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Preface

Numerical analysis is an extremely important field in mathematics and other natural
sciences. Almost all real life problems that are modeled mathematically do not have
exact solutions. Moreover, the mathematical models often have a nonlinear structure
which makes them even more difficult to solve analytically. In this sense, the devel-
opment and construction of efficient numerical methods gain a big significance. Mo-
tivated by this fact, the studies related to the development of new powerful numerical
methods or improvement of the existing ones are still continuing.

In particular, numerical solutions of differential equations are of great importance
since many processes in nature are time dependent and their mathematical models are
usually described by partial or ordinary differential equations and often, by difference
equations. The theory of time scales and dynamic equations, on the other hand, uni-
fies the continuous and discrete models, thus providing a more general view to the
subject.

Dynamic equations, which describe how quantities change across the time or
space, arise in any field of study where measurements can be taken. Most realistic
mathematical models cannot be solved using the traditional analytical methods for
dynamic equations on time scales. They must be handled with computational meth-
ods that deliver approximate solutions.

Until recently, there were very few studies related to numerical methods on time
scales. In the last few years, some initial results on the subject have been published,
which initiated the development of numerical analysis on time scales.

This book is devoted to designing, analyzing, and applying computational tech-
niques for dynamic equations on time scales. The book provides material for a typical
first course. This book is an introduction to numerical methods for initial value prob-
lems for dynamic equations on time scales.

The book contains 12 chapters. In Chapter 1, the Lagrange, o-Lagrange, Hermite,
and o-Hermite polynomial interpolations are introduced. From these interpolations,
approximations for the delta derivative of continuously delta-differentiable functions
are deducted. In Chapter 2, formulae for numerical integration on time scales are de-
rived and the associated approximation errors are estimated. In Chapter 3, linear in-
terpolating splines, linear interpolating o-splines, cubic and Hermite splines are in-
troduced. Chapter 4 is presented as a study of the Euler method. Chapters 5 and 6
consider the Taylor series methods of order-2 and order-p and analyze convergence of
these methods. Linear multistep methods are investigated in Chapter 7. Chapter 8 con-
tains the analysis of Runge—Kutta methods. Chapter 9 deals with the series solution
method for fractional dynamic equations and dynamic equations on time scales. The
Adomian polynomials method is investigated in Chapter 10. Chapter 11 is devoted to
weak solutions and variational methods for some classes of linear dynamic equations
on time scales. Nonlinear dynamic equations and variational methods are investigated
in Chapter 12.

https://doi.org/10.1515/9783110787320-201
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VI —— Preface

We presume that the readers are familiar with the basic notions on time scales
such as forward and backward jump operators, graininnes function, right and left
scattered, dense and isolated points, as well as with the basic calculus concepts on
time scales such as the delta differentiation and integration and their properties, el-
ementary functions on time scales, Taylor formula. For the readers who are studying
the time scales for the first time, we suggest learning these basic notions and concepts
from the numerous references given in this book and elsewhere.

The text material of this book is presented in a highly readable, mathematically
solid format. Many practical problems are illustrated, displaying a wide variety of so-
lution techniques. The authors welcome any suggestions for the improvement of the
text.

Paris/Ankara, July 2022 Svetlin Georgiev
inci Erhan
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1 Polynomial interpolation

Polynomial interpolation is a very useful tool employed in many areas of science in
which a given set of data needs to be represented by a function, in particular, by a
polynomial taking the given values at the points of the given data set. From the classi-
cal numerical analysis we know that there is a unique polynomial satisfying the given
conditions which can be constructed in different ways. The Lagrange interpolation
polynomial is one of the most used. For more details we refer the reader to the books
[5] and [16].

In some physical problems, together with the values of a certain quantity, the val-
ues of the rates of change of this quantity, that is, the derivative values at a given set of
points are also known. In such applications the polynomial representing this data is
also required to match the derivatives. The Hermite interpolation polynomial is used
for such problems.

In this chapter, we consider the problem of polynomial interpolation on time
scales. This problem involves finding a polynomial that agrees with some information
that we have for a given real-valued function f of a single real variable x. We construct
the Lagrange, o-Lagrange, Hermite, and o-Hermite interpolation polynomials for a
given real-valued function f defined on an arbitrary time scale.

Throughout this chapter, we assume that T is a time scale with forward jump op-
erator o, delta differentiation operator A and graininess function p.

1.1 Lagrange interpolation

In this section, we construct the Lagrange interpolation polynomial on an arbitrary
time scale. We present the theoretical background of this construction and solve nu-
merical examples.

Let P,, n € Ny, denote the set of all polynomials of degree < n defined over the
set R of real numbers. Letn € Nand x; € T, i € {0,1,...,n}, be distinct and y;, i €
{0,1,...,n}, be given real numbers. We will find p, € P, such that p,(x;) = y;, 1 €
{0,1,...,n}. Below we introduce the form of a polynomial taking the given values y; at
the points x; fori € {0,1,...,n}.

Theorem 1.1. Supposethatn € N. Thenthere exist polynomialsL; € P, k € {0,1,...,n},
such that

1 ifi=k

L(x:) =
k(Xl) {O 1fl¢k,

i,k € {0,1,...,n}. Moreover,

https://doi.org/10.1515/9783110787320-001
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2 —— 1 Polynomial interpolation

n
pn(x) = Z Lk(x)yk, xeT,
k=0

satisfies the condition p,(x;) = y;,1 € {0,1,...,n}, p, € P,.
Proof. Define
n
L)=Ce Y (x-x), xeT,
i=0,izk

where C;, € R, k € {0,1,...,n}, will be determined below. We have L;(x;) = 0,i €
{0,1,...,n},i# k, and

n

Lix)=C [] &qx-x)=1, ke{o,1,....n}.

i=0,i#k
Thus,
C _r k €{0,1 n}
k = > b b
TTi 0,4 O = %)
and
nox-x
L) = T] L, xeT, ke{01,...,n}. 1.1
i=0,izk Xk ~Xi
We have that L, € P,, k € {0,1,...,n}, and p,, € P,. This completes the proof. O

The uniqueness of the polynomial given in the previous theorem is proved next.
Theorem 1.2. Assume thatn € N. Let x; € T, i € {0,1,...,n}, be distinct and y; € R,
i €{0,1,...,n}. Then there exists a unique polynomial p, € P, such that

pn(X) =y, 1€{0,1,...,n}.

Proof. The existence of the polynomial p,, follows by Theorem 1.1. Suppose that there
exist two polynomials p,, g, € P, such that

Pa(x) =q,(x;) =y;, 1€{0,1,...,n}.

Then the polynomial h,, = p,, — q,, has n + 1 distinct roots. Therefore, h,, = 0 or p,, = g,,.
This completes the proof. O

Now, we formally define the polynomial in the above theorems.

Definition 1.3. Assume thatn € N,. Letx; € T, i € {0,1,...,n}, be distinct and y; € R,
i€{0,1,...,n}. The polynomial
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1.1 Lagrange interpolation = 3

n
pn(X) = Z Lk(x)yk, x €T,
k=0

where L, k € {0,1,...,n}, are defined in (1.1), will be called the Lagrange interpolation
polynomial of degree n with interpolation points (x;,y;),1 € {0,1,...,n}.

Definition 1.4. Assume thatn € N,. Letx; € [a,b] c T, i € {0,1,...,n}, be distinct and
f : [a,b] — R be a given function. The polynomial

Pa) = ) Li(x)f(x), x €T,
k=0

where L, k € {0,1,...,n}, are defined in (1.1), will be called the Lagrange interpolation
polynomial of degree n with interpolation points x;, i € {0, 1,...,n}, for the function f.

Example 1.5. Let T = Z. We will construct the Lagrange interpolation polynomial for

the set
{(-3,0),(-2,2),(0,1), (1, D}.
Here
Xo=-3, X1=-2, x=0, x3=1,
Yo=0, y»=2 y,=1 y3=1 n=3
Then

3 - i - —
Lo(X)=H X-x _ (x+2x(x-1) = (x 1)x(x+2),

LiXo-x;  —1-(=3)-(-4) 12
_ 3 X=%  (x+3)x(x-1)  (x-Dx(x+3)
Ll(X) - l::l(;[#l Xl _ Xl - 1 . (_2) K (_3) - 6 >

_ X-%  (x+3)x+2)(x-1) __(x—l)(x+2)(x+3)
Ly(x) = H % 3.2 (-1) = 3 )

Zx-%  (x+3)x+2x  x(x+2)(x+3)
Lo =]1 X 4-3-1 2

x e T.
=0 X3~

Hence,

D3(x) = YoLo(X) + y1L1(X) + y,L,(X) + y3L3(x)
_ 2(x(x -D(x+3) ) B x-Dx+2)(x+3) N xX(x+2)(x +3)

6 6 12
_(x=2)(x-1)(x +3) N x(x+2)(x +3)
- 6 12
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4 —— 1 Polynomial interpolation

(e +3)Q2x -1 (x - 2) + x(x + 2))
- 12
C(x+ 3)(3x2 —4x + 4)
- 12 ’

x eT.

Exercise 1.6. Let T = 2™, Construct the Lagrange interpolation polynomial for the
set

{(1,-1),(4,0),(8,1),(16,2)}.

Suppose thatn € Ny and x; € T, j € {0,1,..., n}, are distinct points. For x € T, we
define the polynomials

n k
Ma (@) = [ [ =), T, (0) = Mo,y (0), k€ Ny,
j=0

which will be employed in the error analysis of polynomial interpolation.

Example 1.7. Let T = 2™°, x, = 1, x; = 2. Here
n=1 okx)=2, xeT.
Then
nz(x):(x—l)(x—Z):x2—3x+2, xeT,
and

T(x) = 1o (x) = 6(x) + x -3 = 3x - 3,

) =m() =3 xeT.

Example 1.8. Let T = Z and

Then
m3(x) = (x - D(x - 2)(x - 3)
=(x*-3x+2)(x-3)
=x3—6x2+11x—6, x eT.
We have

ox)=x+1, xeT,
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1.1 Lagrange interpolation = 5

and

M3(x0) = 15()
= (o(x))2 +Xx0(x) +x% - 6(o(x) +x)+11
= (x+1)2+x(x+1)+x2—6(x+1+x)+11
=3x> - 9x + 6,
M0 =5 ()
=3(0(x)+x)-9
=6x-6,

B =) =6 xeT.
Exercise 1.9. Let T = ()",

1 1
Xo=—=—> X1=7—, X3=

X =1
64 16 %

1
4
Find 71, (x), IT}, (x), IT; (%), IT; (%), T2 (%), x € T.

The following theorem gives the error in approximating a function f by a Lagrange
polynomial.

Theorem 1.10. Suppose thatn € Ny, a,b € T, a < b, x; € [a,b], ] € {0,1,...,n}, are

distinctand f : [a,b] — R, fAk(x) exist for any x € [a,b]) and k € {1,...,n + 1}. Then for
any x € [a, b] there exists & = &(x) € (a, b) such that

An+1
fX) =py00) = ﬁﬁﬂ((?) T (X),  x € [a,b],
or
Fmin,n+1('$) < % = Fmax,n+1('f)’ x € [a, b],
where

2 &) f““(p(f»}
&) (@)
ﬁﬂaf”@mw

HE) (@) )

Fmax,n+1(§') = maX{

Fmin,n+1(§) = min{

Proof. Let p,, be the Lagrange interpolation polynomial for the function f with inter-
polation points xj, j € {0,1,...,n}. Define the function
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6 —— 1 Polynomial interpolation

B(6) = £(6) ~ py(0) - %%(o, t € la,b].
Then
f) - pa()
d(5) = f(x5) - pn(x;) - EWCR n+1(%)
= f(Xj) —f(Xj)
=0, je{o,1,..., n},

and ¢(x) = 0. Thus, ¢ : [a,b] — R has at least n + 2 generalized zeros (GZs) Hence,
by Rolle’s theorem (see Theorem A.6 of Appendix A), it follows that q,') has at least
one GZ on (a, b). Therefore, there exists an ¢ = &(x) € (a, b) such that

" @ =0 or ¢ (@) (&) <o.
Note that

fx) - pn(x) A"+

¢~ 6y = (1) - 0 e (t), telab].
Tp X

We now consider each case separately.
n+l
1. Let¢® (£)=0.Then

f(x) - pp(x) A"+1

An+1 _
@)= ) Myeq (€)s
or
) @ M@
fx) pn(x) = YAH;] @) Tl (X) Hzﬂ(f) Ty (X).
2. Let
¢An+l (p(g))(pAm—l (5) < 0
Then
6" (0©) = 1" (0(®)) - f"‘)—fx)(") 2 (p©))
-1 ) - FO P o),
and

fx) - p,x) o

# G =1 © - T IO,
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Hence,
O S ¢An+l (p(é‘))(l)AnH (é’)

= (f““(p(;’)) - %Hﬁii(p({)))

() - P )

- (Fo=pao "(")) T pE)TE)

ﬂn+1 (X)

OO = Pu0d et )™ )+ L OFS (06)))

ﬂn+1 (X)
. fAn+1 (p(£))fAn+1 ({)
We conclude that

f(x) —pr(x) -

My (X) = Fmax,n+l (‘f)

Fmin,n+1(‘f) <

This completes the proof. O

Note that, as stated in the next remark, the error vanishes if the number of data
points increases to infinity.

Remark 1.11. Suppose that all the conditions of Theorem 1.10 hold. If

lim 3X<fA ) Ty (X )>

=00 xe[ab]\ TIM*1(&)
and
lim max <fAM(P('f)) I(X)> B
noe relab \ I (p(€)) "
then

lim max [f(x) P =

n—00 xe[a,b

Example 1.12. Let T = {0, ;,7,3,1,2,3,4}. Let

11

AV
1

a=xy=0, X = =1 x3=3, b=4

and
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8 —— 1 Polynomialinterpolation

We will construct the Lagrange interpolation polynomial p; of f for the points x,, x;,

X,, X3 and compare the graphs of p; and f. First, note that

1 1 20
foo) =FO =5 fo)=1(7 ) =
1 2
f(x2)=f(1):z, fig)=f3) = -.
Also, we compute
(x- e -D(x-3) 4( 1)
Ly(x) = ——(x-2)x-D(x-3),
o(X) (0_%)(0_1)(0_3) s\ 3 (x-Dx-3)
x-0)(x-1(x-3) 64
Li(x) = = —x(x-1)(x-3),
Y d-od-nd -3 33
xX-0)(x-Kx-3) 2 < 1)
L = _Z _ - -3),
2 A-01-ha-3 3\ 4 (x-3)
L3(x)=(x_0)(x__)(x Y 2x(x—l)(x—l), xeT.
3-03-13-1) 33 4

Then the Lagrange interpolation polynomial p; of f for the points 0,1 »L3is

300 = FO)Lo() +f< >L1(x) + FOLy 00 + FOLy(0)

(- 2Jo-ers)- 2

4

&

6\ 3

64
ﬁx(x D(x - 3))

+ —
101

1/ 2 1 2( 2 1

+Z<_§X<X_Z>(X_3)>+§<§X<X_Z>(X 1))

2 1280
:—§<X——>(X 1)(x —3)+ﬁx(x Dx -3)

1 1 4 1

—EX(X—Z>( —3)+—297X<X—Z>(X—1), xeT.

The graphs of f and p; are compared in Figure 1.1. Moreover, the values of f and p; at
noninterpolating points of the time scale are compared in Table 1.1. From both Table 1.1
and Figure 1.1, we observe a good approximation at noninterpolation points inside the
interval [a, b] = [0, 4].
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0.25

0.24

0.23 -

0.22

0.21

0.2

0.19

f(x)
.......... Lagrange polynomial
0.17 .

0 0.5 1 15 2 25 3 3.5 4

Figure 1.1: The graphs of f and the Lagrange polynomial p3.

Table 1.1: The values of f and p3 at noninterpolating points of T.

X fix) p3(x)
1/6 0.1883 0.1884
1/2 0.2222 0.2218

2 0.2500 0.2513

1.2 o-Lagrange interpolation

In this section, we will show that a given function can be approximated with the so-
called o-Lagrange polynomials. We will show that there are classes of time scales for
which the Lagrange interpolation polynomials and the o-Lagrange interpolation poly-
nomials are different, and there are classes of time scales for which the Lagrange in-
terpolation polynomials and the o-Lagrange interpolation polynomials coincide.

In the following, we define the o-polynomials. With Py, n € N, we will denote
the set of all functions in the form

gx) = an(a(x))n + an,l(a(x))n_1 +o+a0x)+ag, xeT,

where a; € R, j €{0,1,...,n}.Leta,b € T, a < b. A function g € 79;3 will be called
a o-polynomial. To define a o-Lagrange polynomial, we have a requirement that the
points in the data set should be o-distinct.

Definition 1.13. Let n € IN,. The points X € la,b), j € {0,1,...,n}, will be called
o-distinct if 0(x,,) < b and
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10 —— 1 Polynomial interpolation

0(xg) < 0(xq) <-++ < 0(Xp).

Example 1.14. Let T = {-1,1}U{1+(3)" : n € No} U{3,4,5} and a = -1, b = 5. Take the
points

Xo=-1, x;=1, x,=3.
Then
o(xg) =1, o) =1 o0x) =4
Thus, the points {xg, x;, X,} are not o-distinct.
Example 1.15. Let T = Mo g =1, b = 16. Take the points
X0=1 x=2, x=4.
Then
o(xg) =2, o0(x)) =4, ox)=8.

Therefore, {x,, x;, X,} are o-distinct points.
As in the previous section, one can prove the following result.
Theorem 1.16. Suppose thatn € N and x; € T,j € {0,1,...,n}, are o-distinct. Then
there exist unique a-polynomials Ly € Py, k € {0,1,...,n}, such that
1 ifi=k
Lo (x;) =
o ifitk,

i,k € {0,1,...,n}. Moreover,
. o T4 o) -ol)
Pon(X) = ) LX)y = ( —)yk, x €T,
o k;, ’ ,;O ,-:101,( o(x) - 0(x;)

satisfies the condition p,,(x;) = y;, i € {0,1,...,n}, Py, € Py.

Based on the statement of the above theorem, we define the g-Lagrange interpo-
lation polynomials as follows.

Definition 1.17. Assume thatn € N,. Letx; € T, i € {0,1,...,n}, be o-distinct and
y; € R,i€{0,1,...,n}. The o-polynomial

n
pan(X) = Z Lak(x)yka X € T:
k=0
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1.2 o-Lagrange interpolation = 11

where Ly, k € {0,1,...,n}, are defined in Theorem 1.16, will be called the g-Lagrange
interpolation polynomial of degree n with g-interpolation points (x;, y;), i € {0,1,...,n}.

Definition 1.18. Assume thatn € N,. Let x; € [a,b] c T,i € {0,1,...,n}, be o-distinct
andf : [a, b] — R be a given function. The ¢-polynomial

Pon) = Y Lp()f (i), x €T,
k=0

where Ly, k € {0,1,...,n}, are defined in Theorem 1.16, will be called the o-Lagrange
interpolation polynomial of degree n with o-interpolation points x;, i € {0,1,...,n}, for
the function f.

In the following, we will compute the Lagrange and o-Lagrange polynomials for
a given set of data on a time scale and compare them.

Example 1.19. Let T = {-2,-1,0,3,7},

a=-2, xp=-2, =0, b=7,
and assume f : T — R is defined by
fX)=x+3, xeT.

We will find the o-Lagrange interpolation polynomial for the function f with o-inter-
polation points {xy, x;}. We have

0(xy) = 0(-2) = -1,
o(xq) =0(0) =3,

ox)-o0g) _ 1

oo = )ty ~ 40
_ o) -0lp) 1
Ly(x) = 00 o) 4(a(x) +1), xeT,

flxo) =f(=2) =1,
f(x) =£(0) =3.

Thus,
P (0) = f(X) Lo () + f(x1) Ly (x)
- —%(o(x) -3)+ %(O(X) +1)
:;mm+a,xe&zn
Note that

EBSCChost - printed on 2/10/2023 4:40 PMvia .
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12 —— 1 Polynomial interpolation

Pa0) = 5(0(0) +3) =3 =),
Pn(=2) = %(0(—2) +3)=1=f(-2).
Also, we have
1 3
Por(-1) = 5(0(—1) +3) = >

Now, we will find the Lagrange interpolation polynomial for the function f with inter-
polation points {xy, x;}. We have

X —Xxq 1

L = = ==X
olX) Xo — X4 2X
Log=X"% _X¥2 a7
X1 — Xo 2
Therefore,
P1(x) = f(xg)Lo(x) + fi(x)L; (x)
1 X+2
=TI
=x+3, xe[-27].
Then

p1(0) =3=£(0), pi(-2)=1=f(-2).
We also have
D =-143=24py(-) =2,

Remark 1.20. In the above example we see that, in general, the Lagrange and o-La-
grange interpolation polynomials for a function f are different.

Exercise 1.21. Let T = {-1, —%, —%, 0,2,3,7},

a=xy=-1 x3=--, x,=3, b=7.
Find the o-Lagrange and Lagrange interpolation polynomials for the function f :

T — R defined by

fi) = zx;l +3x, xel[-1,7],
x—-x+1

with o-interpolation and interpolation points xy, X3, X,.
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1.2 o-Lagrange interpolation =— 13

In the following example, we see that on some time scales, the Lagrange and
o-Lagrange polynomials are the same.

Example 1.22, Let T = Z,
a=xy=-1, x;=1, x,=3, b=4
andf : T — R be defined by
f(x):x2+x+1, xeT.

We will find the o-Lagrange interpolation polynomial with o-interpolation points
Xg> X1, X5. We have 0(x) = x + 1, x € T, and

o(xp) =0(-1) =0,
o(x) =0(1) =2,
o(xp) =0(3) = 4.

Then
0(xg) < 0(x7) < 0(xy),
i.e., Xy, Xy, X, are o-distinct points. We have

(0(x) — 0(xy))(0(x) — 0(x;))
(0(xg) = 0(x1))(0(xp) — 0(x))
C(x+1-2)(x+1-4)

O (0-2)(0-4)
_ & -D(x-3)
- 8

(0(x) = 0(xp))(0(x) - 0(x,))
(0(x1) — 0(xp))(0(x1) — 0(x3))
(X +1-0)(x+1-4)

T 2-002-4)
. x=3)x+1)
=

(0(x) - a(xp))(0(x) — 0(x7))
(0(xz) — 0(xp))(0(xz) — 0(xy))
_(x+1-0)(x+1-2)

T 4-0)4-2)
_(x=-Dx+1)
=

Lyo(x) =

>

Lal (X) =

>

Lgp(x) =

, Xxe[-L4],
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14 —— 1 Polynomial interpolation

fxo) =f(-1) =1,
fx)=fQ1) =3,
fx) =f(3) =13.

Hence,

D2 (X) = f(Xg)Lgo(X) + f(X1)Lg1 (X) + £ (x3)Lgp(X)
_ (x-1D(x-3) _3(x—3)(x+ 1) +13(x—l)(x+ 1)
8 4 8
X —h4x+3-6x7+12x+18 + 13x* - 13
- 8

=x2+x+l, x € [-1,4],

is the o-Lagrange interpolation polynomial for the function f.
Now, we will find the Lagrange interpolation polynomial for the function f with

interpolation points x, x;, x,. We have

(X -x)x-x) (x-1)x-3)

>

Ly(x) =

(o —X)(Xg = Xp) 8
(x = Xp) (X — x3) x+1(x-3)
L = = - >
109 = G " x0) 0 ) 4§
_ (=xo)x-x))  (x+D(x-1) _
Lot = (x = x0) (X — Xx7) - 8 » xelLal
Hence,
D2(x) = f(xg)Lo(x) + f(x)Ly (x) + f (X)L (x)
_ x-1D(x-3) _3(x+1)(x—3) +13(x+1)(x—1)
8 4 8
X —h4x+3-6x +12x+18 +13x* - 13
B 8
=x*+x+1, xe¢ [-1,4].
Moreover,

D2(X) =pr(x) =f(x), xe[-1,4].
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1.2 o-lLagrange interpolation = 15

Exercise 1.23. Let T = 2Mo,
a=1=xy5, x=2, x;=8, x3=32=b,
andf : T — R be defined by
f)=x>+x*-x+4, xeT.

Find the o-Lagrange interpolation polynomial for the function f with o-interpolation
points xg, X1, X,.

Now, we will describe the classes of time scales for which the o-Lagrange and
Lagrange interpolation polynomials coincide.

Theorem 1.24. Let T be a time scale such that o(t) = ct + d for any t € T and some
constants c,d. Let also, n € N and

a=xo<xy<--<xy,=b, x€T, je{0,1,...,n}
be a-interpolation and interpolation points. Then
Li(x) =Ly (x), xelab], ke{0,1,...,n}

Proof. Since o(t) = ct + dforany t € T, we get

nooox) - a(xj)

Ly) = ] o00) — )

j=0,j#k
_ ﬁ (cx +d) - (cx; +d)
(ex +d) - (cx; + d)

j=0,j#k
n —X;
_ X X]
j=0,#k X =%

=L,(x), ke{0,1,...,n}, xe€lab].

This completes the proof. O

Remark 1.25. From Theorem 1.24, it is clear that the uniqueness of interpolation poly-
nomial of degree n is not violated. Indeed, if ¢ is not a linear function, the o-Lagrange
interpolation polynomial of a function f is not a polynomial of degree n or not a
polynomial at all. For instance, if T = Né, then o(t) = (Vi + 1% t € T, and the
o-Lagrange interpolation polynomial is not a polynomial. Therefore, for any func-
tion f, or any data set on a time scale T, there is a unique interpolation polynomial of
degree n.
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16 —— 1 Polynomialinterpolation

Suppose thatn € Ny and x; € T, j € {0,1,..., n}, are o-distinct points. For x € T,
define the o-polynomials

n
k
Tgnar (X) = H(U(X) - 0(x))), H’éml(x) = nﬁml(x), xeT, kel
j=0
These functions are employed in the error estimate for the o-Lagrange interpolation.

Example 1.26. Let T = {0,,3,3,1+ 5 : n € Ny},

> E’ 3>
1
a=0, xg=0, x1:§, b=1
We will compute 77,(x), 7102(%), and Hz,z(%).
We have
1 1
o(xg) ==, 0(x)=-=,
(xo) A (x1) 3
0< 1) =1 o()=1
2) 7 -
Hence,

M5 (X) = (0(x) — 0(xg))(0(x) - 0(x7)) = (a(x) - %)(o(x) - %) x €T,

f2)-o2)-eE)- (-2
wf2)-()

_ @R -G -3 -(0G) - )G - 3)

o33

(@) - e - 3) - (0(3) - POG) - 3)
) 0(3)=3
_1-9a-9-a-9pa-3

1
1-3
Exercise 1.27. Let T = {0,2,3,5,9,16,18},
a=0, xo=0, x;=3, x=9, b=18

Find I12,(3).

The error in the o-Lagrange interpolation is given in the next theorem.
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Theorem 1.28. Suppose thatn € Ny, a,b € T, a < b, X; € [a,b],j € {0,1,...,n}, are

o-distinct and f : [a,b] — R, fAk (x) exist for any x € [a,b] and forany k € {1,...,n + 1}.
Then for any x € [a, b] there exists ¢ = £(x) € (a, b) such that

An+1
F(X) = pgn(x) = %HUYHI(X)’ x € [a, b,
or
fX) = Ponx)
Famin,n+1(§) < m < Fomax,n+1(€)’ X € [a: b]’
where

2@ @) }
F = ’ ’
omaxn+1(§) max{ HZ;il €3) Hg;}rl (&)

n+l n+1
(@ @)
Famin,n+1(§) = mll’l{ il ‘f [Jp——y 0 { :
1_[(m+l(‘f) H0n+1(p(‘$))
Proof. Let p,, be the o-Lagrange interpolation polynomial for the function f with
o-interpolation points x;, j € {0,1,...,n}. Define the function

F(X) = P (%)

ﬂan+1 (X)

¢(t) =f(t) _po'n(t) - no'n+1(t)’ te [a: b]

From here, the proof repeats that of Theorem 1.10 and we omit it. O

Remark 1.29. Suppose that all conditions of Theorem 1.28 hold. If

An+1
lim max < f 1(5) narHl(X)) =0
n—00 xe[a,b] Hﬁ;ﬂ (5)
and
AH+1
lim max ( f l(p(f)) Tanaa( )> =0,
n—00 xe[a,b] G;IrJrl (p(8)
then

nlLHgO Ill[aX lf(x) pan(X)l -

The last example clearly shows the difference between Lagrange and o-Lagrange
polynomials on a time scale whose forward jump operator is not a linear function. The
computed polynomials are also compared graphically.
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18 —— 1 Polynomial interpolation

Example 1.30. Let T = {vV2n+ 1,n € Ny} = {1, V3, V5,...}. Take

a=x=V3 x=Vi, =V, x5=Vi7, b=V3
and

2
f()— x eT.

245
We will construct the Lagrange interpolation polynomial p; and the o-Lagrange inter-
polation polynomial p,; interpolating the function f at the points x,, x;, x,, x3. We will
also compare the graphs of the two types interpolating polynomials for the function f.
Notice that, on the given time scale we have

ox)=Vx?+2, xeT.

Also,
3+1 4
flxg) = f(\/_) 6 5 ﬁ’
7+1 8
foq) =f(NT) = TECIRETY
11+1 4
fOe) = fF(VIT) = o ==y
17 +1 6
flxs) = f(\/_) 3445 E

First, we compute Ly(x), L;(x), L,(x), and L3(x) as follows:

- V) (x = V1) (x - V17)

b0 = B (V- VDV - V)
L) = (x = V3)(x - VII)(x - V17) ’
(V7 = V3)(V7 = VII) (V7 - V17)
L) = - V3)(x - V7)(x - V17) ,
(VI - V3)(VI1 - V7)) (V11 - V17)
Ly = (x = V3)(x - V7)(x - V11) T

(VI7 - V3)(VT7 - VI)(VTT - VII)’
Then the Lagrange interpolation polynomial p; interpolating the function f at the
points V3, V7, V11, V17 is obtained as
p3(0) = F(V3)Lo(x) + F(NT)Ly (x) + F(VID)Ly(x) + f(V17)L5(x)

_ 4 (= VD - VI (x - V17)
11 (V3 - V) (V3 - VII)(V3 - V17)
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1.2 o-Lagrange interpolation =— 19

s (x = V3)(x - VI)(x - V17)

19 (V7 - V3)(V7 - VII)(VT - V17)
LA (- VR - VD - V)

9 (V11 - V3)(V11 - V7)(V11 - V17)
L6 (= V3)(x = V7)(x - V1I)

1B (V17 - V3)(V17 - VT)(V17 - V11)

Next, we compute L (x), Ls1(x), LX), and L3(x) as follows:

(0(x) — 0(N7)(0(x) - 0(V11))(0(x) — 0(V17))

(0(V3) = a(VT))(0(V3) - o(V11))(0(V3) - 0(V17))
(\/)(2_ 3)(Va? +2 - VIB)(VAZ +2 - VI9)

(V5 - 3)(v5 - VI3)(V/5 - V19)

(0(x) - 0(V/3))(0(x) — a(VID))(0(x) - 0(V17))
(0(V7) = 6(V3)(O(NT) — a(VI))(0(VT7) - 0(V17))
_ (W 42- VBV +2- VI3 (VX +2- VD)

B-V53@-V13)3-V19)

(0(x) — 0(V3))(0(x) - 0(N7))(0(x) - 0(V17))
(0(V11) - 0(V/3))(0(V11) - (V7)) (a(V11) - 0(V17))
_ (V22— B)(VxE+2-3) (V2 +2 - VD9)

(VI3 - V5) (VI3 - 3)(VI3 - V19)

(0(x) - 0(V3))(0(x) - (V7)) (0(x) — a(V11))
(0(NV17) = 6(V3))(0(V17) - 6(NT))(0(V17) - 0(V11))
_ (V12— B)(VxE+2-3) (V2 +2- VI3)

(V19 - V5)(V19 - 3)(V19 - V13)

Lyo(x) =

Ly () =

Lyp(x) =

L03 (x) =

x eT.

Hence, the o-Lagrange polynomial p; interpolating the function f at the points

V3, V7, V11, V17 is obtained as

Po3(X) = F(V3)Lyo(X) + F(NT)Lgy (X) + F(VID)Lgp(X) + f(VIT)Ly3(x)
_ 4 (VP +2-3)(Va2 +2- VIB) (VA2 + 2 - V19)
o (V5 -3)(v5 - VI3)(+/5 - V19)
L 8 (V42— V5)(ViZ +2 - VI3)(V¥? +2 - VI9)
19 B -V5@- V33 - VI19)
4(\/)(2_ VB)(VxZ +2-3)(Vx? +2 - V19)
"9 (V13 - V5)(V13 - 3)(V13 - V19)
L 6 (2 +2- V5 (Ve +2-3)(Va? +2 - VI3)
13 (V19 - V5)(V19 - 3)(V19 - V13)

x e T.
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20 —— 1 Polynomialinterpolation

Itis clear that p5(x) # p,3(x), x € T. Moreover, p,; is not a polynomial. Figure 1.2 shows
the graphs of f and p; and Figure 1.3 presents the graphs of f and p3. In addition, we
compare the graphs of f, p;, and p; in Figure 1.4. The values of f, p3, and p,; at some
noninterpolating points are compared in Table 1.2.

| f(x) )
046  |.... Lagrange polynomial

0.44 :

0.42 ]

0.38 1 1

0.36 b

0.34 - 1

032 ]

031 b

1 1.5 2 25 3 3.5 4 45 5

Figure 1.2: The graphs of f and the Lagrange polynomial ps.

048 f
0.46 ' 1
044 1

042 - 4

0.38 1 b
0.36 1 ]
034 |
032 F |

) f(x)
03t/ e o-Lagrange polynomial | 7

1 1.5 2 25 3 35 4 4.5 5

Figure 1.3: The graphs of f and the o-Lagrange polynomial p,3.
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o48p ]
P

046 | | Lagrange polynomial il

o-Lagrange polynomial

0.44 :

042 1

0.38 b

0.36 [ 1

0.34 b

0.32 b

0.3 1

1 1.5 2 2.5 3 3.5 4 4.5 5

Figure 1.4: The graphs of the Lagrange polynomial p3 and o-Lagrange polynomial p,3.

Table 1.2: The values of f, p3, and p,3 at some noninterpolating points of T.

X fx) p3(x) Pg3(X)
V5 0.4000 0.3997 0.3993
3 0.4348 0.4349 0.4350
V15 0.4571 0.4569 0.4567
V19 0.4651 0.4657 0.4665
V21 0.4681 0.4699 0.4719

1.3 Hermite interpolation

Theidea of Lagrange interpolation and o-Lagrange interpolation can be generalized in
various ways. Here, in this section, we consider one simple extension where a polyno-
mial p is required to take given values and delta derivative values at the interpolation
points. For given o-distinct points x;, j € {0,1,..., n}, and two sets of real numbers y;,
zj,j € {0,1,...,n}, n € Ny, we need to find a polynomial p,,,; € P,y satisfying the
conditions

Poni1(X5) =Y, p§n+1(x]-) =z, je€{0,1,...,n}

The construction of such a polynomial is similar to that of the Lagrange interpolation
polynomial and it is given in the following theorem.

Theorem 1.31 (Hermite interpolation theorem). Letn € Ny andleta,b € T, a < b, and
xj € [a,b] ¢ T, j €{0,1,...,n}, be o-distinct and x; + 0(x;) for all j, k € {0,1,...,n}. Let
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22 —— 1 Polynomialinterpolation

alsoy;,zj € R, j € {0,1,...,n}. Then there exists a unique polynomial p,,, € Pop,1 SUCh
that

P () = ¥js p%ml(xj) =z, je{0,1,...,n} (1.2)
Proof. For x € [a, b], define the polynomial

Moo= [] 2% keo..n

j=0,+k Xk — 0(X;)

We have
Mk(U(Xj)) =0, Mk(Xk) =1, ],k € {0, 1,... ,n}, ] * k.

We will search for a polynomial p,,,; € P,,,; in the following form:

n

Do) = Y (v + (x = x;)(a5y; + Biz))M;(0)L;(x),  x € [a, D],
=0
where @;, f; € R, j € {0,1,...,n}, will be determined by conditions (1.2). We have
n

Do) = Y. (v + O = X)(@y; + Biz))M;(x)L; (%) = Yo
j=0

Pona(¥) = Z( ay; + Biz)M;(000))L;(0(x))

\.
O

'M=

T
=}

+ 3 () + (x = x)(@y; + Biz)) (ML (OLi(x) + My(0(x)) L} (x)),

Pann (%) = Z( G; + Bz M;(006))Li(0(x)

+Z i+ Oa = x)(y; + Biz; ))(M (G)L; (xk)+M(0(xk))L ()
j=0

= (Vi + Bz M (006))Li(00)) + Vi (Mi (x0) + My (0060)) Ly (%))
= Zk

or, equivalently,
(@i + BizidMi (000)Lic(0060)) = 2ic = Vie (M () + My (0000) Ly (),
or

2z — V(Mg () + My (006)) LR (%))
Mk(U(Xk))Lk(U(Xk)) ’

Oy + Przic =
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1.3 Hermite interpolation =—— 23

and

_ W gy 0) + Mi(9)L5 ()
DPons1(X) = ];)<y1 M;(000)L,(0(x,)

1 M2(x;) + Mi(0(x;)) L2 (x;)
= 1- 17 J j/ Mg A B >

(=) )M 0L100

%
+ W(X _Xj)>A/Ij(X)Lj(X)> x € [a,b].

Now, suppose that there are two polynomials such that p,,.1, @ons1 € Popsq and

Pons106) = D1 0) = Vo Posi () = Qo 06) =210 k€ {0,1,....m).

Let hypi1 = Ponst — Qonsa- Then hy,,q € Pyy,.q and it has at least 2n + 2 GZs. Thus,
hyns1 =0 OF  Popyy = Qo ON[a, bl

This completes the proof. O

Next, we give the definition and the general structure of a Hermite interpolation
polynomial.

Definition 1.32. Letn € Nyandleta, b € T, a < b, and X; € [a,b] cT,je{0,1,...,n},
be o-distinct. Let also y;, zj € R, j € {0,1,..., n}. Then the polynomial

n M%) + Mi(o ()L (x;)
_ M A L A LTIV N
pz”“(x)‘;(( Moo)Lokg) )y'

%
+ ]\m(x _Xl)>M](X)Ll(X)’ X € [a, b],

is called the Hermite interpolation polynomial for the set of values given in
{(x6,y5.2)) :j €{0,1,...,n}}.

In the next remark, we prove that the Hermite interpolation polynomial given in
Definition 1.32 reduces to the classical Hermite interpolation polynomial whenever the
time scale is the set of real numbers.

Remark 1.33. If T = R, then
M} (%) = M (x)) = L (x;),
A
L; (%) = Lj(x;),
IMJ(O'(X])) = L](O'(X])) = M](X]) = L](X]) =1, ] € {0, 1,... ,n}.
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Hence,

n

DPon1(X) = Z((l - ZL,{(X,')(X = X)); +z(x = x;))(L;(x))
j=0

2, x € [a, b].

Thus, we get the classical Hermite interpolation polynomial.
Example 1.34. Let T = 2™o,
XO = 1, Xl = 4, yo = l, yl = —1, ZO = l, Zl = 2

Heren =1, o(x) = 2x, x € T. Then

Lo(x) = ;;__’;11 SlmA L0 =5 Lo(00) = Lo@) = 5,
L) = ﬁ - %(x- 1, Ix) = % Li(0(x) = Ly(8) = g
My(x) = % = —;(x— 8), My(x) = —;, My(0(x)) = My(2) = g,
My(x) = )%‘((’2)) - %(x ~2, Moo= % My(0(x)) = My(8) =3, xeT.
Hence,
.

1

O T ey [y

2+(L43.1
+ <—1+ %(x—m)(%(x—z))(%(x— 1))

3

- %(1 + g(x - 1)>(x ~4)(x-8)+ %(‘1 + %(X“*))(X ~Dx=2)

1 1
= E(SX -3)(x-4)(x-8) + E(X -6)x-1)(x-2), xe€l1,8].
Exercise 1.35. Let T = 2Z. Find the Hermite interpolation polynomial for the set

XO = —4, Xl = 0, X2 = 4,

Yo=-L yn=1L y=-1
ZO = l, Zl = —1, Zz = 1
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In some applications, instead of a data set of points, function values, and delta
derivative values at these points, a function itself may be given. The Hermite polyno-
mial for this function, that is, the polynomial which takes the same values as the func-
tion and whose delta derivative takes the values of the delta derivative of the function
at given points, is defined below.

Definition 1.36. Letn € Nyandleta, b € T, a < b, and x; € [a, bl cT,je{0,1,...,n},
be o-distinct. Let also, f : [a,b] — R be delta differentiable on [a, b]. Then the poly-

nomial
n MA(x;) + Mi(a(x;) LR (x;)
- _ LANAY Ly AN LR )
P 2"”()()_,;)(( M0tNL00) XJ)>f 09
fA(Xj)

+ W(X - X])>M](X)L](X), X € [(1, b],

is called the Hermite interpolation polynomial for the function f.

Exercise 1.37. Let T = 3™ and f : T — R be given by
fx) = X +3x% + e)(x,1), xeT.
Let also,
Xo=1 x =9, x,=8L

Find the Hermite interpolation polynomial for the function f.

Letn e Nyganda,b € T, a < b, and Xj € T, j € {0,1,...,n}, be o-distinct. Define
the polynomials

n

G,(x) = H(x -0(x)), xelab]

j=0
The error in the Hermite interpolation is given in the following theorem.

Theorem 1.38. Suppose thatn € Ny, a,b € T,a < b, x; € [a,b],j € {0,1,...,n}, are

o-distinct andf : [a,b] - R, fAk (x) exist for any x € [a,b] and forany k € {1,...,2n+2}.
Then for any x € [a, b] there exists ¢ = £(x) € (a, b) such that

fA2n+2 ({)

A2n+2
ﬂn+1(x)<‘n+l(x)(nn+1(n+l) &), xelabl,

fO) =Py () =

or

fx) - Dons1(X)

G.. <
m1n,2n+2(‘f) = T ()41 (X)

S Gmax,2n+2(‘£)» x € [a, b,
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where
G )
Gmax n+ = oni2 > n+2 >
2 2({) max{ (7Tn+1(n+1)A (5) (ﬂn+1<’n+l)A (p({))}
N A6 7 p®)
Gmin n+ (&) = ni2 > on+2 :
s mm{mm(m)ﬂ ©) (G (p(€)>}

Proof. Let p,,,; be the Hermite interpolation polynomial for the function f with inter-
polation points x;, j € {0,1,...,n}. Define the function

fx) - Dans1(X)
T (X)(n+1(x)

Y(t) = f(t) = Pana(t) — M1 ()11 (), t € [a, b].

Then

f(X) = Py (%)
nn+1(X)(n+1(X)

Y(x;) = f(x;) = Ponsr (X5) —

=f(x) - f(x;)
=0, xe€lab], je{0,1,...,n},

Tyt (Xj)(ml (Xj)

and Y(x) = 0, x € [a,b]. Thus, Y : [a,b] — R has at least n + 2 GZs. Hence, by Rolle’s
theorem (see Theorem A.6 in Appendix A), it follows that l/)A has at least n + 1 GZs on
(a, b) that do not coincide with x;, j € {0,1,...,n}. Next,

FX) = Pop1(X)

A
m(”ml(nﬂ) (t)

() = () = Py () -

= At - Py (®
_ f(X) _p2n+l(x)

ﬂn+1(X)(n+1(X) (ﬂﬁﬂ(t)(nﬂ(a(t)) + nn+1(t)(nA+l(t))’ te [a’ b]

Hence,

PR = %) = Pt ()
- %(nﬁﬂ(xj)(nﬂ(ouj)) + ﬂn+1(xj)(nA+1(Xj))

=0, je{0,1,...,n},

i.e., ll)A has at least n + 1 GZs at xj,j € {0,1,...,n}. Therefore, l/)A has at least 2n + 2 GZs

in [a, b]. Then l/)AerZ has at least one GZ in (a, b) and there exists a & = &(x) € (a,b)
such that

lpAZmZ ({) _ 0 or lpAZmZ(p(.{))l/)AZmz ({) < O
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Observe that

FX) = Do (%)

A2"+2
M1 ()81 (%) (Mp1Gae)” (8, telab].

lpAZYH-Z (t) _ fAZYH-Z (t) _

Now we consider each case separately.
2n+2
1. Lety® (£)=0.Then

A2n+2

_f®) - pumn®) £
6= 1,100y (00) (1 Gns) &), xe€lab],

f
or

fA2n+2 (5)
(7Tn+1(n+1)A2n+2 ('{)

f(X) _p2n+1(X) = ﬂn+1(X)(n+1(X)) X € [a> b]

2. Let

lpAerZ (p({))lpAer-Z (‘f) < O

Then

'I)AZYHZ (p(f)) = fAZ"*Z(p(g)) - M(”n+l(n+l)Azmz(p(§))’ X e [a’ b]’

Ty (X)(n+1 (X)

and

A2n+2

_ F(X) = Pansr(x)

A2"+2
7,100 () (Mp1Ger)”  (€), x €la,bl.

" @) =" @)

Then we have,

0 S l/)AZVHZ (p({))lpAZVHZ ({)
= <fA2n+2 (p(é‘)) - JM (7-[r1+1(n+1)A2wr2 (p(‘f))>

Th41 (X)(n+l (X)

» < fAZ"*Z @& - fX) = Do (®) (T (n+1)A2M ( f))

ITn+1(X)(n+1(X)
_ <f(x) = Dona(X)

T (X)(n+l (X)

O Pona® (g™ o0 @)

7'["+1 (X)(n+1 (X)
) ©OF (0©)))
A @)Y @), xelabl.

2
) (7Tn+1<‘n+l)A " (5)(7Tn+1(n+1)A " (P(f))

Hence,
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f&) — Panr1(X)
m < Gmax,2n+2(€)s X € [a, b].

Gmin,2n+2(‘f) <
This completes the proof. O

Remark 1.39. Suppose that all the conditions of Theorem 1.38 hold. If

A2n+2

. o @
lim max(—zmﬂn+ ()¢, (x)) =0
nmoo xe[a,b] (nn+1(n+1)A (%‘) ! ( !
and
. fA2n+2(p($))
lim ma < ne2 T41 (X) G ( )> =0,
n—»ooxe[a,)lg] (7Tn+1(n+1)A (p('f)) i ( i
then

Hom, BV = Pana 0] = 0.
In the following example, we compute the Hermite polynomial for a given func-
tion and compare it graphically with the function itself.

Example 1.40. Consider the time scale T = 27 = {...,-4,-2,0,2,4,...}. Leta = xy =
-4,x,=0,x, =4,b=6,and f(x) = )ﬁ,x e T.

We will compute the Hermite polynomial ps;(x) and compare the graphs of ps
and f.

On this time scale, we have o(x) = x + 2, x € T, so that o(xy) = -2, 0(x;) = 2, and
0(x;) = 6. We have

1 1

fA(X) _ (x+2°+41  x*+1 2x+2

=- , xeT.
X+2-Xx 2+ 1)(x2 +4x +5)

Hence,

1
Yo =f(xo) =f(-4) = T
yi=f(x)=f(0)=1,

Y, = (%) = f(4) = %

20 = f2(xg) = fA(-4) = 835

2= A 00) = f20) = —g,
0

2 = (%) = fA(4) = —61—29.
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First, we compute L; and M; fori = 0,1, 2,

_ x-0x-4 1 5
Loy = (-4-0)(-4-4) R 4.
(A -4) _ 1.5
L) =m0 = 16" 10

L) = x+4)(x-0) 1 (x2+4x),

4+a)L-0) 32

_ x-00)x-04) = x-2x-6) 1 5
Mo() = o O o)~ 42 4-6 ~6oX 12

_(x-o(-4)x-0(4)  x+2)x-6) 1 .,
M) = 0 o0 —o@) — ©0r20-6 - ¥ ¥ 12
_(x-o(-4))x-0(0)  x+2)x-2) 1 5
M = G sCana—o0) oG- x4 xeT

Let
h(x) = X}, xeT.
Then,
(h(x))A=x+U(x)=x+x+2=2x+2, xeT.
We compute L and M? fori = 0,1,2,
Lo(x) = %(2x+2—4) = %(x—n,
LYx) = —%(Zx +2) = —%(x +1),
L?(x) = 3—12(2x+2+4) = %(x+3),
M5 (x) = %(2x+2—8) = 3%(;(—3),
M2 (x) = —%(2x+2—4) = —%(x—l),
M) = S(242) = S(x+1), xeT.
12 6

The values involved in the Hermite polynomial are computed as

Lo(0(xg)) = Ly(=2) = 3—12(4 +8) = %’

1 5
Lo0xo) = L§(-4) = (-4 -1 = -,

Li(o(xy) = L) = —%(4 —16) = %
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and

LY 0q) = LY(0)

Lz(O‘(Xz)) = L2(6) =

LY(0) = L5(4) =

= —%(0+1) =—=

1
506+ =2

1 7
@+ =1

My(0(xp)) = My(-2) = i(4 +16+12) = —
A Y. 7
My (xg) = Mo (-4) = ( -4-3)= “30°
4
M;(0(xy)) = My (2) = —5(4 -8-12) = 3
1 1
M () = M}(0) =—2(0-1) = =,
8
M(005)) = My(®) = (36 -4) = =,
M5 (x,) = Mb (4) = (4 +1) = %
The Hermite polynomial ps(x) is computed as
_7 _8 .5 1 6
ps0 = |(1- e B E ) 5T )| LoCoMo(0)
5°8 5 8
1_4.1 _2
+ (1— &3 8- 0)) A (k- O)]L (M, (x)
3'% 3 4
548,17 , -
+ <1 - %(x - 4)) T +3 629 (x 4)]L2(X)M2(X), x €T,
3°% 37 8

which after simplification becomes

1
ps(x) = [ﬁ + ﬁ(

+ [1— %X]116( —16)

1 1
+[ﬁ_%( —4)] (X +4x)12

]i(x2 - 4x)6i0(x2 - 8x+12)
(x - 4x -12)

(X*-4), xeT.

In Figure 1.5, the graphs of f and p; are given. It is clear that f and p; coincide at the
points -4, 0,4 and also at a(-4), 6(0), o(4).
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.......... Hermite polynomial
f(x)

Figure 1.5: The graphs of the Hermite polynomial p5 and the function f.

1.4 o-Hermite interpolation

In this section, we will construct o-Hermite interpolation polynomials. We will demon-
strate the difference between Hermite and o-Hermite interpolation polynomials. As
was mentioned in the previous sections, the o-interpolation polynomials provide an
alternative way to interpolate a given set of data. They may coincide with the inter-
polation polynomials in certain cases and differ in others. The numerical examples
presented in this section demonstrate these situations.

Theorem 1.41. Letn € Nyandleta,b € T,a < b, andxj €la,b] cT,je{0,1,...,n}, be
o-distinct, the forward jump operator ¢ be delta differentiable on [a, b] and O‘A(Xj) +0,
j € {0,1,...,n}. Let also, y;,z; € R,j € {0,1,...,n}. Then there exists a unique
o-polynomial p,y,.1 € Py, Such that

p02n+l(xj) =Yp p§2n+1(xj) =2z, je{0,1,...,n}.

Proof. Let My, k € {0,1,...,n}, be the polynomials as in the proof of Theorem 1.31. We
will find a polynomial p,,,,; € P5y,; in the following form:

Pomn(X) = Z()’j + (000 - a())(@y; + Biz))M;(0L;(x), x € [a,b],
j=0

where a;, Bj € R,je{0,1,...,n}, will be determined below. We have
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Poons1(Xy) = Z(Yj +(0(q) — U(X PICE aY; +ﬁ] j )M (X)L (%) =
=0

P () = Zo ()(ay; + Biz)M;(0(0))L;(0(x))

+ Z +(0(x) = o(x))(@5y; + Bjz))
(M.A (OL;(x) + My(0(x))L} (x),

Plyons1 () = Za () (@y; + Biz)M;(006))Li(0(x))
j=0

N Z +(00x) - 00x)) (@y; + Bz)))

(M]. (L (%)) + Mi(0 ()L} ()
= 0™ () (@Y + Brzi)Mi(0(6) )L (0(¢))
+ V(M 00) + Mi(006)) Ly (%)

=Z,
or, equivalently,

0" 0@k + BrzidMi (006))Li(006) = 2z = i (M () + My (00x)) L (x;.))

or
= V(M (%) + My (00g)) L (%)
i B = M (00 L0 0
and
zj - y; (M (x5) + Mi(0 ()L} (x;))
p02n+1(X) ( O'A(X] M(G(X ))L (0 )) (U(X) _U(Xj))>

(OL;(0)

_ Z( ( M} () + M(0()L} ()
o2 () M;(0(x))L; (0 (x;))

Z:

J _ . . .
" oMLt o) L, x < labl

(000~ 0)

Now, suppose that there are two o-polynomials such that p;n,1> Gyans1 € Poysq and

A A
Pooni1Xi) = Qoo (X)) = Vies p02n+1(Xk) = q02n+1(Xk) =z, ke{0,1,..., n}.
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Let Ryonst = Poonst — dome1- Then Agon,q € Py, and it has at least 2n + 2 GZs. Thus,

ho2ns1 =0 OF  Pgoni = doame O [a,b].
This completes the proof. O

Taking into account the last theorem, the o-Hermite interpolation polynomials for
a given data set on a time scale and for a given function on an arbitrary time scale are
defined as follows.

Definition 1.42. Letn € Nyandleta, b € T, a < b, and X; € [a,b] cT,je{0,1,...,n},
be o-distinct, the forward jump operator ¢ be A-differentiable on [a, b] and oA(x}-) +0,
j €1{0,1,...,n}. Letalso, y;,z; € R, j € {0,1,..., n}. The polynomial

n < (1 M) + Mi0()L; ()

Pomn(0) = Y M@0 L (00x) (000 - O'(Xj))>yi

=0
i
+ O'A(X]-)IVI)-(U(X]-))L]-(O'(X}-))(U(X) - o(xj))>M]~(x)Lj(x), x € [a, b],

will be called the o-Hermite interpolation polynomial for the set
{(X',yj,Zj) : ] € {0, 1,..., n}}

Definition 1.43. Letn ¢ Nyandleta, b € T, a < b, and X;j € [a,b] c T,je€{0,1,...,n},
be o-distinct, the forward jump operator ¢ be A-differentiable on [a, b] and oA(x}-) +0,
j€{0,1,...,n}. Letalso, f : [a, b] — R be A-differentiable. The polynomial

n M (0g) + My(0 ()L} ()
_ 10 jLOX)))L X,
Pozua ) ,ZO<< o8 06)M;(006))L; (0(x))

o)

+
OA(Xj)I\/Ij(U(Xj))Lj(O(Xj))

(0(x) - a(X,-)))f(xj)

(o(x) - U(Xj))>M]~(X)L]-(X), x € [a, b],

will be called the o-Hermite interpolation polynomial for the function f.

The next example demonstrates that on a general time scale, the Hermite and
o-Hermite polynomials may be different.

Example 1.44. Let T = {-1,1,2,5,9,10},
a=-1, n=1 xy=-1, x;=5 b=9, yo=y1=0, zg=2z=1

We have

printed on 2/10/2023 4:40 PMvia . Al use subject to https://ww.ebsco. confterms-of-use



EBSCChost -

34 —— 1 Polynomial interpolation

o(x) =0o(-1) =1, 0(x;) =0(5) =
- 1 2
Lo(x) = ;; _’;1 = —=(x-5) Lo(00x) = LoD = 5,
L= "% _ l(x+ 1), Ly(0(x) = L,(9) = g L0 =
0
X o(xl) 1. _ B ﬂ A
Mo(X) = X - O‘(Xl) 10( 9) MO(G(XO)) = Mo(l) = 5, MO(X)
_ x-0(x) _ 1 B B
M) = oo = 4(x ), M(o0q)) = My(9) =
A _0(0(xp)) —O'(XO) ol)-1 2-1 1
S R 1) 2 2
Ay 000)-olx) 09)-9 1
o s 9—5 A
Hence, using thaty, =y, = 0,25 = z; = 1, we get
_ 20 _
P = R Moo L@ty 0~ T Mo(Lo(x)
21 _
MG Lt )~ TDM0L
- (000 - -5500-9)) (-3 x-5)
2 5 3
+ 7 L =(o(x) - )<l(x+1)><l(x—1)>
323
%(a(x) -1Dx-9)(x-5)+ —(a(x) 9)(x + 1)(x - 1),
Ps3(2) = %(0(2) -1)(2-92-5) + —(0(2) -9)2+1D2-1)
1 5-1)-(-7) (- 3)+— (5-9)-3
_§_§_1o5 2 93
4 5 20 20
and
_ %o _
P30 ety @iy M0G0kl
2y
Mot Loty * PO

; (x + 1)<——(x 9)>(—é(x _ 5)>

1 1
+ E(X—5)<g(x+ D)(Z(X_ 1))

U‘II-L\

1 1
= 3—2(x +1D)x-9)(x-5) + 8—0(x -5x+1x-1),
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1 1
p3(2) = 5(2 +1)2-9)2-5) + %(2 -52+12-1)

_63 9 _315-18 297
32 8 160 160°

Consequently, we have
P3(2) # py3(2).

Exercise 1.45. Let T = {-4,-1,0,1,2,1,%,2,7},
5
a=-4, xy=-4, x;=0, xzzg, b=7,

and let the function f : T — R be defined by

x+1
X :—+1, xeT.
f&) X+ 4x+7

Find the o-Hermite interpolation polynomial for the function f.

In the next theorem, we will give some criteria for the coincidence of the Hermite
and o-Hermite interpolation polynomials.

Theorem 1.46. Assume that T is a time scale such that o(t) = ct+d, foranyt € T and for
some real constants c¢,d. Letn € Ny and leta,b € T,a < b,and x; € T,j € {0,1,...,n},
be o-distinct. Let also VpzieR,j€ {0,1,...,n}. Then

Poon+1 = Pon+1-

Proof. Leto(t) = ct+dforanyt € T and for somereal constants cand d. Then oA(t) =c,
t eT,and

n MA(x;) + M;(a(x;))LE(x;)
_ e NN iy i
o) = 3 ( B0 65

%
+ O'A(X)M(O'(X))L(O'(X)) (O(X) - U(X]))>M](X)LI(X)

<< MA x)+M(0(x))LA(x)

M) Lot e dn)y j

&M=

%
" Mol T ) Juor o)

( <1 M) + Mi(o())L5 () - x))y'
M;(0(x))L;(0(x;)) )

Il
I
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Zj
' W(X - Xi)>1VIj(x)L,-(x)

= p2n+1(X)> x € [a, b].
This completes the proof. B

As we have proved in Theorem 1.38, one can deduct the following result regarding
the error in g-Hermite interpolation.

Theorem 1.47. Suppose thatn € Ny, a,b € T,a < b, X; € la,b],j € {0,1,...,n}, are

o-distinct andf : [a,b] — ]R,fAk (x) exist forany x € [a,b] and for any k € {1,...,2n+2}.
Then for any x € [a, b] there exists ¢ = &(x) € (a, b) such that

fA2n+2 ((‘:-')

A2n+2
1 ()0 () (Mp416a+1) &), xelab],

fX) = Poon1(¥) =
or

fO) = Poanin ) _ Gmaxani2(&),  x € [a,b],

Gpni < B
min2n+2(§) < T2 00 G (X)

where G an12(§) and Gy ony2(§) are defined as in Theorem 1.38.

In the following example, we consider a time scale with a nonlinear forward jump
operator. We show the difference between Hermite and o-Hermite polynomials graph-
ically.

Example 1.48. Let T = N2 = {0,1,4,9,16,...} and [a, b] = [1,49]. Let
XO = 1, Xl = 9, Xz = 25

We will find the Hermite interpolation polynomial p5(x) and the o-Hermite interpola-
tion polynomial p;(x) for a function f satisfying

fO=2 fO) =4, f(@25=10,
and
Aay=3 fo=6 =1
On this time scale, we have

o(x) = (VX + 1),
o(o(x))-o(x)  2vx+3

= , xeT.
o(x) —x 24/x +1

o (x) =

We first compute the polynomials L, and M, for k = 0,1,2,
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1.4 o-Hermite interpolation =——

X-9)(x-25 x% = 34x + 225
Lo = XA =25) ,

(-8)(-24) 192
Lo = & z81))((jc1;)25) _ X z;gg +25
N
e
N o S
My = & _(gig)(;; 16) _x- 212;+ 64 x e 49,
Let
g0 =x, gx)=x, xeT.
Then

glA(x):x+o(x) =2 +2Vx +1,
ng(x) =1, xeT.

We compute, for x € [1,49],

Lg(X):2X+21;/§—33’ LlA(X)=—2X+21;/8)—(_25, Lg(x):2X+328\2)_(—9’
2X +2vx — 2X +2vx — 2X +2vXx —
i KD g RED gy 2w
Then we have
35 29
Lo(0(x0)) =Lo(®) = 22, Lolxo) = Lo(1) = i
135
315 17
LZ(O(XZ)) L2(36) 128 L (Xz) = L (25) 128
128 Aoy 47
My(0(xg)) = My(4) = e My (xo) = MO(l) 25
My(o0) = M,16) = 0. MP0e) =M}O) =
640 41
M,(0(x,)) = M,(36) = 189’ M (xy) = M (25) = 189"

Using these values, for x € [1,49], we compute
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38 —— 1 Polynomial interpolation

and

17 x% = 34x + 225\ [ x* = 52x + 576
=(2+ Lx-1
ps() (+2(x ))( )( LS )

Pos(x) = <2+ %((\/)—(+ 1)’ - 4))(

192

2 2
+<4+ﬁ(x_9)><x 26x+25>(x 40x+144>
15 135

128

1 X2 -10x +9
+<1O+E(X_25)>< 384 ><

x* = 20x + 64 )
189 ’

192

X% = 26x +

x? —34x+225)<x2 —52x+576>

525

308 5
+<4+E((\/)_(+1) —16))( o8

25><x2 - 40x + 144)
135

+<10+ %((\/}+1)2—36)>< 384

x2—10x+9>(x2—20x+64>

189

The example above shows that the Hermite and o-Hermite interpolation polyno-

mials can be different and, moreover, the o-Hermite interpolation polynomial may not
be a polynomial in the classical sense. On the other hand, the difference between these
polynomials is not very large, as can be seen from Figure 1.6.

60

55

50

45

40

35

30

25

20

T

Hermite polynomial
---------- o-Hermite polynomial

! ! !

10 15 20

Figure 1.6: The graphs of the Hermite and o-Hermite polynomials.
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1.5 Delta differentiation =— 39

1.5 Delta differentiation

We conclude this chapter with a theoretical discussion of the error in the delta deriva-
tive of a function when it is approximated by the delta derivative of the related inter-
polation polynomial.

Theorem 1.49. Suppose thatn > 0,a,b € T, a < b, X; € la,b],j € {0,1,...,n}, are
distinct, f : [a,b] — R, p, : [a,b] — R s a polynomial of degree n interpolating f
at the points x; € [a,b],j € {0,1,...,n} andek (x) exist for any x € [a,b] and for any
k € {1,...,n+1}. Then for any x € [a, b] there exist £ = &£(x) € (a, b) and distinct points
nj,Jj € {L,...,n}, in (a, b) such that

A A i & .
— = = 77 S ,b R
) - pLx) n,’;A"”(f)n" (x), xe€lab]
or
Arn A
Hmin,n+1(§) < % < Hmax,n+1('{)> x € [a, b],
where

2@ A eE) }
(&) ™ (p@)) )

03 f“““(p({))}
(@) T p@) )
X) = (- (x-1p), X € [ab].

Hmax,n+1(‘f) = max{

Hmin,n+1(€) = min{

Proof. Let p, be the Lagrange interpolation polynomial for the function f with inter-
polation points xj, j € {0,1,...,n}. Then the function f - p, has at least n + 1 GZs in
[a, b]. Hence, by Rolle’s theorem, it follows that there exist nj;, j € {1,...,n}, in (a, b)
which are GZs of the function f* — p4. Define the function

200 -pho)

X(0) = £4(6) - pr(o) - o T, telabl

Then

200 -phe)

X)) =F20m) ~Pny) = s )

= A y) - pa(n))
=0, xe€lab], je{0,1,...,n},
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40 —— 1 Polynomial interpolation

and y(x) = 0, x € [a, b]. Thus, x : [a,b] — R has at least n + 1 GZs. Hence, by Rolle’s
theorem, it follows that )(An has at least one GZ on (a, b). Therefore, there exists ¢ =
&(x) € (a,b) such that

X @ =0 or xM(EONKE© <
Note that

A A
PP vy fa,p)
7 (X)

n n+1
Xy =4 -
We now consider the two cases separately.
1. Lety® (&) = 0.Then

FA00 = pho0)

fA"+1($)= - (&), xela,bl,

7T (%)
or, equivalently,
- - Lo @y - Oy wean)
" (&) " (&) "
2. Let
X (@K @) <o.
Then
K o) = 1" (o) - TP e ) b,
Ty (X)
and
A A
A gy AT o) =P () an
X & =f (5)——71;()() m,” (&), xe€la,b]
Hence,

0> xY (@K (&
A
GG ’M 0©)

7 (X)
A FR00 - pho)
x(f - By (5))
Aoy A 2
- (f—(xii* (f)"(")> " (&) @)

EBSCChost - printed on 2/10/2023 4:40 PMvia . All use subject to https://ww.ebsco.conlterns-of-use
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A _ LA n n+1 n it
‘“)2*—(;"0()(# POW @ +m OF ()

A @A), xelabl.
Therefore,

A A
o) = pp(x) <

Hmin,n+l('f) < 7'[; (X) Hmax,n+1({)> X € [a’ b]

This completes the proof. O
Remark 1.50. Suppose that all the conditions of Theorem 1.49 hold. If

7@ .
nlggo Xlglaﬁ]( #An ({) (X)) =0
and
fAm-l (é_) >
lim =0,
niooxe[a’z%( *A"(p(.f»” )
then

lim maxlf (x) - pn(x)l =

n—00 xe[a,b

1.6 Advanced practical problems

Problem 1.51. LetT = (%)NO. Construct the Lagrange interpolation polynomial for the

set
(3} (o) (o]
27 9 3
Problem 1.52. Let T = 4™, and suppose f : T — R is defined by

f(x) = e;(x,1) + sin,(x, 4) +x2 +x, xeT.

Find the Lagrange interpolation polynomial for the function f with interpolation
points

a=xy=1 x;=4, x,=16, x3=64, x,=256=Dh.
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42 —— 1 Polynomial interpolation

Problem 1.53. Let T = 3™,
Xo=1 x =3, x=9, b=27.
Find m5(x), H%(X), x eT.
Problem 1.54. Let T = 3IN,,. Check if the points
X0=0, x=3, x,=27, x3=180

are o-distinct points.

Problem 1.55. Let T = 4™, Check if the points
Xo=1 x;=16, Xx; =256

are o-distinct points.

Problem 1.56. Let T = (%)NO,

Find the o-Lagrange interpolation polynomial for the function f with ¢g-interpolation
points xg, X1, X5.

Problem 1.57. Let T = {0, 7, 3,3,2,1,4,5,12},
1
a=0, x9=0, xl=§, X,=4, b=12
Find the o-Lagrange and Lagrange interpolation polynomials for the function f :

T — R defined by

x+1

0= 27

+4x+1, xe€eT,

with o-interpolation and interpolation points x,, X;, X;.

Problem 1.58. Let T = {0, 3,3,11,19,108},
1
a=0, x4=0, Xl:i’ x, =11, b =108.

Find IT}5(19).
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Problem 1.59. Let T = 4Z. Find the Hermite interpolation polynomial for the set

XO = —24, Xl = —4, X2 = 16,
Yo=1 yi=-3 Y,=-1
ZO = —1, Zl = 1, Z2 = —1.

Problem 1.60. Let T =2Z andf : T — R be defined by

x+1
5 +x3, x eT.
x‘+1

fx) =

Let also,
XO = —4, Xl = 0, X2 = 8, b = 10.

Find the Hermite interpolation polynomial for the function f.

Problem 1.61. Let T = {-3,-1,0,7,8,19,29},
a=-3, xo=-3, x,=0, x,=8, b=29,
and f : T — R be defined by
fx) = e;(x,0) +xX*+x+1, xeT.

Find the o-Hermite interpolation polynomial for the function f.
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2 Numerical integration

Numerical integration is as a significant subject as the integration itself. Almost all
real life problems represented by mathematical models require computation of cer-
tain definite integrals. In many cases, these integrals cannot be evaluated exactly. For
this reason, development and use of efficient and reliable numerical methods which
provide a good approximation to a given integral are among the main tasks in numer-
ical analysis and methods.

The main purpose of this chapter is to approximately evaluate the Cauchy time
scale integral. One natural approach is to apply the results of the previous chapter on
polynomial interpolation to derive formulae for numerical integration. Therefore, we
will give the detailed theoretical base and the derivation of some quadrature rules, as
well as explain how one can estimate the associated approximation error. We will also
give illustrative numerical examples.

Throughout this chapter, we assume that T is a time scale with forward jump op-
erator o and delta differentiation operator A. We also assume that [a, b] c T for some
finitea,b € T.

2.1 Newton-Cotes formulae

First, we give the derivation of the so-called Newton—Cotes integration formulae, as
they are called in classical numerical analysis [6, 7].

Suppose that f : T — R is rd-continuous. We assume that the integral j: fOO)Ax
may not be evaluated exactly and wish to find its approximate value.

Letn € N, x; € [a, b], j € {0,1,..., n}, be distinct. With p, € P, we will denote the
Lagrange interpolation polynomial for the function f. Then

pa(0) =) Lf(x), x € [a,b],
k=0

and

b b n /b

J FOX)AX = J I RIVEDY <J Lk(x)Ax>f(xk).

a a k=0 a
Set

b
Wy = JLk(X)AX, ke {0,1,...,”}.

Therefore,

https://doi.org/10.1515/9783110787320-002
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2.1 Newton-Cotes formulae =——— 45

k=0

b n
Jf (0AX = Y wif (x). 1)

Definition 2.1. The values w;, k € {0,1,...,n}, are called the quadrature weights,
while the interpolation points x;, k € {0,1,...,n}, are called the quadrature points or
nodes.

Definition 2.2. The numerical quadrature rule (2.1) is said to be the Newton—Cotes
formula.

Now, for t,s € T, we recall the definition of the time scale monomials, which was
given as follows [1, 2]:

t
ho(t,s) =1, hq(ts) = Jhk(r, S)At, ke N,.

S

The two basic Newton—Cotes formulas are known as trapezoid and Simpson rules. We
will first derive these rules for a Cauchy integral on an arbitrary time scale. Consider
the case n = 1, so that we take

a=xy b=x.

Then
p1(x) = Lo()f (@) + Ly(x)f (b)
x-b X-a
=@y f®)
= ﬁ((b -xf(a@) +(x-af (b)), xcelabl.
Hence,
b b b
[ proone= 7 (ﬂa) | =smcs ) [ - a)Ax)
a b
= rla<f(a) J(x - b)Ax + f(b) J(X - a)Ax>
b a
- o (f@hta )+ fbhb,0)
and
[ 1
Jf(X)AX = m(f(a)hZ(a’ b) +f(b)h2(b, a)) (22)

a
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46 —— 2 Numerical integration

Definition 2.3. The numerical integration formula (2.2) will be called the trapezoid

rule.

Below we apply the trapezoid rule to particular examples.

Example 2.4. Let T =2, g =1,b=8,andf : T — R be defined as

~
—

f(t) = teT.

D—\ ‘

We will evaluate LS f(t)At. Here o(t) = 2t, t € T. Let

ft) = —t—t AHt) = —t—8t teT.

Then
A 1 1
fit) = §(o(t)+t)—1= §(2t+t)—1=t—1,
At = %(a(t)+t)—8= %(2t+t)—8= t-8, tell,8],
1 1
hy(a,b) = j(t ~8)At = jf?(t)At = 1) - £(8)
8 8
1 64 1 64
:<§—8>—<?—64>: 38— T64=35
8 8
hy(b, a) = j(t 1A= ijmAt - £,8) - ()
1 1
(%) () s L,
3 3 3 3
7
fm=o f®=g.
Thus,

Example 2.5. Let T = 3™ and f : T — R be defined by

3

£-1
)= ———— +e(t1), teT.
10 =5 et

We will evaluate the integral Lg f(t)At. Here
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2.1 Newton-Cotes formulae = 47

ot)=3t, teT, a=1 b=09.

Let
f(t)—ltz t f(t)—lt2 9, teT
1O =,0-t HO=,0-9 teT.
Then
fA(t)—l(a(t)+t)—1—1(3t+t)—1—t—1
1 _4 —4 = >
sz(t):%(0(t)+t)—9:%(3t+t)—9=t—9, teT,
9 9
mO.D = [(€-1ae = [ Fone=£0)-A0)
1 1
81 1
=Z—9—Z+1=12,

9
l—9>—<§—81>=1—§—9+81=52,
4 4 4 4

7291 728
__1P-1 1=/ ).
729+9+1 a0 D =35 +aG

Now, using the trapezoid rule, we get

9
1 728 1 728
i[f(t)At = §<52+12~ <ﬁ +e4(9, 1))) = 5(13 +3- <ﬁ + e1(9,1)>>.

Exercise 2.6. Let T = 2Z. Using the trapezoid rule, evaluate the integral

8
t+1
T tey(t1) )AL
J<t2+3t+4 2 )>

Next, we will derive the Simpson rule. In its derivation we need the following def-
inition and lemma.

Definition 2.7. Fort,s € T, define the monomials

t
Hy(t,s) =1, Hp(t,s)= Jhk(a(r),s)AT, k € N.
S
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48 =—— 2 Numericalintegration

Lemma 2.8. Lett,s € T and suppose t,,t, € T are between s and t. Then

t
J(y - 4)(y — t)Ay = hy(t, t)hy(t, t;) — hy(s, t)hy(s, t5)
+ Hs(s, t)) — Hs(t, t;) — H5(t, t).

Proof. We have

t
J(y —t)(y -ty

7}

t
-ty - )y + j(y — )y - L)y + j(y — )y - )by
t

t

O

b

S t
—- [0 -ty + [ o6y - sy + [ Bon6 - oy
2}

1 5}

~

S

=- J R0, ) = Y + hy(y, t)y — )¢
4
15}

t
- [ halow) )8y + . ) - 17, - [ (o). )y
t t

= ~h ) - 7 + [ halow).t)ay

2}
- H3(t), t) + hy(t, &) (t - ;) — H3(t, t,)
= —hy(s, t))hy(s, ) + H3(s, t)) — H3(ty, ty) + hy(t, ) hy (8, t) — H3(t, 6).

This completes the proof. O

Now, take n = 2 in the Newton—Cotes formulae (2.1), that is, we take three points
a=Xxg<x <x;=hb.

For x € [a, b], using Lemma 2.8, we get

b Xy
1
JLO(X)AX o e Xj(x ) - 1)Ax

1
= m(hZ(XZ’XZ)hl(XZ’Xl) = hy(xo, X1)hy (X, X3)
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2.1 Newton-Cotes formulae =—— 49

+ H3(xo, %) — H3(X5, X;) — H3(X3, X3))

1
- m(—hz(xo’xl)hl(xo”@) + H3 (X0, 1) = H3 (0 x1)),
b %
JL (X)Ax = S — J(X—x )(x = x)Ax
J ! () = X)X = X3) % ° ?
1
B m(hz(xz»xz)hl(xz»xo) = hy (%o, Xo)hy (X0, ;)
+ H;(xg, Xo) — H3(x2, Xo) — H3(X2,%3))
0 = X0) = X3)”
b 1 %
R ) W

1
= m(hZ(XZ’Xl)hl(XZ’XO) = hy(xg, Xg)hy (X0, X4)

+ H3(xg, Xo) — H3(x1, %) — H3(X2, X))
1

= m(hz(xz»xl)hl(xz»xo) - H;(x3,X0) - H3(x3,%)).

Hence, using (2.1), we find

b
Jf(X)AX = (o — )]:1())(8()0 %) (=ha(x0> X1y (X0, X3) + H3 (X, X7) = H3(x, X))
_ H;3(x5, %)
T G 0 )
f(x,)

m(hz(Xz,Xl)hl(Xz, Xo) - H3(X1, Xo) - H3(X2, Xl))’ (2.3)

Definition 2.9. The numerical integration formula (2.3) is said to be the Simpson rule.
We apply the Simpson rule to specific examples.
Example 2.10. Let T =20, g =1, b =8, and f : T — R be defined as

1

‘ i

ft)=—, teT.
t+

—

We will evaluate Ls f(t)At using the Simpson rule. For this problem, we have o(t) = 2t,
ut)y=2t-t=t,teT.Let

t? ¢
g = 3 g(t) = - teT.
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50 —— 2 Numericalintegration

We have
2 2
g = U(t;” —t, g5(t)= M =t teT.

Then we compute

t
ho(t,s) =1, hy(t,s) = JAT =t-s,
S

t
hz(t, S)

J-(T - S)AT

%]

glAAT -s(t-15)

Il
e

2, 7=t

- T £ 252
=g —st+s’=—| -—st+s’=— —st+—,
T=S 3 3

t
H,(t,s) = th(O(T),S)AT

I 1l
M~ P O

252 T=t
= gz(r)—25g1(1)+—r)

3 T=S
—21(t s”) 3(t s)+3(t s)

2 2
= it3 ~Sst?+ 5Pt - i53, t,seT.
21 3 3 21
We will apply the Simpson rule with a = xy = 1, x; = 4, x, = b = 8. Using the values
f)=0,f(4) = g, and f(8) = %, we compute

8
Lo )

Jf (0At ~ G5 =gy (hel- i (1,8) + Hy(1,4) — Hy(8, 4))

__f®
(4-1)(4-8)

f®
B g &M@ - H(41) - Hy(8,4))

3 7

—0- 560+ 2 (-4) = % _ 588889,
-12 28 9

H3(8) 1)
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2.2 o-Newton-Cotes formulae = 51

Recall that the approximate value of the same integral computed by using the trape-
zoid rule was obtained in Example 2.4 as % =~ 1.55556. In fact, it is possible to compute
the exact value of the given integral as

8 a(1) 0(2) o(4)
J FIOAL = J FIOAE + j F(OAL + J FOAL
1 1 2 4
= fOu@) + fFQu2) + f(4)u4)
1 3 2 12 46
=0+2§+4§ = §+§ = E =~ 3.06667.

This example demonstrates that the Simpson rule is more accurate than the trape-
zoid rule since we approximate the function to be integrated by a polynomial of one
higher degree.

Exercise 2.11. Let T = 3Z. Using the Simpson rule, evaluate the integral
9

j At
2+t+1
6

2.2 o-Newton-Cotes formulae

Recalling the alternative interpolation defined in Chapter 1, called o interpolation,
we consider an alternative to the Newton—Cotes formulae which we will call o-New-
ton—Cotes formulae. In this section, we describe this approach and evaluate approxi-
mately a Cauchy time scale integral using the g-Lagrange interpolation polynomial.

Suppose that f : T — R is rd-continuous, n € Ny, a,b € T, o(a) < b, X; €
[a,b] c T,j€{0,1,...,n}, are o-distinct points. Then

Pon) = Y Ly (0f (), x € [a, b,

k=0
and
b n b
J Pon¥)Ax =) (J LUk(x)Ax>f(xk).
a k=0\g
Hence,
b b b
[ roome= [ pmoonx =y (jLak(xmx)f(xk).
a a k=0\g
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Denote
b
Wyi = JLok(x)Ax, ke{0,1,...,n}.
Then
b n
[ roomx = 3 o ) (24)
a =0

Definition 2.12. The values wy, k € {0,1,...,n}, will be called the o-quadrature
weights and the o-interpolation points x;, j € {0,1,...,n}, will be called the o-quadra-
ture points (nodes).

Definition 2.13. The numerical quadrature formula (2.4) is said to be o-Newton—Cotes
formula.

Next, we recall the definition of the polynomials [1, 2, 8]

t
gob9) =1, gu(t,s) = jgk(om,s)Ar, k € No,
S

for t,s € T. First, we take n = 1in the o0-Newton-Cotes formula given in (2.4), that is,
we take

a=xy <0(xg) <x; <0(x)) =b.
Then

Po1(X) = Loo(X)f (xo) + Ly 0Of (x7)
o(x) —o(xy) o(x) — a(xg)

= —————f(xo) + f(x1)

o(x) — 0(x7) o(xy) — 0(xg)
ox)-b ag(x) —a(a)

= a(a)_bf(a)+ b0 fla)

(=(o(x) = b)f(a) + (o(x) - o(@)f (x1)), x € [a,b],

1
b-o(a)
and

b

! (—f(a) j(a(x) ~b)Ax +f(x,)

b-o(a)

P ()Ax = (o(x) - a(a))Ax>

Q=

g

)
(o(x) — o(a))Ax

R se—

v (f(a) J(O(X) ~ b)Ax + f(x;)
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b
£ ) J (0(x0) - o(a))Ax)
(a)

(f (a)gy(a, b) + f(xpu(a)(o(a) - o(a)) + f(x,)g,(b, o(a)))

g

“bh-

=3 0( )(f(a)gz(a ,b) +f(x1)g,(b, 0(a))).

Consequently, we get

b

[ room <

a

1
b= o(@ (f(@)g2(a, b) + f(x1)8,(D, 0(a))). (2.5)

Definition 2.14. The numerical integration formula (2.5) will be called the o-trapezoid
rule.

Below, we apply the o-trapezoid rule to an example.

Example 2.15. Let T = {}‘, % % 1},

1 1 1
a=—- =X, ==, b=0ol=)=1,
4 X =5 (2)

and suppose that the function f : T — R is defined by

ft) = % teT.
We will evaluate
1
[ e
1
4
We have
ot =o(L)=2en w(1)=o()-1-11 0
0 4)73°7 M3)7%N\4) a7 37472
0<1>_1 <1>_0<1>_1_1_1_1
3) 2 M3)7%3)7372737 %
1 1 1\ 1 1 1
=a(=-)=1, S)=g(z)-2=1-2==Z.
ota) "(2) "(2) U<z> 277272
Furthermore,
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g(a,b) = f(o(t)—l)At
= - Jl(a(t)—l)At
D)e2) ) ) )
#(3)(e(3)-)

=~ 5(31)-43) oo
A3

gib.o@) - [(o0-3 ot
= j(a(t) - %)At + f(a(t) - —>At
-u(5)((5)-3) 4G )(3)-3)
S43-3)303)-%

()3 rwo-r(3)- -

Hence,

<_l_£>__£
12 108) 36

Exercise 2.16. Let
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a=-2=x,, xlz—g, b=2,

and suppose that f : T — R is defined by

t+1
f(f)=t4+t3+—t2+1, teT.

Using the o-trapezoid rule, evaluate the integral J_zz f(t)At.

55

We proceed with the following definition and lemma which are needed to derive

the o-Simpson rule.

Definition 2.17. Fors,t € T, define the polynomials
t
Go(t,s) =1, Gp(t,s) = jgk(‘r, S)At, ke N,.
S
Lemma 2.18. Lett,s € T and t;,t,,0(t;), 0(t,) be between s and t. Then

t
j(o(y) ~ 0(t))(0) - o(t))Ay

= —g(s,0(t))g1(s, 0(ty) + &1 (t, 0(t)))ga(t, 0(ty))
+G5(s,0(t)) — G3(a(ty), 0(ty)) — G5(t, 0(ty)).

Proof. We have
t
[ (o) - o) (ot - ateay

0(t1)
- [ (001 - 0o - oty

o(ty) t

+ J (o(y) —o(t)) (o) - a(ty)Ay + J (oy) - a(t))(o(y) - o(ty))Ay

o(ty) o(ty)
S

- j &0y, 0(t))(0(y) - 0(t)) Ay

a(ty)
o(ty) t

+ [ Bonoe)om -aeay+ [ (00)-o6)g3 . o)y
o(ty) o(ty)
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S

= -5y, o)y - o)) ¢, + j &y, 0(t)hy
a(ty)
o(ty)
+8,(v,0(t))(y - U(tz))ﬁ;ggg - J (v, 0(ty))dy
a(ty)

t
+(y - o(t))ga(ys a(tz))|§i§<tz> - j & (v, 0(ty))Ay

a(ty)
= =gy(s,0(ty)(s - 0() + 8,(0(ty), 0(ty))(0(ty) - 0(ty)) + G3(s, 0(ty))
+8(0(ty), 0(ty))(0(6) - 0(ty))
-8 (0(ty, o(t))(a(ty) - 0(ty)) - Gs(a(t), 0(ty))
+(t - a(t))g(t, 0(ty)) - (0(ty) - 0(ty))82(0(t,), 0(ty)) - G5(t, (1))
= -g(5,0(t))g1(s,0(82) + 81(t, 0(t))8, (¢, 0(8))
+Gs(s,0(t))) — G3(a(ty), 0(t))) — G5(t, a(ty)).

This completes the proof.
Let now
a=xy<x<0(x) <xy<0(xy) =h.

Then, using Lemma 2.18, we get

0(xp)

1
J Lyo(y)Ay = (00g) — 000 (0 (xg) _U(Xz))(_gZ(XO’O-(Xl))’gl(XO»O(XZ))
+81(0(x), 0(x1))g2(0(x2), 0(x7))
+ G3(Xp, 0(x7)) = G3(0(x0), 0(x7)) = G3(0(x,), 0(x2)))
1
"~ (o) - ot alg) oty S0 T o)
+ G3(Xp, 0(x7)) = G5(0(x0), 0(x7))),
0(xy)
1
)| Loy ()Ay = (000 — o) (0 0x) = O_(Xz))(_gZ(XO’U(XO))gl(XO>U(X2))

+81(0(xp), 0(xg))82(0(x,), 0(x3))

+ G3(Xp, 0(xg)) = G3(0(x0), 0(xg)) — G3(0(x,), 0(x2)))

1
= - G ’ ,
(0(x;) — 0(x0))(0(x)) — 0(xy)) 3(0(xp), 0(x0))
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a(xy)

[ Laatny - .

(0(xp) — a(xp))(0(x;) — 0(x7))

(=82(x0, 0(x0))81 (X0, 0(x1))

+81(0(xy), 0(x0))82(0(x,), 0(x7))

+ G3(Xo, 0(Xg)) = G3(0(x7), 0(xp)) — G5(0(x2), 0(xy)))
1
(00x) - 0(x))(00x) — 0(xy))

x (81(0(x2), 0(x0))82(0(x), 0(x7))
- G5(0(xy), 0(xp)) — G3(0(x), 0(x7))).

Hence and (2.4), we get

f(xo)

(0(xg) — 0(x))(0(xg) — 0(x3))

b
Jf(X)AX = (=82(x0, 0(x7))81 (X0, 0(x7))

+ G3(X0, 0(x7)) = G3(0(xp), 0(x7)))
fx))

 (0(xy) - 0(x0))(0(x;) - ()
f(Xz)

(00x) — a(xp))(o(x3) — 0(x7))

- G5(0(xy), 0(xg)) — G3(0(x,), 0(x7)))- 2.6)

Gs (O'(Xz)> U(Xo))

(81(0(x2), 0(x0))g2(0(x2), 0(x7))

Definition 2.19. The numerical integration formula (2.6) will be called the o-Simpson
rule.

Example 2.20. Consider the time scale T = 2Mo and let [a, b] = [1,32]. We have o(t) =
2t, u(t) = t, t € T. On this time scale, we compute

go(t, s)=1,

t
gi(t,s) = jgo((a(r),s)A-r =t-s,

t
&it:s) = [ ai(o@. 900

t > 2
= J(ZT—S)AT = (% —sr)

T=t

T=S

EBSCChost - printed on 2/10/2023 4:40 PMvia . All use subject to https://ww.ebsco.conlterns-of-use



58 —— 2 Numericalintegration

t
Gs(t,s) = ng(T,S)AT

S

t

22 2
= J(i—sﬁs—)Ar
. 3 3

Leta = x5 =1, x; = 16, o(x;) = b = 32. Applying the o-trapezoid rule for any function
f: T — R gives

32

Jf(t)At = 32—1_2(f(1)g2(1, 32) +f(16)g5(32,2)).
1

Leta = xo = 1,x; = 4, x, = 16, 0(x,) = b = 32. The o-Simpson rule for any function
f: T — Ryields

32

[ reome < @
1

2-8)2-32
. f@
(8-2)(8-32

f(16)
(32-2)(32-8)

(-82(1,8)81(1,32) + G5(1,8) - G5(32,8))

G5(32,2)
(8,(32,8)2,(32,2) - G5(8,2) - G5(32,8)).

It is easy to compute the exact value of the integral as

32

Jf(t)At = fOu) + fQu2) + f(A)u*) + f(B)u(8) + f(16)u(16)
1

=f(1) +2f(2) + 4f (4) + 8f(8) + 16f(16).

The o-trapezoid rule will give the exact value of the integral if the integrand function
is a linear polynomial. Taking f(t) = 2t + 5, t € T, we compute the integral with the
o-trapezoid rule as

32
j(zt +5)At ~ 3i0(7g2(1, 32) +37g,(32,2)) = 837,
1

and with the o-Simpson rule as

- printed on 2/10/2023 4:40 PMvia . Al use subject to https://ww.ebsco.conlterns-of-use



2.2 o-Newton—Cotes formulae =— 59

32
J(zt F5)AL~ 1l( —6,(1,8)g,(1,32) + G5(1,8) - G5(32,8))
1

= 837.

The exact value of the integral is

32

J(Zt +5)At =7 +18 + 52 + 168 + 592 = 837.
1

The o-Simpson rule will give the exact value of the integral if the integrand function
is a second degree polynomial. Taking f(t) = t* + t + 2, t € T, we compute the integral
with the o-trapezoid rule as

32

1
J(t2 +t+2)At = 3—0(4g2(1, 32) +2748,(32,2)) = 5704,
1

and with the o-Simpson rule as

32
J(t2 +t+2)At = %(—gz(l, 8)g1(1,32) + G5(1,8) — G5(32,8))
1

+ 122 ,(32,2) + 74( ,(32,8)2,(32,2) - G5(8,2) — G5(32,8))

=5084.

The exact value of the integral is

32
J(t2 +t+2)At = 4 +16 + 88 + 592 + 4384 = 5084,
1

t+2
t?+7°

Finally, we choose f(t) =
o-trapezoid rule as

t € T. Then we compute the integral with the

t+2 1
At =~ — 1,32 32,2) | = 5.2894,
Jt2+7 (20024 320022 <5289

and with the o-Simpson rule as
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3
J L2z s 25(-8(1,8)81(1,32) + G5(1,8) - G5(32,8)
1

6

18
144 2_65(32,2) + 2 263 25(8262.8)21(32.2) - 65(8,2) - 6;(32.8))

= 4.3798.

The exact value of the integral is

32
t+2 3 8 24 80 288
=242, ~ 4.3676.
.[t2+7 3 'n B 71w
1

Exercise 2.21. Let

"
a=2=x, X1—§> xz—%, b=4,
and suppose that f : T — R is defined by
f(t)=t2+ﬂ, teT.
1+t4+10

Using the o-Simpson rule, evaluate the integral jf f(t)At.

2.3 Error estimates

Our aim in this section is to evaluate the size of the error in the numerical integration
formula (2.1). The error in (2.1) is defined by

b n
Enf) = [ Foome = Y wif o).
a k=0

Theorem 2.22. Letn € N, a,b € T, a < b. Suppose that f : [a,b] — R, f € C""'([a, b]).

Then
E,(f) = j fA,:ll({) Ty (X)AX,
Hn+1 (5
or
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b b
J Gmin,n+l(€’ X)AX < En(f) < j Gmax,n+l(£’ X)AX’
a a

where

Fraxns1(§) M1 (X) i 44 (x) > 0,

Fmin,n+1(€)nn+1(x) if”n+1(x) <0,

Gmax,n+1 (‘f’ X) = {

Fmin,n+1(§)ﬂn+l (x)  if11e(x) > 0,
Fmax,n+1(§)nn+l(x) if 1 (x) < 0.

Gmin,n+1(‘{> x) = 1

Proof. We have that

b
E,(f) = j(f(x) ~ pa(0)Ax,

where p,, € P, is the Lagrange interpolation polynomial for the function f. Hence, by
Theorem 1.10, we get the desired result. This completes the proof. O

2.4 o-Error estimates

Now, we will evaluate the size of the error in the numerical integration formula (2.4).
We define the o-error in (2.4) as follows:

b n
E(m(f) = Jf(X)AX - z ngf(Xk).
k=0

a

Theorem 2.23. Letn € N, a,b € T, a < b. Suppose that f : [a,b] — R, f € C""([a, b]).
Then

b

Etm(f) - J Hg;rll({) n0n+1(X)AX’
or
b b
J GU min,n+l(f’ X)AX < Etm(f) < J Gamax,n+1(‘{’ X)AX’
where

Famax,ml({)”aml(x) if My (x) > 0,

FO‘min,n+1(§)7T0‘n+1(X) ifﬂon+1(x) < 0»

Gamax,n+1(‘{> x) = {
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Fcrmin,n+1 ($)n0n+l(x) ifﬂan+l(x) >0,

Fcrmax,n+1('f)nan+1(x) ifﬂan+l(x) <0.

GU min,n+1 (é’» X) = <|

Proof. Observe that

b

Epu(f) = j(f(x) — Don())x

a

where p,, € Py is the 0-Lagrange interpolation polynomial for the function f. Hence,
by Theorem 1.28, we get the expected o-error estimate. This completes the proof. [

2.5 Composite quadrature rules

In this section, we will derive the composite trapezoid and Simpson rules. The idea of
composite quadrature rules is to increase the number of nodes in the interval of inte-
gration and thus decompose it into a union of disjoint subintervals. Then the related
quadrature rule is applied on each of the subintervals. Naturally, this approach will
reduce the error in the computation of the approximate value of the integral.

Suppose that a,b € T, a < b,and f : [a,b] — R is a given continuous function.
Let

a=Xy<X <--<Xx,=h.

Then
Xjq

j FOOAX.

-1

=

J (xX)Ax =

a

-

Now, applying the trapezoid rule, we find

Tlf(x)Ax ~

Xj

(PO 15) + G 0.0,), T € 10,1,
]

j+1

Hence,

(f(X )hz( s Xj11) +f(Xj+1)h2(Xj+1,Xj)). 2.7)

ff(x)Ax Z

j=0 ]+1

Definition 2.24. The numerical integration formula (2.7) is said to be the composite
trapezoid rule.
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Example 2.25. Let T = 2™ and f : T — R be defined by

t+1
t)y=———, teT.
f® 2+t+1
Let also
l=xg<4=x<16=x,=h.

Here o(t) = 2t,t € T, and hy(t,s) =t — s, t,s € T. For a fixed s € T, denote

fit) = —t —st, teT.

Then
A 1 1
)= g(o(t)+t)—s= §(Zt+t)—s= t-s=nts), teT,
and
t t t
hy(t,s) = Jh (1,8)AT = J(T S)AT = Jfl (DAt = fl(r)l
S S S
2 2
1 st—lsz+52=—t *2s _BSt, teT.
3 3 3
Hence,
16+2-12
hy(x1, xo) = hy(4,1) = T =2,
1+32-12
hy(x9, %) = hy(1,4) = T =7,
hy (X0, x1) = hy(16,4) = miﬁ - 9?6 -3,
hy(Xy, ) = Hyl4, 16) = m*iﬂ _ % 112,
2 5 17
D=1, ==, fa
f@ 3 f4) o f(16) = 73
Thus,

t+1 1
J 2+t+ 1At = X - Xo (f(XO)hz(Xo)Xl) +f(X1)h2(X1,XO))

! " (f Oy (X1, x0) + f )My (X0, X7))
- X

:1(2.7+i.2>+l<2.112 17 32)
3\3 21 12\ 21 273
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14 10 280 136
==+ —=+—+=-—

9 63 126 819
_ 248 136 _ 3360 _ 160
T 63 819 819 39°

Exercise 2.26. Let T = {—1,—%,—%,0, % % %}. Using the composite trapezoid rule,
evaluate the integral

?+1
<t" 1+51n1(t,0)>At.

._\'"—abb—t

Next, we derive the composite Simpson rule. Note that since the Simpson rule
requires 3 points, that is, a = x5 < X; < X, = b, we need to take an odd number of
points in the interval [a, b] including a and b. Suppose that

aA=Xg <Xy <Xy<-<Xyy=Dh

Then
b Xoj
jf(x)Ax 3 | Foomx
j= lle

Hence, using the Simpson rule, we find

fx52)
Jf (X)Ax = Z( o ij,lz; ()2(21' %) (=hy (X952, X951y (X352, X35)

+ H3 (X552, Xp5_1) — H3(xy ij—l))
H; (x5, X55-5)
- fOqg) L
(Xgi_1 = X9j_2) (Xaj_1 — X5)
fOx)

(X — X352) (Xg5 = X354)

(hy (35, X551 )y (X35, Xg2)
- Hg(ij_p ij_z) - H3(X2j’ X2j—1))>~ (2.8)

Definition 2.27. The numerical integration formula (2.8) is said to be the composite
Simpson rule.

Example 2.28. Let T = 2Z and [a, b] = [-10, 16]. Consider the 1ntegralj f(t)At. We
haveo(t)=t+2and u(t) =t+2-t=2,t € T. Let

2
fi(6) = t——t
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5 2
t)=—-t"+—, teT.
f(6) 3 +3
We compute
A o(t)+t 2t +2
t) = -1= -1=t,
fi () 7 3
a(t))? + to(t) + t2 2
f?(t)zu_(a(t)*_t)_’__
3 3
2 2
:(t+2) +t(t+2)+t —(t+2+t)+2
3 3
2
_3t +6t+4_2t_2+g
3
=t} teT.
On this time scale, we have
hO(t:s):L
hi(t,s) =t-s,

(T - $)AT = fy(1) - STITZS

t s?
——t—st>—<——s—sz>
2 2

2 $
—(1+s)t+s+3, t,seT,

hZ(t’ S) =

TN O —

~

N

and

t
Hs(t,s) = th(o(r),s)A‘r

t 2 b
=J<(”22) —(1+s)(‘r+2)+s+%>AT

t 2
J(— +(1-8)T-5+ %)AT

fz(T

2
+(1-9fi(1) + <— - S>TI§2§

t3 t? 2 2 25 s
5 <S >1‘+S t,s eT.

"% 27

2 3

Then for n = 2and x, = -10, x; = 2, x, = 16, the Simpson rule gives
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16

jfmm:&m

-10

_ f(-10) e B _ _
= - 21016 (10 D (-10,16) + Hy(-10,2) - H(16,2))

f(2
(2+10)(2- 16)H3(16’ -10)

f(16)
——— (h,(16,2)h,(16,-10) — H5(2,-10) — H5(16,2
(16+10)(16—2)( 2 Yhy ) — Hj( ) — Hx( )
For n = 4 and choosing x, = -10, x; = -4, x, = 0, x3 = 8, x, = 16, the composite
Simpson rule yields

16

jfmm:&m

-10

- % +f 2‘)(120 g5 (hal-10,~4)hy(-10,0) + H(-10, ~4) ~ H(0, )

f=4)
EERUEEIS

f(0)
+ m(hz((), —4)h, (0, -10) — Hy(~4,-10) — H;(0, -4))

f(0)
8016 208 (0,16) + H;(0,8) - H;(16,8))

f(8)
~ (8-0)(8-16) H;(16,0)

f(16)
———~(h,(16,8)h,(16,0) — H5(8,0) — H5(16, 8)).
Finally, for n = 6, choosing x, = =10, x; = -4, x, =0, x3 = 4, x, = 8, x; = 12, and
X¢ = 16, the composite Simpson rule gives

16

jfmm:&m

-10

- % +f 2‘)(120 g5 (“hal-10,~4)hy(-10,0) + H(-10, ~4) ~ H(0, 1)

f(=4)
- G0 oy 10

f(0)
m(hz(Q ~4)h; (0, -10) — H3(~4,-10) - H3(0, -4))
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(()—g%(—hz(o» Dhy(0,8) + Hy(0,4) - Hy(8,4))
f(4)
- g H®0
(8—{)3% (y(8,4)hy(8,0) - Hs (4, 0) — Hy(8,4))
T (8, 12)m,(8,16) + Hy(8,12) - Hy(16,12))
@-1)@-16) 2 SIS ST
f(12)
- Boenig e ®
f(16)

e85 1206 1D (16,8) - Hy(12.8) - Hy(16,12).

Let f(t) = Vt2 + 1, t € T. Then we compute the values
S,(VE2 +1) =149.7828,  S,(Vt2 +1) = 177.4453, S¢(Vt? +1) = 176.5128.

On the other hand, the exact value of the integral is computed as

16

7 7
I= J V2 +1At= ) pQif(2)=2) \(20)2 +1 = 176.3708.
i=—5

-10 i=-5

Exercise 2.29. Let T = 3™,
a:l:xo, X1=9, X2:b:81,
and suppose that f : T — R is defined by

3t
t)=1+t- —— +ey(t,1), teT.
f() i 5 (8, 1)

Using the composite Simpson rule, evaluate the integral jlsl f(t)At.

2.6 o-Composite quadrature rules
In a similar way, we can define the o-composite trapezoid and Simpson rules. First,
we derive the o-composite trapezoid rule. Suppose thata,b € T,a < b, f : [a,b] > R

is rd-continuous, n € N and that x; € [a,b] c T,j € {0,1,...,n} are o-distinct, i. e.,

a=Xxy<0(xg) <x<0(x)) <+ <X, <0(xy) =bh.
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Then
b o(x;) 0(xy) 0(x,)
pmm=jfmm+jfmm+~+jfmm
a Xo a(x;) o(x,_1)
o(x;) o(xy) a(xy)
=jme+<jﬂmm—jfmm>
0(x,) 0(Xp1)
+~+<jfum»—j ﬂ@m)
o 05 906
=3 [ roome- ¥ | roon
0 % =0 4
n-1 0(Xj11) n-1
=3 [ roomx- ¥ uogroe).
= j=0

We apply the o-trapezoid rule and obtain
b n-1 1
Jf(X)AX = ];) m(f(xj)gz(xj: 0(X;41)) + f(X541)82(0(x541), 0(x;)))

n-1
— D HOGF (). (2.9)
j=0

Definition 2.30. The numerical integral formula (2.9) is said to be the g-composite
trapezoid rule.

Example 2.31. Let

We have

1 1 1 1
x0=0<0(x0)=§<x1:g<0(xl):z<x2=§<a(x2):1=b.

Let f(t) = t, t € T. We will evaluate the integral f: f(t)At using the o-composite trape-
zoid rule. We have
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Xo

£:(x0,0(x7)) = j (a(t) - o(x)))At

Il
|
=
— —
| =
N————
S
Q
/N
A= 0|+
N————
|
N————
|
=
S
AN =
N————
S
Q
/N
[
N————
|
D=
N————

__i<_l)_i
T4\ 12) 288’

o(x;)
J (o(t) - a(xg))At

U(xo)

oo o

-#(5)(o(5)5) +»
-(e-5)(6-3)* (%-%)(%-%)
5%(16+l<1> 57i6+9i6:57ls’

&(%.006) = | (o1 - otx)at

U(Xz)

8 (0(x1), 0(xg))

e TN

J a(t) = 1)A

- jl(o(t) - 1)At

I

|

=
N
N~
N——
/_\
/\
| =
——
|

—_
——
|

=
/
B
N~
/N
/
N
N~
|

—
~——
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70 —— 2 Numerical integration

gz(U(X2)> U(Xl))

1
4
1. 3_7
16 8 16’
1 1 1 1
f(O)ZO, f(g)zgs f<§>:§

and the o-composite trapezoid rule, we get

1
tht:
0

’ 0(xy) — a(xy)

o(x) -

0(Xg)

= ulx)f (xq)
_l<1 L>+L<l 3.1 1>_1 1
_%6576 1_%616 2 16) 4 6
14 4(3 7) 1
:—+— _+_ —_—
1728  3\96 32/ 24
_i+&(l>_i_i+l_@
T 1728 3\4) 24 1728 24 864
Exercise 2.32. Let
T= {-z,-i,-1,-5,-%,-1,-1,-1,0},
2 6 3 2 3 8
a=-2=Xxy X =-1, xz_—%, b =0,
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2.6 o-Composite quadrature rules = 71

and suppose that f : T — R is defined by

?-t+1
th+t2+1

f(t) = +t, teT.

Using the o-composite trapezoid rule, evaluate the integral j: f(t)At.

Next, we will obtain the g-composite Simpson rule. Let m € N, m > 2, and

a=xg<0(Xg) <X <0(x7) <+ < Xy < (X)) = b.

Then
b o(x;) o(x4) 0(Xym)
jf(x)Ax: Jf(X)AH j FOOMX + - + j o
a Xo o(xy) 0(Xm-3)
0(xy) o(x,) 0(xy)
- f(X)AX+< | foome- | f(X)AX)
0(Xom) 0(Xym—2)
+~--+< j FOOMX - j f(X)AX>
m 0(xy) m 0(xy5-5)
- | foome=y | room
=1 =,
m 0(xy) m
= z j fOOAX - ZH(ijfz)f(ijle
j=1 Xpi-2 j=1

Now, applying the o-Simpson rule to each integral in the first sum, we arrive at

b

[ roomc= ¥

a j=1

f(xy52)

(0(xpj-2) — 0(xpj_1))(0(Xpi_5) — O(Xy))

x (~82(%j-2, 00x55-1))81(X2j_2, 0(5))
+ G3(Xj_2, 0(X51_1)) — G3(0(xy), 0(x5i1)))
B f (x35-1)
(0(x5-1) — 0(Xj_2))(0(X5_1) — O(xx))
fOx)

" (00y) - 005 ))(00x) - 00x11)

G3 (O'(ij), O(XZj—Z))

% (81(00xy), 0(x552))82(0 (), 0 (x5 1))
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- GB(O(XZj—l)’ U(ijfz)) - G3(U(X2j)> G(ij—l)))

= > u0G ) (1)) (2.10)

j=1

Definition 2.33. The numerical integration formula (2.10) will be called the o-com-
posite Simpson rule.

In the following example, we will apply the o-composite Simpson rule to approx-
imately find the integral in Example 2.28.

Example 2.34. Let T = 2Z and [a, b] = [-10, 16]. We consider the integral j_lfo f(t)At,
where f is as in Example 2.28. We have o(t) = t + 2and u(t) =t +2-t = 2, t € T. For
the functions

t2

t 2
fl(t)zf_t) fz(t)=§—t2+—

, teT,
3

we have computed
o=t fAy=£ teT,
in Example 2.28. We also compute

gO(t)S) = 1)
g](t’s) = t—S,

g(t,s) = | (a(r) - s)At

N ——

(T+2-95)At

- t> +12- s)‘rlg

2
S _Sz>
2

+(1—s)t—s+%, t,seT,

1]
e N e T
~
N

N N
|

-

|

)
a
N———
|
VS
|

|

)

I
~
N
N

N

and

t
Gs(t,s) J 5 (1,9)AT

S

t 2

J(T—+(1—s)r+s+5——s>Ar
2 2

S
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2.6 o-Composite quadrature rules

73

3 2 2 2
T ™ T T S =
_Z‘?*T(l_s)(?_T>+<5_S>T|:’§
3 2 2 3
:t__i <S__Z>t+§_s—, t,seT
6 2 2 3 3 6
Then for m = 1, taking a = x5 = -10, 0(xp) = -8, x; = 2, 0(x;) = 4, x, = 14, and

0(x;) = 16 = b, the o-Simpson rule gives

16

jmw:@m

-10

f(-10)

=—————(-g,(-10,4)g,(-10,16) + G5(-10, 4) — G5(16,4))

(-8 -4)(-8-16)
f@
(4+8)(4-16)

_faw
(16 + 8)(16 — 4)

G(16,-8)
(g2(16) 4)g1(16) _8) - G3(4> _8) - G3(16> 4))

For m = 2, choosing
X = -10, g(xo) =-8, x3=-6, 0X))=-4, x,=0, 0(x) =2,
x; =8, o(x3) =10, x, =14, o(x,) =16,

the o-composite Simpson rule becomes

16

jmw:mw

-10
_ (_Sf;%(—gz(—m, —4)8,(-10,2) + G3(~10, ~4) - G3(2, ~4))
f(-6)
T (-4 +8)(-4-2) G5(2.-8)
mg%(gﬂz) _4)g1(2’ -8) - G3(_4, -8) - G3(2, —4))
f(—o)(— (0,10)g,(0,16) + G3(0,10) — G5(16,10))
2-10)2-16)" 221D 3(0, 3(16,
f(8)
(10 - 2)(10 - 16) G5(16,2)
f(14)

(16 - 2)(16 - 10)

Finally, for m = 3, we choose
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74 —— 2 Numerical integration

Xo=-10, 0(xg)=-8, x;=-6, 0(x]) =4,
X,=-2, 0(x)=0, x3=2, 0(xg)=4
X4 =6, 0(x4) =8, x5=10, o0(x5) =12,
Xe =14,  0o(xg) =16,

and then the g-composite Simpson rule is written as

16

| rone < o,

-10

_ (_85‘;%(_&(-10, ~4),(-10,0) + G3(-10,-4) — G(0,~4))

_ (_4:;()‘%63(0, -8)

© +f8()_(§))+ 4 (82(0-=481(0,-8) ~ G5(~4,-8) - G3(2,-4)
. (O_flf)%(_gz(—zlt)gl(—z, 8) + G3(=2,4) — G5(8,4))
. (4_5;%63(8, 0)

@_g%(gz(& 4)8,(8,0) - G3(4,0) — G5(8,4))
. @_g%(_gz(e, 12)g,(6,16) + Gs(6,12) - G5(16,12))
_ (12_2()1—;)2)_16)63(16, 8)

f(14)

m(gz(lﬁ 12)g,(16, 8) — G3(12,8) — G5(16,12))

- 2(f(=2) + f(6)).

As in Example 2.28 we take f(t) = Vt2+1, t € T. Then the approximate values of
j_lfo V2 + 1At are obtained as

0S,(Vt? +1) = 157.2944,
0S,(Ve2 +1) = 178.6610,
0Se(Vt? +1) = 177.0139.

Recall that the exact value of the integral is

16

I= J V1 + t2At = 176.3708.

-10
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Exercise 2.35. Let T = 27,
a=xo=0, x;=4, x=8, x3=12, x,=16=0b,
and suppose that f : T — R is defined by
f(t) =1+t+t*+eyt,0), teT.

Using the o-composite Simpson rule, evaluate the integral I: f(t)At.

2.7 The Euler—-Maclauren expansion

The Euler—-Maclauren expansion is a formula which represents the difference between
a definite integral and its approximation by a composite trapezoid rule. It is employed
in the derivation of the so-called Romberg integration. In this section we prove the
Euler— Maclauren expansion for an arbitrary time scale.

Theorem 2.36. Leta,be T,a< b, k,m € N, x; €T,je{0,1,...,m},
aA=Xy<Xy<:+<Xpy=bh,

f e C ([a b]) and let T(m) be the result of the approximation of the integral I =

ja f(x)Ax by the composite trapezoid rule with m subintervals [x;_;,x;],j € {L,...,m}.
Then

m 2k-1 .
I-T(m) = Z(h; > (( D! (Hyy1 00 35-0)F™ () + Hipg (01,3 (x5.1))
A\ 0G0 5

+ J (Has1(0(0),%51) - sz+1(0(7)’xj))fA2k (T)AT) ) (211)

Xiq

Definition 2.37. The formula (2.11) is said to be the Euler—Maclauren expansion.
Proof. Fixj € {1,...,m}. Then, using the trapezoid rule, we find

X

[ roonx-

-1

(f( V(X1 %7) + F(x)hy (x5, X5 1)
hl( j> ] 1

X;

1 ‘ 5
- hl(x—x,o< J (- Df AT —J h, Xj)f(T)Ar>

hl( X] 1) (f( 1)h2(Xj*1> X]) +f(Xj)h2(Xj,X]-71))
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76 —— 2 Numericalintegration

X;

1 ; p
- m( J hg(f’xj—l)f(T)AT - J hg(r,xj)f(r)AT>

Xj-1

hl(X X 1) (f( l)hz(Xj_l,X]-) +f(X]')h2(X]-,X]-_1))

hl( X] 1)(f( 1)h2( 1’Xj)+f(Xj)h2(Xj,Xj71))

B 1
hl(x~, x~,1)

X

j (hZ(G(T)’Xi—l) - hz(U(T),Xj))fA(T)AT

(f( 1)h2(Xj_1>Xj) +f(Xj)h2(Xj>Xj_1))

X

hl(X » Aj— 1)

1
T h(G.x) le (H (,51) = Hy (T,x))f ()T

1
:——hl(xi’xj_l)(Hs(Xj,Xj_l)fA(xj)+H3( XA 0G0))

1 ’ i
' ﬁJ (Ho(w.xy) - Hywxp)f* (e

1
= _hl(X')Xj__1) (H3(X'>Xj_1)fA(Xj) + H3(x]-_1,x].)fA(x]._1))

hl(X? ] 1) (H4( '—1)fA2 (X]) + H4(X]'_1,Xj)fA2 (Xi—l))

1 ! ,
i | (80 e e

2k-1 I I
- hl( Z <( D! (Hpy1 06, 0)f" 06) + Hypy 061 6)F" (x5_1))
+ J (Hajer1(0(1), %) — HZkH(o(T),xj))fAZk (T)AT)_

Summing over all the subintervals [x;_;,x;], j € {1,...,m}, gives the required result.
This completes the proof. O

2.8 The o-Euler-Maclauren Expansion

The Euler—Maclauren expansion can be also given for the o-composite trapezoid rule.
In this section, we give the o-Euler-Maclauren expansion on an arbitrary time scale
and discuss its proof.
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2.8 The o-Euler-Maclauren Expansion =—— 77

Theorem 2.38. Leta,be T,a< b, k,me N, X; € T,je{0,1,..., m},
a=xo<0(xy) <xy<00(x) <+ <Xy <0y =h,

f e C ([a b)), and let T;(m) be the result of the approximation of the integral I =

ja f()Ax by the a-composite trapezoid rule with m subintervals [x;_;,x;], j € {1,..., m}.
Then
u ux;) £
I1-T
o(m) IZ ooty
m 2k-1 Al
+]ZI<W ;(( ! (8111(0(x), a(x;_)f” (a(x;))
+ 81 (X 1,0(X))f ( )
U(x)
+ J (82k41(0(1), 0(x;_1)) ~ Gorsa (0(D), G(X,-)))fAZk(T)AT». 12

Definition 2.39. The formula (2.12) is said to be the o-Euler-Maclauren expansion.
Proof. Takej e {1,..., m} arbitrarily. Applying the o-trapezoid rule, we obtain

o(xj)

1
J fOOAx ~ m(f(xj_l)g2(xj—l> U(Xj)) +f(Xj)g2(‘7(Xj), U(Xj—l)))

1
- 81(0(x;), 0(xj_1))

a(x;) a(x;)

><< J &1(a(1), a(x;_)f (T)AT ~ J gl(O‘(T),O‘(Xj))f(T)AT>

1 Xj-1

Xjq

m(ﬂ 1)g2(Xj71s U(Xj)) +f(Xj)g2((7(Xj), U(qu)))

1
- 81(0(x;), 0(x;_1))
a(x;) a(x;)
><< J ng(T,O(Xj_l))f(T)AT— J g?(r,o(x,-))f(r)Ar)

-1 Xj-1

m(ﬂ 1)g2(Xj71» U(Xj)) +f(Xj)§z(0(Xj), U(qu)))

! (F50)82(x1-1, 00)) + F(004))g2(00x)), 03:1)))

) 81(0(x;), 0(xj_1))
o(x;)

1 A
" 51009),001) XL (82(0(1), 0(xj1)) = 82(a(1), 6(x)))f " (1)AT
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78 =—— 2 Numerical integration

1
B 81(0(xj), 0(xj_1))
()
-y fA(Xj)

- U(Xj) - U(Xj—1)

(f(xj-182(x-1, 0(x)) + f(x)82(0 (%)), 0(x;_1)))

o(x;)
1
" 2000, 000 J (85(1,0(xy)) - g5 (1, 0(x)))f*(1)AT
PTG
_ H(XI) A .
i A
1
" 20000t &0 006D (00)) + 85051, 0G))Fx1)
j/> O\ -
o(xi)
1 2
+ m J (gﬁ(T, O(Xj—l)) —gﬁ(T, U(X])))fA (T)AT
i O
_ H(X]) A .
"ot —otgy
1
B 81(0(x;), 0(xj_1))
N 1
81(0(x;), 0(xj_1))

(83(005), 005_))f*(005)) + 83(x11, 00))f*(x51))

(8400, 00 (006)) + &4 (%11, 0™ (x5-1))
) o(x;)
" 000, 0000) J (g5 (1, 0(x1)) - g5(1,00))f* (T)AT.
j)0X1))

j-1

Continuing in the same way, we get

U(xj)
1
le fFOOAx - m(f(xj_l)gz(xj—pa(xj)) +f(Xj)g2(0(Xj),U(Xj—1)))

1
81(0(x), 0(xj_1))

(x)

U(Xj) - U(Xj—l
2k-1

x Yy ( (D! (81(00) 006 D)™ ) + 81 (351, 00 (1))
=1

(T(x]-)

2k
+ J (82k+1(0(1), 0(X5-1)) — x4 (0(T), G(Xj)))fA (T)AT>-
X
Summing over all the subintervals [x;_y, x;],j € {1,..., my}, gives the desired result. This
completes the proof. O
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2.9 Construction of Gauss quadrature rules = 79

2.9 Construction of Gauss quadrature rules

From the classical numerical analysis it is known that the Gauss quadrature rules can
be defined so that the numerical integration provides an exact result whenever the
integrand function is a polynomial of highest possible degree. In this sense, both the
nodes and weights are determined from this requirement. Below, we derive the Gauss
quadrature rule for an arbitrary time scale.

Leta,b € T,a < b, f : [a,b] - R, w : [a,b] — [0,00), f € Crld([a,b]), w €
C,4(la, b]). We wish to construct a quadrature formula for the approximate evaluation
of the integral

b
J w(x)f (x)Ax.

Suppose thatn € N, x; € [a,b] ¢ T, j € {0,1,...,n}, and
a=xy<0(Xg) <X <0(X) <+ <X, <0(x,)=b
Define the polynomials

MA)Li(x) + Mi(0 () LA (x;)
_ (1M IR N ML) T
P"(")‘<1 MoGNL00) " X’)>M'(X)L’(X)’

X - X .
I<}(X) mM (X)L (X) ] € {O, 1,.. .,n}, X € [(1, b]

where the polynomials M s ], j € {0,1,...,n}, are defined as in Chapter 1. Then the
Hermite interpolation polynomial of degree 2n + 1 for the function f is given by the
expression

P ®) = Y (P00f () + K;(Of(x5)),  x € [a, b].
j=0

Thus,

b
jw(x)f(x)Ax WOOP i (0D

f
ab
- | w(x)(Z(P (F0g) + KO )))

J

n b n
=) ( j w(x)P; (x)Ax)f(x +y ( J w(x)l@(x)Ax)fA(x,-).
=0\ 7 =0\
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Let
b
w; = Jw(x)Pj(x)Ax,
b
V= Jw(x)K,-(x)Ax, je{0,1,...,n}.
Therefore,
b n
[ woareanx = Y (wireg) + virtog)) (2.13)
a j=0

Now we take the function w so that V;=0,j€ {0,1,...,n}. Such a function and time
scale exist. We demonstrate the Gauss quadrature rule in the following example in
which we take a general time scale.

Example 2.40. Let

86 5432
1 1 1
a =Xy 0, X, = E, X; = Z, X3 = E) b= G(X3) =1,
1 1 . 1 1
=(x-2)(x-2)(x-3 -~ )x-=)x-3)) 1
W) (X )(X 5)(" )“gn«x 8)<X 5)( 3)) xelod]
Note that
Ki(x;) =0, j,ke{0,1,23},
w(3)=w(3)(3) -
8 5 3
Thus,

1
[ weorscon = om0+ (5 (5 J6(5)
0

AL o)
A M) A

=0, je{0,1,2,3}.
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Then, the formula (2.13) takes the form

b n
[ woarcom = 3 wirce). (2.4)
a j=0

Definition 2.41. The numerical integration formula (2.14) is said to be the Gauss
quadrature rule, the quantities W}, j € {0,1,...,n}, are said to be quadrature weights.

Example 2.42. LetT = {0, 7, 1,1} and

a=xy=0, X1=%’ o(x))=1=b, wx)=1-x, f(x)=x, x¢€][0,1].

We will evaluate

b
J w()f (0)Ax,

using the Gauss quadrature rule. We have

_X-x _
Lo(x) = Xoox 3x+1, Lo(xg) =1,
L5(x) = -3, Lo(0(x)) = L0<%> = —% +1= %
_ X —Xp _ _
Li(x) = P =3x, Li(x) =1,
L300 =3, Li(o(xy)) = L(1) =3,
_X- a(xy) _ Doy _
My(x) = X—o o) =-x+1, My(x) = -1,
1
1 - X-z
Mo(0(xp)) =~ +1= % M,(x) = ;‘ _‘;((’)‘(0)) - TR 13,
! o 37g
M (x) = 12, My(o(x) =12-3=9,
Moreover,
~ M5 (xo)Lo(x) + Mo (0(x0))L5(X0)
Pl = oo Lot "°)>M°(")L°(")
-1+ 2(-3)
=\1-—55— x)(l—x)(l—Bx)
44

_13
1- T4x>(1 - x)(1-3x)
I3

(
(-
(
(
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M204)Ly () + My (0 0¢)LE (xy)
M;(o(xq))Li(0(xy)) (x - X1)>M1(X)L1(X)

(
( 12+9 3< 1)>(1zx—3)(3x>
(-

Px)=(1-

( 1 Jaze-310
x(12x - 3) - 13x<x——>(4x 1), xe€][0,1],
1 1
Pl(O)ZO, P1<Z>=O, P<§>=1,
1 3 1 2
w(0) =1, W<Z>_Z, w<§>_§,
1
3

A2)-o(3)-

Hence,

1

1 1
[ = xmax = o) [ woopo0omx + £x) [ wooPsGon
0 0 0

1
J w(x)P;(x)Ax
0

=—u<0)W(0)P1(0>+1 ( )W(%>P 1(%)

)

1 2 2 4

k.,x.)l»d

Exercise 2.43. Let

372733
1 1 2
a=xy=-1, x;=-=, x,==, b=,
0 1 3 2= 3 3
4 1+x
wi(x x——x —, x€T.
00 = 9 o9 T lex+x?

Using the Gauss quadrature rule, evaluate

b

b b
jw(x)f(x)Ax, j(w(x))zf(x)Ax, j(w(x)ff(x)Ax.

a
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2.10 Error estimation for Gauss quadrature rules

Now, we give the error estimate for the approximation of an integral by a Gauss quadra-
ture rule. This estimate employs the polynomials used in the error estimates in the
polynomial interpolation discussed in Chapter 1.

Leta, b, f, w, x)-,]' €{0,1,...,n}, be as in Section 2.9. From Section 1.3, we have

FX) = Popp1 (%) <

T ()G (X) max,2n+2(&)

Gmin,2n+2("’r ) <
for some ¢ = &(x) € (a,b), x € [a, b]. Observe that,
sign(m,,,(x)) = sign({,.;(x)), x € [a,b).

Then, for x € [a, b],

Gmin,2n+2(§)ﬂn+l(X)(n+1(x) < f(X) _p2n+1(X) < Gmax,2n+2(€)ﬂn+1(x)(n+l (X) (2'15)

Next,
b n b
[ wooreanx - Y wifg) = [woa (0 - pansa)ax
a j=0 a

Now, applying (2.15), we arrive at

b n
[ WG 2§02 001008 < [ WA - Y Wi )
a j=0

< W(X)Gmax,2n+2 ('f)”n-H (X)(nﬂ (X)AX

N N—

2.11 o-Gauss quadrature rules

While working on time scales, one can use the o-Gauss quadrature rule as an alter-
native to the Gauss quadrature rule. We define the o-Gauss quadrature rule in this
section.

Throughout this section, suppose that ¢ is delta differentiable. Let a,b € T, a < b,
f:la,b] > R,w: [a,b] - [0,00),f € C,ld([a, b)), w € C,4([a, b]). We wish to construct
a quadrature formula for the approximate evaluation of the integral

b

J w(O)f (x)Ax.

a
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84 —— 2 Numericalintegration

Suppose thatn € N, X; € T,j € {0,1,...,n}, and

a=xy<0(Xg) <X <0(X) < <X, <0(x,)=b

Define the polynomials
M2(x;) + M:(0(x;))LE(x;)
(1Y LA e oy AT
Pa;(x)—< oML 00y (o(x) G(X,)))I\/I,(X>L](x),

K,.(x) = o(x) - o(x;) ML, %€ (@bl e ot ..n
T B ) M;(a())Li(a(x;)) 1), bl j€{0,1,...,n},

where the polynomials L; and M; are defined as in Chapter 1. Then the o-Hermite in
terpolation polynomial of degree 2n +1 for the function f is given in the following way.

Poana(0) = Y (Poi(0f (%) + Ko COf*(x),  x € [a,b].

=0
Thus,
b
j WOOFOOAX = [ WO0Pgan.1 (OB
b
- jw(x)( 3 (P (0f () + Ko )F2 05 ))
n n h
- Z(j W(X)Pg,-(X)AX>f(X]~) + Z(j W(X)Kg,-(X)AX>fA(X,-).
j=0 a f=0 a
Set
b
ng JW(X)PU](X)AX
b
Vo= [ WoOKg008x, € (O.1....m
Therefore

(2.16)

j=0

b n
Jw(x)f(x)Ax ~ Z(ngf(xj) + Vaij(Xj))~

Now we take the function w so that V;; = 0,j € {0,1,...,n}. Thus, (2.16) takes the form
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2.12 Error estimation for o-Gauss quadrature rules =— 85

b

[ woareome= Y wyfce). 217)

a j=0

Definition 2.44. The numerical integration formula (2.17) is said to be the o-Gauss
quadrature rule and the quantities W, j € {0,1,..., n}, are said to be the o-quadrature
weights.

Exercise 2.45. Let T = {0, 1,2,1,3,7,11,12},

a=xy=0, xy==, x=3, x3=11, b=12,

[« RS,

and consider
1 2
fO) =t+6, wt)= (t - §> t-1DXt-72(t-12°% teT.

Using the 0-Gauss quadrature rule, evaluate the integrals

b

b
[worone,  [ooyFoa

a

2.12 Error estimation for 0-Gauss quadrature rules

We conclude this chapter with the error estimate in the approximation of a given in-
tegral by a 0-Gauss quadrature rule. Let o, a, b, f, w, X, j € {0,1,...,n}, be as in the
previous section. From Section 1.4, we have

FOO) = Poons1(X) <G @)

Goni < B
min,2n+2(§) < M1 ()G (X)

for some ¢ = &(x) € (a,b), x € [a, b]. Since
Sigl’l(ﬂn+1(x)) = Sign((nﬂ(x))) X € [a,b],
we find, for x € [a, b],

Gmin,2n+2(€)ﬂn+1(X)(n+l(x) < f(X) _p02n+1(x) < Gmax,2n+2($)nn+1(X)(n+1(x)>

and
b n b
| wooreanc - Y Wifex) = [ woa (00 - poamat0)ax,
a j=0 a
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86 —— 2 Numericalintegration

whereupon we arrive at

wOOf ()X - Z Wif (x;)

b
[ W00 Goin 2710061 1%
a j=0

W(X)Gmax 2n+2({)nn+1 (X)(n+1 (X)AX

9—.w ’5’—.v

2.13 Advanced practical problems

Problem 2.46. Let T = (%)NO. Using the trapezoid rule, evaluate the integral

1
J 2+t+1
) -3 +7t2 + 4t +1

256

Problem 2.47. Let T = 30, Using the Simpson rule, evaluate the integral
27
J +t+1
J t2+3t+10

Problem 2.48. Let T = 3™, Using the composite trapezoid rule, evaluate the integral

81 (1
—— +¢0os4(t, 1) )At.
J<t4+t 1 il )>

Problem 2.49. Let

and f : T — R be defined by
f(t) = cosy(t,—1) +siny(t, 1) + >, teT.

Using the o-trapezoid rule, evaluate the integral fl f(t)At.
Problem 2.50. Let

.1,

> 5o

T = {—3,0, 11
32

| =
Cf' ol

and f : T — R be defined
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2.13 Advanced practical problems

t
t) =sin,(¢,0) + e;(¢,0) — ——, teT.
f(t) = siny(t,0) + e(t,0) - ———

Using the o-Simpson rule, evaluate the integral J: f(tAt.

Problem 2.51. Let T = 2Mo,
a=1=xy5 x=8 Xx,=b=64
andf : T — R be defined by

1+t+t
1+t+ 2+ +t4+° +t

f = = +coshy(t,3), teT.

Using the composite trapezoid rule, evaluate the integral f: f(HOAL.

Problem 2.52. Let

IR
432

wiwn
N
(RN
=
=
bl
~
—

4 5 7
a =X :1> X1 ==, Xy ==, X3 =2, X:4, b:4,
0 1 3 2 3 3 3 4
andf : T — R be defined by
4 2 1
fity=t"+t"+ — +e,(t,1), teT.
1+t

Using the o-composite trapezoid rule, evaluate the integral j: ftHAL.

Problem 2.53. Let T = 3™,
a=1=x9, x=9, x =81, x3=729, x,=D>b=6561,

and suppose f : T — Ris defined by

1+t .
ft) = 6 +siny (¢, 1) + cosh,(t,1), teT.

Using the o-composite Simpson rule, evaluate the integral fab f(HOAL.

Problem 2.54. Let

10°9°8°7°6’5°4°3°2°3° 6’
a = Xx, 0 x—l X 1 X 1 X, 1 x—E
— A0 — > 1~ ) 2_7: 3_5) 4_3) 5_6,
2 2 2 2 2 2
1 1 1 1 1 2 )
W“‘)—(X E) (" é)(" a)(* z) (" E) (" 5) 1%
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88 —— 2 Numerical integration

fx)=1+x+e(x,0), xel[0,1].

Using the Gauss quadrature rule, evaluate

b b b
jw(x)f(x)Ax, j(w(x))zf(x)Ax, j(w(x)ff(x)Ax.

Problem 2.55. Let

T = {—1,—1,0,1,1,7},
4 8

a=xo=-1, x=0, x,=1 b=7,
2

fO) =1+t+t w(t):<t+%> (t—%)z(t—nz, teT.

Using the o-Gauss quadrature rule, evaluate the integral

b

J(w(t))z(f ® + (f(©)))At.

a
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3 Piecewise polynomial approximation

The focus of our discussions in the previous chapters has been the question of approx-
imation of a given rd-continuous function f, defined on an interval [a, b], by a poly-
nomial on that interval either through Lagrange, o-Lagrange, Hermite, or o-Hermite
interpolation polynomials. Each of these constructions was global in nature, in the
sense that the approximation was defined by the same analytical expression on the
whole interval [a, b]. In this chapter, we will present an alternative and more flexible
way for approximation of a function f, and this approach is based on dividing the in-
terval [a, b] into a number of subintervals and looking for a piecewise approximation
by polynomials of low degree. Such piecewise-polynomial approximations are called
splines, and the endpoints of the subintervals are known as the knots.

Let T be a time scale with forward jump operator ¢ and delta differentiation oper-
ator A.

3.1 Linear interpolating splines

We first discuss the piecewise approximation by the lowest degree polynomials, that
is, by linear functions, called linear splines. Leta,b € T, a < b,and m € N, m > 2.

Definition 3.1. Suppose that f € C,4([a, b]) and K = {xg, X, ..., X,,} is a subset of [a, b]
such that

aA=Xy <Xy <+ <Xp=h.

The linear spline s;, interpolating f at the points x;, j € {0,1,...,m}, is defined by

5100 = L f0)+
j ~ X1

i % X;

X =Xjq .
f(X]'), X € [Xj—pxj]: ] € {1: ->m}'
i~ X1

The points x;, j € {0,1,...,m}, are the knots of the spline, and K is said to be the set of
knots.

By Definition 3.1, it follows that

St(x-1) =f(Xj—1): SL(Xj) =f(Xj), je{l,...,m}.

We will now give an error estimate for the maximal error for the linear spline interpo-
lation of a given function. Below denote

T =X~ %, j€{0,L,....m-1}, r= max r.

https://doi.org/10.1515/9783110787320-003
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90 —— 3 Piecewise polynomial approximation

Theorem 3.2. Letf ¢ C 4([a, b]). Then
- <2 A).
XIGII[%]ISL(X) fx)| < rxrggﬁllf )

Proof. Letj € {1,...,m} be arbitrarily chosen and fixed. We have

15,00 - ﬂm—}———ﬂ . fu)fm
X; X]

(f( 1)—f(X))+

X Xj ]1

f 0G0~ F00] + — LI 0g) - f)], X € [a, B,
X; = Xj_

(fx) - f0)

X]

By the mean value theorem, it follows that

|f (1) = fO0] < maXXIf(X)I(X Xj1)

€lx1x1

< max X)X — X » X € [Xi_1, X,
XG[ b]lf ( |( ) [) 1 ]]

If () - f 0| < n@X{V%ﬂK&—

< max X)|(X; — X X € | X;_1,X;].
xela b]lf( |( ) []1 ]]

Therefore,

s — 2 — . 2
o)~ S ma - S )

<2r Jmax. IF 00|

< 2r max X X € [X;_1,X;].
Xe[ab]lf @), (-1, %]

Sincej € {1,..., m} was arbitrarily chosen, we obtain

sup |sL(x) foo|<2r max |f (x)].

Xe a
This completes the proof.
We illustrate the computations of this error bound in the following example.

Example 3.3. Let
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3.1 Linear interpolating splines = 91

fO) = +t+1, teT.

We have
1 1
r1:X1—XO:§, I‘2=X2—X1=5—6,
3 3
r3:X3—X2:§, r4:X4—X3:Z.

Hence, r = % Since all points of T are right-scattered, we have
A =0@)+t+1, teT.
From here,

mafo(t) =o()+1+1=2+2=4.
te[0,1]

Thus,

|
N
]
<))

3
sup [s; () —f(0)] < 2-
xe[0,1] 4

Exercise 3.4. Let T = Z,

a=x0=0, x;=2, x=4, x3=6, x,=8 x;=10=),
fOy=+t, teT.

Prove that

sup |sp(x) - f(x)| < 1328.
x€[0,10]

Note that, as stated in the following remark, for the local error on each interval we
can use the error estimates given in Chapter 1.

Remark 3.5. Fixj € {1,...,m} arbitrarily. Suppose that f € Crzd([a,b]). Then, by Theo-
rem 1.10, we have

~©
fx)-s(0) = m(x), X € [X_1,X],
L H%(é—) 2 j—1
or
f(xX) =500
Finina(§) < Txﬁ < Frax2(§), X € [X_, %]

Now, suppose that s; is a linear spline with knots x;, j € {0,1,...,m}. We can ex-
press s; as a linear combination of suitable “basis functions” q,')j, j e {0,1,...,m}, as
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92 — 3 Piecewise polynomial approximation

follows:
m
5.0 = Y §;(0f (x;), x € [a,b].
j=0
We require that each function (;bj, j €{0,1,...,m}, is itself a linear spline that vanishes
at every knot except x; and ¢;(x;) = 1.

Definition 3.6. The functions gbj, j € {0,1,...,m}, are said to be linear basis splines or
hat functions.

Definition 3.7. The formal definition of ¢, j € {0,1, ..., m}, is given as follows:

0 ifx < x4,
X—=X;
j-1 1 . .
800 o ifx;, <x<x,
A E ifx; <x<x
Xj1—X; j =4 =4+
0 ifx;, <x

forjef{l,...,m-1},and

S ifa=xy<x<x,
Pol) = { X750
0 ifx; <x,
and
ifx < xp 9,

0
¢m(X) = { X—Xpm-1

Xm=Xm-1

ifx, 1 <x<x,=>.

Example 3.8. Let T = Z and let

We compute the linear basis spline functions as

-2-x if -3<x<-2
$o(x) = .

0 if —2<x<1,

0 ifx < -3,

x+3 if -3<x<-2,
b1 (x) = X .

-5 if —-2<x<0,

0 if 0 < x,
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3.2 Linearinterpolating o-splines —— 93

0 ifx < =2,

X2 jf _2<x<0,

P, (x) = 2

1-x ifo<x<l,
0 if1 < x,

0 ifx<o,

x ifo<x<l

$5(0) = {

The graph of the linear spline s; defined as
4
s.0) = ) §0f(x),  x € [-3,1],
j=0

is given in Figure 3.1. It is clear that, as was expected, the linear spline s; is a union of
straight line segments joining the points (x;, y;) and (x;,1,¥;,1) fori=0,1,2.

2 T \

Linear spline

y-axis
N
.

0.6 b

04 b

-3 -2.5 -2 -1.5 -1 -0.5 0 0.5 1
X-axis

Figure 3.1: The graph of the linear spline s; .

3.2 Linear interpolating o-splines

Following the o-interpolation concept introduced in Chapter 1, we present below an
alternative spline interpolation, called the linear o-spline interpolation. Let a,b € T,
a<b,andme N, m> 2.
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94 — 3 Piecewise polynomial approximation
Definition 3.9. Suppose that f € C,4([a,b]), K = {xy,X1,..., Xy} is a subset of [a, b]
such that

a=x9<0(Xg) <x;<0(x)) <+ <Xp<0Xy)=b

The linear o-spline s,;, interpolating f at the points x;, j € {0,1,...,m}, is defined by

o0(x;) — o(x) o(x) - o(x;_y)
Ser(X) = — (1) + — (x), xe€lx_,x],
o o(x;) —cr()c,-_l)jr H U(X]-)—o(x]-_l)f J -7
forj e {1,...,m}. The points x;, j € {0,1,...,m}, are the knots of the o-spline, and K is

said to be the set of knots.

By Definition 3.9, it follows that

SUL(Xj—l) :f(xj—l)’ so’L(Xj) :f(Xj)) ] € {1’ cees m}

In the following discussion, we obtain an estimate for the global error in the g-linear
spline interpolation. Below, denote

iy =X —X, je{0,1,....m-1}, r= max r,.
j+1 j+1 j> J > L > > jeloom) j*

Proof. Takej € {1,..., m} arbitrarily. Then for x € [a, b],

| o) - o) o(x) - o(x;_y)
|SGL(X) _f(x)l - mf(xj— ) mf(xj) —f(X)
B o(x;) - o(x) o(x; )
= [otg) ot ) )+ ,)— ot U %) )
o(x;) —o(x) o(x_y)
= 30 —at P 0 Wl U(X—Lf( %) ~f(0),

Now, applying the mean value theorem, we get

If(x;_) - f0)] < n;axxlf(X)l(x Xj_1)

j—1> I
< max |[f00)|(x —x;_1), X € [X_1,%],
xe[a,b]lf | j-1 j-1 %)

and
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[F0g) - f00] < max ]IfA(X)I(X,- - x)

€[xj_1.%
A
< max [f-(x)|(x —x), Xx€ [xi_,x;].
Xé[a,b]lf ( )l(] ) [] 1 ]]
Therefore,

o)~ <1, a0 1 o)
- A
=2 Xren[aa’)gllf )|
<2r max |f* (0|, x € X0,

x€la,b]

Sincej € {1,..., m} was arbitrarily chosen, we arrive at
sup |ser(x) - f(x)| < 2r max LfA(x)|.
xe[a,b] x€[a,b]

This completes the proof.

We compute an estimate for the global error in the following example.

Example 3.11. Let

15 41 _58
’]T: 0>_)_)1)_)_:2)_)_) >
{ 66 36 23 3}
5 4 8
=Xy =0, ==, ==, =2 ==, b=3
a=x, N=v =3 X% X4 =3

1
t)y=——, teT.
f® t+1
We have
Xo < 0(Xg) < Xy < 0(X1) < X3 < 0(Xy) < X3 < 0(X3) < X4 < O(Xy) < O(X4) =D.

Next, since all points of T are right-scattered, we have

Ay 1
f o= (t + (o) +1)’
A _ 1
V(t)l_—(t+1)(o(t)+1)’ teT.
Thus,
ppjo L 1 _6
maxlf (t)|_0(0)+1_é+1_7'
Next,
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96 —— 3 Piecewise polynomial approximation

5
r1=X1—X0=€, h=X—X| =
4 2
r3=X3-X=2--=~-

Consequently, r = g and

|so2 (0 = f0O] < 2-

Exercise 3.12. Let

rofs-3la Lol

23 6 23
7 4
a=xy=3, X4=--, , X3=0, x,=1, b=,
0 1 3 3 4 3

1
t)=———— teT.
f® t+10)(E2+t+1)

X2=—

()Y NI

Estimate

lser () = fOO|,  x € [a, D).

For the local error, we can give the following remark recalling the error in the
o-polynomial interpolation given in Chapter 1.

Remark 3.13. Fixj € {1,..., m} arbitrarily. Suppose that f € Crzd([a, b]). Then, by Theo-
rem 1.28, we have

AZ
fOO) = 8oL (x) = f©)

@ﬂgz(x), X € [Xj—l’xj]’
or

fO0 = ser(x)
Famin,z(‘f) < T(X; < Fomax,Z(f)’ X € [Xjfl’xi]'

Now, we will formally define the o-linear spline by using the relevant basis func-
tions. Suppose that s, is a linear spline with knots x;, j € {0,1,..., m}. We can express

Sy1, as a linear combination of suitable “o-basis functions” ¢, j € {0,1,...,m}, as fol-
lows:

Sor(X) = Y ¢ (X)f (X)), x € [a,b].
j=0

We require that each function ¢, j € {0,1,...,m}, is itself a o-linear spline that van-
ishes at every knot except x; and ¢;(x;) = 1.
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Definition 3.14. The functions ¢>g]-, j €{0,1,...,m}, aresaid to be linear basis o-splines,
or o-hat functions.

Definition 3.15. The formal definition of ¢Uj,j € {0,1,...,m}, is as follows:

0 ifx < x4,
00)-0(x_4) .
b0 - 30500 ) ifx_; <x<x;,
¥ o(x,y)-0(x) X < x <x
0(Xj41)-0(x;) j =7 =
0 ifx;,, <x
forje{l,...,m-1}, and
0x)-0(x) e _
¢00(X) — 1 o(xy)-0o(xp) ifa= Xo < X =X,
0 ifx; <x,
and
ifx < Xm-1>

0
¢Um(x) = {M

SO0 )—o0e ) ifxu <x<x,=>b.

In the next example, we compute the linear and o-linear spline approximation for
a given function. We consider a time scale with a nonlinear forward jump operator in
order to observe the difference between the linear and o-linear splines.

Example 3.16. Let T = N2 = {0,1,4,9,16,...} and f(x) = ﬁlﬂ. Take

a=xo=1 x=9, x=25 x3=49=0D.

Then we have

1

Yo=35 V=7 Ya=7 V3=

N =
0| =

1
2

sy

Note that on this time scale o(t) = (Vf + 1)°>. We will find the linear basis spline and
o-spline functions for the given knots x;, j € {0,1,2,3}. First, we compute the linear
basis spline functions as

Bo) = 9%" ifl<x<9,
0 0 if 9 < x,
(0 ifx <1,
2if1<x <9,
P1(x) = Bx i
6 if 9 < x < 25,
|0 if 25 < x,
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98 —— 3 Piecewise polynomial approximation

0 ifx <9,

2 if9<x<25,
¢2(X) - 49-x

o f25<x <49,

0 if 49 < x,

0 if x < 25,
$5(x) = {x—zs :

T if 25 < x < 49.

The graph of the linear spline s; (x) defined as
3
s() = Y (0f (), x € [1,49],
j=0

1
Vx+1°

is given in Figure 3.2 and is compared with the graph of f(x) =

0.5

—f

0.45 \ —=-==-=Linear spline

04\ 1\ b

0.35 \ 1

y-axis

03 \ 1
025t . 1
02 o |

i |

Figure 3.2: The graphs of the linear spline s, and f.

Now we compute the linear basis o-spline functions. First, note that

0(xg) = 0(1) = 4, o(x;) = 0(9) = 16,
0(xy) = 0(25) =36, 0(x3) = 0(49) = 64.

Then we have,
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3.2 Linear interpolating o-splines =— 99

16—(v/x+1)°

ifl<x<9
X) = 12 ’
Po0(x) {0 if9 < x,
O ifX<1)
(V-4
] (X)_<T ifl<x<9,
L0 =
o 3L g < x <25
’O ifX<9>
oo (sz# if 9 < x < 25,
2(X) = 9
o SCIH)if 95 < x < 49,
o if49 < x,
0 if x < 25,
X) = 1
$g3(X) % if 25 < x < 49.

Then, the linear o-spline s; is defined as
3
Sor(X) = Y g(0f (x;),  x € [1,49],
j=0

its graph is given in Figure 3.3 and compared with the graph of f. We compute the
values of the linear spline s; and the linear o-spline s;; and compare them with the
values of the function f in Table 3.1. Note that at the knots both the linear spline and
linear o-spline coincide with f.

0.5

—f

0.45 S Linear o-spline

04

0.25

02t

sl e

5 10 15 20 25 30 35 40 45
Figure 3.3: The graphs of the linear o-spline s,; and f.
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100 —— 3 Piecewise polynomial approximation

Table 3.1: The values of f, s;, and s,; at the points of T in [1, 49].

X fx) s.(x) Sot (X)
1 0.5000 0.5000 0.5000
4 0.3333 0.4063 0.3958
9 0.2500 0.2500 0.2500
16 0.2000 0.2135 0.2125
25 0.1667 0.1667 0.1667
36 0.1429 0.1475 0.1473
49 0.1250 0.1250 0.1250

3.3 Cubic splines

The most common piecewise polynomial interpolation is the interpolation by cubic
polynomials, known as cubic spline interpolation. The disadvantage of linear spline
is that usually at the endpoints of the subintervals the spline is not delta differentiable.
To deal with this problem, cubic spline interpolation is more suitable than a quadratic
one since it ensures the continuity of both the first and second order delta derivatives
of the piecewise interpolation function at the knots.

In this section, we construct a natural cubic spline to interpolate a function on an
arbitrary time scale. Suppose thata,b € T, a < b,

K ={a=xy<0(xp) <x; <0(x}) <+ < Xpp < 0(Xy,) = b},

me N, m>3,and f € Cy(la, b]).

Definition 3.17. The natural cubic spline interpolating a function at the set K is de-
noted by s, and it satisfies the end conditions

2 2
s§ (x9) = sg (x) = 0.
Now, we will construct the natural cubic spline. Let
A? .
a;=s, (), je{0,1,...,m}
We have a, = a,, = 0. In addition, suppose that
s506-) = $H06+), je{l,...,m-1},

and

A2 Xj X X Xj, .
Sy (x) = a_q + a;, xe€lx.,x], jefl,....mh (3.1)
Xj = X X; — X;
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3.3 Cubic splines =— 101

Fixj € {1,...,m — 1}. We integrate the equality (3.1) fromxtox X € [x.1, %], and find
forx e [xj, b Xl

X % %
A2 (1~
Jsz (HAt = j(xl — t)At + J( DAt
J X; x] 1) X = X1 )
x X
a;_ a;
= j(t X)At+ J(t X)At
} 1X] X X] 1 4
Xj
4;
+ J(Xj - xj_l)At
Xj _Xj—l [/
= ) - ) + a0,
hl(X}-,Xj_l) h(x s Xj— )
or
SL-) sA(x) G- hy(x, x;) — % hy(x, %5) + a;hy (x5, %), X € [xj_4,%;]
2\ 2 hl(}’]l)Z) hl(}»]l)z’ 1X j-1> 451>
or
A A a;
S;(x) = s5(x-) - —hz( S X)) + —hz(x Xj) = a;hy (x5, %), X € [Xj_1,X].

Now, we integrate the latter equality from x to X; and find for x € [x]-_l, x]-],

X

Xj

A A i1
jsz (HAt =5, (x]-—)hl(x]-,x) + oo x ) j h,(t, x;)At
X 1( JKd ] ])

9 Xht At - Xt At
he %0j2<x> J(—w

Mgy 0 + gy g 2 g PO g
=s(x; X;, X) +a - a —a;h, (X, x;
! 1h (X> ] 1) h](Xj)Xj—l) 72 J
and

(1)~ 5500 = 520y ) + g 4 22

$,(G) = 5,(x) = 55 (% X, X) + aj_g —————

2 2 2 1 i 1h1(x, X D

—a-(M + h,(x x-)) X € [X;_1,X;] (3.2
1 h1(Xj,Xj,1) S ’ =BT )

In particular, for x = x;_;, we have
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102 — 3 Piecewise polynomial approximation

h3( ’Xj)
1h1( »Xj_1)

+ hZ(Xj—l’Xj)>

F05) = F (1) = S50y (%) + @
_ a,( h3(Xj-1, %))
J hy (X, X5_1)

and
) = f(x-9) a h3(X;_1, %))
hy (X5, %1) 7 (hy (x5, x1_1))?

hs(x_1, %) hy(x_1, %) >
. . 33
a]< (hl(Xj>Xj—l))2 ’ hl(Xj>Xj—1) G3)

S?(Xj—) =

Now, we consider the equality

A2 X]'+1 - X X—Xj
5 (X) = a + Ay, X € [X5, X 4],
j j 22
i1~ Xj Xj41 ~ Xj

which we integrate from xjtox,x € [x X;s ,+1], and find

X X
A A aj,
S5(x) =5, (Xj+) = (X4 — DAL + (t — x; )At
17 i =X g

X

9 J( Wt — J(t At
—_ X. —_— X
hl( +1a ) 4 hl( j+1> ])

aj,
—hz(x,x)
hy (X341, X))
a;
= a;hy(x, — 1 hx P L
a] 1(X X}) hl(X]+1’ )) 2(X X]) hl( j+1> Xj X;) 2(X X)
as well as
A A a; j+
52 (X) = Sz (Xj‘l’) + ajhl(X,X]') th(x X) + mhz(x X)
Xj+1> X, Xj+1>Xj
We integrate the latter equality from x; to x and obtain
X
$,(x) = $,(%)) =55 (x +)hy (X, x;) + a; J hy(t, x;)At
X
a X ‘ X
hy(t, x;)At + ———— Jh (t, x;)At
hl( j+1 X ) j ? h(x j+1 1) ’
h3(x,x)

= 52(X X x5) + ajhy (%, x;) ]hl(—wxj)
hs(x, x;)

1— X € [Xj, Xi,4]-
+ h]( +1> ]) PeTE
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3.3 Cubic splines =— 103

In particular, for x = Xj41, WE have

h3( +1>X)
F(0) ~ FO) = SH0GH (G )+a(h2< Xj110%,) ~ ﬁ)

1K1, X
h3( +1’ )

+ai <
j+1
hl( +1’X])

Thus,
Dy FOGD) ~FO9) <h2(xi+1>xj) i3(%j11,%) )
0 = hy (%41, %) “ M%) (hy(3G,1,%;)?
h3( +1’X]')

Gy (1))
Using the latter equality and (3.3), we arrive at

f(X]) _f(Xj—l) —a h3(X]-_1,X}-) N a,( h3(Xj_1,X)') N hZ(Xj—l’Xj) )
h1(X"Xj—1) 1_1(}11(7", ‘1))2 4 (h1(x'> '1))2 h1(X‘> jl)

:f(xj+1) _f(xj)_a<h2( +1> ) h3( +1’ ) ) h3( +1) )

hl(Xj+l’Xj) hl( ]+1’X}) (hl( ]+1’X}))2 _aj+l (hl( }+1)X])) 2
whereupon
_a h5(x;_1, X)) a< h5(x;_1, X)) . hy(xj_1, X;) . hy (X415 X;)
- (hl( 1))2 (hl(Xj»Xj-l))z hl(xj)xj—l) hy(x, 1 X )
_ h5(Xj.1, %;) > ra hs (X415 X;)
(hy (5,102 ) 7 (hy (x50 X7))2
f(Xj+1) _f(Xj) f(Xj) _f(xj—l) .
= - > 1, cees - 1 . 3'4
hy (X1, %)) hy (x5, ;1) Jel m-1 G4)
Note that
hz(x,x]-) J(t x;)At
= J(Xj - At < (xj —x)z, X € [xj_l,xj],
h3(Xj—1>Xj) = J/ hz(t,Xl)At

J

%
- [ hatexae

X1
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104 — 3 Piecewise polynomial approximation

and

or

Next,

whereupon

Hence, by (3.5), we obtain

h3( +1> )

%
> - j(x,. - t°At

Xj_1

> —(xj - x]-_l) j(f

(Xj - t)At
Xj_1
X1
—-hi.55.0) [ (€= e
X

= _hl (X]', Xj*l)hZ(X];l’ X}'))

h3(Xj_1>Xj) >_h2(X]‘_1>Xj)
(hl(xjrxj—l))z - hl(Xjan—l),

hs5(x;_1, x;) . hy(x;_ )

(hl(X"Xj—l))z h (X’ ] 1)

X}H
h5(x;,1,%;) = J hy(t, x;)At
X

1X1‘+1
- t- At
3wy
X
hy(x X)Xj+1
1X41> X
s%j(t—xj)m
%

]

1
= Ehl (X}-+1, Xj)hz (Xj+1, X]-),

hB( +1’ ) <h2( i+1> X )
(hl( j+1> ])) hl( j+1> ])

hZ( j+1> ]) hZ( j+10 X ) hB(XjJrl’Xj)

(h1( s Xj—
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3.3 Cubic splines

Let
I(t) = (t-x)°, texp.x]

Then

hy(x,x;) = j(t - x;)At

=2

1l
|
=N
|
o
=
~

=

((t=x;) + (t = x;))At

N =

R, X R, X R %

IN

((t=x;) + (a(t) - x;))At

N =

o)At

N —

= 2 (165) - 100)

1
= E(X_Xj)za X € [Xj71>X;]-

Hence,

Xjq

h3(x;_1, %)) = J hy(t, x;)At

Xj

X
= - J h,(t, x;)At

z—%]u-gfm
X
X
1
= —E J (X] - t)(X] - t)At
-1
%

1
> _Ehl(x]"xj—l) J (X] - t)At

Xiq
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106 —— 3 Piecewise polynomial approximation

Xjq

1
= —Ehl(Xj,qu) J‘ (t = x;At

X

1
= —§h1 (Xj> Xj_l)hz(xj_p Xj),
whereupon

h3(Xj—1>Xj) >_h2(Xj71,Xj)
(hl(Xj)Xj—l))z - hl(Xj)Xj—l).

(3.8)
Next,

X]H
h5(x;,1,%;) = J hy(t, x;)At
X

1 Xj+1
> j(t—xj)zAt

X

IN

< Sy x )j(t XAt

Xj

1
= Ehl (X]-+1, Xj)hz (X]-+1, X]-),

from where

h3(X]’+1,Xj) hZ(Xj+1’Xj)

. 3.9
(hi (%41, ) hi(X41, %) G9)

Now, applying (3.5), (3.6), (3.7), and (3.9), we obtain

hs(x;_1,%;) . hy (X1, X;) . hy (X1, X;) ~ hs(Xj.415 %)
(G x502 " MGG x0)  MGx) (0G0, %)
hs5(x;_1, x;) hs5(x;,1, %;)
~(hy g, (1 (41, %;))2
hs(x;_1, %;) . hy (X1, %7) . ha(G %) h3(Xi1,%)
(hi (G, %0 h0G, X1  h(Ge1.%)  (hy(X,0,X))?
~ hs(x;_1, x;) .\ h5(x;,1, %))
(hi (%, %-0))%  (hy(X541,%))?
h3(x;_1,x;) . hy (X1, ;) . hy (%1, ;) 5 h3(xj41,X7)
(hi (%, .0 (. %21) (%) (X0, X))

Therefore, the system (3.4) has a unique solution a;,j €{0,1,...,m}. By (3.2), we get
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3.3 Cubicsplines =—— 107

h .
5,() = f(5) = 55,06-)hy (3, ) - }1%
15, X1

< hs(x, x;)

+a|l ——+h (x,x~)>, X€[x_,x], jef{l,...,m}.
j hl(X')Xj—l) 2 j j-17j J

Finally, applying (3.3), we arrive at
fOg) = f(x5-1)

Sz(X):f(Xj)_ h (X X ) hl(Xj,X)
13X, X1
+ aj (—hB( »%) hy (x; X)_—h3(x,x-) )
NG00 77 hy(g,x)
h3( ) h2( j— X )
i\~ , =2 h (x;,
a< (h1<x,,1)>2 00 = S )

hs(x, x;) .
+ hl(TX]_l) + hz(X,Xj)), X € [Xj—l’xj]’ ] € {1, ey m},
which is the natural cubic spline of f on the knot set K.
Example 3.18. Let T = Z and

1+t
t)=——, teT.
Jo 1+

Take
a=xy=0, xy=2, x,=b=4.

Then, by (3.4) and using a, = 0, a, = 0, we get

< hXoxi) | (o X)) | h(o.xy)  hs(,%) )
N0 x0)?  Mbaxg)  MGox)  (h(6,x))
_ f(xz) —f(xl) _ f(X1) —f(Xo)

T (6, x) (X, x0)

or

< h5(0,2) 102 hy(42)  hy(42) )zf(4)—f(2)_f(2)—f(0)
(202 h20)  h4,2) (h42)? hy(4,2) hy(2,0)

Now, we will compute h;(-,-), i € {1,2,3}. We have
h1(2> O) =

0
h,(0,2) = J hi(1,2)At = - J(T - 2QAt
2
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108 —— 3 Piecewise polynomial approximation

= —u(0)(-2) - p(D)(1-2) =

0 2
@@m:[@mQMe—Jmmam
2 0

1
— “H(O(0,2) - u(Dh(1,2) = =3 - [ hy(r. 287
2

2
:—3+J(T—2)AT:—3+]J(1)(1—2):—3—1:—4,

1
4

2
h3(2,4) = th(T,lt)AT =- J hy(t,4)AT
4 2

= —U()hy(2,4) - u(3)h,(3, 4)

2 3
- J hy(t,4)AT - J h (1, 4)At
4 4

4 4
= 2J(‘r - 4)AT + §[(T - 4)At

=pu22-4)+uB)EB-4) +uB)3-4)
=-2-1-1=-4,
hﬂ4D=4—2=2

hy(4,2) = hl(r 2)At = J(T -DAt =u(2)2-2) +u(3)3-2) =1,

h5(4,2) = | hy(1,2)AT = u(2)h,(2,2) + u(3)hy(3,2)

N — N_‘

3
=m@m=jmmmm:y@maa=o
2

3 5
f0)=1, f(z)zg, f(4):ﬁ

Hence, for a;, we get the following equation:

or
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3.3 Cubic splines =—— 109

2
a1=%+

- 13 1 4

1
5 8 5 85
Now let

£ 5 15 3, 13
ll(t) = 5 - Et, Iz(t) = gt - Et + ?t,

2_
t29t 14(t)=ét3—5t2+%t, teT.

la(t) =

>

Then

olt)y+t 5 t+1+t 5
Bt = -Z= —Z=t-2,
10 2 2 2 2

1

B(t) = - (o) + ta(t) + ) - g(o(t) +6)+ ?

6
_1 2 2y_3 B
—6((t+1) +tEt+1) +t7) 2(l‘+1+t)+ 3

13
3

1
=g(t2+2t+l+t2+t+t2)—%(2t+1)+

2t 1 3 13
—5+§+8—3t—5+?
-5t 1-9+26 t>-5¢

+ = +

2 6 2
A 1 1
13(t)=§(0(t)+t—9)=E(t+l+t—9)=t—4,

1(t) = é((o(t))z +to(t) + ) - 5(0(t) +£) + 8—69

3,

=%((t+1)2+t(t+1)+t2)—5(t+1+t)+%

=é(3t2+3t+1)—5(2t+1)+%

t? 9
=—-2t+15-5
2 2
2
:t——2t+10, teT.
2 2

From here,

hy(x,2) = J’(T -2)At = L(1)|;25
2

N

X

— X-2+5
3 +

Nl

= ll(X) - 11(2) =

_xz—Sx
2

+3,
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110 —— 3 Piecewise polynomial approximation

X X

hs(x,2) = J (1,2)AT = Jl
2
x°

6

3 13 8 26
IZ(X)—ZZ(Z) —T+?X—g+6—?
3
I § + Ex 4,
6 2° "3
X X
hy(x,4) = J(r ~ AT = jlg(r)m
4 4
2
-9x 16-36
= 13(T)|T 4 - 2 - 2
_ x> - 9x 110,
2
X X
hy(x, 4) = J (7, 4)AT = Jl (DAt
4 4
15 2,8 64 178
=L, -4 = 6 5x° + G 6 80 3
x> —30x% + 89— 64 + 480 —356 x> —30x% + 149
= = , X €[2,4].
6 6
Therefore,
X1) — J (X,
5500 = fo) - TV T (0

h3(xo, X1) ~ hy(xo,xy) h3(x, x,) )
+a1< (hy(x1,%0))? Py, ) h1(X1’Xo)hl(X1’X)+ hy(x1,X0) +halox)

fQ-1O), o

=f(2) - 3
4 ( hy0,2) h,(0,2) hs(x,2) )
(B2 hox) - h,Q, hy(x,2
85( @y 1EN " pz 0@t g0tk
3
3 z-1
=2_53 -
z 2-x)
3 _
+i<f(z—x)—§(z—) l<"— 22+ By 4) X oo 3)
85\ 4 2 2\6 2 3 2
3 1 4 X 3¢ 13x x? - 5x
24220+ — (-0 +r=-2Z 422
55 X)+85< AT S e 3)
_1_)_(+i =12+ 6x + x” — 9x“ + 26x — 24 + 6x° — 30x + 36
~ 7 5 85 12
X 4 X-3x*+2%
—1-Z 4.
5" 85 12
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3.3 Cubic splines =— 111

B 255 — 51x + x> — 3x% + 2x
B 255

B x> = 3x% - 49x + 255
B 255

, x€]0,2],

and

$2(x) = f(xp)

_ fOR) -fx) < h3(x1, %) _ hs(x,x,) )
hy(x2,x7) o, ) + (hy (xp, x))? o 21) hy (%2, x7)

@) -fQ) 4 2w _mmm>
(4,0 + (wmwﬂw*” h(.2)

h,(4,2) 85
5 773 4( 4 x> —30x% + 149
T17 2 4=x)+ 8_5<_Z(4_X)_ T)

5 25-81 4 (48 +12x - x> + 30x% — 149
=———(4—x)+—< )

17 170 85 12
50 -56(4—-x) x> —30x>-12x +101

170 - 255
—174 +56x x> —30x% - 12x + 101
170 255
—522 + 168x — 2> + 60x% + 24x — 202
510
-2 +60x% +192x - 724 x> +30x° + 96X — 362
510 B 255 ’

= f4) -

5 3

x € [2,4].

In the next example, we compute the natural cubic spline on an interval consist-
ing of two subintervals for a given arbitrary function. We perform the computation
of the coefficients with Matlab. Then, we choose two different forms of the arbitrary
function and also compare the graphs of the function and its natural cubic spline in-
terpolation.

Example 3.19. Let T =2Z and let f : T — R be a given function. Consider
K={a=xy=-6,x=-2%=2,x3=6,x, =10 = b}.
In Example 2.28 we have computed
ho(t,s) =1, hy(t,s)=t-s,

t? s
hy(t,s) = 3 -(s+Dt+s+ > t,seT.

We also compute

t
hs(t,s) = th(r, S)AT

S
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2 2
<T——(1+s)r+s+s—>Ar
2 2

3 2 2
T T T S —t
z ? >—(1+S)<3—T>+<S+E>T|z:s
+

2 3
—St2+<s— +Zs+£>t—<s—+sz+£>, t,seT.
2 2 3 6 3

|
(

e
6

We have a, = a, = 0. To find a;, a,, and a3, we solve the linear system

up up O a g
Uy Uy Uy a (=1 & |-
0 usp up as 83
where
hy(X%;_1,X;) hy(x;_,x;))  hy(x; q,X;) h3(x;,1,X;)
ujj: 3]1]2+ 2]1)+ 25+ A 3]+1]2’ forj:1,2,3,
(hy(x,%-4))* MO, x1)  M(XG.%)  (hy(X,q, %))
h3 (x4, X;)
uj,j+1=3]—+1]2, forj=1,2,
(h1(Xj+1> x;))
_h ( > )
U;; 35-12% forj=2,3,

#1 (h1(X', j—l))
and

B fO.0) = fO5)  fOg) - Fx-1)

- _ , forj=1,23.
4 hl( +1> ) h](X')Xj—l) J
Then we construct the cubic spline as
fOg) = fx5-1)
S0 =f(x;) - ﬁ’h@qﬁ@
1 ]’ ] 1
hs(x;_1, %;) hs(x, x;)
a4 2 1( j> x) -
(hl(XpX] ])) hl(xj)xj—l)
h;(x j_l,x]-) hz(x]-_l,x]-)
+a| ———=h(x;, x) - ———hy(x;,x)
< (hl(Xj,qu))z Y hl(Xj’Xj—l) B
hs(x, x;)

—F +h (x,x~)>, xelx_,x], je{l1,2,3,4}.
h0G. ) e

For the function f(x) = Vx? + 2 — x, the computations are done with Matlab and the
graphs of the function and the cubic spline are compared in Figure 3.4. As a second
example, the function f is chosen as f(x) = 2“5 . The computations are done with
Matlab and the graphs of the function and the cublc spline are compared in Figure 3.5.
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12 B
—====cubic spline on [-6 -2]
= = =cubic spline on [-2 2]
1F N cubic splineon [2 6] | |
—====cubic spline on [6 10]
—f
8t 4
2
5 of f
>
4t 4
2t 4
X
X S
0 | | | | n T
-6 -4 -2 0 2 4 6 8 10
x-axis
2

+2-X.

Figure 3.4: The graphs of the natural cubic spline s,(x) and f(x) X

° =====cubic spline on [-6 -2]
= = =cubic spline on [-2 2]
---------- cubic spline on [2 6]

4r ~-=-= cubic spline on [6 10] | |
—f

y-axis

-6 -4 -2 0 2 4 6 8 10
X-axis
245

Figure 3.5: The graphs of natural cubic spline s,(x) and f(x) =

x241°
Exercise 3.20. Let T = {0, é, é, % % 1}, and consider

Xzzb:

1+t 1
f(t):1+t+m, tET, a:XOZO, Xlzg,

Find s,(x), x € [x_1,x;1, ) € {1,2}.
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114 — 3 Piecewise polynomial approximation

3.4 Hermite cubic splines

The construction of a natural cubic spline is complicated and requires the solution of
a linear system for the determination of the coefficients. In this section, we will intro-
duce another cubic spline, known as Hermite cubic spline. Its construction is easier
and it is based on writing a Hermite interpolation polynomial on each subinterval.
Below, we present the definition and the construction of a Hermite cubic spline for an
arbitrary time scale.

Leta,b € T, a < b, and consider

K={a=xy<0(x) <x30(x)) <+ <Xy <0(xp) = b},

aswellasf ¢ C}d([a, b]).

Definition 3.21. Define the Hermite cubic polynomial as a polynomial in the form
S(x) = €o + ¢y (X, Xj_1) + Ry (6 X5q) + ¢3h5(6X5), X € [Xi_1, X5, (3.10)
j € {1,...,m}, where c,, ¢, ¢, and c; are constants so that
s() = f(x),  s"0g) =20, je{01,...,m). (3.11)
Now, we will determine the constants c,, c;, ¢,, and c;. We have

s(x_1) = ¢ = f(xj_1),

and
s(G) = f(X_1) + crhy (%, X;_4) + Coly(X;, X;_4) + c3hz (x5, X1 ) = f(x)),
whereupon
crhy (6, X5_1) + Mo (x5, Xi-1) + esh3 (6, X5_1) = f(x)) = f(xj_1).
Next,
SA(X) = ¢ + Ghy(x, Xj_q) + c3hy(x, Xi.1), X € [X, %]
From here,
SA(Xj—l) =q ZfA(Xj—1)>
and

sA(x]-) =fA(Xj,1) + Cohy (%5, Xj_1) + c3hy (X5, Xj_1) :fA(xj).
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Thus, we get the system

Cohy(x;, ,~1)+c3h3(x,,1)—f(x> fo-1) - fA(xj_l)h1<x~,x]~_1),
Cohy (x5, X51) + C3hy (X, Xj4) = £ (x5) - f(

From the latter system, we find

o 09 -f050) = Ay (%, X))y, %51)
2T (x50 = by X Dhs (%)
(fA(X) FA06-))h3 (x5, %)
 (y0.%51)% = hy(,%5_)hs (%, %)

and

o SO -f05) — FA 05 (6, X5 1)y (%5, %)
ST (x5 )M 0, X5) — (hy(x, x51))?
(fA(Xj) _fA(Xj—l))hZ(XpXj—l)
s x5 )Ry (6, %5_1) — (hy (x5, 1)

Consequently,

S(0) = F(x5.4) + £ 0)hy (% X;_4)
<(f<x,~)—f(x ) = FAG 1) (%, Xi1) (%, Xy
(hz(Xj) ,;1))2 hl( > ]71)h3( i Xj1)
(FA05) = 2051 hs (6, 5)
- 5 )hz(X X;_1)
(hz(Xj)qu)) _hl(ijxj—l)h3(Xj>Xj71)
. < (FO) = F 1) = FA OG-0 hy 06, X5y (%5, X1 _)
hB(X‘)Xj—l)hl(X‘>Xj—l) - (hz(X')Xj—D)z
(fA(Xj) _fA(Xj—l))hz(Xj’Xj—l)
"~ h306, )R (0, %51) = (hy(0, 1))

)hB(X X_1)s

whenever x € [x;_;,x],j € {1,...,m}.

Remark 3.22. We can define the Hermite cubic polynomial in the following way:

S(x)=co+ clgl(x, )+ czgz(x, )+ C3g3(x 1), XE€ [xj_l,x]-], jef{l,...,m},

where the constants c,, ¢;, ¢;, and c; will be determined by the condition (3.11). As
above, one can deduct that

S(X)Zf( 1)+f ( 18106 X5_1)
((f(x) f( 1) = FRAOG)81(%, X51))2(%, %)
(825, X-1))? = 81(%;, X;_1)83(X;, Xj_1)
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116 —— 3 Piecewise polynomial approximation

(P )86 %)
(8206, %j-1))% — 81(%), X;_1)83(X; Xj_1)
N < (FO) = f(x5-1) _fA(Xj—l)gl(Xj’Xj—l))gz(xj’xj—l)gl(xjxXj—l)
83(%;> X;_1)81 (%, Xj_1) — (gz(x"xj—l))z
(FA05) = FA-1))22(%5, %51
B 83(x; x;_1)81 (%, X;_1) — (gz(Xj’Xj-l))z

)gz(x, Xj_1)

>g3(x, Xj—l),

whenever x € (X1, %1, € {L,...,m}.

We illustrate in a detailed way the construction of Hermite cubic spline in the fol-
lowing example.

Example 3.23. Let T = 2™0, and consider
a=xy=1, xy=4, x,=16=b, f(t)= ! teT
=Xo =15 1=% 2= =D, 1+t .
We will find s(x), x € [1,4]. We have

o =2 fop)=1, f(x1)=§,

A 1 1
t) = — =- , teT,
f® A+86A+0a(t) 1+6A+2t)
A 1 A 1
D=-—, ff4=-—,
o) G @) 75
hi(x,xg) =x-1, xeT, hx,xy) =3,
X t=x
1,
hz(X,Xo) = J(t - 1)At = (—t - t>
3 t=1
1
2 2
=X——x—<1—1>:x——x+—, x €T,
3 3 3
16 2
hy(x,X9) = = —-4+-=6-4=2,
2(X1,X) 3 3
X t=x
t? 2 2 2
s (503 (5-5 )
306.X0) I\3 "3 21373
X xX* 2 1 1 2
= — - =+ X- =+ ===
21 3 3 21 3 3
3 2
:X——X—+2x—§, x €T,
21 3 3 21
64 16 8 8 56 8
> = — - - T T =T - == > 1) .
B0l = o= 34375775 370 xelL4l

Hence,

o =fx0) = 3

- printed on 2/10/2023 4:40 PMvia . Al use subject to https://ww.ebsco.conlterns-of-use



3.4 Hermite cubic splines =—— 117

C1:fA(Xo)=—é,

L Gebebap el 2o

2 4-3.0 4-3.0 4 10°

(o Gm3*e 3B Cm+? 5 s _ 3 1B 14 _ 7
3 3.0-22 3.0-2 4 -4 20 180 180 90

and

11 1/x 2y 7(x¥ xX* 2 8
———x-D+ == x+z |- —=| == +-X- =
2 6 10\ 3 3 90\21 3 3 21

1 2 X 7, 14 8>
=—|45-15x +15+3x" — 6——+—x" - —
90< X +15+3x° —9x + 3 +3x 3x+3

1 < x> 16, 86 206)
= — ==X - —Xx+—
90\ 3 3 3 3

= —27%()(3 —16x% +86x — 206), x € [1,4].

In the last example, we consider the same time scale and set K as in Example 3.19.
We use Matlab to compute the Hermite cubic spline coefficients for an arbitrary func-
tion and then take the same two particular functions and compare their graphs with
the corresponding Hermite cubic spline.

Example 3.24. We again consider the time scale T = 2Z as in Example 3.19. Let f :
T — R be a given function and let
K={a=x4=-6,x,=-2,x,=2,x3=6, x, =10 = b}.

We have already computed the monomials

ho(t, S) = 1,

hi(t,s)=t-s,

t? s?
h(t,s)=—=-(1+S)t+s+ —,
5(t,s) 5 (1+5) 5

3 2 3
2
h3(t,s)=t——Lst+(s— +2s + é)t—(s— +sz+ﬁ), t,seT.
2 3 6 3

To find the Hermite cubic spline for the given function f and the given knot set K, we
need to compute the coefficients ¢;, i = 0,1,2,3 on each interval [x]-,l,xj], j=1234.
Foreachj =1,2,3,4, we define and compute

Aj = £09) = F04-0) = F 0410, %1-0)
B; = £20) - F* (1),

2
D; = (hy(xj,X;-1))” = hy (x5, X5 1)h3 (X}, X ).
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118 —— 3 Piecewise polynomial approximation

Then the coefficients of the cubic spline s,(x) are obtained as

co =f(x-1),

€ = fA(XH),

¢ = Ajhz(X',Xj-Ol; thB(X"Xj—l)’
j

¢ - —A]-hl(x)-,x]-_l)Dﬁ.L B}-hl(x}-,x]-_l)’

)

forj = 1,2,3, 4 and the cubic spline s,(x) is obtained as

S,(x) = ¢ + 1y (x, Xj_q) + czhz(x,x]-,l) + c3h3(x,x]-,1), X € [xj_1,x;].

Asin Example 3.19, we consider first the function f(x) = VxZ + 2-x, x € T. We compute
2 (x) as

00 = flo(x)) - f(x)

og(x) —x
V2 +4x+6-(x+2)— (VX2 +2-x)
- X+2-Xx
V2 +4x+6-Vx2+2-2
= 3 , xeT.

The computations of the cubic spline are done with Matlab and the graphs of the func-

tion and the cubic spline are compared in Figure 3.6. As a second example, the func-
tion f is chosen as f(x) = i’ﬁﬁ, x € T. We compute f2(x) as

A, flo(x) = f0x)
ffx) = 000 —x

2x+9 45
_ X+4Ax+5 X+l

T Xx+2-x
2 +14x + 8
(2 +1)(x% + 4x +5)

x e T.

The computations are done with Matlab and the graphs of the function and the cubic
spline are compared in Figure 3.7.

Exercise 3.25. Let T = (3)™°, and consider

1 1 1
azxozﬁ, x1=§, X, =b=1, f(t):1+t—t2+m, teT.

Find s(x), x € [, 51.
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12 1
=====cubic spline on [-6 -2]
= = =cubic spline on [-2 2]
1oF \ e cubic splineon [26] | |
—====cubic spline on [6 10]
—f
st d
8
§ 6f 1
>
4+ d
W\
N
2 |- 4
0 | | | | n T
-6 -4 -2 0 2 4 6 8 10

X-axis

Figure 3.6: The graphs of the Hermite cubic spline s,(x) and f(x) = Vx2 + 2 — x.

5 7 )
' =====cubic spline on [-6 -2]
45+F 1 = = =cubic splineon[-22] |
,’ """"" cubic spline on [2 6]
4+ I I T fet cubic spline on [6 10] | A
1 \ —f

X-axis

2x+5
x241°

Figure 3.7: The graphs of the Hermite cubic spline s,(x) and f(x) =

3.5 Advanced practical problems

Problem 3.26. Let
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120 — 3 Piecewise polynomial approximation

a=xy,=1 x—&
o=1 1= 3
f)=2+3t+t5 te

Prove that

x€la,b]

Problem 3.27. Let

T.

5
Xzzi

133

sup |s; () ~f(0] < =

b,

’]F = {O) 1) 1)1’ Z) Z) Z)z’ 5)3) 254}’
74 654 2 2
1 7 7 5 7
a= :1> = 7 = > = = = = = b:4,
Xo "14X26X34X42X52
and consider
fty=t+ ; teT
B+ 2+t+ 1 '
Estimate
[sor() = f(x)|, x € [a,b].
Problem 3.28. Let T = 2™, and consider
ft)=1+t+e(t1) +siny(t,1), teT,
a=X0=1, X1:4, X2:b:16.
Find Sz(X),X € [Xj—l’xj]’j € {1, 2}.
Problem 3.29. Let T = (3)™,
1 1 1 1+t
a=Xy=—, X3=—, Xo=—, X3=1, ty=——, teT.
07 256 ' 64 2T g 3 o 1+t +t?
Find s(x), x € [5¢,1].
Problem 3.30. Leta,b € T, a < b, and consider
K={a=xy<0(xy) <X <0(x;) <+ <Xy <0(xp) = b},
aswellasf ¢ C,ld([a, b]). Find the Hermite cubic spline in the form
S(X) = o + ¢1hy (X, Xj_1) + €282 (%, Xj_1) + €383(X, 1), X € [Xj_1, %],

so that (3.11) holds.
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3.5 Advanced practical problems =— 121

Problem 3.31. Leta,b € T, a < b, and consider
K={a=xy<0y) <x3 £00x)<- <Xy, <0(xy) =b},
aswellasf € Cﬂd([a, b]). Find the Hermite cubic spline in the form
s(x) =co+ clhl(x,x]-,l) + cyhy(x, xj,l) + c3g3(x,x]-,1), X € [XH,X-],

so that (3.11) holds.

Problem 3.32. Leta,b € T, a < b, and consider
K={a=xy<0() <x £00x)<- <X, <0(xy,) =b},
aswellasf ¢ C:d([a, b]). Find the Hermite cubic spline in the form
S0 = ¢o + chy (% X5_1) + €806 X51) + C3hs (6 X521), X € [Xi_1, 5],

so that (3.11) holds.
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4 The Euler method

Many problems in science and engineering involve a change of one quantity with re-
spect to another, usually with respect to time. Therefore, they are modeled by differ-
ential or difference equations, more specifically, initial or boundary value problems.
The differential and difference equations are unified as dynamic equations on time
scales. Especially for the nonlinear equations, an exact analytical solution cannot be
obtained in many cases. The development of efficient numerical methods having high
accuracy has been an extremely important problem in numerical analysis [4, 6, 15].

The basic and most simple method to find an approximate solution of an initial
value problem for a first order differential equation is the so-called Euler method. It
is not very accurate, but the simplicity of its derivation is used in the construction of
more advanced and complicated numerical methods. It is also used to provide the nec-
essary extra information for the application of such more advanced and complicated
methods.

In this chapter, we generalize the Euler method for initial value problems asso-
ciated with first order dynamic equations on time scales. It can also be adapted to
higher order dynamic equations by transforming the nth order dynamic equation into
a system of n first order dynamic equations.

Let T be a time scale with forward jump operator o, backward jump operator p,
and delta differentiation operator A.

4.1 Analyzing the method

Consider the Cauchy problem

{ XA(t) = f(t,x(1)), (4.)

X(to) = Xo»

where f: TxR — R, x5 € R, 5 € T are given, and x : T — R is unknown. Suppose
that t € [t,, t]y and take the points

t0<t1<"'<tN=Z, tiQT, i=1,...,N,
where

I . o
oi(t,_,), L_; e N ift,_,is right-scattered,
t' — 1 ( 1 1) i—1 i—1 g (4.2)

ti1+qi gi—q € R if t;_; is right-dense,

i=1,...,N.Define {xi}fil by

https://doi.org/10.1515/9783110787320-004
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4.2 Localtruncation error = 123

Xiy = X; + (g — G (6, %)
{(ali(tl,) - 6)f (4, x;) ift; is right-scattered,
= Xi +

(4.3)
qif (t;, ;) if t; is right-dense.

Formula (4.3) is known as the Euler method for the numerical solution of the initial
value problem (4.1) [3].

4.2 Local truncation error

In this section, we derive the local truncation error in the application of the Euler
method. To obtain the local truncation error, we consider the cases when ¢, is right-
dense and right-scattered separately.
1. Casel.t, is right-scattered.

In a single step of the Euler method, the computed result is

X1 =Xo * (Ulo(to) = to)f (to, x(to))
and it differs from the exact answer x(t;) = x(o'o (tp)) by
x(t) = x1 = X(0°(tg)) = x(to) = (6 (to) = to)f (to, X(¢o))
= x(0"(ty)) - X(tg) — (0 (ty) — to)X°(t,).

If Iy = 1, then x(¢t;) = x;. Assuming that x has continuous first and second order
delta derivatives, this can be written, using Taylor formula, in the form

p(a® (t))
2
hl(al"(to),o(r))xA (T)AT.
to

A

Another way of writing the error, assuming that the third derivative x ’ also exists

and is bounded, is
hy (6% (o), to )X (to) + O(hs(0 (t), £)).

2. Case2.t, isright-dense.
In a single step of the Euler method, the computed result

X1 =Xt CIof(t0>X(to))
differs from the exact solution x(t;) by

x(t)) = x; = x(to + qo) — X(t) — qof (to, x(ty))
= X(to + go) — Xx(ty) — CIOXA(to)-
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124 — 4 The Euler method

Assuming that x has continuous first and second order derivatives, this can be
written in the form

P(to+do)
2
hy(ty + go, 0(T))X™ (T)AT.

to

Another way of writing the error, assuming that the third derivative exists and is
bounded, is

2
Ry (ty + qo» to)X™ (to) + O(5(to + do» to))-
Example 4.1. Let T = 2™° and consider the IVP

{ XAt = —15x(t), t>1,

x(1) = 3.
Take
tO = 1, tl = 8, t2 = 16, t3 = 32

We have t, = 0°(t,), i.e., [, = 3. Let

2

t
==t
8(8) 3
£ £ 2
)= ———+t,
8>(t) 13 + 3
1
t)y=——, teT.
x(®) 1+t ¢
Then
A o(t)+t 2t +t
t) = -1= —1=t-1,
g (0 3 3
2 2 2,52, 42 2
ng(t) _ (c(O)" +ta(t) +t° o(t) +t +g _ 45 +2t7+t0 2+t +g _ t——t+g,
21 3 3 21 3 3 3 3
XA(t) = — 1 = — 1 = — 1 5
A+t +0o() A+t +2t) 22 +3t+1
xAz(t) _ 200()+t)+3 _ 6t+3  teT.
QREZ+3t+1DR0®)2+30()+1) Q2 +3t+1)(82+6t+1)
A2 9 1
)=—"2"=—.
W= 10
Hence,
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1

A 1
X6 = A+ +2t) 112"

), t>1,

1
=1,
x(M) = 5
i. e., x is a solution of the considered IVP. Next,
t t
hy(t, to) = j(‘r ~1)AT = Jgf(r)m
1 1

=gt -0

2 2
(i)t
3 3 3 3
hy(0°(to), t) = hy(8,1) = 63—4 -8+ % =2-8=14,
t t t
‘l'2 2 A
hs(t, ty) = th(‘r, to)AT :J 3 -T+ 3 AT = jgz (T)AT
1 1 1

=g,(t) - g (1)

e 2 2 (1 1 2)
=——-—+-t-{=--+=
21 3 3 21 3 3
2

3 2 3 2
:t__t_+ t_<l+1>:t__t_+gt_§’ te’][‘)
71 33 \nt3)Ta 33
512 64 16 8 504 48
ha(0% (), t) = hy(8,1) = 2= — 24 208 0% A% j6-s.
(00t to) =hy@ 1) = =+ - op = S - 3

Therefore the local truncation error is
hy (0% (ty), £ XY (t) + O(h3 (0% (£y), £o)) = % +0(8) = % +0(8).

Exercise 4.2. Let

Consider the IVP

{ A =1+ (x@®), t>0,
x(0) = 2.

Find the local truncation error.
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4.3 Global truncation error

We continue with the derivation of the global truncation error of the Euler method.
Let X(t) denote the computed solution on the interval [t,, {]1. That is, at step values t,,
ty>...,ty = t defined by (4.2), X is computed, using equation (4.3). For “offstep” points,
X(t) is defined by linear interpolation, or, equivalently, X(t) is evaluated using a partial
step from the most recently computed step values. That is, if t € [t;_;, ], k=1,...,N,
then

k(t) = Xk—l + hl(t’ tk—l)f(tk—l’ Xk—l)‘ (4-4)
Define the maximum step size as

m = max{t; — t;_,}.
N{l 11}

1<i<
Also, let
a(t) = x(t) — x(t), (4.5)
B(t) = f(t,x(t)) - f(t,X(1)). (4.6)
Suppose that

If(t,x) - f(t.z2)| <Llx-z| forallt e Tandx,z € R,
where L > 0. From (4.5) and (4.6), we have
|B®)| < Lla(t)], teT.
Define E(t), t € T, so that the exact solution satisfies
x(t) = x(tg_q) + (& e )f (tops X(tr)) + ho(t, e DE(E),  t € [tp, ti], t €T, (4.7)
and assume that |E(t)| < p, t € T. Subtracting (4.4) from (4.7), we get

x(t) = X(t) = X(ty_1) = Xpe—q + hy (&, ) (f (ti—g> X(y_1)) = f (ti—15 X-1))
+ Iyt 6 DE(t), teT.

Hence, using (4.5) and (4.6), we get
a(t) = a(te_y) + hy(t, tr_)B(t_y) + ho(t, i )E(t), t €T,

whereupon
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|0f(t)| < |0‘(tk71)| + |h1(t> tk71)|L|0((tk71)| +P|h2(t, tk—l)l
= (1+L|hy(t, t_)])|alty_)| + |ha(t )P
< (1+ Ly (t, ) |altiy)]

If L = 0, then it follows that
la(®)] < |atiy)| + mphy(t, t_y), teT.
In particular,
|a(ti)] < |a(ti-1)| + mphy(ti, tiy)-

Therefore, we deduce

|{X(t)| < |a(tk—2)l + mp(h1(tk_1, o) + hy(t, tk—l))
= |a(ty_y)| + mphy(t, t;_5)
S ce

< |a(ty)| + mphy(t, ty), teT.
If L > 0, then we have

|a(O)] < (1+Lhy (¢, ) |altyy)] + mphy(t, ty)

mp m
= (1+Lhy(t, tr_p)|a(tep)| + —th(t ty-1) + _p - Tp’

i.e.,

teT.

(4.8)

teT,

lact)| + @ < (1+ Lhy(t, t_)|at )| + @(1 + Lhy(t b )

= (1+Lhy(t, ty_ 1))<_ + |aty- 1)|>
<er(t ty_ 1)( +|alty_ 1)|> teT.
In particular,
m m
lt)] + Tp <e (b tk_1)<Tp + |(x(tk_1)|>.
Hence, if t € [t;_;, t;], then we get
lat)| + Tp <ey(t,t, 1)( + |alty. 1)|>

m
<er(t ety fkfz)<Tp + |a(tk—2)|>
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S cee
<e(t, t@(% + |tx(t0)|>.

Combining the estimates found in the two cases and stating them formally, we have
the following result.

Theorem 4.3. Assuming that f satisfies Lipschitz condition with a constant L, the global
error satisfies the bound

) 500 {|X(to) ~X(to)| + mphy(t,ty) if L=0, s
X - X < .
er(t,to)(FE +la(ty)) - & if L>0.

Now we consider a sequence of approximations to x(). In each of these approxi-
mations, a computation using the Euler method is performed, starting from an approx-
imation to x(f,), and taking a sequence of positive steps. Denote the rth approximation
by x,.

The only assumption we will make about x,, for each specific value of r, is that the
initial error x(t,) — X, (¢;) is bounded by K, and that the greatest step size is bounded
by m,. It is assumed that K, — 0 asr — oo. If m, — 0, then, by (4.9), we get that

[x(t) - x,(6)] > 0 asr — co.

There are cases when m, does not tend to zero asr — oo, for instance, when T = 2MNo,
When T = R, we havem, —» Oasr — oo.

4.4 Numerical examples

In this section, we apply the Euler method to particular examples.

Example 4.4. Asafirst example, we consider the initial value problem associated with
the logistic equation

X(t) = (ae (ax(D))x(t), x(0) =2,

where T = N, and a is a real number. The logistic equation in both continuous and
discrete cases is known to be one of the basic models of the population growth [1]. It is
not as simple as the exponential growth model since it takes into account the carrying
capacity of the system on which the population of a certain species is studied. How-
ever, this model ignores many features and external effects of the population growth.
Nevertheless, it is still widely used in population related problems.
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Notice that the problem can be written as

A (X(l—X)

= —1 N a’l(t)xx, X(O) = 2.

We apply the Euler method to the problem with three different step sizes explained
below.

Case 1. Let t € [0,30]y and let t, = O, t; = 6%(t; ;) = t;; + 1, where i = 1,...,30.
Then we have [; = 1and o(t;_;) — t;; = 1foralli = 1,...,30. Hence the computed
sequence of values of the solution x is defined as

a(l-x;_q) A+ a)x,

X; = X;_1 + (O(X; —X; 1) /———————X;_1 = ,
i i-1 ( ( 1—1) 1_1)1+aﬂ(ti—1)xi—l i-1 1+0‘Xi-1

In fact, the exact solution of the problem is obtained as

(e)
xge)(t) _ 1+ a)xl._l(t))
: 1+ ax9)(t)
which coincides with the solution obtained by the Euler method with step size [; = 1.

Case 2. Lett € [0,30]p and lett, =0, t; = Ulf*‘(t,-_l) =ti_;+2, wherei=1,...,15.In
this case, [; = 2and 0*(t;_;) — t;_, = 2fori = 0,...,19. Hence, the computed sequence
of values of the solution x is defined as

a(l -x;_4) 1+ 2a)x;_4

2 .
X;=x1+(0°(t;_1) -t 1) ——————x;., = ———, 1=1,...,15.
1 i-1 ( (1 1) 1 1)1+0l}1(ti,1)x,-,1 i-1 1+20(Xi,1

Case3.Lett € [0,30]y and lett, = O, t; = 0%1(t;y) = t;_, + 4, wherei = 1,...,7.
Then we have [; = 4 and ol (4i_1) — 4;_1 = 4. The computed sequence of values of the
solution x is defined as

a(l —x;_q) _ 1+ 4a)x;_4

al-Xin) oo R T 4
1+ ap(ti_1)x;4 1+ 4ax; 4

X =X + (0%t ) — tiy)

We denote the computed solution with I; = 1 by x'V, with ; = 2 by x?, and with [; = 4
by x'*). The exact solution is denoted by x©). All calculations are done with MATLAB.
The values of the approximate and the exact solution are listed in Table 4.1.

In Figures 4.1, 4.2, and 4.3, we compare the graphs of the exact and approximate
solutions for the three cases discussed above. In all three figures, the exact solution is
represented by the symbol o and the computed solution by the symbol *.

In Figure 4.4 the errors for the three cases discussed above are given. It is obvious
that there is no error in Case 1 as stated above, and a small error is present for the Cases
2and 3.
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Table 4.1: The values of X, x'?, x*), and the exact solution x® at points of the interval [0, 30].

t x© X x@ x®
0.00 2.00000000 2.00000000 2.00000000 2.00000000
1.00 120000000 1.20000000
2.00 1.05882353 1.05882353 1.11111111
3.00 1.01886792 1.01886792
4.00 1.00621118 1.00621118 1.02040816 1.05882353
5.00 1.00206186 1.00206186
6.00 1.00068634 1.00068634 1.00401606
7.00 1.00022868 1.00022868
8.00 1.00007621 1.00007621 1.00080064 1.00621118
9.00 1.00002540 1.00002540

10.00 1.00000847 1.00000847 1.00016003

11.00 1.00000282 1.00000282

12.00 1.00000094 1.00000094 1.00003200 1.00068634

13.00 1.00000031 1.00000031

14.00 1.00000010 1.00000010 1.00000640

15.00 1.00000003 1.00000003

16.00 1.00000001 1.00000001 1.00000128 1.00007621

17.00 1.00000000 1.00000000

18.00 1.00000000 1.00000000 1.00000026

19.00 1.00000000 1.00000000

20.00 1.00000000 1.00000000 1.00000005 1.00000847

21.00 1.00000000 1.00000000

22.00 1.00000000 1.00000000 1.00000001

23.00 1.00000000 1.00000000

24.00 1.00000000 1.00000000 1.00000000 1.00000094

25.00 1.00000000 1.00000000

26.00 1.00000000 1.00000000 1.00000000

27.00 1.00000000 1.00000000

28.00 1.00000000 1.00000000 1.00000000 1.00000010

29.00 1.00000000 1.00000000

Example 4.5. Our second example is an initial value problem associated with a
Riccati-type dynamic equation [1]

2

Xt = [o(-t)]x7 + X—l, x(ty) = a. (4.10)
utx - ¢
The equation can be written as
a__ L o)+ _xXwe_ (4.11)
1- ()t uttx —1° )

We discuss the problem on two different time scales.
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2.5
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Figure 4.1: Computed and exact values of the solution with step size [; =1and a = 2.
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Figure 4.2: Computed and exact values of the solution with step size |; =2 and a = 2.

First, we consider the time scale T = [1,4] U {5, 8,11,14,17, 20, 23, 26, 29, 32}. We apply
the Euler method for the problem with different choices of the initial value and the
step size.

Letty =1, ¢ =ty +qfori =1,..,k = 3, teeq = 5and ¢ =t +3fori =
k+2k+3,....,k+9.Since, fori = 0,...,k — 1, the points ¢; are right-dense, we have
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25

*  computed solution
O exact solution

X-axis

0 5 10 15 20 25 30
t-axis

Figure 4.3: Computed and exact values of the solution with step size [; = 4 and a = 2.
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Figure 4.4: The error magnitudes for the logistic equation with step sizes [; =1,2,4and a = 2.

o(t;) = t;and u(t;) = O for these values, and hence, the equation becomes the ordinary
differential equation

A

XA =x=tx -t (4.12)
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The values of x computed by using Euler’s method are obtained as
Xo=0a, X;=Xiq+qti_x;(1-x_1), i=12...,k (4.13)

Then, fori = k,...,k + 9, the points t; are right-scattered. In this case, we use the
dynamic equation (4.11). For t; = 4, we have a(t) = t; + 1 and u(t,) = 1. Hence,

tre1 =5
2
tk Xjctk ]
Xp1 = X + U) | —————x(0(ty)) + ———
ket =X+ HC k)[l—ﬂ(fk)tk (0() uttxg -1
2
fx Xjctk ]
=X + x(t + ,
: [l—tk () +
from which we obtain
X _ l—tk [Xk(zthk—l)]
Tl tg -1 |

Finally, for theright-scattered points ¢; withi = k+1,k+2,...,k+8, wehave o(¢;) = ;+3
and u(t;) = 3. Therefore,

ti = ti—l + 3,
2
Xi_qfizg

t.
X; = Xi_q + u(ti_ )[#X o))+ ————m—
i i-1+ Mg ( i-1 ) H(ti—l)ti—lxi—l -1

1—p(t_)tiy

2
t; Xi 1t
= X4 +3[ Bl x(t,)) + — L ]

which gives

X = 1-3ti, [Xi—1(6ti—lxi—1 -1 ]
Y1-6t4 | 3t -1 1

wherei=k+2,k+3,...,k+9.
Notice that the exact solution of the initial value problem (4.10) can be computed.
In fact, it is obtained as

& if te[1,4),
Xi(t;) if t; € {4,5,8,11,...,32}.

We consider two cases for the initial value x(1) = a, and for each case we use two
different step sizes.

Case 1. Let x(1) = a = 1.5. We apply the Euler method with step sizes g = 0.5
and g = 0.25. The computed solutions for these values of g are compared with the
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exact solution in Figures 4.5 and 4.6, respectively. In both figures, computed values
are shown with *, exact values with o. Finally, the errors for g = 0.5 and g = 0.25 are

shown in Figure 4.7.
25
* computed solution
O exact solution
2t ]
15 ]
2
3 o
x *

0 . . . . . .
0 5 10 15 20 25 30

t-axis

Figure 4.5: Computed and exact values of the solution with step size g = 0.5 and x(1) = 1.5.
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Figure 4.6: Computed and exact values of the solution with step size g = 0.25 and x(1) = 1.5.
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error for step size q=0.5
error for step size q=0.25
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Figure 4.7: The error magnitudes for the cases g = 0.5 and g = 0.25, and x(1) = 1.5.

In Table 4.2, the values of the approximate and exact solution for the initial value
x(0) = 1.5 are tabulated. The approximate solution obtained with step size g = 0.25 is
denoted by x and that with the step size ¢ = 0.5 is denoted as x?. The exact solution
is denoted as x©.

Case 2. Let x(1) = a = 0.5. The Euler method is applied with the same step sizes,
that is, ¢ = 0.5 and g = 0.25. Figure 4.8 shows the graphs of computed and exact
solutions when g = 0.5, and Figure 4.9 shows the graphs of computed and exact so-
lutions for g = 0.25. In both figures, the symbol * represent the computed and o the
exact solution. The errors for the step sizes g = 0.5 and g = 0.25 are shown in Fig-
ure 4.10.

In Table 4.3, the approximate and exact solutions for the initial value x(1) = 0.5
are given. The approximate solution obtained with step size g = 0.25 is denoted by
x and that with the step size g = 0.5 is denoted as x?. The exact solution is denoted
as x9,

We last consider the initial value problem

X2

Xt = lo(=t)]x" + ———
SOk ubx - ¢

, x()=a (4.14)
on the time scale T = {2, 4, 6} U [7,10].

The discretization is now defined as follows: Take t, = 2,t; = 4,t, = 6,t3 = 7,
and ¢; = t;_; + qg. We take two values for g, namely, g = 0.25 and 0.20. Accordingly, for
q = 0.25, we havei =5,6,...,15, and for g = 0.20, i = 5,6,...,18.

printed on 2/10/2023 4:40 PMvia . Al use subject to https://ww.ebsco. confterms-of-use



136 —— 4 TheEuler method

Table 4.2: The values of the exact solution x'® and approximate solutions x® and x? for x(0) = 1.5.

t x© x iE)
1.00 1.50000000 1.50000000 1.50000000
1.25 1.33620743 1.31250000
1.50 1.21716763 1.18432617 1.12500000
1.75 1.13488527 1.10246281
2.00 1.08035312 1.05304218 1.01953125
2.25 1.04572300 1.02511435
2.50 1.02474407 1.01063274 0.99961853
2.75 1.01268600 1.00391662
3.00 1.00614272 1.00121340 1.00009519
3.25 1.00280301 1.00030225
3.50 1.00120363 1.00005660 0.99995239
3.75 1.00048596 1.00000707
4.00 1.00018440 1.00000044 1.00003570
5.00 1.00014927 1.00000036 1.00002890
8.00 1.00014376 1.00000034 1.00002783

11.00 1.00014057 1.00000034 1.00002722
14.00 1.00013834 1.00000033 1.00002678
17.00 1.00013663 1.00000033 1.00002645
20.00 1.00013525 1.00000032 1.00002619
23.00 1.00013409 1.00000032 1.00002596
26.00 1.00013310 1.00000032 1.00002577
29.00 1.00013223 1.00000032 1.00002560
32.00 1.00013146 1.00000032 1.00002545
25

* computed solution
O exact solution

oL ,
151 b
2
x
®
x
1T H®e & e & & & & & © 8-
®
®
05r@ 1
0 ‘ ‘ ‘ ‘ ‘ ‘
0 5 10 15 20 25 30
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Figure 4.8: Computed and exact values of the solution with step size g = 0.5 and x(1) = 0.5.

EBSCChost - printed on 2/10/2023 4:40 PMvia . All use subject to https://ww.ebsco.conlterns-of-use



4.4 Numerical examples =—— 137
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Figure 4.9: Computed and exact values of the solution with step size g = 0.25 and x(1) = 0.5.
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Figure 4.10: The error magnitudes for the cases g = 0.5 and g = 0.25, and x(1) = 0.5.

For the right-scattered points ty = 2, t; = 4, t, = 6, with a(ty) =ty + 2, o(t;) = t; + 2, we
have

X = 1- Zti_l Xi_1(4ti_1xi—1 B 1)
t1- 4t; 4 2t 1% -1

, 1=12
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Table 4.3: The values of the exact solution x'® and approximate solutions x® and x? for x(0) = 0.5.

t x© xM <@
1.00 0.50000000 0.50000000 0.50000000
1.25 0.56985265 0.56250000
1.50 0.65135486 0.63940430 1.12500000
1.75 0.73715816 0.72586671
2.00 0.81757448 0.81292231 1.01953125
2.25 0.88403928 0.88896213
2.50 0.93245331 0.94448564 0.99961853
2.75 0.96377994 0.97725596
3.00 0.98201379 0.99253685 1.00009519
3.25 0.99168422 0.99809244
3.50 0.99640640 0.99963938 0.99995239
3.75 0.99640640 0.99995481
4.00 0.99944722 0.99999717 1.00003570
5.00 0.99955253 0.99999771 1.00002890
8.00 0.99956906 0.99999780 1.00002783

11.00 0.99957863 0.99999785 1.00002722
14.00 0.99958532 0.99999788 1.00002678
17.00 0.99959044 0.99999791 1.00002645
20.00 0.99959457 0.99999793 1.00002619
23.00 0.99959804 0.99999794 1.00002596
26.00 0.99960101 0.99999796 1.00002577
29.00 0.99960362 0.99999797 1.00002560
32.00 0.99960594 0.99999799 1.00002545

For t; = 7, since t, = 6 is right-scattered and a(t,) = ¢, + 1, we obtain

o 1-t, [xz(tzxz—l)]
312 -1

Finally, for the right-dense points x; = x;_; + g, we calculate
X; = Xj_1 +qu,1ti,1(l—Xi,1), i= 1,2,...,N,

where N depends on the choice of g.

We use the Euler method to solve this initial value problem for two different values
of the initial condition explained below.

Case 1. In this case, we take the initial condition to be x(2) = 1.5 and apply the
Euler method with g = 0.25 and g = 0.20. The approximate solutions obtained for
these two values of g are compared with the exact solution in Figures 4.11 and 4.12.
The errors for the values g = 0.25 and g = 0.20 are shown in Figure 4.13.

Table 4.4 shows the approximate and exact solutions obtained by taking the ini-
tial value as x(0) = 1.5 and the step size as g = 0.20. The exact solution is denoted by
x'®, the approximate solution obtained for ¢ = 0.20 by xD,
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Figure 4.11: Computed and exact values of the solution with step size g = 0.25 and x(2) = 1.5.
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Figure 4.12: Computed and exact values of the solution with step size g = 0.20 and x(2) = 1.5.

Table 4.5 shows the approximate and exact solutions obtained by taking the initial
value as x(0) = 1.5 and the step size as g = 0.25. The exact solution is denoted by x@,

the approximate solution obtained for g = 0.25 by x?.

EBSCChost - printed on 2/10/2023 4:40 PMvia . All use subject to https://ww.ebsco.conlterns-of-use



140 =— 4 The Euler method

0.5

error for step size q=0.25
—-===error for step size q=0.20

N
'S
T
I

o o
N w
T T
‘ ‘

error magnitude
o
o
T

t-axis

Figure 4.13: The error magnitudes for the cases g = 0.25 and g = 0.20, and x(2) = 1.5.

Table 4.4: The values of the exact solution x© and approximate solutions x forg = 0.20 and

x(0) = 15.

¢ %© x®
2.00 1.50000000 1.50000000
4.00 1.41428571 1.41428571
6.00 1.38398892 1.38398892
7.00 0.62908587 0.62908587
7.20 1.00000000 0.95575745
7.40 1.00000000 1.01664806
7.60 1.00000000 0.99159874
7.80 1.00000000 1.00426137
8.00 1.00000000 0.99758530
8.20 1.00000000 1.00143949
8.40 1.00000000 0.99907533
8.60 1.00000000 1.00062734
8.80 1.00000000 0.99954764
9.00 1.00000000 1.00034343
9.20 1.00000000 0.99972504
9.40 1.00000000 1.00023083
9.60 1.00000000 0.99979677
9.80 1.00000000 1.00018689
10.00 1.00000000 0.99982052
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Table 4.5: The values of the exact solution x® and approximate solutions x@ for g = 0.25and

x(0) = 1.5.

t x© NE)
2.00 1.50000000 1.50000000
4.00 1.41428571 1.41428571
6.00 1.38398892 1.38398892
7.00 0.62908587 0.62908587
7.25 1.00000000 1.03742534
7.50 1.00000000 0.96705322
7.75 1.00000000 1.02679314
8.00 1.00000000 0.97349056
8.25 1.00000000 1.02510394
8.50 1.00000000 0.97202726
8.75 1.00000000 1.02980658
9.00 1.00000000 0.96266125
9.25 1.00000000 1.04353653
9.50 1.00000000 0.93847512
9.75 1.00000000 1.07560659

10.00 1.00000000 0.87738190

Case 2. The initial condition is taken as x(2) = 0.5. Computation is done for the same
values of g, that is, g = 0.25 and g = 0.20. The computed solutions for the two values
of g are shown in Figures 4.14 and 4.15, and the errors in Figure 4.16.

1.8

1.6

1.4

1.2

X-axis

0.8

0.6

0.4

0.2

*  computed solution
[ O exact solution ]
I *
* % % ¥ *
r O00O00000000Y
* ¥ %
*
L *
|- @ @ * -
@
®
| | | | | | |
3 4 5 6 7 8 9 10

t-axis

Figure 4.14: Computed and exact values of the solution with step size g = 0.25 and x(2) = 0.5.
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*  computed solution
18 O exact solution 1

121 b

3
§
%
%
.

06 * b

04r b

0 Il Il Il Il Il Il Il Il Il
0 1 2 3 4 5 6 7 8 9 10
t-axis

Figure 4.15: Computed and exact values of the solution with step size g = 0.20 and x(2) = 0.5.

0.5

error for step size q=0.25
—-===error for step size q=0.20
]

H

o o
N w
T T

error magnitude
o
.

t-axis

Figure 4.16: The error magnitudes for the cases and g = 0.25 and g = 0.20, and x(2) = 0.5.

As the last example of this chapter, we discuss the Euler method used to solve a
second-order dynamic equation.

Example 4.6. In this example, we apply the Euler method to an initial value problem
for a second-order dynamic equation given as
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A2 —
{ X7 (6) + (E+2)x(6) + 2tx(t) = 0, (4.15)

x(0)=a, x%(0)=bh,

on the time scale T = alN,, where a,b € R. Let [¢,, tf] = [0,5]. Note that the exact
solution can be computed as follows.
Rewrite the dynamic equation in (4.15) as

A +2x(0)" + t6A(E) + 2x() =0, teT.
Let
u(t) = x(t) + 2x(t), teT,
so that we have
ut(t) +tu(t) =0, teT. (4.16)

On the time scale alN,

WAt = u(o(6)) —u(t) _ u(t+a) - u()
T oat)-t o :

Then equation (4.16) yields
u(t +a) = u(t) —atu(t) = 1 -at)u(t), teT.
From the initial conditions, we get
u(0) = x(0) + 2x(0) = b + 2a.

Next we consider the dynamic equation

XM(E) +2x(t) = u(t), teT,
or

XM6) = u(t) - 2x(t), teT,
which gives the exact solution of the initial value problem (4.15) as

x(t+a) = x(t) + a(u(t) - 2x(t)), teT,

where

ult) =1 -at)u(t-a), teT,
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with the initial values
u(0)=b+2a, x(0)=a.

To apply the Euler method, we write the second-order dynamic equation in (4.15)
as a system of first-order dynamic equations. Let x;(t) = x(t) and x,(¢t) = xA(t), teT.
Then the initial value problem (4.15) becomes

X() = x(0),
X5(t) = =2 (t) - (t + 2xy(t), teTT,
x(0)=a, x,(0)=h.

We choose a constant step size g such that g > a and, starting with
tO = O, XI,O =a, Xz)o = b,
we compute the sequence of approximations

tin=t+q

Xpi+1 = X1+ 4%

X1 = X + q(=2x1; = (£ + 2)x5).
We compute the exact x'® and approximate x‘“ solutions for the values a = 0.2, g =
0.4, a = 1,and b = 1. The values of the solutions are compared in Table 4.6. The graphs
of the solutions are given in Figure 4.17.

Table 4.6: The values of the exact solution x'® and approximate solutions x9 fora = 0.2, g = 0.4,

a=1andb=1.

t x© x@
0.00 1.00000000 1.00000000
0.40 1.32000000 1.40000000
0.80 1.35072000 1.48000000
1.20 1.15777382 1.30400000
1.60 0.84298652 0.94624000
2.00 0.52296696 0.54567680
2.40 0.27782076 0.23744973
2.80 0.12809919 0.07315282
3.20 0.05262471 0.01565708
3.60 0.02000236 0.00300823
4.00 0.00731252 0.00063614
4.40 0.00263933 0.00011205
4.80 0.00095035 0.00003152
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1.5
* * computed solution
] * O exact solution
@]
1% 4
*
L
X
A
<
0.5 b
O
*
@)
*
0 1 1 1 1 g \@ ] L %
0 0.5 1 1.5 2.5 3 3.5 4 4.5 5
t-axis

Figure 4.17: The exact solution and approximate solutions fora = 0.2,g=0.4,a=1,and b =1.

Next, we compute the exact x

is of order 1.

and approximate x® solutions for the values a = 0.2,
g = 0.4, a = 0.5, and b = —0.3. The values of the solutions are compared in Table 4.7.
The graphs of the solutions are given in Figure 4.18.

Itis obvious that the accuracy is very poor, which is natural since the Euler method

Table 4.7: The values of the exact solution x® and approximate solutions x'® fora = 0.2, g = 0.4,
a=05,andb=-0.3.

t x© x@
0.00 0.50000000 0.50000000
0.40 0.40400000 0.38000000
0.80 0.34972800 0.35600000
1.20 0.28258883 0.30640000
1.60 0.20117583 0.22121600
2.00 0.12363805 0.12740992
2.40 0.06540532 0.05542200
2.80 0.03009878 0.01707240
3.20 0.01235433 0.00365400
3.60 0.00469430 0.00070206
4.00 0.00171600 0.00014846
4.40 0.00061935 0.00002615
4.80 0.00022301 0.00000735
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0.5

* computed solution
045 1 O exact solution ]

04r © 1
0.35 & 1
03f 1

025 1

x-axis

015 .
01 F 8

0.05 [ & 1

0 0.5 1 15 2 2.5 3 3.5
t-axis

Figure 4.18: The exact solution and approximate solutions fora = 0.2, g = 0.4,a = 0.5, and b = —-0.3.

4.5 Advanced practical problems

Problem 4.7. Let

5 1 1 1 1111

T: _3)__)_2)_1)__) ) _:O)_)_)_:_)1)2)3 >

{ 2 2 4 8 8765 }

1 1
a:t0:—3, t1:—2, tzZ—Z, t3:O, t4—g; t5:2, t6:3
Consider the IVP
A _ 1+x(t)
{ X0 = oo 77>
x(-3) =1

Apply the Euler method and find the local truncation error.

Problem 4.8. Let T = 2™o, Apply the Euler method for the following IVP:

{ L) =2 - (x(t)?, t>1,
x(1) =1,

where
a:t0:1, t1:2, t2=4, t3:8’ t4:16’ t5:32'

Evaluate the local and global truncation errors.
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Problem 4.9. Let

Apply the Euler method for the following IVP:

{ XA(t):t+%, t>—§,
7y _ 1
X _§) = E)
where
7 3 1 9
a=ty-—-, tH{y=—-—, =0, t3=—-, t,==, t:=5
o~g h A 35 =5 b
Evaluate the local and global truncation errors.
Problem 4.10. Let
ool li2al 8,000
62 2 33 3 3°3
Rewrite the following IVP:
xAz(t) +x(t)xA(t) + 4x(t) = 2, t>0,
x(0) = x*(0) = 1,
as a first-order system and use the Euler method with
1 1 8 10
a=t,=0, t{y==, tHL==, t3=2, t,==, t;:=—.
0 1=¢ =35 b =3 b=73

Evaluate the local and global truncation errors.

Problem 4.11. Let T = 3™, Rewrite the following IVP:

{ X () + sing (6, DX () + e(OXA () + (x(O) =t +1, t>1,
Aoy =-1, ®=0 x) =5,

as a first-order system and use the Euler method with
a= to = 1, tl = 9, tz = 27, t3 = 81, t4 = 243

Evaluate the local and global truncation errors.

Problem 4.12. Let T = 4™o, Rewrite the following IVP:

{XAA(t) + siny (t, 1)xA(t)xA3(t) + Zx(t)xAz(t) +X50) + (x(l.‘))2 = +t+1+e(t,1), t>1,
=1 =2 Pa)=1 x@1)=-1,
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as a first-order system and use the Euler method with
a= to = 1, tl = 4, tz = 16, t3 = 64, t4 = 256

Evaluate the local and global truncation errors.
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5 The order 2 Taylor series method — TS(2)

The Euler method is the basic and simplest method to find an approximate solution to
an initial value problem. Its derivation uses Taylor series expansion of the dependent
variable, which is truncated after the second term. Using more terms from the Taylor
series expansion for the unknown function will result in a more accurate approximate
solution.

In this chapter we propose the Taylor series method of order 2 for the computation
of the approximate solution of initial value problems associated with dynamic equa-
tions of first order. We present the derivation, convergence, and error analysis as we
did for the Euler method. We also apply the method to some numerical examples.

5.1 Analyzing the method

Suppose that T is a time scale and that ¢y, € T, t; < co. Consider the initial value
problem (IVP)

{ XA =t x(1),  t € [ty ], 51

x(ty) = Xo»
where x,, € R. Throughout this chapter, we assume that the following conditions hold:

Ift,x) <A, teT, xeR,
(H1) there exist A,f(t, x) and %f (t,x) such that
AfE0I <A |12f(Ex)] <A, teT, xeR

1
If g(t, %) = Af(6,3) + ([ 2f(0(0),x + su(Of (£, ))dS)f (£, %),
(H2) t € T, x € R, there exist A,g(t,x) and % g(t,x) such that
Mg <A, | 2g(t,x)| <A, teT, xeR,
where A > 0 is a given constant.

Suppose thatr > 0, t, t +r € [ty, tel, pz(t +71) € [ty t]. Then, by the Taylor formula
of the second order, we compute

X(E+7) = x() + Ryt + 1, X2 () + Iyt + 1, 06 (©)
pA(t+r)
+ J hy(t +r, 0(1’)))(Aa (T)AT.
t

Let

https://doi.org/10.1515/9783110787320-005
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p(t+7)
Ry(r) = J hy(t +7, o'(T))xA3 (T)At.

Then

X(E+7) = X(6) + hy(E + 1, X ) + Iyt + 1, 0X (6) + Ry(1).
Assume that {t, < t; < --+ < ty,1 = t¢} is a partition of the interval [, t] such that
thyg =ty + 141 € Ty 1 > 0,n € {0,...,m}. For example, when T = 2o and [to, ] =

[1,16],forty =1,t, =2,t, =4,t3=8,t, =16, wehaver; =1,1, =2,r3 = 4,1, = 8. Then

2
X(tny1) = X(tg) + By (s L)X (6) + Pytg, 6)X™ (6) + Ry(Fnsy)

2
= X(ty) + T X (tg) + (s t)X™ (6) + Ry(Fy1) (5.2)
forn € {0, ..., m}. Neglecting the remainder term R,(r,,,), we get the formula
_ A A2
X(tpeq) = X(ty) + T X () + My(tpeps t)X (Ey). (5.3)
Let x,, = x(t,), xﬁ = xA(t,,) and xﬁz = xAZ(t,,). Then equation (5.3) can be written as
_ A A?
Xnt1 = X + Tp Xy + hZ(trHls tn)xn : (5'4)

We shall refer to this relation as the order-2 Taylor series method. The value of x5 can
be computed from the IVP (5.1) as

Xﬁ = f(tn’xn)-

To determine xﬁz, we have to differentiate both sides of the equation in (5.1). By the
P6tzsche chain rule (Appendix C, Theorem C.7), we get

1
(F(t. ()" = Af(EX(D) + (I %f(o(t),x(t) + sy(t)xA(t))ds>xA(t), (5.5)
0

for t € T, whereupon

1

X (6 = Af(Ex(O) + <J %f(a(t),x(t) + sy(t)xA(t))ds>xA(t), teT"

0

Hence,
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1

Xﬁz = Af(ty, X,) + (J %f(o(tn),xn + sy(tn)xﬁ)ds>f(tn,xn).

0
Therefore, x,,, can be determined by the formula (5.4).

Example 5.1. Consider the IVP

{ XA(t) = g(t) + m, te [tO’tf]’ (5.6)
x(ty) = xo»

where g : T — R is delta differentiable, |g(t)| < B, IgA(t)I < B for some positive
constant B and x;, € R. Here

1
f(t,X(t)) = g(t) + m

Then, if x is a solution of the IVP (5.6), we have

1
Ny _ A 2x(t) + su(t)x" (1)) A
=8 (Ja+uawsmoﬂaWV$)Xm

s [1 2(x(t)+su<t)(g(t)+W))z )
(L+ (x(t) + SHOEO) + )

X <g(t) + ) t € [ty trl.

(X(t))2 +1
5.2 Convergence of the TS(2) method

In this section, we give the convergence of the Taylor series method derived in the
previous section. In the subsequent discussion we use an estimate for the time scales
monomials given in the following theorem. We also use the P6tzsche chain rule given
in Appendix C, Theorem C.7 for the computation of higher order delta derivatives of
the dependent variable x.

Theorem 5.2 ([9]). For alli € IN, we have the following estimate:

t>s.

O<h(ts)<(tls)

By the dynamic equation in the IVP (5.1) and Condition (H1), we have
A <A teltytrl. (5.7)

From (5.5) and Condition (H2), we obtain
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1
0 A A
t t Af(t, t — t), x(t t t)|d t
(6 xO)] < IS x()|+<!'axf(o())<()+su( (o) s)|x()| -
<A+A% teltytl.
Therefore,
W] <A+ A% telto ). (5.9)

On the other hand, by Theorem 5.2, we have

(t+ r—a(r))2
2

< (t+r- l‘)2
2

hy(t +7,0(1)) <

2
%, TE [t,pz(t +1)], o t+reftyt], r>0, (5.10)

and

hi(t +r,0(1)) <t+r-0(1)
<t+r-t

=r, TE€ [t,pz(t +1)], tt+reltyt], r>0. (5.11)

Applying again the P6tzsche chain rule, we obtain

9

5 8o, x(t) + sy(t)xA(t))ds>xA(t),

1
(1) = Dyg(t.x(0) + (I
0

1

I (0] < gt x()] + (J 0

= 8(0(0X(0)+ su(OX"(0)

ds>|x G

<A+A teltyt]
Hence, by (5.10) and (5.11), we get

p(t+r)

|Ry(r)| = hy(t +r, U(T))xA3 (T)AT

t

PA(t+r)
< J hz(t+r,O'(T))|XA3(T)|AT
t

%(A+A)(p t+r)-t)
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%(A+A )t+r-1t)
<
T2

W

(A+4%), tt+reltytd, r>0.

On the other hand, by (5.9) and (5.11), we have

p(t+r)

R ()| = hy(t + 1, 0(T)XE (T)AT
|Ry(r)] 1( )

¢
p(t+r)
J hy(t+r, cr(‘r))|xAZ (1)|At
t

IA

r(A+A%)(p(t +r)—t)
<r(A+A)(t+r-1)
<rP(A+A%), tt+reltet], r>0,

/\

i.e.,
Ry(r) = 0(r%), Ry(r) = 0(r).
Now, we denote
e, =x(t,) — x,.

By the Taylor formula, for ¢,,; = t, + 1,1, We have

X(tn+1) = X(tn) + rn+1f(tn’x(tn)) + hz(tm-l’ tn)g(tmx(tn)) + Rz("n+1)>

and, by (5.4),

Xnt1 = Xp + rn+1f(tn’xn) + hz(tn+l’ tn)g(tn’xn)’

whereupon applying the mean value theorem in the classical case, we obtain

X(tn+1) —Xpt1 = X(tn) —Xp Tt rn+l(f(tn’x(tn)) _f(tn’xn))
+ hz(tn+1’ tn)(g(tn’x(tn)) - g(tn’xn)) + Rz(rn+l)

= X(t ) —Xpt T %f(tn’ ()(X(tn) - Xn)

+h2(tn+1:t ) g(tn,n)(x(t )~ Xn)+R2(rn+1)

0
=ént <rrl+1 &f(tm C) + hZ(trHl’ tn)&g(tn’n)>en + Rz(rn+1)’
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where { and n are between x(¢,) and x,,. Let

0 0
Ap =Ty &f(tn) O+ hz(tn+la tn)&g(tn,n).

We have
1Al < Pyt | 2t O] # Byl )] g0 )|
nl = 'n+1 ox n» 2\¢n+1> tn an n 1l
2
<Arp,, +AL
2
r
= n+1<1+n7+1>A.
Then,

e =0, e =Ryr), ep1=0Q+A4pe,+Ry(rpq), nelN.
In particular,

e, =(1+A)e; +Ry(ry),
e3 = (1+A4,)e; + Ry(r3)
= (1+A)((1+A))e; + Ry(ry)) + Ry(r3)
= (1+A4)(A+A))e; + (1+A4,)Ry(ry) + Ry(r3)
e, = (1+As)es +Ry(ry)
=(1+A4A5)(Q+A)Q+A)e; + (1+Ay)Ry(ry) + Ry(r3)) + Ry(ry)
=(1+A43)Q+A)0+A)e; + (1+A3)(1+Ay)Ry(ry)
+ (1+ A3)Ry(r3) + Ry(14),

and so on. Let ry,, = max{ry, ..., 7p,}. Then, using that 0 < r; < tr—ty,j € {1,...,m+1},
and 0 < tr—ty < co, we have thatRz(r]-) = O(rfnax),j €{l,...,m+1}.Since 0 < t;—t; < o0
and G +1€lto,tel, jefl,...,m+1}, we have that there exists a constant 0 < B < co
such that mr,,;, < B. Then

r
les| < <1 + rmax<1 + mzax >A>R2(rmax) + Ry (Fax)>

2
|63| < (1 + rmax<1 + rm%>A> Rz(rmax)

r
+ <1 + rmax<1 + mzax )A)Rz(rmax) + Ry (Fmax)s
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IN
3
iR
/
p—
+
~
8
]
>
/
—_
+

r j
rr;ax >A> Rz(rmax)

€,

T (1 02X )4
em 2 Rz(rmax)

IN

I 0 (14 02X ) A
e 2 RZ(rmax)

B(1+ max )AR (rmax)

m
me

< me B(l+ )AR ()
m

2 el Ac

Since tr < 0o, we conclude that

en = O(r2 ),

max

that is, the order of convergence of the order 2 Taylor series method is 2.

5.3 The trapezoid rule

The trapezoid rule is a method that can be deduced from the Taylor series method of
order 2. It is an implicit method and its application to nonlinear differential equations
requires use of suitable numerical methods.

In this section, we will introduce the trapezoid rule for IVPs associated with the
first order dynamic equations on time scales [11].

We start again with the Taylor formula for x® which gives

p(t+r)
At +r) =) + rxAZ(t) + J hy(t+r, 0(1’)))(A3 ()AT
t

= xA(t) + rxAZ(t) +Ry(1),
whereupon
P =+ - PO - R, G tareltgtd, >0,
We substitute the latter relation into equation (5.2) and find

x(t+r)=x(t) + rxA(t) +hy(t+1, t)xAz(t) + Ry(r)

= x(t) + P (6) + Z(tr 0 (0) + Ry()

(XA(t +1) =R - Ri(1) + Ry(1)

=x(t) + rxA(t) + M
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Ao + hy(t : r t)XA

=x(t) + <r
B hy(t+r1,t)
r

_hz(t:r,t)> (t+7)

Ri(r) + Ry()

=x(t) + <r— M)f(t,x(t)) + M}‘(t +1r,x(t+1))

hy(t+r,t
- gle +Ry(r), tt+reltotd, r>0.
Evaluating thisrelation at t = ¢, and neglecting the remainder terms leads to the trape-
zoid rule
hy(t,.1,t,) hy(ths tn)
Xn1 =Xp t (rn+l - mbon >f(tn,Xn) + b f(tn+1’xn+1)- (5-12)
n+l1 n+l

Definition 5.3. The relation (5.12) will be called trapezoid rule.

Example 5.4. Let T = R and ¢,,4 — t, = r be constant. Then
1,
hy(t .1, t,) = =17,
2( n+1 n) 2
and the trapezoid rule takes the form
1
Xny1 = Xp + Er(f(tnﬁxn) +f(tn+1’xn+1))’

which is the classical trapezoid rule.

Example 5.5. Let T = 20, Then
1 1 r
hy(tpi1, tn) = §(t§+1 - tg) = §(tn+1 — )ty + b)) = nTH(thrl +t),
and the trapezoid rule takes the form
1 1
Xny1 = Xp + hn+1 - g(tnﬂ + tn) f(tn’xn) + §(tn+1 + tn)f(tn+1>xn+1)'

Exercise 5.6. Let T = 2o, Consider the IVP

{ L) =1+x@) + x@®), t>1,
x(1) =1

and assume that
a=l’0=1, t1:2, t2:4, t3:8, t4:16

Write the trapezoid rule.
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5.4 Numerical examples

In this section, we will apply the trapezoid rule to specific examples. The first exam-
ple is a linear dynamic and the second one is a nonlinear dynamic equation. We use
MATLAB for the numerical computations and employ the Newton method to find the
solution of the implicit relation arising in the second example.

Example 5.7. Let T = N,. Consider the IVP associated with the linear dynamic equa-
tion

A
{ XA = gpx®) + zg, >0, (5.13)

x(0) = X,

where ¢, = 0, tr = 20. The exact solution of this equation has the form

(t, o(r))

€1
t+1

t
1
x(t) = xge 1 (t,0) + J At, t=0.
t+1 +1
0

OnT =Nywehaveo(t) =t +1, u(t) =1, and

t-1

1 S+2s+3 t t+1 t+1
s o= (141 Lt _te
s p=s p+1 s+1s+2 t-1t s+1

The integral fé e (t, a(r))#A‘r, t > O is evaluated as
t+1

e (t‘r+1)

1

t
1

j eﬁ(l‘,a(‘r))r2 - 1A‘r

0

~
—
—_

+
+

[ —— ou—m

N

2+1

~

(t+1)z(p+2(p2+1) t>0.

Hence, we obtain the exact solution as

ty—1 1
K= 1’("0 i m)

p=0

for any ¢, € T. Recalling that the monomials on T have the form

ho(tpr tn) = 1,
hy(tys, t) =t —t =1,

(t )t —t, -1 rr-1
hz(tn+1> tn) _ \ntl n 2rl+1 n _ >

>
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where we assume constant step size r = t,,; — t,, we can write the trapezoid rule for
this IVP as

X —x+<r "1>< LIRS )
nH T n 2 t,+17" 241

r-1 1 1 20
+ — Xni1 + 3 , neq0,1,...,—¢.
2 \tyq+1 that+1 r

Then we have

r+1

o 1+ 36+ 1 < rel r-1 )
n+l — r—1 n -1 > 2 N
1- 2ty +1) 1- 2tpq+1) 2t +1) 2(tn+l +1)

wheren € {0,1,..., ?}. Using MATLAB, we compute the approximate solution for dif-
ferent values of r and x,,. The approximate and exact values of the solution forr = 1and
r = 2with the initial condition x(0) = 1 are given in Table 5.1, and those with the initial
condition x(0) = 1in Table 5.2. In both tables, x'© denotes the exact solution, x? the
approximate solution for r = 1, and x'? the approximate solution for r = 2. Since the
error is of order r?, we observe that for r = 2 the magnitude of the error is large.

Table 5.1: The values of the exact solution x© and approximate solutions x® and x? forx(0) = 1.

¢ %@ X %@
0.00 1.00000000 1.00000000 1.00000000
1.00 3.00000000 3.00000000
2.00 5.00000000 5.00000000 4.92000000
3.00 6.86666667 6.86666667
4.00 8.68333333 8.68333333 8.56601307
5.00 10.47882353 10.47882353
6.00 12.26375566 12.26375566 12.10199394
7.00 14.04274778 14.04274778
8.00 15.81809125 15.81809125 15.61077657
9.00 17.59104156 17.59104156
10.00 19.36234084 19.36234084 19.10920009
11.00 21.13245463 21.13245463
12.00 22.90168924 22.90168924 22.60263185
13.00 24.67025419 24.67025419
14.00 26.43829756 26.43829756 26.09328697
15.00 28.20592687 28.20592687
16.00 29.97322208 29.97322208 29.58224132
17.00 31.74024384 31.74024384
18.00 33.50703900 33.50703900 33.07007937
19.00 35.27364429 35.27364429
20.00 37.04008893 37.04008893 36.55714561
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Table 5.2: The values of the exact solution x'® and approximate solutions x® and x? for x(0) = 3.

t x© e x@
0.00 3.00000000 3.00000000 3.00000000
1.00 7.00000000 7.00000000
2.00 11.00000000 11.00000000 10.92000000
3.00 14.86666667 14.86666667
4.00 18.68333333 18.68333333 18.56601307
5.00 22.47882353 22.47882353
6.00 26.26375566 26.26375566 26.10199394
7.00 30.04274778 30.04274778
8.00 33.81809125 33.81809125 33.61077657
9.00 37.59104156 37.59104156

10.00 41.36234084 41.36234084 41.10920009
11.00 45.13245463 45.13245463
12.00 48.90168924 48.90168924 48.60263185
13.00 52.67025419 52.67025419
14.00 56.43829756 56.43829756 56.09328697
15.00 60.20592687 60.20592687
16.00 63.97322208 63.97322208 63.58224132
17.00 67.74024384 67.74024384
18.00 71.50703900 71.50703900 71.07007937
19.00 75.27364429 75.27364429
20.00 79.04008893 79.04008893 78.55714561

The exact and approximate solutions are also presented in Figures 5.1, 5.2, 5.3 and
5.4. It can be observed that for large values of r the error increases, and for r = 1 the
approximate solution matches the exact solution.

The second example is an IVP associated with a nonlinear first-order dynamic
equation.

Example 5.8. Let T = alN,. Consider the IVP associated with the nonlinear dynamic
equation

2+1

Appy _ 1 t
x°(t) = + ZOET t>0,teT, (5.14)
X(O) = Xo.

On this time scale, we have o(t) = t + aand u(t) = a. Lett, = 0, t; = b,and t, = t,,_ +r
for some r > 0. The dynamic equation can be written as

x(t+a)-x(t) 1 N t
a TR+l (k)2 +1

teT,

and hence, the exact solution at any ¢,, € alN, has the form
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60 T T T T T T T T T
*  Approximate solution
O Exact solution
50 [ h
40 - 4
@
®
R @ @
?‘f 30 ® @ 1
x @
@
® @
20 [ ® 4
@
®
@
® ®
10 [ ® h
®
®
@
0 1 1 1 1 1 1 1 1 1
0 2 4 6 8 10 12 14 16 18 20
t-axis
Figure 5.1: Approximate and exact values of the solution of (5.13) with r = 1, x, = 1.
60 T T T T T T T T T
*  Approximate solution
O Exact solution
50 [ 7
40 7
)
2 ®
S30r ® 1
x ?
R
20 [ @ 7
@
®
10 @ 7
@
0 1 1 1 1 1 1 1 1 1

0 2 4 6 8 10 12 14 16 18 20
t-axis

Figure 5.2: Approximate and exact values of the solution of (5.13) with r = 2, xy = 1.
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100 T T T T T T T T T

*  Approximate solution

90 O Exact solution 1

80 ®
70 1
60 @ 1

50 @ 1

X-axis

40 @ 1
30 ® 1
20 ® .
10 @ 1

Oﬁé 1 1 1 1 1 1 1 1 1
0 2 4 6 8 10 12 14 16 18 20
t-axis

Figure 5.3: Approximate and exact values of the solution of (5.13) with r = 1, x, = 3.
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Figure 5.4: Approximate and exact values of the solution of (5.13) with r = 2, x, = 3.
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x(ty) = x(t, —a) + a< ! th—d )

+
(ty—a)?+1  (x(t,-a))?+1
Using the monomial h,, which is given by

(tnn — t) by — L — @) _ r(r—a)
2 2

hz(tn+1’ tn) =

>

the trapezoid rule for this problem yields

r-a 1 t,
R B S S | U S R
n n
r—a 1 t 10
+ <2 + 2"” > ne{O,l,...,—}.
2 tn+1+1 xn+1+1 r

This nonlinear recurrence relation can be written as

2X3

2
n+l — anxnﬂ + 2Xn+1 - (r B a)tn+1 - an -0

21+x2,))

>

where
r+a 1 t, r-a 1
b, =x, + >+ > t 53 >
2 \tZ+1 1+x5+1 thatl
forn € {0,1,..., l—r’}. We compute each next term of the sequence {x,,}, n € {0,1,..., %}

using Newton’s method [14].
The computations are done with MATLAB for

a=05 1r=0512 xy=1, b=20, and
a=02 r=04,08 xy=3, b=8.

The approximate and exact solutions for these values of the parameters are compared
in Tables 5.3 and 5.4. In Table 5.3, x'®’ denotes the exact solution and x, X2, x® the
approximate solutions for r = 0.5, 1, 2, respectively, computed for a = 0.5 and x(0) = 1.
In Table 5.4, x'® denotes the exact solution and x(l), x? the approximate solutions for
r = 0.4,0.8, respectively, computed for a = 0.2 and x(0) = 3.

The graphs of the approximate and exact solutions for the casea = 0.5,r = 0.5,1, 2,
and the initial value x(0) = 1 are presented in Figures 5.5, 5.6 and 5.7. It is clear that
for r = a the computed solution matches the exact solution, and for r > a an error is
observed.

The graphs of the approximate and exact solutions for the case a = 0.2, r =
0.4,0.8, and the initial value x(0) = 3 are presented in Figures 5.8 and 5.9.
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(€]

Table 5.3: The values of the exact solution x© and the approximate solutions x ,x? and x® for

x(0)=1anda=05.

t x© e E) E)

0.00 1.00000000 1.00000000 1.00000000 1.00000000
1.00 1.97692308 1.97692308 1.92799782
2.00 2.59940190 2.59940190 2.57741023 2.59406935
3.00 3.03618334 3.03618334 3.02265747
4.00 3.42352292 3.42352292 3.41337855 3.44479724
5.00 3.79402385 3.79402385 3.78577255
6.00 4.15528317 4.15528317 4.14833890 4.17172106
7.00 4.50894103 4.50894103 4.50299225
8.00 4.85529463 4.85529463 4.85013773 4.86756213

9.00 5.19444102 5.19444102 5.18992800
10.00 5.52652984 5.52652984 5.52254768 5.53616265
11.00 5.85178922 5.85178922 5.84824944

12.00 6.17050243 6.17050243 6.16733476 6.17841823
13.00 6.48298140 6.48298140 6.48012939
14.00 6.78954686 6.78954686 6.78696474 6.79627227
15.00 7.09051545 7.09051545 7.08816578
16.00 7.38619205 7.38619205 7.38404397 7.39204551
17.00 7.67686568 7.67686568 7.67489354
18.00 7.96280759 7.96280759 7.96098990 7.96799382
19.00 8.24427079 8.24427079 8.24258946
20.00 8.52149045 8.52149045 8.51993011 8.52614846

Table 5.4: The values of the exact solution x® and the approximate solutions x® and x? for
x(0)=3anda=0.2.

t o) ) NE)

0.00 3.00000000 3.00000000 3.00000000
0.40 3.39586641 3.38940995
0.80 3.73043213 3.72399602 3.69927048
1.20 3.97566995 3.97120379
1.60 4.15541211 4.15248125 4.14209378
2.00 4.29534158 4.29335406
2.40 4.41218246 4.41075566 4.40625031
2.80 4.51582844 4.51474078
3.20 4.61210777 4.61123132 4.60884799
3.60 4.70451328 4.70377228
4.00 4.79517350 4.79452174 4.79297384
4.40 4.88539625 4.88480475
4.80 4.97598082 4.97543101 4.97423099
5.20 5.06740357 5.06688335
5.60 5.15993195 5.15943337 5.15837967
6.00 5.25369677 5.25321457
6.40 5.34873916 5.34826990 5.34727656
6.80 5.44504180 5.44458322
7.20 5.54254995 5.54210061 5.54113241
7.60 5.64118581 5.64074482
8.00 5.74085838 5.74042521 5.73947000
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10 T T T T T T T T T

*  Approximate solution
O  Exact solution

X-axlIs
[6)]
T
®
®
®

®

I

1 T 1
1 1 1 1 1 1 1 1 1
0

0 2 4 6 8 10 12 14 16 18 20
t-axis

Figure 5.5: Approximate and exact values of the solution of (5.14) witha = r = 0.5, x5 = 1.
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Figure 5.6: Approximate and exact values of the solution of (5.14) witha = 0.5, r =1, x, = 1.
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10 T T T T T T T T T

*  Approximate solution
O Exact solution

X-axis
(4]
T
)
1

0 1 1 1 1 1 1 1 1 1
0 2 4 6 8 10 12 14 16 18 20

t-axis

Figure 5.7: Approximate and exact values of the solution of (5.14) with a = 0.5, r = 2, X, = 1.
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Figure 5.8: Approximate and exact values of the solution of (5.14) witha = 0.2, r = 0.4, x, = 3.
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8 T T T T T T T

*  Approximate solution
a O Exact solution A

X-axis
N
T
1

O 1 1 1 1 1 1 1
0 1 2 3 4 5 6 7 8

t-axis

Figure 5.9: Approximate and exact values of the solution of (5.14) with a = 0.2, r = 0.8, x; = 3.

5.5 Advanced practical problems

Problem 5.9. Let T = 2No, Consider the IVP

A _ 1+x(t)

x“(t) =1+ (0 t>1,
x(1) =1

and assume that

a:l’0=1, t1:4, t2:16, t3:64, t4:b:216.

Write the trapezoid rule.

Problem 5.10. Let

Consider the IVP

{ L) =1 +x@)3, t>0,
x(0) = 0.

Write the trapezoid rule.
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5.5 Advanced practical problems

Problem 5.11. Let T = Z. Apply TS(2) for the following IVP

{ xA(t) = siny (t,0) + (x(t))%, t >0,
x(0) =1,

where

a=t0=0, t1=2, t2=4, t3=5, t4=b=6.

Problem 5.12. Let T = 2No, Apply TS(2) for the following IVP:

Ay 1
x°(t) = TR t>1,
x(1) =1,

where

a=ty=1, t,=2 t,=8, =16, t,=h=32

Problem 5.13. Let

Apply TS(2) for the following IVP:

{ L) =1+3x()?, t>0,
x(0) =1,

where
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6 The order p Taylor series method — TS (p)

The Taylor series method can be extended to an arbitrary order. We already discussed
the cases of the first and second order methods in the previous chapters. In this chap-
ter, we give a generalization of the Taylor series method into an arbitrary order p > 2.
The derivation of the method requires some extra conditions on the nonlinear right-
hand side function of the dynamic equation. These additional requirements limit the
number of problems for which this method can be applied. However, the error in the
approximated solution reduces.
Let T be a time scale and A denote the differentiation operator in T as usual.

6.1 Analyzing the order p Taylor series method

Suppose thatp € N, p > 2, torty € T, ty <ty < 0o, 1 > Obesuchthatt,t+r € [to, te.
Consider the initial value problem (IVP)

{ XA(t) = f(tx(t), te [to, tel, 61)

x(to) = Xo,
where x, € Ris a given constant and the function f satisfies the following conditions:

If(t, )l <A, teT, xeR,

there exist g (t, x(6), ..., x> (©)) = FE&,x(O)™, ke{l,....p-1},
HD) such that |L(6,2)| <A, 108 (ty1,- - Vi)l < A,
and | gty Vi)l <4 jell. o k+1}

foranyt € Tandforz, y; € R, je{l,....p-1}

where pey A <1and A > 0.

By the Taylor formula on time scales, we get

x(t+r)=x(t)+h(t+r, t)xA(t) +hy(t+1, t)xAz(t) +eeet hp(t +1, t)xAp(t)
PP (t+r)
+ j h,(t+r, o(u))xNﬁ1 (wAu.

Let

PP (t+r)
R,(b) = J hy(t + 1, 0@ W,
t

https://doi.org/10.1515/9783110787320-006
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6.1 Analyzing the order p Taylor series method =—— 169

be the remainder term. Let also, ¢, < t; < -+ < ty,; = t; be a partition of the interval
[to, tr] such that t,,; = t, + 1y € T, 1y > 0,n €{0,...,m}. Then

2
X(tn+1) = X(tn) + hl(tn+l’ tn)XA(tn) + hZ(tn+l> tn)xA (tn)

ot By (s )X (6) + Ry (ba)-

Neglecting the remainder term R, (), we obtain

2
Xltgar) = X(t) + Myt X () + By(tgs )X () + -+ + hy (b, t)XY ().
Set

k k k k
X=X (), xﬁ 7 =x"(o(t,), kefo,...,p}

n

Thus, we get
A N AP
Xni1 = Xp + Tnpa Xy + hp(byyg, t)xg + -+ hp(tn+1> t)Xy > (6.2)

which will be called the order p Taylor series method. To compute x,,,,, we need to de-

termine x,Alq forq ¢ {1,..., p}. From the dynamic equation in the IVP (6.1), we determine

A
X, as

xﬁ = f(tp Xy).
Now, we will determine xﬁz,...,xﬁp. By the generalized P6tzsche chain rule (Ap-

pendix C, Theorem C.8), we have

1

(F(t.x(0)" = f(EX(D) + (J 9 f(at)x(t) + hy(t)xA(t))dh>xA(t)
0

ay
= g1(t,x(0), X" (1))
and, for q € {2,...,p}, we compute
q
(F(e.x®))"

= (8 (LX), X0, ..., X" (1)
= Mg (6 X0, ), X (1)

1
+ (J igq_l(a(t),x(t) + hy(t)xA(t),xA(t), ... ,qul(t))dh>xA(t)

0
Oy1
(

1

j %gq,l(a(t),x(o(t)),xﬂ(t) + huOX (0, ... ,qu_l(t))dh>xA2(t)
2

0
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1
+ (J %gq—l(a(t),x(o(t))»xA(U(t)),~--,XAH(t) + hu(f)XAq(t))dh)XAq(t)’
0 q

for t € T¥. Therefore, we have

1

2 0
X3 = Af (b Xp) + <j wf(a(tn),xn + hy(t,,)xﬁ)dh)xﬁ
1
0
3
Xﬁ = Algl(tn’xn’xﬁ)

1
d
+ (I §g1(0(fn),xn + hy(tﬂxﬁ,xﬁ)dh)xﬁ
1
0

1
+ (J i (0, X0, x5 + hy(tn)xﬁz)dh>xﬁz,
] Byz

AP A AP
Xn = Algp—l(tn’xmxn’""Xn )

1
0 -1
+ (j ggp,l(o(tn),xn + hy(tn)xﬁ,xﬁ,...,xﬁp )dh)xﬁ
1
0

1
+ (j aa €p1(0(ty), X5, x5 + hu(t,)x. ,...,xﬁpl)dh>xﬁ
5 Y2

+ Y
‘ d

+ (J 5 —g, 1(0(ty), X2, x5, ... xﬁp +hp(tn)xﬁp)dh>xﬁp,
0

Ap+1

2
from where we can find x5, ..., x2

6.2 Convergence and error analysis of the TS(p) method

Now, we will investigate the convergence of the Taylor series method of order p. We will
use the property of the monomials h,(t,s), g € Ny, given in Theorem 5.2. By Condition
(H1) and the dynamic equation in (6.1), we find

pAB) <A, telty sl (6.3)

Next, we estimate
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1
|xA2(t)| < DS (X)) + (Haiylf(o(t),x(t) + hy(t)XA(t))‘dh>|xA(t)|
<A(1+A), te [t(;, tel, (6.4)
and
I (6)] < gy (6 x(6, X2 8)|

1

+ <”§gl(a(t),x(t) + hy(t)xA(t),xA(t))‘dh>|XA(t)|
0
1

+ <”igl(a(t),x(o(t)),xA(t) + hy(t)xAz(t))‘dh>|xAz(t)|
0

<A+ A2+ A(A+4%) = A(+ AP,
b 0] < [8,g5(6x(0, X (0, 0)]

'
i
i

<A+ A+ A(A+A%) + A((A+ A%) + A(A + A%))
A+ A+ 24(A+A%) + AX(A+A%) = A(1 + A,

%gz(a(t),x(t) + hy(t)xA(t),xA(t),xAz(t))ldh>|xA(t)|
1

Jy

9 g (000 x(o), X (0(0), 2 (0) + hu(t)x“3<t>)|dh)|x“<t)|

1
J
i o
J —g,(0(t), x(a(t)), X" (t) + hu(t)x" (), x" (t))’dh)|xA )
2
0
1
Ja)@

as well as

I ()] < Avgs (6 x(6), X0, X2 (0, X% (8)|

+ (jl aiylg3(o(t),x(t) + hll(t)xA(t),XA(t),XAZ(t),XA3(t))‘dh>|XA(t)|
0
¥ (jl aihgg(o(t),x(a(t)))XA(t) + hy(t)xAz(t),xAz(t),xA3(t))’dh)|xAz(t)|
0
) (jl a%g3(g(t),x(a(t)),XA(G(t)),xAz(t) + hu(t)x“(t)m“(t))[dh)IXA3<t>|
0
+ ( jl aihgg(am,x(am),xﬂ(a(t)),xf (o), () + hu(t)x“(t))\dh)lx“(t)l
0
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SA+ A+ A(A+A%) + AL+ A)(A + A + A(A + A%)(1 + A)?
=(A+A)A+A+A+ A+ A+28° + ) = A1+ A", te[to. by,

so that we deduce
WY (0] < AQ+ AP, O] <AQ+AP, te Tt tl.
The above estimates can be also proved by induction. We will show that
WY (0] < A0+ APt e[ty . (6.5)

Forn = 1and n = 2, the estimate is shown in (6.3) and (6.4). Assume that the inequal-
ity (6.5) holds for any p € N. Then, for n = p + 1, we have

|xAp+1| < Mgyt X, ,XAH)|

1

+ ”%gp_l(o(t),x + hy(t)xA,xA, ... ,xApil)’dh|xA|
1

0

1
+w[
0

+ ..

‘%gp—l(a(t),xg,XA T hu(Ox .. ,xA”’l)Idh|xAz|
2

N dh|x"'|,

© e,

‘igp,l(a(t),xa,xm, N i hy(t)xAp)
Yy

for t € [to, t]. Now, Condition (H1) and the induction hypothesis imply that

P | <A+ AA+AAA +1) + AAA +12 +-- + AAA +1)°!
—SAA+D +AA+ DA+ A+ D)+ A+1D)2+ -+ (A+1)P?)
1-(A+1p1
1-(A+1)
—AA+D-AA+D)+AA+ 1A+ 1P
= AA + 17,

=AA+1) +A%A+1)

which completes the proof. Moreover, for the remainder terms

pl(t+r)

R,(r) = J hy(t+r 0@ WAy, gefl,....ph teltyt],
t

employing the estimate (5.2) and the fact that p9(t +r) -t <t +r -t = r, we get
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pl(t+r)
IR, ()| < J hy(t+r, a(u))|qu+1 w)|Au
t

q

< %A(l LAY (Pt +T)—t)

q+1

< p AQ+A)?, ge{l,...,ph. (6.6)

Therefore,
Ry =0(0""), qefl...p}
Denote
eﬁk = xAk(tn) —xﬁk, ke{o,....,p-1}L

Taking into account the fact that

A A
Xy =fteXy), X7 (t,) = f(tpx(ty)),
Al A AT

Xn :gq—l(tn’xmxn""’xn )’

X () = 8ga (o Xt X, X (), g€ (2.1},

we have
X(tn+1) = X(tn) + rn+1f(tn>x(tn)) + hz(tn+l’ tn)gl(tn)x(tn)’XA(tn))
p-1
oot My (bt t)8pot (b X(E)s X (60) + Ry (yy)
and
A
Xny1 = Xp + rn+lf(tn’xn) + hz(tn+1’ tn)gl(tn’xn’xn)
p-1
et hp(tn+1,tn)gp_1(tn,xn,...,xﬁ ).

Then

X(ty41) = Xnya
= (X(t) = xp) + Fg1 (f (£ X(8)) = f (£, X))
+ Rt ) (81 (b X(6), X 6)) = 81 (s X X7))
+ ooy (b 6) (8po1 (s X (), . ,XAH(tn)) — 8p1(tys Xps ... ,xﬁpil))

+ R, (1)

Note that by Condition (H1), the mean value theorem for f and g; implies that
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f( af(

f(th t )) f(tn’xn) tn’ 51 )( (tn) _Xn) = a_ tn) {10)en

where .{10 is between x(t,,) and x,,, and % stands for the partial derivative with respect
to the second variable. Also,

k k
St x(t), X (), . X () = 8ic(ts Xy X5 X5 )

= g (b X)), XY (6) = (b X XA () - X (1))

k k
+gk(tn,xn,xA(tn), e (ty) —gk(tn,xn,xﬁ,...,xA (ty)

A AL Ak A AL Ak
ot Gt X X Xy X0 (8) = Skt X Xps o Xy 5 Xy )
0 k 0 k
= —gk(tn,.flk,XA(tn),...,XA (ty))e, + —gk(tn,xn,fzk,...,xA (tn))eﬁ
oy 9>
Ak71 k Ak
T St Xp..xy L &L)en, ke{l,...,p-1}

ayk+1

where é’j" is between xAH(tn) and xﬁH, je{l,....k+1}, and denotes the partial
derivative with respect to the (j + 1)th variable. Consequently,

€ny1 =€t rn+1a (tn"fl )
ag A
+ hz(tn+1’t )< y (tn) 'fl X (t ) ay; (tn’xw le)en>

%p- Lt &Pt X (6)en
1

--+h (tml,t )<

08p1 - -
B;Z (trpxn’ Zpl"“’XA (tn))eﬁ
08p-1
bt T 0 8 e >+Rp(rn+1).
p

Let rpax = max{ry, ..., Ty} Since ¢ < oo, there is a constant B > 0 such that
1 p rmax
ErmaXA(l +AP(e™A+1)<B.

Then

p-1
lepl < (1 + hl(tn+1s b))+ + hp(tn+1> tn))A(|en| + Ieﬁl Tt IBﬁ |

+ Ry ()]
rrznax r&ax A AP
<1 + I'max T toeet 7>A(|en| + |enl Tt |en l) + |Rp(rn+1)’

< e A(le,| + |€d] + -+ |eﬁpil|) + Ry (rya1)|-
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In a similar way, we make the following estimates:

p-1
n D+

lenal < €4 IeAI oot ey

R, (r

-1
Ien+l| e maxA(l | Tt leﬁp |) + |Rp—2(rn+l)|’

e | < emalel | + Ryt
AP
|en+1l < |Rl(rn+1)|'
Let

Ap'll.

= lel+ Jen] +---+ ey

Then
By,1 < pe™™ABy, + |Ry(ryyp)| + -+ + [Ry (s

Observe that from (6.6) we get

3 p+1
r
IRy ()| + - + |Ry(Fs1)| < ToawA(L+A) + maXA(l +A)P%+. %A(1+A)p

= max

bl
A(1+A)p<1+ X 4. ~-+E>
2! p!

r2 rp 1
A+ AP (15 gy + 2 )

max

A(1+ AP e,

= max

Thus,

A(1+ AP el
A(1 + APe'max) 4 r?

B4y < pe™*AB, + r2

max

< pe"™>A(pe™>AB,_; + r’

max

A1+ AP elm

max
— (pe™ AV By + (A + )1

< e

A(1+ AYPelm

max

< (pe™A)""'By + ((pe™=A)" + --- + pem=A + )12 A1+ APelm

max

o0 .
< Taa AL+ AP Y (pelm A
j=0

A+ AYel o Z(petf_tOA)j
j=0

max

1

= (et maxAlL T AV,
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In the last inequality we have used the fact that B, = 0 and ry,, < tr—t,. Consequently,

leal + €3] + -+ || = 0(r2ay)-

6.3 The 2-step Adams—Bashforth method — AB(2)

In this section we consider the special case of the Taylor series method of order p,
which in the case of T = R reduces to the numerical method known as the 2-step
Adams-Bashforth method. We shall call this method the 2-step Adams—Bashforth
method on time scales.

Consider again the IVP (6.1). Suppose that r,l > 0, t,t + 1.t — 1 € [ty ],
pz(t +71),p(t = 1) € [y, t]. Applying the second order Taylor formula, we compute

X(E+7) = X() + hy(t + 1, XA () + hy(t + 1, 0X () + Ry(r) (6.7)
and applying the first order Taylor formula, we get
K= 1) = X0 + byt = LOXE () + Ry(D) = x2(6) = ¥ (8) + Ry (D),
whereupon
() = %(XA(t) XE-D) + %Rl(l).

We put this expression into (6.7) and find

M(m) =Xt~ 1)+ Ry() + Ry(r)

hy(t +r,t)
l

Ry(D) + Ry(r). (6.8)

x(t+71) = x@) + 1) +

=x(t) + rf(t, x(t)) +
. hy(t ;r r,t)

(f(t.x(t)) - f(t = Lx(t - D))

Assume that t, < t; < -+ < tp,y = t is a partition of the interval [¢, tf] such that
b1 =ty + Ty € T, 1y > 0,n € {0,...,m}. Taking t = t,, r = 1,4, | = 1, in (6.8), we
obtain

hy(tn5 t
X(tn+1) = X(tn) + rn+1f(tn’x(tn)) + @(f(tmx(tn)) _f(tn—l’x(tn—l)))

n
hy(t,, 1>t
ECICTER)

n

Rl(rn) + RZ(rn+1)'

Let x, = x(t,), f,, = f(t, x(t,)). Then, neglecting the remainder terms, we arrive at the
2-step Adams—Bashforth method (AB(2) method).
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hz(tn+l) tn)

n

(fn _fn—l)’

Xny1 = Xp + rn+1fn +

or
hy(t,. 1.t hy(t, .1, t
Xpy1 = Xp + (rn+1 + 2( n+l n) )fn - 2( n+l n)fn_l- (6.9)
Tn I
Remark 6.1.
1. Note that the 2-step Adams—Bashforth method (6.9) is of order (1 + O(rn))O(ri 1)

(tn+17[n)2
2

2
2. If T = Randr, = his constant, then we have hy(t,,1,t,) = = % and

hence (6.9) takes the form

h h 3h h
Xny1 = Xp + <h + §>fn - Efn—l =Xpt ?fn - zfn—b

which is the classical 2-step Adams—Bashforth method.

3. Theinitial condition x(t;) = x, provides the first term of the sequence {x,,}, but one
needs the second term x; in order to compute the following terms of the sequence.
For the computation of x;, one can use the Euler method on time scales given in
Chapter 4 or the trapezoid rule on time scales given in Chapter 5.

6.4 Numerical examples

Below, we apply the method to specific examples of initial value problems associated
with nonlinear dynamic equations.

Example 6.2. As a first example, we consider the initial value problem known as the
Beverton—-Holt model. This model is a population growth model which was initially
introduced by R.J. H. Beverton and S.J. Holt to describe the fish population [10]. It
has been studied as a continuous and discrete model, that is, both as a differential
and a difference equation. Here we consider the unification of Beverton—-Holt model
as a dynamic equation. In this particular example, we take the time scale as the set of
nonnegative integers and get

ax(t)

Ay _
X0 = 1+ Bx(t)’

x(0)=xy, t>0, (6.10)
where a, § are real numbers. Take T = N, and [¢,, tr] = [0,20]. The monomial h, on
this time scale has the form

(t-s)(t-s-1)

hz(t, S) = 2

, t,seT.

If we take constant step size r,, = h, then m = % and t, = nhforn € {0, ..., m}. In this
case, the AB (2) formula (6.9) takes the form
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h(h-1) > ax,  hth-1) ax,,
2h 1+ Bx, 2h 1+ Bxp
3h-1 ax, h-1 ax,,4
=X, + - .
2 1+px, 2 1+ Bx

Xni1 =xn+<h+

Starting with x, = x(0), we use the Euler method introduced in Chapter 4 to com-
pute x;, which gives

aXo

X;=Xo+h
L0 By

and then compute the sequence x,,, n € {2,...,m} by using the AB(2) method.
On the other hand, it is easy to see that the exact solution of the problem can be
obtained by writing the dynamic equation in (6.10) as a difference equation, that is,

Xo = x(0),
aXYl
Xpe1 =X+ ——, nef0,...,19}.

n+1 n 1+ ﬁxn { }
The approximate and exact solutions are compared in Tables 6.1 and 6.2. In both tables
the exact solution is denoted by x'® and approximate solutions for h = 1and h = 2 by
xY and x@, respectively. When h = 1, the approximate solution is the same as the
exact solution. However, for h = 2 an error is observed.

Table 6.1: The values of the exact solution x'® and approximate solutions x'¥ and x? for x(0) = 1,
a=15,and B =0.75.

t X© ) NE)
0.00 1.00000000 1.00000000 1.00000000
1.00 1.85714286 1.85714286
2.00 3.02132196 3.02132196 2.71428571
3.00 4.40895049 4.40895049
4.00 5.94455919 5.94455919 5.63865546
5.00 7.57815275 7.57815275
6.00 9.27891347 9.27891347 9.01185991
7.00 11.02763147 11.02763147
8.00 12.81189858 12.81189858 12.55867971
9.00 14.62337804 14.62337804

10.00 16.45625923 16.45625923 16.20767199
11.00 18.30635885 18.30635885
12.00 20.17057940 20.17057940 19.92358857
13.00 22.04657096 22.04657096
14.00 23.93251289 23.93251289 23.68597760
15.00 25.82696857 25.82696857
16.00 27.72878606 27.72878606 27.48224143
17.00 29.63702858 29.63702858
18.00 31.55092475 31.55092475 31.30417723
19.00 33.46983226 33.46983226
20.00 35.39321087 35.39321087 35.14618456
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Table 6.2: The values of the exact solution x® and approximate solutions x® and x? forx(0) = 2,
a=3,andB=1.

t %© x0 NE)

0.00 2.00000000 2.00000000 2.00000000
1.00 4.00000000 4.00000000
2.00 6.40000000 6.40000000 6.00000000
3.00 8.99459459 8.99459459
4.00 11.69443234 11.69443234 11.42857143
5.00 14.45810827 14.45810827
6.00 17.26403536 17.26403536 17.03940887
7.00 20.09977812 20.09977812
8.00 22.95759653 22.95759653 22.74434210
9.00 25.83237529 25.83237529
10.00 28.72057006 28.72057006 28.51162867
11.00 31.61962987 31.61962987
12.00 34.52766071 34.52766071 34.32066450
13.00 37.44321946 37.44321946
14.00 40.36518229 40.36518229 40.15915164
15.00 43.29265753 43.29265753
16.00 46.22492621 46.22492621 46.01940020
17.00 49.16140044 49.16140044
18.00 52.10159349 52.10159349 51.89633547
19.00 55.04509801 55.04509801
20.00 57.99156969 57.99156969 57.78645043

The solutions computed with the AB(2) method and the exact solutions for different
choices of x,, a, 8, and h are also given in Figures 6.1, 6.2, 6.3 and 6.4.

In the second example we consider the initial value problem in Example 5.8. We
aim to compare the two methods used to obtain the approximate solution.

Example 6.3. Consider the initial value problem

1 t

Agpy _
X0 = 1402 1+ (x(£)?

x(0) = X, (6.11)

which is solved by the trapezoid rule in Example 5.8. We take again T = alN, for
some a > O and [fy,t] = [0, b]. The monomial h, on this time scale has the form
hy(t,s) = w If we take constant step size r, = h, then m = % and t,, = nh for
n € {0,...,m}. In this case the AB(2) formula (6.9) takes the form

3h-a 1 t, h-a 1 t1
Xnt1 = Xp + > T 2] 7+ 2/
2 \1+(t)? 1+ (x) 2 \1+ (1) 1+ ()
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70 T T T T T T T T T
*  Approximate solution
O Exact solution

60 - 1

50 - 1
P 40 - 1
x ®
®© ®
x ®

30 ® 4

®
®
@
® ®
20 - @ 1
®
®
® ®
10 ® 4
®
®
® ®
@B @ 1 1 1 1 1 1 1 1 1
0 2 4 6 8 10 12 14 16 18 20
t-axis

Figure 6.1: Approximate and exact values of the solution with o = 1.5, 8 = 0.75,x, = 1,and h = 1.

70 T T T T T T T T T
*  Approximate solution
O Exact solution
60 [ .
50 1
@ 40 1
& @
= 30 @ 1
@
@
2 @ 4
@
@
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@
@ % 1 1 1 1 1 1 1 1
0 2 4 6 8 10 12 14 16 18 20
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Figure 6.2: Approximate and exact values of the solution with a = 1.5, 8 = 0.75,x, = 1,and h = 2.
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70 T T T T T T T T T

*  Approximate solution

O Exact solution
60 1

50 [ ® ]

X-axis

10 ® 4

1 1 1 1 1 1 1 1 1

0 2 4 6 8 10 12 14 16 18 20
t-axis

Figure 6.3: Approximate and exact values of the solution witha=3,8=1,x, =2,andh = 1.
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*  Approximate solution
O  Exact solution
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Figure 6.4: Approximate and exact values of the solution witha = 3,8 =1,x, =2,and h = 2.
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Starting with x, = x(0), we use the Euler method introduced in Chapter 4 to com-
pute x;, which gives

X; =X +h< ! + b >
oo 1+ (t)? 1+ ()2 )

and then compute the sequence x,,, n € {2,..., m} by using the AB(2) method.
From the discrete structure of the time scale alN,, the dynamic equation in (6.11)
can be written as a difference equation, that is,

Xo = x(0),
an
+
1+ (an)®> 1+ (x,)?

xn+1=xn+a< ) ne{0,...,m},
and hence can be solved analytically on the interval [0, b].

The values of the parameters a, b, x,, and h are chosen as the same parame-
ters used in Example 5.8. The approximate and exact solutions for a = 0.5, b = 20,
h = 0.5,1,2, and the initial value x(0) = 1 are listed in Table 6.3. In Table 6.4, the ap-
proximate and exact solutions for a = 0.2, b = 8, h = 0.4,0.8, and the initial value
x(0) = 3 are given.

Table 6.3: The values of the exact solution x© and approximate solutions x®, x?, and x® for h =
0.5,1,2, b =20, and x(0) = 1.

t x© X x@ x®

0.00 1.00000000 1.00000000 1.00000000 1.00000000
1.00 1.97692308 1.97692308 1.92799782
2.00 2.59940190 2.59940190 2.60659764  2.59940190
3.00 3.03618334 3.03618334 3.00140783
4.00 3.42352292 3.42352292 3.38694224  3.10844893
5.00 3.79402385 3.79402385 3.76145298
6.00 4.15528317  4.15528317  4.12722174  3.95849454
7.00 4.50894103 4.50894103  4.48475593
8.00  4.85529463  4.85529463  4.83425866  4.69716122
9.00 5.19444102 5.19444102 5.17594188
10.00 5.52652984  5.52652984  5.51008813  5.40314291
11.00 5.85178922 5.85178922 5.83703562
12.00 6.17050243 6.17050243  6.15715160 6.06945724
13.00 6.48298140 6.48298140 6.47081061
14.00 6.78954686 6.78954686 6.77838010 6.70473486
15.00 7.09051545 7.09051545 7.08021180
16.00 7.38619205 7.38619205 7.37663730 7.31347165
17.00 7.67686568 7.67686568 7.66796615
18.00 7.96280759 7.96280759  7.95448563  7.89940697
19.00  8.24427079  8.24427079  8.23646141
20.00 8.52149045 8.52149045 8.51413872 8.46546300
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Table 6.4: The values of the exact solution x© and approximate solutions x¥ andx®, forh =
0.4,0.8,x(0) =3,and b = 8.

t x© X x@

0.00 3.00000000 3.00000000 3.00000000
0.40 3.39586641 3.39586641
0.80 3.73043213 3.74286015 3.73043213
1.20 3.97566995 3.98499013
1.60 4.15541211 4.15914713 4.16016040
2.00 4.29534158 4.29522344
2.40 4.41218246 4.40980634 4.36627079
2.80 4.51582844 4.51217756
3.20 4.61210777 4.60775159 4.55008030
3.60 4.70451328 4.69978494
4.00 4.79517350 4.79027335 4.72986961
4.40 4.88539625 4.88044801
4.80 4.97598082 4.97106244 4.91191419
5.20 5.06740357 5.06256458
5.60 5.15993195 5.15520366 5.09881334
6.00 5.25369677 5.24909844
6.40 5.34873916 5.34428194 5.29118354
6.80 5.44504180 5.44073127
7.20 5.54254995 5.53838787 5.48868810
7.60 5.64118581 5.63717128
8.00 5.74085838 5.73698868 5.69059353

The solutions computed with the AB(2) method and the exact solutions for the two
sets of choices of the parameters a, b, x,, and h are given in Figures 6.5, 6.6, 6.7, 6.8
and 6.9.

10

*  Approximate solution

9r O Exact solution ]

X-axis

(6]

T
®

®

®

®

I

0 2 4 6 8 10 12 14 16 18 20
t-axis

Figure 6.5: Computed and exact values of the solution with a = 0.5, b = 20, x, =1, and h = 0.5.
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10 T T T T T T T T T

*  Approximate solution
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Figure 6.6: Computed and exact values of the solution with a = 0.5, b = 20,x, =1,and h = 1.
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Figure 6.7: Computed and exact values of the solution with a = 0.5, b = 20, x, =1,and h = 2.
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8 T T T T T T T
*  Approximate solution
7 O  Exact solution |
6 |- -
@
e ® %
5f o ® ® .
K] e @ @
X @ @
®©
x o ®
4 F ® b
®
®
3@ J
2 - -
1 1 1 1 1 1 1 1
0 1 2 3 4 5 6 7 8

t-axis

Figure 6.8: Computed and exact values of the solution witha = 0.2, b = 8,x, = 3,and h = 0.4.

8 T T T T T T T

*  Approximate solution
O Exact solution

X-axis
£3)

t-axis

Figure 6.9: Computed and exact values of the solution witha = 0.2, b = 8,x, = 3,and h = 0.8.
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The figures show that there is no significant difference between the exact and com-
puted solutions because h is small.

6.5 Advanced practical problems

Problem 6.4. Let T = 2™, Consider the IVP

Appy _ 1+x(8)
{ x(t) =1+ OO t>1,

x(1)=1
and assume that
a:t():l, t1:4, t2:16, t3:64, t4:b:216.

Write the 2-step Adams—Bashforth formula.
Problem 6.5. Let

Consider the IVP

{ L) =1 +x@)3, t>0,
x(0) = 0.

Write the 2-step Adams—Bashforth formula.

Problem 6.6. Let T = Z. Apply AB(2) method for the following IVP:

1 xA(t) = siny (t,0) + (x(1))%, t >0,
x(0) =1,

where

Problem 6.7. Let

Apply AB(2) method for the following IVP:
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{ ) =1+3x(b)? t>0,
x(0) =1,

where

> tzzl, t3:2, t4:§, t5:b:3.
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In the previous chapters, the effectiveness of TS(p) methods was shown. For order
p > 1, these methods have a disadvantage in that they require the right-hand side of
the dynamic equation to be differentiable a number of times. This often rules out their
use in the real-world applications. The families of linear multistep methods (LMMs)
achieve higher order by exploiting x and x* that were computed at the previous k-steps
and combining them to generate an approximation of the next step. We begin with
two-step methods to describe the strategy.

Suppose that T is a time scale with forward jump operator ¢ and delta differenti-
ation operator A. Let also, a,b € T, a < b, and ¢; € [a,b] C T, j € {0,1,...,m}, so that

a=ty<ti<---<ty=h.
Consider the IVP

{ XAt) = f(tx(t), telab],

x(a) = xop, (71)

where x, € R. Setry =r,,,; = Oand
t.=t_+r, je{l,...,m}, r= max r;.
j=batr Jed J jell,.omp J

7.1 Two-step methods

For a delta differentiable function z, we need to find constants

Qoj> Qg5 Qs ﬁo;v ﬁlj» ﬁzj» Yo Vi Yo
so that

Z(t + Tjgq + Tjio) + agz(t + 1) + agiz(8)
A A A
= 152(Boyz” (& + Tj41 + Tiya) + Byiz” (6 + 1) + Bz ()
A A A
+ 1541 (V2iZ (6 + Tipq + o) + Vi2° (6 + Tjag) + Y02 (8))
+0("™), jefo,...,m-2}
where p might be specified in some cases, or one might try to make p as large as possi-

ble in others. We choose z = x, where x is a solution of the IVP (7.1) and, dropping the
o), we find

x(t]- + T4 + rj+2) + all-x(t]- + r]-+1) + aojx(t]-)
= T2 (Byif (& + T + T2 X (6 + Tjg +7545))

https://doi.org/10.1515/9783110787320-007
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7.2 Consistency of two-step methods = 189

+ Byf (& + 1310, X (& + 11,1)) + Boif (8, x(8))))
+ 1541 (Vi (& + Tjyq + T4 X + T +7512))

+ yl]f(t] + rj+1, X(tl + rj+1)) + yO]f(t],X(t]))), ] € {0, R ( (e 2}

Set

Xj = X(t}), f) = f(t],X(tl)), ] € {O, 1, ey m}

Then

Xj2 T AjXjig + AojXj = Vj+2(ﬂ2jﬁ'+2 + Bljfj+1 + Bojfj)
+ rj+1(y2jf}+2 + Y1jf}+1 + yO]f})’ ] €{0,...,m-2}, (7-2)
which will be called a two-step method.

Definition 7.1. A two-step method is said to be explicit (or of explicit type) if B; =
Y5 =O0foranyj € {0,...,m -2}

Definition 7.2. A two-step method is said to be implicit if B,; # 0 or y,; # O for some
jef{o,...,m-2}.

We may write (7.2) in the following form:

A A A
Xjp2 t AqjXjyq + AojX; = j+2(ﬁ2jxj+2 + BiiXj1 + BojXj )

A A A
+ Tj+1()’2jxj+2 T Y141 T YoiX; )

wherej € {0,...,m - 2}.

7.2 Consistency of two-step methods

Below, we discuss the consistency of two-step methods. To start with, we define the
linear difference operator associated with a two-step method and its order of consis-
tency.

Definition 7.3. The linear difference operator associated with the two-step method

(7.2) is defined for an arbitrary continuously differentiable function z by

,},ﬂ)rmz(t) =2Z(E+ Ty + 1) + 0qiz(E +154q) + agz(D)
A A A
—Tiao(Byz (t + 141 + 1j40) + Byjz” (E + Tjy) + Bz (1))

- j+1(YZjZA(t + I+ Tj2) + y1jZA(t +1j,1) + YOjZA(t))) (73)

foranyj € {0,...,m-2}.
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Obviously, for any a, b € R and any continuously differentiable functions z, w, we
have
.C,]_H,,m(az(t) +bw(t)) = aLl

z(t) + bL,, . w(D),

il T2

thatis, £, isindeed a linear operator.

+1’rj+2
Definition 7.4. Alinear difference operator Ly 18 said to be consistent of order p if

L, , z(t)=0(""),

rj+1> j+2
with p > 0 for any smooth function z.

Definition 7.5. A two-step method is said to be consistent if its difference operator

Er]_wr]_ﬂ is consistent of order p for some p > 0.

Example 7.6. Consider the Adams-Bashforth method. The associated linear differ-
ence operator is

L zZ(t) =z(t + 1y + o) —2(E + Tpy)

hz(f F Ty + e U+ rn+1)
~ T2

Tn+1

Tnt1Tn=2

>ZA(l’ +Tni1)

+ hz(t F T F g £ 4 rn+1)ZA

Tt

(t).
By the Taylor expansion, we have

Z(E+ Typq + Tyga) = 2(8) + hy(E + Ty + T Hz(t)
+ hy(t + Tppqg + Ty t)zAZ(t) +0(r),
Z(t +Tpyp) = 2(t) + hy(t + 1y, HZ%(¢) + hy(t + Tpyqs t)zAz(t) + O(r3),

2t + ) = 2+ hy(t +r1,, t)zAz(t) + O(rz).
Thus,

2
L z(t) = z(t) + hy(t + Tpyq + Tras Hz2(t) + hy(t + Tyyq + Tyaos 2% (t)

TniTne2
2
—2(t) = hy(t + Ty )Z°(8) = Myl + Ty, )2 ()

hz(t F Ty + g b+ rn+1)
~\ Tne2

Tns1

X (22(0) + Byt + 1y 025 (6) + O())
hy(t +1pq + Tt +1
+ 5( n+l T 'ni2 n+1)ZA
Thi

2
= 122 () + (My(t + Tyyq + Ty ©) = Myt + T £)2™ (£)

(t) + 0(r)
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hy(t+1,,+T, 5t+T
— <rn+2 b1 n+l ™ 'n+2 n+1) >ZA(l')

i1

hy(t+71,,1+T, 5t +T 2
_hl(t+rn:t)<rn+2+ 2( n+1 n+2 n+1) >ZA (t)

Thi

+ hz(t F Ty + g U+ rn+1)

Tn+1

22(t) + 0(r*) + 0(r)

= <h2(t T + s t) - hZ(t + 'ni> t) - rn+2h1(t + 't t)

h2(t +Tng + ey U+ rn+1)

Tnit

—hy(t+r1,0)

)zAz(t) +0(?) + 0().

Hence,

1L, . 2(t)] < <h2(t F g + Ty ©) + Mo(t + 1y, £) = Tpaahy (8 + Tppqs 1)

hz(t + g + gy U+ rn+l)

+hy(t+1,0) )ZAZ(I‘) +0(%) +0(r)

Th1

2 2 2
(Tpe1 + Tna2) Tra1 ()] A2
S(%+%+rnrn+2+rn:; |Z (t)|

+0(r%) +0(r)

n+1

and

c 2(t) = 0(r).

Tni1oTne2

Therefore, the Adams-Bashforth method is consistent of order p = 1.

Exercise 7.7. Let

Xny2 = Xp1 rn+1h3(tn + i1 + Tt tn)fm—l - 2hZ(tn + T'nito tn)fn'

Find the associated linear difference operator and determine its order of consistency.

7.3 Construction of two-step methods

Now, we will give the detailed construction of a two-step method and derive conditions
for the method to be consistent with the dynamic equation. For a general two-step
method, given by (7.2), the associated linear difference operator is given by (7.3) and
the right-hand side can be expanded with the help of the Taylor expansion in the
following way:

2
Z(t + Tjypq + Typ) = 2(8) + My (€ + 1540 + Ty, 028 (t) + hy(t +1jq + 1o 5l (3)

3
+h3(t + 71554 +r]-+2,t)zA O+,
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192 —— 7 Linear multistep methods - LMMs

Z(t +10) = 2(6) + hy(t + 149, )25 (t) + hy(t + 1,1, t)zAz(t)

+h3(t + 15,0, t)ZAE(t) oo,
A _ A A? A
ZO(t + 1541 +1540) = 20 () + Ryt + 1540 + 15,0, 0020 () + Ay(t + 1544 + 1540, 0)2° (8)
4

+ Ryt + 15 + 110,020 () 4,

A A A? A

Zo(t+1p4) =27(@) + hy(t + 11,0, 027 () + hy(t + 1344,z (8)

+ hs(t + Tiv1> t)zAA(t) -

The precise number of terms that have to be retained depends on either the order
required or the maximum order possible with the “template” used. Some coefficients
in the two-step method may be set zero in order to achieve a method with particular
pattern of terms.

First, we focus our attention on the case p = 1. We have

Ly 20 =2(8) + Iy (t + 100 + T, 025 (t) + 0(r?)

+ayj(z(t) + hy(t + 149, Hz(t) + 0(r%)) + ao;z(t)
- rj+2(ﬁ2j(zA(t) +0() + ﬁlj(zA(t) +0(n) + ﬁOiZA(t))
- rj+1(y2j(zA(t) +0(n) + ylj(zA(t) +0(n) + ijZA(t))

= (1+ ay; + ag;)z(t)
+ (Mgt + Tjpq + Tjpo ) + ag5hy (€ + 15405 8) = 1520(Boj + By + Bay)
=Ty + v + Yoj))ZA(t) + O(rz)

= (1+ ayj + agy)z(t)
+ (”j+1 + 10 + Ayl — j+z(ﬁo;' + ﬁlj + ﬁzj)
—Tia(Yoj + Vaj + Y2j))ZA(t) +0(r)

= (1+ ayj + agp)z(t) + (1 (1 + a5 = Vo5 = V1j = V35)

A
+T1,0(1 = Boj = Brj — Boy))2" (£) + o).
Therefore E,M,,mz(t) = 0(r%), or the two-step method is consistent of order p = 1, if

1+a0]~+a1]- =0,
Boj + Bij+ By =1,
Yoj +Vij + Vo = 1+ ay;. (7.4)

Definition 7.8. The first, second, and third characteristic polynomials of the two-step
method (7.2) are defined to be

pii(@) = q+ Qg4 + Qg
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P5i(@) = Byd” + Byd + Boj»
P5(@ = V40" +Viyd +Vop qER,

respectively.

Example 7.9. Consider the following two-step method:
Xjp2 = Xjp t X5 = j+2(fj+2 _fj+1) + rj+1(fj+2 +fj+1 +f])
The first, second, and third characteristic polynomials are as follows:

p@ =" -q-1,
Po(@) =" - 4,
P3(@ =q" +q+1

Exercise 7.10. Write the first, second, and third characteristic polynomials of the fol-
lowing two-step method:

Xjva + 3X41 = 4% = 130(fj2 = fja = ;) + 1 (fia — £y).-

Theorem 7.11. The two-step method (7.2) is consistent with the dynamic equation (7.1) if
and only if

Py =0 390 =py@. gy 3 ) =y (75)

Proof. Note that

1
py() = 1+ag; +ay,  py(q) = 29 + oy, p{j<§> =1+ay,
1
Pﬁ(fI) =2, Ep;j(l) =1, pyi(1) = Boj + Byj + By P3i(1) = Yoj + V4 + V-
1. Suppose that (7.2) is consistent with the dynamic equation (7.1). Then (7.4) holds
and hence (7.5) holds.
2. Suppose that (7.5) holds. Then (7.4) holds.

This completes the proof. O

Example 7.12. Consider the two-step method
Xjy2 =X = j+2(fj+2 _fj+1 +f]) + rj+1(_3f}+2 + 3]3‘+1 + 2f])

Here
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aj=-1 a;=0, Boi=1 Py=-1 PBy=1L y5=2 Vy;=3 Vyy=-3

Then

l+agi+a;;=1+(-1)+0=0,
Boj+Bij+ By =1+(-1)+1=1,
Yoj tVij t Vo =2+3+(-3)=2=1+ay;.

Therefore (74) holds and the considered two-step method is consistent.

Exercise 7.13. Prove that the two-step method

Xjya + 3Xj4q — 4X; = 1o (=450 + 3fjn + 26) + 151 Cfjua + 211 - f)
is consistent.

Now we will consider the general case p > 1. We have

ﬁ,j+1),j+zz(t)

=z(t) + hy(t + 1y + 1, 028 (t) + hy(t + 1j4q + 1o t)zAz(t)
+oot g (4T + 740 t)zApH(t) +0(r"*?)
+ay(2(t) + by (t + 1541 HZ2(t) + hy(t + i t)zAz(t)

+oe g (E+ T, 02" ) + 0(r"*)) + Az (t)
- rj+2ﬂzj(zA(t) +hy(t + Tis1 + T t)zAZ(t) + hy(t + Tis1 + T2 t)zAa(t)
+o ot Iyt + 100 + T2 t)zAp+1 t) + 0(r"*h)
1y By (ZA(0) + y(t + 13,0, 0Z () + Byt + 17,0, 02 (0)
ot Byt 41y, 02 (0 + 00PH) = 1,02 ()
12V (O + Myt + Ty + 13,0, D25 () + Byt + 134 + 13,0, D2 ()
+o (4T + T, 02" () + o(r"*12))
- r]-+2y1j(zA(t) +hy(t+ 7154, t)zAZ(t) + hy(t + 141, t)zAa(t)
et hy(t+ 1,02 (0) + O(P))

= (1+ agj + ay)z(t)
+ (hy(E+ Tjpq + T ) + gy (€ + 1340, 8) = 15,0855 = TPy = TiaBoj
— TV — Ty — j+1y0j)ZA(t)
+ (hy(t + Tis1 + T t) + all-hz(t + T4 t) - j+2ﬁ2jh1(t + T4 + T t)

= TPy ( + Tjpq, ©) = TaYoihy (E+ 1 + 140, 0)
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2

~ HaYaihy(E+ 10, 0)2 (0)

+ (hp+1(t + rj+1 + rj+2, t) + aljhp+1(t + r]'+1, t) - rj+2B2jhp(t + rj+1 + rj+2, t)
- rj+2ﬁ1jhp(t + rj+l’ t) - rj+1Y2jhp(t + rj+1 + )’}-+2, t)

p+l
= Vi (t + T4, 0)2% () + 0(rP2).
If the coefficients of Ay, .. ., hp are equal to zero, then

z(t) = 0(r**),

Tivblje2

i. e., the two-step method is consistent of order p.

7.4 k-Step methods

The most general multistep method has the form

Xjrk t Qp1jXjik-1 + Ap—2jXjik—2 T - + AojX;
= T Bragfiic + Buac—ijfjri-1 + - + Broif;)
+ Tkt Bre—aifiic + Bi—tk—jfii—1 + -+ + Bicaoif)
+o 0+ T Buglivk + Buc—jfji—1 + -+ + Broify)- (7.6)

Definition 7.14. The first through the (k + 1)th characteristic polynomials of the k-step
method are defined as

k k-1 k-2
Pii(@) =q + a5 "+ Xq o+ g

k k- k-
P3(@ = Bigd" + Bracyyd " + Briczd" >+ + Projy

k k- k-
Pi+1i(@) = Bugd” + Bi—1jd ! + Bik—2id R Bioj»
respectively.

Example 7.15. Consider the 4-step method

Xy = Xjp3 = Xjip 2Xj+l - 3Xj = j+4(fj+4 _fj+3 _fj+2) + rj+3(fj+4 +f])
+ rj+2(2fj+4 - 3f;'+3 _fj+2 _fj+1 _fj)

+ rj+1(fj+4 +f}'+3 +f}'+2 +fj+1 +f])

Then the first through fifth characteristic polynomials are as follows:

p@=q"-a-q +29-3,
py@=q" -0 -,
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p3(@) =-q" +1,
pyi@) =2q4" -3¢ -¢* - q -1,
psi@=q"+@ +q +q+1

Exercise 7.16. Write the first through sixth characteristic polynomials of the following
5-step method:

Xjy5 = Xjpg = 243 + 3Xj4p — 4Xjg — X;
= 1is(fius = frea = 23 = 32 = frn = ) + 104 - )
+ 71343215 + fira = fi3 = 202 = 311 — 4f)
+ 12y + 4fjea = 31 = ) + 1 Ujea + fiz — 2650 - 4f)-

7.5 Consistency of k-step methods

Definition 7.17. The associated linear difference operator of the k-step method (7.6) is

defined as follows:

z(t)

=Z(E+ T+ T o T ) + O Z(E+ Tig + T o+ Fige)

rj+1’rj+2 ’’’’’ rj+k

+ U yZ(E+ T + Fip + 0+ ) + - + Agz(E)
~ it (BuagZ (£ + Ty + Tip -+ 4 T74)

+ ﬁkk—ljZA(
- Tj+k—1(/3k—1ijA(t i+l )

A A
+ Biecik1jZ (E+ Tjg + Tip + o+ Tgg) + oo+ B2 (8)

A
E+ T + T+ o+ Tigeg) + 0+ Broiz” (6)

A
= =T (BugZ (E+ T + T o + 1)

A A
+ Bric1jZ (E+ Ty + Fg + -+ 1figg) + 0o + Broiz” (D)

Definition 7.18. A linear difference operator Ly bty 18 said to be consistent of or-

der p if

. z(t) = 0(rP™)

Tistolj2o Tk

with p > 0 for any smooth function z.
Definition 7.19. A k-step method is said to be consistent if its linear difference operator

Tl is consistent of order p for some p > 0.
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Using the Taylor expansion for the right-hand side of £,

r]+1’rj+2’--~’rj+k
the terms in k(- -) of z, 2., 7Y and then choosing these terms to be equal to zero,
we get that this method has order p. We will illustrate this for the case p = 1. We have

and collecting

A
2+ Ty + Tyga b+ 503) = 20 + (g + Ty 4+ + 1,020 + O(),
A
z(t+ Tjisg tTj2 + Tjsk- 1) =z(t) +(r SIS RURSTS R rj+k—1)Z (&) + O(rz),

A
Z(t+rj+1+r]+2+--~ Tiikea) = 2(0) + (Tjyg + Tg + -+ + 1 )2 (0) + O(F),

Z(t +715,1) = 2(t) + rMZA(t) + O(rz).

Then
Erfn ri+2""”i+kz(t)
=Z(t) + (1jyg + Ty + -+ + 13,02 (0) + O(F)
+ Qgj(2(6) + (Fyq +Tjp + - + rj+k,1)zA(t) + O(rz))
+ Qgi(2(t) + (i + g+ + rj+k,2)zA(t) + O(rz))
+oo+ agz(t) - j+k(ﬁkkj(ZA(l‘) +0(n)) +ﬁkk—1j(ZA(f) +0(n) + ﬁkOjZA(f))
Tk Bieaig (2(0) + 0)) + B gy (2°(0) + O) + B2 (1)
k2 (B (2" (0 + O) + B aie 3 (2°(0) + O) + Bre20i2" (1))
+oe r;+1(ﬁ1kj(ZA(f) +0(r) + ﬁlk—lj(zA(t) +0(n)) + ﬁmjzA(t))
=+ gj+ag g+ + akj)z(t)
+ T (L + Qgj + Qg + -+ g5 — B — Prie—yj — 0]
+ 1L+ Qgj + Qg+ -+ + gp = Boig — Box—gj =+ ~ Bao)Z" (1)
+Tj3(1+ Qgj + Qg + -+ + 035 = By — Bagegj =+ ~ Bso)z" (1)
+ o+ (U= Brag = Brae—yj =+ - Brop)z" (1) + O(r%).
Thus,

. z(t) = 0(r)

]+1’ ]+2’ Tk
for any smooth function z if and only if
T+agqj+ o g+ +0ag =0,

L+ ag_gj+ Qgj+ -+ @y = By + Pregj + - + Paojs

L+ @g_gj + Qugj + -+ + g = Bog + Pox—yj + - + Baojs 77)

1+ agyj = Braig + Br-k—1j + +** + Br-10j>

1= B + Bia—sj + - + Broj-
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Example 7.20. Consider the 4-step method

Xjps — TXjy3 + 3Xj0 + 26,1 + X
= j+4(_6f;’+4 + 3fj+3 +fj+2 + 2fj+1 +f})
+ rj+3(_lofj+4 + 3fj+3 + 2fj+2 _fj+1)
+ rj+2(_8f}'+4 _f}+3 + 3f;’+2 + 2fj+1 +f})
+ rj+l(_4fj+4 +f]'+3 +fj+2 +f}+1)‘

Here
0(0]- = 1, all' = 2, azj = 3, a3]' = —7,
Buoj =1 Buj=2  Puy=1 Puj=3  Buj=-6
Bsoj=0, Bsj=-1 P5y=2 P53i=3, B3 =-10,
Brj=1 Bnj=2 Bnj=3 Byi=-1 Pu=-8
ﬁle =0, Buj =1 B12j =1 ﬁ13j =1, .3141‘ = —4.
Hence,

T+apg+agj+ay+agj+a,;=1+1+2+3-7=0,
T+ajj+oy+az=1+2+3-7=-1,

Broj + Buyj + Bgj + Brzj + Braj = 0+ 1+1+1-4 =1,
l+atag=1+3-7=-3

Baoj + Bj + Bagj + Boj + Buj =1+2+3-1-8=-3,
l+a5=1-7=-6,

Bsoj + Bs1j + B3j + B3z + B34 =0-1+2+3-10 = -6,
Buoj + Baij + Buzj + Bazj + Basj =1+2+1+3-6=1

Therefore the considered 4-step method is consistent of order p = 1.

Exercise 7.21. Check if the following 2-step method satisfies the conditions (7.7):

Xj+2 - 4X}'+1 + 3X] = rj+2(—3f}+2 + 3f}'+1 +f}) + rj+1(—6f}'+2 + 2f}+1 +f})

7.6 Numerical examples

Example 7.22. The first example is an initial value problem associated with the logis-
tic equation studied by Bohner and Peterson in [1]. It is a simple population growth
model and on an arbitrary time scale is given as

XA(t) = (ae (ax(t)))x(t), x(0) =xq, t>0.

On T = N, the dynamic equation can be written as
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A a(l-x)

T 1+ ay(t)xx’

and we impose an initial condition x(0) = 2 and take the interval as [0, 30].
We will apply an explicit two-step method with a constant step size r; = r for
j=0,...,n-2,given as

Xj+2 +2X]'+1 _3Xj = r(—f}'+1 +2f}) +r(2f}'+l +f}‘),

thatis, wehavea; =2, a5 =-1,5,=0,5,=-1,6p=2,andy, =0, y; = -1,y, = 1. It is
easy to verify that the consistency condition holds for this two-step method.
When the step size is constant, the method simplifies to

Xjs2 = =41 + 3% = 1(fiq + 3f)).
Here x = x(0) = 2 and x; can be obtained with the Euler method as

a(l-xp)

X1:X0+r
1+ arxg

XO .
The exact solution of the problem is given as

(1+a)x% (1)

(e)
x:(t) = .
! 1+ axi(fi(t)

We solve the problem for three cases as follows.
Case 1. Lett € [0,30]y and r = 1, that is, t, = O, G=t,+1, wherej = 1,...,30.
Hence, the computed sequence of values of the solution x is defined as

Xj2 = ~ 41 + 3% + fiq + 35,

where

B a(l- xj)

. = X;,
f} 1+(XX] ]

forj=1,...,28.
Case 2. Let t € [0,30]y and r = 2, that is, t, = 0, tj=tiq+2, wherej = 1,...,15.
Hence, the computed sequence of values of the solution x is defined as

Xjy2 = =41 + 3% + 2(fi1q + 3f)),

where

a(l - x;)

Ji

= ——X
1+2(XX]

forj=1,...,13.
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Case 3. Let t € [0,30]y and r = 4, thatis, t, = 0, ¢ = ¢;_; + 4, wherej = 1,...,8.
Hence, the computed sequence of values of the solution x is defined as

Xjs2 = =41 + 3% + 4(fiq + 3f)),

where

fi= M"r

+ 40(X]
forj=1,...,8.

We denote the computed solution for r = 1 by x, for r = 2 by x'?, and for r = 4
by x“. The exact solution is denoted by x©. All calculations are done with MATLAB.
The values of the approximate and the exact solution are listed in Table 7.1.

Table 7.1: The values of X, x@, x® and the exact solution x'© at points of the interval [0, 30].

t x© O x@ @

0.00 2.00000000 2.00000000 2.00000000 2.00000000
1.00 1.20000000 1.20000000
2.00 1.05882353 1.05882353 1.11111111
3.00 1.01886792 1.01886792
4.00 1.00621118 1.00621118 1.02040816 1.05882353
5.00 1.00206186 1.00206186
6.00 1.00068634 1.00068634 1.00401606
7.00 1.00022868 1.00022868
8.00 1.00007621 1.00007621 1.00080064 1.00621118
9.00 1.00002540 1.00002540
10.00 1.00000847 1.00000847 1.00016003
11.00 1.00000282 1.00000282
12.00 1.00000094 1.00000094 1.00003200 1.00068634
13.00 1.00000031 1.00000031
14.00 1.00000010 1.00000010 1.00000640
15.00 1.00000003 1.00000003
16.00 1.00000001 1.00000001 1.00000128 1.00007621
17.00 1.00000000 1.00000000
18.00 1.00000000 1.00000000 1.00000026
19.00 1.00000000 1.00000001
20.00 1.00000000 0.99999998 1.00000005 1.00000847
21.00 1.00000000 1.00000005
22.00 1.00000000 0.99999985 1.00000001
23.00 1.00000000 1.00000044
24.00 1.00000000 0.99999868 1.00000000 1.00000094
25.00 1.00000000 1.00000396
26.00 1.00000000 0.99998812 1.00000000
27.00 1.00000000 1.00003563
28.00 1.00000000 0.99989310 1.00000000 1.00000010
29.00 1.00000000 1.00032068
30.00 1.00000000 0.99903792 1.00000000
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In Figures 7.1, 7.2, and 7.3 we compare the graphs of the exact and approximate so-
lutions for the three cases discussed above. In all three figures, the exact solution is
represented by the symbol o and the computed solution by the symbol *.

3 T T T T T T
* computed solution
O exact solution
25r 1
2@ 4
L
151 1
X

®
1+ @@@@@@@@@@@@@@@@@@@@@@@@@@@@@A

051 b

0 1 1 1 1 1 1
0 5 10 15 20 25 30

t-axis

Figure 7.1: Computed and exact values of the solution with step sizer =1and a = 2.

3 T T T T T T

* computed solution
O  exact solution
25} 1

2% 4

15[ b

X-axis

1F ® & @ @ @ @ @ @ @ @ @ @ @ @ -

0 1 1 1 1 1 1
0 5 10 15 20 25 30

t-axis

Figure 7.2: Computed and exact values of the solution with step sizer =2 and a = 2.
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3 T T T T T T

* computed solution
O exact solution
251 1

2% 4

151 b

X-axis

0 1 1 1 1 1 1
0 5 10 15 20 25 30

t-axis

Figure 7.3: Computed and exact values of the solution with step sizer = 4 and a = 2.

In Figure 7.4, the errors for the three cases discussed above are given. It is obvious that
there is almost no error in Case 1 as stated above, and a small error is present for the
Cases 2 and 3.

error for the step size r=1
-------- error for the step size r=2
01r — — —error for the step size r=4 |

o

o

o
T

error magnitude

-0.05 1

015 . . . . .
0 5 10 15 20 25 30
t-axis

Figure 7.4: The error magnitudes for the logistic equation with step sizesr =1,2,4 and a = 2.

EBSCChost - printed on 2/10/2023 4:40 PMvia . All use subject to https://ww.ebsco.conlterns-of-use



7.7 Advanced practical problems =— 203

7.7 Advanced practical problems

Problem 7.23. Let

Xpt2 = 3Xn+1 + 2"n+1h2(tn LIRS FFOR tn)fn+l - 2h3(tn LRETSE tn)fn'
Write the associated linear difference operator and determine its order of consistency.
Problem 7.24. Write the first, second, and third characteristic polynomials of the fol-
lowing two-step method:
Xjyo + 4% = 15,5 (fiuo + 3f) + 1 (fi + 4fj + 41).
Problem 7.25. Prove that the two-step method
Xjy2 =X = rj+J}+2 + rj+1(6f}'+2 - 2f}'+1 - Bf;)
is consistent.

Problem 7.26. Prove that the two-step method
Xji2 T Xj1 — 2Xj = j+2(fj+2 + 3fj+l - 4f}) + rj+l(5fj+2 - 2fj+1 _f;)

is consistent.

Problem 7.27. Write the first, second, third and fourth characteristic polynomials of
the following 3-step method.

Xj3 = 245 + Xj1 = 3% = 133z + 20 — 450 - 3f)
+ rj+2(_fj+3 _fj+2 _f})
+ rj+1(2fj+3 _fj+2 +f}'+1 _f;)

Problem 7.28. Check if the following 5-step method satisfies conditions (7.7):

Xjys = 3Xji4 + Xji3 = Xjyo + Xjp — X
= is(ies = fja + fjus —fr2 + frn = )
+ 104 jis + fja —fjz ~fra —fin = )
+1333(Sjus = s + Wz +fira + fjn - f)
+ 155245 = Tfiea + 6fji3 = fr2 + 3fi1 — 4F)
+ 1541 (7fj15 — 10fj44 + 4f)).
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The Runge—Kutta methods are among the most widely used methods in the numeri-
cal solutions of initial value problems for ordinary differential equations [4]. They are
one-step methods which consist of several stages. Depending on the choice of the pa-
rameters involved in their construction, the Runge—Kutta methods can be implicit or
explicit as the linear multistep methods.

In this chapter, we will discuss the Runge—Kutta methods on time scales. We will
present the construction of one-, two-, and three-stage methods in details and briefly
introduce a generalization of the idea for s-stage methods.

As in the previous chapters, we suppose that T is a time scale with forward jump
operator o and delta differentiation operator A. Leta,b € T, a < b, m € N, and

a=ty<tj<---<ty,=»h,
aswellas (_,4) N'T # 0, € {1,...,m}. Denote

t.,=t+r.,,, je€{0,1,....,m-1}, r= max r,.
j+1 ] j+1 ] { } je{l,...,m}]

Consider the following IVP:

{ XAt = f(t,x(t), telab], 61)

X(to) = Xo,
where x, € R, and assume that

Ifit,x) <A, teT, xeR,
(HD) there exist A,f(¢,x) and 2 f(t,x) such that
B0 <A, |2ft,0 <A, teT, xeR,

for some positive constant A.

8.1 One-stage methods
First, we will discuss the one-stage Runge—Kutta method. Define
Xny1 =Xp + blrn+lfn’

where x,, = x(t,), fn = f(t,,x,), by € R will be determined below. By Potzsche chain
rule, for t € [a, b], we have

https://doi.org/10.1515/9783110787320-008
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1
(F(6.x0))" = Df (£, x(D) + (J %f(o(t),xa) + su(t)f(t,x(t)))ds>f (t,x(1)),
0

where x is a solution of the IVP (8.1). Set, for t € [a, b],

1

g(t,x(t)) = A f(t,x(1)) + (J %f(a(t),x(t) + sy(t)f(t,x(t)))ds)f(t,x(t)).
0

Then
AZ
X~ (t) = g(t.x(t)), telab)].
Now, applying the Taylor formula, we arrive at

X(tyy) = X(by) + X () + Bty EXY (E) + O(F)
= X(tn) + rn+1f(tn’x(tn)) + hz(tn+1’ tn)g(tn’x(tn)) + O(T3)
=Xp+ rn+1fn + hZ(tn+l’ tn)g(trvxn) + 0(1’3).

Hence,

X(tn+l) ~Xpp1 = Xp t rn+1fn + hZ(thrls tn)g(tmxn) + O(rB) —Xp— blrn+lfn

= n+l(1 - bl)fn + hZ(tn+1> tn)g(tn’xn) + O(r3)'

Therefore, the method will be consistent of order p = 1 if we choose b; = 1. Thus,
for b, = 1, we get the Euler method. Note that the Euler method is the only first-order
one-stage explicit RKM.

8.2 Two-stage methods

In this section, we continue with the discussion of two-stage methods. In addition to
(H1), suppose that
of

(H2) =(tx)#0, (t,x)€[ab]xR.
ox

1 1 _ 1 1
Definet,,, € Tast,,  =t, +r,,, Wheret, <t, +r,,, <t,+r,,and

n+1

Xn = X(tn), XT[+1 = Xl’l + r:l+1(blkl + bzkz),

hy(tnr ) 8t Xp)
fit. k- tl ) <t ’ 2\ n+1> "/ nn >’
\S1 f( n Xn) 2 alf( n+1 XYI) + (12f nXn T r:l+l fx(tn)xn)
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where a;, a,, by, b, € R will be determined below. This scheme will be called the two-
stage Runge—Kutta method. We have

X(tnsr) = X(ty + 7o)
= X(ty) + Ty X2 (tg) + Mo(thyys 68ty X)) + O(F)
= X + Toaf (s X) + o )8 (s X) + O(),
Ftraa Xn) = F (b X) + T aBif (6 X0) + O(),
f<tw - hy(tnsns tn) 86w %) )

Tt fitny xn)
hy(tpa b)  8(ts Xe)

:f(tn’xn) + l’},ﬂ fx(tmxn)

Z(tn+l’ )
n+1

hy(tr .t )
k, = a1f(l‘3,+1,xn) + aJ(tn,Xn . 5( r;+1 ) ) gty xy) )

rn+1 fx(trp Xn)

[t X)) + O(rz)

= f(t,, x,) + 8ty Xy) + O(rz),

= al(f(tn’xn) + rr11+1A1f(tn’Xn) + O(rz))

v az(ﬂtn,xn) gty ) | O(rz))

n+1
hy(t: b
= (@ + @) (b Xy) + Ay Af (6 Xg) + 028 (b X) 2T 1 O(F),
n+l
blkl + b2k2 = (bl + bz(al + az))f(tn, Xn)
h, (L st
+ alerrlﬁ—lAlf(tn) Xn) + azbzg(tn,x ) 2 nl+1 O(rz)’
n+l

and

Xny1 = Xp + (bl + bz(al + aZ))r:Hlf(tn’Xn)

+arby(r n+1) Af (b Xg) + @358 (b Xy (b1, 1) + O(r).

Hence,

1 1 1
X(tn+1) —Xp1 = Xp T rn+1f(tn>xn) + h2(tn+1’ tn)g(tn’xn)

— X — (by + by(a; + a2))rr11+1f(tmxn)

—apby(r n+1) Ayf (En> x) — azbzg(tmxn)hz( nep tn) + O(r )
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= (1 - (bl +byla; + a2)))r,11+1f(tn,xn)
— @by (1)) Duf (6 X) + (1= @b )G (b, X (Eh, 1, ) + O(F).

Therefore, we can say the following:
1. If

{ by + by(a; + ay) =1, { by +by(a; + @) = 1,
or
ab, #0 ab; #1,

then the method is consistent of order p = 1.
2. If

bl + bz(al + az) = 1,
albz = O,
azbz = 1,

which is equivalent to

{ a1:b1=O
a2b2:1,

then the method is consistent of order p = 2.

8.3 Three-stage methods

In this section, we derive the three-stage methods and their consistency conditions.
Suppose that (H1) and (H2) hold and t} ; = t, + 7h,; € T, t,, < ty +In.; < bty + Ty Let

kl :f(tn’ Xn)a

Af (s Xn) 1
K= @ feL <t x4 2 X))
2 allf( n+1 Xn) + alZf nXn ¥ fx(tmxn) i
hz(trlH_l) tn)g(tn’xn) >

fx(tn’ Xn)r:H_l

1
k3 = a21f(tn+1’xn) + aZZf(tn’Xn +
Xny1 = Xp t rrll+l(b1k1 +byk; + b3ks),

where ay;, ay, Ay, Ay, by, by, b € R will be determined below. This scheme will be
called the three-stage Runge—-Kutta method. We have

X(t:H-l) =Xpt r111+1f(tn’xn) + hZ(trlH-l’ tn)g(tmxn) + O(rB)’
f(tn + T:HI,X,,) =f(tn’xn) + rr11+1A1f(tn>Xn) + O(r2)>
f<tn’xn + M"l > :f(tnyxn) + Mrl (tn,Xn) + O(rz),

feltyxy) ™ filty X)X
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= f(t,, x,) + r,lHlAlf(tn,xn) + O(rz),

(L 1 t)8 (6 X,) ha(th, 15 )8 (b X)
f(tn>xn+ : n}l(tni)n ; >:f(tn)xn)+ zfnz; :(irln nfx(tn’xn)+0(r2)
x\*'n>*n X\t i/t n+l
hy(E.,,t.)g(t,
=ty + B ) o2
n+1
Thus,

Mf(tyx,) 1
k = tl > <t 4 M
2= anf (tyyp Xn) + Qnof { 6o X + fe(tns x) et

= allf(tmxn) + a11r111+1A1f(tn’Xn) + alzf(tn’xn) + alzr:HlAlf(tn’Xn) + 0(r2)
= (ayy + ap)f (ty xp) + (ag; + alz)rrlHlAlf(tn,xn) + O(rz),

byky = by(ayy + ap)f (g Xn) + by(@y + @)1 Arf (6 Xp) + O(r°),

Af(t > X, ) 1
ks = ayf(t:,,, a(t, —mwonsy,
3 Zlf( n+1 Xn) + 22f wXn T fx(tn’xn) n+1
= a21f(tn’xn) + a21rr11+1A1f(tn’Xn)

h2(t111+1> tn)g(tn’ Xn) +

+ Agof (b, Xp) + gy : O(rz)
rn+1
Ry (1 t)8 (b X)
= (ay +a22)f(tn’xn)+a21r:1+1A1f(tn’Xn)+a22 2l 1n = 4+ O(r2)>
n+1

b3k3 = b3(a21 + azz)f(tn,xn) + a21r31+1A1f(tn,Xn)
Ry (b )8 (s X
+ b3a22 2( n+1 Il)g( n n) + O(rZ)’

n+l

and

bik; + byky + bsks = (by + by(ay; + agy) + by(ax + ax))f (b, x,)
+ (by(ay + ary) + b3y o Ayf (b Xo)

hy(t ., t,)g(t,
+ byax 2(bnen 1,,)g( mXn) +0(r%),

n+1

rr11+1(b1k1 + baky + bsks) = (by + by(ay + ap) + bs(ay + azz))rrlmf(tmxn)
+ (bylay + ay) + b3a21)(r,11+1)2A1f(tn,xn)
+ b3phy(ty,g, )8ty X) + O(),
Xt = X + (by + by + ar) + b3(@y; + ) paf (b X)
+ (Dy(ay +ap) + b3y )(rh,1) Daf (6, X,)

+ b3a22h2(t,11+1, tn)8 (tns Xy) + O(r3).

Hence,
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X(tr11+1) ~Xpy1 =Xp t+ rr11+1f(tn’xn) + hZ(tr11+1’ t)8 (> Xn)
= Xn = (by + by(ay + ap) + bs(ay + azz))riﬂf(tn)xn)
— (bylay +ay) + b3azl)(rrlz+1)2A1f(tn»Xn)
- b3a22h2(t,11+1, tn)g (tn Xy) + O(rz)
= (1= (by + by(ay, + ay) + b3(ay + )i of (b Xy)
— (bylay +ay) + b3azl)(r;lq+1)2A1f(tn»Xn)
+ (1= b3ap)hy(tn,ys )8t Xy) + O().

Therefore, we can say the following:
1. If

{ by + by(ay; + ap) + b3(ay + ay) =1,
by(ay; + ayy) + bsay # 0

or

{ by + by(ay + app) + bs(ay + ay) =1,
bsay # 1,

then the three-stage method is consistent of order p = 1.
2. If

by + by(ay +ap) + bs(ay +ap) =1,
bz(all + alz) + b3a21 = 0,
b3a22 = 1,

then the three-stage method is consistent of order p = 2.

8.4 s-Stage methods

Here, we briefly give the general form of an s-stage Runge—Kutta method. Suppose that
(H1) and (H2) hold and t},,; = t,+1y,; € T, t, < t, +7h,; < t, +Tp,1. The general s-stage
RK method can be written in the form

S
1
Xpe1 = Xp + T Z b]-kj,
j=1

where
kl :f(tn’xn)) k] = k](f’ Alfsfx)> ] € {2, .. :S}>

are determined so that the method is consistent of order p > 0. To determine the coeffi-
cients bj,j € {1,...,s}, we use the Taylor expansions off, x, kj,j €{1,...,s},of orderp >
0 so that the considered s-stage method is consistent of order 1 or 2, or so on, up to p.
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8.5 Numerical examples

In this section, we solve examples with the Runge—Kutta methods. In the first two, the
time scale is chosen as the set of real numbers and the initial value problem is treated
with both two- and three-stage Runge—Kutta methods. The third example is the initial
value problem solved by using the trapezoid rule in Example 5.7.

Example 8.1. Consider the initial value problem

T (8.2)

{ XAt)=-XL te[L,5] R,
x(1) =1.

where T = R. We will use a two-stage Runge—Kutta method given by

Xp = X(tp), Xpi1 = Xp + r,lHl(blk1 + byk,),

hy(th Lt gt x,)
k = t, , k, = tl , (l’, 2\*n+1> 'n . n>“An >’
1 f( n Xn) % alf( n+1 Xrl) + a?f nXn + r},+1 fx(tn)xn)

where ay,a,, b, b, € R are chosen according to the consistency conditions given as
follows.
In order that the method is consistent of order p = 1, we should have

{ by +by(a; + ap) =1, { by +by(a; +ay) = 1,
or
a;b, #0 @b, # 1.

The method is consistent of order p = 2 if

{ 01=b1=O
azbzzl.

We take
to = 1, XO = X(l) = 1,
and

1 _ 1 _
tn+1_tn+rn+1_tn+r’

where the step size r is constant. Note that on the time scale T = R we have o(t) = t,
u(t) =0forallt € R, and XA(l') = x'(t), t € R. For the given initial value problem, we
have

x°t 2t

f(t,X) = - m’ fx(t>x) = _m:
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(Xt + )1+ ) - 26t

0 o/ Xt
8620 = 2ft0) = 5( ) .

1+ 82 (1+t2)2
(—kt%(l + )+ X2+ ) =264 23t - 2 + 82
= - = , teR

(1+1t2)?2 (1+t%)2

We also have
1 2
1 (trs1 — tn)

hy(tns1 ta) = %

so that
20t
X oty b)) 8(te, Xy) B r’ < (1+£2)2 VI ( 2ty — X5+ X0t )
" o filtexy) T2 _le_; mT\T (14 £2)
Then the two stage Runge—Kutta method becomes
1 20t (2
Xty Xtui 0 — 3 2t (1+87) Nty

kl_

- =- ~a ,
1+ 72 e 2

Xnt1 = Xp + r(blkl + bzkz))

1+62

wherexozl,to:1andt}l+1:tn+rforn:0,...,§.

We note that the differential equation in the given initial value problem is a sepa-
rable first-order equation and the exact solution is obtained as follows. The separation
of the variables gives

dx  tdt
X2 1+t¥

telR,

and hence, upon integration,

1 1

—=ZIn(1+t)+C, teR,

x 2

where C is an arbitrary constant to be determined from the initial condition x(1) = 1.

Since the general solution is

1

t)= ——————,
*0 C+In(V1+¢t?)

telR,

the initial condition gives C = 1 - In V2, so that the exact solution of the given initial
value problem is

1
1-InV2+In(Vi+ )

x(t) = teR
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We perform the computation with MATLAB for different values of the step size r
and the parameters a;, a,, by, b,.

First, we take a two-step Runge—Kutta method, which is consistent of order p = 1,
by choosing a; =0.5,a,=0.5, b; =0, b, =1, so that b; + b,(a; + a,) =1and a;b, =0.5 #0.
We choose two different step sizes r = 0.4 and r = 0.2. The approximate solution and
the exact solution for r = 0.4 are compared in Table 8.1, and their graphs are shown
in Figure 8.1, and for r = 0.2, a similar comparison is given in Table 8.2 and Figure 8.2.

Table 8.1: The values of the exact solution x© and approximate solution x@ fora, = 0.5, a, = 0.5,
b;=0,b,=1,andr = 0.4.

t x© x@
1.00 1.00000000 1.00000000
1.40 0.83610569 0.82440541
1.80 0.72689842 0.71475735
2.20 0.65112992 0.64034943
2.60 0.59597683 0.58661715
3.00 0.55410290 0.54593378
3.40 0.52119030 0.51397716
3.80 0.49458255 0.48813533
4.20 0.47257163 0.46674406
4.60 0.45401491 0.44869523
5.00 0.43812096 0.43322319

1
* computed solution
O exact solution
09 1
?
0.8 4
k) R
07t .
=
®
0.6 Q 1
X
]
0.5 Q 1
@
® ]
04 Il Il Il Il Il Il Il
1 1.5 2 25 3 35 4 4.5 5
t-axis

Figure 8.1: Approximate and exact solutions for a, = 0.5, a, = 0.5, b, =0, b, =1,and r = 0.4.
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Table 8.2: The values of the exact solution x'® and approximate solution x? for a; = 0.5, a, = 0.5,
by =0,b,=1,andr=0.2.

t x© x@
1.00 1.00000000 1.00000000
1.20 0.90956601 0.90569467
1.40 0.83610569 0.83064648
1.60 0.77621269 0.77023829
1.80 0.72689842 0.72090282
2.00 0.68580268 0.68000476
2.20 0.65112992 0.64561723
2.40 0.62152805 0.61632553
2.60 0.59597683 0.59108015
2.80 0.57370048 0.56909231
3.00 0.55410290 0.54976102
3.20 0.53672088 0.53262209
3.40 0.52119030 0.51731229
3.60 0.50722171 0.50354384
3.80 0.49458255 0.49108614
4.00 0.48308407 0.47975238
4.20 0.47257163 0.46938976
4.40 0.46291742 0.45987213
4.60 0.45401491 0.45109446
4.80 0.44577464 0.44296859
5.00 0.43812096 0.43542003

1
*  computed solution
O exact solution
o9f % .
®
0.8 q
R
) ®
X 07F 4
®©
* @
®
©
0.6 o] 1
®
R
®
®
0.5 [} 1
® e
® g9
® @
0.4 | | | | | | |
1 15 2 2.5 3 3.5 4 4.5 5
t-axis

Figure 8.2: Approximate and exact solutions for a; = 0.5, a, = 0.5, b; =0, b, =1,and r = 0.2.
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Second, we take a two-step Runge—Kutta method, consistent of order p = 2, by choos-
inga; =0, a, =2, b; =0, b, = 0.5, so that the consistency condition is satisfied. We
choose again two different step sizes r = 0.4 and r = 0.2. The approximate solution
and the exact solution for r = 0.4 are compared in Table 8.3, and their graphs are
shown in Figure 8.3, and for r = 0.2, a similar comparison is presented in Table 8.4
and Figure 8.4. The results of the numerical computation show that, as expected, with
the second choice of the parameters providing consistency order p = 2, we obtain a
higher accuracy.

Table 8.3: The values of the exact solution x® and approximate solution x' for a, =0,a, = 2,
by =0,b,=05,andr = 0.4.

t ) o)
1.00 1.00000000 1.00000000
1.40 0.83800000 0.83610569
1.80 0.73096768 0.72689842
2.20 0.65606530 0.65112992
2.60 0.60108796 0.59597683
3.00 0.55910166 0.55410290
3.40 0.52597162 0.52119030
3.80 0.49911903 0.49458255
4.20 0.47686763 0.47257163
4.60 0.45808680 0.45401491
5.00 0.44198867 0.43812096

1
*  computed solution
O exact solution
09 4
®
0.8 1
° &
S507r 1
x
&
0.6 & 4
&
&
05r & 4
&
&
[«
0.4 | | | | | | |
1 1.5 2 25 3 3.5 4 4.5 5
t-axis

Figure 8.3: Approximate and exact solutions fora, =0,a, =2,b; =0, b, =0.5,and r = 0.4.
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Table 8.4: The values of the exact solution x® and approximate solution x® fora; = 0,a, = 2,
b;=0,b,=05,andr =0.2.

t %@ %@
1.00 1.00000000 1.00000000
1.20 0.90975000 0.90956601
1.40 0.83662799 0.83610569
1.60 0.77701742 0.77621269
1.80 0.72789574 0.72689842
2.00 0.68691711 0.68580268
2.20 0.65230745 0.65112992
2.40 0.62273252 0.62152805
2.60 0.59718493 0.59597683
2.80 0.57489755 0.57370048
3.00 0.55528005 0.55410290
3.20 0.53787296 0.53672088
3.40 0.52231457 0.52119030
3.60 0.50831701 0.50722171
3.80 0.49564869 0.49458255
4.00 0.48412150 0.48308407
4.20 0.47358118 0.47257163
4.40 0.46390012 0.46291742
4.60 0.45497191 0.45401491
4.80 0.44670715 0.44577464
5.00 0.43903017 0.43812096

1
* computed solution
O exact solution
oof @ 1
®
0.8 4
®
2 &
%07kt @ 1
=
®
®
0.6 ® ]
®
®
& ®
0.5 ® ® 4
® g
®
®
® @
04 Il Il Il Il Il Il Il
1 1.5 2 25 3 3.5 4 4.5 5
t-axis

Figure 8.4: Approximate and exact solutions fora; = 0,a, =2, b, =0, b, =0.5,and r = 0.2.
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Example 8.2. We consider again the initial value problem from Example 8.1, that is,

T 12

A _ Xt
{ x°(t) = te[1,5] CRR, 8.3)
x(1) =1,

where T = R. We will use a three-stage Runge—Kutta method given by
kl :f(tn)xn))
Af (tn, Xn) 1
k= auf(t. . x,)+a (t,x g )
2 llf( n+l n) 12f n>n fx(tn’xn) n+1
hZ(t:wl’ tn)g(tn’xn) )
filtn Xty )

1
ks = axf(ty,1,Xn) + a22f<tn’xn +
Xpi1 = Xp + r,lHl(blk1 + bk, + bsks),

where ay;, ayy, @y, ay, by, by, b3 € Rwill be chosen according to the following condition
for consistency of order 2:

bl + bz(all + 6112) + b3((121 + azz) =1,
by(ay + ap) + b3ay =0,
b3a22 = 1,

As in the previous example, we take
to=1 Xo=x(1)=1, and t, =t,+7h. =t +1,

where the step size r is constant. From Example 8.1 we have

2
x°t 2xt
t)X = T T t)X =TT
[0 = -7 htn=-7
23t - X + X8
t,x)=———, XxteR,
g(t,x) 1107
and compute
2 2
x“(1-1t9)
Af(t,x) =fi(t,x) =—-————=, x,teR
Employing also
tto—t)?
hz(trlz+1>tn) = —( nl n) >
2
we get
Af (s Xy) 1 Xn(1-£2)

_ =X, +7r s
T ftexy) T 2t,(1+82)
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Myt )8 (b Xn) _ r<2xth -x; +x§t§)

feltwx)rh 2\ 2t (1+82)

n

We choose the parameters involved in the three-stage Runge—Kutta method as fol-
lows:

b1=0, b2: 5 b3:1,

1
2

agp=1 ap=1 ay=-1 ap=1
so that we have

by +by(ay +ap) + bs(ay + axp) =1+ 11+ +(-1+1) =1,
bz(all + alz) + b3021 = %(1 + 1) + (—1) = 0,
b3(122 = 1,

and the condition for consistency of order two holds. Then the three-stage Runge—
Kutta method becomes

Xntn
kl_ __2)
1+t
2
- _ szztzwl _ fn ( an(l—trzl)>
2 1+, )2 1+ 26,0+8))°
o 20t XA (2
~ XAt - (6 = 5( 2, (14E2) )ty
P+ (E,)? 1+£2 ’

1
Xpi1 = Xp + r<§k2 + k3>,

Wherexo=1,t0:1andt,lm:tn+rforn=0,...,é.

Recall also that the exact solution of the given initial value problem is obtained
as

1

t) = s
x(0 1-1n V2 +In(V1 + 2)

teR

We perform the computation with MATLAB for 3 different values of the step size r,
that is, r = 0.2, 0.4, and 0.8. The approximate solution and the exact solution for
r = 0.2 are compared in Table 8.5 and their graphs are shown in Figure 8.5, and for
r = 0.4, a similar comparison is presented in Table 8.6 and Figure 8.6. Finally, the
approximate solution and the exact solution for r = 0.8 are compared in Table 8.7 and
their graphs are shown in Figure 8.7.

The results of the numerical computation show that, as expected, the stage-three
Runge-Kutta method provides a better approximation than a two-stage method.
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Table 8.5: The values of the exact solution x‘® and approximate solution x9 forr=0.2.

t x© %@
1.00 1.00000000 1.00000000
1.20 0.90956601 0.90893033
1.40 0.83610569 0.83559010
1.60 0.77621269 0.77599029
1.80 0.72689842 0.72695577
2.00 0.68580268 0.68608085
2.20 0.65112992 0.65156958
2.40 0.62152805 0.62208100
2.60 0.59597683 0.59660686
2.80 0.57370048 0.57438122
3.00 0.55410290 0.55481550
3.20 0.53672088 0.53745193
3.40 0.52119030 0.52193029
3.60 0.50722171 0.50796395
3.80 0.49458255 0.49532234
4.00 0.48308407 0.48381815
4.20 0.47257163 0.47329776
4.40 0.46291742 0.46363408
4.60 0.45401491 0.45472114
4.80 0.44577464 0.44646985
5.00 0.43812096 0.43880484

1
*  computed solution
O exact solution
oo 1
@
08 b
®
o @
‘>.é 0.7 ® b
x ®
®
0.6 ® ]
®
®
& ®
05 ® s |
® s
®
@ @
0.4 | | | | | | |
1 1.5 2 2.5 3 3.5 4 4.5 5
t-axis

Figure 8.5: Approximate and exact solutions for r = 0.2.
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Table 8.6: The values of the exact solution x® and approximate solution x9 forr = 0.4.

t x© %@
1.00 1.00000000 1.00000000
1.40 0.83610569 0.83259459
1.80 0.72689842 0.72603732
2.20 0.65112992 0.65213300
2.60 0.59597683 0.59795040
3.00 0.55410290 0.55653392
3.40 0.52119030 0.52381116
3.80 0.49458255 0.49725594
4.20 0.47257163 0.47522753
4.60 0.45401491 0.45661836
5.00 0.43812096 0.44065556

1
*  computed solution
O exact solution
09r =
®
0.8 r =
%) @
§ 0.7r 1
<
®
0.6 ® 4
&
&
051 & d
&
[
<]
04 Il Il Il Il Il Il Il
1 1.5 2 25 3 3.5 4 4.5 5
t-axis

Figure 8.6: Approximate and exact solutions for r = 0.4.

Table 8.7: The values of the exact solution x'© and approximate solution x9 forr = 0.8.

t x© x@
1.00 1.00000000 1.00000000
1.80 0.72689842 0.71381132
2.60 0.59597683 0.59831702
3.40 0.52119030 0.52801758
4.20 0.47257163 0.48044577
5.00 0.43812096 0.44601078
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1
* computed solution
O exact solution
09r 1
0.8 [ b
2 Q
071 1
<
06 ® ]
&
051 1
&
]
04 Il Il Il Il Il Il Il
1 1.5 2 2.5 3 3.5 4 4.5 5

t-axis

Figure 8.7: Approximate and exact solutions for r = 0.8.

In the next example, we will consider the treatment of the initial value problem from
Example 5.7, but we consider the time scale T = alN,, for a positive a, instead of
T = No.

Example 8.3. Consider the IVP associated with the linear dynamic equation

A 1 1
x (t) = —x(t)+ =——, x(0) =a, 8.4

()= X0 + 5 X(0) (8.4)

where ¢ € [0,10]y, . We will apply a two-stage Runge—Kutta method with two different
choices of the parameters, one resulting in a consistency order p = 1, and the other

resulting in the order of consistency p = 2.

We take
th =0, x4=x(0)=aq,
and
bt = b+ Ty =t 41

where the step size r is constant. Note that on the given time scale T = alN, we have
o(t)=t+a, u(t) =aforallt € T. For the given initial value problem, we have

1

X
t,X) = — + ——
60 t+1 t2+1

1
, t,x)=——, teT,xeR.
AUEY t+1

We will apply the Potzsche chain rule to compute g(t, x). First, note that
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AF(t,x) = ft+ a,x; - f(t,x)

X 1 X 1
(t+a+1 + (t+a)2+1) B (m + m)

a

= — X - A+a , teT, xeR,
t+Dt+a+1) E+D{(t+a)?+1)

and

f(a(t),X+su(t)f(t,X))=f<f+a”5“( e ))

t+1 t2+1
1
x+sa( —)
= GE + 1 , teT, s,xeR,
t+a+1 (t+a)?+1
so that we have
0 1 sa
o(t),x +su(t)f (t,x , teT, s,xeR.
af(() HOf (X)) = t+a+1 (t+1)(t+a+1)

Then, we compute

1
g(t,x) = Af(t,x) + <J %f(O(t),x +su(bf (e, X))A8>f(t, Xx)
0

X 2t +a

C(t+Dt+a+l) (E+D(E+a)R+1)
1

+ I( ! + 5d >As <L+ 1 )
. t+a+1 (t+)(t+a+1) t+1  t2+1

_ b B 2t +a
t+Dt+a+1) E+D(t+a)?+1)

1

< X 1 >< S s‘a >

+| —+ +

t+1 t2+1/\t+a+1 2t+D{t+a+1)/|p
X 2t +a

C(t+D(t+a+l) (E+D(E+a)R+1)

+< X . 1 )( 1 + a ) teT, s, xR
t+1 t2+1/\t+a+1 20t+D(t+a+1)

We also have

(tn+1 )(tr11+1 th-a) r(r-a

hZ(thrl’ ) 2 = 2
Let
hy(th, 1 ty) gty Xy,)
Qn=Xn+ rr;+1 n _f(tn Xn).
n+1 X\t tn
Then
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r(r—a) 1

Q,=x,+

+<t +1 t <+a+1 2(n+1)(z,+a+1)>]

2+1>
=X, + (t, +1) [( 2yt a >

(t, +1)t +a+1) (t§+1)((tn+a)2+1)

[( 2t, +a )
(t, +1)(t +a+1) (trzl+1)((tn+a)2+1)

i) ey )]
th+1 2+1)\t,+a+1 2(tn+1)(tn+a+1) ’

Then the two-stage Runge—Kutta method becomes

X 1 X 1 1
k= =2+ 5 k2=a1<1 Tt T >+a2< % e )
t+1 th+1 g tl (t,) +1 Li+1 th+1

Xny1 = Xp T r(blkl + b2k2)>

wherex, =, t, = Oand t},, = t, +rforn = O,...,?.

We perform the computation with MATLAB for different values of the parameter a,
the initial value a, the step size r and the parameters a;, a,, b, b,.

First, we take a two-step Runge—Kutta method consistent of order p = 1 by choos-
inga; =0,a,=0.5b; =05, b, =1, sothat b; + b,(a; + a,) =1and a,b, = 0.5 # 1.

We choose a = 0.4, x(0) = a = 1and r = 0.8. The approximate and exact solutions
are compared in Table 8.8 and their graphs are shown in Figure 8.8.

Then we take a = 0.2, x(0) = a = 1, and r = 0.4. The approximate and exact

solutions are compared in Table 8.9 and their graphs are shown in Figure 8.9.

Table 8.8: The values of the exact solution x'© and approximate solution x9 fora = 0.4, a; =0,
a, =0.5,b;=05,b, =1,andr = 0.8.

t x© x@
0.00 1.00000000 1.00000000
0.80 2.65911330 2.65241379
1.60 4.29312420 4.30967564
2.40 5.82142631 5.85573599
3.20 7.30182274 7.35036839
4.00 8.75998114 8.82121628
4.80 10.20649681 10.27967998
5.60 11.64626723 11.73100179
6.40 13.08181407 13.17786764
7.20 14.51455340 14.62177969
8.00 15.94533686 16.06363841
8.80 17.37470556 17.50401440
9.60 18.80301900 18.94328598
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25
* computed solution
O exact solution
20 & 1
&
&
&
15 ® 1
%)
5 o
V! ®
10 & .
®
®
®
5 ® b
@
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0 | | | | |
0 2 4 6 8 10 12
t-axis

Figure 8.8: Approximate and exact solutions fora=0.4,a; =0, a,=0.5, b;=0.5, b, =1,and r=0.8.

Table 8.9: The values of the exact solution x®) and approximate solution x fora = 0.2,a; = 0,
a,=05,b;=05,b,=1,andr =0.4.

t x© x@
0.00 1.00000000 1.00000000
0.40 1.82564103 1.81615385
0.80 2.68827709 2.67990887
1.20 3.51981834 3.51563446
1.60 4.31615069 4.31575117
2.00 5.08753630 5.09010707
2.40 5.84262105 5.84755645
2.80 6.58699088 6.59389658
3.20 7.32411400 7.33273643
3.60 8.05617463 8.06634743
4.00 8.78458851 8.79619940
4.40 9.51030240 9.52327331
4.80 10.23396853 10.24824368
5.20 10.95604855 10.97158705
5.60 11.67687725 11.69364847
6.00 12.39670271 12.41468320
6.40 13.11571227 13.13488380
6.80 13.83404989 13.85439804
7.20 14.55182789 14.57334107
7.60 15.26913509 15.29180388
8.00 15.98604260 16.00985928
8.40 16.70260803 16.72756617
8.80 17.41887848 17.44497269
9.20 18.13489285 18.16211857
9.60 18.85068352 18.87903686

10.00 19.56627768 19.59575530
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25
* computed solution
O exact solution
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Figure 8.9: Approximate and exact solutions fora = 0.2,a; = 0,a, = 0.5,b; = 0.5,b, = 1,and
r=0.4.

Table 8.10: The values of the exact solution x© and approximate solution x9 fora = 0.4,a, = O,
a,=1,b;=0,b,=1andr =0.8.

t x© x@
0.00 1.00000000 1.00000000
0.80 2.65911330 2.70482759
1.60 4.29312420 4.37622615
2.40 5.82142631 5.93815579
3.20 7.30182274 7.45071010
4.00 8.75998114 8.94031362
4.80 10.20649681 10.41787140
5.60 11.64626723 11.88843233
6.40 13.08181407 13.35460156
7.20 14.51455340 14.81784515
8.00 15.94533686 16.27904663
8.80 17.37470556 17.73876842
9.60 18.80301900 19.19738481

Second, we take a two-step Runge—Kutta method consistent of order p = 2 by choosing
a, =0, a, = 0.25, b; = 0, b, = 4 so that the consistency condition is satisfied.

We choose a = 0.4, x(0) = a = 1and r = 0.8. The approximate and exact solutions
are compared in Table 8.10 and their graphs are shown in Figure 8.10.

Finally, we take a = 0.2, x(0) = a = 1and r = 0.4. The approximate and exact
solutions are compared in Table 8.11 and their graphs are shown in Figure 8.11.
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Figure 8.10: Approximate and exact solutions fora = 0.4,a, =0,a, =1,b; =0,b, =1,and r = 0.8.

Table 8.11: The values of the exact solution x© and approximate solution x9fora = 0.2, a, =0,
a,=1,b;=0,b,=1,andr = 0.4.

t x© x@
0.00 1.00000000 1.00000000
0.40 1.82564103 1.83230769
0.80 2.68827709 2.70072505
1.20 3.51981834 3.53737714
1.60 4.31615069 4.33843059
2.00 5.08753630 5.11431504
2.40 5.84262105 5.87376394
2.80 6.58699088 6.62241056
3.20 7.32411400 7.36375045
3.60 8.05617463 8.09998473
4.00 8.78458851 8.83254016
4.40 9.51030240 9.56237100
4.80 10.23396853 10.29013479
5.20 10.95604855 11.01629706
5.60 11.67687725 11.74119547
6.00 12.39670271 12.46508030
6.40 13.11571227 13.18814063
6.80 13.83404989 13.91052175
7.20 14.55182789 14.63233706
7.60 15.26913509 15.35367626
8.00 15.98604260 16.07461118
8.40 16.70260803 16.79520002
8.80 17.41887848 17.51549037
9.20 18.13489285 18.23552156
9.60 18.85068352 18.95532631

10.00 19.56627768 19.67493210
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Figure 8.11: Approximate and exact solutions fora = 0.2,a;, =0,a, =1,b; =0,b, =1,andr = 0.4.

8.6 Advanced practical problems

Problem 8.4. Let T = $N,. Consider the IVP

{ L) =x@)? +t%, telo,9],
x(0) =1.

Write a two-stage Runge—Kutta method with r = %
Problem 8.5. Let T = R. Consider the IVP

{ XA(t) = OF L3t telo,5),
x(0) = -1.

Write a two-stage Runge—Kutta method with r = 0.4.
Problem 8.6. Let T = R. Consider the IVP

XAt = sin(x()) + &1, te[0,7),
x(0) =1.

Write a three-stage Runge-Kutta method with r = 0.2.
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9 The series solution method — SSM

In this chapter, we develop the series solution method for Cauchy problems associated
with dynamic equations and Caputo fractional dynamic equations. The method uses
the Taylor series expansion of an unknown function and can be applied to first-order
dynamic and fractional dynamic equations having a nonlinearity of polynomial type.
It can also be extended to linear higher-order equations with nonconstant coefficients
[12].

9.1 Preliminaries on series representations

We will start with some preliminary definitions and notations. Suppose that T is a time
scale with forward jump operator o, delta derivative operator A, and A-differentiable
graininess function u. Fix ¢, € T. Let h; (-, ¢;), k € N, denote the monomials on time
scales and Sﬁ,") the set of all possible strings of length n containing exactly k times o
and n — k times A operator. For example, ng) has the form

5;2) = {goA, oAo, Aaa}.

First, we give the following result which plays a crucial role for the deduction of
the series solution method. Its proof is based on the Taylor formula, Leibnitz formula,
and some of the properties of the monomials h,(-, ¢;).

Theorem 9.1. For every m,n € N, one has

Bty to) (s to) = Z( y hﬁ,\"'"(to,to)>hl(t,to)

l=m Al,m Esirll)

foranyt,t, € T.

Proof. If m = 0 or n = 0, the assertion is evident. Suppose that m # 0 and n # 0. By
the Taylor formula, we have

(o) AI
hy(t, to)hy(t. ty) = Z(hn(t, to)h,(t, ty)) |t=t0h1(t’ ty), ttyeT.
=0
By the Leibnitz formula, one has
Al d Ay Ak
(ha(t,to)hy(t, )" = Y () Hp'“(t, to))hm (t.ty), ttyeT.

20 e

If 1l < m, then

https://doi.org/10.1515/9783110787320-009
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228 —— 9 The series solution method - SSM
U A
(h,(t, to)hny(t. ty)) = Z Z h™ (¢, t0)>hm_k(t, ty), ttyeT.
k=0 "p eSO
From here, for I < m, we have h,,_;(t;,t;) = 0 and
AI
(hn(t: t)h(t,60)) |y, =0, tto € T.

For I = m, using that hy(t. t,) = 1, we get

1 m-1
(alt bt t))" |y, = Z( > hﬁ’*(ﬁto>)hm-k<t,a>lr=to

k=0 Ay es?
£ Y Bt
A eSY
Alm
= ) h(tety), tityeT.
ApeS?

Hence, using the fact that A} ,, consists of m times ¢ and [ — m times A, and

fo=f or fO=f+uft
fUU —f or foa =f+HfA+HO(fA+HfA2),

and so on, we obtain

(o) Al
ot t)hm(tt) = Y ((t, to)hpn(ts o)) e, It to)
1=
oo
Alm
= Z( Y (o, to)>h1(t, to)
l=m Al,mes;ll)
m+n A
=y ( D hnl""(to,to))hl(t, ty), titye',
l=m Al,mesr(vll)
which completes the proof. O
Consider an infinite series of the form
(o)
Y Qhi(tty), ttg €T, t>ty, (9.1)
i=0
for some constants Q,, r € Ny. Define the constants C, ; ; as
A
Cori= . H" (ot 9.2)

(r)
Npjg ESH

wherer e {k-1,...,k}, 1 € {0,...,k}, k > r, and the constants Q,,, as
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Q = Qr;
© Kk (93)
= > Y QuiQuiiCrip
k=r I=k-r

forr,k € Ny, k > r,and n € N, n > 1. Using these notations and the result in Theo-
rem 9.1, for ¢, t, € T, we compute the following:

2

(Z Qihy(t, t0)>
i=0

M8
M~ TO'MS

Q;Qjhy(t, to)h;(t, )

M8é‘>

QQ_ihy(t, to)hyey(t, tp)

k A
-1 z< z h r’k_l(to’to)>hr(t)to)>.

rek=1 N, es?,

T
o
T

D~
o
Q

T
<}

Il
Mg
/-~

~
I
(=}

Now, we employ the constants C, ;, defined in (9.2), and arrive at

2
0 0 k k
(Z Qihi(t,to)> = Z(Z QQ Y, c,,k,,h,(t,t()))
i=0 k=0 \I= r=k-1
o k k
=22 D QQCrrh(tty)
k=0 1=0 r=k-1
© oo k
=2 ) Y QuQuiCrrhi(t to)
r=0 k=r I=k-r
= Z Qz,rhr(t> t())) t, to e T.
r=0
In a similar way, we compute
3

18

2
Qihi(t, to)> (Z Qhy(t, to))
QZlhz t t0)><z Ql] j t t0)>

j=0

(Zah(t to)>

1l
o

F'Mg m

Il
I8
Mg I~ ©

k

> QuiQuiiCr iy (t, t)

)
k

1]
18

> Qz,lal,klcr,k,l)hr(t’ to)

r \I=k-r

1
o

k

Qs h(tty), ttyeT.

1}
Mg

T
o
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Generalizing this representation, we end up with the following formula:

n

(i Qihy(t, t0)> = i Quy(tty), ttyeT, neN. (9.4)
o r=0
9.2 The SSM for dynamic equations

Consider the Cauchy problem

A _
{ Yo = f(ty(), t>to, (9.5)

y(to) = Yo,

where f : T x R — Ris a given function and y, € R is a given constant. Suppose that
the nonlinear function f has the form

flty) = Z a, () () +ay(t),
where
a,(t) = OZOZAI-,I,h,-(t, ty), pef0,....n}, ttyeT,t>t, (9.6)

i=0

and the coefficients 4; , are given real constants fori € Ny, p € {0,...,n}. The prob-
lem (9.5) is equivalent to the integral equation

t
y(t) =yo + Jf(u,y(u))Au, t,ty €T, t >t
to

or, equivalently,
y(t) =y + J(Z Wyw) Py aO(u)>Au, t,to €T, t > t,. (9.7)

We will search a solution of the equation (9.7) of the form
(o)
y(t) = Y Bihi(t,tg), ity €T, t > by, (9.8)
i=0

where B;, i € N, are constants which will be determined below. Let
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k (9.9)

> B 1BiiiCrip
Il

[ M8

wherer, k,s € Ny, k > r, s > 2. Then, using (9.4), we obtain
vy Z Jh(tty), pefl,...n), tig €T, t>t,

Consequently,

Il
18

a,()O) = Y Aphi(t,to) Z it to)

Iy
<}

I
18
M=

k
> AyBy i iCrpihy (t o)
i

T
o
T
=}

T

Al,po,k—lCr,k,l>hr(t’ to), t, to € T, t> to,

T
o

Il
Mg
M8

=~
]
<

I=k-r

wherep € {1,...,n}. Let

co k
= Z Z A1pBpiiCrii- (9.10)
k=r I=k-r
Then
a,)(y(©)" zDrph (t,ty), ttoeT, t>tg (9.11)
r=0

where p € {1,...,n}. Now, using (9.10) an (9.11), we get

[ee] ¢ n [ee] (]
Y Bily(t,to) = yo + J(Z ( . Drph(w, t0)> + ) Aosh(w, fo)>AU
i=0 §, \p=1\r=0 =0

n oo (e8]
=Yo+ 2. Y Dyphra(tite) + Y Ay hy(tt), ttg €T, t >ty (9.12)
p=1r=0 r=0

whereupon

By = Yo,

9.13
B—ZD11P+A011, ieN. G13)

p=1
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9.3 The SSM for Caputo fractional dynamic equation

Suppose that T is a time scale with forward jump operator o, graininess function p,
and delta differential operator A, and that T has the form

T ={t,: ne Ny},
where

nlLrgo t,=00, 0oty =t,, neNy w= niergoy(tn) > 0.

Assume that the graininess function y is delta differentiable. First, we will recall the
Laplace transform on time scales.

Definition 9.2. Let T, be a time scale such that 0 ¢ T, and supT, = co. Let f :
T,y — C and define the set

D(f) = {ze((::l+zy(t);&0forallte”ﬂ"o

(]
and the improper integral J f)eZ,(y,0)Ay exists},
0

where €2, (y,0) = (eg; ° 0)(y, 0) = e (0(), 0).
The Laplace transform of the function f is defined as

L)) = jf(y)egzw, 0)Ay, (9.14)
0

for all z € D(f).

Other concepts needed in the definition of the fractional A-derivative are the shift
of a function and the convolution of two functions on a time scale.

Definition 9.3. For a given function f : T — C, the shift (delay) of f is denoted by f
and defined as the solution of the shifting problem

{ uAf(t, a(s)) = —ubs(t,s), teT, t>s> to» (9.15)

u(t, to) = f(t), teT, txt,.

Example 9.4.
1. Letf: T — C be any function where T is either R or Z. Then the shift of f is

fOs)=f(t-s+ty), t=s=t.

2. Theshift of e;(t, ty), where t,t, € Tand t > ¢y, is
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em)(t, s) = ey(t,s), t,se T and areindependent of ¢,.

3. Letf: [ty,00] — C be a function of the form
f&) =Y agh(t,t),
k=0

where the coefficients q;, satisfy
|ay| < MR",

for some M, R > 0 and k € N,. Then the shift of f has the form

fOs) =Y ahy(t,s), tseT, t=s=t,.
k=0

In particular, we have

hm)(t,s) =h(t,s), tseT, t=s=t,, and ke N,

Definition 9.5. For functions f, g : T — C, the convolution f * g is defined as

t
f+g)t) = Jf(t a(s))g(s)hs, teT, t=t,. (9.16)

to

The convolution is associative, that is, (f * g) * h = f * (g = h).

Next, define the generalized A-power function, the Riemann-Liouville fractional
A-integral and A-derivative, and the Caputo fractional A-derivative on the time scale
T in the form given above. Take a € R arbitrarily.

Definition 9.6. The generalized A-power function h,(t, ¢;) on T is defined as

1
Za+1

ha(t,t0)=£_1< )(t), t >t

for all z € C\{0} such that £! exists. The fractional generalized A-power function
h,(t,s) on T is defined as the shift of h,(t, ¢;), that is,

h,(t,s) = hﬂ)(t, s), tseT, t=s=t,.

The series solution method employs the following property of the generalized
A-power functions.

Theorem 9.7. Leta,f € R. Then

(ha(‘> t()) * hﬁ(':to))(t) = ha+ﬁ+1(t) to), teT.
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Definition 9.8. Let a > 0 and let [-a] denote the integer part of —a. For a function
f : T — R, the Riemann-Liouville fractional A-integral of order a is defined as

(I8 (&) = f(2),
(Ig,tof)(t) = (hae1 (5 to) * £)()

t
_ Jha,/l(ﬁo)(t, o)) (w)Au (©17)

to
t

- J ha (. 0)f WA,

to
fora >0andt > ¢,.

Definition 9.9. Leta > O, m = —[-a],and f : T — R. Fors,t ¢ "ll“"m, s < t, the
Riemann-Liouville fractional A-derivative of order a is defined by

Dy f (t) = DY Iy “f(t), teT, (9.18)
if it exists. For a < 0, we define

Dy f(t) =Lof 1), tseT, t>s.

r _ (9.19)
Iy f(t) =Dy§f(t), t,seT, t>s, r=[-al+1

Remark 9.10. Noting that the generalized monomials h,(t, t;) on the set of real num-
bers R are computed as

ha(t,to)z,c*l(sz)(t): (tr_(;f;) L txty,

we observe that if T = R, that is, if the A derivative is replaced by the classical deriva-
tive, the Riemann-Liouville fractional A-derivative defined in (9.18) becomes the usual
Riemann-Liouville fractional derivative.

Using these definitions, the Caputo fractional A-derivative is defined as follows.

Definition 9.11. Forafunctionf : T — R, the Caputo fractional A-derivative of order a
is denoted by CDZJO and defined via the Riemann-Liouville fractional A-derivative of
order a as follows:

m-1 X
Dy, =Diy, (f(t) = Y Iyt o) (to)>, t>t,, (9.20)
k=0

where m = [a] + 1ifa ¢ Nand m = [a] ifa € N.
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Another representation of the Caputo fractional A-derivative is given in the follow-
ing theorem.

Theorem 9.12. Leta > 0,m=[a] +1ifa ¢ Nandm = a, ifa € N.
1. Ifa ¢ N then

Dy f(6) =IX DY, f(6), teT, t>t,
2. Ifa e Nthen
Dy fO =), teT, t>t,

Remark 9.13. Regarding the result of Theorem 9.12, if T = R, the Caputo fractional
A-derivative defined in (9.20) becomes the usual Caputo fractional derivative.

Let CDg,to denote the Caputo fractional A-derivative. Suppose that @ > 0 and that
m = —[-a]. We will consider the Cauchy problem associated with the Caputo fractional
A-derivative given as

DX y(t) = f(t, y(b), t >t
{ ae YO =fLy(0), t>t, (021)

Dy y(0) = by, kefo,...,m-1}
where f : T x R — R is a given function and b, € R for k € {0,...,m — 1} are given

constants.
We suppose that the nonlinear function f has the form

f(t’)/(t)):< —a-1(> to)*(Z ())/() +ao(')))(t),

where

ay(t) =Y A hi(t,ty), pefo,....n}, (9.22)
i=0

and the coefficients A;p, are given real constants fori € Ny, p € {0,...,n}.
It can be shown that the Cauchy problem (9.21) is equivalent to an integral equa-
tion of the form

m-1 n

= ) hilt to)b; + (ha—l(" to) * (h—a—l('> to) * <Z a, o) + ao(-)>>>(t)
Jj=0 p=1
m-1

= ) hit, to)bj+< (5 to) * (Za )(y() +ao(-)>>(t). (9.23)
=0

We will search for a solution of the equation (9.23) of the form
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y(t) = Y Bihi(t, ty), (9.24)
i=0

where B;, i € N, are constants to be determined from the equation. As in the previous
section, we let

Bl,r =B,
© K (9.25)
Z Y By 11B1jeiCrip
k=r l=k—r
wherer, k,s € Ny, k >r,s > 2, and have
20)8 Z tty), pell,....nh. (9.26)
Also we use the fact that
a, () Z D, ph,(t,to), (9.27)
r=0
where p € {1,...,n}. Hence, we obtain
Z Bihi(t’ tO) = Z b]h](t: tO)
i=0 j=0
n (o) (o)
+ <h—1(', to) * (Z ( Y Dyl to)) + z Aoyl (s to)))(t)
N 1\ 7= =
= Y bhj(t,to) + Z Z D, h,(t,to) + ZAO (b)), (9.28)

I
o

j p=1r=0

which implies the following relation for the computation of the coefficients B; in the
series representation of y:

n
Bi=bi+ ) Dip+Ag; i€{0,...,m-1},
L (9.29)
B; = ZDLp +Ag, Teim,..., L
p=1

Because of the nonlinear structure of the function f involved in the fractional dynamic
equation, the recurrence relation (9.29) is also nonlinear.

9.4 Numerical examples

In this section, we consider some particular examples of Cauchy problems associated
with dynamic equations and Caputo fractional dynamic equations on time scales.
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Example 9.14. In the first example, we will apply the series solution method to a dy-
namic equation used in population growth models, known as the logistic model. The
logistic model on an arbitrary time scale is described by the Cauchy problem

(t) K

N(to) =N0. '

Here N(t) is the size of the population of a certain species at time ¢ and N(t,) = N,
is the initial size of the population. The constant a represents the proportionality
constant which is large for quickly growing species like bacteria and small for slowly
growing populations like elephants. The constant K stands for the carrying capacity
of the system, that is, the size of the population that the environment can sustain for
the long term.

The logistic model discussed here is different from the model solved in Exam-
ple 7.22. The logistic equation given in Example 7.22 was proposed by Bohner and
Peterson [1] who argued that this model is more suitable as a generalization of the
continuous logistic differential equation. On the other hand, the dynamic equation
given in (9.30) appears quite often in the literature as the logistic model on time scales.

We will consider this model on the time scale T = aZ for some positive constant a.

As noted above, the Cauchy problem (9.30) can be written as an integral equation
of the form

t
N(t) = Ny + J @(1 - A%)Au, t.ty € az, (9.31)
fo

which is a nonlinear Volterra integral equation of the second kind [10]. We will take
the initial time as ¢, = 0 and the initial population as N, and apply the series solution
method to solve this integral equation. Let

N(t) = ) Bihy(t,0) = ) By;i(t,0), t € az.
i=0 i=0

Then,

5 [oe) oo o0
(N@)" = (ZBuhi(t, 0)>(ZBuh,-(t, 0)> =Y B,,h,(t,0), teaZ,
i=0 j=0 r=0

where
oo k
By =) D BuBixiCrip

k=r l=k-r

for r € N,. We insert these series into equation (9.31) and get
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[ee]
Y B,h,(t,0) = Ny +
r=0

(—\
LV18

1 [ee]
B,h,(u,0) - > Bz,rh,(u,0)>Au
r=0

1l
&
+

QIR O~
~ ~ QIR
M8

Brhr+1 (t,0) - ZBZr r+l(t 0)>

*
Il
o

BT KB2r> r+1(t) 0)) t e a”Z.

-
1l

1]
5
+
0M8
—
QIR

Therefore, we have

BO = No,
a (9.32)
B, = EB’ KB2” forall r € Ny,

We recall that on T = aZ the forward jump operator is o(t) = t + a. The first five
monomials h,(t,0), n = 0,1,2,3,4 are as follows:

hy(t,0) =1,

h](t: 0) = t,
t

hz(t)O) = JXAX = t(t;a))
0
t

hy(t, 0) = J Xx-a), _tt- a)6(t - 20)
0
t

o) - [ D20, MU 23D gy
0

To compute the first few coefficients B, ,, we consider the series expansion of N 2 given
as

(N(6)) = (Boho(t, 0) + Byhy(t, 0) + Byhy(t, 0) + Byhs(£,0) + -+ -)°

= ByBy + (ByB; + BBy)t + BlBlt + (ByB, + B,By) t(t D

2 2 2
U )+Bsz—t(t D +---, teaz,
2 4

+ (BB, + ByBy)

and we note that

t* = ah,(t,0) + 2h,(t,0),
2t -1)

= 2ah2(t, 0) + 3h3(t, 0),
2t - 1)

3 = azhz(t, 0) + 6ahs(t,0) + 6h,(t,0), tec aZ.
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As a result, we obtain for t € az,

(N(®O)* = Y Byuhy(t,0)
n=0

+ (BOBZ + BZBO + ZBlBl + 2aBle + zaBzBl + aszBz)hz(t, 0) + e

Then, the recurrence relation (9.32) yields

By = N,
B, = SBO - %Bz,o = SBO - %BOBO’
B, = % - % = gBl - %(BOBl + BB, + aB,B,),
B; = g 27 % 22
- SBZ - % (ByB, + B,B, + 2B,B, + 2aB,B, + 2aB,B, + a’B,B,).

Then, the solution N(t) has the form

(t-a) t(t—a)(t—Za)+.__

N(t) = By + Byt + B, S +Bs . , teaz
On the time scale T = aZ, problem (9.30) can be written as
N(t+a)-N(t) _ aN(o) N(t)
{ T = -tz
N(to) = No,
whose exact solution is computed as
N(t)
N(t+a)=N(t) +aN(t)| 1- X ) where N(0) =Ny, t=>0.

We compute the series and exact solutions of the problem for several values of the pa-
rameters Ny, a, K, and a on the interval [0, 5]. Figures 9.1 and 9.2 show the comparison
of the computed and exact solutions. It can be observed that the exact solution tends
to the equilibrium K after approaching this value. The computed solution remains
close to the exact solution at points close enough to the value 0 at which the Taylor
series representation is considered. This behavior is typical for the series solutions,
moreover, only 4 terms of the series solution are computed.

In Tables 9.1 and 9.2 the exact and approximate solutions are compared for the
values Ny =3, K =20, a = 0.5, and a = 0.4, 0.2. The graphs of these solutions are also
compared in Figures 9.1 and 9.2.

printed on 2/10/2023 4:40 PMvia . Al use subject to https://ww.ebsco. confterms-of-use



240 =— 9 The series solution method — SSM

30 T T T T T T T T T
* computed solution
O exact solution *
25r 1
*
20 1
*
» (@]
% * O
25 o .
z o)
&
10 1
®
@
5 & A
®
®
0 1 1 1 1 1 1 1 1 1

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
t-axis

Figure 9.1: Computed and exact values of the solution with Ng = 3, K = 20, a = 0.5, and a = 0.4.
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*  computed solution
1L O exact solution q

*
10F o A

N(t)-axis
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0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
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Figure 9.2: Computed and exact values of the solution with Ng = 3, K =20, a = 0.5,and a = 0.2.
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Table 9.1: The values of the approximate solution N@(t) and the exact solution N©(¢) for Ny = 3,
K =20,a=0.5,anda =0.4.

t N(ﬂ)(t) N(e)(t)
0.00 3.00000000 3.00000000
0.50 4.02000000 4.02000000
1.00 5.30479200 5.30479200
1.50 6.86389244 6.86389244
2.00 8.70681775 8.66718902
2.50 10.84308437 10.63166132
3.00 13.28220873 12.62368140
3.50 16.03370729 14.48600732
4.00 19.10709646 16.08352209
4.50 22.51189269 17.34333727
5.00 26.25761241 18.26484522

Table 9.2: The values of the approximate solution N@(t) and the exact solution N©(¢) for Ny =3,
K =20,a=0.5,anda =0.2.

t N(ﬂ)(t) N(e)(t)
0.00 3.00000000 3.00000000
0.50 3.51000000 3.51000000
1.00 4.08879900 4.08879900
1.50 4.73937603 4.73937603
2.00 5.46471011 5.46263438
2.50 6.26778027 6.25675751
3.00 7.15156555 7.11663887
3.50 8.11904496 8.03350116
4.00 9.17319753 8.99482998
4.50 10.31700230 9.98472631
5.00 11.55343829 10.98472398

Alarger value for the parameter K is also considered in Tables 9.3 and 9.4 where the ex-
act and approximate solutions are compared for the values N, = 10, K = 200, a = 0.25,
and a = 0.8, 0.2. These solutions are also compared graphically in Figures 9.3 and 9.4.
Finally, the results for the case N, = 8, K = 40, a = 0.5, and a = 0.1 are presented in
Table 9.5 and Figure 9.5, respectively.

Example 9.15. Consider the problem

D3 y(6) = (h_s(,0) » (5% 75 ONY()

(22 B OO, €50, ©33)

y0) =1, y*0)=-1, y*(©0)=2
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Table 9.3: The values of the approximate solution N@(t) and the exact solution N©(¢) for Ny = 10,
K =200,a=0.25anda =0.8.

EBSCChost -

t N (t) N@ ()
0.00 10.00000000 10.00000000
0.25 17.60000000 17.60000000
0.50 30.44096000 30.44096000
0.75 51.08711982 51.08711982
1.00 82.10271927 81.51724043
1.50 185.49919634 158.52657334
1.75 263.00855360 184.82513419
2.00 361.14430976 196.04392063
2.25 482.47070464 199.14618187
2.50 629.55197805 199.82632035
2.75 804.95236982 199.96514341
3.00 1011.23611976 199.99302382
3.25 1250.96746769 199.99860457
3.50 1526.71065343 199.99972091
3.75 1841.02991679 199.99994418
4.00 2196.48949758 199.99998884
4.25 2595.65363564 199.99999777
4.50 3041.08657076 199.99999955
4.75 3535.35254278 199.99999991
5.00 4081.01579151 199.99999998

Table 9.4: The values of the approximate solution N(")(t) and the exact solution N(e)(t) for Ny = 10,
K =200,a =0.25,and a = 0.2.

t N(a)(t) N(e)(t)
0.00 10.00000000 10.00000000
0.25 11.90000000 11.90000000
0.50 14.13839000 14.13839000
0.75 16.76617393 16.76617393
1.00 19.83435571 19.83830413
1.25 23.39393928 23.41240664
1.50 27.49592856 27.54674718
1.75 32.19132749 32.29727334
2.00 37.53113998 37.71361414
2.25 43.56636997 43.83402028
2.50 50.34802138 50.67940300
2.75 57.92709815 58.24688171
3.00 66.35460421 66.50355883
3.25 75.68154347 75.38154726
3.50 85.95891987 84.77547904
3.75 97.23773733 94.54369300
4.00 109.56899980 104.51392172
4.25 123.00371118 114.49354623
4.50 137.59287542 124.28348334
4.75 153.38749643 133.69379578
5.00 170.43857816 142.55852391
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Figure 9.3: Computed and exact values of the solution with Ny = 10, K = 200,a = 0.25, and
a=0.8.
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Figure 9.4: Computed and exact values of the solution with Ny = 10, K = 200,a = 0.25, and
a=0.2.
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Table 9.5: The values of the approximate solution N@(t) and the exact solution N (t) for Ny = 8,
K =40,a=0.5,anda =0.1.

t N(a)(t) N(e)(t)
0.00 8.00000000 8.00000000
0.50 8.64000000 8.64000000
1.00 9.31737600 9.31737600
1.50 10.03207986 10.03207986
2.00 10.78406344 10.78368128
2.50 11.57327861 11.57132995
3.00 12.39967722 12.39372376
3.50 13.26321114 13.24908516
4.00 14.16383223 14.13514803
4.50 15.10149234 15.04915681
5.00 16.07614334 15.98787969
17 T T T T T T T T T
* computed solution
16 O exact solution &
151 & 4
141 @ 1
®
»
2131 d
©
L ®
=12 h
@
1M+ o 1
10+ ® 1
@
9 |- -
@
8 1 1 1 1 1 1 1 1 1

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
t-axis

Figure 9.5: Computed and exact values of the solution with Ny = 8, K = 40, a = 0.5, and a = 0.1.

Here we have a = 14—1 and m = —[—14—1] = 3. Employing the integral equation form given
in (9.23), we can rewrite problem (9.33) as

y() = hy(t,0) — hy(t, 0) + 2hy(t, 0)

v 1
+ (h;o, 0) * h_s(-0) » ((ZO a3ht 0>)y(~>
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o] - 5
+<ZO TG 0))(y<-)) ))(t)
= hy(t,0) — hy(t, 0) + 2h,(t, 0)
+<h_1<-,0>*<< a3 0>> ( TG 0>>(y<->)2)>(t>

= Ro(t, 0) — hy(t,0) + 2hy(t, 0>+<< Sha(0) = b, 0))y<)
0

S i
+ (;) mh—l(', 0) = hy(,, 0)) y() )

= ho(t,0) — hy(t, 0) + 2hy(t, 0)

(Z T h(t 0)) (i i h(t 0)>(y(t))2. (9.34)

Assume that

y(t)= ) B,h,(t,0), teT,t=0, (9.35)
r=0

where the coefficients B, are going to be obtained. Then, by (9.9), we have

() ZBZ,h (t,0), teT, t>0,

(9.36)
where
Bl,r = Br’
oo k
= z Z B1 By j1Cr i 1>
k=r l=k-r
and r € N;. On the other hand,
>y
D,; = By i-iCriep>
Padrall R
Yy o
Dr)z = BZ,k—lCr,k,l' (937)
oL, Prlel

Then, we get

(Z F3hit 0>)y(t> ZDr,lhr(t,O)

0 r=0
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(leﬂ h(tO))(y(t))—ZDrzh(tO) teT, t>0.

i=0 r=0
We substitute these expressions and (9.35) into the equation (9.34) and get

Y B,h,(t,0) = hy(t,0) — by(t,0) + 2hy(t,0) + Y (D, + D, ,)h,(t,0), t €T, t=0.
r=0 r=0

(9.38)
From this equation we conclude

By =1+Dg; + Dy,

By = -1+Dy;+Dy,,

By, =2+D,y; +Dy,,

B, =D, +D,, re{34,. .}

(9.39)

Example 9.16. Consider the problem

DY) = (s (1) (T 5 1) + (B - DY)

(2 FLRGDGOPNO, > 1 (5:40)

y =0 y*) =1

Here we have a = g andm = —[—%] = 2. Employing the integral equation form (9.23),
we can rewrite problem (9.40) as

)/(t):hl(t,l)+<hg(.,l)*h 14 ( 1)*(2% e .1
0

Si-1 S i+1 3
+ <§) mhi(nl))ﬂ') + (i_O mhi(', 1))()’(')) ))(t)
~ hy(t,1)+ (h_1<-, 1 ( > e

2
Si-1 S i+1 3
+ <1=Z(:) mhi(B 1)))’(-) + (;) 730 )(Y(')) ))(t), t>1

Then we obtain

- 1 wi-1
J’(t)=h1(t>1)+<<izzomh1(‘)1)*hi(':1)+(z Th 16, 1) = hy(, 1)))’()

i=0

+<Z ”13 LG * Ry( 1)>(y<-))3)>(t)
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=mmn+(<§ S h6D)

0

+<zi:lmmn>ﬂo+<z. han)@mf)) £>1,
Solth i=0

Assume that
y(t)= ) Bh(t,1), t>1,
r=0

where the coefficients B, are going to be obtained. Then, by (9.9), we have
(o)’ Z By hy(t,1),
() Zthal) t>1,

where

Bl,r = Br’

o k

= > Y ByBiiCrp

k=r I=k-r
o k

By, =Y Y ByBiiCrip
k=r I=k-r

and r € N,. On the other hand, let

Dy=) ) — 114 By x1Crip>
k=r l=k-r
o k
l+1
Ds=) B3 1Crki-
e 23

Then, we get

—h(t, 1)))’“’) = D, 1h,(t,1)
(Z i+4 r;J !

i=0
Qi+l
zm h(t, 1) |y©) 2a¢an t>1
i=0

We substitute these expressions and (9.42) into equation (9.41), which gives
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(e8] e 1
> Bh(t,1) = hy(t,) + Y (5 + Dy + Dy (6. 1), €51, .
i (D= )+r=0<2+r+ it r’3> (6D, > (9.45)

From this equation we conclude
1
BO = 5 + DO,l + DO,}’
1
B =1+ 3t Dy + Dy, (9.46)

1
Br=m+Dr,1+Dr3’ ref23,..}

9.5 Advanced practical problems
Problem 9.17. Find a series solution for the Cauchy problem
Vi =yh-2 y0)=1,

on the time scale T = 27Z.

Problem 9.18. Find a series solution for the Cauchy problem
A 2
Yt =) -y@®, y1)=2

on the time scale T = 2Mo,

Problem 9.19. Find a series solution for the Cauchy problem associated with the frac-
tional dynamic equation

“DLoy(0) = (A (0) * (E% Zhit 0Dy ()

+ (I FLRCONYO)N@,  t>0,
y(0)=-1, y*0)=0, y*¥(0)=1,

where T is any time scale.
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10 The Adomian polynomials method

The Adomian polynomials and the Adomian decomposition method have been used
to find solutions of nonlinear ordinary and partial differential equations by proposing
a series representation for the solution. This method has also been combined with the
Laplace transform method and used to approximately solve some nonlinear problems
for which the series solution method is not suitable [13].

In this chapter, we derive the Adomian polynomial method on arbitrary time scale
and present its application to a dynamic equation of arbitrary order with a nonlinear
term.

Let T be a time scale with forward jump operator, delta differentiation operator,
and graininess function, g, A, and y, respectively.

10.1 Analyzing the method

To derive the Adomian polynomials method, we employ the same notations and re-
sults as in Chapter 9 devoted to the series solution method. By Theorem 9.1, we have

h, (t, $)hy (. s) = Z( D hﬁ"’”(s,S)>hz(t,S)

l=m Al,m ES;rll)

forevery t,s € T.Fors € T, ,m,n € N, set

Comn= Y. Hp™(5.5)

Alvmesf,l,)
and then, for any m,n € N, we have
m+n
Hy(t, hy(t,5) = Y. Cpmnhy(t;s). (10.1)
I=m

Forn € Ny, t,s € T, define the polynomials
Hl(t,s) = (hy(t,s))", t,seT.
Note that
Hy(t,s)H}(t,s) = H}, .(t,s), t,seT.

Moreover,

Hi(t,s) = hy(t,s), tseT, (10.2)

https://doi.org/10.1515/9783110787320-010
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and, by (10.1), we arrive at
H,(t,s) = hy(t,$)hy(t,s)

2
=Y Cahy(t,s)
=1

= Cy11hy(6,8) + Cop1hp(t,S)
= C1,1,1H11(t»5) +Cy11ho(8s), tseT,

whereupon

1

C
hy(t,s) = - HI(t,5) + "

Hy(t,s), tseT,
C2,1,1

and so on. Below we denote by B}l:, i,j € N, the constants for which
H.\(t,s) = Bih(t,s) + B3hy(t,S) +--- + Bl hy(t,s), t,s€T. (10.3)

This notation provides an alternative series representation for a given function defined
on atime scale, that is, a series in terms of H,lz instead of the usual Taylor series in terms
of h,,.

Example 10.1. Leta € R. Then
ex(t,s) =1+ahy(t,s) + azhz(t, S)+---

C
=1+aH, () + a2<—%H11(t, o)+

H§(t,s)> +oee
2,1,1 C2,1,1

C a?
=1+ <a—a2ﬂ +--~)H11(t,s) + <— +--~>H21(t,s) +---, t,5€T.
Cr1a Cr1a

Suppose that u : T — R is a given function which has a convergent series expan-
sion of the form

U= z u;. (10.4)
Suppose also that f : R — R is a given analytic function such that
[ee)
f(u) = Z A, (ug, Uy, ..., uyp), (10.5)
n=0

where A,, n € N, are given by
n

Ag=flug), Ay=Y cvinf(up), neN.

v=1
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Here the functions c(v, n) denote the sum of products of v components u; of u given
in (10.4), whose subscripts sum up to n, divided by the factorial of the number of re-
peated subscripts, i. e.,

AO :f(uo))
A =c(l, 1)f,(u0) = ulf’(uo))
2

Ay = c(1,2)f (ug) + 2, 2)f " (ug) = wof (ug) + %f”(uo),
Az =c(1,3)f (ug) +c(2.3)f " (up) + ¢(3,3)f" (up)

3
wsf” (ug) + wyitof " () + %f”'(uo),

(L, &) () + 2, W " (ug) + B, & () + c(4, 4)f ™ (ug)

2 2 4
wf o) + (s + 2 )" o) + D21 )+ 51 W ),

A,

and so on. Suppose now that u is given by the convergent series
oo
u= Z anrll(x, Xo)» X Xg €'T. (10.6)
n=0

We wish to find the corresponding transformed series for f(u). From (10.4), we have

(o) o0
u= Z u, = Z an,ll(x,xo), X, Xy €T,
n=0 n=0
and hence,
U, = an,ll(x,xo), X, xg €T, neN,.
Thus,
(e8]
flu) = z A, (ug,uy, ..., uy)
n=0
v 1
=f< z ann(x,x0)>
n=0
(e8]
= AM(Cor €y s CHZ( X)), XX € T
n=0
Therefore,

1
An(ug, Uy, .. uy) = AM(Co, Cps - -+ CHQ (X, Xg), XX € T

For n = 0, we have
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Ug = coHé(x,xO) =Cyp XX €T.
Thus,
Ao(ug) = A°(co)Hp(x,Xo) = A%(co).  X,Xo € T.
Forn =1, we find
Ay (ug,uy) = wif' (ug) = A'(Co» COH (6, Xg), XX € T,

or

i H 06 x0)f (o) = Al(cor c)H (6, X)), X,Xg € T,
whereupon

Al(cor€1) = &1f '(up) = &1f ' (co) = Ay (cor €.

For n = 2, we have

Ay(ug, up, uy) = Az(co,cl,cz)Hzl(x,xo), X, Xy €T,

or
u2
uf' (ug) + éf”(uo) = A%(Co> €1, H, (X, X), X, Xg € T.

Then

I (H} (x, X))

S f"(eo) = A%(co, ¢, H (6, X0), X, X € T,

& Hy (6, x)f' (o) +
or
c 1 2 1
(e tc0) + " (co) 30 x0) = A%(concrs Y0 0) Ko € T,

from where

P
c
A%(Co» €1, Cy) = Cof '(Co) + %f”(co) = A,(Cp, €1 Cy).

For n = 3, we find

3
u
usf' (up) + wuf" (ug) + 3—}f”’(u0) = A5(ug, Uy, Uy, Us)

3 1
= A (Co, Cl’ Cz, C3)H3(X,Xo), X,XO € T,
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or

C3H3 (6, X0)f ' (Co) + €13 (6, Xo)f " (%)
3
c
+ 3_l'f”l(CO)H;(X,X0) = AB(Co, Cl’ C2, C3)H;(X, Xo), X,XO € T,
whereupon
! " C? "n 3
csf (cg) + c16of " (xg) + §f (cg) = A%(cy, €1, €3, C3) = A3(Cp, €15 €, C3),
and so on. Therefore we get the following result.

Theorem 10.2. Letu : T — R be a function with a convergent expansion given in (10.6).
Let also f : R — R be an analytic function having the form (10.5). Then

fw) =f< z anrll(x,xO)> = Z Ap(Cos Cry - > CHN, Xg), X Xg € T.
n=0 n=0

The above representation of the function f will be called Adomian polynomial
decomposition of f.

Example 10.3. For a = 1, consider u = e,(x, xy) and f(u) = u?. Using Example 10.1, we
have

(o8]
ex(x,xg) = Z cerln(x,xo), X, Xxg €T,
m=0

where
2 C1,1,1 a
=1 c¢=a-a "+, Cg=——+-,
2,11 G
Note that
2
(ea(X,X0))” = €5 +2¢oCiHy (X, Xg) + -+, X, X € T. (10.7)

On the other hand, by Theorem 10.2, we obtain

(ea(t.x0))’ = Y ApHL(6X0)

m=0

and

Ao(ug) = Ag(co) =1=¢c2,

Al(uo, ul) = le’(CO) = 2COC1,

and so on, i. e., we get (10.7).
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In what it follows, we present the Adomian polynomials method for a dynamic
equation of arbitrary order on a general time scale T. With £ we will denote the
Laplace transform on T. Suppose that ¢, € T. Consider the initial value problem

n n-1
{ VWorayt +eray=f@), t > fo, (10.8)
Y(t) =Yor Y ) =V oer YV (o) =Vnts

whereaq; € R,i€{l,...,n},y; € R,i€{0,...,n -1}, are given constants, f : R — Ris

an analytic functlon. We will search for a solution of the IVP (10.8) of the form
© 1
y() = Y GHj(t,ty), =t
ar

Assume that

f) =Y Aj(co,..,DH; (t,tg), =ty
j=0

Using the fact that

1
‘C(hk(t7 tO))(Z) = %) tZ to, k € NO’

we get

Nlr—‘

(Ho(t th))(z) =

L(H; (t,t0))(z) = ZB’ (hi(t, te))(2) = ZBk S (2l jeN.

Let Y(z) = L(y(t))(z). We take the Laplace transform of both sides of the dynamic

equation in (10.8) and, using the initial conditions, obtain

n-1 n-2
"Y(z) - z 2y, a2 Y (@) - a Z 2y, g+t a,Y(2)

=0 =0
[ j ; 1
=Z A]'(CO""’C)')ZB](% N
j=0 k=1
or
@+ a2+ WY (2) = ZZYn 1t ZZJ/n 21t A Yo
=0 =0
1 X J
+AO(C0 E +Zl A]'(Co, N Z Zk+1
j= k=1
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From this equation, we get

1 n-1 ; n-2 ;
Y(z) = <Z ZYn1a t 4 Z ZYn-2-1

v a " v a\ 5 Pard
+ o+ An_1Yo +A0(C0)E +Z A]-(co,...,c-)ZBkaﬁ .
j=1 k=1

Consequently,

4 1 n-1 ; n-2 )
yt)=L ( (Z ZYp1-1+t 4 Z ZYn-2-1

n n-1, ...
Z"+az" + +an \ (3 )

1R Lo
+'“+an_1y0+A0(CO)E+Z(Aj(co"“’c)kzB]k‘ﬁ>>>(t)’ tZto,
=1

j=1

or, by the linearity of the inverse Laplace transform, for ¢ > ¢,,

n-1 ) Zl
t) = L t
v I:Z(;y”"l‘l <Z"+alz"‘1+-~-+an >( )

n-2 1 ZI
T Zy"—2—1£ <Zn+alzn—l +-e4a >(t)
=0 n

1
n n-1 >(t)
2"+ 2"+ +ay,
1
t
z"+1+alz“+~~-+anz>( )

oS} j
j p— 1
+3( Aicp,....c BJ£1< >t .
]—Zl< ]( 0 )];[ k Zn+k+1+alzn+k+.“+anzk+1 ()

+ AO(cO)L‘1<

After computing the inverse Laplace transform of the right-hand-side, we equate
the coefficients of the functions h(t,t,) on both sides. In general, this results in a
nonlinear system for the constants ¢, k € Nj,.

10.2 First-order nonlinear dynamic equations

As a particular case, we consider an IVP associated with a first-order dynamic equation
of the form

V=f), t>ty Yyt =0, (10.9)

where f : R — Ris an analytic function. We propose a solution of the IVP (10.9) of the
form
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o0
y() = Y GHj(t,ty), =t
Like in the general case, we suppose that

f@) =Y Aj(co,...,DH} (t,tg), =ty
j=0

On the other hand, by (10.3), we have

0 j .
yt)=co+ Y Y B h(t,to), t=to, (10.10)
j=1k=1
and
00 J _
f@) =Ag(co) + Y. Y Ai(Cos ..., Byt to),  t =t (10.11)
j=1k=1
Let

Ly1))2) =Y(2), t=t,
Then, we have
LOAO)@) =2Y (@) - y(ty) = 2Y (@), t =t

Taking the Laplace transform of both sides of the dynamic equation (10.9), we obtain

oo j .
ZY(Z) = £<A0(C0) + Z z A]'(CO: LR ] C])B}khk(t) tO))(Z)

j=1k=1

1 2J 1
_AO(CO)Z+ZZA(CO,..., B, —— o (20
j=1k=1

This yields

1 X 1
Y(Z)=A0(C0);+Zz j(Core > By, k2

=1k

~.

Now, by taking inverse Laplace transform of both sides, we get
o ] .
() = Aog(c)hy(t,to) + Y. Y Ai(Cor.. . B Mttt 2 to.
j=1k=1

Employing (10.10), we have
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0 j . o j .
Co+ Y Y Bt ty) = Ag(Colhy(t,tg) + " Y Ai(Cos- .., B Iy (B, tg),  t =t

j=1k=1 j=1k=1

In order to equate the coefficients of the time scale monomials h; (¢, ;) on both sides,
we reorder the sums as follows:

Co+ (Z ch§>h1(t, to) + Z(chBJ,'()hk(t, to)
j=k

j=1 k=2 \j
= Ag(cohy(t.to) + Y. D Ai(Cor-..» B, Ii(ttg),  t=to.
k=2j=k-1

This results in the following nonlinear system for the constants ¢;, j = 0,1,...:
CO = 0,

¢, = Ay(co) = f(0), (10.12)

M8 T8

B, = > Afco....c)Bl_,, k=2
j=k-1

~
Il
=~

Notice that the system is infinite and nonlinear in its unknowns. However, the nonlin-
earity is of polynomial type.

k
Remark 10.4. If T = R, we have H{‘(t, ty) = he(t. ty) = (t_kt!‘)) for k € N, and hence

Bﬁ( =kl6yjfork e Nandj = 1,..., k. In this case, system (10.12) becomes

COZO,

(10.13)
k!Ck = (k_l)!Ak—l(CO>""Ck—1)’ k= 1,2,3,...,
or simply

1

kAkfl(CO""’Ckfl) k= 1,2,3,...

Cx =

10.3 Numerical examples

Example 10.5. Asa firstexample, we consider an IVP associated with a linear dynamic
equation of the first order having the form

YA(t) = ay(t) + b, y(0) =0, (10.14)

where a, b are real constants. Assume that
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258 —— 10 The Adomian polynomials method

(o)
y(t) = Y GH;(t,0), t20,
j=0
where Gjs j=0,1,..., are the coefficients to be determined. By Theorem 10.2, we have

fy)=ayt)+b =Y Alco,....¢)H;(t,0), t=0,
j=0

where

Ay =flcy) =acy + b,
A, = ¢of'(co) = acy,

2
c
Ay = oof'(co) + 2—1'f”(co) = ac,,

3
c
A; = ¢5f'(co) + c16of ' (o) + 3—1'f'”(c0) = ac;,

c clc, ct
Ay = cuf'(co) + <C1C3 + f)f"(co) + 1Tf’"(Co) + 4—1,f(4)(Co) = acy,

A, =acy,,

sincef'(c,) = aand f (k)(co) = O for k > 2. Therefore, the system (10.12) for this example
takes the form

CO = O,
(8} .
¢:B, =co
,; i (10.15)
8 . 8 .
Y B = Y acB,,, keN, kz2
j=k jok

This is an infinite linear system having the following triangular form:

CO = 0,
clBi + czBf + c3Bf +---=b,
2 3 4 _ 1 2 3 _
C,B; + 3B, + ¢,By + -+ = a(c,B; + ¢;B] + ¢3B] +--+) = ab,
;B3 +¢,B) + csB; + -+ = a(c,B3 + ;B3 + ¢,By +---) = a’b, (10.16)
CpBl + CupBR 4+ - = a(cy 1By + CyBr, +---) = a" b,

The exact solution can be obtained is

y(t) = g(ea(t, 0)-1), t=0.
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We consider the time scale T = alN,. On this time scale, we have

H{(t,0) = Bjh(t,0) = hy(t,0),
H,(t,0) = Brhy(t,0) + Bohy(t,0) = ahy(t, 0) + 2hy(t, 0),
H;(t,0) = B}hy(t,0) + B3hy(t, 0) + B3hs(t, 0),
= a®hy(t,0) + 6ah,(t, 0) + 6h;(t, 0),
H,(t,0) = B{hy(t,0) + B3hy(t, 0) + Byhs(t, 0) + Bih,(t, 0),

= o’hy(t,0) + 140’ hy(t, 0) + 27ahs(t,0) + 24Rt,0), t=>O.

— 259

The infinite system (10.16) has been truncated to n = 4 and solved easily using back
substitution to find ¢y, ¢,, c3, and ¢,. In Tables 10.1 and 10.2, the exact and approximate
solutions are compared for the valuesa = 0.5,a=1,b=1anda =05,a=1,b = 2.
The graphs of these solutions are also compared in Figures 10.1 and 10.2.

Table 10.1: The values of the approximate solution y(")(t) and the exact solution y(e)(t) fora = 0.5,

a=1b=1.

t vy vy
0.00 0.00000000 0.00000000
0.50 0.50000000 0.50000000
1.00 1.25000000 1.25000000
1.50 2.37500000 2.39843750
2.00 4.06250000 4.15625000
2.50 6.59375000 6.79687500
3.00 10.39062500 10.65625000
3.50 16.08593750 16.13281250
4.00 24.62890625 23.68750000
4.50 37.44335938 33.84375000
5.00 56.66503906 47.18750000

Table 10.2: The values of the approximate solution y(")(t) and the exact solution y(e)(t) fora = 0.5,

a=1,b=2.

t ye® vy
0.00 0.00000000 0.00000000
0.50 1.00000000 1.00000000
1.00 2.50000000 2.50000000
1.50 4.75000000 4.79687500
2.00 8.12500000 8.31250000
2.50 13.18750000 13.59375000
3.00 20.78125000 21.31250000
3.50 32.17187500 32.26562500
4.00 49.25781250 47.37500000
4.50 74.88671875 67.68750000
5.00 113.33007813 94.37500000
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60
*  computed solution
O exact solution
50 [ 1
*
40 - B
O
*
@2
S 30F 1
>
-
20 1
®
10 & i
&®
® ®
0 @ ki . \ \ \ \ \ \
0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
t-axis

Figure 10.1: Computed and exact values of the solution witha = 0.5,a =1,and b =1.

120
*  computed solution
O exact solution
100 4
*
80 r 1
O
*
2
S 60 1
>
®
40 B
®
20 r & 4
®
® ®
0 ® @ I I I I I I I
0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
t-axis

Figure 10.2: Computed and exact values of the solution witha = 0.5,a=1,and b = 2.

We also find the approximate and exact solutions of the problem on the time scale
T = R. On this time scale, by Remark 10.4, we have B’,'( = k!6kj fork e Nandj=1,...,k.
As aresult, the infinite system (10.16) becomes diagonal. It has been again truncated to
n = 4 and the values of the constants c;, ¢, ¢3, and ¢, follow directly. The graphs of the
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exact and approximate solutions are compared in Figures 10.3 and 10.4 for the values
a=1,b=-1landa = %, b = 1on the interval [0, 4]. We observe good approximation
near the point t = 0, which is the center of convergence in the series solution.

y-axis

—-===computed solution
— = -exact solution

-50

0 0.5 1 1.5

2

t-axis

Figure 10.3: Computed and exact values of the solution with a = 1, b = -1 on [0, 4].

/|
12 1 | --—-- computed solution ,//7
— = -exact solution ,_//:
10 ’/'/
r /
e
/,'
R/
8r e 1
/,'
>Q< /,’,,
© 7
L 61 p’é ]
c”'
R4
Rd
4 _/’ b
e
'/
L
s
|- ."’ -
2 -
O -’_’_ L L L L L L L
0 0.5 1 1.5 2 25 3 3.5 4
t-axis
Figure 10.4: Computed and exact values of the solution with a = %, b=1o0n[0,4].
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In the next two examples, we take f to be a nonlinear function.

Example 10.6. Consider the initial value problem associated with the first-order non-
linear dynamic equation of the form

Yty =P, t>0, y0)=0, (10.17)

where &) is the exponential function on the set of real numbers. Assume that the
solution has the series representation

o0
y(t) = Y GHj(t,0), t>0,
=0
where ¢;, j € Ny, are the coefficients to be determined. By Theorem 10.2, we have
H_ N 1
f0) =€ = ) Aj(cor.- H(£,0), £0,

where

Ay = f(co) = €,
Ay = ¢f'(co) = 1€,
c? c
A, = oof '(co) + =" (co) = (cz + L )eCO,
2! 2!
3

3
c c
A; = c5f'(co) + 16 (co) + 3—1'f”’(c0) = <c3 +oc* gy > o,

2

A =cf <co)+<c1c3+—)f”< co) + ”f”’( )+—f<“>(c0)

2
s clc, ¢
<c4 +oc 242y —1>eC°,
2 2 41

The infinite nonlinear system (10.12) for this example has the form

or, more explicitly,

EBSCChost - printed on 2/10/2023 4:40 PMvia . All use subject to https://ww.ebsco.conlterns-of-use



10.3 Numerical examples =—— 263

COZO,
clBi+czBf+c3Bf+--~:1,
2

2 3 4 _ . pl 1 \p2

c2B2+c3B2+c4B2+--~_c1B1+<c2+2—!>Bl+--~,
2

3 4 5 _ 1\p2

C3B3+C4B3+C5B3+--~—<C2+2—!>Bz+~--,

Solving this nonlinear system, one can approximately obtain ¢;, i € N, and hence, the
approximate solution of the initial value problem is

Y(6) = ¢;H{(t,0) + C,H)(t,0) + c;H(£,0) +---, = 0. (10.18)

Example 10.7. In the last example, we consider the initial value problem associated
with the first-order nonlinear dynamic equation of the form

YAt =y*+1, y(0)=0, t>0.

Assume that
o0
y(®) = Y GH;(t,0), t>0,
j=0

where the coefficients Cjs j € N, will be determined from the nonlinear system (10.12).
Let

f@) =2 +1=Y Aj(cor....HN(E,0), 20,
j=0

where

Ao = f(Co),
A= C1f/(Co),

2
Ay = sz,(co) + 2_1|f”(co)>

3
A; = c5f'(co) + c16of " (co) + %f”’(co),

! C% " Cfcz " Cf (4)
Ay =cyf (o) +{ 65+ > f" (o) + Tf (co) + Ef (€o)s

Since f'(co) = 2¢o, f"'(co) = 2, and f™(c,) = 0 for m > 3, we obtain
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2
Ag=cy+1,
A =2cy0y,
A, =2coc; + cf,
Aj = 2cqC3 + 2016y,

A, =2coc, + 20105 + 2c§,

The nonlinear infinite system (10.12) becomes

CO = 0,
o .
¢;B, = Ay(co),
,-; T (10.19)
o) . 00 .
Y B = Y Afco....;)B);, k=2
j=k j=k-1
If, in particular, the time scale under consideration is T = Z, then
ho(6,0) =1, M(6,0)=t, hy(t,0) = L= D";{ft‘h D ts0, k=23,...,
and hence, we compute
Hy(t,0) = t = hy(t,0),
H,(t,0) = t* = 2hy(t, 0) + hy(t, 0),
Hj(t,0) = £ = 6h(t, 0) + 6hy(t, 0) + hy(t, 0),
H,(t,0) = t* = 24h,(t,0) + 36h(t, 0) + 14h,(t,0) + hy(t, 0),
-, t>0.
Then, system (10.19) turns into
CO = 0,
Cl+C+C3+C,+--=1,
20, + 603 + 14y + -+ = €2 +20,C, + (261C3 +2C3) + -+, (10.20)
6C5 +36C, + - = 2C2 +12¢,¢, + 14(2c;¢5 +263) + -+, .
24C4 +-- = 6C1C2 + 36(2C1C3 + 2C§) + -,

The nonlinear system (10.20) can be solved by any numerical method for solving a
nonlinear system with the Newton method or the steepest descent methods in classical
numerical analysis.

EBSCChost - printed on 2/10/2023 4:40 PMvia . All use subject to https://ww.ebsco.conlterns-of-use



EBSCChost -

10.4 Advanced practical problems = 265

10.4 Advanced practical problems

Problem 10.8. Apply the Adomian polynomials method to the initial value problem
A 2
y't)=3y"-1, y(0)=0, t=>0,

and derive the infinite system (10.12) on the time scale T = 27Z.

Problem 10.9. Apply the Adomian polynomials method to the initial value problem
A 2
Y=y +2y, y(0)=2 t=0,

and derive the infinite system (10.12) on the time scale T = Z.

Problem 10.10. Apply the Adomian polynomials method to the initial value problem
Y't)=€¢ -1, y0)=1, t>0,

and derive the infinite system (10.12) on the time scale T = R.
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11 Weak solutions and variational methods for some
classes of linear first-order dynamic systems

Let T be a time scale with forward jump operator o and delta differentiation operator A.
Letalso O € T.

11.1 Variational methods for first-order linear dynamic
systems — |

Let T € T and U be a bounded, closed, and convex subset of R. Denote
Ugq = {u(t) : t € [0, T], uis A-measurable and u(t) € U}.
Consider the following problem: find u, € U,; such that
J(uo(-)) < J(u(-)) foranyu € Uy, (L)

where J is the cost functional given by

J(u@)) = J 1(x(t, u), u(t))At, (11.2)

[0,0(T))

and x(-,u) € AC([0, T]) is a solution corresponding to the control u € U, of the follow-
ing problem:

Agpy ;
{ x2(t) = p)x(t) + f(t) +u(t) forA-ae.t € [0,p(T)], (11.3)

x(0) = xq,
with a given x, € R. Here p is a regressive rd-continuous function, f € 1L'([0,T]),
the scalar function I(x, u), along with its partial derivatives {l,,1,}, is continuous and

uniformly bounded on R x U for almost all t € [0, T]. Let
M; = sup le,(t,0)], M, = sup l|e,(t,1)|.
te[0,T] t,7€[0,T]
Define the Hamiltonian H(x, °, u) as follows:

H(, % u) = 106 u) + Y2 (px + f +u).

In the next result, we will give a necessary condition for the positive definiteness of
the defined Hamiltonian.

https://doi.org/10.1515/9783110787320-011
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11.1 Variational methods for first-order linear dynamic systems -1 =—— 267

Theorem 11.1. Let u, be an optimal solution of the problem (11.1) and x,(-, uy) an op-
timal trajectory corresponding to u,. Then it is necessary that there exists a function
Y € AC([0(0), a(T)]) satisfying the following conditions:

(Hy (%o (6), 7 (8), ug (£)), u(t) — up(£))At = 0
[0,0(T))

foranyu € Uy, and

YA(E) = —Hy (1), Y7 (), up (1)) = —pOP° (t) - L (%o (), up(t)),  t € [0(0), T],
P(o(D) = 0.

Proof. Let ¢ € [0,1] be arbitrarily chosen. For u € U,,, define
U, = Ug + (U — Up).

Since U is a bounded, closed, convex subset of R, we have that U, is a closed, convex
subset of L°([0, T]), and u, € U,,. Because u, is an optimal solution of (11.1), we

have
J(uo()) <J(u()), €€[0,1], ueUy
and
iiirg) u(t) = ug(t), tel0,Tl
Observe that

e,(t,0)xq + J ep(t, a(D)(f (1) + u.(1))At
[0,t)

[x.(t,u)| =

< le,(t,0)|Ix0| + j ey (t, a(D))||f (T) + ug(1)|AT
[0,t)

< Mlxol + M, J f (1) + u,(7)|AT
[0,T)

<Milxol+ My [ T edt, | fuolar
[0,T) [0,T)

=M, tel0,T].

Therefore, the sequence {x.(:, u,)}.¢[0,1) is uniformly bounded on [0, T]. Now we take
t;,t, € [0, T] arbitrarily. Without loss of generality, suppose that ¢; < t,. Then

EBSCChost - printed on 2/10/2023 4:40 PMvia . All use subject to https://ww.ebsco.conlterns-of-use



268 —— 11 Weak solutions and variational methods for some classes

e,(ty, 0)xo + J e,(t, o(D)(f(1) + u (1))At
[0,t1)

—ey(ty, 0)xg — J e,(ty, (1)) (f(1) + u (1))AT
[0,5,)

(ep(t0) - €6 )%
+ | (et o) - eyt 0N (D) + ue)aw
[0.t1)

- j ey(ty, o(T))(f (1) + ug(1))AT
[tity)

eyt 0)(1- ep(ty, t))xo

Xt ug) — X (6 u.)| =

+(1-ey(ty, ty)) J ey(t, o(D)(f(1) + u (1))At
[0,t))
- [ elto@)m +umar
[t1ty)
< 1= ey(ty, tr)||ep(t1, 0)|Ixo
+[1-e,(ty ty)] J e, (ty, o(D)|If (7) + u,(7)|AT
[0,t1)
+ J ey (ty, 0(D))||f(T) + u (1)|AT
[t1ty)
—0, as ¢t —¢t.

Hence, {x,(-, ug)}ce(0,1 is €quicontinuous on [0, T]. Also,

e,(t, 0)xq + j e,(t, o(T))(f(1) + u (1))At
[0,6)

- e,(t,0)xo - J ey(t,0(T))(f(1) + up(1))AT
[0,)

= l J e,(t, o(1))(ug (1) - up(1))At
[0,t)

[xe(t ug) — xo(t, up)| =

N

< J e, (t, 0(T))|[ug (1) — up(7)|AT
[0,T)
<M, J |ue (1) - up(7)|AT
[0,T)
-0, as €—0.
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Now, applying the Arzela—Ascoli theorem, we conclude that
X, —> X, inC([0,T]), as e€—0,te[0,T].

Denote

X (t) — xo(£)
—

y(t) = lim te[O,T].

—0

Then y satisfies the following initial value problem:

{ yA(t) =p)y(t) + (u(t) —uy(t)) forA-ae. te[0,p(T)],
y(0) = 0.

We will compute the Gateaux differential J at uy € U, in the direction u — u,. Let
{t:i}icr, I € N, be the set of all right-scattered points of [0, T]. Let also,

ﬁ(t)_{ug(t) ift e [0, T],
e u.(t;) ift e (¢,0(t;)) for somei € I.

Then

0 < lim J(ue () = J(up())
-0 )

_ hm J I(Xg(ta ug): ug(t)) _SI(XO(ta uO)’ uO(t))At

-0
[0,0(T))

_ hm J I()?g(ta ug)’ ﬂg(t)) - I(io(t, uO)) ﬁO(t))dt

-0
[0,0(T))

&

Px, — X,
£—0 [

- lim J <J<<zx(xo + O, - %), Ty + 0@ - Tip)),
[0,0(T)) "0

+ (L(X + 0%, — X)), Uy + Oe(ti — ﬁ£)>>d6>dt

= J (Lo (0), ), ¥(1)) + (L (X (6), o), U(t) - T (£)))dt
[0,0(T)]

(Lo (8), ), ¥ (1)) + (L, (xo (1), ug), u(t) — ug(t)))At.
[0,0(T))

Define the operator
T, : L'([0,T)) — ([0, T])

as follows:
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y(t) = Ty(u - up)(t) = J ey(t,o(1))(u(r) — up(1))At, t€[0,T].
[0,t)

Note that T; is a linear continuous operator. Next, define the functional
T,:¢([0,T]) > R
as follows:

Toy(t) = j (L (X (6), uo (), Y(D)AL,
[0,0(t))

which is a linear continuous functional. Hence,
T,-T,: L'([0,T]) -» R
defined by

T T-u) = [ (o®.up©)yO)AL  te[0,T]
[0,0(t))

is a linear bounded functional. By the Riesz representation theorem, it follows that
there is a Y° € IL°°([0, T]) such that

(L (xo (), up (1)), y(£))YAt = J (u(t) — ug(t), Yo (t))At.

[0,0(T)) [0,0(T))

Then
0< ((Le(xo (0, up (), y(©)) + (L, (xo (), ug (£)), u(t) — uo(6)) )At
= (Lu(xo(6), ug(t)) + Y7 (1), u(t) — ug())At
= (Hy (%o (), 7 (6), ug (), u(t) — ug ()AL, U € Uy

Next,

T,y(t) = (L (xo(8), up (1)), y(t)) At
[0,0(T))

= [ orO-povo.s

[0,0(T))
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- | rowone- [ povo.wron

[0,0(T)) [0,0(T))
“yempem)- | oo [ Gopowron
[0,0(T)) [0,0(T))
= Y(o(D)(a(T)) - j YOO + pOYIOIAL  te[0,T],
[0,0(T))
whereupon
(L (o (6), up (), YOYAE = y(a(T))p(a(T))
[0,0(T))
- j YO0 + POV )AL,
[0,0(T))
or

y(a(T)y(a(T)) - j YO, P ) + pOYT () + L (xo(6), uo () )AL = 0.

[0,0(T))

Then ¥)° can be chosen as the solution of the following backward problem:

PA(t) = —H, (x, (D), Yo (6), ug()) = p(OY’ () - L(xo(8), up(t)), t € [0(0),T],
Y(o(T)) = O.

This completes the proof. O
Below, we will illustrate the previous result with the following examples.
Example 11.2. Let T = Z. Consider the following problem:
minimize J(u(-)) = j u(t)At, ue Uy,
[0,11)

subject to the dynamic equation

XA(t) =x(t)+t+u(t), tel0,9],
x(0) =1.

Here

ot)y=t+1, teT,

T=10, o(T)=11, p(T)=9,
fO)y =t 1x(tu),u(t) = u(®),
pt)=1 teT.
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Then the Hamiltonian is
HOGY%u) = 106u) + PP(px +f +u) = u+ P’ (x + t +u).
Next,

H,(x. % u) =1+y°,
H, (6,97 u) = ¥,
L(x,u)=0.

The necessary conditions for the problem are as follows:

J (1+97(t), u(t) — up(t))At = 0
[0,11)

and

Pt = —9(e), te[1,10]
P(11) = 0.

Example 11.3. Let T = 2%0 y {0}. Consider the problem

minimize J(u(-)) = J (u(t))2At, ue Uy,
[032)

subject to the dynamic equation

X2(t) = ey(t, 0)x(t) + 2 + u(t), te€[0,8],
x(0) =1.

Here

0(0)=1, o) =2t t e 2Mo, T =16,
Iu) =1, ft)=t% pt)=e(t,0), teT.

Then the Hamiltonian is given by
HOo Y% u) = 106 u) + Y0 (px + f +u) = u® + P (ey(t, 0)x + £ + u).
We have

H,(x, Y% u) =2u+y°,
H,(x, Y7, u) = §°ey(t, 0),
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L(x,u)=0.
The necessary conditions for the problem are as follows:

j QQug(t) + PO (t),u(t) — ug(t))At > 0,
[0,32)

and

YA () = —e,(t, 0097(t), t € [1,16],
Y(32) =0.

Exercise 11.4. Let T = 2Z. Write necessary conditions for the problem

minimize J(u(-)) = J (u(t))4At, ue Uy,
[0,64)

subject to the dynamic equation

XAt = tx(t) + 2+ t+u(t), tel0,60],
x(0) = 10.

11.2 Variational methods for first-order linear dynamic
systems — Il

In this section, we will use the notations from the previous section. Consider the fol-
lowing problem: Find u, € U,; such that

J(uo(-)) = inf J(u) = m, (11.4)
uelUy,y
where the cost functional J is given by

J(u@)) = J 16, X° (), u(t))At, u € Uy,
[0,7)

and x(-,u) € AC([0, T)) is a solution corresponding to the control u € U, of the follow-
ing initial value problem:

XA(t) = p(t)x(t) + f(t) + b(t)u(t) A-a.e.te€[0,T],

11.5
x(0) =xy € R, (11.5)

and
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(H1) p:[0,T) — Ris aregressive rd-continuous function,
(H2) feL'([0,T]), b eL?([0,T]),
(H3) 1:[0,T] x RxR — Rissuch that
1. I(t,x,u) is measurable in ¢ for x and u fixed, and continuous in x and u for ¢
fixed, the continuity in x is uniform with respect to u,
2. I(t,x,u)is convex in u for each t and x,
3. There exists a constant L > 0 such that

|1t x, )| < Luf, te[0,T], x ueR
We have that the problem (11.5) has a unique solution given by the expression

x(t) = ey(t, 0)xq + j e,(t,o(n))(f(1) + b(T)u(r))Ar, te[0,T).
[0,t)

Foru:[0,T) — R, define its extension to the real-valued interval [0, T) as follows:

B {u(t) ift €[0,7),
u(t) =
u(t) ifte(t, o), iel,

where {t;};c;, I € N, is the set of all right-scattered points of [0, T). For u € L%([0, T)),
define the operator

Tu = u.

Note that T is a linear continuous operator. Now, we will give a criterion for the exis-
tence of an admissible control.

Theorem 11.5. Suppose that (H1)-(H3) hold and —co < m < oo. Then there exists an
admissible control uy € U,, such that

J(ug) = m.
Proof. Since —co < m < o0, there exists a sequence {u,,(-)} e Such that
inf = li =m.
of J = lim ) =m

We have that {u,(-)},en is bounded in I.2([0, T)), and hence, {Tu,,(-)},cx is bounded in
T(U,y)- Therefore, there exists a subsequence, relabeled as {Tu,(-)},cn, Such that

Tu,() — 2z(-) inL([0,T)).

Letv € 1.2([0, T)). Then Tv € L%([0, T]) and
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I V(t) (un(t) — up(t) )AL = I Tv(t)(Tuy(t) — Tug(t))dt
[0,T) [0,T]

— 0, asn— oo.
Therefore,
u, — u, weaklyin IL’([0, T)), as n — co.
We have

x(t, u,) = ey(t, 0)xq + J ey(t, o(T))(f(1) + b(T)u,(1))At,
[0,t)

x(t,ug) = e,(t,0)xy + J ey(t,0(D))(f(T) + b(D)uy(1))Ar, t€[0,T).
[0,6)

Also,

|x(t,uy)| =

e,(t,0)xy + J ey(t, o(T))(f(1) + b(T)u,(1))AT
[0,t)

< |e, (£, 0)xo| +

J e,(t, (1)) (f(1) + b(T)u,(1))AT
[0,t)

< Mol + [ lep(t,o@)|(f®)] + b un(e
[0,t)

< My|xo| + M, J If (0)|AT + M, J |b()|[un(7)|AT
[0,t) [0,t)

< Mylxo| + M, J [f(r)]AT+M2< J |b(T)|2AT> < j |un(‘r)|2AT>
[0,t) [0,6)

[0.)

< M lxo| +Mz||f||1L1([o,T)) + M2||b||1L2([o,T)) lualli2o,y) ¢ € [0, T].

Consequently, the sequence {x(-, u,)},n is uniformly bounded on [0, T]. Now take
t, t, € [0, T] arbitrarily. Without loss of generality, suppose that ¢; < t,. Then

|X(tl’ up) — x(ty, un)| =

e,(ty, 0)xo + J e,(t, o(D))(f(1) + b(1)u,(1))AT
[0,t1)

—e,(ty, 0)xg — J ey(ty, o(T))(f (1) + b(T)u,(1))AT
[0,t;)

< le, (61, 0)|[1 - e, (6, t1)[IX
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+ ’ J (ey(ty, 0(1)) = e,(ty, (1)) (f (7) + b(T)u,(T))AT
[0.6))

+ ’ J ey(ty, o(T))(f (1) + b(T)u,(1))AT
[tty)
< My|1-e,(ty, ty)|Ixo]

+ My1- eyt )] J (F@)| + |bD)|[un(0)])AT
[0,t)

+ J e, (ty, a(D)|([f (T)] + |b(T)||[un(T)])AT

[t1:82)

—0, as t;—tb.
Therefore {x(-, u,)},cn is equicontinuous on [0, T]. For any fixed ¢ € [0, T), define
¢(1) = {€,(0,0(1))b(1), T € [0,1), T € [t, T)}.
We have that ¢(-) € L%([0, T)). Using that
u, — u, weaklyinL*([0,T)), asn — oo,
we get

nli_)rgoep(t,o) J ep(0,0(1))b(T)u,(T)AT
[0,t)

=¢e,(t,0) J e,(0,0(1))b(T)ug(1)Ar, t€[0,T].
[0,t)

Hence, using the representations of x(-, u,) and x(-, u,), we conclude that
[x(t,u,) - x(t,ug)| > 0, as n— oo, te[0,T]
Therefore, by the Arzela—Ascoli theorem, it follows that
”X(', Up) = X(-5 uO)”C([o,T]) — 0, as n— oo.

By Mazur’s theorem (see the Appendix E), it follows that for every positive integer k
and positive integers n(k), m(k) increasing with k and n(k), m(k) — oo, as k — oo, we
can construct a suitable convex combination of {Tuy(-)};cn such that

m(k)

Tvi() = Y ayTuy() = Tug()  inL([0,T)),
j=1
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as k — co, where
m(k)
@420, Y ay=1, je{l,...,m}

We have
m(k) ,
Vi() = ) @Vgo() = up()  inL([0,T)), ask — oo.
j=1
Therefore, there exists a subsequence, relabeled as {v;(-)};en» such that

Vi(t) = ug(t) A-ae. tel[0,T).

Then

j I(t, x(a(t), ug), up(t))At

J(up)

m(k)
= lim J l(t,x(a(t),uo), D akjun(k)+j(t)>At
j=1

m(k)

+k1££10 J (l(t,x(a(t),uo),uo(t)) - l(t,x(o(t),uo), z AUy 1(t)

[0,T) =1

m(k)
= lim J l(t,x(a(t),uo), Z akjun(k)+,~(t))At
j=1

k—o00

[0.7)
m(k)
lim Z a J (6, X(0(6), o), gy (D)L

k—o0

B [0,T)
m(k)
= 11m Z ak} J I(t,X(O'(t), un(k)ﬂ-), un(k)ﬂ-(t))At
T o
m(k)

IN

— 277

)

+klggo Y ay J (It x(0 (1), Uo )» Ungio () = Lt X(T(E): Ungy)> Ungry1(6))AL

o)
m(k)

- lim Z a J (6, X(0(0), Ugers;) (D) gy (O)AE

k—o0

B [0,T)
m(k)+1
= lim ai;](u ).
koo Z k)J( n(k)+])

j=i

For any € > 0, there exists a K > 0 such that k > K implies

|](un(k)+]~) - ml < E&.
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Hence,

m(k)

Y. @I (o) = m)

j=1
m(k)

< Y al Uygpog) - m|
j=1

m(k)
<€ z Ay
j=1

Y. Qi (g ) — | =

m(k) ‘
j=1

=¢
Therefore, there exists an admissible control u, € U,; such that
J(up) =m.

This completes the proof.
Now, we will illustrate the above result with the following example.

Example 11.6. Let T = Z. Consider

) = au(t), te[0,10),
x(0) =1, x(10) =0,

Juo) =5 [ @oys

[0,10)
where a € R, a # 0. Here
GO =t+l pO=0, fO=0,teT, I =d
HO Y% u) =l u) + PP (px +f +u) = %uz +ap’u, te0,10).
Then

H,(x,°,u) =u+ay’,
H,(x,%°,u) =0, tel0,10),

and the necessary conditions are as follows:

u(t) +ap’(t) =0, Yi(t) =0,
x(0)=1, x(10)=0, te€]0,10).

We have
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W(t)=C, u(t)=-aC, x(t)=-d’C,
x(t) = x(0) — a’Ct =1 - d°Ct, t € [0,10).

Now using that

x(10) = 0,
we get
0 = 1-104°C,
whereupon
1
C=—
1042
and the optimal trajectories are
u(t) = L x(t)=1- it t € [0,10)
~10a’ 7107 T

respectively.

Exercise 11.7. Let T = 3Z. Consider

X2(t) = x(6) + 3u(t), ¢ e [0,30),
x(0)=-1, x30)=0,

J(u()) = J (u(t))’At.

[0,10)

1
2

Find the optimal trajectories.

11.3 Advanced practical problems

Problem 11.8. Let T = 4Z. Write necessary conditions for the problem
minimize J(u(-)) = J (u(t) + (u(t))3)At, ue Uy,
[0,88)
subject to the dynamic equation

1
1+¢t2
x(0) = 15.

At = x(t) + t* + u(t), te[0,80],
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Problem 11.9. Let T = 3™ U {0}. Write necessary conditions for the problem
minimize J(u(-)) = J (2u(t) - 4(u(t))5)At, ueUy,
[0,243)

subject to the dynamic equation

XA(t) = ey(t, 0)x(t) + cos(t,0) + u(t), te[0,27],
x(0) = 18.

Problem 11.10. Let T = 2No y {0}. Consider
X2(t) = —tx(t) + u(t), te[0,128),
x(0)=1, x(128) =0,

J(u()) = j (u(t)*At.

[0,128)
Find the optimal trajectories.
Problem 11.11. Let T = 3No y {0}. Consider

XA(t) = ey (t, 0)x(t) + u(t), te[0,243),
x(0)=1, x(243)=0,

2
Juon- [ -0

1+ u)?*
[0,243)
Find the optimal trajectories.
Problem 11.12. Let T = 4™° y {0}. Consider

xX(t) = 3cos, (t, 0)x(t) — 7u(t), t € [0,1024),
x(0) =1, x(1024) =0,

2
Ju) =7 [ 2O

1+ )
[0,243)

Find the optimal trajectories.
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equations

Let T be a time scale with forward jump operator o and delta differentiation operator A.
Letalsoa,b € T, a < b.

12.1 Existence of solutions

We will start with the following useful theorem.

Theorem 12.1. Suppose that the function f : R x R — R satisfies the following condi-
tions:

1. f(,-) is lower semicontinuous on R x IR,

2. f=0andf(&,-)is convexon R for every ¢ € R. Set

Joou) = j FO(e), u(®))At.
[a,b)

If X e Wptnen € LY(T) and x,, 2 x, Uy 2 win L\(T), then

JOow) < lim J(xp, ).

Proof. Let {X,}nens Wnlnen € L1(T) and x,, > x, uy, % win LY(T). Then there exists a
positive constant ¢ such that

J(xpu,) <c, neN.
Set
a,(t) = f(x,(t), uy(t)), teT.

By Mazur’s theorem (see the Appendix), it follows that there are AT > 0, € {1,...,k,},
neN,and a € L'(T) such that

k, k,
Z)lj" =1, a(t)= Z/\}’amj(t) S a(t) A-ae.onT, asn — co.
j=1 j=1

Since x,, 2 xin ]Ll(T), asn — oo, it follows that there exists a subsequence, relabeled
as {x,}nens such that

X,(t) = x(t) A-ae.onT, asn — oo.

https://doi.org/10.1515/9783110787320-012
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282 — 12 Variational methods for nonlinear dynamic equations

Define
W, x, a, +B)(t) = {v e R:f(x(t),v) < a,t) +B,(t)}, teT,

and, fory € R, set

Ba(t) = max {0, minf(x(0),v) - ay ()},

at) = max{O,yun(t) - sup yv},
VEW(F ., +B,)(0)
(v, W, x,a, +Bp)(t)) = max{o,yv - sup yz}, teT.
zeW(f x,a,+B,)(t)

Note that
B,—0, d —0, asn— oo,
in Lebesgue A-measure. Hence,

Ba(t) >0, d\(t) >0 A-ae.onT,asn— oo.

Let
B (W(y,x,a, +B)(),dy(t)) = {ve R: & (v, W(f,x,a, + B,) (1)) < d(t)}.
Then
up(t) € B(W(f,x,a, + Bp)(t), d,(t)) A-a.e.onT, neN.
Set
K
Up =Y AUy, neN, = ZA";;,H,, dy = ZA” -
Jj=1 j=1
Then
w(t) € B(W(f,x,a, +B)(6),d(t)) A-ae.onT,neN,
w, —u, B, —0 asn— oo, Aae.onT,
and

u(t) e B'(W(f,x,a)(t),0) A-a.e.onT.

Assume that {y, },cn is dense in R. Then
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W, xa)t) = | B"(W(f,xa)®),0) A-ae.onT.

nelN

Because y € R was arbitrarily chosen, we get

u(t) e W(f,x,a)(t) A-a.e.onT.
Thus,

fx@®),u®) < a(t) A-ae.onT.
Hence,

Jx,u) < J a(t)At

[a,b)
= J lim a) (t)At
n—-oo
[a,b)
< lim j a, (At
n—.oo

[a,b)

- lim j (At = Tim J(x, ).
n—.oo n—.oo

la,b)
This completes the proof. O

Let U,; be a nonempty, closed, convex subset of I'(T), and I';(T) be the corre-
sponding set. Consider the following problem: Find u, € U,, such that

J(ug) <J(u) forallu e Uy,
where

J) = J g(x(1),x’(1))AT + J h(u(t))Ar, (12.1)
[a,b) [a,b)

and x is a weak solution of the following dynamic system:

XAt + pOX°(t) = f(t,x(t),x° (1)) + u(t), t>a,
x(a) =xg € R, (12.2)

ueUy,

p € Iy(T), and f, g, and h satisfy the following conditions:
(H1)
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1. f: TxRxR — RisA-measurableint ¢ T and for all x;,x,,y;,¥, € R,
x| < p, x| < p, lyal <p, ly,l < p, we have

|f(f:X1:)’1) —f(t>X2J’2)| < L(|X1 =X+ 1y —)’2|)» teT,

for some constant L = L(p) > O.
2. There exist a constant A € (0,1) and a function g € L!(T) such that

[Fit. x| <a)@+ X+ "), xyeR, teT.

(H2)
1. g:RxR — Rislower semicontinuous.
There is a constant ¢ € R such that
gx,y)=c, x,yeR.
(H3)

1. h:R — Risconvex.

h(u)

2. 11m|u|é00 Tl

= 0.

Note that for any u € U,,, by Theorem D.58, it follows that the dynamic system (12.2)
has a unique solution

x(t) = egp(t, a)xg + j eop(ts )(f(1,x(1),x° (1)) + u(1))A1, t€[ab).
[at)

Theorem 12.2. Let p € T;(T) and (H1)-(H3) hold. Then the problem (12.1), (12.2) has at
least one solution.

Proof. 1f
inf J(u) = oo,
uelUy,y
then the theorem is proved. Assume that there is a constant ¢ < co such that

inf J(u) <c.
uelUy,y

By (H2)(2) and (H3)(2), it follows that ¢ > —co. Then there exists a minimizing sequence
{Up}nenw € Ugq such that
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c <J(uy,)
= J 8(X,(1), %, (1))AT + J h(u,(1))AT
[ab) [ab)
1
<c+-—
n

for any n > N and for some N € N. Here x,, is the weak solution of the controlled
system (12.2) corresponding to the control u,,. By (H3)(2), it follows that for any § > 0
there exists a 8 = 0(6) such that

h(u) = 6(6)|u|
for all [u| > 6, where

(slim 0(8) = co. (12.3)

Hence, for any measurable subset E ¢ T, we have

J]un(r)lAT = J |u, ()|AT + J |u,(D)|AT
E Eﬂ{seT:lun(s)|<6} EN{s€T:|u,(s)|>6}
< BUAE) + — ) J]h up(1))|AT
C
< SppA(E) + —— 80)

where C > 0 is independent of 6. Because of (12.3), we get

C

limsu J u,(7)|AT < l1m —— =0.

v T = 1, 56
EN{s€T:|u,(s)|=6}

Therefore {u,},,cn € L}(T) is uniformly integrable, and hence {u,} <\ is weakly com-
pact in L'(T). Because Uy < LY(T) is closed and convex, by Mazur’s theorem, there
are a subsequence, relabeled as {u,},n, and u € U,,; for which we have

u, > inLY(T).
Then there is a constant r > 0 such that

"Xn "Crd(”lf) <r

Let

F,(t) = f(t,x,(8), X, (), teT.
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Then

[Fa(®)] = If (& x(6), 37 (1)]
< q(O(1+ (O] + [ (O))
<qt)1+2r), teT.

Therefore there are a subsequence, relabeled as {F,},cn, and F € L1(T) such that
F, 5F inLYT).
Define

v, (t) = J eop(t, T)(Fp(T) + U, (1))At,
[a,t)

v(t) = J eep(t, )(F(T) + u(1))AT, teT.
[a,t)

By the Ascoli-Arzela theorem, it follows that
vy, =Vlle, ) = 0, asn— oo.
Now, we consider the following dynamic equation:

YA () + p(t)y°(t) = F(t) + U(t), t € [a,b),

y(a) = xq.

(12.4)

By Theorem D.55, we have that the dynamic equation (12.4) has a unique weak solution

X(t) = egp(t, a)xg + J eop(ts 7)(F(1) + U(1))At, t € [a,b),
[at)

and x € C,4(T). Also,
X, =X, Xy =X’ inCy(T), asn— oo.
Because
If (&6, x,(0), X7 (1)) = F(£, X(1), X ()] < L(p)(|x(t) = X(8)] + |x (£) =X°(8)]), t €T,
for some p > 0, we get
F, — f(-X(),X°()) inLXT), asn— oo.

Hence,
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F()= X6, X7()
and

X(t) = egp(t, a)xg + J eop(t, D(f(7, X(1),X°(1)) + u(r))At, t € [a,b).
[at)

Therefore, x is a weak solution of the controlled problem (12.2) corresponding to the
control u. Hence, by Theorem 12.1, we obtain

c<J@) = lim J(u,) = ¢,
i.e.,
J@) =c.
This completes the proof. O

We will illustrate the above result with the following example.

Example 12.3. Let T = Z,

_ (x(1))’ 2
Ju) = J WAT+ J (u(1)) Ar,
[0,10) [0,10)
and
A o X))
XA +x(0) = o O +u(t), t>0,
x(0) =15, u e Uy.

Here

a=0, b=15 o(t)=t+1,

FtxO.X7(0) = (x()?’
gXO.X°(0) = T x(0)?’

h(u(®) = (u(t))’, teT.

If X, %0, ¥, Y2 € R, Ixq] < p, x| < p, V1l < p, ly3| < p, for some p > 0, we have

2 2
X1 X5

2 2
1+x3 1+x2

If(t.x1, 1) = f(t, X, ¥)| = <204 - x,l,
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because

2\ 2 3
2x(1 -2 2x
< X )z (1L+x7) = x € R.

1+x2 A+x3)2  (1+x)?

Also, for any A € [0, 1], we have

T+ 2 <1+[x|, xeR,

and
Ift,x, )| <1+ x|+ v, xyeR, teT.
Next, h : R — Ris convex and

. h@w) . u?

= — = 00.
lul—oo [u|]  Jul->oo |Ul

Hence, by Theorem 12.2, it follows that the considered problem has at least one solu-
tion.

Exercise 12.4. Let T = 2™o U {0}. Prove that the problem

~ x(@))* 3
J(u) =2 J 3 J (u®)’At,
[0,16) [0,16)
and
A oo (X(0)°
x () +tx (t) = T e x(O)F u(t), t>0,

x(0)=-1, ueUy,

has at least one solution.

12.2 Necessary conditions for the existence of solutions

In this section, we will derive some necessary conditions of optimality for a system,
involving an adjoint equation and optimal inequality. We will start with the following
useful result.

Theorem 12.5. Suppose that ¢ € C,y(T), ¢ > 0on'T, q,g € L'(T),q>0,g > 00nT,
a>0,1¢€(0,1), and

o) <a+ j q(‘r)(qb(r))AAT + j g(M@° (AT, telab). (12.5)
[t.b) [t.b)

printed on 2/10/2023 4:40 PMvia . Al use subject to https://ww.ebsco. confterms-of-use



12.2 Necessary conditions for the existence of solutions = 289

Then there exists a positive constant M such that
o) <M, telab).

Proof. Define

ﬂﬂ=a+jq@ﬂ@ﬂfm;

(t)
Y(t) = Jg(r)qb"(T)AT, telab).

[t.b)

Then
P(b) =0,
o(t) <f(t) + (1), telab),
Pi(t) = g7 (0)

> —g(t)(f°(t) +P° (1))
=-gf°(t) - gy’ (t) A-ae.telab).

Hence,

P (Deg(t,b) > -g(t)eg (6, b)f* () - gt (teg(t,b) A-ae.t € [a,b),

and
(YOeg (- 1) (0) = ~g(O)e, (b (H) Aae. telab).
Then
Y(Oey(t.h)> - | gDegm b (DT, ¢ lab)
[t.b)
and

V(O < | gegbey(r. b (ir
[t.b)

= J g(D)e, (1, )f (1A,  t € [a,b).
(t.b)

Hence, by (12.5), we obtain
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o) <a+ J q(T)(¢(T))AAT+ J g(T)ey (1, )f° (T)AT

[t,b) [t,b)
—a+ [ am(¢m)'ar
[t,b)
+ J 8(T)egy(t, t)<a+ J q(s)(¢(s))"As>Ar
[t.b) [o(1),b)
A
=a+ j q(n)(p(D)) AT+ a J g(1)eg(T, AT
[t,b) [t,b)
A
+ J 8(T)egy(T, t)< j q(s)(¢(s)) As)Ar
[t.b) [o(T),b)
A
sa+ J q(0) (1)) AT +a J g(1)eg(T,)AT
[t,b) [t,b)

+ J 8(T)eg(T, t)< j q(S)(qﬁ(s))AAs)Ar

[t.b) [.b)

<a+ J g(r)((;b(‘r))AAT +a J g(T)eg (T, )AT
[t.b) )

+< J CI(S)(¢(S))/‘A5> J g(1)eg (T, )AT

[t.b) [t.b)

<(a+ 1)(1 + J eq(T, a)g(r)Ar)(l + J q(r)((;l)(r))AAT), t €[a,b).

(@b) (£)
Define
B= | emagmar, y= @B+,
la,b)
A A
hit)y=y+y J q(r)(p(1)) AT +y J q(0)(p(1))"At,  t€la,b).
(th) [ab)

Then

(t) < y<1+ J q(r)(¢(r))"m> <h(t), telab)
[t,b)

We have that h is a monotone decreasing function on [a, b) and

W) = ya)(p(®))" = ~hg(t)(h®), t € [a,b).
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Observe that
(M) 0 = a -0 D) )
> 1-N(h®) "H b, ¢ e lab).
Then
(h)™ O = -y -Dq(), telab),
and
—(h®) + hb) = —y(1 - ) J g(OAT, t€ab),
(h)
or

(h@©) ™ - (hb) ™ <y - ) j qObT, € [ab).
[t,b)

In particular, we have

(@)™ - (hb) ™ < ya -1 J (A,

[a,b)
Observe that
A
hb) =y +y | amgm)'ar,
[a,b)
whereupon
h(b) —
®-y | amigm)'ar
14
la,b)
Then
A
h@=y+2y [ (@) 'sr
[a,b)
h(b) -y
= y—~2 "
+2y y
=y +2h(b) -2y = 2h(b) - y.
Therefore,
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(2hb) - y) ™ - () <y - p) j (A,

[a,b)
Let
rz)=Qz-y) -z zeR
Then
"z) 1-A
lim r(z) = lim —Z2 2" _ lim <<2 - Z) - 1)21’}‘ = 00.
Z—00 z-00 Z1-A 2500 z

Consequently, there is a positive constant M such that
h(b) < M.
Thus
¢t) <hb)<M, telab).

This completes the proof. O

Now consider the backward problem

¢ (t) + p(O)P°(t) = w(t, p(t), d°(t)), a<t<b,

(12.6)
¢(b) = ¢y,

where ¢; € R, p € I'{(T), and

(H4) w:TxRxR — RisA-measurablein t € R and locally Lipschitz continuous,
i.e, forall x;,%,y1, ¥, € R, Ixq] < p, Ix,] < p, Iy1] < p, ly,] < p, for some positive
constant p, there exists a constant L = L(p) such that

|W(t»X1>)’1) - W(t»X2>)’2)| <LE)(IX - x|+ 1y —yal), teT,
(H5) There exist a constant A € (0,1) and a function g € LY(T), q = 0 on T, such that
wit, )| < g1+ 18" + 1pl), P e R

Using Theorem D.58, one can prove that the equation (12.6) has a unique weak solution
¢ € C,4(T) given by

@(t) = egp(b, t)p; — J eep(0(T), )W(T, (1), ¢%(1))AT, teT.
[t.b)

Let (x, u) be an optimal pair of (12.1), (12.2). Assume that
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(H6) f(t,-,-) : Rx R — Ris partially differentiable and

Fe) = (- X(), X°() € LN(T),
for () = fo (X (), X%()) € LY(T),

(H7) P() =p() - fro() € T(T),
(H8) g:R xR — Risconvex.

Theorem 12.6. Let p € T';(T) and (H1)-(H8) hold. Then, in order for (x,u) to be an op-
timal pair of the problem (12.1), (12.2), it is necessary that there is a function ¢ € C,;(T)

such that
X2 (t) +p(t))_(_0(t) = f(t,X(t),xX°(t)) +u(t), a<t<bh, (12.7)
x(a) = Xo»
¢°(6) = POB(O) - f(O)p”(©) - (1+ mOPON@), a<t<b, (12.8)
n€9G(X?), ¢(b) =0, .
J ( ¢°(t) + {(t))(u(t) —u(t)At 20, & €oH(@m) (12.9)
) T uoro - ’ '
where

0G(x) = {{ € lLl(T) : J E(t)(x(t) - x(t))At
[a,b)

< j (g(x(t),x”(t))—g()‘c(t),i"(t)))m},
[a,b)

aH(a):{gelemr); j £6)u®) - TO)AE < J(h(u(t))—h(ﬂ(t)))At]».

[a,b) [a,b)

Proof. Let (x,u) € C,4(T) x U,y be an optimal pair. Then it satisfies (12.7). Since U,,; is
convex, we have that

U =u+eu-u) e Uy

forany € € [0,1] and u € U,,. Let x, be the weak solution of the following dynamic
equation:

XA(t) + pX2 () = F(tx. (), X2 (1) + up(t), t>a,
xc(a) = xq.

Then x, can be represented in the form
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Xe(t) = egp(t, a)xg + J egp(t T)(f (T, %.(1), X2 (1)) + u(1))At, te€T.

[a,t)

Consider

X (t) = X(t) = J eep(t, T(f (T, X (1), X7 (T)) — f(7,X(1),X° (1)) )AT

[at)
+€ J eop(t, T)(u(r) - u(1))At.
[a,t)
Set
X=X
y —2111(1) €

By (H6), it follows that u — x(u) is continuously Gateaux differentiable at u in the
direction u — u. Its Gateaux derivative y* satisfies

YA + Y (6) = fOy(O) + fo ()Y (O) + u(t) ~ Ut), a<t<b,
y(a) = 0.

By Theorem D.58, it follows that the latter equation has a unique weak solution y €
C,4(T) given by the expression

YO = [ ey o€ DY@ +u@) - T)AT,
[a,t)

Define

G(x) = J (O (O)A,  x € LY(T).
la,b)

Since g : R x R — R is convex, we have that g : R x R — R is continuous. By

Theorem 12.1, it follows that G is a lower semicontinuous functional on C,;(T). For
any x;,x, € Cry(T) and A € [0, 1], we have

G+ (1-A)x,) = J g (1) + (1= D), A (8) + (1= A)x3 (8))At
[a,b)
<A J g (0, x] ()At + (1 - A) J g(x,(t), x5 (8))At
[a,b) [a,b)
=AG(x;) + (1 -A)G(xy).

Then G is convex on C,;(T). Also, G is finite and continuous at X, G is subdifferentiable
at X € C,4(T) and the subdifferential 0G(x) of G at x° is given by

- printed on 2/10/2023 4:40 PMvia . Al use subject to https://ww.ebsco.conlterns-of-use



12.2 Necessary conditions for the existence of solutions =—— 295

3G(X) = {5 e LN(T) : j E(6)(x(t) - X(t))At

[a,b)

< j (g(X(f),XU(f))—g(Y(t),)_("(t)))At}.
[a,b)

Note that 0G(x) is nonempty. Define

H(u) = J H(u(t))At, u e L'(T).
[a,b)

We have that H is subdifferentiable at i € U,; and
@) - {; e1=m): [ s -mone < | (o) - h(ﬂ(t)))At}.
lab) la.b)
Also, 0H (u) is nonempty. Since
J=G+H,

we conclude that J is subdifferentiable at u € U,;. The subdifferential of J at u in the
direction u — u is

J@u-7) = j YOO + j £(O)(u(t) - ()AL
[a,b) [a,b)

for any n € 0G(x), ¢ € 0H(u). We have
J(xg,u.) —J(x,u) 20, €¢€[0,1], ueUy.

Hence, for u to be optimal, it is necessary that

J y(tn(HAt + J Et)(ult) —u))At = 0 (12.10)
[a,b) [a,b)

for any n € 0G(x), & € 0H(u). For n € 0G(x), consider the following adjoint equation:

P (t) = P(O)P(t) - fo(t)d’ (1) — (1 + uO)PO)(E), a<t<b,
$(b) = 0.

Note that P € T';(T) and

o(t) = J eep(0(1), t)(fe(1)9” (1) + (1 + u(T)P(1))n(T) )AT.
[t.b)
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Also,

P(O)() - fe(t)p? (t) - ¢ (t)

n(t) = 1+ u(t)P(0)

and

PO@° () - u(H)B (1) - 9O - O (®)
1+ u(6)P(t)

j YOO = J y(0)
[a,b) [a,b)

| y(t)(—qﬁ“(t) +
[a,b)
| ¢"<t><yA(t) +

[a,b)

P(t) - f&(t)
1+ u(t)P(t)

¢"<t>>At

P(t) - fx(t)
1+ u(OP()

y(t))At

) + u(t)y(6)P(t) + P(t)y(t) - fr()y(t) At
1+ u(OP(®)

A
J ¢a(t))/(
la,b)

A o
_ o,y ) +y ()P(t) - y(6)P(t) + y(O)P(¢) - fr(t)y(t)
- J ¢ 1+ u(t)P(t) At

la,b)
_ J ¢° ()

) W(—p(t)y () + F Oy () + feo (DY (2) + u(t)

la,

—U) + Y7 (OP() — ¥ (Ofze (6) — Oy (©)At

@°(t) _
= t) — u(t))At.
[a[, T ROEO ~f(0) (u(®) - ut®)

Now, applying (12.10), we get

¢°(t) _
t)—u(t))At =0
[a'[z) T O (0~ oy O ~HOME=

foru € U,,; and ¢ € 0H(u). This completes the proof.
We will illustrate the above result with the following example.

Example 12.7. Let T = Z. Consider

B xX°(t) 2
fw=2 | A xoRaswon™* | woys.
[0,20) [0,20)
and
x(t)

KBt + 2°(t) = +xX°(t) +u(t), 0<t<?20,

1+ (x()?
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. h(u(d) = b)),

X €,

X1, X2, Y1 Y2 € R

x(0)=1, ueUy
Here
_ o _ x°(t)
o=t sWOXO) = 2 o)
pt) =2, f(t,x(@®),x°(t)) = T+ OF +x%(t), teT.
Let
X
I(x) = T x € R.
Then
I'(x) = 1+x2 -2 B 1-x
)= 1+x2)2  (1+x2)?
b | 1= 1+x* 1
Feol (1 + x?)2 = (1+x2)2 1+ <1
and
p% X
It x1,1) = F (£, %5, 5)| = 1+1X$ Vg +2x§ ¥
e L B _
Tlex? 1+ =l
<X -l +ly1 -y, teT,
Also,
PRI St ¢((3) S
(6 x(@),x° () = 7 ()22 e L'([0,20)),

fo(t,x(6),X°(t)) = 1 € L'([0,20)).
Next, g : R x R — R is lower semicontinuous. Since

y

lim |g(x,y)|= lim 2—————| =
|x|—>oo|g( 2l Ix|—oo| (1+x2)(1+y2)
[yl—=o00 y|—00
there is a constant ¢ € R such that
gx,y)=zc, x,yeR.

Next,
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P(t) =2-1=1¢Ty([0,20)).

Then, for the pair (X, ) to be an optimal pair of the considered problem, it is necessary
that there is a function ¢ € C,4(T) such that

X(¢)
1+ (x(t))?

Mgy g 1= (X))
PO =90 G RoRr

n €9G(xX’), ¢0)=0,

) + 2X°(t) = +X°(t) +u(t), 0<t<20, X(0)=1,

() +2q(t), 0 <t<20,

and

j (%(P”(t) + é’(t))(u(t) ~ut)At >0, uelUy, &eoH@),

[0,20)

where

3G(X) = {{ € L1([0,20)) : j E(6)(x(t) - X(b))At

[0,20)

S,[2< )2((t) T2\ — )z((t) — 2>At},
oy VAFXODAEOR) 1+ @OPA+E O

aH(ﬁ):{feLOO([O,ZO)): J £()(u(t) - u(t))At < J ((u(t))z—(ﬁ(t))z)At}.

[0,20) [0,20)

Exercise 12.8. Let T = 3N,. Find the necessary conditions of optimality for the fol-
lowing problem:

Ju) = - J x(1)x" (1)

2
1+ x(T)H(1+ (xU(T))Z)AT +4 J (u(1)) A,
[0,100)

[0,100)
and

x())?
1+ (x(t))*

x(0)=1, ueUy.

XA(t) + 4 siny(t, 3)X°(t) = - +u(t), t>0,
Remark 12.9. Consider the problem (12.1) and

XA(t) = px(t) + F(t, x(0),X°(8)) + u(t), t>a,

x(a) =xy, ueUy,

(12.11)
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where p, f, and u are as above. Using
x(t) = X7 (1) - pOx (o),
we rewrite the dynamic equation (12.11) as follows:

X(t) = (X (t) - pOUEXE(E) + F(£,x(6), X7 (1) + ut), t>a,
x(a) =xy, ueUy

or
(1+uOPO)XA(t) = pOX°(6) + f(£, X0, X7 (D) +u®), t>a,
x(a) =xy, ueUy,
or
Appy _ p(t) I 1 o 1
O = op” Ot T pope! O O T 4

x(a) =xy, ueUy.

Exercise 12.10. Write the necessary conditions of optimality for the problem (12.1),
(12.11).

12.3 Advanced practical problems

Problem 12.11. Let T = 3™ U {0}. Prove that the problem

. x(1))® 5
Jw == | 2O T | wwyse,
[0,81) [0,81)
and
A o ()P
X“(8) + ey(t,3)x"(t) = _W +u(t), t>0,

x(0)=1, ueUy,

has at least one solution.

Problem 12.12. Let T = 7N,. Find the necessary conditions of optimality for the fol-
lowing problem:

(x(1))*X° (1)

4
0= | amar Rt | o

[0,49) [0,49)
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and

(x(t)*
1+ (x(t)*
x(0)=1, ueUy

XA(t) + cos,(t, 7)X°(t) = +u(t), t>0,

Problem 12.13. Let T = 20 y {0}. Find the necessary conditions of optimality for the
following problem:

. x(0)* (x°(1))* 4
Jo = J A+ 300 A+ 700 J (u(r)) ar.
[0,64) [0,64)
and
A o ()"
X (t) +tx (t) = m + u(t), t>0,

x(0)=1, ueUy.

Problem 12.14. Let T = 3™ U {0}. Find the necessary conditions of optimality for the
following problem:

2 o 4
J(u) = - J (x(1))” +2(x" (1)) Ar+ J (u(T))z;AT’

1+ (x(T)h + 1+ (x°(1))8)
[0,243) [0,243)

and

(x(1))?
1+ (x(t)*
x(0)=1, ueUy.

XA + (B +t+3)x%(t) = 12 +4x°(t) +u(t), t>0,

Problem 12.15. Let T = 4™° u {0}. Find the necessary conditions of optimality for the
following problem:

~ x()* + x°(1))® 4
w= | T+ O+ o) | oo
[0,256) [0,256)
and
KAt + ﬂxo(t) = M + (X‘T(t))7 +u(t), t>0
t8+t*+10 1+ (x(t))® ’ ’

x(0)=1, ueUy.

Problem 12.16. Suppose that f(t, x(t), x°(t)) = fi(t,x(t)) in (12.2). Write the necessary
conditions of optimality.
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Problem 12.17. Suppose that f(t, x(t), x°(t)) = f;(t,x°(t)) in (12.2). Write the necessary
conditions of optimality.

Problem 12.18. Suppose that f(t,x(t), x°(t)) = fi(t, x(t)) +f,(t, x°(t)) in (12.2). Write the
necessary conditions of optimality.

Problem 12.19. Suppose that f(t,x(t), x°(t)) = fi(t, x(t))f>(t, x°(t)) in (12.2). Write the
necessary conditions of optimality.

Problem 12.20. Suppose that f(t,x(t),x°(t)) = (f,(tx(£)))* + (F,(t,x°()))* in (12.2).
Write the necessary conditions of optimality.
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A Rolle’s theorem

Suppose that T is a time scale with forward jump operator o and delta differentiation
operator A.

Definition A.1. Lety : T — R be (k — 1)-times differentiable, k € IN. We say that y has
k—
a generalized zero (GZ) of order greater than or equal to k at t € T* 1 provided

Witry=0 icl0,... . k-1, (A1)
or
yAi(t) =0 forie{0,...,k-2} and yAkil(p(t))yAkfl(t) <0 (A.2)

holds.

Remark A.2. Note that in the Case (A.2) t must be left-scattered. Otherwise, p(t) = t
and

0>y (e =" ) 20,
which is a contradiction.
Theorem A.3. Condition (A.2) holds if and only if
Wity =0, je(o,...k-2, and DY®OW* © <o. (A3)

Proof.
1. Let (A.2) hold. Then t is left-scattered, a(p(t)) = t, and

Ak—z Ak—z
A _y" (ale@®) -y~ (p(h)
_ e
up(0))

_ (oY) A
= (u(p(t))? -

Hence,

t k-1
y(p(t)) Y

0 Ak—l t Akflt _ _1 k-1
>y" (p@)y" () =(-1) O

(t)

and (A.3) holds.

https://doi.org/10.1515/9783110787320-013
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2. Assume (A.3). Let t be left-dense. Then p(t) = t, and we have the following cases:

(@) Letk =1.Then (y(t))* < 0, which is a contradiction.
(b) Letk > 2. Then y(t) = 0 and

Dy (@) < 0.

This is a contradiction.

Consequently, t is left-scattered. Hence, using (A.4), we obtain (A.2).

This completes the proof.

Theorem A.4. Letj e Nyandt € T . Then
Al ..
y (=0, 0<i<j

if and only if

YWel®)=0, 0<i<j-I 0<l<j.

In this case,
N, 11 s At
y© (o) =] ®)y” (.

s=0

Proof.
1. Let(A.5) hold.
(a) Supposethatj=0.Thenl=i=0,y(t) =0, and

y¥ (@) =y =o.
(b) Suppose thatj > 0. Then
yty =yt =--=y* =0
i. Letj=1.Theni € {0,1},1 ¢ {0,1}.

A. Letl=0.Theni € {0,1} and (A.6) holds.
B. Letl=1.Theni=0and

y(a(t)) = y(t) + )y () = 0.
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A Rolle’s theorem

ii. Assume that (A.6) is true for somej € N, i. e., assume

y®) =y O = =y"(t) = 0,

(o) =y (o(t) = =y* (a() =0,
(@) = YM@*() = - =y (X)) = 0,
(o) = (@' 0) = =" (d 1) = o,
y(oj(t)) =0.

iii. We will prove (A.6) for j + 1, i. e., we will prove that

y® =y O = =y""(t) =0,
y(a(6) = y*(0(t)) = - = y* (a(t)) = 0,
(@) =YX 0X0) = - = y¥ (d¥() = 0,
W(a®©) = Y2 (@' 0) = - =¥ (@) = 0,

y(aj“(t)) =0.

By (A.8), it follows that we have to prove
j+1 j j-l+1

YW =y (o) ==y

By (A.5), we have yAM(t) = 0. Then

Y (0(6) = y* (O +uy 6) = 0,
YW (0A0) =y (o) + mey® (o) = 0,

V(@) =0,
y(0™1(1) = () + u(ty (@ (1) = 0.

(0'®) = =y(d"(©) =

— 305

(A.8)

0.

Hence, by the principle of the mathematical induction, we conclude

that (A.6) holds for any j € IN,.

EBSCChost - printed on 2/10/2023 4:40 PMvia . All use subject to https://ww.ebsco.conlterns-of-use



306 —— A Rolle’s theorem

2. Suppose that (A.6) holds.
(@) Letj=0.Theni=1=0and
Yy (0'®) =y =
(b) Letj > 0.
i. Assume thatj = 1. Then, by (A.6), we have

y(6) =yA(t) = y(a(t)) =

ii. Assume that (A.5) holds for some j € IN,.
iii. We will prove that (A.5) holds for j + 1. Since (A.6) holds for j + 1, by (A.8)
we obtain

YO =y ) = =y"" (&) = 0.

Hence, by the principle of the mathematical induction, it follows that (A.5)
holds for anyj € N,

Suppose (A.6) is true, i. e., we assume (A.8). Then we will prove (A.7). We have

V(o) =y* © +uoy”” ©
= uoy*" o),
Y (@) =y (00) + o) (0()
= u(o W (0(0)
= u(oO)ey*" ©),

Aj+1 I

-1
(1) = [[u(e®®)y
s=0

This completes the proof. O

Definition A.5. If y has a GZ of order greater than or equal to k at £, we will say that y
has at least k GZs, counting multiplicities. By Theorem A.4, it follows that if y has a GZ
of order greater than or equal to k at ¢, then y has a GZ of order greater than or equal to
k - 1at o(t). Therefore, if y has a GZ of order greater than or equal to k at ¢; and y has
a GZ of order greater than or equal to k, at ¢, and ok_l(tl) < t,, then we will say that y
has at least k; + k, GZs, counting multiplicities.

Theorem A.6 (Rolle’s theorem). Ify has at least k € N GZs on [a, b], counting multi-
plicities, then yA has at least k — 1 GZs on |[a, b], counting multiplicities.
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Proof.
1. Firstly, we will prove that if y has a GZ of order < m at t, then y* has a GZ of order
<m-1latt.

Since y has a GZ of order < m at t, we have
YWity=0, ic{o,...,m-1},
or
VW) =0, ief{0,...,m-2, and ¥ (W () <o0.

If m = 1, then y(t) = 0 or y(p(t))y(t) < 0. If yA(t) = 0or yA(p(t))yA(t) < 0, then
m > 1, which is a contradiction. Therefore, yA hasno GZ at t. Let m > 2. Then

WM =0, iefo,...m-2),

or

m-2

O @0 =0 ief0,...,m=3 and ()" (&)A)" @ <o.

Thus, yA hasa GZoforder<m-—-1att.

2. Now, we will prove that if y has a GZ of order < m € N at ¢t and y has a GZ of order
< 1at s with 0™ }(t) < s, then y* has at least m GZs in [t, s), which is equivalent to
(@) Ify(r) = 0 and y* has no GZ in [r,s), where r < p(s), then y has no GZ at s.
(b) Ify(p(r))y(r) < 0and yA has no GZ in [r,s), where r < p(s), then y has no GZ

ats.

If the assumptions of (a) hold, then yA(T) >0,7 €[rs),or yA(T) <0, 7 € [ns).
Thus,

S

p(s)
y(p(s))y(s) = ( J yA(T)AT><JyA(T)AT> > 0.

r

Therefore, y has no GZ at s. If the assumptions of (b) hold, then p(r) < r and

Ny - yem)
PO G0) =) 2 <o

Since yA has a constant sign on [p(r), s), we get

YpmYA(@) <0, t[p(1),s).

Therefore,
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t

y(p()y(t) = y(p(r))<y(r) + JyA(T)AT> <0, te{p(s)s}

r

Hence,

y(p(N)y(p(s)) <0, y(p(r)y(s) <0,

and

V(™)) y(p©)y(s) > 0.

Consequently, y(p(s))y(s) > 0 and y has no GZ at s.

This completes the proof.
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B Fréchet and Gateaux derivatives

B.1 Remainders

Let X and Y be normed spaces. By o(X, Y) we will denote the set of all mapsr: X —» Y
for which there is some map a : X — Y such that

1. r(x)=a)|x| forall x € X,

2. a(0)=0,

3. ais continuous at 0.

Definition B.1. The elements of o(X, Y) will be called remainders.
Exercise B.2. Prove that o(X, Y) is a vector space.

Definition B.3. Letf : X — Y be a function and x, € X. We say that f is stable at x, if
there are some ¢ > 0 and ¢ > 0 such that ||x — xy|| < € implies

"f(X —Xo)” < cllx = xoll.
Example B.4. Let T : X — Y be a linear bounded operator. Then
ITGc-0)] = | TGO < ITNIxl,  x € X.

Hence, T is stable at O.

Theorem B.5. LetX,Y,Z, and W be normed spaces,r € o(X,Y), and assumef : W — X
is stable at 0, whileg : Y — Z is stable at 0. Thenrof ¢ o(W,Y)andgor € o(X, Z).

Proof. Sincer € o(X,Y), thereisamap a : X — Y such that
r(x) =aMlxl, xeX,
a(0) = 0, and a is continuous at 0. Define §: W — Y by

Vo (f(w)) ifw # 0,

=4 Iwl
Aw) {0 ifw=0,

forw € W.Since f : W — Z is stable at 0, there are constants € > 0 and ¢ > 0 such
that [w] < € implies

[fFw)] < cliwll.
Hence,

[f(0)| =0 and f£(0)=0.

https://doi.org/10.1515/9783110787320-014
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Next, (0) = O and, if w # O, [|w| < &, we get

ol = Laran) < clatron)

Now using
fw) -0, asw -0,
and
a(f(w)) >0, asw — 0,
we get

Bw) -0, asw— 0.

Therefore, §: W — Y is continuous at 0. Also, we have
- Ifw=0,then

B0) =0,
ro£(0) = a(f(0))|f (0] = 0.

- Ifw+0,then

rof(w) =a(f(w))|fw)]

_ IwliB(w)
= om0l
~ IwlBw).

Therefore, r o f € o(W,Y).

Since g : Y — Z is stable at 0, there are constants & > 0 and ¢; > O such that |w] < &
implies

lgw)| < ciliwl.

Definey : X — Y by

Y]

0 glixllax)) ifx 0,
X) =
Y 0 ifx = 0.

Then

g(lixlax)) = Ixlyx), xeX.
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For x # 0, x € X, we have

lgCixllaCOl _ cilixliatx) _

ol === =g = Q2@
Then
y(x) - 0, asx—-0, xelX
Also,
gor(x) =g(r(0) = g(allxll) = yx)lxl, x € X.
This completes the proof. O

B.2 Definition and uniqueness of the Fréchet derivative

Suppose that X and Y are normed spaces, U is an open subset of X, and x, € U. By
L(X,Y) we will denote the vector space of all linear bounded operators from X to Y.

Definition B.6. We say that a function f : X — Y is Fréchet differentiable at x, if there
aresome L € £(X,Y)and r € o(X, Y) such that

fx) =f(xg) +Lx —xg) +r(x —xy), xeU.

The operator L will be called the Fréchet derivative of the function f at x,. We will write
Df(xo) = L.

Suppose that L, L, € £(X,Y) and r;, 1, € o(X,Y) are such that

f(X) = f(xg) + Ly(x = xo) + 11(x = Xp),

fX) =f(xg) + Ly(x = xp) + r;(x = xg), x € U.
Then
fxg) + Li(x — xq) + 11(x — %) = f(xg) + Ly(x — xg) + 1(x = Xp), x €U,
or
Li(x — xg) = Ly(x = xo) = r,(x —xo) —r(x —xo), x¢€U.
Also, let a;,a, : X — Y be such that

nx) = lixlla,(x), r(x) = lxla;(x), a;(0) = a,(0) =0,
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where @; and @, are continuous at 0. Then

Li(x —xg) = Ly(x — Xg) = Ix = Xgplla;(x — x¢) — Ix = xgllay(x — xq)

= [Ix = xpll(ay(x — %) — Ay (x — xp)), x € U.

Let x € X be arbitrarily chosen. Then there is some h > 0 such that for all |t| < h we
have x,, + tx € U. Hence,

Ly(tx) = Ly(tx) = |ltx]l (e (x) — ay(tx))
or
t(Ly00 = Ly(0)) = [tllIxll(eq (tx) = ay (),
or
Ly(x) - Ly(x) = sign(t)|x||(a;(tx) — ay(tx)) = 0, ast — O.

Because x € X was arbitrarily chosen, we conclude thatL; = L, and r; =r1,.

Definition B.7. We denote by (U, Y) the set of all functions f : U — Y that are
Fréchet differentiable at each point of U and Df : U — L(X,Y) is continuous. We
denote by C2(U, Y) the set of all functions f e c}(U,Y) such that Df:U - L(X,Y)is
Fréchet differentiable at each point of U and

DODf): U — L(X, L(X, Y))

is continuous .

Theorem B.8. Let f;,f, : U — Y be Fréchet differentiable at x, and a,b € R. Then
af, + bf, is Fréchet differentiable at x,,.

Proof. Letr,,r, € o(X,Y) be such that

fix) = fi(xg) + Dfy(x0)(x = xg) + 11X = Xo),

(%) = fr(x0) + Dfy(xg)(x — xg) + 1,(x —xp), x € U.

Hence,
(af, + bfy)(x) = a(f1(xo) + Dfy(xo) (x — Xg) + 1,(x — Xp))
+ b(fr(xg) + Dfy(x0) (X — Xg) + (X — X))
= af;(xg) + bfy(xg) + (aDfy(xg) + bDfy(xo))(x — xg)
+ (ar(x —xo) + bry(x - xg)), x€U.
Note that ar; + br, € o(X, Y). This completes the proof. O
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Theorem B.9. A functionf : U — Y is Fréchet differentiable at x, if and only if there is
some function F : U — L(X,Y) that is continuous at x,, and for which

f) = f(xg) = FOO(x - xo), x€U.

Proof.
1. Suppose that there is a function F : U — £(X,Y) that is continuous at x, and

F) - fxy) = F)(x - xp), xeU.

Then
fO0) = fxo) = FO)(x = x0) = Fxp)(x = xo) + F(x0)(x = xo)
= F(xo)(x = Xg) + (X — Xg),
where
rox) = (F(x +x9) = F(xp))(x) forx+xq €U,
forx+xy ¢ U.
Define
w forx+x, €U, x+0,
a(x) =70 forx +xo ¢ U,
0 forx = 0.
Then

r(x) = a)|x|, xelX.

Let € > 0 be arbitrarily chosen. Since F : U — £(X,Y) is continuous at x,, there
exists some & > O for which ||x| < § implies

[(F(x +xg) = F(x0)) ()| < [|F(x + x0) = Fxo)||Ix]l < €llx]l.
Therefore,
latx)| < €
for |x|| < 6, i. e., a is continuous at 0. From here, we conclude that r € o(X, Y) and
F(xo) = Df (xo).

2. Suppose that f is Fréchet differentiable at x,. Then there is some r € o(X, Y) such
that
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fx) =f(xg) + Df (xg)(x — Xq) +1(x = Xg), x €U,
where Df (xq) € £L(X,Y). Sincer € o(X,Y), there is some a : X — Y such that

r(x) = a(x)|x|,
a(0) =0,

a(x) - 0, asx — 0.

By the Hahn-Banach extension theorem, it follows that there is some A, € X*

such that
A = x|
and
Avl<|vl, velX.
Then
r(x) = Ax)ax), xeX,
and

f0O = f(xo) + Df (xo)(x = Xg) + (Ay—y, (X = Xg))alx = Xo), x €U.
LetF: U — L(X,Y) be defined as follows:

F(x)(v) = Df (xo)(v) + (/\X_Xov)a(x -Xy), xeU, veX

We have
fx) = fxp) + FO)(x = Xq),
(X = Xg) = (Ay_y, (X = Xg))a(x = Xo)
= f00) = f(xo) = Df (X) (x = xo)
= F(x)(x = xg) = Df (x¢)(x — xp), x € U.
Note that

[FCOW) = Fxo) W) = |Df (o) (V) + (A, V)X = Xo) = Df (xo) (V)|
= Ay alx = xo)
= Mx—xOV”Ia(X —Xo)"

< ilatx = xo)|, x €U, veX.
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Then
[F) = F(xp)|| < |atx - xp)|, xe€U.

Consequently, F is continuous at x,. This completes the proof. O

Theorem B.10. Let Z be a normed space, assume f : U — Z is Fréchet differentiable
at xo, while g : f(U) — Z is Fréchet differentiable at f (x,). Theng o f : U — Z is Fréchet
differentiable at x, and

D(g  f)(xo) = Dg(f (xo)) ° Df (xo).

Proof. Let
Yo :f(Xo),
Ly = Df (xp),
L, = Dg(yo)-

There existr; € o(X,Y), r, € o(Y,Z) such that

fx) =f(xg) +Li(x —xg) + ri(x —xp), xe€U,

8() =8Wo) + Ly(y —yo) + (¥ —¥o)» y € f(U).

Hence,

8(f() = 8(f(x0)) + Ly(f (x) = yo) + 1 (f () = yo)
= 8(yo) + Ly(Ly(x = Xp) + 11(x = Xo))
+15(Ly(x = xg) + 11(x = X))
=8Wo) + Lo(Li(x = xg)) + Ly(ry(x = X))
+1(Li(x - xg) + 1i(x = xp)), x€U.

Definer; : X — Z as follows:
r;(x) = ry(L;(x) + r;(x)), x e U.
Fix ¢ > |L,|| and represent r; as follows:
rn(x) =a(0lxll, xeU.

We have thata; : X — Y, @;(0) = 0, and a, is continuous at 0. Then there exists some
6 > 0 such that if ||x| < &, then

;00| < € = L.
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Hence, if | x| < 6, then
[r Ol < (¢ = 1Ly 1)l
Then, ||x|| < § implies

[£400 +1100] < L] + 0]
< WLy llxll + (¢ = 1Ly 1)l
= cllx].

Then x — L(x) +r,(x) is stable at 0. Hence, by Theorem B.5, we get r; € o(X, Z). Define
r: X — Z as follows:

r=Lior +rs.
We haver € 0(X,Z) and
gof(r=gof(xg) +LyoLi(x —xg) +r(x —xo), x€U.

Since L, € £(X,Y), L, € L(Y,Z), we have L, - L; € L(X,Z). Therefore, g o f is Fréchet
differentiable at x, and

L, o Ly = Dg(yo) ° Df (xo) = Dg(f (xo)) ° Df (xo).

This completes the proof. O

Theorem B.11. Let f,,f, : U — R be Fréchet differentiable at x,. Then f - f, is Fréchet
differentiable at x, and

D(f; - f,)(x0) = f,(x0)Dfy(x0) + f1(X0) Df>(Xo).
Proof. Letr;, 1, € o(X,R) be such that

f1(X) =f1(X0) + Dfl(Xo)(X —Xo) + Tl(X _XO)’
(%) = fr(xg) + Dfy(x0) (X = Xg) + o(x = Xg), x € U.

Hence,

f100f00 = (filxo) + Dfy (x0) (X = Xo) + 11(x = Xg))
x (f5(xg) + Dfy(xg) (X — Xo) + 15(X = X))
= filxo)fa(xo) + f1(X0)Df>(X0) (X = Xq) + f2(X0)Df; (X) (X = Xo)
+ fi(xg)ra(x — xo) + Dfy (%) (X = X0)Df(x0) (x — Xo)
+ Df (xo) (X = X)) (X = Xo) + 110 — x0)f>(%g)
+ Dfs (x0) (X = xg)1 (X = X)) + 11 (X = X)X = Xg), x € U.

printed on 2/10/2023 4:40 PMvia . Al use subject to https://ww.ebsco. confterms-of-use



B.3 The Gateaux derivative = 317

Letr : X — R be defined as follows:

r(x) = fi(xg)ro(x) + Dfy (xo)xDf5(xo)x
+ Dfy (xg)xry(x) + 1 (x)f5(X)
+ Dfy(xg)xr(x) + i (xX)ry(x), x e U.

Then

F1005,00) = fi(x0)f2(x0) + f1(X0)Df5(Xg) (X — Xg)

+ fH(x)Df1(Xg) (x — xo) + r(x = xp), x€U.
Note that
|Df, (xo)XDfy (Xo)x| < [IDF, ()| IDE)|IXIP, x € U.

Define a : X — R as follows:

fixI

Dfi(x0)xDf (o )x xeU x+0
a(x) — bl bl b
0, x=0.

Then

Df1(x)xDf;(xg)x = a(x)lxl, x e U,
|Df; (x0)xDf5(x)x|
[Ix]

- IDf; )DL ) x
- X1

= |IDAG)|IDLG)IxN,  x € U, x # 0.

jaco)] =

Then
a(x) - 0, asx — 0.

From here, r € o(X, R). This completes the proof. O

B.3 The Gateaux derivative

Let X and Y be normed spaces and U be an open subset of X. Let also, x, € U.

Definition B.12. Letf : U — Y. Ifthereis some T € £(X,Y) such that

limf(xo +tv) - f(xo) _
t—0 t

Tv
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318 —— B Fréchet and Gateaux derivatives

for any v € X, we say that f is Gateaux differentiable at x,. We write f'(x,) = T. If f is
Gateaux differentiable at any point of U, then we say that f is Gateaux differentiable
onU.

Example B.13. Let f : R*> — R be defined as follows:

4

X
f(Xl’XZ) = Xfix; for (XI’XZ) #: (O, O))
0 for(x,x)=(0,0).

Letv = (vy,vy) € R?, (v1,v,) # (0, 0), be arbitrarily chosen. We have, fort + 0,

vt v

0+tv) = L -1

f tove + v Ve +v3
. fO+tv)-f(0) . tvi . v vé
tim 0+ ) =/ (0) f():hm—3 e = lim —t— = .
t—0 t =0 HEPV) +v3) 0BV v v,

Therefore,
' V? 2
£(0,0)(vy,v,) = 3 (v, ) € R%, (vq,v,) # (0,0).

2
This ends the example.

Theorem B.14. Iff : U — Y is Fréchet differentiable at x, then it is Gateaux differen-
tiable at x,.

Proof. Since f : U — Y is Fréchet differentiable at x,, then there is some r € o(X,Y)
such that

fX) =f(xg) + Df (xg)(Xx — Xg) + (X —Xo), x €U,
and
r(x) = a)lxl, xeX,

wherea : X — Y, a(0) = 0, and a is continuous at 0. Then, forv € X and t € R, with
|t| small enough, we have

flxo +tv) —fxo) _ Df(xo)(tv) + r(tv)
t

t
_ tDf (o) (v) + [tlIviia(tv)
t
= Df (xo)(v) + sign(t)|[v]a(tv)
— Df(xg)(v) ast — 0.

This completes the proof. O

EBSCChost - printed on 2/10/2023 4:40 PMvia . All use subject to https://ww.ebsco.conlterns-of-use



C Potzsche’s chain rules

C.1 Measure chains

Let T be some set of real numbers.

Definition C.1. A triple (T, <,v) is called a measure chain provided it satisfies the fol-
lowing axioms:
(A1) Therelation “<” is, forr,s,t € T,
1. reflexive,i.e., t <t,
2. transitive,i.e.,ift <randr <s,thent <s,
3. antisymmetric,i.e.,ift <randr <t,thent=r,
4, total,i.e., eitherr<sors<r.
(A2) Any nonvoid subset of T which is bounded above has a least upper bound, i. e.,
the measure chain (T, <) is conditionally complete.
(A3) Themappingv: T x T — R has the following properties, forr,s, t € T:
1. v(r,s) + v(s,t) = v(r, t) (cocycle property),
2. ifr > s, thenv(r,s) > 0 (strong isotony),
3. vis continuous (continuity).

Example C.2. Let T be any nonvoid closed subset of real numbers, with “<” being the
usual order relation between real numbers and

v(r,s)=r-s, rseT.

Definition C.3. The forward jump operator o and the backward jump operator p are
defined as follows:

o(t)=inf{se T:s>t}, p(t)=sup{seT:s<t}
where

o(t)=t ift=maxT,
pt)=t ift=minT.

The graininess function is defined as
u) =v(o(t),t), teT.

The notions left-scattered, left-dense, right-scattered, right-dense, isolated, and
T* are defined as in the case of time scales.

https://doi.org/10.1515/9783110787320-015
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320 — C Potzsche’s chain rules

Definition C.4. Let X be a Banach space with anorm | - ||. We say thatf : T — X is
differentiable at t € T if there exists fA(t) € X such that for any € > O there exists a
neighborhood U of t such that

IF(a(t)) - f(s) - FA WV (a(t), 5)| < ev(a(t),s)|

for all s € U. In this case f2(t) is said to be the derivative of f at .

Theorem C.5. We have
VG, t)=1 teT.

Proof. Lett € T. Let also € > 0 be arbitrarily chosen and U be a neighborhood of ¢.

Then
v(o(t),s) +v(s,t) =v(a(t),t), seT,
and
[v(a(t),t) = v(s, t) = v(a(t),s)| = [v(a(t), t) - v(a(t),t)|
=0
< elv(a(t),s)],
for any s € U. This completes the proof. O

As in the case of time scales, one can prove the following assertion.

Theorem C.6. Letf,g: T — Xandt € T.

1. Ift € T%, then f has at most one derivative at t.

2. Iff is differentiable at t, then f is continuous at t.

3. Iff is continuous at t and t is right-scattered, then f is differentiable at t and

fe®) -£)

Aopy
Fo= u(t)

4. Iff and g are differentiable at t € T" and a, B € R, then af + Bg is differentiable at
t and

(af +Bg) (t) = af™(t) + Bg"(8).

5. Iff and g are differentiable at t € T* and “” is bilinear and continuous, then f - g is
differentiable at t and

(f-8)"(t) = fA(t) - g(t) + f(o(t)) - g2 (D).
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C.2 Potzsche’s chainrule = 321

6. Iff and g are differentiable at t ¢ T* and g is algebraically invertible, thenf - g ' is
differentiable at t with

g0 = (O -F-g )b b)) g (o))

C.2 Potzsche’s chain rule

Throughout this section we suppose that (T, <,v) is a measure chain with forward
jump operator ¢ and graininess u. Assume that X and Y are Banach spaces, and we
will write || - || for the norms of X and Y. For a function f : T x X — Y and x,, € X, we
denote the delta derivative of t — f(t,x,) by Af (-, x), and for a t, € T we denote the
Fréchet derivative of x — f(t,, x) by D,f (¢, ), provided these derivatives exist.

Theorem C.7 (P6tzsche’s chain rule). For some fixedt, € T",letg : T — X,f : T x
X — Y be functions such that g, f(-,g(ty)) are differentiable at t,, and let U < T be a
neighborhood of t,, such that f(t,-) is differentiable for t € U U {0(ty)}, Dof (a(ty),") is
continuous on the line segment

{g(ty) + hu(ty)g"(ty) € X : h € [0,1]}

and D,f is continuous at (ty,g(t,)). Then the composition function F : T — Y, F(t) =
f(t,g(t)) is differentiable at t, with derivative

1
FA(ty) = Dof (o, 8(to)) + (JDJ(U(to)xg(fo) + hu<t0>gﬁ(to>)dh>gﬂ(to).
0

Proof. Let U, ¢ U be a neighborhood of ¢, such that
u(ty) < |v(t,o(ty)| fort e U,.
Let
@(t,h) = D,f (t.8(t) + h(g(t) - 8(&p))), te Uy, hel01].
Note that there exists a constant C > 0 such that
[®(a(ty), h) - Dty h)|| < C|v(t,o(ty))| forte U, helo1]

Let € > 0 be arbitrarily chosen. We choose €, > 0, &, > 0 small enough such that

81(1+C

1
j D(o(ty), h)dh‘
0

) Fesler+ 2l ol) <
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Since g and f(-, g(¢t,)) are differentiable at ¢;, there exists a neighborhood U; ¢ U, of
t, such that

le® - g(to)] <&,
lg(®) - g(a(to)) - v(t, 0(te))g"  (to)]| < ealv(t, 0(te))],
If (t.g(to)) = f(o(to), 8(to)) — V(t, 0(te))Asf (o, 8(to))|| < &1v(t, a(to))]

for t € U;. Hence,

lg® - gto)l| = llg(®) - g(a(to)) - v(t, olty))g" (to) + 8"tV (¢, 5 (ty))
+g(a(ty)) - g(to)|
< Jlg(t) - g(0to)) - v(t, 0(t0))g"(to)]
+ g o)Vt o(to))] + [8(a(te) - g(to)|
< & |v(t, a(ty))| + ||gA(t0)|||v(t, o(ty))] + ngA(to)"l‘(to)
+ gt V(E o(to))| + 18" o) to)
< (&1 + 2" GVt 0t t € Uy

Since g is continuous at ¢, and D,f is continuous at (¢, g(f,)), there exists a neighbor-
hood U, ¢ U of ¢, so that

[|©(t, h) - D(ty,h)| <&, fortel, helo1]

Hence,

1
F(t) - F(o(ty)) - v(t, U(to))<A1f(t0, g(ty)) + j D(0(ty), h)dth(tO)>H
0

= }/(t,g(t)) —f(o(ty).g(a(ty))) — f(o(ty). &(ty)) + f(a(ty). g(to))

—f(t.g(ty)) + f(t.8(ty)) — v(t, a(te))Aif (o, 8(to))

1

.
1

v(t, o(to)) ch o(ty), h)dhg™ (ty) - j ®(a(ty), h)dh(g(t) - g(ty))
0 0

1
N an a(to), h)dh(g(t) - g(ty))
0
< [f(t.8(t0)) - F(0(to). 8(t0)) — V(£ 0(t0))Arf (0, 8(60))|

+

j O(0(ty), W)dh(g(0) - g(ty) - v(t. 0(ts))g (ko))
0
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+ }/(t,g(t)) ~f(t.8(to)) - (f(o(to). 8(0(ty))) — f(0(to). 8(to)))

1
jqa o(ty), h)dh(g(t) - g(ty))
0

< |f(t.g(te)) = f(a(te), 8(ty)) = V(t, 0(te))Mef (o, 8(t0)))|

+| | ®(atty), h)dn

‘Ilg(t) 8(to) - v(t, 0(tp))8" (ko))

+| | (@(t, h) - D(0(ty), h))dh(g(t) - g(ty))

=
I

< |F(t.gty)) - f(a(to).8(to)) — V(t, 0(te))Af (to, 8(to))|

+| | @(o(ty), h)dh

‘Hg(t) 8(to) —v(t, 0(to))g" (8o

D(ty, h) - D(0(ty), h))dh

1
|
1
+ jcp(t h) - D¢y, h) dh”“g t) - g(to)|
0
1
I

‘Ilg(t) gt

1
<& |v(t, o(ty))] + & |v(t, o(ty))| J(D a(ty), h) dh”

0

+ &(&1 +2|g" (t)|)|V(t 0 (te))| + &1 Clv(t, o (ty)))|

1
= <£1<1+C+

JCD(U(tO),h)dh’
<elv(t,o(ty)], teUnU,.

) Fesler + z||gA<to)||>)|v<a o)

0
This completes the proof. O

C.3 A generalization of Potzsche’s chain rule

In this section we state and prove a generalization of Pétzsche’s chain rule.
Letg : T x R" — R be a given function. Then for the function g(t,y;,..., Vn) we
denote by A;g(-, ¥y, - - -, V) its delta derivative.
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324 — C Potzsche’s chainrules

Theorem C.8. For some fixed t, € T, let yi:T—-Rjefl..., n,f: TxR"— Rbe
continuous functions such that f (-, y,(ty),-- -, Va(to)), and vpJedl..., n}, are differen-
tiable at t,. Let U < T be a neighborhood of t, such that

1. f(t,...,-) is continuously-differentiable for t € U U {o(t,)},

2. MfCGyi() .o, yg(9) Is continuous at t,

3.

ai)ﬁf(o(tO), yl(o(to))> oo :)’j—1(0(to))> ) yj+1(t)’ e ’yn(t))
]

is continuous on the line segment
{y;(6) + h(y;(o(ty)) - y;(t)) e R: h e [0,1]}, jefl,..., n}, Vt € U U {ty},
4, Biyjf is continuous at (ty, y1(t), - - > Yn(to))-

Then the composition function F : T — R, F(t) = f(t,y,(8),y,(t),...,y,(t)), is differen-
tiable at t, with derivative

FA(to) = Mf(to, y1(to)s a(to)s - - > Yn(to))

1
+ (j %f(o(to)dﬁ(to) +hucto>y§‘<to>,yz<to>,...,ynao))dh)yé‘(to)
1
0

1
+ (J %f(a(to)))ﬁ(a(to))’J’2(to) + hﬂ(fo)yg(to), .. ,yn(to))dh>y2A(tO)
2
0
+ e
‘ 0
+ (J Wf(a(to)’Y1(0(t0))’YZ(0(to))>'~-’)’n—l(a(to))’)/n(to)
0 n

+ hy(to)yﬁ(to))dh>yﬁ(t0).

Proof. Lets € (ty — 6,ty + 86) N'T, s # o(ty), for § > 0 small enough, and s < o(ty) if
o(ty) > ty. Then

F(o(ty)) - F(s)
= f(0(t0), y1(0(t0)) ¥2(0(t)), - - -, Yu(0(80))) = £ (S, ¥1(5), ¥2(S); - -, ¥n(9))
= f(0(te), Y1(8), Y2(8), - -, Yn(8)) = F (5, ¥1(8), ¥2(5), - -, Y (9))
+£(0(t6), y1(0(t0)), Y2(S), .-, Yn(9)) = f(0(t) ¥1(8), ¥2(S), -, Vu(S))
+f(0(tg), y1(0(t)), y2(0(tp)), . . ., Yn(S)) = f(0(to), y1(0(t0)), ¥a(S)s - ., ¥n(S))
i
+£(0(to), y1(0(to), y2(0(to))s - .., Yn(0(t0))) = f(0(to), y2(0(t0)), Y2 (0 (ko)) - ., Yn(S))-
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Then, we have

F(a(ty)) - F(s)
=f(0(to) Y1(8),¥2(S), .., ¥n(8)) = £ (S, ¥1(5), ¥2(S), . ., Y (S))

([57
+ i
a)’2

x (y2(o(ty)) — y2(s))

+ e

O e, o_‘

X (Yn(a(to)) - yn(s)).

If o(ty) > ty, by the mean value theorem there exist ¢, ¢, € [s, 0(ty)) = [s, to] so that

Af (& Y1(8),Y2(S)s - .., Yn(9))(0(to) = S) < F(0(t0), ¥1(5)Y2(S)s -5 ¥u(S)),
~f(5,11(),2(8), -, ¥n(9)) < Dif (&, ¥1(S), ¥2(S), - . ., ¥n(8))(0(tp) — 5),

and

Alf(tO’Y1(to)aY2(to) ~~~~~ yn(to))
= hm Alf({l J’1(S)>Y2(S) ---- YH(S))

< lim — (t) S (000 71(8),y2(8)s -, yn() = F(5:71(8),y2(8)s -, yn(9))
< lim Af (é’z,yl(S),yz(s) ..... Yn())

= Alf(tO’YI(tO))YZ(tO) ’’’’’ yn(to))

If o(ty) = ty, by the mean value theorem, there exist &;, &, between s and ¢, so that

DM (EL,Y1(S),Y2(S), - Yn(S))(to = S) < [t Y1(8), ¥2(S), - - Vu(S))s
~f(8,11(8),2(8)s ., ¥n(9)) < Dif (&, ¥1(8), ¥2(S)s - .., Yn(S))(to — 9.

In this case, if s < t, we have

Aif (to, y1(to), ¥a(to)s - - . V(o))
= hm Alf(€1x)’1(5)>)’2(5) ’’’’’ yn(s))

< lim —(f(U(to) Y1), Y2(8)s .. s ¥n(9)) = £(8,¥1(5), ¥2(S), . .., ¥ (S)))

s—>t0
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< SEEH_ Alf({Z’yl(S)xyZ(s) ))))) Yn(s))
= Mif (to, yi(to)s ya(to)s - .- Yn(to))s

and if s > t, we have

Aif (to, y1(to), ya(to)s - - - Yn(to))
= Jim . Af(§1(8),Y2(9)s - Yn(S))

> lim —(f(O(to Y1) Y2(S)s . Yn(9)) = £(S,¥1(8), ¥2(S)s - .., Yn(S)))

s—>t0+ ty

Jim Ayf(8,y1(5),2(5)s - Yu(S))

Aif (to, y1(to), ¥a(to)s - - - Yn(to))-

[\

Moreover,

s—ty

1
lim ( <J aiyjf(a(to)’)ﬁ(o(to)) ’’’’’ Yj-1(0(to)), y;(8) + h(y;(a(ty)) - y;(s)),
0

yj(0(tp)) —Yj(fo)>

o(ty)—s

= lim 9
- s—ty ay
0

1

J —f(0(to), y1(0(to)), - ... ¥j-1(0(to)), ¥;(s) + h(y;(a(ty)) - y;(s)),
_ ( 0
o Y

)/,(O(to)) - ¥;(to)
_’to G(to) -8

j
1
J Tf(a(to)))ﬁ(a(to)) ----- Yj-1(0(to)) yj(to) + h(y;(a(to)) - y;(to)),

1

(J f(0(to), y1(0(t0)), ... ¥j1(0(t0)), ¥j(to) + hu(te)y; (to), Yy (to)s - - - yn(to))dh>
0
X Y;

(to) jeftl,..., n}.
Therefore,

F(o(t)) — F(s)
s=tp  0(tg) —s
_ 1im [0(0). 1(8).¥5(5). - .. Yn(8)) = F(5,¥1(5). Y5(S). .- .. Y(S))
5=ty o(ty) — S
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1
+ lim ( (J aiylf(a(to),yl(s) +h(y,(a(ty)) = y1(8)), y2(8), - - - yn(s))dh>
0

s—ty

o(ty) —s

« y1(a(ty)) —Y1(5)>

1

+ lim<<J aiyzf(o(to)a)ﬁ((f(to))»)’z(s) +h(y,(0(ty)) = y2(5)), .- . yn(s))dh>
0

s—ty

 V2(0(t0) ~ ¥5(s) )

o(ty) —s

1

+ lim<<J %f(a(to), Y1(0(t0)), y2(0(tn))s - - Yu(S) + h(y(0(ty)) - yn(s)))dh>
0 n

s—ty
o Yn(0(t0) ~yn(S)
o(ty)—s

= Aif (to, y1(to), ya(to)s - - - Yn(to))
1

+ (j %f(a(to),)’l(to) + halt)y2(to), alto), . Yn(to))dh>)’1A(to)
1
0

1

+ (J %f(a(to)’)’1(U(to))r)’2(t0) + hll(to))’zA(to) >>>>> )’n(to))dh>J’§(to)
2

0

4+ e

{

xyﬁ(to).

Q
|

Vn

This completes the proof. O
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D Lebesgue integration. L’-spaces. Sobolev spaces

Let T be a time scale with forward jump operator o and delta differentiation operator A.

D.1 The Lebesgue delta integral

Suppose that 7 is a family of left-closed and right-open intervals of T of the form
[a,b)={teT:ac<t<b}

a,b € T, a < b. The interval [a, a) is understood as the empty set.

Definition D.1. Define m; : F; — [0, 0] to be the set function that assigns to each
interval [a, b) € F its length, i.e.,

my([a,b)) =b -a,

and satisfies the following properties:
1. ml (0) = O,
2. if{[a;, bj)}jea is a finite or countable pairwise disjoint family of intervals of 73, then

(U 5)) = 3 milla ) = Y-
jeA jeA jeA
Here A is an index set.

Definition D.2. Consider the pair (F;, m;). Let E be a subset of T. If there exists at least
one finite or countable system of intervals Vi e 7, j € N,suchthatE c Uj Vi then we
set

m; (E) = inf ) m,(V}),
j

where the infimum is taken over all coverings of E by a finite or countable system of
intervals Vi e F. If there is no such covering of E, then we set m; (E) = co.

Note that m; (0) = 0.
Definition D.3. A subset A of T is said to be m;‘ -measurable, or A-measurable, if

m; (E) = m; (EnA) +m; (EnA")

holds for any E ¢ T. Here A€ denotes the complement of 4, i. e., A = T'\ A. The family
of all m; -measurable subsets of T will be denoted by M(m;).

https://doi.org/10.1515/9783110787320-016
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Exercise D.4. Let A,B c T, An B = @. Prove that
m; (AU B) = m; (A) + mj (B).

Exercise D.5. Let {Aj}jc ¢ M(my). Prove
1 (U]ofl Aj)c = m]O:1 A]?,
2. (N2 4)° =UZ A

Theorem D.6. The family M(m;]) is a o-algebra.

Proof.
1. LetE ¢ T be arbitrarily chosen and fixed. Then

ENT=E, EnT =g,

and

m;(E) = m{ (ENT) +m; (ENnTC).

Therefore, T € M(m;).

2. LetA e M(mj) be arbitrarily chosen and fixed. Take E ¢ T arbitrarily. Then, using

that (A°)€ = A, we get

my(E) =m{(EnA) + m{(ENA°) =m{(ENA®)+m;(EnA)

=m}(EnA°)+m (En(A)°).

Therefore, A € M(my).

3. Let {Aj}]‘-fl C M(m;y) be arbitrarily chosen and fixed. Take E ¢ T arbitrarily. Then

m;(gn (}QA,-)) + mi“(En (gAj)c>

_ m;(gn (}[’le,» +m;‘<En (ﬁA,))
i (e0(0))o (20 (f14))

=m; (E).

Therefore, U]‘.fl A; € M(mJ). Next,
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Consequently, (2, A4; € M(my).
This completes the proof. O

The restriction of m; to M(m;) will be denoted by p,. This p, (the Lebesgue
A-measure) is a countable additive measure on M(my). All intervals of the family 7,
including the empty set, are A-measurable. Therefore, T is A-measurable. Assume
that T has a finite maximum 7,. Then the set T \ {7} can be represented as a finite or
countable union of intervals of the family F; and therefore it is A-measurable. Because
the difference of two A-measurable sets is a A-measurable set, we get that the single-
point set {7} is A-measurable. Since {7} does not have a finite or countable covering
by intervals of F;, we conclude that the single-point set {ry} and any A-measurable
subset of T, containing the point 7, have A-measure infinity.

Leta,beT,a<b.

Lemma D.7. The set of all right-scattered points of T is at most countable, i. e., there are
I ¢ N and {t;};¢; ¢ T such that

R={teT:t<o®)}={t}ir (D.1)

Proof. Letg : [a,b] — R be defined as follows:

t ift €T,
gt) = _
o(s) ifte(s,0(s)) forsomes e T.

Note that the function g is monotone on [a, b] and continuous on the set
[a,b]\{teT:t <o)}

Because the set of points where a monotone function has discontinuities is at most
countable, we get the desired result. This completes the proof. O
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Remark D.8. Since

T= U (T n(-n,n)),

nelN
Lemma D.7 is valid in the case when T is unbounded.

Theorem D.9. Lett, € T \ {max T}. Then the single-point set {t,} is A-measurable and
its A-measure is given by

ua({to}) = a(ty) — to.

Proof.
1. Lett, be right-scattered. Then

{to} = [to, G(to)) € ]:1'
Therefore, {t,} is A-measurable and
ua({to}) = a(ty) = to.

2. Let t, be right-dense. Then there is a decreasing sequence {f;}; Of points of T
such that ¢, > o, k € Nand ¢, — t,, as k — oco. We have

[to,t) D [tg,t) D -+ D [tgtg) D -+

and

o0

{to} = [lto» ti)-

k=1

Hence, {t,} is A-measurable as a countable intersection of A-measurable sets. By
the continuity property of u,, we get

Ha(ito}) = I}LIEOVA([to»tk)) = klijgo(tk —tp) =0.
This completes the proof. O
Theorem D.10. Leta,b € T, a < b. Then

Ma([a,b)) =b - a,
up((a, b)) = b - a(a).

Proof. We have

up(la, b)) = my([a,b)) =b - a.
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Next observe that

[a,b) ={a} U (a,b).

Since
{a} n(a,b) =0,
we get
b-a=p(la,b))

=pup({a} u (a, b))

= up({a}) + ua((a. b))

=0(a) - a+pup((ab)).
Hence,

upr((a, b)) =o(@)—a-b+a=o0(a)-b.

This completes the proof. O

Example D.11. Let T = 2Z. We will find
Ua([0,10)) and u,((0,10)).
We have
ot)y=t+2, teT.
Then

1([0,10)) =10 - 0 = 10,
15((0,10)) =10 - 6(0) =10 -2 = 8.

Example D.12. Let T = 2™ U {0}. We will find

Ha([1,16)) and up((2,32)).
We have

0(0)=1, o(t)=2t, te2™o
Then

ua([1,16)) = 16 -1 = 15,
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Ua((2,32) =32-0(Q) =32-4=28.

Exercise D.13. Let T = 3™ u {0}. Find
1L up([0,27)),

ua([1, 81)),

Ua((0, 81)),

ua((0,243)),

ua([1,243)).

GEF NN

Theorem D.14. Leta,b € T \ {max T}, a < b. Then
Ua((a,b]) = o(b) - o(a), pp(la,b]) = o(b) - a.
Proof. We have
(a,b] = (a,b) U {b}.
Then, using that

(a,b) n{b} =0,

we obtain
Ua((a, b]) = pp((a, b) U {b})

= ua((a, b)) + pa({b})

=b-0o(a)+ab)-b

=a(b) - o(a).
Next,

[a,b] = {a} U (a, b].
Since
{a}n(a,b] =0,

we obtain

ua(la, b]) = pup({a} U (a, b))
= ua({a}) + ua((a, b1)
=o0(a)-a+a(b)-o(a)
=0g(b) - a.

This completes the proof.
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Example D.15. Let T = Z. We will find
1a((0,10]) and  p,([-2,8]).
We have
ot)=t+1, teT.
Then

ux((0,10]) = 0(10) - 6(0) =11 -1 =10,
Upa([-2,8]) =0(8) - (-2) =9 +2 =1L

Example D.16. Let T = 4™ U {0}. We will find
ua((0,4]) and  pp([1,64]).
We have
g(0) =1,
o(t) = 4t, te4™,
Then

Up((0,4]) = 0(4) - 0(0) =16 -1 =15,

ua([1,64]) = 0(64) — 1 =256 — 1 = 255.
Exercise D.17. Let T = 8Z. Find
1. HA((O> 8])’
2 HA([_8> 8])’
3. up([-16,32]),
4. u([-16,0]),
5. pa((-16, 8]).

ForasetE c [a, b], define
Ip={iel:t;cENR},

where I ¢ N and R is given by (D.1).
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Theorem D.18. IfE c [a, b], then the following properties are satisfied:
1. up(E) <my(E).
2. Ifb ¢ E and E has no right-scattered points, then

Ha(E) = m; ().
3. IfRisdefined by (D.1) and I \ R is Lebesgue measurable, then
u(R) =0,
where u(-) is the classical Lebesgue measure.
MA(ENR) = Y (0(t;) —t;) < b—a = pp([a, b).

ielg

5. Ifb ¢ E, then

m; (E) = ) (0(t;) - t;) + u(E).

ielp
6. mj(E) = up(E) ifand only if b ¢ E and E has no right-scattered points.

Proof.
1. Assertions 1, 2, 3, and 4 follow directly from the definitions of m; and p,.
2.  Now we will prove Assertion 5. Suppose that b ¢ E. We have

MA(E) = pp(ENT)
=M (EN(RU(T\R)))
=UA(ENR) +up(EN (T \ R))
- uo(EN (T \ R)).

Because b ¢ EN(T\R) and EN(T\R) has no right-scattered points, by Assertion 2,
we have

UAE) = up(E N (T\R)) = m(En (T \ R)).
Thus,
my(E)=m{(ENR)+m;(En(T\R))
= 2 (0(t) — t;) + ua(B).
ielg

3.  Now we will prove Assertion 6.
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(a) Let b ¢ E and suppose E has no right-scattered points. Then

Y (ot)-t;)=0

ielg

and

m; (E) = pp(E).

(b) Let my (E) = up(E). Then, using Assertion 5, we get

Y (alty) - t;) =0.

ielg
This completes the proof. O

Theorem D.19. Let A C [a, b]. Then A is A-measurable if and only if A is Lebesgue mea-
surable. In such a case, the following properties hold for any A-measurable set A:
(i) Ifb ¢ A, then

Ha(A) = ) (o(t;) - ;) + u(A).

iel,
(i) up(A) = p(A)ifand only if b ¢ A and A has no right-scattered points.
Proof.
1. Let A be A-measurable.

(@) Letb ¢ A. Take E ¢ [a, b] arbitrarily.
i. Suppose that b ¢ E. Then, using that

[a,b]\ A = (T \A)uU ([a,b]\T),
A is A-measurable, and T is Lebesgue measurable, we obtain

U(E) < u(ENA)+u(En([a,b]\ A))
SUENA) +u(En(T\A) +p(En([a,b]\T))
=my(EnA)+m;(En(T\A))
= Y (o(t)~t) + u(En ([a,b]\ T))

ielgnt
=mj(EnT)- ) (o(t;)-t;)+pu(En([a,b]\T))
i€lgnr
=puENT)+pu(En(la,b]\ T))
= u(E).

EBSCChost - printed on 2/10/2023 4:40 PMvia . All use subject to https://ww.ebsco.conlterns-of-use



338 —— D Lebesgue integration. LP-spaces. Sobolev spaces

Thus,
H(E) = (ENA) +u(E n ([a, b] \ 4)).

ii. Letb € E.Then

u({b}) =0
and
WE) < w(ENA)+pu(En(la,b]\ 4))
<u((Enla,b))nA)+u((En(a,b))n([a,b]\ A))
= u(En[a,b))
< u(E),
i.e.,

H(E) = W(ENA) +u(En ([a,b]\ 4)).

Consequently, A is Lebesgue measurable.

(b) Let b € A. Then A\ {b} is A-measurable and, by the previous case, it follows
that A \ {b} is Lebesgue measurable. Since {b} is Lebesgue measurable and
the union of two Lebesgue measurable sets is a Lebesgue measurable set, we
conclude that the set A is a Lebesgue measurable set.

2. Thefactthatif AisaLebesgue measurable set, thenitisa A-measurable set follows
similarly, and we leave its proof to the reader as an exercise.

Note that (i) and (ii) follow by Assertions 5 and 6 of Theorem D.18. This completes the
proof. O

Definition D.20. The Lebesgue integral associated with the measure y, we call the
Lebesgue A-integral on T. For a set E ¢ T and a (measurable) function f : E — R, the
corresponding integral of f over E we denote by

J F(O)AL,

E

So, all theorems of the general Lebesgue integration theory, including the Lebesgue
dominated convergence theorem, will hold for the Lebesgue delta integral on T. Below
is a comparison of the Lebesgue A-integral with the Riemann A-integral.

Theorem D.21. Let [a, b) be a half-closed bounded interval in T and let f be a bounded
real-valued function on [a, b). Iff is Riemann A-integrable from a to b, then f is Lebesgue
A-integrable on [a, b), and
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b b
R J FOAE =L J FIOAL, (D.2)

where R and L indicate the Riemann and Lebesgue integrals, respectively.

Proof. Let f be a Riemann A-integrable from a to b. Then for each positive integer k,
we can choose a §; > 0, §; — 0, as k — o0, and a partition

Pk:azt(()k) <t§k) <~--<t’,§(k) =b

of the interval [a, b) such that P, € P5_and

1
UF.P) - LA P < 7
Here P, is the set of all partitions
Pia=ty<t;<---<t,=b

such that either ¢; — ¢;_; < ort; - t;,_; > § and p(t)) = t;_y, U(f, P;) and L(f, Py) are the
upper and lower Darboux A-sums of f with respect to P;, respectively. Then

b
lim L(f,P,) = lim U(f,P,) = R J FIOAL.
k—oo k—o0

a

By replacing partitions P, with finer partitions, if necessary, we can assume that, for
each k, partition Py, is a refinement of partition P,. Set

m}(k) = inf{f(t): t € [t}f},t}?k))},

M}F’O = sup{f(t) : t [t}[‘;, t}.(k))}, ji=12...,nk).

Define the sequences {¢,} and {®,} of functions on [a, b) such that

¢ty =m® and @) =MY, te[th, D),

j-1

j=12,...,n(k). We have that {¢;} is a nondecreasing sequence and {®,} is a nonin-
creasing sequence. Also, for each positive integer k, we have

bx < Prar
(Dk > ch+1’

P <f <Dy,

L[ done=16.p.
[a,b)
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L j O, ()ALt = U(f, Py).
[a,b)

Because f is bounded, we have that the sequences {¢,} and {®,} are bounded. There-

fore,
() = lim ¢y (t),
k—o00
O(t) = lim Dy (), telab).
k—o0
We have

o) <f(t) <D(t), telab),

and ¢ and @ are A-measurable functions on [a, b). By the Lebesgue dominated theo-
rem, we obtain

Jim I J du(OAE = L J H(O)AL,
« [a,b) [a,b)
lim L j O (At =L J D(t)At.
k—oo
[a,b) [a,b)

Therefore,

L J $(OAL = lim j P ()AL
[a,b) Oo[a‘b)

= lim L(f, Pk)
k—o00
b

=R j F(O)AL

a
= lim U(f,P,)
k—o0
= lim L J @, ()ALt
® la,b)

L J DAL,
la,b)

Hence,

L [ @0 -pwpe=o

[a,b)

and, using that
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o) =0(t), telab),
we get

$(t) = D(t)

for A-almost every t € [a, b). Consequently,

$(t) =f(t) = D(t)

for A-almost every t € [a, b). Therefore, f is Lebesgue A-integrable and (D.2) holds. This
completes the proof. O

Theorem D.22. Letf be a bounded function defined on the half-closed bounded interval
[a,b) of T. Then f is Riemann A-integrable from a to b if and only if the set of all right-
dense points of [a, b) at which f is discontinuous is a set of A-measure zero.

Proof.
1. Suppose that f is Riemann A-integrable from a to b. For each positive integer k, let
Py, @y, @y, ¢, and @ be defined as in the proof of Theorem D.21. Let

8

A= P,
1

k
A,y={t €la,b):te Aandtisright-dense},
G = {t € [a, b) : f is discontinuous at t},
G,q = {t € G : tisright-dense},
A={telab): p(t) + D)}

Let t € [a, b) be such that

@) =f() = D(t)

and t ¢ A. Assume that f is not continuous at t. Then there exist an € > 0 and a
sequence {t;}ie such thatt; — t, asj — co, and

F(&) - FO] > €

for anyj € IN. Hence,

ft) > e+f(t)
and

O(t) > € + P(t),
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which is a contradiction. Therefore, f is continuous at t. Observe that all right-
scattered points of [a, b) belong to A. Hence, for each right-scattered point ¢ of
[a, b) and all sufficiently large k, we have

Pi(t) = Dy (t) = f(O)
and from here
@(t) = () = f(0).
Therefore,
G,g CAUAN,.
By the proof of Theorem D.21, it follows that
$(t) = O(t)
for A-almost every t in [a, b). Therefore,
1a(A) = Up(Byg) = O,
and hence,
Ua(Gyg) = 0.

2. Suppose that the set of all right-dense points of [a, b) at which f is discontinuous
is of A-measure zero. Then u,(G,;) = 0. For each positive integer k, we choose
0, > 0, 6, — 0, as k — oo, and a partition

Pk:aztg‘)<tfk)<---<t,(1’E,)<)=b

of [a, b) such that P € Ps,_and Py, is a refinement of P;. Let ¢y, @y, ¢, and © be
defined as in the proof of Theorem D.21. Suppose that t € [a, b) is right-dense and
f is continuous at t. Then for a given € > 0, there exists a 6 > 0 such that

supf —inff < ¢,

where the supremum and the infimum are taken over the interval (¢ — 6, t + §). For
all k sufficiently large, a subinterval of P containing ¢t will be in (¢t — §,t + §) and
then

D (6) — Py () < €.

Since € > 0 was arbitrarily chosen, we conclude that
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$(t) = D).

Next, at each right-scattered point t of [a, b), using the first part of the proof, we
have

B(t) = D(0).

Consequently, A ¢ G,; and, using that p,(G,;) = 0, we conclude that u,(4) = 0.
From here,

P(t) = D(t)
A-almost everywhere on [a, b) and

L J dOAt =L j D(H)AL.
[a,b) [a,b)

Hence, using the proof of Theorem D.21, we obtain
lim L(f,Py) = lim U(f,P;)
k—o00 k—o0

and thus, f is Riemann A-integrable on [a, b).

This completes the proof. O

D.2 The spaces IL°(T)

Having defined the space LY(T), itis usual to define LP(T) for anyp > linthe following
way:

L(T) = {u € L'(T) : [uf’ € LY(T)}.
For any p > 1, we provide ILP(T) with a norm

b v
”ll"]Lp(T) = (J |u|pA> , ue ]Lp(T) (D3)

Exercise D.23. Prove that (D.3) satisfies all the axioms for a norm.

Theorem D.24. For any p > 1, we have

C(T) ¢ C,4(T) ¢ ILP(T).
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Proof. Let u € C,4(T) be arbitrarily chosen. Then |uP ¢ E is bounded on [a, b] and it
is continuous on [a, b] except possibly at right-scattered points. Since the set of such
points is countable, it has Lebesgue measure zero. Thus, |ul? o E is Lebesgue measur-
able, and hence, integrable. Therefore, u € I.7(T). Because u € C,4(T) was arbitrarily
chosen and we get that u € ILP(T), we conclude that

C,q(T) c TP(T).

This completes the proof. O
Theorem D.25. For any p € [1, ), we have that C(T) is dense in IL°(T).

Proof. Let u € I'P(T) be arbitrarily chosen. Consider T as a topological space with
measure py. By the standard Lebesgue integration theory, it follows that there exists
a sequence {u,},n of elements of C(T) such that

flu— un"]Ll(jr) -0,

as n — oo. Thus, the result is proved for p = 1. In addition, by the standard Lebesgue
integration theory, it follows that we can suppose that there exists a constant C > 0
for which |u(t)| < C, |u,(t)] < C for any n € N and for any ¢t € T. Hence,

b
p »
N e U
a
b
_ J = P — |
a
b
-1
< j(lul + |un|)p [u —u,|A
a
b
< ey J = 1, |A
a
= (20w — upllgepy
— 0,
as n — oo. This completes the proof. O

Theorem D.26. Suppose that {u,},.n is a sequence in IP(T) for some p > 1. If |u -
Upllppery — 0, asn — oo, for some u € IP(T), and if t € T is right-scattered, then
u,(t) — u(t), asn — oo.
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Proof. Let | - [lpp(qp) denote the standard ILP(a, b)-norm on the real interval [a, b].
Then

. P

0 = lim || (u - ) o Ellpp(q )
b

- Jim, [l B
a
o(t)

lim J |(u - uy,) o Ef dx
t
a(t)

nlLrgo J [u—u,lPA
t
= lim [u(t) — u, (O (0(0) - 1)

> 0.

[\

Consequently, u,(t) — u(t), as n — oco. This completes the proof. O

Theorem D.27. If {u,},cn is a Cauchy sequence in I (T), then there exists a unique u ¢
IP(T) such that |[u - uyllyp¢r) — 0, asn — co.

Proof. Note that the sequence {u,, o E},. is a Cauchy sequence in LP(a, b). Then,
by the standard Lebesgue theory, it follows that there is a unique z € I”(a, b) such
that

Iz =y © Ellypapy — 0

asn — oo. Suppose that t € T is right-scattered. Then

"(un —Up) © E"I]ip(qr) = |(Un —Upy) ° E|pdx

Q9 Re—

t)
I(un - um) ° Elde

[\
~e

a(t)
= | lu, - u,lPA
t
= [un(®) = up (O (a(t) - t).

Therefore, the sequence {u,(t)},cn is @ Cauchy sequence. Thus, it converges to c(t)
and the function z must equal to c(t) almost everywhere on the interval [t, o(t)), and
so we may suppose that this equality holds everywhere on [t, g(t)). Since the set of
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right-scattered points t € T is at most countable, we may suppose that this is true for
all right-scattered points t € T. Defining u to be the restriction of z to T, it follows
thatu € IP(T),z = u- E, and |u - Upllppery — 0, as n — oco. This completes the
proof. O

Remark D.28.

1. By Theorem D.27, it follows that I”(T), p > 1, is a Banach space with respect to
the norm | - [l (-

2.  We can define a natural inner product on L2(T) by

b
W, vy = JuvA, u,v € L*(T). (D.4)

a

With respect to this inner product, the space L?(T) is a Hilbert space.

3. To simplify the notation, from now on we will use the notation || - || for the norm
” : ||]LZ(T)-

4. The notations || - || and (,-)y for the above norm and inner product on L*(T)
indicate that their values depend on the entire time scale T, even if u is not defined
at b.

Exercise D.29. Prove that (D.4) satisfies all the axioms for an inner product.

D.3 Sobolev-type spaces and generalized derivatives

Definition D.30. Foru ¢ (C}d("ﬂ"), we define
2
Nl = Nl + s (D.5)

and define the space H(T) ¢ L%(T) to be the completion of C!(T) with respect to the
norm || - ||, . The space H!(T) will be called a Sobolev space over T.

Exercise D.31. Prove that (D.5) satisfies all the axioms for a norm.

Theorem D.32. Function u € H(T) if and only if there exists a function ubs € L2(T)
such that the following condition holds: there exists a sequence {uy}ncy in C'(T) such
that u, — u and uﬁ —ub, asn — oo, in L2(T). Ifuce H(T), then us is unique in the

L%(T) sense. If u € CX(T), then u® = u®.

Proof.

1. Letu € HY(T). By the definition of the space H!(T), it follows that there exists a
sequence {u,},cn of elements of C'(T) such that lu,~ull; r — 0,asn — co.Hence,
lu, — uplyr — 0, as m,n — oo. Consequently, {uﬁ},,E]N is a Cauchy sequence in
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L2(T). Because L’(T) is a Banach space, there exists a unique ubs € L2(T) such
that uﬁ — uAg, asn — oo, in ]LZ(TI‘). In particular, ifu € (CI(T[‘), then u® = ub.
2. Let {u,},en be a sequence of elements of C(T) such that u, —» uand uﬁ - U
as n — oo, in L(T), for some ubs € L*(T). Hence, using (D.5), we conclude that
{u,}nen is @ convergent sequence in H(T). By the definition of H(T), it follows
that there exists u; € HY(T) such that u, — U, asn — oo, in H(T). Hence,
U, — U, asn — oo, in ]LZ(T). Because u, — u,asn — oo, in ]LZ(’JF), we conclude

that u = u; and u € H'(T). This completes the proof. O

Ag
>

Definition D.33. For any u € H!(T), the function u”¢ in Theorem D.32 will be called a
generalized derivative of u.

Theorem D.34. Ifu € HY(T), then u € C(T). There exists a constant C > 0 such that
lulor < Cllullyy, u e H'(T). (D.6)

Furthermore,

t
u(t) — u(s) = JuAgA, s,teT. (D.7)

S

Proof. Letu € C(T)ands,t € T, s < t. By Theorem D.22, we get

t
u(t) — u(s) = j WBA. (D.8)

S

Hence,

t
()| = |u(s) + JuAAl

S

¢
< |u(s)| + JuAA

S

¢
< |u(s)| + J|uA|A
S

t
< |u(s)| + (t - s);<j|uA|2A)

S

1
2

< |u(s)] + (b - @) |u) -

Now we integrate the latter inequality over T with respect to s and get
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b b b
ﬂMMAs“MQM+w—aﬁjwﬂHA

a a

b

< aﬁ(ﬂu(s)ﬂ) +(b- 7

1 3
= (b-a)?ully + (b - a)2 |u ]y

or
1 3
(b - @u(t)] < (b~ a)?luly + (b - @) [
Hence,
4] £ —— by + (b - @) [u*
(b-a):
and
1
suplu(t)| < Flully + (b - )2 [uy,
teT -a)?
or
1
Julo,r < clully + (b - @) ]y
b-a):
Let
1 1
C= max{—l,(b - a)z]’
(b-a):
Then

lulox < C(llully + [u*]y) = Cllullyy.

By Theorem D.32, we have that u® = u®. Hence, by (D.8), we get (D.7). Let now u ¢
H'(T). Then there exists a sequence {u,},cn of elements of C!(T) such that u, — u,
asn — oo, in ]HI(T). For this sequence, we have

[y, —uplor < Clluy — tpllyr, mneN. (D.9)

Note that u, — u,asn — oo, in ]LZ(T). Because |u, - uyllyr — 0,as m,n — oo,
using (D.9), we get

[un = Uplo,r = 0,
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as m,n — oo. Therefore, {u,} oy is @ Cauchy sequence in C(T). Because C(T) is a
Banach space, we conclude that the sequence {u,},c is @ convergent sequence in
C(T). Let u' € C(T) be its limit, i. e., u, — u', as n — oo, in C(T). Then

b
2 2
e S e
a
1,2
< (b-a)|u, — |y

- 0,

as n — oo. Therefore, u,, — ul,asn — 00, in ILZ(T). Because u,, — u,asn — oo, in
L?(T), we conclude that u = u' and u € C(T). From here, using

|un|0,”lr < C”un"LT’

we obtain that u satisfies the inequality (D.6). Since u € H!(T), using Theorem D.32,
there exist a unique function u € I?(T) and a sequence {V,},,c; of elements of C'(T)
such thatv, —» uand vﬁ —uP, asn — oo, in ILZ(T). Also, we have

¢
Vp(t) = vu(s) = JvﬁgA, s,teT, s<t. (D.10)

%)

Note that

< b-a)i |y ~uy

-0, s<t,

as n — oo. Hence, using that v, — u, asn — oo, in C(T), and (D.10), we conclude that
u satisfies (D.7). This completes the proof. O

Theorem D.35. Letu € HY(T). Ifu® = 0, then u is a constant on T.
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Proof. By (D.7), we get
u(t) = u(s)

for any s, t € T. This completes the proof. O

Theorem D.36. Letu € H'(T). Ift € T is a right-scattered point, then

b () = O —u®)

o(t)-t
Proof. Lett € T be a right-scattered point. Since u € H'(T), we have that u € L%(T)
and there exist a sequence {u,},c of elements of C!(T) and an unique u" € L*(T)
such that u, —» uand uﬁ — uAg, asn — oo, in lLZ(”JF). Hence, by Theorem D.26, we get

that u,(t) — u(t) and uﬁ(t) — uAg(t), as n — oo. By (D.7), we have

a(t)
u(o(t)) = u(t) + j u'sA
t

and
a(t)
u, (0(t)) = u,(t) + j UGA = U, (t) + ur(t)(a(t) - t).
t
Hence,
a(t)
lim w,(0(8)) = 1im (u,(6) + Uy (O)(0(0) = 1)) = u(t) + J u'sA = u(o(t)).
t
Therefore,
ue () = lim uy(6)
U (0(1)) = un(t)
T nso0 o) -t
_ u(a(t)) - u(t)
o(t)-t
This completes the proof. O

Theorem D.37. Letu,v € H(T) and a,f e R.Thenau+ v € H(T) and

(au + ,BV)Ag = o + BvAg.
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Proof. Since u,v € H!(T), there exist sequences {U,},,cx» {Vy}nen Of elements of C!(T)
and unique u’s, v € L(T) such that

asn — oo, in ILZ('JF). Hence,
au, + Bv, — au + Pv, auﬁ + ﬁvﬁ - aul + BvAg,

asn — oo, in L*(T). Hence, by Theorem D.32, it follows that au+Bv € H!(T). Applying
again Theorem D.32, we have that there exists a unique (au + Bv)Ag € L*(T) such that

(atty + Br)* — (u + Bv)’,
asn — oo, in L*(T). Since
(au, + ﬁvn)A = auﬁ + ﬁvﬁ — aul + pvs,
asn — oo, in L%(T), we conclude that
(au + ﬁv)Ag = au + BvAg.

This completes the proof. O

Theorem D.38. Let u,v € H'(T). Then uv € H'(T) and
W)™ = vy + uovP = whs + ul O, (D.11)

and

¢ ¢ ¢ t
J ubsvA + J U = J wheA + J ubsvon
S S S

= W)(t) — (uv)(s), s,teT.

Proof. Sinceu,v € H(T), there exist sequences {Up}hens Valnen Of elements of cy(m)
and unique u’s, v € L(T) such that

A A A A
Uy = U, V=V, U, DU, VvV, DVE,
asn — oo, in L2(T). Then

UV, — Uv,

asn — oo, in L2(T),
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Wy, uVPs, ws, P e LA(TD),
g o (o) ()
u, > u’, vy -7,
asn — oo, in ILz("ll"). Hence,
A A o, A A oA
(UpVp)” = UV + UV, D USV+U VS, (D.12)
A AL Ao Ao Do
(UnVp)™ = UpVy, + UV, — UVE + UV, (D.13)

asn — oo, in ILZ(T). Therefore, uv ¢ ]Hl(”ll“). Hence, using Theorem D.32, there exists a
unique (uv)Ag € L%(T) such that

() — ),
asn — oo, in L?(T). From here and (D.12), (D.13), we obtain (D.11). Hence, by (D.7), we

get

t t
J ulevA + J uviA = [ (ulev + utvh)A
S S

N — ~

= f(uv)Ag A

= (uv)(t) - (uv)(s)

and
t t t
J uveA + J ulsvoA = J(uvAg +uPv?)A
S S N
t
= J(uv)AgA
S
= (uv)(t) — (uv)(s), s,teT.
This completes the proof. O

Theorem D.39. Letu € IL2(T) and U(t) = j{j uh, t € T. Then U € HY(T), U" = u, and, if

VeH l(TF) satisfies V2 = u, then U -V is a constant. In addition, there exists a constant
C > O such that

Ul < Cliull-

Proof. Letu e I.2(T). By Theorem D.25, it follows that there exists a sequence {u,},,cn
of elements of C(T) such that u, — u, asn — oo, in L?(T). Since u, € C(T),n € N,
we have that
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t
U, (t) = JunA eC(T) and UM =u,(6), teT.

For n € N, we have

b, t t 2
U, - U = j junA-JuA A
ab a[ a ,
= J J(un —wA| A
ab at
< J(J(un —u)2A>(t—a)A
o b, b
< (b—a)J(J(un—u)2A>A
=(b- a)zanu:— ully
-0,

U8 = ullg = luy - ully — O,

asn — oo,i.e, U, - U, Uﬁ — U,asn — oo, in ILZ(T). Hence, by Theorem D.32, it
follows that U € H(T) and U% = u. Next,

b, t 2
101 = [|[ ua| &
b t
< J(t—a)(Ju%)A
b, b
<(b—a)j<Ju2A>A
= (b - a)’|ull%
U7 = lul.

Hence,

1

Ul = (1013 + | U% |%)2
1
< ((b - a)ull% + ull%)?

(1+ (b - @) Jully.
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LetV € I[—Il(il‘) be such that V? = u. Then, using Theorem D.37, we obtain
U-s=Ub -V =yu-u=0.

Hence, by Theorem D.35, we conclude that U — V is a constant. This completes the
proof. O

Definition D.40. The function U in Theorem D.39 will be called the antiderivative of u.

Theorem D.41. We have
C4(T) c HY(TD). (D.14)

Proof. Letv € (Cid(”ﬂ" ) be arbitrarily chosen and u = Ve C,4(T). By Theorem D.24, it
follows that u € ]LZ(T). Hence, by Theorem D.39, we have

t
U= JuA e HY(T) and U =u
a

Because v* = v = u, by Theorem D.39, it follows that there exists a constant C such

thatv = U+C € HY(T). Becausev ¢ (Cid("ﬂ") was arbitrarily chosen and for it we get that
itis an element of H!(T), we obtain the inclusion (D.14). This completes the proof. [

Definition D.42. Define the space
HX(T) = {u e C(T) : u® € HY(T")}
with the norm
Nl = Tl + [ - (D.15)

Exercise D.43. Prove that (D.15) satisfies all the axioms for a norm.

Theorem D.44. If {u,} .y is a bounded sequence in H(T), then {u,},c has a subse-
quence that converges in C(T).

Proof. Since {u,},.x is a bounded sequence in H'(T), there exists a constant M > 0
such that

lupllyr <M
for any n € IN. Hence, by Theorem D.34, it follows that

uplor < Cllupllyr < CM
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with C = max{ -, (b - a)%}, for any n € IN. Therefore, the sequence {u,},cn is
(b-a)2
a bounded sequence in C(T). Also, using Cauchy-Schwartz inequality and (D.7), we

have
t
Ju A

S

< [

t
< (t—s)i(ﬂuﬁﬂzA)

S

1
< (t=8) llugllyr

|un S) un(t) =

1

1
<M(t-s)z, s,teT, s<t.
Repeating as above,
1
[u,(6) —uy(s)| <M(s-t)2, steT, s>t

Therefore, the sequence {u,},cn is equicontinuous on T. Hence, using the Arzela-
Ascoli theorem, there exists a subsequence {u,, } ey Of the sequence {u,},¢ that con-
verges in C(T). This completes the proof. O

Theorem D.45. The embeddings
H*Y(T) — C(T), i=0,1,

are compact.

Proof. Leti= 0.By Theorem D.34, we have
[ulor < Cllully s

with C = max{ " 1,(b a) }. Therefore,

—11
HY(T) — C(T). (D.16)
By Theorem D.44, we have that every bounded sequence in H'(T) has a subsequence
that converges in C(T). Therefore, the embedding (D.16) is compact. Let i = 1. Suppose
that u € H2(T). By the definition of H2(T), it follows that u € C(T). Therefore,

H*(T) — C\(T). (D.17)
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Let {u,},.n be a bounded sequence in H*(T). Then {uﬁ}nEIN is a bounded sequence in
]Hl("Jl"). Hence, by Theorem D.44, it follows that there exists a subsequence {uﬁm}me]N

of the sequence {uﬁ}ne]N that converges in C(T). From here, it follows that {uﬁm}me]N is
a bounded sequence in C(T') and then there exists a positive constant M such that

up (0] <M

for any ¢ € T and for any m € IN. Note that

|unm (t) - unm (S)|

IN
N——~

<M(t-s), s teT, s<t.
Repeating as above,
|unm(t) - unm(s)| <M(s-t), steT, s>t

Therefore, {u, }ncn is equicontinuous on T. Since u, € C!(T), we have that Uy, €
H'(T) for any m € N. By Theorem D.34, it follows that

|unm|0,T < C"unm i< C"unm (PX

1
(b-a)
in HX(T) and {up, tmen is its subsequence, we conclude that {u, }ycy is a bounded
sequence in C(T). Hence and the Arzela—Ascoli theorem, it follows that there exists
a subsequence {”nmk }kew Of the sequence {u, },cn that converges in C(T). Because

with C = max{

(b - a)%}, for any m € N. Since {u,},cn is @ bounded sequence
2

{uﬁ }men converges in C(T), we have that {uﬁ Henw converges in C(T). Consequently,
m mk

the sequence {u, }ien CcOnverges in CY(T). Therefore, the embedding (D.17) is com-
My
pact. This completes the proof. O

Theorem D.46. For any € > 0, there exists C(g) > 0 such that
ulor < elu|p + CE)(lullp + |u°)),  ueH(D). (D.18)

Proof. Letu € H'(T). Then there exists a sequence {u,},. of elements of C'(T) such
that u, — u, uﬁ — u,asn — oo, in lLZ(T). Take n € N arbitrarily. Consider an
arbitrary t, € T. Suppose that

2 2
& &
TO,S = [to— ?,to‘f' ?:| ﬂTqﬁ {to},
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i.e., tyis notisolated in T. Let
io = infTO’E, SO = Sup TO,S'
We have

0<so—i0382.

Then

t
()] = [tn(s) + juﬁA

< [un(s)] + || w5

N ——

< [un(s)] + | U]

R ey

1

¢ 2
< |up(s)] + (t - 5 <J|uﬁ|2A>

< un(s)| + |us]lps S teTo, s<t.
Repeating as above,
|t (6)] < |un(9)| + E|th]l s St €Toe s>t

Integrating over T, . with respect to s, we get

ot
(So — io)|un(8)| < J [un($)|A + £(5g — i) [unll
o?
2
to+5 b
o1 2 A
£(So—lo)2< j Jun(s)| A) +£(5o — o) Jun
o?

1
o1 A
< (So — o) luylly +&(So = io)||thp s t € Top.
Hence,

lun()] < £(so — i0) ? Iuplly + €Ul £ € To,.
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Now, we suppose that T, = {to}, i. e., ty is isolated in T. If o(¢y) > ty, then

a(to)
untto)| = (0t0) ~ &) |l
to
. o(to) %
S(‘T(tO)—to)_Z( J |un|2A)
to
< (a(ty) —to) *luglly- (D.20)
If t > p(¢y), then
)
-1 o
untto)] = t0 Pt " | e
p(to)
IRt
< (to—P(to))2< j Iu§|2A>
p(to)
< (to = p(to)) *Junlly- (D.21)

Suppose that there exists € > 0 such that for each m € N and ¢,, € T we have
un(t)] > ]l + MUl + C)lp)s  tw — to- (D.22)

If t, is isolated, (D.22) contradicts (D.20) and (D.21). If ¢, is not isolated, then (D.22)
contradicts (D.19). Consequently, for each € > 0, there exists C(g) > 0 such that

lunlosr < ltnlly + CE) (gl + gl (D.23)

Because n € IN was arbitrarily chosen and

alorr = oz [l = [

gl = lullps  Junlle = 16
as n — oo, by (D.23), we get (D.18). This completes the proof. O
Theorem D.47. For any € > 0, there exists C(€) > O such that
ulo,r, < £||uAg I+ CEOL° | ue H(T). (D.24)

Proof. Letu € H'(T). Then there exists a sequence {u,} .y of elements of C'(T) such
that u, — u, uﬁ — u,asn — oo, in lLZ(T). Take n € N arbitrarily. Consider an
arbitrary t, € T,. Suppose that
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82 82
TO,E = [to — ?,to + ?] n ’]TK :/: {to},

i.e., tyis not isolated in T. Let

io = infTO’s, SO = Sup TO,S'

We have
0<sy—1ip< .
Then
t
|ua(6)] = ui(s) + J uﬁA'
a(s)
t
o A
< |up(s)| + J u,A
a(s)

t
< g+ [ hapla

a(s)

, 3
A
) A)

< ()| + sl 5005),t € Top 0(5) < t.

¢
< |up(s)| + (t - o(s))z< j
(s

a(s)

Repeating as above,
o A
[u, ()] < [up(s)] + €up|lp> S, 0(s),t € Tgp, 0(s) > t.
Integrating over T, . with respect to s, we get

&
to+5

(So — io)|un()] < j U5 ()| + (50 — o) [t

to—5
t0+§ %
L1 N, . A
5(50—10)2< j ul(s)| A> +&(Sg — o) ||ty |1
-2

< (So = i) ? Iuyllp + £(s — i) [t g> £ € T

Hence,
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1
|un ()] < (s — i) ||un ¢ + £||uﬁ||T, t €Ty, (D.25)

Now, we suppose that T, = {to}, i. e., f, is isolated in T. Then

to

untto)] = (to - pto)) " | e

p(to)
1

t 1
< (to —P(to))_2< J l“g|2A>

p(to)

-1
< (to ~p(t)) *[lunly- (D.26)

Suppose that there exists € > 0 such that for each m € N and ¢,,, € T, we have
un(tn)] > e|tbllp + MUl tw — to- (D.27)

If t, is isolated, then (D.27) contradicts (D.26). If t, is not isolated, then (D.27) contra-
dicts (D.25). Consequently, for each € > 0, there exists C(¢) > 0 such that

tnlor < eluplly + C@) - (D.28)

Because n € IN was arbitrarily chosen and

[uplor — lulos “uﬁ"T - ”uAgl

il = 147

']I‘)
asn — oo, by (D.28), we get (D.24). This completes the proof. O

D.4 Weak solutions of dynamical systems

Definition D.48. Letf : T — R be a Lebesgue measurable function. If
J[f(t)lAt <00
K

on all compact subsets K of T, then we say that f is locally integrable. The set of all
such functions we will denote by L .(T).

Define

Ty(T) = {p € Ljoe(T) : 1+ p(O)p(t) # O},
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Note that for any p € I';(T) and a, b € R fixed, there exist positive constants a; and a,

such that
a, <|1+up(t)| <a,, telablnT,
and the set
{teT:1+ut)p(t) <0} cT
is finite.

Definition D.49. Forp ¢ I';(T) and s, ¢ € T, define

Log(1+pu(0)p(t)) lfﬂ(t) £0

) = u(t)
‘fy(t)(p( )) {p(t) lf],l(t) -0,

and

ep(t, s) = ejls)f) {y(‘r)(p(T))AT.
Exercise D.50. Let p € I';(T). Prove that

8y (P()) € Lioe (D).

Definition D.51. For p,q € I';(T), define

pegqg=p+q+upq,

ep = — p ,
1+pup
pP-q

eq= .

Ped= 1 g

Exercise D.52. Let p,q € I';(T). Prove that

poq, pegq, epel(T).

Exercise D.53. Let p,q € [';(T) and s, ¢,r € T. Prove that

1. ey(t,s) =1,

2. ep(t, t)=1,

3. ep(t, s)ep(s, r) = ep(t, r),

4. ey(0(t),s) = (1+pu(OpD)ey(t,s),
5. ep(t, s) = ﬁ = eep(s, t),

6. e,(t,s)e,(t,s) = eyeq4(t,S),

7 ep(t,s)

etts) =~ €poq(6:S);
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8. e,(-5) € Cy(T),
9. (ey,(~)" =p(Je,(-s) A-ae.onT,
10. (e,(s,")" = -p(-)e,(s,0(")) A-a.e.on T.

Theorem D.54. Let x € C,y(T), p,f € L(T),p>00nT,a € T, and
XA(t) < px(t) +f(t) A-a.e.onT.
Then

x(t) < e,(t,a)x(a) + J ey(t,o(T))f()AT, teT.
[at)

Proof. Since p € L(T) and p > 0 on T, we have that p € I'/(T) and
1+u(t)p(t) >0, teT.
Therefore, for any s, t € T, we have
ep(t, s) >0, eep(t, s) > 0.
Next,

(X()eap(+9) () = X(Begy (a(t), @) + X(1)(€P)(E)egy(t, )
R0 p(6)x(0)

= Touop® ' T uop®

_ X - pOx(@)
1+ u(t)p(t)

= (XA(l’) - p(t)x(t))eg,(a(t),a) A-a.e.onT.

eep(t, a)

eep(t, a)

Therefore,

x(t)egy(t, a) — x(a) = J (XA(T) —p(-r)x(r))eep(o(r),a)Ar
[at)

< J f(megy(o(1),a)At, teT.
[a,t)

Hence,

x(t)egy(t,a) < x(a) + J f(Meg,(0(1),a)At, teT,
[a,t)

and
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x(t) < x(a)ey(t, a) + J f(T)eep(o(‘r), a)eep(a, HAT
lat)

= x(a)ey(t, a) + J f(Degp(o(T), t)AT
[a,t)

= x(a)e,(t, a) + J f(m)e,(t,o(r))AT, teT.
[at)

This completes the proof. O

Theorem D.55. Let x € C,4(T), p,g € L'T),x>0,g >00nT,a >0,A € (0,1),a,b € T,
a<hb,

x(t) <a+ J pOX(T)AT + J g(r)(x(o(r)))AA‘r, t € [a,b].
[a,t) [a,t)

Then there exists a positive constant M such that
x(t) <M, telab].

Proof. Let

y(it) =a+ J pOX(T)AT + J g(T)(X(O‘(T)))AAT, t € [a,b].
[a6) (@)

Then
x(t) <y(t), tela,b],
and y is differentiable A-a.e. on [a, b], y(a) = a. We have

YA () = pOx(©) + gO)(x(0()))’
< p)y(t) +g(t)(y(0(t)))}l A-a.e.on [a, b].

Hence, by Theorem D.54, it follows that

y(t) < aey(t, a) + j ey(t, U(T))g(T)()’(G(T)))AAT
la,t)

< aey(b,a) + ey(b,a) J ey(a, o(r))g(r)(y(o(r)))AAr
[a,t)

EBSCChost - printed on 2/10/2023 4:40 PMvia . All use subject to https://ww.ebsco.conlterns-of-use



364 —— D Lebesgue integration. LP-spaces. Sobolev spaces

< ae,(b,a) + ey(b,a) J g(T)(}’(U(T)))AAT
[a,t)
<ae,b.0) +e,(b.a) | gFom)'ar, telabl

[a,b)

Define

q(t) = aey(b,a) + e,(b,a) J g(T)(y(o(r)))AAr
la.b)

+e,(b,a) J g(T)(y(O‘(T)))AAT, t € [a,b].

[at)

Then g is monotone increasing on [a, b] and

y(t) < q(a),
y(o(t)) < q(a), telabl,
q(b) = aey(b,a) + 2e,(b,a) J g(r)(y(a(r)))AAr
la,b)
= —ae,(b,a) +2q(a),

and
g*(0) = e, (b, )2 O(y(o (D))’
< e,(b, g (t)(q(@)"
< ep(b,a)g(t)(q(t))/1 A-a.e.on [a, b].
Hence,
a0 - 9@ < e,(b.) | g@a(@)'r
[at)
A
< (qt)) e, (b, a) J g(m)AT, tela,bl.
[a,t)
From here,
(@)™ - (g@)"™ < (40) ™ - (a0) "q(@
<epy(b,a) J g(T)At, te€la,b].
[a,t)
Hence,
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@)™ - (@@) " <e,ba) | goar,

[a,b)
or
A 2
(24(@ - aey(b.) " - (@@) " < eyb.) | g
[a,b)
Let
h(z) = (2z - ae, (b, a))l_/1 2N zeR
We have
; . h(2) 4
Zlggo h(z) = Zlim Zl—_Az
b, 1-A
- ZlLrg()((Z - —aep(z a)> - 1>z1"‘

Hence, there is a positive constant M such that
gla<M
and
x(t) <y(t)<qla)<M, telab].

This completes the proof.
Consider the following IVP:

XA(t) + pey(t) = ft),
x(a) = xo,
wherep e T')(T), f € LY(T), Xy € Ris given, a € T. Note that the integral
[ eoptmrmar
[a,)

is well-defined.

Definition D.56. The function x € C,4(T) given by

x(t) = egy(t, a)xg + j eep(t, f (AT, teT,
[a,t)

is said to be a weak solution of the IVP (D.29).
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If x € C,4(T) is a weak solution of the IVP (D.29) and if it is given by the expres-
sion (D.30), we have

XA(t) + p®xX°(t) = f(t) A-ae.onT.

Now we consider the IVP

XA(t) + pX°(t) = f(t, x(t),x°(t)), a<t<b,

x(a) = xo,

(D.31)

wherea,b € T,a < b, p € [(T),
(H1) f: TxRxR — RisA-measurableint € T and

f (6, x1,y1) = (£, 32, ¥5)| < L(Ixg = x0] + Iy = yal)

forallt € T, x;,%5,¥1, ¥, € R, and for some positive constant L,
(H2) there exist a constant A € (0,1) and a function g € L!(T), such that

1-2 sup |eg,(t,s)| J q(T)AT > 0,
t,sela,b) (@h)

and
It x| < a1 + x| + yI")

forallt € T, x,y € R.

Definition D.57. A function x € C,4(T) is said to be a weak solution of the IVP (D.31),
if x satisfies the following integral equation:

X(t) = egy(t, @)Xy + J eop(t, Df (1,X(1),x°(1))AT,  t € T.
lat)

Theorem D.58. p € I[;(T). Suppose (H1) and (H2) hold. Then the IVP (D.31) has a unique
weak solution x € C,4(|a, b)) such that

XA (t) + pOx°(t) = f(t, x(£),x°(t)) A-a.e.onT.

Proof. For x € C,4([a, b)), define the operator

(QO)() = egp(t, @)Xy + J eep(t, Df (1, x(1),x°(1))At.
[a,t)

We have Qx € C,4([a, b)). Let p > 0 be arbitrarily chosen and

EBSCChost - printed on 2/10/2023 4:40 PMvia . All use subject to https://ww.ebsco.conlterns-of-use



D.4 Weak solutions of dynamical systems —— 367

M= sup |eg,(t,s)|
t,sela,b)

Take x,y € C,4([a, b)) such that

IXle  (aby <P e, qaby) <P

where
I -lle (apy =Supl-I.
rd([a’ )) [a,b)
We have

[(@)@®) - (Q)(©®)] =

eop(t, )Xo + J eep(t, Df (1, X(1),x° (1)) AT
[at)

— eyt @)Xy - J eep(t, D (T, y(1),y° (1)) AT
la,t)

l J eop(t, D(f(T,x(1), X (1)) - f(7,y(1),y’ (1)) )AT

[at)

J ey (&, D|If (T, x(1), x° (1)) - f (T, (1), y° (1)) |AT

[a,t)

[/ Teapt Dl 0 x0° @) - F(ey D @)lae

[a,b)
<IM J (x(@) —y@)| + |x° (1) - y°(1)|)AT
[a,b)
< 2LM(b - a)|x _Y||C,d([a,b))> t €la,b).

IN

IN

Hence,

lQx - Q)/"c,d([a,b)) <2LM(b - a)lx - Y||c,d([a,b))'

Therefore,

Q: Crd([a’ b)) - Crd([a’ b))

is a continuous operator. Define

W = {x € Cyy(la, b)) : Ixlc,,(tay <P}

Note that, for x € W, we have

EBSCChost - printed on 2/10/2023 4:40 PMvia . All use subject to https://ww.ebsco.conlterns-of-use



368 —— D Lebesgue integration. LP-spaces. Sobolev spaces

[F(£x(6),x°®)] < )1 + [x(@®)] + X O
< qO + Ixlle,yqapy + IXIE, gasy)
<qt)(1+p+p"), telab),

and
Q)] = leay(t ¥ + j ey (6, DI (T, (1), X° () AT
[a,t)
< legp(t, @)xo| + J ey (&, D)|If (1, x(1),x° (1)) | AT
[at)
<Mlxol +M(1+p +p’1) J q(T)AT
[a,b)
= M(lxol +(1+p +p’1) J q(T)AT), t€la,b),
[a,b)
and

lQxllc, () < M<|x0| +(1+p+pY) J q(T)AT).
[a,b)

Therefore, QW < C,4([a, b)) is bounded. Let ¢, ¢, € [a, D), t, > t;. Then

[(Q(&) - (Q0)(ty)] =

eop(ty, WX + j eep(to Df (T, X(1),X° (1)) AT
la,ty)

— egy(t;, @)Xg - J eop(ty, Tf (T, X(1),X° (1)) AT
[at;)
< |egp(ty @) — egy (t1, @)X,

+| j eep(ta Df (T, X(1),X° (1)) AT

laty)
- J eop(ty, Tf (T, X(1), X (1)) AT
la,t))
< |eap(ty, @)|ep(ty ty) — 1| Ix|
+ J leep(t2 T) — ey (ty, )| If (7, X(1), X7 (1)) | AT

la,ty)

+ J leap (t, D||f (1, x(1),x° (7)) |AT

[t1t2)
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< M|x0||eep(t2, t) -1

+ J leap(t, tr) — 1|eqy (ty, )| If (1, X(7),x° (1)) |AT
[a,t;)

+ J ey (t2, D)|If (1, x(1),x° (1)) | AT
[t1,t)

< M|X0||eep(t2) tl) - 1|

+M(1+p +p")|eep(t2, t) -1 J q(T)AT

aty)
+MA+p+ph) J q(T)At
[ti,ty)

<M(xol +1+p+p" + Iqlly1 (apy))€ep(tos 1) = 1

+M1+p+ph) J q(T)AT.

[t1ty)

Therefore, QW is rd-equicontinuous. By the Arzela—Ascoli theorem, it follows that Q
is a compact operator in C,4([a, b)). Define

Y ={xeCy(lab)):x=586Qx, 6¢[0,1]}
Let
y= %x, 6+0,
otherwise y = 0 for x € Y. Then

()] = |(Q6y)) ()|

eep(t, W)X + J eep(t, Df (1,8y(1), 6y’ (1)) AT
[a,t)

< |egp(t, @)xo| + J ey (&, D|If (T, 8y(1), 8y (1))|AT
[a,t)
< Mlxgl + M J q(t)(1+ 8ly ()| + 6A|y(r)|A)AT
[a,t)
= Mx| + M j q(T)AT + M6 J q(n)|y(0)|AT
[a,t) [a,t)

+ M6 j q@p’@['Ar, telab)
[a,t)
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Hence, by Theorem D.55, it follows that there exists a positive constant r such that
ly@®)|<r, telab).
We take r > 0 large enough and b close enough to a so that

Mix,| + M(1 +r+/‘) j q(T)AT < 1.
[a,b)

Thus Y is a bounded set. Hence, by the Leray—Schauder fixed point theorem, it follows
that Q has a fixed point x € C,4([a, b)). We have

x(t) = egp(t, @)Xy + J eep(t, D (1, X(1),x°(1))AT,  t € [a,b).
[a,t)

Consequently, x is a weak solution of the IVP (D.31) and
XAt + pOX°(t) = f(t,x(t),x°(t)) A-a.e.on [a,b).
For x € C,4([a, b)), define

(D.32)

[x(8)]
lxlg = sup ,
A telab) €p(t, @)

where 8 > 0 is chosen so that

J AT < 1
eg(b,0(1)) ~ 4IM’
[a,b)

Note that C,4([a, b)) is a Banach space with respect to the norm || - || B Define
B= {X S Crd([a, b)) : ”X"C,d([a,b)) < r}.

Note that B is a Banach space with respect to the norm (D.32). For x € B, define the
operator

Hx(t) = eg(t, @)Xy + J eop(t, Df (1, x(1),x°(T))AT,  t € [a,b).
la,t)

For x € B, we get
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|Hx(t)| =

eop(t, @)X + J eep(t,T)f(T,X(T),XO(T))AT
[a,t)

< |egp(t, @)|Ixo + J ey (&, D|If (1, x(1), x° (1)) | AT
la,t)
< Mlxgl + M J q(m)(1+ |x(7)| + IXU(T)lA)AT
[at)

<Mlxol + M1+ 1+ /‘) .[ q(T)AT

[a,t)
< Mixg + M(1+7+7) J q(DAT

[a,b)
<r, telab).

Therefore, HB ¢ B. Next, for x,y € B, we have

|Hx ~ Hyllg

eop(t, )Xo + J eep(t, Df (1, X(1),x° (1)) AT

sup ————
eg(t,a
telab) €p(t, Q) a

— egy(t,a)xy - I eep(t, Df (1, y(1),y° (1)) AT
[at)

J leap (t D||f (T, x(1),x° (1)) = f(T, (1), y° (T))|AT

a,t)

| (x@ -y@) + W@ -y e

a,t)

IN

sup ———
telab) €pt: ) :

IN

sup
telab) €p(t, Q) :

J (eg(t, @) + eﬁ(a(r),a))AT>

a,t)

==y ”ﬁ(ML ti[lff;’,)[ J <e,3(1, o eﬁ(t,la(r)) )AT>

a,t)

<|x- ML sup ———
” y”ﬁ( te[ag) eﬁ(t)a)[

1 1
== y””<ML 2&9,)[ J) eg(t,0(1)) <1 T 14 B )AT)

a,t

AT
< Ix - yllg( 2ML S L
<=l < 5?33,)[ J | ep(t.0() >

a.t

< Sfx - yllg.

NI =

Therefore, H has a unique weak solution x in (B, || - [l3). Hence, the IVP (D.31) has a
unique weak solution. This completes the proof. O
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D.5 A Gronwall-type inequality

Leta,b € T, a < b. In this section, we state and prove a result which is a sort of the
Gronwall inequality.

Theorem D.59 (Gronwall-type inequality). Let X : T — Randk : T — [0,00), k €
LY([a, b)). Suppose
IXA(l')l <yix@®)| +k(t) A-a.e. telab],

for some positive constant y. Then
1.

[x(t) - x(a)] < yy|x(a)| J eSpg 4 j k(s)e"“PAs, teT.
[a,t) [a,t)

[x(6)] < (yleyl(b_a)(b —a)+1)|x(a)| + e (b= J k(s)As, teT.
la,b)

Proof. Definez : T — [0, c0) as follows:
z(t) = |x(t) - x(a)|
and take ¢, € [a, b) such that z and x are A-differentiable at ¢t,. If o(t,) > t,, then

A z(o(t,)) — z(t,)
Zt)= u(t,)
_ x(a(t,)) = x(@)] - |x(t,) - x(a)|
- u(t,)
< [x(a(t,)) - x(t,)l

u(t,)
= XA

Ifo(t,) = t,, let{sj}jex C T be a decreasing sequence such thats; — ¢,,asj — oo.
Since
z(s;) - z(t,)  |x(sp) - x(@)| - Ix(t,) - x(a)| Py x(s;) = x(t,)l

= >

sj—t, sj—t, sj—t,

we arrive at the inequality
2t < e

Therefore,
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) <}X(0)] Aace. telab)
Hence,

22(t) < X0
< yafx(@®)] + k(t)
<nx®) = x(@] + yix(@)] + k(t)
=y.z(t) + yi|x(@)| + k(t) A-a.e. te€[a,b). (D.33)

Define the functions m : T — Rand m, : R — R as follows:

mit)y=e", teT,

m.(t)=e™", teR
Let
Y(t) =z(t)m(t), teT.
Take t, € [a, b) such that z and m are A-differentiable at ¢, and (D.33) holds. We have
P = mi(E)z(t) + m(o(t.))2" (¢.).
Ifo(t,) = t,, then we take a sequence {s};cy ¢ T such thats; — ¢, and

mA(t ) = lim w

t, t, - S]'
- lim mc(t,) — m(s;)
B sj—t, t, - S;j
= m(t,)
— _y1e_YIt*~

So,

Pr(t,) = et — e b a(t,)
= (zA(t*) - ylz(t*))e*"lt*.

Ifo(t,) > t,, then, applying the mean value theorem, there existsa 6 € (t,,o(t,)) such
that

m(a(t,)) - m(t,)
u(t,)
m.(a(t,)) - mg(t,)
u(t,)

m'\(t,) =
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= m(6)
— _yle*)ﬁe
< -ye yi0(t,)
Hence,
YL < —piz(t)e M + e 2 ¢
= (26— nz(e,)e ),
Let

Alt,) = 2M(¢,) - yiz(e,).
If A(t,) < O, then

PA(L,) < At,)e )
<0
< (y|x(@)| + k(t,))e ™.

If A(t,) > O, then

(L) < A(t,)e o)
< A(t,)e Nt
= (2Nt - nz(t,))e Nt
< (Inllx(@)] + k(¢,))e .

So,
PA(t) < (n[x@)] + k()e ™! A-a.e. telab).

Now, for each t € T, we have

(b - (a) = j PA(s)As

[a,t)

< J (n|x(@] + k(s))e™*As, teT.

[a,t)

Then
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() - x(@)] < " J (r[x@]e™* + k(s)e™*)As

[a,t)

= yi|x(@)] J g 4 J k(s)e"as, teT.
[a,t) [a,t)

Now, by (D.34), we obtain

Y(©) <yifx(@)e (b -a) +e ™ J k(s)As, teT.

[a,b)
Hence,
[x(®)| - [x(@)| < |x(t) - x(a)|
< y1|x(a)|ey1te*y1“(b —a) +enfe™? J k(s)As
la,b)
< y1|x(a)|ey‘(b “D(p— q) + "D J k(s)As, teT,
[a,b)
whereupon
xt)] < (y," Vb - a) + D|x(@)| + PP | k(s)ds, teT.
1
[a,b)

This completes the proof. O

EBSCChost - printed on 2/10/2023 4:40 PMvia . All use subject to https://ww.ebsco.conlterns-of-use



EBSCChost - printed on 2/10/2023 4:40 PMvia . All use subject to https://ww.ebsco.conlterns-of-use



EBSCChost -

E Mazur’s theorem

Definition E.1. Let X be a normed linear space. A linear functional T on X is said to be
bounded if there is an M > 0 such that

|T(f)| < MIfll foranyf €X.

The infimum of all such M is called the norm of T and it is denoted by || T||, . The collec-
tion of bounded linear functionals on X is denoted by X* and is called the dual space
of X which is a linear space.

Definition E.2. The linear operator J : X — (X*)* defined by
JOO] = Y(x) forallx € X, € X*,

is called the natural embedding of X into (X*)*. Also, the space X is said to be reflexive
when J(X) = (X*)*. Itis customary to denote (X*)* by X** and call X** the bidual of X.

Definition E.3. A normed linear space X is said to be separable when there is a count-
able subset of X that is dense in X.

Remark E.4. If a set E is measurable and 1 < p < co, the normed linear space L” (E) is
separable.

Definition E.5. A Banach space is a normed linear space that is a complete metric
space with respect to the metric derived from its norm.

Let Y be a real Banach space and Y™ be its dual space.

Definition E.6. An operator B: Y — Y™ is said to be bounded if it maps bounded sets
of Y into bounded subsets of Y*.

Definition E.7. A sequence {x,} in a normed space X is said to be strongly convergent
if there is an x € X such that

Jim [x; - x|l = 0.

Definition E.8. A sequence {x,} in a normed space X is said to be weakly convergent
if there is an x € X such that

nllngo T(x,) = T(x),

for every continuous linear functional T in X*.

Theorem E.9 (Mazur’s theorem). Let {u,},cn be a sequence in Y that converges weakly
to some u € Y. Then there exists a function N : N — N such that the sequence {ii,} e
defined by
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378 = E Mazur’s theorem

N(n

Uy

)
Ay
k=n

converges strongly in Y to uy, where A;, > 0, k = n,...,N(n), Zf:(ﬁ) A =1

v
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