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Preface

Information is of paramount importance in contemporary economies. The access to 
information in modern societies is automated by several processes and systems (e.g., 
financial, health care, government, traffic, and military) supported by a plethora of 
information technologies. Many users are led to rely on digital transactions since 
they are, most of the times, the most effective way to access and transfer goods and 
services.

The information security’s mantra of CIA (confidentiality, integrity, and 
availability) highlights the relevance of aspects such as the trustworthiness of 
information for users, the privacy of whom interacts or accesses social media 
platforms, or the security of information stored digitally. However, cyberspace has 
become a new battlefield with cyberthreats and cyberattacks increasing substantially. 
Eavesdropping and theft in cyberspace has resulted in losses of hundreds of billions 
of dollars to businesses. It is estimated that in 2021 cybercrime was the economic 
activity with the third largest yield in the world, worth around more than € 5.5 
billion USD, more than arms and drug trafficking together, just behind the GDP of 
the economies of the United States and China.

Cyber operations have jeopardized fair elections and instigated social movements, 
undermining people’s confidence in governments, markets, and even military security. 
As the modern market has become more connected online, cyberthreats have grown 
more sophisticated and ubiquitous.

In a more insidious way, hacking operations generate distrust in how systems 
operate by exploiting security flaws in computer systems. For instance, a cyberattack 
can hack and control a pacemaker, causing harm to the patient using the device; 
a system’s backdoor can allow hackers to access a weapon’s control, changing 
the real target of the weapon; cyberattacks can lead to distrust in the integrity of 
data or the algorithms that process data, such as in the case of voters distrusting 
from elections’ accuracy, or the military not knowing whether the missile detected 
by a situational awareness system is a real attack or a fake scenario triggered by 
malware. Privacy, in a digital world, can also be jeopardized and produce distrust 
in ownership or control of information to the point that a user can no longer be sure 

xiv
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Preface

whether its photos remain private, a company’s intellectual property was leaked, or 
nuclear weapons plans have fallen into the rivals’ possession. Finally, cyberattacks 
create distrust by manipulating social networks and relationships and ultimately 
deteriorating social cohesion. Online trolls, fake bots, and disinformation campaigns 
sow suspicion among groups and the information conveyed by each other. All these 
cyberthreats have implications that can erode the foundations on which markets, 
societies, governments, and the international system were built.

Inability to protect intellectual property from cybertheft has similar ramifications. 
Hacking into a company’s network and collecting sensitive data to steal intellectual 
property or trade secrets has become a lucrative criminal activity. The more 
widespread and effective such attacks become, the less firms can trust that their 
research and development efforts will pay off, eventually destroying knowledge-
based economies. Online banking is equally vulnerable to cyberthreats. If people 
lose faith in the security of their digital data and money, the entire modern financial 
system could implode.

Schools, courts, and municipal governments, as well as virtual classrooms, judicial 
records, and local emergency services, have all been victims of ransomware attacks, 
in which systems are knocked offline or rendered worthless until the victim pays 
up. The impact of these attacks erodes governance and social functions, leading to 
the lack of confidence in the integrity of data maintained by governments—whether 
birth certificates, marriage records, property divisions, or criminal records - thus 
jeopardizing society’s most basic processes.

The possibility of cyber-operations being able to jeopardize military capacity is 
another concerning factor, given the risk of weapons being made hostages of hackers, 
due to the fact that military are ever more dependent on smart weaponry, networked 
sensors, and autonomous platforms in their forces. Hence, as armed forces evolve 
towards digital transformation, they become more vulnerable to cyberattacks, which 
can jeopardize the security and facilitate inappropriate access to smart weapon 
systems. Furthermore, as commanders move further away from the battlefield thanks 
to remote operation of military systems and delegate responsibility to autonomous 
systems, this trust becomes even more important, to the point where the military 
have to have faith that cyberattacks on autonomous systems will not render them 
ineffective or, worse, cause fratricide or the deaths of civilians.

To date, cyberthreat solutions have primarily centred on preventing, protecting 
against, and defeating cyberthreats as they attack their targets. However, as cyberattacks 
are on the rise, as the efficiency of deterrence is uncertain, and as offensive approaches 
appear to be insufficient to stem the flood of attacks that threaten the world’s 
contemporary digital foundations, this strategy has been only partially successful, if 
not an actual failure. The key to success in cyberspace over the long term and to find 
ways to defeat cyberattacks could rely on machine learning and in particular deep 
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Preface

learning. Some machine learning and deep learning techniques applied to privacy 
and cybersecurity are discussed in different chapters in this volume.

In a concise definition, a cyberattack is any activity aggressively taken to affect 
information systems, networks, and infrastructures. A cyberattack occurs when a 
system or network weakness is exploited due to security vulnerabilities. The primary 
aim of a cyberattack is to rob, alter, or erase data, using cyberthreat tool to access 
confidential data, or compromise systems. Even if the target is unaware of all forms 
of cyberattacks, it may have a system in place to cope with a few of them.

A taxonomy of cyberthreats includes: (i) download of applications threats 
(malware, spyware, privacy breaching software, software that exploits zero-day 
vulnerabilities), (ii) Network and Wi-Fi security threats (network exploiting, wi-
fi sniffing, cross platform attacks, and BOYD), (iii) general cybersecurity threats 
(phishing, social engineering, drive-by-downloads, browser flaws, OS flaws, and 
data storage flaws), and (iv) physical threats (loss and theft of hardware, or its 
compromise).

On the other hand, cyberattacks classification include the following types of 
operations: Malware (ransomware, virus, worms, spyware, adware, and trojan horses), 
Phishing (deceptive phishing, data theft), Password attacks (brute force, dictionary, 
keylogger), Man-in-the-Middle, SQL injection, Denial-of-Service (application layer 
flood, distributed DoS, unintended DoS), DNS tunnelling, Drive-by-Download, 
Malverting (pop-up Ads, inline frames, Video Ads, Banner, Central Ads, Animated 
Ads), Rouge software, and Zero-day exploit.

Artificial Intelligence (AI) models can contribute to improving cybersecurity 
protection and for building solutions to minimise cyberattacks and ensure better 
information privacy. Machine learning (ML), as a subset of AI, is a data-driven 
approach that can be used for predictive purposes. ML algorithms generally use 
supervised or unsupervised learning methods. Unsupervised learning does not 
require labelled data or user feedback concerning the evaluation of the results while 
supervised learning relies on labelled data, or feedback by humans concerning the 
correction of the results. ML methodology usually involves training an algorithm 
with a set of data so it can identify patterns in new data sets. Reinforcement learning, 
on the other hand, is a class of ML where the system learns by trial and error, being 
rewarded or penalized based on the success of its actions.

Some of the machine learning and deep learning techniques, with varied 
perspectives, are explored in different chapters in this volume. The chapters present 
a wide variety of applications concerning privacy and cybersecurity. And it is an 
international perspective, both in terms of the varied geographical points of origin 
for the research and for the authors’ locations. While this book is a comprehensive 
overview, and the research and thinking presented in these chapters provide solutions 
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to their specific topics, each chapter also raises many additional questions that 
deserve further scrutiny and exploration.

ORGANIZATION OF THE BOOK

Those who are interested in machine learning and deep learning applied to privacy 
and cybersecurity should find ample material for study and exploration. The chapters 
of this book present a variety of topics on machine learning and deep learning applied 
to privacy and cybersecurity.

In Chapter 1, Ioannis Tsimperidis and Avi Arampatzis explore keystroke 
dynamics as biometric trait from which information can be extracted by exploiting 
data that comes from the way a user types on a real or virtual keyboard. Studies 
in keystroke dynamics have been conducted for about fifty years and their object 
is mainly user authentication to replace or enhance the authentication method 
using passwords. Keystroke dynamics were also used to classify users according 
to an inherent or acquired characteristic, such as gender or age, as well as to assess 
users’ physical and mental conditions, such as whether they were exhausted, if they 
suffer from depression, or if they suffer from a neurological disease. Many years of 
experimentation with keystroke dynamics resulted in the development of systems 
with very good performance in user authentication and user classification. The 
work of Tsimperidis, et al. uses keystroke dynamics to find some characteristics 
of completely unknown Internet users, to remove complete anonymity and solve 
some of the existing problems. To achieve this, a machine learning model is used 
which combines simplicity of operation with efficiency, namely the rotation forest. 
In this work, user profiling is attempted with data coming from the way users type 
and with the help of the rotation forest which uses the C4.5 decision tree as the base 
classifier. Specifically, the gender, the age, and the handedness of unknown Internet 
users are predicted, and the highest accuracy achieved was 88.9%, 86.3%, and 94.3%, 
respectively. The results show that the use of rotation forest in keystroke dynamics 
classification problems is very promising and can be the basis of a machine learning 
system that will serve as a cybersecurity tool.

In Chapter 2, Ntebogang Moroke and Katleho Makatjane note that machine learning 
algorithms have previously been employed to analyse authorised transactions and 
suspicious reports. These reports are investigated by professionals who contact the 
cardholders to confirm if the transaction was genuine or fraudulent. The investigators 
then provide feedback to the automated system which is used to train and update 
the algorithm to eventually improve the fraud detection performance over time. 
This traditional way of detecting debit or credit card fraud is tedious and takes quite 
a lot of time when cards are stolen or lost. Hence this chapter contributes to the 
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existing methods by building a Chrome extension that flags “Fraud/suspicious” 
transactions that will help both banks and cardholders to know about the fraudulent 
transactions made and further develop a “find my card application. The “find my 
card application” is a new system that cardholders will be able to install and have 
an opportunity to trace the whereabouts of their cards if stolen or lost. Cardholders 
will also be able to stop their usage with the use of their cell phones or computer 
browsers. Even though detecting financial fraud is considered a high priority for 
many organisations, recent literature lacks updated and comprehensive in-depth 
reviews that can help organisations with their decisions for selecting an appropriate 
data mining method. Therefore, the objective of the chapter is to apply the gradient 
boosting decision tree (GBDT) under deep learning to extract knowledge about the 
processing of the credit/debit card data to detect whether a normal transaction of 
datasets qualified as a novel fraud and finally determine its effectiveness to classify 
the number of fraudulent transactions.

In Chapter 3, Swati Jaiswal, Pallavi S. Yevale, and Anuja R. Jadhav introduce 
readers to the realm of autonomous vehicles’ security and its applications. These 
vehicles can access and send the data, download software updates, and connect with 
other vehicles or other Internet of Things (IoT) devices via the internet or wireless 
communication. Data from various kinds of sensors are combined and used for the 
detection of obstacles in the vehicle’s path, and after due pre-processing, enabling 
autonomous control of the vehicle, including the braking mechanism and the 
engine. The list of observed objects provides a vehicle environment model where 
the present condition is analyzed, and the track to the destination is scheduled. 
With a sudden increase in wireless communication, the complexity of connected 
vehicular systems has changed the traditional security in the automotive industry. 
Autonomous vehicle control urges very strict requirements about the security of 
the communication channels used by the vehicle to exchange information and the 
control logic that performs complex driving tasks. So, the increased connectivity 
results in a heightened risk of a cyber-security attack. For maintaining the advances 
in safe communication, it is important to establish strong security for connected 
vehicular systems. To this end, existing and known cybersecurity attack methods 
must be considered so as to minimize future cybersecurity risks in the connected 
and autonomous vehicle system. In this chapter, the authors emphasize recent work 
on how autonomous vehicles can ensure operation under ongoing cyber security 
attacks and their possible solutions. Results using machine learning algorithms in 
this field will also be summarized.

In Chapter 4, Manoj Jayabalan focuses on digital authentication, as a mean 
to provide secure access to digital information using various technologies. There 
are several methods proposed in the literature to secure data access, such as 
multifactor authentication, but usability is a concern with most of them. Transparent 
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and continuous authentication provides a better trade-off between security and 
usability. Employing user behavior-based authentication to the existing multi-factor 
authentication framework will provide additional security to the system without user 
intervention. There is a need for continuous authentication to be performed in the 
industries managing sensitive data, by analyzing the user behavior in the access to 
their digital services, so as to detect potential threats. The purpose of the chapter 
is to understand the potential inclusion of user behavior profiling in traditional 
authentication frameworks. Moreover, the chapter highlights some of the common 
features, techniques, and evaluation criteria usually considered in the development 
of user behavior profiling. The scope of the chapter is limited to user behavior-based 
authentication in smartphones and websites. This chapter is meant to be useful for 
identifying trends in user behavior profiling that will allow researchers to focus 
on areas that needs to be improved and new features that could be beneficial to 
stakeholders.

In Chapter 5, Banyatsang Mphago, Dimane Mpoeleng, and Shedden Masupe 
write about the use of deception systems as a viable option in reducing the never-
ending tussle between the attackers and the defenders. Traditional approaches are 
firmly based on the premise that the network perimeter is an effective means to 
protect the information assets within the organization and that employees within the 
organization can be trusted. In the face of these challenges, some organizations have 
changed the tactics and employed a ‘need-to-know’ approach as an effective way 
to secure their assets. The emergence of deception systems is becoming more and 
more a viable option to protect computer assets. The use of honeypots in protecting 
computer and information assets comes from the notion that ‘you cannot protect 
what you don’t know’. Therefore, honeypots came as a viable option to understand 
attackers and their attack methods. Once deployed, a successful honeypot must be 
able to deceive, lure, and record all the attackers’ activities.

In Chapter 6, Eduardo Barros, Victor Lobo, and Anacleto Correia explore the 
availability pillar of the CIA triad and the threat of Distributed Denial of Service 
(DDoS) attacks. The way this attack operates is by flooding the target with 
malicious traffic, depleting its bandwidth and/or computing resources to create 
total unavailability or some disruption of a network asset. One of the hardest tasks 
for an Intrusion Detection System (IDS) is to mitigate a DDoS. This type of attack 
has some peculiarities that makes it hard to defeat, namely: (i) the DDoS might be 
originated from thousands of legitimate devices; (ii) the requests may not contain 
any malicious content; (iii) the attacker can exploit a vulnerability in the attacked 
service but also in an external service to conduct the attack. Unlike most attacks, 
where only one malicious request is needed for it to be successful, a DDoS generally 
requires multiple requests, so it might be possible to identify patterns shared by 
malicious packets. This characteristic is key and allows the use of machine learning 
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for the purposes of identifying recurrent patterns in a DDoS. The aim of the chapter 
is to demonstrate that the use of machine learning for DDoS detection has potential, 
and also demonstrate how this can be done, introducing concepts for the creation of 
a model capable of predicting DDoS requests, and selectively block them.

In Chapter 7, Sivasankari Narasimhan mentions the use of Physical Unclonable 
Function (PUF) structures for cybersecurity purposes. Since the responses generated 
from the conventional PUF are vulnerable to attack, in this chapter, the transient effect 
of ring oscillator structure has been used. This works on two loops with complex 
loops containing NOT gates and NAND gates. Response prediction of these loops 
is a very difficult task for the adversary. Many machine learning algorithms may 
produce the responses with higher accuracies. This work provides new masked PUF 
architectures that are more secure and invulnerable to modeling attacks. Hence, in 
this chapter, masking-based configurability design on various PUF structures is 
introduced. This is helpful for resource-constrained machines. For different sizes 
of Challenge-Response Pair, machine learning techniques need to be changed, but 
prediction accuracy by the attacker should be low. By using this kind of Masked 
PUF structure better results can be attained.

In Chapter 8, Katleho Makatjane and Ntebogang Moroke deal with the identification 
of financial fraud. Between 2018 and 2019, online transactions increased credit and 
debit card theft by 20.5 percent. Hackers continue to obtain sensitive and private 
information from users, allowing them to trade on their accounts without their 
permission. A good fraud detection solution should be able to correctly categorize 
and detect fraudulent transactions in real-time transactions. The goal of this chapter 
is to leverage the Google Flutter platform to crowd-source credit and debit card 
ratings in order to classify transactions using supervised learning as fraudulent or 
not. The Logistic Model Tree (LMT) algorithm was used for detecting financial 
fraudulent transactions and, ultimately, to develop the financial fraud early warning 
system. Overall, an early warning system model has shown to be a good performer 
with a prediction rate of 99.9 percent.

In Chapter 9, Darrell Burrell, Calvin Nobles, Maurice Dawson, Eugene Lewis, 
Raschid Muller, Kevin Richardson, and Amalisha Aridi consider cybersecurity 
from the point of view of education, given that the number of complaints about 
cyberattacks to the Cyber Division of the US Federal Bureau of Investigations (FBI), 
has gone up to as many as 4,000 a day. The chapter explores the essential need to 
develop more PhD holding faculty in technology related areas and explains some 
unique and non-traditional paths to doctoral completion that allow professionals 
with significant real world work experience to complete a doctorate without career 
interruption and relocation from highly respected and established universities in 
the US and the UK.

xx
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In Chapter 10, Chhaya Dule and Rajasekharaiah K.M. note that the massive 
gathering of information necessary for machine learning raises very clear privacy 
problems. The firms that gather the information retain forever the user’s personal 
and extremely sensitive data such as photographs and voice records. Users cannot 
remove it or limit the intents for which it is utilized. However, centrally stored data is 
susceptible to legal and extrajudicial monitoring. Many data-owning organizations, 
for instance professional organizations that desire to use deep learning techniques 
in clinical records, are hindered from sharing the information and, more generally, 
from conducting extensive learning with that data by security and confidentiality 
rules. The chapter contains practical approaches that allow several parties to learn 
and develop models of complex systems for a specific purpose without disclosing 
their data sets and violating the security and confidentiality rules. It provides an 
interesting element in utility and privacy: the respondents (that give away their 
personal information) retain the privacy of their information while gaining from 
other users’ designs, thereby enhancing the accuracy of learning beyond what can 
be achieved by their contributions alone.

We hope you find the chapters to follow both interesting and useful.

Victor Lobo
NOVA Information Management School (NOVA-IMS), NOVA University Lisbon, 
Portugal & Portuguese Naval Academy, Portugal

Anacleto Correia
CINAV, Portuguese Naval Academy, Portugal
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ABSTRACT

The anonymity that users can maintain when connecting to the internet, in addition to 
the positive effects, such as being able to express their views and ideas freely without 
fear of retaliation, also carries some risks, such as the fact that it is a significant 
advantage for malicious users. In order to remove the complete anonymity of internet 
users, so as to protect unsuspecting users, this work attempts to identify some of 
their characteristics, namely gender, age, and handedness, using data coming from 
typing. For this purpose, the rotation forest is used as a classifier, and keystroke 
dynamics features are selected based on the chi-square feature selection procedure. 
The final results show that user profiling can be achieved with an accuracy of 88.9% 
in gender prediction, 86.3% in age prediction, and 94.3% in handedness prediction.

INTRODUCTION

People work, communicate, trade goods and services, are entertained and educated, 
and much more, in a very different way than a few years ago. Telecommunication 
and teleconferencing applications, various eShops, online games, courses of any 
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kind, and many more, have made their appearance serving the needs of individuals, 
companies, and organizations. The cause of all these rapid changes is the evolution 
and dissemination of the Internet and the services it offers. Today, a user has the 
ability to connect with other users from anywhere in the world through video calling 
or instant messaging applications, or through social networks. Also, every user has 
the opportunity to purchase products or services from the global market, with the 
same ease that he/she would do in his/her neighborhood, or even easier. It is also 
possible to find work for or with companies and individuals that may be located 
thousands of kilometers away.

Many opportunities for personal, national, and global growth and development 
are offered, but at the same time there are many risks, such as financial frauds, 
seduction of minors, hacking, anonymous threats, etc. (Degtereva et al., 2020). 
One of the most important reasons for the existence of these risks is the partial or 
complete anonymity that a user can maintain when connecting to the Internet. This 
anonymity, on the one hand, often proves useful as it helps the user to express and 
freely be creative, but on the other hand may alter his/her behavior by turning him/
her into a rude, aggressive, and disrespectful person (Krysowski & Tremewan, 
2020). In addition, anonymity or concealment of true identity is one of the major 
advantages of malicious users in their plans to deceive unsuspecting users and/or 
carry out cyber-attacks.

Also noteworthy is that the way in which users interact on the Internet is shaped by 
the fact that although a variety of communication methods are offered, such as voice 
calls, video calls, file sharing, etc., text is still the dominant form of communication 
(Nitzburg & Farber, 2019) among users. A variety of instant messaging applications 
are available and many companies invest significant amounts of money in their 
development. If we additionally consider the email service, the comments made by 
users on various social media, and searches carried out in search engines, each of 
which is primarily in text, a backdrop is formed in which text, or rather text typing, 
plays a prominent role on the World Wide Web, in user communication, and in 
computer operations in general.

Keystroke dynamics are a biometric trait from which information can be extracted 
by exploiting data that comes from the way a user types on a real or virtual keyboard. 
Studies in keystroke dynamics have been conducted for about fifty years and their 
object is mainly user authentication (Raul et al., 2020) in order to replace or enhance 
the authentication method using passwords. Keystroke dynamics were also used to 
classify users according to an inherent or acquired characteristic, such as gender or 
age, as well as to assess users’ physical and mental condition, such as whether they 
were exhausted (Ulinskasa et al., 2018), if they suffer from depression (Mastoras 
et al., 2019), or if they suffer from a neurological disease (Lam et al., 2020). Many 
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years of experimentation with keystroke dynamics resulted in the development of 
systems with very good performance in user authentication and user classification.

The features used in keystroke dynamics relate to how the users type, not what 
they type, and can be divided into temporal and non-temporal. The most commonly 
used temporal features are the keystroke durations which are the time intervals 
between the push of a button and its release, and the digram latencies which are 
the time intervals between the uses of two consecutive keys. Digram latency can be 
expressed in four different ways, firstly, the time elapsed between the pressing of 
the first key and the pressing of the second key (i.e. the down-down digram latency 
or DDDL), secondly, the time elapsed between the pressing of the first key and the 
releasing of the second key (i.e. the down-up diagram latency or DUDL), thirdly, 
the time elapsed between the releasing of the first and the pressing of the second 
key (i.e. the up-down diagram latency or UDDL), and fourthly, the time elapsed 
between the releasing of the first and the releasing of the second key (i.e. the up-
up diagram latency or UUDL). Other temporal keystroke dynamics features are 
trigram latencies, which are similarly defined, tetragram latencies, and generally 
n-gram latencies, the number and duration of typing pauses, typing speed, etc. 
Non-temporal features include the percentages of usage of each of the duplicate 
keys, such as “Shift”, “Ctrl”, and the number keys, the mode of correction of typing 
errors (i.e., backspace vs. delete), the application in which typing is performed, and 
other typing features.

This work uses keystroke dynamics to find some characteristics of completely 
unknown Internet users, in order to remove complete anonymity and solve some of 
the problems mentioned. To achieve this, a machine learning model is used which 
combines simplicity of operation with efficiency, namely the rotation forest. The 
next section of the chapter provides a review of the literature related to the topic 
of user classification using keystroke dynamics. Then an analysis is made of the 
stages of the methodology followed and the results of the experiments conducted 
are presented. Following are suggestions for exploiting the findings of this chapter 
and references to possible extensions of this research. Finally, the conclusion of the 
chapter is presented.

KEYSTROKE ANALYSIS

The reasons for trying to identify certain characteristics of a computer user vary. 
For example, when a cybercrime is committed and the culprit is sought, it would be 
a valuable help if some of his/her characteristics were known, such as gender, age, 
handedness, mother tongue, educational level, etc., in order to reduce the number of 
suspects. In another application, targeted advertising would benefit, since on the one 
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hand the investment of the companies would have better results and on the other hand 
the users would not be overwhelmed with many and indifferent advertising messages, 
but with much less and more targeted ones. Also, knowing some characteristics of 
the user using a computer enables the user-computer interaction to become much 
more successful. That is, it would be possible to provide advice and suggestions to 
the users to visit certain websites, use certain services, and participate in certain 
groups that are more suitable for them. In addition, by revealing the characteristics 
of the users, it would be possible to warn unsuspecting users about the possibility 
of falling victim to some deception. These reasons, and possibly others, are the 
motivation for many works in the field of keystroke dynamics aimed at identifying 
certain characteristics of computer and Internet users.

In one such study, Fairhurst and Da Costa-Abreu (2011) focused on the use 
of social networks by young people and the existence of risks of hiding the real 
characteristics of users. They used an existing dataset with data from 98 male and 35 
female users. They used three simple classifiers, namely k-nearest neighbors, C4.5 
decision tree, and naive Bayes, as well as three classifier combination techniques. 
The best results came from the dynamic classifier selection based on local accuracy 
class (DCS-LA) (Woods et al., 1997), with an error rate of 3% in gender prediction.

Antal and Nemes (2016) attempted to identify the user gender of a mobile device 
from data from touchscreen swipes and keystroke dynamics. Thus, they used two 
datasets, one created by recording touchscreen swipes while answering a questionnaire 
consisting of 58 questions and one created by recording the typing of a specific 
password by 42 users, 24 males and 18 females. In terms of keystroke dynamics the 
features that were extracted were the keystroke durations, the down-down digram 
latencies, the pressure exerted on the virtual keys, and the surface covered when 
using the keys. Random forest was used for the classification and the results showed 
an accuracy of 93.5% in the identification of the user’s gender.

Lee et al. (2018) also dealt with mobile devices in their research and aimed 
to solve the problem of authentication of smartphone users using PIN or pattern 
drawing, due to the fact that it is very vulnerable to the shoulder surfing attack. 
They collected data from typing on smartphones and as features, among others, 
used keystroke durations and all versions of digram latencies. Researchers using 
distance algorithms have been able to identify an impostor with an equal error rate 
(EER) of 8%, which is an indicator of system performance. EER is a point where 
false acceptance rate and false rejection rate intersects, and the lower it is, the more 
accurate the system. But importantly, they also found that it is easier to identify an 
impostor when the legal user is of the opposite gender, thus proving that it is possible 
to separate users according to their gender depending on the way they type, offering 
another suggestion for implementing gender classification.
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Udandarao et al. (2020) examined the effect of various characteristics of the users 
on the way they type, such as their computer experience, their gender, their height, 
etc. They used an existing dataset created by recording 117 volunteers, who typed 
two specific sentences and answered a series of questions. Regarding the gender 
demographics of the volunteers, 72 were males and 45 were females. The features 
they used were keystroke durations, all types of digram latencies, as well as features 
related to whole words. For the gender classification, six machine learning models 
and four deep learning models were tested, of which the convolutional neural network 
(CNN) achieved the highest accuracy of 93%.

Identifying the gender of the person we are talking to is a simple process during 
a face-to-face conversation. Facial characteristics, expressions, and differences 
imposed by some cultures (such as hairstyle and clothing), are clues for making such 
an identification. But all these are absent when chatting on the Internet and this is 
the reason why Buker and Vinciarelli (2021) conducted their research to reveal the 
gender of the user who communicates via chat applications. They collected data 
from the discussion of 60 people, in pairs, through a chat application, of which 35 
were females and 25 were males. The features extracted were the density of “!”, 
density of “?”, density of non-alphabetic characters, typing speed, backspace time, 
etc. For classification they used a random forest reaching an accuracy of 98.8% and 
showing what the most important features are for separating users according to their 
gender, i.e. typing speed, backspace time, and density of “backspaces”, among others.

Data similar to those derived from keystrokes were addressed by Van Balet et al. 
(2016). The reason for their research was that gender is hidden in online conversations 
often for malicious purposes. Given the differentiation of gestures between males 
and females, the possibility of separating users according to their gender depending 
on mouse movements was examined. Data were collected from 94 users (49 women 
and 45 men) with the two groups having similar statistical characteristics in terms 
of age and computer experience. Features were extracted from the data such as the 
time that the left click remains pressed, the maximum speed observed during the 
movement of the mouse, the total distance traveled by the mouse during an action, 
etc. The user gender was predicted using logistic regression and the results showed 
an accuracy approaching 76% in an independent test set and once the outliers have 
been removed.

Gender is the user characteristic sought in most keystroke dynamics research, 
mainly because it is a characteristic that is quite distinct compared to others, such as 
age and educational level, as well as because it seems to be of the greatest commercial 
interest. Idrus et al. (2014) in their work dealt with other characteristics besides gender 
and attempted to do user profiling from data coming from keystrokes. For this reason 
they used two datasets, one created by recording the typing of five short phrases and 
one by recording free text typing. As a classifier they used a support vector machine 
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(SVM) with a radial basis function kernel. They performed experiments to find the 
gender, the age group (<30 and 330), and the handedness of users. In each group of 
experiments the datasets were balanced by removing excess instances, so that for 
example the number of males is equal to the number of females, etc. The results 
showed accuracy up to 86% in gender classification, up to 78% in age classification, 
and up to 88% in handedness classification.

Beyond gender, the second most frequently sought characteristic is age. In the 
studies that involve classification, age groups are defined, and the aim is to find the 
group to which a user belongs. The segregation of groups in each separate research 
has been usually done based on the limits set by legislation, such as the age that 
separates minors from adults, based on the available dataset so that classes with the 
same number of instances emerge, or based on other criteria, which could also be 
arbitrary. Thus, Tsimperidis et al. (2021) arbitrarily defined four classes and found 
the age group that a user belongs to, utilizing data from the typing patterns. A dataset 
from the typing recording of 118 volunteers was used and keystroke durations and 
down-down diagram latencies were used as features. Of the five classifiers tested, 
radial basis function network (RBFN) was the most successful with 90% accuracy.

The dangers of the Internet for children led Uzun et al. (2015) to check how 
successfully typing data can be used to distinguish children from adults. For the 
needs of their research, they recorded the typing of users who belonged to two age 
groups, 10-14 and 18-49 years old. The recording was made on a specific computer 
with an application created by the researchers in which they invited the volunteers 
to answer some questions. For the separation between children and adults they used 
a number of classifiers, of which the linear SVM proved to be the most successful 
with EER 8.8%.

In their work, Hossain and Haberfeld (2020) attempted to separate children from 
adult users, again with the aim of protecting minors from the dangers of the Internet. 
They focused on mobile devices and created an application for recording users, in 
which volunteers were asked to press six keys, in a specific order, several times. 
They divided users into three age groups, children (5-12 years old), adolescents 
(13-17 years old), and adults (18 years old and older). The features that were taken 
advantage of were keystroke durations, the surface occupied by the finger, and the 
pressure exerted on each virtual key. For the classification they used linear models, 
nearest neighbors, and SVMs. The results showed a successful identification of the 
user’s age group with a percentage of about 73% on smartphones and 82% on tablets.

In another work, Vesel et al. (2020) was trying to find out if there are any obvious 
differences in the way users with mood disorders type. For this purpose, they used 
keystroke dynamics data in order to diagnose depression, bipolar disorder, anxiety, 
attention deficit hyperactivity disorder, post-traumatic stress disorder, etc. As features 
they used inter-key delay (IKD) which are the DDDLs between key types (not between 
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each individual key), typing speed, and pauses during typing. An important finding 
of their research is the significant differentiation in IKDs between the age groups of 
individuals close to 20 years, close to 45 years, and close to 70 years, which makes 
it possible to separate users according to their age depending on the way they type.

User handedness is a characteristic which is rarely explored in research, mainly 
due to the fact that the datasets that are created are extremely unbalanced and the 
classification procedure is very difficult. In a study, Roy et al. (2018) attempt to 
reveal the handedness of a smartphone user, among other characteristics. To create 
a keystroke dynamic dataset, they developed a web-based application and recorded 
92 users typing a particular word seven times. Keystroke durations and all types of 
digram latencies were used as features. After removing the outliers from their data, 
they proceeded to classification using the SVM, naive Bayes, random forest, and 
multinomial nominal log linear model. The best results came from random forest 
with 81.5% accuracy.

The handedness of an unknown user, among other characteristics, is sought in 
the work of Tsimperidis et al. (2021). Researchers recorded typing by a number of 
volunteers during the daily usage of their computers. From the data they collected 
they extracted 230 keystroke durations and digram latencies, and by testing five 
different machine learning models they were able to identify the dominant hand of 
an unknown user with 97% accuracy. While in another study, Earl et al. (2021) tried 
to show that the combined use of keystroke and mouse dynamics features can bring 
better results in recognizing some user characteristics. To collect keystroke data 240 
volunteers copied a piece of text and answered a question. Digram latencies and 
the error rates were extracted from the recorded data as features. They followed a 
feature selection process and tried some combinations of features to achieve the best 
results. Decision trees, random forest, Gaussian naive-Bayes, SVM, and K-nearest 
neighbors were used for classification. Finally, experiments showed that a user’s 
handedness can be predicted with 73.5% accuracy taking advantage of keystroke 
dynamics features.

In addition to the gender, age, and handedness that are sought in this chapter, in 
the literature there are also studies that aim to find other user characteristics, such 
as ethnicity, educational level, etc. The bottom line, however, is that more and more 
efforts are being made in this direction, with new techniques being tested, and there 
are now quite reliable systems for finding certain characteristics of computer users 
by exploiting data derived from typing.

 EBSCOhost - printed on 2/9/2023 12:01 PM via . All use subject to https://www.ebsco.com/terms-of-use



8

User Profiling Using Keystroke Dynamics and Rotation Forest

METHODOLOGY AND RESULTS

The methodology followed in the present study consists of three steps. Firstly, the 
keystroke dynamics data collection. Secondly, the extraction of features from the 
data and the selection of the most appropriate ones for user classification according 
to the gender, age, and handedness. Thirdly, the use of a machine learning model 
and finding its appropriate parameters for effective user classification.

Data Acquisition

An appropriate dataset in keystroke dynamics studies is crucial for performing 
experiments and drawing correct conclusions. The dataset should be accompanied 
by the appropriate demographics and contain the required data. In some keystroke 
dynamics research ready-made datasets were used (Giot et al., 2015) while in others 
new ones had to be created. Creating a keystroke dynamics dataset can be done by 
recording the typing of users who have been asked to copy a specific piece of text, 
a task usually performed in a closed environment, or by recording the typing of 
users who type at will, something that is done either by answering specific questions 
and performing specific tasks, or by using the computer without any restrictions 
and instructions. The former way to create a keystroke dynamics dataset is called 
fixed-text and the latter free-text.

In the data acquisition task of this work, the mode that approaches the normal 
operation of the computer as close as possible was selected. Specifically, a keylogger 
was installed on the volunteers’ computer which has the ability to record typing 
actions from any application in a Windows environment. For security and privacy 
reasons, the volunteers were given the opportunity to enable and disable the keylogger 
whenever they wished, to monitor the recorded data but without being able to modify 
it, to leave the process at any time, and to decide whether to deliver or not the log 
files. In addition, a consent form was signed in which the researchers pledged not 
to share the data in any way and to use it only for the purposes of the present study. 
This ensures that personal and/or sensitive data, such as passwords and personal 
messages are not leaked to other people.

In a period that lasted a little over 18 months, 118 volunteers were recorded and 
handed over log files. Each of the volunteers submitted 3-4 log files resulting in the 
creation of a dataset of 387 log files, each of which contains data of approximately 
3,500 keystrokes and metadata with the characteristics of the volunteers, among which 
was the gender, the age, and the handedness of users. In each log file, each record 
corresponds to an action on the keyboard and consists of four fields, separated by a 
comma. The first field lists the key on which the action was performed, in the form of 
a virtual key code, which is a standard encoding by which each key and each mouse 
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action is assigned a number from 1 to 255. With the first 7 codes corresponding to 
mouse actions the recording concerned codes 8 to 255. The second field records the 
date on which the action took place. The third field records the exact time that the 
action took place in the form of an integer that indicates the number of milliseconds 
that have elapsed since the beginning of the day, i.e., at 12 midnight. Finally, the 
fourth field lists the type of action, which can be key-press or key-release.

Feature Extraction and Feature Selection

From the data recorded in the dataset it is possible to extract most of the features used 
in keystroke dynamics studies. For example, subtracting the value in the third field 
of a record for one keypress from the corresponding value of the next record for the 
key-release of the same key results in the keystroke duration. Also, subtracting the 
values of the third field that have two consecutive records for key presses results in 
DDDL. Moreover, counting the number of records that first field has the value 160, 
and those that have the value 161, results in the number of times the left and right 
“Shift” were used, respectively, and therefore the percentage of use of each of these. 
In similar ways it is possible to extract many other keystroke dynamics features.

The number of available features is in the order of millions and therefore a choice 
must be made as to which of them will be used. As such, in the present work, the 
most widely used features in keystroke dynamics studies, i.e., keystroke durations 
and down-down digaram latencies, were selected. In a log file, each key and each 
digram has been recorded many times, resulting in many different measurements 
for the same feature. Finally, the value of the feature is the average of these many 
measurements. In fact, for reasons of reliable calculation of feature values, when the 
use of a key in a log file has been recorded less than five times it is not taken into 
account. Similarly, a digram latency is not considered if the corresponding digram 
has been recorded less than three times.

Approximately 65,000 features were extracted with this process, which is a very 
large number and the use of all of them will lead to time consuming systems. For 
this reason, a feature selection procedure was followed in order to find those features 
that can best distinguish the users according to gender, age, and handedness.

The Chi-Square feature selection was followed as such procedure. In feature 
selection, Chi-Square calculates the correlation between a class and a feature. When 
the resulting value of the Chi-square is small it means that it will be difficult to 
distinguish the classes only using the feature as class differentiator, and therefore may 
be rejected. On the contrary, when the value is high then this feature is characterized 
as capable of separating classes. The problem is that the Chi-Square feature selection 
procedure can be applied when classes and features are categorical, but the features 
used in this classification are measured in milliseconds, i.e., they are numerical. 
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However, if numerical features are suitably discretized, they can also be used in 
the procedure.

The Chi-Square value for each feature f, which has discretized in v values, in a 
classification problem with C classes, is given by the formula:

� 2
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j

C ij ij

ij
� � �

�� �
� �� �  (1)

Oij is the number of times where feature f is observed to have the i-th value in the 
j-th class. Eij is the number of times where feature f is expected to have the i-th 
value in the j-th class. If this procedure, which is also described in the work of 
Rachburee and Punlumjeak (2015), is followed for each feature in each of the three 
classification problems, three lists of features are generated, with features ranked 
by their usefulness (as measured by their Chi-Square values) in separating users 
according to the characteristics studied.

In Table 1, the first 15 features are ranked with the highest Chi-Square for gender, 
age, and handedness classification problems, where each of them is represented 
by the virtual key code(s) of the keys that compose it. So, one number indicates 
keystroke duration, and two numbers indicate down-down digram latency.

Some observations that can be made from Table 1 are: a) keystroke durations 
seem to play a more important role than digram latencies in age classification, while 
digram latencies are more significant in gender classification; b) the “A”, “M”, 
“N”, and “O” keys, along with the digrams in which they participate, show high 
correlation with gender; c) the keys “A” and “T”, along with the digrams in which 
they participate, are placed quite high on the list of the most important features 
in case of handedness classification; d) in case of age classification, Chi-Square 
values are much higher than the other two classification problems, which means 
that a feature that is in the two, or all three, lists, in the same ranking position, as 
for example with the “D” keystroke duration, is more capable of separating users 
by age than others characteristics. It should be noted that as far as observation (b) is 
concerned, the keys mentioned are at the left end and at the right end of the character 
range on the keyboard. This finding needs to be further studied to find out if there 
is a correlation between the location of the keys on the keyboard and the way they 
are used by users with different characteristics.
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Rotation Forest

As mentioned in the section “Keystroke Analysis”, many classifiers have been 
used to classify users using keystroke dynamics features. Among them are SVM, 
random forest, naïve Bayes, RBFN, k-nearest neighbors, C4.5 decision tree, and 
many others. One classifier that has not been used so far in keystroke dynamics 
user classification studies, to our knowledge, is the rotation forest. It is a classifier 
ensemble where each base classifier uses a different training set, and all of them 
can be trained in parallel.

For each classifier in the ensemble the available feature set, for each of the 
classification problems, is divided into a number of subsets. These subsets may be 
disjoint or intersecting, but to achieve greater diversity in the training sets of base 
classifiers the disjoint subsets are preferred. For each of the feature subsets, half the 
classes of the problem are randomly selected and only the instances labeled with these 
classes are retained from the original dataset. Thus, a number of different sub-datasets 
are created. For each of these sub-datasets a percentage of the remaining instances 
is randomly removed. Then, principal component analysis (PCA) is performed on 

Table 1. Keystroke dynamics features with the highest Chi-Square in gender, age, 
and handedness classification

#
Gender Age Handedness

Feat. Keys 𝜒2 Feat. Keys 𝜒2 Feat. Keys 𝜒2

1 80-65 P-A 28.4685 65-32 A-(space) 79.2127 79 O 51.0753

2 77-65 M-A 25.8396 69 E 71.9764 84-65 T-A 39.4705

3 73-78 I-N 24.0143 79 O 50.5387 82-65 R-A 35.2808

4 78-65 N-A 23.8809 65 A 43.8988 71 G 28.8362

5 68 D 22.4733 68 D 41.9577 65 A 28.7747

6 77-79 M-O 21.7047 83 S 40.6108 65-84 A-T 25.2559

7 75-65 K-A 21.4770 32 (space) 40.5972 186 ;: 23.4427

8 78-79 N-O 20.5897 87 W 40.4034 83-84 S-T 21.3273

9 76-69 L-E 20.1416 39 (right-arrow) 39.2502 69 E 21.1344

10 79-77 O-M 19.4597 89 Y 36.7346 76-69 L-E 20.3488

11 65 A 19.2735 86 V 36.0397 66 B 19.0795

12 69-73 E-I 18.8601 70 F 35.3603 65-32 A-(space) 17.7110

13 79-78 O-N 18.7485 88 X 33.7660 82 R 16.0820

14 65-83 A-S 18.5307 73-32 I-(space) 33.6719 186-89 ;:-Y 15.9355

15 87 W 18.4606 78 N 30.4884 76-73 L-I 14.6795
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the features and the instances of each sub-dataset to calculate the coefficients of 
principal components and to form a sparse matrix. The columns of this matrix are 
rearranged to correspond to the original features. Finally, the training set for a base 
classifier is calculated by multiplying this “rotation” matrix with the initial dataset. 
When this process is completed s, the training set for each base classifier is created. 
This algorithm is described in more detail in the work of Rodriguez et al. (2006).

Therefore, the classifier parameters are the number of base classifiers, the 
number of features that will form a subset (which can be set between two values), 
and the percentage of instances that are removed from the dataset. It is noted that 
the C4.5 decision tree is chosen as the base classifier, on the one hand because of its 
simplicity, and on the other hand because it is sensitive to rotation of the features.

Experiments and Results

The keystroke dynamics feature selection procedure showed 514, 690, and 246 features 
with a non-zero Chi-Square value for gender, age, and handedness classification 
problems, respectively. In the experimental procedure that was followed, all these 
features were used, and a different number of base classifiers were tested. Specifically, 
experiments were conducted for 10, 20, 30, 40, and 50 base classifiers, and for each 
different number the best performance of the rotation forest was sought, as measured 
by the accuracy, the training time (time to build model, TBM), the F-score (F1), 
and the area under the ROC curve (AUC).

The F1 score is used, as a combined measurement of precision and recall, because 
accuracy alone cannot fully give the picture of the overall performance of a model 
when classes are imbalanced, and because the F1 score is a measurement of how 
balanced the prediction across classes is. For example, assume two cases of a system 
for a handedness classification problem, where, as expected (Papadatou-Pastou et 
al., 2020), the ratio of left versus right handers is 1:10. In the first case, the system 
predicts all users as right-handed. The accuracy is 90%, but it is obvious that the 
system is not working properly. In the second case, the system correctly predicts 
the dominant hand of users 9 out of 10 instances, for all classes. The accuracy is 
again 90%, but this system is more reliable. This greater reliability is reflected in 
the F-score, where in the latter case is higher.

AUC, which is a common tool for evaluating predictions, e.g., Cook and Ramadas 
(2020), is also used to form a more complete picture of classifier performance. The 
receiver operating characteristic (ROC) curve is a plot that presents the recall as 
a function of probability of false alarm, which is equal to 1 - precision. The ROC 
curve is limited to the interval [0, 1] in both dimensions, thus AUC, which is an area 
enclosed between the curve and the false positive rate axis, varies between 0 and 1.
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The well-known 10-folds cross-validation was used in the experiments, i.e., the 
dataset is randomly divided into 10 disjoint parts with approximately equal size and 
every part is in turn used to test the model induced from the other 9 parts, e.g., Wong 
and Yang (2017). In this study, where there are 387 log files, each part in which the 
dataset was divided consists of 38 or 39 files. With the volunteers having delivered 
3-4 log files it was easy to include all files of each individual in one of the 10 parts, 
so that to avoid overfitting in case that one log file from a person could end up in 
the training set while another one ends up in the testing set.

Gender Classification

In the gender classification problem two classes were defined, “male” and “female”, 
and out of the 118 volunteers who participated in the typing process, 61 were male 
(51.7% of all volunteers) who submitted 203 log files (52.4% of all log files) and 57 
were female (48.3% of all volunteers) who submitted 184 log files (47.6% of all log 
files). That is, the dataset is gender balanced and reflects global demographics, since 
men and women are roughly equal in number. Table 2 shows the best performance 
of the rotation forest for different numbers of base classifiers.

The best performance shown in Table 2 was achieved for the case of 10 base 
classifiers having subsets between 3 and 12 features and removing 50% of instances, 
for the case of 20 base classifiers having subsets between 1 and 10 features and 
removing 25% of instances, for 30 base classifiers the rotation forest parameters 
were the creation of subsets between 5 and 10 features and the removal of 10% of 
the instances, in the case of 40 base classifiers the values of respective parameters 
were 9, 10, and 50%, and finally, for the case of 50 C4.5 decision trees, which is 
the base classifier, the corresponding values of the rotation forest parameters were 
3, 12, and 25%.

Table 2. Performance of the rotation forest in the gender classification problem for 
different numbers of base classifiers

Base 
Classifiers Acc. TBM (secs) F1 AUC

10 85.0% 3.27 0.850 0.916

20 88.1% 9.33 0.881 0.936

30 87.9% 14.69 0.879 0.939

40 88.4% 14.19 0.884 0.953

50 88.9% 23.09 0.889 0.950
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An obvious conclusion drawn from Table 2 is that performance seems to increase 
as more base classifiers are used, at a cost of increasing TBM.

Age Classification

Four age classes were defined in the age classification problem, “18-25”, “26-35”, 
“36-45”, and “46+” years old users. Of the 118 volunteers, 31 belonged to the age 
group “18-25” (26.2% of all volunteers) who submitted 96 log files (24.8% of all 
log files), 37 belonged to the age group “26-35” (31.4%) who submitted 129 log 
files (33.3%), 37 belonged to the age group “36-45” (31.4%) who submitted 117 log 
files (30.2%), and 13 belonged to the age group “46+” (11.0%) who submitted 45 
log files (11.7%). The dataset is balanced in terms of the first three classes, while 
the fourth class is less represented, although the number of instances is considered 
sufficient as it is less than three times smaller than that of the other classes. Table 3 
shows the best performance of the tested classifier for 10, 20, 30, 40, and 50 C4.5 
decision trees.

In Table 3 the best performance of the rotation forest with 10 base classifiers 
was achieved creating subsets having features between 9 and 10 and removing 50% 
of instances, while with 20 decision trees was achieved with subsets of 10 to 15 
features and removing the 75% of instances, with 30 decision trees with subsets 
of 9 to 10 features and removing the 75% of instances, with 40 trees with 10 to 15 
features in subsets and removing 90% of instances, and finally, in the case of 50 
base classifiers the best performance achieved having subsets of 10 to 15 features 
and removing the 50% of instances.

The conclusion drawn from Table 3 for age classification, similar to that of 
gender classification in Table 2, is that effectiveness seems to increase as more base 
classifiers are used, at a cost of increasing TBM.

Table 3. Performance of rotation forest in the age classification problem for different 
numbers of base classifiers

Base 
Classifiers Acc. TBM (secs) F1 AUC

10 80.1% 6.14 0.799 0.927

20 83.2% 8.69 0.830 0.953

30 83.5% 12.88 0.833 0.951

40 85.0% 13.60 0.848 0.951

50 86.3% 29.92 0.862 0.963
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Handedness Classification

In most keystroke dynamics studies dealing with handedness, two classes were 
defined, “right-handed” and “left-handed”, as shown in the section “Background”. 
But in this research the class “ambidextrous”, in which included users who said 
they use both right and left hand with the same skill, is added. Of the 118 volunteers 
who participated in the process, 105 were “right-handed” (89.0% of all users) who 
submitted 343 log files (88.6% of all log files), 10 were “left-handed” (8.5%) who 
submitted 35 log files (9.0%), and 3 were “ambidextrous” (2.5%) who submitted 
9 log files (2.4%). The dataset is as unbalanced as would be expected according 
to global demographics. Table 4 presents the best performance of rotation forest 
for different numbers of base classifiers in predicting the dominant hand of users.

The values of rotation forest parameters, and specifically the minimum number 
of features in each subset, the maximum number of features, and the percentage of 
instances removed, which lead to the best performance showing in Table 4, are as 
follows: for 10 base classifiers 1, 10, and 90%, respectively, for 20 base classifiers 
3, 20, and 85%, respectively, for 30 base classifiers 5, 10, and 50%, respectively, for 
40 base classifiers 1, 10, and 75%, respectively, and finally, for 50 base classifiers 
3, 3, and 25%, respectively.

Overall, the number of base classifiers does not seem to impact effectiveness 
much, so using a small number (e.g., 10) is recommended in order to avoid high 
costs of TBM.

Discussion of the Results

The summary results of the experiments in terms of accuracy in the three classification 
problems examined are presented in Figure 1.

Table 4. Performance of rotation forest in the handedness classification problem 
for different numbers of base classifiers

Base 
Classifiers Acc. TBM (secs) F1 AUC

10 94.1% 1.19 0.930 0.967

20 94.1% 1.47 0.931 0.939

30 94.3% 3.70 0.934 0.964

40 94.3% 5.25 0.935 0.959

50 94.1% 9.43 0.933 0.958
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As shown in Figure 1 and Tables 2, 3, and 4, the accuracy in each of the three 
classification problems far exceeds the baseline. The baseline can be defined as 
the percentage of instances of the dominant class in the dataset. Thus, the baseline 
in gender classification case is considered 52.4%, while the highest accuracy that 
measured is 88.9%. In the case of age classification, the baseline is considered 33.3%, 
while the highest accuracy is 86.3%. Finally, in the handedness classification the 
baseline is 88.6% and the highest accuracy is 94.3%.

Regarding the improvement of accuracy in relation to the increase in the number 
of base classifiers, different behavior is observed in each of the three cases. In the 
search for user handedness, the accuracy does not seem to increase with the increase 
of the number of base classifiers and it seems that the 10 C4.5 decision trees are 
more than enough to achieve the highest accuracy. In the search for gender, there is 
a significant improvement of accuracy as the number of base classifiers increases 
from 10 to 20, and then, with the further increase in the number of C4.5 decision 
trees the accuracy improves at a much lower rate. Finally, in the search of the age 
group that a user belongs to, there is also a significant improvement of accuracy 
between 10 and 20 base classifiers, but in contrast to gender classification there 
is also a significant improvement between 30 and 50 base classifiers. So, a higher 
accuracy in gender and age classification may be achieved by using more base 
classifiers. However, this goes beyond the scope of the present study, which is to 
use the rotation forest for the first time in experiments with keystroke dynamics 
data and to check whether it has promising results. Therefore, the search for the 

Figure 1. Accuracy in the three classification problems over different number of 
base classifiers
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highest possible accuracy in gender and age classification is shifted to a possible 
extension of this research.

Also, another important parameter of the operation of the rotation forest during 
user profiling, which must be taken into account, is the training time required. In 
gender classification the highest accuracy is 88.9% and is achieved with a training 
time of 23.09 seconds. With a tradeoff of 0.8% in accuracy the training time is 
reduced by about 60%, to 9.33 seconds. In age classification the highest accuracy 
observed is 86.3% which is achieved with training time 29.92 seconds, while with a 
tradeoff of 1.3%, approximately 55% less time (13.60 seconds) is required. Finally, 
in the handedness classification the almost highest accuracy, 94.1%, is achieved 
with training time 1.19 seconds.

The execution of the experiments showed a correlation between the training time 
and the number of base classifiers. The more base classifiers the longer the training 
time, since for each additional base classifier an additional iteration is performed 
in the algorithm. Also, the training time is affected by the percentage of removed 
instances. The higher the removal rate, the shorter the training time, since a smaller 
training set is created.

SOLUTIONS AND RECOMMENDATIONS

The rotation forest seems quite promising in creating the profile of completely 
unknown users utilizing data from the way they type. However, there are two other 
issues that need to be decided.

Firstly, the keystroke dynamics features to be used in the process. Due to the 
large number of available features the Chi-Square feature selection procedure was 
followed and all those features that presented a non-zero Chi-Square value were used. 
Usually, using more features leads to higher accuracy, but it also leads to systems 
with longer training time. In the present study it was not tested whether the use of 
only some of the features that showed non-zero Chi-Square value would lead to 
the creation of a system with similar, or even higher, accuracy and shorter training 
time. Also, it was not tested whether the use of features with zero Chi-Square value 
would lead to the creation of systems with similar, or even shorter, training time and 
higher accuracy. Those two experiments go beyond the objectives of the present 
study. In any case, choosing the number of features that will be used, as well as 
exactly which features will be used, is a decision that depends on how accurate the 
system must be and how fast it must work.

Secondly, a second tradeoff is again between accuracy and training time, but 
this time it concerns the number of base classifiers that will be in the ensemble. As 
stated in the “Discussion of the Results” subsection, it is possible to choose to create 
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an accurate system that runs at a specific time, or a less accurate system that runs 
faster. The decision to be made will take into account which is the most important 
criterion, accuracy or training time.

FUTURE RESEARCH DIRECTIONS

In the present study it was shown that rotation forest can be used in user classification 
using keystroke dynamics data with high accuracy. This research can be extended 
in different directions.

Firstly, in terms of the performance of the rotation forest, as mentioned above, 
experiments with a larger number of base classifiers should be conducted in order 
to check the performance of the model and find the highest accuracy that can be 
achieved, especially in gender and age classification problems. Moreover, something 
that has also been mentioned is conducting additional experiments that will use 
a different set of features than what the Chi-Square feature selection procedure 
indicated. In addition, although the C4.5 decision tree is proposed to be the base 
classifier, experiments could be conducted using other base classifiers, such as other 
decision trees, Bayesian classifiers, k-nearest neighbors, or others.

Secondly, in terms of user attribution, other user characteristics could be 
sought, such as educational level, mother tongue, height (which is related to the 
length of the fingers), computer experience, etc. For this purpose, additional data 
should be collected from a significant number of users so that each defined class 
is adequately represented. In this direction of extending the research, and if several 
user characteristics that can be detected with high accuracy are included, the ultimate 
goal would be to create a system that uses keystroke dynamics features to create the 
profile of an unknown user so that it can either be used in the case a digital forensics 
investigation, or to facilitate the use of computers and Internet services, or to be 
used to protect unsuspecting users. Clearly, there are some issues that need to be 
addressed. These are, on the one hand, the consent of the users for the recording 
of their typing, and on the other hand, the way in which the recording will be done 
in order to avoid the disclosure of sensitive and personal data. One suggestion is 
to integrate the keylogging application into the operating systems and to perform 
the extraction of keystroke dynamics features locally. These features will be sent to 
dedicated servers which will be responsible for evaluating user characteristics, but 
also for updating databases with labeled data. In this way, data from users whose 
identity cannot be revealed will be shared, as well as will be used only after the 
user’s choice, except of course in cases of prosecutorial intervention.

Third, since a very large percentage of users connect to the Internet through 
mobile devices, the research should be extended to seek the characteristics of users 
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of these devices. For this reason, a suitable keylogger should be developed and data 
from typing on smartphones and tablets should be collected. Although there are 
differences in the study of typing between portable and non-portable devices, such 
as the fact that additional features can be utilized, like the pressure exerted on the 
touch screen, the methodology to be followed will be similar.

Finally, as far as keystroke dynamics studies are concerned, a possible extension 
is to look for a correlation between user characteristics and how the keys are used 
depending on their position on the keyboard. That is, for example, to consider whether 
left-handed users use the left part of the keyboard differently from right-handed 
users, in terms of the time intervals required to use a key, a digram, etc., or, if males 
use the keyboard numpad differently than females. Such an extension of the research 
may lead to the revelation of some hidden patterns that will develop user profiling.

The present research, with the help of machine learning, seems to be able to 
develop into an important tool of cybersecurity.

CONCLUSION

Rotation forest is an ensemble machine learning model that uses a number of base 
classifiers, usually decision trees, and can perform classification or regression. 
Although it was proposed 15 years ago and has shown very good performance in 
various problems, it has not been used to date in user classification with keystroke 
dynamics data. In this work, user profiling is attempted with data coming from the 
way users type and with the help of the rotation forest which uses the C4.5 decision 
tree as the base classifier. Specifically, the gender, the age, and the handedness of 
unknown Internet users are predicted, and the highest accuracy achieved was 88.9%, 
86.3%, and 94.3%, respectively. The results show that the use of rotation forest in 
keystroke dynamics classification problems is very promising and can be the basis 
of a machine learning system that will serve as a cybersecurity tool.
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KEY TERMS AND DEFINITIONS

Chi-Square Test: The procedure used to examine the differences between 
categorical variables.

Digital Forensics: The process of uncovering and interpreting electronic data.
Digram Latency: The time elapsed between the pressing or releasing of a key 

and the pressing or releasing of the next key.
Feature Selection: The process of reducing the number of input variables when 

developing a predictive model.
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Keystroke Duration: The time elapsed between the pressing and the releasing 
of a key. In the literature it is also found as dwell time, or hold time, or press hold, 
or key press time.

Keystroke Dynamics: The way a user uses a keyboard, physical or virtual.
User Profiling: The process of identifying some characteristics of a user.
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ABSTRACT

Financial fraud remains one of the most discussed topics in literature. The financial 
scandals of Enron, WorldCom, Qwest, Global Crossing, and Tyco resulted in 
approximately 460 billion dollars of loss. The detection of financial fraud, therefore, has 
become a critical task for financial practitioners. Three factors determine the likelihood 
of fraud occurrence, including pressure, opportunity, and rationalization. The core 
of these factors lies in people’s beliefs and behaviour. Due to the unpredictability 
and uncertainty in fraudsters’ incentives and techniques, fraud detection requires a 
skill set that encompasses both diligence and judgment. Big data technologies have 
had a huge impact on a wide variety of industries because they tend to be ubiquitous, 
starting in the last decade and continuing today.
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INTRODUCTION

Financial fraud has been a major concern for many organizations across industries 
and countries because it causes massive business devastation. Millions of money 
are lost each year as a result of financial fraud; for example, Bank of America has 
agreed to pay 16.5 billion US dollars to settle a financial fraud case. According to 
Ecommerce Fraud Statistics (2021), the fraud management profession is shifting 
to a risk intelligence model, a field that relies even more heavily on e-commerce 
fraud statistics and defines itself as a business optimization engine rather than a 
defensive bulwark. New objectives accompany the new approach. Risk intelligence 
professionals, on the other hand, work to reduce friction throughout the purchasing 
process while still protecting the enterprise. The goal of proper fraud management 
is not to avoid losses but, increasing wins and thereby increase revenue. Hence, 
modern risk professionals now apply their decisioning skills and technology across 
the entire buying journey. They optimize revenue and have a clear connection to 
the enterprise’s top line. The new approach to risk intelligence is made possible by 
advances in technology and fraud prevention strategies. Fraud and consumer abuse 
prevention that harnesses big data and machine learning allow enterprises to more 
accurately make split-second decisions on whether an order is legitimate or fraudulent.

Nevertheless, machine learning algorithms have previously been employed to 
analyse all authorised transactions and report suspicious ones. These reports are 
investigated by professionals who contact the cardholders to confirm if the transaction 
was genuine or fraudulent.

The investigators will then provide feedback to the automated system which is 
used to train and update the algorithm to eventually improve the fraud detection 
performance over time. Thus far, this is traditional way of detecting debit or credit 
card fraud is tedious and takes quite a time as some cards are stolen; or lost or users 
threatened. Hence this chapter contributes to the existing methods by building a 
Chrome extension that flags “Fraud/suspicious” transactions that will help both 
banks and cardholders to know about the fraudulent transactions made and further 
develop a “find my card application. This is a new system that the cardholders will 
be able to install the “find my card application” and have an opportunity to trace 
the whereabouts of their cards if stolen or lost and be able to stop their usage with 
the use of their cell phones or computer browsers. Even though detecting financial 
fraud is considered a high priority for many organisations, recent literature lacks 
updated and comprehensive in-depth reviews that can help organisations with their 
decisions for selecting an appropriate data mining method. Therefore, the objective 
of this chapter is to apply the gradient boosting decision tree (GBDT) under deep 
learning to extract knowledge about the processing of the credit/debit card data to 
detect whether a normal transaction of datasets qualified as a novel fraud and finally 
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determine its effectiveness to classify the number of a fraudulent transaction. This 
leads to supervised learning alone, not unsupervised learning.

LITERATURE REVIEW

An extensive comprehension of fraud identification technologies can be useful 
for tackling the issue of credit and debit cards. The empirical analysis by Beigi 
et al. (2020) proposed combined methods using both data mining and statistical 
tasks, utilizing feature selection, re-sampling, and cost-sensitive learning for credit 
card fraud detection. In the first step, useful features are identified using a genetic 
algorithm. Next, the optimal re-sampling strategy is determined based on the 
design of experiments (DOE) and response surface methodologies. Finally, the 
cost-sensitive C4.5 algorithm is used as the base learner in the adaptive boosting 
(AdaBoost), algorithm. Using a real-time dataset, the results of these authors showed 
that; applying the proposed method significantly reduces misclassification costs by 
at least 14% compared with a decision tree, naïve Bayes, Bayesian network, neural 
network, and artificial immune system.

Behdad et.al. (2012) audited the most well-known sorts of credit card fraud and 
the existing nature-enlivened detection strategies that are utilized in fraud detection 
methods. Essentially, there are two types of credit and debit card fraud. These are (1) 
application fraud and behaviour fraud (Bolton and Hand, 2001). The former is where 
criminals get new credit cards from issuing companies and produce false data or 
utilise other authentic cardholders’ data. While the latter is when criminals steal the 
account and password of a card from the genuine cardholder and use them to spend.

Abakarim et al. (2018) focused on one fraud detection system. To have a more 
accurate and precise fraud detection system, banks and financial institutions are 
investing more and more today in perfecting the data mining algorithms and data 
analysis technologies that are used to identify and combat fraud. Mota et al. (2014) 
proposed an alternative strategy to forestall fraud in online business applications. 
These authors used a signature-based technique to build up a client’s behaviour 
deviations and thusly detect the potential fraud situations in time. Anyway, they 
just considered the clickstream is the element of the signature. It is believed that as 
opposed to utilizing just a single transaction feature includes for fraud recognition, 
it is better to consider various multiple transaction features. In detecting credit card 
fraud, Sahinand and Duman (2011) made a comparison of decision trees and support 
vector machines (SVM). The two authors divided a dataset into three groups with 
the dissimilar ratio between fraudulent and legitimate transactions. They further 
develop seven decision trees and SVM based model. Their results revealed that the 
decision tree-based model is better than the SVM model. However, the accuracy of 
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SVM-based models could reach the same performance as the decision tree-based 
models with increasing size of the training dataset.

Wen and Huang, (2020) applied the extreme gradient boosting(XGBoost) model 
for data mining and analysis, which is inspired by its brilliant reputation in various 
data mining contests. To filter useless information and preserve useful information, 
these authors combined kernel principal component analysis (Kernel PCA) with the 
XGBoost algorithm and proposes a new hybrid unsupervised and supervised learning 
model, KPXGBoost, and used a grid search to avoid over-fitting and compare the 
performance of both XGBoost and P-XGBoost and other classical machine learning 
methods. Their results indicated that P-XGBoost outperforms XGBoost in fraud 
detection, which provides a new perspective on detecting fraud behaviour while 
protecting clients’ privacy.

Xuan et al. (2018) on the other hand used two kinds of random forests to train the 
behaviour features of normal and abnormal transactions. These authors compared 
the two random forests which are different in their base classifiers, and analyse their 
performance on credit fraud detection data. In addition, Bagga et al. (2020) compared 
the performance of logistic regression, K-nearest neighbours (KNN), random forest, 
naïve Bayes, multilayer perception, AdaBoost, quadrant discriminative analysis, 
pipelining, and ensemble learning on credit cards. To find the most suitable fraud 
technique, these authors used accuracy, precision, recall, F1 score, and confusion 
matrix to compare the performance of 9 different techniques they have used and 
their final results indicated that the performance of Pipelining method is found to 
be the best.

Karpoff (2021) used the trust triangle and the KleinLeffler model to isolate various 
factors that trigger fraud and uses them to consider the impact of technology and 
wealth over time. Some changes, such as increasing anonymity in certain financial 
transactions, promote new fraud innovations and increase the likelihood of fraud. 
The COVID-19 pandemic and the ensuing economic shutdown have caused a major 
disruption in relative demand and organizational capital, which has also increased the 
potential for fraud in the coming years. Pejić et al. (2019) did a literature review on 
text mining on big data in the financial sector. The authors aimed to answer “Which 
techniques are used in the financial sector for textual mining and financial fraud 
detection, especially in the era of the internet, big data, and social media.” These 
authors have shown that the financial sector generates a vast amount of data like 
customer data, that is logged from their financial products, transaction data that can 
be used to support decision making, together with external data, like social media 
data and data from websites; hence the availability of the top 10 technologies for 
financial industries, which include among others the rise of application programming 
interface (API) economy, cloud business enablement, blockchain for banking, and 
usage of artificial intelligence.
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Bao et al. (2022) conducted a study on artificial intelligence and fraud detection. 
The authors provided a comprehensive overview of the challenges in detecting fraud 
using machine learning by using a framework (data, method, and evaluation criterion) 
to review some of the practical considerations that may affect the implementation of 
machine-learning models to predict fraud. Then, they reviewed selected papers in 
the academic literature across different disciplines that can help address some of the 
fraud detection challenges. Finally, they suggested promising future directions for 
this line of research. Baesens et al. (2021) further proposed several data engineering 
techniques to improve the performance of an analytical model while retaining 
the interpretability property. Their data engineering process is decomposed into 
several feature and instance engineering steps and illustrated the improvement in 
the performance of these data engineering steps for popular analytical models on a 
real payment transactions dataset.

METHODS AND PROCEDURES

The proposed system is used to detect frauds on a real-time basis by analysing 
incoming transactions. The system design consists of two components for fraud 
detection. These are described or discussed in the next two subsections.

Designing a Framework for Data Pre-processing

This constituent is legally responsible for the usage of big data effectively and bids 
it to the analytical server for predictive modelling. The configuration of the system 
mainly consists of the Hadoop network which stores data in Hadoop distributed file 
system (HDFS) that comes from several sources. The data from Hadoop is read by 
R/Rstudio unlike in the work of Patil et al (2018) who utilized SAS (here referenced 
Statistical Analysis System) procedures to read the data and convert it into a raw 
data file as shown in Figure 1. The fields in a raw data file are separated by a comma 
delimiter. The raw data file is given to the analytical model for the building of a 
data model. This makes the system exceptionally versatile and assists with building 
a solid self-learning analytical model on a real-time basis highly scalable and helps 
to build a strong self-learning analytical model.

Designing an Analytical Model for Fraud Prediction

The analytical model is used to ensure whether an incoming transaction is legitimate, 
or it is not. The gradient boosting decision tree machine learning model is implemented 
for fraud detection. Daily data for the period of 01 Mach 2021 to 31 July 2021, was 
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obtained on the Datarade database using the application programming interface 
(API). Instead of using team labels to accurately label transactions as fraudulent 
and non-fraudulent, the authors used a crowd-sourced rating application.

Gradient Boosting Decision Tree

Boosting algorithms were originally introduced by the machine learning community 
for classification problems. The main approach is to combine iteratively, several 
simple models; called ’weak learners’, to obtain a ’strong learner’ with improved 
prediction accuracy (Touzani et al. 2018). Boosting is an iterative algorithm that 
combines simple classification rules with ’mediocre’ performance in terms of the 
misclassification error rate to produce a highly accurate classification rule. Stochastic 
gradient boosting provides an enhancement that incorporates a random mechanism 
at each boosting step, showing improvement in performance and speed while at the 
same time generating an ensemble (Culp et al 2016).

As declared by Son et al. (2015), gradient boosting algorithms utilise decision 
stumps or regression trees as weak classifiers. The weak learners measure the 
observed error in each node and split the node using the following test function 
k n: →  with a threshold 𝜏 and return values 𝜂t and 𝜂r. To minimise the error 
after a split, this chapter identifies the following triplet (𝜂t, 𝜂r, 𝜏 ) leading to obtaining
an optimal split which by Son et al. (2015) it is given by
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Figure 1. The analytical framework for data pre-processing
Source: https://www.researchgate.net/publication/663203
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where ωi
j  and ri

j  are the weights and responses of xi for the jth iteration. Additionally, 
the error in equation 3 is minimized so that an optimal tiple is obtained by (𝜂*, 𝜂*,
𝜏*) over all possible 𝜏 ’s at each nod. Note that 𝜏 (𝜂t, 𝜂r) can be found simply by 
computing the weighted average of ri

j ’s over training data that fall on the 
corresponding side of the split. The training procedure of the gradient boosting 
decision tree is presented in Algorithm 1.
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 is unavailable. For this reason, Touzani et 

al. (2018) declared that it is therefore impossible to minimise the error directly by 
adjusting � �t�1,

 and also by computing the weighted average of ri
j . As in the off-

line learning. Consequently, Son et al. (2015), updated a weak classifier based on 
the new classifier as well as the limited information of the present classifier. Note 
that, equation (5) is obtained by representing the right-hand side of equation (3) by; 
Δ𝜂
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which helps to minimise the above quadratic function concerning ∆η and obtain 
the solution in equation (6) as in Son et al. (2015)
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Employing a recursive procedure to find 𝜂, Son et al. (2015) obtained these two
models
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In this case, 𝛼 denotes a learning rate. Intuitively, the return value 𝜂 is updated
in proportion to the amount of a difference between the weighted response of a 
new example and a previous return value. For more readings on gradient boosting 
algorithms (see for instance Touzani et al. 2018, Culp et al.2016, and Son et al. 2015).

Cross-Validation on Classification Problems

Some methods mathematically adjust the training error rate to estimate the test 
error rate. Since this chapter uses the GBDT with a quantitative response, a class 
of techniques that estimate the test error rate is deemed by holding out a subset 
of the training observations from the fitting process and then by applying the 
statistical learning method to those held out observations. As in the empirical 
analysis of Magnusso et al. (2020), the authors proceed by using cross-validation 
on classification procedures. In this setting, instead of using MSE (here referenced 
mean square error) to quantify the test error, the k-fold cross-validation is employed 
and a cross-validated estimate of the prediction error is given by

�� �
cv i

n
i ikn
y xf� � �� �� ��1

1
L ,  (9)

where f k


−  denote the model that was trained on all but the kth subset of the learning 
set. The k-fold CV error rate and validation set error rates are defined analogously.
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Model Performance

It is worth noting that the obtained dataset for this study is highly imbalanced and 
for that reason, Zareapoor and Shamsolmoali, (2015) have declared that this is the 
nature of credit transaction datasets. Because of imbalances in the dataset, some 
frequent metrics like accuracy and error rate are not considered because they are 
identified as biased metrics in the case of the imbalanced dataset. Though, in the 
domain of fraud detection, fraud catching rate and false alarm rate are the most 
used criteria metrics. For the proposed classification technique in the chapter, its 
performance is evaluated by the following five classification metrics which are 
relevant to financial fraud detection, and these are fraud catching rate, false alarm 
rate, balanced classification rate (BCR), precision, and Matthews correlation 
coefficient (MCC). Financial fraud is measured as a positive class and legal as a 
negative class hence the TP (true positive) and TN (true negative) are the numbers 
of frauds that are correctly classified, and FP (false positive) and FN (false negative) 
are the numbers of fraud incorrectly classified Hussin et al. (2016).

Precision
TP

TP+FP
=  (10)

Precision is the ratio of positive predictions to the total number of positive classes 
predicted. A recall is the ratio of positive predictions to the number of positive class 
values in the test data. F1 score depicts the balance between precision and recall. 
Matthews Correlation Coefficient is a balanced measure that uses TP, FP, TN, and 
FN to measure the performance of a binary classifier if the classes have sizes very 
different from each other. MCC has values between -1 and 1. -1 value indicates a 
classifier that is completely wrong while 1 indicated a perfectly correct classifier. 
As affirmed by Bagga et al (2020) the MCC formula is

MCC
TP TN FP FN

TP FP TN FN FP TN TP FN
�

�� � � �� �
�� �� �� �� �� �� �� �

 (11)

and BCR (Balanced classification rate) is another metric used for imbalanced datasets. 
It combines the specificity and sensitivity metrics as follows

BCR TP
TP FN

TN
FP TN

�
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2
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EMPIRICAL ANALYSIS

This section provides and discusses the empirical analysis of the datasets. To 
build an analytical model, the South African credit and debit card fraud dataset is 
taken consisting of 35 attributes out of which 5 are numerical attributes and 30 are 
categorical and almost 376807 transactions. This is highly skewed data, consisting 
of 0.157% of fraud cases. This skewed set is justified by a low number of fraudulent 
transactions. Between the years 2018 and 2019, credit and debit card fraud increased 
by 20.5% due to online transactions. As per the report of the South African Banking 
Risk Information Centre Report (2021), the weak state of the country’s economy has 
provided criminals with the impetus, and opportunity to commit financial crimes. 
The group’s data shows that digital banking incidents have increased by 20% in 
2019, a number that is set to rise in the future, as criminals continue to use social 
engineering tactics to extract personal and confidential information from victims; 
and this enables them to transact on victims’ accounts without authority. But, with 
cybercrime; gross fraud losses on South African issued cards have increased by 20.5%.

Preparation of Training and Validation Datasets

For confidentiality purposes with the obtained dataset, a principal component analysis 
(PCA) is performed to hide the original features of the dataset and 21 principal 
components are obtained. Mori et al. (2016) defined PCA as a commonly used 
descriptive multivariate method for handling quantitative data and can be extended 
to deal with mixed measurement level data. Table 1 present exploratory data analysis 
for both identified number of fraudulent and valid transactions. The reported mean 
for fraudulent transactions indicates South Africans are losing around 122 Rands 
daily on made online transactions.

Financial Conditioning Factors Selection and Model Prediction

To begin the main analysis, a gradient boosting decision tree is first trained with a 
ratio of 0.8:0.2 training and test sets respectively. The assumption made is that 95% 

Table 1. Exploratory data analysis

Total No Mean Std

Valid Transactions 376215 88.29 250.10

Fraud Transactions 592 122.21 256.68

 EBSCOhost - printed on 2/9/2023 12:01 PM via . All use subject to https://www.ebsco.com/terms-of-use



35

Predictive Modelling for Financial Fraud Detection Using Data Analytics

to 99% of the time, the boosting algorithm will predict or classify every transaction 
made as a legitimate transaction and this can cost the debit and credit cardholders 
in South Africa over 211.3 million Rands from the sample period otherwise, the 
classifier would not be useful. Using a stochastic Gradient Boosting decision tree, 
the processing scale and centre of the algorithm are set to 30 and re-sampling is 
cross validated at 5 fold which is repeated 3 times. Tuning parameter ‘shrinkage’ 
is held constant at a value of 0.1 while tuning parameter ‘n.minobsinnode’ is held 
constant at a value of 10. Reversible jump Markov-chain-Monte-Carlo (RJMCMC), 
coefficient of determination (R2) and mean absolute error (MAE) are used to select 
the optimal model using the smallest value. The final values used for the model are 
n.trees=150, interaction.depth=3, shrinkage=0.1, and n.minobsinmode=10. As 
recommended by Bui et al. (2016), all the condition factors are removed with null 
predictive values.

Evaluation of the Classification Experiment

Financial susceptibility index (FSI) values are calculated using the GBDT model. 
To reduce variability, a five-fold cross-validation method is used. This method 
partitions training data into five subsets and averages validation results over five 
rounds. The five-fold cross-validation method was used. The calculated FSI values 
were in the range of 0.01 to 0.988. The values of MCC, BCR, F1score, Precision 
and Recall are presented in Table 3. This model is evaluated using both training 
and test datasets. The model has high classification performance as indicated by 
all the performance metrics used. The standard errors are reasonably small for this 

Table 2. Re-sampling results across tuning parameters

interaction.depth n.trees RJMCMC R2 MAE

1 50 0.026016 0.596929 0.001445

1 100 0.025476 0.612441 0.001404

1 150 0.025186 0.621163 0.001407

2 50 0.022866 0.688353 0.001180

2 100 0.022241 0.704173 0.001129

2 150 0.021967 0.711179 0.001115

3 50 0.022026 0.709232 0.001086

3 100 0.021576 0.720328 0.001054

3 150 0.021346 0.726199 0.001044
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model. These results indicate a reasonable goodness-of-fit for models with both 
training and test datasets.

Finally, to compare the significance of the model, the Wilcoxon signed rank and 
model power tests are used. The former was used in the research that was carried 
out by Chen et al. (2017) and Bui et al. (2016) while the latter was carried out in 
the empirical analysis of Makatjane and Moroke (2016). The null hypothesis for 
this method is that the model is significantly different from zero with the alternative 
stating otherwise. The results are calculated at a 95% significance level. The z and 
p-values are further used to evaluate the model significantly. When z values exceed 
critical values of (±1:96) and p-values are smaller than the significant level (0:05), 
the null hypothesis will be rejected and therefore the performance of the model is 
notably different. The results of the Wilcoxon signed rank and power tests are shown 
in Table 4. It can be seen that the GBDT model performances are significantly 
different since (p-value=0.0001, z-value=6.53). Moreover, the model also reveals 
a high prediction power of over 91%.

Table 3. Results of cross-validation metrics

Metric Mean std Training data Test Data

FCR 0.9514 0.0108 0.9510 0.9701

FAR 0.9664 0.0107 0.9645 0.9489

Precision 0.9580 0.0063 0.9577 0.9594

MCC 0.8468 0.0015 0.8489 0.8513

BCR 0.8953 0.0076 0.8909 0.9102

Table 4. Pair-wise comparison and power test

Wilcoxon Signed-Rank Test Model Power Test

Parameters GBDT Data Mean Difference Actual Power

z-value 6.53 Training 0.0716 0.9098

p-value 0.001 Validation 0.0348 0.9356
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SOLUTIONS AND RECOMMENDATIONS

With an increase in credit card and debit card fraud in the current digitalised 
economic scenario, financial fraud detection has emerged as a hot topic for academia, 
research, and industry. The failure of financial institutions’ internal auditing systems, 
particularly banks’, to detect financial frauds has necessitated the use of specialized 
procedures to detect credit and debit card fraud, collectively known as financial 
forensic. Data mining techniques are greatly assisting in the detection of both credit 
and debit card fraud, as dealing with large data volumes and the complexities of 
financial data are significant challenges for financial forensic investigators hence, a 
substantial amount of planning before throwing machine learning algorithms at it.

Therefore, the statistical input of this chapter lies in employing a gradient boosting 
decision tree model to detect and correctly classify the gross financial fraud from 
the online transaction made by the debit and credit cards of South Africans. With 
the use of gradient boosting algorithm, a real-time detection for online fraud is 
achieved. This is because, the boosting algorithm uses deep learning to learn the 
features of the data and detect or predict real-time fraud (i.e fraud that happens in 
real time.). With this deep learning method, the knowledge about the online fraud 
will be known well in time and with their extreme timely functionality, the system 
will notify debit and credit card users about the scam services and goods they would 
be buying online. On that note, if the fraudster would want to use wrong information 
to obtain the credit or debit cards from the banks or card issuers, the banks’ system 
shall automatically detect that as fraud. For more effective systems, the authors 
suggests the establishment of an extreme automated fraud detection. This would 
be done by developing a probabilistic description and modelling of extreme peak 
loads using Poison point process. This approach helps in estimating the frequency 
of occurrence of peak financial frauds in time. Furthermore, adopting the Gaussian 
process regression coupled with core vector regression of Chandiwana et al. (2021), 
the short-term hourly global financial fraud will be detected and forecasted with 
uncertainty.

FUTURE RESEARCH DIRECTIONS

The findings of the GBDT model exhibit reasonably good performance. This is a 
promising technique for online fraud susceptibility detection. Finally, the results of 
this chapter may be useful for decision-makers and the financial sector for future 
use and planning in credit and debit prone areas. A “find my card application” is 
to be developed in the future and also updating the established crowd-sourcing 
application and building a Chrome extension that flags “fraud or suspicious 
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transaction” while purchasing goods and services online are recommended. All 
these recommended procedures will also automatically notify banks of suspicious 
transactions and automatically train the system without confronting the cardholder 
if the transaction is fraudulent or not. The main problem with developing these new 
systems and applications is when the card has been taken from the holder and is 
being threatened by the perpetrators. However, this can be solved by modifying the 
ATM (reference here as automatic teller machine) in the way they would request 
the PIN from the cardholders. Maybe, there should be some personal questions 
or some one-time password (OTP) numbers to be sent to the cardholders before 
finalising the transaction.

CONCLUSION

This chapter has developed a deep learning algorithm to detect and classify both 
debit and credit card fraud in South African context. The data used is a daily data 
for the period of 01 Mach 2021 to 31 July 2021, which is obtained on the Datarade 
database using the application programming interface (API) through the execution 
of Rstudio for windows. To accurately label the data, a method for large machine 
learning datasets known as crowd-labelling is applied. This approach helps to avoid 
human biasness in labelling the variables and entries but precisely find the true labels. 
The results of this chapter showed the established gradient boosting algorithm is 
the perfect algorithm to detect and classify debit and credit card fraud precisely in 
real time with the prediction and classification power of 91 percent in a training set 
and 94 percent in the test sets. This is found to be a promising method with respect 
to financial detection.
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KEY TERMS AND DEFINITIONS

Big Data: Data that is received in high volume and it can be stored in databases, 
and it comes at a high speed with various data formats.

Credit Card Fraud: An intention to illegally obtain money from a credit card 
that has been revoked, cancelled, reported lost or stolen to obtain anything of value.

Cross-Validation: A re-sampling technique that uses diverse percentages of a 
dataset to train and test the model of improved iterations.

Data Mining: The method of extracting inconsistencies, patterns, and relationships 
within large datasets to predict an outcome.

Deep Learning: This is the branch of machine learning and artificial intelligence 
that extract knowledge about the processing of the image or quantitative data.

Financial Fraud: It is the unauthorised taking of money in financial institutions 
such as banks.

Gradient Boosting Decision Tree: A branch of deep learning that uses regression 
and classification algorithms to produce a prediction model in the arrangement of 
an ensemble weak prediction.

Supervised Learning: A machine learning method that maps an input to an 
output based on the input-output pairs of data
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Algorithm 1: Gradient Boosting Decision tree
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ABSTRACT

The automotive industry is developing trends in autonomous driving and connected 
vehicular systems. These vehicles can access and send the data, download the 
software updates, connect with other vehicles or other IoT devices via the internet or 
wireless communication. Autonomous vehicle control urges very strict requirements 
about the security of the communication channels used by the vehicle to exchange 
information and the control logic that performs complex driving tasks. So, the 
increased connectivity results in a heightened risk of a cyber-security attack. For 
maintaining the advances in safe communication, it is important to establish strong 
security for connected vehicular systems. For this, existing cybersecurity attacks 
must be considered to minimize future cybersecurity risks in the connected and 
autonomous vehicle systems. In this chapter, the authors will emphasize recent 
works on how autonomous vehicles can ensure strong operation under ongoing 
cyber security attacks and their possible solutions.
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INTRODUCTION

In recent years, traffic security has attracted extending thought among trained 
professionals, organizations, and government affiliations. As demonstrated by a 
report from the U.S. Division of Transportation, there were 36,560 people were 
killed due to the car crashes in the U.S. in 2018 (NCSA, 2019) and that suggests there 
were around 100 deaths reliably. Human mishaps are related with 94 to 96 percent 
of all motor vehicle crashes. Consequently, the free driving development has been 
attracting light of an authentic worry for the researchers for quite a while. Beginning 
from this prolonged stretch of time, further created driver help developments, as 
electronic constancy control moreover, way departure alerted, were being made to 
further work on the security and diminish the driver load, which as well prepare to 
autonomous driving headways. The Society of Automotive Engineers (SAE) has 
described six particular levels of driver help development types of progress.

The type of technology is explained by established criteria. The automation 
standard ranges between level 0 and level 5. Level 0 includes all of Porsche’s 
vehicles through 1967 to the new car, completely managed in 2018. The Level 1 
automatic control allows the vehicle to decide about how to guide or stop or speed the 
autonomous driving support system (ADAS) mounted in the car. The functionality of 
Level 2 comprises of the driving and acceleration ADAS power. The human operator 
should, nevertheless, remain attentive. Level 2 instances are Audi Traffic Jam Assist, 
Cadillac Super Cruise, Autopilot, etc. Instances include Both facets of a driving 
automobile are carried out by level 3 robotics, however the human operator has to 
assume around when ADAS requires. The human operator must also be careful. In 
“Audi Traffic Jam Pilot” level 3 of optimization can be obtained. The second stage 
of autonomy allows the vehicles to execute all the functions as well as to control the 
world. Although ADAS performs all the tasks during the last stage of automation, 
people only are the travellers. In Stage 5, the system validates the location in GPS 
as well as the driver drove the passenger to that same endpoint directly regardless 
finding the help or knowledge from the person. Automotive industries are now 
looking for level 3. Tesla argues we are level 3, but Tesla’s feedback is automatic 
level 2. Figure 1. Intelligent vehicle cyber-attack gateways Shows some of the 
potential cyber-attack gateways mostly on driverless vehicles. The machine is far 
more susceptible to theft by hackers as the amount of automation rises.

Any network-connected system will perform denial-of-service attack (Jaiswal 
& Chandra, 2017). IoT that we are using in the everyday lives transmits data on 
the web, transmits information and is processed in live time but is susceptible to 
hacking. The intelligent transportation system also communicates in full detail only 
with networks. The cyberwarfare trend reveals that under this risk the auto sector 
suffers. In addition, it could influence the rail. The recently installed rail service is 
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connecting with the networks in all the metropolises. The results will be enormously 
and catastrophically if a Cyber assault were initiated inside a system conducted 
amongst the railways in the system as well as the data exchanged is changed or 
postponed. The state-developed public transit system needs massive developments, 
and this event would not only damage infrastructure, but also damage the confidence 
of commuters who use it every day to drive to work or school (Desai & Jaiswal, 
2021). VANETs allow consumers to improve security problems to traveling ease, 
to make a safer, healthier, and smarter world possible.

There have been 3 main groups that categorise VANET communications. For 
such an intelligent vehicle to operate correctly, the authenticity and safety with 
all 3 kinds of communications must be upheld. In Raya et al., a lag in traffic data 
by several milliseconds is really to be demonstrated in real-time for generalised 
protection & responsibility communications. The specific kinds of attacks that can 
be started in any VANET are misleading info assaults, object detection hacking, 
ID exposure, previously unknown and service attack refusal. The positioning of an 
autonomous car is yet other significant aspect that attackers can take advantage of. 
Customers are given with appropriate localisation-related services (LBS) through 
their demographics. An intelligent car’s position is perhaps the crucial insecure 
object that attackers can use. The geographical positions of consumers really aren’t 
properly covered given the desired functionality offered by LBS. There has been 
considerable study into frameworks and principles that can distinguish harmful from 
benevolent nodes, though not all of them are enough to deter an intrusion. Many 
studies have been undertaken to create models and definitions that can distinguish 
between harmful and benevolent networks, but not all of them would be sufficient 
to deter an attack. Different assessment methods have been suggested and are widely 
classified into three parts: node-based, messages-based, and mixed methods.

Figure 1. Smart car gateways for cyber-attacks (Mohd et al., 2018)
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A detection algorithm known as the DDADA algorithm has been proposed on this 
principle. In addition, a different detection algorithm called the DDAML algorithm 
was developed to classify the DDoS attack in order to further increase detection 
performance. The research findings suggest that our optimization methods can help 
recognise the DDoS attack and have increased detection speeds in relation to current 
methods. Finally, the test results show that the DDAML algorithm will execute 
various output tests over the other algorithms. In our future work, the DDADA and 
the DDAML algorithms will be further improved in the true SDN setting.

Self-service automobile is an environmentally friendly vehicle which navigates 
regardless of human intervention. Self-vehicles only at greatest order means that 
certain driver actions can be substituted by an appropriate system. In this case, the 
automated driving may be seen as a shuttered control unit. The obtained value is a 
vehicle status defined at the point of destination in which the car can start at a given 
initial state. The automatic mode of driving impacts other vehicles on the road and 
other roads such as pedestrians, bikes, animals etc. The sensor set offers information 
on the car’s surroundings in the region specified by its field of vision. This data are 
used for the detection of obstacles in the vehicle following initial pre-processing. 
Figure 2 illustrates the normal working of autonomous system using DNS.

Labels
 ◦ DNS- Domain network server
 ◦ AS- Application server
 ◦ ISP- Information sharing protocol

Figure 2. Normal process with DNS (Domain network server)
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Data from various kinds of sensors are combined to raise the degree of trust 
of objects detected in vehicles surrounding. To analyse the present condition and 
schedule the track to destination the car, the list of observed objects provides a 
vehicle environmental model. Beside the environmental model for the vehicle, the 
drivers’ model is an essential part of fully automated vehicles, by means of which 
the characteristics of the actuator can be calculated in a way which enables the driver 
to manually direct the vehicle as closely as possible to the dynamic. Vehicle movie 
and dynamic models are important for tuning controls responsible for deciding the 
trajectory and stability of the vehicle.

As the production of autonomous vehicles is increasing quickly but the protection 
side of the automotive is not being given proper consideration, which may pose 
a significant challenge to the safety and acceptance of autonomous cars as many 
countries attempt to put autonomous vehicles on the road shortly (Tong et al., 2019). 
Had said that experts would join to make cyber security a priority at design and 
implementation levels constructive.

Firstly, research article outlines many global security threats on smart connected 
cars. The attacks are then investigated and summarised and classified into four 
groups, including cryptography, network security, vulnerability recognition tools, 
and malware identification. There are more discussions on emerging issues and 
potential directions to deter attacks on smart vehicle networks.

Over the past decade, the advancement of cyber-physical devices with sophisticated 
sensors, sub-systems, and clever driving assistance has provided independent 
decision-making capability for unmanned air and ground vehicles. The autonomy 
standard depends on the structure and the degree of sensor complexity and the 
operating applications of the vehicle. As a result, vehicles that drive themselves are 
seen as a significant challenge. It is also necessary to analyse threats and assaults 
on auto and ITS vehicles and their appropriate prevention methods to minimise 
those cyber threats. That is why in recent literature there are a few research articles 
which draw up possible attacks on VANETs, ITSs, and self-driving vehicles and 
their detection mechanisms.

Owing to the complexities of the automobile industry, a fully automatic drive 
would not take place immediately, but as technology progresses. Control systems 
are now progressively integrated on the market and their functionality is aimed at 
total vehicle control.

SYSTEM ARCHITECTURE OF AV

Some components of AV make computer close to human intelligence figure 3 and 
4 explains the working of AV communication. They are:
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• Computer vision- the aim of computer vision is to identify the objects which 
are near to the vehicles. This phenomenon can be utilized using image 
classification called Convolution Neural Network.

• Sensor fusion- AV can be equipped with lots of sensors for the proper 
functioning.

• Localization-This component is used to identify the exact location of the car 
by using some technology based on mathematical algorithms.

• Path planning- this step is used to plan the journey called as path planning. 
By using this feature SDC (self-driving vehicles) can take best optimal path 
from one source to destination.

• Control- Once the path is finalised the next step is to steer the wheel like a 
human do.

Figure 3. Communication from A to B

Figure 4. Autonomous car: functional architecture (Hussain, 1275-1313)
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CHALLENGES WITH AUTONOMOUS VEHICLES

Use of automated vehicles provided lots of potential benefits to the community, 
but it also forces certain challenges also. The impact of AV (automated vehicles) 
is on automobile industry, health, transport, labour market, traffic, energy and 
environmental effects, self-parking, parking space, Rescue, emergency response, 
and military, Telecommunication, Hospitality industry and airlines and privacy. 
Security challenges in IOT based Auto-VANET applications are

• Secure Communication
• Monitor and detect threat
• Manage devices to the updates
• Authorization and authentication
• Data integrity
• Secure devices
• Secure control applications
• Privacy

Some Possible Technological Obstacles are

1.  A device for a vehicle, like a contact machine among vehicles, may theoretically 
be hacked.

2.  Vulnerability to various forms of climate disruption, namely jamming and 
tampering, for sensor and communications equipment.

3.  Prevention of big predator’s needs identification and monitoring and Volvo 
considered caribou, deer and elk-suitable applications unsuccessful.

4.  Device programming will entail a sophisticated assessment of product creation 
as well as the distribution network for modules.

5.  In crowded inner city conditions machine learning is now unable to work 
effectively.

6.  The excellent standard of specialist maps will be needed for the operation of 
self-driving vehicles.

Apart from Technological Issues AV also have 
Research Challenges Illustrates in Figure 5

They are as follows:

1.  Planning and motion control for autonomous car in urban environment.
2.  Communication and location privacy in connected and autonomous vehicles.
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3.  Building long-term maps for different weather environment conditions in 
autonomous cars.

4.  Cyber threats in connected and autonomous cars.
5.  Hardware execution of visual perception algorithms in AV.
6.  Perception of autonomous cars from users’ and pedestrians’ perspective.
7.  Consumer faith and preferences in AV.
8.  Obstacle detection in Autonomous vehicles.
9.  Trends in advanced driving support (ADS) and its adaptation in AV.

Parameters Used in Machine Learning

Accuracy

It is the most instinctive exhibition measure and it is just a proportion of accurately 
anticipated perception to the absolute perceptions. One may feel that, assuming 
we have high precision, our model is ideal. Indeed, precision is an extraordinary 
measure however just when you have symmetric datasets where upsides of false 
positive and false negatives are practically same. In this way, you need to take a 
gander at different boundaries to assess the exhibition of your model.

Accuracy
TP TN

TP FP FN TN
�

�
� � �

 (1)

Figure 5. Current and future challenges (Hussain & Zeadally, 2019)
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Precision

Precision is the proportion of accurately anticipated positive perceptions to the 
all anticipated positive perceptions. High precision identifies with the low false 
positive rate.

Precision
TP

TP FP
�

�
 (2)

Recall

Recall is the proportion of effectively anticipated positive perceptions to the all 
perceptions in real class.

Recall
TP

TP FN
�

�
 (3)

F1 Score

F1 score is the weighted normal of Precision and Recall. Accordingly, this 
score considers both false positives and false negatives. Instinctively it isn’t as 
straightforward as exactness, however F1 is normally more helpful than precision, 
particularly on the off chance that you have a lopsided class conveyance.

F1
2

 Score
Recall Precision

Recall Precision
�

� �
�� �

* *
 (4)

REVOLUTION TOWARDS AV

It has been determined that by 2040, there will be more than 33 million driverless 
vehicles out and about, and around 55% of private companies expect that they’ll 
embrace self-driving vehicle innovations in their activities inside the following 
twenty years. There is still a ton of work and testing to be done to guarantee driverless 
advances are 100%, you can be certain that driverless vehicles will be surprising the 
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streets not long from now. Some of the companies working on AV’s (Betz, 2022) 
are as follows:

1.  Unity Technologies: The Company was founded on 2004 in San Francisco 
CA. The company is working for the development of 3D and visualization 
technology tools to help public and vehicle for physical navigation. It provides 
a framework in which an automotive can be checked for VR before entering 
into real world.

2.  CRUISE: It is founded in year 2013 in San Francisco CA. The company is 
working in combining both ride share technology with self-driving to reduce 
the fuel emission. They merged AI with robotics to ensure that vehicle will 
observe lanes properly to follow safety rules accurately.

3.  Waymo: Waymo is a google product which is founded in 2009 in San Francisco 
to work on AV. It provides a variety of operation to gain mobility for drivers 
travelling across states.

4.  VOYAGE: It is founded on 2017 to accelerate the marketing of AV among 
senior citizens, by providing safe and slow passage among streets for them.

5.  WiTricity: Company started in 2007 for working in the field of wireless charging 
stations for AV’s. It uses magnetic resonance technology, so that an electric 
vehicle parked in Witricity parking lot will start its charging immediately.

6.  Zscaler: Zscaler is working with top-most brands worldwide to provide fast and 
secure access to the cloud-based services. The organization’s Zscaler Internet 
Access and Zscaler Private Access networks make quick, secure associations 
among clients and applications on any gadget, area, or organization, making 
continuous correspondence with self-driving innovation more conceivable 
than any other time in recent memory.

7.  NODAR: NODAR makes 3D fringe sensors for driverless vehicles that are 
worked for significant distance insight and are incorporated with self-adjusting 
programming to assist with directing their vehicles to objections in a single 
piece.

8.  HAAS Alert: HAAS Alert has a dream for self-driving innovation as a method 
for elevating the administrations of crisis vehicles, giving independent vehicles 
and other transportation strategies worked to react to outside wellbeing cautions 
and course the speediest ways to their objections.

9.  Reality AI: Reality AI founded in 2015 in New York City, makes cloud-based 
natural recognition advances, worked to be deftly coordinated into previous 
frameworks and stages.

10.  SEEVA: SEEVA’s group founded in 2016 expects that, lidar and 3D detecting 
innovation may be improved to react viably to natural changes, there are still 
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factors like temperature changes and different blocks that can cheapen their 
responsiveness.

11.  Lumotive: Lumotive’s essential spotlight is on fostering the best lidar framework 
conceivable so driverless vehicles can precisely foresee and react to episodes 
out and about without outside input. Their superior natural examining tech is 
coordinated with pillar controlling frameworks so AI insights can be imparted 
to vehicle foundations and change courses progressively.

USE OF VARIOUS DETECTION MECHANISM AGAINST DDOS

Use of Intelligent IDS for Autonomous Vehicles

In recent years, the conventional web has extended to incorporate an omnipresent 
organization which we allude to as Internet-of-Things (IoTs) (Jaiswal & Sarkar, 2018), 
which highlights Machine to Machine (M2M) communication with the capacity to 
give a productive network to self-driving vehicles.

Vehicular ad hoc networks (VANETs) are known as remote portable organizations 
which license self-driving vehicles to effectively trade data like Cooperative 
Awareness Messages (CAMs) among each other also, street side units (RSUs) in 
their correspondence region. VANETs are ready to improve street wellbeing and 
make service agreeable on occupied streets. These organizations have the capacity 
to trade notice messages, warning messages, control information and CAMs between 
neighboring vehicles. It is feasible for a noxious assault to be dispatched from any 
area inside the radio region at any time in such remote organizations as they come 
up short on a firewalls and doors. Besides, a malignant assault does not need actual 
admittance to the vehicle, as it would be the situation with wired organizations 
(Rodge & Jaiswal, 2019).

Providing security to the vehicle Ad-Hoc network has been achieved by using 
encryption/ decryption and various digital signature algorithms to reduce the potential 
attack. The use of such algorithms and techniques are considered as the first layer of 
Defense. For achieving the second layer of defense requires new security measures 
for self-driving vehicles for autonomous vehicles. The requirements of such systems 
are developed in such a way that they can identify, and block known and unknown 
attacks. Such systems required IDS system to achieve security, but they also face 
some issues like:

1.  Developed such a system which provides security to the data which is transferred 
from one system to another.
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2.  Protection and monitoring of each and every message which is conveyed among 
vehicles and roadside units.

There is a need for such systems which requires to capture whole communication, 
monitor transfer and examine it, so that no one can attack. This procedure of Thoreau 
examination is known as audit process full stop the system must be able to detect 
malicious and benign activity on the basis of the data captured during the audit 
process.

The IDS consists of three important phases: 

1.  First phase is known as the data cleaning and transformation phase. It requires 
data gathering from multiple sources.

2.  examination and relevance analysis phase
3.  The last phase is also known as response phase or reduction phase.

The author uses a hybrid intrusion detection system that is a combination of 
anomaly and misuse based detection. The advantage of using this hybrid approach 
is that it will work fast, provide good accuracy, false rate will be low and the method 
is able to detect new attacks on the basis of past behavior. This model also utilizes 
back propagation artificial neural networks with fuzzy sets, which helps to predict 
any external attack happening to AV.

The data set used here is Kyoto, in which only those data or parameters are 
considered which have IP addresses. In other words, the main parameter to detect any 
false user is to find fake or unregistered IP addresses. There are other features also 
which are utilized to achieve proper efficiency and effectiveness like computation 
time, memory requirement, accuracy etc. The whole system is bifurcated into four 
main parts and illustrated in figure 6: 

• The first phase is called the data cleaning phase. In some places the space is 
also known as the data pre-processing phase. This involves three processes 
known as encoding, normalization and equal distribution of data. Each and 
every face has its own importance and working, the output data from one 
phase becomes input for another.

• The encoding phase involves the representation of features with the help of 
symbols. These symbols are again converted into some integer values for 
the calculations, because ANN requires numerical values for computation of 
each of the vectors.

• The next step is to distribute the data uniformly so that the training process 
of the machine is accurate. From a large data set, three sections are created to 
identify the traffic which are unknown, known and abnormal. The calculation 
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is done on the basis of following calculations like if suppose the number 
of normal behavior or known behavior patterns available are N subsets and 
the actual data set contains S samples, then there is a probability that there 
is a chance to find a particular sample in normal class that is S/T. by using 
this distribution approach each and every subset in a data set is equally and 
uniformly distributed.

The last process of this phase is called as normalization. Normalization is a 
process where the data is scaled between 0.0 to 1.0 and -1.0 to 1.0, so that they can 
fall within a particular specified range. This process is basically used for classification 
of algorithms that involves neural network, for calculating distance Matrix like 
nearest neighbor classification and clustering. This process of normalizing each 
input attribute helps to speed up the learning process during training phase. Three 

Figure 6. Working architecture
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basic type of normalization methods are there known as Min-Max normalization, 
Z- score normalization and normalization by decimal scaling.

The author uses a Min-Max normalization (Ali et al., 2009) technique for 
each numerical attribute. Min-max method is basically used to perform linear 
transformation over data on original data. ANN can perform better with normalized 
data and also provided better predictions while working.

A A
�

�
�
' min

max min
 (5)

1.  The next phase is the feature selection from the dataset. It is the most important 
part for any problem solving because the IDS efficiency relies on the number 
and quality of features. The removal of less required data improves the storage 
requirement as well as the computation time. It also improves the training 
process for any data. In this system, thirteen features are taken among all the 
features to measure the accuracy. For the above, proportional overlapping 
scores algorithm is used to calculate all the important features from all the 
available features from the dataset (Alheeti & McDonald-Maier, 2017). For 
this approach, statistical approach to choose important features which contains 
high weight and critical effect.

As we all know that, dataset suffers from classification issue, such mechanism is 
required which overcomes issues and provide a proper solution to above problem is 
with the use of fuzzy set. This fuzzification process creates a clear boundary among 
important features among dataset. It clearly identifies normal, known and unknown 
behavior. The fuzzy set are also called as possibility theory. Following equations 
have been taken for fuzzification process:

F(x,r,s,t)=max(min(x-
r
s

)-r, t-
x
t

-s),0) (6)

Where x defines the normal value before fuzzification process and r, s, t represents 
the domain value.

2.  Next phase is training phase, in this phase supervised learning with back 
propagation neural network is used for assuring security. Such system is known 
as multilayer perceptron model. It uses feed-forward neural network, which uses 
a collection of non-linear neurons which are connected to one another. This 
technique is very useful for classification and prediction of data. For calculation 
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of hidden layers in MLP, cross-validation process is used. Depending upon 
the operation and experiment k-fold cross-validation process is implemented. 
With the use of this process, the author obtained a best result for getting a 
proper set of neurons for the layers of artificial neural network. The training 
and testing is done with hybrid approach i.e. misuse based and anomaly based 
IDS system to gain more secure external communication among AV’s.

This hybrid approach has the ability to detect malignant behavior for AV. The 
proposed approach overcomes the conventional security system which does not have 
the capacity to provide proper security to the external communication with better 
results among autonomous vehicles.

Malicious Detection in Autonomous Vehicles Using MLA

In Park & Choi (2020) author has proposed a data analysis method based on 
machine learning for accurately detecting abnormal behaviors occurred because of 
malware in real time broad-scale self-driving vehicle network traffic. Architecture 
is defined for intrusion detection module which detects and obstructs malware 
attempts which affect the self-driving vehicle through a smartphone. An effective 
algorithm is proposed to detect malicious behavior within a network environment. 
The proposed algorithm is compared experimentally with different algorithms for 
cost and detection accuracy.

In Milosevic et al. (2017) many previous cyberattacks malware have been used 
for crime. Once cyber attacker successfully install malware on some system, then 
the cyber attacker can be able to install or delete programs, can modify files, and 
can download sensitive information. Finally, the information can be used to imitate 
the user of the infected devices and can use the infected system as a source of DDoS 
attack. Many mobile operating systems were targeted by malicious programs and 
reported malware were targeting mobile devices. Due to significant processing 
power of mobile devices attackers can use the devices for DDoS attacks. Attacks 
using malware creates many user interaction situations which can enter into a self- 
driving vehicle via smartphone. Many algorithms are available to deal with DDoS 
attacks. As the autonomous vehicles are connected to other autonomous vehicles 
for in-vehicle and inter-vehicle communication, the communication is real time 
communication. So required accurate and fast working mechanism which is suitable 
for detection of malware in an autonomous vehicle environment.

In-vehicle infotainment systems used to deliver information and entertainment 
content, enable many applications by using an Android operating system (embedded 
operating system). If In-vehicle infotainment systems security layout is not taken 
into consideration in wireless networks, then such interfaces can occur and can be 
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misused as a way for malware to enter the autonomous vehicle network as shown 
in figure 7.

In proposed system, intrusion detection module based on machine learning is 
installed in the vehicle intrusion detection system. It may detect intrusion in the 
controller area network or any anomaly. Hence a head unit or electronic controller 
unit may provide protection from malicious code. The malware behaviors in the 
autonomous vehicle is monitored by using software-based computing modules. The 
software can be installed in head unit as an anti-virus agent, or it may be installed as 
a component in intrusion detection module of the autonomous vehicle. The system 
evaluates intrusion which is based on learned model as well as which provides 
intrusion information to control unit or a user. The proposed system can provide 
improved model’s accuracy by analyzing message patterns and malicious behaviors 
detection rules updated to autonomous vehicle gateway for accurate detection of 
malicious code as shown in figure 8.

The proposed algorithm (Park & Choi, 2020) works on selected network traffic 
features for detection of malware. The proposed improved feature selection method 
finds greedy features and the highest correlation. Classical linear correlation and 
entropy-based information gain method, these two methods are used for measurement 
of correlation between two variables. Linear correlation coefficient is derived for 
two variables using information gain method and correlation-based feature selection 
method. Information gain method is used for deciding importance of a given attribute 
in the feature vectors. Highly correlated final features from the dataset and strong 
relationship between data are determined using these two methods.

Figure 7. Head unit connection with mobile device
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Algorithm
Input: U-universal set including all features.
Output: Ω*-subset with the selected feature by improved feature selection method.

1.  Initialization
a.  xn, yn, zn∈U Where (1 ≤ n ≤ N)

2.  Using linear correlation coefficient get all r(xn,yn)
3.  Sort rx yn n,

 values for (1 ≤ n ≤ N)
4.  Select m sets for the top xn with max value of |r| for suitable variable m 

and (1 ≤ m ≤ N)
5.  Obtain combination xn, yn∈Cm, where C Um ⊂  and n(Cm) = m
6.  Find Cm

* , where max of F1 score with xn

7.  Using information gain obtain all H(n)
8.  Get l which is related to the highly ranking variable.
9.  Select l sets for the top zn with max value of H(n), suitable variable l and 

(1 ≤ l ≤ N)
10.  Get elements zn∈Cl, where C Ul ⊂  and n(Cl) = lc
11.  Find Cl

* , where the max of F1 score with zn

12.  Merge Ω* = C Cm l
* *� � � �

Figure 8. Vehicle gateway and intrusion detection system

 EBSCOhost - printed on 2/9/2023 12:01 PM via . All use subject to https://www.ebsco.com/terms-of-use



63

Comprehensive Overview of Autonomous Vehicles and Their Security Against DDoS Attacks

At correlation-based feature selection, r(xn,yn) i.e linear correlation coefficient 
is derived and final Cm

*  calculating highest F1 score which is 0.796. At information 
gain stage, the information ranking H(n) is derived and final Cl

*  calculating highest 
F1 score which is 0.806 (Park & Choi, 2020). Final feature selection is calculated 
by union of information gain features and correlation-based feature selection sets.

By using intrusion detection system, the malware can be detected from network 
traffic for that nine features are selected using improved feature selection method. 
Learning from the original data which is having unique characteristics and distributions 
may be slow or modeling error can be resulted. So that scaling can be performed 
for data processing which is based on nine selected features. After applying Min 
Max Scaler and Standard scalers F1 score results 0.813 and 0.810 respectively. Its 
shows that Min Max scaler is more beneficial for network traffic so Min Max Scaler 
applied to each algorithm. Malware in Android OS detecting algorithms are analyzed 
by using six machine learning algorithms. For that dataset used is classified under 
3 classes which are benign, adware and malware. The proposed intrusion detection 
system detects malware for autonomous vehicle as shown in figure 9.

Figure 9. Intrusion detection system in a vehicle network
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Six machine learning based algorithms are used to analyze which are data 
random forest (RF), gradient boosting classifier (GB), bagging classifier (BC), 
k-nearest neighbor’s classi.er (KC), decision tree (DT) and extra tree classifier (ET) 
algorithms. Results of these six algorithms are compared with proposed algorithm. 
Feature selection process are used to define nine input features. Output is calculated 
by using two classification situations for analyzing the experimental results. Adware, 
benign code, and malware are detected accurately in first scenario as shown in figure 
10 and second scenario is binary classification in which begin code and adware are 
detected as shown in figure 11. Accuracy recall and precision are through machine 
learning uses F1 score. It detects malware in real time on autonomous vehicles. 
Simulation of proposed algorithm is fast (0.049 s) and highly accurate (92.9%), so 
that it is suitable to detect real-time malware in autonomous vehicle environment.

An Intelligent IDs for Autonomous Vehicles 
Based on Magnetometer Sensors

Proposed Integrated Circuit Metric- Intrusion Detection System (ICMetric-IDS) is 
based on vehicle sensing scheme. It uses magnetometer sensor in self-driving cars to 
protect external communication. The system is designed for the training and testing 
of normal and abnormal (malicious) behavior and also it identifies the vehicle. The 
emerging security technology known as Integrated Circuit Metric extracts the basic 

Figure 10. Multiclass classification
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features of a device to generate a unique device identification. Proposed system 
detects internal as well as external attacks with higher accuracy- rate of detection 
with low rate of error and false alarm to identify malicious behavior in self driving 
car (Alheeti & McDonald-Maier, 2017).

The successful implementation of self-driving car concept will reduce the 
burden on drivers. Also, it will reduce the number of accidents happed due to the 
human errors. The working of self-driving car is totally dependents on internal 
and external communication of vehicles as shown in figure 12. Both internal and 
external communication must be safe as it directly related to passengers’ lives. 
Internal communication is the communication between vehicles called as vehicle to 
vehicle (V2V) communication and the external communication is the communication 
between vehicle and Roadside Units called as vehicle to Road Side Unit (V2R) 
communication. As V2V and V2R communications are wireless communications, 
the term security must be taken into consideration. So the network of the vehicle 
must be protected from different types of attacks such as DDoS attack.

Intrusion detection System is used to detect malicious behavior inside the 
communication network. In proposed system, Integrated Circuit Metric is combined 
with traditional Intrusion Detection System which provides strong detection system 
to make external communication of the self-driving car more secure. Integrated 
Circuit Metric is used to extracts the features of a device to generate a unique device 
identification. The normalized extracted features are used to determine that they 
are deterministic and unique. For this reason, the magnetometer sensor is added 
into system.

Figure 11. Binary classification
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Bias reading is extracted from Magnetometer sensor and provided to ICMetric-
IDS for identification of autonomous vehicle. The architecture of proposed system 
provides six stages detection system as shown in figure 13.

Figure 12. Communication System of autonomous vehicle

Figure 13. ICMetric-IDS architecture
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Six stages of detection system are (Alheeti & McDonald-Maier, 2017):

• Stage 1: Generate ICMetric number: The ICMetric number is generated by 
applying statistical and mathematical functions on readings extracted from 
magnetometer sensor. The ICMetric number generates hash value.

• Stage 2: Real world: Simulation Urban Mobility and Mobility Vehicles tools 
are used to generate real world simulation which reflects mobility of vehicle. 
Files generated from these two tools are provided as input to generate the 
trace file.

• Stage 3: Feature extraction: Only 16 significant features are utilized by 
proposed Integrated Circuit Metric- Intrusion Detection System from 
the complete extracted features space. Due to reduced number of features 
detection rate is enhanced and decreased false alarms and error rate.

• Stage 4: Prepressing: The significant features need some preprocessing, first, 
transformation of some letters and symbols in to numbers; second, uniform 
distribution for balancing normal and abnormal records to improve the 
efficiency of intrusion detection system and third, the normalized extracted 
features generated from trace file makes the performance of proposed system 
more efficient in identification and blocking malicious behavior.

• Stage 5: Training phase: k-NN is used to design the ICMetric-IDS and the 
system is trained with the extracted dataset produced in stage three.

• Stage 6: Testing phase: The proposed system is tested with the extracted 
features. Four types of alarms and accuracy rate of detection are calculated 
in the test phase. Efficiency of k- NN is measured through detection rate, 
number of false alarms (true positive, true negative, false positive, and false 
negative), throughput, Packet Delivery Rate (PDR), and End-to-End delay.

Table 1. Performance metrics of ICMetric-IDS system

Performance 
Metrics

False 
Alarm

Detection rate
Throughput Delay PDR

Normal Abnormal

VANETs with 
Normal- IDS 12.24% 98.45% 85.02% - - -

VANETs with 
ICMetric- IDS 1.21% 99.77% 98.78% - - -

VANETs without-
IDS - - - 1.02% 0.05% 23.33ms

VANETs with 
Normal-IDS - - - 78.57% 97.86% 1.47ms

VANETs with 
ICMetric-IDS - - - 80.22% 99.64% 28.71ms
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As per the discussion in stage six, the efficiency of k- NN for proposed ICMetric-
IDS system is measured through detection rate (normal and abnormal), number of false 
alarms (true positive, true negative, false positive, and false negative), throughput, 
Packet Delivery Rate (PDR), and End-to-End delay and results of proposed systems 
are shown in figure 14, figure 15 and table 1.

Figure 14. Detection Rate and False Alarm

Figure 15. Performance Metrics
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The successful implementation of self-driving car is dependent on secure network 
environment for external communication. The average error rate of ICMetric –IDS 
system is 0.72%. The detection rate ranges in between 98.78% and 99.77% with 
accuracy. The average false alarm rate was 1.21% which is very low. Detection rate 
of the VANET with normal IDS ranges in between 85.02% and 98.45% where false 
alarm was 12.24%. ICMetric technology with k-NN is used to improve the detection 
rate. Therefore, proposed ICMetric-IDS system detects internal as well as external 
attacks with higher accuracy rate of detection with low rate of error and false alarm 
to identify malicious behavior in self-driving car.

CONCLUSION

The chapter deals with the working of autonomous vehicles, ongoing cyber security 
attacks and their possible solutions. Along with that, discussions on various results 
using machine learning algorithms will also summarize. Certain parameters discussed 
like accuracy, normalization, precision, and recall based on the algorithm. So along 
with recent work, the authors will discuss industries involved in the development of 
autonomous vehicles. As all major companies are investing in developing autonomous 
vehicles. So, along with recent work, the authors discussed industries involved in 
the development of autonomous vehicles.
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KEY TERMS AND DEFINITIONS

Accuracy: It is the measurement used to determine which model is best at 
identifying relationships and patterns between variables in a dataset based on the 
input, or training, data.

Autonomous Vehicle: An autonomous car is a vehicle which can sense its 
surroundings and operate without human intervention.

Cryptography: It provides a secure communications technique that allow only 
the sender and intended recipient of a message to view its contents.

DDoS Attack: A DDoS attack occurs when an intruder uses resources from 
multiple, remote locations to attack an organization’s online operations.

Entropy: A high entropy means low information gain, and a low entropy means 
high information gain.

IDS: An Intrusion Detection System (IDS) is a network security technology 
originally built for detecting vulnerability exploits against a target application or 
computer.

Linear Correlation: Correlation is said to be linear if the ratio of change is 
constant.
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Normalization: It is a scaling technique in Machine Learning applied during 
data preparation to change the values of numeric columns in the dataset to use a 
common scale.

Precision: It is one of the important performance indicators, which indicates 
the quality of a positive prediction made by model.

Recall: It measures the model’s ability to detect positive samples.
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ABSTRACT

Authentication is the preliminary security mechanism employed in the information 
system to identify the legitimacy of the user. With technological advancements, 
hackers with sophisticated techniques easily crack single-factor authentication 
(username and password). Therefore, organizations started to deploy multi-factor 
authentication (MFA) to increase the complexity of the access to the system. Despite 
the MFA increasing the security of the digital service, the usable security should 
be given equal importance. The user behavior-based authentication provides a 
means to analyze the user interaction with the system in a non-intrusive way to 
identify the user legitimacy. This chapter presents a review of user behavior-based 
authentication in smartphones and websites. Moreover, the review highlights some 
of the common features, techniques, and evaluation criteria usually considered in 
the development of user behavior profiling.
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INTRODUCTION

Digital authentication provides a means to secure access to digital information through 
various technologies. It acts as a prime component in the access control system to 
mitigate the risk of unauthorized access (Grassi et al., 2017; Jayabalan, 2020). The 
traditional and most widely used approach to identify the legitimacy of the user 
consists of supplying a username and password, a system known as Single Factor 
Authentication. The password is the oldest and predominant authentication factor that 
exists in the information security world. It is the simplest method to implement and 
inexpensive, but it is prone to vulnerabilities such as users using weak passwords that 
are easily cracked, phishing attacks, and other common hacker techniques (Raza et 
al., 2012). The technological advancements plethora the usage of digital service that 
requires several authentication factors to be implemented to prevent malicious users. 
As such, there is a need for organizations to employ Multi-Factor Authentication 
(MFA) where increased complexity such as using a combination of two or more 
independent authentication factors (smart cards, biometrics, and security tokens) 
offers extra security protection (Andrean et al., 2020).

Three-factor authentication using the combination of the above factors can offer 
greater privacy and security, but as it is more complex, and organizations also have to 
maintain acceptable efficiency levels, it is a greater challenge to implement. There is 
an increase in biometric authentication systems in several organizations since these 
grant access only after validating a subject’s unique characteristics (Memon, 2017). 
Biometric authentication is broadly classified into physiological and behavioral. The 
physiological biometrics are based on the subject physical properties such as iris, 
fingerprint, face, and palm. Whereas behavioral biometrics measures the subject 
unique behavior or patterns from voice, keystroke, mouse dynamics, gait, and system 
usage, which can uniquely identify an individual (Aupy & Clarke, 2005; Ferbrache, 
2016; Meng et al., 2015; Vielhauer, 2006).

The behavioral biometric strike the balance between security and usability via 
monitoring the user behavior throughout the active session. According to Global 
Opportunity Report 2017,

Behavioral biometrics analyses specific human behavior with intelligent software, 
adding a new layer of security to verifying identification that is nearly impossible 
to replicate, without any additional stress for the user. Products and services in 
this market are moving digital security beyond simple passwords and pin codes, 
ensuring that as cybercriminals become more advanced, so too do everyday users 
(DNV GL AS, 2017).
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The advancement of Artificial Intelligence provides a venue for the information 
security experts to make an informed decision through gaining insights from the 
historical user access logs. Access logs are an integral part of the system that collects 
traces of event that was executed by an individual entity. The logs are beneficial for 
experts to identify the deviation that has occurred in the process through monitoring 
and auditing of the operations. Moreover, logs can be effectively utilized in many 
ways; process mining is the process of extracting the historical log to identify the 
cause of business process deviation and to improve the business flow (Claes & 
Poels, 2014; Jayabalan & Thiruchelvam, 2017). It can be further extended to extract 
user behavior to perform additional authentication by integrating machine learning 
algorithms.

The purpose of this chapter is to understand the potential inclusion of user 
behavior profiling in traditional authentication framework. Moreover, the chapter 
highlights some of the common features, techniques, and evaluation criteria usually 
considered in the development of user behavior profiling. The scope of this chapter 
is limited to user behavior-based authentication in smartphones and websites. This 
chapter is meant to be useful for identifying trends in user behavior profiling that 
will allow researchers to focus on areas that needs to be improved and new features 
that could be beneficial to stakeholders.

At the end of this Chapter, you should be able to:

• Understand the functionality and significance of user behavior authentication.
• Identify the factors that are influencing the utilization of user behavior 

authentication in the digital information service to protect privacy and 
security.

• Investigate existing and potential approaches with regards to the application 
of behavior biometric authentication.

• Determine the possible challenges which might occur while introducing the 
user behavior authentication in digital service.

ISO 29115:2013

The ISO 29115:2013 provides a detailed framework for entity authentication assurance 
for the overall process in Information and Communications Technology (ISO, 
2013). The standard categories the four authentication factors such as “something 
you know” (e.g., password, PIN), “something you have” (e.g., smart card, device), 
“something you are” (e.g., biometric characteristic) and “something you do” (e.g., 
behavior pattern).
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ISO 29115:2013 provides guidance to the four Level of Assurance (LOA) from 
“control technologies, processes, management activities and assurance criteria for 
mitigating authentication threats.” Each LOA describes the level of confidence in 
the authentication processes from Level 1 to Level 4 (Low, Medium, High and Very 
High). The determination of choosing the appropriate LOAs depends on several 
factors such as risk, authentication errors, misuse of credentials, the resultant harm/
impact and the likelihood of occurrence. The user behavior-based authentication is 
suitable for LOA 3 and LOA 4. The requirements and implementation guidance of 
the LOAs are given in Table 1.

USER BEHAVIOR PROFILING IN AUTHENTICATION

This section discusses the results obtained from analyzing the existing studies on user 
behavior profiling based on the application and system usage. Authentication is one 
of the important factors for any level of digital service that requires validating user 
legitimacy and ensures user confidentiality. With the gradual surge in the number 
of security breaches across digital services in diverse industries such as healthcare, 
banking, military etc., organizations boost their security by using MFA that increases 
the complexity of the access to the system. The design of usable security should be 
given equal importance to reduce the hindrance level of users. Usability is one of 

Table 1. Requirements and implementation guidance of the LOAs

Level Requirement(s) Implementation

Level of 
Assurance 1 
(LOA1)

No specific requirement for this level. This level is used 
when the minimum risk is associated with the data.

- Simple username and 
password.

Level of 
Assurance 2 
(LOA2)

This level is used when the moderate risk is associated 
with the data. Necessary steps to be considered for 
reducing the eavesdropper, online guessing attacks and 
action on protecting stored credentials.

- Single-factor authentication.

Level of 
Assurance 3 
(LOA3)

This level is used when a substantial risk is associated 
with the data. No special requirements for the 
generation of credentials.

- Multi-factor authentication 
- Cryptography to be applied to 
the authentication information 
exchange and rest.

Level of 
Assurance 4 
(LOA4)

This level is used when the high risk is associated with 
the data. Should follow LOA3 implementation and 
requirement for in-person identity proofing for human 
and the storage of cryptographic keys should be secured 
with the tamper-resistant hardware.

- Multi-factor authentication 
- Cryptography to be applied to 
the authentication information 
exchange and rest. 
- Digital certificates for all ICT 
devices.
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the key drivers that makes a system good enough to be acceptable to the end-user 
and other stakeholders (Vasudavan et al., 2016).

Biometric user authentication overcomes the issue of transferability of credentials, 
in which knowledge and possession of the credential are not belonging naturally to 
the owner. This means the biometric properties of an individual are distinct from 
one another and difficult to be transferred to another person. Behavioral biometric 
authentication considers the properties of an individual pattern captured during the 
interaction with the information system and use it as a mechanism to identify the 
legitimacy. Therefore, significant data loss can be avoided through the early detection 
of unusual behavior. User behavior profiling different from a traditional intrusion 
detection system in which user behavior is utilized to detect anomalies rather than 
tracking system or device behavior.

The user behavioral profiling implication is demonstrated in the general Java 
Authentication and Authorization Service (JAAS) classes that are utilized to securely 
authenticate the client. It provides a modular framework allowing the applications to 
remain independent from underlying authentication technologies. Hence, providing 
a framework to customize based on the organization needs to implement the 
authentication factors. Figure 1 demonstrates the user behavior profiling in JAAS.

The client-side application acquires user login credentials and environmental 
conditions as input and sends those parameters to the login module. The web logic 
server container (for example, RMI, EJB etc.) passes the parameters received from 
the clients to the web logic server. It sends the parameters to authentication providers 
to verify the credentials. A meanwhile, the environmental conditions are sent to the 
decision logic for measuring the similarity of data access and the decision logic 
decides whether to demand additional authentication based on the organization 
policy. The patterns are generated by the “behavior profile generator” from the user 
access log and stored into the “behavior profile data store” for the decision logic to 
classify the future user behavior.

The below subsection will discuss the most commonly used features in the 
development of user behavior authentication, machine learning models and evaluation 
criteria to measure the performance of the model.

Features

The features are the important measures that are required for constructing user behavior 
profiling, which could identify future user behavior. Text analysis performed on the 
reviewed articles to identify the most commonly utilized features along with their 
relationships. Cluster analysis (k = 3) was performed with the extracted keywords 
to find the Jaccard’s coefficient based on the agglomerative order. Figure 2 shows 
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the Dendrogram for the feature, which resulted in two clusters and one single word 
removed from the cluster.

Figure 1. User Behavior Profiling Mapping in JAAS

Figure 2. Dendrogram for the keyword Feature
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In a typical web-related application, general features such as browsing sequence, 
time, date, Internet Protocol (IP) address are usually considered in user behavior 
profiling. The parameter for mobile devices constitutes, the mobile sensor, spatial 
and the general usage of varied applications are usually considered during the 
development of profiles. The user call and time are directly linked, and the time 
parameter has a strong link between the location in which the user accessed (usage) 
the file and the system.

The user behavior profiling pertaining to the system and application interactions 
generates an enormous amount of dense data. The significant challenges arise due 
to an increase in model training time and accuracy in detecting legitimate users. In 
addition, utilizing the dense data generated from the different sensors and access logs 
may not produce useful behavior, thus reducing the quality of user profiling. The 
application of dimensionality reduction techniques over dense data can overcome 
the issues. Researchers considered the smoothing function to reduce the noise and 
extract the most usable behavior from the dense data using additive smoothing, 
moving average which yields better accuracy (Albayram et al., 2013; Li et al., 2014).

User Behavior Learning Methods

User behavior learning is a process of understanding the human interactions with 
information systems and different means to extract profiles for identifying future 
user behavior. The dynamic behavior propels the obstructive user authentication 
in client machines such as mobile devices, desktops, laptops, cloud computing and 
the Internet of Things (IoT).

The advancement in the mobile device provides a multifaceted approach towards 
user behavior profiling with the increase in quality of in-built sensors and capabilities 
to process different applications with ease of access (Ismael et al., 2020). The locking/
unlocking of the mobile device provides inconvenience, thus causing the user not 
to adopt secure authentication. Therefore, one study has shown the possibility of 
3-dimensional sensors in the verification as soon as the unlock event action initiated 
by the user to detect anomaly (Buriro et al., 2017). For the readers to understand the 
user behavior perspective of locking/unlocking the smartphone, refer to the article 
(Mahfouz et al., 2016).

Social network usage is increasing at a rapid rate through the use of a smartphone, 
leading to utilize them in continuous authentication. TrackMasion is a behaviometric 
analytics platform to monitor social network usage to identify user behavior and 
utilize it in mobile authentication (Anjomshoa et al., 2016). Further, Radial Basis 
Function Neural Network applied on the short messaging service to create a linguistic 
profile that can be used to determine the user behavior and perform continuous 
authentication (Saevanee et al., 2011).

 EBSCOhost - printed on 2/9/2023 12:01 PM via . All use subject to https://www.ebsco.com/terms-of-use



80

Application of Machine Learning to User Behavior-Based Authentication in Smartphone

One study trained the model using n-gram and utilized the perplexity method to 
predict the abnormal/normal behavior. The spatial and temporal parameters usage 
in the construction of user behavior generates a significant number of instances. 
As such, the additive smoothing method was considered to extract the instances for 
training (Albayram et al., 2013). In another study, the system-level user behavior 
model proposed to collect data from the registry, file system, as well as general 
actions performed in the system such as creation and deletion. The features were 
selected through the fisher method and multivariate Gaussian mixture were utilized 
to build the model (Yingbo Song et al., 2013).

Cloud computing offers several benefits to an individual and organization without 
requiring the user to have any knowledge of the infrastructure used by the service 
providers. Further, virtualization in cloud computing provides an opportunity to 
increase or decrease IT resources as needed to meet the demands. However, privacy 
and security are a major concern in storing the organization sensitive information 
in the third-party server (Kubbo et al., 2016). Thus, several researchers focus on 
the incorporation of user behavior analysis for anomaly detection and misuse of the 
service. The user profiling system using Fuzzy and genetic algorithms to monitor the 
usage pattern and detect suspicious activity in the system (Sahil et al., 2015). Further, 
research proposed user behavior analysis for the cloud users through analyzing the 
application usage and multi-algorithmic approach (Adaptive classifier) implemented 
for each service to achieve better performance (Al-bayati et al., 2016). In addition, 
to the general discussion on the different learning methods discussed earlier, this 
section further introduces three classifications of user behavior learning methods 
based on their applications.

Steering Behavior

The user behavior profiling generated based on the predefined set of sequences can 
be effectively utilized in analyzing the behavior such as web page navigation. One 
study (Alswiti et al., 2016), proposed a k-NN algorithm for building the classifier 
based on the user navigation historical data. Another study constructed the user 
profiles based on the unigram Markov model, which allows to construct of a logical 
sequence. The utilization of the entire web class leads to a higher false-positive rate, 
thus only the top k/2 web classes are considered along with the browsing time and 
classes of web pages (Zhao et al., 2016). However, the researchers do not consider 
a logical relationship between the web pages.

The user interacting with a web application is considered as a web language through 
which user actions are modeled as words. The n-gram was utilized to predict user 
behavior based on past usage patterns (Milton & Memon, 2016). It was performing 
better in binary classification when compared with multi-classification. Moreover, the 
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performance of the model entirely dependent on the keyword abstraction and even a 
slight change affects the ability to detect the anomaly and requires high performance 
computing environment. Most of the web browsing sequences reported the need 
for a greater number of instances to increase the accuracy of the model (Milton 
& Memon, 2016; Zhao et al., 2016). Interested readers to understand the process 
involved in weblog mining can refer to this article (Pabarskaite & Raudys, 2007).

Trust Behavior

Trust is an important notion to believe an entity is a legitimate person accessing 
the system without any malicious intent (Jayabalan, 2020). The trust of a user is 
calculated using several parameters such as the number of transactions, credibility 
of feedback, transaction context and community context. The trust vector generated 
using these criteria are applied with association rule mining to generate user 
behavior. The obtained patterns are applied with a Bayesian classifier to determine 
whether the given user access is trustworthy or untrustworthy (D’Angelo et al., 
2016). Similarly, (Brosso et al., 2010) proposed continuous authentication through 
analyzing the user behavior, which is computed using the measure of confidence on 
the various environmental factors and scores are evaluated using the Neuro-Fuzzy 
to determine the trust level.

In (Kent & Liebrock, 2013), proposed user authentication for a large-scale 
enterprise to model the behavior using graphs and the characteristics of the graphs 
are utilized to build the logistic regression model. The concept of graphs only 
benefited in providing basic insights into potential credential mixing risks within 
the network. Another study proposed an adaptive authentication for Malaysia 
government e-service, which combines multiple applications with single sign-on 
capabilities (Bakar & Haron, 2014). The user behavior profiling is generated based 
on the frequency of attribute values and the approach does not find the correlation 
between them. It lacks predictive capability, high variance in certain attributes, and 
does not adapt to the most recent changes.

One study proposed the use of an “Interactive Dichotomiser 3” algorithm to 
characterize the behavior of the user authentication and utilizes the Random Petri 
network model to analyze the credibility (Lu & Xu, 2014). The credibility degree is 
computed on normalized user behavior and assigned different levels of trust score 
to access the data. However, the authenticated users are allowed to directly access 
the resources based on the roles and user behavior is analyzed at a later stage. 
This approach needs to compromise on a certain amount of data loss before the 
anomaly is being identified. There are additional problems in characterizing the user 
behavior, for instance, only the attributes with the highest entropy are selected and 
the remaining attributes are not utilized when the instances are correctly classified 
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with fewer attributes, thus, leading to an overfitting problem. Secondly, the approach 
does not perform better when there are limited instances.

The mobile phone operates with limited resources leads to the computational 
overhead of processing the trust score within the device considering the entire user 
behavior activity of different applications with spatial and temporal parameters. 
Hence, the cloud platform provided an efficient infrastructure to process the trust 
score using the probability to determine the legitimacy of a user (Chow et al., 2010).

Trial Behavior

Generating a challenge question based on the previous transactions dating back 
over a decade (B. & Venkataram, 2007). With the recent era of Big Data and its 
technologies, the possibilities to generate user behavior with the huge volume of 
data from different sources leads to the prospects of constructing challenge questions 
in authentication framework (Ibrahim & Ouda, 2016). The knowledge of historical 
user transactions is the key factor to identify the legitimacy of the user based on 
the challenge questions.

The questions are usually generated based on the predefined features mapped 
with the user transactions to measure the frequency of actionable items (Skračić et 
al., 2017). Notwithstanding, mobile misuse is a major challenge and the researchers’ 
utilized mobile application usage for building the user profiles. The rule-based 
classifier is used for determining the probability of the event and neural networks 
for analyzing the call history (Li et al., 2014).

The recommender system analyzes user needs and preferences by finding the 
correlation between the user, items, rating or reviews. The recommender system has 
been implemented to identify the top selling items, products, customer demographics, 
past buying behavior, search history and can also consider social connections of the 
specific user (Katarya and Verma, 2016; Rana and Jain, 2012; Tarus et al., 2017). 
Further, the researchers have shown the possibilities of generating user behavior 
profiles and dynamic challenge questions based on past transactions with the help 
of collaborative filtering (Ibrahim & Ouda, 2017).

Evaluation Criteria

The models are built on the annotated data should generalize well on future unseen 
data (Raykar & Saha, 2015). A decent estimate of the model performance is an 
important characteristic that usually computed through measuring accuracy in 
order to detect the future predicted behavior. The performance evaluation metrics 
are broadly classified into the threshold, probability, and ranking metrics. These 
metrics are the scalar group method that presents the classifier performance in a 
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single score value, thus making it easier to compare and contrast the results with 
other metrics. In most cases, these types of metrics are employed in three different 
evaluation applications (Hossin & Sulaiman, 2015).

• Generalization: In this evaluation, the metrics were used to measure the 
generalizability and quality of the summary on the trained classifier. The 
common metrics utilized for this evaluation consist of accuracy and error.

• Model Selection: The best classifier among the different trained classifiers 
are selected based on the performance of the test set.

• Discriminator: The evaluation metrics are employed to discriminate and 
select the optimum classifier during the validation.

In order to measure the performance of generalization and model selection, all 
the three discussed evaluation metrics (threshold, probability and ranking) can be 
employed to measure the effectiveness. However, only certain types of metrics from 
the three categories utilized for discriminating the classifier such as A Receiver 
Operating Characteristic Curve (ROC), confusion matrix etc. (Caruana & Niculescu-
Mizil, 2004; Han et al., 2012; Marcot, 2012). The commonly used evaluation methods 
for user behavior profiling are listed below (Pisani et al., 2016).

• False Acceptance Rate (FAR) measures how often a classifier falsely 
identifies an impostor as a genuine user by calculating false matches over 
total impostor match attempts.

• False Rejection Rate (FRR) measures how often a classifier falsely identifies 
a genuine user as an impostor by calculating false rejection over total genuine 
match attempts.

• Equal Error Rate (EER) measures the threshold point between FAR and 
FRR.

• Accuracy rate measures correct classification obtained by the classifier in 
percentage; and

• Integrated error measures the portion of the area resulted by plotting FAR 
and FRR together.

DISCUSSION AND FUTURE DIRECTION

This section presents the discussion and future directions of user behavior-based 
authentication. The behavioral biometrics authentication uniquely identifies legitimate 
users from the adversary based on the behavioral trail. The concept of behavioral 
biometric dates back to over a century and was even utilized in World War II to 
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uniquely identify the telegraph operators based on the keystroke dynamics. The 
approach was termed as “Fist of the Sender” to uniquely identify and validate the 
sender message by analyzing the typing rhythm, pace, and syncopation of the telegraph 
keys (Banerjee & Woodard, 2012). Behavioral biometrics such as keystrokes and 
mouse dynamics, which are usually captured under static and controlled conditions. 
These approaches are vulnerable to replay attacks, human interaction simulation 
and advanced malware injections. However, the behavioral biometrics are trained 
as the user operates the system which is difficult to be mimic by the robots due to 
the invisible challenge and improve security with a cognitive fingerprint of the user 
(Ferbrache, 2016; Turgeman & Zelazny, 2017).

The researchers’ major perseverance to adopt the user behavior analytics in 
authentication is to detect insider threats, prevent misuse and usable security. The 
system level attacks are well planned, and several security tools are utilized to 
monitor and prevent external threats to organization wide networks. Nevertheless, the 
insider threat and misuse are a major concern to the organizations where co-workers 
or imposters steal credentials and access the sensitive information, which able to 
be detected through user behavior profiling (Al-bayati et al., 2016; Li et al., 2014; 
Yingbo Song et al., 2013). The 2017 Verizon Data Breach Investigations Report 
says, “Insider misuse is a major issue for the Healthcare industry; in fact, it is the 
only industry where employees are the predominant threat actors in breaches”. Just 
over half of the incidents with confirmed healthcare data disclosure analyzed were 
due to privilege misuse and misdelivery (Verizon, 2017).

With the Health Insurance Portability and Accountability Act (HIPAA) and 
ISO22600-1:2014 requiring healthcare organizations to boost security by using 
MFA that increases the complexity of the access to the system, the design of usable 
security should be given equal importance (ISO, 2014; Jayabalan & O’Daniel, 
2016; Tipton et al., 2016). As such, healthcare practitioner behavior and the nature 
of their interaction with security features should be considered as an important 
characteristic at the design stage (Jayabalan & O’Daniel, 2019; Realpe-Munoz et al., 
2016). In studies conducted to identify usability issues in electronic health record 
authentication, the major concerns among healthcare practitioners were revealed 
to be efficiency and availability (Ferreira et al., 2011; Wang & Jin, 2008). It was 
further noted that practitioner acceptance and attitude depend on electronic health 
records usability (Kaipio et al., 2017).

According to Gartner, “Affiliated physicians are not employees of the healthcare 
delivery organization but have an elective relationship. Obliging the affiliated 
physician to use an OTP hardware token may sour and even curtail that relationship. 
Adopting contextual/analytic and adaptive capabilities can minimize the burden of 
higher-trust authentication on physicians by limiting its use to only those instances 
where the level of risk demands it” (Mahdi et al., 2016).
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A semi-structured interview for the physiological needs for privacy and security 
in smartphones resulted in a low response from the participants (Kraus et al., 2017). 
Since the individual expectations are beyond the need for general authentication. 
However, this might not be the case for an organization to adapt user behavior 
profiling. As the behavioral patterns constructed based on the application usage 
in a continuous manner (intrusive monitoring) to ensure the verification process 
is carried out in a user-friendly way without any additional efforts from the user.

The trail behavior discussed in the previous section focused on generating the 
challenge questions based on the historical transactions. It might be suitable for 
industries such as social networks, e-commerce, banking and finance. However, 
the information security experts should consider the users’ age as an important 
factor before deciding to adopt this variant. Because older people face age-related 
impairments which might affect their ability to recall their historical transactions 
(Vasudavan et al., 2016). The trust behavior variant focuses on calculating the risk 
associated with user authenticity and applies a mathematical formula to compute a 
trust score or rank. This method of authentication is more suitable in different areas 
such as handheld devices, IoT, and dynamic industries. Cloud computing, National 
Security and Intelligence, military, and healthcare works in a unique operating 
environment, and high impact of threats that requires additional mechanisms to 
protect privacy and security (Jayabalan, 2020). For instance, the cloud service 
provider offers the organization to manage their service which requires dynamic 
threat assessment (Ehsan Rana et al., 2017). Thus, user behavior profiling through 
its implementation can assess the user risk and trust using the vulnerability of the 
current environment, threats and integrity of user with the historical user behavior.

People tend to exhibit certain uniqueness in the level of interaction to the system 
which can change gradually over the course of time, thus pattern aging is one of 
the root causes to influence false positives or error rates (Clarke, 2011). Accuracy 
can be improved by dynamically adopting the most recent changes in user behavior. 
However, renewing the template might include the illegitimate usage which an 
imposter might be accepted by the system over time as the genuine user (Al-bayati 
et al., 2016). One article considers this issue and addressed using the change point 
detection with the fixed sliding window for the number of instances using time 
series (Al Solami et al., 2010). Further studies required in identifying illegitimate 
usage while renewing the template.

Another major challenge to information security experts in user behavior-based 
authentication is to overcome the cold start problem for the new users, which is not 
addressed in the existing studies. The new users without having any access trails 
will most likely not be selected for continuous authentication, which is referred to 
as “cold start”. However, it can be overcome by using the general access templates 
for individual role-based profiles.
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The general hypothesis in authentication factors is “a successfully authenticated 
subject is a truthful owner accessing the information”, thus naïve to authorization 
mechanism allowing an intruder to take for granted. Further research can consider 
the access policies (XML, Web Ontology Language) that represent the semantic 
meaning of every object and its relationships based on the user roles to monitor 
along with the user behavior (Jayabalan & Oadaniel, 2018). Thus, a combination of 
authentication mechanisms can be tailored based on the consumption of different 
sensitive data. For instance, fingerprint authentication is required to access highly 
sensitive data from certain locations and single factor authentication (username 
and password) is sufficient to access highly sensitive data from the trusted region 
and device.

There are two perspectives of privacy risk in user behavior profiling, first order 
and second order; the leakage of single information is known as first order privacy 
risk. The second order privacy risk arises due to the user profiling and data mining 
techniques that are applied to individual data access (Bal et al., 2015). Hence, access 
confinement and distorting data are methods used to protect sensitive data. At the 
user data profiling depository phase, encryption techniques such as Identity-Based 
Encryption and Attribute-Based Encryption are well-known apart to protect while 
data stored in the cloud vendor or server. The privacy-preserving techniques are 
mainly acquired in the data processing step of big data analytics. Data anonymization, 
also known as data masking or data desensitization, is used to obfuscate or conceal 
any sensitive data about an individual, thus limiting the person’s re-identification 
(Rajendran et al., 2017). Further research needed in virtue of overcoming second 
order privacy risks through the application of cryptographic and privacy preserving 
techniques.

CONCLUSION

Authentication is a fundamental security mechanism to protect user privacy and 
security in digital services. There are several methods proposed in the existing studies 
to secure data with multifactor authentication and usability is always a concern. 
Transparent and continuous authentication provide a better tradeoff between security 
and usability. Employing user behavior-based authentication to the existing multi-
factor authentication framework will provide additional security to the system without 
user intervention. There is a need for continuous authentication to be performed in 
the industries managing sensitive data through analyzing the user behavior towards 
their digital services to detect the potential threats.

 EBSCOhost - printed on 2/9/2023 12:01 PM via . All use subject to https://www.ebsco.com/terms-of-use



87

Application of Machine Learning to User Behavior-Based Authentication in Smartphone

User behavior-based profiles are created based on the pertinent information from 
the historical access log. The confidence levels are computed based on the similarity 
between the real-time factors with the existing patterns to determine the legitimacy 
of the user. The user behavior-based authentication was demonstrated using the Java 
Authentication and Authorization Services for the information security experts and 
developers to understand the implementation details. Further, the taxonomy of the 
user behavior learning methods was introduced in this chapter such as trail behavior, 
trust behavior, and steering behavior. The application of machine learning and 
natural language processing was dominant in trail behavior and steering behavior. 
Whereas trust behavior is an amalgamation of the aforementioned techniques with 
probability and statistics. This chapter also presented the most common issues to 
be dealt with whilst the organizations adopt user behavior-based authentication to 
protect privacy and security. Moreover, the chapter highlighted some of the research 
gaps with a lack of empirical studies.
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KEY TERMS AND DEFINITIONS

Access Policy: A list of roles and resources to which the access permissions are 
defined for an individual role.

Cloud Computing: On demand availability of computing power and data storage 
capacity.

Continuous Authentication: A verification method aimed to provide identity 
confirmation and cybersecurity protection on an ongoing basis.

Intruder Detection: A software application or device to monitor the organization 
network for unusual activity.

Keystroke: The pressing of a single key on a keyword.
Mouse Dynamics: A tiny patterns and variation in the mouse and/or pointer 

movements while the user interacts with the screen.
Transparent Authentication: A verification method aimed to assess the user 

behavior in a non-intrusive way to identify the legitimacy.
Usable Security: A process to ensure the security products and services are 

usable by those who need them.
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ABSTRACT

The use of deception systems is a viable option in reducing the never-ending tussle 
between the attackers and the defenders. The deception systems give the defenders 
an edge over their counterparts since they provide the platform to learn the methods 
and techniques the attackers use. However, the effectiveness of the deception system 
is highly dependent on how they truly hide their identity. A deceptive honeypot 
has the capacity to persuade and change the cognitive behavior of an attacker. An 
attacker whose cognitive behavior has been altered by the deception capabilities 
of a honeypot is more likely to reveal his attack methods; hence, the defenders are 
able to learn how to defend against those future attacks.
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INTRODUCTION

Computer security has been a concern ever since the inception of computers, hence 
the never-ending struggle in the status quo requires a shift in mindset. Traditional 
approaches are firmly based on the premise that the network perimeter is an effective 
means to protect the information assets within the organization and that employees 
within the organization can be trusted. In the face of this challenges, some leading 
enterprises have changed the tactics and employed a ‘need-to-know’ approach as 
an effective way to secure their assets. The emergence of deception systems is 
becoming more and more a viable option to protecting computer assets. The use of 
honeypots in protecting computer and information assets comes from the notion that 
‘you cannot protect what you don’t know’. Therefore, honeypots came as a viable 
option to understand attackers and their attack methods. Once deployed, a successful 
honeypot must be able to deceive, lure, and record all the attackers’ activities.

BACKGROUND

Honeypot Definitions

Honeypots are special systems designed to track and trap attackers and learn their 
attack methods. They are special in the sense that they are not a solution but rather a 
general technology that do not solve a specific security problem which is continuously 
changing, and can be involved in many facets of security such as information gathering, 
detection, and prevention (Verizon, 2019). Security researchers and administrators 
often use honeypots to unobtrusively track and monitor what malicious attackers are 
doing in order to compromise computer resources. A honeypot is a tool designed 
to learn the attack methods the adversaries use to query and exploit vulnerabilities 
in a system. So, a honeypot is a security resource whose value lies in being probed, 
attacked, or compromised (WhiteHatSecurity, 2016).

Several definitions for the term `honeypot’ have been proposed, and below we 
present some of those definitions:

• Definition 1: “a honeypot is a security resource whose value lies in being 
probed, attacked and compromised” (Spitzner, 2002).

• Definition 2: “a honeypot is a computer which has been configured to some 
extent to seem normal to an attacker, but actually logs and observes what the 
attacker does” (Gibbens, 1999).
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• Definition 3: “a honeypot is a general computing resource whose sole task 
is to be probed, attacked, and compromised, used or accessed in any other 
unauthorized way” (Grudziecki et al., 2012).

For the purpose of this chapter, we adopt definition 1 mainly because rather than 
being specific to a particular security resource like the rest, the definition describes 
a honeypot in a more general sense, of which we believe a general term `honeypot’ 
should be defined.

History of Honeypots

Despite the fact that the word honeypot was not commonly used, honeypots have been 
around since the 1960s when the first computer viruses and worms were discovered. 
The most discussions about honeypots only came after Clifford Stoll’s successfully 
venture into capturing a German hacker using a physical honeypot in 1986. Then Stoll 
wrote a book `The Cuckoo’s Egg’, recounting his story of successfully capturing a 
West German hacker using his physical honeypot, and it was only after this book in 
the early 90s that majority of the security community started to discuss honeypots 
though with little publications. Its only after Stoll’s book in 1991 (Spitzner, 2002), 
that commercial honeypots products started being introduced into the market. Bill 
Cheswick also published his first honeypot experiences in 1991 in his famous 
publication, An evening with Berferd, where he discussed an encounter with a hacker 
who thought had discovered the famous sendmail DEBUG hole in AT&T Bell 
laboratories’ internet gateway computer and attempted to copy their password file. 
In 1997 another publication by Fred Cohen called the Deception Toolkit followed. 
In this publication, Cohen discussed how the Deception Toolkit (DTK) was intended 
to deceive attackers into believing that the system running DTK has a large number 
of widely known vulnerabilities. Then a series of other publications and honeypot 
products followed in 1998 when CyberCop Sting, NetFacade, and BackOfficer 
Friendly were released (Spitzner, 2002). CyberCop brought the concept of multiple 
virtual systems destined to a single honeypot. BackOfficer Friendly was a simple 
Windows based honeypot which brought many people to the understanding of 
honeypots, and Netfacade later introduced the concept of Snort.

The year 1999 found the formation of the Honeynet project, led by Lance Spitzner 
along with a series of publications of the ``Know your Enemy’’ papers. A lot more 
honeypots products were released by this group. According to Spitzner (2002), the 
sudden booming of worms in 2000 and 2001 that compromised a lot of production 
systems brought in a lot more honeypots that were successfully used to capture these 
worms as was the case in the CodeRed worm and the Sub7 trojan.
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Honeypot Classifications

Different sources have classified honeypots differently, and most of those 
classifications are based on purpose the honeypot serves and level of interaction to 
the attacker (Baumann & Plattner, 2002; Gibbens, 1999; Mokube & Adams, 2007; 
Spitzner, 2002; Wagener, 2011). Figure 1 shows a general summary of the most 
popular honeypots classifications.

Level of Interaction

One characteristic of honeypots is the degree at which it can interact with the attacker. 
Thus, the level of interaction measures the possibility to interact with the actual 
operating system or a system mimicking the operating system.

Low Interaction Honeypot emulates only services that can be exploited but 
cannot lead to total control of the honeypot. In this type of honeypot, there is no 
actual operating system for the attacker to interact with it, but rather it only emulates 
services of a particular system (Mokube & Adams, 2007). Since the host operating 
system does not interact with the attacker, low interaction honeypots are fairly safe 
to operate. However, this type of honeypots is ineffective where a more complex, 
interactive environment is needed (Gibbens, 1999). Low interaction honeypots are 
generally simple to deploy and maintain, and Honeyd is one commercial example 
of such (Gibbens, 1999).

Just like low interaction honeypots, Medium Interaction Honeypot has no 
operating system installed for the attacker to fingerprint, but rather, the simulated 
services are more complicated technically and has more services that are closer 
to that of a real operating system (Baumann & Plattner, 2002; Gibbens, 1999). In 

Figure 1. Honeypots Classifications
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medium interaction honeypots, the emulated systems are more complex and have 
more knowledge about the services they provide. In particular, medium interaction 
honeypots mimic a collection of software’s in order to present a more convincing 
interaction with the hacker, but still hide the actual operating system to the attacker. 
It is this emulation of a collection of software’s that make it more complex because 
the deception systems have to show the exact behavior of the real systems but not 
have the same security holes. Thus, medium interaction honeypots have a better 
impression to the attacker than low interaction honeypot of an operating system due 
to its complexity and the amount of interaction it gives the attacker.

High Interaction Honeypots on the other hand are the most advanced honeypots. 
They do not emulate services but rather they give the attacker the opportunity to 
interact with the actual operating system along with real instances of programs. The 
goal of this honeypot is to provide the attacker with real operating system and real 
programs where nothing is simulated hence log all interactions where the attacker 
has all the resources at his disposal. Because of the ability of the attacker to interact 
with the actual operating system, high interaction honeypots have the biggest risk 
of the system being compromised by the attacker, but also the highest potential of 
collecting useful information (Baumann & Plattner, 2002; Gibbens, 1999).

Classification on Purpose

Honeypots are generally used in two main purposes: as production honeypots or 
research honeypots.

Research honeypots are honeypots used by researchers to gain information about 
attackers and do not add any direct value to an organization. They are generally used 
for intelligence gathering on the threats the organization may be facing, thereby 
giving the organization the opportunity to better protect itself (Mokube & Adams, 
2007; Shukla et al., 2015). The main objective behind research honeypots is to study 
the methods, techniques and processes the attacker use to attack computer systems 
and then pass the knowledge to those who should be protecting the organizations 
against the threats. Thus, there is little contribution by research honeypots to the 
direct security of the organization although the lessons learnt can be used to improve 
the general security of the organization (Mokube & Adams, 2007). Using research 
honeypots, the security community is trying to establish what the next generation 
of attacks are and how they are executed (Gibbens, 1999). Research honeypots add 
value to the research community by providing a platform to study cyber-attacks, and 
it is their intelligence gathering that makes them unique and exciting characteristics.

Production honeypots on the other hand, are what comes to most people’s minds 
when the word honeypot is mentioned. Production honeypots are honeypots deployed 
in a particular organization with the main objective as to alert administrators to 
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potential attacks in real time (Gibbens, 1999). These honeypots are generally easy 
to build and deploy as they don’t require complex functionality but rather what 
the organization wants to protect (Mokube & Adams, 2007; Shukla et al., 2015). 
Production honeypots often mimic the production network or specific services of 
an organization deflecting attackers to focus on them rather than the production 
network while at the same time recording the vulnerabilities available in the network 
as they are exposed by the attackers. By exposing these vulnerabilities and alerting 
the administrators on these attacks can provide an early warning of attacks and help 
reduce the risk of exploiting the production systems.

HOW ATTACKERS DETECT HONEYPOTS

As honeypots are increasingly being deployed within computer networks, adversaries 
also start to come up with methods to detect and evade these security tools. Attackers 
do not want their methods observed since this could lead to their attack methods 
being publicly known. Furthermore, attackers do not want to disclose their methods 
and exploits, and as such honeypots are a concern to them (Innes & Valli, 2006). 
As a result, attackers have devised the means to detect honeypots once deployed.

Detecting UML Based Honeypots

User-Mode Linux (UML) give the user a virtual machine that may provide multiple 
virtual Linux kernels, known as guests, to run on another Linux kernel, known as 
host kernel or host operating system. Network traffic can be route from the host 
kernel to the guest kernel or UML, giving an impression that the person connecting 
to the system is engaging with or inside a live Linux system. As a result, User-Mode 
Linux has become a popular technique for deploying honeypots designed to run 
in a Linux environment. However (Innes & Valli, 2006), discovered that UML has 
various flaws that can alert an attacker that he/she is engaging with a fake system 
rather than a live one. Since UML lacks physical hard disks, it saves data on virtual 
devices that point to disk images of an existing file system, which are mounted as /
dev/ubd* on the UML system. The issue with the disk image mount in UML is the 
major number 98(0x62), which is not the same for standard IDE or SCSI systems 
when identifying the dev/ubd* devices.

The other discovery with UML based honeypots was by Holz & Raynal (2005b), 
where they found that a /proc tree structure of the system has the capabilities to tell 
that the system on the other side is not a live system but rather a fake one. When 
UML is used to operate the honeypot, the /proc tree directory contains hints to 
the presence of UML. For example, the file /proc/cpuinfo shown below has model 
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name listed as UML and mode as tt for tracing thread. This is because by default 
UML executes in tracing thread mode. The memory allocation also shows that it 
has been allocated to a honeypot. Therefore, if the /proc/cpuinfo file is retrieved 
from the system, it can be concluded that the system on the other side a honeypot.

Listing 1. Linux CPU Info in UML

\$ cat /proc/cpuinfo 

Processor                : 0 

vendor_id               : User Mode Linux 

model name             : UML 

mode                        : tt 

[ . . . ]\$ egrap “uml honey” /proc/ksysms 

a02eb408 uml_physmem 

a02ed688 honeypot

The second discovery made by Holz & Raynal (2005b), on detecting UML-based 
honeypots, is that UML was not intended to be hidden when run in its default form. 
As a result, as shown below, a dmesg command would reveal a list of output that is 
only inherent in UML and not in a live system:

Listing 2. dmesg Command in UML

Uml{\textgreater}{\textgreater} dmesg 

Linux version 2.6.10-rc2 

. . . 

Kernel command line: ubd0=[ . . . ] 

. . . 

Checking that ptrace can change system call numbers . . . OK 

Checking syscall emulation patch for ptrace . . . missing 

Checking that host ptys support output SIGIO . . . YES 

Checking that host ptys support SIGIO on close . . . No, 

enabling workaround 

Checking for  /dev/anon on the host . . . Not available (open 

failed with errno 2) 

NET: Registered protocol family 16 

mconsole (version 2) initialized on [ . . . ] mconsole 

UML Audio Relay (host dsp = /dev/sound/dsp, host mixer = /dev/

sound/mixer) 

Netdevice 0: TUN/TAP backend {\textendash}  
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divert: allocating divert_blk for eth0 

. . . 

Initializing software serial port version 1 

 /dev/ubd/disc0: unknown partition table 

. . .  

Holz & Raynal (2005b) also discovered that UML-based honeypots can be 
detected by inspecting the address space of a process in the maps file. The maps 
file contains information about the memory regions and access permissions that are 
currently mapped for the current process. The anomaly in this file is the address that 
indicates the end of a stack. The end of a stack in a live system is usually represented 
by 0x0000000, but in a system running as a guest operating system, the end of a stack 
is represented by 0xbefff000, which means that each process can access, change, or 
edit the UML kernel in any way.

Detecting VMware Based Honeypots

Like UML, VMware is another technology that is used to deploy several guest 
operating systems on virtual machines in one physical machine, and this operating 
system maps to the physical hardware resources. VMware is one of the most preferred 
platforms to host honeypots due to their flexibility, cost reduction and due to the fact 
that if they are compromised the physical resources they are mapping to cannot be 
damaged. Holz & Raynal, 2005a; Innes & Valli (2006) noted that one of the first 
step in detecting VMware is to look at its hardware properties which is supposed 
to emulate. Prior to VMware version 4.5, some of the hardware properties were 
not configurable in VMware. The hardware, video card, network interface card, 
hard disk, CD drive, and SCSI controller configurations were all not configurable 
and they remained at default values that indicated that they for VMware. Another 
weakness in VMware based honeypots was the MAC address bound to the network 
card (Holz & Raynal, 2005b; Innes & Valli, 2006). The octet that represents the 
vendor part (first 3 octets) on a VMware virtual network interface is always one of 
the following:

Listing 3. VMware MAC Addresses

00-05-69-xx-xx-xx 

00-0C-29-xx-xx-xx 

00-50-56-xx-xx-xx
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The last weakness on VMware based honeypots which was discussed by Holz 
& Raynal (2005b) and Innes & Valli (2006), is that of an embedded I/O backdoor 
known as Agobot that is used for configuring VMware when running. To check 
whether the system is a VMware, an attacker can try to access Agobot backdoor 
by either using the known assembly code used for accessing it such as “mov eax, 
VMWARE\_MAGIC; 0x564D5868” or run commands that work with the backdoor 
such as “04h - Get current mouse cursor position”. If any of the commands was 
successful, then the attacker will know that this is a virtual machine and possibly 
a honeypot.

Detecting chroot and Jails Environment

Despite that the chroot and jails environments were never intended for security, they 
are frequently used to secure binaries for honeypots. Detecting chroot environments 
and even bypassing them is not difficult, and the easiest way is to run ls-lia command 
on the root directory and search for the inode of the `.’ and `..’ directories (Holz & 
Raynal, 2005b; Innes & Valli, 2006). The inodes of the two directories are both 2 
in a standard environment.

Listing 4. Displaying File Inode

2 drwxr-xr-x 21 root  root    2096 Oct 17 19:47. 

2 drwxr-xr-x 21 root  root    2096 Oct 17 19:47..

However, when the same command is run under a chroot environment, the inodes 
of the two directories change, as:

Listing 5. Displaying File Inode

1553441 drwxr-xr-x  7 1000 100    2096 Oct 17 19:47. 

1553441 drwxr-xr-x  7 1000 100    2096 Oct 17 19:47..

Detecting Honeypots Based on Timing Profiles

There is a general expectation that every honeypot should log attacker profiles as the 
attackers are interact with them. By logging attacker profiles means the computer 
execute extra instructions. Therefore, when a computer runs extra instructions, the 
total time taken to execute a process or command can take longer than normal, and 
this has the ability to cause suspicion to those who understand the protocol well. 
Honeypots experience a lot of performance degradation if there is many attacking 
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hosts all directed towards the honeypot. This is due to the fact that every instruction 
sent is logged and the more the instructions sent the more logging the honeypot must 
do, causing more extended time to complete the instructions. By measuring either 
the time taken or number of instructions executed, honeypots can be detected (Holz 
& Raynal, 2005b), and this can be done through the use of execution path analysis 
(EPA) which is based on a counter for instructions executed. As argued by Jan K. 
Rutkowski in Phrack magazine (issue 59), the idea behind EPA is to hook the syscall 
handler (int 80) and debug exception handler (int 1) in the Interrupt Description 
Table (IDT), and then by setting TF bit (mask 0x100) in EFLAGS register the new 
handlers are able to count each SIGTRAP generated when an instruction is executed.

Sebek, which is one of the data captures used by honeypots to log the attackers’ 
profiles as they interact with them, was designed by The Honeynet Project as a 
kernel module to be installed mostly in high interaction honeypots for the purpose 
of collecting extensive data. Sebek record the data accessed by the hacker in an 
unencrypted way, and it does that by hijacking the read() system call. In order to 
detect Sebek, the attacker can simply measure the execution time of read() system 
call. Systems that use Sebek as a data capture will have their minimal execution 
time at around 29999 with a scalar product of 0.009930, whereas in a system that 
doesn’t use Sebek the minimal time is 8225 with a scalar product of 0.776282 (Holz 
& Raynal, 2005b). The reason for the long execution time on a system with Sebek 
is mainly attributed to the fact that each read() operation causes at least one UDP 
packet to be sent.

VMware based honeypots can also be detected by causing an illegal instruction to 
system and then measuring the execution time. The time taken to process an illegal 
instruction is in a live system is 776mms, but for a system that runs on VMware the 
time taken to process an illegal instruction increases to 2530mms. This is because 
VMware exception handler checks first whether the exception must be handled by 
VMware itself or by a particular exception handler in the process that caused illegal 
instruction (Holz & Raynal, 2005b).

Other Methods of Honeypot Detection

An x86-based processor can be used explicitly as another approach of discovering 
VMware based honeypots. Instructions need to go through the global descriptor 
table (GDT) or the local descriptor table (LDT) in order to access the memory if the 
machine is operating in a protected mode, and these instructions are regularly utilized 
by the operating framework. This provides advantages that are not available for intel 
processors that have to utilize a user-land (ring 3) to execute these instructions (Holz 
& Raynal, 2005a). Therefore, clashes can occur within an intel processor when the 
same registers need to be accessed simultaneously by a guest system and a host 
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operating system to execute the instructions because it has a single local descriptor 
table register (LDTR), an interrupt descriptor table register (IDTR) and a global 
descriptor table register (GDTR). In the event of this, actions performed in the guest 
operating system can obtain the contents of IDTR by implementing instructions of 
the SIDT while the host operating system has shifted the IDTR of the guest operating 
system. As a result, special rights are now not required, and the implementation of 
instructions will not be implemented by the host operating system. However, the 
actions of the guest operating systems are assigned the shifted address of the IDT 
and the resulting internal processes of a virtual machine.

Another honeypot that has demonstrated to be moderately simple for attackers 
to realize that it is indeed a honeypot is Honeyd. One of the challenges associated 
with Honeyd is that it usually gives feedback to misdirected packets and as a result, 
attackers can easily see that it is not a live framework. For example, Honeyd will be 
unable to differentiate between valid and distorted network packets that allow and 
disallow communication path instantly (Innes & Valli, 2006). An aggressor in close 
observation of the network traffic with the use of packet sniffer would be suspicious 
after picking this inconsistency although this can be disregarded by an attack tool 
hoping to hear a reaction. Valli (2003) realized that one of the setbacks associated 
with Honeyd is the way it responds towards operating system fingerprinting when 
testing its detection characteristics during TCP/IP interactions. It is during this test 
that Valli tracked down that the TCP/IP stack fingerprint of Honeyd to assess the 
operating framework of the devices is incompatible and returns false positives and 
this probably going to raise suspicions if this protocol is fathomable to the attacker.

Valli (2003) also discovered that another problem that makes Honeyd to be easily 
discoverable is due to its heavy reliant on user configuration when deployed. Some 
configurations maybe configured incorrectly on the setup file as a result of human 
mistake. Therefore, arrangements intended to copy a webserver for instance, would 
likewise be inaccurate and raise doubts to those observing traffic. Lastly, a problem 
with Honeyd that renders it easy to identify is specifically its service emulations 
that are generated from basic Perl scripts. Attackers are in position to be alarmed 
by the dependencies of the scripts that they are possibly inside a honeypot instead 
of a live system. As an example, the defection of the default route-telnte.pl script 
that naturally accompanies the honeypot may not yield any output, and this in some 
instances may be alarming to the attackers.

Wang, Wu, Cunningham, & Zou (2010) devised ways of detecting honeypots in 
advanced botnets attacks, where their methodology was based on the assumption 
that “security professionals deploying honeypots have a liability constraint such 
that they cannot allow their honeypots to participate in real attacks that could 
cause damage to others, while on the other side attackers do not need to follow 
this constraint”. Through this methodology, attackers can detect honeypots in their 
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botnets by checking which machines can successfully send malicious traffic to other 
machines. Machines that do not send malicious traffic to other machines might prove 
to be honeypots due to the liability constraint described above that attacker won’t 
allow their honeypots to infect other computers.

The general belief in botnets environment is that a victim computer would also 
send malicious traffic to other computers in the botnet. When other computers in 
the botnet receive real traffic from the victim computers, the victim computer will 
be regarded as a normal bot rather than a honeypot. Because the honeypot does not 
know which computers in the botnet are controllers, it cannot verify them without 
infecting other computers in the botnet. Figure 2 depicts this honeypot detection 
approach. Wang et al. (2010), suggested that a honeypot can also be discovered by 
installing bot programs in a freshly infected computer, which is similar to the method 
described above. The bot programs placed on the computer will then begin to send 
malicious traffic to other computers, and if the computer is a honeypot, it will not 
permit malicious traffic to be transmitted from it. If this occurs, the bot-master will 
be aware that the new machine is a honeypot rather than a legitimate computer.

Fu et al. (2006), discovered a way of detecting Honeyd honeypot when it is 
deployed to emulate an entire network. I their techniques, they found that by remotely 
fingerprinting Honeyd and measuring the link latency of the network emulated it 

Figure 2. Detecting Honeypots in Advanced Botnets Attacks

 EBSCOhost - printed on 2/9/2023 12:01 PM via . All use subject to https://www.ebsco.com/terms-of-use



107

The Role of Deception in Securing Our Cyberspace

can be determined if it’s Honeyd or a real network. Fu et al. (2006), found that the 
problem with virtual honeypots is that a larger portion of the operational nodes such 
as users, network devices etc. are missing, and emulating their operations requires 
triggering by time events or signals, and as such the accuracy of event scheduling 
is dependent on the timing accuracy of the host operating system. In this tests, Fu 
et al. (2006) studied Honeyd deployed on a Linux x86 computer, and the results 
of this tests could still be applied to other platforms. It was noted that the kernel 
parameter HZ of the x86 system defaults to 1000 in Linux kernel 2.6 and 100 in the 
previous versions of Linux kernel up to 2.4, and this interrupt rates mean that the 
link latency emulated by Honeyd can only achieve an accuracy of 10ms on Linux 
kernel 2.4 and an accuracy of 1ms on a linux kernel 2.6. The results shows that 
the link latency of a virtual network will always be in multiple of 10ms or 1ms. 
This timing signatures given by Honeyd when emulating virtual network can be a 
sign to the attackers that the system is a honeypot rather than a legitimate system. 
Thus, an attacker can measure the link latency of the network, and when he gets 
the measurements in multiples of 10ms and 1ms, he can conclude that this not a 
live network but rather a virtual network emulated by Honeyd. This is also made 
possible by the fact that the link latency of a wired network can barely reach 1ms 
let alone 10ms (Fu et al., 2006). The diagram below shows how Honeyd can be 
fingerprinted to get its timing signatures.

Figure 3. Fingerprinting HoneyD
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Figure 3 shows how measuring the link latency can be used to determine the 
timing signatures of Honeyd. To find the link latency of a network connecting two 
routers, an attacker can send a pair of packets (pkt1 and pkt2) of minimal size, 
where packet 1 would be addressed to router 2 and packet 3 addressed to router 3. 
Then the 2-way link latency:

= 2*LLR1,R2 

= RTTpkt1 – RTTpkt1 

where RTTpktn is the Return Trip Time of a packet n and LLR1,R2 is the one-way link 
latency between R2 and R3.

DECEPTION IN HONEYPOTS

The acts of deceptive attacks are a common occurrence in the cyberspace today to an 
extent that knowing and understanding deception is quite important in understanding 
attacks and acting upon them (Rowe & Rrushi, 2016). Cyberspace deception or just 
cyber deception can be used both offensively to attack targets and defensively to 
guard against cyber-attacks. Offensively, cyber deception often tends to use a limited 
number of methods such as impersonation, where defensive deception is more varied.

Yuill et al. (2006) defined cyber security deception as “the actions taken to 
deliberately mislead attackers and to thereby cause them to or not to take specific 
actions that aid computer security”. The objective behind deceptive hiding is to 
misguide the attacker from taking a particular action he intended to take. Also, 
deception in computer security aims at misleading the attacker into a course of action 
that maybe predictable or not taking an action that can be exploited. Therefore, 
deceptive actions that can give an attacker an advantage to act dangerously or 
unpredictably should always be avoided in order to aid in computer resources defenses. 
As a defensive mechanism in computer security, deception hides things from agents, 
human or computer, where agents are often referred to as target. De Faveri, Moreira, 
& Souza (2017) noted that security by deception is often deployed as a second or 
third line of defense to prevent, detect and respond to attacks against a computer 
system. Therefore, when coupled with the conventional security mechanisms, 
deceptive security offers a unique opportunity because adversaries often operate 
on the context that systems are designed with honesty. However, deception as a 
process is complex and demands some carefully planned mechanisms in order to 
maximize the benefits while minimizing the risks. In the next section, we discuss 
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some of the some of the deceptive planning models discussed before and how they 
aid in the cyber deception process.

Deception Models Applied in Honeypots

Kopp et al. (2018) discussed the four information theoretic models of deception. 
The paper notes that the four information theoretic models of deception are derived 
from two important ideas in information theory, especially Shannon’s idea of channel 
capacity and the notion of information theoretic similarity between messages. The 
four information theoretic models include Degradation, Corruption, Denial, and 
Subversion, where each of these models is a specific form of altering the victim’s 
perception. Two of these models involve manipulation of terms in Shannon’s 
channel capacity equation, one model involves manipulation of similarity, while 
the other model involves manipulation of internal information processing methods 
effectively by altering some internal algorithm or process in the victim system. 
Figure 4 depicts the theoretic deception models and the components of the system 
they are employed to compromise.

The Degradation deception model deals with concealing or hiding information in 
noise or other background messages, to introduce uncertainty or a false perception in 
a competing player’s belief. This model can be used in both active of passive forms. 
In the active form, the deceiver produces the noise signal with sufficient magnitude 
that it prevents the victim from reliably recognizing arriving information but alerting 
the victim that it is being attacked. In the passive form, the deceiver seeks to make 
the message indistinguishable from the background noise of the environment. In 
Shannon’s capacity equation, active degradation deception equates to manipulating 
the noise term such that N≫S and in turn C→0, while passive degradation deception 
equates to manipulating a signal term in Shannon’s capacity equation such that S≪N 
and in turn C→0 (Kopp et al., 2018).

The Corruption deception model produces a false belief by replacing a real 
message with a similar but false message, contrived to be very difficult to distinguish 
from a real message. Thus, the false message mimics a real message. Successful 
corruption deception model is inherently passive, as the victim remains unaware 
that the information is misleading. The corruption deception model is equivalent to 
fabricating a deceptive message enough to look similar to the real message so that the 
target cannot see the difference, so that S→1 in the target’s cognitive system where 
S is the information-theoretic similarity (Kopp et al., 2018). Thus, any deception 
in which a falsehood is contrived to emulate the truth is represented by this model.

 EBSCOhost - printed on 2/9/2023 12:01 PM via . All use subject to https://www.ebsco.com/terms-of-use



110

The Role of Deception in Securing Our Cyberspace

The Denial deception model elevates uncertainty by denying the target from 
collecting information by damaging or preventing the means to use in information 
collection by the target. This method is often passive as the target is mostly aware 
that his information collection is being denied either temporarily or persistently. A 
denial deception model is equivalent to manipulating bandwidth term in Shannon’s 
capacity equation such that W→0, yielding in turn C®0 (Kopp et al., 2018).

The last theoretic model of deception is Subversion, which involves actions 
where the target’s information processing methods or algorithms are altered to the 
advantage of the deceiver. Some of the examples of subversion deception model in 
use is that of political or commercial deceptions using “spin”, where the target is 
encouraged to change the manner in which they interpret a message to the advantage 
of the deceiver. Figure 5 depicts the respective relationships between the deception 
models when deployed to produce deception effects.

Figure 4. Relationship between Deception Models and the Compromised System 
components
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The Role of Deception in the Attacker’s Decision Making

Before an attacker makes a decision to attack a system, first he must consider if the 
system on the other side is worth being attacked. He knows that there is a possibility 
that the system on the other side is honeypot rather than a legitimate system. Attackers 
do not want their attack methods exposed as this will enable defenders to harden 
their systems. To find out if the system on the other side is not a honeypot, the 
attacker may send some commands and watch what responses comes back. If the 
attacker notices suspicious responses, he may conclude that the system is fake and 
decides not to attack it anymore. On the other side, the system administrator wants 
to know who is likely to attack his systems and how. He therefore installs honeypots 
in his network. The administrator knows that if honeypots are not deceptive, the 
attackers are more likely to avoid them. In order to avoid being detected, the system 
administrator may decide to hide his honeypots within the network. However, attacks 

Figure 5. Relationship between Deception Models when employed to produce effects
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knows that there is still a possibility that the honeypots might be available within 
the network even when there is no sign of them. In that situation, an attacker has 
a dilemma of whether to continue attack the system because there is nothing that 
suggest it is a fake system, or he abort the mission because it is still possible that 
the system is fake even when there is no sign that it is fake. If he goes ahead with 
the idea of attacking the system, he ran the risk of being exposed. If he aborts the 
mission of attacking the system, it is still possible that it is a legitimate system and 
therefore he lost the opportunity of attacking the system.

Given the above scenario, an attacker must make a decision whether to proceed 
with attacking the system or abandon the mission. The decision matrix of this 
scenario can be represented as follows:

Based on Decision Theory, an attacker can either choose to minimize or maximize 
the possible outcomes of the decision made given the alternatives available to 
him. The attacker can choose to be cautious in his choices and try to maximize 
the minimal possible outcome of his decisions. This happens when the attacker is 
not so optimistic about the outcomes of whether to compromise the system or not. 
Therefore, based on the above scenario, we can say:

The preferences are: 
      Compromise system, steal from the system 

        is better than 

      Do not compromise, loose opportunity 

        is better than  

      Compromise system, get exposed

In this case, the security level of not compromising the system would be to stay 
unknown, hence there will be nothing to get from the system. On the other hand, 
the security level of compromising the system is getting exposed, but the attacker 
has the opportunity of getting something from compromising the system. Because 
compromising the system and stealing something is better than not compromising the 
system and losing the opportunity to steal, which is also better than compromising 

Table 1.  

Honeypot Legitimate System

Attack System Get Exposed Steal the from System

Avoid System No Exposure Loose Opportunity
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the system and getting caught, the attacker is better off not compromising the system 
at all according to the recommendation of the maximin rule. Subjective values can 
be assigned to this matrix, based on the background information and the states of 
nature of the alternatives. For example, in the matrix we can assign Get Exposed a 
value of 0 since it’s a bad outcome for the attacker. We can also assign Steal from 
the System a value of 10 since the attacker managed to get benefit from attacking the 
system. If an attacker avoids compromising the system and the system is a honeypot, 
we can then assign No Exposure a value of 5 since the attacker didn’t get anything 
and he also didn’t get exposed. We can also assign Loose opportunity a value of 2 
since the system was not a honeypot but the attacker opted not to compromise it. 
This matrix is shown as follows:

Since the security level of not compromising the system is 5 and that of 
compromising the system is 0, the maximin rule recommends the attacker to avoid 
compromise the system. The maximax rule however recommends the attacker to go 
ahead attack the system and attempt to steal valuable items from the system. The 
maximax rule represent a situation where the decision maker is too wishful, and this 
is often seen an irrational decision making by the decision theorists. In this paper, 
the assumption is that the attacker is an intelligent decision maker who is capable 
of making rational decisions. 

Assuming that the attacker believes that there is a 20% chance that the system 
he is interacting with is a honeypot. The belief may be based on the fact that the 
attacker has prior knowledge about legitimate system and therefore, the responses 
from the deception system causes suspicion to him. The percentage belief would 
then add to the Expected Utility of compromising the system as follows:

0.2*0 + 0.8*10 = 8 

The expected utility of not compromising the system would be:

0.2*5 + 0.8*2 = 2.6 

Table 2.  

Honeypot Legitimate System

Attack System 0 10

Avoid System 5 2
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This is therefore, suggesting to the attacker to go ahead and compromise the 
system as the payoff is larger than not compromising the system.

Now consider an inverse of the above situation where deception is used to hide 
information away from the decision maker. Assuming that the system on the other 
side is perfectly deceptive, then the states on nature, alternatives and the occurrence 
chance would be an inverse of the scenario described above. Therefore, the minimax 
rule of the Decision Theory would recommend to the attacker to go on and attack 
the system, hence an ideal situation for the system administrator.

The role played by deception against an attacker when making a decision has 
also been defined by Greenberg (1982). The author noted that decision under risk 
implies that the probability of each state of nature is known to the decision maker 
prior to the choice of alternative, and the usual decision criterion is to maximize 
the expected payoff. Therefore, if qj is the probability of state Sj then the expected 
payoff for alternative i is:

E q Pi
j

N

j ij�
�
�

1

 

where qj can be actual probabilities, estimated probabilities, probabilities describing 
the optimum game-theory mixed strategy, or subjective probabilities. Therefore, it 
is assumed that the decision-maker is interested in choosing the alternative that 
yields the largest expectation. The role of deception then is to cause decision-maker 
to misperceive the true qj values. Then incorrect probabilities, q j

' , are used in place 
of qj. Therefore, rather than calculating the true expected value of alternative Ai, the 
deceived decision-maker calculates a misperceived expectation,

E q Pi
j

N

j ij
' '�

�
�
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In this case, the decision-maker will choose the alternative that maximizes his 
Ei

'  if this alternative differs to the one that maximizes Ei, then the decision-maker 
will suffer a reduction in the expected payoff caused by the deception.

CONCLUSION

In the previous sections we learnt that the battle between attackers and defenders 
comes a long way back. The never-ending battle is due to the fact that defenders 
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don’t know what they are defending against, and they often put their trust that the 
traditional network perimeter is enough to fight their battle. However, a switch in 
mindset on how the defenders approach their security has the potential to aid in 
winning the battle. By using honeypots in learning the attack methods, defenders 
have a chance of crafting their defenses better with knowledge of who they are 
defending against. However, honeypots that are not deceptive run a risk of being 
identified by the attackers. A honeypot that can’t hide its identity is of no use since 
the attackers would simply avoid it. An effective use of deception in honeypots can 
persuade and change the cognitive mindset of the attacker, hence make him attack 
the honeypot. Once attacked, the honeypot can learn the attack methods which may 
aid in future protection of information assets. Therefore, even though honeypots 
are deception systems by default, not all honeypots are deceptive. Deception plays 
a crucial role in the success of honeypots, and honeypots plays a crucial role in the 
defenses against future attacks.
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KEY TERMS AND DEFINITIONS

Decision Theory: A branch of applied probability theory concerned with the 
theory of making decisions based on assigning probabilities to various factors and 
assigning numerical consequences to the outcome.

Global Descriptor Table (GDT): A data structure used by Intel x86-family 
processors starting with the 80286 to define the characteristics of the various 
memory areas used during program execution, including the base address, the size, 
and access privileges like executability and writability.

Honeypot: A network-attached system set up as a decoy to lure cyber attackers 
and detect, deflect and study hacking attempts to gain unauthorized access to 
information systems.

Local Descriptor Table (LDT): A memory table used in the x86 architecture 
in protected mode and containing memory segment descriptors: address start in 
linear memory, size, executability, writability, access privilege, actual presence in 
memory, etc.

User-Mode Linux: An architectural port of the Linux kernel to its own system 
call interface, which enables multiple virtual Linux kernel-based operating systems 
to run as an application within a normal Linux system.
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ABSTRACT

Distributed denial of service (DDoS) attacks are an enormous threat, mainly 
because of the extension they can reach, the ease of deployment, the losses that it 
can cause, and the effort it can take to detect and stop this type of attack. Machine 
learning techniques have been and are widely used to prevent DDoS attacks. As a 
matter of fact, many gigantic intrusion detection systems (IDS) have been proudly 
utilising machine learning techniques to help the conventional signature detection 
system by adding another layer of “intelligent” thinking. This chapter provides a 
context of the techniques used for detecting DDoS attacks using machine learning, 
and in demonstrating why the merge of these concepts have huge potential for the 
defence of a given system. To that matter, some studies that use machine learning 
approaches for DDoS detection are analysed. Finally, this chapter provides a high-
level view of the types of DDoS attacks that are considered a threat, the machine 
learning approaches to detect these attacks, and why these approaches are cohesive.

Holistic View on Detecting 
DDoS Attacks Using 
Machine Learning

Eduardo Barros
 https://orcid.org/0000-0002-5309-1394
Instituto Superior Técnico, Portugal

Victor Lobo
NOVA Information Management School (NOVA-IMS), NOVA University Lisbon, 

Portugal & Naval Academy, Portugal

Anacleto Correia
 https://orcid.org/0000-0002-7248-4310

CINAV, Portuguese Naval Academy, Portugal

 EBSCOhost - printed on 2/9/2023 12:01 PM via . All use subject to https://www.ebsco.com/terms-of-use

https://orcid.org/0000-0002-5309-1394
https://orcid.org/0000-0002-7248-4310


Copyright © 2022, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited. 119

Holistic View on Detecting DDoS Attacks Using Machine Learning

INTRODUCTION

Nowadays, most enterprises depend on the use of technologies, particularly, networked 
technologies. Not only is this a great opportunity for organisations to leverage and 
enhance their business, but also for threat agents to achieve their goals by damaging 
these systems. In order to ensure the security of network services it is essential 
that, at the very least, the 3 pillars of information security (CIA triad) - integrity, 
confidentiality and availability -, are met.

This chapter will focus on the availability pillar of the CIA triad and its biggest 
threat, the Distributed Denial of Service (DDoS) attacks. The way this attack 
operates is by flooding the target with malicious traffic, depleting its bandwidth and/
or computing resources in order to create total unavailability or some disruption of 
a network asset. One of the hardest tasks for an Intrusion Detection System (IDS) 
is to mitigate a DDoS. This type of attack has some peculiarities, among other 
characteristics described in the next section: (i) the DDoS might be originate from 
thousands of legitimate devices; (ii) the requests may not contain any malicious 
content; (iii) the attacker can exploit a vulnerability in the attacked service but also 
in an external service to conduct the attack.

Unlike the vast majority of attacks, where only one malicious request is needed 
for it to be successful, a DDoS generally requires multiple requests, so, it might be 
possible to identify patterns shared by malicious packets. This characteristic is key and 
allows the use of machine learning for the purposes of identifying recurrent patterns 
in a DDoS. The aim of this chapter is to demonstrate that the use of machine learning 
for DDoS detection has great potentialities, but it is also intended to demonstrate 
how this can be done, introducing important concepts for the creation of a model 
capable of predicting DDoS requests.

To accomplish our propose, this chapter was designed as follows: the Background 
section is intended to provide a context to this subject by explaining how modern 
DDoS attacks work, to briefly introduce what machine learning is, and how it can 
be applied to detect DDoS attacks. In Literature Review section, in order to have an 
overview of what is currently being done regarding this matter, some studies that 
use machine learning approaches for DDoS detection are surveyed. The Results 
Disussion section, summarise and discuss the details and procedures of the surveyed 
articles such as: the types of DDoS attacks used, the machine learning approaches 
to detect these attacks, and why these approaches are cohesive. Also in this section, 
we present a high-level detection model based on machine learning that we consider 
effective. Finally, The Conclusion section makes a retrospective of the whole chapter, 
and draw conclusions about the use of machine learning for DDoS attack detection 
and the role it is going to play out in the future.
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BACKGROUND

Distributed Denial of Service Attacks

A Distributed Denial of Service (DDoS) is a cyberattack that aims at exhausting 
services by overwhelming the target or its surrounding infrastructure with a flood of 
traffic. DDoS attacks are a subclass of denial of service (DoS) attacks as they involve 
multiple devices to replicate an individual DoS. Unlike other kinds of cyberattacks, 
DDoS may not rely on a vulnerability of its target and do not attempt to breach 
its security perimeter, the DDoS primary goal is to make a service unavailable to 
legitimate users. This is possible since services have a finite limit to the number of 
requests that they can handle and because the channel that connects the server to 
the internet has a finite bandwidth.

To send many requests to the target, that is, to achieve effectiveness with the 
DDoS, the cybercriminal will often establish a so-called botnet. A botnet is a network 
of multiple malware compromised systems that permit the attacker to control and 
manipulate those infected devices. These individual devices are referred to as bots, 
a group of bots is called a botnet and the server who controls these bots is called the 
C2 (Command and Control) server. Once a botnet has been established, the attacker 
is able to direct an attack by sending remote instructions to each bot to perpetuate 
the DDoS attack.

Regarding the different DDoS attacks, some large and respectful cybersecurity 
related organisations (Fortinet, 2022; Cloudflare, 2022; University of New Brunswick, 
2022) have proposed taxonomies that try to map DDoS with their modus operandis. 
That being said and knowing the adoption of a single taxonomy is debatable, we 
believe the classification of DDoS attacks proposed by Cloudflare is consistent and 
allows for an understanding of how these attacks are triggered.

Based on Cloudflare’s taxonomy, there are three types of attack, the application 
layer attack, the protocol attack and the volumetric attack as Figure 1 illustrates: 
(i) the application layer attack, as the name indicates, is an attack that refers to the 
seventh layer of the OSI model, this means that the goal of the attack is to exhaust 
the target’s service resources that stand in the application layer using protocols such 
as HTTP, SSH, TFTP, and many others; (ii) the protocol attack focus on exploiting 
layer 3 and 4 (network and transport layer of the OSI model) weaknesses, causing 
service disruption by over-consuming server and network resources such as firewalls, 
load balancers and network monitors; (iii) lastly, the volumetric attack attempts to 
disrupt a service by using a form of amplification, usually, by sending small queries 
that result in large responses, consequently generating the denial of service.
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It is important to know that most of these attacks are perpetrated using legitimate 
devices (botnet) that reflect this traffic to overwhelm the victim with the response 
packets. This is done by spoofing the victim IP address so that the bots respond 
to the spoofed IP. Because each bot is a legitimate Internet device, separating the 
attack traffic from normal traffic can be difficult.

As an example, we will dissect a NTP amplification attack and how it can be 
mitigated. A NTP amplification is a DDoS in which an attacker exploits a Network 
Time Protocol (NTP) server functionality to overwhelm a targeted network or server 
with an amplified amount of UDP traffic. The exploitable functionality is the monlist 
command, which gives the last 600 source IP addresses of requests that have been 
made to the NTP server and it is a feature that comes by default in older versions of 
NTP servers. In short, the attacker uses a botnet to send UDP packets with the victim 
spoofed IP address to a NTP server which has the monlist command enabled and 
will generate a response a lot larger than the initial request as Figure 2 represents.

Mitigating this attack is not trivial. Due to the high amount of traffic generated, 
the ISP may not be able to handle the incoming traffic without blackholing it to the 
targeted victim’s IP address, protecting itself and taking the target’s site offline. 
Additionally, it is not the victim’s fault that the NTP servers supported the monlist 
feature and most likely, the victim cannot voluntarily patch the vulnerability.

Considering this, we can still detect and stop a NTP amplification DDoS if the 
ISP can validate IP spoofing at the network layer, which is usually not done because 
of the overhead that it takes. Another method is by using an anycast network that 
scatters all attack traffic to the point where it is no longer disruptive (like Cloudflare’s 
service), however, even using an anycast service, we are always subject to requests 
being made directly to the background service. Even if these requests are blocked 
because they do not come from the trusted anycast network, computing power is 
required to process them, which might cause the unavailability of the service. Both 

Figure 1. Cloudflare’s taxonomy for DDoS attacks
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these methods have disadvantages since the detection and mitigation is not in the 
victim’s hands. In contrast with the aforementioned methods, some in-house IDSs 
may have the ability to identify the abuse of the monlist command by signature 
ruling and can consequently block responses from the NTP servers. Lastly, a more 
attractive method to handle a NTP amplification attack in our view, consists in 
identifying features of the malicious packets and, consequently, blocking all off the 
packets that share these features.

Our opinion is that the problem of DDoS only tends to prevail, not only because of 
the proven exponential increase in botnet networks in recent years, but also with the 
entry of 5G that potentiates the number of devices connected to a network, especially 
IoT devices, and the bandwidth that they can utilise. In parallel, the security of each 
IoT device does not keep up with the evolution of the 5G itself.

The Role of Machine Learning

Currently, IDSs which only utilise a signature detection approach are not effective. 
This has to do with the fact that modern attacks do not have easily detectable 
signatures as attackers build sophisticated malicious requests that originate from 
compromised machines. Although these requests might bypass the signature-based 
detection paradigm easily, this does not mean that DDoS traffic does not have 
patterns, even if these are not easily identifiable.

Figure 2. NTP Amplification attack
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The concept behind machine learning that is interesting to explore for the purposes 
of DDoS detection, is to automatically learn from a given set of data if certain patterns 
tend to be malicious, or benign. If features of DDoS traffic are identifiable, it is 
theoretically possible to stop the attack before network resources become unavailable. 
Complementary to this paradigm and an advantage of using machine learning for 
DDoS detection is that the detection mechanism does not depend on whether the 
request comes from a blacklisted device, since the method builds its own weights 
for the characteristics it extracts. This is particularly important since most DDoS 
attacks come from legit compromised devices.

The available machine learning techniques can be divided into several categories, 
however, for the sake of practicality and simplicity we will assume the existence 
of two methods, the supervised and unsupervised learning. In supervised learning, 
each algorithm learns from input variables that serve as a supervisor/teacher to 
predict the output variables, this means that it is only possible to learn using a pre 
labelled training dataset. Within supervised learning, there are two types of problems, 
the classification, and the regression. In classification problems, the output of the 
classification belongs to two or more classes, for example, a given DDoS can be 
framed within the volumetric, layer 7 or layer 3/4 class. If the classification only 
considers two classes, for example, a given packet can be malicious or not malicious, 
then we have a binary classification problem. The other type of problems are the 
regression problems, where the prediction is of a numerical value and is usually 
applied to predict, for example, a stock price.

In contrast, the unsupervised learning discovers based on its own information, 
without requiring guidance to discover patterns. The various unsupervised techniques 
deal with unlabelled data, and they uncover patterns by learning and modelling by 
themselves (not depending on external information for the classification of data). 
Bearing in mind that some machine learning algorithms in Figure 3 can belong to 
several learning types, this figure illustrates and exemplifies the main data mining 
learning types.

Considering the two learning aforementioned methods there will be two main 
differences in the way we classify our packets as malicious or benign (binary 
classification). If we are working with supervised learning, then we need to train, 
test, and validate our classification model with a dataset containing several DDoS 
attacks. If we are working with unsupervised learning, then there is no need for 
this extensive training since we are detecting anomalies within a given set of data.

Regardless of the learning method to use, for the machine learning approach to 
work and be beneficial, it is necessary to adapt our method to the environment we 
want to protect and to all his attack surface. If the environment is cloud based, a 
traditional network, service or application, a Software Defined Network (SDN), or 
any other kind of environment, the approaches may change accordingly.
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Another concern we must have for the proper functioning of the classification 
model is to transform the collected raw data in a useful and efficient format, in a 
so-called data pre-processing phase. To help the mining process, it is necessary to 
select and construct attributes that might help in the process of DDoS classification. 
This is an important phase that must carry a lot of thinking as the features used are 
the key factor for the correct identification of malicious traffic.

Pre-processing data can be done utilising different techniques for different 
purposes, the most obvious one being the treatment of missing, irrelevant or noisy 
data, a technique called data cleaning. Another important data pre-processing phase 
is the data transformation, this method is taken to transform the data in appropriate 
forms, suitable for the data mining process. This not only means that it is necessary 
to convert all data (which might be a mix of categorical and numeric data) to a 
specific type of data, but it also means that it needs to be normalised, that is, data 
must be in a specified, scaled range in order for the algorithm to calculate distances 
with proportional values.

Figure 3. Data Mining learning types
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Since data mining usually handles huge amounts of data, analysis and processing 
this data becomes harder in such cases. For this matter, another phase of the mining 
process that can be worthy of exploring is the data dimensionality reduction phase. 
Although this step won’t be extensively covered in this chapter, in summary, 
dimensionality reduction reduces the number of variables/features that our machine 
learning algorithm will be fed and, consequently, the size of data. Nonetheless, 
despite reducing the data size, it should be noted that using dimensionality reduction 
techniques may result in information losses.

After all the data is pre-processed in an expected format, we can finally give the 
final product to the classification model so it can predict if the content is malicious 
or not. All this flow is compiled and illustrated by Figure 4 for illustration of the 
normal operation with machine learning methods.

To conclude this subsection, it is important to mention that, after training the 
model, its decision times and computational resources must be adequate and balanced. 
We shouldn’t forget that, for the model to classify several packets, it has to analyse 
them all which, by itself, can generate DDoS. Moreover, there are techniques that 
handle this problem, such as high availability distributed systems, among others.

LITERATURE REVIEW

Different types of machine learning algorithms have been proposed as a viable 
approach for network anomaly detection. That said, it is not surprising that these 
algorithms are chosen, adapted, and fine-tuned to detect different types of DDoS 
attacks.

Figure 4. Stages for binary classification of network traffic
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Doshi et al. (2018) proposed a bulk of machine learning methods for DDoS 
detection focusing on Internet of Things (IoT) network behaviour. The fact that this 
work only considers IoT-specific behaviours, such as: limited number of endpoints 
and regular time intervals between packets can result in an accurate and efficient 
feature selection that consequently results in high accuracy detection rate. Because 
IoT traffic is usually standardised and a lot of features can be constructed based on 
the “time” variable, there is real value in building features considering time patterns. 
This paradigm might not be applied in regular networks since the behaviours differ.

For the construction of the dataset, the authors used an experimental consumer 
IoT device network based on flood attacks, a type of attack that tries to flood the 
server by sending large volumes of traffic such as the: SYN flood, UDP flood, and 
HTTP GET flood attack. In our perspective, using three different flood attacks 
which does not cover the volumetric type of attacks, does not represent the whole 
scope of DDoS attacks.

The authors used flows with a limited set of features, which is important for 
real-time classification as it also restricts computational overhead. Regarding the 
machine learning classification, the authors tested five different algorithms, K-nearest 
neighbours (KNN) (Peterson, 2009), Random Forests (Breiman, 2001), Decision 
Trees (Quinlan, 1986), Support Vector Machines (SVM) (Cristianini & Ricci, 2008), 
and Deep Neural Networks (DNN) (Wang & Raj, 2017).

Although the authors used other evaluation metrics besides the accuracy, knowing 
these metrics can be found in the original work and for the sake of simplicity, we 
will highlight the accuracy as a standard metric from now on. All five algorithms 
had a test set accuracy higher than 98%, which is excellent since the 2% that were 
misclassified wouldn’t cause the service unavailability. Generalizing, any accuracy 
above 95% would be good for the purpose of preventing disruption from a DDoS 
attack.

Because the goal is to detect and prevent DoS attack traffic originated from 
devices within the smart home Local Area Network (LAN), the adopted methodology 
is suited in these specific circumstances as it is only possible to know that a given 
equipment is IoT if you know its behaviour. This means that it is only possible to 
detect DDoS attacks originated on our network, whether they are destined for the 
intra or extranet. This is not that interesting. Hereupon, if we have IoT devices in 
our network, we can easily distinguish benign communication from DDoS traffic 
effectively using machine learning techniques, otherwise, we need to adopt another 
approach.

Niyaz et al. (2016) proposed a deep learning-based DDoS detection system for a 
SDN environment. Although a SDN has its peculiarities that influences the detection 
methods, it is worth analysing the main deep learning strategy used which utilises 
a Stacked Auto Encoder (SAE) (Bank et al., 2020), an approach that consists of 
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stacked sparse autoencoders and SoftMax classifier (Bridle, 1989) for unsupervised 
feature learning and classification, respectively. Naturally, the SAE works as a 
feature reduction algorithm for the set of features that are going to be analysed and 
these features are dependent on the transportation protocol that is being utilised for 
the DDoS attack.

In addition to identifying an individual DDoS attack class (ICMP, UDP or TCP 
based), this research also focuses on determining whether an incoming request is 
malicious or benign. That being said, and although the main goal should be the 
binary classification of packets, classifying the type of the attack can facilitate the 
choice of the mitigation strategy.

The dataset used consists of data generated by 15 devices (laptops and smartphones) 
using a home wireless network of which, 5 are victims, and 10 are attackers 
deploying DDoS attacks using the tool hping3. As for the performance indicators, 
the authors used Accuracy, Precision, Recall, F-Measure and ROC Curve. A list of 
these evaluation metrics and more can be seen in (Natakarnkitkul, 2019). The SAE 
system identifies individual DDoS attack classes with an accuracy of 95.65% and 
classifies the traffic in normal or malicious with an accuracy of 99.82%.

In a more generous way, Pande et al. (2021) proposed a machine learning method 
utilising random forests to detect, exclusively an ICMP based DDoS, the ping of 
death. Regarding the technologies used for the application of the machine learning 
method, the authors used Weka to apply Random Forest in a home environment where 
they deployed the attack using Windows bash. Although we found this approach to 
be poor because of the legacy DDoS attack that was chosen, in its short scope, it 
has a good accuracy of 99,76%.

Yuan et al. (2017) proposed a deep learning-based DDoS attack detection that 
aims to automatically extract high-level features from low-level ones and gain 
powerful representation and inference. For this purpose, the authors designed a 
recurrent deep neural network to learn patterns from sequences of network traffic. 
This approach is known as DeepDefense and it leverages different neural network 
models such as: Convolution Neural Network (CNN) (LeCun, 1989), Recursive 
Neural Network (RNN) (Rumelhart et al., 1985), Long Short-Term Memory Neural 
Network (LSTM) (Hochreiter & Schmidhuber, 1997), and Gated Recurrent Unit 
Neural Network (GRU) (Cho et al., 2014).

The authors are using the UNB ISCX 2012 dataset to train both shallow machine 
learning models and deep learning models and although this dataset might be 
outdated and does not contain the newest DDoS attack techniques, the approach 
itself seems robust and we believe that would also be able to generate good results 
with newer attacks.
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From the experimental results and using a small dataset, the most successful deep 
learning model reduces the error rate by 39.69% compared with shallow machine 
learning methods. Using a large dataset, the error rate was reduced from 7.517% 
to 2.103% which demonstrates that recurrent deep neural networks approaches can 
handle historical features better than conventional machine learning methods.

Mahajan et al. (2017) proposed four different machine learning algorithms to 
detect DDoS attacks, namely, Naive Bayes (Hand & Yu, 2001), Decision Trees, 
Multilayer Perceptron (MLP) (equivalent to previously mentioned DNN), and 
SVM. Regarding the dataset used, the author decided to create its own dataset by 
deploying four different DDoS attacks, HTTP Flood, SIDDoS, UDP Flood, and the 
Smurf attack. This choice was due to the fact that the author wanted a normalised 
dataset with attacks that, in his opinion, did not belong to any other dataset. The 
dataset contains 27 features which are well tabled in the document.

The overall accuracy was 96.89%, 98.89% and 98.91%, 92.31% for Naive Bayes, 
Decision Trees, MLP and SVM correspondingly, being MLP the winner. The 
proposed work used a custom dataset, which, depending on the environment, on the 
tools that were used to deploy the attack might affect the quality of the detection 
and, because of this, does not provide comparison terms with other related work. 
We find this work to be objective and well-designed allowing a good understanding 
of the application of machine learning for the detection of DDoS.

Supervised learning methods need large numbers of labelled data and unsupervised 
learning algorithms have relatively low detection rate and high false positive rate. 
Gu et al. (2019) proposed a semi-supervised weighted k-means (Macqueen, 1967) 
detection method that focuses on fighting some of the limitations of both supervised 
and unsupervised learning.

The authors adopted a different way of selecting the features (compared to the 
aforementioned documents) which consists in a hybrid feature selection algorithm 
that finds the most effective feature sets and ensures the best detection results. The 
authors concluded that this hybrid feature selection method is much better than 
other feature selection methods.

Regarding the well-known datasets used, the authors resorted to DARPA, CAIDA 
2007 and the CICIDS 2017 dataset, additionally, they created a custom real-world 
dataset using tools to simulate normal and attack traffic.

No accuracy measurement was provided, the evaluation metrics that this article 
mentions is the Recall and the False Positive Rate (FPR). For the custom real scenario 
dataset, the proposed machine learning method achieved a recall of 99.75% which 
is quite good considering DDoS attacks with 0.25% effectiveness would not harm 
the victim.
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RESULTS DISCUSSION

After analysing the articles in the previous section, Table 1 synthetizes the main 
features of each article: the types of DDoS attacks used, the machine learning 
algorithms, the datasets, the evaluation metrics, and the top detection accuracy in 
percentage. This table provides a high-level view about the effectiveness of these 
approaches for detecting DDoS attacks.

After analysing Table 1 and the top detection accuracy of the machine learning 
approaches for the respective attacks, it is easily understood by the high accuracy 
rates that, with proper planning, machine learning strategies can bring benefits to 
the traditional signature-based detection.

Table 1. Feature summary of the literature reviewed.

References DDoS attacks ML algorithms 
used

Datasets 
used

Evaluation 
metrics

Top detection 
accuracy (%)

(Doshi et 
al., 2018)

SYN flood, 
UDP flood, and 
HTTP GET 
flood

KNN, Random 
forests, Decision 
trees, SVM, and 
DNN

Custom IoT 
based

Accuracy, 
Precision, 
Recall and F1

99,9

(Niyaz et 
al., 2016)

TCP, UDP and 
ICMP based

SAE, Soft-Max 
and NN Custom

Accuracy, 
Precision, 
Recall, F1 and 
ROC Curve

99,82

(Pande et 
al., 2021) Ping of Death Random forests NSL-KDD

Accuracy, 
Precision, 
Recall

99,76

(Yuan et 
al., 2017)

HTTP, TCP, 
IRC, DNS, 
ICMP, SMTP 
and IMAP 
based

LSTM, 3LSTM, 
GRU (RNN), CNN

UNB-ISCX 
Intrusion 
Detection 
Evaluation 
2012

Error rate, 
Accuracy, 
Precision, 
Recall, F1, 
AUC

98,41

(Mahajan 
et al., 
2017)

HTTP Flood, 
SIDDOS, UDP 
Flood, and 
Smurf

Naive Bayes, MLP, 
Decision trees and 
SVM

Custom
Accuracy, 
Precision, 
Recall

98.91

(Gu et al., 
2019)

Attacks of the 
datasets Weighted K-Means

DARPA, 
CAIDA 
2007, 
CICIDS 
2017 and 
custom

Recall, FPR 99.75 (recall)
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If the approach to be taken is the supervised one, we believe that the planning 
should focus on building or using a dataset that represents the top notch of DDoS 
attacks. Additionally, it should focus on extracting and evaluating the features that 
best serve to distinguish malicious packages from benign. In the case of unsupervised 
learning, the question of the dataset containing DDoS attacks does not arise, however, 
the features to be evaluated for the purpose of anomaly detection is still extremely 
important. For both approaches (supervised and unsupervised), it is key to consider 
the environment we want to protect, its architecture, and design our machine learning 
approach to fit our requirements.

We believe that a possible scheme that allows to duly assign the problems of 
DDoS attacks detection, but not only, is to consider the traditional signature-based 
detection (IDS) on the front line, followed by a supervised approach that trained 
with a historical registry of top-notch DDoS attacks and, lastly, followed by an 
unsupervised approach that aims at identifying anomalies in packets exclusively based 
on statistics. Despite all the computation and delay problems that this solution may 
create, we believe that the order of the detection mechanisms is placed concerning 
the benefits of each one. This scheme is illustrated by Figure 5 where the “Flagged?” 
differentiates packets catalogued as suspicious or malicious.

CONCLUSION

Modern DDoS attacks have become much more difficult to detect as attackers 
build highly sophisticated requests that originate from compromised machines. 
There are multiple approaches that can be taken in order to detect and block these 
attacks, however, DDoS attacks continue with an active presence in cyberspace and 
concerns organisations due to its disruptive power. Considering the already mentioned 

Figure 5. Proposed detection system scheme.
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specifications of a DDoS, for this particular attack vector, we believe that future 
solutions will heavily rely on machine learning solutions for the detection and later 
mitigation instead of the traditional signature-based detection.

This chapter served as a context for those who wanted to introduce themselves 
in detecting DDoS attacks using machine learning by explaining the fundamentals 
and the different classifications of DDoS attacks, as well as the different machine 
learning approaches that can serve as security solutions. Moreover, this chapter 
explained why applying artificial intelligence can bring fine results regarding the 
defence of networks and proved it by mentioning the accomplishments of already 
written literature. Finally, as extra, this chapter proposed a defensible architecture 
employing a traditional signature-based detection system, adding the benefits of 
both supervised and unsupervised learning.
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KEY TERMS AND DEFINITIONS

CNN: Convolution Neural Network. Supervised method used for classification 
and regression problems, a class of neural networks that specializes in processing 
data that is organized as a grid, such as an image.

Decision Trees: Supervised method used for classification and regression 
problems, that simulates a tree diagram and in which the branches represent choices 
with associated costs, results, or probabilities.

DNN: Deep Neural Networks. Supervised method used for classification and 
regression problems, built to simulate the activity of the human brain by feeding 
input data through several layers of simulated neural connections.

 EBSCOhost - printed on 2/9/2023 12:01 PM via . All use subject to https://www.ebsco.com/terms-of-use

https://www.unb.ca/cic/datasets/ddos-2019.html
https://www.unb.ca/cic/datasets/ddos-2019.html
https://arxiv.org/abs/1702.07800
https://arxiv.org/abs/1702.07800


134

Holistic View on Detecting DDoS Attacks Using Machine Learning

K-Means: Unsupervised method used for classification and regression problems, 
that groups data by assigning all data points to the closest clusters, then determining 
the cluster means.

KNN: K-Nearest Neighbours. Supervised method used for classification and 
regression problems, that attempts to determine what group a data point is in by 
looking at the data points around it.

LSTM: Long Short-Term Memory Neural Network. Supervised method used 
for classification and regression problems, a type of RNN that is mainly used for 
learning sequential data prediction problems by discarding information which is not 
required for further prediction and by holding required information for that matter.

Naïve Bayes: Supervised method used for classification and regression problems, 
which utilizes Bayes’ theorem with the assumption that attributes are conditionally 
independent for the purposes of object classification.

Random Forests: Supervised method used for classification and regression 
problems, that builds decision trees on different samples and takes their average in 
case of regression and majority vote for classification.

RNN: Recursive Neural Network. Supervised method used for classification and 
regression problems, a class of neural networks that applies the same set of weights 
recursively over a structured input.

SVM: Support Vector Machines. Supervised method used for classification 
and regression problems, that determine which category a new data point belongs 
in by outputting a map of the sorted data with the margins between the two as far 
apart as possible.
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ABSTRACT

Many types of physical unclonable function (PUF) structures have been proposed 
in the last decade. The responses generated from the conventional PUF are 
vulnerable to attack. In this chapter, the transient effect of ring oscillator structure 
has been used. This works on two loops with complex loops containing NOT gates 
and NAND gates. Response prediction of these loops is a very difficult task for the 
adversary. Many machine learning algorithms may produce the responses with 
higher accuracies. This study provides new masked PUF architectures that are more 
secure and invulnerable to modeling attacks. Hence, in this chapter, masking-based 
configurability design on various PUF structures is introduced. This will be helpful 
for resource-constrained machines. For different sizes of challenge-response pair, 
machine learning techniques need to be changed, but prediction accuracy by the 
attacker should be low. By using this kind of masked PUF structure, 54.7% uniqueness 
can be obtained, and 97.5% reliability can be achieved. Machine learning accuracy 
is 70.7% with SVM and 63.67% accuracy in LR.
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INTRODUCTION

The evolvement of the Machine Learning (ML) combined with advances in 
computational and storage capacities creates a lot of fruitful things. For example, 
ML-based algorithms altered the practice of disease findings, stock market analysis 
and cricket score prediction. But the ML techniques also capture the security 
domain, by monitoring bait machines, and extracting actionable information that 
in the past would have been impossible. Hence some vulnerabilities inherent with 
ML techniques are included with the security set-up. Currently, there are more 
advanced techniques to mitigate the ML attacks protecting the security set-ups. Such 
techniques may be smelled by hackers. Effort has been made to rectify the errors in 
security set-up. Several research sectors are developed for this, still this domain is 
in vulnerable position. These loopholes also create another focus for research and 
produce the new solutions for security threats. In this chapter, a unified hardware/
software approach is developed as a solution for security issues.

In security and privacy domain, maintaining confidentiality, integrity, and 
authentication are more essential. Hence, after 2000s, there is a proposal to introduce 
hardware security modules. Attacks on confidentiality attempt to expose the model 
structure or parameters (which may be highly valuable intellectual property) or the 
data used to train it, e.g., patient data, stock market data, continuously monitored 
information. But when a hardware entity is used, its unclonability nature avoids 
the data hacking problem and provides confidentiality to both communicating 
parties. On the other side, the main advantage of a PUF compared to the current 
classical cryptographic solutions is its compatibility with IoT devices with limited 
computational resources. Each node can be leveraged as an authentication mechanism 
to detect tamper. Several papers and works were developed in the last two decades. 
One simple category of PUF is shown in Figure 1.

Despite the several advantages that PUF brings for safety, there are several concerns 
and issues which need to be solved before it is incorporated in cyber physical devices. 
First, in PUF the devices are noisy (i.e., the device response is not the same in all 
environments). Due to temperature or fluctuations in it, the responses may get 5% 
deviations. It is quite natural that monitoring and maintenance of every PUF CRP 
pair is not a simple task. Second, the threshold level introduced for allowing the 
authorized user may also permit the wrong intruders. Third, when it is implemented 
in IoT devices, the centralized server may become a fraudulent one. The details from 
one device may be shifted to another device if they convince the server / trusted third 
party. Fourth, the details may be modelled by a clever intruder. This work focuses 
on how to reduce the fourth threat and find the solution.
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The remaining sections are arranged as follows: Section Related Work gives some 
of the machine learning algorithm related works used for modelling the challenge-
response pair. Section Design and Implementation of Masked PUF provides the 
proposed work on PUF with masking. Section Results and Discussion provides the 
results and discussions followed by Conclusion.

RELATED WORK

Usually, the attacks are intended to know the communication messages or to know 
the shared secret key between the authorized users. The attacks can be chosen 
over plaintext attack or chosen over ciphertext attack. The ways of attack include 
side channel analysis, linear and differential power analysis attacks. In this way, 
some known mathematical ways of modelling attacks are now getting popular. The 
model of any of the communicating parties are designed with the known challenge-
response pairs. The attacker snoops the challenge-response behaviour of the secret 
key generating device (i.e., PUF. Then they try to construct a mathematical form 
of that CRP behaviour).

Figure 1. Categories of PUF on fabrication methodology
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Most of the key generating devices are vulnerable, because the response from 
them can be predictable. If the device is constructed strong enough against these 
mathematical modelling attacks, then it is a reliable device. The main motivation 
of hardware cryptographic engineers is focused on finding a mathematically strong 
PUF against all attacks.

The major drawback to construct such PUF is that no PUF is strong enough for 
longer. The hackers are also able to model the strong device responses. Then they 
can be cloned and no longer secure. Some of the prediction ML algorithms are 
listed in Table 1:

DESIGN AND IMPLEMENTATION OF MASKED PUF

The original challenge is first given to the 64-bit Linear Feedback Shift Register 
(LFSR). Some LFSR based Strong PUF creation methods are discussed in reference 
(Hou et al., 2019). The irreducible polynomial used in this work is

x5 + x4 + x3 + x2 + 1 (1)

The most significant bits are accumulated in a register. After it reaches 64 bits, 
the LFSR results are XORed bitwise with the original challenge. Now the obtained 
results from XOR PUF are given to the PUF structure. Challenge for the PUF is 
mapped to a modified challenge. This is given to PUF structure and converted into 
unique response as shown in Figure 2. In this work, Transient Effect Ring Oscillator 
PUF structure is used for PUF. As depicted in Figure. 2, a 64-bit TERO-PUF is 
utilized for this design, which is composed of 64 stages. The TERO-PUF should 
exploit the mean number of oscillations of the output signal of the TERO loop. 
When the cell is initialized (rising edge of the signal ‘init”), two events start their 
propagation inside the TERO cell and start the oscillating state. Depending on the 
delays mismatch between the two branches of the TERO cell which is due to the 
CMOS process variations, these two events move inside it until they collide and stop 
the oscillating state. This behaviour results in a finite number of oscillations of the 
TERO cell output. To accumulate the PUF structure, additional 8-bit accumulators 
and shift registers are used. In theory, if all gates and all connections inside the 
TERO cell are perfectly identical, the cell would oscillate indefinitely but due to 
manufacturing process variations, this is an extremely rare case.
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Table 1. Various machine learning algorithm (Sivasankari & Kumari, 2022)

References
Machine 
Learning 
algorithm

Description Equation

(Bishop & 
Nasrabadi, 
2006; 
Riedmiller 
& Braun, 
1993)

Logistic 
Regression: 
supervised 
machine 
learning 
framework

The decision 
function f 
determines 
a decision 
boundary of 
equal output 
probabilities.

Logistic sigmoid function 
𝜎(x) = (1 + e-x)-1

Parametrized as 

P c r w r f r f, |
� � � � � � �� � � � �� �� �1 1

(Beyer, 
2007; 
Galletly, 
1998; 
Schwefel, 
1993)

Evolutionary 
Strategies-
Nature 
inspired 
direct search

Adopted from 
environmental 
fitness 
function.

∀l = 1,2,…,λ:

a el l
TNl� � � �

{
,� � 0 1

{yl←y + 𝜎lNl(0,1)}
FL←F(yl)
Nl(0,1) - Normally distributed random scalars and vectors 
respectively. 
Mutated strategy parameter σl controls the strength of the 
object parameter mutation

(Burges, 
1998)

Support 
Vector 
Machine

Many Kernel 
functions for 
classification 
have been 
introduced. 
Each of them 
having its own 
advantages

Generalized Kernel function is K<>
Gaussian Kernel: 

K x z x z
,� � � �

��

�
�

�

�
�exp

2

2
2�

(Zhang et 
al., 2004)

Wavelet Kernel function 
K x z j

m
x z
a

exp
x z
a

i j i j

,

( .

� � �

�
��

�
�

�

�
� �

��

�
��

�

�
��

�

�
�
�

�

�
1 1 75

2

2

2
cos ��

�

(Bossuet et 
al., 2014; 
Ozer et al., 
2011)

Chebyshev Kernel function: 

K x z
c a b

m c

c a b
m c

a a b

,� � �
� � �� � �� �

�

�
�� � �� �

�
�

� �� � �

1 2 1 2 1

4 3 4 3 8 8 1 8
2 2

88 1b

m c

�� �
�

where a =<x, x>; b =<Z, Z> and C=<x,z>.

(Wen & 
Lao, 2017)

Linear SVM 
((i)Sensitive 
bits grouping 
(ii)Different 
delay 
differencing

Two-step 
verification. 
Strengthening 
the reliability 
of PUF 
response 
by machine 
learning 
method

Algorithm discussed in literature.

 EBSCOhost - printed on 2/9/2023 12:01 PM via . All use subject to https://www.ebsco.com/terms-of-use



140

Masked Transient Effect Ring Oscillator Physical Unclonable Function Against ML Attacks

As shown in Figure 3, The control signal ‘Enable’ is given at the same time for 
all 64-bit TERO PUF circuit. From each PUF, 1- bit accumulator is connected. All 
the outputs are saved and transferred immediately for the next stage. For each clock 
pulse different responses are created and used for authentication purposes. As shown 
in Figure 4, 1-bit accumulator set collects the response and 64 bit parallel-in parallel 
out shift register has been used with particular delay as one variable parameter.

Figure 2. Masked PUF
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RESULTS AND DISCUSSION

In this algorithm, some masking concepts are utilized to reduce the machine learning 
based modelling attacks. But the analysis is done with normal PUF metrics. First, 
the circuit is implemented in the board XC5VLX50T.

Figure 3. TERO PUF basic primitive structure

Figure 4. Response generation from PUF structure
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Uniqueness

PUF(x) is the response that possesses some information about the identification of 
the physical entity embedding that PUF (Figure 5). This response cannot be produced 
by any other physical entity.

Uniquenss
k k

HD R R
n

X
i

k
i j

j i

n

=
− =

−

= +
∑ ∑2
1

100
1

1

1( )

( , )
 (2)

For the ideal circuit, the uniqueness should be close to 50%. In this experiment 
a 52.3% uniqueness is obtained.

Reliability

It is a measure that shows how efficiently the chip is reproducing the same response 
under different environmental situations (different temperatures, different voltages 
and so on). To perform this, the PUF response (Ri) under normal temperature is 

Figure 5. Uniqueness graph for (a) 64 bits (b) 128 bits (c) 256 bits (d) 512 bits
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determined. At different temperatures, the same instance PUF response (Rj’) is 
calculated up to m times. HD between the responses is calculated using the formula

HD
M

HD R R
n

XINTRA
i i

i

m

=
=
∑1 100
1

( , )'
 (3)

then the reliability is calculated by

Reliability = 100-HDINTRA (4)

HD INTRA indicates the mean number of unreliable/noisy PUF response bits. 
The value of HD INTRA should be low, and the value of reliability should be high for 
a particular instance of a chip. For the proposed PUF design, 97.5 reliability has 
been achieved.

Table 2. Machine learning works on PUF

References

Type of PUF 
to overcome 

Machine 
learning 
attack

Specification 
about PUF Accuracy

ML Techniques LR (%) ANN (%) ML 
(%) ES SVM

(Rührmair et 
al., 2010)

Conventional 
arbiter PUF

64 stages & 
128-bit arbiter 
PUFs

99 - - - -

XOR arbiter 
PUF (4,5,6 
XORs)

64 stages & 
128-bit arbiter 
PUFs

99 - - - -

Lightweight 
PUF

64 stages & 
128-bit arbiter 
PUFs

99 - - - -

Feed forward 
arbiter PUF (10 
Flip flops)

64 stage PUF 
with 8 flip flop 
Loops

95.46 - - 97 -

(El-Hajj et al., 
2021) Arbiter PUF With bent 

function - - - - 93

(Wang et al., 
2018)

Dual-mode 
PUF (32,1) 0.9851 0.9933 - - -

(Pang et al., 
2017)

Cross over RO-
PUF

(4,3) 
row x column 99.1 - 99.1 - -

Proposed 
PUF

Masked TERO 
PUF 64 bits 63.61 - - - 70.77
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Uniformity

A PUF is said to have good uniformity, when the n bit response contains an equal 
number of 0’ s and 1 s. For ideal case it should be 50%. For experiment set up, 
n bit responses have been collected. They are matched with subsequent patterns. 
10 different board responses were collected. For this proposed PUF design, 1’s 
probability is 51.2% and 0’s probability is 49.8%.

Comparison with Machine Learning Studies

As already explained in section 2, some machine learning algorithms results are 
compared with the proposed design.

From the Table 2, it is inferred that, the proposed Masking-PUF is more resilient 
against machine learning attacks.

CONCLUSION

The main outcome of this chapter is Masked TERO-PUF structure which is designed 
against machine learning attacks. The Masked-TERO PUF secret is used for the 
attestation mechanism to uniquely authenticate each processor chip. This work can be 
extended to more electronic circuits metastability states to produce non-deterministic 
random numbers. A reconfigurable PUF configuration has been described as the 
identity for every user. An almost stable output has been attained. In future, it can be 
combined with lightweight encryption algorithms and other types of PUF suitable 
for applications.
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KEY TERMS AND DEFINITIONS

Challenge-Response Pair: A family of protocols in which one party presents a 
question (“challenge”) and another party must provide a valid answer (“response”) 
to be authenticated.
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Linear Feedback Shift Register (LFSR): A shift register whose input bit is a 
linear function of its previous state. The most commonly used linear function of single 
bits is exclusive-or (XOR). Thus, an LFSR is most often a shift register whose input 
bit is driven by the XOR of some bits of the overall shift register value. The initial 
value of the LFSR is called the seed, and because the operation of the register is 
deterministic, the stream of values produced by the register is completely determined 
by its current (or previous) state. Likewise, because the register has a finite number 
of possible states, it must eventually enter a repeating cycle. However, an LFSR with 
a well-chosen feedback function can produce a sequence of bits that appears random 
and has a very long cycle. Applications of LFSRs include generating pseudo-random 
numbers, pseudo-noise sequences, fast digital counters, and whitening sequences. 
Both hardware and software implementations of LFSRs are common.

Logic Gate: An idealized or physical device implementing a Boolean function, 
a logical operation performed on one or more binary inputs that produces a single 
binary output. Depending on the context, the term may refer to an ideal logic gate, 
one that has for instance zero rise time and unlimited fan-out, or it may refer to a 
non-ideal physical device (see Ideal and real op-amps for comparison).

Masking: A bit field (bitwise) operation. Using masking, multiple bits can be 
set either on or off, or inverted from on to off (or vice versa) in a single bitwise 
operation. An additional use of masking involves predication in vector processing, 
where the bitmask is used to select which element operations in the vector are to be 
executed (mask bit is enabled) and which are not (mask bit is clear).

Physical Unclonable Function (PUF): A physical unclonable function, or 
PUF, is a physical object that for a given input and conditions, provides a physically 
defined “digital fingerprint” output that serves as a unique identifier, most often for 
a semiconductor device such as a microprocessor.

Resource-Constrained Machine: Devices that by design have limited processing 
and storage capabilities to provide a maximal data output possible with a minimal 
power input while remaining cost-effective.

Ring Oscillator: A device composed of an odd number of NOT gates in a ring, 
whose output oscillates between two voltage levels, representing true and false. The 
NOT gates, or inverters, are attached in a chain and the output of the last inverter 
is fed back into the first.
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ABSTRACT

Artificial intelligence is gradually becoming the standard mechanism underpinning 
online banking. Users’ profiles can be confirmed using a variety of methods, including 
passcodes, fingerprints, acoustics, and images through this technology. On the other 
hand, traditional cybersecurity measures are unable to prevent internet-based fraud 
after the visualisation process has been infiltrated. In light of this, the aim of this 
chapter is to examine the efficiency of the logistic model tree (LMT) in detecting 
financial fraudulent transactions in South African banks and, ultimately, to develop a 
financial fraud early warning system. Web-scraping credit and debit card fraud data 
from SA are used to acquire daily data. The LMT is constructed utilizing a training 
set from the LogitBoost algorithm and obtained 17 financial conditioning elements. 
Overall, an early warning system model has shown to be a good performer with a 
prediction rate of 99.9%. This appears to be a promising approach for detecting 
online fraud vulnerabilities.
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INTRODUCTION

The identification of financial fraud has grown to become a global topic. Fraud 
detection systems in financial institutions must be smart and effective. Between 
2018 and 2019, online transactions increased credit and debit card theft by 20.5 
percent. According to the South African Banking Risk Information Centre Report 
(2019), the country’s failing economy has given hackers the impetus and opportunity 
to commit financial crimes, with digital banking incidents increasing by 20% in 
2019. This number is sure to rise as hackers continue to obtain sensitive and private 
information from users, allowing them to trade on their accounts without their 
permission. Unfortunately, cybercrime has led to an increase in total fraudulent 
transactions on South African-issued cards. This premise is illustrated in Figure 1. 
Electronic technology, such as PayPal and fraud detectives, are helpful in thwarting 
ever-changing fraud schemes. According to Abdallah et al (2016), the percentage 
of fraud loss order channels in online stores is currently at 74 percent, with 49 
percent in mobile channels. However, according to Cybersource (2021), the online 
store has recorded 80 percent of payment fraud and mobile commerce has tracked 
68 percent. This suggests that there has been an upsurge in both online and mobile 
commerce fraud worldwide since 2016. The moral, based on these figures, is to 
manage discrepancies between different types of fraud deeds that have changed over 
time. A good fraud detection solution should be able to correctly categorise and 
detect fraudulent transactions in real-time transactions. According to Seyedhossein 
and Hashemi (2010), fraud detection is classified into two categories: (1) detecting 
fraud using AI (Artificial Intelligence) and (2) detecting fraud manually. Data 
analysts construct algorithms to spot abnormalities and trends using the former. 
This is accomplished by either creating models and training AI or acquiring “off-
the-shelf” fraud detection technologies. A system that involves screening applicants 
and using training models to discover aspects that humans cannot constructed with 
the help of experts and AI. The latter, on the other hand, relies on the human eye 
to detect irregularities in a document’s text style, alignment, spacing, and color. 
Unfortunately, this is not easy to do without a trained eye.

Financial crime has long been a source of concern for businesses and organisations 
across a wide range of industries. According to Budhram (2012), credit card theft 
caused financial losses in South Africa to increase by 53% between 2019 and 2021. 
As a result, the South African Financial Risk Intelligence Centre (SABRIC) has 
confirmed two events that have occurred in the banking system of South Africa (SA) 
in recent years. In 2019, the industry generated R403,15 million in revenue. This 
is an increase of R263,8 million over the previous year (SABRIC Report, 2019). 
Card fraud is a major concern for businesses that accept credit cards, the financial 
system, and, most crucially, individual users. The use of debit and credit cards for 
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online purchases has expanded rapidly as e-commerce has intensified and accelerated, 
resulting in a high number of frauds involving both debit and credit cards. In today’s 
digital economy, the ability to recognize both debit and credit card scams is crucial.

Fraud detection systems have been introduced to the market to combat this 
problem and provide reliable business solutions. “Fraud is frequently caught using an 
outlier detection technique supported by data mining tools, in which hidden trends, 
correlations, and patterns are identified in a large database, and crucial information 
is also uncovered” (Albshrawi & Lowell, 2016; Jayakumar & Thomas, 2013; Hassani 
et al., 2010). As a result, the authors developed an automated extreme early warning 
system for financial fraud, which complements existing approaches. “The benefits 
of this system include real-time detection of suspicious activity before it causes 
business damage. More fraud scenarios are detected with greater accuracy, uncovering 
fraudster rings with global device reputation, and extended fingerprinting detection 

Figure 1. Gross fraud (credit and debit)
source https://www.sabric.co.za
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of cross-organizational money laundering scenarios via the Google Flutter system 
and Chrome extension for Android” (PSD2, Open Banking and APIS, 2019. As a 
result, the goal of this chapter is to leverage the Google Flutter platform to crowd-
source credit and debit card ratings in order to classify transactions as fraudulent 
or not. This is supervised learning, as opposed to unsupervised learning, in which 
the logistic model tree is trained to predict the possibility of debit and credit card 
financial fraud. The suggested Google Flutter is shown in Figure 2. The domain 
https://flutter.dev/ was used to create this Google Flutter.

LITERATURE REVIEW

Dealing with credit and debit card difficulties may require a full understanding 
of fraud detection technology. The empirical analysis of Bolton and Hand (2002) 
examines the difficulties and issues related with fraud detection investigations in 
depth. The authors present an empirical review of a wide range of challenges and 
issues in fraud detection inquiry. Behdad et al. (2012) investigated the most basic 
forms of credit card fraud as well as current nature-inspired monitoring solutions. 
“Application fraud and behavior fraud are the two types of credit and debit card 
fraud” (Bolton & Hand, 2001).” When thieves obtain new credit cards from issuing 
institutions, they commit fraud by giving false information or using the information 
of other approved cardholders” (Ileberi et al., 2022). Criminals steal the genuine 

Figure 2. Flutter in android studio
https://flutter.dev/
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cardholder’s username and password and use them to make purchases of goods and 
services. Srivastava et al. (2008) demonstrated the efficacy of a hidden Markov model 
(HMM) in fraud detection by replicating the sequence of transactional features in 
credit card transaction processing. An HMM is trained using the cardholder’s frequent 
behavior. If the trained HMM does not recognize the present transaction with a high 
probability, it is considered fraudulent. Mota et al. (2014) developed an innovative 
approach to preventing fraudulent online business application submissions. These 
researchers developed a signature-based method for gathering a client’s behavioral 
anomalies and, as a result, detecting potentially fraudulent circumstances in real 
time. They only regard the clickstream to be a signature element in any case. “It is 
assumed that considering a variety of numerous transaction attributes rather than 
depending on a single transaction feature is superior for fraud detection” (Gee, 2015). 
In order to detect credit card fraud, Sahin and Duman (2011) contrasted decision trees 
with support vector machines (SVM). A dataset was separated into three categories, 
each with a different proportion of fraudulent vs lawful transactions. Following that, 
they created seven decision trees and SVM models. According to their findings, the 
decision tree model outscored the SVM model. SVM-based models may reach the 
same accuracy as decision tree-based models as the number of training sets increases. 
Xuan et al (2018), on the other hand, used a random forest as a classifier. The 
increased use of credit cards for both online and offline payments has also resulted in 
an increase in fraud rates. As a result, detecting fraudulent transactions has become 
increasingly difficult. Traditional and automated detection procedures are not only 
time-consuming but also inaccurate, rendering them ineffectual. As a result of the 
introduction of data analytics, financial institutions are now employing creative 
solutions to the problem. The two types of fraud detection systems are unsupervised 
and supervised fraud detection systems.” Unsupervised learning flags transactions as 
potentially fraudulent, but supervised learning evaluates the type of new transaction 
using both fraudulent and valid data” (Domingues, 2015). Several investigations 
using diverse approaches have been attempted to overcome this challenge.” Neural 
networks, Intelligent Decision Engines, Meta-learning agents, Bayesian networks, 
Support Vector Machines, and Adaptive Learning are just a few of the methodologies 
available. The credit card’s performance was evaluated using logistic regression, 
K-nearest neighbors, random forest, naive Bayes, multilayer perception, quadrant 
discriminative analysis, pipelining, and ensemble learning” (Bagga et al., 2020). 
Zhang et al. (2018) introduced a convolutional neural network-based online 
transaction fraud detection model that produces an input feature sequencing layer 
that reconfigures raw activity features to produce distinct convolutional patterns. 
These authors opined that when different feature combinations are input into the 
convolution kernel, this model yields distinct derivative features. This model offers 
the advantage of employing non-derivative, low-dimensional online transaction data 
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as input.” A feature processing layer, four convolutions and pooling layers, as well as 
a fully linked layer, make up the network. The experimental findings revealed that 
the model delivers excellent fraud detection performance without the use of derived 
features when tested against electronic payment data from a financial institution. 
When compared to the current CNN for fraud detection, its precision and recall may 
be stabilised at around 91 percent and 94 percent, respectively, a 26 percent and 2 
percent increase” (Zhang et al., 2018).

Dai et al. (2016) proposed a general process for identifying online credit card fraud 
that takes into account the majority of current financial fraud detection system design 
ideas. The authors built a new framework with four layers such as a shared storage 
layer, a batch training layer, a key-value sharing layer, and a streaming detection 
layer. These authors were able to handle massive trade data storage, effective model 
training, rapid model data transfer, and real-time online fraud detection using these 
four layers. Mubalaike and Adali (2018) investigated how deep learning (DL) models 
could be used to accurately detect fraudulent transactions. The authors employed 
an ensemble of decision trees (EDT), deep learning techniques such as stacked 
auto-encoders (SAE), and Restricted Boltzmann Machines (RBM) classifiers on a 
dataset acquired from one month of actual financial records from an African mobile 
financial service provider. Several model diagnostic tools were used to assess the 
performance of the created classifier models. The restricted Boltzmann machine 
clearly surpasses the other approaches based on the observed optimal accuracy 
findings. A logistic model is another type of regression and classification tree. “This 
approach combines decision tree learning methods with logistic regression (LR)” 
(Bui et al. (2016, Fayaz et al., 2022). For a variety of reasons, tree-based models 
are favoured over rival models for risk mitigation. The first point is that, unlike 
other models like logistic regression, tree-based models do not require as much 
supervised learning, making them easier to handle. Tree-based models, in contrast 
to regression models, are stronger at handling categories of data. “The LMT is an 
aggregation model that has better accuracy and coverage than single decision trees” 
(Colkesen & Kavzoglu, 2017; Ghosh & Kumar, 2013; Widodo et al., 2013). This 
is due to the fact that ensemble models need the production of numerous models 
rather than just one. Combining the models into a single generalised model has a 
smaller impact on outliers in the training data.

METHODS AND PROCEDURES

The researchers’ major goal was to employ deep learning technology to detect and 
classify financial crime in South African banking institutions, as previously mentioned. 
A LTM is applied to accurately identify and categorise fraudulent transactions from 
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non-fraudulent transactions in order to achieve this goal. Although classifiers are 
complicated, Tsangaratos and Ilia (2016) propose that the size of the training set 
be considered when completing this assignment. For a d-dimensional classification 
problem with C categories, a minimum of 10 d C training samples should be used. 
“The higher the d-dimensions of the dataset, the more complex the model becomes, 
and bigger training sets are required. The model’s complexity, however, is proportional 
to (1) the number of variables used in its creation and (2) the size of the training 
set. The latter is more important in terms of learning. These two traits are related 
in some way, and their combination presents an excellent scenario for the existing 
model” (Tsangaratos & Ilia, 2016; Costanzo et al., 2012).

The Logistic Model Tree

A LogitBoost approach is utilized to generate a logistic regression model at each 
tree node, as described by Chen et al. (2017). The tree is then trimmed using the 
categorization and regression tree (CART) technique of Breiman et al. (1984).” 
The LMT uses cross-validation to identify numerous LogitBoost rounds to avoid 
over-fitting the training set” (Chen et al., 2017). This study takes a fresh look at the 
combination of tree induction and logistic regression by employing the LogitBoost 
algorithm. The iterative fitting of basic linear regression is interleaved with data 
splits. “LogitBoost creates a logistic model by iterative refinement, gradually adding 
further variables, when new linear models LM(X) are added to the committee of Xi” 
(Landwehr et al., 2003). In a recursive manner, the purpose is to divide the iterative 
fitting technique into branches that correspond to subsets of the data. As a result of 
partitioning, a tree structure can be constructed automatically.

The LogitBoost algorithm, according to Doetsch et al. (2009), employs cumulative 
least-squares estimates from the logistic regression on each Mi class. The LMT 
model is estimated according to the author as:

L X XM
i

n

i i� � �
�
�
1

0
� � , (1)

Who defined 𝛽i as the coefficient of the ith component of vector x, and n is the 
number of factors. “Linear logistic regression is estimated to produce and compute 
posterior probabilities of leaf nodes in the LM (Fayaz et al., 2021).

Agresti (2018) and Stokes et al. (2012) calculated posterior probability as follows:
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with D representing the number of classes. See, for example, Pham and Prakash 
(2019), Pourghasemi et al. (2018), and Kamarudin et al. (2017) for more information 
on the LogitBoost algorithm.

Cross-Validation

A weird link exists between the test error rate and the training error rate. “The test 
error rate is the average error that arises when a statistical learning technique is used 
to estimate the response on a new observation” (James et al., 2013). That is, it is a 
metric that is not considered throughout the training. A thorough statistical learning 
technique is justified if the test error is minimal. If a specified test set is provided, 
the test error can be simply established. Unfortunately, this is a common occurrence. 
On the other hand, the training error may be easily measured using the statistical 
learning approach and the training observations. According to James et al. (2013), 
the training and test error rates are significantly different. The former frequently 
underestimates the latter Unavailability of a substantial predetermined test set from 
which to directly measure the test error rate, multiple methods for projecting it using 
a preexisting training set are accessible. In order to estimate the test error rate, 
various ways use math concepts to adjust the training error rate. The authors apply 
a Bayesian Leave-One-Out Cross-Validation (LOOCV) method, similar to that used 
by Magnusso et al. (2020) in their empirical analysis. “LOOCV is a cross-validation 
technique in which each observation acts as a validation set and the remaining n-1 
observations serve as a training set. LOOCV uses a single set of observational 
validations to fit models and make predictions. As an affirmation set, the process 
is repeated N times per observation. After one observation is eliminated, this 
technique builds the LMT on the rest of the dataset. The model is then evaluated 
against the missing data point, and the prediction’s test error is recorded. The total 
prediction error is calculated by averaging the test error estimates for all data points” 
(Kaplan, 2021). The model is estimated, and the measured values are predicted. 
The number of folds in this form of K-fold cross-validation is directly proportional 
to the number of observations (K=N). “By decreasing bias and unpredictability, the 
LOOCV approach aims to minimize the mean squared error rate (MSER) and prevent 
overfitting” (Bürkner et al., 2020). This strategy, like the validation set strategy, 
separates the dataset into two sections. Bürkner et al. (2020) added that the set is 
verified by a single observation (x1,y1), whereas the training set is composed of the 
remaining observations {(x2,y2), …, (xn,yn)}. A deep learning procedure fits n–1 
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training observations, and predictions y1  are formed using that value x1 on omitted 
observations. Because the fitting process did not entail (x1,y1); A single observation 
(x1,y1), verifies the set, while the remaining observations {(x2,y2), …, (xn,yn)} from 
the training set. A deep learning process fits n–1 training observations, and omitted 
observations x1 are used to produce predictions y1 . Because (x1,y1) was not included 
in the fitting process;

MSER y y
1 1 1

2

� �� � ,  (3)

provides a somewhat accurate measure of test error. Despite being neutral for the 
test error, MSER1 is an insufficient estimate because it is dependent on a single 
observation (x1,y1) and has great diversity. This is remedied by repeating the method 
n times, yielding n squared errors like MSER1, …, MSERn.

The aggregate of these n test error estimates, as per James et al. (2013), is the 
LOOCV estimate for the test MSER;
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n
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n
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Bürkner et al. (2020) obtained the MSE (Mean squared error) by fitting the 
entire dataset;
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“where yi  is defined as the ith fitted value from the original least-squares fit, and 
hi represents the amount of influence an observation has on its fit, ranging from 0 
to 1 punishing the residual because it divides by a tiny integer and hi raises the 
residual value” (Bürkner et al., 2020).

Evaluation of the Performance of the Logit-Based EWS Model

“One of the most useful methods for evaluating the performance of the proposed 
classifier is the receiver operating characteristic (ROC) curve. With varying cut-off 
criteria, the ROC curve is formed by sensitivity on the Y-axis and 1-specificity on 
the X-axis” (Chen et al., 2017). The area under the ROC curve indicates how well 
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the model can predict fraud (AUC). “AUC 1 indicates that the estimated classifier is 
flawless in all other respects, while 0 implies that the classifier is non-informative” 
(Bui et al., 2016). According to Khattak (2017), quoted by Ileberi et al. (2022), the 
correlation between accuracy rate and AUC can be categorised as excellent (0.9-1), 
very good (0.8-0.9), good (0.7-0.8), moderate (0.6-0.7), and mediocre (0.6-0.7). 
(0.5-0.6). The current study uses the AUC standard errors. Hussin et al. (2016) 
asserts that the classifier fares better when the expected standard error is minimal. 
In addition, predictive accuracy (ACC) has been routinely utilized to assess model 
forecasting accuracy. The ACC represents the percentage of fraud and non-fraud 
correctly classified by the classifiers. The “Confusion or Contingency Matrix” 
shown in Table 1 is used to complete this activity.

In Table 1, event A denotes the occurrence of an online scam when the model 
predicts it. Occasion B describes a condition in which a model’s sign is not followed 
by a fraud event, i.e. a false sign. It’s also possible that the model misses a fraud 
(due to a low assessed likelihood), but one happens nevertheless, e.g., missing sign, 
event C. Finally, Occasion D shows what happens when the model fails to forecast 
fraud and there is no fraud. A 50% threshold is used in this chapter to determine if 
the probabilities can now be decoded as financial fraud signals. The accompanying 
presentation standards proposed by Kaminsky et al. (1998) are used to evaluate the 
early warning system model’s performance. Probability of frauds correctly called 

(PFCC): 
A

B C+

1.  Probability of non-frauds correctly called (PNFCC): 
D

B D+
2.  Probability of observations correctly called (POCC): 

A
A B C D+ + +

3.  Probability of an event of fraud given a signal (PRGS): 
A

B A+
4.  Probability of an event of fraud given no signal (PRGNS): 

C
D C+

Table 1. Probabilities of correct and incorrect predicted daily frauds

Frauds No Frauds

Signal Issued P(1, 1) Correct call of fraud [A] P(1, 2) Type II Error or Wrong Signal 
[B]

No Signal Issued P(2, 1) Type I error or Missing Signal 
[C] P(2, 2) Correct call for non-event [D]
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5.  Probability of false frauds to total fraud (PFF): 
B

B A+

EMPIRICAL ANALYSIS

In this section, the empirical analysis of the data sets is provided and discussed. 
Using crowd-labeled and Webb-scraped credit and debit cards used in South Africa, 
the logistic model tree is trained to rate the reliability of online transaction content. 
As presented in Table 2, the dataset is considerably skewed, with 792 frauds out 
of 154653. This means that in South Africa, only 0.512 percent of fraud cases 
are recorded. The skewed distribution is further justified by the reduced rate of 
fraudulent transactions.

Preparation of Training and Validation Datasets

The obtained dataset is subjected to a principal component analysis for security 
reasons, yielding 31 principal components. The dataset contains 154653 observations 
with 35 characteristics, such as the cardholder’s gender, age, and type of online 
transaction. Table 2 displays the findings of an exploratory data analysis, including 
the number of fraudulent and legitimate transactions discovered. According to the 
estimated mean for fraudulent transactions, South Africans lose approximately R646 
per day as a direct consequence of online and mobile transactions.

The Logistic Model Tree

To begin the investigation, a logistic model tree is created, assuming that every 
transaction is legitimate and that the LogitBoost algorithm is correct 95 percent to 99 
percent of the time, costing South African debit and credit cardholders approximately 
211.3 million Rands over the sample period of this chapter; otherwise, the classifiers 
would be useless. A backward stepwise selection approach is also used, as described 
by James et al. (2013). This method is a well-organised alternative for selecting 

Table 2. Exploratory data analysis

Total No Mean Std

Valid Transactions 153861 88.29 250.10

Fraud Transactions 792 646.21 256.68
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the most important subset. Backward stepwise selection, in contrast to forward 
stepwise selection, begins with a full least squares model with all p predictors and 
then eliminates the less significant predictors one by one. Algorithm 2 contains 
more information. Table 8 in the appendix contains the findings of this technique, 
which includes 17 major components as factors reflecting important predictors of 
financial fraud in South African banking institutions. An LMT is used to classify 
the possibility of a fraudulent or non-fraudulent credit or debit card transaction. 
Appendix Table 8 contains additional information.

The Performance Evaluation of the 
Logistic Model Tree EWS Model

The key findings of the logistic model tree are summarised in Table 3. According to 
the results, the model has some EWS potential. Based on the training set estimates, 
the model can correctly predict 65 percent of credit and debit card frauds and 0.1 
percent of credit and debit card no-frauds. The proportion of frauds in the training 
sample is 0.42 percent, while it is 3.03 percent in the validation sample. Table 4 
shows that the percentage of false frauds is low, with 0.10 percent in the training 
set and 0.68 percent in the validation data.

The first set of numbers represents counts while figures in parentheses represent 
percentages of correctly predicted financial frauds.

According to Table 4, there is a 79% chance of fraudulent transactions in the 
next ten years, which is 14% higher than the current situation. This is not an unusual 
observation, as the novel coronavirus (COVID-19) emerged and threatened physical 
and mental health, causing individuals, organizations, and institutions all over the 
world to change their behavior and decision-making processes. According to Ma 

Table 3. Probabilities of correct and incorrect predicted daily financial fraud.

In-sample Forecasts Frauds Non-frauds Total

Predicted Frauds 645 (65%) 153508 154153

Non-Frauds 353 147 (0.10%) 500

Total 998 153655 154653

Out-of-sample Forecasts Frauds Non-frauds Total

Predicted Frauds 400 (79%) 12809 13209

Non-Frauds 105 87 (0.68%) 192

Total 505 12896 13401
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and McKinnon (2021), as a result, numerous services have moved online, while 
others are still moving to the digital economy and others will be online in the future. 
According to the authors, cyber fraud is also on the rise as a result of the COVID-19 
pandemic. However, the findings indicate that future investment losses in the countries’ 
financial markets are possible. The PFF to total alarm ratio is predicted to be 0.68 
percent, which is 0.58 percent higher than the in-sample estimates. The percentage 
of correctly called non-frauds out of sample is 0.68 percent, which is 0.58 percent 
higher than the in-sample projections. Financial fraud, after all, may become more 
common in the future. As a result, to reduce the frequency of financial scams, a 
comprehensive fraud detection system is required.

Evaluation of the Classification Experiment

To reduce variability, a leave-one-out cross-validation approach is used. The overall 
validation set error rate is 19.52399 as a result of the cross-validation approach used, 
with an average accuracy score of 83 percent. Table 5 displays the model’s ACC and 
AUC values derived from a training set and validation data. In terms of ACC and 
AUC, the LMT-based EWS model performs well, with values of 0.9995 and 0.9875, 
respectively. For more information, see Table 5 and Figure 3. The three statistics 
that were observed were the Standard Error (Std. Error), the 95 percent confidence 
interval (CI), and the observed probability (p). The observed confidence intervals 
(CIs) are narrow, with small standard errors and ps. The model with a training set 
has a satisfactory goodness-of-fit, according to these findings. As a result, the LMT 
approach appears to be effective and has demonstrated good prediction ability, as 
evidenced by the highest observed ACC score of 0.999 and AUC score of 0.9885 
in the validation data.

Table 4. Performance of the EWS

In-sample Forecasts Out-of-sample Forecast

PFCC 65% 79%

PNFCC 0.01% 0.68

POCC 0.42% 2,98%

PRGS 0.42% 3.03%

PRGNS 29% 55%

PFF 0.10% 0.68%
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Finally, the statistical significance of the model is determined by performing a 
pair-wise comparison on training and validation data using the Wilcoxon signed-rank 
and model power test procedures. Chen et al. (2017) and Bui et al. (2016) used the 
former, while Makatjane and Moroke used the latter (2016). At a 95% confidence 
level, the null hypothesis states that the model is not statistically different from 
zero. The model’s significance is also evaluated using z and p-values. In terms of 
the model’s true prediction capacity, a mean difference is calculated and used to 
complete this assignment. The null hypothesis is rejected when z values exceed 
the critical value of (±1.96) and p-values are less than the significant threshold of 
(0.05), indicating that the model worked well. The results of the Wilcoxon signed-
rank and power tests are shown in Table 6. The model differs significantly from 
zero (p-value=0.0001, z-value=6.53), indicating a good fit for the logistic model 
tree-based EWS model. This model’s AUC and ACC are both high, indicating that 
it correctly identified financial fraud transactions in South African financial data. 
The model passes the power test with a score of 92.41 percent, indicating that it 
matches the data well.

Table 5. Performance of the LMT

Parameters Training set Validation data

ACC 0.9995 0.9990

AUC 0.9875 0.9885

Error Rate 19.52399%

Figure 3. Sensitivity and specificity curves of the logistic model tree
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Sensitivity and Detection Rate Analysis

In an ideal world, the computed probabilities for all correctly classified (also known as 
ones) should be greater than the estimated probabilities for all negatives for the same 
model (also known as zeros). Concordance and discordance can be used to quantify 
this phenomenon. Concordance is simply the percentage of 1-0 pair combinations 
in which the actual positives outperform the actual negatives (actual). For a perfect 
model, this will be 100 percent; as a result, the higher the concordance, the higher 
the model’s quality. The estimated EWS model is a good model for uncovering 
financial fraud in South Africa, with an AUC of 98.75 percent on a training set and 
98.85 percent on a validation set, as well as a Concordance of 88.89 percent on a 
training set and 87.90 percent on a validation set. Finally, a training set has a true 
detection rate of 98.56 percent, while a validation set has a true detection rate of 
99.36 percent. The detection prevalence obtained for both the training and validation 
sets is over 97 percent. This means that the estimated model is the most accurate 
predictor of financial fraud in South Africa. According to the confusion matrix in 
Table 3, only 500 incorrect predictions were made, with 353 false positives and 147 
false negatives. Although increasing the number of incorrect answers from 353 to 
500 is not a significant performance improvement, the importance of sensitivity and 
specificity in real-world applications is considered, as shown in Table 7. Are the 
ramifications of a false negative more severe than those of a false positive? Lenders 
cannot operate if they classify every transaction as fraudulent. Before deciding 
whether or not to approve the applications, a brief overview must be completed. It 
may be impossible to do so because the prices would be prohibitively high.

Table 6. Pair-wise comparison and power test

Wilcoxon Signed-Rank Test Model Power Test

Parameters LMT Data Mean 
Difference Actual Power

z-value 6.53 Training -0.0194 0.9241

p-value 0.001 Validation 0.0298 0.8956
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DISCUSSION AND RECOMMENDATIONS

Credit and debit card fraud is the fraudulent use of a payment card, such as a credit 
card or a debit card. It could be to receive goods or services, or it could be to make 
a payment to a criminally controlled account. The Payment Card Industry Data 
Security Standard (PCI DSS) is a data security standard designed to assist financial 
institutions in handling card payments more securely while reducing fraud. When 
a legitimate customer makes a payment to a criminally controlled account, this is 
considered authorized credit card fraud, whereas unauthorised credit card fraud 
occurs when the account holder does not provide authorization for the payment to 
proceed, and the transaction is completed by a third party. This study used a LMT to 
calculate the chance of future occurrence of credit and debit card fraud to supplement 
the financial sectors’ current toolbox in the evaluation and detection of the financial 
fraud environment and the risk of credit and debit card perspective. As presented 
in literature, the LogitbBoost method is used to build the early warning system 
model, which employs the LMT to identify the main predictors of financial fraud 
in South African banks. To the best of the authors’ knowledge, only a few studies 
in South Africa have attempted to detect financial fraud efficiently and develop a 
map of the likelihood of early warning indicators for fraudulent financial behavior 
in the banking system.

The analysis made use of 17 different financial conditioning elements, including 
slope. The authors used ACC values, ROC curves, AUC values, standard error, 95 
percent confidence interval, and significance level to evaluate model performance. 
The EWS paradigm appears to perform admirably in this case study. This model has 

Table 7. Sensitivity performance

Parameters Training Set Validation Set

AUC 0.9875 0.9885

ACC 0.9995 0.9990

Accuracy 0.9891 0.9991

Sensitivity 0.9888 0.9810

Specificity 0.8530 0.8628

Concordance 0.8889 0.8790

Prevalence 0.9776 0.9967

Detection Rate 0.9856 0.9936

Detection Prevalence 0.9872 0.9959

Balanced Accuracy 0.9168 0.9056
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the highest predictive capacity in this regard, with success and prediction rates of 
99.95 percent and 99.9 percent, respectively. This is a useful method for detecting 
vulnerability to internet scams before they occur. According to Credit card fraud 
consumer action (2022), approximately half of all Americans have experienced 
a fraudulent transaction on their credit or debit card, and more than one in every 
three credit or debit cardholders has been a victim of fraud multiple times. This 
equates to 127 million Americans who have experienced credit card fraud at least 
once. This is significant in light of the study’s findings, which predict an increase 
in fraudulent transactions in South Africa over the next ten years based on out-of-
sample warning indicators indicating a high risk of fraud in both credit and debit 
card users. According to Table 4, the risk of fraud is 55% when there is no signal. 
To avoid such a massive loss, fraud detection systems should be kept up to date at 
all times, as this will have an impact on the South African banking sector. Makatjane 
and Tsoku (2022) recommend that linked risk factors be included when developing 
risk and fraud algorithms.

SOLUTIONS AND RECOMMENDATIONS

Fraud detection is a challenging problem that requires substantial planning before 
using machine learning or artificial intelligence solutions. Regardless, the utilization 
of data science and machine learning to assure the safety and security of a customer’s 
assets is noteworthy. Financial risk mitigation and management planning are crucial 
in today’s financial society and economy. To overcome these concerns, a highly 
automated early warning system for online transactions, as well as Google Flutter 
devices for people who would use them, should be built. However, a Chrome plugin 
for individuals and banks will be created. Cardholders will be able to track down lost 
or stolen cards and prevent transactions without having to contact their bank or card 
issuer. These proposed systems will also automatically notify banks of suspicious 
transactions and train the system in real time, eliminating the need for the cardholder 
to validate whether or not the transaction was fraudulent. The authors do, however, 
recommend that banks change the way their ATMs (also known as automatic teller 
machines) request the personal identification numbers from their cards (PINs). 
According to the research, before processing the transaction, the bank should ask 
cardholders personal questions or provide one-time pin (OTP) numbers. Finally, the 
conclusions of this chapter may be useful to South African financial decision-makers 
in terms of future use and planning in credit and debit-prone locations.
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CONCLUSION

South Africa’s financial commerce is a significant source of revenue. A good trade 
balance benefits South Africa’s financials, but credit and debit card fraud harms 
the economy and banking industry. Global financial fraud has increased for South 
Africa in absolute terms. However, as the EWS model results show, the significance 
of financial fraud as a contributor to a digitalized economy has grown dramatically 
in recent years. With the positive COVID-19 pandemic and e-commerce, South 
Africa will see an increase in credit and debit card usage. South Africa’s economy 
is evolving from a traditional method of trading with the rest of the world to a 
more sophisticated digital economy that relies heavily on online transactions. This 
deception contributes nothing to economic growth, which raises living standards in 
the financial sector and other sectors of the economy. Credit and debit cardholders 
need more training and awareness about financial fraud and how to avoid it, as well 
as instructions on how to use the EWS application that will be developed using the 
algorithms in this chapter.
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KEY TERMS AND DEFINITIONS

Area Under the Roc Curve: This is the measure of performance across all 
classification thresholds.

Classification: The established criteria or procedure to categorise or group 
together elements that are similar or dissimilar.

Crowd Labelling: A method that is applied to a large machine learning dataset 
to accurately find true labels.

Decision Trees: These are classification and regression supervised learning 
procedures based on a non-parametric approach.

Early Warning System: This is an adaptive measure that uses an integrated 
communication system to help in the preparation of hazardous climate-related events.
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Fraud Detection: Procedures engaged with the aim to prevent money or proposer 
from being obtained through pretenses.

Logistic Model Trees: A family of discrete classification models that combines 
a logistic regression model and decision tree models.

LogitBoost: A branch of machine learning classification that applies the cost 
function of logistic regression.

Web Scraping: The procedure to obtain or extract data from websites.
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APPENDIX

Algorithm 1: LogitBoost (J classes)
-----------------------------------------------------------------------------------------------------

1.  Start with weights �ij n
�

1
, i=1,…,n; j=1,…,J; Fj(x)=0 and pj(x)=1/j∀j

2.  Repeat for m=1,…,M:
a)  Repeat for j=1,…,J:

i.  Compute working responses and weights in the jth class

z
y p

p p
ij

ij j x

j x j x

j

j j

�
�

�� �
� �

� � � �

*

1

 

�ij j x j x
p p

j j
� �� �� � � �1  

ii.  Fit the function fmj(x) by a weighted least-squares regression of zij 
to Xi with weights 𝜔ij.
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3.  Output the classifier Fj(x)

Algorithm 2: Backward Stepwise Selection
----------------------------------------------------------------------------------------------------

1.  Let Mp denote the full model, which contains all p predictors.
2.  For k=p, p–1,…,1:

a)  Consider all k models that contain all but one of the predictors in Mk, for 
a total of k–1 predictors.

b)  Choose the best among these k models, and call it Mk−1 . Here best is 
defined as having the smallest RSS or highest R2
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3.  Select a single best model from among M0,…,Mp using cross-validated prediction 
error, Cp, AIC, BIC, or adjusted R2.

Table 8. Logistic Model Tree Estimates

Estimate Std. Error z value Pr (>|z |)

Intercept -11.59297 0.56359 -20.570 0.001

P2 0.97034 0.16135 6.014 0.001

P4 2.5051 0.26667 9.394 0.001

P5 1.17946 0.14110 8.359 0.001

P7 1.09164 0.13649 7.998 0.001

P8 -0.39848 0.04979 -8.003 0.001

P9 2.28317 0.34641 6.591 0.001

P10 -2.15369 0.23206 -9.281 0.001

P12 1.30902 0.30054 4.356 0.001

P13 -0.61980 0.18975 -3.266 0.02

P15 0.80611 0.19968 4.037 0.001

P16 -2.34563 0.36838 -6.367 0.001

P17 -1.36377 0.22136 -6.161 0.001

P18 1.99701 0.35711 5.592 0.001

P19 -1.17852 0.26091 -4.517 0.001

P20 -0.39459 0.18683 -2.112 0.05

P22 -0.88614 0.32182 -2.754 0.02

P26 1.60504 0.57022 2.815 0.02
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INTRODUCTION

According to the US Federal Bureau of Investigations ([FBI] 2021) the number of 
complaints about cyberattacks to their Cyber Division is up to as many as 4,000 a 
day. That represents 400% increase (FBI, 2021). The hack that took down the largest 
fuel pipeline in the U.S. and led to shortages across the East Coast was the result of a 
single compromised password, according to a cybersecurity consultant who responded 
to the attack (FBI, 2021). According to Newman (2016), the cybersecurity threat 
landscape is continually evolving as malicious cyber actors pursue new vectors to 
target and capitalize on newly discovered or known vulnerabilities. In 2017 a hacking 
group known as the Shadow Brokers, claiming to have breached the NSA-linked 
operation known as the Equation Group. The Shadow Brokers provided samples 
of the stolen data and attempted to auction off other stolen data (Newman, 2017).

In May of 2017, a strain ransomware virus call WannaCry attacked a series 
of public and private organizations including temporarily crippling technology-
driven operations of several hospitals and medical facilities in the United Kingdom 
(Newman, 2017). In 2017 there where new revelations about hacking vulnerabilities 
cell phones, Windows, and the ability to turn some smart TVs into listening devices 
(Newman, 2017). The top industries targeted by cybercriminals are (1) healthcare, 
(2) manufacturing, (3) financial services, (4) government, and (5) transportation 
(Morgan, 2016). These industries are targeted for sensitive information primarily in 
the healthcare and financial services sectors. Researchers are forecasting the global 
cost of cybercrime in 2019 to reach over 2 trillion dollars (Morgan, 2016).

ABSTRACT

According to the US Federal Bureau of Investigations (FBI) the number of complaints 
about cyberattacks to their cyber division is up to as many as 4,000 a day. Every 
year in the U.S., 40,000 jobs for information security analysts go unfilled, and 
employers are struggling to fill 200,000 other cybersecurity-related roles. Colleges and 
universities have created certificate, undergraduate, and graduate programs to train 
professionals in these job roles. The challenge to meeting the cybersecurity workforce 
shortage through degree programs is intensified by the reality of the limited number 
of cybersecurity and engineering faculty at colleges and universities. This chapter 
explores the essential need to develop more doctorate faculty in technology-related 
areas and explains some unique and non-traditional paths to doctoral completion 
that allow professionals with significant real-world work experience to complete 
a doctorate without career interruption and relocation from highly respected and 
established universities in the US and the UK.
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The global cybersecurity workforce will have more than 1.5 million unfilled 
positions by 2020 (Van- Zadelhoff, 2016). Every year in the U.S., 40,000 jobs 
for information security analysts go unfilled, and employers are struggling to 
fill 200,000 other cyber-security related roles (Kauflin, 2017). Threats of cyber-
attacks have spurred global interest in protecting digital property from external 
intrusions. The identified risks to American private and public entities were part 
of an ongoing scenario that placed specific importance on secure, internal, cyber 
information (Pierce, 2016; Stevenson, 2017). This importance came about because 
many in the business market had echoed the need for a skilled workforce within 
cybersecurity, and numerous efforts were made to address those concerns (Pierce, 
2016; Stevenson, 2017).

The need for cybersecurity was spearheaded by the rise in cybercrime (Pierce, 
2016; Stevenson, 2017). Newman (2017) described cybercrime as the use of 
communication and information technologies to carry on illegal activity. Cybercrime 
activity was conducted with the utilization of devices including television, cellular 
phones, radios, computers, networks, or communication application (Newman, 2017). 
Newman (2017) noted that cybercrime was widespread and was not limited to petty 
and small crimes. Morgan (2016) and Newman (2017) indicated that cyber-attacks 
and malicious hackers have increased with multiple large corporations becoming 
victims of data breaches. Morgan (2016) noted firms were growing more dependent 
on cyber connectivity to remain relevant in an increasingly global market, and this 
has left many of them vulnerable. American organizations made changes to their 
IT infrastructure to deflect the onset of external threats from cybercriminals as they 
continued to grow (Van- Zadelhoff, 2016). Newman (2017) identified the cyber-
attacks came from multiple sources with a variety of agendas. Newman (2017) 
noted the cyber threats were distinguished by intent and motivation of the attacker.

LITERATURE REVIEW

The onslaught of cyber-attacks enhanced the need to fill positions focused on the 
prevention of data breaches (Pierce, 2016; Stevenson, 2017). Besides, the shortage 
of skilled personnel provided a new dynamic to finding qualified workers that 
understood the complexities of cybersecurity, and that could contribute significantly 
to the overall needs of the company (Pierce, 2016; Stevenson, 2017).

Information technology related positions required consistent training to remain 
on top of constant changes in the field (Andre 2016). With a good understanding of 
the threats that a professional cybersecurity face, the academic community was the 
first to attempt to fill the gap in knowledge for practitioners (Van- Zadelhoff, 2016). 
The field of computing before 1990 was very straightforward (Force, 2001). The 
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1968 Association for Computing Machinery (ACM) report was the first of its kind to 
describe the guidelines of computing (Force, 2001). The 1978 ACM report provided 
details on course descriptions with specific bibliographic references (Force, 2001). 
In 1983, IEEECS and the Association for Computing Machinery jointly published a 
more in-depth course description of specific topic areas for both computer science 
and engineering (Tucker et al., 1991).

The events of September 11, 2001 created new areas of focus including homeland 
security and cybersecurity. The ACM acknowledges that the scope of what is called 
computing has drastically changed as of the filing of the 2001 ACM report (Curricula, 
2001). Information systems had to address many new challenges with the growth 
of computing power. Information technology programs began to appear (Force, 
2001). Besides, security and cryptography are explicitly listed as reasons why the 
curriculum of the computing field needed revision (Force, 2001).

The 2004 ACM identifies the differences and similarities of the five major 
computing disciplines (Shackelford et al., 2006). The options were computer science, 
electrical engineering, or information systems. The focus of computer science is 
on programming software, and electrical engineering is on hardware. The focus of 
information systems is on using hardware and software to meet organizational goals 
(Shackelford et al., 2006). The only change before 1990 in the computing field was 
the introduction of computer engineering, which was a specialization of electrical 
engineering due to the opening of the microprocessors (Shackelford et al., 2006). In 
2005, an ACM report identified dramatic growth has been seen in some computing 
disciplines (Shackelford et al., 2006).

A hindrance to growth in the cybersecurity field is clearly defined paths of 
professional development. Experience and training seem not to be a typical discussion 
within the cybersecurity community. Most professionals who attend training or 
obtain experience do so by job-hopping or by attending training at the expense 
of the cybersecurity professional (Li & Daugherty, 2015). Others seek academic 
degrees in cybersecurity and information security. As such, it is easy to see with 
the shortages of professionals in both the entry and higher complexity roles that 
the burden falls on the existing cybersecurity professionals to develop the needed 
skills (Andre, 2016).

An additional hindrance to the developing more professionals falls on universities 
that do not offer programs in cybersecurity that can re-train older workers interested 
in career changes and can develop new ones. One factor that increases the number 
of older workers in the workforce is the improvement in health care and resultant 
life expectancy (Cappelli & Novelli, 2010). Therefore, leveraging the experience 
of older workers is of vital importance to engage and help develop the existing 
workforce (Cappelli & Novelli, 2010). Currently, a large percentage of knowledge 
is lost due to the unrealized value of this portion of the workforce. Information 
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Technology, Computer Engineering, and Cybersecurity careers are offering high 
salaries in industry, thus making it unattractive for professionals in the field to leave 
the income gained from working to attend a doctoral program for 3 to 7 years. As 
a result, routes to doctoral study have changed (Peacock, 2017).

THE EVOLUTION OF DOCTORAL PROGRAMS

Walker et al. (2008) delineates the results of The Carnegie Initiative on the Doctorate, 
a five-year project to develop approaches for transforming doctoral programs. 
The purpose is one of the central themes in Walker et al.’s (2008) account of how 
doctoral education needs to improve. At the national level, debates about purpose 
have centered on two central questions: First, what is the intent of a doctoral degree 
or doctoral study? Is it preparation for a particular career, or is it for knowledge 
and understanding? Second, what are the ideal types of students that should be in 
doctoral programs? Should anyone be allowed to get a doctorate? According to 
Walker et al. (2008), a recurring concern has been the proliferation of doctorates 
granted by too many universities and that many of those universities are “sham 
graduate schools” (p. 36.). Doctoral education is at a place where purpose must 
be continually reconsidered. There are new challenges facing graduate education 
today, and there will be new challenges in the coming decades. The need, then, is 
for faculty and students to objectively examine the purposes of doctoral education 
to improve the discipline. Walker et al. (2008) refers to this assessment as serving 
as a good “steward” of the discipline. The word “steward” is used intentionally by 
Walker et al. (2008) “to convey a sense of purpose for doctoral education that is larger 
than the individual and implies action” (p. 12). When academic programs directors 
and faculty members examine their programs to assess if their doctoral programs 
were student-friendly, relevant, innovative, and employer-friendly, they function as 
good stewards of the discipline. The five-year study done by The Carnegie Initiative 
on the Doctorate sheds light on many promising practices in numerous doctoral 
programs. Walker et al. (2008) makes many suggestions for improvement based on 
those insights. Two suggestions that were particularly relevant to this study were 
integrative dissertations and the reconsideration of apprenticeship.

The debate about the usefulness of dissertations has gone on for years. Many 
faculty members complain that poorly written dissertations are passed to appease 
colleagues and that the standards used to judge dissertations are unclear to students 
(Lovitts, 2007). According to Olson and Drew (1998), the dissertation has become 
an unfocused debate about dissertations’ unuseful for years. Many faculty members 
complain that poorly written dissertations are simply passed to appease colleagues 
and that the standards used to judge dissertations are unclear to students (Lovitts, 
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2007). According to literature reviews and uses ambiguous and verbose language 
exhaustive reviews of literature and uses language that is ambiguous and verbose. 
Regardless, the dissertation is still the most widely used program completion 
experience. Walker, et al. (2008) write that the dissertation is an important formative 
experience, requiring students to put theory into action, consider multiple lines of 
evidence, and display a comprehensive understanding of previous scholarship in 
the field; it is strongly linked to the development of research skills and content area 
mastery (p. 80).

Furthermore, Walker et al. (2008) proposes that the dissertation be made a stronger 
site for integrating the multiple domains of stewardship. To this end, they suggest 
that dissertations integrate across disciplines and connect students’ experiences at 
multiple levels. Finally, Walker et al. (2008) argues for a shift in the apprenticeship 
model, from one in which students are apprenticed to a faculty mentor to one in 
which they apprentice with many mentors. Today’s diverse students, having diverse 
skills and interests, are best served by multiple intellectual mentors.

Traditional vs. Non-Traditional Doctoral Programs

Although the concept of traditional and non-traditional degree programs is 
often discussed, what differentiates the two can sometimes be difficult to assess 
(Amorosino, 2017). The archetypical traditional doctoral degree program is “a full-
time, residential, four-five-year, research focused graduate program in the sciences 
or humanities culminating in a dissertation and a PhD” (Archbald, 2011, p. 16). 
Such programs tend to attract younger students just beginning a career and often 
provide the student some level of funding (especially in science fields) in exchange 
for full-time commitment to study and research. These students, upon graduation, 
often teach and continue to do research at the graduate level (Archbald, 2011).

The term non-traditional as it relates to a doctoral degree is multi-faceted and 
may include the program design, limited residency at the university, pedagogical 
underpinnings, as well as what the attainment of the degree can provide the student 
and their working environment (Amorosino, 2017). All of these dynamics and their 
differing permutations combine to create a flexible description of non-traditional 
doctoral programs (Amorosino, 2017). Pappas and Jerman (2011) define a non-
traditional degree as having one or more of four characteristics: (a) the students 
participating are usually not full-time students, nor full-time residents of the 
university and may have family and social responsibilities that prohibit the full-time 
engagement expected in traditional programs; (b) the program itself is provided in 
a compressed, online, hybrid, or other format; (c) the degree itself may not be a 
PhD, but may serve the needs of the practitioner, employee, or practitioner with 
particular applied needs—also known as a professional degree; and (d) the degree 
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does not necessarily lead to a life in academe but serves the needs of the practitioner 
(Pappas & Jerman, 2011, p. 2).

The Development of Non-Traditional Online Doctoral Programs

Several accredited US universities have had success developing non-traditional 
doctoral programs that offer limited face to face teaching residencies and online 
learning. Students attempting to pursue a doctorate in this manner have self-directed. 
These programs allow students from all over the world to complete a doctoral 
degree in Information Technology, Engineering and Cybersecurity while working 
full time and not having to move or relocate to complete their degrees. These are all 
brick-and-mortar universities that are leveraging their campus resources to engage 
professionals with significant work experience in the field, which with a doctorate 
degree, could become effective faculty members in the future. These programs have 
several similar characteristics like either online or limited residency offerings. These 
programs also offer no distinction or indication on your diploma or transcripts that 
the degree was completed on-line versus, those students that completed the degree 
on campus. These programs have coursework combined with dissertation research. 
These schools include:

1.  The George Washington University in Ashburn VA, USA offers an on-line 
Doctor of Engineering that can be finished remotely in Cybersecurity and 
Technology Management

2.  Old Dominion University in Norfolk, VA, US offers an on-line PhD in 
engineering management and systems engineering and a Doctor of Engineering.

3.  Dakota State University in Madison, South Dakota, USA has an online Ph.D. 
in Information Security.

4.  The University of the Cumberlands in Williamsburg, KY, USA has an online 
PhD in Information Technology with options to study Blockchain Technology 
on the graduate level on-line.

5.  Mississippi State University in Starkville, MS, USA has an on-line PhD in 
Systems and Industrial Engineering.

6.  Marymount University in Arlington, VA, US has a 2-year on-line Doctor of 
Science in Cybersecurity that offers an applied dissertation.

7.  Purdue Polytechnic Institute in West Lafayette, IN, USA offers an innovative 
on-line Doctor of Technology.

8.  Colorado State University in Fort Carson, CO, USA offers an on-line Doctor 
of Engineering.
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U.S. Research Only PhD Program

Normally the US approach to doctoral student includes academic coursework 
and then dissertation research but one university in the US, Capitol Technology 
University, in Laurel Maryland, USA which is an ABET accredited engineering 
school has a doctoral approach like many European universities where students just 
engage in their own independent research. This program also allows students that 
have completed doctoral credits at other universities but failed to complete their 
doctorate degree to transfer their credits and complete their doctorate in an accelerated 
format. They offer PhD programs in Cybersecurity Leadership, Cyber-psychology, 
Healthcare Cybersecurity, Financial Cybersecurity, Artificial Intelligence, Critical 
Infrastructure, Counterterrorism, Human Factors, Unmanned Systems Applications, 
Manufacturing, and Technology.

PhD by Published Research or PhD by Publication

The PhD by Published Research or PhD by Published Works emerged as an option 
in 1966 at Cambridge University in the UK and has grown to become a viable path 
for doctoral degree completion in the UK and Australia (Peacock, 2017). The PhD 
by published works was initially conceived to allow practitioners such as creative 
writers, artists, and accomplished executive to obtain an earned doctorate that would 
afford them the ability to take their knowledge, experiences, and accomplishments 
along with a doctorate degree in the university classroom (Peacock, 2017).

The PhD by published works program works by the students submitting a 
collection of prior peer reviewed published research and works all from the matching 
field for examination (Peacock, 2017). The portfolio submission can include peer-
reviewed full paper conference proceedings, peer reviewed academic articles, and 
peer reviewed book chapters. Included with the submission of published works is 
critical content analysis as an evaluated equivalent to fulfilling requirements for a 
doctoral degree (Peacock, 2017). The critical content analysis explains relevance, 
impact, and unifying significance of the publications in the academic field of study 
(Peacock, 2017). Often these publications need to be those that are peer reviewed 
usually in journals indexed in SCOPUS, The Institute of Electrical and Electronics 
Engineers (IEEE), The Association for Computing Machinery (ACM), the Association 
of Business Schools Journals list, or a publication in a journal that is listed on the 
Australian Business Deans Council Journal Quality list. Journal articles published 
in journals not listed on one of these lists could have challenges as being accepted.
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Universities offering these programs include:
1.  Middlesex University in the UK offers a Doctor of Professional Studies 

by published works.
2.  London Metropolitan University in the UK offers a PhD by published 

works.
3.  Technical University of Dublin offers a PhD by published works.
4.  These universities with flexible doctoral programs geared towards working 

professionals and executives in the Cybersecurity, Engineering, and fields 
to bring their expertise to universities that are challenged to meet new 
workforce demands in Technology, Engineering, and Cybersecurity.

There are several books that are critical for success in these kinds of programs:
 ◦ Getting What You Came For: The Smart Student’s Guide to Earning an 

M.A. or a Ph.D by Robert Peters: ISBN-13: 978-0374524777 (Peters, 
1997).

 ◦ The Only Academic Phrasebook You’ll Ever Need: 600 Examples of 
Academic Language by Luiz Otavio Barros: ISBN-13: 978-1539527756 
(Barros, 2016).

 ◦ Grad School Essentials: A Crash Course in Scholarly Skills by Z. Shore: 
ISBN-13: 978-0520288300 (Shore, 2016).

 ◦ Becoming an Academic Writer: 50 Exercises for Paced, Productive, and 
Powerful Writing by Patricia Goodson: ISBN-13: 978-1483376257. 
(Goodson, 2016).

 ◦ Writing Your Journal Article in Twelve Weeks, Second Edition: A Guide 
to Academic Publishing Success by Wendy Laura Belcher: ISBN-13: 
978-0226499918. (Belcher, 2019).

 ◦ Full Speed Ahead: Surviving to Thriving as an Online Doctoral Student: 
ISBN-13: 978-1456300678. (Doctors Publishing Group, 2010).

 ◦ The Dissertation Warrior: The Ultimate Guide to Being the Kind of 
Person Who Finishes a Doctoral Dissertation or Thesis by Dr. Guy 
White: ISBN-13: 978-0984089512. (White, 2017).

 ◦ The Dissertation Journey: A Practical and Comprehensive Guide to 
Planning, Writing, and Defending Your Dissertation by Carol Roberts: 
ISBN ISBN-13: 978-1506373317. (Roberts, 2010).

 ◦ The Literature Review: Six Steps to Success by Lawrence A. Machi: 
ISBN-13: 978-1506336244. (Machi and McEvoy, 2021).

 ◦ Writing Literature Reviews: A Guide for Students of the Social and 
Behavioral Sciences by Jose L. Galvan: ISBN-13: 978-0415315746. 
(Galvan and Galvan, 2017).

 ◦ The Professor Is in: The Essential Guide to Turning Your Ph.D. Into a 
Job by Karen Kelsky: ISBN-13: 978-0553419429. (Kelskey, 2015).
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CONCLUSION

This chapter explored the essential need to develop more doctorate faculty in 
technology related areas and explains some unique and non-traditional paths to 
doctoral completion that allow professionals with significant real world work 
experience to complete a doctorate without career interruption and relocation from 
highly respected and established universities in the US and the UK.

REFERENCES

Amorosino, S. C. (2017). Was it worth it? women’s satisfaction with earning the 
online education doctorate (Order No. 10266971). Available from ProQuest Central; 
ProQuest Dissertations & Theses Global. (1926748370)

Andre, P. (2016). A phenomenological study of frontline hiring professionals that 
recruit in a cybersecurity world (Order No. 10250990). Available from ProQuest 
Dissertations & Theses Global. (1868414289)

Archbald, D. (2011). The emergence of the nontraditional doctorate: An historical 
overview. In J. P. Pappas & J. Jerman (Eds.), Meeting adult learner needs through 
the nontraditional doctoral degree. Jossey-Bass. doi:10.1002/ace.396

Barros, L. O. (2016). The Only Academic Phrasebook You’ll Ever Need: 600 
Examples of Academic Language. Createspace Independent Publishing Platform.

Belcher, W. L. (2019). Writing Your Journal Article in Twelve Weeks, Second 
Edition: A Guide to Academic Publishing Success. University of Chicago Press. 
doi:10.7208/chicago/9780226500089.001.0001

Cappelli, P. (2008). Talent management for the twenty-first century. Harvard Business 
Review, 86(3), 74. PMID:18411966

Cappelli, P., & Novelli, W. D. (2010). Managing the Older Worker: How to Prepare 
for the New Organizational Order. Harvard Business Press.

Curricula, C. (2001). Computer Science. IEEE CS. ACM Joint Task Force on 
Computing Curricula.

Doctors Publishing Group. (2010). Full Speed Ahead: Surviving to Thriving as an 
Online Doctoral Student. CreateSpace Independent Publishing Platform.

Force, J. T. (2001). Computing curricula 2001: Computer science. Retrieved from 
https://www.acm.org/education/curric_vols/cc2001.pdf

 EBSCOhost - printed on 2/9/2023 12:01 PM via . All use subject to https://www.ebsco.com/terms-of-use

https://www.acm.org/education/curric_vols/cc2001.pdf


185

Legitimate Non-Traditional Doctorate Programs in Cybersecurity, Engineering, and Technology

Galvan, J. L., & Galvan, M. C. (2017). Writing literature reviews: A guide for students 
of the social and behavioral sciences. Routledge. doi:10.4324/9781315229386

Goodson, P. (2016). Becoming an academic writer: 50 exercises for paced, productive, 
and powerful writing. Sage Publications.

Kauflin, J. (2017, March 16). The Fast-Growing Job with A Huge Skills Gap: Cyber 
Security. Forbes.

Kelsky, K. (2015). The professor is in: The essential guide to turning your Ph. D. 
into a job. Crown.

Li, J., & Daugherty, L. (2015). Training cyber warriors: What can be learned from 
defense language training? RAND National Defense Research Institute. doi:10.7249/
RR476

Lovitts, B. E. (2007). Making the implicit explicit: Creating performance expectations 
for the dissertation. Stylus Publishing, LLC.

Machi, L. A., & McEvoy, B. T. (2021). The literature review: Six steps to success. 
Academic Press.

Morgan, S. (2016, May 13). Top 5 industries at risk of cyber-attacks. Retrieved on 
February 17, 2018, from https://www.forbes.com/sites/stevemorgan/2016/05/13/
list-of-the-5-most-cyber-attacked-industries/#1edfc762715e

Newman, L. (2017, July 1) The biggest cybersecurity disasters of 2017 so far. Wired.

Olson, G. A., & Drew, J. (1998). Reenvisioning the dissertation in English studies. 
College English, 61(1), 56-66.

Pappas, J. P., & Jerman, J. (Eds.). (2011). Meeting adult learner needs through the 
nontraditional doctoral degree. Jossey-Bass.

Peacock, S. (2017). The PhD by publication. International Journal of Doctoral 
Studies, 12, 123–134. doi:10.28945/3781

Peters, R. L. (1997). Getting what you came for: the smart student’s guide to earning 
a master’s or a Ph. D. Farrar, Straus and Giroux.

Pierce, A. O. (2016). Exploring the cybersecurity hiring gap (Order No. 10250186). 
Available from ProQuest Dissertations & Theses Global. (1848667353)

Roberts, C. M. (2010). The dissertation journey: A practical and comprehensive 
guide to planning, writing, and defending your dissertation. Corwin Press.

 EBSCOhost - printed on 2/9/2023 12:01 PM via . All use subject to https://www.ebsco.com/terms-of-use



186

Legitimate Non-Traditional Doctorate Programs in Cybersecurity, Engineering, and Technology

Shackelford, R., Lunt, B., McGettrick, A., Sloan, R., Topi, H., Davies, G., & Lunt, 
B. (2006). Computing curricula 2005: The overview report. ACM SIGCSE, 38(1), 
456–457. doi:10.1145/1124706.1121482

Shore, Z. (2016). Grad School Essentials. In Grad School Essentials. University of 
California Press. doi:10.1525/9780520963269

Stevenson, G. V. (2017). Cybersecurity implications for industry, academia, and 
parents: A qualitative case study in NSF STEM education (Order No. 10624075). 
Available from ProQuest Dissertations & Theses Global. (1958945736)

Tucker, A. B., Aiken, R. M., Barker, K., Bruce, K. B., & Cain, J. T. (1991). Computing 
curricula 1991: Report of the ACM/IEEE-CS Joint Curriculum Task Force. 
Association for Computing Machinery Press/IEEE Press. doi:10.1145/103701.103710

US Federal Bureau of Investigations. (2021). Retrieved from: https://www.fbi.gov/
about

Van-Zadelhoff, M. (2016, September). The Biggest Cybersecurity Threats are Inside 
Your Company. Harvard Business Review.

Walker, G. E., Golde, C. M., Jones, L., Bueschel, A. C., & Hutchings, P. (2008). The 
formation of scholars: Rethinking doctoral education for the twenty-first century. 
Jossey-Bass.

White, G. E. (2017). The dissertation warrior: The ultimate guide to being the kind of 
person who finishes a doctoral dissertation or thesis. Triumphant Heart International.

ADDITIONAL READING

Burrell, D., & Nobles, C. (2018). Recommendations to Develop and Hire More 
Highly Qualified Women and Minority Cybersecurity Professionals. Proceedings 
of ICCWS 2018 13th International Conference on Cyber Warfare and Security. 
Academic Conferences International Limited.

Clancy, M. (2012). Improving faculty professional development in higher education 
high-tech programs: An action science research study of self-directed professional 
development (Order No. 3542028). Available from ProQuest Dissertations & Theses 
Global.

Delia, C. (2015). Exploring the social and organizational factors of the shortage 
of women in information technology: A multiple case study (Order No. 3732277). 
Available from ProQuest Dissertations & Theses Global. (1746623174). 

 EBSCOhost - printed on 2/9/2023 12:01 PM via . All use subject to https://www.ebsco.com/terms-of-use

https://www.fbi.gov/about
https://www.fbi.gov/about


187

Legitimate Non-Traditional Doctorate Programs in Cybersecurity, Engineering, and Technology

Demirbag, J. R. (2015). Gifts of the doctoral process. Educational Journal of Living 
Theories, 8(1), 67–74.

Di Pierro, M. (2007). Excellence in doctoral education: Defining best practices. 
College Student Journal, 41(2), 368–376.

Fuller, C. R. (2016). Shortening the skills gap: An exploratory study of cybersecurity 
professional experience (Order No. 10250901). Available from ProQuest Dissertations 
& Theses Global. (1868417653). 

Gill, P., & Burnard, P. (2008). The student-supervisor relationship in the PhD/
Doctoral process. British Journal of Nursing (Mark Allen Publishing), 17(10), 
668–671. doi:10.12968/bjon.2008.17.10.29484 PMID:18563010

Herling, L. (2011). Hispanic women overcoming deterrents to computer science: A 
phenomenological study (Order No. 3505844). Available from ProQuest Dissertations 
& Theses Global. (1013441827).

McClurg, J. D. (2015). Cybersecurity in higher education: Oversight and due 
diligence (Order No. 10291072). Available from ProQuest Dissertations & Theses 
Global. (1846958719). Retrieved from https://search-proquest-com.contentproxy.
phoenix.edu/docview/1846958719?accountid=35812

Palmer, R. T., Maramba, D. C., & Gasman, M. (Eds.). (2013). Fostering Success of 
Ethnic and Racial Minorities in STEM: The Role of Minority Serving Institutions. 
Routledge. doi:10.4324/9780203181034

President’s Council of Advisors on Science and Technology. (2012). Report to the 
president: Engage to excel: Producing one million additional college graduates 
with degrees in science, technology, engineering, and mathematics. Retrieved from 
https://www.whitehouse.gov/sites/default/files/microsites/ostp/pcast-engageto-
excel-final_2-25-12.pdf

Rockinson-Szapkiw, A. J., & Spaulding, L. S. (2014). Navigating the doctoral 
journey: A handbook of strategies for success. Rowman & Littlefield.

Strayhorn, T. L. (2010). Undergraduate research participation and STEM graduate 
degree aspirations among students of color. New Directions for Institutional Research, 
2010(148), 85–93. doi:10.1002/ir.364

Sweem, S. L. (2009). Leveraging employee engagement through a talent management 
strategy: Optimizing human capital through human resources and organization 
development strategy in a field study (Order No. 3349408). Available from ProQuest 
Dissertations & Theses Global. (305162419). 

 EBSCOhost - printed on 2/9/2023 12:01 PM via . All use subject to https://www.ebsco.com/terms-of-use

https://search-proquest-com.contentproxy.phoenix.edu/docview/1846958719?accountid=35812
https://search-proquest-com.contentproxy.phoenix.edu/docview/1846958719?accountid=35812
https://www.whitehouse.gov/sites/default/files/microsites/ostp/pcast-engageto-excel-final_2-25-12.pdf
https://www.whitehouse.gov/sites/default/files/microsites/ostp/pcast-engageto-excel-final_2-25-12.pdf


188

Legitimate Non-Traditional Doctorate Programs in Cybersecurity, Engineering, and Technology

Tinkler, P., & Jackson, C. (2004). The doctoral examination process. McGraw-Hill 
Education.

KEY TERMS AND DEFINITIONS

All but Dissertation (ABD): High-quality doctorate programs require the 
completion of a dissertation to earn your doctoral degree. ABD means you have 
completed all the necessary doctorate coursework but have not written and defended 
your dissertation. ABD doesn’t hold academic weight, and you can’t be called a doctor 
until you finish your dissertation. According to the Council of Graduate Schools, 
almost 50% of students who start a Ph.D. program don’t complete their degree. 
However, Ph.D. programs only represent one type of doctoral degree. Completion 
stats vary widely between universities and doctoral degree programs. The most 
significant difference in completing a doctoral degree is often the university and 
program a student chooses. If you’re ABD, you need to find a student-centered 
program designed to meet the needs of ABD students.

Dissertation Chair: A dissertation chair is a judge, an assessor of your work who 
ensures that a student meets personal, departmental, university, and even universal 
standards. The chair provides feedback on the research approach and dissertation 
chapters as the study are developed.

Time to Completion: European Ph.D. programs are shorter than those in the 
US. For example, it takes three years to complete a Ph.D. in France, Norway, the 
UK, and Germany. Across Europe, a three-to-four-year Ph.D. is standard. To be 
successful in a European style Ph.D., you must have a firm understanding of various 
research methods and how to execute them in a study. In comparison, six years is 
the average time to degree in the US because US doctoral programs often require 
12 to 16 courses with classmates that include teaching students research methods 
and then dissertation research. In contrast, European doctorates require a research 
proposal course and then independent research on the dissertation as the doctoral 
experience.
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ABSTRACT

The methods used to predict, categorize, and recognize complex data like pictures, 
audio, and texts have been popular in machine learning. These methods are the 
basis for future AI-driven internet providers because of unparalleled precision in 
deep learning methodologies. Commercial firms gather large-scale user data and 
perform machine learning technique. The massive information necessary for machine 
learning raises privacy problems. The user’s personal and extremely sensitive data 
such as photographs and voice records are gathered and retained forever by these 
commercial firms and users can not limit the intents of these sensitive information. 
In addition, centrally stored data is susceptible to legal and extrajudicial monitoring. 
Many data owners use profound extensive learning by security and confidentiality. 
This chapter contains a practical approach that allows several parties to learn a 
precise model of complex systems for a specific purpose without disclosing their 
data sets. It provides an interesting element in utility and privacy.
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INTRODUCTION

Privacy Preserving Machine Learning for Image Data

Machine learning (ML) is an intelligence branch that consistently uses algorithms to 
synthesize the links between knowledge and information (Pannu & Student, 2008). 
For illustration, ML systems on automated speech processing may be developed 
to translate acoustic information into the conceptual system, which consists of a 
collection of words in a series of spoken data. An Internet search, ad insertion, credit 
assessment, financial sector prognosis, DNA sequence analytics, comportment 
analyses, intelligent coupons, medication research, weather prediction, huge data 
assessment, and many more apps are already standard in machine training. ML 
will decisively develop a variety of user-centred technologies. The advancement 
of machine learning means that fundamental linkages are characterized in wide-
ranging information so that big data analysis, behaviour pattern identification, and 
information development solve issues. In order to represent changes in operational 
behaviour, machine learning methods may also be trained to categories the changing 
conditions of a procedure. As security features influence innovative concepts and 
capabilities, machine learning techniques may recognize interruptions, re-design the 
latest systems, and educate them to adjust and co-develop new information (Mulla, 
2013; Sharma, 2017).

Supervised Learning

Supervised learning (Figure 1) is a set of learning approaches that uncover links 
between independent characteristics and a chosen dependency characteristic (the 
label). Learning supervised utilizes a training dataset to create predictive models 
by using input data and output values. A database can be used to forecast the output 
values. The effectiveness of supervised learning models depends on how large and 
varying the training data is so that new datasets can be more generic and more 
predictive. The majority of induction algorithms come within the area of supervised 
learning (Kshirsagar et al., 2016b).

Unsupervised Learning

Unsupervised learning includes techniques of learning which group instances 
lacking a particular property. In general, this method includes learning organized 
data patterns by eliminating pure unstructured noise. Algorithms for clustering and 
reduction of dimensionality are typically uncontrolled (Singh & Mishra, 2021).
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Privacy-Preserving Machine Learning

Many approaches for improving privacy focused on enabling many inputs to train 
ML models in cooperation without disclosing their private data in its original form. 
Privacy protection was usually done with the use of cryptographic methods or the 
publication of unequal private information. In avoiding member inference attacks, 
differential privacy is very useful. The success of the inversion modelling and 
inferences assaults on individuals can be reduced by restricting the model prediction 
performance (Vitale et al., 2017).

Cryptographic Approaches

If a specific machine learning application needs information from several inputs, 
cryptographic methods may carry out machine learning’s / encrypted information 
validation. In many of these approaches, it is necessary to achieve greater efficiency 
if data owners donate their encrypted information to computing servers, reducing the 
problem to a safe 2/3-part computing configuration. Besides increasing productivity, 
the benefits of such techniques include that the input parties do not need to stay 
online. Most of these techniques deal with data divided horizontally: the identical set 
of characteristics for various data items were gathered by each data owner (Shokri 
& Shmatikov, 2015).

Figure 1. Supervised Learning
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Homomorphic Encryption

Fully homomorphic encryption (Yonetani et al., 2017) makes it possible to compute 
encrypted data, utilizing operations like adding and multiplying as the basis of more 
complex arbitrary functions. As the bootstrapping of encrypted text is sometimes 
quite expensive, additive homomorphic encryption methods were primarily utilized 
in privacy-preserving machine learning. These methods allow just the addition of 
encrypted data activities and a plaintext multiplied.

The difficulty with the production of a machine learning model is that the model’s 
behavior might reveal sensitive data from the training samples if exposed to new data. 
In this part, several techniques are developed to retrieve this confidential material 
from machine learning models.

A summary of the various risks or assaults is shown in Figure 2. The various 
attacks demand varying amounts of design and learning information. The justification 
behind the discussion of several threats is that the remedies proposed under this 
concept should cover as much protection as feasible.

PRINCIPAL AND PRIVACY FOR PRESERVATION TECHNIQUES

In a traditional setting, privacy will imply that others can only access data about 
themselves under own choices. That is, the public is not disclosed with unwanted 
files on a person.

Figure 2. Privacy preserving ML for image data
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Privacy-Preserving Machine Learning Model

In general, the machine learning system contains four attack sites requiring protection 
of personal data (Xu & Yi, 2011; Yuan et al., 2012), as illustrated in Figure 3.

• Some machine learning systems include confidential data for training. Legal 
concerns have overlooked the collection and dissemination of sensitive data 
utilizing algorithms for machine learning.

• Owing to public architecture methods, several machine-learning designs have 
been provided to the community in the latest days. The learning models of the 
machine may be considered secret, as the datasets they are educated on may 
reveal information. In particular, the hacker may accurately identify whether 
a given document is in the system’s training set. A system can also keep some 
of its training samples accidentally and unintentionally.

• A person who wishes to forecast using a trained model might be sensitive to 
the new instance.

• To safeguard data protection used for model development.
• To safeguard the confidentiality of the learning model of machines.
• To safeguard the simulation model private.

Figure 3. Privacy-preserving machine learning technique
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Security Properties

The privacy characteristics of the implementation of machine training that safeguards 
privacy are (Kshirsagar et al., 2020; Singh et al., 2014; Tramèr et al., 2016; Wang 
et al., 2012):

• Strong Anonymity: The training set should be adequately anonymized so 
that no one can recognize a person based on a specific record.

• Confidentiality: During the model training, no system administrator can 
understand the database system of other owners. Furthermore, the proprietor 
of the system cannot identify the owner for any training inputs.

• Privacy: No member must acquire much more than the authorized 
performance. In particular, the sole information regarding other parties’ 
inputs might be drawn from the output itself. The model owners, for example, 
only get the learned model without understanding any person’s entire record.

• Correctness: The classification method of machine training is ensured to 
be accurate for each party. To proceed with the instance of illness forecast 
training, this means that clinics (data owners) may assure that their local 
databases are used in learning. In this case, the data owner may utilize 
any record to forecast expected output modifications for specific input 
modifications.

• Guaranteed output delivery: Totally corrupt entities must not be able to 
impede the receipt of honest parties. In other words, by conducting a “denial 
of service” assault, the opponent should not be able to overwhelm the 
calculation.

• Non-Repudiation: By changing the training set input, no system administrator 
may modify his or her opinion.

Parameter Mapping in the Data Privacy Process

Data confidentiality procedure is carried out by mapping and categorizing all 
different factors. The mapping of data protection variables is to know which variables 
are present in the overall data response phase. If they are correctly tuned, it will 
impact the data protection results, the classifying errors, and the overall data utility 
results. Secondly, planners, engineers, and architects will improve their work in 
data protection engineering. By separating these characteristics into three groups, 
this work provides a distinction (P. Kshirsagar & Akojwar, 2017; Manoharan et al., 
2020; Tramèr et al., 2016).
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First Category of Parameters

The first group of variables concerns the general objective of the privatized data 
collection, as the user of that privatized dataset determines or needs. A user of 
the private data collection defines the first group of parameters and will vary case 
by case. To reach the satisfaction of such standards, however, would entail total 
usefulness and, as a result, absolutely no privacy. Thus, trade-offs must be made 
with these categories of factors. Accuracy, validity, and thoroughness are the initial 
categories of parameters.

Second Category of Parameters

We assess data privacy methods in the second group of parameters. These are the 
methods and procedures for data privacy measures. The noise levels are, for example, 
the parameter we want to regulate and smooth out when utilizing the noise addition 
approach. The process measures in the second category are examined for this study:

• Deletion: what is the deletion level for the data utility defined by the user?
• Sweeping generalization: what should the DGH be about the consumer data 

functionality?
• Data exchange: How many ways does data need to be exchanged in order to 

create a UI?
• Addition of noise: what is the ring level for a data utility determined by users?
• Multiplicative noise added - what noise level should be given a data utility 

defined by the user?
• Logarithmic noise adding: what degree of noise should the user specify the 

data utility?
• Differential confidentiality: what noise level should be given a user-defined 

data utility (the μ epsilon value)?

Third Category of Parameters

In the third class of variables, the parameters are calculated in the classifiers of 
machine learning. This group of characteristics is not important because the two 
preceding categories are of relevance. In this research, a study is carried out to 
determine if the characteristics of the machine learning classifications will influence 
data usefulness levels.
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A mixture of different parameters in the multiple categories has been finished and 
empirical data collected to identify the degrees of modification for the informational 
usefulness set by the user. In order to implement a degree of appropriate privacy 
and utility, the classification and mapping of all data privacy factors is essential 
(Figure 4).

The SIED Data Privacy Engineering Framework

The conceptual framework for data privacy (SIED) – specification, implementation, 
evaluation, and dissemination -, a novel method to data privacy and utilitarian 
engineering, is holistic in the form of information data protection. The SIED 
architecture includes specification, execution, assessment, and ultimately 
dissemination of the private datasets.

The SIED architecture is motivated by the creation of a number of systems 
for data privacy and utility processes. Given any original X data collection, the 
production of a Y privatized data server should include a set of data privacy and 
utility engineering phases from beginning to conclusion. A few data confidentiality 
scheme models were proposed; however, most frameworks focus on implementing 
a data protection method for a particular algorithm and dataset. A comprehensive 
strategy that data protection engineers could apply is proposed in this work as a 
contribution (Figure 5). The foundation for SIED’s privacy encompasses and draws 
approaches from the fundamentals of software engineering (Batra & Alam, 2012).

Figure 4. Mapping out parameters in the data privacy process
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Specifications

During this phase, data protection engineers collect data privacy and utility needs 
from the customer. The SIED framework is strongly affected by the examination 
of the requirements. Data privacy rules are further improved and updated for future 
usage in every succeeding step.

Implementation

The corresponding data privacy algorithms on the relevant data type are designed 
and implemented.

Evaluation

At this phase, both original and privatized data are evaluated statistically. The 
privatized data sets are tested using machine learning to guarantee user-defined 
data utility demands are met. Compensation in the evaluation phase is also being 
established at this point.

The four main phases of the SIED data privacy and utility framework are as 
follows:

Dissemination

The dissemination of the private dataset takes place at this stage of the procedure. 
Data Privacy Engineers consider publishing using privatized required data or by 
micro or macro data of privatized data based on customer needs.

Figure 5. The SIED framework heavily influenced by specifications analysis
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REAL WORLD USE OF TECHNIQUES 
FOR IMAGE PROCESSING

Digital imaging processing is a digital computer processing method for the 
modification of digital pictures. The use of signal processing techniques in the 
field of images — two-dimensional signals like pictures or video. In addition to 
other methods of extracting data from pictures, image processing generally involves 
filtering or improving an image using different functions. Adobe Photoshop is the 
most frequent example. It is one of the most common applications to digital pictures 
processing. It also requires the computer to analyze and manipulate pictures (Joshi, 
2018; Wetcher-Hendricks, 2011).

Three phases are carried out for the image processing (Figure 6): First, import 
pictures from a scanner, camera, or digital processing using optical devices. Second, 
somehow alter or evaluate the pictures. This stage might comprise an improved 
image and a summary of data, or the images are processed to identify the rules 
which human eyes cannot perceive. For instance, meteorologists examine satellite 
pictures using this technique. Finally, output the picture treatment result. The result 
might be a modification in the picture or a report based on the analysis or image 
result (Akojwar et al., 2014).

Digital image processing within computer science is a widely popular and fast-
developing field of application. Its development is driven by technical breakthroughs 
in digital imagery, computer technology, and mass storage. For their edibility and 
cost, fields that typically use analog imagery are now switched into digital systems. 
Medicine, video creation, photography, remote sensing, and security surveillance 
are important examples. These sources provide a significant amount of digital 
picture information every day, which may be inspected manually more than before 
(Sundaramurthy et al., 2020; et al., 2020).

The processing of a two-dimensional image by a computer may essentially be 
characterized as processing. The output of image processing might be a picture or 
result as a number of image-related properties or attributes. Most methods of image 
processing consider a picture as a two-dimensional signal and use basic signal 
processing technologies. Some major uses in science include computer vision and 
remote sensing, feature extracting, face identification, prediction, identification 
of optically made images, fingerprints, optical sorting, argumentation reality, 
microscope imaging, path departure precaution system. The analysis procedure 
may be split into many steps utilizing digital image processing. Figure 6 displays 
the block diagram of a digital image processing system (Phan et al., 2016; Quellec 
et al., 2012; Xiao et al., 2011).

The overall operation of the block phases is explained as follows:
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Image Acquisition

It is the initial or essential stage in the synthesis of digital images. The picture is 
supplied in the electronic medium under images acquired. In principle, pre-treatment, 
such as resizing, etc., is part of this step of picture acquisition. Some scanners, 
camcorders, or overhead cameras may enter a picture. This image ought to be a 
top-quality, higher-resolution image that supports the proper analysis of images.

Pre-Processing

Certain pre-processing actions on the input picture are necessary. The pre-processing 
approaches enhance the image data to eliminate undesirable distortion and improve 
certain input picture characteristics. The picture dimension should be decreased 
during large photos since it takes longer to prepare high-resolution images. Then it 
becomes grey when the color image is transformed, as less information is required 
for each pixel. Indeed, the grey color has the same intensities in the red, blue, and 
green components; a single intensity level value for each pixel thus must be specified.

Feature Extraction and Fragmentation

Under edge detection, specific places should be detected to detect numerous major 
alterations and activities in the picture characteristics. For the categorization of the 
image, the image is identified in many components. The picture in the form of these 
sections is more comprehensible and easier to understand. Separation takes place 
by a pixel picture scanner and then labels every pixel based on whether the grey 
level is up or down the cut off amount.

Image Restoration

Image restoration is a region that improves the look of an image. Image restore 
approaches are based on math or probabilistic picture analysis. Different filters are 
available or can be created to restore and improve survival.

Figure 6. Block diagram of image processing
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Output Image

The item of interest from that picture can be retrieved after many image processing 
techniques followed by a feature extraction on a digital image.

Techniques

Corner Detection

Corner recognition is a method used to detect a specific image feature with valuable 
information in the corners. Corner recognition is a type of point detection of interest 
and maybe segregated into three groups:

1.  Direct detection of corners.
2.  Corner detection-based template.
3.  Corner detection based on contour.

Corner detection has numerous ways with various mathematical procedures in 
each method:

• Harris detector of the corner.
• Detectors for Susan Corner.
• The detection algorithm for the Moravec corner.
• The corner detector Forester.
• Robust corner detector for Fuzzy Rule.

Field-Programmable Gate Array (FPGA)

FPGA is an IC that allows us to re-program after fabrication like a read-only 
(PROM) programmed storage device. It may efficiently be used in real-time image 
processing applications since it incorporates parallel programming technologies 
such as real-time video smoothing. Many filters and methods are employed in the 
FPGA implementation as:

• Average filter.
• Module Sorting.
• Expanded.
• Filter for smoothing.
• Recognition of Sobel edge.
• Movement Flash.
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• Filter Emboss.

Focal Plane

The method is a circuit where the space kernels are programmable to their size, 
configuration, and coefficients. There are two kinds:

• SIMD focal plane: can support real-time results with sustainable operating 
output of between 500 and 1500 Giga.

• MIMD focal plane: The device uses the Multiple Instructions Multiple Data 
Architecture (MIMD) architecture, providing five simultaneous pictures 
processed spatially.

Cloud

Take use of cloud computing capabilities while processing images in real-time 
where they become less expensive, better stored, and faster to analyze, particularly 
in real-time. Image processing apps can be placed in the Cloud that we use on the 
internet and other applications.

For example, We may place image processing and cellular analysis machine 
vision apps in the Cloud (server), and it can be used from the fix shop (client).

Image Segmentation

We analyze the picture by dividing it into separate objects or component pieces in 
the image segmentation. The spotted pixel within the object is examined to verify 
the pixel within the object.

The division into the following groups can be divided:

Region-Based Segmentation

An area consists of a set of pixels with comparable characteristics. Regional 
Segmentation is a method through which an image is divided into areas. Regions 
are utilized for picture interpretation. A specific thing or distinct portions of an 
object may match an area. Furthermore, region-based picture segmentation may 
be regarded as a pixel-based approach. Methods of regional Segmentation are: 
Splitting and Merging region.
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Pixel-Based Segmentation

The image segmentation depends on the intensity of the image. In this approach, the 
picture is split into areas based on the features, and each local region has a distinct 
threshold. We will transform the image into a binary image after setting the suitable 
threshold. We may utilize Histogram thresholds to display the segmented image. As 
visual processing, Edge Maximization Technique, Histogram depending methods, 
Pilot method, and Mean method, we may utilize post-processing techniques for 
threshold segmentation.

Applications

Computer Vision

Computer vision is a type of automated monitoring dog that incorporates science as 
well as technology. As a subject from science, the philosophy of design for artificial 
systems that obtain information from pictures is linked to computer vision. The picture 
input might be in a vast range of forms, for example, a video signal sequence or 
many views from separate cameras. Events such as video sequences or numbering of 
individuals; information organization for indexing digital image bases or pattern of 
images and modeling objects or ecosystems, such as industrial inspections, medical 
imaging analyses or topologies include examples in the application of computer 
vision systems such as an industrial robot or autonomy vehicles.

Face Detection

Important face characteristics are recognized and disregarded in this technique. Face 
detection is an object class detection and aims to discover the characteristics of faces 
and the dimensions of a known number of faces. It also aims to tackle difficulties 
with multiple vision detection that are more broad and challenging.

Digital Video Processing

Image retrieval is a distinctive and vital image analysis facility in several sectors of 
technology and computer.

Video files or streaming videos are input and output for video processing. The 
video processing techniques are applied on TV, VCR, DVD, Multimedia codecs, 
media players, and other equipment.
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Ex: Many companies create different visual processing methods and ways with 
television sets.

Remote Sensing

Distance sensing is essentially the collection by employing different real-time 
embedded sensors that are portable or not in physical or direct touch with the item 
of big or median information signals from an object or event (such as aircraft, 
spacecraft, satellite, or ship). Remotely sensed data is multiple data signals that collect 
information about a given item or region utilizing various instruments. Examples 
of remote sensing are parolee surveillance using an ultrasonic identification device, 
Magnetic Resonance Imaging (MRI), Positron Emission Tomography (PET).

Biomedical Image Enhancement and Analysis

Enhancing the biological image is highly essential for diagnosing the biomedical 
image. This field aims to improve biomedical pictures. In addition to digital 
techniques, such as Computed Tomography (CT) or Magnetic Resonance Imaging 
(MRI), analog images are currently provided with digital capabilities in conventional 
applications such as endoscopy or radiography. Digital pictures are made of pixels 
to which discreet luminance or various color values are expressed. They may be 
effectively processed and objectively assessed after biological image improvement 
and appropriate analysis.

Biometric Verification

It refers to the automated identification or recognition of human beings by their 
behavior. Identification and access control of Biometrics is such an efficient kind of 
identification. It may also be utilized in gatherings which are under surveillance to 
recognize people. The goal of such a technology is to ensure that only a legitimate 
user and no one else may access the supplied services. A biometric system is a 
pattern detection system based on an individual’s acquisition of biometric data. The 
working concept is based on the extraction of certain characteristics from the data 
obtained and the comparison to the template established in the database. A biometric 
system may function in verification mode or in verification mode dependent on the 
kind and method of application.
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Signature Recognition

In order to determine if a sign corresponds to a particular signature on the basis of 
a signature image and a few sample pictures of the initial signatures, the signature 
verification and reconnaissance are also a major request. Handwritten signatures 
are not always crisp in nature, lines are not precisely straight, and curves are not 
necessarily smooth. In addition, in contrast to handwriting generally thought to be 
written in a fixed position on a baseline, the typefaces can be designed in various 
sizes and direction. A strong handwritten identification system consequently has to 
take all these variables into account

Underwater Image Restoration and Enhancement

The underlying physics of light diffusion in the water medium is extinct in the 
processing of the underwater image. When the light enters water, the deepening 
of the water level attenuates exponentially, thereby affecting the visibility distance 
and limiting it. Images from underwater suffer from many issues including blurring, 
homogeneous illumination, noise, low contrast and so on. The repair and improvement 
of subsea pictures is therefore a crucial research topic. In enhancing the picture 
quality, many filters are employed to reduce noise, conserve the edges of an image, 
and to smooth the image.

Character Recognition

Character recognition sometimes referred to as the recognition of optical character or 
shortened as OCR. The conversion of manuscript or printed text pictures (typically 
taken by a scanner) into edible text by machine is mechanical or digital. It is a large 
field for patterns, artificial intelligence and machine vision researchers. Recognition 
system is the most economical and quickest option available for many documents 
entry jobs.

Medical Palmistry

Palmistry is a science that looks at human palms in various ways and draws 
inferences about the person’s nature. Many civilizations, such as Indians, Chinois, 
Persians, Egyptians, Romans and Greeks, have been employed from ancient times 
to get direction through palmistry for both their present and future. It covers human 
qualities, such as health, mental health, intelligence, lifestyle and associated elements. 
A medical palm tree might be regarded as one of the palm tree branches. Probable 
sickness may be diagnosed by examining symbols on human palm such Iceland, 

 EBSCOhost - printed on 2/9/2023 12:01 PM via . All use subject to https://www.ebsco.com/terms-of-use



205

Privacy Preservation of Image Data With Machine Learning

cross, grill, place, star, quadrangle, and circle utilizing this medical palmistry. In 
such decision-making processes for diagnosis of illnesses both palm and finger 
forms play a very essential part.

CURRENT MACHINE LEARNING PRIVACY CHALLENGES

The main obstacle to the safety of machine learning systems is the external role of 
information in protecting machine learning systems. It makes safeguarding learning 
systems much more challenging. In most situations, data sets learned by a machine 
learning system are 60% risk, whereas learning algorithms and source codes are 40% 
risk. That is why companies must rely on architecture assessment for their energies. 
Architectural risk analysis is, according to research, a major first step to protecting 
the learning systems of organizations. More than 70 dangers connected with learning 
machines are highlighted in the research. It is another major problem to protect data 
that has become an essential element of a learning model (Kshirsagar et al., 2020).

Fooling the System

One of the most prevalent assaults on machine learning systems is to deceive 
through malicious input to make incorrect predictions. They are just visual illusions 
for computers, showing them an image that does not exist in the actual world and 
forcing them to make judgments on this basis. Fooling the system provides attention 
to the safety hazards of machine learning. This sort of assault is generally aimed 
towards machine models.

Data Poisoning

For learning purposes, machine learning systems are dependent on data. Therefore 
the dependability, integrity, and security of these data are crucial for enterprises to 
obtain incorrect forecasts. Hackers are familiar with this and aim to attack machine 
learning system’s data. They alter this data, distort them and poison them such that 
the entire learning mechanism of the computer is lowered down. Businesses should 
be cautious, and danger should be reduced. Experts on machine learning should 
avoid harm by reducing the volume and scope of training for cyber data thieves. 
What is worse is that all data sources must be protected, as attackers can alter any 
data source to train the system.
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Manipulation of Online Systems

The Internet is connected to most machine learning systems, mainly when used in 
business as it continues to learn. It offers a chance for attackers to take advantage. 
By supplying false system information or worse, cyber-criminals might mislead 
machine learning systems in the wrong direction and progressively re-exercise it to 
follow its order and perform the wrong thing. It is not easy to manipulate an online 
system for learning, but it is so subtle that the victim even notices that the system is 
in the hands of others. Engineers who use the correct algorithm, keep data ownership 
records, and streamline and secure system operations may deal with this problem.

Transfer Learning Attack

Most machine learning systems use a framework that’s previously learned. By giving 
tailored training, that general machine learning model is adapted to specific aims. 
It is when a learning attack on transmission can be fatal. If the users are popular 
with the model, attackers might start an attack to insult the machine model. Take 
a look at the suspicious and unexpected behavior of machine learning to identify 
such assaults. Because machine learning algorithms are deliberately employed in 
transfers, this raises the danger, particularly when the transfer is not planned. Group 
posting models are best chosen since they clearly describe what their processes are 
doing and how they will control the risk.

Data Privacy and Confidentiality

Machine learning algorithms employ learning and development data. It is essential 
to guarantee the privacy and security of this data, mainly if they are included in 
the learning model. Data extraction assaults that might slip under the radar can be 
launched by hackers, which may endanger the entire system. In addition to making 
less funds and time, malicious hackers may also execute another kind of assault, 
such as adversary assaults by malicious input, even when the assaults fail, and may 
start smaller sub-Symbolic exploitation attacks. That not only involves protecting 
machine learning systems against assaults on extracting data but also preventing 
attacks on functional extraction.

Computing Power

Most developers can avoid the amount of power these powerful algorithms consume. 
The founding stones of modern Artificial Intelligence are machine learning and 
profound learning and need an ever-growing number of cores and GPUs to operate 

 EBSCOhost - printed on 2/9/2023 12:01 PM via . All use subject to https://www.ebsco.com/terms-of-use



207

Privacy Preservation of Image Data With Machine Learning

effectively. We can develop profound learning frameworks in different fields, such 
as meteorite monitoring, implementation in the healthcare system, cosmic organ 
tracking, etc. It would help if you had computer power from a computer, and sure, 
quantum computers are not inexpensive. Even if Cloud Computing is available and 
developers of massively parallel technologies work more efficiently on AI systems, 
they are priced. Not everybody can afford that with the influx of unheard-of data 
and complicated algorithms rising quickly.

Trust Deficit

The critical aspects of AI, how deep learning model forecast output is uncertain. It 
is difficult for a non-specialist to understand which combination of input provides 
a solution for diverse issues. Many individuals worldwide do not even realize how 
artificial intelligence is used or exists and how it is interwoven into everyday things 
like smartphones, Smart TVs, banking, and even vehicles.

Limited Knowledge

Although we may utilize machine learning as superior to conventional methods in 
many locations in the industry, machine learning competence is the actual difficulty. 
With technology fans, college students, and researchers, the possibility of machine 
learning is known to only a small number of persons.

Human-Level

Human-level is one of the most critical difficulties in the field of machine learning. 
Specialists in corporations and small firms have been maintained on top of machine 
learning services. These firms may be over 90 percent accurate, yet in all these 
instances, humans can do better. Let us anticipate, for instance, if the image is a dog 
or a cat. The human being can forecast the right results almost every time, thereby 
achieving a remarkable precision of over 99%.

Data Privacy and Security

The major element relies on the collection of resources and resources to train all 
deep and machinery model learning models. Yes, we have information, but since 
millions of people worldwide create the data, this data may likely be misused.

For instance, let us assume that a medical care provider provides services to 
1 million individuals in the city, and because of a cyber-assault, all 1 million 
consumers are personally handled by the Dark Web. These data contain information 
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about illnesses, issues with health, medical history, and much more. We are dealing 
today with statistics on the planet’s size to make matters worse. With this amount 
of information coming from every corner, some incidents of data leakage would 
certainly occur. Several firms have already launched innovative efforts to overcome 
these obstacles. It trains information on intelligent devices and hence is not returned 
to servers. Only the trained model is returned to the organization.

Data Scarcity

Different nations like India are applying strict IT regulations to limit flow, with 
large firms like Google, Facebook, and Apple facing penalties for the illegal use of 
customer data. Therefore, these firms are confronted with the challenge of utilizing 
local information to build global applications, resulting in prejudices. Data are highly 
essential for the learning of computers, and marked data are used to train machines 
for learning and prediction. Some firms strive to create new techniques and focus on 
creating machine learning models that, despite the data shortage, produce reliable 
results. The overall structure might be faulty with incomplete information.

FUTURE MACHINE LEARNING PRIVACY CHALLENGES

Client privacy and data security problems are urgently involved, many of them 
probably being reworked by ML and other data technology (Kumar & Gupta, 2016; 
Sridhar, 2019). The primary issue is that companies’ risk to user privacy and data 
safety is not properly responsible. In order to restore complete responsibility, three 
barriers must be overcome, i.e.

• The challenge of compliance with the real activity of companies in the 
collection, stocking, and use of data.

• The difficulty in quantifying the effect of data practice, in particular before 
unlikely bad outcomes occur.

• The problem of establishing a causal relationship between a company’s data 
practice and its effects.

In addition, accessibility can, in some circumstances, impede public organizations 
from fulfilling their tasks or contravene the privacy requirements of the data controller 
for the personal information of information assets other than those seeking access. 
A solution aimed at revealing the rationale of algorithms could be the preferable 
alternative for such reasons. Nevertheless, it can be more or less narrowly construed. 
Data on the type of user input and the expected performance, explanations of the 
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variables and their weight, or brilliant light on the analytical architecture are several 
forms of visibility in relation to ML algorithms’ logic. Complex analysis processes 
challenge the idea of transparency when describing algorithm logic and making 
it challenging to offer thorough information about the rationale behind the data 
acquisition through decision-making utilizing analytical and non-deterministic 
systems (Dewangan, 2015; Gurav et al., 2020; Pravin Kshirsagar & Akojwar, 2016a; 
Quellec et al., 2012).

Transparency

In the context of ML, there may be multiple definitions for transparency. ML 
applications utilized a description of their logic and access to the structure of 
the ML algorithms, and the data sets used to train the algorithms if appropriate. 
Moreover, for data-focused decision-making, openness may be either an ex-ante or 
an ex-postage necessity. While openness is essential if a computerized decision-
making model is to be examined publicly, a generic declaration on the usage of ML 
offers little to address the issue of unfair or unjustified use of information. On the 
other side, it can be feasible to discover potential bias by examining the algorithm 
structure. Nevertheless, IP rights and competitive problems may restrict access, and 
even if such obstacles do not exist, a key difficulty for human cognition may be the 
sophistication of the accepted models.

In addition, in contrast to the static character of transparency, the dynamic nature 
of many algorithms. Algorithms are updated and altered continually, but an algorithm 
of transparency concerns just the algorithm employed at a particular time. Finally, 
it does not suffice to access ML algorithms to detect potential biases. This type of 
analysis also takes funding in terms of effort and talents.

Risk Assessment

Data privacy rules progressively emphasize the importance of risk assessments 
given the constraints of openness and human self-determination. Data controller risk 
assessment and a safe ML ecosystem may significantly increase the confidence and 
readiness of users to utilize ML technologies. Users’ preferences might be based not 
just on marketing champagnes or product quality but on efficient risk assessments 
and steps to reduce the dangers. The employment of algorithms by current techniques 
for data processing and the move towards data-intensive technology-led certain 
people to adopt a more general perspective of the potential negative results of data 
processing. The influence of data usage on fundamental rights and collective social 
and ethical values has been examined by experts and researchers beyond the usual 
area of data protection. Evaluating conformity with ethical and social principles is 
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more difficult than the usual evaluation of data privacy. For instance, although the 
values underpinning data security and management are technically based and may 
thus be applied to other social settings, the situation is different in terms of social 
and ethical values. These are inevitably contextual and differ from community to 
community, making it more challenging to define a baseline for this type of risk 
assessment.

CONCLUSION

The development of intelligent, high-technology robots built exclusively by researchers 
in many countries worldwide is part of the future of digital image processing. It 
contains advances in various applications for digital image processing. In the course 
of a few decades, millions of robots will exist globally to alter the management of the 
world by innovating image processing and other associated technologies. Advance 
experiment on image recognition and computer vision involves voice recognition, 
predicting govt information requirements, language translation, recognition and 
ability to track things and people, diagnostic health conditions, operational activities, 
and processes, modulating human DNA defectors and automatic transportation in 
all formats.

The exponential development and broad digital data accessibility have led to an 
increase in the research effort in the machine learning field. In order to improve the 
quality of the machine learning output, extensive data gathering is typically needed. 
Such information often included very sensitive information, like medical records 
or financial records. Thus, issues about privacy in today’s learning systems have 
been eclipsed by other issues. A key challenge in machine learning that protects 
patients’ rights is how to trade privacy with its usefulness. Firstly, the machine 
learning solution which safeguards privacy should not allow for the appropriate 
recovery of the source database files. On the other hand, it has to enable the system 
to learn the model tightly linked to the model learned by the original information. 
This chapter examines many emerging innovations that may be utilized in machine 
learning systems to safeguard privacy.

In order to contribute to the problem of confidentiality, a summary view of SIED 
was provided of a data protection engineering framework for the systemic data 
privacy formulation and construction. While SIED may also be adapted for self-
supported data protection processing as a paradigm for data privacy engineering. 
The fundamental purpose of the SIED framework is to request and analyze complete 
information protection needs, which may subsequently be utilized for the proper 
deployment of data protection and autonomous data protection agents. However, 
appropriate mapping of data privacy characteristics is required to assess data 
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confidentiality demands during the data confidentiality process properly. Smart 
agent-based architectures might provide autonomous intelligent data protection 
solutions. The complexity of agent-based data protection engineering has to be 
addressed through a deconstruction method for future projects.
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KEY TERMS AND DEFINITIONS

Accuracy: Rate of valid model predictions using a dataset. Accuracy is generally 
assessed using an independent test set that was not used throughout the study 
procedure at any point. Cross-validation and bootstrapping, particularly with a 
small number of datasets, are often employed alongside more complicated precision 
estimations approaches.

Classifier: It is a process that accepts a new input as an unspecified case of 
observation or function and determines a class to which it belongs. Many classificatory 
are used to categories the best label for a given example with inferential statistics.

Confusion Matrix: A matrix that visualizes classification algorithm effectiveness 
using the information in the matrix. It analyses the projected categorization in the 
form of true positive, false positive, true negative, and false negative information 
against the data used for the classification.

Cross-Validation: A check approaches evaluating the capacity of a system 
to generalize an independent dataset. It provides a database used to evaluate the 
learned model for fitting throughout the training phase. The effectiveness of 
individual prediction functions may also be evaluated via cross-validation. The 
training samples will be randomly divided into k mutually exclusive sub-samples 
of fixed size in k-fold cross-validation. The model is trained k times, in which one 
of the k subsamples is used for each iteration, while the other k-1 subsamples are 
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employed to exercise the system. Cross-validation findings are combined to assess 
the exactness as a single estimate.

Dataset: Data gathering that complies with a scheme without ordering constraints. 
Each column in a typical dataset is a function, and each row is a part of the dataset.

Feature Vector: An explanatory n-dimensional number vector represents an 
example of an item, which aids pre-processing and data methods. Feature vectors 
are frequently weighted to build a predictive function to measure the prediction’s 
quality or fitness. Various feature reduction approaches, such as main component 
analysis, multi-liner subspace decrease, iso maps and latent semantic analysis, can 
lower the dimension of a feature vector. Functional space is frequently referred to 
as vector space.

Model: A structure summarizing a description or prediction of dataset. The unique 
demands of an application may be tailored to each design. Big-data applications 
contain enormous datasets with many predictions and characteristics which are 
too complicated to extract relevant information from a basic functional form. The 
learning process synthesizes a model from a given collection of attributes and 
features. Models may usually be classified as parametric or not parametric. Simple 
and flexible non-parameter models are less assumptive; however, more datasets are 
needed to arrive at correct results.

Privacy Preservation: A concept in data mining related to data transfer or 
communication between different parties making compulsory to provide security 
to that data so that other parties do not know what data is communicated between 
original parties.
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