule as

32

∫
1

(t2 + t + 2)Δt ≈ 1
30
(4g2(1, 32) + 274g2(32, 2)) = 5704,

and with the σ-Simpson rule as

32

∫
1

(t2 + t + 2)Δt ≈ 4
180
(−g2(1, 8)g1(1, 32) + G3(1, 8) − G3(32, 8))

+
22
144

G3(32, 2) +
274
720
(g2(32, 8)g1(32, 2) − G3(8, 2) − G3(32, 8))

= 5084.

The exact value of the integral is

32

∫
1

(t2 + t + 2)Δt = 4 + 16 + 88 + 592 + 4384 = 5084.

Finally, we choose f (t) = t+2
t2+7 , t ∈ 𝕋. Then we compute the integral with the

σ-trapezoid rule as

32

∫
1

t + 2
t2 + 7

Δt ≈ 1
30
(
3
8
g2(1, 32) +

18
263

g2(32, 2)) ≈ 5.2894,

and with the σ-Simpson rule as
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32

∫
1

t + 2
t2 + 7

Δt ≈
3
8

180
(−g2(1, 8)g1(1, 32) + G3(1, 8) − G3(32, 8))

+
6
23
144

G3(32, 2) +
18
263
720
(g2(32, 8)g1(32, 2) − G3(8, 2) − G3(32, 8))

≈ 4.3798.

The exact value of the integral is

32

∫
1

t + 2
t2 + 7

Δt = 3
8
+
8
11
+
24
23
+
80
71
+
288
263
≈ 4.3676.

Exercise 2.21. Let

𝕋 = {2, 5
2
,
8
3
, 3, 13

4
,
15
4
, 4},

a = 2 = x0, x1 =
8
3
, x2 =

15
4
, b = 4,

and suppose that f : 𝕋→ ℝ is defined by

f (t) = t2 + 1 + t + t2

1 + t4 + t6
, t ∈ 𝕋.

Using the σ-Simpson rule, evaluate the integral ∫ba f (t)Δt.

2.3 Error estimates

Our aim in this section is to evaluate the size of the error in the numerical integration
formula (2.1). The error in (2.1) is defined by

En(f ) =
b

∫
a

f (x)Δx −
n
∑
k=0

wkf (xk).

Theorem 2.22. Let n ∈ ℕ, a, b ∈ 𝕋, a < b. Suppose that f : [a, b] → ℝ, f ∈ 𝒞n+1([a, b]).
Then

En(f ) =
b

∫
a

f Δ
n+1
(ξ )

Πn+1
n+1(ξ )

πn+1(x)Δx,

or
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b

∫
a

Gmin,n+1(ξ , x)Δx ≤ En(f ) ≤
b

∫
a

Gmax,n+1(ξ , x)Δx,

where

Gmax,n+1(ξ , x) = {
Fmax,n+1(ξ )πn+1(x) if πn+1(x) > 0,
Fmin,n+1(ξ )πn+1(x) if πn+1(x) ≤ 0,

Gmin,n+1(ξ , x) = {
Fmin,n+1(ξ )πn+1(x) if πn+1(x) > 0,
Fmax,n+1(ξ )πn+1(x) if πn+1(x) ≤ 0.

Proof. We have that

En(f ) =
b

∫
a

(f (x) − pn(x))Δx,

where pn ∈ 𝒫n is the Lagrange interpolation polynomial for the function f . Hence, by
Theorem 1.10, we get the desired result. This completes the proof.

2.4 σ-Error estimates

Now, we will evaluate the size of the error in the numerical integration formula (2.4).
We define the σ-error in (2.4) as follows:

Eσn(f ) =
b

∫
a

f (x)Δx −
n
∑
k=0

wσkf (xk).

Theorem 2.23. Let n ∈ ℕ, a, b ∈ 𝕋, a < b. Suppose that f : [a, b] → ℝ, f ∈ 𝒞n+1([a, b]).
Then

Eσn(f ) =
b

∫
a

f Δ
n+1
(ξ )

Πn+1
σn+1(ξ )

πσn+1(x)Δx,

or

b

∫
a

Gσmin,n+1(ξ , x)Δx ≤ Eσn(f ) ≤
b

∫
a

Gσmax,n+1(ξ , x)Δx,

where

Gσmax,n+1(ξ , x) = {
Fσmax,n+1(ξ )πσn+1(x) if πσn+1(x) > 0,
Fσmin,n+1(ξ )πσn+1(x) if πσn+1(x) ≤ 0,
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Gσmin,n+1(ξ , x) = {
Fσmin,n+1(ξ )πσn+1(x) if πσn+1(x) > 0,
Fσmax,n+1(ξ )πσn+1(x) if πσn+1(x) ≤ 0.

Proof. Observe that

Eσn(f ) =
b

∫
a

(f (x) − pσn(x))Δx,

where pσn ∈ 𝒫σ
n is the σ-Lagrange interpolation polynomial for the function f . Hence,

by Theorem 1.28, we get the expected σ-error estimate. This completes the proof.

2.5 Composite quadrature rules

In this section, we will derive the composite trapezoid and Simpson rules. The idea of
composite quadrature rules is to increase the number of nodes in the interval of inte-
gration and thus decompose it into a union of disjoint subintervals. Then the related
quadrature rule is applied on each of the subintervals. Naturally, this approach will
reduce the error in the computation of the approximate value of the integral.

Suppose that a, b ∈ 𝕋, a < b, and f : [a, b] → ℝ is a given continuous function.
Let

a = x0 < x1 < ⋅ ⋅ ⋅ < xn = b.

Then

b

∫
a

f (x)Δx =
n−1
∑
j=0

xj−1
∫
xj

f (x)Δx.

Now, applying the trapezoid rule, we find

xj+1
∫
xj

f (x)Δx ≈ 1
xj+1 − xj

(f (xj)h2(xj, xj+1) + f (xj+1)h2(xj+1, xj)), j ∈ {0, 1, . . . , n}.

Hence,

b

∫
a

f (x)Δx ≈
n−1
∑
j=0

1
xj+1 − xj

(f (xj)h2(xj, xj+1) + f (xj+1)h2(xj+1, xj)). (2.7)

Definition 2.24. The numerical integration formula (2.7) is said to be the composite
trapezoid rule.
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Example 2.25. Let 𝕋 = 2ℕ0 and f : 𝕋→ ℝ be defined by

f (t) = t + 1
t2 + t + 1

, t ∈ 𝕋.

Let also

1 = x0 < 4 = x1 < 16 = x2 = b.

Here σ(t) = 2t, t ∈ 𝕋, and h1(t, s) = t − s, t, s ∈ 𝕋. For a fixed s ∈ 𝕋, denote

f1(t) =
1
3
t2 − st, t ∈ 𝕋.

Then

f Δ1 (t) =
1
3
(σ(t) + t) − s = 1

3
(2t + t) − s = t − s = h1(t, s), t ∈ 𝕋,

and

h2(t, s) =
t

∫
s

h1(τ, s)Δτ =
t

∫
s

(τ − s)Δτ =
t

∫
s

f Δ1 (τ)Δτ = f1(τ)|
τ=t
τ=s

=
1
3
t2 − st − 1

3
s2 + s2 = t

2 + 2s2 − 3st
3
, t ∈ 𝕋.

Hence,

h2(x1, x0) = h2(4, 1) =
16 + 2 − 12

3
= 2,

h2(x0, x1) = h2(1, 4) =
1 + 32 − 12

3
= 7,

h2(x2, x1) = h2(16, 4) =
256 + 32 − 192

3
=
96
3
= 32,

h2(x1, x2) = h2(4, 16) =
16 + 512 − 192

3
=
336
3
= 112,

f (1) = 2
3
, f (4) = 5

21
, f (16) = 17

273
.

Thus,

16

∫
1

t + 1
t2 + t + 1

Δt ≈ 1
x1 − x0
(f (x0)h2(x0, x1) + f (x1)h2(x1, x0))

+
1

x2 − x1
(f (x1)h2(x1, x2) + f (x2)h2(x2, x1))

=
1
3
(
2
3
⋅ 7 + 5

21
⋅ 2) + 1

12
(
5
21
⋅ 112 + 17

273
⋅ 32)
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=
14
9
+
10
63
+
280
126
+
136
819

=
248
63
+
136
819
=
3360
819
=
160
39
.

Exercise 2.26. Let 𝕋 = {−1,− 13 ,−
1
7 ,0,

1
2 ,

1
3 ,

1
4 }. Using the composite trapezoid rule,

evaluate the integral

1
4

∫
−1

(
t2 + 1
t4 + 1
+ sin1(t,0))Δt.

Next, we derive the composite Simpson rule. Note that since the Simpson rule
requires 3 points, that is, a = x0 < x1 < x2 = b, we need to take an odd number of
points in the interval [a, b] including a and b. Suppose that

a = x0 < x1 < x2 < ⋅ ⋅ ⋅ < x2m = b.

Then

b

∫
a

f (x)Δx =
m
∑
j=1

x2j

∫
x2j−2 f (x)Δx.

Hence, using the Simpson rule, we find

b

∫
a

f (x)Δx ≈
m
∑
j=1
(

f (x2j−2)
(x2j−2 − x2j−1)(x2j−2 − x2j)

(−h2(x2j−2, x2j−1)h1(x2j−2, x2j)

+ H3(x2j−2, x2j−1) − H3(x2j, x2j−1))

− f (x2j−1)
H3(x2j, x2j−2)

(x2j−1 − x2j−2)(x2j−1 − x2j)

+
f (x2j)

(x2j − x2j−2)(x2j − x2j−1)
(h2(x2j, x2j−1)h1(x2j, x2j−2)

− H3(x2j−1, x2j−2) − H3(x2j, x2j−1))). (2.8)

Definition 2.27. The numerical integration formula (2.8) is said to be the composite
Simpson rule.

Example 2.28. Let 𝕋 = 2ℤ and [a, b] = [−10, 16]. Consider the integral ∫16−10 f (t)Δt. We
have σ(t) = t + 2 and μ(t) = t + 2 − t = 2, t ∈ 𝕋. Let

f1(t) =
t2

2
− t,
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f2(t) =
t3

3
− t2 + 2t

3
, t ∈ 𝕋.

We compute

f Δ1 (t) =
σ(t) + t

2
− 1 = 2t + 2

2
− 1 = t,

f Δ2 (t) =
(σ(t))2 + tσ(t) + t2

3
− (σ(t) + t) + 2

3

=
(t + 2)2 + t(t + 2) + t2

3
− (t + 2 + t) + 2

3

=
3t2 + 6t + 4

3
− 2t − 2 + 2

3
= t2, t ∈ 𝕋.

On this time scale, we have

h0(t, s) = 1,
h1(t, s) = t − s,

h2(t, s) =
t

∫
s

(τ − s)Δτ = f1(τ) − sτ|
τ=t
τ=s

= (
t2

2
− t − st) − (s

2

2
− s − s2)

=
t2

2
− (1 + s)t + s + s

2

2
, t, s ∈ 𝕋,

and

H3(t, s) =
t

∫
s

h2(σ(τ), s)Δτ

=
t

∫
s

(
(τ + 2)2

2
− (1 + s)(τ + 2) + s + s

2

2
)Δτ

=
t

∫
s

(
τ2

2
+ (1 − s)τ − s + s

2

2
)Δτ

=
f2(τ)
2
+ (1 − s)f1(τ) + (

s2

2
− s)τ|τ=tτ=s

=
t3

6
−
st2

2
+ (

s2

2
−
2
3
)t + 2s

3
−
s3

6
, t, s ∈ 𝕋.

Then for n = 2 and x0 = −10, x1 = 2, x2 = 16, the Simpson rule gives
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16

∫
−10

f (t)Δt ≈ S2(f )

=
f (−10)

(−10 − 2)(−10 − 16)
(−h2(−10, 2)h1(−10, 16) + H3(−10, 2) − H3(16, 2))

−
f (2)

(2 + 10)(2 − 16)
H3(16,−10)

+
f (16)

(16 + 10)(16 − 2)
(h2(16, 2)h1(16,−10) − H3(2,−10) − H3(16, 2))

For n = 4 and choosing x0 = −10, x1 = −4, x2 = 0, x3 = 8, x4 = 16, the composite
Simpson rule yields

16

∫
−10

f (t)Δt ≈ S4(f )

=
f (−10)

(−10 + 4)(−10 − 0)
(−h2(−10,−4)h1(−10,0) + H3(−10,−4) − H3(0,−4))

−
f (−4)

(−4 + 10)(−4 − 0)
H3(0,−10)

+
f (0)

(0 + 10)(0 + 4)
(h2(0,−4)h1(0,−10) − H3(−4,−10) − H3(0,−4))

+
f (0)

(0 − 8)(0 − 16)
(−h2(0, 8)h1(0, 16) + H3(0, 8) − H3(16, 8))

−
f (8)

(8 − 0)(8 − 16)
H3(16,0)

+
f (16)

(16 − 0)(16 − 8)
(h2(16, 8)h1(16,0) − H3(8,0) − H3(16, 8)).

Finally, for n = 6, choosing x0 = −10, x1 = −4, x2 = 0, x3 = 4, x4 = 8, x5 = 12, and
x6 = 16, the composite Simpson rule gives

16

∫
−10

f (t)Δt ≈ S6(f )

=
f (−10)

(−10 + 4)(−10 − 0)
(−h2(−10,−4)h1(−10,0) + H3(−10,−4) − H3(0,−4))

−
f (−4)

(−4 + 10)(−4 − 0)
H3(0,−10)

+
f (0)

(0 + 10)(0 + 4)
(h2(0,−4)h1(0,−10) − H3(−4,−10) − H3(0,−4))
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+
f (0)

(0 − 4)(0 − 8)
(−h2(0, 4)h1(0, 8) + H3(0, 4) − H3(8, 4))

−
f (4)

(4 − 0)(4 − 8)
H3(8,0)

+
f (8)

(8 − 0)(8 − 4)
(h2(8, 4)h1(8,0) − H3(4,0) − H3(8, 4))

+
f (8)

(8 − 12)(8 − 16)
(−h2(8, 12)h1(8, 16) + H3(8, 12) − H3(16, 12))

−
f (12)

(12 − 8)(12 − 16)
H3(16, 8)

+
f (16)

(16 − 8)(16 − 12)
(h2(16, 12)h1(16, 8) − H3(12, 8) − H3(16, 12)).

Let f (t) = √t2 + 1, t ∈ 𝕋. Then we compute the values

S2(√t2 + 1) = 149.7828, S4(√t2 + 1) = 177.4453, S6(√t2 + 1) = 176.5128.

On the other hand, the exact value of the integral is computed as

I =
16

∫
−10

√t2 + 1Δt =
7
∑
i=−5

μ(2i)f (2i) = 2
7
∑
i=−5

√(2i)2 + 1 = 176.3708.

Exercise 2.29. Let 𝕋 = 3ℕ0 ,

a = 1 = x0, x1 = 9, x2 = b = 81,

and suppose that f : 𝕋→ ℝ is defined by

f (t) = 1 + t − 3t
1 + t4
+ e2(t, 1), t ∈ 𝕋.

Using the composite Simpson rule, evaluate the integral ∫811 f (t)Δt.

2.6 σ-Composite quadrature rules

In a similar way, we can define the σ-composite trapezoid and Simpson rules. First,
we derive the σ-composite trapezoid rule. Suppose that a, b ∈ 𝕋, a < b, f : [a, b] → ℝ
is rd-continuous, n ∈ ℕ and that xj ∈ [a, b] ⊂ 𝕋, j ∈ {0, 1, . . . , n} are σ-distinct, i. e.,

a = x0 ≤ σ(x0) < x1 ≤ σ(x1) < ⋅ ⋅ ⋅ < xn ≤ σ(xn) = b.
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Then

b

∫
a

f (x)Δx =
σ(x1)

∫
x0

f (x)Δx +
σ(x2)

∫
σ(x1)

f (x)Δx + ⋅ ⋅ ⋅ +
σ(xn)

∫
σ(xn−1) f (x)Δx

=

σ(x1)

∫
x0

f (x)Δx + (
σ(x2)

∫
x1

f (x)Δx −
σ(x1)

∫
x1

f (x)Δx)

+ ⋅ ⋅ ⋅ + (

σ(xn)

∫
xn−1 f (x)Δx −

σ(xn−1)
∫
xn−1 f (x)Δx)

=
n−1
∑
j=0

σ(xj+1)
∫
xj

f (x)Δx −
n−1
∑
j=0

σ(xj)

∫
xj

f (x)Δx

=
n−1
∑
j=0

σ(xj+1)
∫
xj

f (x)Δx −
n−1
∑
j=0

μ(xj)f (xj).

We apply the σ-trapezoid rule and obtain

b

∫
a

f (x)Δx ≈
n−1
∑
j=0

1
σ(xj+1) − σ(xj)

(f (xj)g2(xj, σ(xj+1)) + f (xj+1)g2(σ(xj+1), σ(xj)))

−
n−1
∑
j=0

μ(xj)f (xj). (2.9)

Definition 2.30. The numerical integral formula (2.9) is said to be the σ-composite
trapezoid rule.

Example 2.31. Let

𝕋 = {0, 1
8
,
1
6
,
1
4
,
1
2
, 1},

a = x0 = 0, x1 =
1
6
, x2 =

1
2
, b = 1.

We have

x0 = 0 < σ(x0) =
1
8
< x1 =

1
6
< σ(x1) =

1
4
< x2 =

1
2
< σ(x2) = 1 = b.

Let f (t) = t, t ∈ 𝕋. We will evaluate the integral ∫ba f (t)Δt using the σ-composite trape-
zoid rule. We have
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g2(x0, σ(x1)) =
x0

∫
σ(x1)

(σ(t) − σ(x1))Δt

=

1
8

∫
1
4

(σ(t) − 1
4
)Δt

= −

1
4

∫
1
8

(σ(t) − 1
4
)Δt

= − μ( 1
8
)(σ( 1

8
) −

1
4
) − μ( 1

6
)(σ( 1

6
) −

1
4
)

= − (
1
6
−
1
8
)(

1
6
−
1
4
) − (

1
4
−
1
6
)(

1
4
−
1
4
)

= −
1
24
(−

1
12
) =

1
288
,

g2(σ(x1), σ(x0)) =
σ(x1)

∫
σ(x0)

(σ(t) − σ(x0))Δt

=

1
4

∫
1
8

(σ(t) − 1
8
)Δt

= μ( 1
8
)(σ( 1

8
) −

1
8
) + μ( 1

6
)(σ( 1

6
) −

1
8
)

= (
1
6
−
1
8
)(

1
6
−
1
8
) + (

1
4
−
1
6
)(

1
4
−
1
8
)

=
1
576
+

1
12
(
1
8
) =

1
576
+

1
96
=

7
576
,

g2(x1, σ(x2)) =
x1

∫
σ(x2)

(σ(t) − σ(x2))Δt

=

1
6

∫
1

(σ(t) − 1)Δt

= −
1

∫
1
6

(σ(t) − 1)Δt

= − μ( 1
6
)(σ( 1

6
) − 1) − μ( 1

4
)(σ( 1

4
) − 1)
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− μ( 1
2
)(σ( 1

2
) − 1)

= − (
1
4
−
1
6
)(

1
4
− 1) − ( 1

2
−
1
4
)(

1
2
− 1) − (1 − 1

2
)(1 − 1)

= −
1
12
(−

3
4
) −

1
4
(−

1
2
) =

1
16
+
1
8
=

3
16
,

g2(σ(x2), σ(x1)) =
σ(x2)

∫
σ(x1)

(σ(t) − σ(x1))Δt

=
1

∫
1
4

(σ(t) − 1
4
)Δt

= μ( 1
4
)(σ( 1

4
) −

1
4
) + μ( 1

2
)(σ( 1

2
) −

1
4
)

= (
1
2
−
1
4
)(

1
2
−
1
4
) + (1 − 1

2
)(1 − 1

4
)

=
1
16
+
3
8
=

7
16
,

f (0) = 0, f( 1
6
) =

1
6
, f( 1

2
) =

1
2
.

and the σ-composite trapezoid rule, we get

1

∫
0

tΔt ≈ 1
σ(x1) − σ(x0)

(f (x0)g2(x0, σ(x1)) + f (x1)g2(σ(x1), σ(x0)))

+
1

σ(x2) − σ(x1)
(f (x1)g2(x1, σ(x2)) + f (x2)g2(σ(x2), σ(x1)))

− μ(x1)f (x1)

=
1
1
4
(
1
6
⋅
7
576
) +

1
1 − 1

4
(
1
6
⋅
3
16
+
1
2
⋅
7
16
) −

1
4
⋅
1
6

=
14
1728
+
4
3
(
3
96
+

7
32
) −

1
24

=
14
1728
+
4
3
(
1
4
) −

1
24
=

14
1728
+

7
24
=
259
864
.

Exercise 2.32. Let

𝕋 = {−2,−3
2
,−1,− 5

6
,−

2
3
,−

1
2
,−

1
3
,−

1
8
,0},

a = −2 = x0, x1 = −1, x2 = −
1
8
, b = 0,
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and suppose that f : 𝕋→ ℝ is defined by

f (t) = t2 − t + 1
t4 + t2 + 1

+ t, t ∈ 𝕋.

Using the σ-composite trapezoid rule, evaluate the integral ∫ba f (t)Δt.

Next, we will obtain the σ-composite Simpson rule. Letm ∈ ℕ,m ≥ 2, and

a = x0 ≤ σ(x0) < x1 ≤ σ(x1) < ⋅ ⋅ ⋅ < x2m ≤ σ(x2m) = b.

Then

b

∫
a

f (x)Δx =
σ(x2)

∫
x0

f (x)Δx +
σ(x4)

∫
σ(x2)

f (x)Δx + ⋅ ⋅ ⋅ +
σ(x2m)

∫
σ(x2m−2) f (x)Δx

=

σ(x2)

∫
x0

f (x)Δx + (
σ(x4)

∫
x2

f (x)Δx −
σ(x2)

∫
x2

f (x)Δx)

+ ⋅ ⋅ ⋅ + (

σ(x2m)

∫
x2m−2 f (x)Δx −

σ(x2m−2)
∫

x2m−2 f (x)Δx)

=
m
∑
j=1

σ(x2j)

∫
x2j−2 f (x)Δx −

m
∑
j=1

σ(x2j−2)
∫

x2j−2 f (x)Δx

=
m
∑
j=1

σ(x2j)

∫
x2j−2 f (x)Δx −

m
∑
j=1

μ(x2j−2)f (x2j−2).

Now, applying the σ-Simpson rule to each integral in the first sum, we arrive at

b

∫
a

f (x)Δx ≈
m
∑
j=1

f (x2j−2)
(σ(x2j−2) − σ(x2j−1))(σ(x2j−2) − σ(x2j))

× (−g2(x2j−2, σ(x2j−1))g1(x2j−2, σ(x2j))

+ G3(x2j−2, σ(x2j−1)) − G3(σ(x2j), σ(x2j−1)))

−
f (x2j−1)

(σ(x2j−1) − σ(x2j−2))(σ(x2j−1) − σ(x2j))
G3(σ(x2j), σ(x2j−2))

+
f (x2j)

(σ(x2j) − σ(x2j−2))(σ(x2j) − σ(x2j−1))

× (g1(σ(x2j), σ(x2j−2))g2(σ(x2j), σ(x2j−1))
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− G3(σ(x2j−1), σ(x2j−2)) − G3(σ(x2j), σ(x2j−1)))

−
m
∑
j=1

μ(x2j−2)f (x2j−2). (2.10)

Definition 2.33. The numerical integration formula (2.10) will be called the σ-com-
posite Simpson rule.

In the following example, we will apply the σ-composite Simpson rule to approx-
imately find the integral in Example 2.28.

Example 2.34. Let 𝕋 = 2ℤ and [a, b] = [−10, 16]. We consider the integral ∫16−10 f (t)Δt,
where f is as in Example 2.28. We have σ(t) = t + 2 and μ(t) = t + 2 − t = 2, t ∈ 𝕋. For
the functions

f1(t) =
t2

2
− t, f2(t) =

t3

3
− t2 + 2t

3
, t ∈ 𝕋,

we have computed

f Δ1 (t) = t, f Δ2 (t) = t
2, t ∈ 𝕋,

in Example 2.28. We also compute

g0(t, s) = 1,
g1(t, s) = t − s,

g2(t, s) =
t

∫
s

(σ(τ) − s)Δτ

=
t

∫
s

(τ + 2 − s)Δτ

= (
t2

2
− t) + (2 − s)τ|ts

= (
t2

2
− t − st) − (s

2

2
− s − s2)

=
t2

2
+ (1 − s)t − s + s

2

2
, t, s ∈ 𝕋,

and

G3(t, s) =
t

∫
s

g2(τ, s)Δτ

=
t

∫
s

(
τ2

2
+ (1 − s)τ + s + s

2

2
− s)Δτ
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=
τ3

6
−
τ2

2
+
τ
3
+ (1 − s)(τ

2

2
− τ) + (s

2

2
− s)τ|τ=tτ=s

=
t3

6
−
st2

2
+ (

s2

2
−
2
3
)t + 2s

3
−
s3

6
, t, s ∈ 𝕋.

Then for m = 1, taking a = x0 = −10, σ(x0) = −8, x1 = 2, σ(x1) = 4, x2 = 14, and
σ(x2) = 16 = b, the σ-Simpson rule gives

16

∫
−10

f (t)Δt ≈ σS2(f )

=
f (−10)

(−8 − 4)(−8 − 16)
(−g2(−10, 4)g1(−10, 16) + G3(−10, 4) − G3(16, 4))

−
f (2)

(4 + 8)(4 − 16)
G3(16,−8)

+
f (14)

(16 + 8)(16 − 4)
(g2(16, 4)g1(16,−8) − G3(4,−8) − G3(16, 4)).

Form = 2, choosing

x0 = −10, σ(x0) = −8, x1 = −6, σ(x1) = −4, x2 = 0, σ(x2) = 2,

x3 = 8, σ(x3) = 10, x4 = 14, σ(x4) = 16,

the σ-composite Simpson rule becomes

16

∫
−10

f (t)Δt ≈ σS4(f )

=
f (−10)

(−8 + 4)(−8 − 2)
(−g2(−10,−4)g1(−10, 2) + G3(−10,−4) − G3(2,−4))

−
f (−6)

(−4 + 8)(−4 − 2)
G3(2,−8)

+
f (0)

(2 + 8)(2 + 4)
(g2(2,−4)g1(2,−8) − G3(−4,−8) − G3(2,−4))

+
f (0)

(2 − 10)(2 − 16)
(−g2(0, 10)g1(0, 16) + G3(0, 10) − G3(16, 10))

−
f (8)

(10 − 2)(10 − 16)
G3(16, 2)

+
f (14)

(16 − 2)(16 − 10)
(g2(16, 10)g1(16, 2) − G3(10, 2) − G3(16, 10)) − 2f (0).

Finally, form = 3, we choose
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x0 = −10, σ(x0) = −8, x1 = −6, σ(x1) = −4,
x2 = −2, σ(x2) = 0, x3 = 2, σ(x3) = 4,
x4 = 6, σ(x4) = 8, x5 = 10, σ(x5) = 12,
x6 = 14, σ(x6) = 16,

and then the σ-composite Simpson rule is written as

16

∫
−10

f (t)Δt ≈ σS6(f )

=
f (−10)

(−8 + 4)(−8 − 0)
(−g2(−10,−4)g1(−10,0) + G3(−10,−4) − G3(0,−4))

−
f (−6)

(−4 + 8)(−4 − 0)
G3(0,−8)

+
f (−2)

(0 + 8)(0 + 4)
(g2(0,−4)g1(0,−8) − G3(−4,−8) − G3(2,−4))

+
f (−2)

(0 − 4)(0 − 8)
(−g2(−2, 4)g1(−2, 8) + G3(−2, 4) − G3(8, 4))

−
f (2)

(4 − 0)(4 − 8)
G3(8,0)

+
f (6)

(8 − 0)(8 − 4)
(g2(8, 4)g1(8,0) − G3(4,0) − G3(8, 4))

+
f (6)

(8 − 12)(8 − 16)
(−g2(6, 12)g1(6, 16) + G3(6, 12) − G3(16, 12))

−
f (10)

(12 − 8)(12 − 16)
G3(16, 8)

+
f (14)

(16 − 8)(16 − 12)
(g2(16, 12)g1(16, 8) − G3(12, 8) − G3(16, 12))

− 2(f (−2) + f (6)).

As in Example 2.28 we take f (t) = √t2 + 1, t ∈ 𝕋. Then the approximate values of
∫
16
−10
√t2 + 1Δt are obtained as

σS2(√t2 + 1) = 157.2944,

σS4(√t2 + 1) = 178.6610,

σS6(√t2 + 1) = 177.0139.

Recall that the exact value of the integral is

I =
16

∫
−10

√1 + t2Δt = 176.3708.
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Exercise 2.35. Let 𝕋 = 2ℤ,

a = x0 = 0, x1 = 4, x2 = 8, x3 = 12, x4 = 16 = b,

and suppose that f : 𝕋→ ℝ is defined by

f (t) = 1 + t + t2 + e2(t,0), t ∈ 𝕋.

Using the σ-composite Simpson rule, evaluate the integral ∫ba f (t)Δt.

2.7 The Euler–Maclauren expansion

The Euler–Maclauren expansion is a formulawhich represents the difference between
a definite integral and its approximation by a composite trapezoid rule. It is employed
in the derivation of the so-called Romberg integration. In this section we prove the
Euler– Maclauren expansion for an arbitrary time scale.

Theorem 2.36. Let a, b ∈ 𝕋, a < b, k,m ∈ ℕ, xj ∈ 𝕋, j ∈ {0, 1, . . . ,m},

a = x0 < x1 < ⋅ ⋅ ⋅ < xm = b,

f ∈ 𝒞2krd ([a, b]) and let T(m) be the result of the approximation of the integral I =
∫
b
a f (x)Δx by the composite trapezoid rule with m subintervals [xj−1, xj], j ∈ {1, . . . ,m}.
Then

I − T(m) =
m
∑
j=1
(

1
h1(xj, xj−1)

2k−1
∑
l=1
((−1)l(Hl+1(xj, xj−1)f

Δl (xj) + Hl+1(xj−1, xj)f
Δl (xj−1))

+

xj

∫
xj−1 (H2k+1(σ(τ), xj−1) − H2k+1(σ(τ), xj))f

Δ2k (τ)Δτ)). (2.11)

Definition 2.37. The formula (2.11) is said to be the Euler–Maclauren expansion.

Proof. Fix j ∈ {1, . . . ,m}. Then, using the trapezoid rule, we find

xj

∫
xj−1 f (x)Δx −

1
h1(xj, xj−1)

(f (xj−1)h2(xj−1, xj) + f (xj)h2(xj, xj−1))

=
1

h1(xj, xj−1)
(

xj

∫
xj−1 h1(τ, xj−1)f (τ)Δτ −

xj

∫
xj−1 h1(τ, xj)f (τ)Δτ)

−
1

h1(xj, xj−1)
(f (xj−1)h2(xj−1, xj) + f (xj)h2(xj, xj−1))
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=
1

h1(xj, xj−1)
(

xj

∫
xj−1 h

Δ
2 (τ, xj−1)f (τ)Δτ −

xj

∫
xj−1 h

Δ
2 (τ, xj)f (τ)Δτ)

−
1

h1(xj, xj−1)
(f (xj−1)h2(xj−1, xj) + f (xj)h2(xj, xj−1))

=
1

h1(xj, xj−1)
(f (xj−1)h2(xj−1, xj) + f (xj)h2(xj, xj−1))

−
1

h1(xj, xj−1)

xj

∫
xj−1 (h2(σ(τ), xj−1) − h2(σ(τ), xj))f

Δ(τ)Δτ

−
1

h1(xj, xj−1)
(f (xj−1)h2(xj−1, xj) + f (xj)h2(xj, xj−1))

= −
1

h1(xj, xj−1)

xj

∫
xj−1 (H

Δ
3 (τ, xj−1) − H

Δ
3 (τ, xj))f

Δ(τ)Δτ

= −
1

h1(xj, xj−1)
(H3(xj, xj−1)f

Δ(xj) + H3(xj−1, xj)f
Δ(xj−1))

+
1

h1(xj, xj−1)

xj

∫
xj−1 (H

Δ
4 (τ, xj−1) − H

Δ
4 (τ, xj))f

Δ2 (τ)Δτ

= −
1

h1(xj, xj−1)
(H3(xj, xj−1)f

Δ(xj) + H3(xj−1, xj)f
Δ(xj−1))

+
1

h1(xj, xj−1)
(H4(xj, xj−1)f

Δ2 (xj) + H4(xj−1, xj)f
Δ2 (xj−1))

−
1

h1(xj, xj−1)

xj

∫
xj−1 (H

Δ
5 (τ, xj−1) − H

Δ
5 (τ, xj))f

Δ3 (τ)Δτ

= ⋅ ⋅ ⋅

=
1

h1(xj, xj−1)

2k−1
∑
l=1
((−1)l(Hl+1(xj, xj−1)f

Δl (xj) + Hl+1(xj−1, xj)f
Δl (xj−1))

+

xj

∫
xj−1 (H2k+1(σ(τ), xj−1) − H2k+1(σ(τ), xj))f

Δ2k (τ)Δτ).

Summing over all the subintervals [xj−1, xj], j ∈ {1, . . . ,m}, gives the required result.
This completes the proof.

2.8 The σ-Euler–Maclauren Expansion
The Euler–Maclauren expansion can be also given for the σ-composite trapezoid rule.
In this section, we give the σ-Euler–Maclauren expansion on an arbitrary time scale
and discuss its proof.
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Theorem 2.38. Let a, b ∈ 𝕋, a < b, k,m ∈ ℕ, xj ∈ 𝕋, j ∈ {0, 1, . . . ,m},

a = x0 ≤ σ(x0) < x1 ≤ σ(x1) < ⋅ ⋅ ⋅ < xm ≤ σ(xm) = b,

f ∈ 𝒞2krd ([a, b]), and let Tσ(m) be the result of the approximation of the integral I =
∫
b
a f (x)Δx by the σ-composite trapezoid rule with m subintervals [xj−1, xj], j ∈ {1, . . . ,m}.
Then

I − Tσ(m) =
m
∑
j=1

μ(xj)
σ(xj) − σ(xj−1)

f Δ(xj)

+
m
∑
j=1
(

1
g1(σ(xj), σ(xj−1))

2k−1
∑
l=1
((−1)l(gl+1(σ(xj), σ(xj−1))f

Δl(σ(xj))

+ gl+1(xj−1, σ(xj))f
Δl (xj−1))

+

σ(xj)

∫
xj−1 (g2k+1(σ(τ), σ(xj−1)) − g2k+1(σ(τ), σ(xj)))f

Δ2k (τ)Δτ)). (2.12)

Definition 2.39. The formula (2.12) is said to be the σ-Euler–Maclauren expansion.

Proof. Take j ∈ {1, . . . ,m} arbitrarily. Applying the σ-trapezoid rule, we obtain

σ(xj)

∫
xj−1 f (x)Δx −

1
g1(σ(xj), σ(xj−1))

(f (xj−1)g2(xj−1, σ(xj)) + f (xj)g2(σ(xj), σ(xj−1)))

=
1

g1(σ(xj), σ(xj−1))

× (

σ(xj)

∫
xj−1 g1(σ(τ), σ(xj−1))f (τ)Δτ −

σ(xj)

∫
xj−1 g1(σ(τ), σ(xj))f (τ)Δτ)

−
1

g1(σ(xj), σ(xj−1))
(f (xj−1)g2(xj−1, σ(xj)) + f (xj)g2(σ(xj), σ(xj−1)))

=
1

g1(σ(xj), σ(xj−1))

× (

σ(xj)

∫
xj−1 g

Δ
2 (τ, σ(xj−1))f (τ)Δτ −

σ(xj)

∫
xj−1 g

Δ
2 (τ, σ(xj))f (τ)Δτ)

−
1

g1(σ(xj), σ(xj−1))
(f (xj−1)g2(xj−1, σ(xj)) + f (xj)g2(σ(xj), σ(xj−1)))

=
1

g1(σ(xj), σ(xj−1))
(f (xj−1)g2(xj−1, σ(xj)) + f (σ(xj))g2(σ(xj), σ(xj−1)))

−
1

g1(σ(xj), σ(xj−1))

σ(xj)

∫
xj−1 (g2(σ(τ), σ(xj−1)) − g2(σ(τ), σ(xj)))f

Δ(τ)Δτ
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−
1

g1(σ(xj), σ(xj−1))
(f (xj−1)g2(xj−1, σ(xj)) + f (xj)g2(σ(xj), σ(xj−1)))

=
μ(xj)

σ(xj) − σ(xj−1)
f Δ(xj)

−
1

g1(σ(xj), σ(xj−1))

σ(xj)

∫
xj−1 (g

Δ
3 (τ, σ(xj−1)) − g

Δ
3 (τ, σ(xj)))f

Δ(τ)Δτ

=
μ(xj)

σ(xj) − σ(xj−1)
f Δ(xj)

−
1

g1(σ(xj), σ(xj−1))
(g3(σ(xj), σ(xj−1))f

Δ(σ(xj)) + g3(xj−1, σ(xj))f
Δ(xj−1))

+
1

g1(σ(xj), σ(xj−1))

σ(xj)

∫
xj−1 (g

Δ
4 (τ, σ(xj−1)) − g

Δ
4 (τ, σ(xj)))f

Δ2 (τ)Δτ

=
μ(xj)

σ(xj) − σ(xj−1)
f Δ(xj)

−
1

g1(σ(xj), σ(xj−1))
(g3(σ(xj), σ(xj−1))f

Δ(σ(xj)) + g3(xj−1, σ(xj))f
Δ(xj−1))

+
1

g1(σ(xj), σ(xj−1))
(g4(σ(xj), σ(xj−1))f

Δ2(σ(xj)) + g4(xj−1, σ(xj))f
Δ2 (xj−1))

−
1

g1(σ(xj), σ(xj−1))

σ(xj)

∫
xj−1 (g

Δ
5 (τ, σ(xj−1)) − g

Δ
5 (τ, σ(xj)))f

Δ3 (τ)Δτ.

Continuing in the same way, we get

σ(xj)

∫
xj−1 f (x)Δx −

1
g1(σ(xj), σ(xj−1))

(f (xj−1)g2(xj−1, σ(xj)) + f (xj)g2(σ(xj), σ(xj−1)))

= ⋅ ⋅ ⋅

=
μ(xj)

σ(xj) − σ(xj−1)
f Δ(xj) +

1
g1(σ(xj), σ(xj−1))

×
2k−1
∑
l=1
((−1)l(gl+1(σ(xj), σ(xj−1))f

Δl (xj) + gl+1(xj−1, σ(xj))f
Δl (xj−1))

+

σ(xj)

∫
xj−1 (g2k+1(σ(τ), σ(xj−1)) − g2k+1(σ(τ), σ(xj)))f

Δ2k (τ)Δτ).

Summing over all the subintervals [xj−1, xj], j ∈ {1, . . . ,m}, gives the desired result. This
completes the proof.
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2.9 Construction of Gauss quadrature rules

From the classical numerical analysis it is known that the Gauss quadrature rules can
be defined so that the numerical integration provides an exact result whenever the
integrand function is a polynomial of highest possible degree. In this sense, both the
nodes and weights are determined from this requirement. Below, we derive the Gauss
quadrature rule for an arbitrary time scale.

Let a, b ∈ 𝕋, a < b, f : [a, b] → ℝ, w : [a, b] → [0,∞), f ∈ 𝒞1rd([a, b]), w ∈
𝒞rd([a, b]). We wish to construct a quadrature formula for the approximate evaluation
of the integral

b

∫
a

w(x)f (x)Δx.

Suppose that n ∈ ℕ, xj ∈ [a, b] ⊂ 𝕋, j ∈ {0, 1, . . . , n}, and

a = x0 ≤ σ(x0) < x1 ≤ σ(x1) < ⋅ ⋅ ⋅ < xn ≤ σ(xn) = b.

Define the polynomials

Pj(x) = (1 −
MΔ

j (xj)Lj(xj) +Mj(σ(xj))LΔj (xj)
Mj(σ(xj))Lj(σ(xj))

(x − xj))Mj(x)Lj(x),

Kj(x) =
x − xj

Mj(σ(xj))Lj(σ(xj))
Mj(x)Lj(x), j ∈ {0, 1, . . . , n}, x ∈ [a, b].

where the polynomials Mj, Lj, j ∈ {0, 1, . . . , n}, are defined as in Chapter 1. Then the
Hermite interpolation polynomial of degree 2n + 1 for the function f is given by the
expression

p2n+1(x) =
n
∑
j=0
(Pj(x)f (xj) + Kj(x)f

Δ(xj)), x ∈ [a, b].

Thus,

b

∫
a

w(x)f (x)Δx ≈
b

∫
a

w(x)p2n+1(x)Δx

=
b

∫
a

w(x)(
n
∑
j=0
(Pj(x)f (xj) + Kj(x)f

Δ(xj)))Δx

=
n
∑
j=0
(

b

∫
a

w(x)Pj(x)Δx)f (xj) +
n
∑
j=0
(

b

∫
a

w(x)Kj(x)Δx)f
Δ(xj).
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Let

Wj =
b

∫
a

w(x)Pj(x)Δx,

Vj =
b

∫
a

w(x)Kj(x)Δx, j ∈ {0, 1, . . . , n}.

Therefore,

b

∫
a

w(x)f (x)Δx ≈
n
∑
j=0
(Wjf (xj) + Vjf

Δ(xj)). (2.13)

Now we take the function w so that Vj ≡ 0, j ∈ {0, 1, . . . , n}. Such a function and time
scale exist. We demonstrate the Gauss quadrature rule in the following example in
which we take a general time scale.

Example 2.40. Let

𝕋 = {0, 1
8
,
1
6
,
1
5
,
1
4
,
1
3
,
1
2
, 1},

a = x0 = 0, x1 =
1
6
, x2 =

1
4
, x3 =

1
2
, b = σ(x3) = 1,

w(x) = (x − 1
8
)(x − 1

5
)(x − 1

3
)sign((x − 1

8
)(x − 1

5
)(x − 1

3
)), x ∈ [0, 1].

Note that

Kj(xk) = 0, j, k ∈ {0, 1, 2, 3},

w( 1
8
) = w( 1

5
) = w( 1

3
) = 0.

Thus,

1

∫
0

w(x)Kj(x)Δx = μ(0)w(0)Kj(0) + μ(
1
8
)w( 1

8
)Kj(

1
8
)

+ μ( 1
6
)w( 1

6
)Kj(

1
6
) + μ( 1

4
)w( 1

4
)Kj(

1
4
)

+ μ( 1
3
)w( 1

3
)Kj(

1
3
) + μ( 1

2
)w( 1

2
)Kj(

1
2
)

= 0, j ∈ {0, 1, 2, 3}.
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Then, the formula (2.13) takes the form

b

∫
a

w(x)f (x)Δx ≈
n
∑
j=0

Wjf (xj). (2.14)

Definition 2.41. The numerical integration formula (2.14) is said to be the Gauss
quadrature rule, the quantitiesWj, j ∈ {0, 1, . . . , n}, are said to be quadrature weights.

Example 2.42. Let 𝕋 = {0, 14 ,
1
3 , 1} and

a = x0 = 0, x1 =
1
3
, σ(x1) = 1 = b, w(x) = 1 − x, f (x) = x, x ∈ [0, 1].

We will evaluate

b

∫
a

w(x)f (x)Δx,

using the Gauss quadrature rule. We have

L0(x) =
x − x1
x0 − x1

= −3x + 1, L0(x0) = 1,

LΔ0(x) = −3, L0(σ(x0)) = L0(
1
4
) = −

3
4
+ 1 = 1

4
,

L1(x) =
x − x0
x1 − x0

= 3x, L1(x1) = 1,

LΔ1 (x) = 3, L1(σ(x1)) = L1(1) = 3,

M0(x) =
x − σ(x1)
x0 − σ(x1)

= −x + 1, MΔ
0 (x) = −1,

M0(σ(x0)) = −
1
4
+ 1 = 3

4
, M1(x) =

x − σ(x0)
x1 − σ(x0)

=
x − 1

4
1
3 −

1
4
= 12x − 3,

MΔ
1 (x) = 12, M1(σ(x1)) = 12 − 3 = 9,

Moreover,

P0(x) = (1 −
MΔ

0 (x0)L0(x0) +M0(σ(x0))LΔ0(x0)
M0(σ(x0))L0(σ(x0))

(x − x0))M0(x)L0(x)

= (1 −
−1 + 3

4 (−3)
3
4 ⋅

1
4

x)(1 − x)(1 − 3x)

= (1 −
− 134
3
16

x)(1 − x)(1 − 3x)

= (1 − 52
3
x)(1 − x)(1 − 3x),
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P1(x) = (1 −
MΔ

1 (x1)L1(x1) +M1(σ(x1))LΔ1 (x1)
M1(σ(x1))L1(σ(x1))

(x − x1))M1(x)L1(x)

= (1 − 12 + 9 ⋅ 3
9 ⋅ 3
(x − 1

3
))(12x − 3)(3x)

= (1 − 13
9
(x − 1

3
))(12x − 3)(3x)

= 3x(12x − 3) − 13x(x − 1
3
)(4x − 1), x ∈ [0, 1],

P1(0) = 0, P1(
1
4
) = 0, P( 1

3
) = 1,

w(0) = 1, w( 1
4
) =

3
4
, w( 1

3
) =

2
3
,

μ( 1
4
) = σ( 1

4
) −

1
4
=
1
3
−
1
4
=

1
12
, μ( 1

3
) = σ( 1

3
) −

1
3
= 1 − 1

3
=
2
3
.

Hence,

1

∫
0

(1 − x)xΔx ≈ f (x0)
1

∫
0

w(x)P0(x)Δx + f (x1)
1

∫
0

w(x)P1(x)Δx

=
1
3

1

∫
0

w(x)P1(x)Δx

=
1
3
μ(0)w(0)P1(0) +

1
3
μ( 1

4
)w( 1

4
)P1(

1
4
)

+
1
3
μ( 1

3
)w( 1

3
)P1(

1
3
)

=
1
3
⋅
2
3
⋅
2
3
=

4
27
.

Exercise 2.43. Let

𝕋 = {−1,− 2
3
,−

1
2
,0, 1

3
,
2
3
},

a = x0 = −1, x1 = −
1
2
, x2 =

1
3
, b = 2

3
,

w(x) =

x3 − 4

9
x

, f (x) = 1 + x

1 + x + x2
, x ∈ 𝕋.

Using the Gauss quadrature rule, evaluate

b

∫
a

w(x)f (x)Δx,
b

∫
a

(w(x))2f (x)Δx,
b

∫
a

(w(x))3f (x)Δx.
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2.10 Error estimation for Gauss quadrature rules

Now,wegive the error estimate for the approximationof an integral by aGaussquadra-
ture rule. This estimate employs the polynomials used in the error estimates in the
polynomial interpolation discussed in Chapter 1.

Let a, b, f , w, xj, j ∈ {0, 1, . . . , n}, be as in Section 2.9. From Section 1.3, we have

Gmin,2n+2(ξ ) ≤
f (x) − p2n+1(x)
πn+1(x)ζn+1(x)

≤ Gmax,2n+2(ξ )

for some ξ = ξ (x) ∈ (a, b), x ∈ [a, b]. Observe that,

sign(πn+1(x)) = sign(ζn+1(x)), x ∈ [a, b].

Then, for x ∈ [a, b],

Gmin,2n+2(ξ )πn+1(x)ζn+1(x) ≤ f (x) − p2n+1(x) ≤ Gmax,2n+2(ξ )πn+1(x)ζn+1(x). (2.15)

Next,

b

∫
a

w(x)f (x)Δx −
n
∑
j=0

Wjf (xj) =
b

∫
a

w(x)(f (x) − p2n+1(x))Δx.

Now, applying (2.15), we arrive at

b

∫
a

w(x)Gmin,2n+2(ξ )πn+1(x)ζn+1(x)Δx ≤
b

∫
a

w(x)f (x)Δx −
n
∑
j=0

Wjf (xj)

≤
b

∫
a

w(x)Gmax,2n+2(ξ )πn+1(x)ζn+1(x)Δx.

2.11 σ-Gauss quadrature rules

While working on time scales, one can use the σ-Gauss quadrature rule as an alter-
native to the Gauss quadrature rule. We define the σ-Gauss quadrature rule in this
section.

Throughout this section, suppose that σ is delta differentiable. Let a, b ∈ 𝕋, a < b,
f : [a, b] → ℝ, w : [a, b] → [0,∞), f ∈ 𝒞1rd([a, b]), w ∈ 𝒞rd([a, b]). We wish to construct
a quadrature formula for the approximate evaluation of the integral

b

∫
a

w(x)f (x)Δx.
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Suppose that n ∈ ℕ, xj ∈ 𝕋, j ∈ {0, 1, . . . , n}, and

a = x0 ≤ σ(x0) < x1 ≤ σ(x1) < ⋅ ⋅ ⋅ < xn ≤ σ(xn) = b.

Define the polynomials

Pσj(x) = (1 −
MΔ

j (xj) +Mj(σ(xj))LΔj (xj)
σΔ(xj)Mj(σ(xj))Lj(σ(xj))

(σ(x) − σ(xj)))Mj(x)Lj(x),

Kσj(x) =
σ(x) − σ(xj)

σΔ(xj)Mj(σ(xj))Lj(σ(xj))
Mj(x)Lj(x), x ∈ [a, b], j ∈ {0, 1, . . . , n},

where the polynomials Lj and Mj are defined as in Chapter 1. Then the σ-Hermite in-
terpolation polynomial of degree 2n+ 1 for the function f is given in the following way.

pσ2n+1(x) =
n
∑
j=0
(Pσj(x)f (xj) + Kσj(x)f

Δ(xj)), x ∈ [a, b].

Thus,

b

∫
a

w(x)f (x)Δx ≈
b

∫
a

w(x)pσ2n+1(x)Δx

=
b

∫
a

w(x)(
n
∑
j=0
(Pσj(x)f (xj) + Kσj(x)f

Δ(xj)))Δx

=
n
∑
j=0
(

b

∫
a

w(x)Pσj(x)Δx)f (xj) +
n
∑
j=0
(

b

∫
a

w(x)Kσj(x)Δx)f
Δ(xj).

Set

Wσj =
b

∫
a

w(x)Pσj(x)Δx,

Vσj =
b

∫
a

w(x)Kσj(x)Δx, j ∈ {0, 1, . . . , n}.

Therefore

b

∫
a

w(x)f (x)Δx ≈
n
∑
j=0
(Wσjf (xj) + Vσjf

Δ(xj)). (2.16)

Now we take the function w so that Vσj ≡ 0, j ∈ {0, 1, . . . , n}. Thus, (2.16) takes the form
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b

∫
a

w(x)f (x)Δx ≈
n
∑
j=0

Wσjf (xj). (2.17)

Definition 2.44. The numerical integration formula (2.17) is said to be the σ-Gauss
quadrature rule and the quantitiesWσj, j ∈ {0, 1, . . . , n}, are said to be the σ-quadrature
weights.

Exercise 2.45. Let 𝕋 = {0, 13 ,
5
6 , 1, 3, 7, 11, 12},

a = x0 = 0, x1 =
5
6
, x2 = 3, x3 = 11, b = 12,

and consider

f (t) = t + t2, w(t) = (t − 1
3
)
2
(t − 1)2(t − 7)2(t − 12)2, t ∈ 𝕋.

Using the σ-Gauss quadrature rule, evaluate the integrals

b

∫
a

w(t)f (t)Δt,
b

∫
a

(w(t))2f (t)Δt.

2.12 Error estimation for σ-Gauss quadrature rules

We conclude this chapter with the error estimate in the approximation of a given in-
tegral by a σ-Gauss quadrature rule. Let σ, a, b, f , w, xj, j ∈ {0, 1, . . . , n}, be as in the
previous section. From Section 1.4, we have

Gmin,2n+2(ξ ) ≤
f (x) − pσ2n+1(x)
πn+1(x)ζn+1(x)

≤ Gmax,2n+2(ξ ),

for some ξ = ξ (x) ∈ (a, b), x ∈ [a, b]. Since

sign(πn+1(x)) = sign(ζn+1(x)), x ∈ [a, b],

we find, for x ∈ [a, b],

Gmin,2n+2(ξ )πn+1(x)ζn+1(x) ≤ f (x) − pσ2n+1(x) ≤ Gmax,2n+2(ξ )πn+1(x)ζn+1(x),

and

b

∫
a

w(x)f (x)Δx −
n
∑
j=0

Wjf (σxj) =
b

∫
a

w(x)(f (x) − pσ2n+1(x))Δx,
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whereupon we arrive at

b

∫
a

w(x)Gmin,2n+2(ξ )πn+1(x)ζn+1(x)Δx ≤
b

∫
a

w(x)f (x)Δx −
n
∑
j=0

Wjf (xj)

≤
b

∫
a

w(x)Gmax,2n+2(ξ )πn+1(x)ζn+1(x)Δx.

2.13 Advanced practical problems

Problem 2.46. Let 𝕋 = ( 12 )
ℕ0 . Using the trapezoid rule, evaluate the integral

1

∫
1
256

t2 + t + 1
t4 − 3t3 + 7t2 + 4t + 1

Δt.

Problem 2.47. Let 𝕋 = 3ℕ0 . Using the Simpson rule, evaluate the integral

27

∫
1

t5 + t + 1
t2 + 3t + 10

Δt.

Problem 2.48. Let𝕋 = 3ℕ0 . Using the composite trapezoid rule, evaluate the integral

81

∫
1

(
t − 1

t4 + t + 1
+ cos1(t, 1))Δt.

Problem 2.49. Let

𝕋 = {−1,− 1
8
,
1
2
,
5
6
,
4
3
,
15
7
, 3}, a = −1 = x0, x1 =

1
2
, b = 3,

and f : 𝕋→ ℝ be defined by

f (t) = cos1(t,−1) + sin2(t,−1) + t
2, t ∈ 𝕋.

Using the σ-trapezoid rule, evaluate the integral ∫3−1 f (t)Δt.

Problem 2.50. Let

𝕋 = {−3,0, 1
8
,
1
3
,
1
2
,
5
6
, 1, 4

3
, 2}, a = −3 = x0, x1 =

1
2
, x2 =

4
3
, b = 2,

and f : 𝕋→ ℝ be defined by
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f (t) = sin2(t,0) + e1(t,0) −
t

1 + t2
, t ∈ 𝕋.

Using the σ-Simpson rule, evaluate the integral ∫ba f (t)Δt.

Problem 2.51. Let 𝕋 = 2ℕ0 ,

a = 1 = x0, x1 = 8, x2 = b = 64,

and f : 𝕋→ ℝ be defined by

f (t) = 1 + t + t2

1 + t + t2 + t3 + t4 + t5 + t6
+ cosh1(t, 3), t ∈ 𝕋.

Using the composite trapezoid rule, evaluate the integral ∫ba f (t)Δt.

Problem 2.52. Let

𝕋 = {1, 5
4
,
4
3
,
3
2
,
5
3
, 2, 7

3
,
31
12
, 3, 4},

a = x0 = 1, x1 =
4
3
, x2 =

5
3
, x3 =

7
3
, x4 = 4, b = 4,

and f : 𝕋→ ℝ be defined by

f (t) = t4 + t2 + 1
1 + t
+ e1(t, 1), t ∈ 𝕋.

Using the σ-composite trapezoid rule, evaluate the integral ∫ba f (t)Δt.

Problem 2.53. Let 𝕋 = 3ℕ0 ,

a = 1 = x0, x1 = 9, x2 = 81, x3 = 729, x4 = b = 6561,

and suppose f : 𝕋→ ℝ is defined by

f (t) = 1 + t
1 + t6
+ sin1(t, 1) + cosh2(t, 1), t ∈ 𝕋.

Using the σ-composite Simpson rule, evaluate the integral ∫ba f (t)Δt.

Problem 2.54. Let

𝕋 = {0, 1
10
,
1
9
,
1
8
,
1
7
,
1
6
,
1
5
,
1
4
,
1
3
,
1
2
,
2
3
,
5
6
, 1},

a = x0 = 0, x1 =
1
9
, x2 =

1
7
, x3 =

1
5
, x4 =

1
3
, x5 =

5
6
, b = 1,

w(x) = (x − 1
10
)
2
(x − 1

8
)
2
(x − 1

6
)
2
(x − 1

4
)
2
(x − 1

10
)
2
(x − 2

3
)
2
(x − 1)2,
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f (x) = 1 + x + e1(x,0), x ∈ [0, 1].

Using the Gauss quadrature rule, evaluate

b

∫
a

w(x)f (x)Δx,
b

∫
a

(w(x))2f (x)Δx,
b

∫
a

(w(x))3f (x)Δx.

Problem 2.55. Let

𝕋 = {−1,− 1
4
,0, 1

8
, 1, 7},

a = x0 = −1, x1 = 0, x2 = 1, b = 7,

f (t) = 1 + t + t2, w(t) = (t + 1
4
)
2
(t − 1

8
)
2
(t − 7)2, t ∈ 𝕋.

Using the σ-Gauss quadrature rule, evaluate the integral

b

∫
a

(w(t))2(f (t) + (f (t))3)Δt.
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3 Piecewise polynomial approximation

The focus of our discussions in the previous chapters has been the question of approx-
imation of a given rd-continuous function f , defined on an interval [a, b], by a poly-
nomial on that interval either through Lagrange, σ-Lagrange, Hermite, or σ-Hermite
interpolation polynomials. Each of these constructions was global in nature, in the
sense that the approximation was defined by the same analytical expression on the
whole interval [a, b]. In this chapter, we will present an alternative and more flexible
way for approximation of a function f , and this approach is based on dividing the in-
terval [a, b] into a number of subintervals and looking for a piecewise approximation
by polynomials of low degree. Such piecewise-polynomial approximations are called
splines, and the endpoints of the subintervals are known as the knots.

Let𝕋 be a time scale with forward jump operator σ and delta differentiation oper-
ator Δ.

3.1 Linear interpolating splines

We first discuss the piecewise approximation by the lowest degree polynomials, that
is, by linear functions, called linear splines. Let a, b ∈ 𝕋, a < b, andm ∈ ℕ,m ≥ 2.

Definition 3.1. Suppose that f ∈ 𝒞rd([a, b]) and K = {x0, x1, . . . , xm} is a subset of [a, b]
such that

a = x0 < x1 < ⋅ ⋅ ⋅ < xm = b.

The linear spline sL, interpolating f at the points xj, j ∈ {0, 1, . . . ,m}, is defined by

sL(x) =
xj − x
xj − xj−1

f (xj−1) +
x − xj−1
xj − xj−1

f (xj), x ∈ [xj−1, xj], j ∈ {1, . . . ,m}.

The points xj, j ∈ {0, 1, . . . ,m}, are the knots of the spline, and K is said to be the set of
knots.

By Definition 3.1, it follows that

sL(xj−1) = f (xj−1), sL(xj) = f (xj), j ∈ {1, . . . ,m}.

We will now give an error estimate for the maximal error for the linear spline interpo-
lation of a given function. Below denote

rj+1 = xj+1 − xj, j ∈ {0, 1, . . . ,m − 1}, r = max
j∈{1,...,m}

rj.

https://doi.org/10.1515/9783110787320-003
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Theorem 3.2. Let f ∈ 𝒞1rd([a, b]). Then

max
x∈[a,b]
sL(x) − f (x)

 ≤ 2r max
x∈[a,b]
f
Δ(x).

Proof. Let j ∈ {1, . . . ,m} be arbitrarily chosen and fixed. We have

sL(x) − f (x)
 =


xj − x
xj − xj−1

f (xj−1) +
x − xj−1
xj − xj−1

f (xj) − f (x)


=


xj − x
xj − xj−1

(f (xj−1) − f (x)) +
x − xj−1
xj − xj−1

(f (xj) − f (x))


≤
xj − x
xj − xj−1

f (xj−1) − f (x)
 +

x − xj−1
xj − xj−1

f (xj) − f (x)
, x ∈ [a, b].

By the mean value theorem, it follows that

f (xj−1) − f (x)
 ≤ max

x∈[xj−1 ,xj]f Δ(x)(x − xj−1)
≤ max

x∈[a,b]
f
Δ(x)(x − xj−1), x ∈ [xj−1, xj],

f (xj) − f (x)
 ≤ max

x∈[xj−1 ,xj]f Δ(x)(xj − x)
≤ max

x∈[a,b]
f
Δ(x)(xj − x), x ∈ [xj−1, xj].

Therefore,

sL(x) − f (x)
 ≤
(xj − x)2

rj
max
x∈[a,b]
f
Δ(x) +
(x − xj−1)2

rj
max
x∈[a,b]
f
Δ(x)

≤ 2rj max
x∈[a,b]
f
Δ(x)

≤ 2r max
x∈[a,b]
f
Δ(x), x ∈ [xj−1, xj].

Since j ∈ {1, . . . ,m} was arbitrarily chosen, we obtain

sup
x∈[a,b]

sL(x) − f (x)
 ≤ 2r max

x∈[a,b]
f
Δ(x).

This completes the proof.

We illustrate the computations of this error bound in the following example.

Example 3.3. Let

𝕋 = {0, 1
8
,
1
7
,
1
6
,
1
5
,
1
4
,
1
3
,
1
2
, 1, 2},

a = x0 = 0, x1 =
1
8
, x2 =

1
7
, x3 =

1
4
, x4 = b = 1,
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f (t) = t2 + t + 1, t ∈ 𝕋.

We have

r1 = x1 − x0 =
1
8
, r2 = x2 − x1 =

1
56
,

r3 = x3 − x2 =
3
28
, r4 = x4 − x3 =

3
4
.

Hence, r = 3
4 . Since all points of 𝕋 are right-scattered, we have

f Δ(t) = σ(t) + t + 1, t ∈ 𝕋.

From here,

max
t∈[0,1]

f Δ(t) = σ(1) + 1 + 1 = 2 + 2 = 4.

Thus,

sup
x∈[0,1]

sL(x) − f (x)
 ≤ 2 ⋅

3
4
⋅ 4 = 6.

Exercise 3.4. Let 𝕋 = ℤ,

a = x0 = 0, x1 = 2, x2 = 4, x3 = 6, x4 = 8, x5 = 10 = b,
f (t) = t3 + t, t ∈ 𝕋.

Prove that

sup
x∈[0,10]

sL(x) − f (x)
 ≤ 1328.

Note that, as stated in the following remark, for the local error on each interval we
can use the error estimates given in Chapter 1.

Remark 3.5. Fix j ∈ {1, . . . ,m} arbitrarily. Suppose that f ∈ 𝒞2rd([a, b]). Then, by Theo-
rem 1.10, we have

f (x) − sL(x) =
f Δ

2
(ξ )

Π2
2(ξ )

π2(x), x ∈ [xj−1, xj],

or

Fmin,2(ξ ) ≤
f (x) − sL(x)

π2(x)
≤ Fmax,2(ξ ), x ∈ [xj−1, xj].

Now, suppose that sL is a linear spline with knots xj, j ∈ {0, 1, . . . ,m}. We can ex-
press sL as a linear combination of suitable “basis functions” ϕj, j ∈ {0, 1, . . . ,m}, as
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follows:

sL(x) =
m
∑
j=0

ϕj(x)f (xj), x ∈ [a, b].

We require that each function ϕj, j ∈ {0, 1, . . . ,m}, is itself a linear spline that vanishes
at every knot except xj and ϕj(xj) = 1.

Definition 3.6. The functions ϕj, j ∈ {0, 1, . . . ,m}, are said to be linear basis splines or
hat functions.

Definition 3.7. The formal definition of ϕj, j ∈ {0, 1, . . . ,m}, is given as follows:

ϕj(x) =

{{{{{{{
{{{{{{{
{

0 if x ≤ xj−1,
x−xj−1
xj−xj−1 if xj−1 ≤ x ≤ xj,
xj+1−x
xj+1−xj if xj ≤ x ≤ xj+1,

0 if xj+1 ≤ x,

for j ∈ {1, . . . ,m − 1}, and

ϕ0(x) = {
x1−x
x1−x0

if a = x0 ≤ x ≤ x1,
0 if x1 ≤ x,

and

ϕm(x) = {
0 if x ≤ xm−1,
x−xm−1
xm−xm−1 if xm−1 ≤ x ≤ xm = b.

Example 3.8. Let 𝕋 = ℤ and let

a = x0 = −3, x1 = −2, x2 = 0, x3 = 1 = b,
y0 = 1, y1 = 2, y2 = 1, y3 = 0.

We compute the linear basis spline functions as

ϕ0(x) = {
−2 − x if − 3 ≤ x < −2,
0 if − 2 ≤ x ≤ 1,

ϕ1(x) =

{{{{{{
{{{{{{
{

0 if x < −3,
x + 3 if − 3 ≤ x < −2,
− x2 if − 2 ≤ x ≤ 0,
0 if 0 < x,
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ϕ2(x) =

{{{{{{
{{{{{{
{

0 if x < −2,
x+2
2 if − 2 ≤ x < 0,
1 − x if 0 ≤ x ≤ 1,
0 if 1 < x,

ϕ3(x) = {
0 if x < 0,
x if 0 ≤ x ≤ 1.

The graph of the linear spline sL defined as

sL(x) =
4
∑
j=0

ϕj(x)f (xj), x ∈ [−3, 1],

is given in Figure 3.1. It is clear that, as was expected, the linear spline sL is a union of
straight line segments joining the points (xi, yi) and (xi+1, yi+1) for i = 0, 1, 2.

Figure 3.1: The graph of the linear spline sL.

3.2 Linear interpolating σ-splines

Following the σ-interpolation concept introduced in Chapter 1, we present below an
alternative spline interpolation, called the linear σ-spline interpolation. Let a, b ∈ 𝕋,
a < b, andm ∈ ℕ,m ≥ 2.
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Definition 3.9. Suppose that f ∈ 𝒞rd([a, b]), K = {x0, x1, . . . , xm} is a subset of [a, b]
such that

a = x0 ≤ σ(x0) < x1 ≤ σ(x1) < ⋅ ⋅ ⋅ < xm ≤ σ(xm) = b.

The linear σ-spline sσL, interpolating f at the points xj, j ∈ {0, 1, . . . ,m}, is defined by

sσL(x) =
σ(xj) − σ(x)
σ(xj) − σ(xj−1)

f (xj−1) +
σ(x) − σ(xj−1)
σ(xj) − σ(xj−1)

f (xj), x ∈ [xj−1, xj],

for j ∈ {1, . . . ,m}. The points xj, j ∈ {0, 1, . . . ,m}, are the knots of the σ-spline, and K is
said to be the set of knots.

By Definition 3.9, it follows that

sσL(xj−1) = f (xj−1), sσL(xj) = f (xj), j ∈ {1, . . . ,m}.

In the following discussion, we obtain an estimate for the global error in the σ-linear
spline interpolation. Below, denote

rj+1 = xj+1 − xj, j ∈ {0, 1, . . . ,m − 1}, r = max
j∈{1,...,m}

rj.

Theorem 3.10. Let f ∈ 𝒞1rd([a, b]). Then

max
x∈[a,b]
sσL(x) − f (x)

 ≤ 2r max
x∈[a,b]
f
Δ(x).

Proof. Take j ∈ {1, . . . ,m} arbitrarily. Then for x ∈ [a, b],

sσL(x) − f (x)
 =


σ(xj) − σ(x)
σ(xj) − σ(xj−1)

f (xj−1) +
σ(x) − σ(xj−1)
σ(xj) − σ(xj−1)

f (xj) − f (x)


=


σ(xj) − σ(x)
σ(xj) − σ(xj−1)

(f (xj−1) − f (x)) +
σ(x) − σ(xj−1)
σ(xj) − σ(xj−1)

(f (xj) − f (x))


≤
σ(xj) − σ(x)
σ(xj) − σ(xj−1)

f (xj−1) − f (x)
 +

σ(x) − σ(xj−1)
σ(xj) − σ(xj−1)

f (xj) − f (x)
,

Now, applying the mean value theorem, we get

f (xj−1) − f (x)
 ≤ max

x∈[xj−1 ,xj]f Δ(x)(x − xj−1)
≤ max

x∈[a,b]
f
Δ(x)(x − xj−1), x ∈ [xj−1, xj],

and
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f (xj) − f (x)
 ≤ max

x∈[xj−1 ,xj]f Δ(x)(xj − x)
≤ max

x∈[a,b]
f
Δ(x)(xj − x), x ∈ [xj−1, xj].

Therefore,

sσL(x) − f (x)
 ≤ rj max

x∈[a,b]
f
Δ(x) + rj max

x∈[a,b]
f
Δ(x)

= 2rj max
x∈[a,b]
f
Δ(x)

≤ 2r max
x∈[a,b]
f
Δ(x), x ∈ [xj−1, xj].

Since j ∈ {1, . . . ,m} was arbitrarily chosen, we arrive at

sup
x∈[a,b]

sσL(x) − f (x)
 ≤ 2r max

x∈[a,b]
f
Δ(x).

This completes the proof.

We compute an estimate for the global error in the following example.

Example 3.11. Let

𝕋 = {0, 1
6
,
5
6
, 1, 4

3
,
11
6
, 2, 5

2
,
8
3
, 3},

a = x0 = 0, x1 =
5
6
, x2 =

4
3
, x3 = 2, x4 =

8
3
, b = 3,

f (t) = 1
t + 1
, t ∈ 𝕋.

We have

x0 < σ(x0) < x1 < σ(x1) < x2 < σ(x2) < x3 < σ(x3) < x4 < σ(x4) < σ(x4) = b.

Next, since all points of 𝕋 are right-scattered, we have

f Δ(t) = − 1
(t + 1)(σ(t) + 1)

,

f
Δ(t) =

1
(t + 1)(σ(t) + 1)

, t ∈ 𝕋.

Thus,

max
t∈[a,b]
f
Δ(t) =

1
σ(0) + 1

=
1

1
6 + 1
=
6
7
.

Next,
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r1 = x1 − x0 =
5
6
, r2 = x2 − x1 =

4
3
−
5
6
=
1
2
,

r3 = x3 − x2 = 2 −
4
3
=
2
3
, r4 = x4 − x3 =

8
3
− 2 = 2

3
.

Consequently, r = 5
6 and

sσL(x) − f (x)
 ≤ 2 ⋅

5
6
⋅
6
7
=
10
7
.

Exercise 3.12. Let

𝕋 = {−3,−5
2
,−

7
3
,−2,− 7

6
,−1,0, 1

2
, 1, 4

3
, 2},

a = x0 = 3, x1 = −
7
3
, x2 = −

7
6
, x3 = 0, x4 = 1, b = 4

3
,

f (t) = 1
(t + 10)(t2 + t + 1)

, t ∈ 𝕋.

Estimate

sσL(x) − f (x)
, x ∈ [a, b].

For the local error, we can give the following remark recalling the error in the
σ-polynomial interpolation given in Chapter 1.

Remark 3.13. Fix j ∈ {1, . . . ,m} arbitrarily. Suppose that f ∈ 𝒞2rd([a, b]). Then, by Theo-
rem 1.28, we have

f (x) − sσL(x) =
f Δ

2
(ξ )

Π2
σ2(ξ )

πσ2(x), x ∈ [xj−1, xj],

or

Fσmin,2(ξ ) ≤
f (x) − sσL(x)

πσ2(x)
≤ Fσmax,2(ξ ), x ∈ [xj−1, xj].

Now, we will formally define the σ-linear spline by using the relevant basis func-
tions. Suppose that sσL is a linear spline with knots xj, j ∈ {0, 1, . . . ,m}. We can express
sσL as a linear combination of suitable “σ-basis functions” ϕσj, j ∈ {0, 1, . . . ,m}, as fol-
lows:

sσL(x) =
m
∑
j=0

ϕσj(x)f (xj), x ∈ [a, b].

We require that each function ϕσj, j ∈ {0, 1, . . . ,m}, is itself a σ-linear spline that van-
ishes at every knot except xj and ϕσj(xj) = 1.
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Definition 3.14. The functionsϕσj, j ∈ {0, 1, . . . ,m}, are said tobe linear basisσ-splines,
or σ-hat functions.

Definition 3.15. The formal definition of ϕσj, j ∈ {0, 1, . . . ,m}, is as follows:

ϕσj(x) =

{{{{{{{
{{{{{{{
{

0 if x ≤ xj−1,
σ(x)−σ(xj−1)
σ(xj)−σ(xj−1) if xj−1 ≤ x ≤ xj,
σ(xj+1)−σ(x)
σ(xj+1)−σ(xj) if xj ≤ x ≤ xj+1,

0 if xj+1 ≤ x,

for j ∈ {1, . . . ,m − 1}, and

ϕσ0(x) = {
σ(x1)−σ(x)
σ(x1)−σ(x0)

if a = x0 ≤ x ≤ x1,
0 if x1 ≤ x,

and

ϕσm(x) = {
0 if x ≤ xm−1,
σ(x)−σ(xm−1)
σ(xm)−σ(xm−1) if xm−1 ≤ x ≤ xm = b.

In the next example, we compute the linear and σ-linear spline approximation for
a given function. We consider a time scale with a nonlinear forward jump operator in
order to observe the difference between the linear and σ-linear splines.

Example 3.16. Let 𝕋 = ℕ20 = {0, 1, 4, 9, 16, . . .} and f (x) =
1
√x+1 . Take

a = x0 = 1, x1 = 9, x2 = 25, x3 = 49 = b.

Then we have

y0 =
1
2
, y1 =

1
4
, y2 =

1
6
, y3 =

1
8
.

Note that on this time scale σ(t) = (√t + 1)2. We will find the linear basis spline and
σ-spline functions for the given knots xj, j ∈ {0, 1, 2, 3}. First, we compute the linear
basis spline functions as

ϕ0(x) = {
9−x
8 if 1 ≤ x < 9,
0 if 9 < x,

ϕ1(x) =

{{{{{{
{{{{{{
{

0 if x < 1,
x−1
8 if 1 ≤ x < 9,
25−x
16 if 9 ≤ x ≤ 25,
0 if 25 < x,
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ϕ2(x) =

{{{{{{{
{{{{{{{
{

0 if x < 9,
x−9
16 if 9 ≤ x < 25,
49−x
24 if 25 ≤ x ≤ 49,

0 if 49 < x,

ϕ3(x) = {
0 if x < 25,
x−25
24 if 25 ≤ x ≤ 49.

The graph of the linear spline sL(x) defined as

sL(x) =
3
∑
j=0

ϕj(x)f (xj), x ∈ [1, 49],

is given in Figure 3.2 and is compared with the graph of f (x) = 1
√x+1 .

Figure 3.2: The graphs of the linear spline sL and f .

Now we compute the linear basis σ-spline functions. First, note that

σ(x0) = σ(1) = 4, σ(x1) = σ(9) = 16,
σ(x2) = σ(25) = 36, σ(x3) = σ(49) = 64.

Then we have,
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ϕσ0(x) = {
16−(√x+1)2

12 if 1 ≤ x < 9,
0 if 9 < x,

ϕσ1(x) =

{{{{{{
{{{{{{
{

0 if x < 1,
(√x+1)2−4

12 if 1 ≤ x < 9,
36−(√x+1)2

20 if 9 ≤ x ≤ 25
0 if 25 < x,

ϕσ2(x) =

{{{{{{
{{{{{{
{

0 if x < 9,
(√x+1)2−16

20 if 9 ≤ x < 25,
64−(√x+1)2

28 if 25 ≤ x ≤ 49,
0 if 49 < x,

ϕσ3(x) = {
0 if x < 25,
(√x+1)2−36

28 if 25 ≤ x ≤ 49.

Then, the linear σ-spline sσL is defined as

sσL(x) =
3
∑
j=0

ϕσj(x)f (xj), x ∈ [1, 49],

its graph is given in Figure 3.3 and compared with the graph of f . We compute the
values of the linear spline sL and the linear σ-spline sσL and compare them with the
values of the function f in Table 3.1. Note that at the knots both the linear spline and
linear σ-spline coincide with f .

Figure 3.3: The graphs of the linear σ-spline sσL and f .
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Table 3.1: The values of f , sL, and sσL at the points of𝕋 in [1,49].

x f (x) sL(x) sσL(x)

1 0.5000 0.5000 0.5000
4 0.3333 0.4063 0.3958
9 0.2500 0.2500 0.2500

16 0.2000 0.2135 0.2125
25 0.1667 0.1667 0.1667
36 0.1429 0.1475 0.1473
49 0.1250 0.1250 0.1250

3.3 Cubic splines

The most common piecewise polynomial interpolation is the interpolation by cubic
polynomials, known as cubic spline interpolation. The disadvantage of linear spline
is that usually at the endpoints of the subintervals the spline is not delta differentiable.
To deal with this problem, cubic spline interpolation ismore suitable than a quadratic
one since it ensures the continuity of both the first and second order delta derivatives
of the piecewise interpolation function at the knots.

In this section, we construct a natural cubic spline to interpolate a function on an
arbitrary time scale. Suppose that a, b ∈ 𝕋, a < b,

K = {a = x0 ≤ σ(x0) < x1 ≤ σ(x1) < ⋅ ⋅ ⋅ < xm ≤ σ(xm) = b},

m ∈ ℕ,m ≥ 3, and f ∈ 𝒞rd([a, b]).

Definition 3.17. The natural cubic spline interpolating a function at the set K is de-
noted by s2 and it satisfies the end conditions

sΔ
2

2 (x0) = s
Δ2
2 (xm) = 0.

Now, we will construct the natural cubic spline. Let

aj = s
Δ2
2 (xj), j ∈ {0, 1, . . . ,m}.

We have a0 = am = 0. In addition, suppose that

sΔ2 (xj−) = s
Δ
2 (xj+), j ∈ {1, . . . ,m − 1},

and

sΔ
2

2 (x) =
xj − x
xj − xj−1

aj−1 +
x − xj−1
xj − xj−1

aj, x ∈ [xj−1, xj], j ∈ {1, . . . ,m}. (3.1)
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Fix j ∈ {1, . . . ,m − 1}. We integrate the equality (3.1) from x to xj, x ∈ [xj−1, xj], and find
for x ∈ [xj−1, xj],

xj

∫
x

sΔ
2

2 (t)Δt =
aj−1

xj − xj−1

xj

∫
x

(xj − t)Δt +
aj

xj − xj−1

xj

∫
x

(t − xj−1)Δt

=
aj−1

xj − xj−1

x

∫
xj

(t − xj)Δt +
aj

xj − xj−1

xj

∫
x

(t − xj)Δt

+
aj

xj − xj−1

xj

∫
x

(xj − xj−1)Δt

=
aj−1

h1(xj, xj−1)
h2(x, xj) −

aj
h1(xj, xj−1)

h2(x, xj) + ajh1(xj, x),

or

sΔ2 (xj−) − s
Δ
2 (x) =

aj−1
h1(xj, xj−1)

h2(x, xj) −
aj

h1(xj, xj−1)
h2(x, xj) + ajh1(xj, x), x ∈ [xj−1, xj],

or

sΔ2 (x) = s
Δ
2 (xj−) −

aj−1
h1(xj, xj−1)

h2(x, xj) +
aj

h1(xj, xj−1)
h2(x, xj) − ajh1(xj, x), x ∈ [xj−1, xj].

Now, we integrate the latter equality from x to xj and find for x ∈ [xj−1, xj],

xj

∫
x

sΔ2 (t)Δt = s
Δ
2 (xj−)h1(xj, x) +

aj−1
h1(xj, xj−1)

x

∫
xj

h2(t, xj)Δt

−
aj

h1(xj, xj−1)

x

∫
xj

h2(t, xj)Δt − aj

x

∫
xj

(t − xj)Δt

= sΔ(xj−)h1(xj, x) + aj−1
h3(x, xj)
h1(xj, xj−1)

− aj
h3(x, xj)
h1(xj, xj−1)

− ajh2(x, xj)

and

s2(xj) − s2(x) = s
Δ
2 (xj−)h1(xj, x) + aj−1

h3(x, xj)
h1(xj, xj−1)

− aj(
h3(x, xj)
h1(xj, xj−1)

+ h2(x, xj)), x ∈ [xj−1, xj]. (3.2)

In particular, for x = xj−1, we have
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f (xj) − f (xj−1) = s
Δ
2 (xj−)h1(xj, xj−1) + aj−1

h3(xj−1, xj)
h1(xj, xj−1)

− aj(
h3(xj−1, xj)
h1(xj, xj−1)

+ h2(xj−1, xj))

and

sΔ2 (xj−) =
f (xj) − f (xj−1)
h1(xj, xj−1)

− aj−1
h3(xj−1, xj)
(h1(xj, xj−1))2

+ aj(
h3(xj−1, xj)
(h1(xj, xj−1))2

+
h2(xj−1, xj)
h1(xj, xj−1)

). (3.3)

Now, we consider the equality

sΔ
2

2 (x) =
xj+1 − x
xj+1 − xj

aj +
x − xj
xj+1 − xj

aj+1, x ∈ [xj, xj+1],

which we integrate from xj to x, x ∈ [xj, xj+1], and find

sΔ2 (x) − s
Δ
2 (xj+) =

aj
xj+1 − xj

x

∫
xj

(xj+1 − t)Δt +
aj+1

xj+1 − xj

x

∫
xj

(t − xj)Δt

=
aj

h1(xj+1, xj)

x

∫
xj

(xj+1 − xj)Δt −
aj

h1(xj+1, xj)

x

∫
xj

(t − xj)Δt

+
aj+1

h1(xj+1, xj)
h2(x, xj)

= ajh1(x, xj) −
aj

h1(xj+1, xj)
h2(x, xj) +

aj+1
h1(xj+1, xj)

h2(x, xj),

as well as

sΔ2 (x) = s
Δ
2 (xj+) + ajh1(x, xj) −

aj
h1(xj+1, xj)

h2(x, xj) +
aj+1

h1(xj+1, xj)
h2(x, xj).

We integrate the latter equality from xj to x and obtain

s2(x) − s2(xj) = s
Δ
2 (xj+)h1(x, xj) + aj

x

∫
xj

h1(t, xj)Δt

−
aj

h1(xj+1, xj)

x

∫
xj

h2(t, xj)Δt +
aj+1

h1(xj+1, xj)

x

∫
xj

h2(t, xj)Δt

= sΔ2 (xj+)h1(x, xj) + ajh2(x, xj) − aj
h3(x, xj)
h1(xj+1, xj)

+ aj+1
h3(x, xj)
h1(xj+1, xj)

, x ∈ [xj, xj+1].
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In particular, for x = xj+1, we have

f (xj+1) − f (xj) = s
Δ
2 (xj+)h1(xj+1, xj) + aj(h2(xj+1, xj) −

h3(xj+1, xj)
h1(xj+1, xj)

)

+ aj+1
h3(xj+1, xj)
h1(xj+1, xj)

.

Thus,

sΔ2 (xj+) =
f (xj+1) − f (xj)
h1(xj+1, xj)

− aj(
h2(xj+1, xj)
h1(xj+1, xj)

−
h3(xj+1, xj)
(h1(xj+1, xj))2

)

− aj+1
h3(xj+1, xj)
(h1(xj+1, xj))2

.

Using the latter equality and (3.3), we arrive at

f (xj) − f (xj−1)
h1(xj, xj−1)

− aj−1
h3(xj−1, xj)
(h1(xj, xj−1))2

+ aj(
h3(xj−1, xj)
(h1(xj, xj−1))2

+
h2(xj−1, xj)
h1(xj, xj−1)

)

=
f (xj+1) − f (xj)
h1(xj+1, xj)

− aj(
h2(xj+1, xj)
h1(xj+1, xj)

−
h3(xj+1, xj)
(h1(xj+1, xj))2

) − aj+1
h3(xj+1, xj)
(h1(xj+1, xj))2

,

whereupon

− aj−1
h3(xj−1, xj)
(h1(xj, xj−1))2

+ aj(
h3(xj−1, xj)
(h1(xj, xj−1))2

+
h2(xj−1, xj)
h1(xj, xj−1)

+
h2(xj+1, xj)
h1(xj+1, xj)

−
h3(xj+1, xj)
(h1(xj+1, xj))2

) + aj+1
h3(xj+1, xj)
(h1(xj+1, xj))2

=
f (xj+1) − f (xj)
h1(xj+1, xj)

−
f (xj) − f (xj−1)
h1(xj, xj−1)

, j ∈ {1, . . . ,m − 1}. (3.4)

Note that

h2(x, xj) =
x

∫
xj

(t − xj)Δt

=

xj

∫
x

(xj − t)Δt ≤ (xj − x)
2, x ∈ [xj−1, xj],

h3(xj−1, xj) =
xj−1
∫
xj

h2(t, xj)Δt

= −

xj

∫
xj−1 h2(t, xj)Δt
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≥ −

xj

∫
xj−1 (xj − t)

2Δt

≥ −(xj − xj−1)
xj

∫
xj−1 (xj − t)Δt

= −h1(xj, xj−1)
xj−1
∫
xj

(t − xj)Δt

= −h1(xj, xj−1)h2(xj−1, xj),

and

h3(xj−1, xj)
(h1(xj, xj−1))2

≥ −
h2(xj−1, xj)
h1(xj, xj−1)

,

or

h3(xj−1, xj)
(h1(xj, xj−1))2

+
h2(xj−1, xj)
h1(xj, xj−1)

≥ 0. (3.5)

Next,

h3(xj+1, xj) =
xj+1
∫
xj

h2(t, xj)Δt

≤
1
2

xj+1
∫
xj

(t − xj)
2Δt

≤
h1(xj+1, xj)

2

xj+1
∫
xj

(t − xj)Δt

=
1
2
h1(xj+1, xj)h2(xj+1, xj),

whereupon

2
h3(xj+1, xj)
(h1(xj+1, xj))2

≤
h2(xj+1, xj)
h1(xj+1, xj)

. (3.6)

Hence, by (3.5), we obtain

h3(xj+1, xj)
(h1(xj, xj−1))2

+
h2(xj+1, xj)
h1(xj, xj−1)

+
h2(xj+1, xj)
h1(xj+1, xj)

−
h3(xj+1, xj)
(h1(xj, xj−1))2

≥ 0. (3.7)
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Let

l(t) = (t − xj)
2, t ∈ [xj−1, xj].

Then

h2(x, xj) =
x

∫
xj

(t − xj)Δt

= −

xj

∫
x

(t − xj)Δt

= −
1
2

xj

∫
x

((t − xj) + (t − xj))Δt

≤ −
1
2

xj

∫
x

((t − xj) + (σ(t) − xj))Δt

= −
1
2

xj

∫
x

lΔ(t)Δt

= −
1
2
(l(xj) − l(x))

=
1
2
(x − xj)

2, x ∈ [xj−1, xj].

Hence,

h3(xj−1, xj) =
xj−1
∫
xj

h2(t, xj)Δt

= −

xj

∫
xj−1 h2(t, xj)Δt

≥ −
1
2

xj

∫
xj−1 (t − xj)

2Δt

= −
1
2

xj

∫
xj−1 (xj − t)(xj − t)Δt

≥ −
1
2
h1(xj, xj−1)

xj

∫
xj−1 (xj − t)Δt
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= −
1
2
h1(xj, xj−1)

xj−1
∫
xj

(t − xj)Δt

= −
1
2
h1(xj, xj−1)h2(xj−1, xj),

whereupon

2
h3(xj−1, xj)
(h1(xj, xj−1))2

≥ −
h2(xj−1, xj)
h1(xj, xj−1)

. (3.8)

Next,

h3(xj+1, xj) =
xj+1
∫
xj

h2(t, xj)Δt

≤
1
2

xj+1
∫
xj

(t − xj)
2Δt

<
1
2
h1(xj+1, xj)

xj+1
∫
xj

(t − xj)Δt

=
1
2
h1(xj+1, xj)h2(xj+1, xj),

from where

2
h3(xj+1, xj)
(h1(xj+1, xj))2

<
h2(xj+1, xj)
h1(xj+1, xj)

. (3.9)

Now, applying (3.5), (3.6), (3.7), and (3.9), we obtain



h3(xj−1, xj)
(h1(xj, xj−1))2

+
h2(xj+1, xj)
h1(xj, xj−1)

+
h2(xj+1, xj)
h1(xj+1, xj)

−
h3(xj+1, xj)
(h1(xj+1, xj))2



>

−

h3(xj−1, xj)
(h1(xj, xj−1))2


+


h3(xj+1, xj)
(h1(xj+1, xj))2


⇐⇒

h3(xj−1, xj)
(h1(xj, xj−1))2

+
h2(xj+1, xj)
h1(xj, xj−1)

+
h2(xj+1, xj)
h1(xj+1, xj)

−
h3(xj+1, xj)
(h1(xj+1, xj))2

> −
h3(xj−1, xj)
(h1(xj, xj−1))2

+
h3(xj+1, xj)
(h1(xj+1, xj))2

⇐⇒

2
h3(xj−1, xj)
(h1(xj, xj−1))2

+
h2(xj+1, xj)
h1(xj, xj−1)

+
h2(xj+1, xj)
h1(xj+1, xj)

− 2
h3(xj+1, xj)
(h1(xj+1, xj))2

> 0.

Therefore, the system (3.4) has a unique solution aj, j ∈ {0, 1, . . . ,m}. By (3.2), we get

 EBSCOhost - printed on 2/10/2023 4:40 PM via . All use subject to https://www.ebsco.com/terms-of-use



3.3 Cubic splines | 107

s2(x) = f (xj) − s
Δ
2 (xj−)h1(xj, x) − aj−1

h3(x, xj)
h1(xj, xj−1)

+ aj(
h3(x, xj)
h1(xj, xj−1)

+ h2(x, xj)), x ∈ [xj−1, xj], j ∈ {1, . . . ,m}.

Finally, applying (3.3), we arrive at

s2(x) = f (xj) −
f (xj) − f (xj−1)
h1(xj, xj−1)

h1(xj, x)

+ aj−1(
h3(xj−1, xj)
(h1(xj, xj−1))2

h1(xj, x) −
h3(x, xj)
h1(xj, xj−1)

)

+ aj(−
h3(xj−1, xj)
(h1(xj, xj−1))2

h1(xj, x) −
h2(xj−1, xj)
h1(xj, xj−1)

h1(xj, x)

+
h3(x, xj)
h1(xj, xj−1)

+ h2(x, xj)), x ∈ [xj−1, xj], j ∈ {1, . . . ,m},

which is the natural cubic spline of f on the knot set K.

Example 3.18. Let 𝕋 = ℤ and

f (t) = 1 + t
1 + t2
, t ∈ 𝕋.

Take

a = x0 = 0, x1 = 2, x2 = b = 4.

Then, by (3.4) and using a0 = 0, a2 = 0, we get

a1(
h3(x0, x1)
(h1(x1, x0))2

+
h2(x0, x1)
h1(x1, x0)

+
h2(x2, x1)
h1(x2, x1)

−
h3(x2, x1)
(h1(x2, x1))2

)

=
f (x2) − f (x1)
h1(x2, x1)

−
f (x1) − f (x0)
h1(x1, x0)

,

or

a1(
h3(0, 2)
(h1(2,0))2

+
h2(0, 2)
h1(2,0)

+
h2(4, 2)
h1(4, 2)

−
h3(4, 2)
(h1(4, 2))2

) =
f (4) − f (2)
h1(4, 2)

−
f (2) − f (0)
h1(2,0)

.

Now, we will compute hi(⋅, ⋅), i ∈ {1, 2, 3}. We have

h1(2,0) = 2,

h2(0, 2) =
0

∫
2

h1(τ, 2)Δτ = −
2

∫
0

(τ − 2)Δτ
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= −μ(0)(−2) − μ(1)(1 − 2) = 3,

h3(0, 2) =
0

∫
2

h2(τ, 2)Δτ = −
2

∫
0

h2(τ, 2)Δτ

= −μ(0)h2(0, 2) − μ(1)h2(1, 2) = −3 −
1

∫
2

h1(τ, 2)Δτ

= −3 +
2

∫
1

(τ − 2)Δτ = −3 + μ(1)(1 − 2) = −3 − 1 = −4,

h3(2, 4) =
2

∫
4

h2(τ, 4)Δτ = −
4

∫
2

h2(τ, 4)Δτ

= −μ(2)h2(2, 4) − μ(3)h2(3, 4)

= −
2

∫
4

h1(τ, 4)Δτ −
3

∫
4

h1(τ, 4)Δτ

=
4

∫
2

(τ − 4)Δτ +
4

∫
3

(τ − 4)Δτ

= μ(2)(2 − 4) + μ(3)(3 − 4) + μ(3)(3 − 4)

= −2 − 1 − 1 = −4,

h1(4, 2) = 4 − 2 = 2,

h2(4, 2) =
4

∫
2

h1(τ, 2)Δτ =
4

∫
2

(τ − 2)Δτ = μ(2)(2 − 2) + μ(3)(3 − 2) = 1,

h3(4, 2) =
4

∫
2

h2(τ, 2)Δτ = μ(2)h2(2, 2) + μ(3)h2(3, 2)

= h2(3, 2) =
3

∫
2

h1(τ, 2)Δτ = μ(2)h1(2, 2) = 0,

f (0) = 1, f (2) = 3
5
, f (4) = 5

17
.

Hence, for a1, we get the following equation:

a1(−
4
22
+
3
2
+
1
2
− 0) =

5
17 −

3
5

2
−

3
5 − 1
2
,

or

 EBSCOhost - printed on 2/10/2023 4:40 PM via . All use subject to https://www.ebsco.com/terms-of-use



3.3 Cubic splines | 109

a1 =
− 2685
2
+
1
5
= −

13
85
+
1
5
=

4
85
.

Now let

l1(t) =
t2

2
−
5
2
t, l2(t) =

1
6
t3 − 3

2
t2 + 13

3
t,

l3(t) =
t2 − 9t

2
, l4(t) =

1
6
t3 − 5t2 + 89

6
t, t ∈ 𝕋.

Then

lΔ1 (t) =
σ(t) + t

2
−
5
2
=
t + 1 + t

2
−
5
2
= t − 2,

lΔ2 (t) =
1
6
((σ(t))2 + tσ(t) + t2) − 3

2
(σ(t) + t) + 13

3

=
1
6
((t + 1)2 + t(t + 1) + t2) − 3

2
(t + 1 + t) + 13

3

=
1
6
(t2 + 2t + 1 + t2 + t + t2) − 3

2
(2t + 1) + 13

3

=
t2

2
+
t
2
+
1
6
− 3t − 3

2
+
13
3

=
t2 − 5t
2
+
1 − 9 + 26

6
=
t2 − 5t
2
+ 3,

lΔ3 (t) =
1
2
(σ(t) + t − 9) = 1

2
(t + 1 + t − 9) = t − 4,

lΔ4(t) =
1
6
((σ(t))2 + tσ(t) + t2) − 5(σ(t) + t) + 89

6

=
1
6
((t + 1)2 + t(t + 1) + t2) − 5(t + 1 + t) + 89

6

=
1
6
(3t2 + 3t + 1) − 5(2t + 1) + 89

6

=
t2

2
−
9
2
t + 15 − 5

=
t2

2
−
9
2
t + 10, t ∈ 𝕋.

From here,

h2(x, 2) =
x

∫
2

(τ − 2)Δτ = l1(τ)|
τ=x
τ=2

= l1(x) − l1(2) =
x2

2
−
5
2
x − 2 + 5

=
x2 − 5x

2
+ 3,
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h3(x, 2) =
x

∫
2

h2(τ, 2)Δτ =
x

∫
2

lΔ2 (τ)Δτ

= l2(x) − l2(2) =
x3

6
−
3x2

2
+
13
3
x − 8

6
+ 6 − 26

3

=
x3

6
−
3
2
x2 + 13

3
x − 4,

h2(x, 4) =
x

∫
4

(τ − 4)Δτ =
x

∫
4

lΔ3 (τ)Δτ

= l3(τ)|
τ=x
τ=4 =

x2 − 9x
2
−
16 − 36

2

=
x2 − 9x

2
+ 10,

h3(x, 4) =
x

∫
4

h2(τ, 4)Δτ =
x

∫
4

lΔ4(τ)Δτ

= l4(x) − l4(4) =
1
6
x3 − 5x2 + 89

6
−
64
6
+ 80 − 178

3

=
x3 − 30x2 + 89 − 64 + 480 − 356

6
=
x3 − 30x2 + 149

6
, x ∈ [2, 4].

Therefore,

s2(x) = f (x1) −
f (x1) − f (x0)

x1 − x0
h1(x1, x)

+ a1(−
h3(x0, x1)
(h1(x1, x0))2

h1(x1, x) −
h2(x0, x1)
h1(x1, x0)

h1(x1, x) +
h3(x, x1)
h1(x1, x0)

+ h2(x, x1))

= f (2) − f (2) − f (0)
2

h1(2, x)

+
4
85
(−

h3(0, 2)
(h1(2,0))2

h1(2, x) −
h2(0, 2)
h1(2,0)

h1(2, x) +
h3(x, 2)
h1(2,0)

+ h2(x, 2))

=
3
5
−

3
5 − 1
2
(2 − x)

+
4
85
(
4
4
(2 − x) − 3

2
(2 − x) + 1

2
(
x3

6
−
3
2
x2 + 13

3
x − 4) + x

2 − 5x
2
+ 3)

=
3
5
+
1
5
(2 − x) + 4

85
(−

1
2
(2 − x) + x

3

12
−
3x2

4
+
13x
6
− 2 + x

2 − 5x
2
+ 3)

= 1 − x
5
+

4
85
⋅
−12 + 6x + x3 − 9x2 + 26x − 24 + 6x2 − 30x + 36

12

= 1 − x
5
+

4
85
⋅
x3 − 3x2 + 2x

12
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=
255 − 51x + x3 − 3x2 + 2x

255

=
x3 − 3x2 − 49x + 255

255
, x ∈ [0, 2],

and

s2(x) = f (x2) −
f (x2) − f (x1)
h1(x2, x1)

h1(x1, x) + a1(
h3(x1, x2)
(h1(x2, x))2

h1(x2, x1) −
h3(x, x2)
h1(x2, x1)

)

= f (4) − f (4) − f (2)
h1(4, 2)

h1(4, x) +
4
85
(

h3(2, 4)
(h1(4, 2))2

h1(4, x) −
h3(x, 4)
h1(4, 2)
)

=
5
17
−

5
17 −

3
5

2
(4 − x) + 4

85
(−

4
4
(4 − x) − x

3 − 30x2 + 149
12

)

=
5
17
−
25 − 81
170
(4 − x) + 4

85
(
−48 + 12x − x3 + 30x2 − 149

12
)

=
50 − 56(4 − x)

170
−
x3 − 30x2 − 12x + 101

255

=
−174 + 56x

170
−
x3 − 30x2 − 12x + 101

255

=
−522 + 168x − 2x3 + 60x2 + 24x − 202

510

=
−2x3 + 60x2 + 192x − 724

510
=
−x3 + 30x2 + 96x − 362

255
, x ∈ [2, 4].

In the next example, we compute the natural cubic spline on an interval consist-
ing of two subintervals for a given arbitrary function. We perform the computation
of the coefficients with Matlab. Then, we choose two different forms of the arbitrary
function and also compare the graphs of the function and its natural cubic spline in-
terpolation.

Example 3.19. Let 𝕋 = 2ℤ and let f : 𝕋→ ℝ be a given function. Consider

K = {a = x0 = −6, x1 = −2, x2 = 2, x3 = 6, x4 = 10 = b}.

In Example 2.28 we have computed

h0(t, s) = 1, h1(t, s) = t − s,

h2(t, s) =
t2

2
− (s + 1)t + s + s

2

2
, t, s ∈ 𝕋.

We also compute

h3(t, s) =
t

∫
s

h2(τ, s)Δτ
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=
t

∫
s

(
τ2

2
− (1 + s)τ + s + s

2

2
)Δτ

= (
τ3

6
−
τ2

2
+
2τ
3
) − (1 + s)(τ

2

2
− τ) + (s + s

2

2
)τ|τ=tτ=s

=
t3

6
−
2 + s
2

t2 + (s
2

2
+ 2s + 4

3
)t − (s

3

6
+ s2 + 4s

3
), t, s ∈ 𝕋.

We have a0 = a4 = 0. To find a1, a2, and a3, we solve the linear system

[[

[

u11 u12 0
u21 u22 u23
0 u32 u33

]]

]

[[

[

a1
a2
a3

]]

]

= [[

[

g1
g2
g3

]]

]

,

where

ujj =
h3(xj−1, xj)
(h1(xj, xj−1))2

+
h2(xj−1, xj)
h1(xj, xj−1)

+
h2(xj+1, xj)
h1(xj+1, xj)

−
h3(xj+1, xj)
(h1(xj+1, xj))2

, for j = 1, 2, 3,

uj,j+1 =
h3(xj+1, xj)
(h1(xj+1, xj))2

, for j = 1, 2,

uj,j−1 =
−h3(xj−1, xj)
(h1(xj, xj−1))2

, for j = 2, 3,

and

gj =
f (xj+1) − f (xj)
h1(xj+1, xj)

−
f (xj) − f (xj−1)
h1(xj, xj−1)

, for j = 1, 2, 3.

Then we construct the cubic spline as

s2(x) = f (xj) −
f (xj) − f (xj−1)
h1(xj, xj−1)

h1(xj, x)

+ aj−1(
h3(xj−1, xj)
(h1(xj, xj−1))2

h1(xj, x) −
h3(x, xj)
h1(xj, xj−1)

)

+ aj(−
h3(xj−1, xj)
(h1(xj, xj−1))2

h1(xj, x) −
h2(xj−1, xj)
h1(xj, xj−1)

h1(xj, x)

+
h3(x, xj)
h1(xj, xj−1)

+ h2(x, xj)), x ∈ [xj−1, xj], j ∈ {1, 2, 3, 4}.

For the function f (x) = √x2 + 2 − x, the computations are done with Matlab and the
graphs of the function and the cubic spline are compared in Figure 3.4. As a second
example, the function f is chosen as f (x) = 2x+5

x2+1 . The computations are done with
Matlab and the graphs of the function and the cubic spline are compared in Figure 3.5.
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Figure 3.4: The graphs of the natural cubic spline s2(x) and f (x) = √x2 + 2 − x.

Figure 3.5: The graphs of natural cubic spline s2(x) and f (x) = 2x+5
x2+1 .

Exercise 3.20. Let 𝕋 = {0, 18 ,
1
6 ,

1
3 ,

1
2 , 1}, and consider

f (t) = 1 + t + 1 + t
1 + t2
, t ∈ 𝕋, a = x0 = 0, x1 =

1
6
, x2 = b = 1.

Find s2(x), x ∈ [xj−1, xj], j ∈ {1, 2}.
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3.4 Hermite cubic splines

The construction of a natural cubic spline is complicated and requires the solution of
a linear system for the determination of the coefficients. In this section, we will intro-
duce another cubic spline, known as Hermite cubic spline. Its construction is easier
and it is based on writing a Hermite interpolation polynomial on each subinterval.
Below, we present the definition and the construction of a Hermite cubic spline for an
arbitrary time scale.

Let a, b ∈ 𝕋, a < b, and consider

K = {a = x0 ≤ σ(x0) < x1 ≤ σ(x1) < ⋅ ⋅ ⋅ < xm ≤ σ(xm) = b},

as well as f ∈ 𝒞1rd([a, b]).

Definition 3.21. Define the Hermite cubic polynomial as a polynomial in the form

s(x) = c0 + c1h1(x, xj−1) + c2h2(x, xj−1) + c3h3(x, xj−1), x ∈ [xj−1, xj], (3.10)

j ∈ {1, . . . ,m}, where c0, c1, c2, and c3 are constants so that

s(xj) = f (xj), sΔ(xj) = f
Δ(xj), j ∈ {0, 1, . . . ,m}. (3.11)

Now, we will determine the constants c0, c1, c2, and c3. We have

s(xj−1) = c0 = f (xj−1),

and

s(xj) = f (xj−1) + c1h1(xj, xj−1) + c2h2(xj, xj−1) + c3h3(xj, xj−1) = f (xj),

whereupon

c1h1(xj, xj−1) + c2h2(xj, xj−1) + c3h3(xj, xj−1) = f (xj) − f (xj−1).

Next,

sΔ(x) = c1 + c2h1(x, xj−1) + c3h2(x, xj−1), x ∈ [xj−1, xj].

From here,

sΔ(xj−1) = c1 = f
Δ(xj−1),

and

sΔ(xj) = f
Δ(xj−1) + c2h1(xj, xj−1) + c3h2(xj, xj−1) = f

Δ(xj).
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Thus, we get the system

c2h2(xj, xj−1) + c3h3(xj, xj−1) = f (xj) − f (xj−1) − f
Δ(xj−1)h1(xj, xj−1),

c2h1(xj, xj−1) + c3h2(xj, xj−1) = f
Δ(xj) − f

Δ(xj−1).

From the latter system, we find

c2 =
(f (xj) − f (xj−1) − f Δ(xj−1)h1(xj, xj−1))h2(xj, xj−1)
(h2(xj, xj−1))2 − h1(xj, xj−1)h3(xj, xj−1)

−
(f Δ(xj) − f Δ(xj−1))h3(xj, xj−1)

(h2(xj, xj−1))2 − h1(xj, xj−1)h3(xj, xj−1)

and

c3 =
(f (xj) − f (xj−1) − f Δ(xj−1)h1(xj, xj−1))h1(xj, xj−1)

h3(xj, xj−1)h1(xj, xj−1) − (h2(xj, xj−1))2

−
(f Δ(xj) − f Δ(xj−1))h2(xj, xj−1)

h3(xj, xj−1)h1(xj, xj−1) − (h2(xj, xj−1))2
.

Consequently,

s(x) = f (xj−1) + f
Δ(xj−1)h1(x, xj−1)

+ (
(f (xj) − f (xj−1) − f Δ(xj−1)h1(xj, xj−1))h2(xj, xj−1)
(h2(xj, xj−1))2 − h1(xj, xj−1)h3(xj, xj−1)

−
(f Δ(xj) − f Δ(xj−1))h3(xj, xj−1)

(h2(xj, xj−1))2 − h1(xj, xj−1)h3(xj, xj−1)
)h2(x, xj−1)

+ (
(f (xj) − f (xj−1) − f Δ(xj−1)h1(xj, xj−1))h1(xj, xj−1)

h3(xj, xj−1)h1(xj, xj−1) − (h2(xj, xj−1))2

−
(f Δ(xj) − f Δ(xj−1))h2(xj, xj−1)

h3(xj, xj−1)h1(xj, xj−1) − (h2(xj, xj−1))2
)h3(x, xj−1),

whenever x ∈ [xj−1, xj], j ∈ {1, . . . ,m}.

Remark 3.22. We can define the Hermite cubic polynomial in the following way:

s(x) = c0 + c1g1(x, xj−1) + c2g2(x, xj−1) + c3g3(x, xj−1), x ∈ [xj−1, xj], j ∈ {1, . . . ,m},

where the constants c0, c1, c2, and c3 will be determined by the condition (3.11). As
above, one can deduct that

s(x) = f (xj−1) + f
Δ(xj−1)g1(x, xj−1)

+ (
(f (xj) − f (xj−1) − f Δ(xj−1)g1(xj, xj−1))g2(xj, xj−1)
(g2(xj, xj−1))2 − g1(xj, xj−1)g3(xj, xj−1)
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−
(f Δ(xj) − f Δ(xj−1))g3(xj, xj−1)

(g2(xj, xj−1))2 − g1(xj, xj−1)g3(xj, xj−1)
)g2(x, xj−1)

+ (
(f (xj) − f (xj−1) − f Δ(xj−1)g1(xj, xj−1))g2(xj, xj−1)g1(xj, xj−1)

g3(xj, xj−1)g1(xj, xj−1) − (g2(xj, xj−1))2

−
(f Δ(xj) − f Δ(xj−1))g2(xj, xj−1)

g3(xj, xj−1)g1(xj, xj−1) − (g2(xj, xj−1))2
)g3(x, xj−1),

whenever x ∈ [xj−1, xj], j ∈ {1, . . . ,m}.

We illustrate in a detailed way the construction of Hermite cubic spline in the fol-
lowing example.

Example 3.23. Let 𝕋 = 2ℕ0 , and consider

a = x0 = 1, x1 = 4, x2 = 16 = b, f (t) = 1
1 + t
, t ∈ 𝕋.

We will find s(x), x ∈ [1, 4]. We have

σ(t) = 2t, f (x0) =
1
2
, f (x1) =

1
5
,

f Δ(t) = − 1
(1 + t)(1 + σ(t))

= −
1

(1 + t)(1 + 2t)
, t ∈ 𝕋,

f Δ(1) = − 1
6
, f Δ(4) = − 1

45
,

h1(x, x0) = x − 1, x ∈ 𝕋, h1(x1, x0) = 3,

h2(x, x0) =
x

∫
1

(t − 1)Δt = ( 1
3
t2 − t)


t=x

t=1

=
x2

3
− x − ( 1

3
− 1) = x

2

3
− x + 2

3
, x ∈ 𝕋,

h2(x1, x0) =
16
3
− 4 + 2

3
= 6 − 4 = 2,

h3(x, x0) =
x

∫
1

(
t2

3
− t + 2

3
)Δt = ( t

3

21
−
t2

3
+
2
3
t)


t=x

t=1

=
x3

21
−
x2

3
+
2
3
x − 1

21
+
1
3
−
2
3

=
x3

21
−
x2

3
+
2
3
x − 8

21
, x ∈ 𝕋,

h3(x1, x0) =
64
21
−
16
3
+
8
3
−
8
21
=
56
21
−
8
3
= 0, x ∈ [1, 4].

Hence,

c0 = f (x0) =
1
2
,
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c1 = f
Δ(x0) = −

1
6
,

c2 =
( 15 −

1
2 +

1
6 ⋅ 3)2

4 − 3 ⋅ 0
−
(− 1

45 +
1
6 )0

4 − 3 ⋅ 0
=

2
5
4
=

1
10
,

c3 =
( 15 −

1
2 +

1
6 ⋅ 3)3

3 ⋅ 0 − 22
−
(− 1

45 +
1
6 )2

3 ⋅ 0 − 22
= −

3
5
4
−

13
45
−4
= −

3
20
+

13
180
= −

14
180
= −

7
90

and

s(x) = 1
2
−
1
6
(x − 1) + 1

10
(
x2

3
− x + 2

3
) −

7
90
(
x3

21
−
x2

3
+
2
3
x − 8

21
)

=
1
90
(45 − 15x + 15 + 3x2 − 9x + 6 − x

3

3
+
7
3
x2 − 14

3
x + 8

3
)

=
1
90
(−

x3

3
=
16
3
x2 − 86

3
x + 206

3
)

= −
1
270
(x3 − 16x2 + 86x − 206), x ∈ [1, 4].

In the last example, we consider the same time scale and set K as in Example 3.19.
We use Matlab to compute the Hermite cubic spline coefficients for an arbitrary func-
tion and then take the same two particular functions and compare their graphs with
the corresponding Hermite cubic spline.

Example 3.24. We again consider the time scale 𝕋 = 2ℤ as in Example 3.19. Let f :
𝕋→ ℝ be a given function and let

K = {a = x0 = −6, x1 = −2, x2 = 2, x3 = 6, x4 = 10 = b}.

We have already computed the monomials

h0(t, s) = 1,
h1(t, s) = t − s,

h2(t, s) =
t2

2
− (1 + s)t + s + s

2

2
,

h3(t, s) =
t3

6
−
2 + s
2

t + (s
2

2
+ 2s + 4

3
)t − (s

3

6
+ s2 + 4s

3
), t, s ∈ 𝕋.

To find the Hermite cubic spline for the given function f and the given knot set K, we
need to compute the coefficients ci, i = 0, 1, 2, 3 on each interval [xj−1, xj], j = 1, 2, 3, 4.
For each j = 1, 2, 3, 4, we define and compute

Aj = f (xj) − f (xj−1) − f
Δ(xj−1)h1(xj, xj−1),

Bj = f
Δ(xj) − f

Δ(xj−1),

Dj = (h2(xj, xj−1))
2
− h1(xj, xj−1)h3(xj, xj−1).
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Then the coefficients of the cubic spline s2(x) are obtained as

c0 = f (xj−1),

c1 = f
Δ(xj−1),

c2 =
Ajh2(xj, xj−1) − Bjh3(xj, xj−1)

Dj
,

c3 =
−Ajh1(xj, xj−1) + Bjh1(xj, xj−1)

Dj
,

for j = 1, 2, 3, 4 and the cubic spline s2(x) is obtained as

s2(x) = c0 + c1h1(x, xj−1) + c2h2(x, xj−1) + c3h3(x, xj−1), x ∈ [xj−1, xj].

As in Example 3.19,we consider first the function f (x) = √x2 + 2−x, x ∈ 𝕋.We compute
f Δ(x) as

f Δ(x) = f (σ(x)) − f (x)
σ(x) − x

=
√x2 + 4x + 6 − (x + 2) − (√x2 + 2 − x)

x + 2 − x

=
√x2 + 4x + 6 −√x2 + 2 − 2

2
, x ∈ 𝕋.

The computations of the cubic spline are donewithMatlab and the graphs of the func-
tion and the cubic spline are compared in Figure 3.6. As a second example, the func-
tion f is chosen as f (x) = 2x+5

x2+1 , x ∈ 𝕋. We compute f Δ(x) as

f Δ(x) = f (σ(x)) − f (x)
σ(x) − x

=
2x+9

x2+4x+5 −
2x+5
x2+1

x + 2 − x

= −
2x2 + 14x + 8
(x2 + 1)(x2 + 4x + 5)

, x ∈ 𝕋.

The computations are done with Matlab and the graphs of the function and the cubic
spline are compared in Figure 3.7.

Exercise 3.25. Let 𝕋 = ( 13 )
ℕ0 , and consider

a = x0 =
1
81
, x1 =

1
9
, x2 = b = 1, f (t) = 1 + t − t2 + 1

1 + t2
, t ∈ 𝕋.

Find s(x), x ∈ [ 181 ,
1
9 ].
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Figure 3.6: The graphs of the Hermite cubic spline s2(x) and f (x) = √x2 + 2 − x.

Figure 3.7: The graphs of the Hermite cubic spline s2(x) and f (x) = 2x+5
x2+1 .

3.5 Advanced practical problems

Problem 3.26. Let

𝕋 = {1, 5
4
,
4
3
, 2, 5

2
, 4},
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a = x0 = 1, x1 =
4
3
, x2 =

5
2
= b,

f (t) = 2 + 3t + t2, t ∈ 𝕋.

Prove that

sup
x∈[a,b]

sL(x) − f (x)
 ≤

133
6
.

Problem 3.27. Let

𝕋 = {0, 1
7
,
1
4
, 1, 7

6
,
7
5
,
7
4
, 2, 5

2
, 3, 7

2
, 4},

a = x0 = 1, x1 =
1
4
, x2 =

7
6
, x3 =

7
4
, x4 =

5
2
, x5 =

7
2
, b = 4,

and consider

f (t) = t + 1
t3 + t2 + t + 1

, t ∈ 𝕋.

Estimate

sσL(x) − f (x)
, x ∈ [a, b].

Problem 3.28. Let 𝕋 = 2ℕ0 , and consider

f (t) = 1 + t + e1(t, 1) + sin1(t, 1), t ∈ 𝕋,
a = x0 = 1, x1 = 4, x2 = b = 16.

Find s2(x), x ∈ [xj−1, xj], j ∈ {1, 2}.

Problem 3.29. Let 𝕋 = ( 12 )
ℕ0 ,

a = x0 =
1
256
, x1 =

1
64
, x2 =

1
8
, x3 = 1, f (t) = 1 + t

1 + t + t2
, t ∈ 𝕋.

Find s(x), x ∈ [ 1256 , 1].

Problem 3.30. Let a, b ∈ 𝕋, a < b, and consider

K = {a = x0 ≤ σ(x0) < x1 ≤ σ(x1) < ⋅ ⋅ ⋅ < xm ≤ σ(xm) = b},

as well as f ∈ 𝒞1rd([a, b]). Find the Hermite cubic spline in the form

s(x) = c0 + c1h1(x, xj−1) + c2g2(x, xj−1) + c3g3(x, xj−1), x ∈ [xj−1, xj],

so that (3.11) holds.
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Problem 3.31. Let a, b ∈ 𝕋, a < b, and consider

K = {a = x0 ≤ σ(x0) < x1 ≤ σ(x1) < ⋅ ⋅ ⋅ < xm ≤ σ(xm) = b},

as well as f ∈ 𝒞1rd([a, b]). Find the Hermite cubic spline in the form

s(x) = c0 + c1h1(x, xj−1) + c2h2(x, xj−1) + c3g3(x, xj−1), x ∈ [xj−1, xj],

so that (3.11) holds.

Problem 3.32. Let a, b ∈ 𝕋, a < b, and consider

K = {a = x0 ≤ σ(x0) < x1 ≤ σ(x1) < ⋅ ⋅ ⋅ < xm ≤ σ(xm) = b},

as well as f ∈ 𝒞1rd([a, b]). Find the Hermite cubic spline in the form

s(x) = c0 + c1h1(x, xj−1) + c2g2(x, xj−1) + c3h3(x, xj−1), x ∈ [xj−1, xj],

so that (3.11) holds.
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4 The Euler method
Many problems in science and engineering involve a change of one quantity with re-
spect to another, usually with respect to time. Therefore, they are modeled by differ-
ential or difference equations, more specifically, initial or boundary value problems.
The differential and difference equations are unified as dynamic equations on time
scales. Especially for the nonlinear equations, an exact analytical solution cannot be
obtained inmany cases. The development of efficient numerical methods having high
accuracy has been an extremely important problem in numerical analysis [4, 6, 15].

The basic and most simple method to find an approximate solution of an initial
value problem for a first order differential equation is the so-called Euler method. It
is not very accurate, but the simplicity of its derivation is used in the construction of
more advanced and complicated numericalmethods. It is also used to provide the nec-
essary extra information for the application of such more advanced and complicated
methods.

In this chapter, we generalize the Euler method for initial value problems asso-
ciated with first order dynamic equations on time scales. It can also be adapted to
higher order dynamic equations by transforming the nth order dynamic equation into
a system of n first order dynamic equations.

Let 𝕋 be a time scale with forward jump operator σ, backward jump operator ρ,
and delta differentiation operator Δ.

4.1 Analyzing the method

Consider the Cauchy problem { xΔ(t) = f (t, x(t)),
x(t0) = x0, (4.1)

where f : 𝕋 × ℝ→ ℝ, x0 ∈ ℝ, t0 ∈ 𝕋 are given, and x : 𝕋→ ℝ is unknown. Suppose
that t ∈ [t0, t]𝕋 and take the points

t0 < t1 < ⋅ ⋅ ⋅ < tN = t, ti ∈ 𝕋, i = 1, . . . ,N ,
where

ti = {σli−1 (ti−1), li−1 ∈ ℕ if ti−1 is right-scattered,
ti−1 + qi−1, qi−1 ∈ ℝ if ti−1 is right-dense, (4.2)

i = 1, . . . ,N . Define {xi}Ni=1 by
https://doi.org/10.1515/9783110787320-004
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xi+1 = xi + (ti+1 − ti)f (ti, xi)= xi + {(σli (ti) − ti)f (ti, xi) if ti is right-scattered,
qif (ti, xi) if ti is right-dense. (4.3)

Formula (4.3) is known as the Euler method for the numerical solution of the initial
value problem (4.1) [3].

4.2 Local truncation error
In this section, we derive the local truncation error in the application of the Euler
method. To obtain the local truncation error, we consider the cases when t0 is right-
dense and right-scattered separately.
1. Case 1. t0 is right-scattered.

In a single step of the Euler method, the computed result is

x1 = x0 + (σl0 (t0) − t0)f (t0, x(t0))
and it differs from the exact answer x(t1) = x(σl0 (t0)) by

x(t1) − x1 = x(σl0 (t0)) − x(t0) − (σl0 (t0) − t0)f (t0, x(t0))= x(σl0 (t0)) − x(t0) − (σl0 (t0) − t0)xΔ(t0).
If l0 = 1, then x(t1) = x1. Assuming that x has continuous first and second order
delta derivatives, this can be written, using Taylor formula, in the form

ρ(σl0 (t0))∫
t0

h1(σl0 (t0), σ(τ))xΔ2 (τ)Δτ.
Another way of writing the error, assuming that the third derivative xΔ

3
also exists

and is bounded, is

h2(σl0 (t0), t0)xΔ2 (t0) + O(h3(σl0 (t0), t0)).
2. Case 2. t0 is right-dense.

In a single step of the Euler method, the computed result

x1 = x0 + q0f (t0, x(t0))
differs from the exact solution x(t1) by

x(t1) − x1 = x(t0 + q0) − x(t0) − q0f (t0, x(t0))= x(t0 + q0) − x(t0) − q0xΔ(t0).
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Assuming that x has continuous first and second order derivatives, this can be
written in the form

ρ(t0+q0)∫
t0

h1(t0 + q0, σ(τ))xΔ2 (τ)Δτ.
Another way of writing the error, assuming that the third derivative exists and is
bounded, is

h2(t0 + q0, t0)xΔ2 (t0) + O(h3(t0 + q0, t0)).
Example 4.1. Let 𝕋 = 2ℕ0 and consider the IVP

{ xΔ(t) = − 1
1+2t x(t), t > 1,

x(1) = 1
2 .

Take

t0 = 1, t1 = 8, t2 = 16, t3 = 32.
We have t1 = σ3(t0), i. e., l0 = 3. Let

g1(t) = t23 − t,
g2(t) = t321 − t23 + 23 t,
x(t) = 1

1 + t , t ∈ 𝕋.
Then

gΔ1 (t) = σ(t) + t3
− 1 = 2t + t

3
− 1 = t − 1,

gΔ2 (t) = (σ(t))2 + tσ(t) + t221
− σ(t) + t

3
+ 2
3
= 4t2 + 2t2 + t2

21
− 2t + t

3
+ 2
3
= t2

3
− t + 2

3
,

xΔ(t) = − 1(1 + t)(1 + σ(t)) = − 1(1 + t)(1 + 2t) = − 1
2t2 + 3t + 1 ,

xΔ
2 (t) = 2(σ(t) + t) + 3(2t2 + 3t + 1)(2(σ(t))2 + 3σ(t) + 1) = 6t + 3(2t2 + 3t + 1)(8t2 + 6t + 1) , t ∈ 𝕋,

xΔ
2 (1) = 9

6 ⋅ 15 = 1
10
.

Hence,
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xΔ(t) = − 1(1 + t)(1 + 2t) = − 1
1 + 2t x(t), t > 1,

x(1) = 1
2
,

i. e., x is a solution of the considered IVP. Next,

h2(t, t0) = t∫
1

(τ − 1)Δτ = t∫
1

gΔ1 (τ)Δτ= g1(t) − g1(1)= t2
3
− t − ( 1

3
− 1) = t2

3
− t + 2

3
,

h2(σl0 (t0), t0) = h2(8, 1) = 643 − 8 + 23 = 22 − 8 = 14,
h3(t, t0) = t∫

1

h2(τ, t0)Δτ = t∫
1

(τ2
3
− τ + 2

3
)Δτ = t∫

1

gΔ2 (τ)Δτ= g2(t) − g1(1)= t3
21
− t2
3
+ 2
3
t − ( 1

21
− 1
3
+ 2
3
)= t3

21
− t2
3
+ 2
3
t − ( 1

21
+ 1
3
) = t3

21
− t2
3
+ 2
3
t − 8

21
, t ∈ 𝕋,

h3(σl0 (t0), t0) = h3(8, 1) = 51221 − 643 + 163 − 8
21
= 504

21
− 48

3
= 24 − 16 = 8.

Therefore the local truncation error is

h2(σl0 (t0), t0)xΔ2 (t0) + O(h3(σl0 (t0), t0)) = 1410 + O(8) = 75 + O(8).
Exercise 4.2. Let 𝕋 = {0, 1

8
, 1
7
, 1
6
, 1
5
, 1
4
, 1
3
, 1
2
, 1},

a = t0 = 0, t1 = 16 , t2 = 14 , t3 = 12 , t4 = 1.
Consider the IVP { xΔ(t) = 1 + (x(t))2, t > 0,

x(0) = 2.
Find the local truncation error.
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4.3 Global truncation error

We continue with the derivation of the global truncation error of the Euler method.
Let x̃(t) denote the computed solution on the interval [t0, t]𝕋. That is, at step values t0,
t1, . . . , tN = t defined by (4.2), x̃ is computed, using equation (4.3). For “offstep” points,
x̃(t) is defined by linear interpolation, or, equivalently, x̃(t) is evaluated using a partial
step from the most recently computed step values. That is, if t ∈ [tk−1, tk], k = 1, . . . ,N ,
then

x̃(t) = xk−1 + h1(t, tk−1)f (tk−1, xk−1). (4.4)

Define the maximum step size as

m = max
1≤i≤N
{ti − ti−1}.

Also, let

α(t) = x(t) − x̃(t), (4.5)
β(t) = f (t, x(t)) − f (t, x̃(t)). (4.6)

Suppose that f (t, x) − f (t, z) ≤ L|x − z| for all t ∈ 𝕋 and x, z ∈ ℝ,
where L > 0. From (4.5) and (4.6), we haveβ(t) ≤ Lα(t), t ∈ 𝕋.
Define E(t), t ∈ 𝕋, so that the exact solution satisfies

x(t) = x(tk−1) + h1(t, tk−1)f (tk−1, x(tk−1)) + h2(t, tk−1)E(t), t ∈ [tk−1, tk], t ∈ 𝕋, (4.7)

and assume that |E(t)| ≤ p, t ∈ 𝕋. Subtracting (4.4) from (4.7), we get

x(t) − x̃(t) = x(tk−1) − xk−1 + h1(t, tk−1)(f (tk−1, x(tk−1)) − f (tk−1, xk−1))+ h2(t, tk−1)E(t), t ∈ 𝕋.
Hence, using (4.5) and (4.6), we get

α(t) = α(tk−1) + h1(t, tk−1)β(tk−1) + h2(t, tk−1)E(t), t ∈ 𝕋,
whereupon
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α(t) ≤ α(tk−1) + h1(t, tk−1)Lα(tk−1) + ph2(t, tk−1)= (1 + Lh1(t, tk−1))α(tk−1) + h2(t, tk−1)p≤ (1 + Lh1(t, tk−1))α(tk−1) +mph1(t, tk−1), t ∈ 𝕋. (4.8)

If L = 0, then it follows thatα(t) ≤ α(tk−1) +mph1(t, tk−1), t ∈ 𝕋.
In particular, α(tk) ≤ α(tk−1) +mph1(tk , tk−1).
Therefore, we deduceα(t) ≤ α(tk−2) +mp(h1(tk−1, tk−2) + h1(t, tk−1))= α(tk−2) +mph1(t, tk−2)≤ ⋅ ⋅ ⋅≤ α(t0) +mph1(t, t0), t ∈ 𝕋.
If L > 0, then we haveα(t) ≤ (1 + Lh1(t, tk−1))α(tk−1) +mph1(t, tk−1)= (1 + Lh1(t, tk−1))α(tk−1) + mpL Lh1(t, tk−1) + mpL − mpL , t ∈ 𝕋,
i. e., α(t) + mpL ≤ (1 + Lh1(t, tk−1))α(tk−1) + mpL (1 + Lh1(t, tk−1))= (1 + Lh1(t, tk−1))(mpL + α(tk−1))≤ eL(t, tk−1)(mpL + α(tk−1)), t ∈ 𝕋.
In particular, α(tk) + mpL ≤ eL(tk , tk−1)(mpL + α(tk−1)).
Hence, if t ∈ [tk−1, tk], then we getα(t) + mpL ≤ eL(t, tk−1)(mpL + α(tk−1))≤ eL(t, tk−1)eL(tk−1, tk−2)(mpL + α(tk−2))
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≤ ⋅ ⋅ ⋅≤ eL(t, t0)(mpL + α(t0)).
Combining the estimates found in the two cases and stating them formally, we have
the following result.

Theorem 4.3. Assuming that f satisfies Lipschitz condition with a constant L, the global
error satisfies the bound

x(t) − x̃(t) ≤ {{{|x(t0) − x̃(t0)| +mph1(t, t0) if L = 0,
eL(t, t0)(mpL + |α(t0)|) − mp

L if L > 0. (4.9)

Now we consider a sequence of approximations to x(t). In each of these approxi-
mations, a computationusing the Eulermethod is performed, starting fromanapprox-
imation to x(t0), and taking a sequence of positive steps. Denote the rth approximation
by xr .

The only assumptionwewill make about xr, for each specific value of r, is that the
initial error x(t0) − xr(t0) is bounded by Kr and that the greatest step size is bounded
bymr . It is assumed that Kr → 0 as r →∞. Ifmr → 0, then, by (4.9), we get thatx(t) − xr(t)→ 0 as r →∞.
There are cases whenmr does not tend to zero as r →∞, for instance, when 𝕋 = 2ℕ0 .
When 𝕋 = ℝ, we havemr → 0 as r →∞.
4.4 Numerical examples

In this section, we apply the Euler method to particular examples.

Example 4.4. Asafirst example,we consider the initial valueproblemassociatedwith
the logistic equation

xΔ(t) = (α ⊖ (αx(t)))x(t), x(0) = 2,
where 𝕋 = ℕ0 and α is a real number. The logistic equation in both continuous and
discrete cases is known to be one of the basic models of the population growth [1]. It is
not as simple as the exponential growthmodel since it takes into account the carrying
capacity of the system on which the population of a certain species is studied. How-
ever, this model ignores many features and external effects of the population growth.
Nevertheless, it is still widely used in population related problems.
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Notice that the problem can be written as

xΔ = α(1 − x)
1 + αμ(t)x x, x(0) = 2.

We apply the Euler method to the problem with three different step sizes explained
below.

Case 1. Let t ∈ [0, 30]𝕋 and let t0 = 0, ti = σli−1 (ti−1) = ti−1 + 1, where i = 1, . . . , 30.
Then we have li = 1 and σ(ti−1) − ti−1 = 1 for all i = 1, . . . , 30. Hence the computed
sequence of values of the solution x is defined as

xi = xi−1 + (σ(xi−1) − xi−1) α(1 − xi−1)
1 + αμ(ti−1)xi−1 xi−1 = (1 + α)xi−11 + αxi−1 , i = 1, . . . , 30.

In fact, the exact solution of the problem is obtained as

x(e)i (t) = (1 + α)x(e)i−1(t)1 + αx(e)i−1(t) ,
which coincides with the solution obtained by the Euler method with step size li = 1.

Case 2. Let t ∈ [0, 30]𝕋 and let t0 = 0, ti = σli−1 (ti−1) = ti−1 + 2, where i = 1, . . . , 15. In
this case, li = 2 and σ2(ti−1) − ti−1 = 2 for i = 0, . . . , 19. Hence, the computed sequence
of values of the solution x is defined as

xi = xi−1 + (σ2(ti−1) − ti−1) α(1 − xi−1)
1 + αμ(ti−1)xi−1 xi−1 = (1 + 2α)xi−11 + 2αxi−1 , i = 1, . . . , 15.

Case 3. Let t ∈ [0, 30]𝕋 and let t0 = 0, ti = σli−1 (ti−1) = ti−1 + 4, where i = 1, . . . , 7.
Then we have li = 4 and σli−1 (4i−1) − 4i−1 = 4. The computed sequence of values of the
solution x is defined as

xi = xi−1 + (σ4(ti−1) − ti−1) α(1 − xi−1)
1 + αμ(ti−1)xi−1 xi−1 = (1 + 4α)xi−11 + 4αxi−1 , i = 1, . . . , 7.

We denote the computed solution with li = 1 by x(1), with li = 2 by x(2), and with li = 4
by x(4). The exact solution is denoted by x(e). All calculations are done with MATLAB.
The values of the approximate and the exact solution are listed in Table 4.1.

In Figures 4.1, 4.2, and 4.3, we compare the graphs of the exact and approximate
solutions for the three cases discussed above. In all three figures, the exact solution is
represented by the symbol o and the computed solution by the symbol *.

In Figure 4.4 the errors for the three cases discussed above are given. It is obvious
that there is no error in Case 1 as stated above, and a small error is present for the Cases
2 and 3.
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Table 4.1: The values of x(1), x(2), x(4), and the exact solution x(e) at points of the interval [0, 30].

t x(e) x(1) x(2) x(4)

0.00 2.00000000 2.00000000 2.00000000 2.00000000
1.00 1.20000000 1.20000000
2.00 1.05882353 1.05882353 1.11111111
3.00 1.01886792 1.01886792
4.00 1.00621118 1.00621118 1.02040816 1.05882353
5.00 1.00206186 1.00206186
6.00 1.00068634 1.00068634 1.00401606
7.00 1.00022868 1.00022868
8.00 1.00007621 1.00007621 1.00080064 1.00621118
9.00 1.00002540 1.00002540

10.00 1.00000847 1.00000847 1.00016003
11.00 1.00000282 1.00000282
12.00 1.00000094 1.00000094 1.00003200 1.00068634
13.00 1.00000031 1.00000031
14.00 1.00000010 1.00000010 1.00000640
15.00 1.00000003 1.00000003
16.00 1.00000001 1.00000001 1.00000128 1.00007621
17.00 1.00000000 1.00000000
18.00 1.00000000 1.00000000 1.00000026
19.00 1.00000000 1.00000000
20.00 1.00000000 1.00000000 1.00000005 1.00000847
21.00 1.00000000 1.00000000
22.00 1.00000000 1.00000000 1.00000001
23.00 1.00000000 1.00000000
24.00 1.00000000 1.00000000 1.00000000 1.00000094
25.00 1.00000000 1.00000000
26.00 1.00000000 1.00000000 1.00000000
27.00 1.00000000 1.00000000
28.00 1.00000000 1.00000000 1.00000000 1.00000010
29.00 1.00000000 1.00000000

Example 4.5. Our second example is an initial value problem associated with a
Riccati-type dynamic equation [1]

xΔ = [⊖(−t)]xσ + x2

μ(t)x − 1
t
, x(t0) = a. (4.10)

The equation can be written as

xΔ = t
1 − μ(t)t x(σ(t)) + x2(t)t

μ(t)tx − 1 . (4.11)

We discuss the problem on two different time scales.
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Figure 4.1: Computed and exact values of the solution with step size li = 1 and α = 2.

Figure 4.2: Computed and exact values of the solution with step size li = 2 and α = 2.

First, we consider the time scale 𝕋 = [1, 4] ∪ {5, 8, 11, 14, 17, 20, 23, 26, 29, 32}. We apply
the Euler method for the problem with different choices of the initial value and the
step size.

Let t0 = 1, ti = ti−1 + q for i = 1, . . ., k = 3
q , tk+1 = 5 and ti = ti−1 + 3 for i =

k + 2, k + 3, . . . , k + 9. Since, for i = 0, . . . , k − 1, the points ti are right-dense, we have
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Figure 4.3: Computed and exact values of the solution with step size li = 4 and α = 2.

Figure 4.4: The error magnitudes for the logistic equation with step sizes li = 1, 2,4 and α = 2.

σ(ti) = ti and μ(ti) = 0 for these values, and hence, the equation becomes the ordinary
differential equation

xΔ = x′ = tx − tx2. (4.12)
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The values of x computed by using Euler’s method are obtained as

x0 = a, xi = xi−1 + qti−1xi−1(1 − xi−1), i = 1, 2, . . . , k. (4.13)

Then, for i = k, . . . , k + 9, the points ti are right-scattered. In this case, we use the
dynamic equation (4.11). For tk = 4, we have σ(tk) = tk + 1 and μ(tk) = 1. Hence,

tk+1 = 5,
xk+1 = xk + μ(tk)[ tk

1 − μ(tk)tk x(σ(tk)) + x2ktk
μ(tk)tkxk − 1]= xk + [ tk

1 − tk x(tk+1)) + x2ktk
tkxk − 1],

from which we obtain

xk+1 = 1 − tk
1 − 2tk [xk(2tkxk − 1)tkxk − 1 ].

Finally, for the right-scattered points ti with i = k+1, k+2, . . . , k+8, we have σ(ti) = ti+3
and μ(ti) = 3. Therefore,

ti = ti−1 + 3,
xi = xi−1 + μ(ti−1)[ ti−1

1 − μ(ti−1)ti−1 x(σ(ti−1)) + x2i−1ti−1
μ(ti−1)ti−1xi−1 − 1]= xi−1 + 3[ ti−1

1 − 3ti−1 x(ti)) + x2i−1ti−1
3ti−1xi−1 − 1],

which gives

xi = 1 − 3ti−11 − 6ti−1 [xi−1(6ti−1xi−1 − 1)3ti−1xi−1 − 1 ],
where i = k + 2, k + 3, . . . , k + 9.

Notice that the exact solution of the initial value problem (4.10) can be computed.
In fact, it is obtained as

x(e)(t) = {{{{{{{
ae

t2−1
2

ae
t2−1
2 +1−a

if t ∈ [1, 4),
xi(ti) if ti ∈ {4, 5, 8, 11, . . . , 32}.

We consider two cases for the initial value x(1) = a, and for each case we use two
different step sizes.

Case 1. Let x(1) = a = 1.5. We apply the Euler method with step sizes q = 0.5
and q = 0.25. The computed solutions for these values of q are compared with the
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exact solution in Figures 4.5 and 4.6, respectively. In both figures, computed values
are shown with *, exact values with o. Finally, the errors for q = 0.5 and q = 0.25 are
shown in Figure 4.7.

Figure 4.5: Computed and exact values of the solution with step size q = 0.5 and x(1) = 1.5.

Figure 4.6: Computed and exact values of the solution with step size q = 0.25 and x(1) = 1.5.
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Figure 4.7: The error magnitudes for the cases q = 0.5 and q = 0.25, and x(1) = 1.5.

In Table 4.2, the values of the approximate and exact solution for the initial value
x(0) = 1.5 are tabulated. The approximate solution obtained with step size q = 0.25 is
denoted by x(1) and that with the step size q = 0.5 is denoted as x(2). The exact solution
is denoted as x(e).

Case 2. Let x(1) = a = 0.5. The Euler method is applied with the same step sizes,
that is, q = 0.5 and q = 0.25. Figure 4.8 shows the graphs of computed and exact
solutions when q = 0.5, and Figure 4.9 shows the graphs of computed and exact so-
lutions for q = 0.25. In both figures, the symbol * represent the computed and o the
exact solution. The errors for the step sizes q = 0.5 and q = 0.25 are shown in Fig-
ure 4.10.

In Table 4.3, the approximate and exact solutions for the initial value x(1) = 0.5
are given. The approximate solution obtained with step size q = 0.25 is denoted by
x(1) and that with the step size q = 0.5 is denoted as x(2). The exact solution is denoted
as x(e).

We last consider the initial value problem

xΔ = [⊖(−t)]xσ + x2

μ(t)x − 1
t
, x(2) = a, (4.14)

on the time scale 𝕋 = {2, 4, 6} ∪ [7, 10].
The discretization is now defined as follows: Take t0 = 2, t1 = 4, t2 = 6, t3 = 7,

and ti = ti−1 + q. We take two values for q, namely, q = 0.25 and 0.20. Accordingly, for
q = 0.25, we have i = 5, 6, . . . , 15, and for q = 0.20, i = 5, 6, . . . , 18.
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Table 4.2: The values of the exact solution x(e) and approximate solutions x(1) and x(2) for x(0) = 1.5.

t x(e) x(1) x(2)

1.00 1.50000000 1.50000000 1.50000000
1.25 1.33620743 1.31250000
1.50 1.21716763 1.18432617 1.12500000
1.75 1.13488527 1.10246281
2.00 1.08035312 1.05304218 1.01953125
2.25 1.04572300 1.02511435
2.50 1.02474407 1.01063274 0.99961853
2.75 1.01268600 1.00391662
3.00 1.00614272 1.00121340 1.00009519
3.25 1.00280301 1.00030225
3.50 1.00120363 1.00005660 0.99995239
3.75 1.00048596 1.00000707
4.00 1.00018440 1.00000044 1.00003570
5.00 1.00014927 1.00000036 1.00002890
8.00 1.00014376 1.00000034 1.00002783

11.00 1.00014057 1.00000034 1.00002722
14.00 1.00013834 1.00000033 1.00002678
17.00 1.00013663 1.00000033 1.00002645
20.00 1.00013525 1.00000032 1.00002619
23.00 1.00013409 1.00000032 1.00002596
26.00 1.00013310 1.00000032 1.00002577
29.00 1.00013223 1.00000032 1.00002560
32.00 1.00013146 1.00000032 1.00002545

Figure 4.8: Computed and exact values of the solution with step size q = 0.5 and x(1) = 0.5.
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Figure 4.9: Computed and exact values of the solution with step size q = 0.25 and x(1) = 0.5.

Figure 4.10: The error magnitudes for the cases q = 0.5 and q = 0.25, and x(1) = 0.5.

For the right-scattered points t0 = 2, t1 = 4, t2 = 6, with σ(t0) = t0 + 2, σ(t1) = t1 + 2, we
have

xi = 1 − 2ti−11 − 4ti−1 [xi−1(4ti−1xi−1 − 1)2ti−1xi−1 − 1 ], i = 1, 2.
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Table 4.3: The values of the exact solution x(e) and approximate solutions x(1) and x(2) for x(0) = 0.5.

t x(e) x(1) x(2)

1.00 0.50000000 0.50000000 0.50000000
1.25 0.56985265 0.56250000
1.50 0.65135486 0.63940430 1.12500000
1.75 0.73715816 0.72586671
2.00 0.81757448 0.81292231 1.01953125
2.25 0.88403928 0.88896213
2.50 0.93245331 0.94448564 0.99961853
2.75 0.96377994 0.97725596
3.00 0.98201379 0.99253685 1.00009519
3.25 0.99168422 0.99809244
3.50 0.99640640 0.99963938 0.99995239
3.75 0.99640640 0.99995481
4.00 0.99944722 0.99999717 1.00003570
5.00 0.99955253 0.99999771 1.00002890
8.00 0.99956906 0.99999780 1.00002783

11.00 0.99957863 0.99999785 1.00002722
14.00 0.99958532 0.99999788 1.00002678
17.00 0.99959044 0.99999791 1.00002645
20.00 0.99959457 0.99999793 1.00002619
23.00 0.99959804 0.99999794 1.00002596
26.00 0.99960101 0.99999796 1.00002577
29.00 0.99960362 0.99999797 1.00002560
32.00 0.99960594 0.99999799 1.00002545

For t3 = 7, since t2 = 6 is right-scattered and σ(t2) = t2 + 1, we obtain
x3 = 1 − t2

1 − 2t2 [x2(t2x2 − 1)t2x2 − 1 ].
Finally, for the right-dense points xi = xi−1 + q, we calculate

xi = xi−1 + qxi−1ti−1(1 − xi−1), i = 1, 2, . . . ,N ,
where N depends on the choice of q.

We use the Eulermethod to solve this initial value problem for two different values
of the initial condition explained below.

Case 1. In this case, we take the initial condition to be x(2) = 1.5 and apply the
Euler method with q = 0.25 and q = 0.20. The approximate solutions obtained for
these two values of q are compared with the exact solution in Figures 4.11 and 4.12.
The errors for the values q = 0.25 and q = 0.20 are shown in Figure 4.13.

Table 4.4 shows the approximate and exact solutions obtained by taking the ini-
tial value as x(0) = 1.5 and the step size as q = 0.20. The exact solution is denoted by
x(e), the approximate solution obtained for q = 0.20 by x(1).
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Figure 4.11: Computed and exact values of the solution with step size q = 0.25 and x(2) = 1.5.

Figure 4.12: Computed and exact values of the solution with step size q = 0.20 and x(2) = 1.5.

Table 4.5 shows the approximate and exact solutions obtained by taking the initial
value as x(0) = 1.5 and the step size as q = 0.25. The exact solution is denoted by x(e),
the approximate solution obtained for q = 0.25 by x(2).
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Figure 4.13: The error magnitudes for the cases q = 0.25 and q = 0.20, and x(2) = 1.5.

Table 4.4: The values of the exact solution x(e) and approximate solutions x(1) for q = 0.20 and
x(0) = 1.5.

t x(e) x(1)

2.00 1.50000000 1.50000000
4.00 1.41428571 1.41428571
6.00 1.38398892 1.38398892
7.00 0.62908587 0.62908587
7.20 1.00000000 0.95575745
7.40 1.00000000 1.01664806
7.60 1.00000000 0.99159874
7.80 1.00000000 1.00426137
8.00 1.00000000 0.99758530
8.20 1.00000000 1.00143949
8.40 1.00000000 0.99907533
8.60 1.00000000 1.00062734
8.80 1.00000000 0.99954764
9.00 1.00000000 1.00034343
9.20 1.00000000 0.99972504
9.40 1.00000000 1.00023083
9.60 1.00000000 0.99979677
9.80 1.00000000 1.00018689

10.00 1.00000000 0.99982052
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Table 4.5: The values of the exact solution x(e) and approximate solutions x(2) for q = 0.25 and
x(0) = 1.5.

t x(e) x(2)

2.00 1.50000000 1.50000000
4.00 1.41428571 1.41428571
6.00 1.38398892 1.38398892
7.00 0.62908587 0.62908587
7.25 1.00000000 1.03742534
7.50 1.00000000 0.96705322
7.75 1.00000000 1.02679314
8.00 1.00000000 0.97349056
8.25 1.00000000 1.02510394
8.50 1.00000000 0.97202726
8.75 1.00000000 1.02980658
9.00 1.00000000 0.96266125
9.25 1.00000000 1.04353653
9.50 1.00000000 0.93847512
9.75 1.00000000 1.07560659

10.00 1.00000000 0.87738190

Case 2. The initial condition is taken as x(2) = 0.5. Computation is done for the same
values of q, that is, q = 0.25 and q = 0.20. The computed solutions for the two values
of q are shown in Figures 4.14 and 4.15, and the errors in Figure 4.16.

Figure 4.14: Computed and exact values of the solution with step size q = 0.25 and x(2) = 0.5.
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Figure 4.15: Computed and exact values of the solution with step size q = 0.20 and x(2) = 0.5.

Figure 4.16: The error magnitudes for the cases and q = 0.25 and q = 0.20, and x(2) = 0.5.

As the last example of this chapter, we discuss the Euler method used to solve a
second-order dynamic equation.

Example 4.6. In this example, we apply the Euler method to an initial value problem
for a second-order dynamic equation given as
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{ xΔ
2 (t) + (t + 2)x(t) + 2tx(t) = 0,

x(0) = a, xΔ(0) = b, (4.15)

on the time scale 𝕋 = αℕ0, where a, b ∈ ℝ. Let [t0, tf ] = [0, 5]. Note that the exact
solution can be computed as follows.

Rewrite the dynamic equation in (4.15) as(xΔ(t) + 2x(t))Δ + t(xΔ(t) + 2x(t)) = 0, t ∈ 𝕋.
Let

u(t) = xΔ(t) + 2x(t), t ∈ 𝕋,
so that we have

uΔ(t) + tu(t) = 0, t ∈ 𝕋. (4.16)

On the time scale αℕ0,
uΔ(t) = u(σ(t)) − u(t)

σ(t) − t = u(t + α) − u(t)α
.

Then equation (4.16) yields

u(t + α) = u(t) − αtu(t) = (1 − αt)u(t), t ∈ 𝕋.
From the initial conditions, we get

u(0) = xΔ(0) + 2x(0) = b + 2a.
Next we consider the dynamic equation

xΔ(t) + 2x(t) = u(t), t ∈ 𝕋,
or

xΔ(t) = u(t) − 2x(t), t ∈ 𝕋,
which gives the exact solution of the initial value problem (4.15) as

x(t + α) = x(t) + α(u(t) − 2x(t)), t ∈ 𝕋,
where

u(t) = (1 − αt)u(t − α), t ∈ 𝕋,
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with the initial values

u(0) = b + 2a, x(0) = a.
To apply the Euler method, we write the second-order dynamic equation in (4.15)

as a system of first-order dynamic equations. Let x1(t) = x(t) and x2(t) = xΔ(t), t ∈ 𝕋.
Then the initial value problem (4.15) becomes{{{{{ xΔ1 (t) = x2(t),

xΔ2 (t) = −2x1(t) − (t + 2)x2(t), t ∈ 𝕋,
x1(0) = a, x2(0) = b.

We choose a constant step size q such that q ≥ α and, starting with
t0 = 0, x1,0 = a, x2,0 = b,

we compute the sequence of approximations{{{{{ ti+1 = ti + q,
x1,i+1 = x1,i + qx2,i,
x2,i+1 = x2,i + q(−2x1,i − (ti + 2)x2,i).

We compute the exact x(e) and approximate x(a) solutions for the values α = 0.2, q =
0.4, a = 1, and b = 1. The values of the solutions are compared in Table 4.6. The graphs
of the solutions are given in Figure 4.17.

Table 4.6: The values of the exact solution x(e) and approximate solutions x(a) for α = 0.2, q = 0.4,
a = 1, and b = 1.

t x(e) x(a)

0.00 1.00000000 1.00000000
0.40 1.32000000 1.40000000
0.80 1.35072000 1.48000000
1.20 1.15777382 1.30400000
1.60 0.84298652 0.94624000
2.00 0.52296696 0.54567680
2.40 0.27782076 0.23744973
2.80 0.12809919 0.07315282
3.20 0.05262471 0.01565708
3.60 0.02000236 0.00300823
4.00 0.00731252 0.00063614
4.40 0.00263933 0.00011205
4.80 0.00095035 0.00003152
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Figure 4.17: The exact solution and approximate solutions for α = 0.2, q = 0.4, a = 1, and b = 1.

Next, we compute the exact x(e) and approximate x(a) solutions for the values α = 0.2,
q = 0.4, a = 0.5, and b = −0.3. The values of the solutions are compared in Table 4.7.
The graphs of the solutions are given in Figure 4.18.

It is obvious that the accuracy is verypoor,which is natural since theEulermethod
is of order 1.

Table 4.7: The values of the exact solution x(e) and approximate solutions x(a) for α = 0.2, q = 0.4,
a = 0.5, and b = −0.3.

t x(e) x(a)

0.00 0.50000000 0.50000000
0.40 0.40400000 0.38000000
0.80 0.34972800 0.35600000
1.20 0.28258883 0.30640000
1.60 0.20117583 0.22121600
2.00 0.12363805 0.12740992
2.40 0.06540532 0.05542200
2.80 0.03009878 0.01707240
3.20 0.01235433 0.00365400
3.60 0.00469430 0.00070206
4.00 0.00171600 0.00014846
4.40 0.00061935 0.00002615
4.80 0.00022301 0.00000735
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Figure 4.18: The exact solution and approximate solutions for α = 0.2, q = 0.4, a = 0.5, and b = −0.3.

4.5 Advanced practical problems

Problem 4.7. Let𝕋 = {−3,−5
2
,−2,−1,− 1

2
,− 1

4
,− 1

8
,0, 1

8
, 1
7
, 1
6
, 1
5
, 1, 2, 3},

a = t0 = −3, t1 = −2, t2 = − 14 , t3 = 0, t4 = 16 , t5 = 2, t6 = 3.
Consider the IVP

{ xΔ(t) = 1+x(t)
1+x(t)+(x(t))2 , t > −3,

x(−3) = 1.
Apply the Euler method and find the local truncation error.

Problem 4.8. Let 𝕋 = 2ℕ0 . Apply the Euler method for the following IVP:{ xΔ(t) = t2 − (x(t))2, t > 1,
x(1) = 1,

where

a = t0 = 1, t1 = 2, t2 = 4, t3 = 8, t4 = 16, t5 = 32.
Evaluate the local and global truncation errors.
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Problem 4.9. Let 𝕋 = {− 7
8
,− 3

4
,0, 1

6
, 9
2
, 5, 11

2
, 6, 7}.

Apply the Euler method for the following IVP:

{ xΔ(t) = t + x(t)
1+(x(t))4 , t > − 78 ,

x(− 78 ) = 1
2 ,

where

a = t0 − 78 , t1 = − 34 , t2 = 0, t3 = 16 , t4 = 92 , t5 = 5.
Evaluate the local and global truncation errors.

Problem 4.10. Let 𝕋 = {0, 1
6
, 1
2
, 1, 3

2
, 2, 7

3
, 8
3
, 3, 10

3
, 11
3
, 14
3
, 5}.

Rewrite the following IVP:{ xΔ
2 (t) + x(t)xΔ(t) + 4x(t) = t2, t > 0,

x(0) = xΔ(0) = 1,
as a first-order system and use the Euler method with

a = t0 = 0, t1 = 16 , t2 = 12 , t3 = 2, t4 = 83 , t5 = 103 .
Evaluate the local and global truncation errors.

Problem 4.11. Let 𝕋 = 3ℕ0 . Rewrite the following IVP:{ xΔ
3 (t) + sin1(t, 1)xΔ2 (t) + tx(t)xΔ(t) + (x(t))2 = t + 1, t > 1,

xΔ
2 (1) = −1, xΔ(1) = 0, x(1) = 5,

as a first-order system and use the Euler method with

a = t0 = 1, t1 = 9, t2 = 27, t3 = 81, t4 = 243.
Evaluate the local and global truncation errors.

Problem 4.12. Let 𝕋 = 4ℕ0 . Rewrite the following IVP:{xΔ4 (t) + sin1(t, 1)xΔ(t)xΔ3 (t) + 2x(t)xΔ2 (t) + xΔ(t) + (x(t))2 = t2 + t + 1 + e1(t, 1), t > 1,
xΔ

3 (1) = xΔ2 (1) = 2, xΔ(1) = 1, x(1) = −1,
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as a first-order system and use the Euler method with

a = t0 = 1, t1 = 4, t2 = 16, t3 = 64, t4 = 256.
Evaluate the local and global truncation errors.
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5 The order 2 Taylor series method – TS(2)

The Euler method is the basic and simplest method to find an approximate solution to
an initial value problem. Its derivation uses Taylor series expansion of the dependent
variable, which is truncated after the second term. Using more terms from the Taylor
series expansion for the unknown functionwill result in amore accurate approximate
solution.

In this chapter we propose the Taylor seriesmethod of order 2 for the computation
of the approximate solution of initial value problems associated with dynamic equa-
tions of first order. We present the derivation, convergence, and error analysis as we
did for the Euler method. We also apply the method to some numerical examples.

5.1 Analyzing the method

Suppose that 𝕋 is a time scale and that t0, tf ∈ 𝕋, tf < ∞. Consider the initial value
problem (IVP)

{
xΔ(t) = f (t, x(t)), t ∈ [t0, tf ],
x(t0) = x0,

(5.1)

where x0 ∈ ℝ. Throughout this chapter, we assume that the following conditions hold:

(H1)
{{{
{{{
{

|f (t, x)| ≤ A, t ∈ 𝕋, x ∈ ℝ,

there exist Δ1f (t, x) and
𝜕𝜕x f (t, x) such that

|Δ1f (t, x)| ≤ A, |
𝜕𝜕x f (t, x)| ≤ A, t ∈ 𝕋, x ∈ ℝ.

(H2)
{{{{
{{{{
{

If g(t, x) = Δ1f (t, x) + (∫
1
0
𝜕𝜕x f (σ(t), x + sμ(t)f (t, x))ds)f (t, x),

t ∈ 𝕋, x ∈ ℝ, there exist Δ1g(t, x) and
𝜕𝜕xg(t, x) such that

|Δ1g(t, x)| ≤ A, |
𝜕𝜕xg(t, x)| ≤ A, t ∈ 𝕋, x ∈ ℝ,

where A > 0 is a given constant.
Suppose that r > 0, t, t + r ∈ [t0, tf ], ρ2(t + r) ∈ [t0, tf ]. Then, by the Taylor formula

of the second order, we compute

x(t + r) = x(t) + h1(t + r, t)x
Δ(t) + h2(t + r, t)x

Δ2 (t)

+

ρ2(t+r)
∫
t

h2(t + r, σ(τ))x
Δ3 (τ)Δτ.

Let

https://doi.org/10.1515/9783110787320-005
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R2(r) =
ρ2(t+r)
∫
t

h2(t + r, σ(τ))x
Δ3 (τ)Δτ.

Then

x(t + r) = x(t) + h1(t + r, t)x
Δ(t) + h2(t + r, t)x

Δ2 (t) + R2(r).

Assume that {t0 < t1 < ⋅ ⋅ ⋅ < tm+1 = tf } is a partition of the interval [t0, tf ] such that
tn+1 = tn + rn+1 ∈ 𝕋, rn+1 > 0, n ∈ {0, . . . ,m}. For example, when 𝕋 = 2ℕ0 and [t0, tf ] =
[1, 16], for t0 = 1, t1 = 2, t2 = 4, t3 = 8, t4 = 16, we have r1 = 1, r2 = 2, r3 = 4, r4 = 8. Then

x(tn+1) = x(tn) + h1(tn+1, tn)xΔ(tn) + h2(tn+1, tn)xΔ2 (tn) + R2(rn+1)
= x(tn) + rn+1xΔ(tn) + h2(tn+1, tn)xΔ2 (tn) + R2(rn+1) (5.2)

for n ∈ {0, . . . ,m}. Neglecting the remainder term R2(rn+1), we get the formula

x(tn+1) = x(tn) + rn+1xΔ(tn) + h2(tn+1, tn)xΔ2 (tn). (5.3)

Let xn = x(tn), xΔn = x
Δ(tn) and xΔ

2

n = x
Δ2 (tn). Then equation (5.3) can be written as

xn+1 = xn + rn+1xΔn + h2(tn+1, tn)xΔ2n . (5.4)

We shall refer to this relation as the order-2 Taylor series method. The value of xΔn can
be computed from the IVP (5.1) as

xΔn = f (tn, xn).

To determine xΔ
2

n , we have to differentiate both sides of the equation in (5.1). By the
Pötzsche chain rule (Appendix C, Theorem C.7), we get

(f (t, x(t)))Δ = Δ1f (t, x(t)) + (
1

∫
0

𝜕
𝜕x

f (σ(t), x(t) + sμ(t)xΔ(t))ds)xΔ(t), (5.5)

for t ∈ 𝕋κ, whereupon

xΔ
2
(t) = Δ1f (t, x(t)) + (

1

∫
0

𝜕
𝜕x

f (σ(t), x(t) + sμ(t)xΔ(t))ds)xΔ(t), t ∈ 𝕋κ .

Hence,
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xΔ
2

n = Δ1f (tn, xn) + (
1

∫
0

𝜕
𝜕x

f (σ(tn), xn + sμ(tn)x
Δ
n)ds)f (tn, xn).

Therefore, xn+1 can be determined by the formula (5.4).

Example 5.1. Consider the IVP

{
xΔ(t) = g(t) + 1(x(t))2+1 , t ∈ [t0, tf ],
x(t0) = x0,

(5.6)

where g : 𝕋 → ℝ is delta differentiable, |g(t)| ≤ B, |gΔ(t)| ≤ B for some positive
constant B and x0 ∈ ℝ. Here

f (t, x(t)) = g(t) + 1
(x(t))2 + 1

.

Then, if x is a solution of the IVP (5.6), we have

xΔ
2
(t) = gΔ(t) − (

1

∫
0

2(x(t) + sμ(t)xΔ(t))
(1 + (x(t) + sμ(t)xΔ(t))2)2

ds)xΔ(t)

= gΔ(t) −
1

∫
0

2(x(t) + sμ(t)(g(t) + 1(x(t))2+1 ))
(1 + (x(t) + sμ(t)(g(t) + 1(x(t))2+1 ))2)2 ds

× (g(t) + 1
(x(t))2 + 1

), t ∈ [t0, tf ].

5.2 Convergence of the TS(2) method

In this section, we give the convergence of the Taylor series method derived in the
previous section. In the subsequent discussion we use an estimate for the time scales
monomials given in the following theorem. We also use the Pötzsche chain rule given
in Appendix C, Theorem C.7 for the computation of higher order delta derivatives of
the dependent variable x.

Theorem 5.2 ([9]). For all i ∈ ℕ, we have the following estimate:

0 ≤ hi(t, s) ≤
(t − s)i

i!
, t ≥ s.

By the dynamic equation in the IVP (5.1) and Condition (H1), we have

x
Δ(t) ≤ A, t ∈ [t0, tf ]. (5.7)

From (5.5) and Condition (H2), we obtain
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(f (t, x(t)))
Δ ≤
Δ1f (t, x(t))

 + (
1

∫
0



𝜕
𝜕x

f (σ(t), x(t) + sμ(t)xΔ(t))

ds)x

Δ(t)

≤ A + A2, t ∈ [t0, tf ].

(5.8)

Therefore,

x
Δ2 (t) ≤ A + A

2, t ∈ [t0, tf ]. (5.9)

On the other hand, by Theorem 5.2, we have

h2(t + r, σ(τ)) ≤
(t + r − σ(τ))2

2

≤
(t + r − t)2

2

=
r2

2
, τ ∈ [t, ρ2(t + r)], t, t + r ∈ [t0, tf ], r > 0, (5.10)

and

h1(t + r, σ(τ)) ≤ t + r − σ(τ)
≤ t + r − t

= r, τ ∈ [t, ρ2(t + r)], t, t + r ∈ [t0, tf ], r > 0. (5.11)

Applying again the Pötzsche chain rule, we obtain

xΔ
3
(t) = Δ1g(t, x(t)) + (

1

∫
0

𝜕
𝜕x

g(σ(t), x(t) + sμ(t)xΔ(t))ds)xΔ(t),

x
Δ3 (t) ≤

Δ1g(t, x(t))
 + (

1

∫
0



𝜕
𝜕x

g(σ(t), x(t) + sμ(t)xΔ(t))

ds)x

Δ(t),

≤ A + A2, t ∈ [t0, tf ].

Hence, by (5.10) and (5.11), we get

R2(r)
 =


ρ2(t+r)
∫
t

h2(t + r, σ(τ))x
Δ3 (τ)Δτ


≤

ρ2(t+r)
∫
t

h2(t + r, σ(τ))
x
Δ3 (τ)Δτ

≤
r2

2
(A + A2)(ρ2(t + r) − t)
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≤
r2

2
(A + A2)(t + r − t)

≤
r3

2
(A + A2), t, t + r ∈ [t0, tf ], r > 0.

On the other hand, by (5.9) and (5.11), we have

R1(r)
 =


ρ(t+r)
∫
t

h1(t + r, σ(τ))x
Δ2 (τ)Δτ


≤

ρ(t+r)
∫
t

h1(t + r, σ(τ))
x
Δ2 (τ)Δτ

≤ r(A + A2)(ρ(t + r) − t)

≤ r(A + A2)(t + r − t)

≤ r2(A + A2), t, t + r ∈ [t0, tf ], r > 0,

i. e.,

R2(r) = O(r
3), R1(r) = O(r

2).

Now, we denote

en = x(tn) − xn.

By the Taylor formula, for tn+1 = tn + rn+1, we have
x(tn+1) = x(tn) + rn+1f (tn, x(tn)) + h2(tn+1, tn)g(tn, x(tn)) + R2(rn+1),

and, by (5.4),

xn+1 = xn + rn+1f (tn, xn) + h2(tn+1, tn)g(tn, xn),
whereupon applying the mean value theorem in the classical case, we obtain

x(tn+1) − xn+1 = x(tn) − xn + rn+1(f (tn, x(tn)) − f (tn, xn))
+ h2(tn+1, tn)(g(tn, x(tn)) − g(tn, xn)) + R2(rn+1)
= x(tn) − xn + rn+1 𝜕𝜕x f (tn, ζ )(x(tn) − xn)
+ h2(tn+1, tn) 𝜕𝜕x g(tn, η)(x(tn) − xn) + R2(rn+1)
= en + (rn+1 𝜕𝜕x f (tn, ζ ) + h2(tn+1, tn) 𝜕𝜕x g(tn, η))en + R2(rn+1),
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where ζ and η are between x(tn) and xn. Let

An = rn+1 𝜕𝜕x f (tn, ζ ) + h2(tn+1, tn) 𝜕𝜕x g(tn, η).
We have

|An| ≤ rn+1 𝜕𝜕x f (tn, ζ ) + h2(tn+1, tn) 𝜕𝜕x g(tn, η)
≤ Arn+1 + Ar2n+12
= rn+1(1 + rn+12 )A.

Then,

e0 = 0, e1 = R2(r1), en+1 = (1 + An)en + R2(rn+1), n ∈ ℕ.

In particular,

e2 = (1 + A1)e1 + R2(r2),

e3 = (1 + A2)e2 + R2(r3)

= (1 + A2)((1 + A1)e1 + R2(r2)) + R2(r3)

= (1 + A2)(1 + A1)e1 + (1 + A2)R2(r2) + R2(r3)

e4 = (1 + A3)e3 + R2(r4)

= (1 + A3)((1 + A2)(1 + A1)e1 + (1 + A2)R2(r2) + R2(r3)) + R2(r4)

= (1 + A3)(1 + A2)(1 + A1)e1 + (1 + A3)(1 + A2)R2(r2)

+ (1 + A3)R2(r3) + R2(r4),

and so on. Let rmax = max{r1, . . . , rm+1}. Then, using that 0 < rj ≤ tf −t0, j ∈ {1, . . . ,m+1},
and 0 < tf −t0 <∞, we have thatR2(rj) = O(r3max), j ∈ {1, . . . ,m+1}. Since 0 < tf −t0 <∞
and tj−1 + rj ∈ [t0, tf ], j ∈ {1, . . . ,m + 1}, we have that there exists a constant 0 < B <∞
such thatmrmax ≤ B. Then

|e2| ≤ (1 + rmax(1 +
rmax
2
)A)R2(rmax) + R2(rmax),

|e3| ≤ (1 + rmax(1 +
rmax
2
)A)

2
R2(rmax)

+ (1 + rmax(1 +
rmax
2
)A)R2(rmax) + R2(rmax),

⋅ ⋅ ⋅
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|em| ≤
m−1
∑
j=0(1 + rmax(1 +

rmax
2
)A)

j
R2(rmax)

≤
m−1
∑
j=0 ermax(1+ rmax

2 )jAR2(rmax)

≤ memrmax(1+ rmax
2 )AR2(rmax)

≤ meB(1+ rmax
2 )AR2(rmax)

≤ meB(1+ tf −t02 )AR2(rmax)

= mrmaxr
2
maxe
(1+ tf −t02 )AC

≤ r2maxe
B(1+ tf −t02 )ABC.

Since tf <∞, we conclude that

em = O(r
2
max),

that is, the order of convergence of the order 2 Taylor series method is 2.

5.3 The trapezoid rule
The trapezoid rule is a method that can be deduced from the Taylor series method of
order 2. It is an implicit method and its application to nonlinear differential equations
requires use of suitable numerical methods.

In this section, we will introduce the trapezoid rule for IVPs associated with the
first order dynamic equations on time scales [11].

We start again with the Taylor formula for xΔ which gives

xΔ(t + r) = xΔ(t) + rxΔ
2
(t) +

ρ(t+r)
∫
t

h1(t + r, σ(τ))x
Δ3 (τ)Δτ

= xΔ(t) + rxΔ
2
(t) + R1(r),

whereupon

rxΔ
2
(t) = xΔ(t + r) − xΔ(t) − R1(r), t, t + r ∈ [t0, tf ], r > 0.

We substitute the latter relation into equation (5.2) and find

x(t + r) = x(t) + rxΔ(t) + h2(t + r, t)x
Δ2 (t) + R2(r)

= x(t) + rxΔ(t) + h2(t + r, t)
r
(rxΔ

2
(t)) + R2(r)

= x(t) + rxΔ(t) + h2(t + r, t)
r
(xΔ(t + r) − xΔ(t) − R1(r)) + R2(r)
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= x(t) + (r − h2(t + r, t)
r
)xΔ(t) + h2(t + r, t)

r
xΔ(t + r)

−
h2(t + r, t)

r
R1(r) + R2(r)

= x(t) + (r − h2(t + r, t)
r
)f (t, x(t)) + h2(t + r, t)

r
f (t + r, x(t + r))

−
h2(t + r, t)

r
R1(r) + R2(r), t, t + r ∈ [t0, tf ], r > 0.

Evaluating this relation at t = tn andneglecting the remainder terms leads to the trape-
zoid rule

xn+1 = xn + (rn+1 − h2(tn+1, tn)rn+1 )f (tn, xn) + h2(tn+1, tn)rn+1 f (tn+1, xn+1). (5.12)

Definition 5.3. The relation (5.12) will be called trapezoid rule.

Example 5.4. Let 𝕋 = ℝ and tn+1 − tn = r be constant. Then
h2(tn+1, tn) = 12 r2,

and the trapezoid rule takes the form

xn+1 = xn + 12 r(f (tn, xn) + f (tn+1, xn+1)),
which is the classical trapezoid rule.

Example 5.5. Let 𝕋 = 2ℕ0 . Then

h2(tn+1, tn) = 13 (t2n+1 − t2n) = 13 (tn+1 − tn)(tn+1 + tn) = rn+13 (tn+1 + tn),
and the trapezoid rule takes the form

xn+1 = xn + (hn+1 − 13 (tn+1 + tn))f (tn, xn) + 13 (tn+1 + tn)f (tn+1, xn+1).
Exercise 5.6. Let 𝕋 = 2ℕ0 . Consider the IVP

{
xΔ(t) = 1 + x(t) + (x(t))3, t > 1,
x(1) = 1

and assume that

a = t0 = 1, t1 = 2, t2 = 4, t3 = 8, t4 = 16.

Write the trapezoid rule.
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5.4 Numerical examples
In this section, we will apply the trapezoid rule to specific examples. The first exam-
ple is a linear dynamic and the second one is a nonlinear dynamic equation. We use
MATLAB for the numerical computations and employ the Newton method to find the
solution of the implicit relation arising in the second example.

Example 5.7. Let 𝕋 = ℕ0. Consider the IVP associated with the linear dynamic equa-
tion

{
xΔ(t) = 1

t+1x(t) + 1
t2+1 , t > 0,

x(0) = x0,
(5.13)

where t0 = 0, tf = 20. The exact solution of this equation has the form

x(t) = x0e 1
t+1 (t,0) +

t

∫
0

e 1
t+1 (t, σ(τ)) 1

τ2 + 1
Δτ, t ≥ 0.

On 𝕋 = ℕ0 we have σ(t) = t + 1, μ(t) = 1, and

e 1
t+1 (t, s) =

t−1
∏
p=s(1 + 1

p + 1
) =

s + 2
s + 1

s + 3
s + 2
⋅ ⋅ ⋅

t
t − 1

t + 1
t
=
t + 1
s + 1
, t ≥ s.

The integral ∫t0 e 1
t+1 (t, σ(τ)) 1

τ2+1Δτ, t ≥ 0 is evaluated as
t

∫
0

e 1
t+1 (t, σ(τ)) 1

τ2 + 1
Δτ =

t

∫
0

e 1
t+1 (t, τ + 1) 1

τ2 + 1
Δτ

=
t

∫
0

t + 1
τ + 2

1
τ2 + 1

Δτ

= (t + 1)
t−1
∑
p=0 1
(p + 2)(p2 + 1)

, t ≥ 0.

Hence, we obtain the exact solution as

x(tn) = (tn + 1)(x0 +
tn−1
∑
p=0 1
(p + 2)(p2 + 1)

),

for any tn ∈ 𝕋. Recalling that the monomials on 𝕋 have the form

h0(tn+1, tn) = 1,
h1(tn+1, tn) = tn+1 − tn = r,
h2(tn+1, tn) = (tn+1 − tn)(tn+1 − tn − 1)2

=
r(r − 1)

2
,
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where we assume constant step size r = tn+1 − tn, we can write the trapezoid rule for
this IVP as

xn+1 = xn + (r − r − 12 )( 1
tn + 1

xn +
1

t2n + 1
)

+
r − 1
2
(

1
tn+1 + 1xn+1 + 1

t2n+1 + 1), n ∈ {0, 1, . . . , 20
r
}.

Then we have

xn+1 = 1 + r+1
2(tn+1)

1 − r−1
2(tn+1+1) xn + 1

1 − r−1
2(tn+1+1) ( r + 1

2(t2n + 1)
+

r − 1
2(t2n+1 + 1)),

where n ∈ {0, 1, . . . , 20r }. UsingMATLAB, we compute the approximate solution for dif-
ferent values of r and x0. The approximate and exact values of the solution for r = 1 and
r = 2 with the initial condition x(0) = 1 are given in Table 5.1, and those with the initial
condition x(0) = 1 in Table 5.2. In both tables, x(e) denotes the exact solution, x(1) the
approximate solution for r = 1, and x(2) the approximate solution for r = 2. Since the
error is of order r2, we observe that for r = 2 the magnitude of the error is large.

Table 5.1: The values of the exact solution x(e) and approximate solutions x(1) and x(2) for x(0) = 1.
t x(e) x(1) x(2)

0.00 1.00000000 1.00000000 1.00000000
1.00 3.00000000 3.00000000
2.00 5.00000000 5.00000000 4.92000000
3.00 6.86666667 6.86666667
4.00 8.68333333 8.68333333 8.56601307
5.00 10.47882353 10.47882353
6.00 12.26375566 12.26375566 12.10199394
7.00 14.04274778 14.04274778
8.00 15.81809125 15.81809125 15.61077657
9.00 17.59104156 17.59104156

10.00 19.36234084 19.36234084 19.10920009
11.00 21.13245463 21.13245463
12.00 22.90168924 22.90168924 22.60263185
13.00 24.67025419 24.67025419
14.00 26.43829756 26.43829756 26.09328697
15.00 28.20592687 28.20592687
16.00 29.97322208 29.97322208 29.58224132
17.00 31.74024384 31.74024384
18.00 33.50703900 33.50703900 33.07007937
19.00 35.27364429 35.27364429
20.00 37.04008893 37.04008893 36.55714561
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Table 5.2: The values of the exact solution x(e) and approximate solutions x(1) and x(2) for x(0) = 3.
t x(e) x(1) x(2)

0.00 3.00000000 3.00000000 3.00000000
1.00 7.00000000 7.00000000
2.00 11.00000000 11.00000000 10.92000000
3.00 14.86666667 14.86666667
4.00 18.68333333 18.68333333 18.56601307
5.00 22.47882353 22.47882353
6.00 26.26375566 26.26375566 26.10199394
7.00 30.04274778 30.04274778
8.00 33.81809125 33.81809125 33.61077657
9.00 37.59104156 37.59104156

10.00 41.36234084 41.36234084 41.10920009
11.00 45.13245463 45.13245463
12.00 48.90168924 48.90168924 48.60263185
13.00 52.67025419 52.67025419
14.00 56.43829756 56.43829756 56.09328697
15.00 60.20592687 60.20592687
16.00 63.97322208 63.97322208 63.58224132
17.00 67.74024384 67.74024384
18.00 71.50703900 71.50703900 71.07007937
19.00 75.27364429 75.27364429
20.00 79.04008893 79.04008893 78.55714561

The exact and approximate solutions are also presented in Figures 5.1, 5.2, 5.3 and
5.4. It can be observed that for large values of r the error increases, and for r = 1 the
approximate solution matches the exact solution.

The second example is an IVP associated with a nonlinear first-order dynamic
equation.

Example 5.8. Let 𝕋 = aℕ0. Consider the IVP associated with the nonlinear dynamic
equation

{
xΔ(t) = 1

t2+1 + t(x(t))2+1 , t > 0, t ∈ 𝕋,
x(0) = x0.

(5.14)

On this time scale, we have σ(t) = t + a and μ(t) = a. Let t0 = 0, tf = b, and tn = tn−1 + r
for some r > 0. The dynamic equation can be written as

x(t + a) − x(t)
a

=
1

t2 + 1
+

t
(x(t))2 + 1

, t ∈ 𝕋,

and hence, the exact solution at any tn ∈ aℕ0 has the form
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Figure 5.1: Approximate and exact values of the solution of (5.13) with r = 1, x0 = 1.

Figure 5.2: Approximate and exact values of the solution of (5.13) with r = 2, x0 = 1.
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Figure 5.3: Approximate and exact values of the solution of (5.13) with r = 1, x0 = 3.

Figure 5.4: Approximate and exact values of the solution of (5.13) with r = 2, x0 = 3.
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x(tn) = x(tn − a) + a(
1

(tn − a)2 + 1
+

tn − a
(x(tn − a))2 + 1

).

Using the monomial h2, which is given by

h2(tn+1, tn) = (tn+1 − tn)(tn+1 − tn − a)2
=
r(r − a)

2
,

the trapezoid rule for this problem yields

xn+1 = xn + (r − r − a2 )( 1
t2n + 1
+

tn
x2n + 1
)

+
r − a
2
(

1
t2n+1 + 1 + tn+1

x2n+1 + 1), n ∈ {0, 1, . . . , 10
r
}.

This nonlinear recurrence relation can be written as

2x3n+1 − 2bnx2n+1 + 2xn+1 − (r − a)tn+1 − 2bn
2(1 + x2n+1) = 0,

where

bn = xn +
r + a
2
(

1
t2n + 1
+

tn
1 + x2n + 1

) +
r − a
2

1
t2n+1 + 1 ,

for n ∈ {0, 1, . . . , br }. We compute each next term of the sequence {xn}, n ∈ {0, 1, . . . ,
b
h }

using Newton’s method [14].
The computations are done withMATLAB for

a = 0.5, r = 0.5, 1, 2, x0 = 1, b = 20, and

a = 0.2, r = 0.4,0.8, x0 = 3, b = 8.

The approximate and exact solutions for these values of the parameters are compared
in Tables 5.3 and 5.4. In Table 5.3, x(e) denotes the exact solution and x(1), x(2), x(3) the
approximate solutions for r = 0.5, 1, 2, respectively, computed for a = 0.5 and x(0) = 1.
In Table 5.4, x(e) denotes the exact solution and x(1), x(2) the approximate solutions for
r = 0.4,0.8, respectively, computed for a = 0.2 and x(0) = 3.

The graphs of the approximate and exact solutions for the casea = 0.5, r = 0.5, 1, 2,
and the initial value x(0) = 1 are presented in Figures 5.5, 5.6 and 5.7. It is clear that
for r = a the computed solution matches the exact solution, and for r > a an error is
observed.

The graphs of the approximate and exact solutions for the case a = 0.2, r =
0.4,0.8, and the initial value x(0) = 3 are presented in Figures 5.8 and 5.9.
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Table 5.3: The values of the exact solution x(e) and the approximate solutions x(1), x(2) and x(3) for
x(0) = 1 and a = 0.5 .

t x(e) x(1) x(2) x(3)

0.00 1.00000000 1.00000000 1.00000000 1.00000000
1.00 1.97692308 1.97692308 1.92799782
2.00 2.59940190 2.59940190 2.57741023 2.59406935
3.00 3.03618334 3.03618334 3.02265747
4.00 3.42352292 3.42352292 3.41337855 3.44479724
5.00 3.79402385 3.79402385 3.78577255
6.00 4.15528317 4.15528317 4.14833890 4.17172106
7.00 4.50894103 4.50894103 4.50299225
8.00 4.85529463 4.85529463 4.85013773 4.86756213
9.00 5.19444102 5.19444102 5.18992800

10.00 5.52652984 5.52652984 5.52254768 5.53616265
11.00 5.85178922 5.85178922 5.84824944
12.00 6.17050243 6.17050243 6.16733476 6.17841823
13.00 6.48298140 6.48298140 6.48012939
14.00 6.78954686 6.78954686 6.78696474 6.79627227
15.00 7.09051545 7.09051545 7.08816578
16.00 7.38619205 7.38619205 7.38404397 7.39204551
17.00 7.67686568 7.67686568 7.67489354
18.00 7.96280759 7.96280759 7.96098990 7.96799382
19.00 8.24427079 8.24427079 8.24258946
20.00 8.52149045 8.52149045 8.51993011 8.52614846

Table 5.4: The values of the exact solution x(e) and the approximate solutions x(1) and x(2) for
x(0) = 3 and a = 0.2.

t x(e) x(1) x(2)

0.00 3.00000000 3.00000000 3.00000000
0.40 3.39586641 3.38940995
0.80 3.73043213 3.72399602 3.69927048
1.20 3.97566995 3.97120379
1.60 4.15541211 4.15248125 4.14209378
2.00 4.29534158 4.29335406
2.40 4.41218246 4.41075566 4.40625031
2.80 4.51582844 4.51474078
3.20 4.61210777 4.61123132 4.60884799
3.60 4.70451328 4.70377228
4.00 4.79517350 4.79452174 4.79297384
4.40 4.88539625 4.88480475
4.80 4.97598082 4.97543101 4.97423099
5.20 5.06740357 5.06688335
5.60 5.15993195 5.15943337 5.15837967
6.00 5.25369677 5.25321457
6.40 5.34873916 5.34826990 5.34727656
6.80 5.44504180 5.44458322
7.20 5.54254995 5.54210061 5.54113241
7.60 5.64118581 5.64074482
8.00 5.74085838 5.74042521 5.73947000
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Figure 5.5: Approximate and exact values of the solution of (5.14) with a = r = 0.5, x0 = 1.

Figure 5.6: Approximate and exact values of the solution of (5.14) with a = 0.5, r = 1, x0 = 1.
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Figure 5.7: Approximate and exact values of the solution of (5.14) with a = 0.5, r = 2, x0 = 1.

Figure 5.8: Approximate and exact values of the solution of (5.14) with a = 0.2, r = 0.4, x0 = 3.
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Figure 5.9: Approximate and exact values of the solution of (5.14) with a = 0.2, r = 0.8, x0 = 3.
5.5 Advanced practical problems

Problem 5.9. Let 𝕋 = 2ℕ0 . Consider the IVP

{
xΔ(t) = 1 + 1+x(t)

1+(x(t))2 , t > 1,
x(1) = 1

and assume that

a = t0 = 1, t1 = 4, t2 = 16, t3 = 64, t4 = b = 216.

Write the trapezoid rule.

Problem 5.10. Let

𝕋 = {0, 1
8
,
1
7
,
1
6
,
1
5
,
1
4
, 1, 4

3
,
7
3
,
8
3
, 3, 7, 11}.

Consider the IVP

{
xΔ(t) = (1 + x(t))3, t > 0,
x(0) = 0.

Write the trapezoid rule.
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Problem 5.11. Let 𝕋 = ℤ. Apply TS(2) for the following IVP

{
xΔ(t) = sin1(t,0) + (x(t))2, t > 0,
x(0) = 1,

where

a = t0 = 0, t1 = 2, t2 = 4, t3 = 5, t4 = b = 6.

Problem 5.12. Let 𝕋 = 2ℕ0 . Apply TS(2) for the following IVP:

{
xΔ(t) = 1

1+(x(t))2 , t > 1,
x(1) = 1,

where

a = t0 = 1, t1 = 2, t2 = 8, t3 = 16, t4 = b = 32.

Problem 5.13. Let

𝕋 = {0, 1
3
,
2
3
, 1, 3

2
, 2, 17

8
,
19
8
,
21
8
,
11
4
, 3}.

Apply TS(2) for the following IVP:

{
xΔ(t) = 1 + 3(x(t))2, t > 0,
x(0) = 1,

where

a = t0 = 0, t1 =
1
2
, t2 = 1, t3 = 2, t4 =

21
8
, t5 = b = 3.
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6 The order p Taylor series method – TS (p)

The Taylor series method can be extended to an arbitrary order. We already discussed
the cases of the first and second order methods in the previous chapters. In this chap-
ter, we give a generalization of the Taylor series method into an arbitrary order p ≥ 2.
The derivation of the method requires some extra conditions on the nonlinear right-
hand side function of the dynamic equation. These additional requirements limit the
number of problems for which this method can be applied. However, the error in the
approximated solution reduces.

Let 𝕋 be a time scale and Δ denote the differentiation operator in 𝕋 as usual.

6.1 Analyzing the order p Taylor series method

Suppose that p ∈ ℕ, p ≥ 2, t0, tf ∈ 𝕋, t0 < tf < ∞, r > 0 be such that t, t + r ∈ [t0, tf ].
Consider the initial value problem (IVP)

{
xΔ(t) = f (t, x(t)), t ∈ [t0, tf ],
x(t0) = x0,

(6.1)

where x0 ∈ ℝ is a given constant and the function f satisfies the following conditions:

(H1)

{{{{{{{{{{{{{{
{{{{{{{{{{{{{{
{

|f (t, x)| ≤ A, t ∈ 𝕋, x ∈ ℝ,

there exist gk(t, x(t), . . . , xΔ
k
(t)) = (f (t, x(t)))Δ

k
, k ∈ {1, . . . , p − 1},

such that | 𝜕f𝜕y (t, z)| ≤ A, |Δ1gk(t, y1, . . . , yk+1)| ≤ A,
and | 𝜕𝜕yj gk(t, y1, . . . , yk+1)| ≤ A, j ∈ {1, . . . , k + 1},

for any t ∈ 𝕋 and for z, yj ∈ ℝ, j ∈ {1, . . . , p − 1},

where petf−t0A < 1 and A > 0.
By the Taylor formula on time scales, we get

x(t + r) = x(t) + h1(t + r, t)x
Δ(t) + h2(t + r, t)x

Δ2 (t) + ⋅ ⋅ ⋅ + hp(t + r, t)x
Δp (t)

+

ρp(t+r)
∫
t

hp(t + r, σ(u))x
Δp+1 (u)Δu.

Let

Rp(t) =
ρp(t+r)
∫
t

hp(t + r, σ(u))x
Δp+1 (u)Δu,

https://doi.org/10.1515/9783110787320-006
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be the remainder term. Let also, t0 < t1 < ⋅ ⋅ ⋅ < tm+1 = tf be a partition of the interval
[t0, tf ] such that tn+1 = tn + rn+1 ∈ 𝕋, rn+1 > 0, n ∈ {0, . . . ,m}. Then

x(tn+1) = x(tn) + h1(tn+1, tn)xΔ(tn) + h2(tn+1, tn)xΔ2 (tn)
+ ⋅ ⋅ ⋅ + hp(tn+1, tn)xΔp (tn) + Rp(tn+1).

Neglecting the remainder term Rp(t), we obtain

x(tn+1) = x(tn) + h1(tn+1, tn)xΔ(tn) + h2(tn+1, tn)xΔ2 (tn) + ⋅ ⋅ ⋅ + hp(tn+1, tn)xΔp (tn).
Set

xΔ
k

n = x
Δk (tn), xΔ

kσ
n = x

Δk (σ(tn)), k ∈ {0, . . . , p}.

Thus, we get

xn+1 = xn + rn+1xΔn + h2(tn+1, tn)xΔ2n + ⋅ ⋅ ⋅ + hp(tn+1, tn)xΔpn , (6.2)

which will be called the order p Taylor series method. To compute xn+1, we need to de-
termine xΔ

q

n for q ∈ {1, . . . , p}. From the dynamic equation in the IVP (6.1), we determine
xΔn as

xΔn = f (tn, xn).

Now, we will determine xΔ
2

n , . . . , x
Δp
n . By the generalized Pötzsche chain rule (Ap-

pendix C, Theorem C.8), we have

(f (t, x(t)))Δ = Δ1f (t, x(t)) + (
1

∫
0

𝜕
𝜕y1

f (σ(t), x(t) + hμ(t)xΔ(t))dh)xΔ(t)

= g1(t, x(t), x
Δ(t))

and, for q ∈ {2, . . . , p}, we compute

(f (t, x(t)))Δ
q

= (gq−1(t, x(t), xΔ(t), . . . , xΔq−1 (t)))Δ
= Δ1gq−1(t, x(t), xΔ(t), . . . , xΔq−1 (t))
+ (

1

∫
0

𝜕
𝜕y1

gq−1(σ(t), x(t) + hμ(t)xΔ(t), xΔ(t), . . . , xΔq−1 (t))dh)xΔ(t)
+ (

1

∫
0

𝜕
𝜕y2

gq−1(σ(t), x(σ(t)), xΔ(t) + hμ(t)xΔ2 (t), . . . , xΔq−1 (t))dh)xΔ2 (t)
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+ ⋅ ⋅ ⋅

+ (
1

∫
0

𝜕
𝜕yq

gq−1(σ(t), x(σ(t)), xΔ(σ(t)), . . . , xΔq−1 (t) + hμ(t)xΔq (t))dh)xΔq (t),
for t ∈ 𝕋κ. Therefore, we have

xΔ
2

n = Δ1f (tn, xn) + (
1

∫
0

𝜕
𝜕y1

f (σ(tn), xn + hμ(tn)x
Δ
n)dh)x

Δ
n ,

xΔ
3

n = Δ1g1(tn, xn, x
Δ
n)

+ (
1

∫
0

𝜕
𝜕y1

g1(σ(tn), xn + hμ(tn)x
Δ
n , x

Δ
n)dh)x

Δ
n

+ (
1

∫
0

𝜕
𝜕y2

g1(σ(tn), x
σ
n , x

Δ
n + hμ(tn)x

Δ2
n )dh)x

Δ2
n ,

...

xΔ
p+1

n = Δ1gp−1(tn, xn, xΔn , . . . , xΔp−1n )

+ (
1

∫
0

𝜕
𝜕y1

gp−1(σ(tn), xn + hμ(tn)xΔn , xΔn , . . . , xΔp−1n )dh)x
Δ
n

+ (
1

∫
0

𝜕
𝜕y2

gp−1(σ(tn), xσn , xΔn + hμ(tn)xΔ2n , . . . , xΔp−1n )dh)x
Δ2
n

+ ⋅ ⋅ ⋅

+ (
1

∫
0

𝜕
𝜕yp

gp−1(σ(tn), xσn , xΔσn , . . . , xΔp−1n + hμ(tn)x
Δp
n )dh)x

Δp
n ,

from where we can find xΔ
2

n , . . . , x
Δp+1
n .

6.2 Convergence and error analysis of the TS(p) method

Now,wewill investigate the convergence of the Taylor seriesmethodof orderp.Wewill
use the property of themonomials hq(t, s), q ∈ ℕ0, given in Theorem 5.2. By Condition
(H1) and the dynamic equation in (6.1), we find

x
Δ(t) ≤ A, t ∈ [t0, tf ]. (6.3)

Next, we estimate
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x
Δ2 (t) ≤

Δ1f (t, x(t))
 + (

1

∫
0



𝜕
𝜕y1

f (σ(t), x(t) + hμ(t)xΔ(t))

dh)x

Δ(t)

≤ A(1 + A), t ∈ [t0, tf ], (6.4)

and

x
Δ3 (t) ≤

Δ1g1(t, x(t), x
Δ(t))

+ (
1

∫
0



𝜕
𝜕y1

g1(σ(t), x(t) + hμ(t)x
Δ(t), xΔ(t))


dh)x

Δ(t)

+ (
1

∫
0



𝜕
𝜕y2

g1(σ(t), x(σ(t)), x
Δ(t) + hμ(t)xΔ

2
(t))

dh)x

Δ2 (t)

≤ A + A2 + A(A + A2) = A(1 + A)2,
x
Δ4 (t) ≤

Δ1g2(t, x(t), x
Δ(t), xΔ

2
(t))

+ (
1

∫
0



𝜕
𝜕y1

g2(σ(t), x(t) + hμ(t)x
Δ(t), xΔ(t), xΔ

2
(t))

dh)x

Δ(t)

+ (
1

∫
0



𝜕
𝜕y2

g2(σ(t), x(σ(t)), x
Δ(t) + hμ(t)xΔ

2
(t), xΔ

2
(t))

dh)x

Δ2 (t)

+ (
1

∫
0



𝜕
𝜕y3

g2(σ(t), x(σ(t)), x
Δ(σ(t)), xΔ

2
(t) + hμ(t)xΔ

3
(t))

dh)x

Δ3 (t)

≤ A + A2 + A(A + A2) + A((A + A2) + A(A + A2))
= A + A2 + 2A(A + A2) + A2(A + A2) = A(1 + A)3,

as well as

x
Δ5 (t) ≤

Δ1g3(t, x(t), x
Δ(t), xΔ

2
(t), xΔ

3
(t))

+ (
1

∫
0



𝜕
𝜕y1

g3(σ(t), x(t) + hμ(t)x
Δ(t), xΔ(t), xΔ

2
(t), xΔ

3
(t))

dh)x

Δ(t)

+ (
1

∫
0



𝜕
𝜕y2

g3(σ(t), x(σ(t)), x
Δ(t) + hμ(t)xΔ

2
(t), xΔ

2
(t), xΔ

3
(t))

dh)x

Δ2 (t)

+ (
1

∫
0



𝜕
𝜕y3

g3(σ(t), x(σ(t)), x
Δ(σ(t)), xΔ

2
(t) + hμ(t)xΔ

3
(t), xΔ

3
(t))

dh)x

Δ3 (t)

+ (
1

∫
0



𝜕
𝜕y4

g3(σ(t), x(σ(t)), x
Δ(σ(t)), xΔ

2
(σ(t)), xΔ

3
(t) + hμ(t)xΔ

4
(t))

dh)x

Δ4 (t)
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≤ A + A2 + A(A + A2) + A(1 + A)(A + A2) + A(A + A2)(1 + A)2

= (A + A2)(1 + A + A + A2 + A + 2A2 + A3) = A(1 + A)4, t ∈ [t0, tf ],

so that we deduce

x
Δp (t) ≤ A(1 + A)

p−1, xΔp+1 (t) ≤ A(1 + A)p, t ∈ [t0, tf ].

The above estimates can be also proved by induction. We will show that

x
Δp (t) ≤ A(1 + A)

p−1, t ∈ [t0, tf ]. (6.5)

For n = 1 and n = 2, the estimate is shown in (6.3) and (6.4). Assume that the inequal-
ity (6.5) holds for any p ∈ ℕ. Then, for n = p + 1, we have

x
Δp+1  ≤ Δ1gp−1(t, x, xΔ, . . . , xΔp−1)
+

1

∫
0



𝜕
𝜕y1

gp−1(σ(t), x + hμ(t)xΔ, xΔ, . . . , xΔp−1)dhxΔ
+

1

∫
0



𝜕
𝜕y2

gp−1(σ(t), xσ , xΔ + hμ(t)xΔ2 , . . . , xΔp−1)dhxΔ2 
+ ⋅ ⋅ ⋅

+
1

∫
0



𝜕
𝜕yp

gp−1(σ(t), xσ , xΔσ , . . . , xΔp−1 + hμ(t)xΔp)dhxΔp ,
for t ∈ [t0, tf ]. Now, Condition (H1) and the induction hypothesis imply that

x
Δp+1  ≤ A + AA + AA(A + 1) + AA(A + 1)2 + ⋅ ⋅ ⋅ + AA(A + 1)p−1
= A(A + 1) + A2(A + 1)(1 + (A + 1) + (A + 1)2 + ⋅ ⋅ ⋅ + (A + 1)p−2)
= A(A + 1) + A2(A + 1) 1 − (A + 1)

p−1
1 − (A + 1)

= A(A + 1) − A(A + 1) + A(A + 1)(A + 1)p−1
= A(A + 1)p,

which completes the proof. Moreover, for the remainder terms

Rq(r) =
ρq(t+r)
∫
t

hq(t + r, σ(u))x
Δq+1 (u)Δu, q ∈ {1, . . . , p}, t ∈ [t0, tf ],

employing the estimate (5.2) and the fact that ρq(t + r) − t ≤ t + r − t = r, we get
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Rq(r)
 ≤

ρq(t+r)
∫
t

hq(t + r, σ(u))
x
Δq+1 (u)Δu

≤
rq

q!
A(1 + A)q(ρq(t + r) − t)

≤
rq+1
q!

A(1 + A)q, q ∈ {1, . . . , p}. (6.6)

Therefore,

Rq(r) = O(r
q+1), q ∈ {1, . . . , p}.

Denote

eΔ
k

n = x
Δk (tn) − x

Δk
n , k ∈ {0, . . . , p − 1}.

Taking into account the fact that

xΔn = f (tn, xn), xΔ(tn) = f (tn, x(tn)),

xΔ
q

n = gq−1(tn, xn, xΔn , . . . , xΔq−1n ),

xΔ
q
(tn) = gq−1(tn, x(tn), xΔ(tn), . . . , xΔq−1 (tn)), q ∈ {2, . . . , p},

we have

x(tn+1) = x(tn) + rn+1f (tn, x(tn)) + h2(tn+1, tn)g1(tn, x(tn), xΔ(tn))
+ ⋅ ⋅ ⋅ + hp(tn+1, tn)gp−1(tn, x(tn), . . . , xΔp−1 (tn)) + Rp(rn+1)

and

xn+1 = xn + rn+1f (tn, xn) + h2(tn+1, tn)g1(tn, xn, xΔn)
+ ⋅ ⋅ ⋅ + hp(tn+1, tn)gp−1(tn, xn, . . . , xΔp−1n ).

Then

x(tn+1) − xn+1
= (x(tn) − xn) + rn+1(f (tn, x(tn)) − f (tn, xn))
+ h2(tn+1, tn)(g1(tn, x(tn), xΔ(tn)) − g1(tn, xn, xΔn))
+ ⋅ ⋅ ⋅ + hp(tn+1, tn)(gp−1(tn, x(tn), . . . , xΔp−1 (tn)) − gp−1(tn, xn, . . . , xΔp−1n ))

+ Rp(rn+1).
Note that by Condition (H1), the mean value theorem for f and gk implies that
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f (tn, x(tn)) − f (tn, xn) =
𝜕f
𝜕y
(tn, ξ

0
1 )(x(tn) − xn) =

𝜕f
𝜕y
(tn, ξ

0
1 )en,

where ξ01 is between x(tn) and xn, and
𝜕f𝜕y stands for the partial derivative with respect

to the second variable. Also,

gk(tn, x(tn), x
Δ(tn), . . . , x

Δk (tn)) − gk(tn, xn, x
Δ
n , . . . , x

Δk
n )

= gk(tn, x(tn), x
Δ(tn), . . . , x

Δk (tn)) − gk(tn, xn, x
Δ(tn), . . . , x

Δk (tn))

+ gk(tn, xn, x
Δ(tn), . . . , x

Δk (tn)) − gk(tn, xn, x
Δ
n , . . . , x

Δk (tn))

+ ⋅ ⋅ ⋅ + gk(tn, xn, x
Δ
n , . . . , x

Δk−1
n , x

Δk (tn)) − gk(tn, xn, x
Δ
n , . . . , x

Δk−1
n , x

Δk
n )

=
𝜕
𝜕y1

gk(tn, ξ
k
1 , x

Δ(tn), . . . , x
Δk (tn))en +

𝜕
𝜕y2

gk(tn, xn, ξ
k
2 , . . . , x

Δk (tn))e
Δ
n

+ ⋅ ⋅ ⋅ +
𝜕
𝜕yk+1 gk(tn, xn, . . . , xΔk−1n , ξ

k
k+1)eΔkn , k ∈ {1, . . . , p − 1},

where ξ kj is between xΔ
j−1
(tn) and xΔ

j−1
n , j ∈ {1, . . . , k + 1}, and 𝜕𝜕yj denotes the partial

derivative with respect to the (j + 1)th variable. Consequently,

en+1 = en + rn+1 𝜕f𝜕y1 (tn, ξ01 )en
+ h2(tn+1, tn)(𝜕g1𝜕y1 (tn, ξ 11 , xΔ(tn))en + 𝜕g1𝜕y2 (tn, xn, ξ 12 )eΔn)
+ ⋅ ⋅ ⋅ + hp(tn+1, tn)(𝜕gp−1𝜕y1 (tn, ξ p−11 , x

Δ(tn), . . . , x
Δp−1 (tn))en

+
𝜕gp−1
𝜕y2
(tn, xn, ξ

p−1
2 , . . . , x

Δp−1 (tn))eΔn
+ ⋅ ⋅ ⋅ +
𝜕gp−1
𝜕yp
(tn, xn, x

Δ
n , . . . , ξ

p−1
p )e

Δp−1
n ) + Rp(rn+1).

Let rmax = max{r1, . . . , rm+1}. Since tf <∞, there is a constant B > 0 such that
1
p!
rmaxA(1 + A)

p(ermaxA + 1) ≤ B.

Then

|en+1| ≤ (1 + h1(tn+1, tn) + ⋅ ⋅ ⋅ + hp(tn+1, tn))A(|en| + eΔn  + ⋅ ⋅ ⋅ + eΔp−1n
)

+ Rp(rn+1)
≤ (1 + rmax +

r2max
2!
+ ⋅ ⋅ ⋅ +

rpmax
p!
)A(|en| +

e
Δ
n
 + ⋅ ⋅ ⋅ +

e
Δp−1
n
) +
Rp(rn+1)

≤ ermaxA(|en| +
e
Δ
n
 + ⋅ ⋅ ⋅ +

e
Δp−1
n
) +
Rp(rn+1).
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In a similar way, we make the following estimates:

e
Δ
n+1 ≤ ermaxA(e

Δ
n
 + ⋅ ⋅ ⋅ +

e
Δp−1
n
) +
Rp−1(rn+1),

e
Δ2
n+1 ≤ ermaxA(e

Δ2
n
 + ⋅ ⋅ ⋅ +

e
Δp−1
n
) +
Rp−2(rn+1),

⋅ ⋅ ⋅
e
Δp−2
n
 ≤ e

rmaxAe
Δp−1
n
 +
R2(rn+1),

e
Δp−1
n+1  ≤ R1(rn+1).

Let

Bn = |en| +
e
Δ
n
 + ⋅ ⋅ ⋅ +

e
Δp−1
n
.

Then

Bn+1 ≤ permaxABn +
R1(rn+1) + ⋅ ⋅ ⋅ + Rp(rn+1).

Observe that from (6.6) we get

R1(rn+1) + ⋅ ⋅ ⋅ + Rp(rn+1) ≤ r2maxA(1 + A) +
r3max
2!

A(1 + A)2 + ⋅ ⋅ ⋅ +
rp+1max
p!

A(1 + A)p

≤ r2maxA(1 + A)
p(1 + rmax

2!
+ ⋅ ⋅ ⋅ +

rp−1max
p!
)

≤ r2maxA(1 + A)
p(1 + rmax +

r2max
2!
+ ⋅ ⋅ ⋅ +

rp−1max
(p − 1)!
)

≤ r2maxA(1 + A)
permax .

Thus,

Bn+1 ≤ permaxABn + r
2
maxA(1 + A)

permax

≤ permaxA(permaxABn−1 + r2maxA(1 + A)
permax) + r2maxA(1 + A)

permax

= (permaxA)2Bn−1 + (permaxA + 1)r2maxA(1 + A)
permax

≤ ⋅ ⋅ ⋅

≤ (permaxA)n+1B0 + ((permaxA)n + ⋅ ⋅ ⋅ + permaxA + 1)r2maxA(1 + A)
permax

≤ r2maxA(1 + A)
permax

∞
∑
j=0(permaxA)j

≤ r2maxA(1 + A)
petf−t0 ∞∑

j=0(petf−t0A)j
=

1
1 − petf−t0Ar2maxA(1 + A)

petf−t0 .

 EBSCOhost - printed on 2/10/2023 4:40 PM via . All use subject to https://www.ebsco.com/terms-of-use



176 | 6 The order p Taylor series method – TS (p)

In the last inequalitywehave used the fact thatB0 = 0 and rmax ≤ tf −t0. Consequently,

|en| +
e
Δ
n
 + ⋅ ⋅ ⋅ +

e
Δp−1
n
 = O(r

2
max).

6.3 The 2-step Adams–Bashforth method – AB(2)

In this section we consider the special case of the Taylor series method of order p,
which in the case of 𝕋 = ℝ reduces to the numerical method known as the 2-step
Adams–Bashforth method. We shall call this method the 2-step Adams–Bashforth
method on time scales.

Consider again the IVP (6.1). Suppose that r, l > 0, t, t + r, t − l ∈ [t0, tf ],
ρ2(t + r), ρ(t − l) ∈ [t0, tf ]. Applying the second order Taylor formula, we compute

x(t + r) = x(t) + h1(t + r, t)x
Δ(t) + h2(t + r, t)x

Δ2 (t) + R2(r) (6.7)

and applying the first order Taylor formula, we get

xΔ(t − l) = xΔ(t) + h1(t − l, t)x
Δ2 (t) + R1(l) = x

Δ(t) − lxΔ
2
(t) + R1(l),

whereupon

xΔ
2
(t) = 1

l
(xΔ(t) − xΔ(t − l)) + 1

l
R1(l).

We put this expression into (6.7) and find

x(t + r) = x(t) + rxΔ(t) + h2(t + r, t)
l
(xΔ(t) − xΔ(t − l) + R1(l)) + R2(r)

= x(t) + rf (t, x(t)) + h2(t + r, t)
l
(f (t, x(t)) − f (t − l, x(t − l)))

+
h2(t + r, t)

l
R1(l) + R2(r). (6.8)

Assume that t0 < t1 < ⋅ ⋅ ⋅ < tm+1 = tf is a partition of the interval [t0, tf ] such that
tn+1 = tn + rn+1 ∈ 𝕋, rn+1 > 0, n ∈ {0, . . . ,m}. Taking t = tn, r = rn+1, l = rn in (6.8), we
obtain

x(tn+1) = x(tn) + rn+1f (tn, x(tn)) + h2(tn+1, tn)rn
(f (tn, x(tn)) − f (tn−1, x(tn−1)))

+
h2(tn+1, tn)

rn
R1(rn) + R2(rn+1).

Let xn = x(tn), fn = f (tn, x(tn)). Then, neglecting the remainder terms, we arrive at the
2-step Adams–Bashforth method (AB(2) method).
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xn+1 = xn + rn+1fn + h2(tn+1, tn)rn
(fn − fn−1),

or

xn+1 = xn + (rn+1 + h2(tn+1, tn)rn
)fn −

h2(tn+1, tn)
rn

fn−1. (6.9)

Remark 6.1.
1. Note that the 2-step Adams–Bashforth method (6.9) is of order (1 + O(rn))O(r2n+1).
2. If 𝕋 = ℝ and rn = h is constant, then we have h2(tn+1, tn) = (tn+1−tn)22 = h2

2 and
hence (6.9) takes the form

xn+1 = xn + (h + h2)fn − h2 fn−1 = xn + 3h2 fn −
h
2
fn−1,

which is the classical 2-step Adams–Bashforth method.
3. The initial condition x(t0) = x0 provides the first termof the sequence {xn}, but one

needs the second term x1 in order to compute the following terms of the sequence.
For the computation of x1, one can use the Euler method on time scales given in
Chapter 4 or the trapezoid rule on time scales given in Chapter 5.

6.4 Numerical examples

Below, we apply the method to specific examples of initial value problems associated
with nonlinear dynamic equations.

Example 6.2. As a first example, we consider the initial value problem known as the
Beverton–Holt model. This model is a population growth model which was initially
introduced by R. J. H. Beverton and S. J. Holt to describe the fish population [10]. It
has been studied as a continuous and discrete model, that is, both as a differential
and a difference equation. Here we consider the unification of Beverton–Holt model
as a dynamic equation. In this particular example, we take the time scale as the set of
nonnegative integers and get

xΔ(t) = αx(t)
1 + βx(t)

, x(0) = x0, t > 0, (6.10)

where α, β are real numbers. Take 𝕋 = ℕ0 and [t0, tf ] = [0, 20]. The monomial h2 on
this time scale has the form

h2(t, s) =
(t − s)(t − s − 1)

2
, t, s ∈ 𝕋.

If we take constant step size rn = h, thenm =
20
h and tn = nh for n ∈ {0, . . . ,m}. In this

case, the AB (2) formula (6.9) takes the form
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xn+1 = xn + (h + h(h − 1)2h
)

αxn
1 + βxn

−
h(h − 1)

2h
αxn−1

1 + βxn−1
= xn +

3h − 1
2

αxn
1 + βxn

−
h − 1
2

αxn−1
1 + βxn−1 .

Starting with x0 = x(0), we use the Euler method introduced in Chapter 4 to com-
pute x1, which gives

x1 = x0 + h
αx0

1 + βx0
,

and then compute the sequence xn, n ∈ {2, . . . ,m} by using the AB(2) method.
On the other hand, it is easy to see that the exact solution of the problem can be

obtained by writing the dynamic equation in (6.10) as a difference equation, that is,

x0 = x(0),

xn+1 = xn + αxn
1 + βxn
, n ∈ {0, . . . , 19}.

The approximate and exact solutions are compared in Tables 6.1 and 6.2. In both tables
the exact solution is denoted by x(e) and approximate solutions for h = 1 and h = 2 by
x(1) and x(2), respectively. When h = 1, the approximate solution is the same as the
exact solution. However, for h = 2 an error is observed.

Table 6.1: The values of the exact solution x(e) and approximate solutions x(1) and x(2) for x(0) = 1,
α = 1.5, and β = 0.75.

t x(e) x(1) x(2)

0.00 1.00000000 1.00000000 1.00000000
1.00 1.85714286 1.85714286
2.00 3.02132196 3.02132196 2.71428571
3.00 4.40895049 4.40895049
4.00 5.94455919 5.94455919 5.63865546
5.00 7.57815275 7.57815275
6.00 9.27891347 9.27891347 9.01185991
7.00 11.02763147 11.02763147
8.00 12.81189858 12.81189858 12.55867971
9.00 14.62337804 14.62337804

10.00 16.45625923 16.45625923 16.20767199
11.00 18.30635885 18.30635885
12.00 20.17057940 20.17057940 19.92358857
13.00 22.04657096 22.04657096
14.00 23.93251289 23.93251289 23.68597760
15.00 25.82696857 25.82696857
16.00 27.72878606 27.72878606 27.48224143
17.00 29.63702858 29.63702858
18.00 31.55092475 31.55092475 31.30417723
19.00 33.46983226 33.46983226
20.00 35.39321087 35.39321087 35.14618456
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Table 6.2: The values of the exact solution x(e) and approximate solutions x(1) and x(2) for x(0) = 2,
α = 3, and β = 1.

t x(e) x(1) x(2)

0.00 2.00000000 2.00000000 2.00000000
1.00 4.00000000 4.00000000
2.00 6.40000000 6.40000000 6.00000000
3.00 8.99459459 8.99459459
4.00 11.69443234 11.69443234 11.42857143
5.00 14.45810827 14.45810827
6.00 17.26403536 17.26403536 17.03940887
7.00 20.09977812 20.09977812
8.00 22.95759653 22.95759653 22.74434210
9.00 25.83237529 25.83237529

10.00 28.72057006 28.72057006 28.51162867
11.00 31.61962987 31.61962987
12.00 34.52766071 34.52766071 34.32066450
13.00 37.44321946 37.44321946
14.00 40.36518229 40.36518229 40.15915164
15.00 43.29265753 43.29265753
16.00 46.22492621 46.22492621 46.01940020
17.00 49.16140044 49.16140044
18.00 52.10159349 52.10159349 51.89633547
19.00 55.04509801 55.04509801
20.00 57.99156969 57.99156969 57.78645043

The solutions computed with the AB(2) method and the exact solutions for different
choices of x0, α, β, and h are also given in Figures 6.1, 6.2, 6.3 and 6.4.

In the second example we consider the initial value problem in Example 5.8. We
aim to compare the two methods used to obtain the approximate solution.

Example 6.3. Consider the initial value problem

xΔ(t) = 1
1 + t2
+

t
1 + (x(t))2

, x(0) = x0, (6.11)

which is solved by the trapezoid rule in Example 5.8. We take again 𝕋 = aℕ0 for
some a > 0 and [t0, tf ] = [0, b]. The monomial h2 on this time scale has the form
h2(t, s) =

(t−s)(t−s−a)
2 . If we take constant step size rn = h, then m = b

h and tn = nh for
n ∈ {0, . . . ,m}. In this case the AB(2) formula (6.9) takes the form

xn+1 = xn + 3h − a2
(

1
1 + (tn)2

+
tn

1 + (xn)2
) −

h − a
2
(

1
1 + (tn−1)2 + tn−1

1 + (xn−1)2).
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Figure 6.1: Approximate and exact values of the solution with α = 1.5, β = 0.75, x0 = 1, and h = 1.

Figure 6.2: Approximate and exact values of the solution with α = 1.5, β = 0.75, x0 = 1, and h = 2.
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Figure 6.3: Approximate and exact values of the solution with α = 3, β = 1, x0 = 2, and h = 1.

Figure 6.4: Approximate and exact values of the solution with α = 3, β = 1, x0 = 2, and h = 2.
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Starting with x0 = x(0), we use the Euler method introduced in Chapter 4 to com-
pute x1, which gives

x1 = x0 + h(
1

1 + (t0)2
+

t0
1 + (x0)2

),

and then compute the sequence xn, n ∈ {2, . . . ,m} by using the AB(2) method.
From the discrete structure of the time scale aℕ0, the dynamic equation in (6.11)

can be written as a difference equation, that is,

x0 = x(0),

xn+1 = xn + a( 1
1 + (an)2

+
an

1 + (xn)2
), n ∈ {0, . . . ,m},

and hence can be solved analytically on the interval [0, b].
The values of the parameters a, b, x0, and h are chosen as the same parame-

ters used in Example 5.8. The approximate and exact solutions for a = 0.5, b = 20,
h = 0.5, 1, 2, and the initial value x(0) = 1 are listed in Table 6.3. In Table 6.4, the ap-
proximate and exact solutions for a = 0.2, b = 8, h = 0.4,0.8, and the initial value
x(0) = 3 are given.

Table 6.3: The values of the exact solution x(e) and approximate solutions x(1), x(2), and x(3) for h =
0.5, 1, 2, b = 20, and x(0) = 1.

t x(e) x(1) x(2) x(3)

0.00 1.00000000 1.00000000 1.00000000 1.00000000
1.00 1.97692308 1.97692308 1.92799782
2.00 2.59940190 2.59940190 2.60659764 2.59940190
3.00 3.03618334 3.03618334 3.00140783
4.00 3.42352292 3.42352292 3.38694224 3.10844893
5.00 3.79402385 3.79402385 3.76145298
6.00 4.15528317 4.15528317 4.12722174 3.95849454
7.00 4.50894103 4.50894103 4.48475593
8.00 4.85529463 4.85529463 4.83425866 4.69716122
9.00 5.19444102 5.19444102 5.17594188

10.00 5.52652984 5.52652984 5.51008813 5.40314291
11.00 5.85178922 5.85178922 5.83703562
12.00 6.17050243 6.17050243 6.15715160 6.06945724
13.00 6.48298140 6.48298140 6.47081061
14.00 6.78954686 6.78954686 6.77838010 6.70473486
15.00 7.09051545 7.09051545 7.08021180
16.00 7.38619205 7.38619205 7.37663730 7.31347165
17.00 7.67686568 7.67686568 7.66796615
18.00 7.96280759 7.96280759 7.95448563 7.89940697
19.00 8.24427079 8.24427079 8.23646141
20.00 8.52149045 8.52149045 8.51413872 8.46546300
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Table 6.4: The values of the exact solution x(e) and approximate solutions x(1) and x(2), for h =
0.4,0.8, x(0) = 3, and b = 8.

t x(e) x(1) x(2)

0.00 3.00000000 3.00000000 3.00000000
0.40 3.39586641 3.39586641
0.80 3.73043213 3.74286015 3.73043213
1.20 3.97566995 3.98499013
1.60 4.15541211 4.15914713 4.16016040
2.00 4.29534158 4.29522344
2.40 4.41218246 4.40980634 4.36627079
2.80 4.51582844 4.51217756
3.20 4.61210777 4.60775159 4.55008030
3.60 4.70451328 4.69978494
4.00 4.79517350 4.79027335 4.72986961
4.40 4.88539625 4.88044801
4.80 4.97598082 4.97106244 4.91191419
5.20 5.06740357 5.06256458
5.60 5.15993195 5.15520366 5.09881334
6.00 5.25369677 5.24909844
6.40 5.34873916 5.34428194 5.29118354
6.80 5.44504180 5.44073127
7.20 5.54254995 5.53838787 5.48868810
7.60 5.64118581 5.63717128
8.00 5.74085838 5.73698868 5.69059353

The solutions computed with the AB(2) method and the exact solutions for the two
sets of choices of the parameters a, b, x0, and h are given in Figures 6.5, 6.6, 6.7, 6.8
and 6.9.

Figure 6.5: Computed and exact values of the solution with a = 0.5, b = 20, x0 = 1, and h = 0.5.
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Figure 6.6: Computed and exact values of the solution with a = 0.5, b = 20, x0 = 1, and h = 1.

Figure 6.7: Computed and exact values of the solution with a = 0.5, b = 20, x0 = 1, and h = 2.
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Figure 6.8: Computed and exact values of the solution with a = 0.2, b = 8, x0 = 3, and h = 0.4.

Figure 6.9: Computed and exact values of the solution with a = 0.2, b = 8, x0 = 3, and h = 0.8.
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The figures show that there is no significant difference between the exact and com-
puted solutions because h is small.

6.5 Advanced practical problems

Problem 6.4. Let 𝕋 = 2ℕ0 . Consider the IVP

{
xΔ(t) = 1 + 1+x(t)

1+(x(t))2 , t > 1,

x(1) = 1

and assume that

a = t0 = 1, t1 = 4, t2 = 16, t3 = 64, t4 = b = 216.

Write the 2-step Adams–Bashforth formula.

Problem 6.5. Let

𝕋 = {0, 1
8
,
1
7
,
1
6
,
1
5
,
1
4
, 1, 4

3
,
7
3
,
8
3
, 3, 7, 11}.

Consider the IVP

{
xΔ(t) = (1 + x(t))3, t > 0,

x(0) = 0.

Write the 2-step Adams–Bashforth formula.

Problem 6.6. Let 𝕋 = ℤ. Apply AB(2) method for the following IVP:

{
xΔ(t) = sin1(t,0) + (x(t))2, t > 0,

x(0) = 1,

where

a = t0 = 0, t1 = 2, t2 = 4, t3 = 5, t4 = b = 6.

Problem 6.7. Let

𝕋 = {0, 1
3
,
2
3
, 1, 3

2
, 2, 17

8
,
19
8
,
21
8
,
11
4
, 3}.

Apply AB(2) method for the following IVP:
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{
xΔ(t) = 1 + 3(x(t))2, t > 0,
x(0) = 1,

where

a = t0 = 0, t1 =
1
2
, t2 = 1, t3 = 2, t4 =

21
8
, t5 = b = 3.
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7 Linear multistep methods – LMMs
In the previous chapters, the effectiveness of TS(p) methods was shown. For order
p > 1, these methods have a disadvantage in that they require the right-hand side of
the dynamic equation to be differentiable a number of times. This often rules out their
use in the real-world applications. The families of linear multistep methods (LMMs)
achieve higher order by exploiting x and xΔ thatwere computed at the previous k-steps
and combining them to generate an approximation of the next step. We begin with
two-step methods to describe the strategy.

Suppose that 𝕋 is a time scale with forward jump operator σ and delta differenti-
ation operator Δ. Let also, a, b ∈ 𝕋, a < b, and tj ∈ [a, b] ⊂ 𝕋, j ∈ {0, 1, . . . ,m}, so that

a = t0 < t1 < ⋅ ⋅ ⋅ < tm = b.

Consider the IVP

{
xΔ(t) = f (t, x(t)), t ∈ [a, b],
x(a) = x0,

(7.1)

where x0 ∈ ℝ. Set r0 = rm+1 = 0 and

tj = tj−1 + rj, j ∈ {1, . . . ,m}, r = max
j∈{1,...,m}

rj.

7.1 Two-step methods

For a delta differentiable function z, we need to find constants

α0j, α1j, α2j, β0j, β1j, β2j, γ0j, γ1j, γ2j,

so that

z(tj + rj+1 + rj+2) + α1jz(tj + rj+1) + α0jz(tj)

= rj+2(β2jz
Δ(tj + rj+1 + rj+2) + β1jz

Δ(tj + rj+1) + β0jz
Δ(tj))

+ rj+1(γ2jz
Δ(tj + rj+1 + rj+2) + γ1jz

Δ(tj + rj+1) + γ0jz
Δ(tj))

+ O(rp+1), j ∈ {0, . . . ,m − 2},

where pmight be specified in some cases, or onemight try to make p as large as possi-
ble in others. We choose z = x, where x is a solution of the IVP (7.1) and, dropping the
O(rp+1), we find

x(tj + rj+1 + rj+2) + α1jx(tj + rj+1) + α0jx(tj)
= rj+2(β2jf (tj + rj+1 + rj+2, x(tj + rj+1 + rj+2))

https://doi.org/10.1515/9783110787320-007
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+ β1jf (tj + rj+1, x(tj + rj+1)) + β0jf (tj, x(tj)))
+ rj+1(γ2jf (tj + rj+1 + rj+2, x(tj + rj+1 + rj+2))
+ γ1jf (tj + rj+1, x(tj + rj+1)) + γ0jf (tj, x(tj))), j ∈ {0, . . . ,m − 2}.

Set

xj = x(tj), fj = f (tj, x(tj)), j ∈ {0, 1, . . . ,m}.

Then

xj+2 + α1jxj+1 + α0jxj = rj+2(β2jfj+2 + β1jfj+1 + β0jfj)
+ rj+1(γ2jfj+2 + γ1jfj+1 + γ0jfj), j ∈ {0, . . . ,m − 2}, (7.2)

which will be called a two-step method.

Definition 7.1. A two-step method is said to be explicit (or of explicit type) if β2j =
γ2j = 0 for any j ∈ {0, . . . ,m − 2}.

Definition 7.2. A two-step method is said to be implicit if β2j ̸= 0 or γ2j ̸= 0 for some
j ∈ {0, . . . ,m − 2}.

We may write (7.2) in the following form:

xj+2 + α1jxj+1 + α0jxj = rj+2(β2jx
Δ
j+2 + β1jx

Δ
j+1 + β0jx

Δ
j )

+ rj+1(γ2jx
Δ
j+2 + γ1jx

Δ
j+1 + γ0jx

Δ
j ),

where j ∈ {0, . . . ,m − 2}.

7.2 Consistency of two-step methods

Below, we discuss the consistency of two-step methods. To start with, we define the
linear difference operator associated with a two-step method and its order of consis-
tency.

Definition 7.3. The linear difference operator associated with the two-step method
(7.2) is defined for an arbitrary continuously differentiable function z by

ℒrj+1 ,rj+2z(t) = z(t + rj+1 + rj+2) + α1jz(t + rj+1) + α0jz(t)
− rj+2(β2jz

Δ(t + rj+1 + rj+2) + β1jz
Δ(t + rj+1) + β0jz

Δ(t))

− rj+1(γ2jz
Δ(t + rj+1 + rj+2) + γ1jz

Δ(t + rj+1) + γ0jz
Δ(t)), (7.3)

for any j ∈ {0, . . . ,m − 2}.
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Obviously, for any a, b ∈ ℝ and any continuously differentiable functions z,w, we
have

ℒrj+1 ,rj+2(az(t) + bw(t)) = aℒrj+1 ,rj+2z(t) + bℒrj+1 ,rj+2w(t),
that is, ℒrj+1 ,rj+2 is indeed a linear operator.
Definition 7.4. A linear difference operatorℒrj+1 ,rj+2 is said to be consistent of order p if

ℒrj+1 ,rj+2z(t) = O(rp+1),
with p > 0 for any smooth function z.

Definition 7.5. A two-step method is said to be consistent if its difference operator
ℒrj+1 ,rj+2 is consistent of order p for some p > 0.

Example 7.6. Consider the Adams–Bashforth method. The associated linear differ-
ence operator is

ℒrn+1 ,rn=2z(t) = z(t + rn+1 + rn+2) − z(t + rn+1)
− (rn+2 +

h2(t + rn+1 + rn+2, t + rn+1)
rn+1

)zΔ(t + rn+1)

+
h2(t + rn+1 + rn+2, t + rn+1)

rn+1
zΔ(t).

By the Taylor expansion, we have

z(t + rn+1 + rn+2) = z(t) + h1(t + rn+1 + rn+2, t)z
Δ(t)

+ h2(t + rn+1 + rn+2, t)z
Δ2 (t) + O(r3),

z(t + rn+1) = z(t) + h1(t + rn+1, t)z
Δ(t) + h2(t + rn+1, t)z

Δ2 (t) + O(r3),

zΔ(t + rn) = z
Δ(t) + h1(t + rn, t)z

Δ2 (t) + O(r2).

Thus,

ℒrn+1 ,rn+2z(t) = z(t) + h1(t + rn+1 + rn+2, t)zΔ(t) + h2(t + rn+1 + rn+2, t)zΔ2 (t)
− z(t) − h1(t + rn+1, t)z

Δ(t) − h2(t + rn+1, t)z
Δ2 (t)

− (rn+2 +
h2(t + rn+1 + rn+2, t + rn+1)

rn+1
)

× (zΔ(t) + h1(t + rn, t)z
Δ2 (t) + O(r2))

+
h2(t + rn+1 + rn+2, t + rn+1)

rn+1
zΔ(t) + O(r3)

= rn+2z
Δ(t) + (h2(t + rn+1 + rn+2, t) − h2(t + rn+1, t))z

Δ2 (t)
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− (rn+2 +
h2(t + rn+1 + rn+2, t + rn+1)

rn+1
)zΔ(t)

− h1(t + rn, t)(rn+2 +
h2(t + rn+1 + rn+2, t + rn+1)

rn+1
)zΔ

2
(t)

+
h2(t + rn+1 + rn+2, t + rn+1)

rn+1
zΔ(t) + O(r2) + O(r3)

= (h2(t + rn+1 + rn+2, t) − h2(t + rn+1, t) − rn+2h1(t + rn+1, t)

− h1(t + rn, t)
h2(t + rn+1 + rn+2, t + rn+1)

rn+1
)zΔ

2
(t) + O(r2) + O(r3).

Hence,

ℒrn+1 ,rn+2z(t) ≤ (h2(t + rn+1 + rn+2, t) + h2(t + rn+1, t) − rn+2h1(t + rn+1, t)
+ h1(t + rn, t)

h2(t + rn+1 + rn+2, t + rn+1)
rn+1

)zΔ
2
(t) + O(r2) + O(r3)

≤ (
(rn+1 + rn+2)2

2
+
r2n+1
2
+ rnrn+2 + rn

(rn+2)2

rn+1
)z

Δ2 (t)

+ O(r2) + O(r3)

and

ℒrn+1 ,rn+2z(t) = O(r2).
Therefore, the Adams–Bashforth method is consistent of order p = 1.

Exercise 7.7. Let

xn+2 = xn+1 + rn+1h3(tn + rn+1 + rn+2, tn)fn+1 − 2h2(tn + rn+1, tn)fn.

Find the associated linear difference operator and determine its order of consistency.

7.3 Construction of two-step methods

Now,wewill give thedetailed constructionof a two-stepmethodandderive conditions
for the method to be consistent with the dynamic equation. For a general two-step
method, given by (7.2), the associated linear difference operator is given by (7.3) and
the right-hand side can be expanded with the help of the Taylor expansion in the
following way:

z(t + rj+1 + rj+2) = z(t) + h1(t + rj+1 + rj+2, t)z
Δ(t) + h2(t + rj+1 + rj+2, t)z

Δ2 (t)

+ h3(t + rj+1 + rj+2, t)z
Δ3 (t) + ⋅ ⋅ ⋅ ,
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z(t + rj+1) = z(t) + h1(t + rj+1, t)z
Δ(t) + h2(t + rj+1, t)z

Δ2 (t)

+ h3(t + rj+1, t)z
Δ3 (t) + ⋅ ⋅ ⋅ ,

zΔ(t + rj+1 + rj+2) = z
Δ(t) + h1(t + rj+1 + rj+2, t)z

Δ2 (t) + h2(t + rj+1 + rj+2, t)z
Δ3 (t)

+ h3(t + rj+1 + rj+2, t)z
Δ4 (t) + ⋅ ⋅ ⋅ ,

zΔ(t + rj+1) = z
Δ(t) + h1(t + rj+1, t)z

Δ2 (t) + h2(t + rj+1, t)z
Δ3 (t)

+ h3(t + rj+1, t)z
Δ4 (t) + ⋅ ⋅ ⋅ .

The precise number of terms that have to be retained depends on either the order
required or the maximum order possible with the “template” used. Some coefficients
in the two-step method may be set zero in order to achieve a method with particular
pattern of terms.

First, we focus our attention on the case p = 1. We have

ℒrj+1 ,rj+2z(t) = z(t) + h1(t + rj+1 + rj+2, t)zΔ(t) + O(r2)
+ α1j(z(t) + h1(t + rj+1, t)z

Δ(t) + O(r2)) + α0jz(t)

− rj+2(β2j(z
Δ(t) + O(r)) + β1j(z

Δ(t) + O(r)) + β0jz
Δ(t))

− rj+1(γ2j(z
Δ(t) + O(r)) + γ1j(z

Δ(t) + O(r)) + γ0jz
Δ(t))

= (1 + α1j + α0j)z(t)
+ (h1(t + rj+1 + rj+2, t) + α1jh1(t + rj+1, t) − rj+2(β0j + β1j + β2j)

− rj+1(γ2j + γ1j + γ0j))z
Δ(t) + O(r2)

= (1 + α1j + α0j)z(t)
+ (rj+1 + rj+2 + α1jrj+1 − rj+2(β0j + β1j + β2j)

− rj+1(γ0j + γ1j + γ2j))z
Δ(t) + O(r2)

= (1 + α1j + α0j)z(t) + (rj+1(1 + α1j − γ0j − γ1j − γ2j)

+ rj+2(1 − β0j − β1j − β2j))z
Δ(t) + O(r2).

Therefore ℒrj+1 ,rj+2z(t) = O(r2), or the two-step method is consistent of order p = 1, if

1 + α0j + α1j = 0,
β0j + β1j + β2j = 1,

γ0j + γ1j + γ2j = 1 + α1j. (7.4)

Definition 7.8. The first, second, and third characteristic polynomials of the two-step
method (7.2) are defined to be

ρ1j(q) = q
2 + α1jq + α0j,
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ρ2j(q) = β2jq
2 + β1jq + β0j,

ρ3j(q) = γ2jq
2 + γ1jq + γ0j, q ∈ ℝ,

respectively.

Example 7.9. Consider the following two-step method:

xj+2 − xj+1 + xj = rj+2(fj+2 − fj+1) + rj+1(fj+2 + fj+1 + fj).

The first, second, and third characteristic polynomials are as follows:

ρ1j(q) = q
2 − q − 1,

ρ2j(q) = q
2 − q,

ρ3j(q) = q
2 + q + 1.

Exercise 7.10. Write the first, second, and third characteristic polynomials of the fol-
lowing two-step method:

xj+2 + 3xj+1 − 4xj = rj+2(fj+2 − fj+1 − fj) + rj+1(fj+2 − fj).

Theorem 7.11. The two-step method (7.2) is consistent with the dynamic equation (7.1) if
and only if

ρij(1) = 0,
1
2
ρ′′1j(1) = ρ2j(1), ρ′ij(

1
2
) = ρ3j(1). (7.5)

Proof. Note that

ρ1j(1) = 1 + α0j + α1j, ρ′1j(q) = 2q + α1j, ρ′1j(
1
2
) = 1 + α1j,

ρ′′1j(q) = 2,
1
2
ρ′1j(1) = 1, ρ2j(1) = β0j + β1j + β2j, ρ3j(1) = γ0j + γ1j + γ2j.

1. Suppose that (7.2) is consistent with the dynamic equation (7.1). Then (7.4) holds
and hence (7.5) holds.

2. Suppose that (7.5) holds. Then (7.4) holds.

This completes the proof.

Example 7.12. Consider the two-step method

xj+2 − xj = rj+2(fj+2 − fj+1 + fj) + rj+1(−3fj+2 + 3fj+1 + 2fj).

Here
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α0j = −1, α1j = 0, β0j = 1, β1j = −1, β2j = 1, γ0j = 2, γ1j = 3, γ2j = −3.

Then

1 + α0j + α1j = 1 + (−1) + 0 = 0,
β0j + β1j + β2j = 1 + (−1) + 1 = 1,
γ0j + γ1j + γ2j = 2 + 3 + (−3) = 2 = 1 + α1j.

Therefore (7.4) holds and the considered two-step method is consistent.

Exercise 7.13. Prove that the two-step method

xj+2 + 3xj+1 − 4xj = rj+2(−4fj+2 + 3fj+1 + 2fj) + rj+1(3fj+2 + 2fj+1 − fj)

is consistent.

Now we will consider the general case p ≥ 1. We have

ℒrj+1 ,rj+2z(t)
= z(t) + h1(t + rj+1 + rj+2, t)z

Δ(t) + h2(t + rj+1 + rj+2, t)z
Δ2 (t)

+ ⋅ ⋅ ⋅ + hp+1(t + rj+1 + rj+2, t)z
Δp+1 (t) + O(rp+2)

+ α1j(z(t) + h1(t + rj+1, t)z
Δ(t) + h2(t + rj+1, t)z

Δ2 (t)

+ ⋅ ⋅ ⋅ + hp+1(t + rj+1, t)z
Δp+1 (t) + O(rp+2)) + α0jz(t)

− rj+2β2j(z
Δ(t) + h1(t + rj+1 + rj+2, t)z

Δ2 (t) + h2(t + rj+1 + rj+2, t)z
Δ3 (t)

+ ⋅ ⋅ ⋅ + hp(t + rj+1 + rj+2, t)z
Δp+1 (t) + O(rp+1))

− rj+2β1j(z
Δ(t) + h1(t + rj+1, t)z

Δ2 (t) + h2(t + rj+1, t)z
Δ3 (t)

+ ⋅ ⋅ ⋅ + hp(t + rj+1, t)z
Δp+1 (t) + O(rp+1)) − rj+2β0jzΔ(t)

− rj+2γ2j(z
Δ(t) + h1(t + rj+1 + rj+2, t)z

Δ2 (t) + h2(t + rj+1 + rj+2, t)z
Δ3 (t)

+ ⋅ ⋅ ⋅ + hp(t + rj+1 + rj+2, t)z
Δp+1 (t) + O(rp+12))

− rj+2γ1j(z
Δ(t) + h1(t + rj+1, t)z

Δ2 (t) + h2(t + rj+1, t)z
Δ3 (t)

+ ⋅ ⋅ ⋅ + hp(t + rj+1, t)z
Δp+1 (t) + O(rp+1))

= (1 + α0j + α1j)z(t)
+ (h1(t + rj+1 + rj+2, t) + α1jh1(t + rj+1, t) − rj+2β2j − rj+2β1j − rj+2β0j
− rj+1γ2j − rj+1γ1j − rj+1γ0j)z

Δ(t)
+ (h2(t + rj+1 + rj+2, t) + α1jh2(t + rj+1, t) − rj+2β2jh1(t + rj+1 + rj+2, t)
− rj+2β1jh1(t + rj+1, t) − rj+1γ2jh1(t + rj+1 + rj+2, t)
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− rj+1γ1jh1(t + rj+1, t))z
Δ2 (t)

+ (hp+1(t + rj+1 + rj+2, t) + α1jhp+1(t + rj+1, t) − rj+2β2jhp(t + rj+1 + rj+2, t)
− rj+2β1jhp(t + rj+1, t) − rj+1γ2jhp(t + rj+1 + rj+2, t)

− rj+1γ1jhp(t + rj+1, t))z
Δp+1 (t) + O(rp+2).

If the coefficients of h1, . . ., hp are equal to zero, then

ℒrj+1 ,rj+2z(t) = O(rp+1),
i. e., the two-step method is consistent of order p.

7.4 k-Step methods

The most general multistep method has the form

xj+k + αk−1jxj+k−1 + αk−2jxj+k−2 + ⋅ ⋅ ⋅ + α0jxj
= rj+k(βkkjfj+k + βkk−1jfj+k−1 + ⋅ ⋅ ⋅ + βk0jfj)
+ rj+k−1(βk−1kjfj+k + βk−1k−1jfj+k−1 + ⋅ ⋅ ⋅ + βk−10jfj)

+ ⋅ ⋅ ⋅ + rj+1(β1kjfj+k + β1k−1jfj+k−1 + ⋅ ⋅ ⋅ + β10jfj). (7.6)

Definition 7.14. The first through the (k+ 1)th characteristic polynomials of the k-step
method are defined as

ρ1j(q) = q
k + αk−1jq

k−1 + αk−2jq
k−2 + ⋅ ⋅ ⋅ + α0j,

ρ2j(q) = βkkjq
k + βkk−1jq

k−1 + βkk−2jq
k−2 + ⋅ ⋅ ⋅ + βk0j,

⋅ ⋅ ⋅

ρk+1j(q) = β1kjq
k + β1k−1jq

k−1 + β1k−2jq
k−2 + ⋅ ⋅ ⋅ + β10j,

respectively.

Example 7.15. Consider the 4-step method

xj+4 − xj+3 − xj+2 + 2xj+1 − 3xj = rj+4(fj+4 − fj+3 − fj+2) + rj+3(fj+4 + fj)
+ rj+2(2fj+4 − 3fj+3 − fj+2 − fj+1 − fj)
+ rj+1(fj+4 + fj+3 + fj+2 + fj+1 + fj).

Then the first through fifth characteristic polynomials are as follows:

ρ1j(q) = q
4 − q3 − q2 + 2q − 3,

ρ2j(q) = q
4 − q3 − q2,
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ρ3j(q) = −q
4 + 1,

ρ4j(q) = 2q
4 − 3q3 − q2 − q − 1,

ρ5j(q) = q
4 + q3 + q2 + q + 1.

Exercise 7.16. Write the first through sixth characteristic polynomials of the following
5-step method:

xj+5 − xj+4 − 2xj+3 + 3xj+2 − 4xj+1 − xj
= rj+5(fj+5 − fj+4 − 2fj+3 − 3fj+2 − fj+1 − fj) + rj+4(fj+1 − fj)

+ rj+3(2fj+5 + fj+4 − fj+3 − 2fj+2 − 3fj+1 − 4fj)

+ rj+2(fj+5 + 4fj+4 − 3fj+1 − fj) + rj+1(fj+4 + fj+3 − 2fj+1 − 4fj).

7.5 Consistency of k-step methods

Definition 7.17. The associated linear difference operator of the k-step method (7.6) is
defined as follows:

ℒrj+1 ,rj+2 ,...,rj+kz(t)
= z(t + rj+1 + rj+2 + ⋅ ⋅ ⋅ + rj+k) + αk−1jz(t + rj+1 + rj+2 + ⋅ ⋅ ⋅ + rj+k−1)

+ αk−2jz(t + rj+1 + rj+2 + ⋅ ⋅ ⋅ + rj+k−2) + ⋅ ⋅ ⋅ + α0jz(t)

− rj+k(βkkjz
Δ(t + rj+1 + rj+2 + ⋅ ⋅ ⋅ + rj+k)

+ βkk−1jz
Δ(t + rj+1 + rj+2 + ⋅ ⋅ ⋅ + rj+k−1) + ⋅ ⋅ ⋅ + βk0jz

Δ(t))

− rj+k−1(βk−1kjz
Δ(t + rj+1 + rj+2 + ⋅ ⋅ ⋅ + rj+k)

+ βk−1k−1jz
Δ(t + rj+1 + rj+2 + ⋅ ⋅ ⋅ + rj+k−1) + ⋅ ⋅ ⋅ + βk−10jz

Δ(t))

− ⋅ ⋅ ⋅ − rj+1(β1kjz
Δ(t + rj+1 + rj+2 + ⋅ ⋅ ⋅ + rj+k)

+ β1k−1jz
Δ(t + rj+1 + rj+2 + ⋅ ⋅ ⋅ + rfj+k−1) + ⋅ ⋅ ⋅ + β10jz

Δ(t)).

Definition 7.18. A linear difference operator ℒrj+1 ,rj+2 ,...,rj+k is said to be consistent of or-
der p if

ℒrj+1 ,rj+2 ,...,rj+kz(t) = O(rp+1)
with p > 0 for any smooth function z.

Definition 7.19. A k-stepmethod is said tobe consistent if its linear differenceoperator
ℒrj+1 ,rj+2 ,...,rj+k is consistent of order p for some p > 0.

 EBSCOhost - printed on 2/10/2023 4:40 PM via . All use subject to https://www.ebsco.com/terms-of-use



7.5 Consistency of k-step methods | 197

Using the Taylor expansion for the right-hand side of ℒrj+1 ,rj+2 ,...,rj+k and collecting
the terms in hl(⋅, ⋅) of z, zΔ, . . ., zΔ

p
and then choosing these terms to be equal to zero,

we get that this method has order p. We will illustrate this for the case p = 1. We have

z(t + rj+1 + rj+2 + ⋅ ⋅ ⋅ + rj+k) = z(t) + (rj+1 + rj+2 + ⋅ ⋅ ⋅ + rj+k)z
Δ(t) + O(r2),

z(t + rj+1 + rj+2 + ⋅ ⋅ ⋅ + rj+k−1) = z(t) + (rj+1 + rj+2 + ⋅ ⋅ ⋅ + rj+k−1)z
Δ(t) + O(r2),

z(t + rj+1 + rj+2 + ⋅ ⋅ ⋅ + rj+k−2) = z(t) + (rj+1 + rj+2 + ⋅ ⋅ ⋅ + rj+k−2)z
Δ(t) + O(r2),

⋅ ⋅ ⋅

z(t + rj+1) = z(t) + rj+1z
Δ(t) + O(r2).

Then

ℒrj+1 ,rj+2 ,...,rj+kz(t)
= z(t) + (rj+1 + rj+2 + ⋅ ⋅ ⋅ + rj+k)z

Δ(t) + O(r2)
+ αk−1j(z(t) + (rj+1 + rj+2 + ⋅ ⋅ ⋅ + rj+k−1)z

Δ(t) + O(r2))
+ αk−2j(z(t) + (rj+1 + rj+2 + ⋅ ⋅ ⋅ + rj+k−2)z

Δ(t) + O(r2))
+ ⋅ ⋅ ⋅ + α0jz(t) − rj+k(βkkj(z

Δ(t) + O(r)) + βkk−1j(z
Δ(t) + O(r)) + βk0jz

Δ(t))
− rj+k−1(βk−1kj(z

Δ(t) + O(r)) + βk−1k−1j(z
Δ(t) + O(r)) + βk−10jz

Δ(t))
− rj+k−2(βk−2kj(z

Δ(t) + O(r)) + βk−2k−1j(z
Δ(t) + O(r)) + βk−20jz

Δ(t))
+ ⋅ ⋅ ⋅ − rj+1(β1kj(z

Δ(t) + O(r)) + β1k−1j(z
Δ(t) + O(r)) + β10jz

Δ(t))
= (1 + αk+−1j + αk−2j + ⋅ ⋅ ⋅ + αkj)z(t)
+ rj+1(1 + αk−1j + αk−2j + ⋅ ⋅ ⋅ + α1j − β1kj − β1k−1j − ⋅ ⋅ ⋅ − β10j)z

Δ(t)
+ rj+2(1 + αk−1j + αk−2j + ⋅ ⋅ ⋅ + α2j − β2kj − β2k−1j − ⋅ ⋅ ⋅ − β20j)z

Δ(t)
+ rj+3(1 + αk−1j + αk−2j + ⋅ ⋅ ⋅ + α3j − β3kj − β3k−1j − ⋅ ⋅ ⋅ − β30j)z

Δ(t)
+ ⋅ ⋅ ⋅ + rj+k(1 − βkkj − βkk−1j − ⋅ ⋅ ⋅ − βk0j)z

Δ(t) + O(r2).

Thus,

ℒrj+1 ,rj+2 ,...,rj+kz(t) = O(r2)
for any smooth function z if and only if

1 + αk−1j + αk−2j + ⋅ ⋅ ⋅ + α0j = 0,
1 + αk−1j + αk−2j + ⋅ ⋅ ⋅ + α1j = β1kj + β1k−1j + ⋅ ⋅ ⋅ + β10j,
1 + αk−1j + αk−2j + ⋅ ⋅ ⋅ + α2j = β2kj + β2k−1j + ⋅ ⋅ ⋅ + β20j,

⋅ ⋅ ⋅

1 + αk−1j = βk−1kj + βk−1k−1j + ⋅ ⋅ ⋅ + βk−10j,
1 = βkkj + βkk−1j + ⋅ ⋅ ⋅ + βk0j.

(7.7)
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Example 7.20. Consider the 4-step method

xj+4 − 7xj+3 + 3xj+2 + 2xj+1 + xj
= rj+4(−6fj+4 + 3fj+3 + fj+2 + 2fj+1 + fj)
+ rj+3(−10fj+4 + 3fj+3 + 2fj+2 − fj+1)
+ rj+2(−8fj+4 − fj+3 + 3fj+2 + 2fj+1 + fj)
+ rj+1(−4fj+4 + fj+3 + fj+2 + fj+1).

Here

α0j = 1, α1j = 2, α2j = 3, α3j = −7,
β40j = 1, β41j = 2, β42j = 1, β43j = 3, β44j = −6,
β30j = 0, β31j = −1, β32j = 2, β33j = 3, β34j = −10,
β20j = 1, β21j = 2, β22j = 3, β23j = −1, β24j = −8,
β10j = 0, β11j = 1, β12j = 1, β13j = 1, β14j = −4.

Hence,

1 + α0j + α1j + α2j + α3j + α4j = 1 + 1 + 2 + 3 − 7 = 0,
1 + α1j + α2j + α3j = 1 + 2 + 3 − 7 = −1,

β10j + β11j + β12j + β13j + β14j = 0 + 1 + 1 + 1 − 4 = −1,
1 + α2j + α3j = 1 + 3 − 7 = −3,

β20j + β21j + β22j + β23j + β24j = 1 + 2 + 3 − 1 − 8 = −3,
1 + α3j = 1 − 7 = −6,

β30j + β31j + β32j + β33j + β34j = 0 − 1 + 2 + 3 − 10 = −6,
β40j + β41j + β42j + β43j + β44j = 1 + 2 + 1 + 3 − 6 = 1.

Therefore the considered 4-step method is consistent of order p = 1.

Exercise 7.21. Check if the following 2-step method satisfies the conditions (7.7):

xj+2 − 4xj+1 + 3xj = rj+2(−3fj+2 + 3fj+1 + fj) + rj+1(−6fj+2 + 2fj+1 + fj).

7.6 Numerical examples
Example 7.22. The first example is an initial value problem associated with the logis-
tic equation studied by Bohner and Peterson in [1]. It is a simple population growth
model and on an arbitrary time scale is given as

xΔ(t) = (α ⊖ (αx(t)))x(t), x(0) = x0, t > 0.

On 𝕋 = ℕ0, the dynamic equation can be written as
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xΔ = α(1 − x)
1 + αμ(t)x

x,

and we impose an initial condition x(0) = 2 and take the interval as [0, 30].
We will apply an explicit two-step method with a constant step size rj = r for

j = 0, . . . , n − 2, given as

xj+2 + 2xj+1 − 3xj = r(−fj+1 + 2fj) + r(2fj+1 + fj),

that is, we have α1 = 2, α0 = −1, β2 = 0, β1 = −1, β0 = 2, and γ2 = 0, γ1 = −1, γ0 = 1. It is
easy to verify that the consistency condition holds for this two-step method.

When the step size is constant, the method simplifies to

xj+2 = −2xj+1 + 3xj = r(fj+1 + 3fj).

Here x0 = x(0) = 2 and x1 can be obtained with the Euler method as

x1 = x0 + r
α(1 − x0)
1 + αrx0

x0.

The exact solution of the problem is given as

x(e)i (t) =
(1 + α)x(e)i−1(t)

1 + αx(e)i−1(t)
.

We solve the problem for three cases as follows.
Case 1. Let t ∈ [0, 30]𝕋 and r = 1, that is, t0 = 0, tj = tj−1 + 1, where j = 1, . . . , 30.

Hence, the computed sequence of values of the solution x is defined as

xj+2 = −2xj+1 + 3xj + fj+1 + 3fj,

where

fj =
α(1 − xj)
1 + αxj

xj,

for j = 1, . . . , 28.
Case 2. Let t ∈ [0, 30]𝕋 and r = 2, that is, t0 = 0, tj = tj−1 + 2, where j = 1, . . . , 15.

Hence, the computed sequence of values of the solution x is defined as

xj+2 = −2xj+1 + 3xj + 2(fj+1 + 3fj),

where

fj =
α(1 − xj)
1 + 2αxj

xj,

for j = 1, . . . , 13.
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Case 3. Let t ∈ [0, 30]𝕋 and r = 4, that is, t0 = 0, tj = tj−1 + 4, where j = 1, . . . , 8.
Hence, the computed sequence of values of the solution x is defined as

xj+2 = −2xj+1 + 3xj + 4(fj+1 + 3fj),

where

fj =
α(1 − xj)
1 + 4αxj

xj,

for j = 1, . . . , 8.
We denote the computed solution for r = 1 by x(1), for r = 2 by x(2), and for r = 4

by x(4). The exact solution is denoted by x(e). All calculations are done withMATLAB.
The values of the approximate and the exact solution are listed in Table 7.1.

Table 7.1: The values of x(1), x(2), x(4), and the exact solution x(e) at points of the interval [0, 30].

t x(e) x(1) x(2) x(4)

0.00 2.00000000 2.00000000 2.00000000 2.00000000
1.00 1.20000000 1.20000000
2.00 1.05882353 1.05882353 1.11111111
3.00 1.01886792 1.01886792
4.00 1.00621118 1.00621118 1.02040816 1.05882353
5.00 1.00206186 1.00206186
6.00 1.00068634 1.00068634 1.00401606
7.00 1.00022868 1.00022868
8.00 1.00007621 1.00007621 1.00080064 1.00621118
9.00 1.00002540 1.00002540

10.00 1.00000847 1.00000847 1.00016003
11.00 1.00000282 1.00000282
12.00 1.00000094 1.00000094 1.00003200 1.00068634
13.00 1.00000031 1.00000031
14.00 1.00000010 1.00000010 1.00000640
15.00 1.00000003 1.00000003
16.00 1.00000001 1.00000001 1.00000128 1.00007621
17.00 1.00000000 1.00000000
18.00 1.00000000 1.00000000 1.00000026
19.00 1.00000000 1.00000001
20.00 1.00000000 0.99999998 1.00000005 1.00000847
21.00 1.00000000 1.00000005
22.00 1.00000000 0.99999985 1.00000001
23.00 1.00000000 1.00000044
24.00 1.00000000 0.99999868 1.00000000 1.00000094
25.00 1.00000000 1.00000396
26.00 1.00000000 0.99998812 1.00000000
27.00 1.00000000 1.00003563
28.00 1.00000000 0.99989310 1.00000000 1.00000010
29.00 1.00000000 1.00032068
30.00 1.00000000 0.99903792 1.00000000
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In Figures 7.1, 7.2, and 7.3 we compare the graphs of the exact and approximate so-
lutions for the three cases discussed above. In all three figures, the exact solution is
represented by the symbol o and the computed solution by the symbol *.

Figure 7.1: Computed and exact values of the solution with step size r = 1 and α = 2.

Figure 7.2: Computed and exact values of the solution with step size r = 2 and α = 2.
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Figure 7.3: Computed and exact values of the solution with step size r = 4 and α = 2.

In Figure 7.4, the errors for the three cases discussed above are given. It is obvious that
there is almost no error in Case 1 as stated above, and a small error is present for the
Cases 2 and 3.

Figure 7.4: The error magnitudes for the logistic equation with step sizes r = 1, 2,4 and α = 2.
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7.7 Advanced practical problems

Problem 7.23. Let

xn+2 = 3xn+1 + 2rn+1h2(tn + rn+1 + rn+2, tn)fn+1 − 2h3(tn + rn+1, tn)fn.

Write the associated linear difference operator and determine its order of consistency.

Problem 7.24. Write the first, second, and third characteristic polynomials of the fol-
lowing two-step method:

xj+2 + 4xj = rj+2(fj+2 + 3fj) + rj+1(fj+2 + 4fj+1 + 4fj).

Problem 7.25. Prove that the two-step method

xj+2 − xj = rj+2fj+2 + rj+1(6fj+2 − 2fj+1 − 3fj)

is consistent.

Problem 7.26. Prove that the two-step method

xj+2 + xj+1 − 2xj = rj+2(fj+2 + 3fj+1 − 4fj) + rj+1(5fj+2 − 2fj+1 − fj)

is consistent.

Problem 7.27. Write the first, second, third and fourth characteristic polynomials of
the following 3-step method.

xj+3 − 2xj+2 + xj+1 − 3xj = rj+3(fj+3 + 2fj+2 − 4fj+1 − 3fj)
+ rj+2(−fj+3 − fj+2 − fj)
+ rj+1(2fj+3 − fj+2 + fj+1 − fj).

Problem 7.28. Check if the following 5-step method satisfies conditions (7.7):

xj+5 − 3xj+4 + xj+3 − xj+2 + xj+1 − xj
= rj+5(fj+5 − fj+4 + fj+3 − fj+2 + fj+1 − fj)
+ rj+4(2fj+5 + fj+4 − fj+3 − fj+2 − fj+1 − fj)
+ rj+3(−fj+5 − 2fj+4 + 2fj+3 + fj+2 + fj+1 − fj)
+ rj+2(fj+5 − 7fj+4 + 6fj+3 − fj+2 + 3fj+1 − 4fj)
+ rj+1(7fj+5 − 10fj+1 + 4fj).
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The Runge–Kutta methods are among the most widely used methods in the numeri-
cal solutions of initial value problems for ordinary differential equations [4]. They are
one-step methods which consist of several stages. Depending on the choice of the pa-
rameters involved in their construction, the Runge–Kutta methods can be implicit or
explicit as the linear multistep methods.

In this chapter, we will discuss the Runge–Kutta methods on time scales. We will
present the construction of one-, two-, and three-stage methods in details and briefly
introduce a generalization of the idea for s-stage methods.

As in the previous chapters, we suppose that 𝕋 is a time scale with forward jump
operator σ and delta differentiation operator Δ. Let a, b ∈ 𝕋, a < b,m ∈ ℕ, and

a = t0 < t1 < ⋅ ⋅ ⋅ < tm = b,

as well as (tj−1, tj) ∩ 𝕋 ̸= 0, j ∈ {1, . . . ,m}. Denote

tj+1 = tj + rj+1, j ∈ {0, 1, . . . ,m − 1}, r = max
j∈{1,...,m}

rj.

Consider the following IVP:

{
xΔ(t) = f (t, x(t)), t ∈ [a, b],
x(t0) = x0,

(8.1)

where x0 ∈ ℝ, and assume that

(H1)
{{{
{{{
{

|f (t, x)| ≤ A, t ∈ 𝕋, x ∈ ℝ,

there exist Δ1f (t, x) and
𝜕
𝜕x f (t, x) such that

|Δ1f (t, x)| ≤ A, |
𝜕
𝜕x f (t, x)| ≤ A, t ∈ 𝕋, x ∈ ℝ,

for some positive constant A.

8.1 One-stage methods

First, we will discuss the one-stage Runge–Kutta method. Define

xn+1 = xn + b1rn+1fn,

where xn = x(tn), fn = f (tn, xn), b1 ∈ ℝ will be determined below. By Pötzsche chain
rule, for t ∈ [a, b], we have

https://doi.org/10.1515/9783110787320-008
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(f (t, x(t)))Δ = Δ1f (t, x(t)) + (
1

∫
0

𝜕
𝜕x

f (σ(t), x(t) + sμ(t)f (t, x(t)))ds)f (t, x(t)),

where x is a solution of the IVP (8.1). Set, for t ∈ [a, b],

g(t, x(t)) = Δ1f (t, x(t)) + (
1

∫
0

𝜕
𝜕x

f (σ(t), x(t) + sμ(t)f (t, x(t)))ds)f (t, x(t)).

Then

xΔ
2
(t) = g(t, x(t)), t ∈ [a, b].

Now, applying the Taylor formula, we arrive at

x(tn+1) = x(tn) + rn+1x
Δ(tn) + h2(tn+1, tn)x

Δ2 (tn) + O(r
3)

= x(tn) + rn+1f (tn, x(tn)) + h2(tn+1, tn)g(tn, x(tn)) + O(r
3)

= xn + rn+1fn + h2(tn+1, tn)g(tn, xn) + O(r
3).

Hence,

x(tn+1) − xn+1 = xn + rn+1fn + h2(tn+1, tn)g(tn, xn) + O(r
3) − xn − b1rn+1fn

= rn+1(1 − b1)fn + h2(tn+1, tn)g(tn, xn) + O(r
3).

Therefore, the method will be consistent of order p = 1 if we choose b1 = 1. Thus,
for b1 = 1, we get the Euler method. Note that the Euler method is the only first-order
one-stage explicit RKM.

8.2 Two-stage methods

In this section, we continue with the discussion of two-stage methods. In addition to
(H1), suppose that

(H2) 𝜕f
𝜕x
(t, x) ̸= 0, (t, x) ∈ [a, b] × ℝ.

Define t1n+1 ∈ 𝕋 as t
1
n+1 = tn + r

1
n+1 where tn < tn + r

1
n+1 < tn + rn+1 and

xn = x(tn), xn+1 = xn + r
1
n+1(b1k1 + b2k2),

k1 = f (tn, xn), k2 = a1f (t
1
n+1, xn) + a2f(tn, xn +

h2(t1n+1, tn)
r1n+1

⋅
g(tn, xn)
fx(tn, xn)

),
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where a1, a2, b1, b2 ∈ ℝ will be determined below. This scheme will be called the two-
stage Runge–Kutta method. We have

x(t1n+1) = x(tn + r
1
n+1)

= x(tn) + r
1
n+1x

Δ(tn) + h2(t
1
n+1, tn)g(tn, xn) + O(r

3)

= xn + r
1
n+1f (tn, xn) + h2(t

1
n+1, tn)g(tn, xn) + O(r

3),

f (t1n+1, xn) = f (tn, xn) + r
1
n+1Δ1f (tn, xn) + O(r

2),

f(tn, xn +
h2(t1n+1, tn)

r1n+1
⋅
g(tn, xn)
fx(tn, xn)

)

= f (tn, xn) +
h2(t1n+1, tn)

r1n+1
⋅
g(tn, xn)
fx(tn, xn)

fx(tn, xn) + O(r
2)

= f (tn, xn) + g(tn, xn)
h2(t1n+1, tn)

r1n+1
+ O(r2),

k2 = a1f (t
1
n+1, xn) + a2f(tn, xn +

h2(t1n+1, tn)
r1n+1

⋅
g(tn, xn)
fx(tn, xn)

)

= a1(f (tn, xn) + r
1
n+1Δ1f (tn, xn) + O(r

2))

+ a2(f (tn, xn) + g(tn, xn)
h2(t1n+1, tn)

r1n+1
+ O(r2))

= (a1 + a2)f (tn, xn) + a1r
1
n+1Δ1f (tn, xn) + a2g(tn, xn)

h2(t1n+1, tn)
r1n+1

+ O(r2),

b1k1 + b2k2 = (b1 + b2(a1 + a2))f (tn, xn)

+ a1b2r
1
n+1Δ1f (tn, xn) + a2b2g(tn, xn)

h2(t1n+1, tn)
r1n+1

+ O(r2),

and

xn+1 = xn + (b1 + b2(a1 + a2))r
1
n+1f (tn, xn)

+ a1b2(r
1
n+1)

2Δ1f (tn, xn) + a2b2g(tn, xn)h2(t
1
n+1, tn) + O(r

3).

Hence,

x(t1n+1) − xn+1 = xn + r
1
n+1f (tn, xn) + h2(t

1
n+1, tn)g(tn, xn)

− xn − (b1 + b2(a1 + a2))r
1
n+1f (tn, xn)

− a1b2(r
1
n+1)

2Δ1f (tn, xn) − a2b2g(tn, xn)h2(t
1
n+1, tn) + O(r

3)
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= (1 − (b1 + b2(a1 + a2)))r
1
n+1f (tn, xn)

− a1b2(r
1
n+1)

2Δ1f (tn, xn) + (1 − a2b2)g(tn, xn)h2(t
1
n+1, tn) + O(r

3).

Therefore, we can say the following:
1. If

{
b1 + b2(a1 + a2) = 1,
a1b2 ̸= 0

or { b1 + b2(a1 + a2) = 1,
a2b2 ̸= 1,

then the method is consistent of order p = 1.
2. If

{{
{{
{

b1 + b2(a1 + a2) = 1,
a1b2 = 0,
a2b2 = 1,

which is equivalent to

{
a1 = b1 = 0
a2b2 = 1,

then the method is consistent of order p = 2.

8.3 Three-stage methods

In this section, we derive the three-stage methods and their consistency conditions.
Suppose that (H1) and (H2) hold and t1n+1 = tn + r

1
n+1 ∈ 𝕋, tn < tn + r

1
n+1 < tn + rn+1. Let

k1 = f (tn, xn),

k2 = a11f (t
1
n+1, xn) + a12f(tn, xn +

Δ1f (tn, xn)
fx(tn, xn)

r1n+1),

k3 = a21f (t
1
n+1, xn) + a22f(tn, xn +

h2(t1n+1, tn)g(tn, xn)
fx(tn, xn)r1n+1

),

xn+1 = xn + r
1
n+1(b1k1 + b2k2 + b3k3),

where a11, a12, a21, a22, b1, b2, b3 ∈ ℝ will be determined below. This scheme will be
called the three-stage Runge–Kutta method. We have

x(t1n+1) = xn + r
1
n+1f (tn, xn) + h2(t

1
n+1, tn)g(tn, xn) + O(r

3),

f (tn + r
1
n+1, xn) = f (tn, xn) + r

1
n+1Δ1f (tn, xn) + O(r

2),

f(tn, xn +
Δ1f (tn, xn)
fx(tn, xn)

r1n+1) = f (tn, xn) +
Δ1f (tn, xn)
fx(tn, xn)

r1n+1fx(tn, xn) + O(r
2),
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= f (tn, xn) + r
1
n+1Δ1f (tn, xn) + O(r

2),

f(tn, xn +
h2(t1n+1, tn)g(tn, xn)

fx(tn, xn)
) = f (tn, xn) +

h2(t1n+1, tn)g(tn, xn)
fx(tn, xn)r1n+1

fx(tn, xn) + O(r
2)

= f (tn, xn) +
h2(t1n+1, tn)g(tn, xn)

r1n+1
+ O(r2).

Thus,

k2 = a11f (t
1
n+1, xn) + a12f(tn, xn +

Δ1f (tn, xn)
fx(tn, xn)

r1n+1)

= a11f (tn, xn) + a11r
1
n+1Δ1f (tn, xn) + a12f (tn, xn) + a12r

1
n+1Δ1f (tn, xn) + O(r

2)

= (a11 + a12)f (tn, xn) + (a11 + a12)r
1
n+1Δ1f (tn, xn) + O(r

2),

b2k2 = b2(a11 + a12)f (tn, xn) + b2(a11 + a12)r
1
n+1Δ1f (tn, xn) + O(r

2),

k3 = a21f (t
1
n+1, xn) + a22f(tn, xn +

Δ1f (tn, xn)
fx(tn, xn)

r1n+1)

= a21f (tn, xn) + a21r
1
n+1Δ1f (tn, xn)

+ a22f (tn, xn) + a12
h2(t1n+1, tn)g(tn, xn)

r1n+1
+ O(r2)

= (a21 + a22)f (tn, xn) + a21r
1
n+1Δ1f (tn, xn) + a22

h2(t1n+1, tn)g(tn, xn)
r1n+1

+ O(r2),

b3k3 = b3(a21 + a22)f (tn, xn) + a21r
1
n+1Δ1f (tn, xn)

+ b3a22
h2(t1n+1, tn)g(tn, xn)

r1n+1
+ O(r2),

and

b1k1 + b2k2 + b3k3 = (b1 + b2(a11 + a12) + b3(a21 + a22))f (tn, xn)

+ (b2(a11 + a12) + b3a21)r
1
n+1Δ1f (tn, xn)

+ b3a22
h2(t1n+1, tn)g(tn, xn)

r1n+1
+ O(r2),

r1n+1(b1k1 + b2k2 + b3k3) = (b1 + b2(a11 + a12) + b3(a21 + a22))r
1
n+1f (tn, xn)

+ (b2(a11 + a12) + b3a21)(r
1
n+1)

2Δ1f (tn, xn)

+ b3a22h2(t
1
n+1, tn)g(tn, xn) + O(r

3),

xn+1 = xn + (b1 + b2(a11 + a12) + b3(a21 + a22))r
1
n+1f (tn, xn)

+ (b2(a11 + a12) + b3a21)(r
1
n+1)

2Δ1f (tn, xn)

+ b3a22h2(t
1
n+1, tn)g(tn, xn) + O(r

3).

Hence,
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x(t1n+1) − xn+1 = xn + r
1
n+1f (tn, xn) + h2(t

1
n+1, tn)g(tn, xn)

− xn − (b1 + b2(a11 + a12) + b3(a21 + a22))r
1
n+1f (tn, xn)

− (b2(a11 + a12) + b3a21)(r
1
n+1)

2Δ1f (tn, xn)
− b3a22h2(t

1
n+1, tn)g(tn, xn) + O(r

3)

= (1 − (b1 + b2(a11 + a12) + b3(a21 + a22)))r
1
n+1f (tn, xn)

− (b2(a11 + a12) + b3a21)(r
1
n+1)

2Δ1f (tn, xn)
+ (1 − b3a22))h2(t

1
n+1, tn)g(tn, xn) + O(r

3).

Therefore, we can say the following:
1. If

{
b1 + b2(a11 + a12) + b3(a21 + a22) = 1,
b2(a11 + a12) + b3a21 ̸= 0

or

{
b1 + b2(a11 + a12) + b3(a21 + a22) = 1,
b3a22 ̸= 1,

then the three-stage method is consistent of order p = 1.
2. If

{{
{{
{

b1 + b2(a11 + a12) + b3(a21 + a22) = 1,
b2(a11 + a12) + b3a21 = 0,
b3a22 = 1,

then the three-stage method is consistent of order p = 2.

8.4 s-Stage methods
Here,we briefly give the general formof an s-stage Runge–Kuttamethod. Suppose that
(H1) and (H2) hold and t1n+1 = tn + r

1
n+1 ∈ 𝕋 , tn < tn + r

1
n+1 < tn + rn+1. The general s-stage

RK method can be written in the form

xn+1 = xn + r
1
n+1

s
∑
j=1

bjkj,

where

k1 = f (tn, xn), kj = kj(f ,Δ1f , fx), j ∈ {2, . . . , s},

are determined so that themethod is consistent of order p > 0. To determine the coeffi-
cients bj, j ∈ {1, . . . , s}, we use the Taylor expansions of f , x, kj, j ∈ {1, . . . , s}, of order p >
0 so that the considered s-stage method is consistent of order 1 or 2, or so on, up to p.
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8.5 Numerical examples

In this section, we solve examples with the Runge–Kutta methods. In the first two, the
time scale is chosen as the set of real numbers and the initial value problem is treated
with both two- and three-stage Runge–Kutta methods. The third example is the initial
value problem solved by using the trapezoid rule in Example 5.7.

Example 8.1. Consider the initial value problem

{
xΔ(t) = − x

2t
1+t2 , t ∈ [1, 5] ⊂ ℝ,

x(1) = 1.
(8.2)

where 𝕋 = ℝ. We will use a two-stage Runge–Kutta method given by

xn = x(tn), xn+1 = xn + r
1
n+1(b1k1 + b2k2),

k1 = f (tn, xn), k2 = a1f (t
1
n+1, xn) + a2f(tn, xn +

h2(t1n+1, tn)
r1n+1

⋅
g(tn, xn)
fx(tn, xn)

),

where a1, a2, b1, b2 ∈ ℝ are chosen according to the consistency conditions given as
follows.

In order that the method is consistent of order p = 1, we should have

{
b1 + b2(a1 + a2) = 1,
a1b2 ̸= 0

or { b1 + b2(a1 + a2) = 1,
a2b2 ̸= 1.

The method is consistent of order p = 2 if

{
a1 = b1 = 0
a2b2 = 1.

We take

t0 = 1, x0 = x(1) = 1,

and

t1n+1 = tn + r
1
n+1 = tn + r,

where the step size r is constant. Note that on the time scale 𝕋 = ℝ we have σ(t) = t,
μ(t) = 0 for all t ∈ ℝ, and xΔ(t) = x′(t), t ∈ ℝ. For the given initial value problem, we
have

f (t, x) = − x2t
1 + t2
, fx(t, x) = −

2xt
1 + t2
,
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g(t, x) = 𝜕
𝜕t
f (t, x) = 𝜕

𝜕t
(−

x2t
1 + t2
) = −
(2xx′t + x2)(1 + t2) − 2tx2t

(1 + t2)2

= −
(−2xt x2t

1+t2 (1 + t
2) + x2(1 + t2) − 2tx2t
(1 + t2)2

=
2x3t − x2 + x2t2

(1 + t2)2
, t ∈ ℝ.

We also have

h2(t
1
n+1, tn) =

(t1n+1 − tn)
2

2
,

so that

xn +
h2(t1n+1, tn)

r1n+1
⋅
g(tn, xn)
fx(tn, xn)

= xn +
r2

2r
(

2x3ntn−x
2
n+x

2
nt

2
n

(1+t2n)2

− 2xntn1+t2n

) = xn −
r
2
(
2x3ntn − x

2
n + x

2
nt
2
n

2xntn(1 + t2n)
).

Then the two stage Runge–Kutta method becomes

k1 = −
x2ntn
1 + t2n
, k2 = −a1

x2nt
1
n+1

1 + (t1n+1)2
− a2
(xn −

r
2 (

2x3ntn−x
2
n+x

2
nt

2
n

2xntn(1+t2n)
))2tn

1 + t2n
,

xn+1 = xn + r(b1k1 + b2k2),

where x0 = 1, t0 = 1 and t1n+1 = tn + r for n = 0, . . . ,
4
r .

We note that the differential equation in the given initial value problem is a sepa-
rable first-order equation and the exact solution is obtained as follows. The separation
of the variables gives

−
dx
x2
=

tdt
1 + t2
, t ∈ ℝ,

and hence, upon integration,

1
x
=
1
2
ln(1 + t2) + C, t ∈ ℝ,

where C is an arbitrary constant to be determined from the initial condition x(1) = 1.
Since the general solution is

x(t) = 1
C + ln(√1 + t2)

, t ∈ ℝ,

the initial condition gives C = 1 − ln√2, so that the exact solution of the given initial
value problem is

x(t) = 1
1 − ln√2 + ln(√1 + t2)

, t ∈ ℝ.
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We perform the computation with MATLAB for different values of the step size r
and the parameters a1, a2, b1, b2.

First, we take a two-step Runge–Kutta method, which is consistent of order p = 1,
by choosing a1 =0.5, a2 =0.5, b1 =0, b2 = 1, so that b1 + b2(a1 + a2)= 1 and a1b2 =0.5 ̸=0.
We choose two different step sizes r = 0.4 and r = 0.2. The approximate solution and
the exact solution for r = 0.4 are compared in Table 8.1, and their graphs are shown
in Figure 8.1, and for r = 0.2, a similar comparison is given in Table 8.2 and Figure 8.2.

Table 8.1: The values of the exact solution x(e) and approximate solution x(a) for a1 = 0.5, a2 = 0.5,
b1 = 0, b2 = 1, and r = 0.4.

t x(e) x(a)

1.00 1.00000000 1.00000000
1.40 0.83610569 0.82440541
1.80 0.72689842 0.71475735
2.20 0.65112992 0.64034943
2.60 0.59597683 0.58661715
3.00 0.55410290 0.54593378
3.40 0.52119030 0.51397716
3.80 0.49458255 0.48813533
4.20 0.47257163 0.46674406
4.60 0.45401491 0.44869523
5.00 0.43812096 0.43322319

Figure 8.1: Approximate and exact solutions for a1 = 0.5, a2 = 0.5, b1 = 0, b2 = 1, and r = 0.4.
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Table 8.2: The values of the exact solution x(e) and approximate solution x(a) for a1 = 0.5, a2 = 0.5,
b1 = 0, b2 = 1, and r = 0.2.

t x(e) x(a)

1.00 1.00000000 1.00000000
1.20 0.90956601 0.90569467
1.40 0.83610569 0.83064648
1.60 0.77621269 0.77023829
1.80 0.72689842 0.72090282
2.00 0.68580268 0.68000476
2.20 0.65112992 0.64561723
2.40 0.62152805 0.61632553
2.60 0.59597683 0.59108015
2.80 0.57370048 0.56909231
3.00 0.55410290 0.54976102
3.20 0.53672088 0.53262209
3.40 0.52119030 0.51731229
3.60 0.50722171 0.50354384
3.80 0.49458255 0.49108614
4.00 0.48308407 0.47975238
4.20 0.47257163 0.46938976
4.40 0.46291742 0.45987213
4.60 0.45401491 0.45109446
4.80 0.44577464 0.44296859
5.00 0.43812096 0.43542003

Figure 8.2: Approximate and exact solutions for a1 = 0.5, a2 = 0.5, b1 = 0, b2 = 1, and r = 0.2.
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Second, we take a two-step Runge–Kutta method, consistent of order p = 2, by choos-
ing a1 = 0, a2 = 2, b1 = 0, b2 = 0.5, so that the consistency condition is satisfied. We
choose again two different step sizes r = 0.4 and r = 0.2. The approximate solution
and the exact solution for r = 0.4 are compared in Table 8.3, and their graphs are
shown in Figure 8.3, and for r = 0.2, a similar comparison is presented in Table 8.4
and Figure 8.4. The results of the numerical computation show that, as expected, with
the second choice of the parameters providing consistency order p = 2, we obtain a
higher accuracy.

Table 8.3: The values of the exact solution x(e) and approximate solution x(a) for a1 = 0, a2 = 2,
b1 = 0, b2 = 0.5, and r = 0.4.

t x(a) x(e)

1.00 1.00000000 1.00000000
1.40 0.83800000 0.83610569
1.80 0.73096768 0.72689842
2.20 0.65606530 0.65112992
2.60 0.60108796 0.59597683
3.00 0.55910166 0.55410290
3.40 0.52597162 0.52119030
3.80 0.49911903 0.49458255
4.20 0.47686763 0.47257163
4.60 0.45808680 0.45401491
5.00 0.44198867 0.43812096

Figure 8.3: Approximate and exact solutions for a1 = 0, a2 = 2, b1 = 0, b2 = 0.5, and r = 0.4.
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Table 8.4: The values of the exact solution x(e) and approximate solution x(a) for a1 = 0, a2 = 2,
b1 = 0, b2 = 0.5, and r = 0.2.

t x(a) x(e)

1.00 1.00000000 1.00000000
1.20 0.90975000 0.90956601
1.40 0.83662799 0.83610569
1.60 0.77701742 0.77621269
1.80 0.72789574 0.72689842
2.00 0.68691711 0.68580268
2.20 0.65230745 0.65112992
2.40 0.62273252 0.62152805
2.60 0.59718493 0.59597683
2.80 0.57489755 0.57370048
3.00 0.55528005 0.55410290
3.20 0.53787296 0.53672088
3.40 0.52231457 0.52119030
3.60 0.50831701 0.50722171
3.80 0.49564869 0.49458255
4.00 0.48412150 0.48308407
4.20 0.47358118 0.47257163
4.40 0.46390012 0.46291742
4.60 0.45497191 0.45401491
4.80 0.44670715 0.44577464
5.00 0.43903017 0.43812096

Figure 8.4: Approximate and exact solutions for a1 = 0, a2 = 2, b1 = 0, b2 = 0.5, and r = 0.2.
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Example 8.2. We consider again the initial value problem from Example 8.1, that is,

{ xΔ(t) = − x
2t

1+t2 , t ∈ [1, 5] ⊂ ℝ,
x(1) = 1,

(8.3)

where 𝕋 = ℝ. We will use a three-stage Runge–Kutta method given by

k1 = f (tn, xn),

k2 = a11f (t
1
n+1, xn) + a12f(tn, xn +

Δ1f (tn, xn)
fx(tn, xn)

r1n+1),

k3 = a21f (t
1
n+1, xn) + a22f(tn, xn +

h2(t1n+1, tn)g(tn, xn)
fx(tn, xn)r1n+1

),

xn+1 = xn + r
1
n+1(b1k1 + b2k2 + b3k3),

wherea11, a12, a21, a22, b1, b2, b3 ∈ ℝwill be chosenaccording to the following condition
for consistency of order 2:

{{
{{
{

b1 + b2(a11 + a12) + b3(a21 + a22) = 1,
b2(a11 + a12) + b3a21 = 0,
b3a22 = 1,

As in the previous example, we take

t0 = 1, x0 = x(1) = 1, and t1n+1 = tn + r
1
n+1 = tn + r,

where the step size r is constant. From Example 8.1 we have

f (t, x) = − x2t
1 + t2
, fx(t, x) = −

2xt
1 + t2
,

g(t, x) = 2x
3t − x2 + x2t2

(1 + t2)2
, x, t ∈ ℝ,

and compute

Δ1f (t, x) = ft(t, x) = −
x2(1 − t2)
(1 + t2)2

, x, t ∈ ℝ.

Employing also

h2(t
1
n+1, tn) =

(t1n+1 − tn)
2

2
,

we get

xn +
Δ1f (tn, xn)
fx(tn, xn)

r1n+1 = xn + r
xn(1 − t2n)
2tn(1 + t2n)

,
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xn +
h2(t1n+1, tn)g(tn, xn)

fx(tn, xn)r1n+1
= −

r
2
(
2x3ntn − x

2
n + x

2
nt
2
n

2xntn(1 + t2n)
).

We choose the parameters involved in the three-stage Runge–Kutta method as fol-
lows:

b1 = 0, b2 =
1
2
, b3 = 1,

a11 = 1, a12 = 1, a21 = − 1, a22 = 1,

so that we have

{{{
{{{
{

b1 + b2(a11 + a12) + b3(a21 + a22) = 1 +
1
2 (1 + 1) + (−1 + 1) = 1,

b2(a11 + a12) + b3a21 =
1
2 (1 + 1) + (−1) = 0,

b3a22 = 1,

and the condition for consistency of order two holds. Then the three-stage Runge–
Kutta method becomes

k1 = −
x2ntn
1 + t2n
,

k2 = −
x2nt

1
n+1

1 + (t1n+1)2
−

tn
1 + t2n
(xn + r

xn(1 − t2n)
2tn(1 + t2n)

)
2
,

k3 =
x2nt

1
n+1

1 + (t1n+1)2
−
(xn −

r
2 (

2x3ntn−x
2
n+x

2
nt

2
n

2xntn(1+t2n)
))2tn

1 + t2n
,

xn+1 = xn + r(
1
2
k2 + k3),

where x0 = 1, t0 = 1 and t1n+1 = tn + r for n = 0, . . . ,
4
r .

Recall also that the exact solution of the given initial value problem is obtained
as

x(t) = 1
1 − ln√2 + ln(√1 + t2)

, t ∈ ℝ.

We perform the computation withMATLAB for 3 different values of the step size r,
that is, r = 0.2, 0.4, and 0.8. The approximate solution and the exact solution for
r = 0.2 are compared in Table 8.5 and their graphs are shown in Figure 8.5, and for
r = 0.4, a similar comparison is presented in Table 8.6 and Figure 8.6. Finally, the
approximate solution and the exact solution for r = 0.8 are compared in Table 8.7 and
their graphs are shown in Figure 8.7.

The results of the numerical computation show that, as expected, the stage-three
Runge–Kutta method provides a better approximation than a two-stage method.
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Table 8.5: The values of the exact solution x(e) and approximate solution x(a) for r = 0.2.

t x(e) x(a)

1.00 1.00000000 1.00000000
1.20 0.90956601 0.90893033
1.40 0.83610569 0.83559010
1.60 0.77621269 0.77599029
1.80 0.72689842 0.72695577
2.00 0.68580268 0.68608085
2.20 0.65112992 0.65156958
2.40 0.62152805 0.62208100
2.60 0.59597683 0.59660686
2.80 0.57370048 0.57438122
3.00 0.55410290 0.55481550
3.20 0.53672088 0.53745193
3.40 0.52119030 0.52193029
3.60 0.50722171 0.50796395
3.80 0.49458255 0.49532234
4.00 0.48308407 0.48381815
4.20 0.47257163 0.47329776
4.40 0.46291742 0.46363408
4.60 0.45401491 0.45472114
4.80 0.44577464 0.44646985
5.00 0.43812096 0.43880484

Figure 8.5: Approximate and exact solutions for r = 0.2.
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Table 8.6: The values of the exact solution x(e) and approximate solution x(a) for r = 0.4.

t x(e) x(a)

1.00 1.00000000 1.00000000
1.40 0.83610569 0.83259459
1.80 0.72689842 0.72603732
2.20 0.65112992 0.65213300
2.60 0.59597683 0.59795040
3.00 0.55410290 0.55653392
3.40 0.52119030 0.52381116
3.80 0.49458255 0.49725594
4.20 0.47257163 0.47522753
4.60 0.45401491 0.45661836
5.00 0.43812096 0.44065556

Figure 8.6: Approximate and exact solutions for r = 0.4.

Table 8.7: The values of the exact solution x(e) and approximate solution x(a) for r = 0.8.

t x(e) x(a)

1.00 1.00000000 1.00000000
1.80 0.72689842 0.71381132
2.60 0.59597683 0.59831702
3.40 0.52119030 0.52801758
4.20 0.47257163 0.48044577
5.00 0.43812096 0.44601078
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Figure 8.7: Approximate and exact solutions for r = 0.8.

In the next example, we will consider the treatment of the initial value problem from
Example 5.7, but we consider the time scale 𝕋 = aℕ0, for a positive a, instead of
𝕋 = ℕ0.

Example 8.3. Consider the IVP associated with the linear dynamic equation

xΔ(t) = 1
t + 1

x(t) + 1
t2 + 1
, x(0) = α, (8.4)

where t ∈ [0, 10]ℕ0 . We will apply a two-stage Runge–Kutta method with two different
choices of the parameters, one resulting in a consistency order p = 1, and the other
resulting in the order of consistency p = 2.

We take

t0 = 0, x0 = x(0) = α,

and

t1n+1 = tn + r
1
n+1 = tn + r,

where the step size r is constant. Note that on the given time scale 𝕋 = aℕ0 we have
σ(t) = t + a, μ(t) = a for all t ∈ 𝕋. For the given initial value problem, we have

f (t, x) = x
t + 1
+

1
t2 + 1
, fx(t, x) =

1
t + 1
, t ∈ 𝕋, x ∈ ℝ.

We will apply the Pötzsche chain rule to compute g(t, x). First, note that
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Δ1f (t, x) =
f (t + a, x) − f (t, x)

a

=
( x
t+a+1 +

1
(t+a)2+1 ) − (

x
t+1 +

1
t2+1 )

a
= −

x
(t + 1)(t + a + 1)

−
2t + a

(t2 + 1)((t + a)2 + 1)
, t ∈ 𝕋, x ∈ ℝ,

and

f (σ(t), x + sμ(t)f (t, x)) = f(t + a, x + sa( x
t + 1
+

1
t2 + 1
))

=
x + sa( xt+1 +

1
t2+1 )

t + a + 1
+

1
(t + a)2 + 1

, t ∈ 𝕋, s, x ∈ ℝ,

so that we have

𝜕
𝜕x

f (σ(t), x + sμ(t)f (t, x)) = 1
t + a + 1

+
sa

(t + 1)(t + a + 1)
, t ∈ 𝕋, s, x ∈ ℝ.

Then, we compute

g(t, x) = Δ1f (t, x) + (
1

∫
0

𝜕
𝜕x

f (σ(t), x + sμ(t)f (t, x))Δs)f (t, x)

= −
x

(t + 1)(t + a + 1)
−

2t + a
(t2 + 1)((t + a)2 + 1)

+ (
1

∫
0

(
1

t + a + 1
+

sa
(t + 1)(t + a + 1)

)Δs)( x
t + 1
+

1
t2 + 1
)

= −
x

(t + 1)(t + a + 1)
−

2t + a
(t2 + 1)((t + a)2 + 1)

+ (
x

t + 1
+

1
t2 + 1
) (

s
t + a + 1

+
s2a

2(t + 1)(t + a + 1)
)


1

0

= −
x

(t + 1)(t + a + 1)
−

2t + a
(t2 + 1)((t + a)2 + 1)

+ (
x

t + 1
+

1
t2 + 1
)(

1
t + a + 1

+
a

2(t + 1)(t + a + 1)
), t ∈ 𝕋, s, x ∈ ℝ.

We also have

h2(t
1
n+1, tn) =

(t1n+1 − tn)(t
1
n+1 − tn − a)
2

=
r(r − a)

2
.

Let

Qn = xn +
h2(t1n+1, tn)

r1n+1
⋅
g(tn, xn)
fx(tn, xn)

.

Then
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Qn = xn +
r(r − a)

2r
1
1

tn+1
[(−

xn
(tn + 1)(tn + a + 1)

−
2tn + a

(t2n + 1)((tn + a)2 + 1)
)

+ (
xn

tn + 1
+

1
t2n + 1
)(

1
n + a + 1

+
a

2(n + 1)(tn + a + 1)
)]

= xn + (tn + 1)
r − a
2
[(−

xn
(tn + 1)(tn + a + 1)

−
2tn + a

(t2n + 1)((tn + a)2 + 1)
)

+ (
xn

tn + 1
+

1
t2n + 1
)(

1
tn + a + 1

+
a

2(tn + 1)(tn + a + 1)
)].

Then the two-stage Runge–Kutta method becomes

k1 =
xn

tn + 1
+

1
t2n + 1
, k2 = a1(

xn
t1n+1 + 1

+
1

(t1n+1)2 + 1
) + a2(

Qn
tn + 1
+

1
t2n + 1
),

xn+1 = xn + r(b1k1 + b2k2),

where x0 = α, t0 = 0 and t1n+1 = tn + r for n = 0, . . . ,
10
r .

We perform the computationwithMATLAB for different values of the parameter a,
the initial value α, the step size r and the parameters a1, a2, b1, b2.

First, we take a two-step Runge–Kutta method consistent of order p = 1 by choos-
ing a1 = 0, a2 = 0.5, b1 = 0.5, b2 = 1, so that b1 + b2(a1 + a2) = 1 and a2b2 = 0.5 ̸= 1.

We choose a = 0.4, x(0) = α = 1 and r = 0.8. The approximate and exact solutions
are compared in Table 8.8 and their graphs are shown in Figure 8.8.

Then we take a = 0.2, x(0) = α = 1, and r = 0.4. The approximate and exact
solutions are compared in Table 8.9 and their graphs are shown in Figure 8.9.

Table 8.8: The values of the exact solution x(e) and approximate solution x(a) for a = 0.4, a1 = 0,
a2 = 0.5, b1 = 0.5, b2 = 1, and r = 0.8.

t x(e) x(a)

0.00 1.00000000 1.00000000
0.80 2.65911330 2.65241379
1.60 4.29312420 4.30967564
2.40 5.82142631 5.85573599
3.20 7.30182274 7.35036839
4.00 8.75998114 8.82121628
4.80 10.20649681 10.27967998
5.60 11.64626723 11.73100179
6.40 13.08181407 13.17786764
7.20 14.51455340 14.62177969
8.00 15.94533686 16.06363841
8.80 17.37470556 17.50401440
9.60 18.80301900 18.94328598
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Figure 8.8: Approximate and exact solutions for a=0.4, a1 =0, a2 =0.5, b1 =0.5, b2 = 1, and r =0.8.

Table 8.9: The values of the exact solution x(e) and approximate solution x(a) for a = 0.2, a1 = 0,
a2 = 0.5, b1 = 0.5, b2 = 1, and r = 0.4.

t x(e) x(a)

0.00 1.00000000 1.00000000
0.40 1.82564103 1.81615385
0.80 2.68827709 2.67990887
1.20 3.51981834 3.51563446
1.60 4.31615069 4.31575117
2.00 5.08753630 5.09010707
2.40 5.84262105 5.84755645
2.80 6.58699088 6.59389658
3.20 7.32411400 7.33273643
3.60 8.05617463 8.06634743
4.00 8.78458851 8.79619940
4.40 9.51030240 9.52327331
4.80 10.23396853 10.24824368
5.20 10.95604855 10.97158705
5.60 11.67687725 11.69364847
6.00 12.39670271 12.41468320
6.40 13.11571227 13.13488380
6.80 13.83404989 13.85439804
7.20 14.55182789 14.57334107
7.60 15.26913509 15.29180388
8.00 15.98604260 16.00985928
8.40 16.70260803 16.72756617
8.80 17.41887848 17.44497269
9.20 18.13489285 18.16211857
9.60 18.85068352 18.87903686

10.00 19.56627768 19.59575530
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Figure 8.9: Approximate and exact solutions for a = 0.2, a1 = 0, a2 = 0.5, b1 = 0.5, b2 = 1, and
r = 0.4.

Table 8.10: The values of the exact solution x(e) and approximate solution x(a) for a = 0.4, a1 = 0,
a2 = 1, b1 = 0, b2 = 1, and r = 0.8.

t x(e) x(a)

0.00 1.00000000 1.00000000
0.80 2.65911330 2.70482759
1.60 4.29312420 4.37622615
2.40 5.82142631 5.93815579
3.20 7.30182274 7.45071010
4.00 8.75998114 8.94031362
4.80 10.20649681 10.41787140
5.60 11.64626723 11.88843233
6.40 13.08181407 13.35460156
7.20 14.51455340 14.81784515
8.00 15.94533686 16.27904663
8.80 17.37470556 17.73876842
9.60 18.80301900 19.19738481

Second,we take a two-step Runge–Kuttamethod consistent of order p = 2 by choosing
a1 = 0, a2 = 0.25, b1 = 0, b2 = 4 so that the consistency condition is satisfied.

We choose a = 0.4, x(0) = α = 1 and r = 0.8. The approximate and exact solutions
are compared in Table 8.10 and their graphs are shown in Figure 8.10.

Finally, we take a = 0.2, x(0) = α = 1 and r = 0.4. The approximate and exact
solutions are compared in Table 8.11 and their graphs are shown in Figure 8.11.
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Figure 8.10: Approximate and exact solutions for a = 0.4, a1 = 0, a2 = 1, b1 = 0, b2 = 1, and r = 0.8.

Table 8.11: The values of the exact solution x(e) and approximate solution x(a) for a = 0.2, a1 = 0,
a2 = 1, b1 = 0, b2 = 1, and r = 0.4.

t x(e) x(a)

0.00 1.00000000 1.00000000
0.40 1.82564103 1.83230769
0.80 2.68827709 2.70072505
1.20 3.51981834 3.53737714
1.60 4.31615069 4.33843059
2.00 5.08753630 5.11431504
2.40 5.84262105 5.87376394
2.80 6.58699088 6.62241056
3.20 7.32411400 7.36375045
3.60 8.05617463 8.09998473
4.00 8.78458851 8.83254016
4.40 9.51030240 9.56237100
4.80 10.23396853 10.29013479
5.20 10.95604855 11.01629706
5.60 11.67687725 11.74119547
6.00 12.39670271 12.46508030
6.40 13.11571227 13.18814063
6.80 13.83404989 13.91052175
7.20 14.55182789 14.63233706
7.60 15.26913509 15.35367626
8.00 15.98604260 16.07461118
8.40 16.70260803 16.79520002
8.80 17.41887848 17.51549037
9.20 18.13489285 18.23552156
9.60 18.85068352 18.95532631

10.00 19.56627768 19.67493210
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Figure 8.11: Approximate and exact solutions for a = 0.2, a1 = 0, a2 = 1, b1 = 0, b2 = 1, and r = 0.4.

8.6 Advanced practical problems

Problem 8.4. Let 𝕋 = 1
3ℕ0. Consider the IVP

{
xΔ(t) = x(t)2 + t2, t ∈ [0, 9],
x(0) = 1.

Write a two-stage Runge–Kutta method with r = 2
3 .

Problem 8.5. Let 𝕋 = ℝ. Consider the IVP

{ xΔ(t) = ex(t)t
2
+ 3t, t ∈ [0, 5],

x(0) = −1.

Write a two-stage Runge–Kutta method with r = 0.4.

Problem 8.6. Let 𝕋 = ℝ. Consider the IVP

{
{
{

xΔ(t) = sin(x(t)) + t2+1
x(t) , t ∈ [0,π],

x(0) = 1.

Write a three-stage Runge–Kutta method with r = 0.2.
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9 The series solution method – SSM

In this chapter, we develop the series solutionmethod for Cauchy problems associated
with dynamic equations and Caputo fractional dynamic equations. The method uses
the Taylor series expansion of an unknown function and can be applied to first-order
dynamic and fractional dynamic equations having a nonlinearity of polynomial type.
It can also be extended to linear higher-order equations with nonconstant coefficients
[12].

9.1 Preliminaries on series representations

Wewill startwith somepreliminary definitions andnotations. Suppose that𝕋 is a time
scale with forward jump operator σ, delta derivative operator Δ, and Δ-differentiable
graininess function μ. Fix t0 ∈ 𝕋. Let hk(⋅, t0), k ∈ ℕ0, denote the monomials on time
scales and S(k)n the set of all possible strings of length n containing exactly k times σ
and n − k times Δ operator. For example, S(2)3 has the form

S(2)3 = {σσΔ, σΔσ,Δσσ}.
First, we give the following result which plays a crucial role for the deduction of

the series solution method. Its proof is based on the Taylor formula, Leibnitz formula,
and some of the properties of the monomials hn(⋅, t0).

Theorem 9.1. For every m, n ∈ ℕ0, one has

hn(t, t0)hm(t, t0) =
m+n
∑
l=m( ∑Λl,m∈S(l)m hΛl,m

n (t0, t0))hl(t, t0)

for any t, t0 ∈ 𝕋.

Proof. If m = 0 or n = 0, the assertion is evident. Suppose that m ̸= 0 and n ̸= 0. By
the Taylor formula, we have

hn(t, t0)hm(t, t0) =
∞
∑
l=0(hn(t, t0)hm(t, t0))Δl t=t0hl(t, t0), t, t0 ∈ 𝕋.

By the Leibnitz formula, one has

(hn(t, t0)hm(t, t0))
Δl
=

l
∑
k=0( ∑Λl,k∈S(l)k hΛl,k

n (t, t0))h
Δk
m (t, t0), t, t0 ∈ 𝕋.

If l < m, then

https://doi.org/10.1515/9783110787320-009
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(hn(t, t0)hm(t, t0))
Δl
=

l
∑
k=0( ∑Λl,k∈S(l)k hΛl,k

n (t, t0))hm−k(t, t0), t, t0 ∈ 𝕋.

From here, for l < m, we have hm−k(t0, t0) = 0 and
(hn(t, t0)hm(t, t0))

Δl t=t0 = 0, t, t0 ∈ 𝕋.

For l ≥ m, using that h0(t, t0) = 1, we get

(hn(t, t0)hm(t, t0))
Δl t=t0 = m−1

∑
k=0( ∑Λl,k∈S(l)k hΛl,k

n (t, t0))hm−k(t, α)|t=t0
+ ∑
Λl,m∈S(l)m hΛl,m

n (t, t0)|t=t0
= ∑

Λl,m∈S(l)m hΛl,m
n (t0, t0), t, t0 ∈ 𝕋.

Hence, using the fact that Λl,m consists ofm times σ and l −m times Δ, and

f σ = f or f σ = f + μf Δ,

f σσ = f or f σσ = f + μf Δ + μσ(f Δ + μf Δ
2
),

and so on, we obtain

hn(t, t0)hm(t, t0) =
∞
∑
l=m(hn(t, t0)hm(t, t0))Δl t=t0hl(t, t0)
=
∞
∑
l=m( ∑Λl,m∈S(l)m hΛl,m

n (t0, t0))hl(t, t0)

=
m+n
∑
l=m( ∑Λl,m∈S(l)m hΛl,m

n (t0, t0))hl(t, t0), t, t0 ∈ 𝕋,

which completes the proof.

Consider an infinite series of the form∞
∑
i=0Qihi(t, t0), t, t0 ∈ 𝕋, t > t0, (9.1)

for some constants Qr, r ∈ ℕ0. Define the constants Cr,k,l as
Cr,k,l = ∑

Λr,k−l∈S(r)k−l hΛr,k−l
l (t0, t0), (9.2)

where r ∈ {k − l, . . . , k}, l ∈ {0, . . . , k}, k ≥ r, and the constants Qn,r as
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Q1,r = Qr ,

Qn,r = ∞∑
k=r k
∑
l=k−rQn−1,lQ1,k−lCr,k,l, (9.3)

for r, k ∈ ℕ0, k ≥ r, and n ∈ ℕ, n > 1. Using these notations and the result in Theo-
rem 9.1, for t, t0 ∈ 𝕋, we compute the following:

(
∞
∑
i=0Qihi(t, t0))

2

=
∞
∑
i=0 ∞∑j=0QiQjhi(t, t0)hj(t, t0)

=
∞
∑
k=0 k
∑
l=0QlQk−lhl(t, t0)hk−l(t, t0)

=
∞
∑
k=0( k
∑
l=0QlQk−l k

∑
r=k−l( ∑Λr,k−l∈S(r)k−l hΛr,k−l

l (t0, t0))hr(t, t0)).

Now, we employ the constants Cr,k,l, defined in (9.2), and arrive at
(
∞
∑
i=0Qihi(t, t0))

2

=
∞
∑
k=0( k
∑
l=0QlQk−l k

∑
r=k−l Cr,k,lhr(t, t0))

=
∞
∑
k=0 k
∑
l=0 k
∑
r=k−lQlQk−lCr,k,lhr(t, t0)

=
∞
∑
r=0 ∞∑k=r k
∑
l=k−rQ1,lQ1,k−lCr,k,lhr(t, t0)

=
∞
∑
r=0Q2,rhr(t, t0), t, t0 ∈ 𝕋.

In a similar way, we compute

(
∞
∑
i=0Qihi(t, t0))

3

= (
∞
∑
i=0Qihi(t, t0))

2

(
∞
∑
j=0Qjhj(t, t0))

= (
∞
∑
i=0Q2,ihi(t, t0))(∞∑

j=0Q1,jhj(t, t0))
=
∞
∑
k=0 k
∑
l=0 k
∑
r=k−lQ2,lQ1,k−lCr,k,lhr(t, t0)

=
∞
∑
r=0 ∞∑k=r( k

∑
l=k−rQ2,lQ1,k−lCr,k,l)hr(t, t0)

=
∞
∑
r=0Q3,rhr(t, t0), t, t0 ∈ 𝕋.
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Generalizing this representation, we end up with the following formula:

(
∞
∑
i=0Qihi(t, t0))

n

=
∞
∑
r=0Qn,rhr(t, t0), t, t0 ∈ 𝕋, n ∈ ℕ. (9.4)

9.2 The SSM for dynamic equations

Consider the Cauchy problem

{
yΔ(t) = f (t, y(t)), t > t0,
y(t0) = y0,

(9.5)

where f : 𝕋 × ℝ → ℝ is a given function and y0 ∈ ℝ is a given constant. Suppose that
the nonlinear function f has the form

f (t, y(t)) =
n
∑
p=1 ap(t)(y(t))p + a0(t),

where

ap(t) =
∞
∑
i=0Ai,phi(t, t0), p ∈ {0, . . . , n}, t, t0 ∈ 𝕋, t > t0, (9.6)

and the coefficients Ai,p are given real constants for i ∈ ℕ0, p ∈ {0, . . . , n}. The prob-
lem (9.5) is equivalent to the integral equation

y(t) = y0 +
t

∫
t0

f (u, y(u))Δu, t, t0 ∈ 𝕋, t > t0,

or, equivalently,

y(t) = y0 +
t

∫
t0

(
n
∑
p=1 ap(u)(y(u))p + a0(u))Δu, t, t0 ∈ 𝕋, t > t0. (9.7)

We will search a solution of the equation (9.7) of the form

y(t) =
∞
∑
i=0Bihi(t, t0), t, t0 ∈ 𝕋, t > t0, (9.8)

where Bi, i ∈ ℕ0 are constants which will be determined below. Let
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B1,r = Br ,
Bs,r = ∞∑

k=r k
∑
l=k−r Bs−1,lB1,k−lCr,k,l, (9.9)

where r, k, s ∈ ℕ0, k ≥ r, s ≥ 2. Then, using (9.4), we obtain

(y(t))p =
∞
∑
r=0Bp,rhr(t, t0), p ∈ {1, . . . , n}, t, t0 ∈ 𝕋, t > t0.

Consequently,

ap(y)(y(t))
p
=
∞
∑
i=0Ai,phi(t, t0) ∞∑j=0Bp,jhj(t, t0)
=
∞
∑
k=0 k
∑
l=0 k
∑
r=k−lAl,pBp,k−lCr,k,lhr(t, t0)

=
∞
∑
r=0(∞∑k=r k

∑
l=k−r Al,pBp,k−lCr,k,l)hr(t, t0), t, t0 ∈ 𝕋, t > t0,

where p ∈ {1, . . . , n}. Let

Dr,p = ∞∑
k=r k
∑
l=k−r Al,pBp,k−lCr,k,l. (9.10)

Then

ap(y)(y(t))
p
=
∞
∑
r=0Dr,phr(t, t0), t, t0 ∈ 𝕋, t > t0, (9.11)

where p ∈ {1, . . . , n}. Now, using (9.10) an (9.11), we get

∞
∑
i=0Bihi(t, t0) = y0 +

t

∫
t0

(
n
∑
p=1(∞∑r=0Dr,phr(u, t0)) + ∞∑

r=0A0,rhr(u, t0))Δu
= y0 +

n
∑
p=1 ∞∑r=0Dr,phr+1(t, t0) + ∞∑

r=0A0,rhr+1(t, t0), t, t0 ∈ 𝕋, t > t0, (9.12)

whereupon

B0 = y0,

Bi =
n
∑
p=1Di−1,p + A0,i−1, i ∈ ℕ.

(9.13)
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9.3 The SSM for Caputo fractional dynamic equation
Suppose that 𝕋 is a time scale with forward jump operator σ, graininess function μ,
and delta differential operator Δ, and that 𝕋 has the form

𝕋 = {tn : n ∈ ℕ0},

where

lim
n→∞ tn =∞, σ(tn) = tn+1, n ∈ ℕ0, w = inf

n∈ℕ0 μ(tn) > 0.
Assume that the graininess function μ is delta differentiable. First, we will recall the
Laplace transform on time scales.

Definition 9.2. Let 𝕋0 be a time scale such that 0 ∈ 𝕋0 and sup𝕋0 = ∞. Let f :
𝕋0 → ℂ and define the set

𝒟(f ) = {z ∈ ℂ : 1 + zμ(t) ̸= 0 for all t ∈ 𝕋0

and the improper integral
∞
∫
0

f (y)eσ⊖z(y,0)Δy exists},
where eσ⊖z(y,0) = (e⊖z ∘ σ)(y,0) = e⊖z(σ(y),0).

The Laplace transform of the function f is defined as

ℒ(f )(z) =
∞
∫
0

f (y)eσ⊖z(y,0)Δy, (9.14)

for all z ∈ 𝒟(f ).

Other concepts needed in the definition of the fractional Δ-derivative are the shift
of a function and the convolution of two functions on a time scale.

Definition 9.3. For a given function f : 𝕋 → ℂ, the shift (delay) of f is denoted by f̂
and defined as the solution of the shifting problem

{
uΔt (t, σ(s)) = −uΔs (t, s), t ∈ 𝕋, t ≥ s ≥ t0,
u(t, t0) = f (t), t ∈ 𝕋, t ≥ t0.

(9.15)

Example 9.4.
1. Let f : 𝕋→ ℂ be any function where 𝕋 is either ℝ or ℤ. Then the shift of f is

f̂ (⋅)(t, s) = f (t − s + t0), t ≥ s ≥ t0.

2. The shift of eλ(t, t0), where t, t0 ∈ 𝕋 and t ≥ t0, is
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?eλ(⋅, t0)(t, s) = eλ(t, s), t, s ∈ 𝕋 and are independent of t0.

3. Let f : [t0,∞]→ ℂ be a function of the form

f (t) =
∞
∑
k=0 akhk(t, t0),

where the coefficients ak satisfy

|ak | ≤ MRk ,

for someM,R > 0 and k ∈ ℕ0. Then the shift of f has the form

f̂ (⋅)(t, s) =
∞
∑
k=0 akhk(t, s), t, s ∈ 𝕋, t ≥ s ≥ t0.

In particular, we have

?hk(⋅, t0)(t, s) = hk(t, s), t, s ∈ 𝕋, t ≥ s ≥ t0, and k ∈ ℕ0.

Definition 9.5. For functions f , g : 𝕋→ ℂ, the convolution f ∗ g is defined as

(f ∗ g)(t) =
t

∫
t0

f̂ (t, σ(s))g(s)Δs, t ∈ 𝕋, t ≥ t0. (9.16)

The convolution is associative, that is, (f ∗ g) ∗ h = f ∗ (g ∗ h).
Next, define the generalized Δ-power function, the Riemann–Liouville fractional

Δ-integral and Δ-derivative, and the Caputo fractional Δ-derivative on the time scale
𝕋 in the form given above. Take α ∈ ℝ arbitrarily.

Definition 9.6. The generalized Δ-power function hα(t, t0) on 𝕋 is defined as

hα(t, t0) = ℒ
−1( 1

zα+1)(t), t ≥ t0,

for all z ∈ ℂ\{0} such that ℒ−1 exists. The fractional generalized Δ-power function
hα(t, s) on 𝕋 is defined as the shift of hα(t, t0), that is,

hα(t, s) = ?hα(⋅, t0)(t, s), t, s ∈ 𝕋, t ≥ s ≥ t0.

The series solution method employs the following property of the generalized
Δ-power functions.

Theorem 9.7. Let α, β ∈ ℝ. Then

(hα(⋅, t0) ∗ hβ(⋅, t0))(t) = hα+β+1(t, t0), t ∈ 𝕋.
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Definition 9.8. Let α ≥ 0 and let [−α] denote the integer part of −α. For a function
f : 𝕋→ ℝ, the Riemann–Liouville fractional Δ-integral of order α is defined as

(I0Δ,t0 f )(t) = f (t),
(IαΔ,t0 f )(t) = (hα−1(⋅, t0) ∗ f )(t)

=
t

∫
t0

?hα−1(⋅, t0)(t, σ(u))f (u)Δu
=

t

∫
t0

hα−1(t, σ(u))f (u)Δu,
(9.17)

for α > 0 and t ≥ t0.

Definition 9.9. Let α ≥ 0, m = −[−α], and f : 𝕋 → ℝ. For s, t ∈ 𝕋κ
m
, s < t, the

Riemann–Liouville fractional Δ-derivative of order α is defined by

Dα
Δ,sf (t) = Dm

Δ I
m−α
Δ,s f (t), t ∈ 𝕋, (9.18)

if it exists. For α < 0, we define

Dα
Δ,sf (t) = I−αΔ,sf (t), t, s ∈ 𝕋, t > s.

IαΔ,sf (t) = D−αΔ,sf (t), t, s ∈ 𝕋κ
r
, t > s, r = [−α] + 1.

(9.19)

Remark 9.10. Noting that the generalized monomials hα(t, t0) on the set of real num-
bers ℝ are computed as

hα(t, t0) = ℒ
−1( 1

zα+1)(t) = (t − t0)αΓ(α)
, t ≥ t0,

we observe that if𝕋 = ℝ, that is, if the Δ derivative is replaced by the classical deriva-
tive, theRiemann–Liouville fractional Δ-derivative defined in (9.18) becomes the usual
Riemann–Liouville fractional derivative.

Using these definitions, the Caputo fractional Δ-derivative is defined as follows.

Definition 9.11. For a function f : 𝕋→ ℝ, the Caputo fractional Δ-derivative of order α
is denoted by CDα

Δ,t0 and defined via the Riemann–Liouville fractional Δ-derivative of
order α as follows:

CDα
Δ,t0 = Dα

Δ,t0(f (t) − m−1∑
k=0 hk(t, t0)f Δk (t0)), t > t0, (9.20)

wherem = [α] + 1 if α ∉ ℕ andm = [α] if α ∈ ℕ.
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Another representation of the Caputo fractional Δ-derivative is given in the follow-
ing theorem.

Theorem 9.12. Let α > 0, m = [α] + 1 if α ∉ ℕ and m = α, if α ∈ ℕ.
1. If α ∉ ℕ then

CDα
Δ,t0 f (t) = Im−αΔ,t0 Dm

Δ,t0 f (t), t ∈ 𝕋, t > t0.

2. If α ∈ ℕ then

CDα
Δ,t0 f (t) = f Δm (t), t ∈ 𝕋, t > t0.

Remark 9.13. Regarding the result of Theorem 9.12, if 𝕋 = ℝ, the Caputo fractional
Δ-derivative defined in (9.20) becomes the usual Caputo fractional derivative.

Let CDα
Δ,t0 denote the Caputo fractional Δ-derivative. Suppose that α > 0 and that

m = −[−α].Wewill consider the Cauchy problemassociatedwith the Caputo fractional
Δ-derivative given as

{
CDα

Δ,t0y(t) = f (t, y(t)), t > t0,
CDk

Δ,t0y(t) = bk , k ∈ {0, . . . ,m − 1},
(9.21)

where f : 𝕋 × ℝ → ℝ is a given function and bk ∈ ℝ for k ∈ {0, . . . ,m − 1} are given
constants.

We suppose that the nonlinear function f has the form

f (t, y(t)) = (h−α−1(⋅, t0) ∗ ( n
∑
p=1 ap(⋅)(y(⋅))p + a0(⋅)))(t),

where

ap(t) =
∞
∑
i=0Ai,phi(t, t0), p ∈ {0, . . . , n}, (9.22)

and the coefficients Ai,p are given real constants for i ∈ ℕ0, p ∈ {0, . . . , n}.
It can be shown that the Cauchy problem (9.21) is equivalent to an integral equa-

tion of the form

y(t) =
m−1
∑
j=0 hj(t, t0)bj + (hα−1(⋅, t0) ∗ (h−α−1(⋅, t0) ∗ ( n

∑
p=1 ap(⋅)(y(⋅))p + a0(⋅))))(t)

=
m−1
∑
j=0 hj(t, t0)bj + (h−1(⋅, t0) ∗ ( n

∑
p=1 ap(⋅)(y(⋅))p + a0(⋅)))(t). (9.23)

We will search for a solution of the equation (9.23) of the form
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y(t) =
∞
∑
i=0Bihi(t, t0), (9.24)

where Bi, i ∈ ℕ0, are constants to be determined from the equation. As in the previous
section, we let

B1,r = Br ,
Bs,r = ∞∑

k=r k
∑
l=k−r Bs−1,lB1,k−lCr,k,l, (9.25)

where r, k, s ∈ ℕ0, k ≥ r, s ≥ 2, and have

(y(t))p =
∞
∑
r=0Bp,rhr(t, t0), p ∈ {1, . . . , n}. (9.26)

Also we use the fact that

ap(y)(y(t))
p
=
∞
∑
r=0Dr,phr(t, t0), (9.27)

where p ∈ {1, . . . , n}. Hence, we obtain∞
∑
i=0Bihi(t, t0) = ∞∑j=0 bjhj(t, t0)

+ (h−1(⋅, t0) ∗ ( n
∑
p=1(∞∑r=0Dr,phr(⋅, t0)) + ∞∑

r=0A0,rhr(⋅, t0)))(t)
=
∞
∑
j=0 bjhj(t, t0) + n

∑
p=1 ∞∑r=0Dr,phr(t, t0) + ∞∑

r=0A0,rhr(t, t0), (9.28)

which implies the following relation for the computation of the coefficients Bi in the
series representation of y:

Bi = bi +
n
∑
p=1Di,p + A0,i, i ∈ {0, . . . ,m − 1},

Bi =
n
∑
p=1Di,p + A0,i, i ∈ {m, . . . , }.

(9.29)

Because of the nonlinear structure of the function f involved in the fractional dynamic
equation, the recurrence relation (9.29) is also nonlinear.

9.4 Numerical examples
In this section, we consider some particular examples of Cauchy problems associated
with dynamic equations and Caputo fractional dynamic equations on time scales.
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Example 9.14. In the first example, we will apply the series solution method to a dy-
namic equation used in population growth models, known as the logistic model. The
logistic model on an arbitrary time scale is described by the Cauchy problem

{
NΔ(t) = αN(t)

μ(t) (1 − N(t)
K ), t ≥ t0,

N(t0) = N0.
(9.30)

Here N(t) is the size of the population of a certain species at time t and N(t0) = N0
is the initial size of the population. The constant α represents the proportionality
constant which is large for quickly growing species like bacteria and small for slowly
growing populations like elephants. The constant K stands for the carrying capacity
of the system, that is, the size of the population that the environment can sustain for
the long term.

The logistic model discussed here is different from the model solved in Exam-
ple 7.22. The logistic equation given in Example 7.22 was proposed by Bohner and
Peterson [1] who argued that this model is more suitable as a generalization of the
continuous logistic differential equation. On the other hand, the dynamic equation
given in (9.30) appears quite often in the literature as the logisticmodel on time scales.

Wewill consider thismodel on the time scale𝕋 = aℤ for some positive constant a.
As noted above, the Cauchy problem (9.30) can be written as an integral equation

of the form

N(t) = N0 +
t

∫
t0

αN(u)
a
(1 − N(u)

K
)Δu, t, t0 ∈ aℤ, (9.31)

which is a nonlinear Volterra integral equation of the second kind [10]. We will take
the initial time as t0 = 0 and the initial population as N0 and apply the series solution
method to solve this integral equation. Let

N(t) =
∞
∑
i=0Bihi(t,0) = ∞∑i=0B1,ihi(t,0), t ∈ aℤ.

Then,

(N(t))2 = (
∞
∑
i=0B1,ihi(t,0))(∞∑j=0B1,jhj(t,0)) = ∞∑r=0B2,rhr(t,0), t ∈ aℤ,

where

B2,r = ∞∑
k=r k
∑
l=k−r B1,lB1,k−lCr,k,l,

for r ∈ ℕ0. We insert these series into equation (9.31) and get
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∞
∑
r=0Brhr(t,0) = N0 +

t

∫
0

α
a
(
∞
∑
r=0Brhr(u,0) − 1K ∞∑r=0B2,rhr(u,0))Δu

= N0 +
α
a
(
∞
∑
r=0Brhr+1(t,0) − 1K ∞∑r=0B2,rhr+1(t,0))

= N0 +
∞
∑
r=0(αaBr − α

aK
B2,r)hr+1(t,0), t ∈ aℤ.

Therefore, we have

B0 = N0,

Br+1 = αaBr − α
aK

B2,r , for all r ∈ ℕ0.
(9.32)

We recall that on 𝕋 = aℤ the forward jump operator is σ(t) = t + a. The first five
monomials hn(t,0), n = 0, 1, 2, 3, 4 are as follows:

h0(t,0) = 1,
h1(t,0) = t,

h2(t,0) =
t

∫
0

xΔx = t(t − a)
2
,

h3(t,0) =
t

∫
0

x(x − a)
2

Δx = t(t − a)(t − 2a)
6

,

h4(t,0) =
t

∫
0

x(x − a)(x − 2a)
6

Δx = t(t − a)(t − 2a)(t − 3a)
24

, t ∈ aℤ.

To compute the first few coefficients B2,r, we consider the series expansion ofN2 given
as

(N(t))2 = (B0h0(t,0) + B1h1(t,0) + B2h2(t,0) + B3h3(t,0) + ⋅ ⋅ ⋅)
2

= B0B0 + (B0B1 + B1B0)t + B1B1t
2 + (B0B2 + B2B0)

t(t − 1)
2

+ (B1B2 + B2B1)
t2(t − 1)

2
+ B2B2

t2(t − 1)2

4
+ ⋅ ⋅ ⋅ , t ∈ aℤ,

and we note that

t2 = ah1(t,0) + 2h2(t,0),
t2(t − 1)

2
= 2ah2(t,0) + 3h3(t,0),

t2(t − 1)2

4
= a2h2(t,0) + 6ah3(t,0) + 6h4(t,0), t ∈ aℤ.
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As a result, we obtain for t ∈ aℤ,

(N(t))2 =
∞
∑
n=0B2,nhn(t,0)
= B0B0h0(t,0) + (B0B1 + B1B0 + aB1B1)h1(t,0)

+ (B0B2 + B2B0 + 2B1B1 + 2aB1B2 + 2aB2B1 + a
2B2B2)h2(t,0) + ⋅ ⋅ ⋅ .

Then, the recurrence relation (9.32) yields

B0 = N0,

B1 =
α
a
B0 −

α
aK

B2,0 = αaB0 − α
aK

B0B0,

B2 =
α
a
B1 −

α
aK

B2,1 = αaB1 − α
aK
(B0B1 + B1B0 + aB1B1),

B3 =
α
a
B2 −

α
aK

B2,2
=
α
a
B2 −

α
aK
(B0B2 + B2B0 + 2B1B1 + 2aB1B2 + 2aB2B1 + a

2B2B2).

Then, the solution N(t) has the form

N(t) = B0 + B1t + B2
t(t − a)

2
+ B3

t(t − a)(t − 2a)
6

+ ⋅ ⋅ ⋅ , t ∈ aℤ.

On the time scale 𝕋 = aℤ, problem (9.30) can be written as

{
N(t+a)−N(t)

a = αN(t)
a (1 −

N(t)
K ), t ≥ t0,

N(t0) = N0,

whose exact solution is computed as

N(t + a) = N(t) + αN(t)(1 − N(t)
K
), where N(0) = N0, t ≥ 0.

We compute the series and exact solutions of the problem for several values of the pa-
rametersN0, α, K, and a on the interval [0, 5]. Figures 9.1 and 9.2 show the comparison
of the computed and exact solutions. It can be observed that the exact solution tends
to the equilibrium K after approaching this value. The computed solution remains
close to the exact solution at points close enough to the value 0 at which the Taylor
series representation is considered. This behavior is typical for the series solutions,
moreover, only 4 terms of the series solution are computed.

In Tables 9.1 and 9.2 the exact and approximate solutions are compared for the
values N0 = 3, K = 20, a = 0.5, and α = 0.4, 0.2. The graphs of these solutions are also
compared in Figures 9.1 and 9.2.
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Figure 9.1: Computed and exact values of the solution with N0 = 3, K = 20, a = 0.5, and α = 0.4.

Figure 9.2: Computed and exact values of the solution with N0 = 3, K = 20, a = 0.5, and α = 0.2.
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Table 9.1: The values of the approximate solution N(a)(t) and the exact solution N(e)(t) for N0 = 3,
K = 20, a = 0.5, and α = 0.4.

t N(a)(t) N(e)(t)

0.00 3.00000000 3.00000000
0.50 4.02000000 4.02000000
1.00 5.30479200 5.30479200
1.50 6.86389244 6.86389244
2.00 8.70681775 8.66718902
2.50 10.84308437 10.63166132
3.00 13.28220873 12.62368140
3.50 16.03370729 14.48600732
4.00 19.10709646 16.08352209
4.50 22.51189269 17.34333727
5.00 26.25761241 18.26484522

Table 9.2: The values of the approximate solution N(a)(t) and the exact solution N(e)(t) for N0 = 3,
K = 20, a = 0.5, and α = 0.2.

t N(a)(t) N(e)(t)

0.00 3.00000000 3.00000000
0.50 3.51000000 3.51000000
1.00 4.08879900 4.08879900
1.50 4.73937603 4.73937603
2.00 5.46471011 5.46263438
2.50 6.26778027 6.25675751
3.00 7.15156555 7.11663887
3.50 8.11904496 8.03350116
4.00 9.17319753 8.99482998
4.50 10.31700230 9.98472631
5.00 11.55343829 10.98472398

A larger value for the parameterK is also considered in Tables 9.3 and 9.4where the ex-
act and approximate solutions are compared for the valuesN0 = 10,K = 200, a = 0.25,
and α = 0.8, 0.2. These solutions are also compared graphically in Figures 9.3 and 9.4.
Finally, the results for the case N0 = 8, K = 40, a = 0.5, and α = 0.1 are presented in
Table 9.5 and Figure 9.5, respectively.

Example 9.15. Consider the problem

{{{{{
{{{{{
{

CD
11
4
Δ,0y(t) = (h− 154 (⋅,0) ∗ ((∑∞i=0 1

i2+3hi(⋅,0))y(⋅)
+ (∑∞i=0 i

i2+i+1hi(⋅,0))(y(⋅))2))(t), t > 0,
y(0) = 1, yΔ(0) = −1, yΔ

2
(0) = 2.

(9.33)
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Table 9.3: The values of the approximate solution N(a)(t) and the exact solution N(e)(t) for N0 = 10,
K = 200, a = 0.25 and α = 0.8.

t N(a)(t) N(e)(t)

0.00 10.00000000 10.00000000
0.25 17.60000000 17.60000000
0.50 30.44096000 30.44096000
0.75 51.08711982 51.08711982
1.00 82.10271927 81.51724043
1.50 185.49919634 158.52657334
1.75 263.00855360 184.82513419
2.00 361.14430976 196.04392063
2.25 482.47070464 199.14618187
2.50 629.55197805 199.82632035
2.75 804.95236982 199.96514341
3.00 1011.23611976 199.99302382
3.25 1250.96746769 199.99860457
3.50 1526.71065343 199.99972091
3.75 1841.02991679 199.99994418
4.00 2196.48949758 199.99998884
4.25 2595.65363564 199.99999777
4.50 3041.08657076 199.99999955
4.75 3535.35254278 199.99999991
5.00 4081.01579151 199.99999998

Table 9.4: The values of the approximate solution N(a)(t) and the exact solution N(e)(t) for N0 = 10,
K = 200, a = 0.25, and α = 0.2.

t N(a)(t) N(e)(t)

0.00 10.00000000 10.00000000
0.25 11.90000000 11.90000000
0.50 14.13839000 14.13839000
0.75 16.76617393 16.76617393
1.00 19.83435571 19.83830413
1.25 23.39393928 23.41240664
1.50 27.49592856 27.54674718
1.75 32.19132749 32.29727334
2.00 37.53113998 37.71361414
2.25 43.56636997 43.83402028
2.50 50.34802138 50.67940300
2.75 57.92709815 58.24688171
3.00 66.35460421 66.50355883
3.25 75.68154347 75.38154726
3.50 85.95891987 84.77547904
3.75 97.23773733 94.54369300
4.00 109.56899980 104.51392172
4.25 123.00371118 114.49354623
4.50 137.59287542 124.28348334
4.75 153.38749643 133.69379578
5.00 170.43857816 142.55852391
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Figure 9.3: Computed and exact values of the solution with N0 = 10, K = 200, a = 0.25, and
α = 0.8.

Figure 9.4: Computed and exact values of the solution with N0 = 10, K = 200, a = 0.25, and
α = 0.2.
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Table 9.5: The values of the approximate solution N(a)(t) and the exact solution N(e)(t) for N0 = 8,
K = 40, a = 0.5, and α = 0.1.

t N(a)(t) N(e)(t)

0.00 8.00000000 8.00000000
0.50 8.64000000 8.64000000
1.00 9.31737600 9.31737600
1.50 10.03207986 10.03207986
2.00 10.78406344 10.78368128
2.50 11.57327861 11.57132995
3.00 12.39967722 12.39372376
3.50 13.26321114 13.24908516
4.00 14.16383223 14.13514803
4.50 15.10149234 15.04915681
5.00 16.07614334 15.98787969

Figure 9.5: Computed and exact values of the solution with N0 = 8, K = 40, a = 0.5, and α = 0.1.
Here we have α = 11

4 andm = −[− 114 ] = 3. Employing the integral equation form given
in (9.23), we can rewrite problem (9.33) as

y(t) = h0(t,0) − h1(t,0) + 2h2(t,0)

+ (h 7
4
(⋅,0) ∗ h− 154 (⋅,0) ∗ ((∞∑i=0 1

i2 + 3
hi(⋅,0))y(⋅)
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+ (
∞
∑
i=0 i

i2 + i + 1
hi(⋅,0))(y(⋅))

2
))(t)

= h0(t,0) − h1(t,0) + 2h2(t,0)

+ (h−1(⋅,0) ∗ ((∞∑
i=0 1

i2 + 3
hi(⋅,0))y(⋅) + (

∞
∑
i=0 i

i2 + i + 1
hi(⋅,0))(y(⋅))

2
))(t)

= h0(t,0) − h1(t,0) + 2h2(t,0) + ((
∞
∑
i=0 1

i2 + 3
h−1(⋅,0) ∗ hi(⋅,0))y(⋅)

+ (
∞
∑
i=0 i

i2 + i + 1
h−1(⋅,0) ∗ hi(⋅,0))(y(⋅))2)(t)

= h0(t,0) − h1(t,0) + 2h2(t,0)

+ (
∞
∑
i=0 1

i2 + 3
hi(t,0))y(t) + (

∞
∑
i=0 i

i2 + i + 1
hi(t,0))(y(t))

2
. (9.34)

Assume that

y(t) =
∞
∑
r=0Brhr(t,0), t ∈ 𝕋, t ≥ 0, (9.35)

where the coefficients Br are going to be obtained. Then, by (9.9), we have

(y(t))2 =
∞
∑
r=0B2,rhr(t,0), t ∈ 𝕋, t ≥ 0, (9.36)

where

B1,r = Br ,
B2,r = ∞∑

k=r k
∑
l=k−r B1,lB1,k−lCr,k,l,

and r ∈ ℕ0. On the other hand,

Dr,1 = ∞∑
k=r k
∑
l=k−r 1

l2 + 3
B1,k−lCr,k,l,

Dr,2 = ∞∑
k=r k
∑
l=k−r l

l2 + l + 1
B2,k−lCr,k,l. (9.37)

Then, we get

(
∞
∑
i=0 1

i2 + 3
hi(t,0))y(t) =

∞
∑
r=0Dr,1hr(t,0)
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(
∞
∑
i=0 i

i2 + i + 1
hi(t,0))(y(t))

2
=
∞
∑
r=0Dr,2hr(t,0), t ∈ 𝕋, t ≥ 0.

We substitute these expressions and (9.35) into the equation (9.34) and get∞
∑
r=0Brhr(t,0) = h0(t,0) − h1(t,0) + 2h2(t,0) + ∞∑r=0(Dr,1 + Dr,2)hr(t,0), t ∈ 𝕋, t ≥ 0.

(9.38)

From this equation we conclude

B0 = 1 + D0,1 + D0,2,
B1 = − 1 + D1,1 + D1,2,
B2 = 2 + D2,1 + D2,2,
Br = Dr,1 + Dr,2, r ∈ {3, 4, . . .}.

(9.39)

Example 9.16. Consider the problem

{{{{{
{{{{{
{

CD
9
5
Δ,1y(t) = (h− 145 (⋅, 1) ∗ (∑∞i=0 1

2+ihi(⋅, 1) + (∑∞i=0 i−1
i+4hi(⋅, 1))y(⋅)

+ (∑∞i=0 i+1
2i+3hi(⋅, 1))(y(⋅))3))(t), t > 1,

y(1) = 0, yΔ(1) = 1,

(9.40)

Here we have α = 9
5 and m = −[−

9
5 ] = 2. Employing the integral equation form (9.23),

we can rewrite problem (9.40) as

y(t) = h1(t, 1) + (h 4
5
(⋅, 1) ∗ h− 145 (⋅, 1) ∗ ( ∞∑i=0 1

2 + i
hi(⋅, 1)

+ (
∞
∑
i=0 i − 1i + 4

hi(⋅, 1))y(⋅) + (
∞
∑
i=0 i + 1

2i + 3
hi(⋅, 1))(y(⋅))

3
))(t)

= h1(t, 1) + (h−1(⋅, 1) ∗ ( ∞∑
i=0 1

2 + i
hi(⋅, 1)

+ (
∞
∑
i=0 i − 1i + 4

hi(⋅, 1))y(⋅) + (
∞
∑
i=0 i + 1

2i + 3
hi(⋅, 1))(y(⋅))

3
))(t), t > 1.

Then we obtain

y(t) = h1(t, 1) + ((
∞
∑
i=0 1

2 + i
h−1(⋅, 1) ∗ hi(⋅, 1) + (∞∑

i=0 i − 1i + 4
h−1(⋅, 1) ∗ hi(⋅, 1))y(⋅)

+ (
∞
∑
i=0 i + 1

2i + 3
h−1(⋅, 1) ∗ hi(⋅, 1))(y(⋅))3))(t)
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= h1(t, 1) + ((
∞
∑
i=0 1

2 + i
hi(t, 1)

+ (
∞
∑
i=0 i − 1i + 4

hi(t, 1))y(t) + (
∞
∑
i=0 i + 1

2i + 3
hi(t, 1))(y(t))

3
)), t > 1. (9.41)

Assume that

y(t) =
∞
∑
r=0Brhr(t, 1), t > 1, (9.42)

where the coefficients Br are going to be obtained. Then, by (9.9), we have

(y(t))2 =
∞
∑
r=0B2,rhr(t, 1),

(y(t))3 =
∞
∑
r=0B3,rhr(t, 1), t > 1,

(9.43)

where

B1,r = Br ,
B2,r = ∞∑

k=r k
∑
l=k−r B1,lB1,k−lCr,k,l,

B3,r = ∞∑
k=r k
∑
l=k−r B2,lB1,k−lCr,k,l,

and r ∈ ℕ0. On the other hand, let

Dr,1 = ∞∑
k=r k
∑
l=k−r l − 1l + 4

B1,k−lCr,k,l,
Dr,3 = ∞∑

k=r k
∑
l=k−r l + 1

2l + 3
B3,k−lCr,k,l. (9.44)

Then, we get

(
∞
∑
i=0 i − 1i + 4

hi(t, 1))y(t) =
∞
∑
r=0Dr,1hr(t, 1)

(
∞
∑
i=0 i + 1

2i + 3
hi(t, 1))(y(t))

3
=
∞
∑
r=0Dr,3hr(t, 1), t > 1.

We substitute these expressions and (9.42) into equation (9.41), which gives
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∞
∑
r=0Brhr(t, 1) = h1(t, 1) + ∞∑r=0( 1

2 + r
+ Dr,1 + Dr,3)hr(t, 1), t > 1. (9.45)

From this equation we conclude

B0 =
1
2
+ D0,1 + D0,3,

B1 = 1 +
1
3
+ D1,1 + D1,3,

Br =
1

2 + r
+ Dr,1 + Dr,3, r ∈ {2, 3, . . .}.

(9.46)

9.5 Advanced practical problems

Problem 9.17. Find a series solution for the Cauchy problem

yΔ(t) = y(t) − 2, y(0) = 1,

on the time scale 𝕋 = 2ℤ.

Problem 9.18. Find a series solution for the Cauchy problem

yΔ(t) = (y(t))2 − y(t), y(1) = 2,

on the time scale 𝕋 = 2ℕ0 .

Problem 9.19. Find a series solution for the Cauchy problem associated with the frac-
tional dynamic equation

{{{{{
{{{{{
{

CD
13
4
Δ,0y(t) = (h− 174 (⋅,0) ∗ ((∑∞i=0 1

i2+1hi(⋅,0))y(⋅)
+ (∑∞i=0 i−1

i2+1hi(⋅,0))(y(⋅))2))(t), t > 0,

y(0) = −1, yΔ(0) = 0, yΔ
2
(0) = 1,

where 𝕋 is any time scale.
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10 The Adomian polynomials method

The Adomian polynomials and the Adomian decomposition method have been used
to find solutions of nonlinear ordinary and partial differential equations by proposing
a series representation for the solution. This method has also been combined with the
Laplace transformmethod and used to approximately solve some nonlinear problems
for which the series solution method is not suitable [13].

In this chapter, we derive the Adomian polynomialmethod on arbitrary time scale
and present its application to a dynamic equation of arbitrary order with a nonlinear
term.

Let 𝕋 be a time scale with forward jump operator, delta differentiation operator,
and graininess function, σ, Δ, and μ, respectively.

10.1 Analyzing the method

To derive the Adomian polynomials method, we employ the same notations and re-
sults as in Chapter 9 devoted to the series solution method. By Theorem 9.1, we have

hn(t, s)hm(t, s) =
m+n
∑
l=m
( ∑
Λl,m∈S(l)m hΛl,m

n (s, s))hl(t, s)

for every t, s ∈ 𝕋. For s ∈ 𝕋, l,m, n ∈ ℕ0, set

Cl,m,n = ∑
Λl,m∈S(l)m hΛl,m

n (s, s)

and then, for anym, n ∈ ℕ0, we have

hn(t, s)hm(t, s) =
m+n
∑
l=m

Cl,m,nhl(t, s). (10.1)

For n ∈ ℕ0, t, s ∈ 𝕋, define the polynomials

H1
n(t, s) = (h1(t, s))

n
, t, s ∈ 𝕋.

Note that

H1
n(t, s)H

1
m(t, s) = H

1
n+m(t, s), t, s ∈ 𝕋.

Moreover,

H1
1 (t, s) = h1(t, s), t, s ∈ 𝕋, (10.2)

https://doi.org/10.1515/9783110787320-010
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250 | 10 The Adomian polynomials method

and, by (10.1), we arrive at

H1
2(t, s) = h1(t, s)h1(t, s)

=
2
∑
l=1

Cl,1,1hl(t, s)

= C1,1,1h1(t, s) + C2,1,1h2(t, s)

= C1,1,1H
1
1 (t, s) + C2,1,1h2(t, s), t, s ∈ 𝕋,

whereupon

h2(t, s) = −
C1,1,1
C2,1,1

H1
1 (t, s) +

1
C2,1,1

H1
2(t, s), t, s ∈ 𝕋,

and so on. Below we denote by Bji, i, j ∈ ℕ, the constants for which

H1
n(t, s) = B

n
1h1(t, s) + B

n
2h2(t, s) + ⋅ ⋅ ⋅ + B

n
nhn(t, s), t, s ∈ 𝕋. (10.3)

This notationprovides an alternative series representation for a given functiondefined
on a time scale, that is, a series in terms ofH1

n instead of the usual Taylor series in terms
of hn.

Example 10.1. Let α ∈ ℝ. Then

eα(t, s) = 1 + αh1(t, s) + α
2h2(t, s) + ⋅ ⋅ ⋅

= 1 + αH1
1 (t, s) + α

2(−
C1,1,1
C2,1,1

H1
1 (t, s) +

1
C2,1,1

H1
2(t, s)) + ⋅ ⋅ ⋅

= 1 + (α − α2
C1,1,1
C2,1,1
+ ⋅ ⋅ ⋅)H1

1 (t, s) + (
α2

C2,1,1
+ ⋅ ⋅ ⋅)H1

2(t, s) + ⋅ ⋅ ⋅ , t, s ∈ 𝕋.

Suppose that u : 𝕋 → ℝ is a given function which has a convergent series expan-
sion of the form

u =
∞
∑
j=0

uj. (10.4)

Suppose also that f : ℝ→ ℝ is a given analytic function such that

f (u) =
∞
∑
n=0

An(u0, u1, . . . , un), (10.5)

where An, n ∈ ℕ0, are given by

A0 = f (u0), An =
n
∑
ν=1

c(ν, n)f (ν)(u0), n ∈ ℕ.
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Here the functions c(ν, n) denote the sum of products of ν components uj of u given
in (10.4), whose subscripts sum up to n, divided by the factorial of the number of re-
peated subscripts, i. e.,

A0 = f (u0),
A1 = c(1, 1)f

′(u0) = u1f
′(u0),

A2 = c(1, 2)f
′(u0) + c(2, 2)f

′′(u0) = u2f
′(u0) +

u21
2!
f ′′(u0),

A3 = c(1, 3)f
′(u0) + c(2, 3)f

′′(u0) + c(3, 3)f
′′′(u0)

= u3f
′(u0) + u1u2f

′′(u0) +
u31
3!
f ′′′(u0),

A4 = c(1, 4)f
′(u0) + c(2, 4)f

′′(u0) + c(3, 4)f
′′′(u0) + c(4, 4)f

(4)(u0)

= u4f
′(u0) + (u1u3 +

u22
2
)f ′′(u0) +

u21u2
2

f ′′′(u0) +
u41
4!
f (4)(u0),

and so on. Suppose now that u is given by the convergent series

u =
∞
∑
n=0

cnH
1
n(x, x0), x, x0 ∈ 𝕋. (10.6)

We wish to find the corresponding transformed series for f (u). From (10.4), we have

u =
∞
∑
n=0

un =
∞
∑
n=0

cnH
1
n(x, x0), x, x0 ∈ 𝕋,

and hence,

un = cnH
1
n(x, x0), x, x0 ∈ 𝕋, n ∈ ℕ0.

Thus,

f (u) =
∞
∑
n=0

An(u0, u1, . . . , un)

= f(
∞
∑
n=0

cnH
1
n(x, x0))

=
∞
∑
n=0

An(c0, c1, . . . , cn)H
1
n(x, x0), x, x0 ∈ 𝕋.

Therefore,

An(u0, u1, . . . , un) = A
n(c0, c1, . . . , cn)H

1
n(x, x0), x, x0 ∈ 𝕋.

For n = 0, we have
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252 | 10 The Adomian polynomials method

u0 = c0H
1
0(x, x0) = c0, x, x0 ∈ 𝕋.

Thus,

A0(u0) = A
0(c0)H

1
0(x, x0) = A

0(c0), x, x0 ∈ 𝕋.

For n = 1, we find

A1(u0, u1) = u1f
′(u0) = A

1(c0, c1)H
1
1 (x, x0), x, x0 ∈ 𝕋,

or

c1H
1
1 (x, x0)f

′(u0) = A
1(c0, c1)H

1
1 (x, x0), x, x0 ∈ 𝕋,

whereupon

A1(c0, c1) = c1f
′(u0) = c1f

′(c0) = A1(c0, c1).

For n = 2, we have

A2(u0, u1, u2) = A
2(c0, c1, c2)H

1
2(x, x0), x, x0 ∈ 𝕋,

or

u2f
′(u0) +

u21
2
f ′′(u0) = A

2(c0, c1, c2)H
1
2(x, x0), x, x0 ∈ 𝕋.

Then

c2H
1
2(x, x0)f

′(c0) +
c21(H

1
1 (x, x0))

2

2
f ′′(c0) = A

2(c0, c1, c2)H
1
2(x, x0), x, x0 ∈ 𝕋,

or

(c2f
′(c0) +

c21
2
f ′′(c0))H

1
2(x, x0) = A

2(c0, c1, c2)H
1
2(x, x0), x, x0 ∈ 𝕋,

from where

A2(c0, c1, c2) = c2f
′(c0) +

c21
2
f ′′(c0) = A2(c0, c1, c2).

For n = 3, we find

u3f
′(u0) + u1u2f

′′(u0) +
u31
3!
f ′′′(u0) = A3(u0, u1, u2, u3)

= A3(c0, c1, c2, c3)H
1
3(x, x0), x, x0 ∈ 𝕋,
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or

c3H
1
3(x, x0)f

′(c0) + c1c2H
1
3(x, x0)f

′′(x0)

+
c31
3!
f ′′′(c0)H

1
3(x, x0) = A

3(c0, c1, c2, c3)H
1
3(x, x0), x, x0 ∈ 𝕋,

whereupon

c3f
′(c0) + c1c2f

′′(x0) +
c31
3!
f ′′′(c0) = A

3(c0, c1, c2, c3) = A3(c0, c1, c2, c3),

and so on. Therefore we get the following result.

Theorem 10.2. Let u : 𝕋→ ℝ be a function with a convergent expansion given in (10.6).
Let also f : ℝ→ ℝ be an analytic function having the form (10.5). Then

f (u) = f(
∞
∑
n=0

cnH
1
n(x, x0)) =

∞
∑
n=0

An(c0, c1, . . . , cn)H
1
n(x, x0), x, x0 ∈ 𝕋.

The above representation of the function f will be called Adomian polynomial
decomposition of f .

Example 10.3. For α = 1, consider u = eα(x, x0) and f (u) = u2. Using Example 10.1, we
have

eα(x, x0) =
∞
∑
m=0

cmH
1
m(x, x0), x, x0 ∈ 𝕋,

where

c0 = 1, c1 = α − α
2 C1,1,1
C2,1,1
+ ⋅ ⋅ ⋅ , c3 =

α2

C2,1,1
+ ⋅ ⋅ ⋅ , . . .

Note that

(eα(x, x0))
2
= c20 + 2c0c1H

1
1 (x, x0) + ⋅ ⋅ ⋅ , x, x0 ∈ 𝕋. (10.7)

On the other hand, by Theorem 10.2, we obtain

(eα(x, x0))
2
=
∞
∑
m=0

AmH
1
m(x, x0)

and

A0(u0) = A0(c0) = 1 = c
2
0,

A1(u0, u1) = c1f
′(c0) = 2c0c1,

and so on, i. e., we get (10.7).
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In what it follows, we present the Adomian polynomials method for a dynamic
equation of arbitrary order on a general time scale 𝕋. With ℒ we will denote the
Laplace transform on 𝕋. Suppose that t0 ∈ 𝕋. Consider the initial value problem

{
yΔ

n
+ a1yΔ

n−1
+ ⋅ ⋅ ⋅ + any = f (y), t > t0,

y(t0) = y0, yΔ(t0) = y1, . . . , yΔ
n−1
(t0) = yn−1,

(10.8)

where ai ∈ ℝ, i ∈ {1, . . . , n}, yi ∈ ℝ, i ∈ {0, . . . , n − 1}, are given constants, f : ℝ → ℝ is
an analytic function. We will search for a solution of the IVP (10.8) of the form

y(t) =
∞
∑
j=0

cjH
1
j (t, t0), t ≥ t0.

Assume that

f (y) =
∞
∑
j=0

Aj(c0, . . . , cj)H
1
j (t, t0), t ≥ t0.

Using the fact that

ℒ(hk(t, t0))(z) =
1

zk+1
, t ≥ t0, k ∈ ℕ0,

we get

ℒ(H1
0(t, t0))(z) =

1
z
,

ℒ(H1
j (t, t0))(z) =

j
∑
k=1

Bjkℒ(hk(t, t0))(z) =
j
∑
k=1

Bjk
1

zk+1
, t ≥ t0, j ∈ ℕ.

Let Y(z) = ℒ(y(t))(z). We take the Laplace transform of both sides of the dynamic
equation in (10.8) and, using the initial conditions, obtain

znY(z) −
n−1
∑
l=0

zlyn−1−l + a1z
n−1Y(z) − a1

n−2
∑
l=0

zlyn−2−l + ⋅ ⋅ ⋅ + anY(z)

=
∞
∑
j=0
(Aj(c0, . . . , cj)

j
∑
k=1

Bjk
1

zk+1
),

or

(zn + a1z
n−1 + ⋅ ⋅ ⋅ + an)Y(z) =

n−1
∑
l=0

zlyn−1−l + a1
n−2
∑
l=0

zlyn−2−l + ⋅ ⋅ ⋅ + an−1y0

+ A0(c0)
1
z
+
∞
∑
j=1
(Aj(c0, . . . , cj)

j
∑
k=1

Bjk
1

zk+1
).
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From this equation, we get

Y(z) = 1
zn + a1zn−1 + ⋅ ⋅ ⋅ + an

(
n−1
∑
l=0

zlyn−1−l + a1
n−2
∑
l=0

zlyn−2−l

+ ⋅ ⋅ ⋅ + an−1y0 + A0(c0)
1
z
+
∞
∑
j=1
(Aj(c0, . . . , cj)

j
∑
k=1

Bjk
1

zk+1
)).

Consequently,

y(t) = ℒ−1( 1
zn + a1zn−1 + ⋅ ⋅ ⋅ + an

(
n−1
∑
l=0

zlyn−1−l + a1
n−2
∑
l=0

zlyn−2−l

+ ⋅ ⋅ ⋅ + an−1y0 + A0(c0)
1
z
+
∞
∑
j=1
(Aj(c0, . . . , cj)

j
∑
k=1

Bjk
1

zk+1
)))(t), t ≥ t0,

or, by the linearity of the inverse Laplace transform, for t ≥ t0,

y(t) =
n−1
∑
l=0

yn−1−lℒ
−1(

zl

zn + a1zn−1 + ⋅ ⋅ ⋅ + an
)(t)

+ a1
n−2
∑
l=0

yn−2−lℒ
−1(

zl

zn + a1zn−1 + ⋅ ⋅ ⋅ + an
)(t)

+ ⋅ ⋅ ⋅ + an−1y0ℒ
−1(

1
zn + a1zn−1 + ⋅ ⋅ ⋅ + an

)(t)

+ A0(c0)ℒ
−1(

1
zn+1 + a1zn + ⋅ ⋅ ⋅ + anz

)(t)

+
∞
∑
j=1
(Aj(c0, . . . , cj)

j
∑
k=1

Bjkℒ
−1(

1
zn+k+1 + a1zn+k + ⋅ ⋅ ⋅ + anzk+1

)(t)).

After computing the inverse Laplace transform of the right-hand-side, we equate
the coefficients of the functions hk(t, t0) on both sides. In general, this results in a
nonlinear system for the constants ck, k ∈ ℕ0.

10.2 First-order nonlinear dynamic equations

Asaparticular case,we consider an IVPassociatedwith afirst-order dynamic equation
of the form

yΔ = f (y), t > t0, y(t0) = 0, (10.9)

where f : ℝ→ ℝ is an analytic function. We propose a solution of the IVP (10.9) of the
form
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y(t) =
∞
∑
j=0

cjH
1
j (t, t0), t ≥ t0.

Like in the general case, we suppose that

f (y) =
∞
∑
j=0

Aj(c0, . . . , cj)H
1
j (t, t0), t ≥ t0.

On the other hand, by (10.3), we have

y(t) = c0 +
∞
∑
j=1

j
∑
k=1

cjB
j
khk(t, t0), t ≥ t0, (10.10)

and

f (y) = A0(c0) +
∞
∑
j=1

j
∑
k=1

Aj(c0, . . . , cj)B
j
khk(t, t0), t ≥ t0. (10.11)

Let

ℒ(y(t))(z) = Y(z), t ≥ t0.

Then, we have

ℒ(yΔ(t))(z) = zY(z) − y(t0) = zY(z), t ≥ t0.

Taking the Laplace transform of both sides of the dynamic equation (10.9), we obtain

zY(z) = ℒ(A0(c0) +
∞
∑
j=1

j
∑
k=1

Aj(c0, . . . , cj)B
j
khk(t, t0))(z)

= A0(c0)
1
z
+
∞
∑
j=1

j
∑
k=1

Aj(c0, . . . , cj)B
j
k

1
zk+1
, t ≥ t0.

This yields

Y(z) = A0(c0)
1
z2
+
∞
∑
j=1

j
∑
k=1

Aj(c0, . . . , cj)B
j
k

1
zk+2
.

Now, by taking inverse Laplace transform of both sides, we get

y(t) = A0(c0)h1(t, t0) +
∞
∑
j=1

j
∑
k=1

Aj(c0, . . . , cj)B
j
khk+1(t, t0), t ≥ t0.

Employing (10.10), we have
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c0 +
∞
∑
j=1

j
∑
k=1

cjB
j
khk(t, t0) = A0(c0)h1(t, t0) +

∞
∑
j=1

j
∑
k=1

Aj(c0, . . . , cj)B
j
khk+1(t, t0), t ≥ t0.

In order to equate the coefficients of the time scale monomials hk(t, t0) on both sides,
we reorder the sums as follows:

c0 + (
∞
∑
j=1

cjB
j
1)h1(t, t0) +

∞
∑
k=2
(
∞
∑
j=k

cjB
j
k)hk(t, t0)

= A0(c0)h1(t, t0) +
∞
∑
k=2

∞
∑
j=k−1

Aj(c0, . . . , cj)B
j
k−1hk(t, t0), t ≥ t0.

This results in the following nonlinear system for the constants cj, j = 0, 1, . . .:

c0 = 0,
∞
∑
j=1

cjB
j
1 = A0(c0) = f (0),

∞
∑
j=k

cjB
j
k =
∞
∑
j=k−1

Aj(c0, . . . , cj)B
j
k−1, k ≥ 2.

(10.12)

Notice that the system is infinite and nonlinear in its unknowns. However, the nonlin-
earity is of polynomial type.

Remark 10.4. If 𝕋 = ℝ, we have Hk
1 (t, t0) = hk(t, t0) =

(t−t0)k
k! for k ∈ ℕ, and hence

Bjk = k!δk,j for k ∈ ℕ and j = 1, . . . , k. In this case, system (10.12) becomes

c0 = 0,
k!ck = (k − 1)!Ak−1(c0, . . . , ck−1), k = 1, 2, 3, . . . ,

(10.13)

or simply

ck =
1
k
Ak−1(c0, . . . , ck−1) k = 1, 2, 3, . . .

10.3 Numerical examples

Example 10.5. Asafirst example,we consider an IVPassociatedwith a linear dynamic
equation of the first order having the form

yΔ(t) = ay(t) + b, y(0) = 0, (10.14)

where a, b are real constants. Assume that
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y(t) =
∞
∑
j=0

cjH
1
j (t,0), t ≥ 0,

where cj, j = 0, 1, . . ., are the coefficients to be determined. By Theorem 10.2, we have

f (y) = ay(t) + b =
∞
∑
j=0

Aj(c0, . . . , cj)H
1
j (t,0), t ≥ 0,

where

A0 = f (c0) = ac0 + b,
A1 = c1f

′(c0) = ac1,

A2 = c2f
′(c0) +

c21
2!
f ′′(c0) = ac2,

A3 = c3f
′(c0) + c1c2f

′′(c0) +
c31
3!
f ′′′(c0) = ac3,

A4 = c4f
′(c0) + (c1c3 +

c22
2
)f ′′(c0) +

c21c2
2

f ′′′(c0) +
c41
4!
f (4)(c0) = ac4,

⋅ ⋅ ⋅
An = acn,

since f ′(c0) = a and f (k)(c0) = 0 for k ≥ 2. Therefore, the system (10.12) for this example
takes the form

c0 = 0,
∞
∑
j=1

cjB
j
1 = c0

∞
∑
j=k

cjB
j
k =
∞
∑
j=k−1

acj−1B
j
k−1, k ∈ ℕ, k ≥ 2.

(10.15)

This is an infinite linear system having the following triangular form:

c0 = 0,
c1B

1
1 + c2B

2
1 + c3B

3
1 + ⋅ ⋅ ⋅ = b,

c2B
2
2 + c3B

3
2 + c4B

4
2 + ⋅ ⋅ ⋅ = a(c1B

1
1 + c2B

2
1 + c3B

3
1 + ⋅ ⋅ ⋅) = ab,

c3B
3
3 + c4B

4
3 + c5B

5
3 + ⋅ ⋅ ⋅ = a(c2B

2
2 + c3B

3
2 + c4B

4
2 + ⋅ ⋅ ⋅) = a

2b,
⋅ ⋅ ⋅

cnB
n
n + cn+1B

n+1
n + ⋅ ⋅ ⋅ = a(cn−1B

n−1
n−1 + cnB

n
n−1 + ⋅ ⋅ ⋅) = a

n−1b,
⋅ ⋅ ⋅.

(10.16)

The exact solution can be obtained is

y(t) = b
a
(ea(t,0) − 1), t ≥ 0.
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We consider the time scale 𝕋 = αℕ0. On this time scale, we have

H1
1 (t,0) = B

1
1h1(t,0) = h1(t,0),

H1
2(t,0) = B

2
1h1(t,0) + B

2
2h2(t,0) = αh1(t,0) + 2h2(t,0),

H1
3(t,0) = B

3
1h1(t,0) + B

3
2h2(t,0) + B

3
3h3(t,0),

= α2h1(t,0) + 6αh2(t,0) + 6h3(t,0),
H1
4(t,0) = B

4
1h1(t,0) + B

4
2h2(t,0) + B

4
3h3(t,0) + B

4
4h4(t,0),

= α3h1(t,0) + 14α
2h2(t,0) + 27αh3(t,0) + 24h(t,0), t ≥ 0.

The infinite system (10.16) has been truncated to n = 4 and solved easily using back
substitution to find c1, c2, c3, and c4. In Tables 10.1 and 10.2, the exact and approximate
solutions are compared for the values α = 0.5, a = 1, b = 1 and α = 0.5, a = 1, b = 2.
The graphs of these solutions are also compared in Figures 10.1 and 10.2.

Table 10.1: The values of the approximate solution y(a)(t) and the exact solution y(e)(t) for α = 0.5,
a = 1, b = 1.

t y (e)(t) y (a)(t)

0.00 0.00000000 0.00000000
0.50 0.50000000 0.50000000
1.00 1.25000000 1.25000000
1.50 2.37500000 2.39843750
2.00 4.06250000 4.15625000
2.50 6.59375000 6.79687500
3.00 10.39062500 10.65625000
3.50 16.08593750 16.13281250
4.00 24.62890625 23.68750000
4.50 37.44335938 33.84375000
5.00 56.66503906 47.18750000

Table 10.2: The values of the approximate solution y(a)(t) and the exact solution y(e)(t) for α = 0.5,
a = 1, b = 2.

t y (e)(t) y (a)(t)

0.00 0.00000000 0.00000000
0.50 1.00000000 1.00000000
1.00 2.50000000 2.50000000
1.50 4.75000000 4.79687500
2.00 8.12500000 8.31250000
2.50 13.18750000 13.59375000
3.00 20.78125000 21.31250000
3.50 32.17187500 32.26562500
4.00 49.25781250 47.37500000
4.50 74.88671875 67.68750000
5.00 113.33007813 94.37500000
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Figure 10.1: Computed and exact values of the solution with α = 0.5, a = 1, and b = 1.

Figure 10.2: Computed and exact values of the solution with α = 0.5, a = 1, and b = 2.

We also find the approximate and exact solutions of the problem on the time scale
𝕋 = ℝ. On this time scale, by Remark 10.4,wehaveBjk = k!δk,j for k ∈ ℕ and j = 1, . . . , k.
As a result, the infinite system (10.16) becomes diagonal. It has been again truncated to
n = 4 and the values of the constants c1, c2, c3, and c4 follow directly. The graphs of the
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exact and approximate solutions are compared in Figures 10.3 and 10.4 for the values
a = 1, b = −1 and a = 1

2 , b = 1 on the interval [0, 4]. We observe good approximation
near the point t = 0, which is the center of convergence in the series solution.

Figure 10.3: Computed and exact values of the solution with a = 1, b = −1 on [0,4].

Figure 10.4: Computed and exact values of the solution with a = 1
2 , b = 1 on [0,4].

 EBSCOhost - printed on 2/10/2023 4:40 PM via . All use subject to https://www.ebsco.com/terms-of-use



262 | 10 The Adomian polynomials method

In the next two examples, we take f to be a nonlinear function.

Example 10.6. Consider the initial value problem associated with the first-order non-
linear dynamic equation of the form

yΔ(t) = ey(t), t ≥ 0, y(0) = 0, (10.17)

where ey(t) is the exponential function on the set of real numbers. Assume that the
solution has the series representation

y(t) =
∞
∑
j=0

cjH
1
j (t,0), t ≥ 0,

where cj, j ∈ ℕ0, are the coefficients to be determined. By Theorem 10.2, we have

f (y) = ey(t) =
∞
∑
j=0

Aj(c0, . . . , cj)H
1
j (t,0), t ≥ 0,

where

A0 = f (c0) = e
c0 ,

A1 = c1f
′(c0) = c1e

c0 ,

A2 = c2f
′(c0) +

c21
2!
f ′′(c0) = (c2 +

c21
2!
)ec0 ,

A3 = c3f
′(c0) + c1c2f

′′(c0) +
c31
3!
f ′′′(c0) = (c3 + c1c2 +

c31
3!
)ec0 ,

A4 = c4f
′(c0) + (c1c3 +

c22
2
)f ′′(c0) +

c21c2
2

f ′′′(c0) +
c41
4!
f (4)(c0)

= (c4 + c1c3 +
c22
2
+
c21c2
2
+
c41
4!
)ec0 ,

⋅ ⋅ ⋅ .

The infinite nonlinear system (10.12) for this example has the form

c0 = 0,
∞
∑
j=1

cjB
j
1 = A0(c0),

∞
∑
j=k

cjB
j
k =
∞
∑
j=k−1

AjB
j
k−1, k ≥ 2,

or, more explicitly,
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c0 = 0,

c1B
1
1 + c2B

2
1 + c3B

3
1 + ⋅ ⋅ ⋅ = 1,

c2B
2
2 + c3B

3
2 + c4B

4
2 + ⋅ ⋅ ⋅ = c1B

1
1 + (c2 +

c21
2!
)B21 + ⋅ ⋅ ⋅ ,

c3B
3
3 + c4B

4
3 + c5B

5
3 + ⋅ ⋅ ⋅ = (c2 +

c21
2!
)B22 + ⋅ ⋅ ⋅ ,

⋅ ⋅ ⋅.

Solving this nonlinear system, one can approximately obtain ci, i ∈ ℕ, and hence, the
approximate solution of the initial value problem is

y(t) = c1H
1
1 (t,0) + c2H

1
2(t,0) + c3H

1
3(t,0) + ⋅ ⋅ ⋅ , t ≥ 0. (10.18)

Example 10.7. In the last example, we consider the initial value problem associated
with the first-order nonlinear dynamic equation of the form

yΔ(t) = y2 + 1, y(0) = 0, t ≥ 0.

Assume that

y(t) =
∞
∑
j=0

cjH
1
j (t,0), t ≥ 0,

where the coefficients cj, j ∈ ℕ, will be determined from the nonlinear system (10.12).
Let

f (y) = y2 + 1 =
∞
∑
j=0

Aj(c0, . . . , cj)H
1
j (t,0), t ≥ 0,

where

A0 = f (c0),
A1 = c1f

′(c0),

A2 = c2f
′(c0) +

c21
2!
f ′′(c0),

A3 = c3f
′(c0) + c1c2f

′′(c0) +
c31
3!
f ′′′(c0),

A4 = c4f
′(c0) + (c1c3 +

c22
2
)f ′′(c0) +

c21c2
2

f ′′′(c0) +
c41
4!
f (4)(c0),

⋅ ⋅ ⋅ .

Since f ′(c0) = 2c0, f ′′(c0) = 2, and f (m)(c0) = 0 form ≥ 3, we obtain
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A0 = c
2
0 + 1,

A1 = 2c0c1,

A2 = 2c0c2 + c
2
1 ,

A3 = 2c0c3 + 2c1c2,

A4 = 2c0c4 + 2c1c3 + 2c
2
2 ,

⋅ ⋅ ⋅ .

The nonlinear infinite system (10.12) becomes

c0 = 0,
∞
∑
j=1

cjB
j
1 = A0(c0),

∞
∑
j=k

cjB
j
k =
∞
∑
j=k−1

Aj(c0, . . . , cj)B
j
k−1, k ≥ 2.

(10.19)

If, in particular, the time scale under consideration is 𝕋 = ℤ, then

h0(t,0) = 1, h1(t,0) = t, hk(t,0) =
t(t − 1) . . . (t − k + 1)

k!
, t ≥ 0, k = 2, 3, . . . ,

and hence, we compute

H1
1 (t,0) = t = h1(t,0),

H1
2(t,0) = t

2 = 2h2(t,0) + h1(t,0),

H1
3(t,0) = t

3 = 6h3(t,0) + 6h2(t,0) + h1(t,0),

H1
4(t,0) = t

4 = 24h4(t,0) + 36h3(t,0) + 14h2(t,0) + h1(t,0),
⋅ ⋅ ⋅ , t ≥ 0.

Then, system (10.19) turns into

c0 = 0,
c1 + c2 + c3 + c4 + ⋅ ⋅ ⋅ = 1,

2c2 + 6c3 + 14c4 + ⋅ ⋅ ⋅ = c
2
1 + 2c1c2 + (2c1c3 + 2c

2
2) + ⋅ ⋅ ⋅ ,

6c3 + 36c4 + ⋅ ⋅ ⋅ = 2c
2
1 + 12c1c2 + 14(2c1c3 + 2c

2
2) + ⋅ ⋅ ⋅ ,

24c4 + ⋅ ⋅ ⋅ = 6c1c2 + 36(2c1c3 + 2c
2
2) + ⋅ ⋅ ⋅ ,

⋅ ⋅ ⋅.

(10.20)

The nonlinear system (10.20) can be solved by any numerical method for solving a
nonlinear systemwith theNewtonmethodor the steepest descentmethods in classical
numerical analysis.
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10.4 Advanced practical problems

Problem 10.8. Apply the Adomian polynomials method to the initial value problem

yΔ(t) = 3y2 − 1, y(0) = 0, t ≥ 0,

and derive the infinite system (10.12) on the time scale 𝕋 = 2ℤ.

Problem 10.9. Apply the Adomian polynomials method to the initial value problem

yΔ(t) = y2 + 2y, y(0) = 2, t ≥ 0,

and derive the infinite system (10.12) on the time scale 𝕋 = ℤ.

Problem 10.10. Apply the Adomian polynomials method to the initial value problem

yΔ(t) = ey − 1, y(0) = 1, t ≥ 0,

and derive the infinite system (10.12) on the time scale 𝕋 = ℝ.
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11 Weak solutions and variational methods for some
classes of linear first-order dynamic systems

Let𝕋bea time scalewith forward jumpoperatorσ anddelta differentiationoperator Δ.
Let also 0 ∈ 𝕋.

11.1 Variational methods for first-order linear dynamic
systems – I

Let T ∈ 𝕋 and U be a bounded, closed, and convex subset of ℝ. Denote

Uad = {u(t) : t ∈ [0,T], u is Δ-measurable and u(t) ∈ U}.

Consider the following problem: find u0 ∈ Uad such that

J(u0(⋅)) ≤ J(u(⋅)) for any u ∈ Uad, (11.1)

where J is the cost functional given by

J(u(⋅)) = ∫[0,σ(T)) l(x(t, u), u(t))Δt, (11.2)

and x(⋅, u) ∈ AC([0,T]) is a solution corresponding to the control u ∈ Uad of the follow-
ing problem:

{
xΔ(t) = p(t)x(t) + f (t) + u(t) for Δ-a.e. t ∈ [0, ρ(T)],
x(0) = x0,

(11.3)

with a given x0 ∈ ℝ. Here p is a regressive rd-continuous function, f ∈ 𝕃1([0,T]),
the scalar function l(x, u), along with its partial derivatives {lx , lu}, is continuous and
uniformly bounded on ℝ × U for almost all t ∈ [0,T]. Let

M1 = sup
t∈[0,T]ep(t,0), M2 = sup

t,τ∈[0,T]ep(t, τ).
Define the Hamiltonian H(x,ψσ , u) as follows:

H(x,ψσ , u) = l(x, u) + ψσ(px + f + u).

In the next result, we will give a necessary condition for the positive definiteness of
the defined Hamiltonian.

https://doi.org/10.1515/9783110787320-011
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Theorem 11.1. Let u0 be an optimal solution of the problem (11.1) and x0(⋅, u0) an op-
timal trajectory corresponding to u0. Then it is necessary that there exists a function
ψ ∈ AC([σ(0), σ(T)]) satisfying the following conditions:

∫[0,σ(T))⟨Hu(x0(t),ψ
σ(t), u0(t)), u(t) − u0(t)⟩Δt ≥ 0

for any u ∈ Uad, and

ψΔ(t) = −Hx(x0(t),ψ
σ(t), u0(t)) = −p(t)ψ

σ(t) − lx(x0(t), u0(t)), t ∈ [σ(0),T],

ψ(σ(T)) = 0.

Proof. Let ε ∈ [0, 1] be arbitrarily chosen. For u ∈ Uad, define

uε = u0 + ε(u − u0).

SinceU is a bounded, closed, convex subset ofℝ, we have thatUad is a closed, convex
subset of L∞([0,T]), and u0 ∈ Uad. Because u0 is an optimal solution of (11.1), we
have

J(u0(⋅)) ≤ J(u(⋅)), ε ∈ [0, 1], u ∈ Uad,

and

lim
ε→0 uε(t) = u0(t), t ∈ [0,T].

Observe that

xε(t, uε)
 =

ep(t,0)x0 + ∫[0,t) ep(t, σ(τ))(f (τ) + uε(τ))Δτ



≤ ep(t,0)
|x0| + ∫[0,t) ep(t, σ(τ))f (τ) + uε(τ)Δτ

≤ M1|x0| +M2 ∫[0,T) f (τ) + uε(τ)Δτ
≤ M1|x0| +M2 ∫[0,T) f (τ)Δτ +M2 ∫[0,T) uε(τ)Δτ
= M, t ∈ [0,T].

Therefore, the sequence {xε(⋅, uε)}ε∈[0,1] is uniformly bounded on [0,T]. Now we take
t1, t2 ∈ [0,T] arbitrarily. Without loss of generality, suppose that t1 < t2. Then
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xε(t1, uε) − xε(t2, uε)
 =

ep(t1,0)x0 + ∫[0,t1) ep(t1, σ(τ))(f (τ) + uε(τ))Δτ
− ep(t2,0)x0 − ∫[0,t2) ep(t2, σ(τ))(f (τ) + uε(τ))Δτ



=

(ep(t1,0) − ep(t2,0))x0

+ ∫[0,t1)(ep(t1, σ(τ)) − ep(t2, σ(τ)))(f (τ) + uε(τ))Δτ
− ∫[t1 ,t2) ep(t2, σ(τ))(f (τ) + uε(τ))Δτ



=

ep(t1,0)(1 − ep(t2, t1))x0

+ (1 − ep(t2, t1)) ∫[0,t1) ep(t1, σ(τ))(f (τ) + uε(τ))Δτ
− ∫[t1 ,t2) ep(t2, σ(τ))(f (τ) + uε(τ))Δτ



≤ 1 − ep(t2, t1)

ep(t1,0)

|x0|

+ 1 − ep(t2, t1)
 ∫[0,t1) ep(t1, σ(τ))f (τ) + uε(τ)Δτ

+ ∫[t1 ,t2) ep(t2, σ(τ))f (τ) + uε(τ)Δτ
→ 0, as t1 → t2.

Hence, {xε(⋅, uε)}ε∈[0,1] is equicontinuous on [0,T]. Also,
xε(t, uε) − x0(t, u0)

 =

ep(t,0)x0 + ∫[0,t) ep(t, σ(τ))(f (τ) + uε(τ))Δτ
− ep(t,0)x0 − ∫[0,t) ep(t, σ(τ))(f (τ) + u0(τ))Δτ



=

∫[0,t) ep(t, σ(τ))(uε(τ) − u0(τ))Δτ



≤ ∫[0,T) ep(t, σ(τ))uε(τ) − u0(τ)Δτ
≤ M2 ∫[0,T) uε(τ) − u0(τ)Δτ
→ 0, as ε → 0.
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Now, applying the Arzela–Ascoli theorem, we conclude that

xε → x0 in 𝒞([0,T]), as ε → 0, t ∈ [0,T].

Denote

y(t) = lim
ε→0 xε(t) − x0(t)ε

, t ∈ [0,T].

Then y satisfies the following initial value problem:

{
yΔ(t) = p(t)y(t) + (u(t) − u0(t)) for Δ-a.e. t ∈ [0, ρ(T)],
y(0) = 0.

We will compute the Gateaux differential J at u0 ∈ Uad in the direction u − u0. Let
{ti}i∈I , I ⊆ ℕ, be the set of all right-scattered points of [0,T]. Let also,

ũε(t) = {
uε(t) if t ∈ [0,T],
uε(ti) if t ∈ (ti, σ(ti)) for some i ∈ I .

Then

0 ≤ lim
ε→0 J(uε(⋅)) − J(u0(⋅))ε

= lim
ε→0 ∫[0,σ(T)) l(xε(t, uε), uε(t)) − l(x0(t, u0), u0(t))ε

Δt

= lim
ε→0 ∫[0,σ(T)) l(x̃ε(t, uε), ũε(t)) − l(x̃0(t, u0), ũ0(t))ε

dt

= lim
ε→0 ∫[0,σ(T))(

1

∫
0

(⟨lx(x̃0 + θ(x̃ε − x̃0), ũ0 + θε(ũ − ũ0)),
Px̃ε − x̃0

ε
⟩

+ ⟨lu(x̃0 + θ(x̃ε − x̃0)), ũ0 + θε(ũ − ũε)⟩)dθ)dt

= ∫[0,σ(T)](⟨lx(x̃0(t), ũ0), ỹ(t)⟩ + ⟨lu(x̃0(t), ũ0), ũ(t) − ũ0(t)⟩)dt
= ∫[0,σ(T))(⟨lx(x0(t), u0), y(t)⟩ + ⟨lu(x0(t), u0), u(t) − u0(t)⟩)Δt.

Define the operator

T1 : 𝕃
1([0,T))→ 𝒞([0,T])

as follows:
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y(t) = T1(u − u0)(t) = ∫[0,t) ep(t, σ(τ))(u(τ) − u0(τ))Δτ, t ∈ [0,T].

Note that T1 is a linear continuous operator. Next, define the functional

T2 : 𝒞([0,T])→ ℝ

as follows:

T2y(t) = ∫[0,σ(t))⟨lx(x0(t), u0(t)), y(t)⟩Δt,
which is a linear continuous functional. Hence,

T2 ⋅ T1 : 𝕃
1([0,T])→ ℝ

defined by

T2 ⋅ T1(u − u0) = ∫[0,σ(t))⟨lx(x0(t), u0(t)), y(t)⟩Δt, t ∈ [0,T],

is a linear bounded functional. By the Riesz representation theorem, it follows that
there is a ψσ ∈ 𝕃∞([0,T]) such that

∫[0,σ(T))⟨lx(x0(t), u0(t)), y(t)⟩Δt = ∫[0,σ(T))⟨u(t) − u0(t),ψσ(t)⟩Δt.

Then

0 ≤ ∫[0,σ(T))(⟨lx(x0(t), u0(t)), y(t)⟩ + ⟨lu(x0(t), u0(t)), u(t) − u0(t)⟩)Δt
= ∫[0,σ(T))⟨lu(x0(t), u0(t)) + ψσ(t), u(t) − u0(t)⟩Δt

= ∫[0,σ(T))⟨Hu(x0(t),ψ
σ(t), u0(t)), u(t) − u0(t)⟩Δt, u ∈ Uad.

Next,

T2y(t) = ∫[0,σ(T))⟨lx(x0(t), u0(t)), y(t)⟩Δt
= ∫[0,σ(T))⟨yΔ(t) − p(t)y(t),ψσ(t)⟩Δt
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= ∫[0,σ(T))⟨yΔ(t),ψσ(t)⟩Δt − ∫[0,σ(T))⟨p(t)y(t),ψσ(t)⟩Δt

= y(σ(T))ψ(σ(T)) − ∫[0,σ(T))⟨y(t),ψΔ(t)⟩Δt − ∫[0,σ(T))⟨y(t), p(t)ψσ(t)⟩Δt

= y(σ(T))ψ(σ(T)) − ∫[0,σ(T))⟨y(t),ψΔ(t) + p(t)ψσ(t)⟩Δt, t ∈ [0,T],

whereupon

∫[0,σ(T))⟨lx(x0(t), u0(t)), y(t)⟩Δt = y(σ(T))ψ(σ(T))
− ∫[0,σ(T))⟨y(t),ψΔ(t) + p(t)ψσ(t)⟩Δt,

or

y(σ(T))ψ(σ(T)) − ∫[0,σ(T))⟨y(t),ψΔ(t) + p(t)ψσ(t) + lx(x0(t), u0(t))⟩Δt = 0.

Then ψσ can be chosen as the solution of the following backward problem:

ψΔ(t) = −Hx(x0(t),ψ
σ(t), u0(t)) − p(t)ψ

σ(t) − lx(x0(t), u0(t)), t ∈ [σ(0),T],
ψ(σ(T)) = 0.

This completes the proof.

Below, we will illustrate the previous result with the following examples.

Example 11.2. Let 𝕋 = ℤ. Consider the following problem:

minimize J(u(⋅)) = ∫[0,11) u(t)Δt, u ∈ Uad,

subject to the dynamic equation

xΔ(t) = x(t) + t + u(t), t ∈ [0, 9],
x(0) = 1.

Here

σ(t) = t + 1, t ∈ 𝕋,
T = 10, σ(T) = 11, ρ(T) = 9,

f (t) = t, l(x(t, u), u(t)) = u(t),
p(t) = 1, t ∈ 𝕋.
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Then the Hamiltonian is

H(x,ψσ , u) = l(x, u) + ψσ(px + f + u) = u + ψσ(x + t + u).

Next,

Hu(x,ψ
σ , u) = 1 + ψσ ,

Hx(x,ψ
σ , u) = ψσ ,

lx(x, u) = 0.

The necessary conditions for the problem are as follows:

∫[0,11)⟨1 + ψσ(t), u(t) − u0(t)⟩Δt ≥ 0

and

ψΔ(t) = −ψσ(t), t ∈ [1, 10],
ψ(11) = 0.

Example 11.3. Let 𝕋 = 2ℕ0 ∪ {0}. Consider the problem

minimize J(u(⋅)) = ∫[0,32)(u(t))2Δt, u ∈ Uad,

subject to the dynamic equation

xΔ(t) = e1(t,0)x(t) + t
2 + u(t), t ∈ [0, 8],

x(0) = 1.

Here

σ(0) = 1, σ(t) = 2t, t ∈ 2ℕ0 , T = 16,

l(x, u) = u2, f (t) = t2, p(t) = e1(t,0), t ∈ 𝕋.

Then the Hamiltonian is given by

H(x,ψσ , u) = l(x, u) + ψσ(px + f + u) = u2 + ψσ(e1(t,0)x + t
2 + u).

We have

Hu(x,ψ
σ , u) = 2u + ψσ ,

Hx(x,ψ
σ , u) = ψσe1(t,0),

 EBSCOhost - printed on 2/10/2023 4:40 PM via . All use subject to https://www.ebsco.com/terms-of-use



11.2 Variational methods for first-order linear dynamic systems – II | 273

lx(x, u) = 0.

The necessary conditions for the problem are as follows:

∫[0,32)⟨2u0(t) + ψσ(t), u(t) − u0(t)⟩Δt ≥ 0,

and

ψΔ(t) = −e1(t,0)ψ
σ(t), t ∈ [1, 16],

ψ(32) = 0.

Exercise 11.4. Let 𝕋 = 2ℤ. Write necessary conditions for the problem

minimize J(u(⋅)) = ∫[0,64)(u(t))4Δt, u ∈ Uad,

subject to the dynamic equation

xΔ(t) = tx(t) + t2 + t + u(t), t ∈ [0, 60],
x(0) = 10.

11.2 Variational methods for first-order linear dynamic
systems – II

In this section, we will use the notations from the previous section. Consider the fol-
lowing problem: Find u0 ∈ Uad such that

J(u0(⋅)) = inf
u∈Uad

J(u) = m, (11.4)

where the cost functional J is given by

J(u(⋅)) = ∫[0,T) l(t, xσ(t), u(t))Δt, u ∈ Uad,

and x(⋅, u) ∈ AC([0,T)) is a solution corresponding to the control u ∈ Uad of the follow-
ing initial value problem:

xΔ(t) = p(t)x(t) + f (t) + b(t)u(t) Δ-a.e. t ∈ [0,T],
x(0) = x0 ∈ ℝ,

(11.5)

and
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(H1) p : [0,T)→ ℝ is a regressive rd-continuous function,
(H2) f ∈ 𝕃1([0,T]), b ∈ 𝕃2([0,T]),
(H3) l : [0,T] × ℝ × ℝ→ ℝ is such that

1. l(t, x, u) is measurable in t for x and u fixed, and continuous in x and u for t
fixed, the continuity in x is uniform with respect to u,

2. l(t, x, u) is convex in u for each t and x,
3. There exists a constant L > 0 such that

l(t, x, u)
 ≤ L|u|

2, t ∈ [0,T], x, u ∈ ℝ.

We have that the problem (11.5) has a unique solution given by the expression

x(t) = ep(t,0)x0 + ∫[0,t) ep(t, σ(τ))(f (τ) + b(τ)u(τ))Δτ, t ∈ [0,T).

For u : [0,T)→ ℝ, define its extension to the real-valued interval [0,T) as follows:

ũ(t) = {
u(t) if t ∈ [0,T),
u(ti) if t ∈ (ti, σ(ti)), i ∈ I ,

where {ti}i∈I , I ⊆ ℕ, is the set of all right-scattered points of [0,T). For u ∈ 𝕃2([0,T)),
define the operator

Tu = ũ.

Note that T is a linear continuous operator. Now, we will give a criterion for the exis-
tence of an admissible control.

Theorem 11.5. Suppose that (H1)–(H3) hold and −∞ < m < ∞. Then there exists an
admissible control u0 ∈ Uad such that

J(u0) = m.

Proof. Since −∞ < m <∞, there exists a sequence {un(⋅)}n∈ℕ such that
inf
u∈Uad

J(u) = lim
n→∞ J(un) = m.

We have that {un(⋅)}n∈ℕ is bounded in 𝕃2([0,T)), and hence, {Tun(⋅)}n∈ℕ is bounded in
T(Uad). Therefore, there exists a subsequence, relabeled as {Tun(⋅)}n∈ℕ, such that

Tun(⋅)→ z(⋅) in 𝕃2([0,T]).

Let v ∈ 𝕃2([0,T)). Then Tv ∈ 𝕃2([0,T]) and
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∫[0,T) v(t)(un(t) − u0(t))Δt = ∫[0,T] Tv(t)(Tun(t) − Tu0(t))dt
→ 0, as n→∞.

Therefore,

un → u0 weakly in 𝕃2([0,T)), as n→∞.

We have

x(t, un) = ep(t,0)x0 + ∫[0,t) ep(t, σ(τ))(f (τ) + b(τ)un(τ))Δτ,
x(t, u0) = ep(t,0)x0 + ∫[0,t) ep(t, σ(τ))(f (τ) + b(τ)u0(τ))Δτ, t ∈ [0,T).

Also,

x(t, un)
 =

ep(t,0)x0 + ∫[0,t) ep(t, σ(τ))(f (τ) + b(τ)un(τ))Δτ



≤ ep(t,0)x0
 +

∫[0,t) ep(t, σ(τ))(f (τ) + b(τ)un(τ))Δτ



≤ M1|x0| + ∫[0,t) ep(t, σ(τ))(f (τ) + b(τ)un(τ))Δτ
≤ M1|x0| +M2 ∫[0,t) f (τ)Δτ +M2 ∫[0,t) b(τ)un(τ)Δτ
≤ M1|x0| +M2 ∫[0,t) f (τ)Δτ +M2( ∫[0,t) b(τ)2Δτ)

1
2

( ∫[0,t) un(τ)2Δτ)
1
2

≤ M1|x0| +M2‖f ‖𝕃1([0,T)) +M2‖b‖𝕃2([0,T))‖un‖𝕃2([0,T)), t ∈ [0,T].

Consequently, the sequence {x(⋅, un)}n∈ℕ is uniformly bounded on [0,T]. Now take
t1, t2 ∈ [0,T] arbitrarily. Without loss of generality, suppose that t1 < t2. Then

x(t1, un) − x(t2, un)
 =

ep(t1,0)x0 + ∫[0,t1) ep(t1, σ(τ))(f (τ) + b(τ)un(τ))Δτ
− ep(t2,0)x0 − ∫[0,t2) ep(t2, σ(τ))(f (τ) + b(τ)un(τ))Δτ



≤ ep(t1,0)

1 − ep(t2, t1)

|x0|
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+

∫[0,t1)(ep(t1, σ(τ)) − ep(t2, σ(τ)))(f (τ) + b(τ)un(τ))Δτ



+

∫[t1 ,t2) ep(t2, σ(τ))(f (τ) + b(τ)un(τ))Δτ



≤ M1
1 − ep(t2, t1)

|x0|

+M2
1 − ep(t2, t1)

 ∫[0,t1)(f (τ) + b(τ)un(τ))Δτ
+ ∫[t1 ,t2) ep(t2, σ(τ))(f (τ) + b(τ)un(τ))Δτ
→ 0, as t1 → t2.

Therefore {x(⋅, un)}n∈ℕ is equicontinuous on [0,T]. For any fixed t ∈ [0,T), define
ϕ(τ) = {ep(0, σ(τ))b(τ), τ ∈ [0, t), τ ∈ [t,T)}.

We have that ϕ(⋅) ∈ 𝕃2([0,T)). Using that

un → u0 weakly in 𝕃2([0,T)), as n→∞,

we get

lim
n→∞ ep(t,0) ∫[0,t) ep(0, σ(τ))b(τ)un(τ)Δτ
= ep(t,0) ∫[0,t) ep(0, σ(τ))b(τ)u0(τ)Δτ, t ∈ [0,T].

Hence, using the representations of x(⋅, un) and x(⋅, u0), we conclude that

x(t, un) − x(t, u0)
→ 0, as n→∞, t ∈ [0,T].

Therefore, by the Arzela–Ascoli theorem, it follows that

x(⋅, un) − x(⋅, u0)
𝒞([0,T]) → 0, as n→∞.

By Mazur’s theorem (see the Appendix E), it follows that for every positive integer k
and positive integers n(k),m(k) increasing with k and n(k),m(k)→∞, as k →∞, we
can construct a suitable convex combination of {Tuk(⋅)}k∈ℕ such that

Tvk(⋅) =
m(k)
∑
j=1 akjTun(k)+j(⋅)→ Tu0(⋅) in 𝕃2([0,T)),
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as k →∞, where

akj ≥ 0,
m(k)
∑
j=1 akj = 1, j ∈ {1, . . . ,m(k)}.

We have

vk(⋅) =
m(k)
∑
j=1 akjvn(k)+j(⋅)→ u0(⋅) in 𝕃2([0,T)), as k →∞.

Therefore, there exists a subsequence, relabeled as {vk(⋅)}k∈ℕ, such that
vk(t)→ u0(t) Δ-a.e. t ∈ [0,T).

Then

J(u0) = ∫[0,T) l(t, x(σ(t), u0), u0(t))Δt
= lim

k→∞ ∫[0,T) l(t, x(σ(t), u0),
m(k)
∑
j=1 akjun(k)+j(t))Δt

+ lim
k→∞ ∫[0,T)(l(t, x(σ(t), u0), u0(t)) − l(t, x(σ(t), u0),

m(k)
∑
j=1 akjun(k)+j(t)))Δt

= lim
k→∞ ∫[0,T) l(t, x(σ(t), u0),

m(k)
∑
j=1 akjun(k)+j(t))Δt

≤ lim
k→∞m(k)
∑
j=1 akj ∫[0,T) l(t, x(σ(t), u0), un(k)+j(t))Δt

= lim
k→∞m(k)
∑
j=1 akj ∫[0,T) l(t, x(σ(t), un(k)+j), un(k)+j(t))Δt

+ lim
k→∞m(k)
∑
j=1 akj ∫[0,T)(l(t, x(σ(t), u0), un(k)+j(t)) − l(t, x(σ(t), un(k)+j), un(k)+j(t)))Δt

= lim
k→∞m(k)
∑
j=1 akj ∫[0,T) l(t, x(σ(t), un(k)+j)(t), un(k)+j(t))Δt

= lim
k→∞m(k)+1
∑
j=1 akjJ(un(k)+j).

For any ε > 0, there exists a K > 0 such that k > K implies

J(un(k)+j) −m < ε.
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Hence,



m(k)
∑
j=1 akjJ(un(k)+j) −m


=


m(k)
∑
j=1 akj(J(un(k)+j) −m)



≤
m(k)
∑
j=1 akjJ(un(k)+j) −m
< ε

m(k)
∑
j=1 akj

= ε.

Therefore, there exists an admissible control u0 ∈ Uad such that

J(u0) = m.

This completes the proof.

Now, we will illustrate the above result with the following example.

Example 11.6. Let 𝕋 = ℤ. Consider

xΔ(t) = au(t), t ∈ [0, 10),
x(0) = 1, x(10) = 0,

J(u(⋅)) = 1
2
∫[0,10)(u(t))2Δt,

where a ∈ ℝ, a ̸= 0. Here

σ(t) = t + 1, p(t) = 0, f (t) = 0, t ∈ 𝕋, l(x, u) = 1
2
u2,

H(x,ψσ , u) = l(x, u) + ψσ(px + f + u) = 1
2
u2 + aψσu, t ∈ [0, 10).

Then

Hu(x,ψ
σ , u) = u + aψσ ,

Hx(x,ψ
σ , u) = 0, t ∈ [0, 10),

and the necessary conditions are as follows:

u(t) + aψσ(t) = 0, ψΔ(t) = 0,
x(0) = 1, x(10) = 0, t ∈ [0, 10).

We have
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ψ(t) = C, u(t) = −aC, xΔ(t) = −a2C,

x(t) = x(0) − a2Ct = 1 − a2Ct, t ∈ [0, 10).

Now using that

x(10) = 0,

we get

0 = 1 − 10a2C,

whereupon

C = 1
10a2

and the optimal trajectories are

u(t) = − 1
10a
, x(t) = 1 − 1

10
t, t ∈ [0, 10),

respectively.

Exercise 11.7. Let 𝕋 = 3ℤ. Consider

xΔ(t) = x(t) + 3u(t), t ∈ [0, 30),
x(0) = −1, x(30) = 0,

J(u(⋅)) = 1
2
∫[0,10)(u(t))2Δt.

Find the optimal trajectories.

11.3 Advanced practical problems

Problem 11.8. Let 𝕋 = 4ℤ. Write necessary conditions for the problem

minimize J(u(⋅)) = ∫[0,88)(u(t) + (u(t))3)Δt, u ∈ Uad,

subject to the dynamic equation

xΔ(t) = 1
1 + t2

x(t) + t4 + u(t), t ∈ [0, 80],

x(0) = 15.
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Problem 11.9. Let 𝕋 = 3ℕ0 ∪ {0}. Write necessary conditions for the problem

minimize J(u(⋅)) = ∫[0,243)(2u(t) − 4(u(t))5)Δt, u ∈ Uad,

subject to the dynamic equation

xΔ(t) = e1(t,0)x(t) + cos3(t,0) + u(t), t ∈ [0, 27],
x(0) = 18.

Problem 11.10. Let 𝕋 = 2ℕ0 ∪ {0}. Consider

xΔ(t) = −tx(t) + u(t), t ∈ [0, 128),
x(0) = 1, x(128) = 0,

J(u(⋅)) = ∫[0,128)(u(t))2Δt.
Find the optimal trajectories.

Problem 11.11. Let 𝕋 = 3ℕ0 ∪ {0}. Consider

xΔ(t) = e1(t,0)x(t) + u(t), t ∈ [0, 243),
x(0) = 1, x(243) = 0,

J(u(⋅)) = ∫[0,243) (u(t))
2

1 + (u(t))2
Δt.

Find the optimal trajectories.

Problem 11.12. Let 𝕋 = 4ℕ0 ∪ {0}. Consider

xΔ(t) = 3 cos1(t,0)x(t) − 7u(t), t ∈ [0, 1024),
x(0) = 1, x(1024) = 0,

J(u(⋅)) = 7 ∫[0,243) (u(t))
2

1 + (u(t))6
Δt.

Find the optimal trajectories.
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12 Variational methods for nonlinear dynamic
equations

Let𝕋bea time scalewith forward jumpoperatorσ anddelta differentiationoperator Δ.
Let also a, b ∈ 𝕋, a < b.

12.1 Existence of solutions

We will start with the following useful theorem.

Theorem 12.1. Suppose that the function f : ℝ × ℝ → ℝ satisfies the following condi-
tions:
1. f (⋅, ⋅) is lower semicontinuous on ℝ × ℝ,
2. f ≥ 0 and f (ξ , ⋅) is convex on ℝ for every ξ ∈ ℝ. Set

J(x, u) = ∫
[a,b)

f (x(t), u(t))Δt.

If {xn}n∈ℕ, {un}n∈ℕ ⊆ 𝕃1(𝕋) and xn
s
→ x, un

w
→ u in 𝕃1(𝕋), then

J(x, u) ≤ lim
n→∞

J(xn, un).

Proof. Let {xn}n∈ℕ, {un}n∈ℕ ⊆ 𝕃1(𝕋) and xn
s
→ x, un

w
→ u in 𝕃1(𝕋). Then there exists a

positive constant c such that

J(xn, un) ≤ c, n ∈ ℕ.

Set

αn(t) = f (xn(t), un(t)), t ∈ 𝕋.

By Mazur’s theorem (see the Appendix), it follows that there are λnj ≥ 0, j ∈ {1, . . . , kn},
n ∈ ℕ, and α ∈ 𝕃1(𝕋) such that

kn
∑
j=1

λnj = 1, α′n(t) =
kn
∑
j=1

λnj αn+j(t)→ α(t) Δ-a.e. on 𝕋, as n→∞.

Since xn
s
→ x in 𝕃1(𝕋), as n→∞, it follows that there exists a subsequence, relabeled

as {xn}n∈ℕ, such that

xn(t)→ x(t) Δ-a.e. on 𝕋, as n→∞.

https://doi.org/10.1515/9783110787320-012
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Define

W(f , x, αn + βn)(t) = {v ∈ ℝ : f (x(t), v) ≤ αn(t) + βn(t)}, t ∈ 𝕋,

and, for y ∈ ℝ, set

βn(t) = max{0,min
v∈ℝ

f (x(t), v) − αn(t)},

dyn(t) = max{0, yun(t) − sup
v∈W(f ,x,αn+βn)(t)

yv},

dy(v,W(f , x, αn + βn)(t)) = max{0, yv − sup
z∈W(f ,x,αn+βn)(t)

yz}, t ∈ 𝕋.

Note that

βn → 0, dyn → 0, as n→∞,

in Lebesgue Δ-measure. Hence,

βn(t)→ 0, dyn(t)→ 0 Δ-a.e. on 𝕋, as n→∞.

Let

By(W(y, x, αn + βn)(t), d
y
n(t)) = {v ∈ ℝ : d

y(v,W(f , x, αn + βn)(t)) ≤ d
y
n(t)}.

Then

un(t) ∈ B
y(W(f , x, αn + βn)(t), d

y
n(t)) Δ-a.e. on 𝕋, n ∈ ℕ.

Set

u′n =
kn
∑
j=1

λnj un+j, n ∈ ℕ, β′n =
kn
∑
j=1

λnj βn+j, d′yn =
kn
∑
j=1

λnj d
y
n+j.

Then

u′n(t) ∈ B
y(W(f , x, α′n + β

′
n)(t), d

′y
n (t)) Δ-a.e. on 𝕋, n ∈ ℕ,

u′n → u, β′n → 0 as n→∞, Δ-a.e. on 𝕋,

and

u(t) ∈ By(W(f , x, α)(t),0) Δ-a.e. on 𝕋.

Assume that {yn}n∈ℕ is dense in ℝ. Then
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W(f , x, α)(t) = ⋂
n∈ℕ

Byn(W(f , x, α)(t),0) Δ-a.e. on 𝕋.

Because y ∈ ℝ was arbitrarily chosen, we get

u(t) ∈ W(f , x, α)(t) Δ-a.e. on 𝕋.

Thus,

f (x(t), u(t)) ≤ α(t) Δ-a.e. on 𝕋.

Hence,

J(x, u) ≤ ∫
[a,b)

α(t)Δt

= ∫
[a,b)

lim
n→∞

α′n(t)Δt

≤ lim
n→∞
∫
[a,b)

α′n(t)Δt

= lim
n→∞
∫
[a,b)

αn(t)Δt = lim
n→∞

J(xn, un).

This completes the proof.

Let Uad be a nonempty, closed, convex subset of 𝕃1(𝕋), and Γ1(𝕋) be the corre-
sponding set. Consider the following problem: Find u0 ∈ Uad such that

J(u0) ≤ J(u) for all u ∈ Uad,

where

J(u) = ∫
[a,b)

g(x(τ), xσ(τ))Δτ + ∫
[a,b)

h(u(τ))Δτ, (12.1)

and x is a weak solution of the following dynamic system:

xΔ(t) + p(t)xσ(t) = f (t, x(t), xσ(t)) + u(t), t > a,
x(a) = x0 ∈ ℝ,

u ∈ Uad,

(12.2)

p ∈ Γ1(𝕋), and f , g, and h satisfy the following conditions:
(H1)
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1. f : 𝕋 × ℝ × ℝ → ℝ is Δ-measurable in t ∈ 𝕋 and for all x1, x2, y1, y2 ∈ ℝ,
|x1| ≤ ρ, |x2| ≤ ρ, |y1| ≤ ρ, |y2| ≤ ρ, we have

f (t, x1, y1) − f (t, x2, y2)
 ≤ L(|x1 − x2| + |y1 − y2|), t ∈ 𝕋,

for some constant L = L(ρ) > 0.
2. There exist a constant λ ∈ (0, 1) and a function q ∈ 𝕃1(𝕋) such that

f (t, x, y)
 ≤ q(t)(1 + |x| + |y|

λ), x, y ∈ ℝ, t ∈ 𝕋.

(H2)
1. g : ℝ × ℝ→ ℝ is lower semicontinuous.
2. There is a constant c ∈ ℝ such that

g(x, y) ≥ c, x, y ∈ ℝ.

(H3)
1. h : ℝ→ ℝ is convex.
2. lim|u|→∞

h(u)
|u| =∞.

Note that for any u ∈ Uad, by Theorem D.58, it follows that the dynamic system (12.2)
has a unique solution

x(t) = e⊖p(t, a)x0 + ∫
[a,t)

e⊖p(t, τ)(f (τ, x(τ), x
σ(τ)) + u(τ))Δτ, t ∈ [a, b).

Theorem 12.2. Let p ∈ Γ1(𝕋) and (H1)–(H3) hold. Then the problem (12.1), (12.2) has at
least one solution.

Proof. If

inf
u∈Uad

J(u) =∞,

then the theorem is proved. Assume that there is a constant c <∞ such that

inf
u∈Uad

J(u) ≤ c.

By (H2)(2) and (H3)(2), it follows that c > −∞. Then there exists aminimizing sequence
{un}n∈ℕ ⊆ Uad such that
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c ≤ J(un)

= ∫
[a,b)

g(xn(τ), x
σ
n (τ))Δτ + ∫

[a,b)

h(un(τ))Δτ

≤ c + 1
n

for any n ≥ N and for some N ∈ ℕ. Here xn is the weak solution of the controlled
system (12.2) corresponding to the control un. By (H3)(2), it follows that for any δ > 0
there exists a θ = θ(δ) such that

h(u) ≥ θ(δ)|u|

for all |u| ≥ δ, where

lim
δ→∞

θ(δ) =∞. (12.3)

Hence, for any measurable subset E ⊆ 𝕋, we have

∫
E

un(τ)
Δτ = ∫

E⋂{s∈𝕋:|un(s)|<δ}

un(τ)
Δτ + ∫

E⋂{s∈𝕋:|un(s)|≥δ}

un(τ)
Δτ

≤ δμΔ(E) +
1

θ(δ)
∫
E

h(un(τ))
Δτ

≤ δμΔ(E) +
C

θ(δ)
,

where C > 0 is independent of δ. Because of (12.3), we get

lim sup
δ→∞

∫
E⋂{s∈𝕋:|un(s)|≥δ}

un(τ)
Δτ ≤ lim

δ→∞

C
θ(δ)
= 0.

Therefore {un}n∈ℕ ⊂ 𝕃1(𝕋) is uniformly integrable, and hence {un}n∈ℕ is weakly com-
pact in 𝕃1(𝕋). Because Uad ⊆ 𝕃

1(𝕋) is closed and convex, by Mazur’s theorem, there
are a subsequence, relabeled as {un}n∈ℕ, and u ∈ Uad for which we have

un
w
→ u in 𝕃1(𝕋).

Then there is a constant r > 0 such that

‖xn‖𝒞rd(𝕋) ≤ r.

Let

Fn(t) = f (t, xn(t), x
σ
n (t)), t ∈ 𝕋.
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Then

Fn(t)
 =
f (t, xn(t), x

σ
n (t))


≤ q(t)(1 + xn(t)
 +
x
σ
n (t)
)

≤ q(t)(1 + 2r), t ∈ 𝕋.

Therefore there are a subsequence, relabeled as {Fn}n∈ℕ, and F ∈ 𝕃1(𝕋) such that

Fn
w
→ F in 𝕃1(𝕋).

Define

vn(t) = ∫
[a,t)

e⊖p(t, τ)(Fn(τ) + un(τ))Δτ,

v(t) = ∫
[a,t)

e⊖p(t, τ)(F(τ) + u(τ))Δτ, t ∈ 𝕋.

By the Ascoli–Arzela theorem, it follows that

‖vn − v‖𝒞rd(𝕋) → 0, as n→∞.

Now, we consider the following dynamic equation:

yΔ(t) + p(t)yσ(t) = F(t) + u(t), t ∈ [a, b),
y(a) = x0.

(12.4)

By TheoremD.55,wehave that the dynamic equation (12.4) has auniqueweak solution

x(t) = e⊖p(t, a)x0 + ∫
[a,t)

e⊖p(t, τ)(F(τ) + u(τ))Δτ, t ∈ [a, b),

and x ∈ 𝒞rd(𝕋). Also,

xn → x, xσn → xσ in 𝒞rd(𝕋), as n→∞.

Because

f (t, xn(t), x
σ
n (t)) − f (t, x(t), x

σ(t)) ≤ L(ρ)(
xn(t) − x(t)

 +
x
σ
n (t) − x

σ(t)), t ∈ 𝕋,

for some ρ > 0, we get

Fn → f (⋅, x(⋅), xσ(⋅)) in 𝕃1(𝕋), as n→∞.

Hence,
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F(⋅) = f (⋅, x(⋅), xσ(⋅))

and

x(t) = e⊖p(t, a)x0 + ∫
[a,t)

e⊖p(t, τ)(f (τ, x(τ), x
σ(τ)) + u(τ))Δτ, t ∈ [a, b).

Therefore, x is a weak solution of the controlled problem (12.2) corresponding to the
control u. Hence, by Theorem 12.1, we obtain

c ≤ J(u) = lim
n→∞

J(un) = c,

i. e.,

J(u) = c.

This completes the proof.

We will illustrate the above result with the following example.

Example 12.3. Let 𝕋 = ℤ,

J(u) = ∫
[0,10)

(x(τ))2

1 + (x(τ))2
Δτ + ∫
[0,10)

(u(τ))2Δτ,

and

xΔ(t) + xσ(t) = (x(t))
2

1 + (x(t))2
+ u(t), t > 0,

x(0) = 15, u ∈ Uad.

Here

a = 0, b = 15, σ(t) = t + 1,

f (t, x(t), xσ(t)) = (x(t))
2

1 + (x(t))2
,

g(x(t), xσ(t)) = (x(t))
2

1 + (x(t))2
,

h(u(t)) = (u(t))2, t ∈ 𝕋.

If x1, x2, y1, y2 ∈ ℝ, |x1| ≤ ρ, |x2| ≤ ρ, |y1| ≤ ρ, |y2| ≤ ρ, for some ρ > 0, we have

f (t, x1, y1) − f (t, x2, y2)
 =


x21
1 + x21
−

x22
1 + x22


≤ 2ρ|x1 − x2|,
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because

(
x2

1 + x2
)
′

=
2x(1 + x2) − 2x3

(1 + x2)2
=

2x
(1 + x2)2

, x ∈ ℝ.

Also, for any λ ∈ [0, 1], we have

x2

1 + x2
≤ 1 + |x|, x ∈ ℝ,

and

f (t, x, y)
 ≤ 1 + |x| + |y|

λ, x, y ∈ ℝ, t ∈ 𝕋.

Next, h : ℝ→ ℝ is convex and

lim
|u|→∞

h(u)
|u|
= lim
|u|→∞

u2

|u|
=∞.

Hence, by Theorem 12.2, it follows that the considered problem has at least one solu-
tion.

Exercise 12.4. Let 𝕋 = 2ℕ0 ∪ {0}. Prove that the problem

J(u) = 2 ∫
[0,16)

(x(τ))4

1 + (x(τ))4
Δτ + 3 ∫

[0,16)

(u(τ))3Δτ,

and

xΔ(t) + txσ(t) = (x(t))
6

1 + (x(t))6
+ u(t), t > 0,

x(0) = −1, u ∈ Uad,

has at least one solution.

12.2 Necessary conditions for the existence of solutions

In this section, we will derive some necessary conditions of optimality for a system,
involving an adjoint equation and optimal inequality. We will start with the following
useful result.

Theorem 12.5. Suppose that ϕ ∈ 𝒞rd(𝕋), ϕ ≥ 0 on 𝕋, q, g ∈ 𝕃1(𝕋), q ≥ 0, g ≥ 0 on 𝕋,
α ≥ 0, λ ∈ (0, 1), and

ϕ(t) ≤ α + ∫
[t,b)

q(τ)(ϕ(τ))λΔτ + ∫
[t,b)

g(τ)ϕσ(τ)Δτ, t ∈ [a, b). (12.5)

 EBSCOhost - printed on 2/10/2023 4:40 PM via . All use subject to https://www.ebsco.com/terms-of-use



12.2 Necessary conditions for the existence of solutions | 289

Then there exists a positive constant M such that

ϕ(t) ≤ M, t ∈ [a, b).

Proof. Define

f (t) = α + ∫
[t,b)

q(τ)(ϕ(τ))λΔτ,

ψ(t) = ∫
[t,b)

g(τ)ϕσ(τ)Δτ, t ∈ [a, b).

Then

ψ(b) = 0,

ϕ(t) ≤ f (t) + ψ(t), t ∈ [a, b),

ψΔ(t) = −g(t)ϕσ(t)

≥ −g(t)(f σ(t) + ψσ(t))

= −g(t)f σ(t) − g(t)ψσ(t) Δ-a.e. t ∈ [a, b).

Hence,

ψΔ(t)eg(t, b) ≥ −g(t)eg(t, b)f
σ(t) − g(t)ψσ(t)eg(t, b) Δ-a.e. t ∈ [a, b),

and

(ψ(⋅)eg(⋅, b))
Δ
(t) ≥ −g(t)eg(t, b)f

σ(t) Δ-a.e. t ∈ [a, b).

Then

−ψ(t)eg(t, b) ≥ − ∫
[t,b)

g(τ)eg(τ, b)f
σ(τ)Δτ, t ∈ [a, b),

and

ψ(t) ≤ ∫
[t,b)

g(τ)eg(b, t)eg(τ, b)f
σ(τ)Δτ

= ∫
[t,b)

g(τ)eg(τ, t)f
σ(τ)Δτ, t ∈ [a, b).

Hence, by (12.5), we obtain
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ϕ(t) ≤ α + ∫
[t,b)

q(τ)(ϕ(τ))λΔτ + ∫
[t,b)

g(τ)eg(τ, t)f
σ(τ)Δτ

= α + ∫
[t,b)

q(τ)(ϕ(τ))λΔτ

+ ∫
[t,b)

g(τ)eg(τ, t)(α + ∫
[σ(τ),b)

q(s)(ϕ(s))λΔs)Δτ

= α + ∫
[t,b)

q(τ)(ϕ(τ))λΔτ + α ∫
[t,b)

g(τ)eg(τ, t)Δτ

+ ∫
[t,b)

g(τ)eg(τ, t)( ∫
[σ(τ),b)

q(s)(ϕ(s))λΔs)Δτ

≤ α + ∫
[t,b)

q(τ)(ϕ(τ))λΔτ + α ∫
[t,b)

g(τ)eg(τ, t)Δτ

+ ∫
[t,b)

g(τ)eg(τ, t)( ∫
[τ,b)

q(s)(ϕ(s))λΔs)Δτ

≤ α + ∫
[t,b)

g(τ)(ϕ(τ))λΔτ + α ∫
[t,b)

g(τ)eg(τ, t)Δτ

+ ( ∫
[t,b)

q(s)(ϕ(s))λΔs) ∫
[t,b)

g(τ)eg(τ, t)Δτ

≤ (α + 1)(1 + ∫
[a,b)

eg(τ, a)g(τ)Δτ)(1 + ∫
[t,b)

q(τ)(ϕ(τ))λΔτ), t ∈ [a, b).

Define

β = ∫
[a,b)

eg(τ, a)g(τ)Δτ, γ = (α + 1)(β + 1),

h(t) = γ + γ ∫
[t,b)

q(τ)(ϕ(τ))λΔτ + γ ∫
[a,b)

q(τ)(ϕ(τ))λΔτ, t ∈ [a, b).

Then

ϕ(t) ≤ γ(1 + ∫
[t,b)

q(τ)(ϕ(τ))λΔτ) ≤ h(t), t ∈ [a, b).

We have that h is a monotone decreasing function on [a, b) and

hΔ(t) = −γq(t)(ϕ(t))λ ≥ −hq(t)(h(t))λ, t ∈ [a, b).
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Observe that

((h(⋅))1−λ)Δ(t) ≥ (1 − λ)(hσ(t))−λhΔ(t)

≥ (1 − λ)(h(t))−λhΔ(t), t ∈ [a, b).

Then

((h(⋅))1−λ)Δ(t) ≥ −γ(1 − λ)q(t), t ∈ [a, b),

and

−(h(t))1−λ + h(b))1−λ ≥ −γ(1 − λ) ∫
[t,b)

q(τ)Δτ, t ∈ [a, b),

or

(h(t))1−λ − (h(b))1−λ ≤ γ(1 − λ) ∫
[t,b)

q(τ)Δτ, t ∈ [a, b).

In particular, we have

(h(a))1−λ − (h(b))1−λ ≤ γ(1 − λ) ∫
[a,b)

q(τ)Δτ.

Observe that

h(b) = γ + γ ∫
[a,b)

q(τ)(ϕ(τ))λΔτ,

whereupon

h(b) − γ
γ
= ∫
[a,b)

q(τ)(ϕ(τ))λΔτ.

Then

h(a) = γ + 2γ ∫
[a,b)

q(τ)(ϕ(τ))λΔτ

= γ + 2γ h(b) − γ
γ

= γ + 2h(b) − 2γ = 2h(b) − γ.

Therefore,
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(2h(b) − γ)1−λ − (h(b))1−λ ≤ γ(1 − λ) ∫
[a,b)

q(τ)Δτ.

Let

r(z) = (2z − γ)1−λ − z1−λ, z ∈ ℝ.

Then

lim
z→∞

r(z) = lim
z→∞

r(z)
z1−λ

z1−λ = lim
z→∞
((2 − γ

z
)
1−λ
− 1)z1−λ =∞.

Consequently, there is a positive constantM such that

h(b) ≤ M.

Thus

ϕ(t) ≤ h(b) ≤ M, t ∈ [a, b).

This completes the proof.

Now consider the backward problem

ϕΔ(t) + p(t)ϕσ(t) = w(t,ϕ(t),ϕσ(t)), a ≤ t < b,
ϕ(b) = ϕ1,

(12.6)

where ϕ1 ∈ ℝ, p ∈ Γ1(𝕋), and
(H4) w : 𝕋 × ℝ × ℝ → ℝ is Δ-measurable in t ∈ ℝ and locally Lipschitz continuous,

i. e., for all x1, x2, y1, y2 ∈ ℝ, |x1| ≤ ρ, |x2| ≤ ρ, |y1| ≤ ρ, |y2| ≤ ρ, for some positive
constant ρ, there exists a constant L = L(ρ) such that

w(t, x1, y1) − w(t, x2, y2)
 ≤ L(ρ)(|x1 − x2| + |y1 − y2|), t ∈ 𝕋,

(H5) There exist a constant λ ∈ (0, 1) and a function q ∈ 𝕃1(𝕋), q ≥ 0 on 𝕋, such that

w(t,ϕ,ψ)
 ≤ q(t)(1 + |ϕ|

λ + |ψ|), ϕ,ψ ∈ ℝ.

UsingTheoremD.58, one canprove that the equation (12.6) has auniqueweak solution
ϕ ∈ 𝒞rd(𝕋) given by

ϕ(t) = e⊖p(b, t)ϕ1 − ∫
[t,b)

e⊖p(σ(τ), t)w(τ,ϕ(τ),ϕ
σ(τ))Δτ, t ∈ 𝕋.

Let (x, u) be an optimal pair of (12.1), (12.2). Assume that
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(H6) f (t, ⋅, ⋅) : ℝ × ℝ→ ℝ is partially differentiable and

fx(⋅) = fx(⋅, x(⋅), x
σ(⋅)) ∈ 𝕃1(𝕋),

fxσ (⋅) = fxσ (⋅, x(⋅), x
σ(⋅)) ∈ 𝕃1(𝕋),

(H7) P(⋅) = p(⋅) − fxσ (⋅) ∈ Γ1(𝕋),
(H8) g : ℝ × ℝ→ ℝ is convex.

Theorem 12.6. Let p ∈ Γ1(𝕋) and (H1)–(H8) hold. Then, in order for (x, u) to be an op-
timal pair of the problem (12.1), (12.2), it is necessary that there is a function ϕ ∈ 𝒞rd(𝕋)
such that

xΔ(t) + p(t)xσ(t) = f (t, x(t), xσ(t)) + u(t), a ≤ t < b,
x(a) = x0,

(12.7)

ϕΔ(t) = P(t)ϕ(t) − fx(t)ϕ
σ(t) − (1 + μ(t)P(t))η(t), a ≤ t < b,

η ∈ 𝜕G(xσ), ϕ(b) = 0,
(12.8)

∫
[a,b)

(
ϕσ(t)

1 + μ(t)P(t)
+ ξ (t))(u(t) − u(t))Δt ≥ 0, ξ ∈ 𝜕H(u), (12.9)

where

𝜕G(x) = {ξ ∈ 𝕃1(𝕋) : ∫
[a,b)

ξ (t)(x(t) − x(t))Δt

≤ ∫
[a,b)

(g(x(t), xσ(t)) − g(x(t), xσ(t)))Δt},

𝜕H(u) = {ξ ∈ 𝕃∞(𝕋) : ∫
[a,b)

ξ (t)(u(t) − u(t))Δt ≤ ∫
[a,b)

(h(u(t)) − h(u(t)))Δt}.

Proof. Let (x, u) ∈ 𝒞rd(𝕋) × Uad be an optimal pair. Then it satisfies (12.7). Since Uad is
convex, we have that

uε = u + ε(u − u) ∈ Uad

for any ε ∈ [0, 1] and u ∈ Uad. Let xε be the weak solution of the following dynamic
equation:

xΔε (t) + p(t)x
σ
ε (t) = f (t, xε(t), x

σ
ε (t)) + uε(t), t ≥ a,

xε(a) = x0.

Then xε can be represented in the form
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xε(t) = e⊖p(t, a)x0 + ∫
[a,t)

e⊖p(t, τ)(f (τ, xε(τ), x
σ
ε (τ)) + uε(τ))Δτ, t ∈ 𝕋.

Consider

xε(t) − x(t) = ∫
[a,t)

e⊖p(t, τ)(f (τ, xε(τ), x
σ
ε (τ)) − f (τ, x(τ), x

σ(τ)))Δτ

+ ε ∫
[a,t)

e⊖p(t, τ)(u(τ) − u(τ))Δτ.

Set

y = lim
ε→0

xε − x
ε
.

By (H6), it follows that u → x(u) is continuously Gateaux differentiable at u in the
direction u − u. Its Gateaux derivative yΔ satisfies

yΔ(t) + p(t)yσ(t) = fx(t)y(t) + fxσ (t)y
σ(t) + u(t) − u(t), a ≤ t < b,

y(a) = 0.

By Theorem D.58, it follows that the latter equation has a unique weak solution y ∈
𝒞rd(𝕋) given by the expression

y(t) = ∫
[a,t)

e⊖(p−fxσ )(t, τ)(fx(τ)y(τ) + u(τ) − u(τ))Δτ.

Define

G(x) = ∫
[a,b)

g(x(t), xσ(t))Δt, x ∈ 𝕃1(𝕋).

Since g : ℝ × ℝ → ℝ is convex, we have that g : ℝ × ℝ → ℝ is continuous. By
Theorem 12.1, it follows that G is a lower semicontinuous functional on 𝒞rd(𝕋). For
any x1, x2 ∈ 𝒞rd(𝕋) and λ ∈ [0, 1], we have

G(λx1 + (1 − λ)x2) = ∫
[a,b)

g(λx1(t) + (1 − λ)x2(t), λx
σ
1 (t) + (1 − λ)x

σ
2 (t))Δt

≤ λ ∫
[a,b)

g(x1(t), x
σ
1 (t))Δt + (1 − λ) ∫

[a,b)

g(x2(t), x
σ
2 (t))Δt

= λG(x1) + (1 − λ)G(x2).

ThenG is convex on 𝒞rd(𝕋). Also,G is finite and continuous at x,G is subdifferentiable
at x ∈ 𝒞rd(𝕋) and the subdifferential 𝜕G(x) of G at xσ is given by

 EBSCOhost - printed on 2/10/2023 4:40 PM via . All use subject to https://www.ebsco.com/terms-of-use



12.2 Necessary conditions for the existence of solutions | 295

𝜕G(x) = {ξ ∈ 𝕃1(𝕋) : ∫
[a,b)

ξ (t)(x(t) − x(t))Δt

≤ ∫
[a,b)

(g(x(t), xσ(t)) − g(x(t), xσ(t)))Δt}.

Note that 𝜕G(x) is nonempty. Define

H(u) = ∫
[a,b)

H(u(t))Δt, u ∈ 𝕃1(𝕋).

We have that H is subdifferentiable at u ∈ Uad and

𝜕H(u) = {ξ ∈ 𝕃∞(𝕋) : ∫
[a,b)

ξ (t)(u(t) − u(t))Δt ≤ ∫
[a,b)

(h(u(t)) − h(u(t)))Δt}.

Also, 𝜕H(u) is nonempty. Since

J = G + H ,

we conclude that J is subdifferentiable at u ∈ Uad. The subdifferential of J at u in the
direction u − u is

𝜕J(u, u − u) = ∫
[a,b)

y(t)η(t)Δt + ∫
[a,b)

ξ (t)(u(t) − u(t))Δt

for any η ∈ 𝜕G(x), ξ ∈ 𝜕H(u). We have

J(xε, uε) − J(x, u) ≥ 0, ε ∈ [0, 1], u ∈ Uad.

Hence, for u to be optimal, it is necessary that

∫
[a,b)

y(t)η(t)Δt + ∫
[a,b)

ξ (t)(u(t) − u(t))Δt ≥ 0 (12.10)

for any η ∈ 𝜕G(x), ξ ∈ 𝜕H(u). For η ∈ 𝜕G(x), consider the following adjoint equation:

ϕΔ(t) = P(t)ϕ(t) − fx(t)ϕ
σ(t) − (1 + μ(t)P(t))η(t), a ≤ t < b,

ϕ(b) = 0.

Note that P ∈ Γ1(𝕋) and

ϕ(t) = ∫
[t,b)

e⊖p(σ(τ), t)(fx(τ)ϕ
σ(τ) + (1 + μ(τ)P(τ))η(τ))Δτ.
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Also,

η(t) = P(t)ϕ(t) − fx(t)ϕ
σ(t) − ϕΔ(t)

1 + μ(t)P(t)

and

∫
[a,b)

y(t)η(t)Δt = ∫
[a,b)

y(t)P(t)(ϕ
σ(t) − μ(t)ϕΔ(t)) − ϕΔ(t) − fx(t)ϕσ(t)

1 + μ(t)P(t)
Δt

= ∫
[a,b)

y(t)(−ϕΔ(t) + P(t) − fx(t)
1 + μ(t)P(t)

ϕσ(t))Δt

= ∫
[a,b)

ϕσ(t)(yΔ(t) + P(t) − fx(t)
1 + μ(t)P(t)

y(t))Δt

= ∫
[a,b)

ϕσ(t)y
Δ(t) + μ(t)y(t)P(t) + P(t)y(t) − fx(t)y(t)

1 + μ(t)P(t)
Δt

= ∫
[a,b)

ϕσ(t)y
Δ(t) + yσ(t)P(t) − y(t)P(t) + y(t)P(t) − fx(t)y(t)

1 + μ(t)P(t)
Δt

= ∫
[a,b)

ϕσ(t)
1 + μ(t)P(t)

(−p(t)yσ(t) + fx(t)y(t) + fxσ (t)y
σ(t) + u(t)

− u(t) + yσ(t)p(t) − yσ(t)fxσ (t) − fx(t)y(t))Δt

= ∫
[a,b)

ϕσ(t)
1 + μ(t)(p(t) − fx(t))

(u(t) − u(t))Δt.

Now, applying (12.10), we get

∫
[a,b)

ϕσ(t)
1 + μ(t)(p(t) − fx(t))

(u(t) − u(t))Δt ≥ 0

for u ∈ Uad and ξ ∈ 𝜕H(u). This completes the proof.

We will illustrate the above result with the following example.

Example 12.7. Let 𝕋 = ℤ. Consider

J(u) = 2 ∫
[0,20)

xσ(t)
(1 + (x(t))2)(1 + (xσ(t))2)

Δt + ∫
[0,20)

(u(t))2Δt,

and

xΔ(t) + 2xσ(t) = x(t)
1 + (x(t))2

+ xσ(t) + u(t), 0 ≤ t < 20,
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x(0) = 1, u ∈ Uad.

Here

σ(t) = t + 1, g(x(t), xσ(t)) = 2 xσ(t)
(1 + (x(t))2)(1 + (xσ(t))2)

, h(u(t)) = (u(t))2,

p(t) = 2, f (t, x(t), xσ(t)) = x(t)
1 + (x(t))2

+ xσ(t), t ∈ 𝕋.

Let

l(x) = x
1 + x2
, x ∈ ℝ.

Then

l′(x) = 1 + x
2 − 2x2

(1 + x2)2
=

1 − x2

(1 + x2)2
,

l
′(x) =


1 − x2

(1 + x2)2

≤

1 + x2

(1 + x2)2
=

1
1 + x2
≤ 1, x ∈ ℝ,

and

f (t, x1, y1) − f (t, x2, y2)
 =


x1
1 + x21
+ y1 −

x2
1 + x22
− y2


≤


x1
1 + x21
−

x2
1 + x22


+ |y1 − y2|

≤ |x1 − x2| + |y1 − y2|, t ∈ 𝕋, x1, x2, y1, y2 ∈ ℝ.

Also,

fx(t, x(t), x
σ(t)) = 1 − (x(t))2

(1 + (x(t))2)2
∈ 𝕃1([0, 20)),

fxσ (t, x(t), x
σ(t)) = 1 ∈ 𝕃1([0, 20)).

Next, g : ℝ × ℝ→ ℝ is lower semicontinuous. Since

lim
|x|→∞
|y|→∞

g(x, y)
 = lim
|x|→∞
|y|→∞


2 y
(1 + x2)(1 + y2)


= 0,

there is a constant c ∈ ℝ such that

g(x, y) ≥ c, x, y ∈ ℝ.

Next,
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P(t) = 2 − 1 = 1 ∈ Γ1([0, 20)).

Then, for the pair (x, u) to be an optimal pair of the considered problem, it is necessary
that there is a function ϕ ∈ 𝒞rd(𝕋) such that

xΔ(t) + 2xσ(t) = x(t)
1 + (x(t))2

+ xσ(t) + u(t), 0 ≤ t < 20, x(0) = 1,

ϕΔ(t) = ϕ(t) − 1 − (x(t))2

(1 + (x(t))2)2
ϕσ(t) + 2η(t), 0 ≤ t < 20,

η ∈ 𝜕G(xσ), ϕ(20) = 0,

and

∫
[0,20)

(
1
2
ϕσ(t) + ξ (t))(u(t) − u(t))Δt ≥ 0, u ∈ Uad, ξ ∈ 𝜕H(u),

where

𝜕G(x) = {ξ ∈ 𝕃1([0, 20)) : ∫
[0,20)

ξ (t)(x(t) − x(t))Δt

≤ ∫
[0,20)

2( xσ(t)
(1 + (x(t))2)(1 + (xσ(t))2)

−
xσ(t)

(1 + (x(t))2)(1 + (xσ(t))2)
)Δt},

𝜕H(u) = {ξ ∈ 𝕃∞([0, 20)) : ∫
[0,20)

ξ (t)(u(t) − u(t))Δt ≤ ∫
[0,20)

((u(t))2 − (u(t))2)Δt}.

Exercise 12.8. Let 𝕋 = 3ℕ0. Find the necessary conditions of optimality for the fol-
lowing problem:

J(u) = − ∫
[0,100)

x(τ)xσ(τ)
(1 + (x(τ))2)(1 + (xσ(τ))2)

Δτ + 4 ∫
[0,100)

(u(τ))2Δτ,

and

xΔ(t) + 4 sin2(t, 3)x
σ(t) = − (x(t))

2

1 + (x(t))4
+ u(t), t > 0,

x(0) = 1, u ∈ Uad.

Remark 12.9. Consider the problem (12.1) and

xΔ(t) = p(t)x(t) + f (t, x(t), xσ(t)) + u(t), t > a,
x(a) = x0, u ∈ Uad,

(12.11)
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where p, f , and u are as above. Using

x(t) = xσ(t) − μ(t)xΔ(t),

we rewrite the dynamic equation (12.11) as follows:

xΔ(t) = p(t)xσ(t) − p(t)μ(t)xΔ(t) + f (t, x(t), xσ(t)) + u(t), t > a,
x(a) = x0, u ∈ Uad,

or

(1 + μ(t)p(t))xΔ(t) = p(t)xσ(t) + f (t, x(t), xσ(t)) + u(t), t > a,
x(a) = x0, u ∈ Uad,

or

xΔ(t) = p(t)
1 + μ(t)p(t)

xσ(t) + 1
1 + μ(t)p(t)

f (t, x(t), xσ(t)) + 1
1 + μ(t)p(t)

u(t), t > a,

x(a) = x0, u ∈ Uad.

Exercise 12.10. Write the necessary conditions of optimality for the problem (12.1),
(12.11).

12.3 Advanced practical problems

Problem 12.11. Let 𝕋 = 3ℕ0 ∪ {0}. Prove that the problem

J(u) = − ∫
[0,81)

(x(τ))8

1 + (x(τ))8
Δτ + 4 ∫

[0,81)

(u(τ))5Δτ,

and

xΔ(t) + e2(t, 3)x
σ(t) = − (x(t))

12

1 + (x(t))12
+ u(t), t > 0,

x(0) = 1, u ∈ Uad,

has at least one solution.

Problem 12.12. Let 𝕋 = 7ℕ0. Find the necessary conditions of optimality for the fol-
lowing problem:

J(u) = − ∫
[0,49)

(x(τ))2xσ(τ)
(1 + (x(τ))4)(1 + (xσ(τ))6)

Δτ + ∫
[0,49)

(u(τ))4Δτ,
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and

xΔ(t) + cos2(t, 7)x
σ(t) = (x(t))

4

1 + (x(t))4
+ u(t), t > 0,

x(0) = 1, u ∈ Uad.

Problem 12.13. Let 𝕋 = 2ℕ0 ∪ {0}. Find the necessary conditions of optimality for the
following problem:

J(u) = − ∫
[0,64)

(x(τ))4(xσ(τ))2

(1 + 3(x(τ))4)(1 + 7(xσ(τ))6)
Δτ + ∫
[0,64)

(u(τ))4Δτ,

and

xΔ(t) + txσ(t) = (x(t))
4

1 + (x(t))4
+ u(t), t > 0,

x(0) = 1, u ∈ Uad.

Problem 12.14. Let 𝕋 = 3ℕ0 ∪ {0}. Find the necessary conditions of optimality for the
following problem:

J(u) = − ∫
[0,243)

(x(τ))2 + 2(xσ(τ))4

(1 + (x(τ))4) + (1 + (xσ(τ))6)
Δτ + ∫
[0,243)

(u(τ))4Δτ,

and

xΔ(t) + (t2 + t + 3)xσ(t) = 12 (x(t))
2

1 + (x(t))4
+ 4xσ(t) + u(t), t > 0,

x(0) = 1, u ∈ Uad.

Problem 12.15. Let 𝕋 = 4ℕ0 ∪ {0}. Find the necessary conditions of optimality for the
following problem:

J(u) = ∫
[0,256)

(x(τ))4 + (xσ(τ))8

(1 + (x(τ))14)(1 + (xσ(τ))64)
Δτ + ∫
[0,256)

(u(τ))4Δτ,

and

xΔ(t) + t2 + t + 3
t8 + t4 + 10

xσ(t) = (x(t))
4

1 + (x(t))6
+ (xσ(t))7 + u(t), t > 0,

x(0) = 1, u ∈ Uad.

Problem 12.16. Suppose that f (t, x(t), xσ(t)) = f1(t, x(t)) in (12.2). Write the necessary
conditions of optimality.
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Problem 12.17. Suppose that f (t, x(t), xσ(t)) = f1(t, xσ(t)) in (12.2). Write the necessary
conditions of optimality.

Problem 12.18. Suppose that f (t, x(t), xσ(t)) = f1(t, x(t))+ f2(t, xσ(t)) in (12.2). Write the
necessary conditions of optimality.

Problem 12.19. Suppose that f (t, x(t), xσ(t)) = f1(t, x(t))f2(t, xσ(t)) in (12.2). Write the
necessary conditions of optimality.

Problem 12.20. Suppose that f (t, x(t), xσ(t)) = (f1(t, x(t)))2 + (f2(t, xσ(t)))4 in (12.2).
Write the necessary conditions of optimality.
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A Rolle’s theorem

Suppose that𝕋 is a time scale with forward jump operator σ and delta differentiation
operator Δ.

Definition A.1. Let y : 𝕋 → ℝ be (k − 1)-times differentiable, k ∈ ℕ. We say that y has
a generalized zero (GZ) of order greater than or equal to k at t ∈ 𝕋κ

k−1
provided

yΔ
i
(t) = 0, i ∈ {0, . . . , k − 1}, (A.1)

or

yΔ
i
(t) = 0 for i ∈ {0, . . . , k − 2} and yΔ

k−1
(ρ(t))yΔ

k−1
(t) < 0 (A.2)

holds.

Remark A.2. Note that in the Case (A.2) t must be left-scattered. Otherwise, ρ(t) = t
and

0 > yΔ
k−1
(ρ(t))yΔ

k−1
(t) = (yΔ

k−1
(t))2 ≥ 0,

which is a contradiction.

Theorem A.3. Condition (A.2) holds if and only if

yΔ
j
(t) = 0, j ∈ {0, . . . , k − 2}, and (−1)k−1y(ρ(t))yΔ

k−1
(t) < 0. (A.3)

Proof.
1. Let (A.2) hold. Then t is left-scattered, σ(ρ(t)) = t, and

yΔ
k−1
(ρ(t)) = y

Δk−2 (σ(ρ(t))) − yΔ
k−2
(ρ(t))

μ(ρ(t))

= −
yΔ

k−2
(ρ(t))

μ(ρ(t))
...

= (−1)k−1 y(ρ(t))
(μ(ρ(t)))k−1

. (A.4)

Hence,

0 > yΔ
k−1
(ρ(t))yΔ

k−1
(t) = (−1)k−1 y(ρ(t))

(μ(ρ(t)))k−1
yΔ

k−1
(t)

and (A.3) holds.

https://doi.org/10.1515/9783110787320-013
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2. Assume (A.3). Let t be left-dense. Then ρ(t) = t, and we have the following cases:
(a) Let k = 1. Then (y(t))2 < 0, which is a contradiction.
(b) Let k ≥ 2. Then y(t) = 0 and

(−1)k−1y(t)yΔ
k−1
(t) < 0.

This is a contradiction.
Consequently, t is left-scattered. Hence, using (A.4), we obtain (A.2).

This completes the proof.

Theorem A.4. Let j ∈ ℕ0 and t ∈ 𝕋κ
j
. Then

yΔ
i
(t) = 0, 0 ≤ i ≤ j, (A.5)

if and only if

yΔ
i
(σl(t)) = 0, 0 ≤ i ≤ j − l, 0 ≤ l ≤ j. (A.6)

In this case,

yΔ
j+1−l
(σl(t)) =

l−1
∏
s=0

μ(σs(t))yΔ
j+1
(t). (A.7)

Proof.
1. Let (A.5) hold.

(a) Suppose that j = 0. Then l = i = 0, y(t) = 0, and

yΔ
i
(σl(t)) = y(t) = 0.

(b) Suppose that j > 0. Then

y(t) = yΔ(t) = ⋅ ⋅ ⋅ = yΔ
j
(t) = 0.

i. Let j = 1. Then i ∈ {0, 1}, l ∈ {0, 1}.
A. Let l = 0. Then i ∈ {0, 1} and (A.6) holds.
B. Let l = 1. Then i = 0 and

y(σ(t)) = y(t) + μ(t)yΔ(t) = 0.
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ii. Assume that (A.6) is true for some j ∈ ℕ, i. e., assume

y(t) = yΔ(t) = ⋅ ⋅ ⋅ = yΔ
j
(t) = 0,

y(σ(t)) = yΔ(σ(t)) = ⋅ ⋅ ⋅ = yΔ
j−1
(σ(t)) = 0,

y(σ2(t)) = yΔ(σ2(t)) = ⋅ ⋅ ⋅ = yΔ
j−2
(σ2(t)) = 0,

...

y(σl(t)) = yΔ(σl(t)) = ⋅ ⋅ ⋅ = yΔ
j−l
(σl(t)) = 0,

...

y(σj(t)) = 0.

(A.8)

iii. We will prove (A.6) for j + 1, i. e., we will prove that

y(t) = yΔ(t) = ⋅ ⋅ ⋅ = yΔ
j+1
(t) = 0,

y(σ(t)) = yΔ(σ(t)) = ⋅ ⋅ ⋅ = yΔ
j
(σ(t)) = 0,

y(σ2(t)) = yΔ(σ2(t)) = ⋅ ⋅ ⋅ = yΔ
j−1
(σ2(t)) = 0,

...

y(σl(t)) = yΔ(σl(t)) = ⋅ ⋅ ⋅ = yΔ
j−l+1
(σl(t)) = 0,

...

y(σj+1(t)) = 0.

By (A.8), it follows that we have to prove

yΔ
j+1
(t) = yΔ

j
(σ(t)) = ⋅ ⋅ ⋅ = yΔ

j−l+1
(σl(t)) = ⋅ ⋅ ⋅ = y(σj+1(t)) = 0.

By (A.5), we have yΔ
j+1
(t) = 0. Then

yΔ
j
(σ(t)) = yΔ

j
(t) + μ(t)yΔ

j+1
(t) = 0,

yΔ
j−1
(σ2(t)) = yΔ

j−1
(σ(t)) + μ(t)yΔ

j
(σ(t)) = 0,

...

yΔ(σj(t)) = 0,

y(σj+1(t)) = y(σj(t)) + μ(t)yΔ(σj(t)) = 0.

Hence, by the principle of the mathematical induction, we conclude
that (A.6) holds for any j ∈ ℕ0.
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2. Suppose that (A.6) holds.
(a) Let j = 0. Then i = l = 0 and

yΔ
i
(σl(t)) = y(t) = 0.

(b) Let j > 0.
i. Assume that j = 1. Then, by (A.6), we have

y(t) = yΔ(t) = y(σ(t)) = 0.

ii. Assume that (A.5) holds for some j ∈ ℕ0.
iii. We will prove that (A.5) holds for j + 1. Since (A.6) holds for j + 1, by (A.8)

we obtain

y(t) = yΔ(t) = ⋅ ⋅ ⋅ = yΔ
j+1
(t) = 0.

Hence, by theprinciple of themathematical induction, it follows that (A.5)
holds for any j ∈ ℕ0.

Suppose (A.6) is true, i. e., we assume (A.8). Then we will prove (A.7). We have

yΔ
j
(σ(t)) = yΔ

j
(t) + μ(t)yΔ

j+1
(t)

= μ(t)yΔ
j+1
(t),

yΔ
j−1
(σ2(t)) = yΔ

j−1
(σ(t)) + μ(σ(t))yΔ

j
(σ(t))

= μ(σ(t))yΔ
j
(σ(t))

= μ(σ(t))μ(t)yΔ
j+1
(t),

...

yΔ
j+1−l
(σl(t)) =

l−1
∏
s=0

μ(σs(t))yΔ
j+1
(t).

This completes the proof.

Definition A.5. If y has a GZ of order greater than or equal to k at t, we will say that y
has at least k GZs, countingmultiplicities. By Theorem A.4, it follows that if y has a GZ
of order greater than or equal to k at t, then y has a GZ of order greater than or equal to
k − 1 at σ(t). Therefore, if y has a GZ of order greater than or equal to k at t1 and y has
a GZ of order greater than or equal to k2 at t2 and σk−1(t1) < t2, then we will say that y
has at least k1 + k2 GZs, counting multiplicities.

Theorem A.6 (Rolle’s theorem). If y has at least k ∈ ℕ GZs on [a, b], counting multi-
plicities, then yΔ has at least k − 1 GZs on [a, b], counting multiplicities.
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Proof.
1. Firstly, we will prove that if y has a GZ of order ≤ m at t, then yΔ has a GZ of order
≤ m − 1 at t.
Since y has a GZ of order ≤ m at t, we have

yΔ
i
(t) = 0, i ∈ {0, . . . ,m − 1},

or

yΔ
i
(t) = 0, i ∈ {0, . . . ,m − 2}, and yΔ

m−1
(ρ(t))yΔ

m−1
(t) < 0.

If m = 1, then y(t) = 0 or y(ρ(t))y(t) < 0. If yΔ(t) = 0 or yΔ(ρ(t))yΔ(t) < 0, then
m > 1, which is a contradiction. Therefore, yΔ has no GZ at t. Letm ≥ 2. Then

(yΔ)Δ
i−1

(t) = 0, i ∈ {0, . . . ,m − 2},

or

(yΔ)Δ
i

(t) = 0, i ∈ {0, . . . ,m − 3}, and (yΔ)Δ
m−2

(ρ(t))(yΔ)Δ
m−2

(t) < 0.

Thus, yΔ has a GZ of order ≤ m − 1 at t.
2. Now, we will prove that if y has a GZ of order ≤ m ∈ ℕ at t and y has a GZ of order
≤ 1 at swith σm−1(t) < s, then yΔ has at leastm GZs in [t, s), which is equivalent to
(a) If y(r) = 0 and yΔ has no GZ in [r, s), where r < ρ(s), then y has no GZ at s.
(b) If y(ρ(r))y(r) < 0 and yΔ has no GZ in [r, s), where r < ρ(s), then y has no GZ

at s.
If the assumptions of (a) hold, then yΔ(τ) > 0, τ ∈ [r, s), or yΔ(τ) < 0, τ ∈ [r, s).
Thus,

y(ρ(s))y(s) = (
ρ(s)

∫
r

yΔ(τ)Δτ)(
s

∫
r

yΔ(τ)Δτ) > 0.

Therefore, y has no GZ at s. If the assumptions of (b) hold, then ρ(r) < r and

y(ρ(r))yΔ(ρ(r)) = y(ρ(r))y(r) − y(ρ(r))
μ(ρ(r))

< 0.

Since yΔ has a constant sign on [ρ(r), s), we get

y(ρ(r))yΔ(τ) < 0, τ[ρ(r), s).

Therefore,
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y(ρ(r))y(t) = y(ρ(r))(y(r) +
t

∫
r

yΔ(τ)Δτ) < 0, t ∈ {ρ(s), s}.

Hence,

y(ρ(r))y(ρ(s)) < 0, y(ρ(r))y(s) < 0,

and

(y(ρ(r)))2y(ρ(s))y(s) > 0.

Consequently, y(ρ(s))y(s) > 0 and y has no GZ at s.

This completes the proof.
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B Fréchet and Gâteaux derivatives

B.1 Remainders

Let X and Y be normed spaces. By o(X,Y)we will denote the set of all maps r : X → Y
for which there is some map α : X → Y such that
1. r(x) = α(x)‖x‖ for all x ∈ X,
2. α(0) = 0,
3. α is continuous at 0.

Definition B.1. The elements of o(X,Y) will be called remainders.

Exercise B.2. Prove that o(X,Y) is a vector space.

Definition B.3. Let f : X → Y be a function and x0 ∈ X. We say that f is stable at x0 if
there are some ε > 0 and c > 0 such that ‖x − x0‖ ≤ ε implies

f (x − x0)
 ≤ c‖x − x0‖.

Example B.4. Let T : X → Y be a linear bounded operator. Then

T(x − 0)
 =
T(x)
 ≤ ‖T‖‖x‖, x ∈ X.

Hence, T is stable at 0.

Theorem B.5. Let X, Y, Z, andW be normed spaces, r ∈ o(X,Y), and assume f : W → X
is stable at 0, while g : Y → Z is stable at 0. Then r ∘ f ∈ o(W ,Y) and g ∘ r ∈ o(X, Z).

Proof. Since r ∈ o(X,Y), there is a map α : X → Y such that

r(x) = α(x)‖x‖, x ∈ X,

α(0) = 0, and α is continuous at 0. Define β : W → Y by

β(w) = {
‖f (w)‖
‖w‖ α(f (w)) if w ̸= 0,

0 if w = 0,

for w ∈ W . Since f : W → Z is stable at 0, there are constants ε > 0 and c > 0 such
that ‖w‖ ≤ ε implies

f (w)
 ≤ c‖w‖.

Hence,

f (0)
 = 0 and f (0) = 0.

https://doi.org/10.1515/9783110787320-014

 EBSCOhost - printed on 2/10/2023 4:40 PM via . All use subject to https://www.ebsco.com/terms-of-use

https://doi.org/\global \c@doi \c@pseudochapter \relax \global \advance \c@doi \c@parttext \relax 10.1515/9783110787320-013


310 | B Fréchet and Gâteaux derivatives

Next, β(0) = 0 and, if w ̸= 0, ‖w‖ ≤ ε, we get

β(w)
 =
‖f (w)‖
‖w‖
α(f (w))

 ≤ c
α(f (w))

.

Now using

f (w)→ 0, as w → 0,

and

α(f (w))→ 0, as w → 0,

we get

β(w)→ 0, as w → 0.

Therefore, β : W → Y is continuous at 0. Also, we have
– If w = 0, then

β(0) = 0,
r ∘ f (0) = α(f (0))f (0)

 = 0.

– If w ̸= 0, then

r ∘ f (w) = α(f (w))f (w)


=
‖w‖β(w)
‖f (w)‖

f (w)


= ‖w‖β(w).

Therefore, r ∘ f ∈ o(W ,Y).

Since g : Y → Z is stable at 0, there are constants ε1 > 0 and c1 > 0 such that ‖w‖ ≤ ε1
implies

g(w)
 ≤ c1‖w‖.

Define γ : X → Y by

γ(x) = {
g(‖x‖α(x))
‖x‖ if x ̸= 0,

0 if x = 0.

Then

g(‖x‖α(x)) = ‖x‖γ(x), x ∈ X.
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For x ̸= 0, x ∈ X, we have

γ(x)
 =
‖g(‖x‖α(x))‖
‖x‖

≤
c1‖x‖α(x)
‖x‖
= c1α(x).

Then

γ(x)→ 0, as x → 0, x ∈ X.

Also,

g ∘ r(x) = g(r(x)) = g(α(x)‖x‖) = γ(x)‖x‖, x ∈ X.

This completes the proof.

B.2 Definition and uniqueness of the Fréchet derivative

Suppose that X and Y are normed spaces, U is an open subset of X, and x0 ∈ U . By
ℒ(X,Y) we will denote the vector space of all linear bounded operators from X to Y .

Definition B.6. We say that a function f : X → Y is Fréchet differentiable at x0 if there
are some L ∈ ℒ(X,Y) and r ∈ o(X,Y) such that

f (x) = f (x0) + L(x − x0) + r(x − x0), x ∈ U .

The operator Lwill be called the Fréchet derivative of the function f at x0.Wewill write
Df (x0) = L.

Suppose that L1, L2 ∈ ℒ(X,Y) and r1, r2 ∈ o(X,Y) are such that

f (x) = f (x0) + L1(x − x0) + r1(x − x0),
f (x) = f (x0) + L2(x − x0) + r2(x − x0), x ∈ U .

Then

f (x0) + L1(x − x0) + r1(x − x0) = f (x0) + L2(x − x0) + r2(x − x0), x ∈ U ,

or

L1(x − x0) − L2(x − x0) = r2(x − x0) − r1(x − x0), x ∈ U .

Also, let α1, α2 : X → Y be such that

r1(x) = ‖x‖α2(x), r2(x) = ‖x‖α1(x), α1(0) = α2(0) = 0,

 EBSCOhost - printed on 2/10/2023 4:40 PM via . All use subject to https://www.ebsco.com/terms-of-use



312 | B Fréchet and Gâteaux derivatives

where α1 and α2 are continuous at 0. Then

L1(x − x0) − L2(x − x0) = ‖x − x0‖α1(x − x0) − ‖x − x0‖α2(x − x0)
= ‖x − x0‖(α1(x − x0) − α2(x − x0)), x ∈ U .

Let x ∈ X be arbitrarily chosen. Then there is some h > 0 such that for all |t| ≤ h we
have x0 + tx ∈ U . Hence,

L1(tx) − L2(tx) = ‖tx‖(α1(tx) − α2(tx))

or

t(L1(x) − L2(x)) = |t|‖x‖(α1(tx) − α2(tx)),

or

L1(x) − L2(x) = sign(t)‖x‖(α1(tx) − α2(tx))→ 0, as t → 0.

Because x ∈ X was arbitrarily chosen, we conclude that L1 = L2 and r1 = r2.

Definition B.7. We denote by 𝒞1(U ,Y) the set of all functions f : U → Y that are
Fréchet differentiable at each point of U and Df : U → ℒ(X,Y) is continuous. We
denote by 𝒞2(U ,Y) the set of all functions f ∈ 𝒞1(U ,Y) such that Df : U → ℒ(X,Y) is
Fréchet differentiable at each point of U and

D(Df ) : U → ℒ(X,ℒ(X,Y))

is continuous .

Theorem B.8. Let f1, f2 : U → Y be Fréchet differentiable at x0 and a, b ∈ ℝ. Then
af1 + bf2 is Fréchet differentiable at x0.

Proof. Let r1, r2 ∈ o(X,Y) be such that

f1(x) = f1(x0) + Df1(x0)(x − x0) + r1(x − x0),
f2(x) = f2(x0) + Df2(x0)(x − x0) + r2(x − x0), x ∈ U .

Hence,

(af1 + bf2)(x) = a(f1(x0) + Df1(x0)(x − x0) + r1(x − x0))
+ b(f2(x0) + Df2(x0)(x − x0) + r2(x − x0))
= af1(x0) + bf2(x0) + (aDf1(x0) + bDf2(x0))(x − x0)
+ (ar1(x − x0) + br2(x − x0)), x ∈ U .

Note that ar1 + br2 ∈ o(X,Y). This completes the proof.
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Theorem B.9. A function f : U → Y is Fréchet differentiable at x0 if and only if there is
some function F : U → ℒ(X,Y) that is continuous at x0 and for which

f (x) − f (x0) = F(x)(x − x0), x ∈ U .

Proof.
1. Suppose that there is a function F : U → ℒ(X,Y) that is continuous at x0 and

f (x) − f (x0) = F(x)(x − x0), x ∈ U .

Then

f (x) − f (x0) = F(x)(x − x0) − F(x0)(x − x0) + F(x0)(x − x0)
= F(x0)(x − x0) + r(x − x0),

where

r(x) = {
(F(x + x0) − F(x0))(x) for x + x0 ∈ U ,
0 for x + x0 ∉ U .

Define

α(x) =
{{{
{{{
{

(F(x+x0)−F(x0))(x)
‖x‖ for x + x0 ∈ U , x ̸= 0,

0 for x + x0 ∉ U ,
0 for x = 0.

Then

r(x) = α(x)‖x‖, x ∈ X.

Let ε > 0 be arbitrarily chosen. Since F : U → ℒ(X,Y) is continuous at x0, there
exists some δ > 0 for which ‖x‖ < δ implies

(F(x + x0) − F(x0))(x)
 ≤
F(x + x0) − F(x0)

‖x‖ < ε‖x‖.

Therefore,

α(x)
 < ε

for ‖x‖ < δ, i. e., α is continuous at 0. From here, we conclude that r ∈ o(X,Y) and
F(x0) = Df (x0).

2. Suppose that f is Fréchet differentiable at x0. Then there is some r ∈ o(X,Y) such
that
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f (x) = f (x0) + Df (x0)(x − x0) + r(x − x0), x ∈ U ,

where Df (x0) ∈ ℒ(X,Y). Since r ∈ o(X,Y), there is some α : X → Y such that

r(x) = α(x)‖x‖,
α(0) = 0,
α(x)→ 0, as x → 0.

By the Hahn–Banach extension theorem, it follows that there is some λx ∈ X∗

such that

λxx = ‖x‖

and

|λxv| ≤ ‖v‖, v ∈ X.

Then

r(x) = (λxx)α(x), x ∈ X,

and

f (x) = f (x0) + Df (x0)(x − x0) + (λx−x0 (x − x0))α(x − x0), x ∈ U .

Let F : U → ℒ(X,Y) be defined as follows:

F(x)(v) = Df (x0)(v) + (λx−x0v)α(x − x0), x ∈ U , v ∈ X.

We have

f (x) = f (x0) + F(x)(x − x0),
r(x − x0) = (λx−x0 (x − x0))α(x − x0)

= f (x) − f (x0) − Df (x0)(x − x0)
= F(x)(x − x0) − Df (x0)(x − x0), x ∈ U .

Note that

F(x)(v) − F(x0)(v)
 =
Df (x0)(v) + (λx−x0v)α(x − x0) − Df (x0)(v)


= (λx−x0v)α(x − x0)


= |λx−x0v|

α(x − x0)


≤ ‖v‖α(x − x0)
, x ∈ U , v ∈ X.
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Then

F(x) − F(x0)
 ≤
α(x − x0)

, x ∈ U .

Consequently, F is continuous at x0. This completes the proof.

Theorem B.10. Let Z be a normed space, assume f : U → Z is Fréchet differentiable
at x0, while g : f (U)→ Z is Fréchet differentiable at f (x0). Then g ∘ f : U → Z is Fréchet
differentiable at x0 and

D(g ∘ f )(x0) = Dg(f (x0)) ∘ Df (x0).

Proof. Let

y0 = f (x0),
L1 = Df (x0),
L2 = Dg(y0).

There exist r1 ∈ o(X,Y), r2 ∈ o(Y , Z) such that

f (x) = f (x0) + L1(x − x0) + r1(x − x0), x ∈ U ,
g(y) = g(y0) + L2(y − y0) + r2(y − y0), y ∈ f (U).

Hence,

g(f (x)) = g(f (x0)) + L2(f (x) − y0) + r2(f (x) − y0)
= g(y0) + L2(L1(x − x0) + r1(x − x0))
+ r2(L1(x − x0) + r1(x − x0))
= g(y0) + L2(L1(x − x0)) + L2(r1(x − x0))
+ r2(L1(x − x0) + r1(x − x0)), x ∈ U .

Define r3 : X → Z as follows:

r3(x) = r2(L1(x) + r1(x)), x ∈ U .

Fix c > ‖L1‖ and represent r1 as follows:

r1(x) = α1(x)‖x‖, x ∈ U .

We have that α1 : X → Y , α1(0) = 0, and α1 is continuous at 0. Then there exists some
δ > 0 such that if ‖x‖ < δ, then

α1(x)
 < c − ‖L1‖.
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Hence, if ‖x‖ < δ, then

r1(x)
 ≤ (c − ‖L1‖)‖x‖.

Then, ‖x‖ < δ implies

L1(x) + r1(x)
 ≤
L1(x)
 +
r1(x)


≤ ‖L1‖‖x‖ + (c − ‖L1‖)‖x‖
= c‖x‖.

Then x → L1(x)+ r1(x) is stable at 0. Hence, by Theorem B.5, we get r3 ∈ o(X, Z). Define
r : X → Z as follows:

r = L1 ∘ r1 + r3.

We have r ∈ o(X, Z) and

g ∘ f (r) = g ∘ f (x0) + L2 ∘ L1(x − x0) + r(x − x0), x ∈ U .

Since L1 ∈ ℒ(X,Y), L2 ∈ ℒ(Y , Z), we have L2 ∘ L1 ∈ ℒ(X, Z). Therefore, g ∘ f is Fréchet
differentiable at x0 and

L2 ∘ L1 = Dg(y0) ∘ Df (x0) = Dg(f (x0)) ∘ Df (x0).

This completes the proof.

Theorem B.11. Let f1, f2 : U → ℝ be Fréchet differentiable at x0. Then f1 ⋅ f2 is Fréchet
differentiable at x0 and

D(f1 ⋅ f2)(x0) = f2(x0)Df1(x0) + f1(x0)Df2(x0).

Proof. Let r1, r2 ∈ o(X,ℝ) be such that

f1(x) = f1(x0) + Df1(x0)(x − x0) + r1(x − x0),
f2(x) = f2(x0) + Df2(x0)(x − x0) + r2(x − x0), x ∈ U .

Hence,

f1(x)f2(x) = (f1(x0) + Df1(x0)(x − x0) + r1(x − x0))
× (f2(x0) + Df2(x0)(x − x0) + r2(x − x0))
= f1(x0)f2(x0) + f1(x0)Df2(x0)(x − x0) + f2(x0)Df1(x0)(x − x0)
+ f1(x0)r2(x − x0) + Df1(x0)(x − x0)Df2(x0)(x − x0)
+ Df1(x0)(x − x0)r2(x − x0) + r1(x − x0)f2(x0)
+ Df2(x0)(x − x0)r1(x − x0) + r1(x − x0)r2(x − x0), x ∈ U .
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Let r : X → ℝ be defined as follows:

r(x) = f1(x0)r2(x) + Df1(x0)xDf2(x0)x
+ Df1(x0)xr2(x) + r1(x)f2(x0)
+ Df2(x0)xr1(x) + r1(x)r2(x), x ∈ U .

Then

f1(x)f2(x) = f1(x0)f2(x0) + f1(x0)Df2(x0)(x − x0)
+ f2(x0)Df1(x0)(x − x0) + r(x − x0), x ∈ U .

Note that

Df1(x0)xDf2(x0)x
 ≤
Df1(x0)


Df2(x0)

‖x‖
2, x ∈ U .

Define α : X → ℝ as follows:

α(x) = {
Df1(x0)xDf2(x0)x
‖x‖ , x ∈ U , x ̸= 0,

0, x = 0.

Then

Df1(x0)xDf2(x0)x = α(x)‖x‖, x ∈ U ,
α(x)
 =
|Df1(x0)xDf2(x0)x|
‖x‖

≤
‖Df1(x0)‖‖Df2(x0)‖‖x‖2

‖x‖
= Df1(x0)


Df2(x0)

‖x‖, x ∈ U , x ̸= 0.

Then

α(x)→ 0, as x → 0.

From here, r ∈ o(X,ℝ). This completes the proof.

B.3 The Gâteaux derivative

Let X and Y be normed spaces and U be an open subset of X. Let also, x0 ∈ U .

Definition B.12. Let f : U → Y . If there is some T ∈ ℒ(X,Y) such that

lim
t→0

f (x0 + tv) − f (x0)
t

= Tv
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for any v ∈ X, we say that f is Gâteaux differentiable at x0. We write f ′(x0) = T. If f is
Gâteaux differentiable at any point of U, then we say that f is Gâteaux differentiable
on U .

Example B.13. Let f : ℝ2 → ℝ be defined as follows:

f (x1, x2) =
{
{
{

x41
x61 +x

3
2

for (x1, x2) ̸= (0,0),

0 for (x1, x2) = (0,0).

Let v = (v1, v2) ∈ ℝ2, (v1, v2) ̸= (0,0), be arbitrarily chosen. We have, for t ̸= 0,

f (0 + tv) =
t4v41

t6v61 + t3v
3
2
=

tv41
t3v61 + v

3
2
,

lim
t→0

f (0 + tv) − f (0)
t

= lim
t→0

tv41
t(t3v61 + v

3
2)
= lim

t→0

v41
t3v61 + v

3
2
=
v41
v32
.

Therefore,

f ′(0,0)(v1, v2) =
v41
v32
, (v1, v2) ∈ ℝ

2, (v1, v2) ̸= (0,0).

This ends the example.

Theorem B.14. If f : U → Y is Fréchet differentiable at x0, then it is Gâteaux differen-
tiable at x0.

Proof. Since f : U → Y is Fréchet differentiable at x0, then there is some r ∈ o(X,Y)
such that

f (x) = f (x0) + Df (x0)(x − x0) + r(x − x0), x ∈ U ,

and

r(x) = α(x)‖x‖, x ∈ X,

where α : X → Y , α(0) = 0, and α is continuous at 0. Then, for v ∈ X and t ∈ ℝ, with
|t| small enough, we have

f (x0 + tv) − f (x0)
t

=
Df (x0)(tv) + r(tv)

t
=
tDf (x0)(v) + |t|‖v‖α(tv)

t
= Df (x0)(v) + sign(t)‖v‖α(tv)
→ Df (x0)(v) as t → 0.

This completes the proof.
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C Pötzsche’s chain rules

C.1 Measure chains

Let 𝕋 be some set of real numbers.

Definition C.1. A triple (𝕋,≤, ν) is called a measure chain provided it satisfies the fol-
lowing axioms:
(A1) The relation “≤” is, for r, s, t ∈ 𝕋,

1. reflexive, i. e., t ≤ t,
2. transitive, i. e., if t ≤ r and r ≤ s, then t ≤ s,
3. antisymmetric, i. e., if t ≤ r and r ≤ t, then t = r,
4. total, i. e., either r ≤ s or s ≤ r.

(A2) Any nonvoid subset of𝕋which is bounded above has a least upper bound, i. e.,
the measure chain (T ,≤) is conditionally complete.

(A3) The mapping ν : 𝕋 × 𝕋→ ℝ has the following properties, for r, s, t ∈ 𝕋:
1. ν(r, s) + ν(s, t) = ν(r, t) (cocycle property),
2. if r > s, then ν(r, s) > 0 (strong isotony),
3. ν is continuous (continuity).

Example C.2. Let𝕋 be any nonvoid closed subset of real numbers, with “≤” being the
usual order relation between real numbers and

ν(r, s) = r − s, r, s ∈ 𝕋.

Definition C.3. The forward jump operator σ and the backward jump operator ρ are
defined as follows:

σ(t) = inf{s ∈ 𝕋 : s > t}, ρ(t) = sup{s ∈ 𝕋 : s < t},

where

σ(t) = t if t = max𝕋,
ρ(t) = t if t = min𝕋.

The graininess function is defined as

μ(t) = ν(σ(t), t), t ∈ 𝕋.

The notions left-scattered, left-dense, right-scattered, right-dense, isolated, and
𝕋κ are defined as in the case of time scales.

https://doi.org/10.1515/9783110787320-015
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Definition C.4. Let X be a Banach space with a norm ‖ ⋅ ‖. We say that f : 𝕋 → X is
differentiable at t ∈ 𝕋 if there exists f Δ(t) ∈ X such that for any ε > 0 there exists a
neighborhood U of t such that

f (σ(t)) − f (s) − f
Δ(t)ν(σ(t), s) ≤ ε

ν(σ(t), s)


for all s ∈ U . In this case f Δ(t) is said to be the derivative of f at t.

Theorem C.5. We have

νΔ(⋅, t) = 1, t ∈ 𝕋.

Proof. Let t ∈ 𝕋. Let also ε > 0 be arbitrarily chosen and U be a neighborhood of t.
Then

ν(σ(t), s) + ν(s, t) = ν(σ(t), t), s ∈ 𝕋,

and

ν(σ(t), t) − ν(s, t) − ν(σ(t), s)
 =
ν(σ(t), t) − ν(σ(t), t)


= 0
≤ εν(σ(t), s)

,

for any s ∈ U . This completes the proof.

As in the case of time scales, one can prove the following assertion.

Theorem C.6. Let f , g : 𝕋→ X and t ∈ 𝕋.
1. If t ∈ 𝕋κ, then f has at most one derivative at t.
2. If f is differentiable at t, then f is continuous at t.
3. If f is continuous at t and t is right-scattered, then f is differentiable at t and

f Δ(t) = f (σ(t)) − f (t)
μ(t)

.

4. If f and g are differentiable at t ∈ 𝕋κ and α, β ∈ ℝ, then αf + βg is differentiable at
t and

(αf + βg)Δ(t) = αf Δ(t) + βgΔ(t).

5. If f and g are differentiable at t ∈ 𝕋κ and “⋅” is bilinear and continuous, then f ⋅ g is
differentiable at t and

(f ⋅ g)Δ(t) = f Δ(t) ⋅ g(t) + f (σ(t)) ⋅ gΔ(t).
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6. If f and g are differentiable at t ∈ 𝕋κ and g is algebraically invertible, then f ⋅ g−1 is
differentiable at t with

(f ⋅ g−1)Δ(t) = (f Δ(t) − (f ⋅ g−1)(t) ⋅ gΔ(t)) ⋅ g−1(σ(t)).

C.2 Pötzsche’s chain rule

Throughout this section we suppose that (𝕋,≤, ν) is a measure chain with forward
jump operator σ and graininess μ. Assume that X and Y are Banach spaces, and we
will write ‖ ⋅ ‖ for the norms of X and Y . For a function f : 𝕋 × X → Y and x0 ∈ X, we
denote the delta derivative of t → f (t, x0) by Δ1f (⋅, x0), and for a t0 ∈ 𝕋 we denote the
Fréchet derivative of x → f (t0, x) by D2f (t0, ⋅), provided these derivatives exist.

Theorem C.7 (Pötzsche’s chain rule). For some fixed t0 ∈ 𝕋κ, let g : 𝕋 → X, f : 𝕋 ×
X → Y be functions such that g, f (⋅, g(t0)) are differentiable at t0, and let U ⊆ 𝕋 be a
neighborhood of t0 such that f (t, ⋅) is differentiable for t ∈ U ∪ {σ(t0)}, D2f (σ(t0), ⋅) is
continuous on the line segment

{g(t0) + hμ(t0)g
Δ(t0) ∈ X : h ∈ [0, 1]}

and D2f is continuous at (t0, g(t0)). Then the composition function F : 𝕋 → Y, F(t) =
f (t, g(t)) is differentiable at t0 with derivative

FΔ(t0) = Δ1f (t0, g(t0)) + (
1

∫
0

D2f (σ(t0), g(t0) + hμ(t0)g
Δ(t0))dh)g

Δ(t0).

Proof. Let U0 ⊆ U be a neighborhood of t0 such that

μ(t0) ≤
ν(t, σ(t0))

 for t ∈ U0.

Let

Φ(t, h) = D2f (t, g(t0) + h(g(t) − g(t0))), t ∈ U0, h ∈ [0, 1].

Note that there exists a constant C > 0 such that

Φ(σ(t0), h) −Φ(t0, h)
 ≤ C
ν(t, σ(t0))

 for t ∈ U0, h ∈ [0, 1].

Let ε > 0 be arbitrarily chosen. We choose ε1 > 0, ε2 > 0 small enough such that

ε1(1 + C


1

∫
0

Φ(σ(t0), h)dh

) + ε2(ε1 + 2

g
Δ(t0)
) ≤ ε.
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Since g and f (⋅, g(t0)) are differentiable at t0, there exists a neighborhood U1 ⊆ U0 of
t0 such that

g(t) − g(t0)
 ≤ ε1,

g(t) − g(σ(t0)) − ν(t, σ(t0))g
Δ(t0)
 ≤ ε1
ν(t, σ(t0))

,
f (t, g(t0)) − f (σ(t0), g(t0)) − ν(t, σ(t0))Δ1f (t0, g(t0))

 ≤ ε1
ν(t, σ(t0))



for t ∈ U1. Hence,

g(t) − g(t0)
 =
g(t) − g(σ(t0)) − ν(t, σ(t0))g

Δ(t0) + g
Δ(t0)ν(t, σ(t0))

+ g(σ(t0)) − g(t0)


≤ g(t) − g(σ(t0)) − ν(t, σ(t0))g
Δ(t0)


+ g
Δ(t0)

ν(t, σ(t0))

 +
g(σ(t0)) − g(t0)


≤ ε1
ν(t, σ(t0))

 +
g

Δ(t0)

ν(t, σ(t0))

 +
g

Δ(t0)
μ(t0)

= (ε1 +
g

Δ(t0)
)
ν(t, σ(t0))

 +
g

Δ(t0)
μ(t0)

≤ (ε1 + 2
g

Δ(t0)
)
ν(t, σ(t0))

, t ∈ U1.

Since g is continuous at t0 and D2f is continuous at (t0, g(t0)), there exists a neighbor-
hood U2 ⊆ U of t0 so that

Φ(t, h) −Φ(t0, h)
 ≤ ε2 for t ∈ U2, h ∈ [0, 1].

Hence,


F(t) − F(σ(t0)) − ν(t, σ(t0))(Δ1f (t0, g(t0)) +

1

∫
0

Φ(σ(t0), h)dhg
Δ(t0))


=

f (t, g(t)) − f (σ(t0), g(σ(t0))) − f (σ(t0), g(t0)) + f (σ(t0), g(t0))

− f (t, g(t0)) + f (t, g(t0)) − ν(t, σ(t0))Δ1f (t0, g(t0))

− ν(t, σ(t0))
1

∫
0

Φ(σ(t0), h)dhg
Δ(t0) −

1

∫
0

Φ(σ(t0), h)dh(g(t) − g(t0))

+
1

∫
0

Φ(σ(t0), h)dh(g(t) − g(t0))


≤ f (t, g(t0)) − f (σ(t0), g(t0)) − ν(t, σ(t0))Δ1f (t0, g(t0))


+


1

∫
0

Φ(σ(t0), h)dh(g(t) − g(t0) − ν(t, σ(t0))g
Δ(t0))
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+

f (t, g(t)) − f (t, g(t0)) − (f (σ(t0), g(σ(t0))) − f (σ(t0), g(t0)))

−
1

∫
0

Φ(σ(t0), h)dh(g(t) − g(t0))


≤ f (t, g(t0)) − f (σ(t0), g(t0)) − ν(t, σ(t0))Δ1f (t0, g(t0))


+


1

∫
0

Φ(σ(t0), h)dh


g(t) − g(t0) − ν(t, σ(t0))g
Δ(t0)


+


1

∫
0

(Φ(t, h) −Φ(σ(t0), h))dh(g(t) − g(t0))


≤ f (t, g(t0)) − f (σ(t0), g(t0)) − ν(t, σ(t0))Δ1f (t0, g(t0))


+


1

∫
0

Φ(σ(t0), h)dh


g(t) − g(t0) − ν(t, σ(t0))g
Δ(t0)


+


1

∫
0

(Φ(t, h) −Φ(t0, h))dh


g(t) − g(t0)


+


1

∫
0

(Φ(t0, h) −Φ(σ(t0), h))dh


g(t) − g(t0)


≤ ε1
ν(t, σ(t0))

 + ε1
ν(t, σ(t0))





1

∫
0

Φ(σ(t0), h)dh


+ ε2(ε1 + 2
g

Δ(t0)
)
ν(t, σ(t0))

 + ε1C
ν(t, σ(t0))



= (ε1(1 + C +


1

∫
0

Φ(σ(t0), h)dh

) + ε2(ε1 + 2

g
Δ(t0)
))
ν(t, σ(t0))



≤ εν(t, σ(t0))
, t ∈ U1 ∩ U2.

This completes the proof.

C.3 A generalization of Pötzsche’s chain rule

In this section we state and prove a generalization of Pötzsche’s chain rule.
Let g : 𝕋 × ℝn → ℝ be a given function. Then for the function g(t, y1, . . . , yn) we

denote by Δ1g(⋅, y1, . . . , yn) its delta derivative.
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Theorem C.8. For some fixed t0 ∈ 𝕋κ, let yj : 𝕋 → ℝ, j ∈ {1, . . . , n}, f : 𝕋 × ℝn → ℝ be
continuous functions such that f (⋅, y1(t0), . . . , yn(t0)), and yj, j ∈ {1, . . . , n}, are differen-
tiable at t0. Let U ⊆ 𝕋 be a neighborhood of t0 such that
1. f (t, ⋅, . . . , ⋅) is continuously-differentiable for t ∈ U ∪ {σ(t0)},
2. Δ1f (⋅, y1(⋅), . . . , yn(⋅)) is continuous at t0,
3.

𝜕
𝜕yj

f (σ(t0), y1(σ(t0)), . . . , yj−1(σ(t0)), ⋅, yj+1(t), . . . , yn(t))

is continuous on the line segment

{yj(t) + h(yj(σ(t0)) − yj(t)) ∈ ℝ : h ∈ [0, 1]}, j ∈ {1, . . . , n}, ∀t ∈ U ∪ {t0},

4. 𝜕
𝜕yj
f is continuous at (t0, y1(t0), . . . , yn(t0)).

Then the composition function F : 𝕋 → ℝ, F(t) = f (t, y1(t), y2(t), . . . , yn(t)), is differen-
tiable at t0 with derivative

FΔ(t0) = Δ1f (t0, y1(t0), y2(t0), . . . , yn(t0))

+ (
1

∫
0

𝜕
𝜕y1

f (σ(t0), y1(t0) + hμ(t0)y
Δ
1 (t0), y2(t0), . . . , yn(t0))dh)y

Δ
1 (t0)

+ (
1

∫
0

𝜕
𝜕y2

f (σ(t0), y1(σ(t0)), y2(t0) + hμ(t0)y
Δ
2 (t0), . . . , yn(t0))dh)y

Δ
2 (t0)

+ ⋅ ⋅ ⋅

+ (
1

∫
0

𝜕
𝜕yn

f (σ(t0), y1(σ(t0)), y2(σ(t0)), . . . , yn−1(σ(t0)), yn(t0)

+ hμ(t0)y
Δ
n (t0))dh)y

Δ
n (t0).

Proof. Let s ∈ (t0 − δ, t0 + δ) ∩ 𝕋, s ̸= σ(t0), for δ > 0 small enough, and s < σ(t0) if
σ(t0) > t0. Then

F(σ(t0)) − F(s)
= f (σ(t0), y1(σ(t0)), y2(σ(t0)), . . . , yn(σ(t0))) − f (s, y1(s), y2(s), . . . , yn(s))
= f (σ(t0), y1(s), y2(s), . . . , yn(s)) − f (s, y1(s), y2(s), . . . , yn(s))
+ f (σ(t0), y1(σ(t0)), y2(s), . . . , yn(s)) − f (σ(t0), y1(s), y2(s), . . . , yn(s))
+ f (σ(t0), y1(σ(t0)), y2(σ(t0)), . . . , yn(s)) − f (σ(t0), y1(σ(t0)), y2(s), . . . , yn(s))
+ ⋅ ⋅ ⋅

+ f (σ(t0), y1(σ(t0), y2(σ(t0)), . . . , yn(σ(t0))) − f (σ(t0), y1(σ(t0)), y2(σ(t0)), . . . , yn(s)).
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Then, we have

F(σ(t0)) − F(s)
= f (σ(t0), y1(s), y2(s), . . . , yn(s)) − f (s, y1(s), y2(s), . . . , yn(s))

+ (
1

∫
0

𝜕
𝜕y1

f (σ(t0), y1(s) + h(y1(σ(t0)) − y1(s)), y2(s), . . . , yn(s))dh)(y1(σ(t0)) − y1(s))

+ (
1

∫
0

𝜕
𝜕y2

f (σ(t0), y1(σ(t0)), y2(s) + h(y2(σ(t0)) − y2(s)), . . . , yn(s))dh)

× (y2(σ(t0)) − y2(s))
+ ⋅ ⋅ ⋅

+ (
1

∫
0

𝜕
𝜕yn

f (σ(t0), y1(σ(t0)), y2(σ(t0)), . . . , yn(s) + h(yn(σ(t0)) − yn(s)))dh)

× (yn(σ(t0)) − yn(s)).

If σ(t0) > t0, by the mean value theorem there exist ξ1, ξ2 ∈ [s, σ(t0)) = [s, t0] so that

Δ1f (ξ1, y1(s), y2(s), . . . , yn(s))(σ(t0) − s) ≤ f (σ(t0), y1(s), y2(s), . . . , yn(s)),
−f (s, y1(s), y2(s), . . . , yn(s)) ≤ Δ1f (ξ2, y1(s), y2(s), . . . , yn(s))(σ(t0) − s),

and

Δ1f (t0, y1(t0), y2(t0), . . . , yn(t0))
= lim

s→t0
Δ1f (ξ1, y1(s), y2(s), . . . , yn(s))

≤ lim
s→t0

1
σ(t0) − s

(f (σ(t0), y1(s), y2(s), . . . , yn(s)) − f (s, y1(s), y2(s), . . . , yn(s)))

≤ lim
s→t0

Δ1f (ξ2, y1(s), y2(s), . . . , yn(s))

= Δ1f (t0, y1(t0), y2(t0), . . . , yn(t0)).

If σ(t0) = t0, by the mean value theorem, there exist ξ1, ξ2 between s and t0 so that

Δ1f (ξ1, y1(s), y2(s), . . . , yn(s))(t0 − s) ≤ f (t0, y1(s), y2(s), . . . , yn(s)),
−f (s, y1(s), y2(s), . . . , yn(s)) ≤ Δ1f (ξ2, y1(s), y2(s), . . . , yn(s))(t0 − s).

In this case, if s < t0 we have

Δ1f (t0, y1(t0), y2(t0), . . . , yn(t0))
= lim

s→t0−
Δ1f (ξ1, y1(s), y2(s), . . . , yn(s))

≤ lim
s→t0−

1
t0 − s
(f (σ(t0), y1(s), y2(s), . . . , yn(s)) − f (s, y1(s), y2(s), . . . , yn(s)))
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≤ lim
s→t0−

Δ1f (ξ2, y1(s), y2(s), . . . , yn(s))

= Δ1f (t0, y1(t0), y2(t0), . . . , yn(t0)),

and if s > t0 we have

Δ1f (t0, y1(t0), y2(t0), . . . , yn(t0))
= lim

s→t0+
Δ1f (ξ1, y1(s), y2(s), . . . , yn(s))

≥ lim
s→t0+

1
t0 − s
(f (σ(t0), y1(s), y2(s), . . . , yn(s)) − f (s, y1(s), y2(s), . . . , yn(s)))

≥ lim
s→t0+

Δ1f (ξ2, y1(s), y2(s), . . . , yn(s))

= Δ1f (t0, y1(t0), y2(t0), . . . , yn(t0)).

Moreover,

lim
s→t0
((

1

∫
0

𝜕
𝜕yj

f (σ(t0), y1(σ(t0)), . . . , yj−1(σ(t0)), yj(s) + h(yj(σ(t0)) − yj(s)),

yj+1(s), . . . , yn(s))dh)
yj(σ(t0)) − yj(t0)

σ(t0) − s
)

= lim
s→t0
(

1

∫
0

𝜕
𝜕yj

f (σ(t0), y1(σ(t0)), . . . , yj−1(σ(t0)), yj(s) + h(yj(σ(t0)) − yj(s)),

yj+1(s), . . . , yn(s))dh) lims→t0

yj(σ(t0)) − yj(t0)
σ(t0) − s

= (
1

∫
0

𝜕
𝜕yj

f (σ(t0), y1(σ(t0)), . . . , yj−1(σ(t0)), yj(t0) + h(yj(σ(t0)) − yj(t0)),

yj+1(t0), . . . , yn(t0))dh)y
Δ
j (t0)

= (
1

∫
0

𝜕
𝜕yj

f (σ(t0), y1(σ(t0)), . . . , yj−1(σ(t0)), yj(t0) + hμ(t0)y
Δ
j (t0), yj+1(t0), . . . , yn(t0))dh)

× yΔj (t0), j ∈ {1, . . . , n}.

Therefore,

lim
s→t0

F(σ(t0)) − F(s)
σ(t0) − s

= lim
s→t0

f (σ(t0), y1(s), y2(s), . . . , yn(s)) − f (s, y1(s), y2(s), . . . , yn(s))
σ(t0) − s
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+ lim
s→t0
((

1

∫
0

𝜕
𝜕y1

f (σ(t0), y1(s) + h(y1(σ(t0)) − y1(s)), y2(s), . . . , yn(s))dh)

×
y1(σ(t0)) − y1(s)

σ(t0) − s
)

+ lim
s→t0
((

1

∫
0

𝜕
𝜕y2

f (σ(t0), y1(σ(t0)), y2(s) + h(y2(σ(t0)) − y2(s)), . . . , yn(s))dh)

×
y2(σ(t0)) − y2(s)

σ(t0) − s
)

+ ⋅ ⋅ ⋅

+ lim
s→t0
((

1

∫
0

𝜕
𝜕yn

f (σ(t0), y1(σ(t0)), y2(σ(t0)), . . . , yn(s) + h(yn(σ(t0)) − yn(s)))dh)

×
yn(σ(t0)) − yn(s)

σ(t0) − s
)

= Δ1f (t0, y1(t0), y2(t0), . . . , yn(t0))

+ (
1

∫
0

𝜕
𝜕y1

f (σ(t0), y1(t0) + hμ(t0)y
Δ
1 (t0), y2(t0), . . . , yn(t0))dh)y

Δ
1 (t0)

+ (
1

∫
0

𝜕
𝜕y2

f (σ(t0), y1(σ(t0)), y2(t0) + hμ(t0)y
Δ
2 (t0), . . . , yn(t0))dh)y

Δ
2 (t0)

+ ⋅ ⋅ ⋅

+ (
1

∫
0

𝜕
𝜕yn

f (σ(t0), y1(σ(t0)), y2(σ(t0)), . . . , yn−1(σ(t0)), yn(t0) + hμ(t0)y
Δ
n (t0))dh)

× yΔn (t0).

This completes the proof.
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D Lebesgue integration. Lp-spaces. Sobolev spaces

Let𝕋bea time scalewith forward jumpoperatorσ anddelta differentiationoperator Δ.

D.1 The Lebesgue delta integral

Suppose that ℱ1 is a family of left-closed and right-open intervals of 𝕋 of the form

[a, b) = {t ∈ 𝕋 : a ≤ t < b},

a, b ∈ 𝕋, a ≤ b. The interval [a, a) is understood as the empty set.

Definition D.1. Define m1 : ℱ1 → [0,∞] to be the set function that assigns to each
interval [a, b) ∈ ℱ1 its length, i. e.,

m1([a, b)) = b − a,

and satisfies the following properties:
1. m1(0) = 0,
2. if {[aj, bj)}j∈A is a finite or countable pairwise disjoint family of intervals ofℱ1, then

m1(⋃
j∈A
([aj, bj))) = ∑

j∈A
m1([aj, bj)) = ∑

j∈A
(bj − aj).

Here A is an index set.

Definition D.2. Consider the pair (ℱ1,m1). Let E be a subset of𝕋. If there exists at least
one finite or countable system of intervals Vj ∈ ℱ1, j ∈ ℕ, such that E ⊂ ⋃j Vj, then we
set

m∗1 (E) = inf∑
j
m1(Vj),

where the infimum is taken over all coverings of E by a finite or countable system of
intervals Vj ∈ ℱ1. If there is no such covering of E, then we setm∗1 (E) =∞.

Note thatm∗1 (0) = 0.

Definition D.3. A subset A of 𝕋 is said to bem∗1 -measurable, or Δ-measurable, if

m∗1 (E) = m
∗
1 (E ∩ A) +m

∗
1 (E ∩ A

c)

holds for any E ⊂ 𝕋. Here Ac denotes the complement of A, i. e., Ac = 𝕋 \A. The family
of allm∗1 -measurable subsets of 𝕋 will be denoted byM(m∗1 ).

https://doi.org/10.1515/9783110787320-016
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Exercise D.4. Let A,B ⊂ 𝕋, A ∩ B = 0. Prove that

m∗1 (A ∪ B) = m
∗
1 (A) +m

∗
1 (B).

Exercise D.5. Let {Aj}j∈ℕ ⊂ M(m∗1 ). Prove
1. (⋃∞j=1 Aj)

c = ⋂∞j=1 A
c
j ,

2. (⋂∞j=1 Aj)
c = ⋃∞j=1 A

c
j .

Theorem D.6. The family M(m∗1 ) is a σ-algebra.

Proof.
1. Let E ⊆ 𝕋 be arbitrarily chosen and fixed. Then

E ∩ 𝕋 = E, E ∩ 𝕋c = 0,

and

m∗1 (E) = m
∗
1 (E ∩ 𝕋) +m

∗
1 (E ∩ 𝕋

c).

Therefore, 𝕋 ∈ M(m∗1 ).
2. Let A ∈ M(m∗1 ) be arbitrarily chosen and fixed. Take E ⊆ 𝕋 arbitrarily. Then, using

that (Ac)c = A, we get

m∗1 (E) = m
∗
1 (E ∩ A) +m

∗
1 (E ∩ A

c) = m∗1 (E ∩ A
c) +m∗1 (E ∩ A)

= m∗1 (E ∩ A
c) +m∗1 (E ∩ (A

c)
c
).

Therefore, Ac ∈ M(m∗1 ).
3. Let {Aj}∞j=1 ⊂ M(m

∗
1 ) be arbitrarily chosen and fixed. Take E ⊆ 𝕋 arbitrarily. Then

m∗1(E ∩ (
∞

⋃
j=1

Aj)) +m
∗
1(E ∩ (

∞

⋃
j=1

Aj)
c

)

= m∗1(E ∩ (
∞

⋃
j=1

Aj)) +m
∗
1(E ∩ (

∞

⋂
j=1

Acj))

= m∗1((E ∩ (
∞

⋃
j=1

Aj)) ∪ (E ∩ (
∞

⋂
j=1

Acj)))

= m∗1 (E).

Therefore,⋃∞j=1 Aj ∈ M(m
∗
1 ). Next,
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m∗1(E ∩ (
∞

⋂
j=1

Aj)) +m
∗
1(E ∩ (

∞

⋂
j=1

Aj)
c

)

= m∗1(E ∩ (
∞

⋂
j=1

Aj)) +m
∗
1(E ∩ (

∞

⋃
j=1

Acj))

= m∗1((E ∩ (
∞

⋂
j=1

Aj)) ∪ (E ∩ (
∞

⋃
j=1

Acj)))

= m∗1 (E).

Consequently,⋂∞j=1 Aj ∈ M(m
∗
1 ).

This completes the proof.

The restriction of m∗1 to M(m∗1 ) will be denoted by μΔ. This μΔ (the Lebesgue
Δ-measure) is a countable additive measure on M(m∗1 ). All intervals of the family ℱ1,
including the empty set, are Δ-measurable. Therefore, 𝕋 is Δ-measurable. Assume
that𝕋 has a finite maximum τ0. Then the set𝕋 \ {τ0} can be represented as a finite or
countable union of intervals of the familyℱ1 and therefore it is Δ-measurable. Because
the difference of two Δ-measurable sets is a Δ-measurable set, we get that the single-
point set {τ0} is Δ-measurable. Since {τ0} does not have a finite or countable covering
by intervals of ℱ1, we conclude that the single-point set {τ0} and any Δ-measurable
subset of 𝕋, containing the point τ0, have Δ-measure infinity.

Let a, b ∈ 𝕋, a < b.

Lemma D.7. The set of all right-scattered points of𝕋 is at most countable, i. e., there are
I ⊂ ℕ and {ti}i∈I ⊂ 𝕋 such that

R = {t ∈ 𝕋 : t < σ(t)} = {ti}i∈I . (D.1)

Proof. Let g : [a, b]→ ℝ be defined as follows:

g(t) = {
t if t ∈ 𝕋,
σ(s) if t ∈ (s, σ(s)) for some s ∈ 𝕋.

Note that the function g is monotone on [a, b] and continuous on the set

[a, b] \ {t ∈ 𝕋 : t < σ(t)}.

Because the set of points where a monotone function has discontinuities is at most
countable, we get the desired result. This completes the proof.

 EBSCOhost - printed on 2/10/2023 4:40 PM via . All use subject to https://www.ebsco.com/terms-of-use



332 | D Lebesgue integration. Lp-spaces. Sobolev spaces

Remark D.8. Since

𝕋 = ⋃
n∈ℕ
(𝕋 ∩ (−n, n)),

Lemma D.7 is valid in the case when 𝕋 is unbounded.

Theorem D.9. Let t0 ∈ 𝕋 \ {max𝕋}. Then the single-point set {t0} is Δ-measurable and
its Δ-measure is given by

μΔ({t0}) = σ(t0) − t0.

Proof.
1. Let t0 be right-scattered. Then

{t0} = [t0, σ(t0)) ∈ ℱ1.

Therefore, {t0} is Δ-measurable and

μΔ({t0}) = σ(t0) − t0.

2. Let t0 be right-dense. Then there is a decreasing sequence {tk}k∈ℕ of points of 𝕋
such that tk > t0, k ∈ ℕ and tk → t0, as k →∞. We have

[t0, t1) ⊃ [t0, t2) ⊃ ⋅ ⋅ ⋅ ⊃ [t0, tk) ⊃ ⋅ ⋅ ⋅

and

{t0} =
∞

⋂
k=1
[t0, tk).

Hence, {t0} is Δ-measurable as a countable intersection of Δ-measurable sets. By
the continuity property of μΔ, we get

μΔ({t0}) = lim
k→∞

μΔ([t0, tk)) = lim
k→∞
(tk − t0) = 0.

This completes the proof.

Theorem D.10. Let a, b ∈ 𝕋, a ≤ b. Then

μΔ([a, b)) = b − a,
μΔ((a, b)) = b − σ(a).

Proof. We have

μΔ([a, b)) = m1([a, b)) = b − a.
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Next observe that

[a, b) = {a} ∪ (a, b).

Since

{a} ∩ (a, b) = 0,

we get

b − a = μΔ([a, b))
= μΔ({a} ∪ (a, b))
= μΔ({a}) + μΔ((a, b))
= σ(a) − a + μΔ((a, b)).

Hence,

μΔ((a, b)) = σ(a) − a − b + a = σ(a) − b.

This completes the proof.

Example D.11. Let 𝕋 = 2ℤ. We will find

μΔ([0, 10)) and μΔ((0, 10)).

We have

σ(t) = t + 2, t ∈ 𝕋.

Then

μΔ([0, 10)) = 10 − 0 = 10,
μΔ((0, 10)) = 10 − σ(0) = 10 − 2 = 8.

Example D.12. Let 𝕋 = 2ℕ0 ∪ {0}. We will find

μΔ([1, 16)) and μΔ((2, 32)).

We have

σ(0) = 1, σ(t) = 2t, t ∈ 2ℕ0 .

Then

μΔ([1, 16)) = 16 − 1 = 15,
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μΔ((2, 32)) = 32 − σ(2) = 32 − 4 = 28.

Exercise D.13. Let 𝕋 = 3ℕ0 ∪ {0}. Find
1. μΔ([0, 27)),
2. μΔ([1, 81)),
3. μΔ((0, 81)),
4. μΔ((0, 243)),
5. μΔ([1, 243)).

Theorem D.14. Let a, b ∈ 𝕋 \ {max𝕋}, a ≤ b. Then

μΔ((a, b]) = σ(b) − σ(a), μΔ([a, b]) = σ(b) − a.

Proof. We have

(a, b] = (a, b) ∪ {b}.

Then, using that

(a, b) ∩ {b} = 0,

we obtain

μΔ((a, b]) = μΔ((a, b) ∪ {b})
= μΔ((a, b)) + μΔ({b})
= b − σ(a) + σ(b) − b
= σ(b) − σ(a).

Next,

[a, b] = {a} ∪ (a, b].

Since

{a} ∩ (a, b] = 0,

we obtain

μΔ([a, b]) = μΔ({a} ∪ (a, b])
= μΔ({a}) + μΔ((a, b])
= σ(a) − a + σ(b) − σ(a)
= σ(b) − a.

This completes the proof.

 EBSCOhost - printed on 2/10/2023 4:40 PM via . All use subject to https://www.ebsco.com/terms-of-use



D.1 The Lebesgue delta integral | 335

Example D.15. Let 𝕋 = ℤ. We will find

μΔ((0, 10]) and μΔ([−2, 8]).

We have

σ(t) = t + 1, t ∈ 𝕋.

Then

μΔ((0, 10]) = σ(10) − σ(0) = 11 − 1 = 10,

μΔ([−2, 8]) = σ(8) − (−2) = 9 + 2 = 11.

Example D.16. Let 𝕋 = 4ℕ0 ∪ {0}. We will find

μΔ((0, 4]) and μΔ([1, 64]).

We have

σ(0) = 1,

σ(t) = 4t, t ∈ 4ℕ0 .

Then

μΔ((0, 4]) = σ(4) − σ(0) = 16 − 1 = 15,

μΔ([1, 64]) = σ(64) − 1 = 256 − 1 = 255.

Exercise D.17. Let 𝕋 = 8ℤ. Find
1. μΔ((0, 8]),
2. μΔ([−8, 8]),
3. μΔ([−16, 32]),
4. μΔ([−16,0]),
5. μΔ((−16, 8]).

For a set E ⊂ [a, b], define

IE = {i ∈ I : ti ∈ E ∩ R},

where I ⊂ ℕ and R is given by (D.1).
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Theorem D.18. If E ⊂ [a, b], then the following properties are satisfied:
1. μΔ(E) ≤ m∗1 (E).
2. If b ∉ E and E has no right-scattered points, then

μΔ(E) = m
∗
1 (E).

3. If R is defined by (D.1) and I \ R is Lebesgue measurable, then

μ(R) = 0,

where μ(⋅) is the classical Lebesgue measure.
4.

μΔ(E ∩ R) = ∑
i∈IE

(σ(ti) − ti) ≤ b − a = μΔ([a, b).

5. If b ∉ E, then

m∗1 (E) = ∑
i∈IE

(σ(ti) − ti) + μ(E).

6. m∗1 (E) = μΔ(E) if and only if b ∉ E and E has no right-scattered points.

Proof.
1. Assertions 1, 2, 3, and 4 follow directly from the definitions ofm∗1 and μΔ.
2. Now we will prove Assertion 5. Suppose that b ∉ E. We have

μΔ(E) = μΔ(E ∩ 𝕋)
= μΔ(E ∩ (R ∪ (𝕋 \ R)))
= μΔ(E ∩ R) + μΔ(E ∩ (𝕋 \ R))
= μΔ(E ∩ (𝕋 \ R)).

Because b ∉ E∩(𝕋\R) and E∩(𝕋\R) has no right-scattered points, by Assertion 2,
we have

μΔ(E) = μΔ(E ∩ (𝕋 \ R)) = m
∗
1 (E ∩ (𝕋 \ R)).

Thus,

m∗1 (E) = m
∗
1 (E ∩ R) +m

∗
1 (E ∩ (𝕋 \ R))

= ∑
i∈IE

(σ(ti) − ti) + μΔ(E).

3. Now we will prove Assertion 6.
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(a) Let b ∉ E and suppose E has no right-scattered points. Then

∑
i∈IE

(σ(ti) − ti) = 0

and

m∗1 (E) = μΔ(E).

(b) Letm∗1 (E) = μΔ(E). Then, using Assertion 5, we get

∑
i∈IE

(σ(ti) − ti) = 0.

This completes the proof.

Theorem D.19. Let A ⊂ [a, b]. Then A is Δ-measurable if and only if A is Lebesgue mea-
surable. In such a case, the following properties hold for any Δ-measurable set A:
(i) If b ∉ A, then

μΔ(A) = ∑
i∈IA

(σ(ti) − ti) + μ(A).

(ii) μΔ(A) = μ(A) if and only if b ∉ A and A has no right-scattered points.

Proof.
1. Let A be Δ-measurable.

(a) Let b ∉ A. Take E ⊂ [a, b] arbitrarily.
i. Suppose that b ∉ E. Then, using that

[a, b] \ A = (𝕋 \ A) ∪ ([a, b] \ 𝕋),

A is Δ-measurable, and 𝕋 is Lebesgue measurable, we obtain

μ(E) ≤ μ(E ∩ A) + μ(E ∩ ([a, b] \ A))
≤ μ(E ∩ A) + μ(E ∩ (𝕋 \ A)) + μ(E ∩ ([a, b] \ 𝕋))
= m∗1 (E ∩ A) +m

∗
1 (E ∩ (𝕋 \ A))

− ∑
i∈IE⋂𝕋

(σ(ti) − ti) + μ(E ∩ ([a, b] \ 𝕋))

= m∗1 (E ∩ 𝕋) − ∑
i∈IE⋂𝕋

(σ(ti) − ti) + μ(E ∩ ([a, b] \ 𝕋))

= μ(E ∩ 𝕋) + μ(E ∩ ([a, b] \ 𝕋))
= μ(E).
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Thus,

μ(E) = μ(E ∩ A) + μ(E ∩ ([a, b] \ A)).

ii. Let b ∈ E. Then

μ({b}) = 0

and

μ(E) ≤ μ(E ∩ A) + μ(E ∩ ([a, b] \ A))
≤ μ((E ∩ [a, b)) ∩ A) + μ((E ∩ [a, b)) ∩ ([a, b] \ A))
= μ(E ∩ [a, b))
≤ μ(E),

i. e.,

μ(E) = μ(E ∩ A) + μ(E ∩ ([a, b] \ A)).

Consequently, A is Lebesgue measurable.
(b) Let b ∈ A. Then A \ {b} is Δ-measurable and, by the previous case, it follows

that A \ {b} is Lebesgue measurable. Since {b} is Lebesgue measurable and
the union of two Lebesgue measurable sets is a Lebesgue measurable set, we
conclude that the set A is a Lebesgue measurable set.

2. The fact that ifA is a Lebesguemeasurable set, then it is aΔ-measurable set follows
similarly, and we leave its proof to the reader as an exercise.

Note that (i) and (ii) follow by Assertions 5 and 6 of Theorem D.18. This completes the
proof.

Definition D.20. The Lebesgue integral associated with the measure μΔ we call the
Lebesgue Δ-integral on 𝕋. For a set E ⊆ 𝕋 and a (measurable) function f : E → ℝ, the
corresponding integral of f over E we denote by

∫
E

f (t)Δt.

So, all theoremsof thegeneral Lebesgue integration theory, including theLebesgue
dominated convergence theorem,will hold for the Lebesguedelta integral on𝕋. Below
is a comparison of the Lebesgue Δ-integral with the Riemann Δ-integral.

Theorem D.21. Let [a, b) be a half-closed bounded interval in𝕋 and let f be a bounded
real-valued function on [a, b). If f is Riemann Δ-integrable from a to b, then f is Lebesgue
Δ-integrable on [a, b), and
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R
b

∫
a

f (t)Δt = L
b

∫
a

f (t)Δt, (D.2)

where R and L indicate the Riemann and Lebesgue integrals, respectively.

Proof. Let f be a Riemann Δ-integrable from a to b. Then for each positive integer k,
we can choose a δk > 0, δk → 0, as k →∞, and a partition

Pk : a = t
(k)
0 < t

(k)
1 < ⋅ ⋅ ⋅ < t

k
n(k) = b

of the interval [a, b) such that Pk ∈ 𝒫δk and

U(f ,Pk) − L(f ,Pk) <
1
k
.

Here 𝒫δk is the set of all partitions

P : a = t0 < t1 < ⋅ ⋅ ⋅ < tn = b

such that either tj − tj−1 < δ or tj − tj−1 > δ and ρ(tj) = tj−1, U(f ,Pk) and L(f ,Pk) are the
upper and lower Darboux Δ-sums of f with respect to Pk, respectively. Then

lim
k→∞

L(f ,Pk) = lim
k→∞

U(f ,Pk) = R
b

∫
a

f (t)Δt.

By replacing partitions Pk with finer partitions, if necessary, we can assume that, for
each k, partition Pk+1 is a refinement of partition Pk . Set

m(k)j = inf{f (t) : t ∈ [t
(k)
j−1, t
(k)
j )},

M(k)j = sup{f (t) : t ∈ [t
(k)
j−1, t
(k)
j )}, j = 1, 2, . . . , n(k).

Define the sequences {ϕk} and {Φk} of functions on [a, b) such that

ϕk(t) = m
(k)
j and Φk(t) = M

(k)
j , t ∈ [t(k)j−1, t

(k)
j ),

j = 1, 2, . . . , n(k). We have that {ϕk} is a nondecreasing sequence and {Φk} is a nonin-
creasing sequence. Also, for each positive integer k, we have

ϕk ≤ ϕk+1,

Φk ≥ Φk+1,

ϕk ≤ f ≤ Φk ,

L ∫
[a,b)

ϕk(t)Δt = L(f ,Pk),
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L ∫
[a,b)

Φk(t)Δt = U(f ,Pk).

Because f is bounded, we have that the sequences {ϕk} and {Φk} are bounded. There-
fore,

ϕ(t) = lim
k→∞

ϕk(t),

Φ(t) = lim
k→∞

Φk(t), t ∈ [a, b).

We have

ϕ(t) ≤ f (t) ≤ Φ(t), t ∈ [a, b),

and ϕ and Φ are Δ-measurable functions on [a, b). By the Lebesgue dominated theo-
rem, we obtain

lim
k→∞

L ∫
[a,b)

ϕk(t)Δt = L ∫
[a,b)

ϕ(t)Δt,

lim
k→∞

L ∫
[a,b)

Φk(t)Δt = L ∫
[a,b)

Φ(t)Δt.

Therefore,

L ∫
[a,b)

ϕ(t)Δt = lim
k→∞
∫
[a,b)

ϕk(t)Δt

= lim
k→∞

L(f ,Pk)

= R
b

∫
a

f (t)Δt

= lim
k→∞

U(f ,Pk)

= lim
k→∞

L ∫
[a,b)

Φk(t)Δt

= L ∫
[a,b)

Φ(t)Δt.

Hence,

L ∫
[a,b)

(Φ(t) − ϕ(t))Δt = 0

and, using that
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ϕ(t) = Φ(t), t ∈ [a, b),

we get

ϕ(t) = Φ(t)

for Δ-almost every t ∈ [a, b). Consequently,

ϕ(t) = f (t) = Φ(t)

for Δ-almost every t ∈ [a, b). Therefore, f is Lebesgue Δ-integrable and (D.2) holds. This
completes the proof.

Theorem D.22. Let f be a bounded function defined on the half-closed bounded interval
[a, b) of 𝕋. Then f is Riemann Δ-integrable from a to b if and only if the set of all right-
dense points of [a, b) at which f is discontinuous is a set of Δ-measure zero.

Proof.
1. Suppose that f is Riemann Δ-integrable from a to b. For each positive integer k, let

Pk, ϕk, Φk, ϕ, and Φ be defined as in the proof of Theorem D.21. Let

Λ =
∞

⋃
k=1

Pk ,

Λrd = {t ∈ [a, b) : t ∈ Λ and t is right-dense},
G = {t ∈ [a, b) : f is discontinuous at t},

Grd = {t ∈ G : t is right-dense},
A = {t ∈ [a, b) : ϕ(t) ̸= Φ(t)}.

Let t ∈ [a, b) be such that

ϕ(t) = f (t) = Φ(t)

and t ∉ Λ. Assume that f is not continuous at t. Then there exist an ε > 0 and a
sequence {tj}j∈ℕ such that tj → t, as j →∞, and

f (tj) − f (t)
 > ε

for any j ∈ ℕ. Hence,

f (tj) > ε + f (t)

and

Φ(t) ≥ ε + ϕ(t),
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which is a contradiction. Therefore, f is continuous at t. Observe that all right-
scattered points of [a, b) belong to Λ. Hence, for each right-scattered point t of
[a, b) and all sufficiently large k, we have

ϕk(t) = Φk(t) = f (t)

and from here

ϕ(t) = Φ(t) = f (t).

Therefore,

Grd ⊂ A ∪ Λrd.

By the proof of Theorem D.21, it follows that

ϕ(t) = Φ(t)

for Δ-almost every t in [a, b). Therefore,

μΔ(A) = μΔ(Λrd) = 0,

and hence,

μΔ(Grd) = 0.

2. Suppose that the set of all right-dense points of [a, b) at which f is discontinuous
is of Δ-measure zero. Then μΔ(Grd) = 0. For each positive integer k, we choose
δk > 0, δk → 0, as k →∞, and a partition

Pk : a = t
(k)
0 < t

(k)
1 < ⋅ ⋅ ⋅ < t

(k)
n(k) = b

of [a, b) such that Pk ∈ 𝒫δk and Pk+1 is a refinement of Pk . Let ϕk, Φk, ϕ, and Φ be
defined as in the proof of Theorem D.21. Suppose that t ∈ [a, b) is right-dense and
f is continuous at t. Then for a given ε > 0, there exists a δ > 0 such that

sup f − inf f < ε,

where the supremum and the infimum are taken over the interval (t − δ, t + δ). For
all k sufficiently large, a subinterval of Pk containing t will be in (t − δ, t + δ) and
then

Φk(t) − ϕk(t) < ε.

Since ε > 0 was arbitrarily chosen, we conclude that
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ϕ(t) = Φ(t).

Next, at each right-scattered point t of [a, b), using the first part of the proof, we
have

ϕ(t) = Φ(t).

Consequently, A ⊂ Grd and, using that μΔ(Grd) = 0, we conclude that μΔ(A) = 0.
From here,

ϕ(t) = Φ(t)

Δ-almost everywhere on [a, b) and

L ∫
[a,b)

ϕ(t)Δt = L ∫
[a,b)

Φ(t)Δt.

Hence, using the proof of Theorem D.21, we obtain

lim
k→∞

L(f ,Pk) = lim
k→∞

U(f ,Pk)

and thus, f is Riemann Δ-integrable on [a, b).

This completes the proof.

D.2 The spaces 𝕃p(𝕋)

Havingdefined the space𝕃1(𝕋), it is usual to define𝕃p(𝕋) for anyp ≥ 1 in the following
way:

𝕃p(𝕋) = {u ∈ 𝕃1(𝕋) : |u|p ∈ 𝕃1(𝕋)}.

For any p ≥ 1, we provide 𝕃p(𝕋) with a norm

‖u‖𝕃p(𝕋) = (
b

∫
a

|u|pΔ)

1
p

, u ∈ 𝕃p(𝕋). (D.3)

Exercise D.23. Prove that (D.3) satisfies all the axioms for a norm.

Theorem D.24. For any p ≥ 1, we have

ℂ(𝕋) ⊂ ℂrd(𝕋) ⊂ 𝕃
p(𝕋).
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Proof. Let u ∈ ℂrd(𝕋) be arbitrarily chosen. Then |u|p ∘ E is bounded on [a, b] and it
is continuous on [a, b] except possibly at right-scattered points. Since the set of such
points is countable, it has Lebesgue measure zero. Thus, |u|p ∘ E is Lebesgue measur-
able, and hence, integrable. Therefore, u ∈ 𝕃p(𝕋). Because u ∈ 𝒞rd(𝕋) was arbitrarily
chosen and we get that u ∈ 𝕃p(𝕋), we conclude that

𝒞rd(𝕋) ⊂ 𝕃
p(𝕋).

This completes the proof.

Theorem D.25. For any p ∈ [1,∞), we have that ℂ(𝕋) is dense in 𝕃p(𝕋).

Proof. Let u ∈ 𝕃p(𝕋) be arbitrarily chosen. Consider 𝕋 as a topological space with
measure μ𝕋. By the standard Lebesgue integration theory, it follows that there exists
a sequence {un}n∈ℕ of elements of ℂ(𝕋) such that

‖u − un‖𝕃1(𝕋) → 0,

as n →∞. Thus, the result is proved for p = 1. In addition, by the standard Lebesgue
integration theory, it follows that we can suppose that there exists a constant C > 0
for which |u(t)| ≤ C, |un(t)| ≤ C for any n ∈ ℕ and for any t ∈ 𝕋. Hence,

‖u − un‖
p
𝕃p(𝕋) =

b

∫
a

|u − un|
pΔ

=
b

∫
a

|u − un|
p−1|u − un|Δ

≤
b

∫
a

(|u| + |un|)
p−1
|u − un|Δ

≤ (2C)p−1
b

∫
a

|u − un|Δ

= (2C)p−1‖u − un‖𝕃1(𝕋)
→ 0,

as n→∞. This completes the proof.

Theorem D.26. Suppose that {un}n∈ℕ is a sequence in 𝕃p(𝕋) for some p ≥ 1. If ‖u −
un‖𝕃p(𝕋) → 0, as n → ∞, for some u ∈ 𝕃p(𝕋), and if t ∈ 𝕋 is right-scattered, then
un(t)→ u(t), as n→∞.
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Proof. Let ‖ ⋅ ‖𝕃p(a,b) denote the standard 𝕃p(a, b)-norm on the real interval [a, b].
Then

0 = lim
n→∞
(u − un) ∘ E


p
𝕃p(a,b)

= lim
n→∞

b

∫
a

(u − un) ∘ E

pdx

≥ lim
n→∞

σ(t)

∫
t

(u − un) ∘ E

pdx

= lim
n→∞

σ(t)

∫
t

|u − un|
pΔ

= lim
n→∞
u(t) − un(t)


p
(σ(t) − t)

≥ 0.

Consequently, un(t)→ u(t), as n→∞. This completes the proof.

Theorem D.27. If {un}n∈ℕ is a Cauchy sequence in 𝕃p(𝕋), then there exists a unique u ∈
𝕃p(𝕋) such that ‖u − un‖𝕃p(𝕋) → 0, as n→∞.

Proof. Note that the sequence {un ∘ E}n∈ℕ is a Cauchy sequence in 𝕃p(a, b). Then,
by the standard Lebesgue theory, it follows that there is a unique z ∈ 𝕃p(a, b) such
that

‖z − un ∘ E‖𝕃p((a,b)) → 0,

as n→∞. Suppose that t ∈ 𝕋 is right-scattered. Then

(un − um) ∘ E

p
𝕃p(𝕋) =

b

∫
a

(un − um) ∘ E

pdx

≥

σ(t)

∫
t

(un − um) ∘ E

pdx

=

σ(t)

∫
t

|un − um|
pΔ

= un(t) − um(t)

p
(σ(t) − t).

Therefore, the sequence {un(t)}n∈ℕ is a Cauchy sequence. Thus, it converges to c(t)
and the function z must equal to c(t) almost everywhere on the interval [t, σ(t)), and
so we may suppose that this equality holds everywhere on [t, σ(t)). Since the set of
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right-scattered points t ∈ 𝕋 is at most countable, we may suppose that this is true for
all right-scattered points t ∈ 𝕋. Defining u to be the restriction of z to 𝕋, it follows
that u ∈ 𝕃p(𝕋), z = u ∘ E, and ‖u − un‖𝕃p(𝕋) → 0, as n → ∞. This completes the
proof.

Remark D.28.
1. By Theorem D.27, it follows that 𝕃p(𝕋), p ≥ 1, is a Banach space with respect to

the norm ‖ ⋅ ‖𝕃p(𝕋).
2. We can define a natural inner product on 𝕃2(𝕋) by

⟨u, v⟩𝕋 =
b

∫
a

uvΔ, u, v ∈ 𝕃2(𝕋). (D.4)

With respect to this inner product, the space 𝕃2(𝕋) is a Hilbert space.
3. To simplify the notation, from now on we will use the notation ‖ ⋅ ‖𝕋 for the norm
‖ ⋅ ‖𝕃2(𝕋).

4. The notations ‖ ⋅ ‖𝕋 and ⟨⋅, ⋅⟩𝕋 for the above norm and inner product on 𝕃2(𝕋)
indicate that their values dependon the entire time scale𝕋, even if u is not defined
at b.

Exercise D.29. Prove that (D.4) satisfies all the axioms for an inner product.

D.3 Sobolev-type spaces and generalized derivatives

Definition D.30. For u ∈ ℂ1rd(𝕋), we define

‖u‖21,𝕋 = ‖u‖
2
𝕋 +
u

Δ
2
𝕋, (D.5)

and define the spaceℍ1(𝕋) ⊂ 𝕃2(𝕋) to be the completion of ℂ1(𝕋) with respect to the
norm ‖ ⋅ ‖1,𝕋. The spaceℍ1(𝕋) will be called a Sobolev space over 𝕋.

Exercise D.31. Prove that (D.5) satisfies all the axioms for a norm.

Theorem D.32. Function u ∈ ℍ1(𝕋) if and only if there exists a function uΔg ∈ 𝕃2(𝕋)
such that the following condition holds: there exists a sequence {un}n∈ℕ in ℂ1(𝕋) such
that un → u and uΔn → uΔg , as n → ∞, in 𝕃2(𝕋). If u ∈ ℍ1(𝕋), then uΔg is unique in the
𝕃2(𝕋) sense. If u ∈ ℂ1(𝕋), then uΔg = uΔ.

Proof.
1. Let u ∈ ℍ1(𝕋). By the definition of the spaceℍ1(𝕋), it follows that there exists a

sequence {un}n∈ℕ of elements ofℂ1(𝕋) such that ‖un−u‖1,𝕋 → 0, asn→∞. Hence,
‖un − um‖1,𝕋 → 0, as m, n → ∞. Consequently, {uΔn}n∈ℕ is a Cauchy sequence in
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𝕃2(𝕋). Because 𝕃2(𝕋) is a Banach space, there exists a unique uΔg ∈ 𝕃2(𝕋) such
that uΔn → uΔg , as n→∞, in 𝕃2(𝕋). In particular, if u ∈ ℂ1(𝕋), then uΔ = uΔg .

2. Let {un}n∈ℕ be a sequence of elements of ℂ1(𝕋) such that un → u and uΔn → uΔg ,
as n → ∞, in 𝕃2(𝕋), for some uΔg ∈ 𝕃2(𝕋). Hence, using (D.5), we conclude that
{un}n∈ℕ is a convergent sequence inℍ1(𝕋). By the definition ofℍ1(𝕋), it follows
that there exists u1 ∈ ℍ1(𝕋) such that un → u1, as n → ∞, in ℍ1(𝕋). Hence,
un → u1, as n →∞, in 𝕃2(𝕋). Because un → u, as n →∞, in 𝕃2(𝕋), we conclude
that u = u1 and u ∈ ℍ1(𝕋). This completes the proof.

Definition D.33. For any u ∈ ℍ1(𝕋), the function uΔg in Theorem D.32 will be called a
generalized derivative of u.

Theorem D.34. If u ∈ ℍ1(𝕋), then u ∈ ℂ(𝕋). There exists a constant C > 0 such that

|u|0,𝕋 ≤ C‖u‖1,𝕋, u ∈ ℍ1(𝕋). (D.6)

Furthermore,

u(t) − u(s) =
t

∫
s

uΔgΔ, s, t ∈ 𝕋. (D.7)

Proof. Let u ∈ ℂ1(𝕋) and s, t ∈ 𝕋, s ≤ t. By Theorem D.22, we get

u(t) − u(s) =
t

∫
s

uΔΔ. (D.8)

Hence,

u(t)
 =

u(s) +

t

∫
s

uΔΔ


≤ u(s)
 +


t

∫
s

uΔΔ


≤ u(s)
 +

t

∫
s

u
ΔΔ

≤ u(s)
 + (t − s)

1
2(

t

∫
s

u
Δ
2Δ)

1
2

≤ u(s)
 + (b − a)

1
2 u

Δ𝕋.

Now we integrate the latter inequality over 𝕋 with respect to s and get
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b

∫
a

u(t)
Δ ≤

b

∫
a

u(s)
Δ + (b − a)

1
2

b

∫
a

u
Δ𝕋Δ

≤ (b − a)
1
2(

b

∫
a

u(s)

2Δ)

1
2

+ (b − a)
3
2 u

Δ𝕋

= (b − a)
1
2 ‖u‖𝕋 + (b − a)

3
2 u

Δ𝕋,

or

(b − a)u(t)
 ≤ (b − a)

1
2 ‖u‖𝕋 + (b − a)

3
2 u

Δ𝕋.

Hence,

u(t)
 ≤

1
(b − a)

1
2
‖u‖𝕋 + (b − a)

1
2 u

Δ𝕋

and

sup
t∈𝕋

u(t)
 ≤

1
(b − a)

1
2
‖u‖𝕋 + (b − a)

1
2 u

Δ𝕋,

or

|u|0,𝕋 ≤
1
(b − a)

1
2
‖u‖𝕋 + (b − a)

1
2 u

Δ𝕋.

Let

C = max{ 1
(b − a)

1
2
, (b − a)

1
2}.

Then

|u|0,𝕋 ≤ C(‖u‖𝕋 +
u

Δ𝕋) = C‖u‖1,𝕋.

By Theorem D.32, we have that uΔ = uΔg . Hence, by (D.8), we get (D.7). Let now u ∈
ℍ1(𝕋). Then there exists a sequence {un}n∈ℕ of elements of ℂ1(𝕋) such that un → u,
as n→∞, inℍ1(𝕋). For this sequence, we have

|un − um|0,𝕋 ≤ C‖un − um‖1,𝕋, m, n ∈ ℕ. (D.9)

Note that un → u, as n → ∞, in 𝕃2(𝕋). Because ‖un − um‖1,𝕋 → 0, as m, n → ∞,
using (D.9), we get

|un − um|0,𝕋 → 0,
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as m, n → ∞. Therefore, {un}n∈ℕ is a Cauchy sequence in ℂ(𝕋). Because ℂ(𝕋) is a
Banach space, we conclude that the sequence {un}n∈ℕ is a convergent sequence in
ℂ(𝕋). Let u1 ∈ ℂ(𝕋) be its limit, i. e., un → u1, as n→∞, in ℂ(𝕋). Then

un − u
1
2
𝕋 =

b

∫
a

un − u
1
2Δ

≤ (b − a)un − u
1
2
0,𝕋

→ 0,

as n → ∞. Therefore, un → u1, as n → ∞, in 𝕃2(𝕋). Because un → u, as n → ∞, in
𝕃2(𝕋), we conclude that u = u1 and u ∈ ℂ(𝕋). From here, using

|un|0,𝕋 ≤ C‖un‖1,𝕋,

we obtain that u satisfies the inequality (D.6). Since u ∈ ℍ1(𝕋), using Theorem D.32,
there exist a unique function uΔg ∈ 𝕃2(𝕋) and a sequence {vn}n∈ℕ of elements ofℂ1(𝕋)
such that vn → u and vΔn → uΔg , as n→∞, in 𝕃2(𝕋). Also, we have

vn(t) − vn(s) =
t

∫
s

vΔgn Δ, s, t ∈ 𝕋, s ≤ t. (D.10)

Note that



t

∫
s

vΔgn Δ −
t

∫
s

uΔgΔ

=


t

∫
s

vΔnΔ −
t

∫
s

uΔgΔ


=


t

∫
s

(vΔn − u
Δg )Δ


≤
t

∫
s

v
Δ
n − u

Δg Δ

≤ (t − s)
1
2(

t

∫
s

v
Δ
n − u

Δg 
2Δ)

1
2

≤ (b − a)
1
2 v

Δ
n − u

Δg 𝕋
→ 0, s ≤ t,

as n→∞. Hence, using that vn → u, as n→∞, inℂ(𝕋), and (D.10), we conclude that
u satisfies (D.7). This completes the proof.

Theorem D.35. Let u ∈ ℍ1(𝕋). If uΔg = 0, then u is a constant on 𝕋.
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Proof. By (D.7), we get

u(t) = u(s)

for any s, t ∈ 𝕋. This completes the proof.

Theorem D.36. Let u ∈ ℍ1(𝕋). If t ∈ 𝕋 is a right-scattered point, then

uΔg (t) = u(σ(t)) − u(t)
σ(t) − t

.

Proof. Let t ∈ 𝕋 be a right-scattered point. Since u ∈ ℍ1(𝕋), we have that u ∈ 𝕃2(𝕋)
and there exist a sequence {un}n∈ℕ of elements of ℂ1(𝕋) and an unique uΔg ∈ 𝕃2(𝕋)
such that un → u and uΔn → uΔg , as n →∞, in 𝕃2(𝕋). Hence, by Theorem D.26, we get
that un(t)→ u(t) and uΔn(t)→ uΔg (t), as n→∞. By (D.7), we have

u(σ(t)) = u(t) +
σ(t)

∫
t

uΔgΔ

and

un(σ(t)) = un(t) +
σ(t)

∫
t

uΔnΔ = un(t) + u
Δ
n(t)(σ(t) − t).

Hence,

lim
n→∞

un(σ(t)) = lim
n→∞
(un(t) + u

Δ
n(t)(σ(t) − t)) = u(t) +

σ(t)

∫
t

uΔgΔ = u(σ(t)).

Therefore,

uΔg (t) = lim
n→∞

uΔn(t)

= lim
n→∞

un(σ(t)) − un(t)
σ(t) − t

=
u(σ(t)) − u(t)

σ(t) − t
.

This completes the proof.

Theorem D.37. Let u, v ∈ ℍ1(𝕋) and α, β ∈ ℝ. Then αu + βv ∈ ℍ1(𝕋) and

(αu + βv)Δg = αuΔg + βvΔg .
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Proof. Since u, v ∈ ℍ1(𝕋), there exist sequences {un}n∈ℕ, {vn}n∈ℕ of elements ofℂ1(𝕋)
and unique uΔg , vΔg ∈ 𝕃2(𝕋) such that

un → u, vn → v, uΔn → uΔg , vΔn → vΔg ,

as n→∞, in 𝕃2(𝕋). Hence,

αun + βvn → αu + βv, αuΔn + βv
Δ
n → αuΔg + βvΔg ,

as n→∞, in𝕃2(𝕋). Hence, by TheoremD.32, it follows that αu+βv ∈ ℍ1(𝕋). Applying
again Theorem D.32, we have that there exists a unique (αu + βv)Δg ∈ 𝕃2(𝕋) such that

(αun + βvn)
Δ → (αu + βv)Δg ,

as n→∞, in 𝕃2(𝕋). Since

(αun + βvn)
Δ = αuΔn + βv

Δ
n → αuΔg + βvΔg ,

as n→∞, in 𝕃2(𝕋), we conclude that

(αu + βv)Δg = αuΔg + βvΔg .

This completes the proof.

Theorem D.38. Let u, v ∈ ℍ1(𝕋). Then uv ∈ ℍ1(𝕋) and

(uv)Δg = uΔgv + uσvΔg = uvΔg + uΔgvσ , (D.11)

and

t

∫
s

uΔgvΔ +
t

∫
s

uσvΔgΔ =
t

∫
s

uvΔgΔ +
t

∫
s

uΔgvσΔ

= (uv)(t) − (uv)(s), s, t ∈ 𝕋.

Proof. Since u, v ∈ ℍ1(𝕋), there exist sequences {un}n∈ℕ, {vn}n∈ℕ of elements ofℂ1(𝕋)
and unique uΔg , vΔg ∈ 𝕃2(𝕋) such that

un → u, vn → v, uΔn → uΔg , vΔn → vΔg ,

as n→∞, in 𝕃2(𝕋). Then

unvn → uv,

as n→∞, in 𝕃2(𝕋),
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uΔgv, uσvΔg , uvΔg , uΔgvσ ∈ 𝕃2(𝕋),
uσn → uσ , vσn → vσ ,

as n→∞, in 𝕃2(𝕋). Hence,

(unvn)
Δ = uΔnvn + u

σ
nv

Δ
n → uΔgv + uσvΔg , (D.12)

(unvn)
Δ = unv

Δ
n + u

Δ
nv

σ
n → uvΔg + uΔgvσ , (D.13)

as n→∞, in 𝕃2(𝕋). Therefore, uv ∈ ℍ1(𝕋). Hence, using Theorem D.32, there exists a
unique (uv)Δg ∈ 𝕃2(𝕋) such that

(unvn)
Δ → (uv)Δg ,

as n→∞, in 𝕃2(𝕋). From here and (D.12), (D.13), we obtain (D.11). Hence, by (D.7), we
get

t

∫
s

uΔgvΔ +
t

∫
s

uσvΔgΔ =
t

∫
s

(uΔgv + uσvΔg )Δ

=
t

∫
s

(uv)ΔgΔ

= (uv)(t) − (uv)(s)

and

t

∫
s

uvΔgΔ +
t

∫
s

uΔgvσΔ =
t

∫
s

(uvΔg + uΔgvσ)Δ

=
t

∫
s

(uv)ΔgΔ

= (uv)(t) − (uv)(s), s, t ∈ 𝕋.

This completes the proof.

Theorem D.39. Let u ∈ 𝕃2(𝕋) and U(t) = ∫ta uΔ, t ∈ 𝕋. Then U ∈ ℍ
1(𝕋), UΔg = u, and, if

V ∈ H1(𝕋) satisfies VΔg = u, then U −V is a constant. In addition, there exists a constant
C > 0 such that

‖U‖1,𝕋 ≤ C‖u‖𝕋.

Proof. Let u ∈ 𝕃2(𝕋). By Theorem D.25, it follows that there exists a sequence {un}n∈ℕ
of elements of ℂ(𝕋) such that un → u, as n → ∞, in 𝕃2(𝕋). Since un ∈ ℂ(𝕋), n ∈ ℕ,
we have that
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Un(t) =
t

∫
a

unΔ ∈ ℂ
1(𝕋) and UΔ

n (t) = un(t), t ∈ 𝕋.

For n ∈ ℕ, we have

‖Un − U‖
2
𝕋 =

b

∫
a



t

∫
a

unΔ −
t

∫
a

uΔ


2

Δ

=
b

∫
a



t

∫
a

(un − u)Δ


2

Δ

≤
b

∫
a

(
t

∫
a

(un − u)
2Δ)(t − a)Δ

≤ (b − a)
b

∫
a

(
b

∫
a

(un − u)
2Δ)Δ

= (b − a)2‖un − u‖
2
𝕋

→ 0,
U

Δ
n − u
𝕋 = ‖un − u‖𝕋 → 0,

as n → ∞, i. e., Un → U, UΔ
n → u, as n → ∞, in 𝕃2(𝕋). Hence, by Theorem D.32, it

follows that U ∈ ℍ1(𝕋) and UΔg = u. Next,

‖U‖2𝕋 =
b

∫
a



t

∫
a

uΔ


2

Δ

≤
b

∫
a

(t − a)(
t

∫
a

u2Δ)Δ

≤ (b − a)
b

∫
a

(
b

∫
a

u2Δ)Δ

= (b − a)2‖u‖2𝕋,
U

Δg 
2
𝕋 = ‖u‖

2
𝕋.

Hence,

‖U‖1,𝕋 = (‖U‖
2
𝕋 +
U

Δg 
2
𝕋)

1
2

≤ ((b − a)2‖u‖2𝕋 + ‖u‖
2
𝕋)

1
2

= (1 + (b − a)2)
1
2 ‖u‖𝕋.
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Let V ∈ ℍ1(𝕋) be such that VΔg = u. Then, using Theorem D.37, we obtain

(U − V)Δg = UΔg − VΔg = u − u = 0.

Hence, by Theorem D.35, we conclude that U − V is a constant. This completes the
proof.

Definition D.40. The functionU in TheoremD.39will be called the antiderivative of u.

Theorem D.41. We have

ℂ1rd(𝕋) ⊂ ℍ
1(𝕋). (D.14)

Proof. Let v ∈ ℂ1rd(𝕋) be arbitrarily chosen and u = vΔ ∈ ℂrd(𝕋). By Theorem D.24, it
follows that u ∈ 𝕃2(𝕋). Hence, by Theorem D.39, we have

U =
t

∫
a

uΔ ∈ ℍ1(𝕋) and UΔg = u.

Because vΔ = vΔg = u, by Theorem D.39, it follows that there exists a constant C such
that v = U+C ∈ ℍ1(𝕋). Because v ∈ ℂ1rd(𝕋)was arbitrarily chosen and for it we get that
it is an element ofℍ1(𝕋), we obtain the inclusion (D.14). This completes the proof.

Definition D.42. Define the space

ℍ2(𝕋) = {u ∈ ℂ1(𝕋) : uΔ ∈ ℍ1(𝕋κ)}

with the norm

‖u‖22,𝕋 = ‖u‖
2
𝕋 +
u

Δ
2
1,𝕋. (D.15)

Exercise D.43. Prove that (D.15) satisfies all the axioms for a norm.

Theorem D.44. If {un}n∈ℕ is a bounded sequence in ℍ1(𝕋), then {un}n∈ℕ has a subse-
quence that converges in ℂ(𝕋).

Proof. Since {un}n∈ℕ is a bounded sequence inℍ1(𝕋), there exists a constant M > 0
such that

‖un‖1,𝕋 ≤ M

for any n ∈ ℕ. Hence, by Theorem D.34, it follows that

|un|0,𝕋 ≤ C‖un‖1,𝕋 ≤ CM
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with C = max{ 1
(b−a)

1
2
, (b − a)

1
2 }, for any n ∈ ℕ. Therefore, the sequence {un}n∈ℕ is

a bounded sequence in ℂ(𝕋). Also, using Cauchy–Schwartz inequality and (D.7), we
have

un(s) − un(t)
 =


t

∫
s

uΔgn Δ


≤
t

∫
s

u
Δg
n
Δ

≤ (t − s)
1
2(

t

∫
s

u
Δg
n

2Δ)

1
2

≤ (t − s)
1
2 ‖un‖1,𝕋

≤ M(t − s)
1
2 , s, t ∈ 𝕋, s ≤ t.

Repeating as above,

un(t) − un(s)
 ≤ M(s − t)

1
2 , s, t ∈ 𝕋, s ≥ t.

Therefore, the sequence {un}n∈ℕ is equicontinuous on 𝕋. Hence, using the Arzela–
Ascoli theorem, there exists a subsequence {unm }m∈ℕ of the sequence {un}n∈ℕ that con-
verges in ℂ(𝕋). This completes the proof.

Theorem D.45. The embeddings

ℍi+1(𝕋) → ℂ(𝕋), i = 0, 1,

are compact.

Proof. Let i = 0. By Theorem D.34, we have

|u|0,𝕋 ≤ C‖u‖1,𝕋,

with C = max{ 1
(b−a)

1
2
, (b − a)

1
2 }. Therefore,

ℍ1(𝕋) → ℂ(𝕋). (D.16)

By Theorem D.44, we have that every bounded sequence inℍ1(𝕋) has a subsequence
that converges inℂ(𝕋). Therefore, the embedding (D.16) is compact. Let i = 1. Suppose
that u ∈ ℍ2(𝕋). By the definition ofℍ2(𝕋), it follows that u ∈ ℂ1(𝕋). Therefore,

ℍ2(𝕋) → ℂ1(𝕋). (D.17)
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Let {un}n∈ℕ be a bounded sequence inℍ2(𝕋). Then {uΔn}n∈ℕ is a bounded sequence in
ℍ1(𝕋). Hence, by Theorem D.44, it follows that there exists a subsequence {uΔnm }m∈ℕ
of the sequence {uΔn}n∈ℕ that converges in ℂ(𝕋). From here, it follows that {uΔnm }m∈ℕ is
a bounded sequence in ℂ(𝕋) and then there exists a positive constantM such that

u
Δ
nm (t)
 ≤ M

for any t ∈ 𝕋 and for anym ∈ ℕ. Note that

unm (t) − unm (s)
 =


t

∫
s

uΔnmΔ


≤
t

∫
s

u
Δ
nm
Δ

≤ M(t − s), s, t ∈ 𝕋, s ≤ t.

Repeating as above,

unm (t) − unm (s)
 ≤ M(s − t), s, t ∈ 𝕋, s ≥ t.

Therefore, {unm }m∈ℕ is equicontinuous on 𝕋. Since unm ∈ ℂ
1(𝕋), we have that unm ∈

ℍ1(𝕋) for anym ∈ ℕ. By Theorem D.34, it follows that

|unm |0,𝕋 ≤ C‖unm‖1,𝕋 ≤ C‖unm‖2,𝕋

with C = max{ 1
(b−a)

1
2
, (b − a)

1
2 }, for any m ∈ ℕ. Since {un}n∈ℕ is a bounded sequence

in ℍ2(𝕋) and {unm }m∈ℕ is its subsequence, we conclude that {unm }m∈ℕ is a bounded
sequence in ℂ(𝕋). Hence and the Arzela–Ascoli theorem, it follows that there exists
a subsequence {unmk }k∈ℕ of the sequence {unm }m∈ℕ that converges in ℂ(𝕋). Because
{uΔnm }m∈ℕ converges inℂ(𝕋), we have that {u

Δ
nmk
}k∈ℕ converges inℂ(𝕋). Consequently,

the sequence {unmk }k∈ℕ converges in ℂ
1(𝕋). Therefore, the embedding (D.17) is com-

pact. This completes the proof.

Theorem D.46. For any ε > 0, there exists C(ε) > 0 such that

|u|0,𝕋 ≤ ε
u

Δg 𝕋 + C(ε)(‖u‖𝕋 +
u

σ𝕋), u ∈ ℍ1(𝕋). (D.18)

Proof. Let u ∈ ℍ1(𝕋). Then there exists a sequence {un}n∈ℕ of elements of ℂ1(𝕋) such
that un → u, uΔn → uΔg , as n → ∞, in 𝕃2(𝕋). Take n ∈ ℕ arbitrarily. Consider an
arbitrary t0 ∈ 𝕋. Suppose that

𝕋0,ε = [t0 −
ε2

2
, t0 +

ε2

2
] ∩ 𝕋 ̸= {t0},
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i. e., t0 is not isolated in 𝕋. Let

i0 = inf𝕋0,ε, s0 = sup𝕋0,ε.

We have

0 < s0 − i0 ≤ ε
2.

Then

un(t)
 =

un(s) +

t

∫
s

uΔnΔ


≤ un(s)
 +


t

∫
s

uΔnΔ


≤ un(s)
 +

t

∫
s

u
Δ
n
Δ

≤ un(s)
 + (t − s)

1
2(

t

∫
s

u
Δ
n

2Δ)

1
2

≤ un(s)
 + ε
u

Δ
n
𝕋, s, t ∈ 𝕋0,ε, s ≤ t.

Repeating as above,

un(t)
 ≤
un(s)
 + ε
u

Δ
n
𝕋, s, t ∈ 𝕋0,ε, s ≥ t.

Integrating over 𝕋0,ε with respect to s, we get

(s0 − i0)
un(t)
 ≤

t0+
ε2
2

∫

t0−
ε2
2

un(s)
Δ + ε(s0 − i0)

u
Δ
n
𝕋

≤ (s0 − i0)
1
2(

t0+
ε2
2

∫

t0−
ε2
2

un(s)

2Δ)

1
2

+ ε(s0 − i0)
u

Δ
n
𝕋

≤ (s0 − i0)
1
2 ‖un‖𝕋 + ε(s0 − i0)

u
Δ
n
𝕋, t ∈ 𝕋0,ε.

Hence,

un(t)
 ≤ ε(s0 − i0)

− 12 ‖un‖𝕋 + ε
u

Δ
n
𝕋, t ∈ 𝕋0,ε. (D.19)
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Now, we suppose that 𝕋0,ε = {t0}, i. e., t0 is isolated in 𝕋. If σ(t0) > t0, then

un(t0)
 = (σ(t0) − t0)

−1
σ(t0)

∫
t0

|un|Δ

≤ (σ(t0) − t0)
− 12(

σ(t0)

∫
t0

|un|
2Δ)

1
2

≤ (σ(t0) − t0)
− 12 ‖un‖𝕋. (D.20)

If t0 > ρ(t0), then

un(t0)
 = (t0 − ρ(t0))

−1
t0

∫
ρ(t0)

u
σ
n
Δ

≤ (t0 − ρ(t0))
− 12(

t0

∫
ρ(t0)

u
σ
n

2Δ)

1
2

≤ (t0 − ρ(t0))
− 12 u

σ
n
𝕋. (D.21)

Suppose that there exists ε > 0 such that for eachm ∈ ℕ and tm ∈ 𝕋 we have

un(tm)
 > ε
u

Δ
n
𝕋 +m(‖un‖𝕋 +

u
σ
n
𝕋), tm → t0. (D.22)

If t0 is isolated, (D.22) contradicts (D.20) and (D.21). If t0 is not isolated, then (D.22)
contradicts (D.19). Consequently, for each ε > 0, there exists C(ε) > 0 such that

|un|0,𝕋 ≤ ε
u

Δ
n
𝕋 + C(ε)(‖un‖𝕋 +

u
σ
n
𝕋). (D.23)

Because n ∈ ℕ was arbitrarily chosen and

|un|0,𝕋 → |u|0,𝕋,
u

Δ
n
𝕋 →
u

Δg 𝕋,

‖un‖𝕋 → ‖u‖𝕋,
u

σ
n
𝕋 →
u

σ𝕋,

as n→∞, by (D.23), we get (D.18). This completes the proof.

Theorem D.47. For any ε > 0, there exists C(ε) > 0 such that

|u|0,𝕋κ ≤ ε
u

Δg 𝕋 + C(ε)
u

σ𝕋, u ∈ ℍ1(𝕋). (D.24)

Proof. Let u ∈ ℍ1(𝕋). Then there exists a sequence {un}n∈ℕ of elements of ℂ1(𝕋) such
that un → u, uΔn → uΔg , as n → ∞, in 𝕃2(𝕋). Take n ∈ ℕ arbitrarily. Consider an
arbitrary t0 ∈ 𝕋κ. Suppose that
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𝕋0,ε = [t0 −
ε2

2
, t0 +

ε2

2
] ∩ 𝕋κ ̸= {t0},

i. e., t0 is not isolated in 𝕋. Let

i0 = inf𝕋0,ε, s0 = sup𝕋0,ε.

We have

0 < s0 − i0 ≤ ε
2.

Then

un(t)
 =

uσn(s) +

t

∫
σ(s)

uΔnΔ


≤ u
σ
n(s)
 +


t

∫
σ(s)

uΔnΔ


≤ u
σ
n(s)
 +

t

∫
σ(s)

u
Δ
n
Δ

≤ u
σ
n(s)
 + (t − σ(s))

1
2(

t

∫
σ(s)

u
Δ
n

2Δ)

1
2

≤ u
σ
n(s)
 + ε
u

Δ
n
𝕋, s, σ(s), t ∈ 𝕋0,ε, σ(s) ≤ t.

Repeating as above,

un(t)
 ≤
u
σ
n(s)
 + ε
u

Δ
n
𝕋, s, σ(s), t ∈ 𝕋0,ε, σ(s) ≥ t.

Integrating over 𝕋0,ε with respect to s, we get

(s0 − i0)
un(t)
 ≤

t0+
ε2
2

∫

t0−
ε2
2

u
σ
n(s)
Δ + ε(s0 − i0)

u
Δ
n
𝕋

≤ (s0 − i0)
1
2(

t0+
ε2
2

∫

t0−
ε2
2

u
σ
n(s)

2Δ)

1
2

+ ε(s0 − i0)
u

Δ
n
𝕋

≤ (s0 − i0)
1
2 ‖un‖𝕋 + ε(s0 − i0)

u
Δ
n
𝕋, t ∈ 𝕋0,ε.

Hence,
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un(t)
 ≤ ε(s0 − i0)

− 12 u
σ
n
𝕋 + ε
u

Δ
n
𝕋, t ∈ 𝕋0,ε. (D.25)

Now, we suppose that 𝕋0,ε = {t0}, i. e., t0 is isolated in 𝕋. Then

un(t0)
 = (t0 − ρ(t0))

−1
t0

∫
ρ(t0)

u
σ
n
Δ

≤ (t0 − ρ(t0))
− 12(

t0

∫
ρ(t0)

u
σ
n

2Δ)

1
2

≤ (t0 − ρ(t0))
− 12 u

σ
n
𝕋. (D.26)

Suppose that there exists ε > 0 such that for eachm ∈ ℕ and tm ∈ 𝕋κ we have

un(tm)
 > ε
u

Δ
n
𝕋 +m
u

σ
n
𝕋, tm → t0. (D.27)

If t0 is isolated, then (D.27) contradicts (D.26). If t0 is not isolated, then (D.27) contra-
dicts (D.25). Consequently, for each ε > 0, there exists C(ε) > 0 such that

|un|0,𝕋 ≤ ε
u

Δ
n
𝕋 + C(ε)

u
σ
n
𝕋. (D.28)

Because n ∈ ℕ was arbitrarily chosen and

|un|0,𝕋 → |u|0,𝕋,
u

Δ
n
𝕋 →
u

Δg 𝕋,
u

σ
n
𝕋 →
u

σ𝕋,

as n→∞, by (D.28), we get (D.24). This completes the proof.

D.4 Weak solutions of dynamical systems

Definition D.48. Let f : 𝕋→ ℝ be a Lebesgue measurable function. If

∫
K

f (t)
Δt <∞

on all compact subsets K of 𝕋, then we say that f is locally integrable. The set of all
such functions we will denote by 𝕃1loc(𝕋).

Define

Γ1(𝕋) = {p ∈ 𝕃
1
loc(𝕋) : 1 + μ(t)p(t) ̸= 0}.
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Note that for any p ∈ Γ1(𝕋) and a, b ∈ ℝ fixed, there exist positive constants a1 and a2
such that

a1 ≤
1 + μ(t)p(t)

 ≤ a2, t ∈ [a, b] ∩ 𝕋,

and the set

{t ∈ 𝕋 : 1 + μ(t)p(t) < 0} ⊂ 𝕋

is finite.

Definition D.49. For p ∈ Γ1(𝕋) and s, t ∈ 𝕋, define

ξμ(t)(p(t)) = {
Log(1+μ(t)p(t))

μ(t) if μ(t) ̸= 0,
p(t) if μ(t) = 0,

and

ep(t, s) = e
∫[s,t) ξμ(τ)(p(τ))Δτ.

Exercise D.50. Let p ∈ Γ1(𝕋). Prove that

ξμ(⋅)(p(⋅)) ∈ 𝕃
1
loc(𝕋).

Definition D.51. For p, q ∈ Γ1(𝕋), define

p ⊕ q = p + q + μpq,

⊖p = − p
1 + μp
,

p ⊖ q = p − q
1 + μq
.

Exercise D.52. Let p, q ∈ Γ1(𝕋). Prove that

p ⊕ q, p ⊖ q, ⊖p ∈ Γ1(𝕋).

Exercise D.53. Let p, q ∈ Γ1(𝕋) and s, t, r ∈ 𝕋. Prove that
1. e0(t, s) = 1,
2. ep(t, t) = 1,
3. ep(t, s)ep(s, r) = ep(t, r),
4. ep(σ(t), s) = (1 + μ(t)p(t))ep(t, s),
5. ep(t, s) =

1
ep(s,t)
= e⊖p(s, t),

6. ep(t, s)eq(t, s) = ep⊕q(t, s),
7. ep(t,s)

eq(t,s)
= ep⊖q(t, s),
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8. ep(⋅, s) ∈ 𝒞rd(𝕋),
9. (ep(⋅, s))Δ = p(⋅)ep(⋅, s) Δ-a.e. on 𝕋,
10. (ep(s, ⋅))Δ = −p(⋅)ep(s, σ(⋅)) Δ-a.e. on 𝕋.

Theorem D.54. Let x ∈ 𝒞rd(𝕋), p, f ∈ 𝕃1(𝕋), p ≥ 0 on 𝕋, a ∈ 𝕋, and

xΔ(t) ≤ p(t)x(t) + f (t) Δ-a.e. on 𝕋.

Then

x(t) ≤ ep(t, a)x(a) + ∫
[a,t)

ep(t, σ(τ))f (τ)Δτ, t ∈ 𝕋.

Proof. Since p ∈ 𝕃1(𝕋) and p ≥ 0 on 𝕋, we have that p ∈ Γ1(𝕋) and

1 + μ(t)p(t) > 0, t ∈ 𝕋.

Therefore, for any s, t ∈ 𝕋, we have

ep(t, s) > 0, e⊖p(t, s) > 0.

Next,

(x(⋅)e⊖p(⋅, s))
Δ
(t) = xΔ(t)e⊖p(σ(t), a) + x(t)(⊖p)(t)e⊖p(t, a)

=
xΔ(t)

1 + μ(t)p(t)
e⊖p(t, a) −

p(t)x(t)
1 + μ(t)p(t)

e⊖p(t, a)

=
xΔ(t) − p(t)x(t)
1 + μ(t)p(t)

e⊖p(t, a)

= (xΔ(t) − p(t)x(t))e⊖p(σ(t), a) Δ-a.e. on 𝕋.

Therefore,

x(t)e⊖p(t, a) − x(a) = ∫
[a,t)

(xΔ(τ) − p(τ)x(τ))e⊖p(σ(τ), a)Δτ

≤ ∫
[a,t)

f (τ)e⊖p(σ(τ), a)Δτ, t ∈ 𝕋.

Hence,

x(t)e⊖p(t, a) ≤ x(a) + ∫
[a,t)

f (τ)e⊖p(σ(τ), a)Δτ, t ∈ 𝕋,

and
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x(t) ≤ x(a)ep(t, a) + ∫
[a,t)

f (τ)e⊖p(σ(τ), a)e⊖p(a, t)Δτ

= x(a)ep(t, a) + ∫
[a,t)

f (τ)e⊖p(σ(τ), t)Δτ

= x(a)ep(t, a) + ∫
[a,t)

f (τ)ep(t, σ(τ))Δτ, t ∈ 𝕋.

This completes the proof.

Theorem D.55. Let x ∈ 𝒞rd(𝕋), p, g ∈ 𝕃1𝕋), x ≥ 0, g ≥ 0 on 𝕋, α ≥ 0, λ ∈ (0, 1), a, b ∈ 𝕋,
a < b,

x(t) ≤ α + ∫
[a,t)

p(τ)x(τ)Δτ + ∫
[a,t)

g(τ)(x(σ(τ)))λΔτ, t ∈ [a, b].

Then there exists a positive constant M such that

x(t) ≤ M, t ∈ [a, b].

Proof. Let

y(t) = α + ∫
[a,t)

p(τ)x(τ)Δτ + ∫
[a,t)

g(τ)(x(σ(τ)))λΔτ, t ∈ [a, b].

Then

x(t) ≤ y(t), t ∈ [a, b],

and y is differentiable Δ-a.e. on [a, b], y(a) = α. We have

yΔ(t) = p(t)x(t) + g(t)(x(σ(t)))λ

≤ p(t)y(t) + g(t)(y(σ(t)))λ Δ-a.e. on [a, b].

Hence, by Theorem D.54, it follows that

y(t) ≤ αep(t, a) + ∫
[a,t)

ep(t, σ(τ))g(τ)(y(σ(τ)))
λΔτ

≤ αep(b, a) + ep(b, a) ∫
[a,t)

ep(a, σ(τ))g(τ)(y(σ(τ)))
λΔτ
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≤ αep(b, a) + ep(b, a) ∫
[a,t)

g(τ)(y(σ(τ)))λΔτ

≤ αep(b, a) + ep(b, a) ∫
[a,b)

g(τ)(y(σ(τ)))λΔτ, t ∈ [a, b].

Define

q(t) = αep(b, a) + ep(b, a) ∫
[a,b)

g(τ)(y(σ(τ)))λΔτ

+ ep(b, a) ∫
[a,t)

g(τ)(y(σ(τ)))λΔτ, t ∈ [a, b].

Then q is monotone increasing on [a, b] and

y(t) ≤ q(a),
y(σ(t)) ≤ q(a), t ∈ [a, b],

q(b) = αep(b, a) + 2ep(b, a) ∫
[a,b)

g(τ)(y(σ(τ)))λΔτ

= −αep(b, a) + 2q(a),

and

qΔ(t) = ep(b, a)g(t)(y(σ(t)))
λ

≤ ep(b, a)g(t)(q(a))
λ

≤ ep(b, a)g(t)(q(t))
λ Δ-a.e. on [a, b].

Hence,

q(t) − q(a) ≤ ep(b, a) ∫
[a,t)

g(τ)(q(τ))λΔτ

≤ (q(t))λep(b, a) ∫
[a,t)

g(τ)Δτ, t ∈ [a, b].

From here,

(q(t))1−λ − (q(a))1−λ ≤ (q(t))1−λ − (q(t))−λq(a)

≤ ep(b, a) ∫
[a,t)

g(τ)Δτ, t ∈ [a, b].

Hence,
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(q(b))1−λ − (q(a))1−λ ≤ ep(b, a) ∫
[a,b)

g(τ)Δτ,

or

(2q(a) − αep(b, a))
1−λ
− (q(a))1−λ ≤ ep(b, a) ∫

[a,b)

g(τ)Δτ.

Let

h(z) = (2z − αep(b, a))
1−λ
− z1−λ, z ∈ ℝ.

We have

lim
z→∞

h(z) = lim
z→∞

h(z)
z1−λ

z1−λ

= lim
z→∞
((2 −

αep(b, a)
z
)
1−λ
− 1)z1−λ

=∞.

Hence, there is a positive constantM such that

q(a) ≤ M

and

x(t) ≤ y(t) ≤ q(a) ≤ M, t ∈ [a, b].

This completes the proof.
Consider the following IVP:

xΔ(t) + p(t)xσ(t) = f (t),
x(a) = x0, (D.29)

where p ∈ Γ1(𝕋), f ∈ 𝕃1(𝕋), x0 ∈ ℝ is given, a ∈ 𝕋. Note that the integral

∫
[a,⋅)

e⊖p(⋅, τ)f (τ)Δτ

is well-defined.

Definition D.56. The function x ∈ 𝒞rd(𝕋) given by

x(t) = e⊖p(t, a)x0 + ∫
[a,t)

e⊖p(t, τ)f (τ)Δτ, t ∈ 𝕋, (D.30)

is said to be a weak solution of the IVP (D.29).

 EBSCOhost - printed on 2/10/2023 4:40 PM via . All use subject to https://www.ebsco.com/terms-of-use



366 | D Lebesgue integration. Lp-spaces. Sobolev spaces

If x ∈ 𝒞rd(𝕋) is a weak solution of the IVP (D.29) and if it is given by the expres-
sion (D.30), we have

xΔ(t) + p(t)xσ(t) = f (t) Δ-a.e. on 𝕋.

Now we consider the IVP

xΔ(t) + p(t)xσ(t) = f (t, x(t), xσ(t)), a ≤ t < b,
x(a) = x0,

(D.31)

where a, b ∈ 𝕋, a < b, p ∈ Γ1(𝕋),
(H1) f : 𝕋 × ℝ × ℝ→ ℝ is Δ-measurable in t ∈ 𝕋 and

f (t, x1, y1) − f (t, x2, y2)
 ≤ L(|x1 − x2| + |y1 − y2|)

for all t ∈ 𝕋, x1, x2, y1, y2 ∈ ℝ, and for some positive constant L,
(H2) there exist a constant λ ∈ (0, 1) and a function q ∈ 𝕃1(𝕋), such that

1 − 2 sup
t,s∈[a,b)

e⊖p(t, s)
 ∫
[a,b)

q(τ)Δτ > 0,

and

f (t, x, y)
 ≤ q(t)(1 + |x| + |y|

λ)

for all t ∈ 𝕋, x, y ∈ ℝ.

Definition D.57. A function x ∈ 𝒞rd(𝕋) is said to be a weak solution of the IVP (D.31),
if x satisfies the following integral equation:

x(t) = e⊖p(t, a)x0 + ∫
[a,t)

e⊖p(t, τ)f (τ, x(τ), x
σ(τ))Δτ, t ∈ 𝕋.

Theorem D.58. p ∈ Γ1(𝕋). Suppose (H1) and (H2) hold. Then the IVP (D.31) has a unique
weak solution x ∈ 𝒞rd([a, b)) such that

xΔ(t) + p(t)xσ(t) = f (t, x(t), xσ(t)) Δ-a.e. on 𝕋.

Proof. For x ∈ 𝒞rd([a, b)), define the operator

(Qx)(t) = e⊖p(t, a)x0 + ∫
[a,t)

e⊖p(t, τ)f (τ, x(τ), x
σ(τ))Δτ.

We have Qx ∈ 𝒞rd([a, b)). Let ρ > 0 be arbitrarily chosen and
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M = sup
t,s∈[a,b)

e⊖p(t, s)
.

Take x, y ∈ 𝒞rd([a, b)) such that

‖x‖𝒞rd([a,b)) ≤ ρ, ‖y‖𝒞rd([a,b)) ≤ ρ,

where

‖ ⋅ ‖𝒞rd([a,b)) = sup
[a,b)
| ⋅ |.

We have

(Qx)(t) − (Qy)(t)
 =

e⊖p(t, a)x0 + ∫

[a,t)

e⊖p(t, τ)f (τ, x(τ), x
σ(τ))Δτ

− e⊖p(t, a)x0 − ∫
[a,t)

e⊖p(t, τ)f (τ, y(τ), y
σ(τ))Δτ


=

∫
[a,t)

e⊖p(t, τ)(f (τ, x(τ), x
σ(τ)) − f (τ, y(τ), yσ(τ)))Δτ



≤ ∫
[a,t)

e⊖p(t, τ)

f (τ, x(τ), x

σ(τ)) − f (τ, y(τ), yσ(τ))Δτ

≤ ∫
[a,b)

e⊖p(t, τ)

f (τ, x(τ), x

σ(τ)) − f (τ, y(τ), yσ(τ))Δτ

≤ LM ∫
[a,b)

(x(τ) − y(τ)
 +
x
σ(τ) − yσ(τ))Δτ

≤ 2LM(b − a)‖x − y‖𝒞rd([a,b)), t ∈ [a, b).

Hence,

‖Qx − Qy‖𝒞rd([a,b)) ≤ 2LM(b − a)‖x − y‖𝒞rd([a,b)).

Therefore,

Q : 𝒞rd([a, b))→ 𝒞rd([a, b))

is a continuous operator. Define

W = {x ∈ 𝒞rd([a, b)) : ‖x‖𝒞rd([a,b)) ≤ ρ}.

Note that, for x ∈ W , we have
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f (t, x(t), x
σ(t)) ≤ q(t)(1 +

x(t)
 +
x
σ(t)

λ
)

≤ q(t)(1 + ‖x‖𝒞rd([a,b)) + ‖x‖
λ
𝒞rd([a,b)))

≤ q(t)(1 + ρ + ρλ), t ∈ [a, b),

and

(Qx)(t)
 =

e⊖p(t, a)x0 + ∫

[a,t)

e⊖p(t, τ)f (τ, x(τ), x
σ(τ))Δτ


≤ e⊖P(t, a)x0
 + ∫
[a,t)

e⊖p(t, τ)

f (τ, x(τ), x

σ(τ))Δτ

≤ M|x0| +M(1 + ρ + ρ
λ) ∫
[a,b)

q(τ)Δτ

= M(|x0| + (1 + ρ + ρ
λ) ∫
[a,b)

q(τ)Δτ), t ∈ [a, b),

and

‖Qx‖𝒞rd([a,b)) ≤ M(|x0| + (1 + ρ + ρ
λ) ∫
[a,b)

q(τ)Δτ).

Therefore, QW ⊆ 𝒞rd([a, b)) is bounded. Let t1, t2 ∈ [a, b), t2 > t1. Then

(Qx)(t2) − (Qx)(t1)
 =

e⊖p(t2, a)x0 + ∫

[a,t2)

e⊖p(t2, τ)f (τ, x(τ), x
σ(τ))Δτ

− e⊖p(t1, a)x0 − ∫
[a,t1)

e⊖p(t1, τ)f (τ, x(τ), x
σ(τ))Δτ


≤ e⊖p(t2, a) − e⊖p(t1, a)
|x0|

+

∫
[a,t2)

e⊖p(t2, τ)f (τ, x(τ), x
σ(τ))Δτ

− ∫
[a,t1)

e⊖p(t1, τ)f (τ, x(τ), x
σ(τ))Δτ


≤ e⊖p(t1, a)

e⊖p(t2, t1) − 1

|x0|

+ ∫
[a,t1)

e⊖p(t2, τ) − e⊖p(t1, τ)

f (τ, x(τ), x

σ(τ))Δτ

+ ∫
[t1 ,t2)

e⊖p(t2, τ)

f (τ, x(τ), x

σ(τ))Δτ
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≤ M|x0|
e⊖p(t2, t1) − 1



+ ∫
[a,t1)

e⊖p(t2, t1) − 1

e⊖p(t1, τ)


f (τ, x(τ), x

σ(τ))Δτ

+ ∫
[t1 ,t2)

e⊖p(t2, τ)

f (τ, x(τ), x

σ(τ))Δτ

≤ M|x0|
e⊖p(t2, t1) − 1



+M(1 + ρ + ρλ)e⊖p(t2, t1) − 1
 ∫
a,t1)

q(τ)Δτ

+M(1 + ρ + ρλ) ∫
[t1 ,t2)

q(τ)Δτ

≤ M(|x0| + 1 + ρ + ρ
λ + ‖q‖𝕃1([a,b)))

e⊖p(t2, t1) − 1


+M(1 + ρ + ρλ) ∫
[t1 ,t2)

q(τ)Δτ.

Therefore, QW is rd-equicontinuous. By the Arzela–Ascoli theorem, it follows that Q
is a compact operator in 𝒞rd([a, b)). Define

Y = {x ∈ 𝒞rd([a, b)) : x = δQx, δ ∈ [0, 1]}.

Let

y = 1
δ
x, δ ̸= 0,

otherwise y = 0 for x ∈ Y . Then

y(t)
 =
(Q(δy))(t)



=

e⊖p(t, a)x0 + ∫

[a,t)

e⊖p(t, τ)f (τ, δy(τ), δy
σ(τ))Δτ


≤ e⊖p(t, a)x0
 + ∫
[a,t)

e⊖p(t, τ)

f (τ, δy(τ), δy

σ(τ))Δτ

≤ M|x0| +M ∫
[a,t)

q(τ)(1 + δy(τ)
 + δ

λy(τ)

λ
)Δτ

= M|x0| +M ∫
[a,t)

q(τ)Δτ +Mδ ∫
[a,t)

q(τ)y(τ)
Δτ

+Mδλ ∫
[a,t)

q(τ)y
σ(τ)

λΔτ, t ∈ [a, b).
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Hence, by Theorem D.55, it follows that there exists a positive constant r such that

y(t)
 ≤ r, t ∈ [a, b).

We take r > 0 large enough and b close enough to a so that

M|x0| +M(1 + r + r
λ) ∫
[a,b)

q(τ)Δτ ≤ r.

Thus Y is a bounded set. Hence, by the Leray–Schauder fixed point theorem, it follows
that Q has a fixed point x ∈ 𝒞rd([a, b)). We have

x(t) = e⊖p(t, a)x0 + ∫
[a,t)

e⊖p(t, τ)f (τ, x(τ), x
σ(τ))Δτ, t ∈ [a, b).

Consequently, x is a weak solution of the IVP (D.31) and

xΔ(t) + p(t)xσ(t) = f (t, x(t), xσ(t)) Δ-a.e. on [a, b).

For x ∈ 𝒞rd([a, b)), define

‖x‖β = sup
t∈[a,b)

|x(t)|
eβ(t, a)
, (D.32)

where β > 0 is chosen so that

∫
[a,b)

Δτ
eβ(b, σ(τ))

≤
1

4LM
.

Note that 𝒞rd([a, b)) is a Banach space with respect to the norm ‖ ⋅ ‖β. Define

B = {x ∈ 𝒞rd([a, b)) : ‖x‖𝒞rd([a,b)) ≤ r}.

Note that B is a Banach space with respect to the norm (D.32). For x ∈ B, define the
operator

Hx(t) = e⊖p(t, a)x0 + ∫
[a,t)

e⊖p(t, τ)f (τ, x(τ), x
σ(τ))Δτ, t ∈ [a, b).

For x ∈ B, we get

 EBSCOhost - printed on 2/10/2023 4:40 PM via . All use subject to https://www.ebsco.com/terms-of-use



D.4 Weak solutions of dynamical systems | 371

Hx(t)
 =

e⊖p(t, a)x0 + ∫

[a,t)

e⊖p(t, τ)f (τ, x(τ), x
σ(τ))Δτ


≤ e⊖p(t, a)
|x0| + ∫

[a,t)

e⊖p(t, τ)

f (τ, x(τ), x

σ(τ))Δτ

≤ M|x0| +M ∫
[a,t)

q(τ)(1 + x(τ)
 +
x
σ(τ)

λ
)Δτ

≤ M|x0| +M(1 + r + r
λ) ∫
[a,t)

q(τ)Δτ

≤ M|x0| +M(1 + r + r
λ) ∫
[a,b)

q(τ)Δτ

≤ r, t ∈ [a, b).

Therefore, HB ⊆ B. Next, for x, y ∈ B, we have

‖Hx − Hy‖β = sup
t∈[a,b)

1
eβ(t, a)


e⊖p(t, a)x0 + ∫

[a,t)

e⊖p(t, τ)f (τ, x(τ), x
σ(τ))Δτ

− e⊖p(t, a)x0 − ∫
[a,t)

e⊖p(t, τ)f (τ, y(τ), y
σ(τ))Δτ


≤ sup
t∈[a,b)

1
eβ(t, a)

∫
[a,t)

e⊖p(t, τ)

f (τ, x(τ), x

σ(τ)) − f (τ, y(τ), yσ(τ))Δτ

≤ sup
t∈[a,b)

ML
eβ(t, a)

∫
[a,t)

(x(τ) − y(τ)
 +
x
σ(τ) − yσ(τ))Δτ

≤ ‖x − y‖β(ML sup
t∈[a,b)

1
eβ(t, a)

∫
[a,t)

(eβ(τ, a) + eβ(σ(τ), a))Δτ)

= ‖x − y‖β(ML sup
t∈[a,b)
∫
[a,t)

(
1

eβ(t, τ)
+

1
eβ(t, σ(τ))

)Δτ)

= ‖x − y‖β(ML sup
t∈[a,b)
∫
[a,t)

1
eβ(t, σ(τ))

(1 + 1
1 + βμ(τ)

)Δτ)

≤ ‖x − y‖β(2ML sup
t∈[a,b)
∫
[a,t)

Δτ
eβ(t, σ(τ))

)

≤
1
2
‖x − y‖β.

Therefore, H has a unique weak solution x in (B, ‖ ⋅ ‖β). Hence, the IVP (D.31) has a
unique weak solution. This completes the proof.
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D.5 A Gronwall-type inequality

Let a, b ∈ 𝕋, a < b. In this section, we state and prove a result which is a sort of the
Gronwall inequality.

Theorem D.59 (Gronwall-type inequality). Let X : 𝕋 → ℝ and k : 𝕋 → [0,∞), k ∈
𝕃1([a, b)). Suppose

x
Δ(t) ≤ γ1

x(t)
 + k(t) Δ-a. e. t ∈ [a, b],

for some positive constant γ. Then
1.

x(t) − x(a)
 ≤ γ1
x(a)
 ∫
[a,t)

eγ1(t−s)Δs + ∫
[a,t)

k(s)eγ1(t−s)Δs, t ∈ 𝕋.

2. x(t)
 ≤ (γ1e

γ1(b−a)(b − a) + 1)x(a)
 + e

γ1(b−a) ∫
[a,b)

k(s)Δs, t ∈ 𝕋.

Proof. Define z : 𝕋→ [0,∞) as follows:

z(t) = x(t) − x(a)


and take t∗ ∈ [a, b) such that z and x are Δ-differentiable at t∗. If σ(t∗) > t∗, then

zΔ(t∗) =
z(σ(t∗)) − z(t∗)

μ(t∗)

=
|x(σ(t∗)) − x(a)| − |x(t∗) − x(a)|

μ(t∗)

≤
|x(σ(t∗)) − x(t∗)|

μ(t∗)
= x

Δ(t∗)
.

If σ(t∗) = t∗, let {sj}j∈ℕ ⊂ 𝕋 be a decreasing sequence such that sj → t∗, as j → ∞.
Since

z(sj) − z(t∗)
sj − t∗

=
|x(sj) − x(a)| − |x(t∗) − x(a)|

sj − t∗
≤
|x(sj) − x(t∗)|

sj − t∗
,

we arrive at the inequality

zΔ(t∗) ≤
x
Δ(t∗)
.

Therefore,
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zΔ(t) ≤ x
Δ(t) Δ-a. e. t ∈ [a, b).

Hence,

zΔ(t) ≤ x
Δ(t)

≤ γ1
x(t)
 + k(t)

≤ γ1
x(t) − x(a)

 + γ1
x(a)
 + k(t)

= γ1z(t) + γ1
x(a)
 + k(t) Δ-a. e. t ∈ [a, b). (D.33)

Define the functionsm : 𝕋→ ℝ andmc : ℝ→ ℝ as follows:

m(t) = e−γ1t , t ∈ 𝕋,
mc(t) = e

−γ1t , t ∈ ℝ.

Let

ψ(t) = z(t)m(t), t ∈ 𝕋.

Take t∗ ∈ [a, b) such that z andm are Δ-differentiable at t∗ and (D.33) holds. We have

ψΔ(t∗) = m
Δ(t∗)z(t∗) +m(σ(t∗))z

Δ(t∗).

If σ(t∗) = t∗, then we take a sequence {sj}j∈ℕ ⊂ 𝕋 such that sj → t∗ and

mΔ(t∗) = limsj→t∗

m(t∗) −m(sj)
t∗ − sj

= lim
sj→t∗

mc(t∗) −mc(sj)
t∗ − sj

= m′c(t∗)
= −γ1e

−γ1t∗ .

So,

ψΔ(t∗) = e
−γ1t∗zΔ(t∗) − γ1e

−γ1t∗z(t∗)

= (zΔ(t∗) − γ1z(t∗))e
−γ1t∗ .

If σ(t∗) > t∗, then, applying the mean value theorem, there exists a θ ∈ (t∗, σ(t∗)) such
that

mΔ(t∗) =
m(σ(t∗)) −m(t∗)

μ(t∗)

=
mc(σ(t∗)) −mc(t∗)

μ(t∗)
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= m′c(θ)

= −γ1e
−γ1θ

≤ −γ1e
−γ1σ(t∗).

Hence,

ψΔ(t∗) ≤ −γ1z(t∗)e
−γ1σ(t∗) + e−γ1σ(t∗)zΔ(t∗)

= (zΔ(t∗) − γ1z(t∗))e
−γ1σ(t∗).

Let

λ(t∗) = z
Δ(t∗) − γ1z(t∗).

If λ(t∗) ≤ 0, then

ψΔ(t∗) ≤ λ(t∗)e
−γ1σ(t∗)

≤ 0

≤ (γ1
x(a)
 + k(t∗))e

−γ1t∗ .

If λ(t∗) > 0, then

ψΔ(t∗) ≤ λ(t∗)e
−γ1σ(t∗)

≤ λ(t∗)e
−γ1t∗

= (zΔ(t∗) − γ1z(t∗))e
−γ1t∗

≤ (|γ1|
x(a)
 + k(t∗))e

−γ1t∗ .

So,

ψΔ(t) ≤ (γ1
x(a)
 + k(t))e

−γ1t Δ-a. e. t ∈ [a, b).

Now, for each t ∈ 𝕋, we have

ψ(t) − ψ(a) = ∫
[a,t)

ψΔ(s)Δs

≤ ∫
[a,t)

(γ1
x(a)
 + k(s))e

−γ1sΔs, t ∈ 𝕋. (D.34)

Then
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x(t) − x(a)
 ≤ e

γ1t ∫
[a,t)

(γ1
x(a)
e
−γ1s + k(s)e−γ1s)Δs

= γ1
x(a)
 ∫
[a,t)

eγ1(t−s)Δs + ∫
[a,t)

k(s)eγ1(t−s)Δs, t ∈ 𝕋.

Now, by (D.34), we obtain

ψ(t) ≤ γ1
x(a)
e
−γ1a(b − a) + e−γ1a ∫

[a,b)

k(s)Δs, t ∈ 𝕋.

Hence,

x(t)
 −
x(a)
 ≤
x(t) − x(a)



≤ γ1
x(a)
e
γ1te−γ1a(b − a) + eγ1te−γ1a ∫

[a,b)

k(s)Δs

≤ γ1
x(a)
e
γ1(b−a)(b − a) + eγ1(b−a) ∫

[a,b)

k(s)Δs, t ∈ 𝕋,

whereupon

x(t)
 ≤ (γ1e

γ1(b−a)(b − a) + 1)x(a)
 + e

γ1(b−a) ∫
[a,b)

k(s)Δs, t ∈ 𝕋.

This completes the proof.
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E Mazur’s theorem
Definition E.1. LetX be a normed linear space. A linear functional𝕋 onX is said to be
bounded if there is anM ≥ 0 such that

𝕋(f )
 ≤ M‖f ‖ for any f ∈ X.

The infimumof all suchM is called the normof𝕋 and it is denoted by ‖𝕋‖⋆. The collec-
tion of bounded linear functionals on X is denoted by X⋆ and is called the dual space
of X which is a linear space.

Definition E.2. The linear operator 𝕁 : X→ (X⋆)⋆ defined by

𝕁(x)[ψ] = ψ(x) for all x ∈ X,ψ ∈ X⋆,

is called the natural embedding ofX into (X⋆)⋆. Also, the spaceX is said to be reflexive
when 𝕁(X) = (X⋆)⋆. It is customary to denote (X⋆)⋆ byX⋆⋆ and callX⋆⋆ the bidual ofX.

Definition E.3. A normed linear space X is said to be separable when there is a count-
able subset of X that is dense in X.

Remark E.4. If a set E is measurable and 1 ≤ p <∞, the normed linear space Lp(E) is
separable.

Definition E.5. A Banach space is a normed linear space that is a complete metric
space with respect to the metric derived from its norm.

Let Y be a real Banach space and Y⋆ be its dual space.

Definition E.6. An operator B : Y → Y⋆ is said to be bounded if it maps bounded sets
of Y into bounded subsets of Y⋆.

Definition E.7. A sequence {xn} in a normed space X is said to be strongly convergent
if there is an x ∈ X such that

lim
n→∞
‖xn − x‖ = 0.

Definition E.8. A sequence {xn} in a normed space X is said to be weakly convergent
if there is an x ∈ X such that

lim
n→∞

T(xn) = T(x),

for every continuous linear functional T in X⋆.

Theorem E.9 (Mazur’s theorem). Let {un}n∈ℕ be a sequence in Y that converges weakly
to some u0 ∈ Y. Then there exists a function N : ℕ→ ℕ such that the sequence {ūn}n∈ℕ
defined by

https://doi.org/10.1515/9783110787320-017
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ūn =
N(n)
∑
k=n

λkuk

converges strongly in Y to u0, where λk ≥ 0, k = n, . . . ,N(n), ∑
N(n)
k=n λk = 1.
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2-step Adams–Bashforth method 176
𝒞1(U, Y ) 312
𝒞2(U, Y ) 312
Δ-measurable set 329
gk(⋅, ⋅) 52
Gk(⋅, ⋅) 55
hk(⋅, ⋅) 45
Hk(⋅, ⋅) 47
k-Stage Runge–Kutta method 209
kth characteristic polynomial 195
𝕃1loc(𝕋) 360
m∗1 -measurable set 329
⊖ 361
⊕ 361
Πkσn+1(x) 16
πσn+1(x) 16
Πkn+1(x) 4
πn+1(x) 4
sσL 94
sL 89
σ-composite Simpson rule 72
σ-Composite Trapezium Rule 68
σ-Distinct Points 9
σ-Euler–Maclauren expansion 77
σ-Gauss quadrature rule 85
σ-hat function 97
σ-Hermite Interpolation polynomial 33
σ-Hermite Interpolation Theorem 31
σ-Lagrange Interpolation Polynomial 11
σ-Newton–Cotes formula 52
σ-Polynomial 9
σ-quadrature points 52
σ-quadrature weights 52, 85
σ-Simpson Rule 57
σ-trapezoid rule 53
ζn(x) 25

Adomian polynomial decomposition 253
Antiderivative 354

Beverton–Holt model 177

Caputo fractional Δ-derivative 235
Composite Simpson rule 64
Composite Trapezium Rule 62
Consistent linear difference operator 190, 196
Convolution 233

Euler method 123
Euler–Maclauren expansion 75

First characteristic polynomial 195
First characteristic polynomial of two-step

process 193
Fractional generalized Δ-power function 233
Fréchet derivative 311

Gâteaux derivative 318
Gauss quadrature rule 81
Generalized Δ-power Function 233
Generalized derivative 347
Generalized exponential function 361
Generalized Pötzsche chain rule 321, 324
Generalized zero 303
Global truncation error 128
Graininess function 319

Hat function 92
Hermite cubic polynomial 114
Hermite cubic spline 114
Hermite Interpolation Polynomial 23, 25
Hermite Interpolation Theorem 22

Jump operator 319

Knot 89, 94

Lagrange Interpolation Polynomial 3
Laplace transform 232
Lebesgue Δ-integral 338
Linear σ-spline 94
Linear basis σ-spline 97
Linear basis spline 92
Linear difference operator 190, 196
Linear k-step method 195
Linear spline 89
Linear two-step method 189
–explicit 189
– implicit 189
Local truncation error 124
Locally integrable function 360
Logistic equation 128, 198
Logistic Model 237

Mazur’s theorem 378
Measure chain 319
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Newton–Cotes formula 45

One-stage Runge–Kutta method 205
Order-2 Taylor series method 150
Order-p Taylor series method 169

Quadrature points 45
Quadrature weight 45, 81

Remainder 309
Riccati equation 130
Riemann–Liouville Fractional Δ-derivative 234
Riemann–Liouville fractional Δ-integral 234
Rolle’s theorem 306

Second characteristic polynomial 195

Second characteristic polynomial of two-step
process 193

Set function 329
Set of knots 89, 94
Shift of a Function 232
Simpson Rule 49
Sobolev space 346

Third characteristic polynomial 195
Third characteristic polynomial of two-step

process 193
Three-stage Runge–Kutta method 207
Time scale monomials 45
Trapezoid rule 46, 156
Two-stage Runge–Kutta method 206

Weak solution 366
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