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PREFACE 
 
 
 
Advanced plants with High Mix and High Volume of the production have a 
common characteristic: the manufacturing process is organized by lots and 
batches to reach a maximal productivity maintaining a high flexibility to 
react on challenges provoked by world market changes and unexpected 
complications of the business, such as, e.g., effects of the consequences of 
a pandemic. Manufacturing with lot processing has two evident planning 
aspects: organization of the production and the modeling of the plant 
operations.  

The organization of the production involves the production philosophy 
and culture, integrating a variety of paradigms and concepts. The goal of 
modeling the plant operations is the optimization of the planning and 
scheduling. Both these features are discussed in the book. 

The planning systems have been changed since the creation of the 
Toyota production system, which gave rise to new production paradigms, 
such as Just-In-Time and Single Minute Exchange of Die, which reduced 
drastically the inventory and setup times, respectively. In parallel, the 
methodologies considering the Group Technology, lot processing and 
batching were introduced into scheduling methods, both in practice and the 
approaches. 

Scheduling theory is a rather new discipline. It started in the 1950s, and 
since then it attracted the attention of planners due to the high applicability 
of the results and of researchers due to the high computational complexity 
of the problems. This theory has been mainly written in the recent years. It 
is not yet completed, and the models considering production lots issues 
might be currently one of the most active research directions.  

New perspectives appear by the challenges of the practice and the actual 
state of science in general. Therefore, the main idea of the book is to 
highlight the main topics of scheduling theory, which are related to lot 
processing, starting with its effect on the planning system, and making the 
principal accent on the optimization of the scheduling process in the shop 
floor. 

This book is an intention to present a general landscape of the related 
theory in its actual state, remembering the pioneering works, giving 
historical sketches, and then describing the principal results and showing 
some directions for future research. The book does not include all 
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algorithms and methods developed, but gives a general state-of-the-art and 
references to investigate every mentioned topic more in detail.  

The book consists of ten chapters.  
Chapter 1 introduces production planning systems. The general model 

of the planning in a plant and its components are explained. A classification 
of production planning problems into strategic, tactical and operational 
planning levels as well as principal planning challenges are described, and 
an introduction into lean manufacturing, which has a wide application in 
manufacturing plants with lot processing, is given. 

Chapters 2-4 describe general topics of planning and scheduling, but 
with an accent to special features when the production is realized in lots and 
batches of identical items. 

Chapter 2 is dedicated to the inventory management in plants with serial 
manufacturing. Various related concepts are introduced. The principal 
components of the inventory are described: raw material, WIP and finished 
goods. A formula to calculate the average inventory level is given together 
with an example. The Push/Pull policies, which are used to control the 
inventory level, are explained. A big part of this chapter is dedicated to 
Material Requirements Planning, which is a computer-based production 
planning and inventory control system for the production and scheduling in 
the plant. A historical sketch of its development is given, also some features 
and extensions. Some aspects of the Japanese Toyota production system are 
described, namely, the “zero concept”, CONWIP, the paradigms Just-In-
Time and Just-In-Sequence. The kanban method is described in detail. The 
next concept is the Optimized Production Technology, and then the Drum-
Buffer-Rope method, which can be used for its implementation, is 
described. An analysis of the available methods of inventory optimization 
finishes the chapter. 

In Chapter 3, the standard notations and the basic scheduling models, 
which are used in the book, are described. A survey of problems and 
solutions, which consider lot processing, is given for the principal machine 
environments and shop conditions.  

In Chapter 4, machine setup times are considered. The reduction of setup 
times is the main purpose of processing the items in batches and lots. The 
basic structure and a classification of setup times are explained. Then it is 
shown how lot scheduling problems are formulated for different 
environment configurations and different kinds of setups. The problems 
with sequence-dependent setup times are considered in most detail. This 
kind of setup is typical for modern industries, where effect of setups is 
substantial. New directions in this research area are described, such as 
machine/resource-dependent setup times: time-dependent setup times, past-
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sequence-dependent (p-s-d) setup times, including learning/deteriorating 
effects. Specially, there were considered family/batch setup times. Then a 
systematic classification of changeovers and setup/changeover reduction 
schemes are described. Finally, the SMED/OTED method is explained. 

Chapter 5 takes the most attention in the book, due to numerous methods 
and approaches. The chapter begins with explaining the history, the first 
authors and the philosophy of the Group Technology, which is interesting 
by itself. This theory started in between 1920 and 1930 and looks complete 
at the moment, nevertheless, one can note a continuous interest of 
researchers in this methodology due to its big potential. First, the part family 
concept is introduced which is followed by grouping methods. The famous 
Opitz classification system is explained in detail. There is also given a 
resume of the most famous classification systems used, including the 
developers and accessible references for a consultation. Then the Burbidge 
production flow analysis is explained. The next basic approach of Group 
Technology is the cluster analysis. It is used for the formation of the 
production cells, which causes frequently difficulties in the plant. Various 
methodologies are illustrated by examples. This chapter is finished with a 
description of the cellular manufacturing approach and an explanation of 
the cell formation problem. 

Chapter 6 is dedicated to batch scheduling. The difference and similarity 
between batch and lot terms is explained at the beginning. Then batching is 
studied by an example of semiconductor manufacturing, where batching 
appears with different features, and the burn-in operation gives rise to basic 
batching concepts, such as batch machine. Possible batching models for 
different environments are described. Computational approaches to form 
the cell architecture finish the chapter. 

Lot streaming and lot sizing are approaches, which are directly dedicated 
to the modeling of the problems that consider lot processing. In Chapter 7, 
the concepts and problems of lot streaming and job splitting are explained, 
and the effect of these phenomena on the scheduling models is shown. Lot 
splitting problems require a special system of notations. It is described in 
this chapter, and an analysis of the corresponding models is given for 
different environments. 

In Chapter 8, the background of the lot sizing problem is explained. It 
started in 1913 after the paper “How Many Parts to Make at Once” 
published by Eng. Ford Whitman Harris, where the famous Harris' square-
root formula for the order quantity was introduced.  It inspired a family of 
lot sizing models, which is not complete yet. 

Rescheduling is a hot topic in modern scheduling theory due to the 
required high computational effort in connection with modeling and special 
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theories, which appeared recently. Chapter 9 describes these theories and 
possible approaches to the problem modeling.  

Chapter 10 concludes the book. It is dedicated to three practical 
problems on different aspects of lot processing, which were solved by the 
book authors for big corporations of the region. 

All chapters are finished by some concluding remarks, which contain a 
brief analysis of the state-of-the-art, references to available surveys, and 
some recommendations for future researches. 

The group of authors jointly worked on research issues and participated 
in postgraduate and editorial projects in the lot scheduling area, referring to 
affiliations in Mexico: the Universidad Autónoma de Baja California 
(UABC), Universidad Politécnica de Baja California (UPBC), Tecnológico 
Nacional de México-Instituto Tecnológico de Chihuahua (TecNM/ITCH), 
Universidad Estatal de Sonora (UES), Skyworks Solutions, Inc., and the 
Faculty of Mathematics of the Otto-von-Guericke University Magdeburg 
(OVGU) in Germany. 

The authors are grateful to the administration of the Instituto de 
Ingeniería of the UABC for the support of our research projects, to many 
people from the corporations COTO and Skyworks, who dedicated their 
time and interest to reach a result following our recommendations, and to 
the UABC students Paola Velazquez, Jaqueline Contreras, Laura Bravo, and 
Luis Martinez, who helped in the design of this book. 

The book contains a wide collection of theories, methods and approaches, 
which are developed at the date, and it is directed to production planners for 
practical use. This book can be used by beginners and for a deep study 
because it considers not only algorithmic aspects but also the problem 
philosophy and history. It can also be useful for students of all university 
levels, which are interested in studying this subject. We hope that it will also 
find the interest of researchers in this area due to the wide analysis of the 
state-of-the-art of the studied subjects, which is systematized according to 
the book structure.  

 
Authors 
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CHAPTER ONE 

INTRODUCTION 
 
 
 
In big manufacturing plants with lot processing, planning and scheduling 
activities play nowadays a key role to provide an efficient functioning of 
these complex organisms from a machine to an entire business operation. In 
this area, one can meet plenty of new and traditional theories, models and 
paradigms. The researcher and planner communities are interested in 
identifying the actual state-of-the-art to maintain an advanced production 
corresponding to the challenges of a modern competition level. In the 
following, some relevant concepts and their place in an entire planning 
system of a modern plant are presented and studied as production 
programming subjects. A general view onto such a system is given at the 
beginning. Scheduling is considered as an extension of the planning 
activities. This area belongs to the hot topics of modern science. Therefore, 
various concepts and notations still require commonly accepted definitions.  

1.1 Planning and scheduling for manufacturing plants 
with lot processing 

In advanced production systems, such as semiconductor and electronic 
components industries, as well as at diverse assembly lines, where the 
manufactured products have the characteristics of high volume and high 
mixture (HV/HM) of nomenclatures, the product components are processed 
by lots (pallets, containers, boxes) of many identical items. Another 
immanent characteristic of such systems is a multi-stage production process 
with parallel machines or workstations at each stage. Typically, a High Tech 
(HT) company with characteristics HV/HM has dozens and even hundreds 
of machines of different years and brands at several stages. The lot 
processing and the use of batch machines for parallel working are typical 
for modern manufacturing systems with mass production. The complexity 
of the production process organization is characterized by a high frequency 
of changes in the nomenclature of the ready products and components. This 
consideration together with the occurrence of unexpected events and 
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priority changes, require a flexibility of the planning and a high level of its 
automation to support the decision-making. 

In such an environment, the operation by lots has an effect on various 
aspects of planning and scheduling, such as the system of production and 
inventory control, which reflects the philosophy of planning as a leading 
mode of the manufacturing organization.  

Processing by lots also implies other typical features. The lot processing 
machines require a setup service, which is necessary to handle the next lot. 
It includes an adjustment and preparation of the recourses. When adjacent 
lots have a big technological difference (size, shape, row material, machine 
programming, etc.), a setup takes a considerable time while similar products 
may have a minimal setup time, which can be insignificant, even negligible. 
The majority of scheduling problems, which involve intermediate setups, 
have a high computational complexity and represent an interest for the 
researchers since the 1960s until now, especially when lot processing is 
considered. The setup duration has a direct connection with lot batching, 
which is a usual practice in the plants. The lots of the same or similar 
products are coupled for processing to eliminate or reduce the setup times 
used for the adjustment of the machines.  

A theoretical and practical interest on this issue can be met in those  
models, where lot splitting is permitted, i.e., one lot is allowed to be split 
into sublots to be processed in parallel on a batch machine or on various 
parallel machines, to accelerate the lot output time. In many models, the 
sublot size is not evident and must be optimized. When a sublot requires a 
considerable setup time on a machine, the complexity of the problem 
increases. Merging of sublots is another important aspect of lot processing. 
The scheduling theory offers two principal concepts to describe and solve 
problems that involve the treatment of lots: lot streaming and job batching. 
These commonly appear together in problems, where the jobs are allowed 
to be split.  

A typical situation in many plants is reworking and rescheduling of 
those items, which did not pass the testing stage. This fact and the existence 
of scrap, which usually is not considered in theoretical studies or is taken as 
a constant percentage of the plant output, is still an open research area. 

The models, which contemplate lot processing, have differences in 
comparison with traditional job scheduling. The job notation depends on the 
problem assumptions and requires an explicit interpretation. One lot, one 
work order or the whole customer's demand may be treated as a job. The 
typical scheduling notations, e.g. those introduced by Pinedo (2008, 56), are 
insufficient for a formal description of such problems and therefore, they 
must be revised and updated according to the lot processing assumptions.   
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The planning problem in the plant includes the management and control 
of inventory, in particular the so-called Work-In-Process (WIP). 
Sometimes, the term work in progress is used with the same abbreviation. 
The last one describes the costs of unfinished goods that remain in the 
manufacturing process while work-in-process refers to materials that are 
turned into goods within a short period. The terms Work-In-Progress and 
Work-In-Process are used interchangeably referring to products midway 
through the plant or assembly lines.1  

 From the one side, an excessive WIP requires an additional shop floor 
space to be stocked up. This delays also the output of finished goods and 
elevates the production costs. Nevertheless, some quantity of WIP is 
necessary to balance the capacities of the stages and to equilibrate 
unexpected situations. The size of the WIP and the intermediate buffers 
between the production stages require also the attention of the planner.  

The planning and scheduling activities in the companies with lot 
processing are subjects of intensive research due to the diversity of the 
problems and the high cost of a decision taken. Actually, one can observe a 
growing interest in the industries to the results of theoretical researches and 
the stimulation of such researches in the companies. Big companies employ 
specialists in solving the planning problems and dedicate a considerable 
attention to the preparation of proper planners in high-level education 
schools.  

The enumerated subjects and relevant problems are discussed below in 
detail. This book pretends to analyze the available literature with the goal to 
extract the basic topics and approaches used for the production management 
in manufacturing plants with lot processing. In this way, it tries to reduce 
the gap between theory and practical necessities.  

1.2 Production chain 

The production process represents the transformation of the raw materials 
into the final products, usually through a series of steps producing and 
consuming intermediate products and components. Raw materials, 
intermediate products and finished goods are often inventoried, allowing the 
production and consumption in different sizes and production stages. Each 
transformation requires several input components and products and has one 
or more outputs. The raw materials are acquired by suppliers, and the final 
products are sold to external customers. Sometimes, intermediate products 

 
1 Investopedia.com: Work in Progress vs. Work in Process: What's the Difference? 
Accessed 09.06.2020. 
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are also sold (spare parts, etc.). This general definition of the production as 
a transformation process is shown in Fig. 1-1. The material inventory is 
drawn by triangles, the transformation activities are denoted by circles, and 
the flow of the materials through the process is indicated by arrows as the 
inputs or outputs during the transformation).

Fig. 1-1. Production process.

1.3 Production planning challenges

Production planning in plants is a process, by which the manufacturing 
departments organize the machinery resources over time in order to 
optimize their use and thus to achieve the highest possible productivity. 
Although the planning is a common problem for any company, it has not 
been systematically solved given the large number of variables that affect 
the decisions, which must be made. Therefore, the formalization of these 
activities is very difficult. 

The production planning includes the management of the resources, 
which are necessary for the transformation of the raw material into the final 
products, in order to satisfy the customers in a most efficient or economical 
way. In other words, the decisions made during the planning are typically 
made for seeking a best balance between the financial objectives and the 
customer service objectives. The financial objectives are usually 
represented by the production costs for the machines, materials, labor, start-
up costs, overhead, insurance, inventory costs, opportunity costs of the 
capital invested in the shares, etc. The objectives of the customer service are 
represented by the ability to offer the right product in the requested quantity, 
on the date and at the place promised.

When unexpected events occur, such as a quality problem, a process out 
of control, a change of priority, bad weather, road traffic, among many 
others, the exact fulfillment of the plan is prevented and its adjustment is 
required. Despite unexpected events and setbacks, which are usually out of 
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control and surely always appear, the plan must be done in detail. Therefore, 
the main challenge of a planner is not only carrying out the planning itself. 
He must also be able to react to unexpected events without losing the control 
over the production process and follow with continuous planning. The main 
challenge of the production planning is the possibility to discover the weak 
points in the plant.  

There exist conflicting goals when choosing the best way to arrange the 
jobs: 

 
 If a good use of the resources is sought, the completion time becomes 

worse; the cost of stocks and delays is increased; 
 If the delivery time of the products is minimized, the current stock is 

less, but the use of resources is worse.  
 
The final objective of a detailed production planning is to take decisions 

about the sequence of the jobs that each resource of the company processes 
in a smallest possible planning horizon. This activity is referred to as 
production programming, or scheduling, as it is shown in Fig. 1-2.  

In addition, planning has other objectives: 
 

 On-time delivery; 
 Minimizing the completion time; 
 Minimizing the production cost;  
 Minimizing the WIP; 
 Maximizing the overall effectiveness of the equipment; 
 Minimizing the lead time. 

 
Machine scheduling is a central component and the heart of the 

production planning responsibility. It is a base for shop loading, the 
management of the supply chain and the row material requirements, demand 
forecasting, project planning, etc. Therefore, the scheduling decisions take 
the main attention in the planning optimization. The main goal of production 
scheduling is the possibility of discovering the bottlenecks or the capacity 
constraints in the plant processes. Scheduling is considered a source of 
improvement projects, which try to eliminate the restrictions that hinder the 
search for the best job sequence. 
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Fig. 1-2. General model of the planning.  

 
A production schedule defines when the customer orders will be 

completed. Sometimes, it is necessary to fix a delivery date to the customer 
when a demand is fulfilled. In some cases, a too late or too optimistic date 
spoils the customer relationship or leads to penalties.  

1.4 General scheme of the production planning 

The production planning problems are classified into strategic, tactical, 
and operational planning levels. 

Strategic problems deal with the management of changes in the 
production process and the acquisition of the resources needed to produce 
in the long term. This includes, for example, a combination of products, a 
perspective plan development, as well as the location, the supply chain 
design, and the investment decisions. The objective pursued in the solution 
of these strategic problems is to maintain an advantage and a competitive 
capacity in order to keep a growing rhythm. For this, it is necessary to 
propose long-term decisions using consolidated volumes of demand. 

Tactical planning problems analyze the use of the resources in the 
medium term. The solutions are based on the information from the 
consolidated volumes. It consists, for example, in making decisions about 
the flow of materials, the size of the inventory, the capacity for use, the 
maintenance planning by the operational management. The usual objective 
at this stage is to improve the cost efficiency and the customer satisfaction. 

Manufacturing Planning and Control (MPC) systems have been 
developed to address these complex planning environments, and they 

 EBSCOhost - printed on 2/9/2023 3:05 AM via . All use subject to https://www.ebsco.com/terms-of-use



Introduction 
 

7 

integrate these multi-term (multi-level) planning problems into a management 
system. In these systems, the medium-term production planning is the 
decision on how to use the capacity and aggregated levels of the inventory 
to meet the projected medium-term demand during approximately one year. 

The Master Production Schedule (MPS) represents a detailed short-term 
plan of the manufacturing of the final products in order to meet an expected 
demand and an aggregate customer order, taking into account the use of the 
capacity and the global inventory level obtained at the processing stage.  

An MPS is a document that answers the following questions in detail:  
 
 What products will be produced?  
 In what quantities will they be produced?  
 When will they be produced?  

 
In an MPS, the time is usually expressed in weeks and corresponds to 

the duration of the production cycle. With the Material Requirements 
Planning (MRP, also referred to as MRP-I) system, short-term plans are 
established for all components (intermediate products and raw materials) of 
the final products considered in the MPS phase and in the database of the 
product structure, forming the Bill of Materials (BOM). A BOM represents 
a list of all materials, subassemblies, and other components needed to make 
all product nomenclature of the plant. It also contains the inventory data.  

An MPS has an important function regardless of whether the MRP 
system is used or not. It accomplishes a coordinating function between 
manufacturing, marketing, finance, and sometimes engineering. Master 
scheduling is a decision-making process that can be considered as both a 
threat and an opportunity.  

Then the plant control systems (for the component manufacturing) and 
the supplier monitoring systems (for the purchase of the components) are 
developed in the MRP-I phase for the very short-term execution activities 
of the plans. The time in this last stage takes usually a few days. 

The MPS and MPR-I determine the weekly commitments of the delivery 
of each order to the customer, but not the day or a sequence, in which these 
orders will be processed in the plant facilities. The definition of the priorities 
of the items to be processed follows some optimization criteria, such as the 
cost, the time to change tools, or the importance of the customer. An MRP-
1 diagram is presented in Fig. 1-3. 
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Fig. 1-3. Diagram of an MRP-I system. 

 
The Manufacturing Resource Planning system, referred to as MRP-II, 

incorporates the original MRP-I system, defined by Orlicky in 1975, and 
follows the principles of Hierarchical Production Planning (HPP) defined 
by Hax and Meal in 1973 (Ptak and Smith 2016, 356). Other aspects of the 
MPR system are described in Section 2.4. Fig. 1-4 explains how tactical and 
operational planning problems are integrated into a classic MRP-II system. 
Other well-known production planning concepts and systems are adapted to 
this general scheme. 

1.5 Lean manufacturing 

Under the conditions of high competitiveness, a modern planning system 
tends to follow the lean manufacturing philosophy. Lean manufacturing is 
known as a production practice that considers the expenditure of resources 
for any goal different from the creation of a value for the end customer to 
be wasteful and thus, a target for elimination (Motwani 2003, 340–41; 
Ulutas 2011, 1194; Ptak and Smith 2016, 70). Practically, it is a set of tools 
that assist in the identification and steady elimination of waste (muda). 
Table 1-1 summarizes the typical seven prominent waste groups in the lean 
context. The main tools of a manufacturing program are a setup reduction 
system, such as the Single Minute Exchange of Die (SMED) approach, a 
visual control and fast intervention strategy, called the Total Productivity 
Maintenance (TPM) system, 5S, 5W+2H, Six Sigma.  
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Fig. 1-4. Diagram of an MRP-II system.  
 

In this context, 5S means five Japanize words, Seiton - Systematize, 
Seiri - Sort, Seiso - Sweep, Seiketsu – Standardize, and Shitsuke – Self-
Discipline, the five concepts, which act as a base of Kaizen – a continuous 
improvement culture, including personal, familiar, and social contexts.  

The 5W+2H methodology does not give a solution, but allows defining 
the problem and facilitates the focus on its causes. It includes five W-
questions and two H-questions: 

 
1. What? - A brief description of the problem that is being presented, a 

maximum of two lines. 
2. When? - When does the problem appear? At what time of the day 

and/or the process in question? 
3. Where? - Where can the problems be observed (Line/Machine/Place)? 

In which part/place of the product/process did the problem appear? 
4. Who? - Who does it happen to? Is the problem related to people's 

abilities? 
5. Why? - Why does the problem happen? 
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6. How? - How does the problem differ from the normal (optimal) state? 
Is the trend random in which the problem appears or does it follow a 
pattern? 

7. How Much? - How many times does this problem occur in a day? In 
a week? In a month? How much money is involved? 

 
The loan manufacturing tools focus on certain aspects and areas of the 

manufacturing process to eliminate the waste and improve the quality while 
the production time and cost are reduced. The waste reduction philosophy 
considers the changeover time as a non-value-added activity. 

The reader can consult details of the concepts discussed above in the 
books by Anthony (1965); Vollmann et al. (2005); Jacobs et al. (2011); Ptak 
and Smith (2016), among others.  
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No. Waste Description 

1 Overproduction 

Producing items earlier or in greater quantities than 
needed by the customer generates other waste, such 
as overstaffing, storage, and transportation costs due 
to the inventory excess. Inventory is represented by 
a physical inventory or a queue of information. 

2 Waiting 

Workers merely serving as watch persons for an 
automated machine, or having to stand around 
waiting for the next processing step, tool, supply, 
part, etc., or just plain having no work because of no 
stock, lot processing delays, equipment downtime, 
and capacity bottlenecks. 

3 Transportation 

Moving the WIP from a place to another place in a 
process, even if it is only a short distance, having to 
move materials, parts, finished goods into or out of 
storage or between processes. 

4 Over Processing 

Taking unneeded steps to process the parts. 
Inefficiently processing due to a poor tool and 
product design, causing unnecessary motion and 
producing defects. Waste is when providing higher 
quality products than it is necessary. 

5 Excess Inventory 

Excessive raw material, WIP, and finished goods 
causing longer lead times, obsolescence, damaged 
goods, transportation/storage costs, and delay. Extra 
inventory such as production imbalances, late 
deliveries from suppliers, defects, equipment 
downtime, and long setup times. 

6 Unnecessary 
Motion 

Any motion made by employees during the course 
of their work other than adding value to the part. 

7 Defects 

Production or correction of defective parts. Repair, 
rework, scrap, replacement production, and 
inspection mean wasteful of handling, time and 
efforts. 

 
Table 1-1. The seven waste groups in lean context. Adapted from Mistry and Desai 
(2015, 35–36). 
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CHAPTER TWO 

INVENTORY MANAGEMENT IN PLANTS  
WITH SERIAL PRODUCTION 

   
 
 

Inventory is evil. 
(Cuatrecasas-Arbós et al. 2015, 951) 

 
A stock or a store of different goods that are held for a purpose or use is 
defined as an inventory. The inventory management is of key importance in 
serial manufactures. An inventory may be located close to the place of 
immediate use, or it may be held in a distant warehouse or in a distribution 
center for future employment. An excessive inventory requires an additional 
floor shop space, freezes the capital, provokes blocking between the 
machines, and consecutively, increases the production cost. On the other 
hand, a lack of inventory causes starvation effects on the machines, resulting 
in a loss of productive capacities. The goal of industrials and researchers is 
to meet a convenient production system paradigm to maintain a balanced 
inventory.  

A general framework of inventory management comprises the following 
four steps: 

 
1. Formulate a mathematical model describing the behavior of the 

inventory system; 
2. Seek for an optimal inventory policy with respect to the selected 

model; 
3. Employ a computerized information processing system to maintain a 

record of the current inventory levels; 
4. Using this record of current inventory levels, apply an optimal policy 

to signal when and how much to replenish the inventory. 
 
There are three basic inventory systems known, namely the MRP, the 

Just-In-Time (JIT) discipline and the Optimized Production Technology 
(OPT). Usually, these systems are based on push or pull policies. In this 
section, some aspects related to the inventory management are discussed. 
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2.1 Inventory components 

A plant with lot processing has always a quantity of different kinds of goods 
in a store to ensure a continuous operation due to different reasons. The 
main ones are: 
 

 A certain quantity of a product stored is desirable and necessary when 
a company has the characteristics of a dynamic environment, where 
a customer demand can rise and fall quickly;   

 A reserve of row material should be maintained against unexpected 
changes;   

 Some supply of finished products is necessary in order to ensure or 
accelerate the fulfillment of a demand;   

 The production process causes by itself intermediate parts 
accumulated in buffers between the machines.  

 
There exist many reasons to maintain a sufficiently large inventory, like 

buying materials to take advantage of distributer discounts or ordering more 
in advance of an impending price increase, etc. On the other side, an 
excessive inventory affects the production efficiency, increases the 
production costs, and occupied areas, among other production indexes. 

Two subsystems of the inventory can be distinguished:  
 
 Directly involved in the production process; 
 Support of different functions of the company.  

 
An inventory subsystem in the production process includes traditionally 

three components:  
 
1. Raw material;   
2. WIP;   
3. Finished goods.  
 
Commonly, the raw material is a subject of labor, the WIP includes the 

unfinished parts throughout the manufacturing system, while manufactured 
products, which are ready for sale and delivery to a costumer, are named 
finished goods. In the literature, WIP is sometimes referred to as work-in-
progress (see Section 1.1).  

According to the function, the inventory within a production system can 
also be categorized as follows:   
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 Maintenance, Repair and Operation supplies (MRO) are the items, 
which are used to support the production process and its 
infrastructure, for example, oils, lubricants, coolants, janitorial 
supplies, uniforms, gloves, packing material, tools, among many 
others, up to office supplies, such as pens and pencils;  

 Transit inventory results from the need to transport the items or 
material from one location to another one (pipeline, trucks); 

 Buffer inventory is a safety stock, which is sometimes used to protect 
against the uncertainties of supplies and demands, as well as 
unpredictable events such as poor delivery reliability or low quality 
of a supplier's products;  

 Anticipation inventory is used when a company purchases and holds 
an inventory, which is in excess to their current need, in anticipation 
of a possible future event; 

 Decoupling inventory serves to absorb a shock of the system against 
production irregularities, for example, breakdowns or maintenance 
of the machines;  

 Cycle inventory or lot size inventory reflects the relationship between 
the ordered products and the setup costs. When large quantities are 
ordered/produced, the inventory holding costs are increased, but the 
ordering/setup costs are decreased. Conversely, when the lot sizes 
decrease, the inventory holding/carrying costs decrease, but the 
ordering/setup cost increases since more orders/setups are required 
to meet a demand. When the two costs are equal (holding/carrying 
costs and ordering/setup costs), the total cost is minimized.  
 

All these components are mutually dependent (Fig. 2-1). 
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Fig. 2-1. Components of an inventory system.  

2.2 Calculation of inventory average 

In some manufacturing environments, such as assembly lines, an inventory 
is continuously generated because of the insufficient efficiency of planning 
and scheduling. It can also be generated due to the stochastic nature of the 
production process. Thus, the presence of WIP is rather inevitable and in a 
certain sense, it is even desirable. Too much WIP overloads the storage, 
holds the plant floor space, freezes the material resources, prolongs the 
product time from the start of the elaboration until it is ready to leave the 
facility, increases the production costs, decreases the production efficiency, 
etc. On the other side, too low WIP constrains the flexibility of the resources 
when the outflow is blocked due to the absence of working subjects. 
Conway et al. (1988, 229) observed that in serial production lines, the role 
of the WIP is to give some operational independence for each stage of a 
production system and thus, the WIP should be presented in every factory 
that has a production line. In addition, the WIP between two serial 
workstations increases the capacity by reducing the frequency and severity 
of blocking and machine starvation. However, to be competitive, the 
manufacturing facilities need to maintain a low ratio of WIP to throughput. 
Inventory management, or inventory control, is an attempt to balance the 
inventory storage and the production requirements with the goal to 
minimize the costs resulting from obtaining and holding the inventory. It is 
mainly concentrated on the optimization of the WIP amount. As a metric, 
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the WIP cost per time unit of a job may be used. It is usually taken as a 
constant throughout the manufacturing process.  

The inventory level is the current level of a product that a company has 
in stock. Inventory days, also called cover days, stock cover, inventory days, 
or sales days, are calculated as the average number of days for which the 
goods remain in the inventory after being sold: 

Inventory days = Average inventory  365/ Sales revenue. 
As a measure of short-term sales potential, a number above the industry 

norm indicates problems with sale forecast. On the contrary, a number 
below the norm indicates a loss of sales due to the company's inability to 
fulfill the demand.  

An average inventory can be calculated using Little's Law. This law was 
formulated in 1961. It provides a fundamental relationship between three 
key parameters in a queuing (or waiting line/service) system:  

 
1. Average number of items in the system;  
2. Average waiting time (or flow time) for an item in the system;  
3. Average arrival rate of an item to the system.  
 
Little's Law says that, under steady state conditions, the average number 

of items in a queuing system is equal to the average rate, at which the items 
arrive, multiplied by the average time that an item spends in the system 
(Little and Graves 2008, 82):  

 
, 

 
where  
 

L  - average number of items in the queuing system (WIP);  
W -  average waiting time of an item in the system; 

 - average number of items arriving per time unit.   
 
An important feature of Little's Law is that by knowing, perhaps via a 

direct measurement, two of the three parameters, the third one can be 
calculated. This is an extremely useful property since the measurement of 
all three parameters may be difficult in certain applications.  

Little's Law is applicable to many environments including manufacturing 
and service industries as well as everyday decision-making by individuals. 
Thus, if the average number of wafers arriving per day in a semiconductor 

system is 
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L = 45000 (WIP), the average waiting time in the system for one wafer is as 
follows: 

 
W = L/  = 45000/1000 = 45 days. 
 
Anupindi, Chopra, and Deshmukh (2012, 55–56) proposed an average 

inventory for a given throughput as a theoretical metric, assuming that no 
WIP item had to wait in a buffer:  

 
Theoretical Inventory = Throughput × Theoretical Flow Time. 
 
In the above equation, the Theoretical Flow Time equals the sum of all 

activity times (without waiting time) required to process one unit. 
Therefore, the WIP will be equal to the Theoretical Inventory whenever the 
actual process flow time is equal to the Theoretical Flow Time. This would 
obviously be an ideal situation, where the inflow, processing, and outflow 
rates are all equal at any point of time, i.e., it represents the minimal 
inventory needed for the goods to flow through the system without waiting. 
Here, the difference between the flow time and the lead time should be 
emphasized. The flow time is the time between the job release and its 
completion. The flow time is typically random. The lead time is a constant 
used for planning purposes. The service level is defined as the fraction of 
jobs whose flow time is no greater than their lead time.  

2.3 Push/pull policies 

The inventory control, implemented in the industry, can be of pull or push 
type. It can also be a hybrid system, which combines both effects  
(Spearman, Woodruff, and Hopp 1990; Hopp and Roof 1998; Olaitan, Yu, 
and Alfnes 2017). A push system means 'make all we can just in case'. It is 
associated with the production approximation, anticipated use, large lots, 
high inventories, waste, and management by fire extinguishing, poor 
communication. Push systems are popular in the form of the MRP approach 
and were successful in many factories, reducing inventory levels and 
improving customer service. On the contrary, a pull system means 'make 
what's needed when we need it'. It does not schedule the start of jobs but 
instead, authorizes production. This system is categorized by the production 
precision, actual consumption, small lots, low inventories, waste reduction, 
management by sight, and better communication.  

In a push system, the inventory must be determined in advance and 
goods produced must be forecasted. While lean methodology is a pull 
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system, in which nothing is produced or purchased without evidence of 
actual demand.  

The basic difference that exists between push and pull systems is the 
mode of material flow. In a push system, a material is always pushed as far 
as possible and as soon as possible. In contrast, in a pull system, material 
flows on an as-needed and not on an as-available basis. This distinction is 
critical for an understanding of the modeling requirements of production 
systems. 

Hopp and Roof (1998, 897) and many other authors consider that pull 
systems have some advantages over push systems. They noted that a push 
system schedules the releases, while a pull system authorizes them. As a 
result, a push system controls the release rate (and hence the throughput) 
and observes the WIP, while a pull system controls the WIP and observes 
the throughput. The authors indicated the following advantages of pull over 
push:   

 
1. Observability. The WIP is directly observable, while the capacity 

(with respect to which the release rate must be set) is not; 
2. Efficiency. A pull system can achieve the same throughput rate as a 

push system with a smaller average of the WIP level;  
3. Variability. Flow times are less variable in a pull system than in a 

push system, because a pull system regulates the fluctuation of the 
WIP level, while a push system does not;   

4. Robustness. Pull systems are less sensitive to errors in the WIP level 
than push systems.  

 
However, Bonney et al. (1999) showed that both systems have similar 

results in the performance. Another position tends to a wide consensus that 
pull controls are better in minimizing the system inventory, while push 
controls are better for maximizing the throughput (Gaury, Kleijnen, and 
Pierreval 2001). Andersson et al. (2010, 1520) highlighted that in a push 
environment, the work is scheduled on the base of demand and therefore, 
the inventory levels have direct consequences of the order releases and 
quantities, while they are ideally fixed and pre-calculated in a pull 
environment, where the work is authorized through the status of the system. 

The main disadvantage of a push system is its vulnerability when sales 
become variable. In this scenario, the forecasts become inaccurate and cause 
either a shortage of inventory or an excess of inventory that requires 
storage.  
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2.4 MRP system 

2.4.1 Features 

Material requirements planning (MRP) is a computer-based production 
planning and inventory control system for the production and scheduling in 
the plant, i.e., it includes two approaches, a concept and a software. 
According to the APICS Dictionary2, MRP is defined as 

'a set of techniques that uses bill of material data, inventory data, and the 
master production schedule to calculate requirements for materials. It makes 
recommendations to release replenishment orders for material. Further, 
because it is time-phased, it makes recommendations to reschedule open 
orders when due dates and need dates are not in phase. Time-phased MRP 
begins with the items listed on the MPS and determines (1) the quantity of 
all components and materials required to fabricate those items and (2) the 
date that the components and material are required. Time-phased MRP is 
accomplished by exploding the bill of material, adjusting for inventory 
quantities on hand or on order, and offsetting the net requirements by the 
appropriate lead times.' 

The MRP processes the information from the MPS, BOM, and inventory 
requirements, while the output information includes the work and purchase 
orders as well as the required material quantities together with their release 
times in the manufacturing process.  

With MRP, a triune problem is solved:  
 
1. Nomenclature of raw materials and components;  
2. Quantity of each component;  
3. Time when everyone is needed.  
 
The MRP synchronizes the flow of materials, components, and parts. It 

converts the MPS into work orders with the goal to keep adequate inventory 
levels, which assure that the required materials will be available when 
needed. The MRP is a universal system, which is applicable mostly in 
manufacturing and fabrication industries, because it is applied to the 
analysis of all company activities in terms of the customer demands and the 
management of resources via its own logic and data processing. On the other 
hand, the MRP is not useful for job shops or for continuous processes that 
are tightly linked. 

 
2 https://www.academia.edu/31291212/APICS_Dictionary_13th_ed  
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The MRP system is considered a push type system, where the type and 
amount of all purchased products must be determined in advance for the 
plant, and goods produced must be forecasted and then pushed to the 
consumers. This contrasts with the lean methodology, which is 
characteristic for a pull system, and in which nothing is made or purchased 
without evidence of an actual demand.  

In this manner, the primary objective of the MRP is to ensure the 
availability of materials and components when they are needed in the 
production process to keep the continuity in the manufacturing. While MRP 
is designed to ensure an adequate inventory at the required times, a company 
can hold a bigger inventory than it is necessary, thereby driving up the 
inventory costs. Therefore, another goal is the development of an 
effective inventory management and the scheduling optimization.  

2.4.2 Developers and extensions of the MRP 

The MRP system is really a method of production management. The IBM 
engineer Joseph Orlicky proposed this system in 1964 after studying the 
Toyota Production System, which was a model of the lean production 
methodology. Orlicky's ideas became popular after the publication of his 
book Material Requirements Planning: The New Way of Life in Production 
and Inventory Management (Orlicky 1975) and changed the world of 
manufacturing forever. The reader can meet plenty of interesting 
information about this theory and a comprehensive discussion in the paper 
by Wilson (2016). 

Oliver Wight, a management expert and co-worker of Orlicky, developed 
an extension of MRP called MRP2 (or MPR-II) in 1983. This system 
enriched the planning process by including other resources of the company, 
such as financials and added processes for the product design, capacity 
planning, cost management, shop floor control, sales, and operations, 
among many others. 

In 1990, the analyst firm Gartner introduced the term Enterprise 
Resource Planning (ERP) to denote a still more expanded and generalized 
version of MRP2, which includes other major functions of a business, such 
as accounting, human resources, and supply chain management, all in a 
centralized database.  

The Gartner Glossary3 defined ERP as  

 
3 https://www.gartner.com/en/information-technology/glossary/enterprise-
resource-planning-erp 
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'the ability to deliver an integrated suite of business applications. ERP tools 
share a common process and data model, covering broad and deep 
operational end-to-end processes, such as those found in finance, HR, 
distribution, manufacturing, service and the supply chain'. 

Both MRP and MRP2 are considered direct predecessors of ERP, which 
consists of three primary successive steps:  

 
1. Take the inventory of the materials and components at hand;  
2. Identify which additional ones are needed;  
3. Schedule the production or purchase. 
 
ERP could be quickly expanded to other industries, including services, 

banking and retail, which did not need an MRP component. However, MRP 
is still an important part of the ERP software used by manufacturers. 

After the death of Orlicky in 1986, the second edition of his MPR was 
written and adjusted by the practitioner George Possl, a coworker and 
follower of Orlicky. This advanced version of MRP, called DDMRP, was 
released in 1994. Orlicky's system was updated with a demand-driven 
planning process that used the actual sale orders, rather than the typical 
MRP method of a sales forecast, to calculate the material requirements. This 
variant of MRP is a pull approach, which is sometimes considered as a 
controversial one and a violation of important principles established by 
Orlicky.  

In 2011, Carol Ptak and Chad Smith revised again Orlicky's seminal 
work. Their book was released as the third edition of MPR. Nevertheless, it 
had essential deviations from the author's version. Later, Ptak and Smith 
proposed the following editions in 2016 and 2019 with a new focus on 
DDMRP. This version helps in the achievement of a better matching of 
supply and demand, which in turn reduces the product costs and increases 
revenues as customer demand is fully met and no revenue opportunities are 
lost from missed shipping dates or inventory shortfalls. Version 2 of 
DDMRP was based upon the connection between the creation, protection 
and acceleration of the flow of relevant materials and information to drive 
returns on the asset performance (Ptak and Smith 2016, Ch 1). 

2.5 JIT paradigm 

2.5.1 Features 

The JIT production model emerged from the pull system, which is known 
as the production of the necessary items in the necessary quantities at the 
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necessary time. Taiichi Ohno developed this approach between 1948 and 
1975. It was called Japanese Toyota Production System (TPS). TPS was 
based upon very low levels of waste. In general, the stored quantity of goods 
exceeds the immediate necessities of a company, for example, within the 
next few hours or days. JIT adopted a 'zero concept', which means the 
achievement of the goals of zero defects, zero queues, zero inventories, zero 
breakdown, and so on.  It ensures the supply of the right parts in the right 
quantity, at the right place and at the right time. As a result, any product had 
the desired quality and quantity, and it was manufactured in the requested 
period. Since then, many worldwide companies have adopted lean 
manufacturing in order to increase the productivity, to reduce the lead time, 
the inventory costs, as well as to improve the product quality (Motwani 2003, 
349). The old system of material acquisition, the relationships with the supply 
chain and the consumer companies were changed to new revolutionary 
concepts. At the plant level, the conventional method of a push production 
system linked with MRP was changed to a pull-type JIT production system to 
meet the global competition, where the WIP is managed and controlled more 
accurately than in a push production system (Sendil Kumar and 
Panneerselvam 2007, 393). 

The control structure can be described through the relationship between 
two hypothetical nodes (buffers), which are defined as follows (see Fig. 2-
2): 

 
 A puller is the node to which the material is pulled. It can be 

considered as a topological downstream of the source node;  
 A source is the node from which the material is pulled. It can be 

considered as a topological upstream of the puller node.  
 
A control pulse activates the pulling of material from its source node to 

a puller node. 
 

 
 

Fig. 2-2. JIT node relationships. Adapted from Mejabi and Wasserman (1992, 143).  
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The control structure is made up of the two following basic functions: 
 
 Generation of a pull pulse. This occurs when the inventory level at a 

buffer drops below some predetermined level;  
 Physical pull of material from a source to a puller. This implies a 

termination of the residence of the material at the source buffer and 
the establishment of residence at the puller buffer. 

 
According to Finch and Cox (1986, 331), JIT is composed of eight 

linked areas requiring a management and continuous improvement:   
 
 A focused factory;  
 Reduced setup times;   
 Group technology (GT);   
 Total preventive maintenance;   
 Cross-trained employees;   
 Uniform workload;   
 JIT delivery of purchased parts and materials;   
 Kanban method of production control.  

2.5.2 Kanban method 

Taiichi Ohno also proposed the kanban4 concept. It plays a significant role 
in a JIT production system and represents a signaling system to manage and 
synchronize the processes at the upstream and downstream of a multi-stage 
production scheduling. It is also used as an inventory control system. 
Physically, kanban is usually a simple plastic card containing complete 
information required for the production and the assembly of a product at 
each stage and the details of its completion path. It is also a method of 
labeling the production lots to obtain a better control over raw materials, 
WIP, and finished goods. Each step of the production process must deliver 
its output to the following step neither to delay the start of production at this 
step nor to create excessive WIP. A work cannot be started at a workstation 
unless a kanban indicates that this work is required by the next downstream 
workstation.  

There exist different variants of a kanban. An example of a low-tech 
kanban is shown in Fig. 2-3. A visual kanban can be seen in Fig. 2-4. 

 
4 The word 'kanban' is of Japanese origin; it means a card, a board or a post-it. 
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Fig. 2-3. A simple kanban5.   Fig. 2-4. A visual kanban.  
 

Two types of kanban cards are used:  
 
 A withdrawal kanban is attached to waiting lots of WIP. It authorizes 

moves between workstations;  
 A production kanban is attached to lots being processed at a 

workstation and serves as a work order. 
 
A production may only be initiated when the upstream process receives 

the card. It makes sure that every process is producing the right part, in the 
right quantity, and at the right time.  

2.5.3 Operating the kanban method 

A plant having two workstations is used to illustrate how the kanban method 
operates (Fig. 2-5). The first workstation (Storage area A) is a transfer line 
consisting of several processing operations. At the second workstation 
(Storage area B), a number of assembly operations are carried out. A 
production order is divided into small lots of equal size, which are then 
processed individually, and a kanban is attached to every order. A lot flows 
through the shop as follows:  
 

1. A kanban lot of unprocessed parts is withdrawn from the store, 
processed, and then stored temporarily as WIP;  

 
5 https://www.pdcahome.com/metodo-kanban/ 
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2. When called for, it is transferred to the assembly workstation, where 
it is again stored as WIP;  

3. It is subsequently withdrawn; the assembly operations are carried 
out;   

4. The lot of finished goods is then placed into the storage of finished 
goods. 
 

 
 
Fig. 2-5. A two-card kanban system in a plant with two workstations. The dotted 
lines show the flow of the withdrawal kanban. The dashed lines show the movements 
of kanban cards. K is a withdrawal kanban; k is a production kanban; U is a 
production unit. Adapted from Price, Gravel, and Nsakanda (1994, 2).  
 

The kanban cards control the workflow in the following manner. In 
order to withdraw a waiting lot from a storage point at the head of the 
workstation, the operator must take a free production kanban from a kanban 
post at the exit of the workstation. If there is no free kanban, he must wait. 
If there is a free kanban, he withdraws a waiting lot from the storage point, 
detaches the withdrawal kanban, attaches the free production kanban, and 
sends the recently freed withdrawal kanban back to the storage point at the 
exit of the previous workstation, where it authorizes the forward movement 
of another lot.  

When the processing of the lot is finished, the operator places the kanban 
into the WIP storage at the exit of the workstation. A production kanban 
remains attached to this lot until it is called downstream to the next 
workstation by a free withdrawal kanban. At this time, the production 
kanban is freed and can be used to restart the processing cycle at the 
workstation. 

The operator at the assembly workstation takes the lot from the storage 
area B, removes the withdrawal-attached kanban, and places it into the 
withdrawal kanban post. This unattached card is returned to storage area A, 
authorizing the transfer of another lot from A to B. Each lot waiting in 
storage area A is accompanied by a production kanban, which will be 
replaced by an unattached withdrawal kanban before the lot moves to 
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storage area B. When detached, the cards go to a kanban receiving post and 
are then send the production ordering kanban post at the head of the 
machining workstation to authorize the processing of another lot.  

The kanban cards authorize the production at the machining workstation 
only when it is required to supply the assembly workstation, thus limiting 
the stored inventory. Since the number of the kanbans is limited, the 
processing workstation stops the production when no cards are present and 
resumes the production when a card is sent back from the assembly 
workstation. In this manner, the kanban cards control the material flow to 
minimize the involved inventory. The number of kanban cards in circulation 
fixes the absolute maximum of processing lots. 

A kanban is not an immanent element required for a JIT or pull system 
to operate. It is observed that the use of kanbans is, in essence, just a tool 
for the physical realization of the control.  

2.5.4 Number of kanbans 

An appropriate number of kanbans at a workstation, which are needed to 
circulate between downstream and upstream, is as follows 6:  
 

N = T/C = [D  LT C, 
 

where:  
 

N  - number of kanbans; 
T  - total required inventory;  
D  -   hourly/daily/weekly demand; 
LT - lead time (processing time + waiting time for the kanban, in 

hours/days/weeks); 
   -  safety factor;  

C  - container capacity (items held per container). 
 
For example, let a downstream process use 200 items/hour (on average). 

The lead time is 12 hours. The container capacity is 144 items. The variation 
in the lead time or demand, called the safety factor, is 15%. Therefore, the 
needed number of kanban cards is: 

 
N = 20 × 12 × (1 + 0.15)/144 = 20. 
 

 
6 LeanLab. 2017. “Lean Manufacturing.” How to Calculate the Number of Kanban. 
2017. http://www.leanlab.name/how-to-calculate-the-number-of-kanban 
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Later, Spearman, Woodruff, and Hopp (1990) described a pull alternative 
to kanban, named CONWIP (CONstant Work-In-Process), where the WIP 
is not constrained for every operation or machine but the quantity of WIP in 
the total production flow is constrained. CONWIP regulates the release of 
the items at a global level into the system but does not specify their 
processing sequence. This concept contributes to operating a global pull 
control with a push control at the local level (Hopp and Roof 1998, 687). It is 
also used to model low-level logistic problems (Ni and Werner 2017). As a 
result, such mechanisms are able to combine the low inventory benefits of the 
pull control with the high throughput benefits of the push control. 

A critical review of the JIT literature and an analysis of the revealed 
trends in JIT/kanban systems has been given by (Sendil Kumar and 
Panneerselvam 2007).  

2.5.5 Just-In-Sequence discipline 

In recent years, the JIT paradigm has been advanced into a discipline called 
Just-In-Sequence (JIS). JIS is mainly an inventory strategy that is originated 
from the production logistics. It represents an advanced synchronization 
between delivering the manufactured components and the downstream 
assembly. With JIS, the components and the parts arrive at a production line 
right at the time moment when they are scheduled to be assembled. The 
sequencing allows the companies to eliminate supply buffers as soon as the 
necessary quantity in the component part buffers is reduced to a minimum. It 
is an extreme technology, which permits a company to work practically 
without any inventory. Currently, JIT/JIS is mainly implemented in industries 
with high automation level, such as automotive, semiconductor, and digital 
devices industries, see SIEMENS products7.  

The JIS supply is widely used in multi-OEM (Original Equipment 
Manufacturer) environments, where a company produces parts and 
equipment to be used as merchandise for other manufacturers. Such a 
merchandise is referred to as value-added reseller (VAR). A VAR adds a 
value to the original item by augmenting or incorporating features or 
services. The VAR works closely with the OEM, which often customizes 
designs based on the needs and specifications of the VAR company.  

One of the basic examples of the OEM functioning is the relationship 
between an auto manufacturer and a producer of auto-parts. Parts such as 
exhaust systems or brake cylinders are manufactured by a wide variety of 

 
7 Opcenter Execution Discrete  
https://www.plm.automation.siemens.com/global/en/products/manufacturing-
operations-center/simatic-it-unified-architecture-discrete-manufacturing.html 
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OEMs. The OEM parts are then sold to an auto-manufacturer, which 
assembles the item into a car. The completed car is then marketed to auto 
dealers to be sold to individual consumers. An OEM may also refer to a 
company that buys products and then incorporates or rebrands them into a 
new product under its own name. It is typically used in the computer 
industry. For example, Microsoft supplies its Windows software to Dell 
Technologies, which incorporates it into their personal computers and sells 
a complete PC system directly to the public. In the traditional sense of the 
term, Microsoft is the OEM and Dell the VAR. However, for consumers, 
Dell is usually referred to as the OEM. 

2.6 OPT system 

2.6.1 Features 

The OPT system is a production improvement concept, which was 
developed in the 1980s by Eliyahu M. Goldratt as a software package. Later, 
this concept became an entire production control philosophy based on 
bottleneck management and finite-capacity scheduling (Goldratt 2012). It is 
now better known as Theory of Constraints (TOC). The objective of an OPT 
is to schedule the production so that the production output is maximized. 
The benefit claimed for an OPT is dedicated to schedule finite resources in 
order to achieve a maximum factory effectiveness, focusing in the following 
points: 
 

 Address the key problem of bottlenecks; 
 Improve the profitability by simultaneously increasing the throughput; 
 Reduce the inventory and operating expenses. 

 
The constraints can be internal or external to the system. The types of 

internal constraints are:  
 
 Equipment – the limits of the system ability to produce more salable 

goods/services; 
 People - lack of skilled people limits the system;  
 Policy - a written or unwritten policy prevents the system from 

making more. 
 
If the capacity throughput of a constraint is elevated to the point, where 

it is no longer a limiting factor of the system, this means 'break' the 
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constraint. In this case, the limiting factor is some other part of the system 
or may be an external constraint.  

The method is based on the concept that there are two fundamental 
manufacturing phenomena: 

 
 Dependent events - all processes rely on the completion of the 

preceding operations; 
 Statistical fluctuations – the processing times fluctuate around the 

average. 
 
These phenomena have an influence on the capacity of a plant, which 

becomes unbalanced and therefore, the bottlenecks are inevitable. The key 
distinctive feature of the OPT is its ability to identify and isolate the 
bottleneck operations. Then the OPT focuses on these bottlenecks to 
determine the production plans and the schedules for the entire shop. This 
simple idea leads to a better utilization of the manufacturing resources, 
resulting in raising the throughput while reducing the inventory and the 
operating costs. Consequently, a smooth and continuous flow of the WIP is 
achieved.  

The following nine features characterize an OPT system: 
 
 Balance flow but not capacity; 
 The utilization level of any system part, which is not a bottleneck, 

depends on other constraints of the system, not the worker potential; 
 The utilization and the activation of a resource are not synonymous; 
 An hour lost at a bottleneck is an hour lost for the total system; 
 An hour saved at a non-bottleneck is just a mirage; 
 Bottlenecks govern both throughput and inventories; 
 The transfer batch may not be equal to the process batch; 
 The process batch should be variable, not fixed; 
 Schedules should be established by looking at all constraints 

simultaneously. 
 
Lead times are the results of the schedule and cannot be predetermined. 

It is found that it would be the best for small/medium size assembly 
companies to embark on using OPT. It can improve the assembly 
throughput, inventories, and operating costs before deciding to implement 
lean manufacturing or lean Six Sigma. 
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2.6.2 Plant types according to the TOC 

There are four primary types of plants defined in the TOC. These four plant 
types can be visualized drawing the flow of material from the bottom of a 
page to the top. Specifying the general flow of the materials through a 
system, some hints, where one must look for typical problems, may be 
provided. This type of procedure is known as VATI analysis8 as it uses the 
bottom-up shapes of the letters V, A, T, and I for determining the general 
flow of parts and products from raw materials to finished products (logical 
product structure).   

V-plant: The general flow of material is one-to-many, such as a plant 
that uses one or a few raw materials and makes a number of final products, 
which flow through divergent points in their routings. Classic examples are 
meat rendering plants or steel manufacturing. The primary problem in V-
plants is 'robbing', where one operation (A) immediately after a diverging 
point 'steals' material meant for another operation (B). Once the material has 
been processed by A, it cannot come back and be run through B without 
significant rework. 

A-plant: Converging points dominate this logical structure. The general 
flow of material is many-to-one, such as many sub-assemblies converge to 
a final assembly. The primary problem in an A-plant consists in 
synchronizing the converging lines so that each line supplies the final 
assembly point at the right time. 

T-plant: The general flow represents one line (I-plant) or multiple lines, 
which then split into many assemblies, subassemblies, and parts (many-to-
many). Most manufactured parts are used in multiple assemblies, and nearly 
all assemblies use multiple parts. Customized devices, such as computers, 
are good examples of such an environment. T-plants suffer from both 
synchronization problems of A-plants (parts are not all available for an 
assembly). The robbing problems of V-plants (one assembly steals parts that 
could have been used in another one). 

I-plant: This logical structure is the simplest one of production flows. 
The primary work is done in a straight sequence of events (one-to-one). 
Material flows in a sequence, such as in an assembly line. Once the general 
flow is determined, the system control points (gating operations, convergent 
points, divergent points, constraints, and shipping points) can be identified 
and managed. The constraint is the slowest operation. 

These four flow types may be combined in many ways in large facilities, 
for example, 'an A-plant feeding a V-plant'. 

 
8 https://www.academia.edu/31291212/APICS_Dictionary_13th_ed  
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2.6.3 Drum-buffer-rope method 

The OPT method of scheduling recommends to launch the material onto the 
shop floor only at the rate at which it is consumed by the bottleneck. 
Furthermore, a time buffer of work protects the production in the bottleneck 
operations. For example, a work is scheduled for the third day. It arrives on 
day one and creates a buffer of two days. This buffer is used as a protection 
against a disruption in the operations. This implies that within the 
manufacturing operations and operations management, the solution seeks to 
pull materials through the system, rather than push them into the system. The 
primary methodology used is the Drum-Buffer-Rope (DBR) method (see Fig. 
2-6). Mainly, the DBR is a method of synchronizing the production to the 
constraint while minimizing the inventory.  

The method is based on a fundamental assumption that within any plant, 
there is one or a limited number of scarce resources, which control the 
overall output of that plant. This is the 'Drum', which sets the pace for all 
other resources. The Drum is a constraint. The speed, at which the constraint 
runs, sets the 'beat' for the process, and determines the total throughput. The 
bottlenecks, which beat out the pace like a Drum for the whole factory, 
should be kept fully scheduled and working at all times. The bottlenecks 
must be protected against any interruption caused by the breakdowns, 
quality restrictions, setup times, labor concerns or any other variation. This 
protection is achieved by the creation of time buffers. All other operations 
become then synchronized with the bottleneck operation, and some work is 
pulled through as if it was on a rope. 

The 'Buffer' is the level of the inventory needed to maintain a consistent 
production. It represents the amount of time, in which WIP must arrive in 
advance of being used to ensure a steady operation of the protected resource.  

Typically, there are two buffer types:  
 
1. Constraint Buffer - a buffer immediately before the constraint that 

protects this constraint; 
2. Customer Buffer - a buffer at the very end of the process that protects 

the shipping schedule.  
The 'Rope' is a signal generated by the constraint indicating that some 

amount of the inventory has been consumed. 
In order to maximize the output of the system, the planning and 

execution activities are focused on exploiting and protecting the Drum 
against disruption using 'time buffers'. Another aspect is synchronizing or 
subordinating all other resources and decisions to the function of the Drum 
through a mechanism that is akin to a Rope.  
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An example of the use of this method in the manufacturing environment 
is given below. 

 

 
 
Fig. 2-6. The Drum-Buffer-Rope concept.  

2.6.4 Scheduling of a production line with the DBR method 

An example of applying the DBR method in production planning to a 
manufacturing system that represents a line of machines in series (such as a 
flow shop), is presented in Fig. 2-7. The system consists of four successive 
operations, and there are no assemblies or divergences in the process. For 
simplicity, it is assumed that there is only one raw material and one 
customer. 
 

 
 
Fig. 2-7. Representation of a production system as a series of machines. 

 
The method contains the steps described below. 
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Step 1. Identify the system constraint  
The first step is to identify the Drum. The Drum is usually a resource (or 

a work center) with the largest workload in the plant (Table 2-1). It is 
fundamental to mention that in the DBR method, the most important step is 
not the input or output but the production process itself. 

The slowest of the resources is identified as the constraint. When the 
production system is studied (Table 2-1, Fig. 2-8), it is determined, which 
resource can stop the production. In this case, it is the operation 3 (the red 
resource). The other three resources, which are the productive operations 1, 
2 and 4 (the yellow, green, and blue operations, respectively), have an 
excess in the capacity. 

 
Step 2. Exploit the system constraint 
It is assumed that resource 3, which represents the constraint, has two 

pieces of material in process ready to be treated on day 1. Resource 3 takes 
6 hours to process the first piece and the next 6 hours to process the second 
piece. This sets the pace of the constraint, which is 1 piece every 6 hours. 

The resources prior to the constraint have an excess capacity and should 
supply the constraint with the material before the moment when it runs out 
of parts without any problem. If the raw material supplier stops delivering 
for some reason, resource 3 is able to maintain the manufacturing for 6 hours 
after finishing the first piece because it has material. However, after the next 
6 hours, it will stop due to lack of material.  The previous resources (1 and 
2) would not have enough material to supply although they have sufficient 
capacity (Fig. 2-9). 

 
Production 
operations Day Part Time 

(hs) 
1 1 1 2 
2 1 1 1 
3 1 1 6 
4 1 1 1 
1 1 1 2 
2 1 1 1 

 
Table 2-1. Production schedule per day. 
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Fig. 2-8. Drum chart. 

 

 
 
Fig. 2-9. Production system with two products in line. 

 
Step 3. Establish the Buffer 
To reduce the negative impact on the constraint, a solution is to put a 

buffer, or a time buffer, in front of the constraint (Fig. 2-10).  
As it is already established, the rhythm is one piece every 6 hours. Then 

the question is: What time must the constraint be protected? Let us suppose 
that we came up with placing four pieces at the start, which means in this 
case, 24 hours of protection with a buffer. Thus, regardless of the previous 
processes, the constraint can work 24 hours without an interruption. 
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Fig. 2-10. Establishing the buffer. 
 

Step 4. Synchronizer the Drum – Subordination 
The buffer and the processing time of the pieces at the resources prior to 

the bottleneck (identified as the constraint) set the size of the Rope that is 
thrown to the first point of the production line. After programming the 
Drum, the material release and shipment are connected to it, using the buffer 
offset. The material is released with the same speed as the Drum consumes 
that material. The orders are shipped with the production rate, which is 
identified by the Drum, and every 6 hours one piece will be completed 
within the production line. 
 

Step 5. The DBR programming algorithm 
In this step, it is assumed that the work to be carried out through the 

bottleneck (system constraint) must be programmed and protected by the 
creation of a time buffer, also called the sending buffer. The determination 
of the buffer size is a complex procedure, since there is no formula for its 
calculation. Its value depends on numerous variables, such as the processing 
time or the failures in the process tools.  

Following the example, on day 1, resource 3 is working first 6 hours 
until the raw material supplier fails. Nevertheless, at the level of the 
constraint, there is no information about the fault, because it has the material 
and continues manufacturing. On day 2, the following situation may occur. 
The supplier of the raw material still cannot supply but the system works 
until the fourth piece is consumed. 

If then the supplier failed to react, a system of traffic lights of the buffer, 
in green, yellow, and red colors is used, helping to keep the process safe 
(Fig. 2-11). This system ensures that the working process is programmed 
well, i.e., conflicts are solved, and potentially late jobs (red lot) are 
identified. In this way, the behavior of the buffer will be as follows. 

 

 EBSCOhost - printed on 2/9/2023 3:05 AM via . All use subject to https://www.ebsco.com/terms-of-use



Inventory Management in Plants with Serial Production 37 

If a green lot is always presented in the buffer, this means that the buffer 
is too long. In the normal case, the buffer moves between a green lot and a 
yellow lot. When the material receives the yellow color, the cause must be 
sought and the planner must act quickly. When the red lot enters into the 
buffer, it is a warning sign, and an action has to be taken to bring quickly 
material before the constraint stops. 

Once the buffer is placed with sufficient material, it is ensured that the 
line can continue to operate under normal conditions. When the constraint 
takes a piece, this is a warning that there is a lack of material and more lots 
must be supplied (Fig. 2-11). 

Thus, according to this method, it is more convenient to have material 
in excess at a critical point to ensure that the constraint has always material 
to work instead of having inventory in all processes. The buffer monitoring 
displays whether the size of the lot should be increased or reduced. 

 

 
 

Fig. 2-11. Production system with DBR scheduling. 

2.7 A comparison between JIT, MRP and OPT paradigms 

A detailed comparison between JIT, MRP, and OPT inventory control 
systems is presented in the literature (Golhar and Stamm 1991, 659). The 
authors noted that some researchers argue that JIT, MRP and OPT are 
mutually exclusive. In a repetitive manufacturing environment with a 
moderate product variety, kanban (an inventory control method in JIT) is 
found to be effective because it drastically reduces the inventory, simplifies 
planning and control. On the other hand, in a job shop environment with 
large product variety, an MRP improves the customer service and 
moderately reduces the inventory. However, in a complex production 
environment, an OPT system is preferred to MRP or JIT. Meanwhile, 
another opinion is that both kanban and OPT are more productive systems 
than MRP. The authors suggest that the selection of an ideal inventory 
control system is specific for every situation. 
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According to the simulation and mathematical studies on the comparison 
of inventory systems, the manufacturing environment is most crucial in 
reducing the inventory. In particular, a levelled production, reduced setup 
times and lot sizes are most effective in reducing the inventory and 
improving the customer service. With kanban, the JIT philosophy focuses 
on simplifying the production process and finding ways to reduce setup 
times and lot sizes. When compared to MRP and OPT, kanban provides an 
appropriate manufacturing environment for an effective control of the 
inventory. Another critical factor in a successful implementation of an 
inventory system is human involvement. The kanban system was found to 
be advantageous because it is relatively simple and easy to implement. On 
the other hand, MRP has many human involvement problems. Employees 
are excluded from decision-making process. They fail to see how their work 
contributes to a reduction of the inventory. OPT requires managers to make 
changes in procedures and work methods prior to their implementation. 
These changes increase the employee involvement. As a result, OPT has 
fewer employee problems in control of the inventory than MRP. The papers, 
which are dedicated to this subject, focus on contrasting kanban, MRP, and 
OPT. However, some studies argue that kanban and MRP systems are 
complementary. According to the opinion of various researchers, the 
strength of MRP consists in long-term planning and scheduling, while 
kanban is better at daily operations providing a visible control of the 
production and reducing the inventory. Thus, the integration of MRP and 
kanban would allow a manufacturer to improve the productivity and 
customer service level.  

2.8 Methods of inventory optimization 

The inventory control and optimization attract the attention of researches 
due to the interest of the manufacturers in a reduction of the production 
costs, as well as the computational complexity of the problem. Nevertheless, 
one can note a lack of systematic studies. Following the idea that for lean 
manufacturing 'inventory is evil' (Cuatrecasas-Arbós et al. 2015, 951), the 
papers are focused on the problem of the WIP control and keeping it at a 
low level. The proposed methods may be roughly classified into the 
following categories: 
 

1. A visual control of the location and quantity of the inventory 
combined with polices and heuristics (Maimon, Dar-El, and Carmon 
1993, 173–80; Papadopoulos and Vidalis 2001, 188–95; Duwayri et 
al. 2006, 719–23; S. Kim and Uzsoy 2009, 1926–29; Yang and 
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Posner 2010, 7–12; Cuatrecasas-Arbós et al. 2015, 959–61; Olaitan, 
Yu, and Alfnes 2017, 279–80).  

2. Simulation methods were used for the study of simple generic serial 
systems (Conway et al. 1988, 232–40), or designing more complex 
models such as a Virtual Production Line (VPL) (Qiu 2005, 168–70), 
a Production-tracking system (G. Zhang, Zhang, and Tian 2011, 
1331–33), Discrete-event simulation (Xanthopoulos and 
Koulouriotis 2014, 1508–13), and Monte Carlo simulation (M. Li et 
al. 2016, 118–20). 

3. Optimization methods such as linear and nonlinear programming (S. 
X. Bai and Gershwin 1990, 558–62; J. S. Kim and Leachman 1994, 
155), artificial neural networks  (Y.-H. Lin, Shie, and Tsai 2009, 
3422–25), and fuzzy logic (Tsourveloudis 2010, 649–50). 

4. Stochastic methods such as Markovian processes (Vidalis, 
Papadopoulos, and Heavey 2005, 826–28; Sivakumar and Arivarignan 
2009, 48), system nervousness measurements (Kilic and Tarim 2011, 
288–89), and Bayesian modeling (L. Chen and Plambeck 2008, 239–
40).  

5. Integrated multi-objective methods such as inventory and production 
planning (Aghezzaf and Landeghem 2002, 4324–32), schedule 
evaluation (Lopez de Haro, Gershwin, and Rosenfield 2009, 186–
89), robust design of manufacturing systems (Sharda and Banerjee 
2013, 317–19), and a Markov decision process combined with 
dynamic programming (DP) (Ni and Werner 2017, 98–100). 

 
The more frequently used methods to control the WIP are simple 

heuristics and known dispatching rules.  
Maimon, Dar-El, and Carmon (1993, 180–83) used the average WIP 

inventory level as a performance measure to design setup saving schemes 
for a printed circuit board (PCB) assembly line, which is characterized by 
long-time setups. When the data took a value over the average WIP for the 
PCB line of type i, the average WIP of a group and the occupation time of 
the machines were calculated by Grouped Set-Up (GSU) and Sequence-
Dependent Scheduling (SDS) methods. The analysis was illustrated using 
real data from a typical production line. In the paper by Papadopoulos and 
Vidalis (2001), the objective was to find an optimal buffer allocation (OBA) 
that minimizes the average WIP inventory subject to a minimum required 
throughput. A heuristic algorithm, which reduces the search space by over 
50% compared to an enumeration, was proposed to find an OBA. Duwayri 
et al. (2006, 720–22) used the WIP inventory as a measure to evaluate the 
performance of the proposed setup scheduling heuristic for the bottleneck 
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workstation in a semiconductor wafer fabrication with a reentrant 
production flow network, which is a typical modern semiconductor 
manufacturing system. The variable WIP levels are calculated by means of 
a workload index of a loop i, which is known to be directly correlated with 
the inventory levels.  

Kim and Uzsoy (2009) formulated the single work-center problem as a 
shortest path problem. Nonlinear clearing functions were used to relate the 
expected output of a production resource in the planning period to the 
expected WIP inventory level. Clearing functions permitted an explicit 
modeling of the WIP levels to ensure that the demand was met while the 
WIP levels remained within the desired levels. On this basis, two greedy 
constructive heuristics and a Lagrangian heuristic were proposed for the 
multi-stage environment. Yang and Posner (2010) highlighted the 
importance of the knowledge over the location and the size of the WIP in a 
production system. The problem of minimizing the total WIP cost 
associated with the value, which was added at each stage during the 
production process, was modeled for a generalized flow shop in this paper. 
This problem is NP-hard even for two machines. Based on a value-added 
model, the authors showed how the unit time WIP cost increased as a job 
passed through the various stages in the production process. The Shortest 
Processing Time (SPT) first rule and several simple and intuitive heuristics 
were presented and empirically evaluated. Cuatrecasas-Arbós et al. (2015) 
found and quantified the relationships between the WIP inventory, lead time 
(LT) manufacturing, and the operational variables they depend on. Such 
relationships provide guidelines and performance indicators in the process 
management. For a discrete deterministic serial batch process, the authors 
developed equations to analyze how the WIP and LT depend on the 
parameters, such as the performance time (of each workstation) and the 
batch size. Those relationships were extended to processes with different 
lots and multiple lots. In the paper by Olaitan, Yu, and Alfnes (2017), a WIP 
control approach was developed and applied in order to manage the 
inventory by a reduction of the throughput time and its variations under the 
CONWIP, and the push production control mechanisms in a High Product 
Mix manufacturing environment. This approach sets a threshold inventory 
level per product for each of the manufacturing stages and uses the deviation 
from the respective thresholds to prioritize the production. It can be useful 
for a JIS policy.   

One of the earlier works dealing with the simulation of an inventory 
control is due to (Conway et al. 1988). Some simple generic serial systems 
were simulated under conditions, where a storage was provided between the 
processes to avoid an interference due to the lack of synchronization. This 
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paper investigated the behavior of the lines buffered in this way. It also 
explored the distribution and the quantity of the WIP inventory 
accumulated. One of the conclusions of the authors was that the position as 
well as the capacity of the buffers were important. Qiu (2005) presented a 
potentially practical solution for a manageable and well distributed WIP 
control system by addressing several issues, such as the real-time 
performance, the scalability, and the reconfigurability. A VPL was also 
proposed as a method to maintain a certain WIP level. Zhang, Zhang, and 
Tian (2011) proposed a radio frequency identification (RFID)-enabled real-
time production tracking system for the PCB assembly industry. The RFID 
technology enables an automatic data collection and processing. Various 
methods of production information processing, such as data filtering and 
data selection algorithms, were proposed to extract the production tracking 
information. This information represents, for example, the production 
progress, WIP inventory, and real-time data by a filtering and selection.  

In the paper by Xanthopoulos and Koulouriotis (2014), a discrete-event 
simulation was developed for the multi-objective optimization control of 
inventory systems in a multi-stage serial manufacturing. These systems are 
supposed to be controlled by kanban, base stock, CONWIP, and 
CONWIP/kanban hybrid mechanisms. Four simulation cases were 
examined. Some optimal and near-optimal parameters for the control 
policies were obtained by integrating the proposed simulation models into a 
multi-objective evolutionary algorithm in order to minimize simultaneously 
the mean WIP and the mean number of backordered demands. The non-
dominated sets were compared in terms of several metrics by means of the 
Pareto fronts. A metamodeling-based Monte Carlo simulation approach was 
developed by Li et al. (2016)  for responsive production planning to capture 
accurately the dynamic stochastic behavior of a manufacturing system and 
to allow a real-time evaluation of several performance metrics of the release 
plan. The evaluation capability was then embedded into a multi-objective 
optimization framework to search for near-optimal release plans. The 
system outputs, namely the WIP levels and job completions, are non-
stationary bivariate time series. These outputs interact with the time 
series representing the customer demand. The results are the 
fulfillment/nonfulfillment of that demand and the holding cost of both the 
WIP and the finished goods inventory. The proposed method was applied 
to solve a production planning problem in a system for semiconductor wafer 
fabrication.  

Various methods of mathematical optimization were used to solve the 
inventory problem: linear and nonlinear programming (S. X. Bai and 
Gershwin 1990; J. S. Kim and Leachman 1994), artificial neural networks 
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(Y.-H. Lin, Shie, and Tsai 2009), and fuzzy logic (Tsourveloudis 2010). 
Bai and Gershwin (1990) considered a scheduling problem with WIP 

inventory in manufacturing systems for the following cases:  
 
1. Single-part-type systems;   
2. Multiple-part-type systems; 
3. Reentrant systems.  
 
A real-time feedback control algorithm was developed. The WIP 

inventory was allocated dynamically according to the demand and the 
machine parameters. A convex function was used to specify the feedback 
control strategy for the production. It penalized extreme components. The 
feedback control law with a quadratic function was also applied to verify 
the optimal production flow rate. The starvation and blockage fractions of a 
machine were defined using the hedging points, which correspond to the 
desirable operating states of the system. Kim and Leachman (1994) tried to 
optimize the WIP using linear programming. The introduced model was 
developed using the general framework of dynamic production theory. A 
simulation was performed. Lin, Shie, and Tsai (2009) used an artificial 
neural network combined with a sequential quadratic programming (SQP) 
method. The objective was to identify the optimal WIP level and to 
maximize the throughput rate in a wafer fabrication process. The efficiency 
of the method finding the optimal WIP level was substantially improved. 
The mean cycle time and the standard deviation of the cycle time were 
minimized simultaneously. Tsourveloudis (2010) tested  evolutionary tuned 
fuzzy controllers under variable demand conditions. A significant reduction 
of the WIP in all production lines and networks was achieved. 

In some papers, various useful stochastic methods were proposed for the 
inventory control. The more frequent ones used Markov chain variations.  

Vidalis, Papadopoulos, and Heavey (2005) investigated how to 
maximize the throughput/minimum of the average WIP when the total 
service time and the total number of service phases among the stations are 
fixed. These are the 'work-load' and 'phase-load' allocation problems, 
respectively. The evaluation of the throughput involved the generation of 
the transition matrix of the underlying finite state with a continuous time 
Markov chain. This method in conjunction with the Gauss-Seidel method 
were used to speed up the convergence in order to solve the resulting system 
of linear equations and to obtain then the stationary distribution of the 
Markov chain. In the papers by Sivakumar and Arivarignan (2009), Kilic 
and Tarim (2011), stochastic systems were investigated. Each of them had 
an incontrollable throughput process of demand arrivals. In the paper by 
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Sivakumar and Arivarignan (2009), an inventory system was modeled by 
means of perishable commodities, in which the arrivals of regular and 
negative customers were described as an independent Markovian Arrival 
Process (MAP). The optimal cost rate of the demands was given in this 
paper. In the paper by Kilic and Tarim (2011), a stochastic inventory system 
was considered. A demand was represented by a discrete random variable. 
The authors analyzed the system nervousness resulting from the pure 
demand uncertainty. The effects of the setup frequency, the demand 
variability, and various demand patterns on the cost and the instability 
performances were characterized in terms of (R,S) and (s,S) replenishment 
inventory policies. Another studied problem was dedicated to find an 
optimal inventory level for an assembly process. Chen and Plambeck (2008) 
used Bayesian modeling for a dynamic inventory management with a 
learning effect. The directions used were:  

 
1. The general demand distributions were discrete ones;   
2. The perishability assumption was relaxed; 
3. The Bayesian inventory management was extended to consider the 

effect of learning for the probability that a customer will accept a 
substitute product.  

 
The use of RFID for a continuous observation of the product flow was 

suggested. The authors considered the obtained results as most insightful 
for the inventory and the capacity management of an innovative product like 
the Toyota Prius Hybrid.  

Some recent publications displayed multi-objective approaches to reach 
advanced results for complex problems.  

In the paper by Aghezzaf and Landeghem (2002), an integrated system 
was considered. It is dedicated to inventory and production planning in a 
two-stage hybrid production environment with a process production system 
at the first stage and a job shop production system with batching at the 
second stage. The stages are separated by an intermediate warehouse, which 
should be optimized to provide a trade-off between the cost for carrying the 
inventory of the semi-finished products, the minimum batch size 
requirement at the first stage, and the required service level at the second 
stage. An integrated model for planning the production was developed. A 
model and an objective function for each problem were given. The solution 
framework included original and known algorithms. Branch-and-bound and 
linear programming codes together with the CPLEX mixed integer solver 
were used. Lopez de Haro, Gershwin, and Rosenfield (2009) examined the 
opposite case, namely a lack of WIP. The authors provided a new approach 
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to validate the feasibility of schedules in a multiple-step mixed model for 
unstable manufacturing environments with different changeover times. The 
approach was based on a new type of a visual representation of the schedules 
and an estimation of the probability of starvation. Sharda and Banerjee 
(2013) used multi-objective genetic algorithms, Petri nets, and Bayesian 
model averaging (BMA) for a robust design of a manufacturing system by 
an evaluation of multiple decision variables, such as the makespan, WIP, 
and number of machines. Different forms of manufacturing uncertainties, 
such as uncertainties in the processing times and the product demand, were 
considered. The integrated modeling framework coupled with Bayesian 
methods for the uncertainty representation provided a single tool to design, 
analyze and simulate the candidate models. Ni and Werner (2017) discussed 
relationships between the WIP and material handling tools (MHT) in a 
discrete manufacturing system, particularly in a semiconductor factory. The 
MHT are responsible for the transitions of the lots between the stations. Any 
improvement in the MHT has a great potential for reducing the inventory, 
minimizing the cycle time for the production and enhancing the deliverable 
orders. The CONWIP and Little's law methodologies were used. A Markov 
decision process (MDP) was applied to model the MHT problems. A 
dynamic programming-based algorithm was developed to determine a 
solution for the MDP model. The control of the WIP level in the whole line 
within certain lower and upper limits was reached using a special reward 
function. 

2.9 Conclusions 

In HT companies with lot processing and capital-intensive products, like 
semiconductor manufacturing, digital device and automotive industries, to 
mention a few of them, the management and control of the inventory is of 
key importance. The reduction of the inventory implies a reduction of the 
inversions into the infrastructure and the capital involved. Different models 
for the production control were proposed in the literature and practice to 
obtain a maximal efficiency of the production. They can be divided into 
push/pull approaches, where push systems are those where production jobs 
are scheduled while in pull systems, the start of a job is triggered by the 
completion of another one (Spearman, Woodruff, and Hopp 1990). The use 
of kanban tools facilitates the production control, reduces the production 
time and the WIP in HV/HM companies (Sendil Kumar and Panneerselvam 
2007). The adoption of a kanban system improved the efficiency and 
flexibility of manufacturing.  
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The attention of researchers is actually focused on pull/kanban/ 
CONWIP and hybrid systems, which resulted in a new paradigm, named 
JIS. The last one requires a deep systematic investigation of the associated 
shop and supply chain problems. 

There are various reviews, which are dedicated to different aspects of 
production system paradigms and WIP management, such as in the papers 
by Golhar and Stamm (1991); Price, Gravel, and Nsakanda (1994); Hum 
and Lee (1998); Sendil Kumar and Panneerselvam (2007). Inventory 
management has an inherent connection with planning and logistic 
problems in the plants. The most recent survey about industrial aspects and 
the dedicated literature for combined inventory management and routing 
problems can be met in the paper by Andersson et al. (2010). There exists a 
comprehensible open access book by Ptak and Smit (2016), which is 
dedicated to the DDMPR.  
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CHAPTER THREE 

MODELING THE SCHEDULING PROBLEMS 

 
 
 

Optimization of a schedule plays a vital role in modern manufacturing, planning 
and control systems. 

(Shakhlevich, Sotskov, and Werner 2000, 343)  
 
In big manufacturing plants with lot processing, the scheduling problems 
are usually difficult to model. The main reasons for this are:  
 

 Large technological routes;  
 Complex environments with dozens or hundreds of machines of 

different brands and production years to make the same operation; 
 Frequent changes in the market restrictions;  
 Reentrance of items, among others.  

 
Manufacturing plants with lot processing display a variety of shop 

environments, both traditional ones and recently appeared. The seminal 
work for modeling scheduling problems was due to Johnson (1954). There 
was given a simple rule to meet an optimal schedule for a number of jobs 
on two successive machines. In this chapter, traditional and forthcoming 
models are highlighted as special models due to their utility for those 
problems, which are the subjects of this book – planning and scheduling for 
massive manufacturing of mixed products. A variety of the models 
considered in the literature as well as some associated questions are briefly 
discussed below. 

3.1 Description of the main problems 

Mathematical modeling requires a formal description of a problem. For such 
purposes, a three-field notation | | , named Graham's triplet (Graham et 
al. 1979, 288) is commonly used in the scheduling theory. This triplet 
denotes a scheduling problem in terms of jobs and machines. For a general 
description of this triplet, the reader is referred to Pinedo (2008, 13–19); 

(2007, 57–60). Some advanced variants can be found in the 
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literature (Ruiz and Vázquez-Rodríguez 2010, 57–60; Allahverdi 2015, 
347). The triplet describes any scheduling problem in a convenient format. 
It is also sufficiently flexible and adaptable to define problems with new 
features. Below, the main values of the three parameters are described.  

3.1.1 Notations for indexes, variables and sets 

There are no strict rules to use the notations in the modeling of a 
deterministic scheduling problem. Nevertheless, in the recent literature, 
standardization elements appeared in the selection of the notations. Some 
basic notations used in this book are listed below. These notations are 
typical in the literature. Nevertheless, an author is free to use a proper 
notation system.  
 
Indexes: 

j  -   job, j = 1,…, n; 
i  -   machine, i = 1,…, m;  
k  -   stage, k = 1,…, K; 
f  -    family, f  = 1,…, F. 

Parameters: 
pij - processing time of job j on machine i; 
dj -  due date of job j; 
rj -  release time of job j into the system; 
wj - weight (importance) of job j. 

Sets: 
J   - jobs; 
M - machines. 

3.1.2 Machine environment (  field) 

In the triplet, the  field specifies two characteristics of a problem: the shop 
type and the machine environment. The main possible values for the 
machine environment are listed in Table 3-1.  

If a process contains only one operation and is realized on one machine, 
either on a unique or a parallel one, the description of the machine setting is 
directly included into the  field. If a job has to be processed on more than 
one machine, the shop type (processing order of the product), such as a flow 
shop, a job shop, an open shop, or others, this must be indicated by the 
number of machines (unless the number of machines is variable). Thus, Fm, 
J4 and O3 denote an m-machine flow shop, a 4-machine job shop, and a 3-
machine open shop, respectively. If the number m of machines is variable 
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or it is a part of the input, the parameter m is skipped in the notation, for 
example, F or P only.  

The principal shop types are listed in Table 3-2. 
 

Notation Description 
 Single machine: all jobs are processed on the same machine. 

Pm  m identical parallel machines: a job may be processed on any of m 
machines. 

Qm  m uniform parallel machines: the time a job is processed on a 
machine depends on the machine speed. 

Rm  m unrelated parallel machines: the time a job spends on a machine 
depends on the machine speed and on the job. 

Dm  m dedicated machines: each machine is specialized for the 
execution of certain jobs, so the jobs to be processed are known in 
advance for each machine. 

 
Table 3-1. Machine environments. 
 

Notation Description 
1 Single machine 
Fm  m-machine flow shop (FS): all jobs have a unidirectional flow on 

the machines. 
Jm  m-machine job shop (JS): each job has a specified processing 

order through the machines. 
Om  m-machine open shop (OS): there are no restrictions on the 

processing sequence of the jobs on the machines.. 
Mm m-machine mixed shop: for some jobs, the sequence of machines 

is given while for other jobs not. 
FFk  k-stage flexible flow shop (FFS): it is a generalization of a flow shop, 

when the production is realized at k stages, and at least one of them 
has an identical parallel machine environment.  

HFk  k-stage hybrid flow shop (HFS): it is a generalization of an FFS, 
when one or more of the k stages have a non-identical parallel 
machine environment or a shop. 

AFk k-stage assembly flow shop (AFS): it is a generalization of a flow 
shop, when the first stages are parallel shops dedicated to the 
production of the components, and the last stage is performed on 
an assembly machine. 

FJk  k-stage flexible job shop (FJS): it is a generalization of a job shop, 
when one or more stages have a parallel machine environment. 

FOk  k-stage flexible open shop (FOS): it is a generalization of an open 
shop, when one or more stages have a parallel machine environment. 

 
Table 3-2. Shop types (  field).  
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For generalized multi-stage shops, such as FFS, HFS, AFS, FJS, and 
FOS, both the shop type and the machine environment at each stage can be 
described in detail. The  field is composed of four parameters, denoted by 

1, 2, 3, and 4, which are sequenced in the order: 1 2 ( 3 4
(1)

, 3 4
(2), 

…, 3 4
( 2)). Here, the value of 1 indicates the shop type, and 2 denotes 

the number of stages. Then each stage k can be described explicitly by the 
parameters 3 4

(k). In such a case, for each stage k, the parameters 3 and 
4 together describe the machine environment in the shop at stage k. More 

specifically, the type of the machines is written in the 3 position, while 4 
specifies the number of machines at the stage.  

If there are several consecutive stages with the same machine 
environments the parameters 3 and 4 can be grouped as follows: (( )( )) , where s and l are the indexes of the first, and the last 
consecutive stages, respectively. The parameter 3  { , P, Q, R, D} is 
according to Table 3.1. The value 3 =  implies that the 3 position is 
omitted in the single machine case 
Vázquez-Rodríguez 2010, 2).  

In the paper by Potts and Kovalyov (2000, 230), the notations , ,  , 
 ,  ,  are used for the corresponding environments with the characteristic 

of batch processing. No other specific symbols have been reported in the 
literature for the  field. 

The following examples illustrate the use of the settings described 
above.  

FF2(Pm(2)) and FF2(1(1), Pm(2)) are two notations, which denote a two-
stage FFS with a single machine at the first stage, and m identical machines 
in parallel at the second stage.  

Problem HF4(1, ( ( )) , R2) refers to a four-stage HFS with a single 
machine at the first stage, and m2 and m3 uniform parallel machines at the 
second and third stages, and two unrelated parallel machines at the fourth 
stage, respectively.  

Problem AF2(Jm(1), 1) describes a two-stage AFS with an m-machine 
job shop at the first stage and one assembly machine at the second stage.  

Problem FJ5(P3(2)) denotes a five-stage FJS with two identical parallel 
machines at the third stage. 

3.1.3 Shop conditions (  field) 

The  field provides the shop properties as well as other processing conditions 
and important details, which characterize the problem. Multiple entries may be 
enumerated. This field may also be empty if there are no special conditions. 
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The most common model properties, which are frequently associated with a 
problem with lot scheduling, are listed in Table 3-3. 
 

Notation Description 
 No special properties. 

batch(b)  Batch processing: a machine is able to process up to b jobs continuously 
without any setup. 

Brkdwn A machine may not be continuously available due to a breakdown or 
shutdown. 

block A blocking may occur when the buffers between two successive machines 
have limited capacities. 

bk = mk There are mk batch processing machines at stage k. 
Dj A soft due date for the completion of a job j is given. If a job is completed 

later than its due date, a penalty is imposed. 
 A strict due date of the completion of a job j is given, referred to as a deadline. 

fmls Job families: The n jobs belong to F different job families. The jobs from the 
same family are processed on a machine one after another without any setup 
in between. 

lot Lot processing. 
Mjk Machine eligibility restrictions: Not all machines at stage k are capable to 

process job j.  
mop There are multiple orders per job (MOJ). 
nwp No-wait condition: the jobs cannot wait between their operations.  
prmp Preemptions of jobs are allowed. 
R  Removal time: a machine becomes free only after the setup of the job has 

been removed. 
rcrc Recirculation: A job may visit a machine or a work center more than once. 

Reentrance operations are allowed. 
split Splitting of jobs: A job/lot can be split into several parts/sublots so that their 

operations may overlap. In the case of a shop with lot processing, this 
situation is referred to as lot streaming. 

ssi Sequence-independent setup times: The setup time on a machine depends 
only on the job to be processed. 

ssd Sequence-dependent setup times (SDST): The setup time to process the next 
job on a machine depends on the previously processed job. 

scsd Sequence-dependent setup cost (SDSC): The setup cost to process the next 
job on a machine depends on the previously processed job.  

spsd Past-sequence-dependent setup times (p-s-d): The setup time to process the next 
job on a machine is proportional to the length of the already scheduled jobs.  

ssd,gf  Sequence-dependent family setup times. The setup time on a machine to 
process a job/batch, which belongs to family g, depends on the previous 
job/batch family f processed on this machine. 

scsd,gf Sequence-dependent family setup costs. The setup cost for a machine to 
process a job/batch, which belongs to family g, depends on the previous 
job/batch family f processed on this machine. 

wj  Weight or importance of job j: it is the priority factor of the jobs in the system. 
 
Table 3-3. Shop properties for problems with lot processing (  field). 

 EBSCOhost - printed on 2/9/2023 3:05 AM via . All use subject to https://www.ebsco.com/terms-of-use



Chapter Three 
 

 

52 

3.1.4 Performance measures (  field) 

The  field establishes the objective function to be minimized. An objective 
function is defined using the following parameters associated with a job j in 
a schedule (Table 3-4). 
 

Notation Description 
Cj Completion time 
Fj = Cj - rj Flow time 
Lj = Cj - dj Lateness 
Tj = max{Cj  - dj ,0}  Tardiness 
Ej = max{dj  - Cj ,0} Earliness 

 
Table 3-4. Schedule performance measures (  field). 

 
The most frequently used objective function to be minimized in a 

scheduling problem is the completion time when the last job leaves the 
system, referred to as the makespan or Cmax. The most common objective 
functions used in scheduling problems, which are associated with lot 
processing, are listed in Table 3-5. 

Some illustrative examples of scheduling problems described by using 
Graham's triplet are given below. 

The notation FF6||Cmax describes an FFS with six stages and the Cmax 
criterion. This shop has no special properties.  

Problem FJk|rj, ssd, rcrc wjTj refers to an FJS with k stages (work 
centers). The jobs have different release dates of the jobs. There appear 
sequence-dependent setup times, and recirculation (reentrance) is allowed, 
i.e., a job may visit a work center more than once. The objective is to 
minimize total weighted tardiness. Such a problem typically arises in a 
semiconductor facility (Pinedo 2008, 20). 

Problem AF2(Jm(1), D2)| batch, wj, Dj | Tmax describes a two-stage AFS 
with an m-machine job shop at the first stage and two dedicated assembly 
machines at the second stage. The processing is organized in batches. Every 
job has a priority factor wj and a deadline Dj. The goal is to minimize 
maximum tardiness.  

Some overviews on the complexity of scheduling problems can be met 
in the literature (Lenstra, Rinnooy Kan, and Brucker 1977; Potts and Van 
Wassenhove 1992). 
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Notation Description 
Cmax = max{Cj } Schedule length (makespan) 
Emax = max{Ej } Maximum earliness 
Lmax = max{Lj } Maximum lateness 
Tmax = max{Tj } Maximum tardiness 
Dmax = max{Dj } Maximum delivery time =   Total completion time =   Total flow time  =   Total earliness =   Total lateness =   Total tardiness =   Total waiting time =   Number of tardy jobs, Uj = 1 if Cj > 

dj and 0 otherwise.  =   Total weighted completion time =   Total weighted flow time =    Total weighted earliness =   Weighed number of tardy jobs, Uj = 
1 if Cj > dj and 0 otherwise. =   Total weighted tardiness =   Total weighted waiting time =   Mean tardiness =   Mean delivery time =   Mean weighted flow time =   Mean weighted earliness =   Mean weighted lateness =    Mean weighted tardiness =   Mean weighted delivery time 

 
Table 3-5. Objective functions for scheduling problems. 
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3.1.5 Multi-objective scheduling 

In a scheduling problem, two or more different criteria can be considered 
together. In such a case, the criterion can be accomplished in a number of 
ways. 

A multi-objective optimization problem can be defined as the 
optimization of a vector of decision variables formed by a set of objective 
functions, which are usually in conflict with each other. Such a problem can 
be formulated as follows:  { ( ), ( ), … , ( ) }  min,  
s.t.  

X  D, 
 
where  

X  - vector of decision variables; ( )-  objective function j, j =1,…, M;  
D  -  set of feasible solutions.  
 
A solution X1 is said to be dominated by a solution X2 if for all j = 1, 2, 

…, M, ( ) ( ) and ( ) > ( ) for at least one solution. A 
solution X1 is Pareto-optimal if there is no X'  D that dominates X. The set 
of all Pareto-optimal solutions is called the Pareto-optimal set or Pareto-
optimal front. 

In a multi-objective scheduling problem, it is very problematic to obtain 
a unique optimal solution. Usually, a set of equally good optimal solutions, 
which correspond to a Pareto-optimal set, is obtained. Moving the solutions 
from one point to another one within the Pareto set, one objective is 
improved while others become deteriorated, because they are usually 
contradictory. Normally, a specific non-dominant solution cannot be 
chosen, since all solutions are equally competitive, and none of them can 
dominate the others. Therefore, other additional information is required. A 
successful policy to solve a multi-criteria scheduling problem permits to 
reduce the number of objectives and focuses the optimization process on a 
few crucial ones. There are several available methods to solve multi-
objective scheduling problems. One of them is the weighted-average of the 
objectives, see Husseinzadeh Kashan, Karimi, and Jolai (2010).  

 
For a bi-criteria problem, there are two principal approaches: 
 
1. The two criteria are assumed to be prioritized as primary and 

secondary. The objective is to find the best schedule for the 
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secondary criterion among all alternative optimal schedules for the 
primary criterion. The less important criterion is minimized subject 
to the restriction that the most important criterion is minimized. The 
triplet 1|| 2/ 1, where 1 is the primary criterion, and 2 is the 
secondary criterion, denotes this problem;  

2. A weighting function is used to combine the two criteria. A decision 
maker assigns different values of a weight (importance) to the criteria 

1 and 2. A scheduling problem with the two criteria 1 and 2, and a 
given weighting function f is denoted by 1||f ( 1, 2). For scheduling 
problems, it makes sense to restrict f to a linear combination of 
various regular criteria, for example, f( 1, 2) = 1 1+ 2 2, where 1  
and 2  are non-negative integers. 

 
The majority of the researches, which reported about multi-criteria 

scheduling, has been concerned with bi-criteria single-machine scheduling 
problems due to the complexity of multi-objective optimization  (L. L. Liu, 
Ng, and Cheng 2009). 

3.2 Single-stage production systems 

In the modern literature, one can find an enormous variety of models for 
production systems, which require new approaches and new descriptions of 
the environment. The basic models are intensively studied, and new 
problems are inspired by the trend to be closer to real production, which 
usually is difficult and complex to model. Nevertheless, even new models 
are based on a few traditional machine environments, which are discussed 
below. 

3.2.1 Single machine 

Single machine problems have been intensively studied in the previous 
decades. (2007, 73) noted that the problem 1|prec|Cmax, 
where all jobs are assumed non-preemptible, ordered by some precedence 
relation, and available at time t = 0, is a trivial scheduling problem with the 
schedule length = . The maximum lateness problem 1||Lmax 
can be solved by Jackson's rule: schedule the jobs in order of non-increasing 
delivery times (Jackson 1955; L. A. Hall and Shmoys 1992, 22) . The total 
weighted completion time problem 1 wjCj can be solved by the Weighted 
Shortest Processing Time (WSPT) first rule (Smith 1956, 62–63), and 
Moore's algorithm (Moore 1968, 102–4) solves the number of tardy jobs 
problem 1|| Uj.  
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Moreover, the problems 1|rj|Cmax and 1||Lmax are equivalent 
et al. 2007, 73–74). However, the majority of the classical non-preemptive 
single machine problems, such as the weighted number late jobs 1 wjUj 
and the total (weighted) tardiness problems 1 wjTj are NP-hard (Lenstra, 
Rinnooy Kan, and Brucker 1977, 356–57).  

The actual interest is focused mainly on complex problems of multi-
agent scheduling (L. Tang et al. 2017; Shisheng Li et al. 2018; Yin et al. 
2018), multi-criteria scheduling (L. L. Liu, Ng, and Cheng 2009), and the 
simultaneous consideration of various factors such as:  

 
 Learning effects (Biskup 1999; J.-B. Wang 2007b; 2008; J.-B. Wang 
and Li 2011; Pei, Liu, Pardalos, Migdalas, et al. 2017; Fan et al. 2018; 
Pei et al. 2019);  

 Batch/lot sizing -Sidhoum  2014; Nobil, Nobil, and 
Cárdenas-Barrón 2017);  

 Machine maintenance and supply chain uncertainties (W.-J. Chen 
2009);  

 Complex or costly setups (J.-F. Chen 2009; Giglio 2015; W. Huang, 
Wu, and Liu 2018; Kress, Barketau, and Pesch 2018);  

 Batch machines with non-identical capacities for different jobs (W. 
Huang, Wu, and Liu 2018);  

 Multiple orders per job (Mason and Chen 2010; Sobeyko and Mönch 
2015);  

 Time-dependent, resource-dependent, and controllable processing 
times (Su and Lien 2009; J.-B. Wang and Li 2011; Mor and Mosheiov 
2014; Giglio 2015; Pei, Liu, Pardalos, Fan, et al. 2017; Pei, Liu, 
Pardalos, Migdalas, et al. 2017);  

 Dynamically arriving jobs (Y.-C. Choi 2016; Pei et al. 2016);  
 Energy consumption (Y.-C. Choi 2016);  
 Deteriorating jobs (J.-B. Wang 2007b; Pei, Liu, Pardalos, Fan et al. 
2017; Pei, Liu, Pardalos, Migdalas et al. 2017; L. Tang et al. 2017; 
Fan et al. 2018; Chunetg, Gupta, and Qiu 2019; Kong et al. 2019);  

 Unbounded batches (L. L. Liu, Ng, and Cheng 2010), etc. 
 
In big plants with lot processing, a single machine environment may be 

associated with a bottleneck problem, for example, the programming of  
semiconductor wafer probing facilities may be formulated as a single 
machine problem (Bang and Kim 2011, 671).  
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3.2.2 Parallel machines 

The problems with a single-stage environment and parallel machines may 
be found in small manufacturing plants as well as in big factories 
representing a part of a production process. There are four possibilities for 
the set of parallel machines. They may be:  
 

 Identical (Pm);  
 Uniform (Qm); 
 Unrelated (Rm); 
 Dedicated (Dm).  

 
It is a typical situation for a big company, when the parallel machines 

are first identical, then after some time, a part of the old machines is 
substituted, new machines are added due to the extension of the production. 
The later installed machines are usually not identical with the old ones 
because they are more recently produced. They are of other brands, or the 
manufacturing conditions in the plant have been changed. Therefore, the 
parallel machines, which make more or less the same operation, have 
different speeds and other technological characteristics. Uniform machines 
have proper speeds, which do not depend on the job under processing. In 
contrast, the speeds of unrelated machines depend on both the machine and 
the job. Dedicated machines are also frequent in big plants. They may 
represent different platforms, where everyone performs some specific 
operations for a part of the products. Another example was met at the reed 
switch production, where some parallel machines at the last stage are 
dedicated to make different shapes of knifes (Section 10.3).  

Similar to single machine models, parallel machine environments have 
also been intensively investigated in previous years. The total completion 
time problem Pm Cj was solved by Conway, Maxwell, and Miller in 1967 
(T. C. E. Cheng and Sin 1990, 287) using the SPT rule, which requires  O(n 
log n) steps. The parallel machine makespan Pm||Cmax and the total weighted 
completion time Pm wjCj problems on identical machines are found to be 
NP-hard. Therefore, these more general problems have also a high 
computational complexity.  

In this class of models, one can meet a number of researches considering 
lot processing. Chen et al. (2002) proposed an optimal short-term 
scheduling of multi-product single-stage batch plants with parallel lines. 
Chen and Powell (2003) proposed an exact branch-and-bound algorithm for 
scheduling multiple families with the objective to minimize total weighted 
completion time of the jobs and the same problem with the objective to 
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minimize the weighted number of tardy jobs. Geismar, Dawande, and 
Sriskandarajah (2004) studied the problem of sequencing operations in 
buffer-less robotic cell flow shops with parallel machines focusing on the 
cells that produce identical parts. The objective was to find a cyclic 
sequence of robot moves that maximizes the steady state throughput. The 
papers by Chen, Ye, and Zhang (2006) and Chen (2009; 2015) were 
concerned with the problem of scheduling independent jobs on unrelated 
parallel machines with different classes of setup times and due date 
constraints with the makespan and total weighted completion time criteria. 
This problem is NP-hard. Two polynomial schemes were proposed. Pfund 
et al. (2008) developed a greedy approach for the NP-hard problem of 
scheduling jobs on parallel machines with setup times and ready times. Fu 
et al.  (2010) proposed online scheduling on two parallel machines with 
batching and limited restarts to minimize the makespan. The authors 
provided a best online algorithm with a competitive ratio ( 3 + 1)/21.366 and showed that no online algorithm can have a competitive ratio less 
than 1.298. Lushchakova and Strusevich (2010) addressed a scheduling 
problem with two parallel machines and incompatible jobs. The authors 
modeled the machine environment as parallel and dedicated machines, 
which means that for each machine, the jobs to be processed are known in 
advance.  Wang, Wang, and Zheng (2016) proposed a hybrid estimation of 
a distribution algorithm with iterated greedy search (EDA-IG) for a similar 
case. Actually, multi-criteria problems with a combination of different 
constraints are also considered in the literature (I.-L. Wang, Wang, and 
Chen 2013; Fakher, Nourelfath, and Gendreau 2017; Junqueira and 
Morabito 2017). 

The reader can meet a state-of-the-art review on parallel machine 
scheduling research in the paper by Cheng and Sin (1990).  

3.3 Multi-stage production systems  

In the scheduling theory, there are three principal configurations, called 
shops: flow shop (FS), job shop (JS), and open shop (OS). A shop describes 
an integrated configuration of machine resources and the order of their use 
to model complex machine environments. These shops are considered 
below more in detail. 

3.3.1 Flow shop 

A flow shop, also called a conveyor, is a model of an environment with a 
unidirectional flow of the jobs over the m machines, which are arranged in 
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series. Every job starts its processing on an initial machine, proceeds 
through several intermediate machines, and concludes on a final machine. 
Usually, this process starts with product parts or a raw material, which leave 
the system as finished goods. Such a structure is typical for assembly lines. 
In some flow shop models, a job may skip a particular machine, but the flow 
is conserved to be unidirectional. An example is given in Fig. 3-1. For 
instance, although every job must be processed from machine 1 to machine 
m, some jobs may skip a machine. For example, a job may go from machine 
1 to machine 3 skipping machine 2, and then it goes to machine 4.  
 

 
Fig. 3-1. An m-machine flow shop. 
 

Permutation schedules, in which the jobs are processed in the same order 
on all machines and a machine is not kept idle if a job is ready for 
processing, are usually used as solutions of the flow shop problems. 
Therefore, one of the possible n! permutations of the jobs determines an 
optimal sequence giving a unique sequence, in which they are processed on 
the machines. If a non-permutation schedule is considered, i.e., a schedule 
that does not require the same job sequence on all machines, a search among 
(n!)m possible sequences would be required to obtain an optimal solution, 
what is extremely time consuming.  

Problem F2||Cmax is widely known in the scheduling literature as the 
Johnson problem. It has been solved by Johnson with a simple O(n log n) 
algorithm (Johnson 1954, 64–65). In contrast, problem F3||Cmax is already 
NP-hard. This means that its exact solution in polynomial time is unlikely. 
Gupta (1986) proved that problem Fm|STsd|Cmax is NP-hard. Gupta and 
Darrow (1986) proved that problem F2|STsd|Cmax is also NP-hard and that 
for this problem, there does not necessarily exist a permutation schedule, 
which minimizes Cmax. Four efficient approximate algorithms were 
proposed to find approximate schedules for the problem: a branch-and-
bound method, two Johnson's rule-based heuristics, and a neighborhood 
search technique.  

A usual policy for lot processing is the First-In, First-Out (FIFO) policy. 
According to this rule, the processing order is given as a permutation of the 
jobs, i.e., the processing order of the jobs is identical on all machines, and 
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reordering the jobs on the machines is not permitted. The quality of a 
schedule can be improved if the lots are allowed to be divided. In this case, 
the resulting solution is not a permutation. Such solutions may also be 
efficient in other cases, for example, in the case of complex setups or 
arrivals of jobs with a higher priority. 

Flow shops are frequent models in industries with lot processing. Recent 
publications consider shop characteristics such as, for example, complex 
setups of the machines, lot splitting, no-wait restrictions, limited buffers or 
transport operations between the machines, etc., which increase the 
complexity of the problem, making the models closer to real production 
conditions. For instance, lot sizing and scheduling of two-machine flow 
shops with machine setup and cleaning activities were considered in the 
food industry (Stefansdottir, Grunow, and Akkerman 2017). The 
minimization of the waiting time variation in a generalized two-machine 
flow shop with waiting time constraints and skipping jobs in the wafer 
fabrication was considered in the paper by Yu, Kim, and Lee (2017). The 
problem 2| , | | | was reported to be NP-hard despite a 
simple machine environment. Wang et al. (2012) dealt with a flow shop 
scheduling problem in a semiconductor manufacturing process. The 
problem seeks to minimize the number of tardy jobs and the makespan when 
sequence-dependent setup times, release times, due dates, and tool 
constraints are given. The paper by Rossit et al. (2016) addressed a non-
permutation m-machine flow shop scheduling problem with lot streaming. 
A mathematical model was proposed. It was noted that the majority of the 
recent publications in the flow shop area were related to lot streaming and 
setup considerations. 

An efficient heuristic, called the NEH algorithm, was proposed by 
Nawaz, Enscore, and Ham (1983) to solve the flow shop sequencing 
problem. It is a constructive algorithm, which shows a better performance 
compared to other heuristics, especially for large instances in both static and 
dynamic sequencing environments. The NEH heuristic is a curtailed-
enumerative algorithm, which is based on the premise that jobs with larger 
total processing time should be given a higher priority than jobs with a 
smaller total processing time.  

The steps of the algorithm are as follows. 
 
Step 1. For each job j calculate = , ,  

where pj,i is the processing time of job j on machine i,  j = 1,…,n, 
i = 1,…,m.  

Step 2. Arrange the jobs in descending order of Pj.  
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Step 3. Select the two jobs from the first and second positions of the list 
generated in Step 2; find the best sequence for these two jobs by 
calculating the makespan for the two possible sequences. Do not 
change the relative positions of these two jobs with respect to 
each other in the remaining steps of the algorithm. Set j = 3.  

Step 4. Select the job in the position j of the list generated in Step 2; find 
the best sequence by placing it at all possible j positions in the 
partial sequence found in the previous step without changing the 
relative positions to each other of the already assigned jobs. The 
number of enumerations at this step is equal to j. 

Step 5. If n = j, STOP, otherwise set j = j+1. Go to Step 4.  
 

The number of enumerations in the algorithm is  
 ( ) 1,  
 

where n complete sequences are generated and the remaining ones are 
partial sequences. 

In the recent literature, one can meet modifications of the NEH 
algorithm. It is also used to receive an initial solution for a multi-objective 
flow shop problem (MFSP) (Chakravarthy and Rajendran 1999) and to 
verify the quality of metaheuristics (Dong, Huang, and Chen 2008; Eren and 
Güner 2008). 

A review of the flow shop scheduling research with setup times was 
presented by Cheng, Gupta, and Wang (2000). A review and evaluation of 
multi-objective algorithms for the flow shop scheduling problem was given 
by Minella, Ruiz, and Ciavotta (2008). A more recent review on the flow 
shop scheduling problem was presented by Sun et al. (2011). This work was 
dedicated to multi-objective optimization algorithms. 

3.3.2 Job shop 

A job shop represents the following scheduling environment. There are a 
set of n jobs and a set of m machines with the constraint that each machine 
can handle at most one job at a time and each job has a specified processing 
order through the machines. This means that for any two jobs, the order, in 
which they pass the machines, may be distinct. This is the difference 
between a job shop and a flow shop, where in the latter problem the 
processing order on the machines is identical for all n jobs so that a flow of 
jobs is formed. A usual objective of a job shop problem is to minimize the 
makespan.  
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A machine i, i =1,…, m, may be initial, intermediate, or terminal for a 
job j. A job j in a job shop can arrive at a machine i to execute the first 
operation or a part of the WIP after its processing on the previous machine. 
A job j can leave the shop after processing on machine j or being kept as a 
WIP waiting for processing on the next machine (Fig. 3-2).  

Applegate and Cook (1991, 149) noted that the job shop problem is not 
only NP-hard, but it also has the well-earned reputation of being one of the 
most computationally stubborn combinatorial problems. This intractability 
is one of the reasons of the attention of the researchers.  

 

 
 

Fig. 3-2 Processing of a job on machine i: machine i might be an initial, an 
intermediate or a final one.  

 
Problem J2||Cmax without a repetition of machines for the jobs is one of 

the few job shop scheduling problems, for which a polynomial time 
algorithm was found. The solution was obtained by a reduction of this 
problem to problem F2||Cmax (Pinedo 2008, 180): Let J1,2 denote the set of 
jobs that have to be processed first on machine 1, and J2,1 the set of jobs that 
have to be processed first on machine 2. The solution was obtained by 
applying the SPT rule to sequence the set J1,2 and the Largest Processing 
Time (LPT) first rule to sequence the set J2,1.  

It is convenient to represent the problem Jm||Cmax without recirculation 
by a disjunctive graph G = (V, A, E). In this notation, V denotes the set of 
vertices (i, j), which correspond to the processing of job j on machine i, A is 
the set of conjunctive arcs (solid lines), which represent the routes of the 
jobs over the machines, and E is the set of disjunctive arcs (dashed lines) 
that go in both directions. The arcs of the disjunctive graph E are formed by 
the operations, which belong to two different jobs but have to be processed 
on the same machine. In graph theory, a graph, in which any two vertices 
are connected to each other, is called a clique. The disjunctive arcs of the 
graph E form m cliques of double arcs, one clique for each machine. In 
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addition, the graph has two dummy vertices: a source s and a sink t. In a 
feasible schedule, one disjunctive arc is selected from each pair in such a 
way that the resulting directed graph is acyclic.  

In the obtained acyclic graph, a longest path from s to t determines the 
makespan of a feasible schedule. Then the problem of minimizing the 
makespan is reduced to finding a selection of one arc of each pair of 
disjunctive arcs so that the resulting graph is acyclic and the longest path 
from s to t becomes minimal. An illustrative example is given in Fig. 3-3.  

 

 
 

Fig. 3-3. Directed graph for a four-machine job shop to process three jobs with given 
sequences of the machines: q1 = (1,2,3,4), q2 = (2,4,3), q3 = (1,2,4), respectively; pij 
is the processing time of job j on machine i. 

 
Garey, Johnson, and Sethi (1976, 127–28) noted that the job shop 

schedule length minimization problem is among the hardest combinatorial 
optimization problems, which is NP-hard even for two machines. Heuristic 
procedures are widely used because of its inherent intractability. The 
Shifting Bottleneck (SB) heuristic is an efficient method to treat the Cmax and 
Lmax objectives in a job shop. It was proposed by Adams, Balas, and Zawack 
(1988). It is an iterative approximation method. It sequences the machines 
one by one, selecting each time the machine identified as a bottleneck 
among the machines that are not yet sequenced. Every time when a new 
machine is sequenced, all previously established sequences are locally 
reoptimized. The reoptimization is performed by freeing up and 
resequencing each machine in turn with the sequences on the other 
machines held fixed.  Both the bottleneck identification and the local 
reoptimization procedures are based on repeatedly solving certain one-
machine scheduling problems.  

With the elimination of some drawbacks, Dauzere-Péres and Lasserre 
(1993) modified the procedure. Later, Wenqi and Aihua (2004) proposed an 
improved shifting bottleneck procedure (ISB) for the job shop scheduling 
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problem with the objective to minimize the makespan. A refined version, 
which combined the ISB with the strategy of backtracking, was also 
presented.  An integration of lot sizing and scheduling decisions in a job 
shop was considered in the paper by Kumar et al. (2013, 1634), where the 
shifting bottleneck technique was used. 

Due to the complexity of the model, there are a few works published 
recently about this subject in the lot processing context. A tutorial survey of 
job shop scheduling problems was presented by Cheng et al. (1996). A 
review and a classification of job shop scheduling approaches was given by 
Parveen and Ullah (2010). The most recent review on job shop scheduling 
with setup times was offered by Sharma and Jain (2015).  

3.3.3 Open shop 

In an m-machine open shop, each of n jobs has to be processed on each of 
the m machines. There are no restrictions on the processing sequence of a 
job on the machines. Some of the machines may be skipped. In such cases, 
the corresponding processing times are zero. The route of a job is described 
by the sequence of machines to visit.  

(1998, 136) noted an interesting and important characteristic 
of the open shop model. Namely, the one-to-one correspondence between 1) 
an open shop problem with m machines, n jobs, and processing times pij of 
job j on machine i, and 2) an open shop problem with n machines, m jobs, 
and the processing times pij of job i on machine j. In the second case, the 
machines are considered as jobs and the jobs as machines. The Gantt chart 
given in Fig. 3-4 illustrates this relationship. There are a two-machine, 
three-job open shop and the corresponding three-machine, two-job open 
shop. One can note that the completion time of job j on machine i in the first 
case is equal to the completion time of job i on machine j in the second case. 
It may also be seen that the route of job j in the first case is equivalent to the 
sequence of jobs on machine j in the second case, and vice versa. Optimizing 
the makespan in the first case is equivalent to optimizing the makespan in 
the second case. This duality of open shops can be used to simplify the 
solution of the routing problem.  

The open shop scheduling problem was introduced to model several 
real-world applications that did not quite fit under the flow shop model 
(Gonzalez and Sahni 1976; Gonzalez 2004). A linear time O(n) algorithm 
was proposed to solve the problem O2||Cmax. A polynomial time algorithm 
was also developed for the problem Om|prmp|Cmax, where m > 2. The 
authors also showed that if m > 2, the problem Om||Cmax with non-
preemptive schedules is NP-hard. For m = 2, the open shop problems, which  
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with minimize maximum lateness O2||Lmax and total completion time 
O Cj, were reported to be NP-hard (Achugbue and Chin 1982).  

 

 
 

Fig. 3-4. Routing symmetry in an open shop problem.  
 

Pinedo (2008, 218–20) proposed two rules to solve the open shop 
problem: the longest alternate processing time first (LAPT) rule and the 
longest total remaining processing on other machines first (LTRPOM) rule. 
The LAPT is an exact algorithm for the problem O2||Cmax. The LTRPOM 
rule is a generalization of the LAPT rule for the case of an open shop with 
more than two machines. According to the LTRPOM rule, the processing 
required on the machine currently available does not affect the priority level 
of a job. The LTRPOM rule is a constructive heuristic for the problem 
Om||Cmax with m this heuristic does not always result in an 
optimal schedule because the problem Om||Cmax is NP-hard for m 
Pinedo noted that the LAPT rule for O2||Cmax is one of the few polynomial 
time algorithms for non-preemptive open shop problems.  

Strusevich (1999) considered the problem of scheduling n jobs in a two-
machine open shop to minimize the makespan, denoted as O2| i|Cmax, where 
inter-stage transportation times are involved and preemptions are not 
allowed. This problem was known to be NP-hard. The author presented an 
O(n log n) algorithm with a worst-case performance ratio of 3/2. Glass, 
Gupta, and Potts (1994, 380) used a network model to analyze three-
machine flow shop problems with lot streaming. Then they extended the 
results to O3 problems and J2 problems. The authors employed the 
algorithm given by Gonzalez and Sahni (1976, 666–67) to solve m-machine 
problems with two equal-sized sublots. 
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If all pi,j values are 0 or 1, a unit-processing time open shop problem is 
obtained. The problem Om|pij {0,1}|Cmax corresponds to a bipartite graph 
edge coloring problem.  

In a bipartite graph, the set of vertices is partitioned into two sets, say A 
and B, such that every edge connects a vertex in A to a vertex in B. The 
bipartite graph edge coloring problem consists of assigning a color to each 
edge in the graph in such a way that no two adjacent edges have the same 
color and the total number of different colors utilized is as small as possible. 
An edge from a vertex in the set A to a vertex in the set B represents a job 
operation with unit processing time. Each color represents a time unit. The 
coloring rules guarantee that an edge coloring for the graph corresponds to 
a feasible open shop schedule with unit processing times. The makespan or 
maximum completion time of a job corresponds to the number of different 
colors used to color the bipartite graph (Gonzalez 2004, 2).  

Potts and Van Wassenhove (1992) gave a survey about solution 
algorithms and the complexity of problems, which integrated batching and 
lot sizing into scheduling. The authors noted that at this time, no results were 
available for the maximum completion time in a two-machine open shop. 
Since that time, some studies were reported. Liaw, Cheng, and Chen (2005) 
considered the NP-hard problem O2|nwt|Cmax. An exact algorithm, based on 
a branch-and-bound scheme, was developed to solve optimally medium-
size problems. Hall et al. (2005) studied the same problem but with lot 
streaming, i.e., problem O2|nwt,split|Cmax. The authors developed a 
dynamic programming algorithm, in which the sublot sizes are consistent, 
i.e., they remain the same over all machines. Soleimani and Majid (2012) 
included machine maintenance activities into open shop problems. A 
genetic algorithm was used. Naderi and Zandieh (2014) investigated the no-
wait open shop problem and proposed a series of models and algorithms to 
solve the problem Om|nwt|Cmax. A survey of the existing results for open 
shop problems can be found in various papers (Potts and Van Wassenhove 
1992; R. Cheng, Gen, and Tsujimura 1996; Anand and Panneerselvam 
2015).  
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3.4 Flexible production systems 

3.4.1 Flexibility of a multi-stage system 

Flexible shops represent multi-stage generalizations of flow shop, job shop, 
and open shop models, in which additional machines are used in parallel. 
The relationships between the different machine environments and the 
possible shops is shown in Fig. 3-5. It is assumed that all multi-stage 
systems are flexible if at least one stage has two machines in parallel. 
However, the notion 'flexibility' requires a clarification. 

 
 

Fig. 3-5. Relationships between machine environments and shops.  
 

A production system must possess several characteristics to be classified 
as a flexible one. Automated manufacturing systems display flexibility in 
multiple and intertwined ways, which pertain to the equipment, processes, 
products, production volumes, etc. It is important to know what the 
difference between a flexible production system and a traditional one is, 
what exactly the concept of flexibility means, and what the definition of 
specific production planning models for flexible production systems 
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justifies. Among the more important properties, the following ones can be 
mentioned (Crama 1997; Vairaktarakis 2004, 5-4-5–20): 

 
1. Machine flexibility is the ability of the machines to perform various 

types of operations without requiring a prohibitive effort in switching 
from one operation to another; 

2. Material handling flexibility is the ability of the material handling 
system to move different parts efficiently for a proper positioning and 
processing through the manufacturing facility; 

3. Operation flexibility is its ability to be realized in different ways; 
4. Processing flexibility refers to the ability to process a job on any 

parallel machine at a stage, this also means that jobs may skip stages, 
or there is a set of product types, which can be produced by  the 
system without major setups;  

5. Routing flexibility is the ability of a manufacturing system to produce 
a product by alternate routes through the system. 

 
A production model with a set of machines in parallel has to comply at 

least with one of these concepts to be classified as a flexible shop. 
Hybridization occurs when some products require special manufacturing 
conditions, for example, special qualities and capacities of the machines at 
the same stage, the assignment of some jobs to certain machines, or other 
special requirements. 

3.4.2 FFS and HFS environments 

The flexible flow shop (FFS) model is a generalization of the classic flow 
shop. An FFS allows multiple machines in parallel at one stage to increase 
the general capacity of the plant, to balance the capacities of the stages, or 
to eliminate or reduce the impact of bottlenecks. An FFS can also be seen 
as a combination of two basic environments: a flow shop and a parallel 
machine model. These parallel machines can be identical. However, they 
have normally different capacities. 

An FFS is a very common model in industries, which have the same 
technological route for all products as the sequence of stages. This shop type 
has important applications in flexible manufacturing systems (FMS), such 
as electronics and furniture industries as well as chemical, textile, 
metallurgical, semiconductors, and PCB manufacturing plants. It is also a 
frequent environment in pharmaceutical, petroleum, food and automobile 
productions, steel production systems, etc. (L. Tang et al. 2002; Jinn et al. 
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2002; Maharaja and Sivakumar 2006; Yaurima, Burtseva, and Tchernykh 
2009).  

The key decisions in an FFS problem are:  
 
1. The allocation of the jobs to the parallel machines at each stage;  
2. Sequencing the jobs at all stages of the shop.  
 
An example of an FFS with Graham's triplet is given in Fig. 3-6.  
A generalization of an FFS is a hybrid flow shop (HFS), in which at least 

one stage has uniform or unrelated machines in parallel, or an FFS was 
hybridized with a special condition, as it was noted in the previous section.  

 

 
 

Fig. 3-6. A graphical illustration of a problem FF4|P2(1), P3(2,3),1(4) |Cmax, where the 
machine environment is a four-stage FFS with two identical parallel machines at the 
first stage, three identical machines at the second and third stages, and one machine 
at the fourth stage.    

3.4.3 FFS vs. HFS 

In the literature, the exact difference between an FFS and an HFS has not 
been described. Nevertheless, it exists. Uetake et al. (1995, 395) defined the 
HFS as a system, which is characterized by a mixture of different types of 
production processes and the material flow in one direction through these 
processes. In such a manufacturing environment, inappropriate lot sizing 
and sequencing might result in the requirements for a high setup frequency 
and the production of excessive WIP. It implies the necessity to design 
procedures for lot sizing and sequencing in order to improve the 
manufacturing performance metrics such as the makespan and the WIP 
level. 

Although the HFS has been studied since the 1970s, the researchers still 
put attention to this model. Some new designs were proposed during recent 
years. This fact probably implicates mistakes and confusions in the 
terminology and notations. A variety of known models may be interpreted 
as an HFS or its special case. Nevertheless, one should take into account the 
following considerations: 
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Some authors (Pinedo 2008, 15; Jungwattanakit et al. 2009, 359)  do not 
use the notion of an HFS and describe the more complex configurations as an 
FFS with non-identical parallel machines at least at one stage. A variety of 
authors do not differ between the terms FFS and HFS referring to these 
models as a flexible (hybrid) flow shop (Allahverdi et al. 2008, 988); or they 
use the HFS term for an identical parallel machine environment (Naderi et 
al. 2009; Xie and Wang 2005; Luo et al. 2009). 

A flexible flow line (FFL) (Kochhar and Morris 1987, 299; Mahdieh, 
Bijari, and Clark 2011, 107) and a flow shop with multiple processors 
(FSMP or MPFS) (H.-T. Lin and Liao 2003, 133) are usually equivalent to 
an FFS. Zandieh, Ghomi, and Husseini (2006, 112) noted that an HFS model 
is known commonly as an FFL because the flow of jobs in such a system is 
unidirectional.  

A hybrid flexible flow shop or flexible hybrid flow line (HFFL) is 
equivalent to an HFS, where some jobs might skip certain stages 
(processing flexibility across the production stages) (Ruiz and Vázquez-
Rodríguez 2010, 1; Allahverdi et al. 2008, 1007). 

A parallel flow shop (PFS) environment is composed of a number of 
parallel FSs (Varela et al. 2017). A parallel hybrid flow shop (PHFS) 
represents an HFS decomposed into smaller HFS sub-designs operating in 
parallel. More specifically, a PHFS is composed of a number of independent 
sub-designs, each of which is an HFS with a unidirectional routing (routing 
flexibility) (Vairaktarakis 2004, 5-21-5–30).  

3.4.4 Modeling FFS and HFS 

An FFS restricted to two processing stages, even in the simplest case when 
one stage contains two identical machines and the second one contains only 
a single machine, is already NP-hard (J. N. D. Gupta 1988). The total 
number of possible solutions for an HFS is equal to n!( i=1

k mi)n , while the 
number of possible solutions in a regular flow shop scheduling problem is 
n! This is the reason for the intensive studies of this model.  

Hoogeveen, Lenstra, and Veltman (1996) showed that preemptive 
scheduling in a two-stage FFS with at least two identical parallel machines 
at one of the stages and the goal of minimizing the makespan, i.e., either 
FF2(P2,1)|prmp|Cmax or FF2(1, P2)|prmp|Cmax, is NP-hard. Mohammadi 
and Jafari (2011) investigated the problem of integrating lot sizing, loading, 
and scheduling in capacitated FFSs with sequence-dependent setups. The 
machines are identical at every stage. Nevertheless, the problems 
considering lot processing have a high computational complexity. A 
mathematical model and a mixed integer programming (MIP) algorithm 
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were proposed. Luo et al. (2009) studied a Cmax minimization problem for a 
metalworking company. The process was characterized by a two-stage 
hybrid batching FS with multiple identical parallel machines at the first 
stage, while the second stage had only one machine. Setup times, which 
depend on the preceding job, blocking, and machine availability constraints 
were considered. Machines were not continuously available due to 
preventive maintenance and machine breakdowns. A genetic algorithm was 
proposed. The paper by Bang and Kim (2011) is focused on a semiconductor 
wafer probing facility, in which wafer lots with distinct ready times are 
processed on a series of workstations, each with identical parallel machines, 
i.e., it is an FFS. A heuristic algorithm for the problem was developed with 
the objective of minimizing total tardiness of the orders. The algorithm 
employs a bottleneck-focused scheduling method, in which a schedule at 
the bottleneck workstation is developed first. Then schedules for the other 
workstations are generated using the schedule at the bottleneck station. The 
prospective tardiness of the lots was considered as well as sequence-
dependent setup times between different types of wafer lots. A rolling 
horizon method was presented for the implementation of the scheduling 
method for a dynamic situation. The suggested methods were evaluated by 
a series of computational experiments. The results showed that the proposed 
methods worked better than existing heuristic methods.  

In the paper by X. Wang and Tang (2009), an HFS problem with 
identical parallel machines at each stage. Finite intermediate buffers was 
converted into one without WIP buffers but with blocking. A tabu search 
heuristic was proposed. A comprehensive mathematical model for the HFS 
lot streaming problem with unrelated parallel machines at each stage was 
given by Defersha (2011).  

Lot splitting procedures for a makespan reduction in an HFS with batch 
production were proposed (Azzi et al. 2012; Nejati et al. 2014; M. Cheng, 
Sarin, and Singh 2016; B. Zhang et al. 2017). The lot streaming problem 
was also considered (Lalitha, Mohan, and Pillai 2017). The HFS consisted 
of one machine at each of the first (k-1) stages and m machines at stage k. A 
mixed integer linear programming (MILP) model was proposed and solved 
using the LINGO solver. An HFS problem with sequence-dependent family 
setup times and uncertain due dates was studied by Ebrahimi, Fatemi 
Ghomi, and Karimi (2014) with the minimization of the makespan and total 
tardiness criteria. A non-dominated sorting genetic algorithm (NSGAII) and 
a multi-objective genetic algorithm (MOGA) were proposed for a heuristic 
solution. In the paper by J. T. Lin and Chen (2015), a problem in a 
semiconductor back-end assembly facility was modeled as an HFS to 
perform a simulation. The objective was to achieve a feasible minimal flow 
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time by determining an optimal assignment of the production line and 
machine type at each stage for each order. A simulation optimization 
approach was adopted due to the complex and stochastic nature of the 
problem. The approach included a simulation model for a performance 
evaluation, an optimization strategy with the application of a genetic 
algorithm, and an acceleration technique via an optimal computing budget 
allocation. An analysis of the different levels of demand, product mix, and 
lot sizing were performed to reveal the advantage of simulation. An HFS 
batching and scheduling problem with sequence-dependent setup times and 
a bi-criteria objective were considered in the paper by Shahvari and 
Logendran (2016). The objective was to minimize simultaneously the 
weighted sum of the total weighted completion time and total weighted 
tardiness. Two algorithms incorporated a tabu search into the framework of 
path relinking to exploit the information on good solutions. Then these 
solutions were compared with a population-based algorithm. A method was 
implemented to find an initial solution and to trigger the search into the 
solution space. In order to reflect the real industrial requirements, there were 
considered dynamic machine availability times, dynamic job release times, 
machine eligibility, and machine capability for processing the jobs, desired 
lower bounds on the batch sizes, and job skipping. Varela et al. (2017) 
proposed two alternative configurations in a two-stage product-oriented 
manufacturing system, exploring the HFS and the PFS environments. 

Lin and Liao (2003) considered a two-stage HFS with the characteristics 
of sequence-dependent setup times at stage 1, dedicated machines at stage 
2, and two due dates taken from a label sticker manufacturing company (Fig. 
3-7). Stage 1 consists of a single high-speed machine (called calender). It 
glues the surface material and liner together. Stage 2 has two types of cutting 
machines, each one consisting of two identical machines. The machines of 
one type slit the label stickers into specified width and winds on the rolls, 
and the machines of another type cut the label stickers into sheets, which 
are conform to the required size (i.e., unit length and width), referring to the 
two types of cutting machines CM1 and CM2, respectively. Depending on 
the requirement of the customer orders, each job is processed on either a 
CM1 or a CM2 machine at stage 2. When the calendar is changed over from 
jobs of one class to jobs of a new class, a setup time is required for the 
changeover task. This setup time depends on both the previous and the 
current classes of jobs. At stage 2, the setup time is sequence-independent 
and relatively short and hence, it is included into the processing time. In 
addition, the transfer time is negligible because the distance between the 
machines at the two stages is short. The objective is to schedule a one-day 
mix of label stickers across the shop to minimize weighted maximal 
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tardiness. A heuristic was proposed to find a near-optimal schedule for this 
problem. 

Surveys on FFS and HFS scheduling problems as well as solution 
algorithms can be found in the literature (Linn and Zhang 1999; H. Wang 
2005; Ruiz and Vázquez-Rodríguez 2010). A comparison of scheduling 
algorithms for FFS problems with unrelated parallel machines, setup times, 
and dual criteria was given by Jungwattanakit et al. (2009). Ribas, Leisten, 
and Framiñan (2010) presented a systematic review and a classification of 
HFS scheduling problems from the perspectives of a production system, and 
a solution procedure. Although the FFS problem has attracted the interest 
of the scientific community, as it is reflected in the contributions of the 
literature that cover this particular problem, the problem of lot processing 
in this type of shops has not yet gained enough attention. 
 

 
 

Fig. 3-7. Workflow of the label sticker production system with dedicated machines. 
Adapted from Lin and Liao (2003, 135). 

3.4.5 FJS and FOS environments 

It was evident that job shop and open shop environments, which are two 
basic scheduling models, will be generalized to their flexible versions, in 
which machine capacities are balanced. The flexible job shop (FJS) 
scheduling problem is an extension of the classical job shop scheduling 
problem by allowing an operation to be assigned to one of a set of eligible 
machines during the scheduling process. An analogous definition can be 
given for the flexible open shop (FOS) scheduling problem.  
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Similar to the classical job shop variant, an FJS scheduling problem 
includes two major sub-problems as follows (Yousefi Yegane, Khanlarzade, 
and Nakhai Kamalabadi 2017, 261): 

 
1. The allocation sub-problem that deals with dedicating any operation 

to a machine among the possible machines;  
2. The scheduling sub-problem, in which the sequence of the operations 

on the machines is determined. 
 
There are a few works dedicated to these subjects. Some considered 

problems and developed approaches are focused on the following models. 
Defersha and Chen (2012) addressed lot streaming in an FJS consisting 

of m machines, where the machines with common functionalities were 
grouped into a department. The problem was to determine the size of each 
sublot, to assign the operation of each sublot to one of the eligible machines 
and to determine the sequence and starting times of the assigned operations 
on each machine. The objective was to minimize the makespan of the 
schedule. An island-model parallel genetic algorithm was proposed. Gen, 
Zhang, and Lin (2015) studied some practical manufacturing scheduling 
problems in hard disc device (HDD) and thin-film transistor-liquid crystal 
display (TFT- LCD) industries. The authors discussed how to design hybrid 
genetic algorithms and multi-objective hybrid genetic algorithms (Mo-
HGA) to solve the practical multi-objective manufacturing scheduling 
problems expanded by a multi-objective FJS model, operation sequencing 
and assignment of the resources. The production models were considered in 
detail. (2018) dealt with FJS scheduling including lot 
streaming and sublot size optimization. A set of operations is associated 
with each job, and a non-empty set of machines is assigned to each 
operation. Each set includes the machines that can process the sublots of
this operation. Transportation times between the machines and machine 
setup times are considered. A two-stage optimization procedure was 
proposed. First, the makespan was minimized with the smallest sublots 
defined for the problem instance; this permitted to transfer each sublot 
separately to the next operation of a job. In the second stage, the sizes of the 
sublots were maximized without increasing the obtained makespan value. 
Two objectives were defined for the second stage: 1) the maximization of 
the sum of the sublot sizes of all operations, 2) the maximization of the 
number of operations, which do not need to be split at all. MILP, constraint 
programming and graph-based models were implemented for the solution 
of the problem. In the paper by Yousefi Yegane, Khanlarzade, and Nakhai 
Kamalabadi (2017, 261), sublots with overlapping operations were 
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introduced. It was a new assumption that plays an essential role in the 
reduction of the completion time for the lot streaming problem in an FJS 
environment. The considered problems were solved by means of a memetic 
algorithm with both permitted and not permitted lot streaming. Then the 
obtained solution was improved by using the critical path heuristic. Mönch 
and Drießel (2005) considered complex job shops that can be decomposed 
into a set of work areas. Each work area consists of several groups of parallel 
machines, which are located at the same area of the manufacturing system. 
In the wafer fabrication plants, the photolithography area, the diffusion area, 
and the etching area may serve as examples for similar work areas. The 
authors denoted this type of job shops as decomposable FJSs. 

The first work, which addressed an FOS, was given by Lawler, Luby, 
and Vazirani (1982). The considered environment was referred to as an open 
shop with parallel machines. The authors summarized that open shops with 
single-operation machines of equal speed are scheduled with essentially no 
more difficulty than an ordinary open shop. Open shops with multiple-
operation machines of equal speed are scheduled with the aid of a sequence 
of network flow computations. This generalized open shop problem with 
parallel machines of arbitrary speeds can be solved by a linear programming 
algorithm, mainly in the same way as an optimal preemptive schedule can 
be found for unrelated parallel machines.  

Although the generalized open shop problem has a long history, there 
are still a few related publications, in which there are more than two 
operations and lot processing is considered. A recent paper by Bai, Zhang, 
and Zhang (2016) should be mentioned here. The authors presented a short 
but in-depth review on FOS scheduling and then studied both static and 
dynamic versions of the multi-stage FOS scheduling problem, where each 
stage has a set of identical machines.  The goal was to minimize the 
makespan. The asymptotic optimality of the general dense scheduling 
(GDS) algorithm was proven by the boundedness hypothesis. For large-
scale problems, GDS-based heuristic algorithms were presented to 
accelerate the convergence. For moderate-size problems, a differential 
evolution algorithm was employed to obtain high-quality solutions. To the 
best of our knowledge, a short state-of-the-art review on FOS scheduling, 
which was also presented in this paper, is the most recent and in-depth 
analysis of the FOS problem.  
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3.5 Mixed shop scheduling 

In the scheduling theory, any multi-stage environment is described using a 
set of jobs to be sequentially allocated to a set of machines and a job 
processing discipline. The obtained configurations fall basically into three 
groups, called shops: flow shop, job shop, and open shop. Recall that in a 
flow shop, all jobs maintain the same machine order following the same 
route through the machines. In a job shop, the machine order is given for 
each job and different jobs may have different routes. In an open shop, each 
job is processed on each machine exactly once and the order of the 
operations is not fixed. The production and machine environments in the 
production companies have complex interconnected structures, which are 
difficult to design as 'pure' shops, but it is more realistic to use a combination 
of more simple shops. Recently, a mixed shop (MS), which is a further step 
in the development of scheduling theory, was introduced. In this 
environment, the routes are given for some jobs as in a flow shop or a job 
shop and the routes of the others are as in an open shop. Therefore, a mixed 
shop is a combination of three problem: a flow shop, a job shop, and an open 
shop. The mixed shop is an NP-hard problem. Such types of a shop are 
typical in semiconductor manufacturing industries. 

An example of such a mixed shop is given below. Table 3-6 contains the 
input data for 3 jobs to be processed in a mixed shop. For every job, the data 
are given as pairs of numbers (m, p), where m denotes the number of 
machine and p denotes the processing time units. In Fig- 3-8, the Gantt chart 
represents a schedule with Cmax = 9. It is evident that it is an optimal 
schedule.  
 

 

 
Table 3-6. An MS combined of a JS and an OS. 
 

Job (Shop) 
Operation 

1 2 3 
J1 (JS) (1,3) (2,2) (3,4) 
J2 (JS) (2,2) (3,3) (1,3) 

J3 (OS) 
Any order 

(3,2) (1,2) (2,3) 
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Fig- 3-8. The Gantt chart of an optimal schedule with Cmax = 9. 

 
The MS model was introduced first by Masuda, Ishii, and Nishida 

(1985). The authors considered a two-machine shop scheduling problem 
with two disjoint job subsets F and O, where F is the set of flow shop-type 
jobs, while O is the set of open shop-type jobs. The objective was to 
minimize Cmax. This model has interesting special cases. For the case when 
O is empty, this problem is reduced to an F2 problem, which can be solved 
by Johnson's optimal algorithm. In the case when F is empty, the problem 
is reduced to an O2 scheduling problem, for which there exists an optimal 
algorithm developed by Gonzalez and Sahni (1976, 666–67), while for the 
case, in which both F and O are not empty, the situation is complicated. 
However, the authors gave an optimal heuristic algorithm for this nontrivial 
case. Strusevich (1999) introduced a problem, which was denoted as Two-
machine super-shop scheduling problem. In this problem, the flow shop, the 
job shop, the open shop, and the mixed shop scheduling problems were the 
special cases. A polynomial time algorithm to find both preemptive and 
non-preemptive optimal schedules was proposed. Nguyen and Bao (2016) 
dealt with a mixed shop, which combines a job shop with an open shop 
processing order. The general case with a set of m machines was considered 
with the goal of minimizing Cmax. A genetic algorithm was proposed to 
determine a solution.  

The only survey was given by Shakhlevich, Sotskov, and Werner 
(2000). The authors discussed previous results on the computational 
complexity of mixed shop scheduling problems. The main attention was 
devoted to establish the boundary between polynomially solvable and NP-
hard problems.  
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3.6 Assembly production systems 

Since the 1980s, it has become clear that real manufacturing systems do not 
conform to the classical canons of scheduling theory. The machinery and 
production flows in advanced companies with mass production and frequent 
changes of the nomenclature have complex structures and connections, 
while the cost of the planning decisions is extremely high. As a solution, 
there were introduced special types of production systems, which represent 
hybrid shop structures that combine well-known environments, such as a 
job shop and an open shop with an assembly flow line. The obtained 
structures were defined as assembly flow shop (AFS) and assembly open 
shop (AOS), respectively. In such systems, the fabrication areas are 
arranged as a job shop or an open shop, which produce the component parts, 
and the fabricated parts are fed into an assembly line arranged as a flow 
shop for the final assembly operations. This type of production order is 
common among the manufacturing companies with multi-plant facilities 
with various fabrication plants that are connected to a final assembly plant, 
which is the final one in the production chain. Examples of such systems 
are typical for automotive, semiconductor, and electronic devices industries, 
to mention a few. Some considered models and problems are referred to 
below.  

An assembly job shop (AJS) combines a job shop, in which the 
fabrication of component parts is realized according to the rule: every job 
has a predetermined route over a set of machines, with a flow shop to 
assemble these parts. A generic illustration is given in Fig. 3-9.  

 

 
 

Fig. 3-9. A generic AJS.  
 

The first study found was due to C.-Y. Lee, Cheng, and Lin (1993). The 
authors defined the studied system as a three-machine assembly-type flow 
shop (3MAF) (Fig. 3-10 a). In the considered problem, two parallel 
machines Ma and Mb prepare components of every job and when being 
ready, they are assembled on machine M2. The authors applied a modified 
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Johnson's rule to find the optimal value of Cmax and proved that the general 
version of this problem is NP-hard. 

Potts et al. (1995) considered a generalization of the same environment 
and referred to this problem as a two-stage assembly problem, in which there 
are n jobs to be processed. At the first stage, each machine Mi, i = 1,…, m, 
m -10 b). These machines work 
independently of each other. At the second stage, the assembly machine Ma 
assemblies the m prepared components of each job. The objective is to 
complete all jobs as soon as possible. First, the parts are produced 
independently, frequently in different company plants, and then a final 
product is assembled and packed at an assembly line or a workstation. Potts 
et al. proved that this problem is NP-hard even if m = 2. The authors 
modeled this problem as a generalization of a flow shop. They also showed 
that for the two-stage assembly scheduling problem, the search for an 
optimal solution might be restricted to the class of permutation schedules. 
The special case of Am||Cmax with m = 2 represents an F2||Cmax problem, 
which is optimally solved by the Johnson algorithm (Johnson 1954, 64–65). 

 

    
a)    b)  

 
 
Fig. 3-10. Two-stage assembly problem: a) Model of Lee, Cheng, and Lin (1993, 
618); b) Model of Potts et al. (1995, 348–49). 

 
Lin, Cheng, and Chou (2007, 146) generalized the model of Lee, Cheng, 

and Lin (1993). Machines one and two are arranged in parallel for producing 
component parts individually, and machine three is an assembly line 
arranged as the second stage of a flow shop for processing the component 
parts in batches. Whenever a batch is formed on the second-stage machine, 
a constant setup time is required. The authors proved the NP-hardness of 
the Cmax problem for the case when all jobs have the same processing time 
at the second-stage machine, and they solved optimally a special case. 
Wong and Ngan (2013, 1393) applied a lot streaming technique to an AJS 
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and examined the impact of lot streaming on the minimization of the 
makespan.  

In recent years, the model given by Potts et al. (1995) is usually referred 
to as a two-stage assembly flow shop (AFS or TSAFS). Wang, Wang, and 
Cheng (2016, 1–3) introduced a transportation operation into the AFS 
scheduling problem, in which the product components are first produced and 
assembled, and then the complete final products are delivered to a customer 
in batches. The considered problem was NP-hard. Therefore, two fast 
heuristics were proposed, namely, an SPT-based heuristic and an LPT-
based heuristic. A new hybrid metaheuristic (HGA-OVNS) was presented 
in order to minimize the weighted sum of the average arrival time at the 
customer and total delivery cost. This metaheuristic was obtained by the 
hybridization of an evolutionary genetic algorithm with variable 
neighborhood search (VNS), which is an effective local search procedure to 
generate the offspring individuals and an opposition-based learning (OBL) 
to establish some novel opposite neighborhood structures.  

Framinan and Perez-Gonzalez (2017) looked for the minimization of 
total completion time in an AFS. The authors first analyzed the existing 
constructive heuristics for the problem. On the base of these ideas, they 
developed a constructive heuristic that outperforms the existing constructive 
heuristics for the problem, providing solutions almost in real-time. A 
variable local search algorithm was also proposed for the cases in which 
extremely high-quality solutions are required.  Jung, Woo, and Kim (2017) 
considered the TSAFS scheduling problem for processing products with 
dynamic component-sizes, where a machine is able to process different 
components and therefore, a setup time is required. To solve the problem, 
an MLP model was derived and three genetic algorithms were proposed due 
to the intractability of finding an optimal solution for large-sized problems. 
Komaki et al. (2017) incorporated the transportation stage, realized by an 
automated guided vehicle (AGV), between m parallel machines and the one-
machine assembly stage. The obtained model is a three-stage AFS in the 
AF3(m,1,1)||Cmax problem. An improved discrete version of a cuckoo 
optimization algorithm (COA), which is a bio-inspired metaheuristic, was 
proposed. Some new adjustments such as clustering, egg laying, and 
immigration of the cuckoos, based on a discrete representation scheme were 
incorporated. In addition, for this problem, a lower bound and some 
dispatching rules were proposed.  

The earliest review considering AJS systems can be found in the paper 
by Price, Gravel, and Nsakanda (1994). It was dedicated to optimization 
models of kanban-based production systems covering serial production 
lines, bottleneck workstations, and AJS production. A recent review on the 
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two-stage assembly scheduling problem with minimizing total tardiness  
and setup times was given by Allahverdi, Aydilek, and Aydilek (2016, 77–
78). 

 

3.7 Reentrant environments 

Reentrant production systems, where a job cyclically visits the same 
machines or stages, are frequent in modern industries. So, in semiconductor 
manufacturing process, each wafer re-visits the same machines for multiple 
processing steps to produce a needed layer on each circuit (Sobeyko and 
Mönch 2015, 709–10). Another reason is the reparation of parts after 
testing. Indeed, the raw material used is of high cost due to the presence of 
precious metals. Some parts after testing are considered and dispatched for 
rework at several operations for a possible recovering. Examples of such 
manufacturing systems can also be met in thin film lines and LCD panels.  

Chen, Pan, and Lin (2008) defined an RFS as follows. There are n jobs 
to be processed on m machines in the shop, and every job must be processed 
on the machines in the order M1, M2, ..., Mm, M1, M2, ..., Mm, ..., and M1, 
M2,..., Mm.  

The production schedule of such a reentrant system is extremely difficult 
to optimize. Specifically, in recent years, the production paradigm changed 
from HV/HM to Low Volume/High Mix (LV/HM). This change implicates 
difficulties in the machine use because product mixes have become 
increased, while production lots have become much smaller. The reentrant 
problem has a higher computational complexity than traditional job 
scheduling because it has a large scope such as deadlock avoidance, 
capacity distribution, inventory control, and system design, apart from 
traditional job scheduling. Kaihara, Kurose, and Fujii (2012, 467–69) 
proposed an optimized scheduling methodology for such FFSs. Fig. 3-11 
shows an example of a reentrant FFS. 
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Fig. 3-11. An example of a reentrant FFS. Adapted from Kaihara, Kurose, and 
Fujii (2012, 468).  

 
Danping and Lee (2011, 2223) classified reentrant manufacturing 

problems into two big sub-categories:  
 
 General scheduling problems, which are generally applicable, not only 
in any particular field;  

 Shop floor scheduling problems, which arise in the material handling 
in an industrial workshop.  

 
The last ones were then subdivided into reentrant job shop scheduling 

problems (RJSP) and reentrant flow shop scheduling problems (RFSP). 
Later the reentrant FFS problem (RFFSP) was introduced (Kaihara, Kurose, 
and Fujii 2012, 467–68).  

Danping and Lee (2011, 2223–29) classified reentrant scheduling 
problems into three types on the base of the objective function:  

 
 Type 1 is the general problem version, which considers the timing 

aspect such as minimizing the makespan, the (weighted) flow time 
or the buffer time. 

 Type 2 tries to increase the facility utilization, so the performance 
metrics might be the mean throughput, the WIP inventory, the 
machine idle rate.  

 Type 3 is closer to the service level and is shown in terms of 
minimizing the (weighted) tardiness or minimizing the queue length 
of each buffer.  

 
Among all these objectives, the majority of the papers consider a single 

objective or two objectives, while some have even multiple objectives.  
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The solution methods can be divided into: mathematical methods, 
heuristics, and metaheuristics. In the mathematical methods, there were 
found a mean value analysis, Petri nets, branch-and-bound, integer 
programming, etc., see the paper by Sobeyko and Mönch (2015). The 
heuristics include dispatching rules, constructive and improvement heuristics.  

The following dispatching or scheduling policies have been suggested 
by various authors (Narahari and Khan 1996, 38–39; H. Zhang, Jiang, and 
Guo 2009; Danping and Lee 2011, 2232–37): 

 
 Earliest due date (EDD) first; 
 Least slack (LS) first; 
 First come, first served (FCFS)/ FIFO; 
 First buffer, first served (FBFS)/Last buffer, first served (LBFS);  
 SPT/ WSPT/Truncated shortest processing time (TSPT);  
  LPT/Weighted longest processing time first (WLPT);  
 Critical ratio (CR);  
 Least setup cost (LSC); 
 Uniform, fixed WIP;  
 Workload regulating;  
 Dynamic bottleneck dispatching (DBD);  
 Starvation avoidance. 

 
Fixed WIP is a popular policy. This means that a new job is released into 

the system only when a finished job emerges from the system and thus, the 
number of jobs in the system (WIP) is always fixed. When such a policy is 
used, the stability of the system is guaranteed. Chen, Gärling, and Kitamura 
(2004, 1) first classified workstations into dynamic bottlenecks and non-
dynamic bottlenecks and applied different dispatching rules for different 
workstations. Mönch and Drießel (2005) considered distributed versions of 
a modified shifting bottleneck heuristic for complex job shops appearing in 
the manufacturing of integrated circuits (IC) on silicon wafers. The 
considered job shop environment contains parallel batching machines, 
machines with sequence-dependent setup times, and reentrant process 
flows. The facilities for the semiconductor wafer fabrication are typical 
examples of manufacturing systems with these characteristics. The used 
performance measure is Total Weighted Tardiness (TWT). A two-layer 
hierarchical approach was suggested in order to decompose the overall 
scheduling problem. Zhang, Jiang, and Guo (2009, 114) designed a 
Dynamic Bottleneck Dispatching (DBD) policy, which integrates simulation 
and the Response Surface Methodology (RSM)  to provide a very quick and 
rather good solution. The paper by Che et al. (2012) dealt with a no-wait 
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reentrant flow shop with multiple robots for material handling, which are 
widely used in the electronic industry, such as PCB and semiconductor 
manufacturing. This paper addressed cyclic scheduling due to large lot sizes 
and the simplicity of implementation. A polynomial algorithm was proposed 
to find the minimum number of robots for all feasible cycle times.  

An online scheduling approach for two reentrant FMSs with due dates 
and sequence-dependent setup times was proposed by Pinxten et al. (2017). 
Online scheduling of operations is essential to optimize the productivity of 
an FMS, where the manufacturing process requests the arrival by a flight. 
An FMS processes the parts according to a particular flow across the 
processing stations, where products pass twice and there is a limited buffer 
between the processing stations. The authors applied a metaheuristic that 
simultaneously explores several alternatives considering the trade-offs 
between the used metrics. The metaheuristics used were a genetic algorithm, 
tabu search, simulated annealing, stochastic diffusion search, and 
Lagrangian decomposition. The resulting algorithm was much faster than 
those presented in the state-of-the-art and produced good results with 
respect to the makespan value.  

Chen, Pan, and Lin (2008, 571–74) used a genetic algorithm to move 
from a local optimum to a near optimal solution for RFS scheduling 
problems. Kaihara, Kurose, and Fijii (2012, 467–69) applied the well-
known cooperative scheduling method, Lagrangian decomposition, and the 
coordination method, which was initially developed for a parallel machine 
scheduling problem, within an actual large-scale model of a reentrant FFS 
in semiconductor manufacturing. This method showed a good performance. 
Bard et al. (2013, 7967–69) proposed a multi-stage approach, first applying 
a reactive greedy randomized search procedure (GRASP) to develop a 
schedule for the current lots waiting for processing and then to schedule 
additional passes and changeovers using a similar procedure. Chamnanlor 
et al. (2013, 309–13) used a hybrid genetic algorithm for solving an RFS 
scheduling with time windows. Gen, Zhang, and Lin (2015, 32–36) proposed 
a multi-objective hybrid genetic algorithm for production scheduling, where 
a reentrant flow was considered. 

A systematic review of the research methodologies for the reentrant 
scheduling problem was given by Danping and Lee (2011). A summary of 
the different problems reviewed was also presented. Allahverdi (2015) 
referred to some works dealing with reentrant environments in the third 
comprehensive survey on scheduling problems with setup times/costs. For 
a complete list of the related models and references, one can refer to Chen 
et al. (2015, 1198–1201) (in Chinese).  
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3.8 Variable processing times 

Some new concepts were introduced in the literature within the recent two 
decades in order to make the scheduling models closer to real-life problems. 
New approaches appeared also to model the main input variable, namely the 
processing time.  

3.8.1 Scheduling jobs with deteriorating and learning effects 

In classical scheduling, it is assumed that the job processing times are fixed 
and known for the entire process. However, empirical studies show that in 
many production environments, the job processing time depends on 
different factors such as the position in the sequence, i.e., a job, which is 
processed later, consumes a distinct time than the same job when being 
processed earlier. For example, the temperature of an ingot, while waiting 
to enter into a rolling machine, drops below a certain level, requiring the 
ingot to be reheated before rolling. The time and effort required to control a 
fire increase if there is a delay in the start of the fire fighting. It is similar to 
a common situation when a more extensive medical treatment might be 
necessary as a patient's health condition worsens. Scheduling models with 
such settings are known as scheduling deteriorating jobs. Many similar 
models with time-dependent processing times have been developed from a 
variety of such perspectives. 

Gupta and Gupta (1988, 387) introduced a scheduling model, in which 
the processing time of a task was a polynomial function of its starting time. 
In their paper, single facility scheduling is considered. The job processing 
time depends on its starting (or waiting) time in the sequence. Later, Browne 
and Yechiali (1990, 495–96) presented a single processor stochastic 
scheduling model, where the jobs deteriorate if they have to wait for a 
service, causing a growth of their processing times during waiting (at job-
specific rates). The authors considered a class of non-preemptive processing 
strategies and found policies to minimize the variance of the expected 
makespan for different deterioration schemes and to minimize the variance 
of the makespan. The authors indicated the control of some queuing and 
communication systems as areas, where such a model is used.  

There is another reason why the processing times can vary, even if the 
jobs are processed under the same or almost the same conditions. For 
example, a worker has to assemble a large number of similar products. The 
processing time to assemble one product depends for the worker on his 
knowledge, skills, organization of the working place, and other aspects. 
With a repetition of the same activities, the worker learns how to make his 
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job more efficiently. Consequently, he becomes better skilled, his 
knowledge is increased, and the working place is better organized. As a 
result, the job processing time decreases for the worker to realize his 
activities. This phenomenon is known in the literature as learning effect. 
The learning effect was first noted in the aircraft industry by Wright (1936, 
124). Then the concepts of a time-dependent processing time and a 
deteriorating/learning effect were introduced at the beginning for the single 
machine problem, see the paper by Wu, Shiau, and Lee, (2008). Only a few 
exceptions deal with parallel machines (Ji and Cheng 2008) and two-
machine flow shop models (L. Tang and Liu 2009). The objective was 
usually to minimize the traditional performance measures such as the 
makespan, flow time, maximum lateness, and the number of tardy tasks. 
The time-dependent function used to model the processing time of a task 
was typically a linear or piecewise linear function of the starting time of the 
job in a schedule.  

Biskup (1999, 173–74) and Cheng and Wang (2000, 274)  introduced 
the learning effect into scheduling problems. Learning effect means that the 
skills of the workers are continuously improving by processing one job after 
the other, for example, the ability to perform setups faster, to deal with the 
operations of the machines and software or to handle raw materials, 
components or similar operations of the jobs at a greater pace. Biskup 
assumed that the processing time of a job is a log-linear learning curve, i.e., 
if a job Jj is scheduled at the position r in a sequence, its actual processing 
time is pjr = pjra, where pj is the normal processing time of job Jj and a  0 
is a constant learning effect. The author proved that single machine 
scheduling problems with minimizing the sum of the job flow times and the 
total deviations of the job completion times from a common due date are 
polynomially solvable. Cheng and Wang approximated this effect by a 
volume-dependent function. The objective was to minimize maximum 
lateness. The authors showed that the single machine problem is NP-hard 
and identified two polynomially solvable special cases.  

Koulamas and Kyparisis (2007, 403–4) considered a single machine 
scheduling problem with general learning functions. The learning 
phenomenon was expressed as a function of the sum of the processing times 
of the already processed jobs. The author showed that the SPT-sequence is 
an optimal sequence for the objectives of minimizing the makespan and 
total completion time. The authors also considered two-machine flow shop 
scheduling with general learning functions. 

Kuo and Yang (2007, 22) considered single machine scheduling with a 
job-independent (job-dependent) learning effect and past-sequence-
dependent setup times (p-s-d). Later, Wang (2008, 586) extended the result 
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of Kuo and Yang to the single machine scheduling problem with time-
dependent learning effect and p-s-d setup times. He defined the time-
dependent learning effect as the processing time of a job that is calculated 
by a function of the total normal processing time of the already processed 
jobs.  

Wu, Shiau, and Lee (2008) explored the job deterioration concept in the 
context of GT. The deterioration phenomenon was considered in a 
framework used for minimizing the makespan and total completion time in 
single machine group scheduling problems. It was shown that these 
problems remain polynomially solvable when deterioration is considered. 

Cheng, Ding, and Lin (2004, 2–3) proposed an adaptation of the 
classical scheduling notations (Graham et al. 1979, 288–90) to a formal 
statement for the basic linear model.  

A task system consisting of n independent tasks is denoted by TS = 
({Ti};{ai};{bi};{ri};{di}). Each task Ti is associated with a normal 
processing time ai  0, processing rate bi, release time ri, and due date di. 
The actual processing time of Ti depends on its start time si , which is given 
by pi = ai  bisi . The processing time functions proposed by other authors 
for different applications are as follows:  

 
pi = ai + bisi, which can be interpreted as extra efforts (Mosheiov 1994, 
654–55); 
pi = ai - bisi (K. I.-J. Ho, Leung, and Wei 1993, 315); 
pi = bisi, ai = 0 (Mosheiov 1994, 655); 
ai = a; bi = b; si = s  (T. C. E. Cheng et al. 2003; J.-B. Wang 2007a, 
2047). 
 
Other precise adapting functions supplemented by an analysis of the 

solvability of the corresponding problems can be found in the literature (T. 
C. E. Cheng, Wu, and Lee 2008; J.-B. Wang 2007a; 2007b). 

Tang and Liu (2009) considered a two-machine flow shop in which a 
single machine is followed by a batching machine, and there are 
deteriorating jobs to be processed on the single machine. The authors 
derived optimal polynomial algorithms to minimize the makespan, total 
completion time, and maximum lateness, respectively. 

An extension, entitled general position-dependent and time-dependent 
learning effects, was considered in the paper by Wang and Li (2011, 1390). 
This means that the actual processing time of a job is not only a function of 
the total normal processing times of the jobs, which were already processed, 
but also a function of the scheduled position of a job. 
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Inderfurth et al. (2006, 1598) combined rework processes with  limited 
deterioration. At the rework stage, some defective items belonging to the 
same batch must be reworked. Each reworked item has the required good 
quality. While waiting for rework, defective items deteriorate. A 
deterioration time limit is given. A defective item, which is decided not to 
be reworked or cannot be reworked because its waiting time will exceed the 
deterioration time limit, is disposed of immediately after its work operation 
completes. The deterioration results in an increase in time and cost for 
performing the rework processes. It is supposed that the percentage of 
defective items is the same in each batch, and they are evenly distributed in 
each batch. This problem is typical for the semiconductor industry. The 
authors proposed a polynomial dynamic programming algorithm for its 
solution. 

Wang (2007b, 398–99), then Cheng, Wu, and Lee (2008, 974) and later 
Lee (2014, 137) considered both learning and deteriorating effects for the 
single machine problem. The phenomena of a learning effect and 
deteriorating jobs can co-exist in many real-life situations. Wang interpreted 
the deteriorating effect as forgetting of the recently obtained abilities by 
workers due to a big product variety, short production runs, and frequent 
product changes. A model was considered, where the job processing times 
were defined by functions of the starting times and positions in the 
sequence. The SPT and EDD rules were proposed for the solution of some 
problems.  

Cheng, Wu, and Lee (2008, 974, 977–78) considered some scheduling 
problems with deteriorating jobs and learning effects in processes when,  for 
example, a silicon-based raw material is first heated up in an oven until it 
became a lump of malleable dough. Then a craftsman cuts pieces from this 
dough and shapes them according to different designs into different glass 
craft products. The initial time for heating up the raw material to the 
threshold temperature, at which it can be shaped, is long. Therefore, the first 
piece has a long processing time. This time includes both the heating time 
(the deterioration effect) and the shaping time (the normal processing time). 
The second piece requires a shorter time to re-heat the dough to the 
threshold temperature (a smaller deterioration effect). Similarly, a later 
piece, which is cut from the dough, needs a shorter heating time to reach the 
threshold temperature. On the other hand, the pieces that are shaped later 
require shorter shaping times because the craftsman's productivity improves 
as a result of learning. 

Lee (2014, 135–37) noted that scheduling with learning effect and 
deteriorating jobs becomes more popular and gives a detailed up-to-date 
revision of the related literature. In his paper, a model was proposed, where 
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deteriorating jobs, the learning effect, and setup times were simultaneously 
present. The actual job processing time was a general function of the 
processing times of the jobs already processed and the scheduled position 
of this job. Optimal schedules for some single machine problems were 
provided.  

Pei, Liu, Pardalos, Fan, et al. (2017) studied a single machine scheduling 
model with deteriorating jobs, where multiple job types and sequence-
dependent setup times were considered simultaneously. Later, Pei, Liu, 
Pardalos, Migdalas, et al. (2017) added a learning effect to the problem 
assumptions. Both the learning effect and the allocated resource determine 
the processing time when the total resource for all jobs is limited.  
Deteriorating jobs were processed on a serial batching machine in an 
aluminum manufacturing factory. It was found that the workers and 
machines could increase the processing efficiency by repeating the 
production operations. Then, Pei et al. (2018) considered simultaneously 
serial batching, a learning effect, resource-dependent processing times, and 
setup operations. That is, the effect of learning was also observed during the 
aluminum ingots processing. Finally, Pei et al. (2019) introduced serial 
batching scheduling problems with position-based learning effect, where 
the actual job processing time was a function of its position. Structural 
properties were derived for problems with minimizing the makespan, the 
number of tardy jobs, and maximum earliness. Various polynomially 
solvable cases were detected for each category.  

3.8.2 Controllable processing times 

In scheduling problems with controllable processing times, the job 
processing times are not given as constants as in classical scheduling but 
they can be controlled (i.e., compressed) by allocating additional resources, 
such as additional money, overtime, energy, fuel, catalysts, subcontracting, 
or additional manpower, to the job operations. This concept has been 
considered starting from the pioneering works by Vickson (1980a; 1980b). 
In the last thirty years, several works have employed such a class of decision 
variables to improve the performance of a system.  

A general definition of scheduling problems with controllable job 
processing times can be stated as follows (Shabtay and Steiner 2007, 1644):  

There are n independent jobs J = {1,2,.., n} to be processed on m 
machines, M {M1,M2,.., Mm}, and Oij is the operation of job j  on machine 
i for i = 1,…, m, j = 1,…, n. The machines are arranged in a specific 
technological configuration, which can be a single machine (m = 1), 
machines in parallel, machines in a flow shop, job shop, or open shop. The 
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release time rj of job j is the time at which the job arrives to the system and 
becomes ready for processing. The processing time pij of job j on machine i 
is a non-increasing function of the amount uij of the resource allocated to 
process operation Oij. In the single machine case, the machine index is 
omitted so that, for example, pj is the processing time of job j on the single 
machine. The resource may be used either in continuous or discrete 
quantities. In the first case, the processing time of a job is determined by the 
amount of a divisible resource (for example, gas and electricity) allocated 
to it and therefore, it can vary continuously. On the other hand, a discrete 
type of resource is indivisible (for example, manpower and supporting 
equipment). Therefore, the processing time of a job has only a finite number 
of possible durations.  

Controllable or variable processing times and setups were jointly 
considered in some job scheduling models proposed in the last two decades. 
So, Cheng and Kovalyov (1995) considered a single machine batch 
scheduling problem with the objective to determine a feasible schedule 
(with respect to the deadlines), which minimizes the amount of the resource 
used to decrease the processing times.  

In this class of problems, the assumption of resource-dependent 
processing times is also considered. It appears commonly when jobs are 
processed in batches, in situations when the job processing times can be 
compressed by the allocation of a continuously divisible resource. One of 
the pioneering works in this area was due to Cheng, Janiak, and Kovalyov 
(2001, 177–78). The used compressing function was:  

 
pj = bj – ejy, j = 1,…,n,  

 
where  
 

bj > 0,  
ej > 0,  
0  y  ymax  min {( bj – bmin)/ ej},  
bmin> 0 - a technological restriction, which defines the minimum job 
processing time. 
 
Shakhlevich and Strusevich (2006) considered a single machine 

environment in the context of a supply chain. The authors investigated the 
cases when the job processing speed/times and/or job release speed/dates 
are controllable. The possible changes in the controllable parameters were 
either individual or done by controlling the relevant processing or release 
rate. The objective was to minimize the sum of the makespan plus the cost 
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for changing the parameters. A number of polynomial time algorithms was 
provided, and a sufficiently complete classification of complexity was 
given. 

Mor and Mosheiov (2014) introduced a new class of models for single 
machine scheduling, which combined two phenomena, namely batch 
scheduling and controllable processing times of jobs. A linear compression 
cost for controlling the job processing times was assumed. Two problems 
were solved: 1) minimizing total flow time plus the compression cost, and 
2) minimizing the flow time subject to an upper bound on the maximum 
batch compression. In both cases, the solution for the relaxed version 
consisted of a decreasing arithmetic sequence of the batch sizes, for which 
closed form solutions were obtained. 

In the single machine family scheduling problem with controllable 
processing times, considered by Giglio (2015), it was possible to reduce the 
processing time of a job at the price of the payment of an extra cost. The 
problem was characterized by costly sequence-dependent setups and 
generalized due dates. The machine was assumed unreliable. Perturbations, 
such as breakdowns (or, in general, machine unavailability) and slowdowns, 
may affect the nominal behavior of the system. The problem was to 
minimize the sum of total weighted tardiness plus the total weighted 
consumption cost of a continuous resource plus the total setup cost. It was 
formulated as an optimal control problem in which a solution consisted of 
optimal control strategies that were functions of the system state. 

Pei et al. (2018) combined simultaneously resource-dependent processing 
times with serial batching, a learning effect, and setup operations. A hybrid 
algorithm, which combined a gravitational search algorithm (GSA), and 
tabu search, was developed to solve the general case. 

The most recent survey of scheduling problems with controllable 
processing times was presented by Shabtay and Steiner (2007). 
Comprehensive reviews on different models and problems concerning these 
subjects were given in the literature (Alidaee and Womer 1999; T. C. E. 
Cheng, Ding, and Lin 2004; Biskup 2008).  

3.9 Conclusions 

The above description of shop models is really a retrospective review on the 
development of the scheduling theory. One can observe a progress in 
modeling the problems, a diversification of the methodologies and a 
refinement of the terminology. Numerous new models and approaches of 
flexible and dynamic nature, which are now more realistic, fill the gap 
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between theory and practice, which is a permanent subject of discussions in 
the scheduling literature.  

Actually, the focus of the researches shifts from the development of 
methodologies for usual shops to a modeling and an analysis of complex 
manufacturing systems, particularly to the solution of scheduling problems, 
which also include mixed shops, reentrance of jobs and rescheduling. 
Reentrance of jobs is a new hot subject in the theory. Many publications 
appeared recently on this subject. A new survey on reentrant models can be 
suggested. 

There are many recent publications, which are dedicated to scheduling 
problems with time-dependent processing times. It is a class of machine 
scheduling problems, in which the processing time of a job depends on its 
starting time in a schedule. An up-to-date review was given by Cheng, Ding 
and Lin (2004). Problems with controllable processing times, in which the 
job processing times can be controlled (i.e., compressed) by allocating 
additional resources, can also be included into this class (Mor and Mosheiov 
2014).    

Modern manufacturing systems deal with long routes of the component 
parts through the facilities, which have hundreds of machines. It is very 
problematic to obtain a precise model of such a production process. On the 
other side, even if the production flow is complex, this may be described as 
a combination of more simple models. Solutions can be found faster and in 
better quality than for a complex system. The development of mixed 
structures, which combine known shops and approaches in the modeling 
process, is characteristic for the current state-of-the-art in the scheduling 
area. The study of short flexible variants of assembly lines, job shops, and 
open shops with a few machines can give good practical results.  

A systematic review of the literature on basic models of the flow shop 
scheduling/sequencing research in the period 1952-1994 was given by 
Reisman, Kumar, and Motwani (1997). A survey of the scheduling research 
addressing position-dependent processing times can be found in the paper 
by Bachman and Janiak (2004). Reviews of publications dealing with 
scheduling problems in semiconductor manufacturing and different kinds of 
solution methods can be met in the literature (Geiger, Uzsoy, and Ayt
2006; I.-L. Wang, Wang, and Chen 2013).  
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CHAPTER FOUR 

MACHINE SETUP TIMES 
 
 
 

Think of the productivity improvement that could be attained if a setup operation 
requiring three hours could be reduced to three minutes! 

(Shingo 1985, XIX) 
 
In real manufacturing systems, a large number of product variants are 
usually processed in the same flow, and adjustment operations are required 
at every changeover. As it has been defined by Shingo (1985, 6), the creator 
of the SMED system, the setup operation is the preparation or post 
adjustment that is performed once before and once after each lot is 
processed. The time required to shift from one product to another one on a 
given machine is defined in the scheduling theory as setup time or additional 
production cost. The scheduling problems, which consider setup times, have 
a high computational complexity. Pinedo (2008, 597) presented a proof of 
the NP-hardness for the single machine case with setup consideration. 
Nevertheless, this subject has received a high attention of industrial planners 
and scientific researchers due to the high influence on the production 
effectivity. The setup time is one of the vital parameters used in any 
manufacturing industry for every machine or workstation. An explicit 
treatment of setup times in most applications is required and represents a 
special interest because it is a significant factor for production scheduling 
in many cases. Setup activities may take up a time ranging from some 
milliseconds until various hours and can easily consume more than 20% of 
the available machine capacity when they are not well handled. In this 
chapter, the structure and types of setup activities are discussed for a deep 
understanding of this concept as well as various theoretical and practical 
approaches to solve scheduling problems with setup consideration. 

4.1 Basic structure of a setup time 

The time that a job spends on a machine includes three principal phases: 
setup, processing, and removal. In a discrete production, typical 
setup/removal activities for a processing machine are machine adjustment 
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and feeder preparation to process the next job, dismantling after processing 
the previous job, machine calibration, inspection of accessories or tools, 
cleaning of the machines and adjacent areas, and so on. As a machine 
becomes free only after the setups of all jobs have been removed, the 
removal times are either zero or positive. Therefore, the removal times can 
also be included into the calculation of the makespan.  

Setup activities may depend on the type of the job, the type of the 
machine, or both. In any case, the time between producing the last product 
of a series and producing the first product of a new series, which meets all 
quality requirements, has always been considered as waste or added cost 
(see Section 1.5). 

The importance of the setup reduction is evident from a simple equation 
for calculating the time required for manufacturing a series of parts and 
assembly of the components (Kušar et al. 2010, 833): 

 
p = ps  + n  p1,  

 
where 

 
p - time required for manufacturing parts and assembling components 

(hs/series); 
ps -  machine setup time or the assembly workplace setup time 

(hs/series); 
n -   number of units within a series (pieces/series); 
p1 -  manufacturing/assembly time per unit (hs/piece). 
 
There are two ways to reduce the total downtime due to setups:  
 
 Reduce the setup frequency;   
 Reduce the time that is needed to perform the setup.  

 
Reducing the setup frequency is less preferable compared to reducing 

the setup time. The main setup reduction benefits are shorter lead times, 
higher productivity, increased capacity, greater flexibility and fewer 
defects. 

The period between finishing the last good product from the previous 
production on the machine and the first production good coming out from 
the following production order is defined in the literature as the changeover 
time (Gest et al. 1995, 205).  

The terms setup and changeover are sometimes used interchangeably, 
however, this use is incorrect.  
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A changeover can be divided into three 'ups': 
 
1. Clean-up – cleaning space, products, materials or machine 

components from the line (dust, smalt, etc.);  
2. Set-up – covers the adjustment process of the equipment;  
3. Run-up or Start-up - is the time spent for fine tuning the equipment 

after it has been restarted. It is generally caused by the variability of 
the clean-up and setup, as well as by the variability in the product or 
its components. 

 
In a strict sense, a setup is only one component of a changeover. In some 

cases, the setup operations may affect the configuration of the production 
lines or the manufacturing cells at the plant floor. With this viewpoint, the 
setup operations have some of the following characteristics (Andrés et al. 
2005, 276): 

 
 There are machine precedence relationships between and within 

every zone. The precedence relations are the same for every product. 
It only changes their duration and the presence or absence of the 
operations; 

 Setup operations may require removing machines from the lines (Fig. 
4-1a);  

 Some setup operations consist in adding machines to the conveyors 
or cells (Fig. 4-1b); 

 There may occur setup operations, which consist in changing the 
distribution of the machines along the lines, without adding or 
removing machines. This operation can be considered as a 
combination of the previous two cases (Fig. 4-1c). 

 

 
 
                     a)                                            b)                               c)  

 
Fig. 4-1. Machine configuration change at a production line: a) Removal of one 
machine; b) Addition of one machine; c) Change of one machine. Adapted from 
Andrés et al.  (2005, 276–77). 
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4.2 Classifications of setup times 

The treatment of setup times in a scheduling problem depends on the 
problem assumptions. With respect to the processing time, the setup times 
are separable or non-separable. In the majority of researches dedicated to 
production planning and scheduling, it is assumed that setups are constant 
for all jobs and therefore, they are included into the processing times, or 
they are negligible and hence are ignored. The non-separable setup time 
assumption simplifies the analysis. These problems can be formulated and 
solved as standard scheduling statements. 

An operation is separable from the processing if it is not a part of the 
processing operation. Whenever separable setup/removal times are not 
negligible in a scheduling problem, they should be explicitly considered. In 
some cases, non-separable setup and removal operations, which are treated 
as a part of the processing, require an explicit consideration, for example, 
loading and unloading. Such situations arise mainly in automatic production 
systems, which involve intermediate material handling devices such as 
automatic guided vehicles (AGVs) and robots. These non-separable setup 
operations and the processing operations must be closely coordinated 
(Cheng, Gupta, and Wang, 2000, 263). 

Separable job/batch setup times, which are involved into the scheduling 
problem considerations, can be classified as follows: 

 
 Sequence-independent (SI) setup times; 
 Sequence-dependent (SD) setup times;  
 Machine/resource-dependent (MD) setup times;  
 Time-dependent (TD) setup times. 

 
Separable setup times may be independent or dependent on the sequence 

of jobs on the machine. When the setup activities for a job on any machine 
in the shop do not depend on any other job in the sequence of the jobs to be 
processed, such a setup time is defined as sequence-independent. In this 
case, the setup duration (cost) depends solely on the current job/batch to be 
processed.  On the contrary, when the duration (cost) of a setup depends on 
both the current and the immediately preceding jobs/batches on a specific 
machine, i.e., dependent on the sequence of jobs, such a setup is defined as 
sequence-dependent. An explicit consideration of sequence-dependent 
setup times produces a broad class of real production problems. A short 
review on this class of problems is given in Section 4.3.  

Sequence-dependent setup times can be explained by the following 
example. Let us suppose that a part of the setup adjustments for a job k can 
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be used for processing the next job j. In such a case, after processing job k, 
this part of the setup will be conserved to be used by the next job j, i.e., it 
will not be removed. Consecutively, the removal time of job k depends on 
the setup activities for job j, and the setups for job j will depend on job k. 
By this reason, sequence-dependent setup times are of anticipatory and 
detached type as the setup information and details cannot be included into 
the processing time and cannot move with the job. 

Sequence-independent setup times could be either anticipatory 
(detached) or non-anticipatory (attached). The difference consists in the 
treatment of the machine idle time. A setup is anticipatory if it can be started 
before the corresponding job or batch becomes available on the machine. 
Unless stated otherwise, the setups are assumed anticipatory, which means 
that a setup on a machine does not require the presence of a job (Potts and 
Kovalyov 2000, 230). Sequence-dependent setup times are only of 
anticipatory type. In such a situation, the idle time of a machine can be used 
to complete the setup for this job. Anticipatory setup times are separated 
from the processing times (detached). In this case, the setup time and the 
processing time are associated with every job. The setup information and 
details do not move with the job, if the setup times are of anticipatory type. 

Otherwise, a setup is non-anticipatory and the setup operations can start 
only when the job arrives at a machine as the setup is attached to the job. In 
this case, the idle time of a machine cannot be used and hence, the setup 
time is considered as a part of the processing time. Consecutively, the 
problem is formulated and solved as a standard scheduling problem without 
setup consideration. If it is not stated explicitly, setups are considered as 
non-anticipatory. This assumption can be used for the optimization goals in 
specific problem statements (Khurana and Bagga 1984; Allahverdi 2000).  
If the setup type is not stated explicitly, it is considered sequence-
independent. A graphical representation of the described setup time models 
is given in Fig. 4-2.  
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Fig. 4-2. Relationships between setup time (ST) models. A circle represents a 
standard scheduling model. 

 
Summarizing the previous considerations, the breakdown structure of a 

job on a machine can be discomposed into various activities as follows (T. 
C. E. Cheng, Gupta, and Wang 2000, 263): 

 
1.  The setup activities, which are independent of the job to be 

processed. This operation consists of activities, such as fetching the 
required jigs and fixtures, then setting them up on the machine; 

2.  The setup activities, which are dependent on the job to be processed. 
This operation includes the activities required to set the job in the jigs 
and fixtures and to adjust the tools as required; 

3.  The processing of the job; 
4.  The removal activities, which are dependent on the job that has been 

processed. This operation includes activities such as disengaging the 
tools from the job and releasing the job from the jigs and fixtures; 

5.  The removal activities, which are independent of the job that has been 
processed. This operation includes activities such as dismounting the 
jigs, the fixtures and/or tools, inspecting/sharpening of the tools, and 
cleaning the machine and the adjacent area. 

 
With this decomposition, the three general phases, namely, setup, 

processing, and removal, can be given in detail as follows: separable setup 
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time (operations 1 and 2); processing time (3); and separable removal time 
(4, 5). 

In a non-batch processing environment, a setup time (cost) is incurred 
prior to the processing of each job. The corresponding model can also be 
viewed as a particular case of a batch setup time (cost) model, in which each 
family consists of a single-job.  

In discrete production systems, the setup time is usually a discrete 
variable but for a continuous-time representation, all activities are 
scheduled on a continuous time scale including a continuous variable, 
which defines the duration of a setup before the next lot is handled. It is 
combined with setup types, such as sequence-independent/dependent setup 
times for a classification and modeling, see Stefansdottiret, Grunow, and 
Akkerman (2017). 

The setup times can be represented as a quadratic non-symmetric matrix 
S(k, j), where every element skj is the setup time required to adjust the 
machine from product k to j for k, j = 1,…, n. For the diagonal elements, we 
have skk = 0, because it is referring to the same product. In the matrix, we 
have skj  sjk because the time, which is required for preparing the 
equipment, depends on the features of the previous product and on the 
configuration of the machine. The setup time to prepare the machine for 
processing the product k after j is in general distinct for the change from j to 
k. 

The setup matrices are used to schedule the jobs and to group the 
products into families to minimize the setup times at each stage (see Section 
4.4). 

4.3 Scheduling problems with setup times 

Scheduling problems, which involve separable setup time assumptions, 
attract the interest of the manufacturers due to their high applicability in real 
HV/HM planning problems and the attention of researchers due to the 
variability of the computational complexity. The importance of setup times 
has been investigated in several studies. In the following, a short state-of-
the-art survey on recent publications is presented. Some theoretical and 
practical problems with setup time assumptions are considered for different 
shop models. One of the goals of this section is to show the variety of 
problems with setup times. 

 EBSCOhost - printed on 2/9/2023 3:05 AM via . All use subject to https://www.ebsco.com/terms-of-use



Chapter Four 
 

 

100 

4.3.1 Sequence-independent setup times 

The works, which treated explicitly sequence-independent setup times and 
their variations, are dedicated mainly to a single machine environment. 
Nevertheless, there is a variation in the setup interpretation. 

Janiak and Kovalyov (1995) were among the first researchers who 
studied the single machine group scheduling problem, in which jobs of the 
same group have to be processed jointly, and the machine setup time is 
independent of the group sequence. The authors have investigated as further 
research a more general problem, where the groups are allowed to be 
partitioned into batches. The setup times are dependent on both the current 
group and the group to be processed next. This setup model is evidently a 
more realistic one. Pan, Chen, and Cheng (2001) assumed that the jobs were 
classified into classes in their problem, and a setup was required between 
jobs of different classes but not of the same class. The setup time was fixed 
and depended only on the current job. A heuristic algorithm, which 
generates a near optimal solution, was proposed to find an approximate 
schedule that minimizes maximum lateness for a set of jobs. T. C. E. Cheng, 
Ng, and Yuan (2003a) proved that the single machine batching problem with 
family setup times to minimize maximum lateness is NP-hard. The same 
authors proved also the NP-hardness of the single machine multi-operation 
job scheduling problem with batch setup times and arbitrary due dates when 
the objective is the minimization of the number of tardy jobs (T. C. E. 
Cheng, Ng, and Yuan 2003b). Liu and Cheng (2004) considered the single 
machine scheduling problem of minimizing total completion time subject to 
job release dates and preemption penalties. In this problem, each time a job 
is started, independently whether initially or after being preempted, a job-
independent setup must take place. This situation may occur, for example, 
when the operating system must interrupt current tasks temporarily and 
later, when the interrupted tasks are resumed, some extra time must be 
expended. The problem was proved to be NP-hard even if the setup time is 
one unit.  

In the paper by Mor and Mosheiov (2014), the job processing times can 
be controlled (i.e., compressed) by allocating additional resources, and the 
batch processing time is identical to the total processing time of the jobs 
contained in the batch plus a constant setup time, which is incurred when 
starting a new batch, i.e., it is sequence-independent. The cases of a single 
machine and identical parallel machines were considered with the objective 
of minimizing the flow time. A rounding procedure was introduced for a 
relaxed version and shown to generate extremely close-to-optimal integer 
solutions. 
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Pei et al. (2016) considered the scheduling of jobs on a single serial 
batching machine with dynamic job arrivals and multiple job types, where 
an independent constant setup time was associated with each new batch. A 
two-phase hybrid algorithm (TPHA) was developed. A valid lower bound 
for the problem was also derived.  

Song, Yi, and Shen (2016) focused on single machine scheduling with 
sequence-independent setup times, multi-item production, and small lot 
sizes. Many setup times are difficult to estimate accurately in this statement. 
This uncertainty influences the ability to achieve accurate production cycles 
and costs of products. On the base of a survey, the authors of the study 
concluded that the length of the setup time depended on the level of the 
knowledge of the employers. They proposed a method for determining the 
standard setup time quota based on this level.  

Kong et al. (2019) studied the bounded parallel-batching scheduling 
problem considering job rejection, deteriorating jobs and non-identical job 
sizes. The objective was to minimize the sum of the makespan and the total 
penalty. A sequence-independent setup time before the processing of each 
batch was included. A hybrid algorithm combining a heuristic with a 
dynamic programming algorithm (H-DP) was proposed to obtain 
satisfactory solutions within a reasonable time.  

4.3.2 Sequence-dependent setup times 

Models with sequence-dependent setup times are studied in all machine 
environments, such as a single machine (Miller et al. 1999; T. Chen, Long, 
and Fung 2006; Giglio 2015; Y.-C. Choi 2016; Pei, Liu, Pardalos, Migdalas, 
et al. 2017); parallel machines (Y. H. Lee and Pinedo 1997; S.-I. Kim, Choi, 
and Lee 2006); flow shops and assembly lines (H. M. Cheng and Ying 2011; 
Jung, Woo, and Kim 2017); job shops  (Flynn 1987; I.-C. Choi and Korkmaz 
1997; Mönch and Drießel 2005);  FFS/HFS  (C.-Y. Liu 1996; C.-Y. Liu and 
Chang 2000; Yaurima, Burtseva, and Tchernykh 2009). To the best of our 
knowledge, the concept of sequence-dependent setup times was first 
introduced by Barbara B. Flynn in 1987 for scheduling repetitive lots in GT 
and traditional shops (Flynn 1987). 

Miller et al. (1999) proposed a hybrid genetic algorithm (HGA) for the 
single machine, single-stage scheduling problem in a sequence-dependent 
setup time environment within a fixed planning horizon. It incorporates the 
elitist ranking method, genetic operators, and a hill-climbing technique in 
each searching area. To improve the performance and efficiency, hill 
climbing was developed by uniting the Wagner-Whitin algorithm, see the   
paper by Wagner and Whitin (1958, 1773)  and Section 8.1. The objective 
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of the HGA was to minimize the sum of setup cost, inventory cost, and 
backlog cost. The HGA showed a performance up to 50% better than JIT 
heuristics and 30% better than complete batching heuristics. The investigation 
was dedicated to solve a scheduling problem faced by a plant in an 
automotive supply chain, where heuristics for determining a job sequence 
do not produce the best solution, for example, a heuristic for grouping 
products only by the master die. A detailed review for this class of 
scheduling problems was given. 

Chen, Long, and Fung (2006) considered a single machine batch 
scheduling problem with sequence-dependent setup times to minimize 
maximum lateness. The problem was solved by a genetic algorithm. In the 
single machine job scheduling problem discussed by Giglio (2015),  
equivalent jobs were grouped into classes (family scheduling model). The 
generalized due date model was adopted for each class of jobs. It was 
possible to reduce the processing time of a job, at the price of the payment 
of an extra cost (controllable processing times). A costly sequence-
dependent setup was required when switching between jobs of different 
classes. The single machine was assumed unreliable, and then perturbations, 
such as breakdowns and slowdowns, may affect the nominal behavior of the 
system. The problem was solved by optimal control strategies.  

The research by Choi (2016) was focused on the problem of scheduling 
jobs and energy requirements. Jobs of multiple types arrive dynamically 
over time. A setup operation is required to change over the job types, and it 
strongly depends on the sequence of the job types. During the setup 
operations, the machine tools consume an idle energy for non-machining on 
the machine tool. Moreover, frequent setups and long setup times have a 
negative impact on the completion of the jobs as well as the idle energy 
consumption. Each job type has alternative process plans with different 
electricity machining energy requirements. Two energy efficient 
dispatching rule-based algorithms were applied with the objective of 
minimizing the average energy consumption (with machining and non-
machining) and mean tardiness of the finished jobs on a single machine with 
sequence-dependent setup times and energy requirements. 

Pei, Liu, Pardalos, Migdalas, et al. (2017) combined deteriorating jobs, 
serial batches, multiple job types, and sequence-dependent setup times. In 
this model, the jobs of each type are first partitioned into serial batches, and 
then all batches of different job types are processed on a single serial 
batching machine. The actual job processing time is an increasing function 
of its starting time. A setup time is required only when a new batch is 
processed first on the machine or immediately after a batch belonging to 
another job type. Some optimization algorithms were developed to solve the 
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makespan minimization problem, the maximum tardiness minimization 
problem, the maximum lateness minimization problem, and the maximum 
earliness minimization problem, respectively. Two special cases of the total 
completion time minimization problem were also discussed.  

Lee and Pinedo (1997) considered a total weighted tardiness scheduling 
problem with identical parallel machines to process a number of jobs. A job 
has a processing time, a weight and a due date. In order to process job k after 
job j, a setup time sjk is required. This time depends on job j as well as on 
job k, but it does not depend on the machine. A dispatching rule and a 
simulated annealing procedure were presented. Kim, Choi, and Lee (2006) 
combined sequence-dependent setup and distinct ready times, i.e., the time 
at which a job is available for processing in parallel machine scheduling. 
Tabu search heuristics were suggested due to the complexity of the problem. 

The problems considering sequence-dependent setup times in flow shop 
environments were presented in the papers by Cheng and Ying (2011); Jung, 
Woo, and Kim (2017). Cheng and Ying (2011) examined the flow line 
manufacturing cell scheduling problem (FMCSP) with sequence-dependent 
family setup times, which is one of the most intractable NP-hard 
combinatorial optimization problems. It is also characterized by a high 
practical importance for many industrial applications, in particular cellular 
manufacturing. This problem was denoted as Fm|fmls,sghj|Cmax using the 
triplet notation. Prior to processing each family, a sequence-dependent 
family setup time sghj is incurred on machine j when family fh is processed 
immediately following family fg, where sghj = 0 for all fg, j. The individual 
job setup times were very small compared to the sequence-dependent setup 
times: They were considered as a part of the processing time of a job in each 
family. A two-level iterated greedy (TLIG) heuristic was proposed to 
minimize the makespan. Jung, Woo, and Kim (2017) addressed the two-
stage assembly flow shop scheduling problem (TSAFSP) containing a 
machining operation and an assembly operation to manufacture products 
having dynamic component sizes. This model is common in many real-life 
industrial applications such as fire engine assembly and personal computer 
manufacturing. At the machining stage, a single machining machine 
produces various types of components to assemble the products. A 
sequence-dependent setup time is required whenever the machining 
machine starts to process a new component or processes a different 
component. When the required components are available for the associated 
product from the machining stage, a single assembly machine can assemble 
these components into the ready product. To solve the problem, a MILP 
model was derived. Three genetic algorithms with different chromosome 
representations were proposed. 
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For a job shop environment, Choi and Korkmaz (1997) considered a 
basic variant of the problem, which was weighted by sequence-dependent 
setup times. A MILP model and a heuristic procedure were proposed. 
Mönch and Drießel (2005) studied a complex job shop for the manufacturing 
of integrated circuits on silicon wafers. The machine environment contained 
parallel batching machines, machines with sequence-dependent setup times, 
and reentrant process flows. The goal was to minimize TWT. A two-layer 
hierarchical approach was suggested in order to decompose the overall 
scheduling problem. 

Scheduling with sequence-dependent setup time consideration in the 
FFS/HFS context is one of the most difficult classes of scheduling 
problems, both in terms of statement and modeling, as well as in the 
solution. One of the first works in this shop environment was due to Liu 
(1996). The author detected that processing in large batches may increase 
machine utilization and reduce the setup time. However, it also increases 
the flow time. Therefore, scheduling problems with setup time consideration 
make a trade-off of the WIP level between flow time, machine utilization 
by selecting the batch size, and the schedule. The flow of works was 
unidirectional in the problem statement. A solution must: 1) meet the 
customers' due dates in the context of the JIT philosophy; 2) reduce the 
WIP; 3) reduce the machine setup times. While the system constraints are: 
a) machine capacity; b) product demands; c) precedence relationship. In a 
feasible schedule, the production must be synchronized with the machine 
schedule. This NP-hard problem was formulated as a large-scale integer 
linear programming model. A Lagrangian relaxation method was adopted 
to solve the problem in the dual space, where the synchronization constraint 
between the machine setup and part processing was relaxed. An efficient 
heuristic was developed to adjust the dual solution to primal feasibility.  

Liu and Chang (2000) used also a Lagrangian relaxation approach with 
respect to the synchronization constraints. The scheduling problem was 
decomposed into two classes of subproblems: 1) part production and 2) 
machine scheduling. In these subproblems, there were network flow 
structures in the equality constraints describing the machine status change 
and the production flow balance. An iterative algorithm of minimum cost 
network flow was applied to solve the individual subproblems and an 
efficient subgradient method was adopted to optimize the Lagrangian 
multipliers. Finally, a machine availability searching heuristic adjusted the 
solution to satisfy all synchronization constraints by exploiting the network 
structure, the economic interpretation of the Lagrangian multipliers, and the 
slack time policy. Yaurima, Burtseva, and Tchernykh (2009) studied a 
problem in which unrelated machines, sequence-dependent setup times, 
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availability constraints, and limited buffers in an HFS environment were 
simultaneously considered. A family of genetic algorithms was proposed as 
a solution.  

4.3.3 Machine/resource-dependent setup times 

Machine/resource-dependent setup times were presented in the works by 
Cheng, Janiak, and Kovalyov (2001) and Chen (2008). In the first paper, a 
variant of the single machine batch scheduling problem with setup and job 
processing times dependent on a continuously divisible recourse is 
considered. The authors denoted this problem by BR. It was motivated by 
part manufacturing on a multi-purpose machining center, where the parts 
were mounted on, processed and taken off pallets. The pallets were removed 
and installed by a robot. The setup/removal time of a pallet depended on the 
robot productivity and the energy consumption. The goal was to produce all 
part orders by their deadlines subject to saving energy. A linear 
programming (LP) based polynomial time algorithm was presented to find 
an optimal batch sequence and the resource values. 

Chen (2008) modeled disruptive events as 'machine vacations'. These 
events may be weekends when a machine operated by workers must be 
stopped. Consequently, the setup time was affected. An efficient heuristic 
algorithm was developed to solve the problem of minimizing maximum 
tardiness subject to the family setup time and vacation constraints. 

4.3.4 Time-dependent setup times 

The concept of time-dependent setup times, which is also referred to as past-
sequence-dependent (p-s-d) setup times, was introduced almost 
simultaneously by Koulamas and Kyparisis (2008, 1046) and Kuo and Yang 
(2007, 22) into the consideration of scheduling problems. This means that 
the setup time is proportional to the length of the already scheduled jobs. 
This kind of setups is usually presented in problem statements with specific 
assumptions such as learning/deteriorating effects. These phenomena can 
affect not only the job processing times but also the setup process lengths.  

Koulamas and Kyparisis (2008) explained the motivation for the 
introduction of this new form of setup times by certain situations in HT 
manufacturing, in which a batch of jobs consists of a group of electronic 
components mounted together on an IC board. These jobs must be processed 
one-by-one by a machine while they are mounted together on the board. The 
machine operation on any of these components has an adverse effect on the 
'readiness' of all other components, which have not yet been processed due 
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to the flow of electrical current through the IC board while the machine is 
operating. Once a component is fully processed, its condition is not affected 
by the subsequent operation of the machine even if it remains mounted on 
the IC board. The degree of 'un-readiness' of any component is proportional 
to the amount of time it has been exposed to the machine operation on other 
components. Consequently, prior to a component processing, a setup 
operation is needed to restore it to 'full-readiness' status. This setup 
operation is proportional to the degree of un-readiness of the respective 
component, and it has no effect on the 'readiness' of the remaining 
unprocessed components. When all components on the IC board are 
managed by the machine, the overall manufacturing process is completed. 
The authors noted that it is reasonable to model the degree of job 'un-
readiness' in the form of a required setup time followed by the actual 
constant job processing time. 

These authors extended also this concept to a learning environment, in 
which the p-s-d setup times are no longer linear functions of the already 
elapsed processing time due to learning effects. It was proved that the 
standard single machine scheduling problem with p-s-d setup times can be 
solved in O(nlog n) time by a sorting procedure for the following objective 
functions: the maximum completion time (makespan), the total completion 
time, the total absolute differences in the completion times, and a bi-criteria 
combination of the last two objective functions. They also extended the 
results to nonlinear p-s-d setup times. 

Koulamas and Kyparisis (2008, 1046) gave a formal statement of such 
a single-machine problem as follows.  

A standard non-preemptive single machine scheduling problem with a 
batch of n jobs available at time zero and with a continuously available 
machine is considered. The notations used are as follows: 

 
 pj  - processing time of job Jj , j =1,…, n;  
Jj  -  job occupying the position j in the sequence; 
pj -  processing time of the job occupying the position j in the sequence. 
 
The processing of Jj must be preceded by a p-s-d setup time sj, which 

can be computed as =  ,   j =2,…, n; s1 = 0, 
 

where  is a normalizing constant.  
The value of the normalizing constant  determines the actual lengths of 

the required setups.  When  , there is no need for any p-s-d. In such a 
case, the problem is reduced to the standard single machine scheduling 

 EBSCOhost - printed on 2/9/2023 3:05 AM via . All use subject to https://www.ebsco.com/terms-of-use



Machine Setup Times 107 

problem without setups. The setup times can theoretically grow substantially 
when the batch size n is large. This can be prevented by setting the 
normalizing constant  to a very small value or by introducing some type of 
learning effect on the setup times. In the latter case, the setup times do not 
grow proportionally with the total length of the already processed jobs. This 
procedure is repeated with each new batch of jobs. 

Kuo and Yang (2007) combined single machine scheduling with a job-
independent/job-dependent learning effect and p-s-d setup times. It was 
assumed that the learning process reflected a decrease in the process time as 
a function of the number of repetitions, i.e., as a function of the job position 
in the sequence. The following objectives were considered: the makespan, 
total completion time, total absolute differences in the completion times and 
sum of an earliness, tardiness, and common due date penalty. Polynomial 
time algorithms were proposed to solve optimally the problems with the 
above objective functions. Later, Wang (2008) extended the result of Kuo 
and Yang (2007) to the single machine scheduling problem with p-s-d setup 
times and a time-dependent learning effect. 

Wu and Lee (2008) first introduced the deteriorating setup time into 
group technology scheduling in which the group setup times were usually 
assumed to be known and fixed. The setup or preparation time often requires 
more time as the food quality deteriorates or a patient's condition worsens.  
In the paper, if a job has to wait for processing, both the setup times and job 
processing times are enlarged.  The shop environment represented two 
single machine group-scheduling problems, where the group setup times 
and the job processing times were both increasing functions of their starting 
times. The authors first proved that the makespan minimization problem 
remains polynomially solvable when deterioration is present. In addition, 
they have shown that the problem with the sum of the completion times is 
polynomially solvable when the numbers of jobs in each group are equal. 
For the case of unequal job sizes, a heuristic algorithm was proposed. The 
computational experiments showed that the performance of the heuristic 
was fairly accurate when the deterioration rate was small. 

Lee (2014) noted that with short product cycle times in many production 
lines, the workers must constantly learn new skills and technologies. Thus, 
forgetting effects might occur in these situations. The author considered a 
model, where both the effects of learning/forgetting (deteriorating jobs) and 
p-s-d setup times were present simultaneously. Optimal schedules for some 
single machine problems were provided. 

Pei, Liu, Pardalos, Migdalas, et al. (2017) combined the time-dependent 
setup time assumption with the effects of time-dependent deterioration and 
position-dependent learning to constitute a new model for the job processing 
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time in serial batching problems. The setup time of a batch was a linear 
function of its starting time. In the next work of the authors (Pei et al. 2018), 
the batch setup time was defined as a linear function: 

 
sk = ,  
 

where  
 

- a parameter denoting the deteriorating rate of the setup time for each 
batch;   

t  - starting time of processing the batch bk. 
 
The minimization of the makespan was the objective of the studied 

problem under the constraint that the total resource consumption did not 
exceed a given limit. Structural properties were proposed for job batching 
policies and batching sequencing. An optimal batching policy was derived 
using these properties. A hybrid algorithm, which combined a gravitational 
search algorithm and a tabu search algorithm, was developed to solve the 
general case of the problem. 

4.4 Family/batch setup times 

In a family scheduling model, the jobs are partitioned into F families 
according to some specific characteristics (see Ch. 5 for more details). This 
means that no setup is required between jobs of the same family. Let nf 
denote the number of jobs in family f, f = 1, …, F. However, there exists a 
family setup time on machine i if a job of family g is immediately processed 
after a job of a different family f, g  f, and it is denoted as sifg, or si0g  if 
there is no preceding job. If for every family g, the condition sifg = si0g =  sig 
is met for all g, f  g, then the setup times on machine i are sequence-
independent; otherwise they are sequence-dependent.  If, for each machine 
i, the condition sifg = sfg = si0g is met for all f, g, f  g, including the case f = 
0, then the setup times are machine-independent; otherwise they are 
machine-dependent. For the case of a single machine, setup times are, by 
definition, machine-independent.  

The triangular inequality is retained for most production environments. 
The changeover time between any two products is always less than in the 
case when a third product is processed between these two products. 
Formally, the triangle inequality assumption holds for each machine i. This 
means that sifh sifg + sigh for all f, g, h, f g  h, including the case f = 0.  
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As usual, the setups are assumed anticipatory unless stated otherwise. 
The setups are non-anticipatory if the setup, which anticipates the 
processing of a batch, cannot start on the current machine before all jobs of 
this batch are released after the processing on any previous machine. This 
assumption is used in shop problems when there occur release dates in the 
model. Sequence-independent family setup times and batch availability may 
occur if there are two or more successive batches of the same family. In 
such a case, a family setup time is required before a batch is processed even 
if it belongs to the same family as the previous batch. If the maximum batch 
size is limited for a machine i, this is denoted by bi. If the batch sizes have 
the same upper bound on all machines, the maximum batch size is denoted 
by b. 

An example of the classification triplet is 2| = 1, = | . It 
denotes the problem of the makespan minimization in a two-machine flow 
shop, where the first machine is a classical machine and the second one is a 
batching machine that can process simultaneously up to n jobs. Another 
example is the problem 1| sfg |  Cj, which denotes the minimization of the 
total completion time on a single (classical) machine with job families and 
sequence-dependent family setup times. 

4.5 Systematic classification of changeovers 

A systematic classification of the changeovers was developed by 
Stefansdottir, Grunow, and Akkerman (2017) mainly for the food industry, 
but it is also applicable to any discrete production system.   

Studying setup time components in the food and pharmaceutical 
industries in the context of lot sizing and scheduling, the authors put attention 
to cleaning activities. They detected that in the process industries, the setup 
and cleaning classes are often interrelated. The changeovers consist mainly 
of cleanings, which must be performed while the production is stopped. The 
cleanings cause long downtimes of the machines and waste of material. 
Moreover, these activities consume energy, water, and cleaning agents. For 
lot sizing and scheduling in the process industries, it is therefore 
fundamental to consider a time for cleanings in addition to setups. The 
authors developed a general classification scheme for setups and cleanings, 
which included three different classes: batch-, time-, and volume-dependent 
setups and cleanings.  

Sequence-dependent changeovers are one of the basic characteristics of 
process industries. A batch-dependent changeover (B) may be required 
when switching between batches. Time-dependent changeovers (T) are 
common in the food industry, in which machines are frequently cleaned at 
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the end of the day to meet hygiene regulations. For volume-dependent 
changeovers (V), the requirements depend on the produced volume or the 
frequency of use. These are, for example, often-scheduled changeovers in 
the chemical industry after a specific number of batches to prevent a buildup 
of impurities in the processing items. A combination of time and volume 
dependency of changeovers is also possible. For example, fouling of 
pipelines in process industries could depend on both the time and the 
volume of the product pumped. 

A systematic classification of the changeover characteristics is given in 
Table 4-1.  

The changeovers are classified according to the following general 
characteristics: 

 
1. Separability;   
2. Substitutability;   
3. Reference point;   
4. Flexibility.   
 
Separability: An inseparable changeover requires that the machine is 

idle during this activity. This is typical for process industries. On the other 
hand, a separable changeover is realized offline. Such changeovers are 
common in discrete manufacturing plants. For instance, machine tools are 
often prepared offline in assembly plants. However, they also arise in 
process industries, for example, cheese production, in which the cheese 
forms are cleaned offline. For the JIT SMED tools, inseparable and 
separable (or internal and external) changeovers are distinguished, and as 
many of the changeover operations as possible are treated as separable while 
running the machines.  
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Characteristics Value 
Changeover class 

B T V 

General 

Separability 
Inseparable (insep) + + +   

Separable (sep) + + + 

Substitutability 

Insubstitutable (insub) + + + 

Across classes (ac) + + + 

Within and across classes (wac) + + + 

Reference point 
Start/finish of batch (sfb) + - - 

Start of production (sop) - + + 

Flexibility 

Exact (ex) + + + 

Maximum (max) + + + 

Time window (tw) + + + 

Changeover matrix: time/costs 

Product 
dependency 

Product(s)-independent (pi) + + + 

Predecessor product-dependent (ppd) 
Family (f)/ no family (-f)   + - - 

Successor product-dependent (spd)  
Family (f) / no family (-f)   + - - 

Product sequence-dependent (seqd)  
Family (f) / no family (-f)   
Natural seq(ns)/no natural seq(-ns) 

violated (-  

+ - - 

Predecessor products history (pph) - + + 

Batch-size 
dependency 

Batch-size(s)-independent (bi) + + + 

Predecessor batch size-dependent 
(pbd) + - - 

Successor batch size-dependent (sbd) + - - 

Predecessor and successor batch size-
dependent (psbd) + - - 

Predecessor batch sizes history (pbh) - + + 
 
Table 4-1. Classification scheme of changeover characteristics. Adapted from 
Stefansdottir, Grunow, and Akkerman (2017, 581). 
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Substitutability: An insubstitutable changeover must take place and 
cannot be substituted by any other changeover. Changeovers may be 
substitutable within a class. For example, a time-dependent changeover, 
which is scheduled every second hour, may be substituted by a daily time-
dependent changeover. Furthermore, changeovers may be substitutable 
across the classes. For example, in the food industry, a less intensive batch-
dependent cleaning may be substituted by an intensive time-dependent 
cleaning. Finally, changeovers may be substitutable within and across the 
classes. A time-dependent changeover may be substituted by another time-
dependent changeover and by also a volume-dependent changeover.  

Reference point: It represents a base for the starting time of a 
changeover. The starting time of a batch-dependent changeover is always 
based on the start or finish of a batch. On the other hand, for time- and 
volume-dependent changeovers, the starting time is based on the start of the 
production, the start of the last changeover, or on a fixed time point. A fixed 
time point is, for example, the beginning of the planning horizon. The start 
of the production and the beginning of the planning horizon are the same 
for the problems with makespan minimization. 

Flexibility: It characterizes the changeover starting time. Changeovers 
may require an exact starting time with no flexibility. These are, for 
example, time-dependent cleanings in a food production may be 
programmed at the end of each production day. Changeovers may also be 
more flexible, i.e., an upper bound on the starting time (maximum) or both 
upper and lower bounds may be used.  

The general changeover characteristics and the structure of the 
changeover matrix are illustrated graphically in Fig. 4-3.  

 

 
 
Fig. 4-3. Graphical representation of general changeover characteristics. Adapted 
from Stefansdottir, Grunow, and Akkerman (2017, 581). 

 
The changeover matrix-related characteristics are classified according 

to a) product dependency and b) batch size dependency. 
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The changeover matrix characteristics can be formulated in two variants: 
time and/or costs. The product dependency of a changeover may be product-
independent as it frequently occurs in the case of time- and volume-
dependent changeovers. This is also usual for batch-dependent changeovers. 
Batch-dependent changeovers may also depend on the predecessor or 
successor batch. The family structure is a property of predecessor- and 
successor-dependent changeovers. A changeover is minor when switching 
between products of the same family.  A changeover is major when switching 
between families. A batch-dependent changeover may be product-sequence-
dependent. In such a case, a changeover depends on both the predecessor and 
successor batch (Fig. 4-4).  

Using the classification system represented in Table 4-1, any 
changeover can be categorized according to the class (B, T, V), the general 
characteristics (Sep/Sub/Ref/Flex) as well as the changeover matrix with 
respect to time t (Prod/Size) or costs c (Prod/Size). Then the classification 
record of a changeover takes the form:  

Class; (Sep/Sub/Ref/Flex); t(Prod/Size); c(Prod/Size). 
This classification may be illustrated by two examples from the 

semiconductor industry, where the changeovers often take the form of time-
dependent cleanings, which are done on the machines at the end of a 
production day. Assuming that this cleaning is substitutable across the 
classes and with a product- and batch-size-independent changeover matrix 
defined for the times, the changeover classification takes the form:  

T; (insep/ac/ftp/ex); t(pi/bi); c(-/-).  
 

 
 

Fig. 4-4. Graphical representation of changeover matrix setup/cost characteristics.  
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The second example concerns a typical changeover from one product to 
another one on a production line. This is often an inseparable and 
insubstitutable sequence-dependent batch changeover. If it is assumed that 
a changeover matrix is defined for costs, it has not a family structure or 
natural sequence in which the triangular inequality is maintained, and it is 
batch-size-independent, then this changeover is classified as:  

 
B; (insep/insub/sfb/max); t(-/-); c(seqd(-f;-ns; )/bi) . 

4.6 Setup and changeover reduction schemes 

According to Gest et al. (1995, 205), the need to reduce changeover times, 
called set-up reduction (SUR), was first declared by Shingo (1985, 11–20). 
This philosophy arose from Toyota's JIT-based production system. Since 
then, an active investigation of setup times started from different 
viewpoints, such as detailing the setup structure and developing setup time 
reduction methods. In the literature, one can meet two classes of setup 
schemes: GSU/SDS and more recently, SMED/OTED, which start with a 
detailed analysis of the setup/changeover structure. 

4.6.1 Categorization of techniques 

Although the available information about changeover reduction is extensive, 
it is usually unstructured and very difficult to access. Nevertheless, it was 
categorized into the thirteen primary classes listed below (Gest et al. 1995, 
206): 
 

 Elimination; 
 Motion systems;  
 Move internal to external; 
 Access; 
 Clamping; 
 Adjustment; 
 Clean out/purging; 
 Machine design; 
 Product design; 
 Tooling design; 
 Fixturing aspects; 
 Housekeeping; 
 Preparatory work. 
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Elimination 
An ideal changeover would be one in which there is no time lost during its 
course, that is 'the best changeover is no changeover' (Gest et al. 1995, 206). 
However, to achieve this, a very high investment capital is usually required 
such as extra machines, duplicate tooling or a new machine and system 
design. Typically, two methods are available for the virtual elimination of 
setups: 1) excess capacity and 2) automation. In the first case, excess tooling 
or machine capacity is employed to eliminate the need for setups by using 
duplicate machines or tooling, which can be simply substituted for the old 
product set. Alternatively, an excessive capacity allows an adjustment of the 
machines before the run of new products. The automation of setups has been 
widely realized by the use of machine centers and a computerized control. 
 
Motion systems 
The gathering and delivery of tools and equipment, which are required for 
a changeover, have a significant effect on the overall changeover time. 
AGVs should be used for the transport of material to/from the machines, 
although some systems include the use of an AGV to deliver a pre-set 
tooling. For example, the vehicles cease to be an appropriate solution when 
the press or tooling of a large capacity range (1000-ton press) must be 
transported. In this area, railed carts and bolsters are more common. The 
simplest way to solve the problem of tool delivery is the use of roller and 
ball trolleys. A set of air die rollers can be embedded into the bolster of such 
a press to facilitate the delivery of the dies. 
 
Move internal to external 
The easiest way to achieve a significant reduction in a setup time is to move 
certain aspects to an external stage, where adjustments can be made 
beforehand and tools can be prepared before the actual machine stops the 
production. Shingo highlighted the importance of moving internal 
operations to external ones. He described the case of Arakawa Auto Body, 
where the provision of an external setup table reduced the setup time from 
10.5 minutes to 30 seconds. However, an effective scheduling system is 
required to enable changeover elements to be carried out as an external 
operation and for more efficient setups in general. This ensures a correct 
preparation for a changeover, i.e., the presence of the correct tools and 
materials at the machine at exactly the right time.  
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Access 
When the access to the tools and resources is difficult, it can take a 
significant effect on the setup time.  
 
Securing 
Securing operations, such as clamping, play a significant role in the 
changeover time due to two factors:  
 

1. Engineers use a too high safety factor in the design of clamping, 
sometimes up to 30 times;  

2. It is due to the use of screw thread devices for clamping purposes. A 
number of different methods have been developed, where a clamp 
handle simply needs to be turned slightly to clamp or release. 

 
Adjustment 
Despite having, a very low tool change time (unclamp, unload, load, clamp), 
the setup time could still be excessive due to a high proportion of the time 
taken to adjust the machine and/or the system to an operating state. The 
losses of time due to the adjustment can reach ten times of that of the 
physical changeover time. The use of GT permits to reduce the range of the 
features within the part families, which are produced by a machine due to 
the similarities between parts. The adjustment can even be eliminated by 
settings, which use the exactly defined positions. The standard gauges can 
greatly reduce the adjustment time and increase the accuracy. Simply 
slotting in a new gauge can immediately change the settings on a machine 
with a desired accuracy. 
 
Clean Out/Purging 
Purging between batches can cause severe problems within the process 
industry such as food, paint, plastics, and chemical production. An 
automatic changeover and purging can be realized, for example, by using 
hoppers mounted on an automatic shuttle system to simultaneously unload 
the old tools and load the new tools. Then a changeover occurs almost 
instantaneously. In the printing industry, duplicate drums are utilized for a 
quick changeover by removing the clean out to the external arena.  
 
Machine design 
An effective machine design is essential to reach a zero-setup time. Most of 
the previously discussed aspects such as access, location, adjustment, etc., 
can be improved by an appropriate design of the machines. The design of a 
machine, its interaction with tooling and associated systems, as well as the 
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amount, by which ergonomics are taken into account, are critical aspects of 
the setup problem. The following aspects are highlighted in this category:  
 

 The standardization of clamping and location can drastically reduce 
the changeover time;  

 An over-adjustability of machine tools should be revised;  
 The use of many small dedicated machines is preferable to one large 
machine that requires a great deal of changeover and adjustment. 

 
Product design 
If the parts are designed using as many common features as possible, then 
the setup between the runs can be significantly reduced and many problems 
can be countered at the design stage.  
 
Tooling design 
When a tool such as one dedicated to work in the presswork field, has top 
and bottom halves, which are joined together, any adjustment in-between 
can be eliminated. As a result, the tool can be instantly loaded and located. 
Additionally, the need for soft tooling is eliminated along with the 
associated rework and shearing.  

The use of 'indexable' tools for the machining industry simplifies the 
changeover process. In such a case, the operator is no longer required to 
undo the previous tool, get the new tool, pack it up to height and then check 
its center.  

The weight of tooling has a significant effect on the delivering methods 
used, for example, if the transportation equipment used for this process is 
employed elsewhere. A welding jig weighting 30 kg requires a hoist to be 
loaded into the welding machine. Delays in the hoist delivery result in 
excessively long setups in such a case. The load and setup times can be 
reduced drastically if the jigs are sectioned in such a manner that only the 
required parts are changed. 
 
Housekeeping methodology 
This aspect is about the organization of the workplace, including the 
techniques to maintain several points, such as following ones: 
 

 The changeover personnel must have skills to quickly and easily 
locate tools and make efficiently required changeovers;  

 Coding dies and keeping them adjacent to the dedicated machine;  
 Ensuring that all tools, gauges, etc., are available for the production; 
 Using two people rather than one person; 
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 Arranging the workplace so that everything can be easily found;  
 Ensuring that all tools, etc., are where they are supposed to be in a 

clean state and ready for use, etc. 
 

Preparatory work for a setup reduction 
 Some of the following suggestions should be taken into account: 
 

 Be concentrated on one line, usually on the bottleneck; 
 Develop and implement a training program for the shop floor and 

support the staff; 
 No cost/low cost ideas first; 
 Set targets, for example, 50% reduction in six months; 
 Time savings are used for more frequent setups; 
 Standardize the setup method once improved. 

4.6.2 Practical approaches 

There are several practical approaches used to reduce the overall setup time 
as well as the sequence-dependent setup time. These approaches are mainly 
described in earlier publications. Afentakis, Gavish, and Karmarkar (1984, 
223) proposed to enlarge the lot sizes. Nevertheless, this method leads to an 
accumulation of the WIP. It may also be impossible to create large lot sizes. 
A second method proposed by Boyle (1986, 1042) consists in reducing the 
setup frequency. It is essentially based on the GT concept, which was 
initially proposed for a single machine environment. A similar method was 
proposed by Kusiak, Vanelli, and Kumar (1985, 245–52). It was based on 
grouping parts and fixtures in FMSs. 

The idea of the SDS method is that the PCB types should be sequenced 
such that a following PCB will have a maximum of the common 
components as the current PCB, thus eliminating many setups in-between. 
The goal is to minimize the number of component changes required during 
the sequence. The products requiring the same limited resources (jigs, 
fixtures, etc.) must be scheduled separately from each other to reduce the 
waiting period of these machines. The SDS method sacrifices several 
reductions in the setup time but has some advantageous qualities for such a 
type of a production system. This approach maintains a low WIP level (Fig. 
4-5a). A description of the SDS method can be met in the paper by Maimon 
et al. (1993, 179–80).  

The GSU method was introduced by Carmon, Maimon, and Dar-El 
(1989, 1795) for a multi-machine environment trying to reduce the cost and 
to increase the throughput of small-lot PCB assembly lines. The main idea 
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of this method is that the PCB products are divided into groups. Each group 
is processed in two stages:   

 
 The first stage is characterized by the common setup and assembly 

operation. The common components share a setup on the machines, 
once only for the whole group and then for the assembly onto their 
respective PCBs. The common components are the components, 
which are shared among two or more PCB types in the group. This 
stage is referred to as common setup and production; 

 The second stage is referred to as residual setup and assembly. 
During this stage, a separate setup and an assembly of the remaining 
components on each PCB type are sequentially performed.  
 

Therefore, the production stages on each machine are as follows: 
 
1. Setup of common components; 
2. Assembly of common components on all PCBs in the group; 
3. Setup of residual components;  
4. Assembly of residual components on each PCB separately. 
 
The grouping problem can be viewed as a clustering problem. The GSU 

method was shown to result in a high throughput but also in a high WIP 
inventory level. A graphical presentation of the GSU method is given in Fig. 
4-5b. The spaces marked represent the savings in the setup time.  

 

 
                                 a)       b) 

 
Fig. 4-5.  Graphical illustration: a) SDS method; b) GSU production method.   

 
The reader can also meet a description of the GSU method in the paper 

by Maimon, Dar-El, and Carmon (1993, 179–179). 
The savings under GSU should exceed those under SDS, in which some 

common components may need to be setup more than once. As the group 
size is enlarged, the saving in the setup increases since each product type 
added to the group typically contains some common components that are 
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already set up on the machine. However, each PCB added also increases the 
production makespan and the lead time of all PCBs in the group. For this 
reason, while defining the groups of products, the due dates of all product 
types should be considered.  

Ovacik and Uzsoy (1996) presented some dispatching rules to 
decompose the general complex job shop problem for testing facilities into 
a number of work centers and then to simplify the management of setups 
with the goal to reduce the WIP. Leon and Petters (1996) suggested a partial 
setup strategy for replanning purposes on a single-placement multi-product 
machine in a PCB assembly system. The partial setup proposed is a 
combination of a unique setup for each product and a group setup for a 
group or family of similar products. Lambert et al. (1997) considered both 
approaches, SDS and GSU, combined with the family shortest processing 
time (FSPT) first scheduling rule for a surface mount technology (SMT) 
production line. 

4.6.3 SMED/OTED method 

Nowadays, customers require a wide range of products of high quality 
delivered with quick response times and sold at reasonable prices. To 
survive under such increasingly competitive conditions, there is a need for 
a continuous improvement in every type of industry. The companies are 
forced to produce smaller lots with the same demand as in previous years, 
without affecting their global productivity. However, the fabrication of 
more products at smaller lot sizes requires a larger number of changeovers. 
Consecutively, a rapid changeover capability is critical for being able to 
produce small quantities of a large diversity of the products, which is the 
basis for a pull production. 

Van Goubergen and Van Landeghem (2002) indicated three main 
reasons why setup reduction initiatives are appropriate for any company:  

 
1. Increase of the flexibility by conducting more changeovers and 

reducing the lot size;  
2. Increase of the bottleneck capacities in order to maximize the line 

availability for the production;   
3. Minimization of the production costs since these are related to the 

equipment effectiveness. 
 
The SMED methodology was developed by the Japanese engineer 

Shigeo Shingo in the 1950s in response to these challenges of the production 
with short changeover times (Shingo 1985). SMED is focused on the 
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reduction from hours to minutes, the time required to move from producing 
one product to another one. With the reduced setup time, the production 
flexibility expanded as it was able to afford more frequent product mix 
changes and to detect the production bottlenecks. Generally, SMED aims to 
standardize and simplify the manufacturing operations. An important point 
is that by this means, the need for special skilled workers is also minimized.  

SMED is one of the lean production methods for reducing the waste in 
a manufacturing process. It provides a rapid and efficient way to convert a 
manufacturing process from running the current product to running the next 
product. This rapid changeover is a key to reduce the production lot sizes 
and thereby to improve the flow. The words 'single minute' do not mean 
exactly that all changeovers and setups will take no more than one minute, 
but that they should take less than 10 minutes (meaning 'single-digit 
minute'). SMED was originally developed through the analysis of a die 
change process to improve die press and machine tool setups, but its 
principles are applicable to changeovers in all types of processes. The 
SMED technique is used as a part of the TPM system (Nakajima and Bodek 
1988) and as the philosophy of continuous improvement called kaizen9 in 
various studies to reach lean manufacturing. 

Shingo divides the setup operation into two parts:  
 
1. Internal setup: the setup operation can be done only when the 

machine is shut down (for example, attaching or removing the dies);   
2. External setup: the setup operation can be done when the machine is 

still running.  
 
These operations can be performed either before or after the machine is 

shut down (for example, getting the equipment ready for the setup operation 
can be done before the machine is shut down). The four conceptual stages 
of SMED can be defined as follows (Fig. 4-6): 

Preliminary stage: The internal and external setup conditions are not 
distinguished; 

 
Stage 1: Separate the internal and external setups; 
Stage 2: Convert an internal setup to an external setup; 
Stage 3: Streamline all aspects of the setup operation. 
 
The application of Shingo's methodology usually results in two main 

benefits:  
 

9 The word kaizen comes from two Japanese words: 'kai' meaning 'change' and 'zen' 
meaning 'good'. 
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 Increasing the manufacturing capacity;  
 Improving the equipment flexibility.  

 
This allows working with smaller batch sizes, creating a flow of 

materials by eliminating waiting. 
The SMED concept was further expanded with One-Touch Exchange of 

Die (OTED), which is closely associated with SMED but a more difficult 
concept. OTED states that the changeovers can and should take less than 
100 seconds. This means also an ideal reduction or elimination of the setup 
effort required between the operations on the same equipment (Shingo 
1985). 
 
 

 
 
 
Fig. 4-6. SMED conceptual stages and practical techniques. Adapted from Ulutas 
(2011, 1195). 
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4.7 Conclusions 

It is difficult to imagine now that the researches considering 
setup/changeover times started only in the 1980s when serial manufacturing 
companies had already a high level of the environment and the scheduling 
theory had already a 30-years history starting from Johnson's seminal work. 
A deep analysis of the structure and time of the setup activities gave the 
origin to change the production philosophy to a continuous improvement 
provoking a rapid growth of the scheduling theory, an appearance of 
numerous models and approaches.  

The consideration of setup times has two aspects, namely:  
 
 Reduction of time resulting from the improvement in the manufacturers' 

activities;  
 Development and application of scheduling methods.  

 
The first part is close to Toyota's improvement philosophy. 

Nevertheless, there is still a big interest of researchers to scheduling 
problems with setup consideration. Allahverdi, Gupta, and Aldowaisan 
(1999, 219) published a detailed review on scheduling problems involving 
setup considerations for different classes of models and noted the following: 

'For a separable setup, two problem types exist. In the first type, setup 
depends only on the job to be processed, hence it is called sequence-
independent. In the second, setup depends on both the job to be processed 
and the immediately preceding job, hence it is called sequence-dependent'.  

Actually, with an artificial intelligence outlook, we can see that there 
appear new and practical kinds of models, which are every time closer to 
the challenges of the industry. Particularly, new types of a setup appeared, 
such as resource-dependent and time-dependent setup times. With the 
presented state-of-the-art survey, the reader can evaluate a growing interest 
to p-s-d setup times, setup times with deteriorating jobs, as well as setup 
times with forgetting and learning effects. These new concepts appeared 
first in single machine models, but must be studied further also for other 
environments. In addition, surveys involving these new concepts are 
required. 

The reader has a variety of reviews to study setup concepts in different 
contexts. Surveys on scheduling problems involving setup times/costs were 
presented by Allahverdi in co-authorship with other recognized researchers 
in 1999, 2008 and 2015. The authors gave a deep comprehensive analysis of 
the up-to-date situation in this area. A literature review about scheduling 
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and lot sizing with sequence-dependent setup times was given by Zhu and 
Wilhelm (2006). Jungwattanakit et al. (2009) reviewed algorithms for FFS 
problems with unrelated parallel machines, setup times, and dual criteria. 
Sharma and Jain (2015) dedicated their review to job shop scheduling with 
setup times. Recently, Godina et al. (2018), and Silva and Godinho Filho 
(2019) presented systematic literature reviews on the latest trends in the 
SMED, where the reader can meet references to related publications 
classified into numerous categories.  
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CHAPTER FIVE 

GROUP TECHNOLOGY 

 
 
 

GT provides, in fact, the foundation for an evolutionary approach to complete 
automation. 

(Burbidge 1991, 26) 
 
If one looks at a plant, which manufactures many different products, it can 
be found that some products are similar to each other in the shape, the 
construction, the production process, and the resources they require. For 
example, a company produces N different products. However, if we would 
analyze all nomenclature, it can be noted that some products are similar and 
can be grouped, say, one group of x products, another group of y products, 
and so on. To be efficient, all resources, which each group needs, should be 
placed in a separate area, called a machine cell (MC). In such a case, the 
production of a group of components, called part family (PF), would be 
done efficiently because the products are similar and all resources required 
are located in close proximity. The main idea of GT is to explore the 
similarities, which exist among the components of the products, then based 
on simplification and standardization methods, to organize the 
manufacturing activities in such a manner that the production efficiency is 
improved. This approach has various aspects and methods, which are 
considered in this chapter. 

5.1 Group technology history and philosophy 

HV/HM industries are characterized by the manufacturing of a large number 
of components of the same size and configuration. The equipment necessary 
for this type of production requires a high capital investment and a high 
operating flexibility. However, during recent years, manufacturing 
companies direct their steps towards a multi-product and small batch 
production with the goal of adapting to the market movements. These 
movements are characterized by diversified and specialized demands of the 
society as well as short product life cycles. The management of a large 
variety of products to be manufactured with small batch sizes brings 
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enormous complexities into the production process, where frequent 
problems may arise, such as manufacturing inefficiencies, poor workflow, 
high machine cost, high setup time, large inventories, and delivery waiting, 
among many others. In order to face such difficulties in dynamic 
environments, the production management methodologies, such as SMED, 
are insufficient to maintain a high flexibility of the manufacturing. GT and 
Cellular Manufacturing (CM) approaches dispone internal instruments to 
improve the production system while reducing the lead times as well as seek 
to eliminate or minimize the planning complexity and to improve or 
maximize the productivity. 

The term Group Technology has numerous definitions. Maybe, the most 
frequently cited definition belongs to one of the earliest authors, Professor 
V. B. Solaja, who was the Director of the Institute of Machine Tools, 
Belgrade (former Yugoslavia) (Solaja and Urosevic 1969, 157):  

'Group Technology is the realization that many problems are similar that, by 
grouping, a single solution can be found to a set of problems thus saving 
time and effort'. 

In a first survey dedicated to CM, Greene and Sadowski (1984, 85) 
defined GT as  

'bringing together and organizing (grouping) common concepts, principles, 
problems, and tasks (technology), meanwhile CM is the physical division of 
the functional job shop's manufacturing machinery into production cells, 
where each cell is designed to produce a part family'.  

One of the most recognized authors in the GT area, John L. Burbidge, 
offered in his last published paper in 1996 the following definition 
(Burbidge 1996, 261):  

'Group technology is a method of organization for factories in which the 
machine tools, other processing facilities, and people, are divided into 
groups. Each group completes all the parts it makes, at the processing stage 
at which it operates. The machine in each group, must be laid out together in 
one place'. 

For many years, GT did not receive the formal recognition, which it 
deserved, and had not been rigorously practiced as an integral approach to 
the productivity improvement. Nevertheless, its basic concepts have been 
practiced around the world for many years. They can be identified in earlier 
publications under different names and in various forms of engineering and 
manufacturing functions, such as 'good engineering practice' and 'scientific 
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management', for example, in a paper by Hathaway, which was published 
in 1920. 

Systematic studies of the organization of the production commenced in 
the USSR since the 1930s by A. P. Sokolovskiy, S. P. Mitrofanov, and other 
leading Russian engineers, which made some pioneering works in the areas 
of simplification of job processing and reduction of the setup times. 
According to Burbidge (1991, 8), the term Group Technology was 
introduced by Sergey P. Mitrofanov, a Professor of the Leningrad State 
University, USSR, as the title of his research about the relationships 
between the component shape and processing methods. The new theory was 
formalized in his book entitled The Scientific Principles of Group 
Technology, first in Russian in 1946, and after then translated into English 
in 1966 (Mitrofanov 1966, 1946).  

According to Zhang (2013, 33), Mitrofanov's contributions were as 
follows:  

 
 He found that considerable reductions in the setup times, which lead 

to an increasing capacity, could be achieved with lathes. In this case, 
a group of similar parts is created. Then these parts are loaded on the 
machine one after another with the same setup;  

 He also specified a simplification of design and a standardization of 
process as imperative prerequisites to a GT program, and suggested 
a dual classification and coding system: one part for the simplification 
of design and the other one for the standardization of process; 

 He continuously affirmed that the classification of technical 
operations based upon component shape, surfaces, and features 
afforded the best solution for this problem. He illustrated the role of 
classification as the basic problem or solution on which GT is based. 

 
From 1960 on, the factories in the Soviet Union used this GT, and there 

was created a great bibliographic collection on this subject, including the 
fundamental works (Ivanov 1968; Petrov 1968), where, in particular, it has 
been noted that a redesign of the production planning and scheduling system 
is required when applying GT principles to the organization of the 
production. The interest to GT in the USSR may be explained by the 
specifics of a centralized planned economic system, which was peculiarly 
adequate to emerge GT and strong national standardization policies such as 
establishing detailed ranges, which were useful for the development of this 
technology. 

At this time, there existed several reasons to make the GT implementation 
attractive for industrial companies, among others: 
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 An intensive economic progress and the appearance of big 
manufacturing companies had difficulties in the fabrication of 
complex products; 

 There was a request to reduce the production costs; 
 At this time electronic devices appeared for the industrial use and 

data processing, which required an efficient classification and coding 
systems for the manufacturing components; 

 There was a common idea to switch from mass manufacturing to 
small batch production; 

 Due to the rapid technological progress, the manufacturers asked for 
a flexible organization and highly productive manufacturing systems.   

 
Since the release of Mitrofanov's book, GT has attracted a worldwide 

interest. This methodology originally emerged as a single machine concept 
that was created to reduce setup times. This method was further extended 
by Burbidge in a series of works in the years from 1963 to 1996, which 
served as a base for the creation of the CM concept.  

According to Burbidge (1991, 6), an engineering company in Alsace 
followed Mitrofanov's mode. They took a section of lathes and added two 
milling machines. Then two drilling machines were added to form a group, 
which completed all parts it made. At this stage, the meaning of the term 
group was changed from a set of parts to a set of machines. The new term 
of a family (famille des pièces) was introduced to describe a set of parts. In 
the 1960s, the German Professor H. Opitz developed at the Aachen 
Technical University the most commonly used GT classification system, 
which received his name OPITZ, for the design selection, the process 
planning, and the cell formation (Opitz, Eversheim, and Wiendahl 1969). A 
hierarchical code system was developed in the VUOSO research institute, 
located in former Czechoslovakia, for the optimization of the machine tool 
design.  

Meanwhile, in the 1950s, various research institutes in the USA, such as 
the Brich, Brin & Partners Consulting Company, Alliss-Chalmers 
Manufacturing Company, and others, worked on the development of GT 
techniques. E. G. Brisch and J. Gombinski adopted the ideas of Mitrofanov's 
seminal works. They popularized new paradigms in scientific and 
engineering communities for the development of classification and 
encoding techniques as well as the application of them in all aspects of 
industrial activities. In England, the companies Serck Audco, Ferrodo, and 
Ferranti implemented the GT with the support of Brisch's consulting 
company. At that time, it was probably the most advanced approach in the 
utilization of GT concepts among all industrial countries. The government 
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of England has supported a Group Technology Center since 1968, and the 
British Institution of Production Engineers has formed a Group Technology 
Section. Nevertheless, Eng. Joseph Gombinski, the Managing Director of 
the Birch Company, highlighted in his paper the urgent need to improve the 
productivity in the British industry. He also noted a lack of attempts, which 
have been made to apply GT in the country because with GT, a substantial 
increase can be achieved in the productivity of engineering industries, 
particularly when the production is on a one-off or small batch basis. These 
increases arise from an improved utilization both of the manpower and the 
machines with a corresponding cost reduction. Giving such a high 
importance to the GT application, Gombinski concluded that the resistance 
to change may be one reason for the slow acceptance of GT (Gombinski 
1967, 557). More than 50 years after the publication of this paper, one can 
conclude that the principles and methods of GT are still implemented 
insufficiently in modern manufacturing.  

In the 1970s, the concept of standardization was stabilized in GT, while 
a general classification of the attributes of the components was made, 
namely: 

 
 Geometric or graphic characteristics: size, shape, etc.; 
 Functions of the components: handle, clamp, etc.; 
 Depending on the manufacturing type: lot size, process path, etc.; 
 Raw material of the piece. 

 
From the 1970s on, Professor John L. Burbidge conducted work in 

Turin, Italy, and then at the Cranfield University, UK. He made a significant 
contribution to the methods of Production Flow Analysis. Then in the 
1980s, different coding methods were developed in the USA, Japan, and 
Europe. At the same time, many companies implemented the JIT method. 
The JIT philosophy implied changes at all levels of the production, from the 
manufacturing by the functional departments to the manufacturing cells, 
where the maximum number of operations is made and the staff is 
responsible for the product quality, in addition to seeking a continuous 
improvement at all production stages, from the design to the final product. 
Then the theory was extended to grouping and scheduling problems in shops 
with setup times dependent on the job sequence (Flynn 1987).  

The concept of the coefficient of similarity between the individuals for 
the group formation attracted attention first for the taxonomic studies at the 
end of the 1960s (Rubin 1967, 108; Gower 1971). Initially, it was defined 
and used as a parameter, allowing products to be grouped by a heuristic 
method, instead of the basic concept of 'exploiting similarities', which was 
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taken from the GT philosophy and which has been used to address the 
classification problem in a creative way. From the pioneering work by 
McAuley (1972) onwards, a systematic exploitation of  similarity 
coefficients in GT has begun to group parts into families and create machine 
cells. 

Although technological improvements are typical for modern 
manufacturing plants, nowadays it is rather common to have high setup 
times, up to 8–24 hours, in some phases of the production processes like in 
the tile or semiconductor manufacturing (Delgado-Arana et al. 2017, 208). 
Therefore, is still important to seek for a reduction of the lead time by using 
the JIT, SMED, and other philosophies. It is the reason to follow with the 
development and implementation of GT into practice. In Fig. 5-1, one can 
note a stable interest of researchers to the GT theory and applications.  
 

 
 
Fig. 5-1. Number of documents with references to GT in Scopus in the period 1969-
2019.  
 

 
 
 
 
 

  

 EBSCOhost - printed on 2/9/2023 3:05 AM via . All use subject to https://www.ebsco.com/terms-of-use



Group Technology 131 

According to the Scopus10 database, there are 3,278 documents with the 
words 'Group Technology' in the article title, abstract, and keywords areas 
in the period from 1969 (first reference) to March, 2020, and 865 documents 
in the period 2010-2019.   

GT principles may be applied to any industrial entity ranging from the 
manufactured parts and the capital equipment to the decision processes, and 
to human characteristics with the aims to take advantage of the similarities 
that exist among the items, with the goal to increase the corresponding 
effectiveness. Principal aspects and approaches of GT are considered 
thereafter. 

5.2 Part family 

A part family is a collection of similar parts that share a specific design 
and/or manufacturing characteristics, identified for a well-defined purpose 
(Tatikonda and Wemmeröv 1992, 2088). The part family is the key concept 
of GT. Components having similar characteristics are grouped into families, 
and a new family member can be created by modifying the characteristics 
of an existing component from the same family.  

The advantage of the use of similarities that exist among the items 
appears through increasing the effectiveness by: 

 
 Allowing similar, recurring activities to be realized together (for example, part family scheduling); 
 Standardizing similar actions to control new activities and the 

efficient utilization of the resources; 
 Supporting the access and recovering the actual and historical 

information retrieval to make that information accessible and usable. 
 
The group attributes, which are usually considered, are as follows: 
 
 Design: geometry, shape, tolerances, finishing, material; 
 Manufacturing: production process, processing time, sequence of the 

operations, tools required, fixtures required, lot/batch size; 
 Combined: features, which combine the best characteristics of both 

the design and manufacturing attributes.  
 
The parts in a family may use similar treatment, handling and control 

methods. These methods do not require a considerable adjustment in-
 

10 Scopus is the abstract and citation database of the Elsevier publisher.    
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between, therefore the setup times are eliminated or reduced when they are 
processed together.  An efficiency increment is achieved due to various 
indices, such as joint scheduling, facilitated control, standardized product 
design, group layouts, and advanced personal learning, among others.  

It is typical that the parts, which belong to the same design family, are 
also produced by using similar manufacturing processes. However, there 
may occur a different situation. Let us suppose that there are two parts with 
identical design, but one part is made from plastic and the other one from 
steel. The manufacturing processes would be an injection molding for the 
plastic reel and a turning operation for the metal reel. In this case, the family 
design is common; however, the production processes are unrelated. It is 
the reason why the part families are assigned to groups along with the 
machines required to produce these parts.  

5.3 Grouping methods 

Part families may be formed in one of the two ways as follows:  
 

1. Grouping parts, which have similar design attributes within a certain 
dimensional range and most or perhaps all machining operations in 
common;  

2. Grouping parts, which have dissimilar geometry but one or more 
machining operations in common. This is rather a similarity in the 
production process than in the form or size.  

 
Therefore, before grouping, the objectives of generating the part families 

must be made clear, whether they are related to the product design or 
manufacturing applications. Once the objectives are determined, the 
relevant attributes for a part family are identified. Then the part families 
may be formed on the base of an appropriate grouping method. 

Various methods are available for creating the part/machine groups and 
formation of cells in the literature. As can be seen from Fig. 5-2, the 
principal approaches are:  

 
1. Visual inspection;  
2. Classification and coding; 
3. Production flow analysis (PFA).  
 
These methods are briefly reviewed below.   
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Fig. 5-2. Taxonomic framework for GT. 
 

Visual inspection is an archaic method to form part families. It is simple 
and the least expensive one. An expert evaluates empirically the parts with 
similar features and classifies them into appropriate families on the base of 
the critical attributes and the proper experience. This method is prone to 
error, relies very heavily on the expertise conditions and the experience of 
the inspector. Actually, it is rarely used in practice, except, maybe for a 
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small number of parts. It may be employed as a starting point by which one 
can begin to judge, whether GT seems to make sense in his environment. 

The part classification and coding approach identifies similarities and 
differences among the parts and assigns codes depending on their 
characteristics and according to a coding scheme. Based on these codes, 
parts are grouped into part families. This method can also be used for the 
inverse procedure: identification of part families using a coding scheme. 
The classification and coding systems are considered more in detail in 
Section 5.4. 

Production flow-based system, which is also referred to as PFA, is a 
technique for finding both GT groups and their associated families by 
analyzing the operation sequence and the routing of the components over 
the machines in the plant. The concept of PFA was first introduced by 
Burbidge (1963). Then the author extended this concept in a series of papers 
and books. He proposed the change of the GT paradigm from the 
classification and coding meaning (Burbidge 1991, 10): 

'It is probable that parts which are similar in shape or function can be made 
by the same group (set) of machines',  

to PFA:  

'Parts which are made using the same set of machines can be made in the 
same group'.  

Burbidge indicates also another difference between classification and 
coding from one side and PFA from the other side:  

'PFA is a technique for simplifying material flow systems, while classification 
and coding ignores this aspect of the problem'.  

Actually, classification and coding systems are mainly developed, but 
the attention of researchers still attracts the PFA approach. Various 
methods, which have been developed since then for machine/part grouping 
methods, belong to this category. In this book, the PFA method is described 
more in detail in Section 5.5. The extensions of this method are discussed 
in Sections 5.6-5.7.  

5.4 Classification and coding systems  

Classification is a basic concept in GT. It represents a logical and systematic 
way to declare the similarity of things to form groups and detect differences 
inside of these groups to form subgroups. In the following section, the main 
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definitions of this part of the GT theory are given, a taxonomy of the 
classification and coding systems is discussed, and the Opitz code, which is 
a comprehensive coding and classification system for work pieces, is 
described.  

5.4.1 Basic classification assumptions 

Three types of activities are necessary for applying the GT (Tatikonda and 
Wemmeröv 1992, 2088): 
 

 Determination of critical part attributes that represent the criteria for 
a part family membership; 

 Allocation of parts to established families; 
 Retrieval of part family members and related information. 

 
Classification and coding systems assist in these activities by providing 

a code structure for jointing parts into groups, which are based on the 
selected attributes and by assigning a code to each part.  

A classification and coding system groups the parts into families. The 
classification assists in assigning a group to a part on the base of the selected 
attributes, and the coding serves for the identification of a unit by its code. 
The classification precedes the coding of parts, that is, the assignment to the 
class, to which a part belongs, is first performed for each critical part 
attribute.  

Some reasons for applying the classification and coding procedures to 
the parts are: 

 
 A fast identification of a similar family member in the database. It 

may be useful for the design of new parts; 
 The part code for a new part can be employed for planning using 

already existing parts, which have identical or similar codes; 
 The part codes can be taken to design the machine cells capable of 

producing all members of a particular part family using the 
composite part concept.  

 
There exist numerous possible coding strategies. It is difficult to know 

in advance, which attributes can be identified and which software can be 
used. Therefore, it is important to guarantee the flexibility of the database 
structure to add enough attributes and to modify the coding schemes as 
necessary for new applications. 
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There is a variety of classification and coding systems, which were 
developed for parts or machined components, and many efforts have been 
made to show the advantages of a particular system. These systems may be 
completely manual, computer-assisted with an interactive expert system or 
mixed. The classification systems can be seen just as a tool to solve 
problems, which arise in the manufacturing process and which are 
concerned with a great variety of components. These systems can be 
evaluated only by the contribution to the solution of the stated problems 
(Opitz and Wiendahl 1971, 183). For this goal, a company can develop its 
proper classification system based upon either a universal system or another 
tailor-made system installed by outside consultants or in-house experts.  

A description of the methodology for the selection and use of an 
appropriate classification and coding system can be met in the paper by 
Tatikonda and Wemmerlöv (1992), where six case studies are considered 
for real manufacturing plants. A short history of former classification and 
coding systems was also presented.   

A classification system should be in line with the four principles 
developed by Brisch as follows (Benhabib 2003, 84): 

 
1. All-embracing – an adopted classification system must be inclusive 

to embark all available parts within the population and be capable to 
classify future product features;  

2. Mutually exclusive and unambiguous – every part must belong to one 
class only; 

3. Based on permanent features – only final features are considered and 
not any intermediate one; 

4. Be obvious for the terminal users.  
 
The development of a classification system begins with a detailed 

review of past products and the identification of the primary attributes. A 
common practice is to separate first rotational and non-rotational parts, see 
Fig. 5-3. Once the overall classes have been determined, the next step is the 
examination of each class for differences. For this reason, other critical 
attributes, such as external features (mortises, grooves, slots), internal 
features (holes, threads, cavities), the ratios 'diameter-to-length' for 
rotational parts or ratios ‘maximal dimension-to-minimal dimension’ for 
non-rotational parts must be considered and systematized, etc.  
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a) Rotational parts         b) Non-rotational parts 
 
Fig. 5-3. Overall review of geometrical similarity. Adapted from Benhabib (2003, 
85). 
 

The classification by shape usually determines the manufacturing 
process, whereas the classification by function is of interest to the designer. 
In the case when a new part has similar functions with an already existed 
one, the designer does not have to duplicate it. 

5.4.2 Code structures 

The code of a part is a string of alphanumeric characters, which provides 
information about the part. This is in contrast to a part number, whose 
purpose is the identification of an item and not its description.  

A code is created on the base of an alphabet. It includes numbers, letters, 
and other symbols, and has a determined length and a structure. The 
symbols are usually alphanumeric, although most systems use only 
numbers. The length is the number of the positions in the code. It should be 
as short as possible and have a fixed length and pattern. The structure is the 
order of the code symbols, which are used for the identification of the 
selected classifying attributes. 

There exist various coding systems. The most used ones for the part 
family coding are of the next three types: polycode, monocode, and mixed 
structure.  

 
a) Polycode (chain-type structure) 
In this code structure, every digit represents one feature. The value of any 
given digit or position within the code is not related to the other digits. It 
can consist of various sections for different groups of attributes. It is a 
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position-based code, in which each position in the sequence has always the 
same interpretation. Each digit of the code represent an attribute as shown 
in Fig. 5-4.  

 
Advantage:  
 Easy to formulate.  

 
Disadvantages:  
 Very specific information is stored per digit and therefore, to get an 

exhaustive information about a part, a long code is required;  
 Polycodes are longer than monocodes;  
 The comparison of codes to seek the similarities between the parts 

requires a longer time than more advanced code structures. 
 

 
 

Fig. 5-4. An example of a chain-structured code. 
  
b) Monocode (hierarchical structure) 
The code is formed using a hierarchical structure, where the value of every 
next level is a refinement of the previous level value, and each element of 
the structure has a range of values.  

 
Advantages: 
 A shorter length of the code compared to the chain-type structure;  
 More information can be contained in a smaller number of symbols 

in the code;  
 The hierarchical codes are easily to interpret by a computer. 
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However, the codified information must have a hierarchical structure 
(Fig. 5-5). The majority of known coding systems have monocode sections.  
 

 
 

Fig. 5-5. An example of a hierarchical structure of a code.  
 
c) Hybrid (mixed structure) 
This type represents a combination of hierarchical and chain-type structures, 
i.e., a hybrid coding system is a combination of both polycode and 
monocode sections, taking advantage of both structures. Most of the 
available coding systems use this type of structure. Opitz' coding system has 
characteristics of a mixed structure. A hybrid structure combines the best 
qualities of a monocode (synthesis into subgroups) and the best qualities of 
a polycode (individual feature coding independence). The first digit in a 
hybrid structured coding system is usually a monocode, and the polycode 
makes up the rest of the digits. A formal example of a hybrid code is given 
in Fig. 5-6.   

 
  Polycode         Monocode        Polycode 
 
Fig. 5-6. An example of a code with a hybrid structure. 
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5.4.3 Taxonomy of classification and coding systems 

Code-based systems were the primary tools disponed by GT in the 1960s 
and 1970s. This approach permitted to form the families by coding the parts 
with respect to their design-based features, such as shape, size, and 
tolerance. S. P. Mitrofanov introduced the concept of using design features 
for the purpose of describing and grouping similar parts in 1946. The Brisch 
Birn system, which was the first GT-oriented coding system, appeared in 
1964 in UK due to E.G. Brisch and J. Gombinski for the Brisch & Partners 
Consulting Company's necessities. One of the most popular systems, the 
Opitz non-proprietary system, was developed in 1965 at the University of 
Aachen, West Germany, as a part of the PFA method. Later, Opitz with 
various coauthors have extended the idea of part classification to the 
production cell. This last concept means the grouping of machineries, which 
are used to process an individual part family. They have developed a 
comprehensive coding and classification system for work pieces.  

Since these pioneering works, several coding and classification systems 
have been developed to facilitate the part grouping.  Some known coding 
systems are enumerated and characterized in Tables 5-1a and 5-1b, and then 
shortly discussed.   

5.4.4 The Opitz classification and coding system 

One of the first classification systems has been proposed by Opitz and 
Wiendahl (1971). It served for the identification and grouping of similar 
work pieces by means of symbols. Although originally developed for work 
pieces, the methodology was of general nature. It can be adapted to 
structurally defined machine tools. 

The basic idea for a work piece classification includes the following 
steps: 

 
1. Identifying single parts; 
2. Classifying and giving a survey; 
3. Ordering; 
4. Clearing, unifying. 
 
The code has a hybrid structure (semi-polycode) and three sections with 

up to 13 digits. It starts with a design-oriented 5-digit geometric form code, 
followed by a 4-digit supplementary code. The supplementary code 
describes other information about the work piece, which was not covered 
by the form code. At the end, the code may be followed by a company-
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specific 4-digit secondary code for description of production operations and 
sequencing (Fig. 5-7): 

 
 The form Code 1 2 3 4 5 for the primary geometrical design 

attributes; 
 The supplementary Code 6 7 8 9 for the manufacturing attributes; 
 The secondary Code A B C D for the production operation type and 

sequence. 
 
Fig. 5-8 shows the layout of the Opitz classification and coding system. 
The first digit of the Opitz code is the most important digit. It 

characterizes the general shape of the work piece, meaning that the part class 
is subdivided into the rotational and the non-rotational parts. For example, 
the first digit numbers 0 to 2 attribute the rotational parts with a certain 
longitude/diameter (L/D) ratio. For the rotational pieces, a subdivision 
according to the length-to-diameter ratio was performed to recognize disc-
type, medium and shaft-like parts. In the part class 4, denoting rotational 
parts with deviations, there is a subdivision into a short and a long form. 

The digits 2 and 3 are subsequent to the first digit numbers. The second 
digit defines the external shape and its relevant form elements. The third 
digit describes the form and position of the main bores. The fourth digit 
identifies the plane machining, and the fifth digit gives the auxiliary holes, 
the gears and the forming. 
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Name Developer Characteristic Description 
Reference 

1. Brisch-
Birn system 

Brisch & 
Partners, UK-
USA, Brisch 
and Gombinski, 
1964 

Monocode-oriented 
structure. Has 6 sections: 16 
digits for the family name 
(class-3, subclass-4, gro-up-
4, subgroup-1, series-1, 
subseries-3), and a 3-digit 
sector (Christian name). 

Hallett (1964); 
Gombinski 
(1968); 
Patel (1991, 
54) 

2. OPITZ 
(Work piece 
Describing 
Classificatio
n System) 

Girardot Verlag, 
Essen; 
University of 
Aachen, 
Germany, Opitz 
and Wiendhal, 
1965-1971, 

Semi-polycode structured 
code with up to 13 digits. It 
is applicable to both 
machined and non-
machined parts. Has 3 
sections: a 5-digit geometric 
code; a 4-digit 
supplementary code; at the 
end it may be followed by a 
company-specific 4-digit 
secondary code for the 
description of the 
production operations and 
sequencing. 

Opitz, 
Eversheim, 
and Wiendhal 
(1969); 
Opitz and 
Wiendhal 
(1971, 183–87) 

3. SAGT 
(Systematic 
Approach to 
GT) 
 

West Lafayette, 
IN, USA, 
Purdue 
University, 
Abou-Zeid, 
1973 

Polycode structured code. 
It is both design and 
production oriented. Has an 
18-digit alphanumeric 
coding system for 
cylindrical work pieces 

Abou-Zeid 
(1975); 
Offodile 
(1984, 40–41) 

4. 
MICLASS 
(Metal 
Institute 
Classification 
System) 

Organization for 
Applied 
Scientific 
Research 
(TNO), 
Netherlands, 
1974 

Semi-polycode structured 
code. Has from 12 to 30 
digits in 2 sections: 12 
digits are a universal code 
that can be applied to any 
part; 18 additional digits 
are specific for the 
particular company or 
industry.  

Houtzeel and 
Schilperoot 
(1975); Hyde 
(1981);Houtze
el (1981);  
Patel (1991); 
Elanchezhian, 
Selwyn, and 
Sundar (2008); 
Narayan and 
Mallikarjuna  
(2008); Hout- 
zeel and Schil-
peroot (1975);   
Hyde (1981) 

 
Table 5-1a. A survey of coding systems for manufactures with lot processing (I). 
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5. MultiClass Organization for 
Industrial 
Research (OIR) 

Monocode-oriented or 
decision-tree coding 
structure. The main part 
contains 18 digits. 

GT in MFG 
system (n.d., 
ch 4, 9) 

6. CODE Jay Bergen and 
Associates, 
Manufacturing 
Data Systems, 
Inc. (MDSI), 
USA, 1975 

Semi-polycode structured 
code. Has 8 hexadecimal 
digits 0-9 for the design of 
parts and A-F for 
manufacturing 
characteristics.  

Patel (1991, 
36) 
Elanchezhian, 
Selwyn, and 
Sundar (2008) 

7. KK-3 The Japan 
Society for the 
Promotion of 
the Machining 
Industry 
(JSPMI), 1976 

Chain-structured code. Has 
21 decimal digits. A 
general-purpose 
classification and coding 
system for machined parts.  

Patel (1991, 
38–39); 
Narayan and 
Mallikarjuna 
(2008) 

8. 
COFORM 
(COding 
FOR 
Machining) 

Rose at Purdue 
University, 
USA  

A generative process 
planning system with a 
coded input system. The 
code describes each surface 
in terms of attributes 
needed to select the 
appropriate machining 
processes and the related 
parameters (feed, speed, 
and depth of cut). It does 
not contain a description of 
nonmachined features, so it 
cannot be used for a CAD 
system.  

Wysk (1977); 
Patel (1991, 
45) 
 

9. DCLASS 
(Design and 
Classification 
Information 
System)  

Brigham Young 
University, 
USA; Allen K. 
Dell, 1985 
 

Semi-polycode structured 
decision-logic handling 
system. Has an 8-digit code 
in 5 code segments (basic 
shape-3, form features-1, 
size-1, precisi-on-1, and 
material-2). Supports a 
generative process 
planning system   

Kunzler and 
Nakornachal 
(1982); 
Patel (1991, 
43); 
Narayan and 
Mallikarjuna 
(2008) 

 
Table 5-1b. A survey of coding systems for manufactures with lot processing (II). 
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Fig. 5-7. The Opitz code structure. 
 
 

 
 

Fig. 5-8. The Opitz classification and coding system. Adapted from Opitz and 
Wiendahl (1971, 184).  

 
In a similar fashion, the non-rotational parts are divided into flat, long, 

and cubic parts according to the ratio of length and width. 
An example of the Opitz code is given in Fig. 5-9.  
The Opitz coding system can also be interpreted in a matrix form (Fig. 

5-10). The parts to be coded are listed on the vertical axis. Their respective 
design and processing features are listed on the horizontal axis. Each cell 
entry represents a particular attribute of a given characteristic on the 
horizontal axis. The string of numbers on each row represents the code 
number in the coding system. 

Besides the form codes, additional information is necessary for a 
complete classification, which is collected in a so-called additional code. 
After the classification of the components in the first step, an analyst obtains 
a total panorama of the parts. In the next step, groups of similar parts are put 
into classes. In the last step, clearing and unification can take place. 

Similarities between parts, captured by the GT code, are used by 
manufacturing engineering, purchasing, and sales. A manufacturer can 
drastically reduce the time and the effort spent deciding how a part should 
be produced if this information is available for a similar part. 
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Fig. 5-9. An example of a part code of rotational shape. 

 

 
 

Fig. 5-10. A part/code matrix.  
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5.5 Production flow analysis 

As it has been pointed out by Burbidge (1991, 10), the PFA consists of five 
sub-techniques used progressively to simplify the material flow system in 
an enterprise, namely:  
 

 Company flow analysis (CFA) - analysis of the material flow 
between different factories of the company and development of a 
new simpler system; 

 Factory Flow Analysis (FFA) – grouping the departments of the 
plant. Each of these groups completes all parts it makes. The 
development of a simple unidirectional flow system between these 
groups of departments; 

 Group analysis (GA) – each department is divided into groups by 
using the matrix resolution and starting with the departments, which 
complete parts, avoiding backflow or crossflow (between the n 
groups) and buying any additional equipment; 

 Line analysis (LA) – the flow between the machines in each group to 
detect the plant layout; 

 Tooling analysis (TA) - matrix part/tools resolution to reduce the 
setup times.  

 
Burbidge considered FFA and GA as the main techniques to find the 

machine groups and the part families.  
One of the advantages of the PFA method is that a part family can be 

formed without using a classification and coding system, since the part 
families are determined by the data from the operation orders. There are also 
a number of drawbacks in the implementation due to the complexity of the 
analysis of the production data.  

Some systematic methods were growing from the PFA methodology to 
front with the grouping problem. The most frequently used ones are based 
on the machine/part incidence matrix, see the reviews by Offodile, Mehrez, 
and Grznar (1994), Selim, Askin, and Vakharia (1998), as well as 
subsequent sections of this book.  

A machine/part incidence matrix is determined and then rearranged to 
identify the groups of machines and parts. This matrix representation is 
based on cell admissibility principles.  

A cell is admissible only if the part requires processing on the 
corresponding machine. Otherwise, it is not admissible. The elements  of 
the matrix are defined as follows: 
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= 1, if part  visits machine ;0, otherwise.    (5-1) 

 
This is referred to as the machine/part matrix. If '1' is written at the 

intersection of row i and column j in the matrix ( = 1), it indicates that 
part j has an operation on machine i, whereas a '0' indicates that this is not 
the case. The order of visiting the machines by every part is not important.  

The array-based techniques try to allocate machines to groups and parts 
to associated families by appropriately rearranging the order of rows and 
columns to find a pattern called block-diagonal form with the values =1 in the incidence machine/part matrix. A value '1' outside the block is 
known as an exceptional element. A value '0' inside a cell is known as void. 
The objective is to minimize the exceptional elements and voids (Ünler and 
Güngör 2009, 1180).  

The rearrangement process is quite subjective and difficult, especially 
for large matrices. An example of an incidence matrix and the 
corresponding block-diagonal form matrix are given in Fig. 5-11 and Fig. 
5-12, respectively. 
 

Machine 
No. 

Part No.  

1 2 3 4 5 6 7 8  
1   1  1    2 
2  1 1   1   3 
3 1   1   1 1 4 
4  1 1  1 1   4 
5 1   1   1 1 4 

 2 2 3 2 2 2 2 2  
 
Fig. 5-11. An example of the incidence matrix resolution in the PFA approach: initial 
matrix. 
 

Column 1 (Fig. 5-11) shows that part 1 visits two machines, 3 and 5. 
Furthermore, row 2 displays that machine 2 processes three parts, namely, 
2, 3, and 6. The last column and last row contain a complementary 
information about the total value of each machine/part, respectively. Two 
part families and two machine cells are visible in the rearranged matrix (Fig. 
5-12). These machine cells are: MC1={3,5} and MC2={1,2,4}. Consecutively, 
the two part families are: PF1={1,4,7,8} and PF2={2,3,5,6}. 
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The PFA theory has been extended by other authors (King 1980; King 
and Nakornchai 1982).  

Ei-Essawy and Torrance (1972) proposed a technique similar to PFA 
called the Component Flow Analysis (CFA). The methodology of the CFA 
has differences with Burbidge's PFA procedure since the latter one first 
partitions the problem, whereas the former does not.  
 
 

MC 
PF1 PF2  

4 1 8 7 2 6 3 5  

MC1 
5 1 1 1 1     4 
3 1 1 1 1     4 

MC2 
4     1 1 1 1 4 
2     1 1 1  3 
1       1 1 2 

  2 2 2 2 2 2 3 2  
 
Fig. 5-12. The incidence matrix resolution in the PFA approach: rearranged matrix. 

5.6 Similarity coefficient  

The similarity coefficient is a principal measure, which is employed in GT 
applications for the formation of the part families and the machine cells. 
Compared to the other methods, similarity-based methods incorporate more 
flexibility into the machine-component grouping process and more easily 
lend itself to the computer application.  

The similarity coefficients can be classified into two distinct groups: 
 
 Problem-oriented; 
 General-purpose.  

 
General-purpose similarity coefficients are widely used in different 

disciplines, such as biology, sociology, medicine, economics, engineering, 
etc., in numerical studies to build up taxonomic classifications.  

Taxonomy is initially a science of a biological classification of objects 
based on their possession or lack of relevant characteristics. When these 
characteristics can be expressed numerically, the objects can be classified 
by a numerical taxonomy (Carrie 1973). The problem-oriented similarity 
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was designed to solve a specific problem, particularly, the cell formation 
problem.  

In GT, the numerical taxonomy is a method of analysis, which involves 
three stages: 

 
1. Prepare the data matrix; 
2. Compute the similarity coefficient matrix; 
3. Perform a cluster analysis. 
 
After introducing the PFA methodology by Prof. J. L. Burbidge  (1963), 

there was a lack of a quick, simple, and cheap method for finding the 
families and cells. The similarity coefficient approach filled this gap. 

Below, this subject and relevant methodologies are discussed in more 
detail.    

5.6.1 Definition and properties 

A similarity coefficient measures the resemblance between two individuals 
based on either one or both of two logically distinct kinds of information 
pertaining to K attributes and allowing for possible missing information 
(Gower 1971, 858–59). Two individuals i and j may be compared on an 
attribute k. A score = 0 is assigned when i and j are considered to be 
different, and a positive fraction = 1 when both individuals have some 
degree of agreement or similarity. If  = {0,1}, the attribute k is either 
present or absent in both individuals. It indicates a dichotomous character 
of the attributes, where the presence of the attribute k is denoted by '+' and 
its absence by '-'. 

There are many ways of calculating , some of them are described 
below. Sometimes no comparison is possible because the information is 
missing or in the case of dichotomous variables, an attribute is non-existent 
in both i and j. The possibility of making a comparison is represented by the 
value = 1 if the attribute k allows to compare the individuals i and j, 
and = 0 otherwise. If = 0, the score  is unknown and set to be 
equal to zero. The similarity between i and j is defined as the average score 
taken over all possible comparisons: 

 = .      (5-2) 
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Obviously, if = 0, , k = 1, …, K, the similarity  is undefined. 
If all comparisons are possible, = , where K is the total number 
of attributes. Otherwise, it is the number of characters over which the 
comparison is made (Fig. 5-13). 

 

 
 

Fig. 5-13. Comparison of dichotomous components. 
 
A weighted similarity coefficient can be defined by the following 

formula:  
 = ,      (5-3) 

 
where  is a constant weight of the attribute k. 

Three types of similarity coefficients can be identified in the literature:  
 
1. Association;  
2. Correlation;  
3. Distance. 
 
The association type of a similarity coefficient measures the value of 

similarity between pairs over a given data set using binary codes. A 
similarity coefficient by association has been defined in several ways 
(Rajagopalan and Batra 1975, 571; King and Nakornchai 1982, 123). For 
the correlation type of similarity, the mutual relationship between pairs of 
data to be grouped is established by the correlation equations (McAuley 
1972, 54; Carrie 1973, 404; Hachicha, Masmoudi, and Haddar 2008, 1158–
60). A distance type in a similarity coefficient is used to measure the 
dispersity between two points within a data set. In most cases, this coefficient 
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is defined by a distance formula (Chandrasekharan and Rajagopalan 1986, 
453; Andrés et al. 2005, 277–78; Shafer and Rogers 1993a; 1993b).  

The main difference between an association-type similarity coefficient 
and distance type coefficient measures is that the first one is normalized to 
1. For GT problems, an association-type similarity coefficient is preferred 
to a distance measure coefficient. The distance coefficients tend to favor 
dissimilar pairs of data more than similar pairs, since the coefficient 
becomes larger for the more distant (dissimilar) pairs. However, the ratio of 
the total number of observed matches to the total number of possible 
matches received most acceptance. 

5.6.2 Part grouping 

Carrie (1973, 404) suggested the following definition of a similarity 
coefficient for the part grouping problem in GT: 
 = ,     (5-4) 

 
where 
  

  - similarity coefficient between the parts i and j; 
M   -  number of discrete variables in the data set; 

i   -  set of operations required for part i; 
j   -  set of operations required for part j. 

 
This definition implies that  has always a positive value between 0 for 

the maximum dissimilarity and 1 for the maximum similarity. This means: 
 
1. 0 1; 
2. = 1 implies a maximal similarity; 
3. = 0 implies a minimal similarity; 
4. =  implies symmetrical properties. 
 
In some cluster analysis problems, the dissimilarity coefficient is 

sometimes used. Dissimilarity and similarity measures are complementary. 
Thus, the dissimilarity between the two parts i and j is: = 1.       (5-5) 
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5.6.3 Shape-based similarity for the part family formation 

Offodile and Grznar (1997) introduced a similarity coefficient-based 
methodology for a part coding and classification system. A mathematical 
formulation and a grouping algorithm were proposed with the objective to 
maximize the sum of the similarity measures.  

The similarity between any two parts is as follows: 
 = ,     (5-6) = 1 ;     (5-7) = 1, if parts  and  are comparable for attribute ;0, otherwise.  (5-8) 

 
Where 
 

  - similarity between part i and part j; 
 - score between part i and part j for the attribute k;   - weight assigned to part i for the attribute k; 
  - weight assigned to part j for the attribute k; 
  - range of the attribute k taken over the population of parts; 

K    - number of attributes. 
 
Following such a definition, if = , k =1,…,K, then = 1 and = 1. This implies a maximal similarity. In the opposite case, , 

and either [ = 0 or = =  or  = 0 k =1,…, K, for 
a minimal similarity.  

The case when = 0 implies that there is no basis to compare the 
parts i and j for the attribute k. Therefore, the score  between part i and 
part j is unknown and can be set equal to zero.  

If  = 0,  k =1,…, K, then the similarity  is undefined, but it can 
also be set equal to zero for convenience. Otherwise, we have 0 1, ,  i, j =1,…, n; and = 0, = ,  i, j =1,…, n. 

However, it is unlikely that = 0, ,  k =1,…, K. This is because in 
practice, the same coding system is often used to code all parts in an 
installation. Therefore, the parts will share a common database. However, 
such a case implies that the parts have nothing in common, and there is no 
basis for GT. Nevertheless, such a situation is very rarely occurring in 
practice.   
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The last term in Formula (5-7) is a dissimilarity measure, which displays 
the relative difference between the codes for part i and any other part j, 
compared on the base of the attribute k. Therefore, the term shows how 
dissimilar parts i and j are, and whether these parts can be grouped together. 

5.6.4 The Jaccard similarity coefficient for the cell formation 

McAuley (1972, 54) was the first researcher to apply the Jaccard similarity 
coefficient to the cell formation problem. McAuley calculated the Jaccard 
similarity coefficient for each pair of machines. These similarity 
coefficients give a measure to calculate how similar the two machines in the 
pair are, taking into account the number of parts, which visit both machines, 
and the number of parts, which visit one of the two machines only. An 
example of the incidence machine/part matrix is given in Fig. 5-14. In this 
matrix, a cell (i, j) takes the value '1', if part j visits machine i, and '0' 
otherwise.  
 

Machine 
No. i 

Part No. j 
1 2 3 4 

1 1 1  1 
2 1 1   
3 1  1 1 

 
Fig. 5-14. Machine/part incidence matrix. 
 

The basic arrangement of the pairs of machines for the computation of 
the similarity coefficient is a 2×2 matrix as it is shown in Fig. 5-15. The 
elements of the matrix are as follows. The upper case (capital letter) of a 
subscript indicates a 1-state, i.e., the part visits the machine. The lower case 
of a subscript denotes a 0-state when a part does not visit the machine. 
Conversely, if the machines j and k are considered, NJK is the number of 
parts visiting both machines; Njk is the number of parts, which visit none of 
the machines; NJk is the number of parts, which visit machine J and not 
machine k; NK is the number of parts, which do not visit machine j but visit 
machine k.  
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Fig. 5-15. Matrix of the two-machine relationship. 

 
The similarity coefficient for the machines j and k is given as the number 

of components NJK, which visit both machines, divided by the sum of the 
same number NJK and the number U of components, which visit one of the 
machines, as follows by the formula: 

 =  ;       (5-9) 

 
where = + .  

According to this formula, the possible similarity coefficients are: 
 , =  = 0.67; , =  ( ) = 0.5; 

, =  ( ) = 0.25. 
 
For m machines, the number of coefficients to be calculated is given by 

the number of combinations of pairs of machines: 
 2 = ( ) .      (5-10) 
 
The calculations can be reduced because machines j and k with at least 

one part in common have non-zero values. In addition, since Sjk = Skj, it is 
only necessary to calculate a triangular matrix of the similarities with the 
leading diagonal omitted. 

The grouping of machines can be justified by a dendrogram (Fig. 5-16). 
In such a dendrogram, the abscissa-axis has no special meaning. It is used 
only for the separation of the involved machines, while the ordinate shows 
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the similarity coefficient, commonly in percent. The points of junction 
between the stems mean that the resemblance between the two stems is at 
the similarity coefficient level, which is shown on the ordinate. 

5.6.5 Modified McAuley similarity coefficient for the cell design 

A variant of the McAuley similarity coefficient was proposed by 
Rajagopalan and Batra (1975, 571). It was defined by the formula:  
 = ,      (5-11) 
where 
  

  - similarity coefficient between machines i and k; 
  - number of components using both machines i and k; 
  - number of components using only machine i;  
 - number of components using only machine k.  

 
 

 
Fig. 5-16. A dendrogram for grouping machines on the base of the similarity level. 
 

In this definition,  lies between 0 and 1 for a maximum dissimilarity 
and similarity, respectively. 

Once the similarities between the different pairs of machines are 
calculated, the machine cells are then formed. Machines can be combined 
into a group if and only if the similarity coefficients are greater than a 
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threshold value T, which is established by an expert and verified by a 
dendrogram. 

5.6.6 Similarity-based distance between parts 

Part families, determined by common manufacturing and design attributes, 
are not necessarily connected. Andres et al. (2005, 277–78) proposed an 
approach to calculate a coefficient of similarity between parts, which is 
based on the production data. This coefficient is different from the 
traditional one, which is based on the part attributes. The definition of this 
coefficient has been established following the subsequent three statements: 
 

S1:  Two parts (A and B) belong to the same family when the setup time 
from A to B (B to A) is small. 

S 2:  Two parts (A and B) belong to the same family when the setup time 
from producing any part (except A or B) is similar. 

S 3:  Inversely, two parts (A and B) belong to the same family when the 
setup time from producing A or B to any other part is similar. 

 
These statements are illustrated in Fig. 5-17. 
The statement S1 is based on a low difficulty of the adjustment of the 

machines to change the layout from A to B (B to A). The statement S2 is 
based on the fact that both parts can be treated as a family, i.e., the setups 
from any part to A or B are similar. The statement S3 is the same but 
considers the inverse case of statement S2. 

These three statements can be summarized by a measure of distance, 
which is a similarity coefficient: 

 ( , ) =  + +  , , ,    (5-12) 
where  1 = ( , ) + ( ,  ) ;  2 = ( ,  ) ( ,  ) ;  3 = ( ,  ) ( ,  ) .  

 
The authors implemented these metrics in a methodology to estimate the 

setup times and to apply GT in the tile industry. The resulting part families 
were used to develop production sequences requiring shorter setup times. 

 
 

 EBSCOhost - printed on 2/9/2023 3:05 AM via . All use subject to https://www.ebsco.com/terms-of-use



Group Technology 157 

 
 

Fig. 5-17. Graphical interpretation of grouping criteria. Adapted from Andrés et al.  
(2005, 278). 

5.7 Cluster analysis 

A cluster analysis has been utilized to form groups of entities in computer 
science and engineering. It was employed for pattern recognition and 
artificial intelligence studies as a method for uncovering the fine underlining 
structure of a given data set, see  McAuley (1972, 54); Offodile (1984, 47–
49). In GT, a cluster analysis was used for grouping parts and machines to 
form separate machine cells in manufacturing systems.  

5.7.1 Taxonomy of clustering approaches 

Typically, the initial machine/part incidence matrix  does not give an 
immediate decision about the cells of machines and families of parts. A 
clustering algorithm allows transforming the initial incidence matrix into a 
structured form, a block-diagonal form, if possible. A cluster analysis is one 
of the most frequently applied mathematical tools in GT. There are three 
basic formulations of clustering methods:  
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1. Graphical formulation;  
2. Matrix formulation; 
3. Mathematical programming formulation.  
 
A graphical formulation is important for the initial study of the problem 

as well as for an analysis of the results. A matrix formulation technique for 
clustering the machines, called Single Linkage Cluster Analysis (SLCA), 
was proposed by McAuley (1972). This approach was initially a part of the 
Numerical Taxonomy, which was developed in the 1960s to be used in the 
fields of entomology and microbiology as well as paleontology. McAuley 
applied this technique to the cell formation in GT. Similarity coefficients 
were extensively used for a cluster analysis to summarize the relationship 
between pairwise combinations of the entities in a given data set.  

Finally, a mathematical programming formulation permitted the 
formalization of the problem for its efficient computational solution. The 
used models are integer programming, linear programming, and dynamic 
programming. The most usual model is a programming formulation, which 
is more convenient for dichotomic binary variables.  

Considering the final objectives of clustering, the techniques applied for 
the cell formation fall into one of the three following categories: 

 
 Grouping part families or machine cells only; 
 Forming part families and then machine cells; 
 Forming part families and machine cells simultaneously. 

 
Many computational techniques have been developed to solve the 

clustering problem, which is of NP-hard nature. The main approaches are 
described below. 

5.7.2 Graphical formulation 

A graph representation, which exploits the similarities Part-Part and 
Machine-Machine, gives some useful tools for part families grouping and 
machine clustering.  

A graph G consists of a set V of vertices and a set E of edges. An edge e 
is associated with a unique pair of vertices v and u. Consecutively, e = (v1, 
v2) or e = (v2, v1) denotes an edge in an undirected graph. If a non-directed 
graph admits the existence of loops, such a graph is called a graph with 
loops. If the existence of more than one edge between two vertices is 
allowed in an undirected graph, such a graph is called a multigraph. 
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A directed graph (or digraph) G consists of a set V of vertices and a set 
E of edges such that every edge e �  E is associated with an ordered pair of 
vertices. If such an ordered pair is unique, then e = (v|, v2), see the graph 
examples in Fig. 5-18. 

 

 
         a)        b)   c) 

Fig. 5-18. Examples of graphs: a) undirected graph; b) undirected multigraph with 
loops; c) directed graph. 

 
A graph G '= (V', E') is a subgraph of G = (V, E) if E'  E, V'  V , and 

the edges of E' are incident only with the vertices of V'. An undirected graph 
is bipartite if the set of its vertices V is separated into two mutually exclusive 
subsets   and  in such a manner that every edge joins a vertex in  with 
a vertex in   (Fig. 5-19a). An undirected graph is connected if there exists 
a path between any two vertices, and it is disconnected otherwise. An 
undirected graph may be discomposed into a number of separated connected 
components (Fig. 5-19b). 

 

 
 

a)    b) 
 

Fig. 5-19 Examples: a) bipartite graph; b) disconnected bipartite graph.  
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The most usual and convenient representation of the results of a cluster 
analysis is by a dendrogram. The machine/part matrix (preferably a 
rearranged matrix) can also be illustrated by a network model using a 
bipartite graph. 

King and Nakornchai (1982, 121) suggested that a GT problem should 
be represented by a bipartite graph to derive some important decisions. The 
vertices on the left-hand side of such a graph form the machine numbers and 
on the right-hand side, the part numbers are written. An edge connects a 
left/right pair of vertices if the corresponding machine processes the 
corresponding part.  The machines and parts are the two vertex sets. An edge 
connects a machine with a part, which visits that machine. Therefore, every 
machine is connected with all parts, which it is able to process. From the 
other side, every part is connected with all machines, which are able to 
process this part. Obviously, such a graph can have no isolated vertices both 
in the set of machines as well in the set of parts.   

The machine/part clustering problem results in the problem of the 
decomposition of a bipartite graph into a set of disconnected components. 
A detailed analysis of bipartite graphs from the GT viewpoint has been 
given by Chandrasekharan and Rajagopalan (1986, 453–54).  

A grouping problem can also be illustrated by a multigraph. A vertex in 
such a multigraph corresponds to a part. Two vertices are connected by an 
edge if the same machine can process the corresponding parts. A 
decomposition of a multigraph into a set of disconnected components gives 
a solution for grouping the parts into families.  

A similar graph representation can be also used for detecting a machine 
cell. In such a multigraph, a vertex corresponds to a machine. Two vertices 
are connected by an edge if the corresponding machines are able to process 
the same part. The solution of the clustering problem is to detect 
disconnected components, which represent machine cells. 

Illustrative examples of the application of the graphical formulation are 
given in Sections 5.7.1-5.7.2. 

5.7.3 Matrix formulation  

According to this method, the machines, which have mutually the highest 
possible similarity coefficient, are first combined in a cluster. Then step-by-
step the machines by other levels of similarity are taken. The criterion of a 
single linkage is used for the admission of a machine, or a group of 
machines, into another group. Analogously, any pair of machines, one in 
each cluster, with the critical level is linked with corresponding cluster. The 
disadvantage of this method is that a situation may occur when two clusters 
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are linked on the basis of a single bond, while many of the members of the 
two clusters may be quite far removed from each other considering their 
similarity. 

Typically, when the initial machine/part incidence matrix [ ] is 
constructed, the clusters of machines and parts are not visible. A perfect cell 
formation is achieved when the cells on the diagonal contain '1'. The 
clustering concept for grouping parts and machines is illustrated in the 
following two examples. 

 
Example 5.1.  
A job shop with 6 machines producing 6 parts is considered. The 
machine/part incidence matrix is given in Fig. 5-20. Column j of this matrix, 
j  = 1,…,6, displays the machines, which are required to produce part j. 
These machines are marked by '1'. On the other side, the row i indicates the 
parts, which visit the machine i, i = 1,…,5. Therefore, column 2 shows that 
part 2 visits the machines 1, 3, and 5. Row 2 demonstrates that machine 2 
processes parts 1 and 3. The sequence, in which the parts visit the machines, 
is not taken into account since it does not affect the groupings. Nevertheless, 
it can influence the layout of the machines within each group and the 
positioning of the groups in relation to each other.  

In Fig. 5-21, a matrix with a block-diagonal pattern obtained by a 
manual grouping of the machines is given. It is received by moving the rows 
and columns until they reach a quadratic pattern. With this, one can 
conclude that the five machines of the plant should be grouped into two 
cells. More detailed information is received by means of the similarity 
coefficients for all pairs of machines. It is evident that only non-empty cells 
give non-zero similarity coefficients.  

 
Machine 

No. 
Part No. 

1 2 3 4 5 6 
1  1  1 1  
2 1  1    
3  1  1   
4   1   1 
5  1     

 
Fig. 5-20. A machine/part incidence matrix. 
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MC 
PF1 PF2 

4 5 2 6 3 1 

MC1 
1 1 1 1    
3 1  1    
5   1    

MC2 
4    1 1  
2     1 1 

 
Fig. 5-21. A machine/part matrix after rearranging the rows and columns. 

 
The possible Jaccard-type non-zero similarity coefficients are given for 

all pairs of machines as follows: 
 , =  = 0.67, , =  = 0.33, , =  ( ) = 0.25, 

, =  = 0.67. 
 

         
 

Fig. 5-22. A bipartite graph.  Fig. 5-23. A dendrogram. 
 

The result of the cluster analysis on the base of the similarity coefficients 
between the pairs of machines is shown in Fig. 5-22 and Fig. 5-23. A 
dendrogram illustrates the level of similarity for these pairs. Machines 1 and 
3 should be linked due to a high similarity of 67%. If a plant designer 
requires a similarity no less than 33%, machines 3 and 5 cannot be grouped. 
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However, if 25% suffices, the machines 1, 3, and 5 can be included into one 
group. The second group is formed by the machines with 67% of similarity 
and without any intersection with the first group.  

 
Example 5-2.  
A part/machine incidence matrix is given in Fig. 5-24. After rearranging, 
the parts were grouped into three PFs and the machines into three MCs. The 
rearranged matrix is given in Fig. 5-25. The similarity coefficients are 
calculated using the data of the incidence matrix from Fig. 5-25. These 
coefficients are represented in a machine/machine matrix, formed according 
to the grouping of machines into cells (Fig. 5-26). The machines form three 
groups: {1,4,7}, {2,3,8,10}, and {5,6,9}. These groups process the part 
families PF1, PF2, and PF3, respectively. One can see that this matrix is 
symmetric with respect to the main diagonal and has no diagonal elements. 
The results of grouping can also be visualized as a network by a bipartite 
undirected graph, which is decomposed into three connected components 
corresponding to the machine/part grouping (Fig. 5-27). The dendrogram in 
Fig. 5-28 shows that MC1 is formed by 17% of similarity, MC2 has 33%, 
and MC3 has 40% of similarity, respectively, between the machines, which 
constitute the cells.  

The matrix formulation is a simple and useful method but has two big 
disadvantages: 

 
1. For matrices, which have a large number of rows and columns, it is 

difficult to represent and visualize clusters; 
2. In many cases, it is difficult to obtain a diagonal or close to diagonal 

structure of the clustered matrix, even for low dimensions. 
 
An integer programming formulation of the clustering problem, known 

as the p-median mode, does not have these disadvantages.  
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Machine 
No. 

Part No. 
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 

1    1  1  1   1     
2 1  1  1           
3 1  1  1    1       
4    1  1       1   
5  1     1     1  1  
6  1     1     1  1  
7    1    1   1     
8 1  1      1       
9  1          1   1 

10 1  1  1     1      
 
Fig. 5-24. Initial machine/part incidence matrix for Example 5-2. 

 

 
 

Fig. 5-25. Block-diagonal structure of the machine/part incidence matrix for 
Example 5-2. 
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Fig. 5-26. Diagonal machine/machine matrix of the similarity coefficients for MCs. 
 

 
 

Fig. 5-27. A bipartite graph for Example 5-2. The initial graph is discomposed into 
three disconnected components (MCs). 
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Fig. 5-28. A dendrogram for Example 5-2 

5.7.4 Integer programming formulation  

The p-median model was introduced by Kusiak (1987) to avoid the first 
disadvantage of the matrix formulation. The author noted that the only 
difference between the matrix formulation and the corresponding p-median 
formulation is that in the first case, the number of part families is determined 
a posteriori while in the second one, it is determined a priori. 

The following notations and definitions are used. 
Let a part/machine incidence matrix be given by the p-median model, 

where p part families and p machine cells are formed.  
The notations used are: 
 
n  -  number of parts; 
m -  number of machines; 
p  -  required number of part families. 
 
For the matrix representation, the combinations of two 0-1 vectors are 

used: 
 = [ , , … , , … , ] ,     (5-13) = [ , , … , , … , ] ,     (5-14) 

 - similarity between two parts, say, between part i and part j; 0, 
� i, j =1,…, n; and = 0,  � j=1,…,n;  
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The similarity is defined according to the formula: 
 = (  ,  ),    (5-15) 

 
where 

 (  ,  )= 1 if  =   0 otherwise ,    (5-16) 

  = 1 if part  belongs to part family  0 otherwise ,  (5-17) 
 
An element  = 1 forms a part family together with the elements of 

column j, for which  = 1, i = 1,…, n. The case when  = 0 means that 
family j is not formed. So, = . 

The p-median model is as follows. 
The objective is to maximize the total sum of the similarities: 
 
z = max    (5-18) 

s.t.  = 1, � i = 1,…, n,     (5-19) = ,       (5-20)  = {0,1}, � i, j = 1,…, n    (5-21) 
, � i, j = 1,…, n    (5-22) 

 
Constraint (5-19) makes sure that each part belongs to exactly one 

family. Constraint (5-20) defines the required number of part families. 
Constraint (5-21) ensures the integrality of the binomial components. 
Constraint (5-22) guarantees that part i belongs to part family j only when 
this part family is formed.  

An illustrative example is described below. 
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Example 5-3. 
Let the incidence matrix be as follows. 

 
             Part No. 

               1 2 3 4 5 [ ] = 0 1 0 1 11 0 1 0 00 1 0 1 01 0 1 0 0  

1234     Machine No. 

 
Solving the clustering problem by the block-diagonal method, the 

obtained structure is as follows (Fig. 5-29):  
 

MC 
PF1 PF2 

1 3 2 4 5 

MC1 
2 1 1    
4 1 1    

MC2 
1   1 1 1 
3   1 1  

 
Fig. 5-29. A machine/part matrix after rearranging the rows and columns. 

 
After the transposition of the matrix [ ]  according to representations 

(5-13) and (5-14), and using expressions (5-15) and (5-16) of the p-median 
model, the similarities , i, j = 1,…,5, are calculated comparing every pair 
of family parts. The resulting matrix  has the dimension n×n. The first 
row of the matrix  for the given matrix  is as follows: 

       = 0;   
 = 0 1 0 11 0 1 0 =0; 

 = 0 1 0 10 1 0 1 =4; 
 = 0 1 0 11 0 1 0 =0; 
 = 0 1 0 11 0 0 0 =1, etc. 
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Using the notations of the model for every pair  and : 
 = = = = = 0; 

 = ( , ) + ( , ) + ( , ) + ( , ) = 0 + 0 + 0 + 0 = 0;  
 = ( , ) + ( , ) + ( , ) + ( , ) = 1 + 1 + 1 + 1 = 4; 
 = ( , ) + ( , ) + ( , ) + ( , ) = 0 + 0 + 0 + 0 = 0; 
 = ( , ) + ( , ) + ( , ) + ( , ) = 0 + 0 + 1 + 0 = 1; 
etc.  
 
The complete similarity matrix is: 

= 0 0 4 0 10 0 0 4 34 0 0 0 10 4 0 0 31 3 1 3 0 .  

 
The matrix of the unknown binomial components is:  
 

=  .  

 
Let the number of family groups be p = 2. For the given similarity 

matrix, the objective function z is: 
 =   =   (4 + ) + (4 + 3 ) + (4 + ) + (4 + 3 ) +( + 3 + + 3 ), 
 

with the constraints: 
 

 EBSCOhost - printed on 2/9/2023 3:05 AM via . All use subject to https://www.ebsco.com/terms-of-use



Chapter Five 
 

 

170 

= 1, i = 1,…, 5, and = 2.   
 
The solution is obtained by a linear programming algorithm for the 

model with the incidence matrix . It is given by the following matrix: 
 

= 1 0 0 0 00 0 0 1 01 0 0 0 00 0 0 1 00 0 0 1 0 . 

 
The maximal value of the objective function is: 
 = 4 + 4 + 3 = 11. 
 
The following two part families are formed on the base of Definition (5-

17) of xij and the given value of p:  
 
PF1 = {1,3}; 
PF2 = {2,4,5}.  
 
The corresponding two machine cells are found by analyzing the 

incidence matrix :  
 
MC1: {2,4}; 
MC2: {1,3}. 
 
In addition, the machines can be clustered applying the similarity 

approach. The similarity matrix [ ] for the machines is: 
 [ ] = 0 0 3 00 0 1 53 1 0 10 5 3 1 .  

 
Here k, l = 1,…, m, and the decomposition of the machine cells into groups 
is evident. 

It can be easily verified that the solution by the p-median model is 
identical to the one obtained by the block-diagonal method (Fig. 5-29). 
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However, in contrast to the block-diagonal method, using the integer 
programming formulation, the number p of families is fixed. 
 
Example 5.4.  
The given incidence matrix is: 
 
                              Part No. 
                   1  2 3 4 5 6 

= 0 1 0 1 1 01 0 1 0 0 00 1 0 1 0 00 0 1 0 0 10 1 0 0 0 0  

12345     Machine No. 

 
The similarity matrix for the given incidence matrix  is: 
 

=
0 1 4 2 3 31 0 0 4 3 14 0 0 1 2 42 4 1 0 4 23 3 2 4 0 33 1 4 2 3 0

 .  

 
Let us suppose that the number of family groups is p = 2. Applying the 

pivoting algorithm, the following solution is obtained: 
 

= 

1 0 0 0 0 00 1 0 0 0 01 0 0 0 0 00 1 0 0 0 00 1 0 0 0 01 0 0 0 0 0
  

 
For this example, the objective function is:  

z  = 0 + 1  + 4  + 2  + 3  + 3  
 + 1  + 0 + 0 + 4  + 3  + 1  
 + 4  + 0 + 0 + 1  + 2  + 4  
 + 2  + 4  +1  + 0 + 4  + 2  
 + 3  + 3  + 2  + 4  + 0 + 3  
 + 3  + 3  + 4  + 2  + 3  + 0 

 EBSCOhost - printed on 2/9/2023 3:05 AM via . All use subject to https://www.ebsco.com/terms-of-use



Chapter Five 
 

 

172 

After inserting the values , we get: 
 =4 + 4 +3 + 3 = 14. 
 
Therefore, two following part families are formed: 
 
PF1 = {1,3,6}; 
PF2 = {2,4,5}.  
 
The corresponding two machine cells are found from the matrix : 
 
MC1: {2,4}; 
MC2: {1,3,5}. 
 
Examples 5-3 and 5-4 can be interpreted and solved graphically. A 

visual verification shows that the obtained solutions correspond with  the p-
median and block-diagonal methods. 

In Fig. 5-30, a multigraph illustrates the incidence matrix for Example 
5-3. The vertices correspond to the parts. Two vertices are connected by an 
edge if the same machine can process the corresponding parts.  

It is easy to see the two disconnected components, which represent the 
part families: {1,3} and {2,4,5}.  
 

 
 
Fig. 5-30. The multigraph for Example 5-3. Part family detection.  

 
A similar graph representation can be made for machine cell detecting. 

In such a graph, a vertex corresponds to a machine. An edge connects two 
vertices if the corresponding machines are able to process the same part 
(Fig. 5-31). One can detect two disconnected components, which represent 
machine cells: {2,4} and {1,3}. 
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Fig. 5-31. The multigraph for Example 5-3. Machine cell detection. 
 

The graphs illustrating the incidence matrix for Example 5-4 are given 
in Fig. 5-32 and Fig. 5-33. 
 

 
 
Fig. 5-32. The multigraph for Example 5-4. Part family detection. 
 

 
 
Fig. 5-33. The multigraph for Example 5-4. Machine cell detection. 

5.7.5 Separability of clusters 

The processing of an incidence matrix with the goal to obtain a block- 
diagonal pattern may result in the following two categories of clusters 
(Kusiak and Cho 1992, 2634): 
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1. Mutually separable clusters; 
2. Partially separable clusters. 
 
In the previous sections, mutually separable clusters were presented in 

Figs. 5-12, 5-21, 5-25, 5-26, and 5-29. The impossibility to form an ideal 
block-diagonal matrix gives space to partially separable clusters, which 
cannot be reduced to such a form. In this situation, the objective is to form 
machine-component cells, where the number of odd elements in the off-
diagonal is minimized. This transformation minimizes the number of inter-
cell moves. An example of clusters of the second type is given in Fig. 5-34.  

The matrix in Fig. 5-34 cannot be separated into two disjoint clusters 
due to part 5, which is to be processed in both cells, MC1 and MC2. When 
part 5 is removed from the matrix, its decomposition into two separable 
machine cells can be achieved, MC1={1,2} and MC2={3,4}, and two part 
families, PF1={1,2} and PF2 = {3,4}. 

 
Machine 

No. 
Part No. 

1 2 3 4 5 
1   1 1 1 
2   1 1  
3 1 1   1 
4 1 1    

 
Fig. 5-34. Incidence matrix with two partially separable clusters.  
 

These two cells are called partially separable clusters. The overlapping 
part, which is processed on machines belonging to two or more machine 
cells, is called a bottleneck part. A popular technique to eliminate a 
bottleneck part is to use an alternative process plan. Given the incidence 
matrix of Fig. 5-34, an alternative process plan for part 5 of the involved 
machines 1 and 3 results in two mutually separable machine cells.  

Analogously to the bottleneck part, a bottleneck machine can be defined. 
A bottleneck machine, also called an exceptional machine, is one that 
processes parts belonging to more than one cell. Therefore, it does not allow 
the decomposition of the machine-part incidence matrix into disjoint blocks 
(Hachicha, Masmoudi, and Haddar 2008, 1158–60). In the matrix given in 
Fig. 5-35, machine 3 is the bottleneck, because it does not permit a 
decomposition of this matrix into a block-diagonal form. 
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Machine 
No. 

Part No. 
1 2 3 4 5 6 

1 1 1     
2 1 1     
3 1 1 1  1 1 
4   1 1 1 1 
5   1  1 1 

 
Fig. 5-35. Incidence matrix with the bottleneck machine 3. 
 

Alternative process plans are frequently available for many parts. A way 
to decompose the matrix in Fig. 5-35 into two disjoint blocks is to create an 
additional copy of machine 3. With this transformation, two separated 
machine cells are obtained: MCl = {1,2,3(l)}, MC2 = {3(2),4,5}, and two 
corresponding part families are formed: PFl = {1,2} and PF2 = {3,4,5,6}, 
as it is shown in Fig. 5-36. 

 

MC 
PF1 PF2 

1 2 3 4 5 6 

MC1 
1 1 1     
2 1 1     

3(1) 1 1     

MC2 
3(2)   1  1 1 

4   1 1 1 1 
5   1  1 1 

 
Fig. 5-36. Incidence matrix with partially separable clusters. 

5.7.6 Other clustering methods 

Various methods of a cluster analysis can be found in the literature after the 
definition given by Gower (1971, 859) for a general coefficient to measure 
the similarity between two sampling units and the pioneering work of  
McAuley (1972, 54–55). King (1980) proposed a rank order clustering 
(ROC) algorithm for a machine-component grouping in PFA. Relaxation 
and regrouping procedures were developed, in which the basic ROC method 
was extended to the case with bottleneck machines. Chandrasekharan and 
Rajagopalan (1986) developed an ideal seed non-hierarchical clustering 
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algorithm for cellular manufacturing. The problem was first formulated by 
means of a bipartite graph, which was a good illustration. An expression for 
the upper limit on the number of groups was derived. Using this limit, a non-
hierarchical clustering method was adopted for grouping components into 
families and machines into cells. After diagonally correlating the groups, an 
ideal-seed method was used to improve the initial grouping. A quantitative 
criterion called grouping efficiency was then developed for comparing 
alternative solutions. Kumar, Kusiak, and Vannelli (1986) proposed a model 
for the grouping problem as an optimal k-decomposition of weighted 
networks. Large problems were modeled by using a computer to find an 
initial solution and later refining this solution. Bounds on the performance 
of the algorithm were constructed to give an estimated quality on the 
generated solution. Seifoddini and Wolfe (1986; 1987; 1988) suggested an 
Average Linkage Clustering (ALC) algorithm, which improved the 
previous models based on similarity coefficients by dealing with the 
duplication of bottleneck machines and by employing special data storage 
and some analysis techniques. This algorithm greatly simplified the 
machine-component grouping process. The duplication process in this 
model was based on the number of inter-cellular moves. Duplication starts 
with the machine generating the largest number of inter-cellular moves and 
continues until no machine generates more inter-cellular moves than 
specified by a threshold value. By changing the threshold value, alternative 
solutions can be examined. This model employed the bit-level data storage 
technique to reduce the storage and computational requirements of the 
machine-component grouping process. Kusiak (1987, 565) proposed a 
generalized model for the cases when rearranging rows and columns of the 
incidence matrix does not result in a block-diagonal matrix. Srinivasan, 
Narendran, and Mahadevan (1990, 147–49) presented an attractive p-
median-based assignment model to solve the part grouping problem. A 
similarity coefficient matrix was used as input. Closed loops in the form of 
subtours were identified after solving the problem and were used as the basis 
for grouping. The method was applied to a number of examples. The 
assignment method emerged as a distinctly superior technique both in terms 
of the quality of the solution and computational time being compared with 
the earlier mathematical programming model and the p-median model. 
Cedeño and Süer (1997) discussed the use of a similarity coefficient-based 
method to perform a cluster analysis to a large set of data with dissimilar 
parts. The case was considered when many part families have a low number 
of parts and a few families were formed by a high number of parts. This 
issue led to the definition of the remainder cluster. In this manner, those 
parts or clusters of parts are designated, which at a certain threshold value 
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do not join any part family and do not have sufficient parts to be considered 
as a feasible part family. An approach was proposed to deal with the 
remainder clusters with the objective to form part families, each with a 
feasible number of parts.  

A combinatorial approach, which used Benders' decomposition, was 
proposed by Heragu and Chen (1998) for an optimal solution of a cellular 
manufacturing system design. A mathematical model was formulated. The 
method incorporated three critical aspects: 

 
1. Resource utilization;  
2. Alternate routings;  
3. Practical constraints. 
 
The problem was shown to be NP-hard. A linear mixed integer version 

of the model and its optimal solution using Benders' decomposition 
approach were described together with an example of the obtained 
machine/part cluster.  

Jeon and Leep (2006, 267–69) studied the problem of forming part 
families and designing machine cells under demand changes. A two-phase 
methodology was developed. A new similarity coefficient was suggested in 
Phase I to identify part families by using a genetic algorithm. The similarity 
coefficient considered the number of available alternative routes during a 
machine failure. A new methodology was introduced in Phase II for the cell 
formation. It considered scheduling and operational aspects in cell design 
under demand changes. Machines were assigned to part families by using 
an optimization technique. This optimization technique employed 
sequential and simultaneous mixed integer programming models for a given 
period to minimize the total costs, which were related to the scheduling and 
operational aspects.  

Hachicha, Masmoudi, and Haddar (2008, 1160–61) presented a 
multivariate approach called principal component analysis (PCA) to form a 
machine/part block-diagonal matrix. It was a logical and systematic 
approach to the design of cellular manufacturing systems. The authors used 
a correlation matrix as similarity coefficient matrix, which later was used as 
an input for the PCA to identify similar groups.  

There are various surveys and taxonomies in the literature related to 
clustering.  

King and Nakornchai (1982) reviewed various approaches, which have 
been adopted in an attempt to solve the problem of joining the machines 
into groups and the components into associated families. The authors 
described also a new version of the ROC algorithm. Shafer and Rogers 
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(1993a) proposed a survey on similarity/dissimilarity and distance measures 
for cellular manufacturing. The evolution of similarity metrics was also 
discussed. In the second part of their work (Shafer and Rogers 1993b), some 
extensions and comparisons of these metrics were proposed. Offodile, 
Mehrez, and Grznar (1994) employed a taxonomic framework for a 
comprehensive review on cellular manufacturing systems. Three classes of 
machine-part grouping techniques have been identified in cellular 
manufacturing: visual inspection, part coding and classification, and 
analysis of the production process. A comprehensive review and discussions 
of various models were provided. The presented assumptions and 
characteristics were summarized using a tabular framework. Yin and 
Yasuda (2005) presented a comparative investigation on similarity 
coefficient methods applied to the cell formation problem. Nine 
performance measures were used for evaluating the quality of the cell 
formation solutions. Two characteristics, discriminability and stability of 
the similarity coefficients, were tested under different data conditions. 
Three similarity coefficients were found to be more discriminable. The 
Jaccard-based coefficient was found to be the most stable one. Four 
similarity coefficients were not recommendable due to their poor 
performance.  

A short resume on the literature related to part family grouping and 
machine cell clustering is given in Table 5-2. 

5.8 Cellular manufacturing 

Traditionally organized manufacturing systems, such as a job shop or a flow 
shop, are inefficient to control the massive production in advanced 
productions, which are subject to an extreme pressure due to a high 
variability of the products, every time shorter product life-cycles, impulsive 
and unexpected customer demands, etc. The satisfaction of flexibility and 
JIT processing capabilities forces the manufacturing companies with 
discrete processing to take attention on the optimization of the configuration 
of their facilities.  

By the application of GT, which is a philosophy that utilizes similarities 
to simplify the production processes and the product design through 
standardization approaches, CM has emerged as a viable replacement of 
traditional systems. The origins of the CM concept are traced to the 1980s 
and J. L. Burbidge, who introduced in his book The Introduction of Group 
Technology (1975), a concept referred to as cell technology, which later has 
been transformed into CM. CM can be defined as the organization of a 
manufacturing system that integrates the machine cells, and every cell is 
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configured to produce a family of parts. In this manner, a cell is a small 
scaled production unit within a larger factory.  

 CM is a lean manufacturing approach that helps the companies in the 
production of a variety of products for the customers with as little waste as 
possible. For a contemporary plant, CM is a stepping stone to achieve a 
world-class manufacturing status. 

The principal objective of CM is to minimize the total material handling 
cost caused by inter-cellular moves to maximize the intra-cellular utilization 
of the machines and to minimize the duplication of machines in a cell. This 
objective is reached through the design of the machine cells in such a way 
that critical measures of the production performance are optimized. The 
performance could be measured by the productivity, the cycle time, and 
logistic indexes. Typical practical measures include also pieces-per-man-
hour, unit cost, on-time delivery, lead time, and defect rates. 

Employing a CM strategy in a production system leads to a physical 
division of the functional manufacturing machinery into a set of machine 
cells. The paradigm of the organization of a production system on the base 
of the machine similarity shifts to the identification and grouping different 
machines into cells. For this, it is necessary to identify a part family or a set 
of part families, which require similar machinery, machine operations, 
and/or jigs and fixtures. Therefore, these parts may be processed together. 
These groups discompose a production into manufacturing cells. The parts 
within the family are normally transformed from a raw material to a finished 
good within a single cell. In each production cell, the equipment and the 
workstations are arranged in a sequence that supports a smooth flow of 
materials and components through the process with minimal transport or 
delay. This type of layout is commonly referred to as a group or cellular 
layout (Fig. 5-37).  

 

 
a)                              b) 

 
Fig. 5-37. Design of a manufacturing system: a) Process layout; b) Cellular layout. 
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Approach base Reference 
General coefficient measuring Gower (1971) 
Single Linkage Cluster Analysis (SLCA) McAuley (1972) 
Bond energy algorithms (BEA) McCormick, Schweitzer, and White 

(1972); Slagle, Chang, and Heller (1975); 
Bhat and Haupt (1976) 

Modified McAuley similarity for cell design Rajagopalan and Batra (1975) 
Rank order clustering (ROC) King (1980); 

King and Nakornchai (1982) 
Direct Clustering Algorithm for Group 
Formation (RCA) 

Chan and Milner (1982) 

Weighted Average Linkage Clustering 
(WALC)  

Chandrasekharan and Rajagopalan (1986) 

Optimal k-decomposition of weighted networks Kumar, Kusiak, and Vannelli (1986) 
Average Linkage Clustering (ALC) 
algorithm; Similarity Coefficient Method 
(SCM)  

Seifoddini and Wolfe (1986; 1987); 
Seifoddini (1988) 

Within-cell utilization-based heuristic Ballakur and Steudel (1987) 
 p-median model Kusiak (1987) 
Cost-based heuristics Kusiak and Chow (1987) 

Askin and Subramanian (1993) 
Production flow analysis (PFA) Burbidge (1989)  
Identification, clustering, refinement, 
merging and allocation heuristic (ICRMA) 

Tabucanon and Ojha (1987) 

Extended cluster identification algorithm Kusiak and Cheng (1990) 
An assignment model for the part-families 
problem. Closed loops identification 
algorithm.  

Srinivasan, Narendran, and Mahadevan 
(1990) 

Clustering of a binary incidence matrix with 
bottlenecks  

Kusiak and Cho (1992) 

Group formation by neuronal networks  De La Fuente García, Diez and Fernandez 
(1995)  

Fixed family approach to a large set of data 
with dissimilar parts 

Cedeño and Süer (1997) 

A similarity coefficient-based methodology  Offodile and Grzna (1997)  
Benders' optimal decomposition approach  Heragu and Chen (1998) 
Similarity-based distance between parts Andrés et al (2005); Ghosh and Dan 

(2011) 
Kohonen self-organizing map (KSOM) 
networks 

Venkumar and Haq (2006) 

ART-modified single linkage clustering  Murugan and Selladurai (2011, 205–7) 
Principal component analysis Hachicha, Masmoudi, and Haddar (2008, 

1160–61) 
Surveys and taxonomies King and Nakornchai (1982); 

Greene and Sadowski (1984); 
Shafer and Rogers (1993a; 1993b);  
Offodile, Mehrez, and Grznar (1994); 
Selim, Askin, and Vakharia (1998); Yin 
and Yasuda (2005)  

 

Table 5-2. A review of the grouping/clustering literature. 
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The design, subsequent control, and operation of a CM system are 
constrained by a set of implied assumptions. They are typically applied in 
such a manner that the advantages of CM are maximized, while the 
disadvantages are minimized. The generally recognized assumptions 
include (Greene and Sadowski 1984, 84): 

 
1. Parts are grouped on the base of their specific shape and required 

manufacturing operations; 
2. If possible, the manufacturing machines should be grouped so that 

all operations on parts belonging to the same family are completed 
in a single cell; 

3. Operations required by any job should not be split between the cells; 
4. Cells can share the machinery. Nevertheless, the number of shared 

machines should be minimized; 
5. Each cell is designed as a modified flow shop; 
6. Machines, which are not grouped into specialized cells, are grouped 

into a remainder cell; 
7. Some machinery cannot be grouped, for example, paint booths and 

toxic degreasing equipment; 
8. For any job, there is at least one feasible cell, where all operations 

can be completed; 
9. Jobs have more than one feasible cell; 
10. If there is a specialized cell with assigned jobs, these jobs should be 

assigned to a specialized cell instead of being assigned to the 
remainder cell; 

11. The efficiency of a cell and/or machines within the cell, which 
perform the operations on a job, is partially correlated to the 
characteristics of the jobs; 

12. Most machines in a cell have some flexibility to perform multiple 
operations. 

 
CM is usually implemented into a production process by the following 

four stages: 
 

1. Cell formation: Grouping parts into part families and the corresponding 
machines into machine cells;  

2. Intra-cell layout: Layout of the machines within each cell;  
3. Inter-cell layout: Layout of the cells within the factory or shop floor;  
4. Scheduling: Scheduling of the jobs in each cell. 
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5.9 Cell formation problem 

Among the CM problems, the cell formation (CF), also referred to as the 
cell layout, is considered fundamental and the foremost problem in 
designing a CM system. The problem can be summarized as follows (Wei 
and Gaither 1990, 222):  

'If the number, types, and capacities of the production machines, the number 
and types of parts to be manufactured, and the routing plans and machine 
standards for each part are known, which machines and their associated 
parts should be grouped together to form a cell? '  

For the solution of a CF problem, it is usually assumed that 1) a specific 
set of parts is identified to be suitable for manufacturing on a specified group 
of machines or machine types, and 2) there exists a basic relationship 
between a part and a set of machines, for instance, a part routing. The parts 
can be assigned to families in such a way that the same group of machines 
processes all parts in the family, and machines are grouped into cells if they 
process the same set of parts. Most procedures for CF rely on this type of 
relationship to establish part families and machine cells. Once the part and 
machine populations have been identified, the CF problem can be reduced 
to three major decisions: 

 
1. Identification of part families;  
2. Identification of machine cells;  
3. Allocation of the families to cells or vice versa.  
 
These three decisions are interrelated and compose subproblems of the 

CF problem.  
In an ideal situation, a cell is a group of dissimilar machines physically 

located in a close proximity so that all operations of parts in a part family 
are processed from the start to finish in a single continuous flow without 
any backtracking. However, a fully independent layout is rare in practice. 
In the majority of layouts, the degree of independence is restricted by 
exceptional parts and exceptional machines. An exceptional part requires 
the processing by at least one machine, which belongs to more than one 
machine cell. Similarly, an exceptional machine processes parts from more 
than a one-part family. Such situations may occur when an exceptional 
machine is unique, or the utilization of the machine must be increased 
H. Cheng, Kumar, and Motwani 1995, 87). On the other hand, a job assigned 
to a cell may only require a fraction of the machines or all of them.  
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The cells are created for efficient manufacturing plants. Nevertheless, it 
is not always possible to convert the entire job shop into a number of 
production cells. Usually, there are some parts, which cannot be associated 
with a family and therefore, they cannot be placed into a specific cell. There 
exists also a specialized machinery, which cannot technologically be placed 
into a separated cell because of its general utilization. Therefore, the CF 
problem could be defined as identifying and grouping parts into families 
and machines into cells, and then assigning families to cells based on routing 
sheet information such that one or more of the following objectives are 
satisfied (Ballakur and Steudel 1987, 640):  

 
1. Minimize the number of inter-cellular moves; 
2. Minimize the number of cells; 
3. Maximize the utilization of machines; 
4. Minimize the duplication of machines in different cells; 
5. Maximize the percentage of operations of a part processed within a 

single cell; 
6. Maximize the number of parts handled by the cells as a percentage 

of the total number of parts processed through the shop; 
7. Minimize the total manufacturing costs (by a reduction of setup times 

and WIP inventory levels); 
8. Minimize the job throughput time; 
9. Minimize the job lateness. 
 
It should be noted that many of the above mentioned objectives, such as 

minimizing the job throughput times, are not solely determined by CF, but 
also by the operating policies of the shop (for example, dispatching rules, 
scheduling policies, etc.), which are used in the system. 

A machine cell, where all operations for a product or service are 
performed in close proximity, is often configured in a U-shaped layout, to 
ensure the production flow and to allow a quick feedback between 
operations when problems and other issues arise. The workers in the cells 
are typically cross-trained and able to perform multiple tasks as needed. 
Common forms of a single cell are also a straight line, an L-shape, an S-
shape. The number of workers inside these cells depends on the current 
demand and can be changed according to increasing or decreasing the 
production (Fig. 5-38). 
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Fig. 5-38. Shapes of a machine cell. 

 
CF, machine layout, and cell layout problems in a CM system are known 

to be NP-hard optimization problems. Exact solution methods are inefficient 
when the problem size is large. Therefore, heuristics, metaheuristics and 
hybrid methods to solve them efficiently have been developed (Lamba et al. 
2020; Shashikumar et al. 2019; Zandieh 2019; Forghani, Fatemi Ghomi, and 
Kia 2020).  

5.10 Conclusions 

For many years, the industrial production has faced an increase in the 
complexity and a decline in productivity due to an increase in the part mix, 
the volume of the parts, the plant size, the machine production rates, and the 
part complication. The development of GT and CM is a response to the 
increased complexity and an effort to maintain the productivity. CM is not 
the same as GT. The latter one may include CM, but it is a much broader 
concept. So, one can say that CM is an application of GT to the production. 
CM uses the principle of GT by grouping parts with similar characteristics 
into part families and the corresponding machines into machine cells in 
order to achieve a higher production efficiency compared to traditional 
manufacturing.  

Classification and coding systems are traditional tools used to implement 
CM. A classification and coding system allows assigning codes to parts. 
Based on these codes, the parts can be grouped into families. The 
disadvantage of a classification and coding system is that its implementation 
is time consuming to assign a code to every part. In addition, parts of similar 
size, shape, and function may not use the same set of machine tools and 
other resources. Therefore, recent works are focused on the use of cluster 
analysis. 

A cluster analysis identifies similar and dissimilar object features as well 
as groups objects into homogeneous groups. An underlying assumption is 
that homogeneous clusters exist in raw data. A usual task in a cluster 
analysis is to develop efficient and effective clustering algorithms that 
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identify homogeneous clusters. Unlike classification and coding systems, a 
cluster analysis uses only information that is available in a production 
system.  

The following reviews have been presented in the GT literature. The first 
survey found was due to Pullen (1976). It was dedicated to the description 
of CM features. King and Nakornchai (1982) reviewed various approaches 
that have been adopted in an attempt to solve the problem of grouping 
machines into cells and components into associated families. Green and 
Sadowski (1984) proposed a review of CM assumptions, advantages, and 
design techniques. Shafer and Rogers (1993a; 1993b) presented an 
overview on similarity and distance measures for CM, a survey, and a 
comparison of techniques. The first taxonomic review on CM was due to 
Offodile, Mehrez, and Grznar (1994). Mosier, Yelle, and Walker (1997) 
published a survey of similarity-oriented metrics for the GT configuration 
problem (GTCP). Selim, Askin, and Vakharia (1998) discussed, reviewed and 
classified up-to-day methods for solving a CF problem, which is a 
fundamental issue in CM. Allahverdi, Gupta, and Aldowaisan (1999) 
revised advances in scheduling problems with setup times, including results 
for batch setup times with GT assumptions. Yin and Yasuda (2005) 
dedicated their comparative investigation to similarity coefficient methods 
applied to the CF problem. The most recent overview of relevant studies 
was due to Esmaeilian, Behdad, and Wang (2016). The authors studied 
recent publications in the organization of CM, starting from past and current 
trends to future developments. By this extensive survey of the literature, 
future directions of this changing field were suggested. As relevant books, the 
following two ones can be recommended: Benhabib (2003) and Kamrani et 
al.  (2013). 

The basic theory of GT has mainly been developed. Nevertheless, its 
application in practice is still actual and insufficient. There are recent 
publications, where new algorithms and approaches are offered, but there is 
a lack of related literature, such as books and surveys, which explain the 
bases and summarize the advances in the theory for industrial employers 
and research requests.  
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CHAPTER SIX 

BATCH SCHEDULING 

 
 
 

…job scheduling in batches is an important issue in the manufacturing industry. 
(Mathirajan and Sivakumar 2006, 990)  

 
In a manufacturing process with a bottleneck operation, it is desirable to 
keep changeovers on a machine as few as possible in order to reduce the 
setup time required, which is a non-production idle time. With this reason, 
when setups are very costly in terms of money or time, jobs with similar 
characteristics are grouped and processed together. Consecutively, the 
required number of setups is reduced. In such scenarios, processing jobs in 
a batch and allowing a single setup per batch may give a sound operational 
advantage. In this case, minimizing total flow time, a reduction of the WIP 
inventory, improving the customer service responsiveness, and other 
production indexes can be reached. 

A batch scheduling problem consists in grouping the lots on each 
machine into batches and then scheduling these batches. The concepts of 
batch scheduling and a batch machine have arisen from burn-in operations 
in semiconductor manufacturing industries, which represent today one of 
the most complex industries with batched and singular wafer processes. 
These concepts are combined with numerous production restrictions, such 
as different kinds of setup times, prescribed customer due dates for the lots, 
very expensive equipment, reentrant process flows, etc. (Mathirajan and 
Sivakumar 2006; Mönch et al. 2011). In such a changeable scenario, 
maintaining a competitive advantage and remaining profitable in the 
operational terms requires the minimization of the product cycle time and 
the WIP inventory, the maximization of throughput, etc. It is particularly 
reached by an efficient batching.  

In this chapter, the main concepts of batch scheduling are collected and 
described on the base of a review of the contemporary literature. The burn-
in operation, which gave rise to the batch machine concept, is described in 
detail. The treatment of different batching models and typical cell 
architectures are explained and illustrated by examples in this chapter. Some 
concluding remarks are also presented.  
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6.1 Basic steps of semiconductor manufacturing 

The semiconductor production is a very complex production process due to 
the diversity of the environments, the variety of models, and a high 
automation level of the manufacturing process. On the other side, the same 
characteristics make the application of scheduling methods very efficient. It 
is the reason of the interest of researchers in batching models in general, and 
particularly in the burn-in operation, which caused a multitude of studies.  

In any semiconductor manufacturing plant, the fabrication of integrated 
circuits (IC) can be divided into four basic steps: wafer fabrication, wafer 
probe, assembly or packaging, and final testing, as it is shown in Fig. 6-1. 

 

 
 

Fig. 6-1. Basic steps of the semiconductor manufacturing process. Adapted from  
Uzsoy, Lee, and Martin-Vega  (1992, 48).  

6.1.1 Front-end operations 

The first stage, wafer fabrication, is the most technology consuming and 
capital-intensive one. At this stage, the layers and patterns of metal and 
wafer material are built up over its surface in order to manufacture the 
required chips. For a complex component, such as a microprocessor, the 
number of operations can reach hundreds, and one wafer may contain 
hundreds of components. The production of wafers involves the use of 
precious metals and a clean-room environment to prevent a particulate 
contamination of the wafers. The wafers move through the plant in lots, 
which are deposited in standard containers of a constant size. The wafer 
probe operation is as follows. The individual circuits on each wafer are 
subjected to an electrical test by means of thin probes. The failed circuits, 
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which do not correspond to the required specifications, are marked by an 
ink dot. The wafers are then cut up into the individual circuits, and the 
defective circuits are discarded. These two stages, the wafer fabrication and 
wafer probe are generally referred to as the front-end operations.  

6.1.2 Back-end operations 

The two following stages, the assembly and final test, are referred to as the 
back-end. In the back-end operations, the lots may vary significantly in the 
size from several individual circuits to various thousands. The sequence of 
operations, which follows a lot, depends on the product and on the customer 
specification. Therefore, a lot is generally more closely associated with a 
particular order and a customer than with the wafer fabrication or the probe 
(Uzsoy, Lee, and Martin-Vega 1992, 48–49). In the assembly stage, the 
circuits are placed into plastic or ceramic packages to protect the integrity 
and influence of the environment. Once the package is sealed and tested for 
the leaks and other defects, the product is moved to the final test. The 
objective of this stage is to test all circuits produced by the company to 
ensure that the defective products are not passed to a customer. In the testing 
process, the automated equipment is used to check each IC and to determine 
whether it is able to operate at the required specifications.  

6.1.3 Burn-in operation  

Due to various operations employed in the wafer fabrication process, some 
chips are fragile and may fail after a short time. It is essential to identify and 
scrap these devices as infant mortality. Identifying and scrapping the fragile 
devices is realized by the burn-in operation (C.-Y. Lee, Uzsoy, and Martin-
Vega 1992, 764–65; Sung et al. 2002, 996–97; Mathirajan and Sivakumar 
2006, 991–92; Mönch et al. 2011, 3380–82). The purpose of burn-in is to 
detect fragile IC chips by a test. A heat stress is applied to the chips, placed 
in an oven. This operation forces a failure of weak or fragile devices. IC 
chips arrive at the burn-in area in lots consisting of pieces of the same 
product type, where each lot is referred to as a job. IC chips of each job are 
loaded onto boards to process a burn-in operation. Each job may have 
different lot sizes so that those job sizes (number of required boards) are not 
identical. The boards are often product-specific, and a job cannot be 
processed if there are not the necessary boards. Once IC chips have been 
loaded onto a board, the last one is placed into an oven. Typically, the oven 
capacity is larger than the job size. Therefore, the number of boards in an 
oven can keep the oven capacity and the number of the boards required 
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defines the size of a job. Each IC chip has a pre-specified minimum burn-in 
time, which depends on its type and/or the customer's requirements. Since 
IC chips may stay in the oven for a period longer than their minimum 
required burn-in time, it is possible to place different products (jobs) in an 
oven simultaneously. The processing time of each batch equals the longest 
minimum-exposure time among all products (jobs) in the batch.  

During the testing, it may occur that a circuit did not correspond to an 
original specification, but met another one, which is less strict. Therefore, a 
number of different grades of the product may be applied when a lot is 
tested, and as a result, the pieces, which did not pass the test, are not moved 
to the scrap and can still be used in other ranges of the tested characteristic 
for lower-grade products. It is also possible to use the inventory of a higher-
grade product for a demand of a lower-grade product. It may occur that a 
part of components did not pass a test. These components can also be sent 
back for reworking. These factors, among others, create difficulties for the 
production planning and scheduling process in the semiconductor industry. 
This leads to an enormous number of resulting scheduling problems.  

Usually, the processing time of the burn-in operation is extremely long 
compared to other testing operations. It is generally considered as the 
bottleneck process in the final testing step. Therefore, an optimal scheduling 
of the burn-in operation is very important to improve the productivity of the 
whole process of chip manufacturing. 

The semiconductor burn-in scheduling problem was first introduced by 
Lee, Uzsoy, and Martin-Vega (1992). In that paper, burn-in ovens were first 
modeled as batch processing machines, which are dedicated to handle a 
number of jobs simultaneously. An effective burn-in operation scheduling is 
a key issue because it causes frequently a bottleneck due to long processing 
times relative to other testing operations - days in contrast to hours. Other 
reason is that it occurs at the end of the manufacturing process and thus, it 
has a strong influence on the shipping dates.  

6.2 Batching models 

In the literature, a batch is defined as a maximal set of jobs, which are 
scheduled contiguously on a machine to share a setup (Potts and Kovalyov 
2000, 228). A job represents usually an item or a lot of identical items. A 
lot and a batch can be interpreted as equivalent concepts, meaning a number 
of identical items. Nevertheless, a batch can also represent a number of lots.  
According to this definition, a batch is a generalization of the lot concept.  

One must differ between a batch and a family. The scheduling 
approaches, which use these two concepts, can be employed for sequencing 
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part families as well as the parts within each family. In the scheduling 
problems, the family term, when used, denotes the initial partitioning of the 
jobs, while the term of a batch is used to denote a part of the solution. In a 
family scheduling problem, the jobs are partitioned into families according 
to their similarity so that no setup is required between two sequential jobs 
if both belong to the same family. A setup time is required at the start of the 
schedule and every time when the machine switches from processing jobs 
belonging to one family to jobs belonging to another family. When one 
batch is completed, the resource has to be adjusted for the next batch. The 
time needed for the setup activities depends on the families of both adjacent 
batches. A batch is called feasible if it can be processed without any tool 
switch.  

In this model, a batch is a maximal set of jobs, which are scheduled 
contiguously on a machine and share a setup. Large batches have the 
advantage of high machine utilization because the number of setups is 
reduced. On the other hand, large batches increase the flow time. Moreover, 
processing a large batch may delay the processing of jobs of high priority, 
which belong to a different family. In the problems, which involve the 
selection of a batch size and creation of a schedule, there is a trade-off 
between flow time and machine utilization. This is the main reason to 
optimize the batch size.  

When GT assumptions are respected, i.e., each family is processed as a 
single batch in each manufacturing cell, such an order is referred to as group 
scheduling (GS), and the families of the jobs are referred to as the groups. 
However, if a family of jobs is split into smaller batches by violating the GT 
assumptions, it is referred to as batching and scheduling (BS), wherein sub-
families belonging to the same family are referred to as batches (C.-Y. Liu 
and Chang 2000; Shen, Gupta, and Buscher 2014, 353–54; Shahvari and 
Logendran 2016, 239–41). 

Yimer and Demirli (2009, 119–20) proposed a methodology to deal with 
a batch scheduling problem. It requires five distinct but interdependent 
decisions to be made: 

 
 Grouping decision – classify the set of job orders into families on the 

base of their setup similarity; 
 Batching decision – find out the jobs of the same family, which have 

to be included into each batch; 
 Allocating decision – resolve how many batches are assigned to the 

available machines at each stage of the operation; 
 Sequencing decision – determine the order in which the batches and 

the jobs within each batch have to be processed; 
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 Sorting decision – regroup the finished jobs based on their due date 
and the customer ID. 

 
Batch scheduling models can be classified into batch availability and job 

availability models, depending on when the jobs become available for the 
next operation, either to be processed on the next machine or for dispatching 
to the customer (Potts and Kovalyov 2000, 228–29; Allahverdi et al. 2008, 
978). According to the batch availability model, all  jobs of the same batch 
become available for processing at the same time and leave the machine 
together (Danneberg, Tautenhahn, and Werner 1999, 102; Selvarajah and 
Steiner 2006, 228–29; Mosheiov and Oron 2008, 1283; Ben-Dati, 
Mosheiov, and Oron 2009, 2–3). This situation occurs, for example, when 
the jobs of a batch are placed on a pallet, and the pallet is only moved from 
the machine when all jobs are processed. An alternative assumption is job 
availability, also referred to as the item availability (Shen and Buscher 
2012, 15; Kress, Barketau, and Pesch 2018, 596). According to this model, 
the jobs enter and leave the machine in a batch. Therefore, a job becomes 
available immediately after its processing is completed. Its completion time 
is independent of the other jobs of the batch. In the batch scheduling 
problems, the assumption of job availability is adopted, unless it is stated 
otherwise. 

Depending on the availability model, batch scheduling assumes two 
types of grouping jobs, referring to serial batching and parallel batching 
models. Consecutively, the processing time of a batch is determined as 
follows:  

  
•  In serial batching, also known as s-batch or sum-batch, the 

processing time of a batch is equal to the sum of the processing times 
of the included jobs; 

•  In parallel batching, also known as p-batch or max-batch, the 
processing time of a batch is usually equal to the largest processing 
time of the jobs it includes. It can also be fixed for an individual 
batching machine, see Sung et al. (2002, 997). 

6.3 Serial batching 

In serial batching, if a batch is assigned to an available machine, a setup is 
required at the beginning of the first job in this batch. In this case, a schedule 
defines: 1) the way in which the batches are created from the independent 
jobs, 2) the processing order of the batches, and 3) the processing order of 
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the jobs within the batches. A machine can only process one job at a time, 
and it cannot perform any processing while undergoing a setup. 

6.3.1 Single machine 

The most studied environment is the single machine s-batching problem. 
Despite seeming simplicity, only a few basic problems can be solved in 
polynomial time. Chen, Long, and Fung (2006) considered the single machine 
scheduling problem with sequence-dependent setup times to minimize 
maximum lateness. A genetic algorithm was proposed. Crauwels et al. (2005) 
addressed the problem of minimizing the number of late jobs under the same 
assumptions. Some branch-and-bound algorithms were developed, and some 
lower bounds were derived by relaxing either the setup times or the due dates. 
Yuan et al. (2006) considered the single machine s-batch scheduling problem 
with family setup times and release dates to minimize the makespan. The 
authors showed that this problem is NP-hard. They proposed dynamic 
programming algorithms for two variants of the problem.  A heuristic with a 
performance ratio of two and a polynomial time approximation scheme 
(PTAS) for the problem were also given. Erel and Ghosh (2007) dealt with 
the single machine scheduling problem with due dates and batch setup times 
to minimize the weighted number of tardy jobs. A pseudo-polynomial 
dynamic program and a fully polynomial approximation scheme were given 
for the case when the due dates are uniform within a family.  

The problem of scheduling groups of jobs on a single machine under the 
GT assumptions was studied by Cheng et al. (2008). Jobs of the same group 
were worked up contiguously and a sequence-independent setup time 
preceded the processing of each group. All jobs have a common fixed due 
date, which can be either unrestrictively large or restrictively small. The 
objective was to minimize the total weighted earliness–tardiness penalties. 
Properties of optimal solutions were established and dynamic programming 
algorithms were derived to solve several special cases of this problem.  

Suppiah and Omar (2014) addressed the batching and sequencing of jobs 
originating from incompatible families. Sequence-dependent setup times exist 
on a single machine, what is typical for manufacturing practices. The total 
number of jobs is divisible by the batch size, and all parameters of the model 
are known in advance. Splitting jobs into batches is not allowed. The jobs in 
each batch may have different weights. A hybrid tabu search (HTS) algorithm 
was proposed to minimize TWT. The authors developed a testing 
methodology to determine the quality of the HTS solution. A MILP model 
was also developed to compare with the heuristic solution.  
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Pei et al. (2015) investigated a single serial batching scheduling problem 
with deteriorating jobs in a practical production with the goal to enhance 
the productivity of an aluminum manufacturing factory. In this problem, all 
jobs were first partitioned into serial batches. These batches were then 
processed on a single serial batching machine. Before each batch was 
processed, an independent constant setup time was required. The next model 
of the same group of authors was dedicated to a scheduling model with 
certain co-existing features of serial batching, dynamic job arrival, multi-
types of job, and setup time assumptions (Pei et al. 2016). The jobs of all 
types were first partitioned into serial batches, which were then processed 
on a single serial batching machine with an independent constant setup time 
for each new batch. In order to obtain a solution, this scheduling problem 
was divided into two phases on the basis of the job arrival times. A 
corresponding two-phase hybrid algorithm (TPHA) was proposed. After 
this research on a process in aluminum manufacturing, the authors proposed 
another type of scheduling problem, which included deteriorating jobs ( Pei, 
Liu, Pardalos, Fan, et al. 2017). Aluminum ingots were of multiple types, 
each of which included a certain number of aluminum ingots. Each type of 
aluminum ingots was first partitioned into multiple batches. Then all 
batches of different job types were processed on a single s-batch machine. 
The setup time before processing a batch was sequence-dependent. In this 
model, the actual job processing time was an increasing function of its 
starting time, and a setup time was required only when a new batch was 
processed first on the machine or immediately after a batch belonging to 
another job type. A set of optimization algorithms was developed to solve 
the makespan minimization problem, the maximum tardiness minimization 
problem, the maximum lateness minimization problem, and the maximum 
earliness minimization problem, respectively. Some optimization 
algorithms were also proposed to solve the problem of minimizing the 
number of tardy jobs under a certain agreeable condition. Later, the authors 
modified the model, introducing a time-dependent setup time with the 
effects of deterioration and learning (Pei, Liu, Pardalos, Migdalas, et al. 
2017). The setup time for the batches was a linear function of its starting 
time. Structural properties were derived for the problems of minimizing the 
makespan, the number of tardy jobs, and maximum earliness. Three 
optimization algorithms were developed to solve the respective problems. 
Then the authors extended this problem by a simultaneous consideration of 
serial batching, a learning effect, and resource-dependent processing times 
in the processing model. The objective was minimizing the makespan under 
the constraint that the total resource consumption does not exceed a given 
limit (Pei et al. 2018). Structural properties for the job batching policies and 
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the batching sequencing were first proposed for the special case when the 
resource allocation was given. An optimal batching policy was derived on 
the basis of these properties. A novel hybrid GSA-TS algorithm, which 
combines a gravitational search and a tabu search techniques, was 
developed to solve the general case. Then Pei et al. (2019), extended the 
environment to the parallel-machine serial batching problem, where a 
position-based learning effect and a linear setup time were also considered.  

Kress, Barketau, and Pesch (2018) studied a situation in an industrial 
environment, which was characterized by sequentially processed jobs on a 
single machine. In this problem, the setup operations may result in a 
significant setup cost, when the machine switched from processing a job of 
one family to processing a job of another family. These setups do not require 
time but are associated with a fixed cost, which is identical for all setup 
operations. For example, this cost may be due to the need to modify the 
machine by installing a different set of tools or loading a new software. In 
such an environment, it can be beneficial to group the jobs into batches and 
process contiguously the jobs, which belong to the same batch, in order to 
share the same setup requirements. Each job has a processing time and an 
associated deadline. It is known that the processing of large batches may 
delay the processing of important jobs, which form parts of other batches. Such 
a delay may eventually result in violating the respective deadlines. Hence, there 
is a trade-off between minimizing the total setup cost of a schedule and the 
need to guarantee the on-time production of the jobs to satisfy the deadlines. 
The starting and the completion times of each job, i.e., the time instants when 
the job is started to be processed and when its processing is completed, are 
independent of the other jobs of its batch. The job availability model was 
adopted. The schedule must satisfy on-time production all jobs with respect to 
their deadlines, and the total setup cost must be minimized. It was shown that 
the decision version of this problem is NP-hard in the strong sense. Properties 
of an optimal solution were presented. An O(nlog n + nF) algorithm that 
approximates the cost of an optimal schedule by a factor of F, where F is the 
number of families, was developed. 

6.3.2 Parallel machines  

Mor and Mosheiov (2014) solved a batch scheduling problem for identical 
jobs with controllable processing times and a linear compression cost 
function in both a single machine and parallel identical machines 
environments. The job processing times can be controlled (i.e., compressed) 
by allocating additional resources. Batching of jobs was allowed under the 
s-batch assumption. Two versions of the problem were considered. In the 
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first one, the sum of the total flow time and the compression cost was 
minimized. In the second problem, the total flow time subject to an upper 
bound on the maximum compression was minimized. In all cases, close-to-
optimal integer solutions for the relaxed version were generated by allowing 
non-integer batch sizes.  

6.3.3 Flow shop 

One of the first works considering the s-batch idea for permutation flow 
shop scheduling was due to Sotskov, Tautenhahn, and Werner (1996).  
There are given processing times tij of job i on machine j and setup times srj 
on machine j when a job of the batch r is processed after a job of another 
batch. The objectives were minimizing the makespan as well as the sum of 
completion times. Batch or item availability of the jobs was assumed. For 
these problems, various constructive and iterative algorithms were given. 

When only permutation schedules are considered in a flow shop, in 
which the order of job processing is the same on all machines, the 
corresponding problems are denoted as permutation flow shop group 
scheduling problem (PFGSP) and permutation flow shop batch scheduling 
problem (PFBSP), respectively. Otherwise, such a scheduling problem 
involving non-permutation schedules are referred to as the non-permutation 
flow shop group scheduling problem (NPFGSP) and non-permutation flow 
shop batch scheduling problem (NPFBSP) (Shen, Gupta, and Buscher 2014, 
353–54). Fig 6-2 illustrates the corresponding pairs of models. In both cases, 
four jobs are given. Jobs 1, 2, and 3 belong to the same family, and job 4 
does not. In Fig.6-2a, each family forms a single batch according to the 
PFGS model. In Figure 6-2b, the families are divided into separate batches 
for the FBSP. One can see that PFBSP is more efficient than PFGSP. In 
both cases, non-permutation schedules can improve the makespan.  

The PFGSP with sequence-dependent family setup times (SDFST) is 
NP-hard even in the simplest case for the two-machine flow shop with only 
one job for each family (J. N. D. Gupta and Darrow 1986). Moreover, all 
versions of FGSP and FBSP with SDFST are NP-hard (T. C. E. Cheng, 
Gupta, and Wang 2000, 265). In view of this, the corresponding research 
for solving the FGSP with SDFST makes an emphasis on branch-and-bound 
procedures and approximation algorithms. Schaller, Gupta, and Vakharia 
(2000, 327–32) and Shen, Gupta, and Buscher (2014, 355–58) gave an 
exhaustive collection of contemporary available approximate algorithms for 
solving PFGSPs with SDFST. These algorithms provide good permutation 
schedules within a reasonable computational time, but they do not guarantee 
the optimality of the schedule.  
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These algorithms can be classified into two categories:  
 
1. Constructive heuristics, where once a job sequence is determined, 

it is fixed and cannot be reversed;  2. Improvement heuristics, which start with an initial solution and then 
provide an iterative scheme for obtaining an improved solution.  

 
In order to reduce the setup times, Shen, Gupta, and Buscher (2014, 353) 

divided the product families into inconsistent batches on different machines. 
This procedure leads to non-permutation schedules. A tabu search 
algorithm, which used several neighborhood functions, was developed to 
solve the NPFBSP. 

6.3.4 HFS 

Xuan and Tang (2007) addressed the s-stage HFS problem to schedule n 
jobs with the s-batch processing model at the last stage. The authors reduced 
the problem to a two-stage HFS. The transportation times were considered 
separately from the processing times. The objective was to minimize a given 
criterion with respect to the completion time. When the jobs are grouped at 
stage s, each batch l has a given size bl, i.e., the batch size is different for all 
batches. All jobs from the same batch must be processed on a machine at 
stage s consecutively while satisfying the given precedence constraints 
among the jobs within this batch. Each job j has a weight, and waiting for 
the job processing between two adjacent stages causes a penalty cost. A 
sequence-independent setup time is considered separately from the 
processing time before the first job of batch l starts its processing. It could 
be anticipatory, meaning that the setup of the next batch can start as soon as 
a machine becomes free to process the batch. An integer programming 
model and a batch decoupling-based Lagrangian relaxation algorithm were 
proposed. The problem was found in the iron and steel industry.  
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b)

Fig. 6-2. Flow shop scheduling problem: a) Flow shop group scheduling problem 
(FGSP); b) Flow shop batching and scheduling problem (FBSP). Adapted from 
Shen, Gupta and Buscher (2014, 354).
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Shahvari and Logendran (2016) dealt with the HFS batching and 
scheduling problem, where SDFST were present. The objective was to 
minimize simultaneously the weighted sum of the total weighted completion 
time and total weighted tardiness. The GT assumptions were disregarded by 
allowing the possibility of splitting pre-determined groups of jobs into 
inconsistent batches, in order to improve the operational efficiency, as it was 
made by Shen, Gupta, and Buscher (2014). A benchmark of small size 
problems was considered to show the benefits of batching on group 
scheduling. Since the problem is NP-hard, several tabu search-based 
algorithms were developed at three levels, which move back and forward 
between the batching and scheduling phases. Two algorithms incorporated 
tabu search into the framework of path-relinking to exploit the information 
on good solutions. An initial solution was implemented to trigger the search 
into the solution space. 

6.3.5 Job shop and open shop 

Shen and Buscher (2012) addressed the serial batch scheduling problem 
embedded in a job shop environment to minimize the makespan. The 
SDFST and the job availability assumption were also taken into account. A 
tabu search algorithm was proposed.  

The paper by Mosheiov and Oron (2008) addressed the batch scheduling 
problems in an m-machine open shop environment. The objectives were a 
minimum makespan and a minimum flow time assuming an identical 
processing time of the jobs, machine- and sequence-independent setup times 
as well as batch availability. It was shown that the optimal number of 
batches was either m or [n/(n/m m and n are the number of 
machines and the number of jobs, respectively. The complexity of the 
minimum flow time problem was unknown. An O(n) algorithm, which 
extended the solution of the single machine case and produced close-to-
optimal solutions, was proposed. 

6.4 Batch Processing Machines 

The jobs may be batched if they belong to the same family or share the same 
setup on a machine. Another reason for batching occurs when a machine is 
able to process several jobs simultaneously, as it happens in the 
manufacturing of circuit boards during the burn-in operation. As it was 
noted before, the burn-in operation  is performed in ovens that are able to 
accommodate several jobs (C.-Y. Lee, Uzsoy, and Martin-Vega 1992, 764–
65; Mathirajan and Sivakumar 2006, 991–92). This assumption produces a 
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big class of scheduling problems, which consider a simultaneous processing 
of the jobs, and the batch size is restricted by the capacity of the machine 
used. 

A batch processing machine (BPM) is a work center, which is dedicated 
to process a number of jobs simultaneously. Once the processing of a batch 
is initiated on a BPM, no job can be removed or added to the batch. On such 
a machine, a number of jobs may be processed together, or a large job can 
be broken up into smaller lots according to the machine capacity. These jobs 
can be similar or have different processing times. In the latter case, different 
jobs are batched together. The processing time of the entire batch is given 
by the lot, which has the longest processing time among all lots in the batch. 
It can also be independent of the processing time of the jobs included into 
the batch and can be fixed for an individual batching machine. An example 
of a batch scheduling problem with similar jobs for the final test stage in 
burn-in ovens was given in the paper by S. S. Chang and Young (2003, 645).  

One can meet BPMs in many different environments such as chemical 
processes performed in the tanks or kilns and the burn-in operations in 
semiconductor industry. They are commonly used in wafer fabrication, 
kilns, environmental stress screening (ESS) chambers, chemical, food, and 
mineral-processing industries, pharmaceutical and construction materials 
industries, to name a few. 

In serial manufacturing facilities, a BPM is typically a bottleneck in an 
assembly line, in which it is included. The BPMs produce many problems 
in the programming of the manufacturing process. Different scheduling 
problems involving BPMs have been addressed extensively in the literature 
for many discrete manufacturing industries, for example, shoe manufacturing, 
aircraft industry, furniture manufacturing, ion plating industry, iron and 
steel industry, steel casting and glass container production, etc. Results of 
the researches in this area are relevant to all shop environments: a single 
BPM, parallel BPMs, and flow shops. Ikura and Gimple (1986) were 
probably the first researchers to address the problem of scheduling BPMs 
from a deterministic perspective. The problems, which considered BPM 
scheduling, have received attention with the advances in the semiconductor 
industry, see Lee, Uzsoy, and Martin-Vega (1992); Uzsoy, Lee, and Martin-
Vega (1992; 1994);  Li and Lee (1997); Brucker et al. (1998); Lee and 
Uzsoy (1999); Damodaran and Srihari (2004); Jolai (2005); Mathirajan and 
Sivakumar (2006); Damodaran, Srihari, and Lam (2007); Manjeshwar, 
Damodaran, and Damodaran (2009); Trindade et al. (2018); Jia et al. (2019).  
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6.5 Parallel batching 

6.5.1 Model properties 

In the literature, p-batch scheduling forms a class of problems referred to as 
batch parallel processing or BPM scheduling. The two important decisions 
made on BPM-including environments are:  
 

•  Grouping part families into batches; 
•  Scheduling the batches to improve a performance measure. 
 
For the p-batch assumption, there are two cases, which consider the 

batch size B. The special case when B = 1 is a classical scheduling problem 
that is solvable in O(nlogn) time. If the sizes of the jobs are taken into 
account, the total size of all jobs must not exceed the machine capacity. This 
case is called a problem with bounded batches. As far as each job may have 
a different size, the number of jobs in each batch may be different. A batch 
is called full if it contains exactly B jobs; otherwise, it is called a partial 
batch. It is easy to see that there are at most n and at least n/B  batches in 
a feasible schedule, where n/B  denotes the smallest integer greater than or 
equal to n/B. As it was noted just before, a schedule for processing jobs on 
a BPM consists of a batching decision and finding the sequence of the 
batches.  

When an unlimited number of jobs is allowed to be included into a batch, 
this is referred to as an unbounded batch. In this case, the number of jobs is 
not restricted to be processed in one batch (L. L. Liu, Ng, and Cheng 2010, 
814; Yazdani Sabouni and Jolai 2010, 315). Scheduling problems involving 
a single BPM with bounded and unbounded batches have very different 
computational complexity. Thus, for a single BPM with an unbounded 
batch, i.e., B  n, where n is the number of jobs to be processed, the problem 
of minimizing the makespan is solved trivially by putting all jobs into one 
batch B1. The minimum makespan is then Cmax = p(B1) = max1 j n{pj}.  

Lee, Uzsoy, and Martin-Vega (1992, 771) showed that finding a 
batching scheme with minimum makespan on parallel BPMs with non-
identical job sizes is NP-hard. It is NP-hard even for a single BPM. Table 
6-1 shows an overview of the complexities for different objective functions.  

Due to the complexity of BPM problems, the scheduling research mainly 
focuses on single and parallel BPMs.  
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Objective 
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Table 6-1. Overview of the computational complexities for a single BPM with equal 
release dates. Adapted from Brucker et al. (1998, 32). 

6.5.2 Single BPM 

When a burn-in oven is modeled as a BPM, the typical assumptions are as 
follows: 

Assumption 1. There are n jobs to be processed. The following attributes 
are associated with each job j: a processing time pj, a due date dj and a 
release time rj, which corresponds to the time the job becomes available for 
processing on the batch machine. All data are assumed deterministic. The 
processing times are known in advance from the product test specification. 

Assumption 2. Each machine can process up to B jobs simultaneously. 
All jobs require the same amount of the oven capacity. In practice, this 
corresponds to an offline assignation of the available boards to the lots 
awaiting burn-in and then treating each board as an individual job. The 
maximum number of B jobs, which can be processed simultaneously, is then 
given by the number of the boards, which an oven is able to accommodate. 

 Assumption 3. Once the processing of a batch is initiated, it cannot be 
interrupted, and other jobs cannot be deposited into the oven until the 
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processing is completed. Therefore, it is acceptable to keep a lot of chips in 
the oven for a longer period than its specified burn-in time, but not for a 
shorter period. The processing time of a batch is given by the processing 
time of the longest job in the batch. 

The dispatching rules, applied to BPM scheduling, have a specificity 
compared with the traditional ones:  

A sequence is in batch-EDD order if for any two batches P and Q in the 
sequence, where batch P is processed before batch Q, there is no pair of jobs 
i, j such that i  P, j  Q and di > dj.  

A sequence is in batch-LPT order if for any two batches P and Q in the 
sequence, where batch P is processed before batch Q, there is no pair of jobs 
i, j such that i  P, j  Q and pi < pj. 

In the burn-in operation, the batches in an optimal schedule are not 
necessarily full, but the processing time of a batch is always equal to the 
longest processing time of the jobs in the batch. For example, let B = 2, n = 
2, p1 = 10, p2 = 30, d1 = 10, d2 = 40 be given, and the goal is to minimize 
Tmax. If both jobs belong to the same batch, they both complete at time 30, 
and Tmax = 20. If they belong to separate batches and job 1 is scheduled 
before job 2, then Tmax= 0. 

Single BPM problems are the most studied ones in the p-batch 
scheduling literature. One of the first works dedicated to a single BPM was 
due to Lee, Uzsoy, and Vega (1992).  The burn-in oven was modeled as a 
BPM. The authors introduced and extended some important definitions: the 
triplet-notation to describe a single BPM scheduling problem as well as the 
usual assumptions and dispatching policies. For example, the notation 
1|B|Cmax denotes the problem of minimizing the makespan on a single BPM; 
the notation 1| rj, pj = p, B| Umax  denotes the problem of minimizing the 
number of the tardy jobs on a single BPM, where all jobs have equal 
processing times and job j is available at time rj. 

The research by Chandru, Lee, and Uzsoy (1993) was also motivated by 
the burn-in operation. A basic variant of the BPM model with a fixed 
number of job families was considered. The jobs of the same family had the 
same processing time. Properties of an optimal schedule were analyzed, and 
a dynamic programming algorithm of polynomial time complexity was 
developed. In the work by Sung et al. (2002), each job belongs to one of a 
given number of families. The release times of the jobs are different from 
each other. The objective is the minimization of the makespan. A dynamic 
programming algorithm was proposed for the situation, where a fixed 
number of job families was given.   

Liu, Ng, and Cheng (2007) considered the problem of scheduling jobs 
with agreeable processing times and due dates to minimize total tardiness 
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and the weighted number of tardy jobs. The processing times and the due 
dates are agreeable if pi < pj implies that di  dj, 1 i < j  n. In the problems 
with agreeable processing times and due dates, the jobs should be re-
indexed in non-decreasing order of their processing times and due dates 
such that p1  p2  …  pn and d1  d2  …  dn. The problems under study 
were denoted by the three-field notation as 1|B, agr(pj, dj)| Tj and 1|B, 
agr(pj, dj)| wj Uj. A strict analysis of the NP-hardness of these problems 
was provided, and pseudo-polynomial time algorithms for NP-hard special 
cases of these problems were suggested. Applications of these problems 
were found in a variety of manufacturing environments, for example, heat 
treatment in the metalworking industry, very large-scale integrated circuits 
manufacturing, and diffusion or oxidation in wafer fabrication of 
semiconductor manufacturing.  

A class of BPM scheduling problems is dedicated to the consideration 
of incompatible job families, where a set of n jobs is partitioned into m 
incompatible families and jobs of different families cannot be processed 
together (Uzsoy 1995; Jolai 2005; Koh et al. 2005). Jolai (2005) studied the 
problem of minimizing the number of tardy jobs on a single bounded BPM. 
The processing times of all jobs belonging to the same family are equivalent, 
and jobs of different families cannot be processed together. It was shown 
that this problem is NP-hard. A dynamic programming algorithm was 
presented. It has a polynomial time complexity when the number of job 
families and the batch machine capacity are fixed. This work was motivated 
by a diffusion operation in wafer fabrication facilities. A similar model, 
where the job sizes are arbitrary and the performance measures included the 
makespan, total completion time, and total weighted completion time was 
studied by Koh et al. (2005).  

Ridouard, Richard, and Martineau (2008) proposed an online scheduling 
algorithm on a bounded BPM to minimize the makespan. The jobs in the 
same batch are completed at the same time at the final testing stage in a 
burn-in oven. Job release dates were also considered. This general problem 
with an infinite machine capacity was denoted as 1 p-batch, rj, B = Cmax. 
Some simple algorithms were proposed.  

In the scheduling literature, BPMs were also included into more complex 
production environments.  
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6.5.3 Parallel BPMs  

Li, Li, and Zhang (2005) studied the problem of minimizing the makespan 
of n jobs on m identical parallel unbounded batching machines. Each job is 
characterized by a release time and a processing time. A PTAS was 
presented. Perez, Fowler, and Carlyle (2005) considered the diffusion step 
in the semiconductor wafer fabrication. It is very time consuming, compared 
to other steps. The authors modeled the diffusion furnaces as parallel BPMs 
with incompatible job families and focused on minimizing total weighted 
tardiness in this environment. The resulting problem is NP-hard. Therefore, 
it was decomposed into two sequential decision problems: 1) assigning the 
lots to batches, 2) sequencing the batches. Several heuristics were 
developed. In the problem studied by Mönch and Unbehaun (2007), the 
objective was to minimize the sum of the absolute deviations of the 
completion times from the due date (earliness–tardiness) of all jobs on 
parallel burn-in ovens. All jobs were assumed to have the same due date. 
Three decomposition heuristics were suggested: 1) to separate the sets of 
early and tardy jobs for each of the parallel burn-in ovens; 2) to assign the 
jobs to each single burn-in oven, and 3) to assign the jobs to m early job sets 
and m tardy jobs sets in the case of m burn-in ovens in parallel. Genetic 
algorithms, dynamic programming and sequencing rules were applied. 

6.5.4 Flow shop 

Sung and Kim (2003) dealt with an FS2 problem with two identically-
bounded BPMs. Three due date-related objectives were studied, namely: 1) 
maximum tardiness, 2) the number of tardy jobs, and 3) total tardiness. The 
processing time of a batch depends on the individual machine, but not on 
the jobs in the batch, which is deterministic and known a priori. The problem 
was found in a wafer fabrication process, where the wafers were processed 
and moved through a series of subprocesses including cleaning, oxidation, 
lithography, etching and ion implantation. The batch transportation time 
between the machines was considered to be negligible. Three efficient 
polynomial time algorithms were developed for minimizing the due date 
related measures. 

A BPM-containing FS2 variant with waiting time restrictions was 
considered in the paper by Su (2003). The production system included a 
bounded batch processor at stage 1 and a single processor at stage 2. For 
each job, the waiting time for the second stage cannot be greater than a given 
upper bound. The objective was to minimize the makespan. The application 
of this model was found, particularly, in the semiconductor wafer 
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fabrication. Diffusion and oxidation ovens are there working as batch 
processors, while the laser ablation, inspection, and repair operations are 
executed by discrete processors. The two-stage flow shop sequencing 
problem with limited waiting constraints was shown to be NP-hard. A 
heuristic algorithm and a mixed integer program were proposed.  

6.5.5 BPM combined with deterioration effect 

Tang and Liu (2009) dealt also with a similar FS2 scheduling environment, 
where a single machine was followed by a BPM. There existed a 
transportation as well as a deterioration phenomenon. This scheduling 
problem arose from the ingot teeming and the heating process in a steel 
plant. Gong, Tang, and Duin (2010) studied the same FS2 structure with a 
batching machine subject to the blocking constraint and a discrete machine 
with shared setup times. The problem of minimizing the makespan was 
shown to be NP-hard. This research was motivated by applications in the 
iron and steel industries. 

Tang et al. (2017) formulated a scheduling problem, in which the jobs 
were generated by two agents and had time-dependent proportional-linear 
deteriorating processing times. The two agents compete for a common 
single batching machine to process their jobs, and each agent has its own 
criterion to optimize. The jobs may have identical or different release dates. 
The problem was to determine a schedule for processing the jobs such that 
the objective of one agent was minimized, while the objective of the other 
agent was maintained under a fixed value. Various combinations of the 
unbounded model were considered for regular objectives on the basis of the 
compatibility of the two agents. For the bounded model, two different 
objectives for incompatible and compatible agents were studied: 1) 
minimizing the makespan of one agent subject to an upper bound on the 
makespan of the other agent, and 2) minimizing the number of tardy jobs of 
one agent subject to an upper bound on the number of tardy jobs of the other 
agent. Different versions of the problem were analyzed and shown to be 
intractable. Nevertheless, an efficient exact algorithm was provided. The 
study was motivated by a production scheduling problem for the ingot 
soaking process of a primary rolling plant in the steel industry. Up to now, 
it is the only research dedicated to two-agent scheduling for problems with 
p-batch processing. Kong et al. (2019) stated a complex problem with a 
bounded p-batch machine, where job rejection, deteriorating jobs, setup 
times, and non-identical job sizes were considered. Each job can be either 
rejected with a certain penalty cost, or accepted and further processed in 
batches on a single machine. There was a setup time before processing each 
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batch and the objective was to minimize the sum of the makespan and the 
total penalty. Several useful preliminaries for arranging accepted jobs of 
identical size were proposed. Based on these preliminaries, the special case 
was first investigated, in which all jobs had an identical size. A dynamic 
programming algorithm was developed to solve this problem. These 
preliminaries helped to reduce the complexity of the dynamic programming 
algorithm. 

6.5.6 Job compatibility on a BPM 

The job compatibility assumption produces a class of scheduling problems 
with BPM included environments (Bellanger and Oulamara 2009; Oulamara, 
Finke, and Kamgaing Kuiteing 2009; Bellanger, Oulamara, and Kovalyov 
2010). The study was first motivated by a scheduling problem in the tire 
manufacturing industry. Such a processing is also typical for galvanic 
operations, chemical milling operations, and temperature testing operations. 
The jobs in a batch have to be compatible on the batching machine, that is, 
they must share the same characteristics, particularly, the job processing 
time compatibility. This means that the jobs are compatible if their 
processing time intervals have a non-empty intersection.   

Formally, the job processing time compatibility is defined as follows. 
There are n jobs to be processed on a batching machine. The processing 
time pj of job j is given by the interval [aj, bj  with the initial and terminal 
endpoints aj and bj, respectively. The batching machine has a capacity k, 
which means that at most k jobs can be processed simultaneously in a batch. 
The jobs of the same batch have to be compatible, i.e., the time processing 
intervals of the jobs must have a non-empty intersection. The processing 
time of a batch is given by the longest processing time of the jobs in the 
batch. This time corresponds to the left endpoint of the intersection of the 
job processing time intervals in the batch, which is the maximum initial 
endpoint aj of the compatible jobs. Consecutively, the processing time of a 
batch B on the batching machine is q(B) = maxj  B{aj}. 

Compatibility is a symmetric binary relation. A pair (i, j) of jobs is 
compatible if they share a similar processing time on the machine, [ai, bi

[aj, bj , i  j. A compatibility relation, which is defined between each 
pair of operations, gives rise to an undirected compatibility graph G = (V, 
E), where V is the set of vertices, which represent the jobs, and E is the edge 
set. A pair of jobs is connected if and only if they are compatible. A schedule 
is fully characterized by a partition of the jobs into batches and the batch 
sequence. The minimum completion time of the latest batch in a schedule is 
the minimal value of the makespan, Cmax =  max1 j n{Cj}. 
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An example illustrates these concepts.  
 
Example 6-1.  
The problem by Oulamara, Finke, and Kamgaing Kuiteing (2009) describes 
a variant of such an environment in an FS2 with a discrete machine at the 
first stage and a batching machine at the second stage. There are n = 8 jobs 
in the system. All jobs visit the machines in the same order. The batching 
machine can process up to two jobs simultaneously, k = 2. This problem is 
denoted as F2| (2), Gp = INT, k < n |Cmax, where (2) means 
that machine 2 is a batching machine, Gp = INT specifies that the 
compatibility graph is an interval graph, and k < n indicates that the capacity 
of the batching machines is a part of the input (i.e.,  k  is a constant). 

The job processing times pj on the first machine and the processing 
intervals qj for the batching machine are given in Table 6-2. Fig. 6-3 shows 
the intervals of the processing time for every job. The corresponding 
compatibility graph is presented in Fig. 6-4. A feasible schedule contains 
the four batches S = {J1, J8}, {J6, J7}, {J3, J5}, {J2, J4} . According to 
the definition and the input data, the processing times of the batches are 
determined and given in Table 6-3. A Gantt chart in Fig. 6-5 shows a 
feasible schedule S. 
 

Job J1 J2 J3 J4 J5 J6 J7 J8 
Time pj 4 7 5 6 8 6 10 4 
Interval 
qj          

 
Table 6-2. Job processing times. 
 

 
 

Fig. 6-3. The job processing times for the batching machine are given in form of 
time intervals.  
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Fig. 6-4. Undirected compatibility graph 

Batches {J1, J8} {J6, J7} {J3, J5} {J2, J4}
Batch processing time 14 15 9 3

Table 6-3. Batch processing times for a feasible partition of the jobs.

Fig. 6-5. A feasible schedule with Cmax = 53. 

An extension of this model was presented by Bellanger and Oulamara 
(2009). A two-stage HFS with several identical discrete machines at the first 
stage and several identical BPMs, which process batches of compatible 
operations, were considered. The goal was to minimize the makespan. This 
problem was denoted as FH2B(m1,m2)| (II), Gp = INT, k < n |Cmax.
Here m1 and m2 represent the number of machines at the first and second 
stages, respectively; (II) means that stage two is composed of 
BPMs; Gp = INT specifies that the compatibility graph is an interval graph;
k < n indicates that the capacity of the batching machines is a variable and 
it is a part of the input. Since the problem is NP-hard, several heuristics were 
developed along with their worst cases analysis. The case when the jobs 
have the same processing time at the first stage was also considered, and a 

 EBSCOhost - printed on 2/9/2023 3:05 AM via . All use subject to https://www.ebsco.com/terms-of-use



Chapter Six 
 

 

210 

PTAS algorithm was presented. Bellanger, Oulamara, and Kovalyov (2010) 
addressed an unbounded batching machine with the objective to minimize 
total completion time. The normal job processing times are given. An actual 
job processing time can exceed its normal value up to a certain percentage. 
If the corresponding processing time intervals intersect, this percentage is 
the same for all jobs. The job processing times are compatible. The problem 
was denoted as 1| (II), G =  - INT | Cj. Here G =  - INT stands for 
the specific interval compatibility relations in the problem. The objective 
was to find a schedule, which minimizes total completion time. A dynamic 
programming algorithm was provided. 

6.5.7 Multicriteria problems 

The complexity of the production process management in advanced 
manufacturing systems with batch processing stimulated a recent interest of 
researchers to studies, in which one criterion is insufficient. Liu, Ng, and 
Cheng (2009) studied some bicriteria scheduling problems with equal 
processing times on a bounded p-batch BPM. This model was motivated by 
the problem of scheduling a burn-in operation in very large-scale integrated 
circuit manufacturing, where several criteria may be considered at the same 
time, for example, customer satisfaction, on/time delivery, and WIP 
inventory. As usual, a schedule for processing the jobs on a BPM consists 
of a batching decision and sequencing the batches. Two types of criteria in 
a multi-criteria problem can be distinguished: regular and additional ones. 
A regular criterion is nondecreasing in the job completion times. Regular 
criteria for machine scheduling, among others, include the makespan, total 
completion time, maximum lateness, number of tardy jobs, and total 
tardiness, denoted by Cmax, Cj, Lmax, Uj , and Tj, respectively. If the jobs 
have different weights, then the corresponding additional criteria are wjCj, 

wjUj, and wjTj, respectively. A useful characterization of an optimal 
schedule class for minimizing any regular single criterion and bicriteria 
scheduling problems were first developed. The bicriteria scheduling 
problems on a single BPM were transformed into two extended assignment 
problems. Then optimal polynomial time algorithms were provided for 
various combinations of these criteria. The results for the single machine 
case can be extended to the case of m identical parallel BPMs. 

In the model by Kashan, Karini, and Jolai (2010), the processing times 
are non-identical. Two different multi-objective genetic algorithms based 
on different representation schemes were proposed for the simultaneous 
minimization of the makespan and maximum tardiness. Yazdani Sabouni 
and Jolai (2010) considered the problem of scheduling n jobs on a single 
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BPM, which can be both bounded and unbounded. In this problem, two 
customers ordered the jobs. The jobs belonging to different customers were 
processed according to an individual criterion. The considered criteria were 
the minimization of the makespan and maximum lateness for the problem 
with incompatible groups and unbounded batches. Optimal algorithms for 
three special cases were developed.  

Luo et al. (2009) proposed a genetic algorithm for scheduling an HFS2 
problem with sequence-dependent setup times, blocking, and machine 
availability constraints. The first stage consisted of multiple parallel 
bounded-batch machines with the job availability model, and the second 
stage had only one machine. A blocking environment existed between the 
two stages with no intermediate buffer storage. The scheduling problem 
with blocking and no-wait arises in serial product lines, where no 
intermediate buffer storage is available. In no-wait scheduling, the jobs must 
be processed from the start until the completion without any interruption. In 
blocking scheduling, a job completed at a machine must remain there until 
the downstream machine becomes available. Preventive maintenance and a 
machine breakdown were considered. Two types of machine unavailability, 
namely deterministic and stochastic cases were identified in this problem. 
The former one occurs on the machine at stage two, where both the start 
time and the end time were known in advance. The stochastic case occurs 
on one of the parallel BPM at stage one, and a real-time rescheduling is 
triggered. Minimizing the makespan was considered as the objective to 
develop an optimal scheduling algorithm. A genetic algorithm was used to 
obtain a near-optimal solution. This research has been motivated by a real-
life problem faced by a company. It was specialized in metalworking, where 
the pre-heating section combined with the rolling section formed a two-
stage HFS system.  

6.6 No-wait batching models 

Various practical scheduling problems include no-wait constraints between 
operations. These situations are studied in FS2 environments, where the two 
machines are continuously available and arranged in a pipeline fashion. 
That is, it may be necessary to delay the operation of a job on machine one 
to ensure that there is no waiting for the availability of machine two when 
its operation on machine one is finished. This necessity increases the 
complexity of finding an optimal schedule for the problem. This problem 
can be viewed as a variant of Johnson's classical F2 problem with n jobs, 
which can be solved optimally by a simple O(nlogn) algorithm, see Pinedo 
(2008, 156). This algorithm finds an optimal schedule that minimizes the 
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makespan, i.e., the maximum completion time of all jobs, however, this 
solution admits an idle time between the two machines, therefore, it cannot 
be applied to FS2 with the no-wait constraint. The no-wait constraint 
naturally occurs in many production environments, such as, for example, in 
steel or plastic industries, in which no interruption or waiting is allowed 
during the processing of a job between successive machines. Recently, the 
FS2 no-wait problem was formulated for environments with batch 
processing assumptions. The interest of researchers was provoked, as usual, 
by practical necessities and theoretical challenges, but there is still a lack of 
publications on this subject.  

In a basic variant with two s-batching machines, this problem is defined 
as follows. The jobs are grouped into batches before the processing. A 
constant setup time is incurred for preparing each batch on machine one. 
After the completion of a batch on machine one, all jobs contained in this 
batch must be immediately transferred to the second machine in a no-wait 
manner. A constant setup time is also incurred on machine two for these 
batches. The minimization of the makespan is the usual criterion. Following 
Graham's three-field notation, this problem may be denoted as F2|nwt, 
batch|Cmax, where nwt and batch represent the characteristics of the no-wait 
constraint and batch scheduling, respectively.  

To explain the problem, an illustrative example is given below. It shows 
that the makespan length depends on both the batching and the scheduling 
decisions. 
 
Example 6-2.  
Let us consider a set of six jobs to be processed in an FS2 no-wait system 
with batching. The processing times are given in Table 6-4.  A constant 
setup time s = 1 is assumed. 
 

Job 1 2 3 4 5 6 
 1 2 2 5 3 1 
 3 4 1 2 2 2 

 
Table 6-4. Processing times of the jobs. 

 
In Fig. 6-6, the schedule S1 contains the two batches B1 = {2,4,6} and B2 

= {1,3,5}, four setups, and we get Cmax(B1) = 25, while the schedule S2 
contains three batches B1 = {1,2}, B2 = {3,4}, B3 = {5,6}; six setups, and 
Cmax(B2) = 22, i.e., three time units shorter than S1. One can see that, 
although schedule B2 has more setup operations, it is shorter due to smaller 
idle times on both machines.  
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The problem F2|nwt, batch|Cmax is NP-hard, but it has polynomially 
solvable variants, for example, F2|nwt, batch, pi=qi=p|Cmax and F2|nwt, 
batch, pi=p, qi=q |Cmax (Lin and Cheng, 2001). A no-wait FS2 problem with 
makespan minimization as the criterion can be formulated as a restricted 
traveling salesman problem (TSP). Therefore, the Gilmore and Gomory 
algorithm can be used to solve the problem in polynomial time (Gilmore 
and Gomory 1964; Vairaktarakis 2003, 503–5).  

In the paper by Oulamara (2007), a no-wait problem was also 
considered. In a comprehensible mode, it was denoted as F2| p-batch(1), s-
batch(2), b, nwt|Cmax. The motivation for the problem studied in that paper 
came from processing products in the iron and steel industry. During each 
working phase, the metal sheets first pass through a multi-head hole-
punching machine, which simultaneously punches batches of holes 
according to their position on the sheet. Then, following a short preparation 
period, the sheet undergoes a series of sequential bending operations. This 
problem was shown to be NP-hard. Some properties of the model were 
studied.  

 

 
a) 
 

 
b) 

 
Fig. 6-6. Schedules with different batching solutions: a) schedule S1; b) schedule S2. 
Adapted from Lin and Cheng (2001, 616). 
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6.7 Cell architectures 

A manufacturing cell in a flexible system consists of more than one machine 
assisted by a robot for loading and unloading of parts, and an automated 
material handling system. In general, the flexibility of the cells in a plant 
leads to benefits such as easy adaptation to product nomenclature changes, 
increased productivity, reduced inventory, reduced production cost, and 
improved quality. The manufacturing cell architecture has numerous 
aspects in its design and functionality. Many models for decision-making in 
flexible manufacturing are concerned with the key issue of the resource 
management due to the versatility and flexibility of the production, that is, 
how to optimally allocate and synchronize machining resources and parts in 
order to minimize the production costs, which is usually equivalent to 
maximizing the productivity. This objective leads to different models of the 
cell architecture, depending on the resource system at hand.  

The selected architecture has a direct effect on the performance of the 
FMS through different issues. One of such moments is the presence of 
setups. In flexible manufacturing cells, each part is mounted at a fixed 
position and does not move until the processing machine, which is usually 
assisted by a robot, has completed all required operations. Significant time 
losses occur in situations when the processing resource (machining center, 
robot, and numerical control center) switches its operation mode, affecting 
the performance indexes. Nevertheless, a certain time must be allowed to a 
resource to interchange the tools before it starts working in a new mode.  

Numerous methods have been proposed to solve the tool switching 
problem (Stecke and Kim 1988, 9; Co, Biermann, and Chen 1990, 2172–
73; Crama 1997, 144–45; Agnetis, Lucertini, and Nicolo 1993, 104).  
Tool/part grouping problems are closely related to the cell formation (CF) 
problem in GT. Various methods, which are based on similarity coefficients, 
are described in Sections 5.6-5.7. 

A general formulation of the tool switching problem was given by 
Crama (1997, 144) as follows: Determine a part input sequence and an 
associated sequence of tool loadings such that all tools required by the part 
j are present in the tool loading j, and minimize the total number of tool 
switches.  

The tool switching problem is NP-hard for any fixed C C is 
the capacity of the tool. The problem of scheduling jobs requiring exactly 
M tool setups, where M is the total number of tools needed to process all 
parts, is also NP-hard (Crama et al. 1994, 36). When all setup times are 
equal, i.e., when the objective is only to minimize the total number of 
switches, then the integer program can be solved by a greedy algorithm, 
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which turns out to be equivalent to the so-called keep tool needed soonest 
policy (KTNS) (C. S. Tang and Denardo 1988). In some situations, the 
number of batches (switching instants) is a more relevant performance 
criterion. This is the case when the setup time of the operations is 
proportional to the number of tool changeovers, or when the tool 
transportation system is congested (C. S. Tang and Denardo 1988, 769). 

There are generally two different setup types concerning the resource 
handling in the batch machinery:  

 
 Part replacement, which occurs when a finished part is removed and 

replaced by a new part; 
 Tool switch, which happens when the machine switches from one 

operation type to another one, even if the same part is processed.  
 
A part replacement setup takes usually more time than a tool switch.  
A part replacement may be executed in two different ways named FMS 

management policies: 
 
 Batching replacement: All parts (up to a total of k) currently being 

processed must be completed before new parts are loaded. A batch 
setup occurs whenever a new set of parts is loaded. A tool setup 
occurs at each switch of tools. The parts cannot be removed without 
stopping the cell operation; 

 Flexible replacement: A part replacement takes place when it is 
completed. These setups occur only at the tool switches. 

 
Modeling the part replacement requires to solve simultaneously two 

subproblems: 
 
 Forming batches; each one contains at most k parts; 
 Scheduling the tools and the robot moves, which are required by the 

execution program for each batch. 
 
Using these definitions, the cell architecture can be described by the 

following assumptions.  
There is a set of parts to be processed in a cell. At any time, up to k parts 

can be accommodated simultaneously in special fixtures. The quantity k is 
defined as the degree of parallelism of the cell. Each part requires a given 
sequence of the operations called part program, and each part operation 
requires a certain tool. The length of a part program is the number of 
operations in a part program. The same tool may be used by different 

 EBSCOhost - printed on 2/9/2023 3:05 AM via . All use subject to https://www.ebsco.com/terms-of-use



Chapter Six 
 

 

216 

operations, even non-consecutive ones, in the same part program. The robot 
can hold only one tool at a time. When the robot is holding a given tool, 
same of the parts present in the cell may need this tool to carry out the 
current operation of their part program. In such a case, the robot performs 
all these operations before switching to a different tool. The tools are kept 
in a tool rack, which is accessed by the robot during the tool switch. 

A tool schedule is the sequence of tools (possibly repeated), which are 
loaded by the machine when a given batch is processed. The total time 
required to process a batch is determined by the total duration of the 
operations plus the total tool switching time, which must be minimized. The 
length of a tool schedule is the length of the shortest tool schedule for this 
batch. Hence, for each batch, the scheduling subproblem consists of finding 
the batch length and the corresponding tool schedule. 

Two illustrative examples for a robot, where any tool schedule is 
feasible, are given below to explain the tool scheduling problem. The 
examples are adapted from Agnetis, Alfieri, and Nicosia (2003, 89). 
 
Example 6-3.  
There are three tools a, b, c, and a batch B, which consists of three parts of 
the program: P1 = abac, P2 = bacb, and P3 = abcb. For instance, the tool 
schedule in the order abcabc allows to complete P1 and P3 but not P2. If 
the tools are scheduled in the order abcabcb, all part programs may be 
completed, but this requires six tool switches (Fig. 6-7 a). However, if the 
tools are scheduled in the order abacb, three part programs may be 
completed using only four tool switches. Therefore, the schedule length of 
B is five (Fig. 6-7 b). 
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a)     b)  

Fig. 6-7. Tool schedules: a) abcabcb; b) abacb. 
 
The robot performs only one operation at a time, and the total duration 

of all operations is given. Therefore, the objective depends only on the 
amount of time spent for the setup activities (both batch and tool setups). 
The total batch setup time is equal to Ts (b - 1), where Ts is the batch setup 
time, and b is the number of batches. The total setup time is obtained by 
summing up the tool setup times of all batches. 
 
Example 6-4.  
Let us suppose that besides there are the batch B with the tooling as it is 
described in the previous example. Another batch B'  formed by the part 
programs P4 = bcba, P5 = caba, and P6 = bcab. The length of B' is also 
five. It is obtained by the tool schedule bcaba. The overall time spent for 
setup activities during processing the batches B and B'  is given as Ts + 8ts, 
where Ts is the setup time used for loading a new batch, and ts is the tool 
switch setup time. 

The problem Part Batching and Tool Scheduling is NP-hard even for 
one processor and k = 3 parts presented in a flexible manufacturing cell at 
the same time (Agnetis, Alfieri, and Nicosia 2003). 
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6.8 Conclusions 

A variety of problems, which were described in the literature for batching 
models, motivated the introduction of numerous new concepts and 
approaches. This attention to the effective organization of manufacturing 
industries with lot processing had inspired an evolution of the scheduling 
theory, and on the other hand, it implied a huge number of researches related 
to the study of new extensions and generalizations of classical scheduling 
problems. Therefore, we can conclude that the investigation of the batching 
production order introduced a big progress in the scheduling theory. 

The main purpose to join similar lots into a batch is the reduction of lot 
changeover times and costs, because processing the jobs/lots as a batch may 
be cheaper or faster than processing the jobs individually. This simple idea 
gave rise to numerous aspects to be studied. In this chapter, the main points 
of the batching problematic were discussed. The theoretical batching 
models were explained and related practical applications were discussed. 
Various examples of the notation for these complex problems were given 
and explained.  

The description and review of batching problems showed that basic 
environments, such as a single machine, FS2, HFS2 are mainly studied. 
Nevertheless, there is a lack of works, which deal with generalized 
environments. Job shop and open shop models, which consider s-batch and 
p-batch processing, are practically absent in the literature. In the last few 
years, there has also been an increasing interest in multi-criteria batch 
scheduling problems because of their great application potential, but there 
are only a few publications, which consider the batching assumption. The 
scientific literature on these addressed problems has a small number of 
contributions. Recent reviews are particularly absent. A deep study of 
batching problems is still ahead due to its practicality in real-life 
manufacturing settings and the versatility of the applications. 

For the interested reader, there exist several reviews with a more detailed 
study of this subject. The first review by Uzsoy, Lee, and Martin-Vega 
(1992; 1994) gave the bases for studying the batching phenomenon in 
planning and scheduling models for the semiconductor industry as a 
fundamental area of applications. Rippin (1993) proposed a retrospective 
and perspective review of batch process systems, affecting the attention on 
economical and marketing related problems. Reklaitis (1996) defined the 
essential elements of batch scheduling and planning problems, which are 
characteristic for chemical manufacturing. Selim et al. (1998) discussed and 
reviewed a fundamental issue in cellular manufacturing, which is CF. The 
authors first provided a comprehensive mathematical formulation of the CF 
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problem and then proposed a methodology-based classification of prior 
research. Some directions for future studies are also highlighted. A classical 
review on scheduling with batching was given by Potts and Kovalyov 
(2000). Strict definitions of the principal concepts were introduced as well 
as the specifications of batching problems and main solution approaches. A 
literature review, a classification, and a simple meta-analysis on scheduling 
of batch processors in semiconductor manufacturing were proposed by 
Mathirajan and Sivakumar (2006). Williams and Magazine (2007) 
described heuristic approaches for batching jobs in a PCB assembly. Mönch 
et al. (2011) dedicated their survey to problems, solution techniques, and 
future challenges for scheduling in semiconductor manufacturing.  
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CHAPTER SEVEN 

LOT STREAMING 
 
 
 

By assuming that a batch can be split, we can handle the problems that occur due 
to dynamic nature of shop floor more elegantly. 

(Jeong et al. 1997, 781) 
 

In most multi-stage scheduling studies associated with processing discrete 
products, a production batch (lot) is treated as a single entity called job, 
which consists of only one part. As a result, a schedule cannot be improved 
anymore, even if there are plenty of idle times on the machines; that is, a 
partial transfer of completed items belonging to the same job between the 
machines is assumed impossible. Nevertheless, a much better solution can 
be obtained by considering alternative schedules, which allow the splitting 
of the current batch into smaller batches. Since the production lots are often 
large, the items, which are already processed on a machine, need to wait for 
a long time in an output buffer of this machine, even if the downstream 
machine becomes idle. It leads to elevated WIP inventories between the 
machines and extends the makespan. When the above assumption is relaxed 
in the corresponding scheduling problem, i.e., when it is supposed that a job 
can be split, it may be possible to improve the quality of the resulting 
schedule. Hence, the production leading times, the WIP inventory, the 
interim storage with its space requirements and the material handling system 
capacity requirements may be reduced. 

The term "lot streaming" denotes techniques to split given jobs, each 
consisting of a number of identical items, into sublots to allow an 
overlapping during the processing on successive (downstream) machines in 
a multi-stage production system. This approach may be implemented in 
practice in a shorter time and at a lower cost than a structural reorganization.  

In many practical situations, splitting a lot is both possible and desirable. 
Large lot sizes accumulate downstream at the process workstations. The lots 
must be divided into smaller transfer lots to avoid a blocking of the 
production process. Such situations occur often in electronic manufacturing, 
where many identical or very similar components are required to compose a 
final product. Nevertheless, making the lot size smaller, the number of shop 
orders to produce the same amount of parts is increased. This may cause 
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difficulties due to increased work loading and transportation costs. The 
computational complexity is also increased. Therefore, convenient 
methodologies are required to split a lot in an optimal way. 

In this chapter, some related concepts are explained. The main results of 
the studies in this area are resumed from recently published papers. Various 
practical models are classified and described together with the solution ideas 
and methods.  

7.1 Splitting jobs 

The term lot splitting refers to breaking given lot into sublots of smaller size 
during the production (Baker and Pyke 1990, 475). In the scheduling 
models, two cases of splitting jobs may appear: 
 

 Preemption: the interruption of the production run for a more urgent 
job is allowed;  

 Lot streaming: overlapping operations on downstream machines are 
permitted.  

 
In the second case, different sublots of the same job may be processed 

simultaneously at different stages. As a result of an operation overlapping, 
the production can be remarkably accelerated and consecutively, a reduction 
of the idle time on successive machines can be reached. Lot streaming is the 
process of splitting an entire production job (process batch) into sublots 
(transfer batches) and scheduling those sublots in an overlapping fashion, 
in order to accelerate the progress of an order in the production. A job is 
defined here as a production order (lot) composed of a number of identical 
items. 

When a job is split into a number of sublots, a sublot can be processed 
on a machine even if the other sublots still have not been processed on the 
upstream machines. The sublots can be independently processed on several 
machines in order to finish the processing of all demands as soon as 
possible. The number of sublots and the sublot size, i.e., the number of items 
in each sublot, are the decision variables.  

It is typically assumed that the number of items in a lot is large. 
Therefore, the lots can be treated as infinitely divisible. Ideally, the sublots 
are integral, but this version of the problem leads to the more difficult 
continuous versions (Potts and Baker 1989, 297). 

One of the first attempts to derive optimal sublot sizes for one cyclic job 
with an overlapping operation was undertaken by Graves and Kostreva 
(1986, 285–89). The case with two successive workstations was considered. 
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It was a rather complex algorithm for a simple environment.  Nevertheless, 
this work gave an impulse to study this subject.   

Graves and Kostreva (1986, 285–285) gave the notion of overlapping 
operations as a kind of parallelism in processing. In traditional MRP system 
models, the items flow from a workstation to another workstation in the 
same batches. Overlapping operations occur when the transportation of 
partial batches to a downstream workstation is allowed while the work 
proceeds to complete the batch at the upstream workstation. The main 
advantage of splitting jobs into a sublot to be gained, among others, is the 
reduction of the following indexes: 

 
 Total lead time; 
 WIP inventory; 
 Size of transfer vehicles; 
 Timely delivery to the customers.  

 
First, splitting jobs may improve the customer service; each sublot can 

be delivered to the customer immediately upon completion, without waiting 
for the remaining sublots of the same job to be processed. Another 
motivation for splitting jobs in multi-stage production systems is to enable 
various operations of the same job to be overlapped (by allowing the 
processing of downstream operations for any sublot immediately after being 
processed at the current stage.) 

The advantage of lot streaming in production planning and scheduling 
systems is also evident in the context of synchronous manufacturing. 
Nevertheless, additional costs may accrue due to costs of the transportation of 
the partial batches and due to the costs of the control.  

The size of a scheduling problem may become too large to be solved 
within a practical time limit. Unexpected dynamic events, such as a machine 
failure, rush order and require simple dispatching rules analogously to the 
traditional scheduling policies to get an improved schedule by splitting the 
original lot into smaller lots, and thereby to meet the due date requirements. 
Jeong et al. (1997, 782) proposed four specific batch/lot splitting rules for 
a job shop scheduling problem. However, they are also applicable to other 
environments. These rules are: 

 
 Minimum Batch Size (MBS);  
 Required Batch Size (RBS);  
 Full Batch Size (FBS);  
 Equal Batch Size (EBS). 
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The MBS rule assigns the minimum possible batch size as the batch size 
of the first small batch being created by splitting. Adopting this strategy 
implies intentionally increasing the batch size for later small batches. The 
makespan can be reduced by splitting a batch as many times as possible. 
Therefore, one expects a better performance by taking this rule while there 
is less idle time at later stages than at an earlier stage. 

The RBS strategy assigns the required batch size dynamically as the 
batch size of the first batch being created by the split. When using this 
strategy, an acceptable solution by a rather small number of splits is 
obtained.  

The FBS strategy splits an entire batch into batches, which has a 
processing time approximately equal to the idle time of the machine just 
before processing the operation of the job. This strategy may also work 
better if there are more idle times at later stages compared to the MBS 
strategy.  

The EBS strategy consists in splitting a batch into equal sized two 
batches. When using this strategy, many precedence relationships are set in 
advance. This strategy leads to a considerable reduction of the 
computational efforts to find a solution.  

7.2 Lot streaming problem 

The lot streaming problem is to determine:   
 

1. The optimal number of sublots for each job;  
2. The optimal size of each sublot;  
3. An optimal sequence for processing the sublots, such that the 

production lead time is minimized. It combines lot sizing and 
scheduling decisions, which are traditionally treated separately.  

 
The concept and practice of lot streaming are not new. The lot streaming 

concept was first formally introduced by Reiter (1966, 374) for the cases 
when certain operations with extremely long total processing times are 
followed by operations with short processing times. According to his 
definition, each work is restricted by a critical total processing time k (TPT). 
If the TPT of an operation exceeds its critical value k, the lot is split into 
TPT/k+1 sublots, each of which is scheduled separately in succeeding 
operations. The start time of the next operation of a sublot is the completion 
time of the last piece in that sublot in the current operation. Sublots may be 
further streamed at subsequent operations. The completion time at any work 
center is the sum of the following terms, which are calculated using the 
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adjusted lot size: the completion time at the preceding work center, the 
transportation time, the delay, the setup time and TPT. This concept and 
related methods were systematically considered in the scheduling literature 
since 1980 for the production management in big manufacturing plants such 
as Toyota.  

In general, the makespan can be optimized if there is just one item in 
each sublot (Vickson and Aldredsson 1992, 1552). However, there may 
exist practical considerations when it is undesirable to have a large number 
of unit-sized sublots. It may also be possible to attain the minimum 
makespan with fewer sublots, or it might be difficult in tracking a large 
number of small sublots. Therefore, the lot splitting problem finds a 
compromise between the sizes of the production batch and the sublots when 
setups are long and difficult.  

An example of lot streaming benefits is shown in Fig. 7-1. There is a 
three-machine flow shop, a single job with the processing times 6, 3, and 6 
time units on the machines M1, M2, and M3, respectively. When the job is 
not split into sublots, the job completion time is 15 (Fig. 7-1a). When the 
job is split into three sublots and a no-idling production interruption time is 
allowed between any two adjacent sublots, the job completion time is 
reduced to 11 (Fig. 7-1b).  In the case when an intermittent idling is allowed 
between the sublots, the job completion time is further reduced to 9 (Fig. 7-
1c). Obviously, the completion time of a job under the idling case is shorter 
than the one under the no-idling case with the same sublot sizes. However, 
there are many practical applications of lot streaming flow shop scheduling 
under the no-idling assumption. 

A comprehensive description of the lot streaming problem is given by 
Baker and Jia (1993, 562) as follows.  

A production lot containing Q units requires the processing on m 
machines in a sequence. The processing time per unit on machine i is pi. 
Therefore, if lot streaming is not applied, the makespan for the lot would be 
Q i=1…m pi. In this case, there is one transfer between the machines i and 
(i+l). This transfer occurs at the time when the processing completes on 
machine i. In contrast, in the lot streaming problem, the processing on 
machine i is broken down into n separated sublots. Every sublot is 
transferred individually to machine (i+1), each one at the time its processing 
completes. Consecutively, there are n transfers between each pair of 
machines.  

Let C denote the makespan of a schedule, Qij the size of the sublot j on 
machine i, and let L be the entire lot size. The variables Qij can be fractional, 
or equivalently, the original size L of the lot is infinitely divisible. In the 
majority of real problems, Qij are integer values, although this requirement 
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might be met simply by rounding the fractional solution. In the most general 
version of the lot streaming problem, the variables Qij can be assigned freely 
conserving the condition j=1…n Qij = L. This case is referred to as variable 
sublots. If Qij = Q1j for a sublot j on all machines i  = 1,…, m, then the sublots 
are defined as consistent. 

 

 
 

a) 

 
 

b) 

 
 

c) 
 

Fig. 7-1. An example of the lot streaming effect in the solution of a FS3 scheduling 
problem: a) without sublots; b) with sublots under the no-idling case; c) with sublots 
under the intermittent idling case. Adapted from Pan et al. (2011, 2457).  
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If the sublots are consistent, their integrity is preserved throughout the 
schedule. An item, which is produced as a part of sublot j on machine 1, is 
a part of sublot j on all other machines. In addition, all sublots j may be fixed 
or identical, i.e., Qij = Q, i  = 1,…, n. 

A lot streaming problem may include several restrictions permitting or 
avoiding breaks in the processing on a machine. It may be desirable for 
machines to process a work intermittently, with some idleness between 
certain pairs of sublots. Other cases include a no-idling assumption, which 
means that each machine must operate continuously, once it begins 
processing. It may be due to the specific of the manufacturing process, for 
example, the parts must be processed quickly to avoid cooling or chemical 
deterioration.  

Studying the m-stage flow shop lot streaming, the inverse problem, in 
which the processing time on machine i is pm-i+1 for 1  i  m, can also be 
considered. It was observed that a lot streaming flow shop problem and its 
inverse problem are equivalent. Therefore, for m = 2 and m = 3, there exists 
an optimal schedule with consistent sublots. The inverse problem is also 
used to study the properties of the original problem (Potts and Baker 1989; 
Glass, Gupta, and Potts 1994, 380). 

7.3 Model structure and notations  

There exist some variations in the formal descriptions of lot streaming 
models. These variations contain specific constraints, which are imposed on 
the scheduling decisions. These constraints reflect several features of the 
production technology, which must be taken as given, or they reflect 
simplified assumptions, which are made for an analytic treatment. 

Consider N jobs to be processed on a machine. Each job j, j = 1,…, N, 
becomes available for processing at time zero and requires a processing time 
pj. Let job j contain qj identical items. One item requires a processing time 
of pj/qj units. Three splitting models can be specified as follows:  

 
 Item completion time model, in which item i is deemed to be 

completed immediately after its processing is finished; 
 Sublot completion time model, in which item i is completed only 

when the processing of sublot k is finished;  
 Job completion time model, in which item i is completed only when 

the processing of job j is finished. 
 
The N jobs can be partitioned into k sublots in different manners in a 

schedule. The models, in which lot streaming is allowed, assume a broad 
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variety of the characteristics compared with traditional scheduling to 
specify the model under study. The principal characteristics are given 
below.  

Due to the specific of lot streaming problems, some authors proposed 
original classification schemes to denote a problem, while the highlighted 
characteristics are mainly the same in all variants. Nevertheless, any 
classification system should be understandable. Trietsch and Baker (1993, 
1068) used the following scheme to classify a lot streaming problem: 

 
{Number of machines}|{Whether sublots are variable (V), consistent 
(C) or equal (E)}|{Whether there is intermittent idling (II) or no-idling 
(NI){Whether the continuous version (CV) or discrete version (DV) is 
applied}. 
 
The following examples illustrate the use of this scheme:  
 
3|V|II – denotes a 3-machine problem with variable sublots and no- 
idling, without specifying whether the solution has to be continuous or 
discrete. 
3|E|NI|CV - denotes a 3-machine problem with equal sublots and no-
idling in its continuous version. 
 
This scheme has several limitations. For example, it does not include a 

detailed description of the machine environment and the objective. 
Moreover, it does not specify a problem as a lot streaming one.  

The version by Cheng, Mukherjee, and Sarin (2013, 1–2) looks complete 
but it is also very specific. The authors proposed a modification of the 
traditional 3-field classification scheme to a 9-field one to describe a 
problem with lot streaming as follows: 

 
{Machine configuration}{Number of machines}|{Number of product 
types}|{Sublot type}|{Idling}|{Number of sublots}|{Sublot 
sizes}|{Setups}|{Transfer or removal} |{Objective function} 
 
Nevertheless, the traditional triplet | |   by Graham et al. (1979) 

remains to be dominant (see Section 3.1), of course updated with specific 
features (Potts and Van Wassenhove 1992, 396–99; Potts and Kovalyov 
2000, 229–31):  
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System configuration ( -field): 
The shop environment is denoted as usual. There can also be specified 

the number of product types: 
 
 Single product (1);  
 Multiple product types (n).  

 
Sublot-related features ( -field): 
1. Depending on the sublot size, there are two versions of lot splitting 

with respect to the divisibility of the sublot size:   
 
 Discrete sublots (DV) - the processing time for each sublot is pj/qj 

times multiplied by the (integer) number of items in a sublot;  
 Continuous sublots (CV) - any split of the processing time pj defines 

the sublots of job j. In this case, a sublot with processing time p, 
where 0 < p  pj, contains pqj/pj items, independently whether this 
quantity is an integer or not.  

 
In the discrete version, the sublot sizes are integers that correspond to 

discrete numbers of units in each sublot. Such a problem can be formulated 
as an integer linear program. In the continuous version of the problem, the 
integer restrictions are relaxed and the sizes of sublots are real-valued. Such 
a routing may be acceptable if the lot size is large and the number of sublots 
is small. The optimal makespan in the continuous version serves also as a 
lower bound on the optimal makespan in the discrete version, and the 
makespan produced by rounding the continuous solution serves as an upper 
bound. 

 
2. In general, the transfer lots between the machines m and (m+1) may 

differ from the transfer lots between the machines (m+1) and (m+2). So, a 
model may have one of the following sublot types (Trietsch and Baker 1993, 
1067–68; Biskup and Feldmann 2007, 199):  

 
 Fixed (F) - all sublots for all products consist of an identical number 

of items at all stages;  
 Equal (E) – the sublot sizes are fixed for each product/lot;  
 Consistent (C) – the sizes of the sublots remain the same on all 

machines; 
 Variable (V) - no restrictions are given on the sublot sizes. They can 

change from machine to machine. 
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The distinction between fixed and equal sublots is only necessary for 
multiple product models. When the size of sublots is variable, it can change 
from machine to machine. 

The restriction to consistent sublots does not affect the optimality of the 
makespan. An optimal solution for the lot streaming problem can be 
obtained by using consistent sublots when there are two or three machines. 
For larger problems, this restriction may increase the optimal makespan. 
An additional restriction imposed that all sublots are of a consistent type 
and equal size may increase the optimal makespan. An intermediate variant 
between consistent and variable sublots, where lots are allowed to vary, is 
also possible but with restrictions. This version yields an intermediate 
makespan.  

The variable sublot case is dominant over the consistent sublot case, 
which is dominant over the equal sublot case. This means that a model with 
variable sublots should have a shorter makespan than the makespan of the 
same model with consistent or equal sublots, or an equal makespan.  

 
3. When an idling requirement is imposed to a machine, once started, 

the entire lot must be processed continuously without any idling: 
 
 No-idling (NI) – the sublots at a particular stage have to be processed 

directly one after the other;  
 Intermitted idling (II) – idle times between sublots may occur. 

 
This restriction when imposed on the first machine does not affect the 

optimal makespan. Symmetrically, it does not affect the last machine. 
Consecutively, in a two-machine problem, the no-idling restriction does not 
affect the optimal makespan. When imposed on intermediate machines in 
larger environments, however, this restriction may increase the optimal 
makespan (Fig. 7-1 b, c).   

It is clear that II dominates the NI case, and CV dominates the DV case. 
According to the dominance relationships, the least restrictive model is 
m|V|II|CV. 

 
4. Inter-stage waiting conditions may be defined: 
 
 No-wait (NWT) - each sublot has to be transferred to and processed 

at the next stage immediately after it has been finished at the 
preceding stage; 

 Wait (wait) - a sublot may wait for processing between consecutive 
stages.    
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This requirement can be found in many practical situations, for example, 
in chemical and food industries. Particularly, in the metal processing 
industry, metal is rolled while it is hot. Therefore, delays between operations 
are prohibited. 

 
5. Setup requirements can be imposed to a whole lot and also to sublots:  
 
 Lot/Sublot-attached setup (L(a)/ S(a)) - a setup required to process a 

lot/sublot on a machine can start only after the arrival of the lot at the 
machine; 

 Lot/Sublot-detached setup (L(d)/ S(d)) - a setup can be performed on 
a machine even before the arrival of the lot to that machine.  

 
6. The number of sublots can be indicated. There are two options:  

 
 FixN - known a priori or  
 FlexN - is to be determined. 

 
In general, even if there is just one item in each sublot, the makespan 

will be minimized. Nevertheless, there may be practical considerations that 
make it undesirable to have a large number of unit-sized sublots. It may be 
possible to attain the minimum makespan with fewer sublots, or there may 
be difficulties in tracking a large number of small sublots. Thus, the basic 
lot streaming problem specifies the number of sublots. Alternatively, there 
may be a constraint on the availability of the transporting equipment. For 
more than two machines, however, the problem of limited transport 
equipment is difficult to solve.  

 
7. An availability option during the transfer or removal operations can 

be indicated as follows:  
 

 Transfer time (T) - refers to the time required to move a lot or a sublot 
from one machine to another one. During this time, the machine is 
available for processing the next lot or sublot; 

 Removal time (R) - refers to the time required to remove a lot or 
sublot from a machine, but during this time the machine is not 
available to process the next lot or sublot. 
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8. In a multi-product problem, a change in the sequence of sublots can 
also be set: 

 
 Intermingling sublots - the sequence of sublots of product j may be 

interrupted by sublots of product k;  
 Non-intermingling sublots - no interruption in the sequence of 

sublots of a product is allowed. 
 

Performance measures ( -field): 
Having specified the model, the completion time Ci and other 

performance measures of each item i may be easily found for any schedule, 
for example: 

 
Li = Ci - di     - lateness of item i; 
Ti = max{Ci - di ,0}   - tardiness of item i. 
 
Possible objectives to be minimized are, among others: 
 
 Maximum completion time (makespan)  Cmax = maxi{Ci }; 
 Maximum lateness Lmax = maxi{Li }; 
 Total (weighted) completion time i wi Ci; 
 Total (weighted) tardiness i wi Ti. 

 
In some special cases, the makespan value Cmax can be easily calculated. 

The following three formulas correspond to three well-solved versions of 
the lot streaming model. Each solution holds for any number of machines 
and any number of sublots, but restrictive assumptions (equal sublots, no-
idling or both) are required in each case. The respective formulas are as 
follows. 

 
Equal sublots (E): = + ( 1) , 

 
where  denotes the largest pj value. 

 
Equal sublots and no-idling (E, NI): = + ( 1) ,  

 
where 
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( ) = 1, if > 00, if = 0. 
 
No-idling (NI): = + / .  

 
In the case when =  , the fraction is substituted by / . 
 
Illustrative examples of the triplet notations for notations for problems 

with lot streaming are given below:  
F3, 2|sf|Cmax is the three-machine flow shop problem of scheduling two 

families of jobs, where each job contains a single item. Sequence-
independent family setup times are only necessary when the machine 
switches to the processing of jobs from a different family. The objective is 
to minimize the makespan. 

F2|qj(DV), NI| Lmax is a two-machine flow shop scheduling problem, 
where each job contains several items. The jobs may be split into discrete 
sublots. Sublot completion times and a no-idling order are assumed. The 
objective is to minimize maximum lateness.  

Independently of the classification system used, the notation must be 
comprehensible.  

7.4 Problems with transfer batches 

The contributions of lot streaming theory to the environment are given in 
recent publications. These studies, which consider transfer batches, can be 
categorized into two main groups: 
 

 Single-job lot streaming, which includes decisions over the sublot 
sizing; 

 Multiple-job lot streaming, which includes simultaneous decisions 
over the sublot sizing and the job sequencing, given various job and 
shop characteristics. 

 
The problem statements and applied approaches are analyzed below for 

the principal shop environments, which are grouped into three parts:  
 
1. Flow shops;  
2. Flexible and hybrid flow shops;  
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3. Job shops and open shops, including their flexible and mixed 
variants.  

 
The influenced characteristics of lot streaming are highlighted for every 

problem. Various practical algorithms and rules are described. 

7.4.1 Flow shops 

The literature on lot streaming is limited. Most studies focus on problems in 
pure flow shops with a number of machines in series. The first models 
considered are two machines or special cases of three machines, only 
sometimes with more than three machines (Potts and Baker 1989; Trietsch 
and Baker 1993; Baker and Jia 1993); 

The first formal results on lot streaming were obtained by Potts and 
Baker (1989) dealing with the one-job case in a flow shop with two and 
three stages. The problem of minimizing the length of a schedule with 
consistent sublots of equal sizes was studied. This apparently easy problem 
is difficult to solve, even when a job is infinitely divisible. The authors 
showed that it is sufficient to consider consistent sublots, which have the 
same size at both stages, to minimize the length of a flow shop schedule. It 
was also indicated that an optimal policy with consistent sublots can always 
be found for m  3; otherwise, it may be desirable to allocate a job 
differently at different parts of the schedule. Some difficulties involved in 
the n-job problem were also demonstrated. In the concluding part of the 
paper, the authors addressed the problem of lot streaming with two products 
at two stages. They give a counterexample to show that it is not possible to 
solve the n-job problem simply by applying lot streaming individually to 
each job in an optimal schedule, which has been created without lot 
streaming. However, Potts and Baker did not present a general solution 
procedure for lot streaming with multiple products. 

Glass, Gupta and Potts (1994) extended the results of Potts and Baker 
(1989) by solving the flow shop lot streaming problem for the one-job 
model in three-stage production processes, including flow shop, job shop 
and open shop environments. At each stage, the job was to be partitioned 
into s sublots. There were no setup activities between the sublots. The 
objective was to find the sublot sizes, for which the makespan is minimized. 
The sublots were not constrained to contain an integer number of items. A 
critical path algorithm was proposed. It finds the minimum makespan in 
O(log s) time. 

Trietsch and Baker (1993) considered one-job models with continuous 
and discrete sublot sizes, models with and without intermittent idling of 
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machines, and models with consistent and variable sublots. The authors 
introduced a model with limited transporter capacity, which looks for a 
compromise between the lot size and the capacity of the transporter. Some 
studies of the computational complexity were presented. It was shown that 
some m-machine versions, such as m|V|NI|CV, m|V|NI|DV and m|C|CV are 
polynomially solvable (see Section 7.3 for the classification system by 
Triesch). 

Vickson and Alfredsson (1992, 1557–58) proposed a modified Johnson 
algorithm to solve the multiple-job, two-machine lot streaming scheduling 
problem without setup times to minimize the makespan. In this algorithm, 
every item of a job is a separate transfer batch. Using the notation system 
by  Rinnooy Kan (1976, 28–29), the problem was classified as N|2|F, 
t.b.|Cmax, which means an environment with N jobs, a two-machine flow 
shop with transfer batches and Cmax as the objective. In ordinary form, this 
means: K|2|F|Cmax. 

 
The modified Johnson algorithm is as follows: 
 
The total number of items of all jobs is  = . 
 
All K transfer batches are scheduled, one-by-one, using Johnson's 

algorithm. If job i satisfies 
 = min , , , 

 
any transfer batch of job i can be scheduled at the first position, according 
to Johnson's algorithm. Since nj transfer batches satisfy this minimality 
condition, another transfer batch of job i is scheduled as the second one, 
then another is scheduled as the third one, and so on. This means that there 
is an optimal solution for problem K|2|F|Cmax, in which every transfer batch 
of job i precedes the transfer batches of all jobs j S-{i}. Similarly, if there 
is a job i satisfying the condition 
 = min , , , 
 
there is an optimal sequence in which every transfer batch of job i follows 
the transfer batches of all jobs j S-{i}. Continuing in this way, an optimal 
solution for problem K|2|F|Cmax is found, in which the transfer batches of 
each job i are sequenced in an unbroken string. The optimal job sequence is 

 EBSCOhost - printed on 2/9/2023 3:05 AM via . All use subject to https://www.ebsco.com/terms-of-use



Chapter Seven 
 

 

236 

given by Johnson's algorithm for the ordinary problem N|2|F|Cmax with the 
processing times (ai,, bi) on (Ml, M2).  

The following example illustrates the idea that for a given set of jobs, a 
different optimal sequence may result dependent on whether transfer 
batches are used or not.  

 
Example 7-1. 
The data are given in Table 7-1. Without transfer batches, Johnson's 
algorithm applied to the processing times (Ai, Bi), gives the optimal 
sequence J2J1 with the makespan value 35 (Fig. 7-2a). With transfer batches, 
Johnson's algorithm applied to the processing times (ai, bi), gives the 
optimal sequence J1J2 with the makespan value 30 (Fig. 7-2b). The 
makespan is improved due to the transfer batches themselves rather than by 
different sequences. Note that the sequence J2J1 with transfer batches has 
the makespan value 31.  
 

i      
1 3 5 3 9 15 
2 4 6 2 8 12 

 
Table 7-1. Processing times of the jobs on the machines. Adapted from Vickson 
and Alfredsson (1992, 1558). 
 

 

 
 

a) 

 
b) 
 

Fig. 7-2. Optimal sequence a) without job splitting; b) with job splitting. 
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Yoon and Ventura (2002) studied a multi-job m-machine flow shop lot 
streaming problem with the objective of minimizing the mean weighted 
absolute deviation from the due dates when the jobs are already scheduled. 
This objective emphasizes a timely delivery, what is consistent with the JIT 
philosophy. For a given sequence, the insertion of idle times between 
sublots and between jobs may improve the objective function value in some 
cases. Thus, the solution methodology includes two stages: 

 
 Sequencing of the jobs;  
 Insertion of idle times between sublots and between jobs. 

 
The authors presented two linear programming formulations for 

different lot streaming flow shop problems to find the optimal sublot 
completion times considering a given job sequence. These formulations are 
as follows. 

 
1) The equal-size sublot problem for the following cases:  

 Infinite capacity buffers between successive machines; 
 No-wait flow shop; 
 Limited capacity buffer; 
 Blocking is allowed; 
 Blocking is not allowed. 

 
2) Consistent sublot problem. 
 
A pairwise interchange (PI) method was applied to generate initial 

sequences. This method provides a near-optimal solution in reasonable time 
(Ding 1990; Della Croce 1995). The basic elements of the PI method are:  

 
1. An initial sequence;  
2. A neighborhood search mechanism; 
3. A rule of selecting a particular sequence in the neighborhood to be 

the new sequence.  
The four rules used to generate the initial sequences are based on the 

EDD, the smallest slack time on the last machine (LSL), the smallest overall 
slack time (OSL), and the smallest overall weighted slack time (OWSL) 
policies. 

With these rules, the initial sequence = { (1), (2), … , ( )} is 
obtained as follows: 
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For  = 2,…, n,  
EDD: ( ) ( ); 
LSL: ( ) , ( ) ( ) , ( ); 
OSL: ( ) , ( ) ( ) , ( ); 
OWSL:  

( )max 0, ( ) , ( )
+ ( )max 0, , ( ) ( )  

( )max 0, ( ) , ( ) + ( )max 0, , ( ) ( ) . 
 
The neighborhood search generates a collection of corresponding 

sequences by making successively small changes. Four neighborhood 
search algorithms were used to improve a job sequence: 

 
1. An adjacent pairwise interchange (API), switches two adjacent jobs 

in a sequence; 
2. A non-adjacent pairwise interchange (NAPI), does not consider 

switches if two jobs are adjacent; 
3. An extraction and forward shifted reinsertion (EFSR) chooses two 

jobs and moves a job in the front just after another job; 
4. An extraction and backward shifted reinsertion (EBSR) chooses two 

jobs and moves a job in the front just before another job. 
 
The new sequence is recorded when the objective function value of the 

best sequence obtained by a neighborhood search algorithm is less than that 
of the current best sequence. This process continues until there is no 
improvement of the objective function value, which was obtained by 
solving the LP problem. It was confirmed by a computational experiment 
that the use of consistent sublots improves the solution of the equal-size 
sublot lot-streaming flow shop problem. It was also concluded that the use 
of infinite capacity buffers improves the solution of the no-wait flow shop 
problem. In the case of negligible material handling costs and infinitely 
divisible jobs into sublots, the use of consistent sublots has to be considered. 

Çetinkaya (1994) examined an integrated transfer batch sizing and 
scheduling problem for two-stage flow shops. In this problem, the 
changeover times are independent of the processing times. The makespan is 
taken as the measure of performance.  Both single-job models and multi-job 
models were considered. A polynomial time algorithm was presented for 
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problem N|2|F, tb, Snsd, Rnsd|Cmax in the classification scheme by Rinnooy 
Kan (1976, 28–29), where N  is the number of jobs at the two stages; tb, Snsd 
and Rnsd denote the transfer batches, separable and sequence-independent 
setup and removal times, respectively. The algorithm gives an optimal 
solution for this integrated problem of transfer batch sizing and scheduling.  

The multi-job problem by Feldmann and Biskup (2008) involved 
splitting given orders of different products into sublots and determining 
their optimal sequence for the M-machine flow shop. Each sublot has to be 
processed successively on all machines. An important detail is that the 
sublots of particular products are allowed to intermingle, that is, sublots of 
different jobs may be interleaved. A MIP formulation was given, which 
simultaneously determined the lot sizes and the sequence of the sublots to 
guarantee overall optimal solutions.  However, the authors have been only 
able to solve problems with two or three products and up to seven sublots 
per product to optimality in a reasonable time. The model was extended to 
deal with different settings and objectives.  

Mortezaei and Zulkifli (2013) integrated lot sizing and lot streaming 
with multiple products into a flow shop scheduling problem. A mixed 
integer programming formulation was presented. It was able to find optimal 
production quantities, optimal inventory levels, optimal sublot sizes, and an 
optimal sequence simultaneously. Numerical examples were given to test 
eight different lot streaming problems:  

 
1. Consistent sublots with intermingling;  
2. Consistent sublots and no intermingling between the sublots of the 

products (without intermingling);   
3. Equal sublots with intermingling; 
4. Equal sublots without intermingling; 
5. No-wait consistent sublots with intermingling;  
6. No-wait equal sublots with intermingling; 
7. No-wait consistent sublots without intermingling;  
8. No-wait equal sublots without intermingling. 
 
It was shown that consistent sublots with the intermingling case 

achieved the best makespan value. 
The paper by Mukherjee and Sarin (2014) was the first one found, which 

considers a learning effect in the context of the lot streaming problem. The 
case deals with the situation, where the processing time required for a job 
depends on the number of previously processed identical items. As a result, 
the time required to process a production lot continuously decreases.  
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The idea to solve this class of problems was to transform a general lot 
streaming problem, in which the processing times were influenced by a 
general learning curve, into an equivalent problem without learning, for 
which a solution method may already exist. The use of this transformation 
was demonstrated on some basic lot streaming problems with consistent lot 
sizes. Later, Mukherjee, Sarin, and Singh (2016) used this method to solve 
a two-stage flow shop lot streaming problem, in which the learning effect 
was observed in the processing times, sublot-attached setup times, or both. 
The objective was to determine the number of sublots and the sublot sizes 
in order to minimize the makespan. Closed-form expressions for optimal 
sublot sizes and efficient search schemes to determine the optimal number 
of sublots were presented. 

The learning effect in a lot streaming problem was also studied by 
Fattahi, Azizi, and Jabbari (2015). A no-wait multi-product M-machine flow 
shop with sequence-dependent setup times and position-based learning 
factors was considered. The last restriction was interpreted as follows.  

If the sublot r of job i is put at position  on machine m, its required 
processing time  is calculated according to the truncation learning 
formula:  

 = max { , }, 
 
where 
 

 - actual process time of the product i; 
  - learning effect parameter for machine m; 
  - control parameter limiting the learning parameter, which prevents 

that the processing time becomes zero.  
 
The objective was to minimize the makespan. A mathematical model for 

the problem was presented. 
Two hybrid metaheuristics were proposed. These metaheuristics were 

based on variable neighborhood search (VNS). The VNS starts from an 
initial solution and proceeds with local changes in order to improve the 
value of the objective function. The neighborhood structure is a mechanism 
leading to a new set of neighboring solutions. This structure eliminates 
unnecessary moves. In this algorithm, three neighborhood structures were 
used: 

 
 The first structure randomly selects and exchanges two elements in 

the current solution (swap); 
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 The second structure chooses an element and put it just before 
another randomly determined element (insert);  

 The third structure reverses the elements, which are located between 
two randomly chosen elements (reversion).  

 
The search procedure is continued until the stopping condition is met. 

The exploration structure of VNS was embedded into simulated annealing 
and tabu search. These metaheuristics enhance the performance of VNS.  

7.4.2 HFS 

Lot streaming is very useful for many practical production systems, which 
can be modeled as an HFS. However, such models have received very 
limited research attention. The more important papers are analyzed below.  

One of the first works, which were dedicated to the HFS lot streaming 
problems, was a paper due to Li (1997), which dealt with a typical two-stage 
1+m HFS with part families and batch production, where a lot is allowed as 
split and as no split at stage two. The parts within a family share a major 
setup and the parts in a batch share a minor setup. The objective is to 
minimize the makespan. The problem studied was found in the blade line in 
the airplane engine plant Pratt and Whitney, Inc. (PWI).  

Two allocation policies were developed, forward heuristic (FH) and 
backward heuristic (BH), which were based on two critical issues:  

 
1. To determine an optimal process sequence of the parts at stage 1;  
2. To allocate the parts to the machines of stage 2.  
 
Li adapted the SPT and LPT rules and developed three useful 

sequencing AVG rules for this problem. These rules are as follows:  
For all sequencing rules, the lots in every family were first sequenced in 

an ascending order of the lot processing times plus their minor setup times. 
 
SPT1: The parts are sequenced in an ascending order of the family 

processing times including the major, minor, and lot processing 
times at stage 1. This allocation rule is very popular both in 
practice and in the reported literature. The drawback of this rule 
is that it does not consider the processing times at stage 2.  

SPT2: The parts at stage 1 are sequenced in an ascending order of the 
family processing times including the major, minor, and lot 
processing times at stage 2. It makes sense to sequence the long 
jobs at the end and the short jobs at the beginning. 
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LPT2: The parts at stage 1 are sequenced in a descending order of the 
family processing times including the major, minor, and lot 
processing times at stage 2. This rule sequences the families by 
their family processing times, but it does not consider the lot 
processing times and the number of lots in the families. 

AVG1: The average processing time per lot for each family at stage 2 is 
calculated. Then the family is sequenced in a descending order 
of the ratios. A family that has a significantly long processing 
time may have many lots, each of which has a very short 
processing time. On the other hand, a family that has a relatively 
short processing time may contain only one lot. 

AVG2: The ratios of the total family processing times at stage 2 over the 
total family processing times at stage 1 are calculated. Then the 
families are sequenced in a descending order of the ratios. The 
families with large ratios are scheduled at the beginning of the 
sequence so that the machines of stage 2 will be busy at the 
beginning. With this rule, the machines of stage 2 are utilized 
more effectively. The logic of this rule is similar to Johnson's 
algorithm. 

AVG3: The ratios of the unit processing times at stage 2 over the unit 
processing times at stage 1 are first calculated and then summed 
up over the number of lots in a family. The sum is then divided 
by the number of lots to obtain the average ratios. Then the 
families are sequenced in descending order of the ratios. This rule 
considers both the ratio of the processing times between the two 
stages and the number of lots in each family. Therefore, any 
family with a large ratio will be given a higher priority. The idea 
of this rule is also to sequence short jobs at the end of the 
sequence. 

 
These rules are very practical and possess a generality to be applied to 

similar problems. The AVG rules showed also a better performance than the 
traditional sequencing rules. A mathematical interpretation was given for all 
these rules in the paper.  

Zhang, Liu, and Linn (2003) and Zhang et al. (2005) studied a discrete 
version with integer lot sizes of the m+1 HFS2 lot streaming problem with 
m identical machines at the first stage, and one of the stages is obviously a 
bottleneck. The size of each sublot is kept consistent at the two stages. A 
job can be continuously divisible. The problem is then to decide the number 
and sizes of sublots for each job and to schedule these sublots, so as a given 
objective is minimized. In the paper by Zhang, Liu, and Linn (2003), the 
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single-job version of the problem was solved. The objective was to 
minimize the makespan. Zhang et al. (2005), dealt with the multi-job version 
of the problem. The objective was to minimize the mean completion time of 
the jobs. In both works, an efficient solution was obtained for the equal 
sublot version using a similar approach. The general problem was 
formulated as a MILP model and solved using two heuristics. The first one 
sequences the jobs by enumerating the sublots and making them as equal as 
possible. For a given number of sublots, the procedure allocates the sublots 
as evenly as possible to the machines of stage 1. The second heuristic 
schedules (with splitting) the jobs in the sequence one at a time by using a 
smaller MILP model.  

Liu (2008) used the same m+1 machine model with the minimization of 
the makespan as the objective for the single-job version. He applied a 
similar approach consisting of two steps, where the sizes of the sublots are 
not restricted to be equal or integers, but they must not be smaller than a 
lower bound, x0  

The total size of the job is U units. The job can be split into sublots. A 
sublot is treated as an independent entity during the production in the 
system. Each sublot requires the processing on any of the machines at the 
first stage and then on the machine of the second stage. The processing times 
of a sublot at the two stages are proportional to the size of the sublot. The 
unit processing times on the machines of stage 1 and stage 2 are p(1) and p(2), 
respectively. Each machine can process at most one sublot at a time. Each 
sublot can be processed by at most one machine at any time. A setup time 
is considered for loading the sublot onto the machine. It is independent of 
the processing sequence and sizes of the sublots. The problem was to 
determine the number and sizes of the sublots and a schedule for processing 
them on the machines, such that the makespan is minimized.  

 
The problem was solved efficiently in two steps: 
 
1. The sublot allocation and sequencing were first decided for a fixed 

number of sublots; 
2. The sublot sizes were optimized.  
 
For the problem with a fixed number of sublots, Liu (2008) formulated 

a simple and practical rotation method for allocating and sequencing the 
sublots on the machines, which was previously used by Zhang, Liu, and 
Linn (2003). Then it was proved that this method was optimal. 
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The rotation method is as follows: 
 
1. Let the numbers of the sublots be 1, 2,.., l;  
2. Allocate and sequence these sublots at stage 1 machines in a 'rotation' 

order, i.e., assign sublot 1 to machine 1, sublot 2 to machine 2, ..., 
sublot m to machine m, sublot m + 1 to machine 1, and so on;  

3. Sequence the sublots on the machine of stage 2 in the order of their 
numbers.  

 
In this way, the batches of a number of sublots are obtained for every 

machine. The following features characterize the schedule given by the 
rotation method: 

 
1. The numbers of sublots processed on the machines of stage 1 are 

balanced, i.e., each machine processes at least l/m  sublots and at 
most  l/m  sublots; 

2. The sublots are processed on the machine of stage 2 in the order of 
their batch numbers;  

3. For the sublots in the same batch, the processing on the machine of 
stage 2 is in the order of their first-stage machine numbers. 

 
When the sublots are allocated using the rotation method, the only 

remaining decision is to determine the optimal sizes of the sublots. Since all 
discrete decisions are fixed, this problem can be formulated as an LP model, 
and the optimal number of sublots can be determined. Then, it only remains 
to solve a scheduling problem with equivalent sublot sizes. In this paper, 
optimal and heuristic solution methods for different configurations of the 
problem were proposed. The worst-case performance of the equal-sublot 
solution was analyzed. Computational experiments on a wide range of 
problem settings showed that the approach by Zhang, Liu, and Linn (2003) 
and Liu (2008) is very close to optimality. 

The work by Defersha (2011) was motivated by bridging the gap 
between the research efforts in flow shop lot streaming and HFS scheduling. 
A comprehensive MILP model for scheduling a multi-product flexible 
hybrid flow shop with lot streaming was presented. In this problem, the 
number of stages is not limited to two. Each stage has a known number of 
unrelated parallel machines. The batch of each job is to be split into several 
unequal consistent sublots. The sublots are to be processed in the order of 
the stages. Sublots of certain products may skip some stages. At a given 
stage, a sublot of a job can be assigned to one of the eligible parallel 
machines to process that particular job. For each job, there is a sequence-
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dependent setup time on each eligible machine. This setup may be 
anticipatory or non-anticipatory at different stages. Each machine can 
process at most one sublot at a time. Sublots of different products can be 
interleaved. The problem was to determine 1) the size of each sublot of each 
job, 2) the assignment, and 3) the processing sequence of these sublots on 
each machine at each stage. The objective function was to minimize the 
completion time of the last sublot to be processed in the system. This work 
was an extension of the research by , and Urlings 
(2008). In that paper, a similar model was considered, but overlapping 
operations were introduced by means of a negative time lag (see Section 
3.4.4). Defersha's model was optimally solved for a small problem size.  

A special machine environment was studied in the paper by Lalitha, 
Mohan, and Pillai (2017). This HFS contains Q jobs, which are in a lot to 
be processed at N stages. The first N-1 stages contain a single machine, and 
the last stage contains m machines in parallel. Every job can be divided into 
a maximum of Nj

max consistent sublots. The jobs have to be scheduled 
without intermingling the sublots. There is no setup time for the jobs. This 
scheduling problem involved the determination of the number of sublots, 
the sublot size, the sublot sequence, and the job sequence with the objective 
of minimizing the makespan. A MILP model was proposed and solved for 
short-size instances using the LINGO solver. The model gave the optimal 
makespan with the optimal number of sublots, the sublot sizes, the sublot 
sequence, and the job sequence. However, the computational price of the 
solution was very high. Therefore, for large-size instances a heuristic 
algorithm was developed.  

This algorithm consisted of two parts:  
 
1. Splitting the lots;  
2. Sequencing the jobs.  

 

The lot splitting was based on the average processing times of the jobs 
at the first (N-1) stages and the cycle time at stage N. The sum of the 
processing times of all jobs at each stage of the first (N-1) ones were 
considered for sequencing.  

This algorithm reached a near optimal solution for problems within a 
very small computational time compared to the MILP model. A 
comprehensible flowchart of the complete algorithm was given. 

Cheng, Sarin, and Singh (2016) addressed the two-stage 1+2 HFS, 
single-lot, lot streaming problem (TSHF-LSP) for both the continuous and 
integer sublot size versions, which were denoted as TSHF-LSP(C) and 
TSHF-LSP(I), respectively, in the presence of a sublot-attached removal 
time for each sublot at stage 1 and with the minimization of the makespan 
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as the objective. An upper bound on the number of sublots, Npos was 
determined. Then a TF heuristic algorithm of complexity O(Npos) in 
conjunction with  closed-form expressions for the sublot sizes was 
developed in two versions to obtain an optimal solution:  

 
 TF-C determines the optimal continuous sublot sizes of the TSHF-

LSP(C) problem; 
 TF-HI determines the number of sublots and integer sublot sizes for 

the solution of the TSHF-LSP(I) problem. 
 
As an extension of the previous work, which began before the 

publication of the paper, Cheng and Sarin (2013) introduced a multi-
objective 1+2 HFS lot splitting problem with a sublot-attached setup time 
before the processing of each sublot on the machine at stage 1. The problem 
was to determine an optimal sequence of the lots, the number of sublots for 
each lot, the sublot sizes, and an optimal allocation of the sublots to the 
machines of stage 2 in order to minimize two objectives: the makespan and 
the sum of the lot completion times. The cases of both continuous and 
integer sublot sizes were considered. An optimal solution for single-lot 
cases was given. For multiple-lot cases, the TF-C method (M. Cheng, Sarin, 
and Singh 2016), which was adapted for multiple-lot cases, was used to 
obtain an optimal number of sublots. Once the number of sublots is 
determined, the sublot sizes can be obtained. Various LPT- and SPT-based 
TF-C heuristics for multiple-lot cases were presented to sequencing the 
sublots.  

The problem studied by Nejati et al. (2014) included multi-job lot 
streaming in a m-stage HFS with work shift constraint and sequence-
dependent setup times. The work shifts constraint is as follows. Each job 
has m operations. Each job i is split into bi sublots at each shift and all  
sublots are simultaneously processed. Each sublot of job i is transferred 
immediately to the next stage after the completion of its processing on a 
machine. If the completion time of a sublot at a specific stage is less than 
the end time of the work shift, the sublot is sent to the next stage in the same 
shift. If it is greater than the end time of the work shift, it will be completely 
sent to the next shift at the same stage and will be considered as a WIP job. 
If the completion time of the WIP job at a stage is less than the end time of 
the work shift, the WIP job is sent to the next stage in the same shift. If it is 
larger than the end time of the work shift, it will be sent to the next shift at 
the same stage. It is assumed that 1) each job has a fixed number of sublots, 
2) the sublots are consistent, and 3) a setup should be made at the beginning 
of each shift.  
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The aim is to minimize the weighted completion time of jobs in each 
shift in order to finish the jobs at earlier shifts without being transferred to 
the next shift. The proposed model schedules the jobs on the machines, 
sequences the operations on the allocated machines, as well as finds the size 
of each sublot in each work shift, the completion times of the works in each 
shift, and the jobs at each stage as the WIP jobs. A genetic algorithm and a 
simulated annealing procedure were used to solve this problem.  

7.4.3 Job shops and open shops 

Job shop lot streaming started in the literature due to Jeong et al. (1997), 
who used an iterative batch splitting method to get an improved schedule 
for a dynamic job shop scheduling problem by splitting the original batch 
into two smaller batches. A family setup time before the arrival, a job release 
date, a transportation time, and a due date were considered. The iterative 
batch splitting method consists of two steps:  
 

1. The first step starts by building a conjunctive graph, which represents 
a solution for a job shop scheduling problem. The graph is used to 
select the batch to be split and to determine its size;  

2. The second step is to improve the schedule for the new job shop 
problem, where one more job is added due to the split of the batch.  

 
The suggested algorithm splits batches iteratively and scans the 

improvement of the schedule. It generates schedules, which do not only 
meet the due date requirements but also reduce the number of batches to an 
acceptable limit. The batch size was determined by the following four 
proposed rules: MBS, RBS, FBS and EBS, and selecting the one, which 
delivered the best solution (see Section 7.1).  

Dauzère-Péres and Lasserre (1994) dealt with lot streaming in a job shop 
environment. An integrated model for job shop lot sizing and scheduling 
was considered in order to determine a feasible plan, which contained at 
least one feasible schedule. To compute the best possible (feasible) plan, a 
modified shifting bottleneck (MSB) procedure has been presented. It was an 
adapted variant of the shifting bottleneck procedure for job shop lot 
streaming, see Dauzère-Péres and Lasserre (1993) and Section 3.3.2 for a 
description of the method. Starting with an initial plan, the MBS procedure 
alternates between the two levels in order to find the best feasible plan. The 
lot sizing calculation with consistent sublots for a fixed ordering of the 
products that share a common resource was first executed and at the second 
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level, the scheduling decisions were considered for the fixed production 
plan. 

Lot streaming in an open shop environment was first studied by 
Benli (1998). Some results for scheduling a single job in multi-stage open 
shops were presented, considering single and multiple routing for each 
sublot. Lot streaming of multiple jobs was also discussed for two-machine 
open shops. Some conditions were stated, under which improvements can 
be achieved. For such a case, the authors derived the optimal sublot sizes 
and their sequence.  

A two-machine mixed shop with two types of jobs and the minimization 
of the makespan as the goal was considered in the paper by Çetinkaya and 
Duman (2010). An interesting shop model was studied. This model 
generalized three environments: a flow shop, a job shop, and an open shop. 
As it is known, the simplest model is the flow shop, in which the operations 
of all jobs are processed in the same order of the machines, and each job has 
exactly one operation on each machine. A more flexible model is the job 
shop, in which the operations of each job are processed in a predefined but 
different order. The most general model is the open shop, in which the 
operations of each job may be realized in any order. In the real world 
problems, planning and control systems need usually to consider a mixture 
of these shop characteristics. In this work, it was shown that the makespan 
in a two-machine mixed shop scheduling problem can be improved by using 
lot streaming if there is an open shop type job j satisfying the condition 

 
 max + > max{ + , + , CF }.  

 
Meanwhile, the completion time CF  of the flow shop satisfies the condition 
 CF > max + , + , max +  , 
 
where  

 
  - processing time of job j on M1; 
  - processing time of job j on M2; =  - sum of the processing times of the flow shop type jobs 

on M1;  =  - sum of the processing times of the open shop type jobs 
on M1; =  - sum of the processing times of the flow shop type jobs 
on M2;  
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=  - sum of the processing times of the open shop type jobs 
on M2; CF  - optimal makespan for the flow shop type jobs, which are ordered 
according to Johnson's rule. 

 
An optimal solution method was developed for shops, which satisfy 

these conditions. The minimal makespan for the multiple-job scheduling 
problem in such a two-machine mixed shop is given by: 

 = max{ + , + , CF }.  
 
In the paper by Defersha and Chen (2012), a complex multi-job lot 

streaming problem for a flexible job shop environment was studied 
considering several pragmatic issues such as: 1) routing flexibility, 2) 
sequence-dependent setup times, 3) attached/detached nature of setups, 4) 
machine release dates, 5) lag times, and 6) high-performance parallel 
computation. The problem studied was classified as flexible job shop 
scheduling with lot streaming. A MILP model was developed to formalize 
the problem. This problem is NP-hard and difficult to solve even for small-
sized problems using off-the-shelf optimization software. To this end, an 
island-model parallel genetic algorithm was developed. It runs in a high-
performance parallel computing environment. This technique reduces the 
makespan. The authors characterized the results as 'very encouraging'. 

A study by Yavuz (2013, 5056–57) introduced the notion of flexible lot 
streaming (FLS) as an integration of the process plans at the shop-floor level 
into a generalized manufacturing system with lot streaming. In an FLS 
problem, there exist p process plans to produce a given lot consisting of d 
identical items. Each process plan i is represented by a linear processing 
sequence on a set Pi  of machines. A part visits the same machine in a given 
process plan no more than once. For instance, three process plans are 
defined as P1 ={M1, M2, M3},  P2 ={M2, M3, M1}, and P3 ={M3, M2, 
M1}, respectively. Each machine k  Pi has an associated unit processing 
time ti,k and a setup time hi,k, if it exists. A single type of a part, consistent 
sublots and sublot availability were assumed. Since sublots processed 
through different process plans can be treated as different jobs, the FLS 
problem dealt not only with  job splitting but also with the sequencing 
subproblem. For a given number of sublots, the problem consisted of 
determining simultaneously the sizes of each sublot and sequencing the 
sublots on each machine with the objective of minimizing the makespan. 
Two integer programming models were developed and solved for this FLS 
problem with/without setup times. The computational results showed that 
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the consideration of FLS may yield a substantial improvement in the 
makespan. 

(2018) addressed the sublot size optimization in 
flexible job shop scheduling with lot streaming, where the sublot size is 
variable. A two-stage optimization procedure was proposed. First, the 
makespan value was minimized with the smallest sublots defined for the 
problem instance. In the second stage, the sizes of the sublots were 
maximized without increasing the obtained makespan value. In this way, 
the number of sublots and transport activities were limited together with the 
related manufacturing cost. Two objectives were defined for the second 
stage: 1) maximization of the sum of the sublot sizes of all operations, and 
2) maximization of the number of operations, which do not need to be split 
at all.  The problem was solved by MILP, constraint programming and 
graph-based models as well as two optimization approaches: the first one 
was based on a third-party solver and the second one on a tabu search and a 
greedy constructive heuristic. 

Yousefi Yegane, Kamalabadi, and Khanlarzade (2017) studied a lot 
streaming problem in a flexible job shop environment with multiple jobs and 
the objective of minimizing the maximum completion time. In this study, 
first, the considered problems were solved both for permitted and not 
permitted lot streaming by means of a memetic algorithm. Then the obtained 
solutions were optimized by adapting a critical path-based heuristic 
technique.  

 

7.5 Conclusions 

Lot streaming is one of the current trends in deterministic scheduling due to 
its practical utility. It is a key element in synchronous manufacturing, JIT 
and OPT philosophies, which address each item in the lot as a single unit or 
a job searching for a minimum makespan. Overlapping operations are 
sometimes enforced by a lack of floor space. 

Jeong et al. (1997, 781) highlighted the importance of splitting jobs in 
order to make the scheduling decisions less sensible to unexpected events:  

'Most past solutions to scheduling problems assume that a manufacturing 
shop is operating steady and peacefully. But a real factory is full of 
unexpectedness and dynamics. The causes of such dynamism are very 
diverse, e.g. human errors, rush orders, requests from customers to shorten 
the delivery dates, and hardware related events - tool breakage, machine 
failure, etc. These events cannot be expected beforehand, and therefore, it 
is very hard to strictly observe the original schedule.'  
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He concluded:  

'we can get much better solution considering alternative schedules which 
allow the splitting of current batches in smaller batches'.  

Lot streaming combines lot sizing and scheduling decisions that were 
traditionally made separately. The application of the lot streaming idea has 
received considerable attention in the scheduling literature.  

It is a relatively new approach and therefore, the theory is given directly 
by the published papers. The state-of-the-art shows that there is still a lack 
of studies in this area, and the theory is not sufficiently strong. After reading 
the related papers, one can note that the problem statements are frequently 
vague, the authors sometimes do not give a clear identification of the 
problem and do not use any classification system to denote the structure of 
the problem. The complexity of lot streaming problems is very sensible to 
the assumptions declared, changing drastically from an NP-hard problem to 
one, which can be solved by a simple algorithm. Nevertheless, many authors 
refer only to the main scheduling problem without lot streaming consideration 
to confirm the NP-hardness of the studied problem. Therefore, a strict 
classification system and the corresponding complexity analysis are 
urgently required. 

This chapter shows an evolution of the lot streaming theory from the 
first definitions and simplest models with two-machine flow shop 
environments and a single-job (Graves and Kostreva 1986; Potts and Baker 
1989; Glass, Gupta, and Potts 1994; Çetinkaya 1994), and minimal 
configurations of the HFS, such as 1+m and m+1 (S. Li 1997; W. Zhang, 
Liu, and Linn 2003; W. Zhang et al. 2005; J. Liu 2008), to multi-job and 
multi-machine general schemes (Yoon and Ventura 2002; Feldmann and 
Biskup 2008; Defersha 2011; Defersha and Chen 2012; Mortezaei and 
Zulkifli 2013; Yavuz 2013; Nejati et al. 2014; Lalitha, Mohan, and Pillai 
2017), and multi-objectives goals (M. Cheng and S
Werner 2018). In recent years, there appeared papers, which studied a 
learning effect in the lot streaming context (Mukherjee and Sarin 2014; 
Mukherjee, Sarin, and Singh 2016; Fattahi, Azizi, and Jabbari 2015). It is 
logical to wait for publications, which connect the no-wait lot streaming 
assumption with the deteriorating job restriction.   

One also can note a progress in the solution algorithms used, from 
simple rules (MBS, et al.; FH; BH; adapted SPT and LPT; AVG) and well-
known heuristics (a critical patch algorithm; a modified Johnson algorithm; 
an iterative batch splitting method; a modified shifting bottleneck 
procedure; a critical path-based heuristic technique), to hybrid algorithms 
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looking for more exact solutions (VNS, SA, TS). Following this trend, we 
can wait for a big interest of the researchers in this subject. 

Reviews, which were dedicated to lot streaming problems, have been 
given by Potts and Baker (1989); Potts and Van Wassenhove (1992); 
Trietsch and Baker (1993); Chang and Chiu (2005); Cheng, Mukherjee, and 
Sarin (2013); Gómez-Gasquet, Segura-Andrés, and Andrés-Romano (2013).  
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CHAPTER EIGHT 

LOT SIZING 
 
 
 

Essentially, the problem of short-term production planning turns out to be a lot 
sizing and scheduling problem, then. If we ask about how to solve this production 

planning problem, we first need a deeper understanding of its basic attributes. 
(Drexl and Kimms 1997, 222) 

 
The complexity of planning problems arising in big plants with lot 
processing, such as semiconductor manufacturing plants, impedes an 
efficient solution of many problems due to various reasons, such as high 
dimensionality and production costs. The lot sizing optimization problem is 
one of these problems.  

In discrete manufacturing environments, the term lot sizing defines the 
process of determining the production quantity of each product over a finite 
multi-period planning horizon. In the planning and scheduling literature, a 
lot sizing problem refers to the decision on when and how to split a 
production job consisting of a number of identical items into lots.  

Lot sizing is a fundamental problem in different production environments. 
It is one of the key problems for any production planning system in big 
production plants. A typical variant of such a problem can be described as 
follows.  

Several items must be produced in order to meet a number of demands, 
which can be known beforehand or estimated. Backlogging and stocking are 
not desirable. The finite planning horizon, which is usually less than six 
months, is subdivided into a number of discrete time periods, such as hours, 
days, or weeks. During the production, the items share a common machine. 
The capacity of that machine is limited and may vary over time. Producing 
one item requires an item-specific amount of the available capacity of that 
machine. The items, which are produced in the actual period to meet a demand 
in the future, must be stored in the inventory and therefore, they cause item-
specific holding costs. The production of an item can only be realized if a 
corresponding setup is performed. The machine setup for manufacturing of a 
particular item incurs item-specific setup costs. The goal is to determine the 
optimal number of the production items by balancing the trade-off between 
the production, inventory, and setup costs. 
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Production planning addresses the acquisition, utilization, and  
allocation of the production resources, which are required to transform the 
raw materials into finished goods in the most efficient and economical way. 
An inappropriate lot sizing causes an instable material flow in the shop, a 
high setup frequency or WIP level. It influences negatively the manufacturing 
performance metrics. Planning the sizes of the lots for the production 
processes with a dynamic demand and under a tight capacity restriction is 
an important and difficult subject, which is not really a new one. 
Nevertheless, recently it reached an extensive research interest.  

Lot sizing is sometimes called batching, because both are used to induce 
a time-phased production and make it synchronized with the actual 
consumption or the demand pattern. In some sense, it is opposite to 
batching, which is a decision on whether or not to schedule similar jobs 
contiguously. Lot sizing can also be seen as a job splitting problem, because 
it supposes the division of an entire job into sublots. Lot sizing is also strictly 
connected with decisions taken by lot streaming problems in the scheduling 
theory.  

In this chapter, the history of the problem, some principal concepts, and 
basic models are described, complemented by a broad state-of-the-art 
survey for the readers, which like to study the subject more in depth.  

8.1 Background 

The origin of the lot sizing problem takes us to the paper by Ford Whitman 
Harris, entitled 'How Many Parts to Make at Once', which was published in 
Factory, The Magazine of Management (Harris 1913). This publication was 
dedicated to determine economic lot sizes for production or order, by 
balancing inventory and setup or order costs. In this paper, Harris presented 
a formula for the order quantity calculation called the economic order 
quantity (EOQ), which is known now as the famous square-root formula 
derived by Harris (Wagner and Whitin 1958, 1773):  
 = 2 / ,      (8-1) 
 
where  

 
Q   -  order quantity; 
D   -  demand quantity; 
sc   -  ordering setup cost; 
i    -  interest charge (i = 1 if no other considerations).  
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Today, the EOQ model is the classical one and so well known in the area 
that this basic structure is accepted as obvious. Nevertheless, in 1913, it was 
a modeling achievement of high elegance. After that, Harris' original paper 
was lost sight of many years. His name was almost forgotten, while the 
square-root formula was used referring to other authors until his rediscovery 
in 1988. An interesting historical sketch, which was dedicated to Eng. F.W. 
Harris as the originator of the EOQ model, also describing his personality 
and contributions, was written by Prof. Donald Erlenkotter (1990), who 
made this investigation. 

The EOQ formula proposed by Harris is a simple and efficient tool to 
avoid an excessive inventory, but it has several restrictions. The 
assumptions for the EOQ model are a single-level production process with 
no capacity constraints, which turns the formulation into a single-item 
problem. The demand for that item is assumed stationary, i.e., the demand 
occurs continuously with a constant rate. An optimal solution is easy to 
derive.  

A few years later, on the base of the EOQ formula, Taft (1918) 
developed the economic production lot (EPL) formula by replacing the 
replenishment with a continuous rate production-function (Jodlbauer 2006). 
Both formulas represent continuous time models with an infinite planning 
horizon. 

Since Harris' publication, the subject has received attention both in the 
research literature and in practice. In a modern interpretation, the lot sizing 
problem became an active research area since the seminal work by Wagner 
and Whitin. This formula was one of the first models for a dynamic demand 
in discrete time over a finite planning horizon. It was based on the Wagner–
Whitin fundamental property: under an optimal lot sizing policy, either the 
inventory carried to period t+1 from a previous period will be zero, or the 
production quantity in period t+1 will be zero (Wagner and Whitin 1958, 
1771). Almost at the same time, discrete lot sizing models were developed 
for more complex manufacturing situations by Manne (1958), Zangwill 
(1966) and later by Lasdon and Terjung (1979). These models considered 
already multiple products, capacity restrictions, setups, and multi-level 
production structures. 

Typically, the objective of lot sizing is to minimize the sum of the setup 
and holding costs. Other costs might also be considered. Boucher (1984)  
noted a traceable relationship between the lot size and the WIP inventory in 
GT. Moreover, the WIP inventory level was found as a function of the lot size.  

Rogers (1958) was the first researcher who noted an intrinsic connection 
between lot sizing and scheduling. Since the works by Potts and Van 
Wassenhove (1992); Haase (1996); Tsubone, Ohba, and Uetake (1996), 
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many authors highlighted this connection. Indeed, when the sequence-
dependent setup costs must be accurately computed, the integration of 
sequencing into lot sizing is inevitable. 

Potts and Van Wassenhove (1992) were the researchers who first 
integrated explicitly scheduling with batching and lot sizing approaches into 
the production management. However, the formulation of the lot sizing 
models and the framework used are different from the above-mentioned 
subjects due to its planning background. Nevertheless, in advanced 
manufacturing processes, batching, lot sizing, and scheduling decisions, 
which minimize the schedule, must be taken concurrently, i.e., they should 
be integrated and computer-controlled. 

8.2 Parameters and assumptions 

Before modeling, a problem must be strictly formulated. There are various 
specific system parameters and assumptions, which are involved in a lot 
sizing problem statement and have a direct influence on the modeling 
procedure. Some basic ones are discussed below (Kuik, Salomon, and Van 
Wassenhove 1994).  

8.2.1 Parameters 

The main system parameters are as follows.  
 
Planning horizon and time scale. First of all, a certain period, denoted 

as the planning horizon, must be defined. The planning horizon is the time 
interval, in which an MPS extends into the future. The planning horizon 
may be finite or infinite. A finite planning horizon is usually complemented 
by a dynamic demand, while an infinite planning horizon is complemented 
by a stationary demand. Then, the production system may be represented 
continuously or at discrete time points, which correspond to a system of 
continuous or discrete time scale.  

A discrete scale represents a partitioning of the time into a number of 
time buckets or planning periods. In this case, the real-world events, which 
happen in a continuous time, have to be transformed into the events and 
decisions, which occur according to a discrete time scale. To make this 
translation reasonable, valid, and accurate, one has to select carefully the 
size of the time bucket. 

With respect to the time periods, lot sizing problems are classified into 
big bucket or small bucket problems, as it is defined by Belvaux and Wolse 
(2000). A big bucket problem is one, where the time period is long enough 
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to produce multiple items, what corresponds usually to the multi-item 
problem case. For a small bucket problem, the time period is so short that 
only a single item can be produced. Also, a rolling planning horizon can be 
considered, see Kimms (1998); Clark and Clark (2000); Mohammadi et al. 
(2010). It usually appears when there is an uncertainty in the data.  

 
Levels. Single-level and multi-level production systems are 

distinguished. In a single-level system, the final product is usually simple to 
manufacture. The raw materials, after being processed by a single operation, 
are changed to a final product. A final good item is directly produced from 
the raw or purchased materials with no-intermediate operations. The 
product demands are taken directly from the customer orders or the market 
forecasts. This kind of demand is referred to as an independent demand. In 
a multi-level system, there is a precedence relationship between the item 
components. Several operations are required to change the raw materials 
into an end product. The output of an operation/level is the input for another 
operation/level. Therefore, the demand at one level depends on the demand 
for its parent's level. This kind of a demand is denoted as dependent demand. 
Evidently, multi-level problems are more difficult to solve than single-level 
problems. 

Multi-level systems are further distinguished by the production system 
structure, such as serial, assembly, arborescent, and general structures, 
which can be represented by a Gozinto Graph11 (see Section 8.3.15). 

 
Products. Two principal types of production systems are used in terms 

of the number of products, namely, single-item and multi-item production 
planning. In a single-item production planning system, there is only one 
final product (end item), while in a multi-item production planning system, 
there are several end items. The complexity of multi-item planning 
problems is much higher than the complexity of single-item problems.  

 
Capacity or resource constraints. The capacities in a production 

system, also referred to as resources, include manpower, equipment, 
transport, robots, machines, the budget, etc. When there is no restriction on 
the resources, the problem is defined as uncapacitated. When the capacity 
constraints are explicitly stated, the problem is called capacitated. The 
presence of capacity constraints makes a problem more difficult to solve.     

 
11 A Gozinto Graph is a tree-like graphical representation of raw materials, parts, 
intermediates, and subassemblies, in which a particular production process 
transforms raw material into an end product through a sequence of (production) 
operations. 
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Demand rate. The nature of a demand is an input parameter of a lot 
sizing problem. A static demand, also called a stationary demand, assumes 
a constant demand pattern, while a dynamic demand permits a demand to 
vary over time. If all relevant demand data are available before the planning, 
such a demand is assumed deterministic. In the opposite case, in which the 
demand values are based on expected probabilities, the demand is 
considered stochastic.  

A demand can be either independent or dependent. When the demands 
are independent, the imposed requirements on one item do not depend on 
the decisions regarding the lot size of another item. This kind of demand is 
typical in single-level production systems.  

In multi-level lot sizing with a parent-component relationship among the 
items, the demands are dependent, because the demand requirements at one 
level depend on the demand for its previous level, and the production at one 
level leads to a demand for the components at a lower level.  

Obviously, problems with dynamic and dependent demands are much 
more complex than problems with static and/or independent demands. In 
addition, problems with probabilistic demand are more complex than 
problems with deterministic demand. 

 
Setup structure. Setup costs and times are usually modelled by 

introducing binary zero–one variables in the mathematical model of the 
problem and make the solution of the problem more difficult. Usually, a 
production changeover between different products incurs a setup time and 
a setup cost. There are different types of setups, see Chapter 4 for more 
details.  

The setups can first be considered according to the conservation of the 
setup state. This means that the setup state may either be conserved 
(continuous setup) or get lost after idle periods. 

The setups may also be grouped globally into two big categories:  
 
1. Simple structure of a setup, if the setup time and cost in a period are 

independent of the item sequence and the decisions made in the 
previous periods;  

2. Complex structure of a setup, if it depends on the item sequence or 
the previous periods. 

 
In the context of the lot sizing problematic, complex setups can be 

further subdivided into the following types: 
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1. Carry-over setup, if it is possible to continue the production run from 
the previous period into the current period without the need for an 
additional setup, thus reducing the setup cost and time; 

2. Family setup or major setup, which is caused by similarities in the 
manufacturing process and the design of a group of items; 

3. Item setup or minor setup, which occurs when changing the 
production among the items within the same family;  

4. Sequence-dependent setup, when the item setup cost and time depend 
on the production sequence. 

 
It is obvious that complex setup structures have a harder difficulty in 

both modeling and solving lot sizing problems. 
 
Inventory shortage. If a shortage is allowed, this means that one of the 

following two variants is possible:  
 
 Backlogging - a demand of the current period is satisfied in a future 

period;  
 Lost sales - a demand will not be satisfied at all. 

 
The combination of backlogging and lost sales is also possible. In such 

a case, a shortage cost is introduced into the objective function. If a 
deterioration effect occurs in the problem, it must be included in the 
inventory holding time restrictions. This feature increases the problem 
complexity. 

Problems with a shortage are more difficult to solve than those without 
a shortage. 
 

Costs. There are two types of costs, which are taken into account:  
 
 Setup costs;  
 Inventory holding costs.  

 
Setup costs are the costs incurred when changing the resource 

configuration from processing one type of products to another one. They 
account for the loss of the potential production and the resources, which 
were consumed during the setup, such as additional workforce and 
additional raw material. Inventory holding costs account for opportunity 
costs of capital as well as for direct costs of storing goods, such as 
warehousing, handling, transporting, etc. 

To minimize the setups costs, a production is run with large batches but 
at the expense of high inventory costs. On the contrary, the inventory levels 
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can be kept low if the manufacturing of a product is run in frequent and 
small batches, but at the expense of high setup costs. Therefore, a lot sizing 
model aims at finding an optimal compromise between the setup and the 
inventory holding costs, while complying with the given capacity 
constraints and insuring that the demand for all products is satisfied without 
backlogging. 

8.2.2 General Assumptions 

A planning activity is first motivated by identifying a subject that is worth 
to be investigated in an economical sense. It is frequently caused by large 
inventories. Direct costs of storing goods and holding items in the inventory, 
which produce holding costs, should be avoided. On the other hand, if 
different parts use common resources, say the machines, and the setup 
activities take place to prepare a corresponding operation, then setup costs 
are incurred when the production is delayed. Another aspect of sharing 
recourses is that different parts need different setups. Hence, the production 
orders must be sequenced. As a result, the goal is a trade-off between low 
setup costs favoring large production lots and low holding costs favoring a 
lot-for-lot-like production, in which the sequencing decisions have to be 
made due to sharing the common resources. Therefore, the problem of 
short-term production planning is mainly a lot sizing and scheduling 
problem. 

Any production plan must respect the precedence relationships between 
the operations, if they exist. Hence, multi-level structures and multi-item 
production must be respected. The production planning must take into 
account a scarce capacity. In the opposite case, the optimization decisions 
have no sense.  

Holding costs are incurred for the items in the inventory. The demand 
for the items has to be satisfied without a delay, i.e., shortages are not 
allowed. The external demands, either known or estimated ones, are given 
at the end of each period. Backlogging and shortages must be included into 
the model, if they are considered.  
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8.3 Main problems 

A brief description of the main problems for lot sizing is given below, 
including the principal features and mathematical formulations. For  
additional information, the following papers can be consulted (Kuik, 
Salomon, and van Wassenhove 1994; Haase 1996; Drexl and Kimms 1997; 
Fleischmann and Meyr 1997; Staggemeier and Clark 2001; Brahimi et al. 
2006; Gicquel, Minoux, and Dallery 2008; Ramezanian, Saidi-Mehrabad, 
and Fattahi 2013). 

All lot sizing problems are seeking for an optimal timing and level of 
the production. Nevertheless, these problems have several variations in the 
mathematical formulation. The selection of a convenient variant of the 
problem is an important methodological point in the problem solution.  

8.3.1 Notations 

The notations used are as follow:  
 

Indexes: 
j - item, j = 1,…, J;  
t - time period, t = 1,…, T;  
n  - position, n = 1,…, NT.  
 
Decision variables: 
Ijt - inventory for item j at the end of period t; 
qjt  - production quantity for item j in period t;  
qjn - production quantity for item j at position n; 
xjt  - binary variable, xjt = 1 if a setup for item j occurs in period t, and 

xjt = 0 in the opposite case;  
xjn  - binary variable, xjn = 1 if a setup for item j occurs in position n, 

and xjn = 0 in the opposite case; 
yjt  - binary variable, yjt = 1 if a setup for item j occurs in period t, and 

yjt = 0 in the opposite case;  
yjn  - binary variable, yjn = 1 if the machine is ready to produce item j at 

position n, and yjn = 0 in the opposite case.  
 
Parameters: 
ct - available capacity of the machine in period t; 

 - capacity need for producing one unit of item j; 
djt  - external demand for item j in period t; 
hj  - non-negative holding costs for item j; 
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I0t  - initial inventory for item j; 
Nt - maximum number of lots in period t; 
sj - non-negative setup costs for item j; 
y0t - binary value, y0t = 1 if the machine setup for item j occurs at the 

beginning of period 1, yj0 = 0, 1. 

8.3.2 Basic models 

Several models have been proposed for the mathematical formulation of 
different lot sizing problems. The following variants are the principal ones: 
 

 Economic order quantity model;  
 Deterministic dynamic lot sizing Wagner-Whitin model; 
 Economic lot scheduling model;  
 Uncapacitated lot sizing model; 
 Capacitated lot sizing model;  
 Discrete lot sizing and scheduling model;  
 Continuous setup lot sizing model;  
 Proportional lot sizing and scheduling model; 
 General lot sizing and scheduling model; 
 Multi-level lot sizing and scheduling model. 

 
These models and some important extensions are described below. An 

adapted interpretation of the mathematical representation, which was given 
by Drexl and Kimms (1997), was used. The reader can also consult the 
representations of these models given by Jans and Degraeve (2008).   

8.3.3 Economic order quantity (EOQ) model 

The EOQ model12 is characterized by a single-item and single-level 
production process without capacity constraints. It is a famous model, which 
assumes a continuous time scale, a constant demand rate, and an infinite 
planning horizon. It is easy to solve by Harris square-root formula (see 

 
12 The EOQ model is also referred to by some early authors as the Economic Lot 
Size (ELS) model, see Wagner and Whitin (1958, 1770). This abbreviation 
introduces a confusion with the economic lot scheduling (ELS) model. The readers 
can meet another confusion between the capacitated lot sizing and the continuous 
setup lot sizing models, which are abbreviated in the literature in a very similar 
manner, CLS and CSL, respectively. To avoid this confusion, the abbreviation CSLS 
is used for the continuous setup lot sizing in this book. 
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Formula 8-1) (Harris 1913; Wagner and Whitin 1958, 1773; Brahimi et al. 
2006). 

Rogers (1958, 265) noted that this formula solves only a very specific 
case of lot sizing. When additional variables (for example, the price as a 
function of the lot size, the setup cost as a function of the lot size, or the 
production cost as a function of the production rate) and conditions on the 
variables must be considered, particularly when some of the variables are 
discontinuous, the cost-minimizing expressions may become so complex 
that solutions are hard to reach. Additional difficulties appear when the 
number of items must also be considered. Another difficulty, highlighted by 
Rogers (1958, 266), is that the usual ELQ approach makes no explicit 
provision for scheduling, proceeding as if each item, for which the ELQ 
calculations are made, can be considered independently. 

8.3.4 Deterministic dynamic lot sizing Wagner-Whitin (WW) 
model 

It is a dynamic version of the EOQ model, which is characterized as a single-
level, single-item model. A finite planning horizon is subdivided into several 
discrete periods. A dynamic demand is given per period. It may vary over 
time. It is assumed that each production system incurs a fixed setup cost in 
every period, in which it produces one (1) item. However, capacity limits 
are not considered. This means that the single level WW problem is a single-
item problem.  

The deterministic dynamic lot sizing problem is one of the most famous 
discrete decision problems of production and inventory planning. It has 
been first introduced and solved by  Wagner and Whitin in 1958. The way, 
in which this problem is modeled, differs from the classical EOQ model, 
where the demand is neither stationary nor continuous. Instead, both the 
inventory replenishments and the demand are instantaneous and discretized 
over a finite planning horizon of several periods. The demand may change 
from one period to another one, what means that it is time-varying. The WW 
model can be viewed as a shortest path problem. Wagner and Whitin (1958) 
developed a well-known exact algorithm based on dynamic programming. 
Another known method solving the dynamic lot sizing model was proposed 
by Edward A. Silver (1973). This approximation algorithm is known as 
the Silver–Meal heuristic. It is essentially more complex than the WW 
algorithm.  

This model was also studied by Karmarkar, Kekre, and Kekre (1987); 
Federgruen and Tzur (1991); Wagelmans, van Hoesel, and Kolen (1992); 
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Aggarwal and Park (1993); Kuik, Salomon, and Van Wassenhove (1994); 
Aksen (2007). Some capacitated versions were also formulated. 

8.3.5 Economic lot scheduling (ELS) model  

It is a single-level, multi-item problem with capacity constraints. This model 
generalizes the EOQ considering multiple items that share a constrained 
resource. While the EOQ model is simple to solve, the ELS problem is NP-
hard (Hsu 1983; Gallego and Shaw 1997).  It is a continuous time model 
with infinite planning horizon as well. This problem has various extensions, 
see the papers by Elmaghraby (1978); Moon, Giri, and Choi (2002); Raza 
and Akgunduz (2008), for reviews. Rogers (1958) was the first researcher 
who noted an intrinsic connection between lot sizing and scheduling. 
Rogers also incorporated sequencing techniques into the economic lot 
sizing model, while Maxwell (1964) proposed a time-varying lot sizes 
approach, which is one of the most used approaches up-to-date. 

The basic ELS problem, as it was described by Maxwell, has the 
following features: 

 
1. Only one product can be produced at a time on the machine; 
2. Each product has a deterministic and constant demand and  

deterministic and constant production rates; 
3. The setup cost and the setup times are independent of the production 

sequence; 
4. The production facility is assumed capable of satisfying the demand 

predicted for the planning horizon; 
5. The inventory holding cost is directly proportional to the amount of 

the inventory.  
 
One of the frequently used methods to solve a CLS problem is a dynamic 

programming-based Common Cycle (CC) approach, which restricts all 
product cycle times to equal length. It is the simplest one to implement, 
however, in some cases, the solution when compared to a lower bound is of 
poor quality. The main advantage of this approach is that it always provides 
a feasible schedule (Bomberger 1966; Jones and Inman 1989; Gallego 
1990). 

8.3.6 Uncapacitated lot sizing (ULS) model 

It is a generalized variant of the WW single-item, single-level problem, 
which can include setups. That is, it can be extended to a multi-item 
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problem, but capacity restrictions are not included. The production cost of 
a lot is decomposed into a fixed cost, which is independent of the lot size, 
and a unit cost for each unit, which is produced in the lot. The inventory 
costs are modelled by charging an inventory cost per unit held in the 
inventory at the end of each period. Any demand in a period is satisfied by the 
production or the inventory. Backlogging is not allowed. The production 
capacity in each period is not considered in the model. Therefore, it is 
assumed infinite. The ULS model can be solved by the WW dynamic 
algorithm (Wagner and Whitin 1958).  

ULS models are mainly used in the practice since the implementation of 
the capacitated approaches requires big efforts for collecting, maintaining and 
processing the manufacturing data. They are also employed as a basic stage 
in modeling and solving complex multi-item and multi-level problems 
(Fleischmann 1990, 340; Pochet 2001; Aksen 2007; Jans and Degraeve 
2008; Gicquel, Minoux, and Dallery 2008). The ULS model is the core 
subproblem in production planning, because it is solved repeatedly for each 
item in the material requirements (MRP-I) of a sequential planning system. 
All capacitated models have uncapacitated extensions.  

It is useful to employ a network presentation for the resolution of a lot 
sizing problem. A simple example for an uncapacitated multi-level lot 
sizing problem is given in Fig. 8-1.  

ULS models were reviewed in the papers by Brahimi et al. (2006), 
Robinson, Narayanan, and Sahin (2009). 
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Fig. 8-1. An uncapacitated lot sizing problem with 4 demands for 4 periods and 
holding inventory. Adapted from Jans and Degraeve (2008, 1622).   

8.3.7 Capacitated lot sizing (CLS) model 

This lot sizing variant is also called big-bucket model or large time window 
of a multi-item single-stage system. It is a typical example of a big-bucket 
problem, where many different items are produced on the same resource in 
one time period. The production resources can manufacture only one type 
of product at a time and therefore, they have a limited capacity. This means 
that a significant setup work is required for the machine adjustments from 
the production of one type of items to another one. The general assumption 
is that there is exactly one setup for each item, which is produced in the 
period. Moreover, the CLS model in general does not address scheduling. 
The planning interval is subdivided into many short periods, shifts or days, 
and then the jobs are scheduled in each period separately. A lot consists of 
a quantity of items of the same product, which is processed in one or several 
consecutive periods. A setup occurs at the beginning of the first period of 
every lot. The main difference with an uncapacitated model is the addition 
of capacity constraints. This model is useful for developing short-term 
production schedules for single facilities. The planning horizon is usually 
less than six months. 

Detailed scheduling decisions are not integrated into the CLS model. 
The usual approach consists in solving the CLS problem first and then the 
corresponding scheduling problem for each period separately afterwards. 
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The CLS model is as follows: + min    (8-2) 

s.t.  = ( ) + ,  j = 1, …, J, t = 1,…, T;  (8-3) 

, j = 1, …, J, t = 1,…, T;   (8-4) 

, t = 1,…, T;    (8-5) {0,1}, j = 1, …, J, t = 1,…, T;   (8-6) , 0, j = 1, …, J, t = 1,…, T.    (8-7) 

 

The objective (8-2) is to minimize the sum of the setup and holding costs 
for all items and all periods. The restrictions (8-3) ensure the inventory 
balances. The constraints (8-4) indicate that the production of an item can 
only be realized, if the machine is setup for that item. The restrictions (8-5) 
ensure the capacity constraints. The restrictions (8-6) define binary setup 
variables, and the inequalities (8-7) are the non-negativity conditions. 

A detailed description of the model can be found in the papers by 
Fleischmann (1990) and Armentano, França, and de Toledo (1999).  

The CLS problem in known to be NP-hard (Florian, Lenstra, and 
Rinnooy Kan 1980). Armentano, França, and de Toledo (1999) proposed a 
mathematical model, which represented the CLS as a minimum cost 
network flow problem.  A setup time and a setup cost were considered. A 
branch-and-bound method was employed for solving the model. Heuvel and 
Wagelmans (2006) proposed an O(T2) dynamic programming algorithm for a 
special case of the CLS problem with non-increasing setup costs, general 
holding costs, non-increasing production costs, and non-decreasing 
capacities over time, where T is the length of the model horizon.  

A usual approach to solve a CLS model is the application of Lagrangian 
relaxation to induce a problem decomposition into a set of ULS 
subproblems that are then solved by the WW algorithm or its variants, see  
Toledo and Armentano (2006); Caserta and Quiñonez Rico (2009). Karimi, 
Fatemi Ghomi, and Wilson (2003) gave a detailed analysis of solution 
methods for the CLS problem. 
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There are several surveys and reviews of extensions, as well as solution 
algorithms for the CLS problem (Drexl and Kimms 1997; Karimi, Fatemi 
Ghomi, and Wilson 2003; Brahimi et al. 2006; Gicquel, Minoux, and 
Dallery 2008).  

8.3.8 Capacitated lot sizing model with sequence-dependent 
setup costs (CLSD) 

In this model, more than one setup is allowed per period, and the setup state 
can be preserved over an idle time. The CLSD problem describes the case 
when one or more machines (or production facilities) are used to meet a 
forecasted demand for multiple products over multiple periods. It must be 
decided, which products must be made in which periods to meet the exact 
production sequence and the production quantities in order to minimize the 
sum of the setup and inventory holding costs. The difficulty of this problem 
consists in the fact that the capacity is tight, the setup costs are large and 
sequence-dependent, and the setup times are non-zero. This model was 
introduced by Haase (1996).  

Trigeiro, Thoam, and McClain (1989) observed that the bin packing 
problem (Garey and Johnson 1979, 226) is a special case of the CLS 
problem with setup times. With this reason, the CLSD problem is NP-hard. 
Therefore, heuristic methods are used. Haase (1996) developed a backward-
oriented heuristic for solving the CLSD problem and some extensions. 
Gupta and Magnusson (2005) tested the accuracy of several different lower 
bounding linear relaxations with a heuristic and obtained an approximate 
solution with an average deviation from the corresponding exact solution in 
a range of 10-16%. The authors also presented an extensive state-of-the-art 
survey for the CLSD problem.  

Trigeiro (1989) developed a simple and efficient heuristic algorithm 
called simple heuristic (SH) for CLSD. It consists of several passes through 
the production schedule for a problem, starting with a lot-by-lot solution 
and provides reasonably good solutions. Nevertheless, a modified Silver-
Meal heuristic is initially applied to each item (Silver 1973).  

8.3.9 Discrete lot sizing and scheduling (DLS) model 

This is a multi-item small-bucket model or a small-time window of a multi-
item single-stage system. In this problem, the macro-periods of the CLS are 
subdivided into micro-periods, in which only one type of parts may be 
processed at the full capacity. The fundamental assumption of the DLS 
model is that the production process always runs over full periods without 
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changeover. Such an “all-or-nothing” assumption implies that at most one 
item is produced per period. A discrete production policy corresponds to 
such a lot sizing problem: if there is any production in a period, it must be 
at the full capacity, meaning that the production process always runs full 
periods without a changeover and that the setup state is not preserved over 
the idle time.  

The major advantage of small-time-bucket problems in DLS models 
against the CLS is the exact control of the lot sequence and hence, the 
possibility to include sequence-dependent setup costs.  

The DLS problem was introduced by Fleischmann (1990) and later 
studied by Brüggemann and Jahnke (2000), and by Gicquel, Minoux, and 
Dallery (2008). 

The DLS model is as follows:  
 +   min    (8-8) 

s.t.  = ( ) + ,  j = 1, …, J, t = 1,…, T;  (8-9) = , j = 1, …, J, t = 1,…, T;   (8-10) 1, t = 1,…, T;    (8-11)  

( ), j = 1, …, J, t = 1,…, T;   (8-12) {0,1}, j = 1, …, J, t = 1,…, T;    (8-13) , , 0, j = 1, …, J, t = 1,…, T.    (8-14) 

The objective (8-8) is to minimize the sum of the setup and holding costs 
for all items and all periods. The restrictions (8-9) assure the inventory 
balances. In contrast to the restrictions (8-4) in the CLS model, here in the 
restrictions (8-10), the left and right sides are equivalent. This corresponds 
to the assumption 'all-or-nothing'. The restrictions (8-11) ensure that at most 
one item is produced per period, in accordance with the capacity limit 
constraints (8-10). Usually, it is assumed that the capacity remains constant 
over the time, i.e., c1 = c2 = … = cT. The inequalities (8-12) indicate the 
beginning of a new lot. The restrictions (8-13) define binary setup variables, 
and the inequalities (8-14) are the non-negativity conditions. 
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Finding an optimal solution of the DLS problem was discussed by 
Salomon et al. (1991, 805–10). A feasible solution can be obtained in 
polynomial time. If setup times or parallel machines are considered, even 
finding a feasible solution of the DLS problem is NP-hard.  

All solution methods presented so far for the DLS problem are restricted 
to sequence-independent setup costs, because a preferred procedure consists 
in decomposing the problem into single-product problems. Fleischmann 
(1990, 330) described a procedure for solving the DLS problem with 
capacity constraints, which is based on branch-and-bound and Lagrangian 
relaxation algorithms. A dynamic programming based Lagrangian 
relaxation leads to single-product problems, but it is distinct from the WW 
type. The branching strategy consists in the application of the Last-In, First-
Out (LIFO) rule for the selection of the product to be fixed in the current 
period. Fleischmann compared the performance of his approach for both 
CLS and DLS models. He showed that the DLS problem can be used for 
modeling capacitated multi-product dynamic lot sizing problems. This 
method is also very suitable for determining both feasible solutions and 
relatively sharp lower bounds.  

Some reviews of DLS model extensions and solution methods can be 
found in the papers by Drexl and Kimms (1997); Salomon et al. (1991); 
Staggemeier and Clark (2001); Brahimi et al.(2006); Copil et al.(2017). 

8.3.10 Discrete lot sizing with sequence-dependent setup costs 
(DLSDSD) model 

This model was introduced by Fleischmann (1994) and studied by Gicquel,    
Minoux, and Dallery (2008). It is similar to the CLSD problem. The main 
difference between the CLSD and DLSDSD models is that in the first one, 
continuous lot sizes are allowed and the setup state can be preserved over 
an idle time. 

8.3.11 Continuous setup lot sizing (CSLS) model 

This is a small bucket model.  In this kind of problems, a machine can only 
process one product type in one period.  

The CSLS model is an extension of the CLS model, obtained by relaxing 
the assumption that the available capacity is fully utilized in the period, 
where a product is manufactured. It is very similar to the DLS model, and 
only one item may be produced per period. The decision variables are 
basically the same. The difference is that the 'all-or-nothing' assumption is 
not applied. It allows at most one part type in each period by using less than 
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the full capacity.  Nevertheless, the difference between these models is 
sensible. In the DLSP problem, the setup costs are incurred whenever a new 
lot begins. In the CSLS problem, however, setup costs can occur only once. 
The CSLS model is based on the assumption that at most one item can be 
produced per period. 

The CSLS model is considered to be less realistic than the DLS model 
and less studied in the literature, see Karmarkar and Schrag (1985); Drexl 
and Kimms (1997) for details. 

The CSLS model is as follows:  +   min    (8-15) 

s.t.  = ( ) + ,  j = 1, …, J, t = 1,…, T;  (8-16) 

, j = 1, …, J, t = 1,…, T;   (8-17) 1, t = 1,…, T;    (8-18) 

( ), j = 1, …, J, t = 1,…, T;   (8-19) {0,1}, j = 1, …, J, t = 1,…, T;    (8-20) , , 0, j = 1, …, J, t = 1,…, T.    (8-21) 
 
The CSLS differs from the DLS model only in the restrictions (8-10) 

and (8-17), meaning that the production quantities can take a continuous 
value. 

Bitran and Yanasse (1982) proved that the CSLS problem is NP-hard as 
a special case of the CLS problem.  

8.3.12 Proportional lot sizing and scheduling (PLS) model 

It is a multi-item small-bucket model. The basic idea is to use the remaining 
capacity for scheduling a second item in a particular period. It adapts the 
CSLS model to the case when the capacity of a period is not fully used. The 
remaining capacity is left unused. The PLS problem allows an unused 
capacity to process a second part type in a period. The objective function 
and most of the constraints are equal to the CSLS model. Similar to the 
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CSLS model, the idle periods between two lots of the same item do not 
cause additional setup costs.  

The PLS model was proposed by Drexl and Haase (1995). The authors 
described the PLS as a model that produces continuous lot sizes over one or 
several adjacent or nonadjacent periods preserving the setup state over idle 
periods. This model also allows one changeover within each period. The 
PLS model assumes that at most one changeover is allowed within each 
period. According to this assumption, the continuous lot sizes can be 
computed over one or several adjacent or nonadjacent periods. In addition, 
the setup costs are calculated by looking back for one or several periods. As 
for the DLS and CSLS models, the PLS model is restricted to short-term 
production scheduling. The authors also developed an extension of the PLS 
problem, which included setup times (PLSPST), and the PLS problem with 
multiple machines (PLSPMM) as well as with multiple stages (Drexl and 
Haase 1995, 81–83).   

The PLS model is as follows: +   min    (8-22) 

s.t.  = ( ) + ,  j = 1, …, J, t = 1,…, T;   (8-23) ( ( ) ), j = 1, …, J, t = 1,…, T;  (8-24) 

, t = 1,…, T;     (8-25) 1, t = 1,…, T;     (8-26) 

( ), j = 1, …, J, t = 1,…, T;   (8-27) {0,1}, j = 1, …, J, t = 1,…, T;    (8-28) , , 0, j = 1, …, J, t = 1,…, T.    (8-29) 

The objective (8-22) is also to minimize the sum of the setup and holding 
costs for all items and all periods. The inequalities (8-24) ensure that the 
production of an item in every period can only be realized, if the machine is 
setup either at the beginning or at the end of that period. The restrictions (8-
25) keep the total capacity requirement per period within the limits. The rest 
of the restrictions is similar to the previous models.  
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Drexl and Haase (1995) presented a backward-oriented regret-based 
biased random sampling method, which solved efficiently this model and 
its extensions. Other approaches can be found in the papers by Staggemeier 
and Clark (2001); Karimi, Fatemi Ghomi, and Wilson (2003); Jans and 
Degraeve (2008); Stadtler (2011); Copil et al. (2017). 

8.3.13 General lot sizing and scheduling (GLS) model 

The GLS problem consists in determining continuous lot sizes of several 
products and scheduling them on a single machine subject to capacity 
constraints. Deterministic dynamic demands, given over a finite planning 
horizon, are to be fulfilled without backlogging, so that the inventory 
holding and sequence-dependent setup costs are minimized. The GLS 
problem integrates lot sizing and scheduling of several products in macro-
periods by subdividing the macro-periods into a predefined number of non-
overlapping micro-periods. The computational complexity of the models 
was increased using this procedure. The GLS problem turned to be NP-hard 
(Drexl and Kimms 1997). 

GLS is a large bucket model. It can be viewed as an extension of the 
CLS and DLS models, in which the scheduling decisions and sequence-
dependent setup costs are incorporated. It also incorporates a user-defined 
parameter to restrict the number of lots per period. The parameters and 
decision variables are the same as for the DLS model. The objective is to 
minimize the total sum of the setup and holding costs.  

The GLS problem was introduced by Fleischmann and Meir (1997), and 
by Drexl and Kimms (1997) a few months later. Then, Meyr (2000) 
extended the GLS problem to the general lot sizing and scheduling problem 
with setup times (GLSPST), which considered sequence-dependent setup 
times. Both problems were solved by the author using two solution 
heuristics, threshold accepting (TA) and simulated annealing, both were 
based on local search procedures. 

The fundamental assumption for the GLS model is that a user-defined 
parameter NT restricts the number of lots per period.  

Let each lot be uniquely assigned to a position in order to define a 
sequence, and these positions are numbered as N1, N2,…, NT. The first 
position in period t is denoted by 

 = 1 + , 
 

and the last position in period t is denoted by 
 = + 1. 
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The total number of positions and thus, the maximum number of lots, 
which can be formed, is: 

 = . 
 
The GLS model is as follows: +   min   (8-30) 

s.t.  = ( ) + ,  j = 1, …, J, t = 1,…, T;  (8-31) 

, j = 1, …, J, t = 1,…, T, n = Ft,…, Lt;  (8-32) 

, t = 1,…, T;   (8-33) 1, n = 1,…, N;     (8-34) 

( ), j = 1, …, J, n = 1,…, N;  (8-35) {0,1}, j = 1, …, J, n = 1,…, N;   (8-36) 0, j = 1, …, J, t = 1,…, T;     (8-37)  , 0, j = 1, …, J, n = 1,…, N.   (8-38) 
 
The objective (8-30) is to minimize the total sum of the setup and 

holding costs. Equality (8-31) maintains the inventory balances. 
Considering that a particular item is allowed to be produced at several 
positions in a period, inequalities (8-32) guarantee that, if a lot for item j is 
scheduled at position n, the machine is in the correct setup state. Capacity 
restrictions are taken into account by the constraints (8-33). The restrictions 
(8-34) enforce a unique setup state. The position, at which a setup must take 
place, is determined by the inequalities (8-35). The binary conditions for the 
setup state variables are given in (8-36). The restrictions (8-37) and (8-38) 
are the non-negativity constraints. 

If Nt = 1 for all t = 1,…, T, then the GLS is equal to the CSLS. 
Fleischmann and Meir (1997) presented a heuristic approach, which 

includes three variants of a local search algorithm, based on threshold 
accepting. 
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8.3.14 Batching and scheduling problem (BSP) 

The usual assumptions are as follows. Each demand is characterized by a 
deadline and a size. The demands are interpreted as jobs, and the demand 
size determines the processing time of a job. The capacity of a machine, for 
example the speed, is constant over time and thus, the processing time of a 
job does not depend on the schedule. The jobs are not allowed to be split. 
This means that a certain demand is interpreted as one piece. Several 
demands (jobs) for the same item can be grouped together to form one lot 
with the goal to save the setup costs. This problem is referred to as a BSP 
rather than a lot sizing and scheduling problem. The objective is to minimize 
the total sum of the setup and holding costs. A solution of the BSP is 
uniquely characterized by the sequence, in which the jobs are scheduled, 
and by the completion time for each job. For more information, see Chapter 
6, as well as the papers by Kuik, Salomon, and Van Wassenhove (1994); 
Bogaschewsky, Buscher, and Lindner (2001); Gaafar (2006). 

8.3.15 Multi-level lot sizing and scheduling model 

In a multi-level system, the raw materials are changed to end products by 
executing several operations. The production planning is not only 
considered for the final level, i.e., for the end products, but also for the 
components and subsystems that are involved into manufacturing. The 
parent-component relationship between items is considered, because the 
output of an operation (level) is an input for another operation. Therefore, 
the fulfillment of a demand at one level depends on the lot sizing decisions 
made at predecessor levels. As a result, multi-level problems are more 
difficult to solve than single-level problems. The usual objective is to 
determine the order quantities over a finite horizon and the inventory levels 
at each stage of the production process so that all demand requirements are 
satisfied at the minimum cost. 

The parent-component relationship between items, also known in 
planning systems as BOM, is usually represented by an acyclic directed 
graph, where every vertex is an item, an arc represents the assembly or 
distribution relation between items, and the weight of an arc is the quantity 
relation, also called the 'gozinto factor', between the two terminal vertices 
of the arc. Generally, for lot sizing problems there are considered four basic 
patterns of an inventory system, depending on the production flow:  

 
 Serial structure - Each stage facility has at most one immediate 

predecessor and one immediate successor stage. It is the simplest 
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multi-layer configuration (Lambrecht, Vander Eecken, and 
Vanderveken 1983; Pochet 2001; Pitakaso et al. 2007; Ramezanian, 
Saidi-Mehrabad, and Fattahi 2013) (Fig. 8-2, a); 

 Assembly structure - Each stage or facility in the process requires 
inputs from a number of immediate predecessor stages, while 
supplying, in turn, requires at most one immediate successor. An 
assembly system finishes with one final product (Lambrecht, Vander 
Eecken, and Vanderveken 1983; Kuik, Salomon, and van 
Wassenhove 1994) (Fig. 8-2, b); 

 Arborescent structure - Each production stage has either a unique 
immediate predecessor or no predecessors at all, whereas the number 
of successors is unlimited (Kuik, Salomon, and van Wassenhove 
1994) (Fig. 8-2, c); 

 General structure – A multi-stage configuration, which does not 
satisfy one of the above definitions, is denoted as general structure. 
There may exist several end products that have some components in 
common. This situation is sometimes referred to as component 
commonality (Kuik, Salomon, and van Wassenhove 1994; Gicquel, 
Minoux, and Dallery 2008) (Fig. 8-2, d). 

 
The system structure in a multi-stage production process (Fig. 8-2) can 

be represented by a directed acyclic graph G(V, E), where V is the set of 
vertices, which represent the items, either parts or components, and E is the 
set of directed arcs, which denote the processing operations. An arc (i, j) 
leads from item i to the parent item j. The total number of parts in the process 
is |V| = N. The vertices have been numbered in a topological order by the 
integers {1, 2,…, N}, i.e., the vertex i  V has been labeled by an integer 
v(i) such that all arcs (i, j) satisfy the inequality v(i) > v(j) for i > j.  

A weight rij is associated with every arc (i, j). This weight denotes the 
number of item i used to produce an item j. In the assembly structure graph, 
the unique immediate successor of i is denoted by s(i) and the immediate 
predecessor by p(i) (Fig. 8-2, b). The set of all successors of i is denoted by 
S(i) and the set of all predecessors by P(i). A path Q(i) from vertex i to 
vertex 1 is the set of vertices (i = i1, i2,..., ik = 1) of V satisfying (ij, ij+1)  E 
for j = 1, . . . , k - 1. In serial structures, these sets S(i) are a singleton for all 
items i and for a finished product i, S(i) = . Note that the vertex, which 
produces the final product, is numbered by 1. 
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Fig. 8-2. Basic structures of multi-level inventory systems. 
 

According to the above definitions, the corresponding values for Fig. 
8-2, b are:  

 
 Required quantities:  

r21 = 1, r3l = 3, r42 = 2, r52 = 4, r63 = 2;  

 Immediate successors:  
s(2) = 1, s(3) = 1, s(4) = 2, s(5) = 2, s(6) = 3;  

 Sets of all successors:  
S(2) = {1}, S(3) = {1}, S(4) = {2, 1}, S(5) = {2, 1}, S(6) = {3, 1}; 

 Sets of immediate predecessors:  
p(1) = {2,3}, p(2) = {4,5}, p(3) = {6};  

 Sets of all predecessors: 
P(1) = {2,3,4,5,6}, P (2) = {4,5}, P (3) = {6};  

 Paths:  
Q(1)= {1}, Q(2)= {2, 1}, Q(3)= {3, 1}, Q(4)= {4, 2, 1}, Q(5)= {5, 2, 

1}, Q(6) = {6,3, 1}.  
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Multi-level production planning models in a small bucket time variant 
include the following model classes:  

 
 Multi-level discrete lot sizing and scheduling (MLDLS) model 

(Kimms 1996);  
 Multi-level proportional lot sizing and scheduling (MLPLS) model 

(Kimms and Drexl 1998); 
 Multi-level general lot sizing and scheduling (MLGLS) model 

(Fandel and Stammen-Hegene 2006). 
 
The MLDLS and MLPLS models enable simultaneous lot sizing and 

scheduling. Nevertheless, they consider a limited number of products to be 
elaborated per period.  

The MLGLS model was proposed by Fandel and Stammen-Hegene 
(2006). This model pretends to take the advantages of the MLPLS and 
MLCLS models based on subdividing the macro-period into a fixed number 
of micro-periods. It integrates lot sizing and scheduling of several products 
in each period.  

These models have a high level of complexity caused by the large 
number of variables. Therefore, only problems with a reduced number of 
products, machines, and periods can be optimally solved. Mohammadi et al. 
(2010) proposed the formulation of a mathematical model for lot sizing and 
scheduling in a flow shop environment with sequence-dependent setup 
times. 

The multi-level capacitated lot sizing (MLCLS) problem is a large 
bucket model, in which several products can be processed in a given macro-
period, but it cannot determine the lot sizes and schedules simultaneously. 
Most contributions on the multi-level lot sizing problem use large bucket 
models and a general product structure (Gicquel, Minoux, and Dallery 
2008), 

Due to the complexity of the problem, the main approaches are branch-
and-bound and dynamic programming algorithms for an optimal solution 
and heuristic approaches for efficient solutions. There are two general 
heuristic approaches: level-by-level and period-by-period. Level-by-level 
procedures assign the production quantities to a specific facility over all 
periods and use the resulting production program as requirements for all 
immediate predecessor stages. These heuristics start with the finishing 
facility (the facility producing the final product, i.e., stage 1). On the 
contrary, multi-level procedures assign the production quantities to all 
stages on a period-by-period basis. A review of the corresponding heuristics 
can be found in the paper by Lambrecht, Vander Eecken, and Vanderveken 
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(1983). The period-by-period approach is of practical importance because it 
considers the cost structure and the product structure of the system 
simultaneously. 

8.4 Conclusions 

The importance of analyzing the production planning problem in all aspects 
of its complexity, considering its immanent dynamic, is always highlighted 
in the corresponding literature. One of the most challenging and rewarding 
subjects in this area is shop floor lot sizing and scheduling, which directly 
affect the plant performance metrics, such as the productivity and the 
utilization rate of the machinery and the space. The decisions, which are 
made to meet the final product demand requirements and to minimize the 
system costs, including the setup, production, and holding costs, are 
essential to enhance the competitiveness of a company in the market. The 
lot sizing optimization problem is common for big manufacturing plants. 
For instance, the semiconductor industry is such an example. The 
complexity of the problem impedes the modeling because of its high 
dimensionality and high production costs.  

Since Wagner and Whitin (1958) have published their seminal paper on 
the dynamic lot sizing problem, referring to Ford Whitman Harris' formula 
(Harris 1913), this model is still the starting point for a variety of models, 
which deal with a wide spectrum of medium to long term planning problems 
in industries with lot processing. This subject has remained a topic of 
interest for researchers and planners in developing variants of the basic 
models. Different real-world phenomena are there captured, such as 
capacity or resource restrictions, setup times and costs, multi-level and 
multi-item versions, backlogging of demand, rolling planning horizons, 
deteriorating inventory due to a limited shelf life of items, among many 
others. These extensions lead usually to an increase of the problem 
complexity, making worse the solution time and the decision quality.  

Lot sizing problems can be classified according to the principal features, 
such as the time scale, the time horizon, the demand variety, the shop floor 
structure, the inclusion of the capacity constraints, and others more. The 
existing approaches have arisen from the need to shorten the gap between 
traditional theoretical models and planning problems that occur in real life. 
Both experimental and theoretical results point the necessity to design and 
implement flexible tools that are capable of handling dynamics from 
different production aspects.  

The solution methods can be classified into three main categories: exact 
methods, common sense or specialized heuristics, and mathematical 
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programming-based heuristics. Exact methods improve the MIP formulation 
of the problem using generic models, so that commercial solvers such as 
CPLEX or XPRESS-MP are able to process practical instances using 
branch-and-bound-type procedures, see Belvaux and Wolsey (2000). These 
solvers can also provide lower bounds for practical heuristic algorithms. A 
mathematical programming-based heuristics use optimal search procedures 
to generate a solution for different problems. 

This study of the subject revealed a lack of literature for practical use, 
which would be used by planners, teachers, and students of different levels. 
The lot sizing theory requires a systematization and a popularization. There 
is also observed an insufficient attention of the researchers to  problems with 
a deterioration effect in different production environments, which are 
common for the actual level of real-life modeling, see the papers by Abad 
(2003); J. C. Ho, Solis and Chang (2007); Chakraborty, Giri and Chaudhuri 
(2009). Various problems with data uncertainty are considered by Liu 
(2008); Li and Hu (2017). Sometimes, both effects appear together in a lot 
sizing problem (J. C. Ho, Solis, and Chang 2007).  

A typical assumption in the actual literature is that the lot sizing input 
data are deterministic, i.e., all information that defines a problem instance 
is known with certainty in advance. Nevertheless, in real life, many forms 
of uncertainty affect a production process. These uncertainties can be 
categorized into two groups:  

 
 Environmental uncertainty, for example, demand and supply 

uncertainty;  
 System uncertainty, for example, operation yield, quality, and system 

failure uncertainty.  
 
Therefore, random fluctuations and a sensitivity analysis should be 

discussed in incoming models to investigate the impact of random factors 
on the decision quality. 

In this chapter, a formal modification was made. During the study, it was 
noted that capacitated lot sizing and continuous setup lot sizing models are 
abbreviated in the literature in a very similar manner, namely as CLS and 
CSL models, respectively. This similarity provokes confusions and 
difficulties for the reader. To avoid such mistakes, the abbreviation CSLS 
is proposed in this book for the continuous setup lot sizing model.  

For more detailed surveys and reviews of the relevant works done in this 
area, the interested readers are referred to the papers by Elmaghraby (1978); 
Potts and Van Wassenhove (1992); Drexl and Kimms (1997); Staggemeier 
and Clark (2001); Karimi, Fatemi Ghomi, and Wilson (2003); Brahimi et 
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al. (2006); Zhu and Wilhelm (2006); Ben-Daya, Darwish, and Ertogral 
(2008); Gicquel, Minoux, and Dallery (2008); Jans and Degraeve (2008); 
Robinson, Narayanan, and Sahin (2009); Glock, Grosse, and Ries (2014). 
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CHAPTER NINE 

RESCHEDULING 

 
 
 

Researches on rescheduling help bridge the gap between the theory  
and practice of production scheduling. 

(Qiao et al. 2018, 9)  
 

An important aspect of the production control in manufacturing plants is the 
generation of a schedule and its update when needed. It is a very complex 
decision-making activity focused on doing the best allocation of a set of 
limited resources to jobs over time when optimizing an objective function. 
A Semiconductor Manufacturing System (SMS) is a representative example 
of the most complex and stochastic production environments, where the 
scheduling problems  are among the most difficult ones in the industry 
(Wen, Fu, and Huang 2001, 3559; Senties et al. 2010, 555; Yao et al. 2011, 
125). 

It is unusual that the original schedule can be completely executed 
without any alteration since most of the manufacturing environments are 
dynamic and stochastic.  Consequently, managers and production planners 
must fulfill two objectives at the same time: a) generation of good quality 
schedules, and b) quick reaction to unforeseen events, reviewing the 
schedule and only updating it when the impact of the disturbance warrants 
it. Although the occurrence of some random events can be anticipated 
applying predictive scheduling methodologies, it is practically impossible 
to anticipate precisely in advance what events will occur in real time. 
Commonly, those events, which are not considered during the initial 
schedule generation, can greatly affect the system, making the schedule 
non-viable in the execution due to the differences between the original state 
and the actual conditions on the shop floor. When such a situation arises, a 
partial or complete rescheduling is mandatory to minimize the impact of the 
disturbance in the performance of the system. There are many types of 
disturbances, which upset the plan. In Section 9.2, the most common ones 
in manufacturing systems are described. Usually, in the theoretical research 
it is supposed that rescheduling is done periodically with a fixed horizon. 

 EBSCOhost - printed on 2/9/2023 3:05 AM via . All use subject to https://www.ebsco.com/terms-of-use



Chapter Nine 
 

 

284 

But in practice, it has been reported that a moving horizon is employed in 
most industrial settings (D. Gupta, Maravelias, and Wassick 2016, 91). 

As the schedule execution evolves, also the probability that unexpected 
events happen, and it becomes less probable that a schedule follows the 
initially specified sequences. Eventually, the changes in the shop floor can 
be of such a magnitude that rescheduling is needed. 

This chapter is focused on the rescheduling problem, covering: a) basic 
aspects of uncertainty; b) uncertainty sources in manufacturing systems; c) 
rescheduling framework, including the environments, methods, and 
strategies. A concise overview of some representative cases for each 
strategy studied is also included. 

9.1 Basic aspects of uncertainty 

In highly dynamic and stochastic manufacturing environments, a schedule 
can rarely be executed as it was originally generated because of unexpected 
disruptions and random events that alter the shop-floor state. Hence, one of 
the major issues in the scheduling problems for those environments is to 
determine how to deal effectively with unexpected disruptions. The 
inclusion of uncertainty into a schedule and the evaluation of the schedule 
quality after including uncertainty are not easy tasks. The difficulty is mainly 
caused by the uncertainty being a complex phenomenon in real manufacturing 
situations. Each type of uncertainty has a different impact on the situation. 
For example, the impact of a machine breakdown in the production is 
different, if it occurs just when the schedule begins its execution or it occurs 
in the final stages. Therefore, it is important to identify the most common 
types of uncertainties for each particular shop floor: how they arise, what 
they imply for a particular situation, and which types of uncertainty should 
be incorporated into a schedule. According to the taxonomy of uncertainty 
proposed by Aytug et al. (2005, 91), there are three key dimensions of 
uncertainty - cause, context, impact - which are useful for the formulation 
of a problem. Additionally, the authors suggested that the same dimension 
can have different facets.  

A cause can be viewed as an object or a state. Possible instances of a 
cause as an object are: material process, resource, tooling, employees, etc. 
Possible instances of a cause as a state can be: ready, not ready, high quality, 
low quality, damaged, healthy, etc.   

A context represents an environmental situation at a certain time. Such 
situations can be defined as context-free or context-sensitive depending on 
whether the context has or does not have an influence on the expectations 
about some particular performance metrics. 
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 An impact measures how the uncertainty affects the schedule execution 
from different viewpoints, such as time, material, quality, dependency, and 
context. Another important aspect of uncertainty, which is considered in the 
problem definition, is the cost imposed on the system by disruptions. Aytug 
et al. (2005, 93) identified three types of costs to be incurred in anticipation 
of a disruption: 

 
 A disruption does not occur. The time or the resources are wasted;  
 A perturbation effectively take place;  
 The system is reconfigured, either after or during the disruption.  

 
Until now, most of the scheduling researches were context-free, since 

the contextual information was not included into the problem during the 
modeling. Recently, with the emergence of intelligent manufacturing, the 
necessity to establish a smart factory arose. For the implementation in a 
smart factory, the status quo and manufacturing requirements should be 
taken into account. Production planning and scheduling are the key 
processes in a smart factory, and they are highly dependent on the contextual 
information and the physical environment context, such as the status of the 
shop floor at the schedule execution time, to deal adequately with the 
uncertainties and the data flux. There exist many research proposals 
reiterating the use of ontologies for representing a context in a smart factory. 
Ontology-based applications are able to optimize the scheduling of the 
manufacturing resources. Also, important advantages are offered, such as 
the possibility of a high-level knowledge inference, checking the 
consistency and the soundness of the knowledge represented in the ontology  
(B. Chen et al. 2017, 6515–16). 

9.2 Uncertainty sources in manufacturing systems 

In the production environments, there exist a myriad of uncertainty sources, 
which can change the system status affecting its performance. Not every 
event triggers an update of a schedule. Ideally, rescheduling must be applied 
when the deterioration in the performance is significant, with the intention 
to reduce the impact of the disturbance and restore the schedule operability. 
These events are called rescheduling factors.  

The most common factors identified in rescheduling studies are related 
to the load capacity, job orders, or both (Geng, Jiang, and Chen 2009, 900–
6). According to Katragjini, Vallada, and Ruiz (2013, 783), the most 
common disruptions related to the capacity load are:  
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 Machine breakdowns (most frequently studied);  
 Non-available tools;  
 Absence of operators;  
 Deterioration of machine efficiencies.  

 
On the other hand, the most common disruptions related to job orders 

are:  
 
 Rush orders;  
 Priority changes;  
 Variations in the processing times;  
 Order cancellations;  
 Rework;  
 Lack of material or material transportation delays. 

 
In an SMS, the production process is variable, dynamic and has plenty 

of uncertainties. The uncertainties are derived from the production process, 
which involves complex product flows, jobs with reentrancy, a quick 
change of the orders, concurrent manufacturing of distinct products, and 
multiple steps of a variable length in the production cycles. The complexity 
of an SMS induces a huge quantity of interruptions. Some of them are 
related to the job orders or the load capacity (similar to the ones described 
in Section 9.1). Other ones are particularly related to the volatility of the 
SMS's market, which is constantly changing the product demands (Chien, 
Wu, and Chiang 2012, 860–61). Other unexpected events are directly related 
to the production process itself, for example interruptions derived from 
simultaneous manufacturing of different products. 

9.3 Framework  

While two different types of notation and classification schemes have been 
developed in a concurrent way for scheduling problems (Graham et al. 
1979; Brucker et al. 1999), a mathematical classification scheme for 
rescheduling has not been developed up to now being a problem 
intrinsically more complex, large, and stochastic than traditional 
scheduling. Nonetheless, there are a few researchers, which have tried to 
understand, organize, and systematize the knowledge about rescheduling. 
In this direction, it is worth mentioning the contributions by Vieira, 
Herrmann, and Lin (2003, 43–48); Aytug et al.(2005, 94–104); Ouelhadj 
and Petrovic (2009, 419–21);  García-Mata, Márquez-Gutiérrez, and 
Burtseva (2015); Gupta, Maravelias, and Wassick (2016, 92). The results of 
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these organizational attempts have been translated into classification 
schemes sharing some common concepts but they are different enough from 
each other, so that a brief summary is recommendable. 

One of the most relevant frameworks oriented to the manufacturing 
domain has been proposed by Vieira, Herrmann, and Lin (2003, 43–48). 
The authors classified the rescheduling problems according to the 
environment, strategies and methods. The main concepts of this framework 
are described in the subsequent sections. 

 Later, Aytug et al. (2005, 94–103) reviewed the literature in the domain 
of scheduling with uncertainties. This research was driven on how the 
problems were formulated, reporting the following classification for 
scheduling under uncertainty:  

 
 Completely reactive approaches;  
 Robust scheduling approaches;  
 Predictive–reactive scheduling.   

 
Ouelhadj and Petrovic (2009, 419–21) focused the research on dynamic 

scheduling (scheduling in the presence of an ample variety of real-time 
events) and classified the related problems into four categories:  

 
 Completely reactive scheduling;  
 Predictive-reactive scheduling;  
 Robust predictive-reactive scheduling;  
 Robust proactive scheduling.  

 
Most recently, D. Gupta, Maravelias, and Wassick (2016, 83–89) 

reviewed the advances in rescheduling. The analyzed literature was 
classified into two categories:  

 
 Reactive scheduling; 
 Scheduling under uncertainty.  

 
According to these authors, the reactive scheduling term comes from the 

fact that rescheduling is traditionally performed as a reaction to an event. 
Under this concept, a nominal schedule is generated without taking into 
account any kind of uncertainties. Upon unexpected disturbances, the 
interrupted schedule is reorganized to update the remaining (un-executed) 
part. Updating a schedule can be achieved either by heuristics (task-time 
shifting, mixing-splitting of batches, etc.), or by a regeneration and re-
optimization of the execution of the remaining plan. Scheduling under 
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uncertainty includes those models that account for uncertainty a priori, i.e., 
resilient schedules capable of absorbing the effect of uncertainty to avoid 
changes in the shop floor. Robust optimization techniques produce “robust” 
solutions, that is, solutions that are immune to an extent against uncertain 
data.  Stochastic programming provides a way to protect the decisions 
against imperfect future information, using probability theory to model 
uncertain values of diverse information, for example: job processing times, 
product demands, the reduction in the plant capacity, etc.  At the end, Gupta, 
Maravelias, and Wassick (2016, 90–92) conclude that in practice, event-
triggered rescheduling has some shortcomings, which can be addressed if 
rescheduling is approached as an online problem. 

A comparison of the differences and similarities among these taxonomies 
shows that the rescheduling frameworks by Vieira, Herrmann, and Lin 
(2003, 95–96); Aytug et al. (2005, 95–96) share two strategy classes in 
common: dynamic, also called online or completely reactive, and predictive-
reactive. Aytug et al. (2005, 95–96) added a third strategy called robust 
scheduling. The objective in the robust scheduling approaches by Aytug 
consists in reacting to the interruptions creating a new schedule, but also in 
taking care about the schedule performance, minimizing as much as 
possible the impact of the disturbances.  

Then Ouelhadj and Petrovic (2009) subdivided the robust strategy into 
two further ones, namely the robust predictive and the robust proactive 
strategies plus the two strategies originally proposed by Vieira, Herrmann 
and Lin (2003, 49–54) (completely reactive, and predictive-reactive).  In the 
rescheduling classification by D. Gupta, Maravelias, and Wassick (2016, 
84–89), reactive scheduling and scheduling under uncertainty have 
similarities with the classifications proposed by other researchers. The 
reactive scheduling strategy coincides both with the dynamic strategy as 
well as with the completely reactive strategy described by Vieira, 
Herrmann, and Lin (2003, 45–51), while the class of scheduling under 
uncertainty corresponds to the domain of the literature reviewed by Aytug 
et al. (2005, 94–103).  

In Fig. 9-1, a rescheduling framework is presented.  It is mainly based 
on Vieira's proposal and extended with additional strategies introduced by 
Ouelhadj and Petrovic (2009). Three aspects were appreciated to be 
considered in solving rescheduling problems: environment, strategies, and 
methods.  

Rescheduling environments are classified into two types, which in turn 
are subdivided into two and three classes, respectively. These are: static 
(deterministic, stochastic) and dynamic (cyclic production, flow shop, and 
job shop) classes.   
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Rescheduling strategies comprise four categories: dynamic, predictive-
reactive, robust predictive-reactive, and robust proactive.  

Usually, the approaches using a dynamic strategy either build a partial 
schedule or do not build any schedule at all. These strategies only use 
dispatching rules to react to disturbances. The use of dispatching rules 
appears to be intuitive, easy to understand, and it does not impose a high 
computational load.   

 

 
 

Fig. 9-1. Rescheduling framework, extended from Vieira, Herrmann, and Lin (2003, 
44). 
 

The predictive-reactive strategy is the most frequently applied one in 
stochastic environments. It operates in two phases: 1) in the offline phase, a 
predictive schedule is designed; 2) in the execution phase, as a reaction to 
some disruption, the original schedule is partially or completely rebuilt.   

Both robust predictive-reactive and robust proactive strategies share 
commonalities with a predictive-reactive strategy and include different 
types and levels of uncertainties that are embedded into the initial and 
predictive schedule. Likewise, the interruptions caused by some unexpected 
events are attended according to the rescheduling policies previously 
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established. Furthermore, robustness and stability objectives are also 
considered in these strategies (Fig. 9-1). 

The next sections about this subject are dedicated to study in detail the 
rescheduling environments, methods, and strategies. Some illustrative 
examples based on the published works about scheduling strategies are also 
included. It is important to clarify that many of these references come from 
diverse applications in SMSs. 

9.4 Environments 

There are two main classes of manufacturing environments:  statics and 
dynamics (Vieira, Herrmann, and Lin 2003, 45–47). In a static environment, 
the number of jobs is finite. Besides, a static environment can be 
deterministic or stochastic. In a deterministic static environment, all 
information is known in advance. In a stochastic static environment, there 
are random variables that affect the schedule execution. Dispatching rules 
or other policies are typically used to attend a disruption. Instead, a dynamic 
environment operates with an infinite stream of jobs. Depending on the 
production model, dynamic environments have been classified into: a cyclic 
one, a flow shop, and a job shop.  In a cyclic dynamic environment, there is 
no variability or uncertainty in the job flow. The scheduling is designed only 
once, and then production scheduling is repeated continuously. A dynamic 
flow shop presents only variability in the job arrival to the production plant.  
However, once a job starts its processing, it flows from the first until the last 
machine. A dynamic job shop is variable in the process flow, meaning that 
every job follows a proper processing pattern. 

The previously reviewed classification offers a synthetic vision on 
manufacturing systems, which are complex, dynamic, and stochastic systems. 
In manufacturing environments, there exists a great variety of products, 
processes, and manufacturing methods. The objective of a production 
schedule is to obtain a better coordination among these activities, increasing 
the productivity and minimizing the operating costs. A production schedule 
is useful to identify a conflict in the consumption of the resources to control 
the job release and to guarantee that raw materials have been available on 
time. Once the schedule is finished, the execution starts, assuming that the 
major part of the execution time will fit into the initial schedule as much as 
possible. In practice, it is possible that small deviations happen with respect 
to both the start and end points. However, when an unexpected event 
interrupts the schedule execution and the original schedule tightly follows, 
a situation occurs, which is called smooth shop. However, when an 
unexpected event interrupts the original schedule, a reaction is required, for 
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instance a delay or finishing of a job out of date. The unexpected or 
stochastic events change the state of the system and affect the production 
performance. If the deterioration is very significant, the event activates 
rescheduling in order to reduce the impact.  

McKay and Wiers (2006, 55–57) proposed a taxonomy and a 
categorization for the solution methods based on the grade of uncertainty. 

A dynamic shop with a significant uncertainty is called a stress shop, 
and the real-time events, which provoke such an uncertainty, are classified 
into two categories:  

 
 Resource-related - machine breakdown, operator illness or 

absenteeism, unavailability or tool failures, loading limits, delay in 
the arrival or shortage of materials, defective material loading 
(material with a wrong specification), etc.; 

 Job-related - rush jobs, job cancellation, due date changes, early or 
late arrival of jobs, change in the job priority, changes in the job 
processing time, rework or quality problems, over- or 
underestimation of the process time, etc. 

 
These interruptions trigger other actions, for example overtime, in-

process subcontracting, process change or rerouting, machine substitution, 
limited manpower, setup time, etc.  

9.5 Methods 

Rescheduling methods are employed in predictive-reactive, robust 
predictive-reactive and robust proactive strategies. Basically, these methods 
consist of updating or rebuilding an interrupted schedule in different ways. 
Vieira's taxonomy (Vieira, Herrmann, and Lin 2003, 53–56) proposed to 
categorize rescheduling methods into two subclasses:  

 
 Schedule generation;  
 Schedule repair.  

 
At the same time, the schedule generation considers a nominal and a 

robust schedule. Nominal schedules are focused on optimizing the 
performance. However, not much attention is paid to include uncertainties 
or to indicate a way to handle disruptive events. This type of schedules has 
been vastly studied in the literature.   

Uncertainties are not included into deterministic scheduling, but they are 
included into reactive scheduling. It is required to include some methods to 
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react to the disturbances. The selection depends on the chosen repair 
method, which defines when and how a disturbed schedule will be updated. 
The basic methods are: 

 
 Right-shift rescheduling - the original schedule is repaired for all jobs 

that are affected by a shift to the right. The size of the shift is equal 
to the time of the machine breakdown; 

 Partial rescheduling - only the affected jobs are considered for the 
repair. Unlike right-shift rescheduling, the sequence of the execution 
in the new schedule can be reassessed and modified in order to 
improve the schedule performance;  

 Complete rescheduling - all parts of the original schedule are 
reworked, even those jobs, which were not affected by the disruption, 
except those parts related to the jobs that have been already 
processed. 

 
The concepts of right-shift rescheduling and partial rescheduling are 

illustrated in Fig. 9-2. There are seven jobs (J1, J2, J3, J4, J5, J6, and J7) 
and three machines (M1, M2, and M3). The jobs J1, J2, J3, J4, and J6 are 
processed by the three machines, while job J5 is only processed by machines 
M2 and M3. Job J7 is only processed by M3. Machine M2 is down for a 
time period of length t. This time interval is illustrated in the figure by the 
pattern of crossing lines. 

9.6 Policies  

There exist many ways to solve a scheduling problem with uncertainties, 
from only reacting to the disturbances using dispatching rules or other 
heuristics to prioritize jobs waiting for processing, to design schedules with 
different kind of robustness. While the strategy specifies how rescheduling is 
performed, a rescheduling policy specifies when it should be done.  

Three types of rescheduling policies are known (Vieira, Herrmann, and 
Lin 2003, 56–58):  

 
 An event-driven policy is the most popular and most frequently used 

one. Rescheduling is triggered by some random event that modifies 
the current system status; 

 A periodic policy is also studied and widely applied. This policy is 
used to generate schedules in the regular periods previously 
established. Typically, a dynamic problem is broken into static 
problems, which can be then solved using classical scheduling 
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techniques. The resultant schedule is executed without updating until 
the next period;   

 Hybrid policies combine event-driven and periodic policies. One 
popular way to combine these two policies is known under the 
concept rolling time horizon (see Section 8.2.1).  
 
 

 
Fig. 9-2. The Gantt chart for the example: (a) The original schedule for the machines 
M1, M2, and M3.  For M2, the pattern of the crossing lines represents the time period 
when machine M2 is down; (b) A modified schedule after applying the right-shift 
method for repairing. For clarity, all rescheduled jobs are colored in gray; (c) The 
reschedule obtained after applying the partial method for repairing. Notice that by 
this method, the jobs affected by the rupture of M2 are also displaced for M2 and 
M3, but the job processing order can be readjusted, as it happened in this case. 
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A great variety of ways exists to approach the rolling time horizon, 
depending on diverse factors, such as:   

 
a) Application type;  
b) Aspects of uncertainty, which are taken into account (cause, context, 

impact, and schedule uncertainty inclusion);  
c) Objective function;  
d) Implementation technique.  
 
In general, the application of a rolling time horizon policy is as follows. 

First, a deterministic schedule for a finite period and for all machines is 
developed deliberately ignoring every event that could happen in the future. 
After generation of the first schedule, the next schedule is generated for the 
subsequent period, and so on (Z. Li and Ierapetritou 2010, 5888–5901). A 
hybrid policy uses a rolling time horizon. It updates the schedule periodically 
and also whenever an urgent event happens, for example, a machine 
breakdown.  

Usually, rescheduling strategies are combined with rescheduling 
policies. Four of the most common strategies for controlling the production 
in dynamic rescheduling environments are described in Section 9.7. 

When no schedules are created and the jobs are processed according to 
dispatching rules based on the actual condition of the shop floor, the strategy 
is known as dynamic scheduling, online scheduling or reactive scheduling. 

For the case when a schedule has been generated, three rescheduling 
strategies are known: predictive-reactive, robust predictive-reactive, and 
robust proactive. In the predictive-reactive strategy, any kind of uncertainty 
is included into the original schedule. In the robust predictive-reactive and 
robust proactive rescheduling strategies, different kinds of uncertainties are 
included, generating either a robust schedule or a robust and stable schedule. 
Depending on the rescheduling policy and the rescheduling strategy 
selected, it is then decided how and when reactions to a disruption will be 
activated during the schedule execution. 

9.7 Strategies 

In this section, a brief description of each rescheduling strategy is 
presented. Additionally, some study cases are analyzed and classified 
according to the strategy used to deal with the uncertainties.  
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9.7.1 Dynamic scheduling 

It is important to highlight that there is no unique definition of dynamic 
scheduling. Vieira, Herrmann, and Lin (2003, 44) wrote that dynamic 
scheduling does not create schedules and at most, it creates partial 
schedules. These partial schedules are generated by means of heuristics or 
dispatching rules. Dynamic scheduling is used in factories handling a high-
volume but low-mix production and also in automated systems that need to 
react quickly to disruptions. Vieira's definition for dynamic scheduling is 
called completely reactive by Aytug et al. (2005, 94). Other authors 
interchangeably use the terms dynamic scheduling, reactive scheduling, and 
online scheduling (Sabuncuoglu and Goren 2009, 139), while Suwa and 
Sandoh (2013, 55–58) classify online scheduling into dispatching and 
schedule revisions with the respective sub-classifications.  

The proposed subclasses for the schedule revision strategy are:  
 
 Periodic schedule revision;  
 Reactive scheduling.  

 
The revision of a periodic schedule is done both cyclically and by 

unexpected events. Suwa's reactive scheduling is also called predictive-
reactive by many other researchers. It is studied in Section 9.6.2. Suwa's 
definition of dispatching matches with Vieira's concept for dynamic 
scheduling and with Aytug's definition of completely reactive scheduling, 
while D. Gupta, Maravelias, and Wassick (2016, 91) considered 
rescheduling as a special case of online scheduling. They also posited a 
framework for online scheduling. Gupta's definition of online scheduling is 
the same definition that Suwa and Sandoh (2013, 50) assigned to a periodic 
schedule. 

The determination of the most convenient dispatching rule for each 
application is not an easy task, because there are many different types of 
rules that have been developed over the years. To avoid a blind search 
within the set of dispatching rules to be selected, simulation methods are 
frequently used. In view of the complexity of an SMS, many authors first 
model the complete fabric environment or at least a section under study. 
Considering the enormously large, dynamic, and stochastic environment of 
an SMS, mathematical modeling languages such as Petri nets are usually 
used for the description of distributed systems. 

Modeling the behavior of the system is necessary to obtain the 
information about the actual state of a factory, including one of the most 
relevant characteristics of the SMS, the reentrancy (pattern flow of the 
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manufacturing lines, where a product must pass through a production step 
more than once). For example, Wen, Fu, and Huang (2001, 3560–64) 
modeled and simulated a scheduling problem for a wafer factory by a 
combination of queuing theory and color-timed Petri nets (CTPNs). A 
genetic algorithm that dynamically searched for an appropriate dispatching 
rule implemented a scheduler. The experimental results showed that the 
genetic algorithm-based scheduler had a superior performance compared 
with conventional dispatching rules. Qiao et al. (2013, 199–202), reported 
a case of SMS scheduling, which was modeled by hierarchical colored 
timed Petri nets (HCTPNs). An approach, which employed the HCTPN and 
an extended genetic algorithm (EGA), was used to study how to optimize a 
combination of scheduling policies. The results obtained by a simulation 
system showed a near to optimal schedule. 

In a similar way, Lee, Jiang, and Liu (2009, 869) as well as Liu, Jiang, 
and Fung (2009, 124–27) proposed an approach, which was based on time 
extended object-oriented Petri nets (TEOPNs). This approach was used for 
the SWFS performance modeling, real-time dispatching and simulation. 
The TEOPNs were applied to describe the SWFS as a series of objects. 
Coincidentally, in both reports previously indicated, some dispatching rules 
were developed via a dynamic bottleneck dispatching algorithm. The 
performance was evaluated by Liu, Jiang, and Fung (2009, 127), employing 
the simulation architecture SWFS. Lee, Jiang, and Liu (2009, 867) proposed 
a new multi-objective scheduling and real-time dispatching (MSRD) 
approach, which basically consists of two main modules:  

  
 Offline multi-objective scheduling; 
 Online real-time dispatching.   

 
The performance evaluation was done via a simulation built on a 

platform, which combined the MSRD prototype and the TEOPNs. 
In the carried out studies, the virtual SWFS was derived from a real plant 

located in Shanghai (Y. F. Lee, Jiang, and Liu 2009; H. Liu, Jiang, and Fung 
2009). The authors obtained similar results showing that a dynamic 
dispatching had a better performance than both the critical ratio (CR) + 
FIFO) and EDD dispatching policies.  

A different approximation to modeling a reentrancy problem in a 
semiconductor manufacturing plant was reported by Coron, Kawski, and 
Zhiqiang (2009). The authors characterized the reentrancy problem as an 
optimal control problem governed by the scalar hyperbolic conservation 
law using partial differential equations.  
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Another methodology that seems well situated for solving complex 
scheduling problems, such as those in SMSs, is named multi-agent system 
(MAS). MASs are well suited for ill-structured problems and have some 
advantages, such as heterogeneity, high variability, high complexity, high 
flexibility, and high robustness against failures. The most remarkable 
advantage of an MAS is that the agents react locally and independently to 
the changes required . Many researchers 
have taken advantage of the superior capacities of an MAS to deal with the 
randomness and dynamism of complex problems to solve the scheduling 
problem in the manufacturing environment.  A pioneer research of this type 
was presented by Mönch, Stehli, and Zimmermann (2003), who proposed a 
new architecture of an agent-based system for the production control of an 
SMS. This model includes scheduling implemented by a multi-layer 
hierarchical scheme. Other similar researches can be met in the literature (J. 

Anosike 2012). 
Lin and Long (2011, 5232–34) developed a distributed simulation 

platform for semiconductor manufacturing. The platform architecture was 
structured into three layers:  

 
 Network communication layer;  
 Middle-ware layer (based on JADE);  
 Multi-agent simulation layer.  

 
This platform was tested simulating the manufacturing process of a real 

semiconductor factory in Shanghai.  
In order to fulfill the overwhelming demand requirements in modern 

production systems and keep the firm competitive, the production 
scheduling and execution control should be tightly coupled. This strong 
integration in manufacturing execution systems (@MES) is essential to 
achieve an adaptive behavior due to the interactions between a set of agents 
acting as autonomous managers, as it was reached by the agent-based 
modeling and simulation (ABMS) tools, proposed by Rolón and Martínez 
(2012) for a @MES distributed design. In these approaches, a bio-inspired 
technique in Holon manufacturing systems was used (Giret and Botti 2004). 
The agents showed emergent behaviors comparable to a complex adaptive 
system. Besides, the agents were well suited for the modeling processes, 
where each agent must adapt and modify its own behavior over time. Each 
agent has an autonomy to solve the disruptions related to its function. The 
fulfillment of the goals was achieved by collaborating with each other, and 
each agent individually defined and performed its own actions. The agents 
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communicated with each other and were coordinated by a dynamic Gantt 
chart. According to the simulation results, the interaction mechanisms 
among the agents were stable and robust in spite of the total autonomy of 
all agents and the absence of a master schedule.  

9.7.2 Predictive-reactive scheduling 

The predictive-reactive strategy has been approached in various ways by the 
researchers. The initial schedules are generally designed offline, and 
whenever an unanticipated event occurs during the running time, a partial 
or complete rescheduling is done based on the previously established 
rescheduling policies.  

Usually, a predictive-reactive schedule is built through an iterative 
process consisting of the following three steps: 

 
1. Evaluation. The objective of this step is to evaluate the impact of a 

disruption. If the impact does not significantly affect the schedule 
execution, any programmed action follows, and the schedule 
continues running without a change. 

2. Solution. This step is dedicated to find rescheduling solutions that 
improve the schedule performance. There is no predetermined way 
to decide which is a better solution for a given rescheduling problem. 
Therefore, the solution step is usually the most difficult one. 

3.  Revision. In this step, the executing schedule is updated or a new 
schedule with more convenient results is generated. 

 
Recently, new theories and methodologies are being introduced to 

represent the domain knowledge for rescheduling problems. Muñoz et al. 
(2011) reported a study case found in a chemical factory with multi-product 
batches. The unexpected event considered was an increasing operation time. 
The objective function was the maximization of the profit of the plant 
considering income and energy costs. The modeling of the problem was 
based on approximated dynamic models and ontologies. Usually, the online 
and historical information among different decision levels is independent 
and not properly integrated during the rescheduling process. However, the 
ontologies can be used to incorporate this information as it was done in this 
study case.   

H.-H. Hung, Liang, and Chen (2013) employed a predictive-reactive 
strategy for a scheduling problem in the photolithography area of a 
semiconductor wafer factory. The goal was to compare the effectiveness 
and efficiency of three algorithms: simulated annealing, a genetic algorithm, 
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and tabu search to get an approximate reschedule. The authors also proposed 
a sensitivity search method to improve the performance. This method works 
as follows: independently of the moment when rescheduling is required, the 
initial schedule is used as the starting point to search for a new schedule. 
The experimental results showed that a sensitive search improved the 
performance. In particular, tabu search turned out to be superior to the other 
proposed algorithms.   

A mixed-line production is popular in certain types of current production 
systems and emerged as a way to meet the market demand. Under this 
production scheme, a customer order consists of high-mix and low-volume 
products. Typical manufacturing systems with a mixed-line production are 
electronics and wireless communication industries. (H.-H. Huang et al. 
2013, 65–68) solved a scheduling problem for this kind of systems, adopting 
the DBR technique (see Section 2.6.3) of the Theory of Constraints (TOC) 
and the buffer management. The application of these techniques helps the 
managers to detect early production problems and to evaluate the 
desirability of rescheduling in advance. Rescheduling is done depending on 
the evaluation results of different random events such as:   

 
 Product combination (changes, cancelation or rush orders);  
 Materials (shortage of raw materials);  
 Resources and products (machine breakdown, absenteeism of 

workers, quality problems);  
 Others (rework, processing time is over or underestimated, delayed 

progress).  
 
Depending on the evaluation results, rescheduling is applied using a 

DBR algorithm. It is based on the bottleneck workstation as the critical 
scheduling target and applies a buffer management method to reduce the 
frequency of rescheduling. Another research objective was to compare the 
DBR and EDD techniques and to study the impact of the delayed orders on 
the performance metrics, such as the maximum tardiness time and the cost 
as well as the total completion/flow time. The results showed that the DBR 
method was better than the EDD technique, because the first one minimized 
the longest tardiness in the customer orders. It also offered both a greater 
flexibility and ability to manage the scheduling activities of a plant with an 
overloaded capacity and frequent disruptions.  

 EBSCOhost - printed on 2/9/2023 3:05 AM via . All use subject to https://www.ebsco.com/terms-of-use



Chapter Nine 
 

 

300 

9.7.3 Robust predictive-reactive scheduling 

The objective of a robust predictive-reactive scheduling is the generation of 
robust schedules by minimizing the interruption effects in the performance. 
This strategy is applicable to highly stochastic systems, where the predictive 
schedule being interrupted during its execution is common. Occasionally, the 
magnitude of a disruption forces a rescheduling. However, it is not convenient 
to reschedule at each disruption. Instead of applying a rescheduling policy 
triggered every time when a disturbance happens, a better option is to 
reschedule just whenever the interruption dimension makes the running 
schedule non-viable (Church and Uzsoy 1992). 

There are numerous ways to generate a robust schedule. Typically, two 
criteria are concurrently considered: shop efficiency and stability. The 
stability measures the deviation from the original schedule in relation to the 
new schedule. Generally, the instability grows as the number of changes 
during the updating grows, meaning that the updated schedule differs 
significantly from the predictive schedule. 

A robust solution for any predictive-reactive scheduling problem is still 
an open question. Nevertheless, multiple approaches and methods are 
constantly being proposed and tested.  

In the paper by Van de Vonder, Demeulemeester, and Herroelen (2007), 
the results of an experiment designed to evaluate several predictive reactive 
resource-constrained project schedules were reported. The projects of this 
kind are stochastic versions of a basic scheduling problem in a deterministic 
setting, known as the resource-constrained project schedule problem 
(RCPSP). In an extended RCPSP, stochastic durations of the activities were 
considered. The optimization objective was to minimize the expected 
makespan. Another objective was to guarantee that the schedule robustness 
would not be affected by disturbances. Vonder's complete experiment 
consisted in evaluating all possible combinations of the three baseline 
schedules obtained for different procedures with four reactive rescheduling 
procedures. The impact on the performance was measured whenever there 
are range variations in the following parameters:  

 
1. Level of uncertainty in the activity span;  
2. Weighting parameter (ratio of the dummy end activity to the average 

of the rest of the activities);  
3. Project due date (timely project completion probability, TPCP).   
 
The baseline scheduling methods evaluated were:  
1. RCPSP-predictive exact procedure with the average duration of the 

activities; 
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2. Suboptimal procedure consisting of simple priority-based scheduling 
heuristics, specifically of the latest start time (LST) priority rule;  

3. Resource flow dependent float factor (RFDFF), which is a 
suboptimal procedure targeted to minimize the stability cost 
function.   

 
The four reactive scheduling methods were:  
 
1. An RCPSPS-reactive method, consisting of a complete rescheduling 

by an exact procedure, where only the pending activities at the 
disruption time are considered for rescheduling;  

2. The Fix Flow heuristic, which is no complete rescheduling under the 
railway concept, that is, an activity never starts earlier than its 
assigned starting point in the baseline schedule;  

3. Activity-based priority (ABR) rules. The problem is solved by 
heuristics. The solution is a list of activities rather than a schedule;  

4. An exact solution procedure for the resource-constrained project 
scheduling problem with weighted earliness/tardiness penalty costs 
(RCPSPWET) is turned into a reactive scheduling, making sure that 
at each rescheduling point, a new projected schedule is created with 
the lowest stability cost (in terms of the deviation from the original 
baseline schedule).  

 
The generation of a new projected schedule includes the following steps 

to fulfill these objectives:   
 
 The due date for an activity is set to its projected finish time in the 

baseline;  
 The dummy end activity is equal to the project due date. It is assumed 

that the unit earliness and tardiness costs of a non-dummy activity j 
are identical and equal to the activity weight wj;  

 The tardiness cost of the dummy end activity is set to zero, while the 
tardiness cost is equal to the weight wn.  

 
The conclusion from this experiment was that even when exact 

procedures were used to generate proactive and reactive schedules, the 
TPCP optimization objective showed the best results. However, the stability 
objective was not improved. In general, considering the results obtained in 
all experiments, the authors concluded that for strong requirements in a 
TPCP with not too tight due dates and low values of the duration variability, 
it is preferable to generate a robust (stable) proactive scheduling based on 
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the RFDFF heuristic. However, for highly variable environments and low 
values of the TPCP, the RFDFF heuristic is not the best option. In these 
cases, a better option is to combine a procedure that generates a minimum 
duration baseline schedule with a stability-improving reactive policy, such 
as the Weighted Earliness/Tardiness (WET) one. In conclusion, Van de 
Vonder, Demeulemeester, and Herroelen (2007, 206) advised to conduct 
more studies about robust reactive scheduling in order to improve the WET 
results. 

Kuster, Jannach, and Friedrich (2010) proposed the x-RCPSP extension 
to surpass the inherent limitations of the RCPSP for repairing the schedule. 
The proposed x-RCPSP can be used to formulate a wide range of practical 
problems for the disruption management. In essence, the x-RCPSP is based 
on a distinction between valid and invalid activities. The activities were 
turned on the base of predefined substitution rules and different constraints, 
however, only valid activities were considered for rescheduling. Applying 
this procedure, an x-RCPSP instance can be continuously modified. 
Additionally, these authors proposed a generic approach to partial 
schedulable stochastic realistic environments, called Local Rescheduling 
(LRS). The LRS was based on a time window that was extended in a 
bidirectional way to search for potential solutions. These potential solutions 
must fulfill the new requirements imposed by the occurrence of stochastic 
events. Experimentally, it was found that LRS outperforms other 
approaches. 

A similar approach and objectives were addressed by Huang et al. (2010, 
1277–80) in their Job Shop Rescheduling Repair (JSSR) problem. The goal 
of this problem was to obtain a stable repair of the schedule through a 
commitment between the makespan optimization and the performance 
deviation during rescheduling. The problem was formulated as a 
Disjunctive Temporal Problem (DT), framed as an Optimal Constraint 
Satisfaction (OCS), and solved by an algorithm integrating an incremental 
consistency and an efficient candidate generation.  

9.7.4 Robust proactive scheduling 

In this strategy, the objective is to obtain a robust and stable schedule. To 
accomplish this goal, which include the uncertainties, are offline created. 
In the theory, the resulting schedule must be insensitive to the disruptions. 
Unavoidably, some non-anticipated exogenous events occur during the 
execution of a proactive schedule. These disturbances cause frequently the 
schedule to be partially or completely repaired. The updated plan has to 
maintain the same stability and performance as the original one. 
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Robust proactive approaches are classified into three subcategories (Lou 
et al. 2012, 312):  

 
 Redundancy-based approaches reduce the impact of the uncertainties 

by allocating the time and extra resources;  
 Probabilistic approaches obtain probability density functions of the 

uncertainties; 
 Contingent/policy-based approaches establish scheduling policies 

attending any particular sequence of the events.  
 
Besides the stability measures, it is also important to know how the 

disturbances and rescheduling policies affect the system performance. In 
robust schedules, the number of disturbances can be correlated with the 
system performance. Diverse studies have been developed to measure how 
the disruptions affect the system performance (V. Kumar et al. 2008; 
Ghezail, Pierreval, and Hajri-Gabouj 2010). 

Bonfill, Camarasa, and Puigjaner (2008, 1692) suggested a stochastic 
model and an optimization approach to solve a rescheduling problem of 
batch processing. Initially, a proactive schedule was generated including the 
uncertainty measures of loading, heating, and discharging. The uncertainties 
were characterized by a uniform distribution. The optimization objective was 
a combination of the makespan and the waiting times. The schedule was 
obtained using an optimized genetic algorithm. Whenever a machine was 
broken or the processing times were larger than expected, a new schedule 
was calculated applying the right-shift rule. Finally, the authors developed 
an experiment comparing the performance of the algorithms under 
deterministic and stochastic approaches. They found that even when the 
makespan and the waiting times were optimized for a deterministic 
environment, the makespan increases under a stochastic scenario by about 
4%. Despite the simplicity of this problem, the experimental results showed 
a significant information supporting benefits when the uncertainties were 
incorporated into the schedule from the beginning.  

In the research reported by Zakaria and Petrovic (2012), a predictive-
reactive approach with non-reshuffle and reshuffle strategies was proposed 
for FMSs. The only source of disturbances considered by the authors was a 
situation when new job orders arrive before finishing the scheduled jobs.  
The challenge was to integrate the new job orders into the existing 
production schedule immediately, while preserving the factory performance 
and stability. By the non-reshuffle strategy, new orders are assigned to the 
machines just in the available idle times, whereas in the reshuffle strategy, 
the operations are re-sequenced to generate a partial solution within the 
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rescheduling horizon. The performance measure was a commitment 
between the sum of weighted squared tardiness, the makespan and the 
stability. The stability was calculated on the base of three aspects: machine 
migration, job start time, and sequence deviations. The implementation of 
the reshuffling and non-reshuffling strategies was done by genetic 
algorithms. The experimental results showed that the non-reshuffle strategy 
was a better option than the reshuffle one because it improved the sum of 
weighted squared tardiness. At the same time, the stability was highly 
increased without increasing the cost of the makespan. 

Novas and Henning (2010) proposed a framework oriented towards 
multi-product and multi-stage plants addressing a repair-based reactive 
scheduling problem. The framework objective was to represent the context 
knowledge at the disturbance time to properly identifying the rescheduling 
problem class and the suitable rescheduling action types (for example, shift-
jump, reassign, freeze, etc.). Once the problem specification was ready, this 
was used to create a Constraint Programming (CP) model. Alternative 
solution scenarios focusing on stability and regular performance measures 
were proposed. Multi-product multi-stage batch plants operate with the 
following inter-stage storage and operational policies: 

 
 Unlimited intermediate storage (UIS);  
 Non-intermediate storage, unlimited wait (NIS-UW);  
 Non-intermediate storage, zero-wait (NIS-ZW).   

 
The knowledge about the manufacturing environment and the 

production plan was explicitly represented and modeled with object-
oriented techniques. Certain static information about the resources (for 
example, the properties of the most relevant entities and solution methods) 
was included into the domain knowledge. The temporal attributes of the 
resources were considered as well. The chosen scheduling policy was an 
event-driven heuristic together with a partial rescheduling method. The goal 
of this proposal was to give an immediate response to the events without 
introducing excessive changes into the schedule and at the same time, to 
maintain the system stability. By means of the domain representation, the 
current state of the scheduling in the process can be known whenever an 
unanticipated event occurs. Thus, at any moment an event happens, the 
context can be precisely obtained and used to render the rescheduling 
problem specifications. Otherwise, the incorporation of contextual 
information could allow a more precise evaluation of the impact of an event. 
However, the authors proposed this improvement as a future work. The 
contextual information was only used to evaluate whether a schedule 
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becomes useless by the effect of the occurrence of some events, and to 
decide whether rescheduling proceeds. Finally, once the rescheduling was 
completely specified and the performance measures have been selected, the 
model was generated by a CP updating module. 

Nova's approach has the effect of reducing nervousness in the production 
line and at the same time, it maintains an acceptable optimization. The use of 
the contextual information demonstrates that the evaluation of the impact of 
an event allows us to distinguish the cases, where the size of the disturbance 
mandates a rescheduling reducing the rescheduling cases and avoiding an 
unnecessary updating. These experimental results also demonstrated that 
better values of the optimization objectives were obtained when a more 
complete knowledge about the manufacturing process was included.  

9.8 Conclusions 

Since the inception, most of the scheduling problems have been addressed 
by a deterministic approach. However, in the last two decades, a paradigm 
shift has emerged going from a static scheduling point of view to a more 
realistic perspective. This paradigm shift can be explained by two main 
reasons:  
 

1. It is imperative to fill the gap between purely theoretical 
investigations and scheduling solutions towards practical problems 
in the industry;  

2. The difficulty of scheduling problems in manufacturing plants 
continues to increase making the production processes extremely 
complex. 

 
Therefore, uncertainties are playing a transcendental role, and more 

researchers are focusing on dynamic and non-deterministic scheduling 
problems. The paradigm shift makes it indispensable paying attention to the 
formalization of the replies to disturbing events, which affect the schedule 
execution. In other words, it is important to have a reference framework to 
understand and classify different aspects involved into rescheduling. 

Following this order of the ideas, and despite the time elapsed since 
Vieira, Herrmann, and Lin (2003, 42–58) published their seminal paper 
about rescheduling, this work continues being one of the most influential 
and referenced papers about this topic. Therefore, the backbone of this 
chapter is built around the rescheduling framework developed by these 
authors.  However, considering that other rescheduling strategies have 
emerged since then, the original rescheduling strategies proposed by Vieira 
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et al. were extended to robust predictive and robust proactive strategies 
(Ouelhadj and Petrovic 2009, 418). In addition, an analysis of some selected 
cases published in the literature regarding to each one of the studied 
strategies was also included into this section. The majority of the analyzed 
references correspond to applications in SMSs. These papers were selected 
considering that SMSs are highly complex, stochastic, and dynamic, 
implying a great variety of scheduling problems, mainly with lot processing. 

It is important to highlight that despite an overabundance of  
methodologies, which address uncertainty in different production and 
scheduling environments, these proposals are coming mainly from the 
academic studies and in reality, they are not implemented in practice. The 
practical utility of the theoretic approaches on rescheduling is compromised 
for the little attention that is paid to incorporating all possible uncertainties 
in the modeling phase. This dichotomy between the industrial and the 
academic worlds are due to the fact that in real plants, uncertainty permeates 
everything from the system parameters, such as the job processing times, 
yields, etc.  

Additionally, in stochastic and dynamic production environments, it is 
impossible to anticipate every unexpected event, which frequently has a 
very disruptive and strong impact in meeting the planned objectives. In 
recent years, some researchers have pointed out the shortcomings of 
rescheduling to deal with scheduling problems in complex and stochastic 
environments, and instead they are proposing that this problem can be 
approached as an online problem. Online scheduling is an ongoing process, 
in which evolving and changing circumstances force continually the 
reconsideration and revision of the pre-established plans. Online scheduling 
has a goal to maintain a balance between stability and efficiency versus 
optimality. 

Due to the randomness and complexity of manufacturing systems plus 
diverse factors such as changes of the market, the emergence of new 
technologies and mainly the emergence of new manufacturing paradigms, 
such as Industry 4.0, both, industries and researchers, are faced to new 
challenges. This means that even smart factories must be flexible, 
reconfigurable, adaptable, and efficient. However, to endow a factory with 
these qualities is not an easy task because the resultant manufacturing 
system will be every time bigger and more complex. It becomes evident that 
a methodology, which is different from the traditional one, is required to 
fulfill all these challenges. The self-organizing manufacturing systems 
(SOMS) methodology has been identified by some researchers as a 
methodology with a potential to approach the solution of smart factories (J. 
Zhang et al. 2017) Although it is common knowledge that this methodology 
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has technical limitations, which restrict its applicability, the emergence of 
new technologies offers new opportunities, making the SOMS paradigm 
viable. 

As a final note, it is important to highlight that many terms are used in 
rescheduling in an imprecise form and the knowledge is not properly 
organized, for instance, the classification schemes are not uniform, distinct 
terms are used to identify the same concepts, and even the same 
nomenclature means different things by distinct authors. This proves that 
rescheduling is still an immature field, in which there is no common 
vocabulary yet, and a deeper and updated research is required to understand 
and organize the domain knowledge. 

For more detailed surveys and reviews of the relevant works done in this 
area, the readers are referred to the papers by Ayutug et al. (2005); Wazed, 
Ahmed, and Nukman (2010) Mönch et al. (2011); Esmaeilian, Behdad, and 
Wang (2016).  
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CHAPTER TEN 

LOT PROCESSING IN HT INDUSTRIES 
 
 
 

As new concepts are introduced in manufacturing, the research community  
should be able to identify future research frontiers. 

(Esmaeilian, Behdad, and Wang 2016, 80) 
 
The necessity to cover the gap between the studied models and real 
requirements of production systems is permanently highlighted in the 
modern planning/scheduling literature. In this chapter, three projects are 
described that were developed by the authors of this book for corporations 
of the Baja California state, Mexico, which is a region with a high presence 
of HT industries, where the efficiency of the production organization has an 
extremal cost.  

The first project was related to the application of some ideas of GT to 
the electrical test area in a semiconductor packaging factory with the goal 
to reduce the setup times. In the second project, an HFS structure with 
several specific characteristics was detected in the production of televisions. 
A genetic algorithm was proposed to solve the problem of minimizing the 
makespan. The last project was related to an efficient handling of the WIP. 
A heuristic algorithm was proposed for the selection of the prime material 
with appropriated characteristics. In fact, in the plant, there did not exist a 
formal tool for selecting the material. The decisions were taken empirically, 
based on former experience. This has led to the generation of an excessive 
WIP and other negative effects. All these projects were supported by the 
plant administrations.  

10. 1 Product family formation in a packaging factory 

This project was focused on the planning system at the areas of an electrical 
test in a semiconductor packaging factory, which has high-volume and high-
mix (HV/HM) characteristics of the production. There are realized some 
assembly operations and an electrical test of the manufactured items. This 
process is time consuming and requires hundreds of machines, which 
occupy big areas of the plant. A model was proposed to allow the best use 
of the installed capacity. A GT approach was employed to minimize the 
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machine idle time due to tooling changeovers. A paradigm shift, which 
handles the production planning on the family level rather than on the 
product level, was suggested focusing on the market priorities. The research 
was made for Skyworks Solutions, Inc., Mexicali, Mexico. 

10.1.1 Problem description 

In the electrical test area of a semiconductor HT company with the 
characteristics of HV/HM, the machine downtime caused by a lot 
changeover was out of control. The detected root cause was the method of 
the machine allocation order when the first machine available is assigned to 
the next lot. Moreover, it did not consider that the lot change time was 
different for different sequences of the products.  

The production model is composed of two machine platforms (M1 and 
M2), each one with a number of parallel identical machines. There is a 
difference in the performance of the production process on different 
microcircuits due to the nature of the electrical test on the electronic 
components. This observation implicates preferences in allocating a product 
to a predetermined platform for processing to avoid additional adjustments. 
The individual adjustment of a machine may take from a few minutes to 
some hours before processing a production lot, depending on the similarity 
of the adjacent products in the workflow. Consecutively, the lot changeover 
time on a machine is strictly dependent on the sequence of the lots. Given 
the high volumes, diversity, and the frequent changes of the product 
nomenclature at the plant, the minimization of the machine break times due 
to a setup implies a considerable reduction of the flow time. It also decreases 
the penalties and quantity of the involved machines, facilitates rescheduling, 
improves the machine loading and consecutively, decreases the production 
costs.  

The objective of this project was to develop a flexible model for the 
company planning to realize: a) a makespan reduction, b) a delivery on time, 
and c) the minimization of the manufacturing cost.  

To achieve these goals, the workflow in the company and the 
information flow in the electrical test area have been studied, the setup 
structure was analyzed, and the manufactured products were grouped into 
families on the basis of their similarity in the geometries. The grouping was 
performed by employing the main idea of GT: the products must be sorted 
out into groups according to their design or manufacturing attributes, such 
as shape, size, surface texture, material type, raw material, etc., see Kusiak, 
Vanelli and Kumar (1985); Tatikonda and Wemmerlöv (1992); Mathirajan 
and Sivakumar (2006); Pickardt and Branke (2012); Mutingi and Mbohwa 
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(2016). The technical similarities of the products within a group were used 
to schedule lots in batches. With this, the setup time on the machines may 
be reduced essentially. It was proposed to limit the changeover options for 
the lots, which have the same product geometry, to form production batches, 
which do not require major setups in-between. 

This batching categorically reduces the idle time due to the activities of 
the change or adjustment of a tool (Delgado-Arana et al. 2017).  

10.1.2 Workflow model of the production planning 
 of the company 

The production planning follows the workflow described below, also 
described in Fig. 10-1:    
 

 Supply chain management (SCM) - prepares the MPS; 
 Industrial engineering - receives, validates, and provides a feedback 

to the master production plan (MPP) to determinate the production 
capacity constraints along the production line. The Industrial 
Engineering Department is responsible to indicate whether the 
processing of the required volume is feasible; 

 Raw materials - receives, validates, and provides a feedback for the 
raw material constraints to avoid delays; 

 Production Control - develops a detailed production plan for the 
current week (t) and for the next week (t+1); reviews the production 
plan proposed by SCM to agree with the final version of the volume 
planned to deliver; prepares a detailed daily production plan for the 
plant with the following goals:  

a) Fill the installed capacity;  
b) Achieve cost absorption levels; 
c) Fulfill the on-time delivery (OTD) orders;  
d) Release the orders to the workshop floor. 
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Fig. 10-1. General workflow of the production plan. 

10.1.3 Grouping the products into families 

The size of a microcircuit or package, which is referred to as Package Size, 
and its height H (Mold Cap) are taken as geometric attributes of a 
microcircuit as it is shown in Fig. 10-2. 

 
Fig. 10-2. Product geometry support. Package size: A × B; Mold Cap: H. 
 

The company product catalog and the product portfolio were analyzed 
to extract all geometries of the products announced in the manufacturing 
process. Table 10-1 shows the number of geometric variations in the 
portfolio, where approximately 67% of the geometries are active and form 
the main part in the product categorization. 
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Products Quantity Geometries Heights 
Active 566 70 11 
Inactive 533 34 5 
Totals 1089 104 16 

 
Table 10-1. Product portfolio characteristics. 
 

As it can be seen in Table 10-1, there are well-founded reasons to 
manage the planning with a focus on a product family rather than just a part 
number level. To gain additional capacity, there are advances in the process 
flexibility, since it is commonly known that the plans are never carried out 
as planned.  

Current business planning systems carry out their processes at the 
product level and therefore, there is no visibility of similar products, which 
can resemble each other. That is why for a planner, a transition from one 
product to another one is realized at the same planning level. However, at 
the operational level, there are resource restrictions for tool changes, in 
addition to the fact that a small change (recipe or tool) and a product 
dimension change are not the same, and a great part of the production 
capacity is lost due to setups.  

A family includes all those products that share the same attributes, i.e., 
in the given case the geometric sizes of a microcircuit. When these attributes 
are similar, major adjustments between the lots are not required. 
Consequently, sequencing becomes simpler and the decision time is smaller  
(Andrés et al. 2005, 273). When planning is focused on a product family 
rather than on a part number (product) level, the planner flexibility is 
improved by the information about the compatibility of the products, which 
belong to the same family. The knowledge about the compatibility of the 
products is enough to protect the execution of the plan by replacing the part 
numbers, which wait for processing. 

The three product types are established according to the A-B-C 
categories of the inventories by the APICS13 classification as a function of 
the volumes required by every geometry. In this classification, category A 
has the highest priority, and C has the lowest one. Table 10-2 shows the 
different types of the geometry together with the volumes required within 
the period. As a result, 65.90% of the demands are concentrated in 35 part 
numbers (high volume and high frequency for the products of priority type 
A).  

 
 

 
13 American Production and Inventory Control Society. 
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Priority A B C 
Characteristics High volume/ 

High frequency 
Middle volume/ 
Middle 
frequency 

Low volume/ 
Low 
frequency 

Quantity 65.90% 24.75% 9.35% 
 Parts  35 114 407 
Number of 
Geometries 

8 12 50 

 
Table 10-2. Volume-priority relationship considering the type and geometry of the 
products.  

 
Based on this analysis, the following policies were proposed for the 

planning according to the priorities that consider the grouping of products 
into families: 

 
1. Load the equipment capacity assigned to a family with products of 

priority type A first (confirmed orders by the customers); 
2. Once a product of priority type A completed its allocation, a product 

of  priority type B of the same family is assigned (to buffer demand 
peaks); 

3. Once the products of priority type B complete their allocation, a 
family of priority type C is assigned (to forecast the future demands).   

 
Following these ideas, an algorithm was proposed to generate and 

maintain product families according to their geometries (Fig. 10-3). The 
obtained results were used to calculate the theoretical amount of the 
equipment required to cover the needs of the period. 
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Fig. 10-3. An algorithm to generate and group the product families by geometries.  

10.1.4 Tool changeover taxonomy 

Any change in the production process leads to the generation of an idle time, 
in which a machine is not productive, that is, it does not process items and 
therefore, planning and reducing these changeovers help to improve the 
effectiveness of the company and the results of the business. A study of the 
operating times was carried out for different changeover processes on the 
equipment at the electrical test area. The following elements were found to 
be time consuming, see Fig. 10-4 for more details. 

The setup types were sorted according to the length, from low to high, 
as follows: 
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A lot setup: the raw material is taken from the warehouse and placed at 
the equipment. This activity involves an internal cleaning and removal of 
any piece from the previous lot in order to eliminate any risk of 
contamination. Beginning with the lot on the equipment, place trays with 
raw material to be tested at the entrance of the handler. Empty black and red 
trays in the corresponding exit spaces. 

A recipe setup: a recipe is searched in the database, downloaded to the 
computer, and saved. A lot is fed. The corresponding formats are filled to 
register the change. Finally, the information in the monitoring system is 
updated. 

A tool setup: this change is made whenever the product is changed and 
the symmetry of the test tools (contactors) used does not coincide with those 
of the previous product. This activity consists of the following steps: 
uninstallation/installation of the electrical test tools; obtaining the 
calibration pattern, installing the pattern; correlation of the variables to 
calibrate the electrical test; and finally, removal of the pattern from the 
equipment, which is returned to the tool store. 

A family setup: this change is made as long as there is no geometric 
compatibility in the product attributes in the sequence, and it leads to 
activities such as a change of the handler, tools, the recipe, and the lot.  

 

 
 
Fig. 10-4. Setup comparison.  
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It can be seen in Table 10-3 that the changeover times vary depending 
on the type of the setup, the smallest one being the lot change, and the 
largest one being the change of the family.  
 

Geometric 
ranges 

Changeover type M1  
(minutes) 

M2  
(minutes) 

M1  3 to 3.9 
 
M2 1.6 to 2.8 
 

Lot setup 10 +/- 2.5 8 +/- 2 
Recipe setup 30 +/- 5.5 45 +/- 12.3 
Tool setup 90 +/- 13.2 135 +/- 51.4 
Family setup 290 +/- 62.3 430 +/- 93.2 

M1  4 to 6.9 
 
M2  2.9 to 4.5 
 

Lot setup 10 +/- 2.5 8 +/- 2 
Recipe setup 30 +/- 4.8 45 +/- 7.9 
Tool setup 90 +/- 7.8 98.2 +/- 35.4 
Family setup 210 +/- 42.1 340 +/- 38.4 

M1  7 to 11 
 
M2  4.6 to 5.5 
 

Lot setup 10 +/- 2.5 8 +/- 2 
Recipe setup 30 +/- 3.2 45 +/- 5.4 
Tool setup 90 +/- 6.2 89 +/- 22.1 
Family setup 170 +/- 33.5 260 +/- 25.1 

 
Table 10-3. Standard time of changeovers.  

10.1.5 Modeling the lot sequence 

To model the lot sequence, many activities were performed, starting with 
the definition of the setup types to set the relationship 'product geometry - 
setup time'. It was fixed, which adjustment is required when a lot change 
occurs. Subsequently, a study of the workshop information flows was 
realized. This analysis allowed building a general model of lot sequencing. 
From the study of the information flows in the test area and an analysis of 
the setup structure, a general planning model was obtained, as it is shown in 
Fig. 10-5. The demand signal and the capacity analysis report, which are 
raised by the MPS, were used as input in the general lot sequencing model 
of the company. The amount of necessary machinery, which may be 
theoretically assigned to each family, was defined. It was made involving 
the information on the demands, the knowledge of the characteristics of the 
products and flows that provide data to obtain a classification at the family 
level, and using the delivery priority when sequencing on the machines. In 
the model, the lots are sequenced according to their priority: first those with 
the highest priority (produced on demand), followed by those with medium 
priority (produced for the inventory) and finally the sequence of orders with 
the lowest priority (produced for forecast). 
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Fig. 10-5. General model of lot sequencing.  
 

The matrix of the machine changeovers according to the setup types was 
developed for the products, which belong to the same family (Fig. 10-6). It 
was assumed that a minor setup corresponds to a lot change. If the next 
product in the sequence shares the same installed tools, then a recipe change 
is performed. If the next product in the sequence is not compatible with the 
installed tools, then a tool setup is done.  

 

 
 
Fig. 10-6.  Morphology matrix of the change within a family. 

 
Only in the case when the geometry of the next product is different, a 

family setup is incurred. The individual family matrices were consolidated 
into a single matrix that includes all families, which were extracted from the 
product catalog as stated in Fig. 10-7. It was assumed that to move from one 
family to another one, a changeover time must be taken to perform the 
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corresponding activities: setting the handler, tool, recipe, lot, and cleaning. 
If a change occurs between products belonging to the same family, these 
times are minimal. Currently, there are 83 product families included into the 
matrix. 

 

 
 

Fig. 10-7. Morphology matrix of the family tool changes.  
 
Since each family has different adjustment times, three standard ranges 

of the geometry combining with the type of the assigned test machine were 
created. This can be seen in Table 10-3. The duration of the changeover 
corresponds to its type. These times are first separated by the two main 
platforms that the process uses (M1 and M2), followed by three levels of 
geometric ranges. When the last lot of the family is prioritized, the sequence 
model is obtained and one continues to proceed with deliveries and 
assigning machines. Upon reaching the last lot of the last family, the 
production plan for the current period is acquired. The normal period of the 
sequence is one week, and the plan is made to start on Saturday at 12:00 
AM and to end on Friday at 11:59 PM. The above means that each of the 
machines has 168 available hours according to the standard that the 
company has. Usually, 10% of the available time is considered as slack, 
which leaves only 151.2 hours per week and machine. This time contains 
the production processing time plus the idle time due to a changeover (lot, 
recipe, tool, and family).  

By designing the changeovers on the machines, the cycle time of the 
activities corresponding to each setup type was validated. In addition, the 
setup types were documented by the taxonomy data, which were taken 
directly from the plant and by the standards presented in Table 10-3. This 
information was used to quantify the transition time between the lots and 
batches.  
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10.1.6 Conclusions 

This work helps the planner to make a detailed short-term plan at the 
family level for the following decisions: 
 

 Assign the required machines; 
 Attend the product grouping into families;  
 Act quickly when a part number does not arrive as planned.  

 
In this case, it is clearly observed that there are major advantages of 

planning at the family level. As it was demonstrated, a gain of 25.93% in 
the installed capacity was saved. Saving a quarter of the capacity, the 
company could attract more customers, produce more products, increase the 
delivered volume to customers, and definitely reduce the operating cost. 
This enhances the profitability of the given semiconductor company. 

The robustness of this model was tested, first under simulation 
conditions, using for this purpose the real information from the company 
databases, and then testing the model under controlled conditions or in a 
pilot test (Delgado-Arana et al. 2017). The data from a sample production 
month were used first to perform a simulation and then to compare the 
process data by different stated scenarios. Once these activities were 
performed, a planning algorithm was implemented for the selected 
representative family to confirm the efficiency of the lot sequencing model. 
The proposed model can be used for any discrete manufacturing business, 
which has to sequence the production orders. 

10.2 Minimization of the makespan with multiple 
restrictions for the production of televisions 

This section presents a solution for the problem of minimizing the makespan 
with multiple restrictions for a real production environment of an electronic 
television industry, specifically in a part of the plant called "Auto Insertion", 
where automated machines participate. The model represents an HFS with 
unrelated machines, sequence-dependent setup time, machine eligibility, 
and limited buffer. 

The investigation was made for SONY de Mexicali, S.A. de C.V. 

10.2.1 Problem description 

The television manufacturing process has three sections (Fig. 10-8):  
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1. Auto Insertion: Components are inserted into a PCB in an automated 
way;

2. Manual Assembly: Operators assemble and insert large components 
manually;

3. Final: Tests are carried out and final packaging of the finished 
product is made for the transportation to the distributors. 

Fig. 10-8. Process of manufacturing televisions.

The number of PCBs needed for the assembly of the televisions was
calculated from the monthly production plan, and the order of their 
processing on the machines was determined. In this factory, the processing 
of 500,000 boards monthly on average for different TV models is usual. The 
monthly planning is subject to changes during the current month due to 
variations in the orders and external circumstances that are managed daily 
in the 'Final' section.

The Auto Insertion section is addressed because it is a section, where 
automated machines are involved. The processing times on each machine 
are statistically established. The section has machines distributed according 
to the processes they perform:

1. Eyelet (Ey) - make holes to insert components;
2. Jumper (Jv) - insert jumpers to connect circuits;
3. Axial (Ax) - insert axial components of fixed length;
4. Axial variable (Av) - insert variable length axial components;
5. Radial (Rd) - insert radial components; 
6. Surface Mount (Sm) - apply welding.
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The characteristics of the shop environment are as follows: 
 
1. A PCB passes successively through several processes, depending on 

the type of the PCB; 
2. In each process, there are groups of machines of different brands, 

speeds, and capacities. The processing time of each operation 
depends of the particular machine; 

3. Each machine has a feeder of components, which allows the entry of 
a number of electronic components to process a board. The set of the 
components depends on the type of the board, because each PCB 
requires a certain number and types of components. 
 

The feeders have different capacities. For example, a machine has a 
feeder with the capacity of 60 components, another one of 80. The feeder of 
components at a machine must be prepared before processing the jobs. The 
number of components arranged in a feeder depends on the type of the 
board. 

The time for the preparation of each feeder at a machine and its 
corresponding adjustment required by the change of the board type depends 
essentially on the board that previously passed through that machine. This 
means that there is a time of adjustment dependent on the sequence. 

 
1. A machine is not enabled when it is in maintenance or because it is 

not capable of processing a certain type of work. This implies the 
consideration of the availability or eligibility of the machines 
(Machine availability/eligibility); 

2. Each machine has a limited physical space for a temporary storage 
(buffer) of the processed jobs. These jobs in the buffer represent a 
part of the WIP. If the limit of the buffer capacity is reached in the 
pace of a machine, it is not able to continue the production, so there 
would be a block in the production. This feature is known as limited 
buffer; 

3. It is required to minimize the total time for processing a given set of 
jobs, called the makespan. 

 
This production environment represents a six-stage HFS with unrelated 

parallel machines, sequence-dependent setup times, machine eligibility, and 
limited buffering. An increase of the productivity implies the determination 
of an order in the workflow that allows a greater use of the machines in such 
a way that the time of the fulfilment of all works is minimized. 
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The characteristics and restrictions of the production environment lead 
to a complex decision-making. This represents a problem for the company 
because it wants to increase the productivity. The programming of the 
production was usually done by a group of planners on the base of their 
experience by manual methods, and these methods did not guarantee good 
and fast solutions. Therefore, increasing the productivity required an 
improved decision-making in the scheduling process. 

10.2.2 Production model 

An HFS scheduling problem is considered. This problem can be 
characterized as follows: A set of N jobs j, given at time 0, has to be 
processed without preemption at M consecutive production stages with the 
objective of minimizing the total completion time. At every stage i = 1, 2 
,…, M, a set Mi ={1,2,…,mi} of mi unrelated parallel machines is given, 
where |Mi|  1. Every job passes through all stages and must be processed 
by exactly one machine at every stage. Let pi,l,j  be the processing time of 
job j, j = 1, 2 ,…, N, on machine l  Mi,  at the stage i, i = 1, 2 ,…, M. 
Machine-based sequence-dependent setup times are considered. Let si,l,j,k  be 
the setup time on machine l at stage i when processing job k after processing 
job j, where j, k =  1, 2 ,…, N, j  k. For the stage i, Ei,j is the set of eligible 
machines that can process job j, 1 | Eij |  mi. For every machine m = 1, 2,…, 
mi at stage i, a limited buffer for the jobs is given. The maximal storage 
capacity in front of every machine m is bm, where 1 | bm|  mi. 
 Gourgand, Grangeon and Norre (1999) have shown that for a similar 
problem the total number of possible solutions is ! ( ) . Moreover, 
Gupta and Tunc (1998) have proved that the FFS problem with only two 
stages (M = 2) is NP-hard even if one of two stages contains a single 
machine. Since the HFS is a general case of the FFS, the HFS problem is 
also NP-hard.  
 Using the well-known three-field notation | |  for scheduling problems 
(see Section 3.1) and its extension for the HFS problem proposed by 
Vignier, Billaut, and Proust (1999, 122), the problem can be denoted as: 
 , ( ) ( )| , , |   .  
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10.2.3 Algorithm 

A genetic algorithm was proposed, considering the characteristics of the 
model under study. By a genetic algorithm, approximate solutions for 
problems of great computational complexity were sought by means of a 
mathematically simulated evolution procedure on a computer (Holland 
1975) 

The basic genetic algorithm consists of well-defined phases. Candidate 
solutions are encoded by chromosomes (also called genomes or individuals). 
The set of initial individuals forms the population. The fitness values are 
defined for the individuals to measure the quality of the represented 
solution. The genomes are evolved through genetic operators, generation by 
generation, to find an approximate solution or even an optimal one. Three 
genetic operators were repeatedly applied: selection, crossover, and 
mutation. The selection picks the chromosomes to mate and produce 
offspring. The crossover combines two selected chromosomes to generate 
the next generation of chromosomes. The mutation reorganizes the structure 
of the genes in a chromosome randomly so that a new combination of the 
genes may appear in the next generation. The individuals evolve until some 
stopping criterion is met (Fig. 10-9).  

Regarding the coding, in several works a chain of integers was used, 
which is a permutation of the numbers 1,2, ..., n, and each integer represents 
a job. 

The proposed algorithm GASBC is described below. 
  

Input: A population of Psize individuals.  
Output: An individual of length n. 

01. Generate_population() 
 02. while not stopping_criterion do  
 03.  for i = 0 to Psize  
 04.  generate_individual(i) 
 05.  evaluate_objective(i) 
 06. Select individuals by the tournament selection 
 07. Keep_the_best_individual_found() 
 08. if iterations_no_improvement = 25  
 09.  regenerate_population 
 10.  if regenerate = 10  
 11. stopping_criterion=true 
 12.  else 
 13. regenerate = regenerate+1 
 14.  iterations_no_improvement = 0 
 15. else 
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16.  if actual_minimum_makespan = 
previous_minimum_makespan 

17. iterations_no_improvement 
  =iterations_no_improvement +1 
 18. crossover with probability Pc 
 19. mutation with probability Pm. 
 
The population is formed by Psize individuals. According to the 

algorithm, the generate_population function generates a set of individuals 
with their genes in a random and uniform manner. The function 
evaluate_objective calculates the fitness (makespan) of each individual 
taking into account the size of the buffer at each machine. When the buffer 
of a machine becomes saturated, the flow continues through another 
machine of the same stage, considering the same selection criterion: Each 
job is assigned to the machine that can finish the job in the shortest possible 
time at each stage, considering the different speeds, setup times, machine 
availability, and buffer sizes. 

The keep_the_best_individual_found function saves the best individual 
found in the previous evaluation of the population in each iteration. The 
final result will be the best individual found for the objective function. 

A reset mechanism is applied when, after ordering by aptitudes, the best 
20% of the individuals are maintained, 50% of the rest (80%) are replaced 
by the shift mutation of the best individual. The rest is generated again in a 
random way. The evaluations are stopped when the minimum time to 
complete the works has not changed within 25 generations and after 10 
restarts have been executed. This criterion allows both good solutions and 
reasonable execution times. 

 A selection by binary tournament was considered as well as eight types 
of crossovers, five of them were taken from the literature: 

 
OBX – Order-Based Crossover (Gen and Cheng 1999); 
PPX - Precedence Preservative Crossover (Bierwirth, Mattfeld, and 
Kopfer 1996);  
OSX - One Segment Crossover (Gen and Cheng 1999);  
TP - Two Point (Michalewicz 1996); 
SB2OX - Similar Block 2-Point Order Crossover (Ruiz and Maroto 
2006, 788–91). 
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Fig. 10-9. Chart of algorithm GASBC.
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Three further crossovers were proposed: 
 
TPI (Two Point Inverse); 
OBSTX (Order-Based Setup Time Crossover); 
ST2PX (Setup Time Two Point Crossover). 
 
Three well-known mutation operators, which are frequently used in the 

literature, were also considered (insert, swap, and switch) (Michalewicz 
1996; Gen and Cheng 1999).  

A calibration process was carried out, applying 1800 alternative 
algorithms to a set of 60 instances, in total 108,000 evaluations, taking into 
account the following factors: type of crossover, type of mutation, 
probability of a crossover, probability of a mutation, and size of the 
population. The response variable was the percentage of the relative 
distance increase over the best known solution. The results of the 
experiments were subjected to a multivariate variance analysis to test the 
null hypothesis: there is no significant effect of the factors on the response 
variable. The contribution of each factor was measured removing the effects 
of the other factors. The results of this analysis have shown that five of the 
considered factors (population, crossover operator, mutation operator, 
crossover probability, mutation probability) had a significant effect on the 
response variable at a 95% confidence level, for which the null hypothesis 
was rejected, with a significant effect of the factors on the response variable. 

10.2.4 Computer experiment 

To evaluate the quality of the calibrated algorithm, two experiments were 
performed. The first experiment was conducted to analyze the behavior of 
the algorithm under limited time circumstances. The results showed the 
superiority of the proposed algorithm.  

As the reference algorithm, a genetic algorithm GAH was used in the 
second experiment. This algorithm was proposed by Ruiz and Maroto 
(2006, 788–91) for solving a similar problem without limited buffers. It was 
compared with nine variants of metaheuristic methods: NEH heuristic, 
simulated annealing, tabu search, ant-based algorithms, etc. It turned out to 
be best algorithm for solving similar problems without limited buffers. To 
compare algorithm GASBC with GAH, an adaptation of the last one to limited 
buffers was made. This version was denoted as GAHBC. The mean relative 
distance of the GASBC and GAHBC from the best results are given in Table 
10-4. GASBC improved the results of  GAHBC in all experiments.  

Algorithm GASBC had an efficient performance due to the proposed 
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crossover operator (ST2PX). Based on a multivariate analysis of variance, 
it was shown that this crossover was the best among the eight ones 
considered (Yaurima, Burtseva, and Tchernykh 2009). Its success can be 
explained by the fact that this crossover operator takes into account the 
adjustment times of the machines according to the sequence of the jobs. The 
adjustment time in this model is an important circumstance when making 
decisions regarding the assignment of jobs to the unrelated parallel 
machines. The restarting conditions within the suggested scheme, together 
with the stopping criterion, were other innovations that were successfully 
carried out in this algorithm. 
 

50 Jobs instances 100 Jobs instances 

Instance   Instance   

50 x 2 1.3557 6.4789 100 x 2 2.7658 5.5054 

50 x 3 1.8877 5.7557 100 x 3 2.8016 6.8553 

50 x 6 2.4963 6.5712 100 x 6 1.8996 4.8614 

Average 1.9132 6.2686 Average 2.489 5.7407 
 
Table 10-4. Average percentages of the relative distance from the best known 
solutions. 

10.2.5 Conclusions 

An efficient genetic algorithm was presented to solve a complex HFS 
problem with sequence-dependent setup times, unrelated parallel machines, 
machine availability constraints, and limited buffers. This problem occurs 
in the television electronics industry, in particular, in the line of auto 
insertion of components into PCBs. It can be concluded that genetic 
algorithms are a useful tool in solving real and complex problems such as 
the HFS. 

10.3 Optimization of the material use in the reed switch 
production 

A planning problem that occurs in the production of reed switches was 
examined in this project. Reed switches are used as parts in the 
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manufacturing of electronic sensors and relays. The company suffers from 
the uncertainty in the choice of the raw material, which comes in lots of four 
types, to fulfill the customer orders without violating the respective 
deadlines. An incorrect selection causes the processing of additional lots 
and may provoke delays in the fulfilment of the orders. This also generates 
an excessive WIP. It was required to improve the production efficiency 
giving the planners a tool to make the decisions for the selection of the lot 
types.  

Similar situations occur in the manufacturing of semiconductors and 
digital devices as well as in the ceramic, food and agricultural industries, 
when the items of a production lot are classified according to quality, color, 
size, etc., to be used for different purposes. 

The lot type selection represents a complex combinatorial problem. The 
proposed model can be interpreted as an extension of the bin packing 
problem. A heuristic was proposed to calculate the minimal number of lots 
to fulfill a given set of customer orders selecting the correct raw material 
and the sequence of processing the lots. This heuristic represents a 
modification of the north-west corner rule. The investigation was made for 
COTO Technology, Inc., Mexicali, Mexico. 

10.3.1 Problem description 

The components of a reed switch are two metallic contact blades (reeds) 
positioned into a hermetically sealed glass capsule (tube). There is a gap 
between the blades in the contact area (Fig. 10-10). The magnetic field 
expressed in NI or ampere-turns (AT) is known as the operating value. 
When applied to the switch, the operating value forces this to actuate closing 
the blades.  
 

  
Fig. 10-10. The components of a reed switch. 
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The glass tubes used distinguish in-between by the core diameter. Each 
lot of the raw material contains 5500 glass tubes with a fixed range of the 
core diameters, which is referred to as the glass type in the plant. In total, 
there are four glass types, i.e., four types of glass tubes, which have a 
specific range of the core diameters so that these ranges do not intersect.  

A customer order includes the part number (the code of a product), the 
number of items, the delivery date, and it needs several lots to be completed. 
The production planning is realized per lots for the planning horizon, which 
defines the set of consumer orders. The part number defines the range of 
the acceptable operating value and one of four possible shapes of the blades. 
There are approximately 50 part numbers, which this plant can manage. 

The technical route, which is used for manufacturing the switches, is 
composed of a number of successive operations divided in a natural manner 
into two parts by an external operation in-between with the duration of one 
day. The investigation is focused on the second part, where the presented 
problem occurs: the classification of the reed switches according to the 
operating value and the formation of the contact blades. The investigated 
resource model is presented in Fig. 10-11. 

 

 
 

Fig. 10-11.The m identical classification machines with 25 repositories every one.  
 

The classification of the reed switches is realized per lots by a group of 
identical parallel machines, so as one lot is completely processed by one 
machine without an interruption. The processing time of a lot is constant for 
any glass type. A classification machine contains 25 successively 
enumerated repositories to deposit the processed pieces. The classification 
process is as follows. A machine takes one item, measures its operating 
value and then deposits it into a corresponding repository.  

At the end of this operation, a lot is split into 25 parts/repositories, 
according to the operating value of the switch. The part number indicates 
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the acceptable range of the operating value, i.e., the range of the successive 
repositories, so as the same repository can be used for the fulfillment of the 
different part numbers. After the classification, when a lot is distributed 
between the repositories, the product is treated in items.  

The items, which are used for carrying out an order, are taken from the 
corresponding repositories and assigned to one of the four blade shape lines 
according to the order indications. Then pieces for the next order are taken 
from the repositories, and so on. This process is similar for the other 
classification machines. The rest of the pieces, which are not reclaimed for 
the orders, form the WIP inventory to be used in the future.  

Due to the complexity of the information, the production planning and 
scheduling at the plant are realized empirically, based on the previous 
experience and therefore, they suffer from the stochastic results after the lot 
classification.  

10.3.2 Modeling 

It was observed in the plant that the core diameter of a tube has a direct 
effect on the operating value of a resulting switch. Therefore, a lot of raw 
material with a convenient glass type should be used when it is required to 
obtain the majority of items within a given range of the operating value. The 
uncertainty in the lot type selection can be reduced if the results of the 
classification operation are known or evaluated beforehand. Then the 
number of the lots, which are needed for the fulfillment of a given set of 
orders with the same due date, can be minimized through finding a best 
linear combination of the lot types. The classification is a bottleneck 
operation. It lasts about 8 hs/lot, while the blade shape forming operation is 
significantly shorter. Therefore, a big effect on the total processing time is 
also reached by minimizing the number of the lots.  

After an analysis of the historical data of the classification results, it was 
noted that the distribution of the lot items between the repositories has a 
central tendency that is specific for each glass type, and those empirical 
distributions tend to be near-normal (Fig. 10-12) (Romero-Parra and 
Burtseva 2010).  

A deterministic approach was used to solve the problem, i.e., all 
distributions were supposed to be known and fixed for each glass type such 
that the number of items in every repository can be anticipatorily calculated 
to be assigned to an order. An illustrative example is given in Fig. 10-13. 
Assume that the orders Z1 and Z2 require pieces in the operating ranges 
(1,2) and (5,6), respectively. The lot type l1 is the preferable selection, 
because it has the maximal quantities of items in these repositories, 

 EBSCOhost - printed on 2/9/2023 3:05 AM via . All use subject to https://www.ebsco.com/terms-of-use



Chapter Ten 
 

 

332 

compared to the other lot types. For the order Z3, the lot type l2 is preferable. 
The lot type l3 is convenient for the orders Z4 and Z5. The lot type l4 is the 
best selection for the order Z6. Nevertheless, the selection of the lot types is 
not so evident. 

 

 
 
Fig. 10-12. Probability density functions f(x) of the distributions of the items 
between repositories for different lot types. The corresponding quantities of the 
items are highlighted for each function (lot type). 

 
The dependency between the characteristics of the raw material and the 

effect of these characteristics on the final product quantities can be 
formulated as an optimization problem selecting a linear combination of the 
lots, everyone with the glass type, which minimizes the total number of the 
lots to satisfy all orders in the required operating values of the switches.  

The problem complexity is conditioned by the following reasons. The 
number of the lots for the completion of the orders depends essentially on 
the selection of the lot type as a consequence of the differences of the 
distribution functions. Moreover, the sets of the repositories, which are used 
for different part numbers, may overlap. Therefore, the allocation of the 
orders on the repositories is not evident, for example, orders 1 and 2 need 
repositories 1 and 2, and order 3 needs repositories 2 and 3 (Fig. 10-14).  

Given this situation, the addressed lot minimization problem can be 
summarized as follows. There are containers of G types with an equivalent 
capacity U to pack N fractionable objects consisting of Dj items, j = 1,…, 
N. Every container lg is distributed among R repositories with the capacities 
of kgr items, forming the matrix K = [kgr kgr is the capacity of the 
repository r, r = 1,…, R, for a container of type g, g = 1,…, G, and = , g. The items of object Dj can be only deposited into the 
repositories associated with object j. The restrictions in the allocation of the 
items of object j on the repositories are given by a binary matrix O = [ojr  
and do not depend on the selection of the container type g. The element ojr 
is equal to 1 if repository r is allowed to pack items of object j, and 0 
otherwise. As a result of the allocation of object j to the container of number 
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l, dlrj items are packed into repository r of container l whose type is g. Then 
a list of containers A = {g1, g2,…, gl,…, gL} is formed. Its elements are the 
container types gl. For example, A = {2,4,1,1,4} means that first a container 
of type 2 is used, then a container of type 4, and the cardinality of A is the 
required number of containers, L = |A|, which is equal to the sum ng of 
containers of every type g. In our example, g1= 2, g2= 1, g3= 0, g4= 2, and L 
= 5.  

 
 

 
 

Fig. 10-13. Distribution of the items between the repositories for every lot type. 
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Fig. 10-14. The relationship between the repositories. The orders represented as a 
bipartite graph with a possible overlapping of the repositories (an example).  

 
Therefore, the problem of minimizing the number of lots is as follows: 
 = min       (10-2) 

s.t.  
, r = 1,…, R (10-3) 

, g, lg,     (10-4) = 1, if    0, otherwise  r, j    (10-5) = , j = 1,…, N,  (10-6) , , g, lg, r, j.     (10-7)  
 
The constraints (10-3) describe the relationship between the assigned 

items and the total capacity of repository r, where the total sum of the pieces 
assigned to container lg must not exceed its capacity U (10-4). The binary 
values orj in (10-5) are employed to restrict the object allocation only to 
allowed repositories. Equalities (10-6) ensure that all objects must be 
allocated completely. The sizes kgr and  are non-negative integers (10-
7). The objective is to minimize the number of containers (10-2). This 
problem is denoted as the fractionable object bin packing with variable 
sized repositories and allocation constraints (FOBP-VAC).  

Problem (10-2) is an extension of the well-known bin packing problem. 
In the classical NP-hard bin packing problem, a given list of indivisible 
objects is required to be packed into the smallest possible number of unit-
sized indivisible bins, also called containers. The difference from the 
classical variant is that in the considered case, a container is divided into a 
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fixed number of R repositories (sub-containers) (Fig. 10-13). The repository 
capacities in a container vary depending on a parameter g (the glass type of 
a lot in our problem). These capacities are calculated according to the 
density distribution function given by row g of matrix K. The sum kg1+ kg2 
+…+ kgR is the capacity U of a container (lot size), which is constant for any 
container type g. A fractionable object j is associated with a customer order 
of Dj items. For each object, the number of items and the repositories that 
are allowed to be used by this order are indicated.  

Similar problems have been presented in the literature. Nevertheless, 
never before all considered aspects were modeled together. Shachnai and 
Tamir (2004) formulated a problem called the class-constrained bin 
packing problem, where the bins have a capacity of v and c compartments. 
In their problem, every item has the same size and a color. The items must 
be deposited into bins subject to the capacity constraints so that items of 
different colors are placed in different compartments. The goal was to 
minimize the number of used bins. Friesen and Langston (1986) defined a 
variable sized bin packing problem, where some fixed (finite) number of 
given sizes was available. The cost for using a container was simply its size. 
The goal of the problem was to pack the items into those containers, whose 
sum of sizes was minimal. Epstein and Levin (2008) proposed a problem 
called Generalized Cost Variable Sized Bin Packing. There are given an 
infinite supply of bins of r types whose sizes are denoted by br < ... < b1 = 
1. I
type i is associated with a cost ci. It was assumed that c1 = 1. The goal was 
to find a feasible solution with minimal total cost. Langston (1984) 
investigated the problem of maximizing the number of items packed into m 
available bins, where the bin sizes can be different. Menakerman and Rom 
(2001)  investigated a bin packing problem variant, in which the items may 
be fragmented into smaller size pieces called fragments. The model was 
derived from a scheduling problem presented in the data from a CATV 
network. Xing (2002) introduced a problem called bin packing with 
oversized items, where the items may have a size larger than the largest 
allowed bin size. The bins cannot be overpacked. An oversized item is free 
to be divided into parts, which are no larger than a limit of the bin size. 
Mandal, Chakrabarti, and Ghose (1998) have shown that the decision 
version of the bin packing problem with N fragmentable objects is NP-hard 
for N  2. Therefore, problem (10-2) is NP-hard as well, and heuristic 
algorithms should be applied.  
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10.3.3 Algorithm 

Several works were dedicated to study the bin packing problem in offline 
and online environments. An online algorithm assigns items to the bins in 
the order in which they are given in the original list, without using any 
knowledge about subsequent items in the list, see Mandal, Chakrabarti, and 
Ghose (1998); Ye and Zhang (2009). In an offline version, the entire list of 
the objects is available to compute the packing. The Next Fit strategy and 
its variants are a typical solution approach, see Coffman, Garey, and 
Johnson (1996).  

The following heuristic offline algorithm provides a solution for 
problem (10-2). The algorithm is based on the North West Corner rule and 
finds:  

 
1. The number of containers of the corresponding types L = n1+ n2 +…+ 

nG; 
2. The number of items dlrj allocated to repository r of container l in 

order to pack object j for all l, r, j; 
3. The container sequence for each type (lot processing sequence).  
 
The steps of the algorithm are as follows. 
 

 
Create a table T with N+1 rows and R+1 columns, where the first N rows are 
used for the allocation of items of object j, j = 1,…, N , to R repositories. In the 
cell (j, R+1) of the table, the number Dj of items to allocate is written. The cell 
(N+1, r) is initially the capacity of the repository r. The element (j, r), j = 1,…, 
N, r = 1,…, R, of the table is available if ojr = 1. The unavailable cells are 
blocked. Initially all cells (j, r,), j = 1,…, N, r = 1,…, R, are zero; ng = 0, g = 
1,…, G.  
1. Sort the N rows of the table T using a weight rule (more items, fewer items, 

larger number of available repositories, etc.). 
3. Create G copies of the table. 

3.1. In the copy Tg, g = 1,…, G, add kgr to the value of cell r in row N+1, r 
= 1,..., R.  

3.2. Process the unblocked cells of the table per rows, starting in the upper 
left corner while the corresponding value in column R+1 is different 
from zero. The cell values of row N+1 are assigned to the corresponding 
cells of column r so that the assigned values do not exceed the value in 
cell (j, R+1). The assigned value is subtracted from the cells (N+1, r) 
and (j, R+1).  

It continues until the values of all cells in row N+1 are assigned to the 
available cells or the value of cell (j, R+1) is zero.  
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4. Calculate the sums in each table Tg, g = 1,…, G, as the sum of the values of 
column R+1.  

5. Select the table Tg*, i {1,…, G}, whose sum is minimal. 
 If the total values in two or more tables are minimal, select the table 

with minimal total of row N + 1. 
 If there is a tie in the two previous rules, select the first table. 

 ng* = ng* + 1. 
Keep the packing history: the table state Tg* and the selected index g*.  

6. If there exist values different from zero in column R+1, go to 2. 
7. End 

 
The following example illustrates the execution of the algorithm:  
Consider three objects of the sizes 100(1, 2), 75(2, 3), 70(2), where the 

values in parentheses give the number of allowed repositories to be used. 
There are 2 types of containers, g = 1, 2, with a capacity of 90, and every 
container has 3 repositories. The sizes of the repositories in a container of 
type 1 are: 10, 30, and 60, respectively; the repository sizes in a container 
of type 2 are: 20, 30, and 50. Fig. 10-15 shows the first iteration of the 
algorithm. After four iterations, the algorithm receives the following result: 
L =4, which means two containers of type 1 and two containers of type 2 in 
the sequence {1,2,2,1}; 110 excessive pieces (WIP) are generated. If only 
containers of type 1 are used, the result is 5 containers and 255 excessive 
pieces.  
 

 
 

Fig. 10-15. The first iteration of the algorithm selects a container of type 1. 
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10.3.4 Conclusions 

The efficiency of a plant, which is dedicated to the manufacturing of reed 
switches, is formulated as the problem of minimizing the number of lots of 
raw material for a given set of customer orders. An extension of the bin 
packing problem was used for the modeling. A simple and fast heuristic 
algorithm was proposed to obtain a feasible and practical solution for the 
plant. It turned out that the density function distributions do not affect the 
presented algorithm.  

To compensate the variation of the classification results with respect to 
the performance of the real process, it is further necessary to: update the 
samples of the company; investigate the behavior of the scrap; maintain a 
certain level of the WIP. These topics are subjects of future research. 
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ABBREVIATIONS 
 
 
 
AFS  Assembly Flow Shop  
AGV  Automated Guided Vehicle  
AJS  Assembly Job Shop  
AOS  Assembly Open Shop  
BOM   Bill of Materials   
BPM  Batch Processing Machine 
CONWIP  CONstant Work-In-Process  
CF  Cell Formation (problem) 
CLS  Capacitated Lot Sizing (model) 
CP  Constraint Programming (model) 
CR   Critical Ration (rule)  
DDMRP  Demand-Driven MRP (system)   
DBR   Drum-Buffer-Rope (method)  
DLS  Discrete Lot sizing and Scheduling (model) 
DP   Dynamic Programming   
EDD  Earliest Due Date first (rule) 
ELS   Economic Lot Scheduling (model) 
EOQ  Economic Order Quantity (model) 
EPL  Economic Production Lot (formula) 
ERP   Enterprise Resource Planning (system)   
FCFS   First Come, First Served (rule)  
FFL   Flexible flow line   
FFS  Flexible Flow Shop 
FIFO   First-In, First-Out (rule) 
FLS  Flexible Lot Streaming 
FMS  flexible manufacturing system  
FS  Flow Shop 
FSMP   Flow shop with multiple processors  
GSU   Grouped Set-Up  
IC   Integrated Circuit 
ISB  Improved Shifting Bottleneck (procedure)  
JIS  Just-In-Sequence (paradigm)  
JIT   Just-In-Time (paradigm)  
JS  Job Shop 
HDD   Hard Disc Device  
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HFS   Hybrid Flow Shop 
HPP   Hierarchical Production Planning (system)  
HT   High Tech 
HV/HM  High Volume/High Mixture (of nomenclatures) 
LAPT  Longest Alternate Processing Time first (rule) 
LBFS   Last Buffer-First Serve (rule) 
LCD   Liquid Crystal Display   
LCS  Least Setup Cost    
LIFO  Last-In, First-Out (rule)  
LT  Lead Time 
LPT   Longest Processing Time first (rule)   
LV/HM  Low Volume/High Mix (paradigm) 
MAS  Multi-Agent System 
MILP   mixed integer linear programming (model) 
MIP   Mixed Integer Programming (model) 
MPC   Manufacturing Planning and Control (system)  
MPS   Master Production Schedule  
MRP, MRP-I  Material Requirements Planning (system)  
MRP-II   Manufacturing Resource Planning (system)  
MS  Mixed Shop  
OPT   Optimized Production Technology  
OS   Open Shop  
PCB  Printed Circuit Board   
PTAS  Polynomial Time Approximation Scheme 
RFID   Radio Frequency Identification   
SB  Shifting Bottleneck (heuristic)   
SDS   Sequence-Dependent Scheduling  
SDST    Sequence-Dependent Setup Times  
SMED  Single Minute Exchange of Die (setup reduction paradigm)  
SMS  Semiconductor Manufacturing System 
SPT   Shortest Processing Time first (rule)  
TOC   Theory of Constraints  
TPM   Total Productivity Maintenance (system)  
TPS   Toyota Production System  
TWT   Total Weighted Tardiness (criterio) 
VPL   Virtual Production Line  
ULS  Uncapacitated Lot Sizing (model) 
WIP   Work-In-Process 
WLPT   Weighted Longest Processing Time first (rule) 
WSPT   Weighted Shortest Processing Time first (rule)  
 

 EBSCOhost - printed on 2/9/2023 3:05 AM via . All use subject to https://www.ebsco.com/terms-of-use



 

 

INDEX 

  
-A- 
Assembly 24, 28, 30, 31, 41, 43, 
71, 78-80, 94, 119, 188, 189, 
200, 257, 275, 276, 301  

flow shop (AFS) 49, 50, 52, 
78, 80, 103 
job shop (AJS) 78 
line 1, 3, 16, 31, 39, 59, 78, 
79, 92, 101, 200 
machine 49, 50, 52, 79 
open shop (AOS) 787 
operation 25, 26, 78, 103, 
119, 369 
workstation 26, 27 

 
-B- 
Backlogging 102, 253, 259, 
260, 265, 273, 279 
Batch 

availability 109, 192 
bounded 201, 205, 210 
feasible 191 
inconsistent 197, 199 
incompatible  
machine 1, 2, 56, 187, 194, 
202, 204, 206, 211, 215 
p-batch 192, 201-211, 213, 
218 
production 221, 225 
s-batch 192-199, 212, 213, 
218 
transfer 30, 222, 233-250 
unbounded 56, 201, 205, 211 

Batch processing machine 
(BPM) 51, 190, 199-211 
 

Batching 43, 58, 66, 71, 72, 83, 
101, 187, 188, 198, 199, 219, 
254, 275 

heuristic 102, 108, 194 
jobs 2, 108, 194, 195, 219 
machine 87, 89, 100-102, 
104, 109, 192, 200, 205-210, 
256 
models 190-192, 218 
no-wait 211-213 
parallel 192, 201-211 
serial 89, 91, 108, 192-193 

Bill of materials (BOM) 7, 20, 
275 
Block-diagonal  

pattern 161 
matrix 175, 177, 178 

Bottleneck 5, 11, 29, 30, 32, 36, 
39, 56, 63, 64, 68, 71, 83, 118, 
120, 212, 175, 181, 191, 200, 
242 

dynamic dispatching 83, 296 
heuristic 63, 83  
machine 175-177  
operation 30, 32, 311  
procedure 63-64, 247  
workstation 39, 71, 80, 251, 
299 

Burn-in  
operation 187-190, 199, 200, 
203, 210 
oven 200, 202-205 
time 203 

 
 

 EBSCOhost - printed on 2/9/2023 3:05 AM via . All use subject to https://www.ebsco.com/terms-of-use



Index 
 

 

398

-C- 
Cell 

design 154-155 
formation (CF) 128, 149, 
153-154, 158, 161, 178, 179, 
182-185, 214 
layout 182, 183, 185 

Celular 180, 184 
manufacturing (CM) 103, 
126, 177-182, 218 

Changeover 72, 93, 94, 109-
122, 127, 187, 215, 258, 269, 
272, 310, 311, 315, 317, 319  

batch-dependent 109, 111, 
112 
inseparable 110 
matrix 112-114, 318 
minor 112 
major 112 
personnel 117 
separable 110 
sequence-dependent 109, 
112, 113 
structure 114 
time 10, 44, 94, 108, 114-
117, 123, 218, 238, 310, 
317, 318 
time-dependent 109, 111 
volume-dependent 109, 111 

Clique 62 
Clustering 80, 119, 157-158, 
160, 161, 164, 169, 176-179, 
181, 185 
Clusters 160, 161, 164, 174, 
177, 178, 181, 185, 186 

analysis 149, 151, 158, 160, 
163, 176-178, 181, 185, 186 
disjoint 175 
separability 174-176 
mutually separable 175 
partially separable 175 

Code 43, 134, 135, 137, 138, 
140, 142-145, 152, 153, 185, 
324, 330 

binary 150 
chain-structured 138 
geometric form 140, 142 
hierarchical 128, 138-139 
hybrid 139 
monocode 137-139, 142-143 
Opitz 135, 141, 144-145 
polycode 137, -139, 142-143 
position-based 138 
secondary 140-142 
structure 135, 137-139 
supplementary 140-141 

Coefficient 129, 130, 148-157, 
181 

dissimilarity 151, 179 
similarity 129, 130, 148-157, 
160-166, 176, 177, 179 

Jaccard 153-154, 163, 
179 
McAuley 153-155 
modified McAuley 155-
156 

Complex job shop 75, 83, 104, 
120 
Continuously divisible  

recourse 90, 105  
job 242 

CONWIP 28, 40, 41, 44, 45 
Cost 3-7, 10, 16, 21, 22, 30, 43, 
78, 81, 254, 88, 90, 91, 104, 
113, 118, 126, 129, 178, 181, 
184, 187, 195, 221, 223, 255, 
263, 265, 267, 275, 279, 285, 
290, 298-301, 304, 309, 311, 
320, 335 

backlogging 102 
changeover 111, 113, 218  
compression 91, 195, 196 

 EBSCOhost - printed on 2/9/2023 3:05 AM via . All use subject to https://www.ebsco.com/terms-of-use



Production Planning and Scheduling for Lot Processing 

 

399 

delivery 80 
function 195, 301 
holding 18, 41, 253, 256, 
259, 260, 264, 267, 269, 
272-275, 279 
inventory 4, 21, 23, 102, 
253, 254, 259, 265, 268 
material handling180, 238  
penalty 197, 206, 310 
production 3-5, 10, 13, 14, 
16, 38, 93, 101, 120, 128, 
184, 214, 250, 253, 263, 
265, 267, 268, 272, 279, 310 
sequence-dependent setup 
51, 256, 268-270, 273 
sequence-independent setup 
270 
setup 18, 51, 56, 83, 84, 96, 
99, 102, 113, 123, 195, 253, 
254, 258-264, 267, 269, 271, 
273-275, 279  
stability 301 
transportation 11, 222, 223  
WIP 10, 40  

 
-D- 
Dendrogram 154-156, 160, 163, 
164, 167  
Delivery 5, 7, 14, 15, 24, 115, 
117, 126, 180, 223, 237 

date 6, 250, 330 
cost 80 
JIT 24 
on-time 5, 180, 210, 310, 
311 
priority 317 
time 5, 53, 55  
timely 223 
waiting 126 

Deteriorating 
effect 86, 88, 105  

job 56, 85, 87-89, 101, 102, 
107, 123, 194, 206, 251  
inventory 279  
rate 108  
setup time 107 

Disparching 39, 80, 83, 103, 
120, 184, 192, 203, 223, 289, 
290, 292,294-296 
 
-E- 
Effect 

deteriorating 88, 105   
forgetting 88, 107, 123 
general position-dependent 
learning 87 

job-dependent learning 86, 
107 
job-independent learning 86, 
107 
learning 43, 85-87, 91, 105-
107, 123, 194, 195, 240, 251 
time-dependent learning 87  

Exceptional machine 175, 183 
element 147 
part 183 

 
-F- 
Factor 85, 93, 116, 190, 195, 
280, 285, 294, 306, 327 

critical 38 
Gozinto 275 
limiting 29, 30 
position-based learning 240 
priority 51, 52 
rescheduling 285 
safety 27, 116 

Family 48, 51, 91, 99, 102, 103, 
105, 108-109, 111, 113, 114, 
120, 128, 131, 135, 142, 156, 
168, 170, 172-174, 180-184, 
190, 191, 193, 195, 196, 203, 

 EBSCOhost - printed on 2/9/2023 3:05 AM via . All use subject to https://www.ebsco.com/terms-of-use



Index 
 

 

400 

204, 233, 241, 242, 259, 309, 
310, 313, 314, 317-320 

batch 51 
incompatible 193, 204-206  
job 51, 108 
part 125, 126, 131-132, 135 
priority 314 
processing time 120, 241, 
242  
setup 316, 317 
setup time 51, 71, 100, 103, 
105, 108-109, 193, 196, 199, 
233, 247, 259 

Flexibility 2, 16, 44, 67-68, 70, 
94, 110-112, 120-122, 125, 126, 
135 
Flexible 48, 67, 73, 214, 234, 
244, 306, 310 

flow line (FFL) 70 
flow shop (FFS) 49, 50, 52, 
68-71, 73, 81, 82, 104, 124, 
323 
hybrid flow shop 70, 244 
job shop (FJS) 49, 50, 52,73- 
75, 248-250 
lot streaming (FLS) 249 
manufacturing cell 214, 217 
manufacturing system 
(FMS) 68 
open shop (FOS) 49, 50, 73, 
75 
production system 67-75 
replacement 215 
shop 67, 68 
system 214 
tools 279 

Flow shop (FS) 33, 40, 48, 49, 
58-61, 64, 65, 67, 68, 70, 71, 
76-80, 82, 84, 86, 87, 89, 92, 
101, 103, 109, 179, 182, 196-
197, 205-206, 208, 211, 212, 

213, 218, 225-227, 233-241, 
244, 248, 249, 251, 278, 288, 
290 

multi-objective 61 
with multiple processors 
(FSMP or MPFS) 70, 71, 84 

Flow Time 17-19, 52, 53, 72, 
82, 86, 91, 100, 104, 187, 191, 
196, 199, 299, 310 
Formula 36, 150, 151, 153, 154, 
168, 232, 240, 254, 255, 262, 
263, 279 

EOQ 255 
EPL 255 
square-root 254, 255, 262 
truncation learning 240 

 
-G- 
Graham's triplet 47, 52, 69, 212, 
228 
Graph 62, 63, 158-160, 166, 
173, 207, 247, 250, 276 

acyclic 63, 275, 276 
bipartite 66, 159, 160, 163, 
166, 177, 334 
compatibility 207-209 
conjuctive 247 
connected 62, 159 
directed 63, 158, 159, 275, 
276 
disconnected 159, 160 
disjunctive 62 
edge coloring 66 
Gozinto 257 
interval 208, 209 
multigraph 158-160, 173, 
174 
subgraph 159 
undirected 158, 159, 164, 
207, 207, 209 

 EBSCOhost - printed on 2/9/2023 3:05 AM via . All use subject to https://www.ebsco.com/terms-of-use



Production Planning and Scheduling for Lot Processing 

 

401 

Group Technology (GT) 24,  
87, 101, 116, 118,107, 125-186, 
191, 193, 199, 214, 255, 309, 
310  
 
-H- 
Heuristic 39, 40, 59, 60, 64, 71, 
73, 80, 83, 101-104, 181, 185, 
193, 205, 209, 219, 243, 244, 
251, 263, 268, 273, 274, 278-
280, 287, 292, 295, 301, 303, 
304, 329 

algorithm 39, 71, 75, 77, 
100, 107, 129, 206, 245, 
246, 263, 268, 301, 302, 
304, 309, 335, 336, 338 
backward (BH) 241 
forward (FH) 241, 268 
improvement 83, 197 
constructive 40, 65, 80, 83, 
197, 250 
critical path 65, 250, 251 
Lagrangian 40, 84, 104, 197, 
267, 270 
NEH 60, 61, 327 
shifting bottleneck (SB) 63, 
64, 83, 247, 251  

Hybrid flow shop (HFS) 49, 70, 
50, 68-73, 101, 104, 105, 197-
199, 209, 211, 218, 233, 241-
247, 251, 309, 320, 322, 323, 
328 
Hybridization 65, 80 
 
-I- 
Infant mortality 189 
Idling 225, 226, 228, 230, 232, 
234 

intermittent 225, 226, 234 
no-idling 225-230, 232, 233 

Inventory 3, 4, 6, 7, 11, 13, 82, 
187, 190, 210, 214, 221, 223, 
253-255, 259-263, 265-267, 
269, 274, 279, 317, 331 

control 16, 18, 20, 37, 38, 
40, 42, 81 
cost 4, 21, 23, 259, 265 
excess 11, 19, 255 
holding costs 15, 102, 259, 
260, 264, 268, 273 
holding time 259 
level7, 13, 17-20, 24, 39, 40, 
119, 184, 239, 259, 275 
management 13-46 
system 13, 14, 41, 43, 275, 
277 

Integrated circuits (IC) 83, 104-
106, 188, 189, 190, 204 
 
-J- 
Job  

shop (JS) 20, 37, 43, 48-50, 
52, 58, 61-64, 67, 73-78, 82, 
83, 89, 92, 101, 104, 120, 
124, 126, 161, 179, 184, 
188, 218, 223, 234, 247-250, 
288, 290, 302 
batching 2, 108, 194 
incompatible 58, 204, 205 

Just-In-Time (JIT) 13, 22-29, 
37, 38, 102, 104, 110, 114, 129, 
130, 179, 237, 250 
Just-In-Sequence (JIS) 28-29, 
40, 45 
 
-K- 
Kanban 24-28, 37, 38, 41, 44, 
45, 80 

method 24-28 
card 27 

 

 EBSCOhost - printed on 2/9/2023 3:05 AM via . All use subject to https://www.ebsco.com/terms-of-use



Index 
 

 

402 

-L- 
Lean manufacturing 8-10, 23, 
30, 38, 121, 180 
Learning 43, 56, 80, 85-89, 106, 
107, 132, 194, 240,  

curve 240 
effect 43, 85-89, 91, 105-
107, 123, 194, 195, 240, 251 
formula 240 

Lot  
sitzing 56, 60, 64, 66, 69, 70, 
72, 109, 124, 224, 233, 239, 
247, 251, 253-282 
splitting 2, 60, 71, 222, 223, 
225, 229, 245, 246 
streaming 2, 51, 60, 65, 66, 
71, 74, 75, 79, 80, 221-252, 
254 

Lot sizing and scheduling 60, 
64, 109, 224, 247, 251, 255, 
260, 262, 264, 268, 271, 273, 
275, 278, 279  
 
-M- 
Machine cell (MC) 125, 130, 
135, 147, 148, 155, 158, 160, 
167, 171, 173-176, 178-180, 
182-185, 164, 166 
Machine/part  

block-diagonal matrix 178 
cluster 160, 178 
grouping 134, 164 
incidence matrix 146, 153, 
157, 161, 165, 169 
matrix147, 153, 160, 163 

Master ProductionPlan (MPP) 
311 
Master Production Schedule 
(MPS) 7, 20, 256, 311, 317 
Material handling 44, 68, 82, 
84, 96, 180, 214, 221, 238 

Material Requirements Planning 
system (MRP-I) 7, 20, 21, 265 
Metaheuristic 61, 80, 83, 84, 
185, 240, 241 
Model 

big-buclet 266 
Drum-Buffer-Rope (DBR) 
32-37, 299 
Economic  

Order Quantity (EOQ) 
254, 255, 262-264 
Production Lot (EPL) 255 

p-median 164, 167-169, 171, 
173, 177 
small-bucklet 268, 271 
uncapacitatet 237, 262, 264-
266 
Wagner-Whitin 101, 255, 
263-265, 279 

Mixed shop (MS) 49, 76, 77, 
92, 248, 249 
Modified Johnson algorithm 79, 
235, 251 
Multi-objective 39, 41, 43, 44, 
54, 55, 61, 71, 74, 84, 210, 246, 
251, 296 
 
-N-  
No-wait  

constraint 51, 60, 211, 212, 
230, 251  
problem 66, 83, 211-213, 
237-240 

 
-O- 
One-Touch Exchange of Die 
(OTED) 120, 122 
Open shop (OS) 48, 64-67, 73, 
75-78, 89, 92, 159, 218, 234, 
247-249 
Operation 

 EBSCOhost - printed on 2/9/2023 3:05 AM via . All use subject to https://www.ebsco.com/terms-of-use



Production Planning and Scheduling for Lot Processing 

 

403 

back-end 71, 189 
front-end 188-189 
overlapping 74, 222, 223, 
245, 250 

Optimized Production 
Technology (OPT)13, 29-30, 
32, 37, 38, 250 
Overlapping 74, 175, 221, 222, 
245, 250, 273, 334  
 
-P- 
Parallel machines 1, 2, 57-58, 
75, 78, 101, 195, 279 

dedicated 57 
elegible 244 
identical 49, 50, 57, 68, 70, 
71, 100, 103, 330 
unifotm 49, 50, 57  
unrelated 49, 50, 57, 58, 71, 
73, 75, 124, 144, 322, 323, 
328 

Part routing 183 
Planning horizon 5, 112, 253, 
256, 264, 266, 330 

finite 253, 255, 256, 263, 
273  
fixed 5 
infinite 255, 256, 262, 264 
rolling 257, 279  

Precedence 325 
constraints 197 
relationship 55, 95, 104, 224, 
257, 260 

Processing times 
agreeable 203-204 
average 245  
batch 209  
controllable 56, 89-92, 100, 
102, 105  
deteriorating 206 
family 241, 242  

Family Shortest (FSPT) 120  
Largest (LPT) 62, 242  
lot 241, 242  
normal 86-88, 209  
position-dependent 92 
resource-dependent 56, 89, 
194  
Shortest (SPT) 40, 83, 241 
time-dependent 56, 85, 86, 
92  
unit 66, 242, 243, 249  
variable 85-91, 286 
Weighted Shortest (FSPT) 
55, 62, 83 

Penalty 51, 101, 107, 197, 206, 
207, 301  
 
-R- 
Reentrance 47, 50-52, 92, 286, 
295, 296 
Reentrant  

environment 81-84 
FFS 81-84 
flow 84 
flow shop 82, 84 
job shop 82 
problem 81, 82, 84, 92 
production flow 40, 81, 83, 
84, 104, 187  
process flow 83, 104, 187  
system 42, 81, 82  

Replacement 11, 179, 215  
Rescheduling 2, 92, 298-308 

environments 289, 300, 302 
frequency 299 
horizon 304  
Local (LRS) 394 
method 291, 292, 300-301, 
304 
planning hotizon 257, 279 
plant 206 

 EBSCOhost - printed on 2/9/2023 3:05 AM via . All use subject to https://www.ebsco.com/terms-of-use



Index 
 

 

404 

policy 289, 292, 294, 298, 
300, 303 
real-time 211 
strategy 289, 290, 294-305 

Rework 2, 11, 31, 81, 88, 117, 
190, 286, 291, 292, 299  
Robust optimization 288 
Rolling 85, 211 

horizon method 71 
machine 85 
plant 206 
planning horizon 257, 279 
section 211 
time horizon 293, 294 

 
-S- 
Scarce capacity 260  
Setup  

anticipatory 2, 97, 109, 245 
batch 100, 102, 107-109, 
186, 187, 193, 194, 197, 
215, 217 
carry-over 259 
constant 79, 100, 101, 194, 
212  
cost 15, 51, 83, 84, 91, 102, 
195, 253-256, 259, 260, 262-
264, 267-269, 271, 272, 275  
deteriorating 107, 123 
external 121 
family 105, 108-109, 156, 
193, 196, 247, 258, 316-318  
frequency 43, 69, 94, 118, 
254  
internal 121 
item 259, 261, 262  
job-independent 100  
lot/sublot-attached 231, 240, 
246, 249  
lot 316, 317 
lot/sublot-detached 231, 249  

machine-dependent 108 
machine-independent 108 
machine/resource-dependent 
105 
major 68, 241, 259, 311 
minor 241, 259  
non-anticipatory 97,109, 245 
non-separable 96 
past-sequence-dependent (p-
s-d) 86, 105-107, 123 
recipe 316, 317 
reduction 8, 94, 114-122, 
127, 128, 146, 184, 187, 187  
separable 96, 98, 123  
sequence-dependent 70-72, 
83, 84, 86, 87, 89, 91, 101-
104, 109, 118, 124, 129, 
193, 194, 196, 211, 240, 
245, 246, 249, 259, 269, 
270-271, 273, 278, 320, 322, 
323, 238   
sequence-independent 72, 
96, 100-101, 109, 193, 194, 
197-198, 239, 270  
standard 101 
structure 258-259, 310, 317  

complex 258, 259  
simple 258  

time-dependent 105, 107, 
123, 194  
tool setup 215, 316, 317  
volume-dependent 109 
zero 116  

Scheduling 
batch 90, 91, 102, 105, 187-
220, 238, 239  
blocking 211 
BPM 200, 201, 203, 204 
burn-in 190  
cell 103 

 EBSCOhost - printed on 2/9/2023 3:05 AM via . All use subject to https://www.ebsco.com/terms-of-use



Production Planning and Scheduling for Lot Processing 

 

405 

classical 85, 87, 89, 201, 
218, 292  
completely reactive 287, 288 
cyclic 83 
deterministic 48, 250, 291 
dynamic 287, 288, 294, 295-
298  
economic lot 262 
family 91, 102, 108, 191 
group 191, 196, 199  
multi-agent 56, 206  
multi-criteria 54-56, 210 
multi-objective 54-55, 296  
no-wait 211 
online 58, 84, 294, 295, 298, 
306, 336  
periodic 294, 295  
reactive 287, 291, 295, 301, 
304 
rule 120, 131, 184  
parallel-batching 101 
predictive 283 
predictive-reactive 287, 288, 
298-299, 300-302 
proactive 301 
reentrant 82, 84  
robust 287, 288, 300  
robust proactive 287, 302-
305  
robust reactive 302 
serial batching 89, 199 
SMS 296 
standard 97-98  
stochastic 85  
tool 215-217 
under uncertainty 287 

Single machine 49, 50, 55-57, 
70, 86-91, 93, 100-102, 106-
108, 118, 123, 128, 193-195, 
199, 206, 210, 218, 245, 273, 
323 

at first stage 50 
Single Minute Exchange of Die 
(SMED) 8, 93, 110, 114, 120-
122, 124, 126, 130 
Stability 83, 179, 290, 300-304, 
306 
Structure 

arborescent 257, 276, 277 
assembly 257, 275, 277 
block-diagonal 165  
code 135, 137-140, 142-144 
changeover 114 
diagonal 164 
general 257, 276, 277 
family 113, 114 
mixed 92, 137, 139 
multi-level 260 
serial 257, 275, 277  
setup 114, 258, 259, 310, 
317 
underlining 157 

Sublot 
consistent 66, 226, 227, 229, 
230, 244, 235, 237-239, 242, 
244, 245, 247, 249 
continuous 229 
discrete 229, 233, 234 
equal 225, 228-230, 232, 
239, 243, 244 
identical 227 
integer 245, 246 
intermingling 232, 239 
non-intermingling 232, 239, 
245 
number 222, 224, 228, 231, 
232, 240, 243, 245, 246, 
249, 250 
size 74, 222, 225, 228, 229, 
233, 234, 239, 240, 242, 
245, 246-248, 250 
type 229 

 EBSCOhost - printed on 2/9/2023 3:05 AM via . All use subject to https://www.ebsco.com/terms-of-use



Index 
 

 

406 

variable 226, 229, 230, 235 
System  

pull 18, 19, 21-23, 27, 45, 
120 
push 18, 19, 21, 23, 28, 32, 
44 

 
-T- 
Theory of Constraints (TOC) 
29, 31, 299 
Tool 

change 7, 116, 117, 214, 
215, 310, 313, 315, 319 
delivery 115 
schedule 215-217 
share 22 
switch 191, 214-217 
waiting 11 

Total Productivity Maintenance 
(TPM) 8, 121  
 
-U- 
Uncertainty 43, 44, 101, 280, 
284, 285, 287-291, 294, 300, 
303, 306, 329, 331  
 

-W- 
Wafer 17, 18, 71, 81, 83, 104, 
187, 188, 296, 298 

fabrication 40-42, 60, 75, 83, 
188, 189, 200, 204, 205 
probe 56, 71, 188, 189 

Wastle 8, 10, 11, 18, 23, 94, 
109, 121, 180, 285 
Work-In-Process (WIP) 3, 5, 
11, 14, 16, 18, 19, 23-26, 28, 
30, 32, 39, 44, 45, 62, 71, 83, 
118, 309, 322, 327 

amount 16 
control 38-40, 44 
cost 17, 40 
excesive 24, 69, 329 
fixed 83 
inventory 39-42, 82, 187, 
210, 221, 223, 255, 331  
job 246, 247  
level 19, 40-42, 44, 69, 104, 
118, 119, 184, 254, 338 
reduction 42, 104, 120  
storage 26 

Work-In-Progres 3, 14

 

 EBSCOhost - printed on 2/9/2023 3:05 AM via . All use subject to https://www.ebsco.com/terms-of-use


	Dedication
	Table of Contents
	List of Figures
	List of Tables
	Preface
	Chapter One
	Chapter Two
	Chapter Three
	Chapter Four
	Chapter Five
	Chapter Six
	Chapter Seven
	Chapter Eight
	Chapter Nine
	Chapter Ten
	References
	Abbreviations
	Index



