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Preface

Bioinformatics is an active research field that uses a range of simple-to-advanced computations to 
extract valuable information from biological data, and this book will show you how to manage these 
tasks using Python.

This updated edition of the Bioinformatics with Python Cookbook begins with a quick overview of the 
various tools and libraries in the Python ecosystem that will help you convert, analyze, and visualize 
biological datasets. As you advance through the chapters, you’ll cover key techniques for next-generation 
sequencing, single-cell analysis, genomics, metagenomics, population genetics, phylogenetics, and 
proteomics with the help of real-world examples. You’ll learn how to work with important pipeline 
systems, such as Galaxy servers and Snakemake, and understand the various modules in Python for 
functional and asynchronous programming. This book will also help you explore topics such as SNP 
discovery using statistical approaches under high-performance computing frameworks, including 
Dask and Spark, and the application of machine learning algorithms to bioinformatics.

By the end of this bioinformatics Python book, you’ll be equipped with the knowledge to implement 
the latest programming techniques and frameworks, empowering you to deal with bioinformatics 
data on every kind of scale.

Who this book is for
This book is for bioinformatics analysts, data scientists, computational biologists, researchers, and 
Python developers who want to address intermediate-to-advanced biological and bioinformatics 
problems. Working knowledge of the Python programming language is expected. Basic knowledge 
of biology would be helpful.

What this book covers
Chapter 1, Python and the Surrounding Software Ecology, tells you how to set up a modern bioinformatics 
environment with Python. This chapter discusses how to deploy software using Docker, interface with 
R, and interact with the Jupyter Notebooks.

Chapter 2, Getting to Know NumPy, pandas, Arrow, and Matplotlib, introduces the fundamental 
Python libraries for data science: NumPy for array and matrix processing; Pandas for table-based data 
manipulation; Arrow to optimize Pandas processing and Matplotlib for charting.
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Chapter 3, Next-Generation Sequencing, provides concrete solutions to deal with next-generation 
sequencing data. This chapter teaches you how to deal with large FASTQ, BAM, and VCF files. It also 
discusses data filtering. 

Chapter 4, Advanced NGS Processing, covers advanced programming techniques to filter NGS data. 
This includes the use of mendelian datasets that are then analyzed by standard statistics. We also 
introduce metagenomic analysis

Chapter 5, Working with Genomes, not only deals with high-quality references—such as the human 
genome—but also discusses how to analyze other low-quality references typical in nonmodel species. 
It introduces GFF processing, teaches you to analyze genomic feature information, and discusses how 
to use gene ontologies. 

Chapter 6, Population Genetics, describes how to perform population genetics analysis of empirical 
datasets. For example, in Python, we could perform Principal Components Analysis, computer FST, 
or structure/admixture plots. 

Chapter 7, Phylogenetics, uses complete sequences of recently sequenced Ebola viruses to perform real 
phylogenetic analysis, which includes tree reconstruction and sequence comparisons. This chapter 
discusses recursive algorithms to process tree-like structures.

Chapter 8, Using the Protein Data Bank, focuses on processing PDB files, for example, performing the 
geometric analysis of proteins. This chapter takes a look at protein visualization.

Chapter 9, Bioinformatics Pipelines, introduces two types of pipelines. The first type of pipeline is 
Python-based Galaxy, a widely used system with a web interface targeting mostly non-programming 
users although bioinformaticians might still have to interact with it programmatically. The second 
type will be based on snakemake and nextflow, a type of pipeline that targets programmers.

Chapter 10, Machine Learning for Bioinformatics, introduces machine learning using an intuitive 
approach to deal with computational biology problems. The chapter covers Principal Components 
Analysis, Clustering, Decision Trees, and Random Forests.

Chapter 11, Parallel Processing with Dask and Zarr, introduces techniques to deal with very large datasets 
and computationally intensive algorithms. The chapter will explain how to use parallel computation 
across many computers (cluster or cloud). We will also discuss the efficient storage of biological data.

Chapter 12, Functional Programming for Bioinformatics, introduces functional programming which 
permits the development of more sophisticated Python programs that, through lazy programming 
and immutability are easier to deploy in parallel environments with complex algorithms
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To get the most out of this book xv

To get the most out of this book

Software/Hardware covered in the book OS Requirements
Python 3.9 Windows, Mac OS X, and Linux (Preferred)
Numpy, Pandas, Matplolib
Biopython
Dask, zarr, scikit-learn

If you are using the digital version of this book, we advise you to type the code yourself or access 
the code via the GitHub repository (link available in the next section). Doing so will help you 
avoid any potential errors related to the copying and pasting of code.

Download the example code files

You can download the example code files for this book from GitHub at https://github.com/
PacktPublishing/Bioinformatics-with-Python-Cookbook-third-edition. 
In case there’s an update to the code, it will be updated on the existing GitHub repository.

We also have other code bundles from our rich catalog of books and videos available at https://
github.com/PacktPublishing/. Check them out!

Download the color images
We also provide a PDF file that has color images of the screenshots/diagrams used in this book. You 
can download it here: https://packt.link/3KQQO.

Conventions used
There are a number of text conventions used throughout this book.

Code in text: Indicates code words in text, database table names, folder names, filenames, file 
extensions, pathnames, dummy URLs, user input, and Twitter handles. Here is an example: “call_
genotype has a shape of 56,241x1,1198,2, that is it is dimensioned variants, samples, ploidy.”

A block of code is set as follows:

from Bio import SeqIO

genome_name = 'PlasmoDB-9.3_Pfalciparum3D7_Genome.fasta'

recs = SeqIO.parse(genome_name, 'fasta')

for rec in recs:

    print(rec.description)
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When we wish to draw your attention to a particular part of a code block, the relevant lines or items 
are set in bold:

AgamP4_2L | organism=Anopheles_gambiae_PEST | version=AgamP4 | 
length=49364325 | SO=chromosome

AgamP4_2R | organism=Anopheles_gambiae_PEST | version=AgamP4 | 
length=61545105 | SO=chromosome

Bold: Indicates a new term, an important word, or words that you see onscreen. For example, words 
in menus or dialog boxes appear in the text like this. Here is an example: “For the Chunk column, 
see Chapter 11 – but you can safely ignore it for now.”

Tips or important notes
Appear like this.

Sections
In this book, you will find several headings that appear frequently (Getting ready, How to do it..., How 
it works..., There’s more..., and See also).

To give clear instructions on how to complete a recipe, use these sections as follows:

Getting ready

This section tells you what to expect in the recipe and describes how to set up any software or any 
preliminary settings required for the recipe.

How to do it…

This section contains the steps required to follow the recipe.

How it works…

This section usually consists of a detailed explanation of what happened in the previous section.
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There’s more…

This section consists of additional information about the recipe in order to make you more knowledgeable 
about the recipe.

See also

This section provides helpful links to other useful information for the recipe.

Get in touch
Feedback from our readers is always welcome.

General feedback: If you have questions about any aspect of this book, mention the book title in the 
subject of your message and email us at customercare@packtpub.com.

Errata: Although we have taken every care to ensure the accuracy of our content, mistakes do happen. 
If you have found a mistake in this book, we would be grateful if you would report this to us. Please 
visit www.packtpub.com/support/errata, selecting your book, clicking on the Errata 
Submission Form link, and entering the details.

Piracy: If you come across any illegal copies of our works in any form on the Internet, we would 
be grateful if you would provide us with the location address or website name. Please contact us at 
copyright@packt.com with a link to the material.

If you are interested in becoming an author: If there is a topic that you have expertise in and you 
are interested in either writing or contributing to a book, please visit authors.packtpub.com.

Reviews
Please leave a review. Once you have read and used this book, why not leave a review on the site that 
you purchased it from? Potential readers can then see and use your unbiased opinion to make purchase 
decisions, we at Packt can understand what you think about our products, and our authors can see 
your feedback on their book. Thank you!

For more information about Packt, please visit packt.com.
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Share Your Thoughts
Once you’ve read Bioinformatics with Python Cookbook, we’d love to hear your thoughts! Please click 
here to go straight to the Amazon review page for this book and share your feedback.

Your review is important to us and the tech community and will help us make sure we’re delivering 
excellent quality content.
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1
Python and the Surrounding  

Software Ecology

We will start by installing the basic software that is required for most of this book. This will include 
the Python distribution, some fundamental Python libraries, and external bioinformatics software. 
Here, we will also look at the world outside of Python. In bioinformatics and big data, R is also a 
major player; therefore, you will learn how to interact with it via rpy2, which is a Python/R bridge. 
Additionally, we will explore the advantages that the IPython framework (via Jupyter Lab) can give 
us in order to efficiently interface with R. Given that source management with Git and GitHub is 
pervasive, we will make sure that our setup plays well with them. This chapter will set the stage for all 
of the computational biologies that we will perform in the remainder of this book.

As different users have different requirements, we will cover two different approaches for installing 
the software. One approach is using the Anaconda Python (http://docs.continuum.
io/anaconda/) distribution and another approach for installing the software is via Docker 
(which is a server virtualization method based on containers sharing the same operating system 
kernel; please refer to https://www.docker.com/). This will still install Anaconda for 
you but inside a container. If you are using a Windows-based operating system, you are strongly 
encouraged to consider changing your operating system or using Docker via some of the existing 
options on Windows. On macOS, you might be able to install most of the software natively, though 
Docker is also available. Learning using a local distribution (Anaconda or something else) is easier 
than Docker, but given that package management can be complex in Python, Docker images 
provide a level of stability.

In this chapter, we will cover the following recipes:

•	 Installing the required software with Anaconda

•	 Installing the required software with Docker

•	 Interfacing with R via rpy2

•	 Performing R magic with Jupyter
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Python and the Surrounding Software Ecology2

Installing the required basic software with Anaconda
Before we get started, we need to install some basic prerequisite software. The following sections will 
take you through the software and the steps that are needed to install them. Each chapter and section 
might have extra requirements on top of these – we will make those clear as the book progresses. An 
alternative way to start is to use the Docker recipe, after which everything will be taken care of for 
you via a Docker container.

If you are already using a different Python distribution, you are strongly encouraged to consider 
Anaconda, as it has become the de-facto standard for data science and bioinformatics. Also, it is 
the distribution that will allow you to install software from Bioconda (https://bioconda.
github.io/).

Getting ready

Python can be run on top of different environments. For instance, you can use Python inside the Java 
Virtual Machine (JVM) (via Jython or with .NET via IronPython). However, here, we are not only 
concerned with Python but also with the complete software ecology around it. Therefore, we will use 
the standard (CPython) implementation, since the JVM and .NET versions exist mostly to interact 
with the native libraries of these platforms.

For our code, we will be using Python 3.10. If you were starting with Python and bioinformatics, 
any operating system will work. But here, we are mostly concerned with intermediate to 
advanced usage. So, while you can probably use Windows and macOS, most of the heavy-duty 
analysis will be done on Linux (probably on a Linux high-performance computing or HPC 
cluster). Next-generation sequencing (NGS) data analysis and complex machine learning are 
mostly performed on Linux clusters.

If you are on Windows, you should consider upgrading to Linux for your bioinformatics work because 
most modern bioinformatics software will not run on Windows. Note that macOS will be fine for 
almost all analyses unless you plan to use a computer cluster, which will probably be Linux-based.

If you are on Windows or macOS and do not have easy access to Linux, don’t worry. Modern 
virtualization software (such as VirtualBox and Docker) will come to your rescue, which will allow 
you to install a virtual Linux on your operating system. If you are working with Windows and decide 
that you want to go native and not use Anaconda, be careful with your choice of libraries; you will 
probably be safer if you install the 32-bit version for everything (including Python itself).

Note
If you are on Windows, many tools will be unavailable to you.
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Bioinformatics and data science are moving at breakneck speed; this is not just hype, it’s a reality. 
When installing software libraries, choosing a version might be tricky. Depending on the code 
that you have, it might not work with some old versions or perhaps not even work with a newer 
version. Hopefully, any code that you use will indicate the correct dependencies – though this is not 
guaranteed. In this book, we will fix the precise versions of all software packages, and we will make 
sure that the code will work with them. It is quite natural that the code might need tweaking with 
other package versions.

The software developed for this book is available at https://github.com/
PacktPublishing/Bioinformatics-with-Python-Cookbook-third-
edition. To access it, you will need to install Git. Getting used to Git might be a good idea because 
lots of scientific computing software is being developed with it.

Before you install the Python stack properly, you will need to install all of the external non-Python 
software that you will be interoperating with. The list will vary from chapter to chapter, and all 
chapter-specific packages will be explained in their respective chapters. Fortunately, since the 
previous editions of this book, most bioinformatics software has become available via the Bioconda 
project; therefore, installation is usually easy.

You will need to install some development compilers and libraries, all of which are free. On Ubuntu, 
consider installing the build-essential package (apt-get install build-essential), 
and on macOS, consider Xcode (https://developer.apple.com/xcode/).

In the following table, you will find a list of the most important software to develop bioinformatics 
with Python:

Name Application URL Purpose

Project 
Jupyter All chapters https://jupyter.org/

Interactive 
computing

pandas All chapters https://pandas.pydata.org/ Data processing

NumPy All chapters http://www.numpy.org/
Array/matrix 
processing

SciPy All chapters https://www.scipy.org/ Scientific computing

Biopython All chapters https://biopython.org/
Bioinformatics 
library

seaborn All chapters http://seaborn.pydata.org/
Statistical chart 
library

R Bioinformatics 
and Statistics

https://www.r-project.org/
Language for 
statistical computing

rpy2 R connectivity https://rpy2.readthedocs.io R interface
PyVCF NGS https://pyvcf.readthedocs.io VCF processing
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Pysam NGS
https://github.com/pysam-
developers/pysam

SAM/BAM 
processing

HTSeq NGS/Genomes https://htseq.readthedocs.io NGS processing
DendroPY Phylogenetics https://dendropy.org/ Phylogenetics

PyMol Proteomics https://pymol.org
Molecular 
visualization

scikit-learn Machine 
learning

http://scikit-learn.org
Machine learning 
library

Cython Big data http://cython.org/ High performance
Numba Big data https://numba.pydata.org/ High performance
Dask Big data http://dask.pydata.org Parallel processing

Figure 1.1 – A table showing the various software packages that are useful in bioinformatics

We will use pandas to process most table data. An alternative would be to use just standard Python. 
pandas has become so pervasive in data science that it will probably make sense to just process all 
tabular data with it (if it fits in memory).

All of our work will be developed inside project Jupyter, namely Jupyter Lab. Jupyter has become 
the de facto standard to write interactive data analysis scripts. Unfortunately, the default format for 
Jupyter Notebooks is based on JSON. This format is difficult to read, difficult to compare, and needs 
exporting to be fed into a normal Python interpreter. To obviate that problem, we will extend Jupyter 
with jupytext (https://jupytext.readthedocs.io/), which allows us to save 
Jupyter notebooks as normal Python programs. 

How to do it...

To get started, take a look at the following steps:

1.	 Start by downloading the Anaconda distribution from https://www.anaconda.
com/products/individual. We will be using version 21.05, although you will 
probably be fine with the most recent one. You can accept all the installation’s default 
settings, but you might want to make sure that the conda binaries are in your path (do 
not forget to open a new window so that the path can be updated). If you have another 
Python distribution, be careful with your PYTHONPATH and existing Python libraries. 
It’s probably better to unset your PYTHONPATH. As much as possible, uninstall all other 
Python versions and installed Python libraries.

2.	 Let’s go ahead with the libraries. We will now create a new conda environment called 
bioinformatics_base with biopython=1.70, as shown in the following command:

conda create -n bioinformatics_base python=3.10
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3.	 Let’s activate the environment, as follows:

conda activate bioinformatics_base

4.	 Let’s add the bioconda and conda-forge channels to our source list:

conda config --add channels bioconda

conda config --add channels conda-forge

5.	 Also, install the basic packages:

conda install \

biopython==1.79 \

jupyterlab==3.2.1 \

jupytext==1.13 \

matplotlib==3.4.3 \

numpy==1.21.3 \

pandas==1.3.4 \

scipy==1.7.1

6.	 Now, let’s save our environment so that we can reuse it later to create new environments in 
other machines or if you need to clean up the base environment:

conda list –explicit > bioinformatics_base.txt

7.	 We can even install R from conda:

conda install rpy2 r-essentials r-gridextra

Note that r-essentials installs a lot of R packages, including ggplot2, which we will 
use later. Additionally, we install r-gridextra since we will be using it in the Notebook.

There’s more...

If you prefer not to use Anaconda, you will be able to install many of the Python libraries via pip 
using whatever distribution you choose. You will probably need quite a few compilers and build 
tools – not only C compilers but also C++ and Fortran.

We will not be using the environment we created in the preceding steps. Instead, we will use it 
as a base to clone working environments from it. This is because environment management with 
Python – even with the help of the conda package system – can still be quite painful. So, we will 
create a clean environment that we never spoil and can derive from if our development environments 
become unmanageable. 
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For example, imagine you want to create an environment for machine learning with scikit-
learn. You can do the following:

1.	 Create a clone of the original environment with the following:

conda create -n scikit-learn --clone bioinformatics_base

2.	 Add scikit-learn:

conda activate scikit-learn

conda install scikit-learn

When inside JupyterLab, we should open our jupytext files with the notebook, not the text editor. As 
the jupytext files have the same extension as Python files – this is a feature, not a bug – by default, 
JupyterLab would use a normal text editor. When we open a jupytext file, we need to override the 
default. When opening it, right-click and choose Notebook, as shown in the following screenshot:

Figure 1.2 – Opening a jupytext file in Notebook
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Our jupytext files will not be saving graphical outputs and that will suffice for this book. If you want 
to have a version with images, this is possible using paired notebooks. For more details, check the 
Jupytext page (https://github.com/mwouts/jupytext). 

Warning
As our code is meant to be run inside Jupyter, many times throughout this book, I will not use 
print to output content, as the last line of a cell will be automatically rendered. If you are 
not using notebooks, remember to do a print.

Installing the required software with Docker
Docker is the most widely-used framework for implementing operating system-level virtualization. 
This technology allows you to have an independent container: a layer that is lighter than a virtual 
machine but still allows you to compartmentalize software. This mostly isolates all processes, making 
it feel like each container is a virtual machine.

Docker works quite well at both extremes of the development spectrum: it’s an expedient way to 
set up the content of this book for learning purposes and could become your platform of choice 
for deploying your applications in complex environments. This recipe is an alternative to the 
previous recipe.

However, for long-term development environments, something along the lines of the previous recipe 
is probably your best route, although it can entail a more laborious initial setup.

Getting ready

If you are on Linux, the first thing you have to do is install Docker. The safest solution is to get the 
latest version from https://www.docker.com/. While your Linux distribution might have 
a Docker package, it might be too old and buggy.

If you are on Windows or macOS, do not despair; take a look at the Docker site. There are various 
options available to save you, but there is no clear-cut formula, as Docker advances quite quickly on 
those platforms. A fairly recent computer is necessary to run our 64-bit virtual machine. If you have 
any problems, reboot your machine and make sure that the BIOS, VT-X, or AMD-V is enabled. At 
the very least, you will need 6 GB of memory, preferably more.

Note
This will require a very large download from the internet, so be sure that you have plenty of 
bandwidth. Also, be ready to wait for a long time.

 EBSCOhost - printed on 2/9/2023 7:03 AM via . All use subject to https://www.ebsco.com/terms-of-use

https://github.com/mwouts/jupytext
https://www.docker.com/


Python and the Surrounding Software Ecology8

How to do it...

To get started, follow these steps:

1.	 Use the following command on your Docker shell:

docker build -t bio https://raw.githubusercontent.com/
PacktPublishing/Bioinformatics-with-Python-Cookbook-
third-edition/main/docker/main/Dockerfile

On Linux, you will either need to have root privileges or be added to the Docker Unix group.

2.	 Now you are ready to run the container, as follows:

docker run -ti -p 9875:9875 -v YOUR_DIRECTORY:/data bio

3.	 Replace YOUR_DIRECTORY with a directory on your operating system. This will be shared 
between your host operating system and the Docker container. YOUR_DIRECTORY will be 
seen in the container in /data and vice versa.

-p 9875:9875 will expose the container’s TCP port 9875 on the host computer port, 
9875.

Especially on Windows (and maybe on macOS), make sure that your directory is actually 
visible inside the Docker shell environment. If not, check the official Docker documentation 
on how to expose directories.

4.	 Now you are ready to use the system. Point your browser to http://localhost:9875, 
and you should get the Jupyter environment.

If this does not work on Windows, check the official Docker documentation (https://docs.
docker.com/) on how to expose ports.

See also

The following is also worth knowing:

•	 Docker is the most widely used containerization software and has seen enormous growth in 
usage in recent times. You can read more about it at https://www.docker.com/.

•	 A security-minded alternative to Docker is rkt, which can be found at https://coreos.
com/rkt/.

•	 If you are not able to use Docker, for example, if you do not have the necessary permissions, 
as will be the case on most computer clusters, then take a look at Singularity at https://
www.sylabs.io/singularity/.
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Interfacing with R via rpy2
If there is some functionality that you need and you cannot find it in a Python library, your first port 
of call is to check whether it’s been implemented in R. For statistical methods, R is still the most 
complete framework; moreover, some bioinformatics functionalities are only available in R and are 
probably offered as a package belonging to the Bioconductor project.

rpy2 provides a declarative interface from Python to R. As you will see, you will be able to write 
very elegant Python code to perform the interfacing process. To show the interface (and to try out 
one of the most common R data structures, the DataFrame, and one of the most popular R libraries, 
ggplot2), we will download its metadata from the Human 1,000 Genomes Project (http://
www.1000genomes.org/). This is not a book on R, but we want to provide interesting and 
functional examples.

Getting ready

You will need to get the metadata file from the 1,000 Genomes sequence index. Please check 
https://github.com/PacktPublishing/Bioinformatics-with-
Python-Cookbook-third-edition/blob/main/Datasets.py, and download 
the sequence.index file. If you are using Jupyter Notebook, open the Chapter01/
Interfacing_R.py file and simply execute the wget command on top.

This file has information about all of the FASTQ files in the project (we will use data from the Human 
1,000 Genomes Project in the chapters to come). This includes the FASTQ file, the sample ID, the 
population of origin, and important statistical information per lane, such as the number of reads and 
the number of DNA bases read.

To set up Anaconda, you can run the following:

conda create -n bioinformatics_r --clone bioinformatics_base

conda activate bioinformatics_r

conda install r-ggplot2=3.3.5 r-lazyeval r-gridextra rpy2

With Docker, you can run the following:

docker run -ti -p 9875:9875 -v YOUR_DIRECTORY:/data tiagoantao/
bioinformatics_r

Now we can begin.
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How to do it...

To get started, follow these steps:

1.	 Let’s start by doing some imports:

import os

from IPython.display import Image

import rpy2.robjects as robjects

import rpy2.robjects.lib.ggplot2 as ggplot2

from rpy2.robjects.functions import 
SignatureTranslatedFunction

import pandas as pd

import rpy2.robjects as ro

from rpy2.robjects import pandas2ri

from rpy2.robjects import local_converter

We will be using pandas on the Python side. R DataFrames map very well to pandas.

2.	 We will read the data from our file using R’s read.delim function:

read_delim = robjects.r('read.delim')

seq_data = read_delim('sequence.index', header=True, 
stringsAsFactors=False)

#In R:

# seq.data <- read.delim('sequence.index', header=TRUE, 
stringsAsFactors=FALSE)

The first thing that we do after importing is to access the read.delim R function, which 
allows you to read files. The R language specification allows you to put dots in the names 
of objects. Therefore, we have to convert a function name into read_delim. Then, we 
call the function name proper; note the following highly declarative features. Firstly, most 
atomic objects, such as strings, can be passed without conversion. Secondly, argument names 
are converted seamlessly (barring the dot issue). Finally, objects are available in the Python 
namespace (however, objects are actually not available in the R namespace; we will discuss 
this further later).

For reference, I have included the corresponding R code. I hope it’s clear that it’s an easy 
conversion. The seq_data object is a DataFrame. If you know basic R or pandas, you are 
probably aware of this type of data structure. If not, then this is essentially a table, that is, a 
sequence of rows where each column has the same type.
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3.	 Let’s perform a basic inspection of this DataFrame, as follows:

print('This dataframe has %d columns and %d rows' %

(seq_data.ncol, seq_data.nrow))

print(seq_data.colnames)

#In R:

# print(colnames(seq.data))

# print(nrow(seq.data))

# print(ncol(seq.data))

Again, note the code similarity.

4.	 You can even mix styles using the following code:

my_cols = robjects.r.ncol(seq_data)

print(my_cols)

You can call R functions directly; in this case, we will call ncol if they do not have dots in 
their name; however, be careful. This will display an output, not 26 (the number of columns), 
but [26], which is a vector that’s composed of the 26 element. This is because, by default, 
most operations in R return vectors. If you want the number of columns, you have to perform 
my_cols[0]. Also, talking about pitfalls, note that R array indexing starts with 1, whereas 
Python starts with 0.

5.	 Now, we need to perform some data cleanup. For example, some columns should be interpreted 
as numbers, but instead, they are read as strings:

as_integer = robjects.r('as.integer')

match = robjects.r.match

my_col = match('READ_COUNT', seq_data.colnames)[0] # 
vector returned

print('Type of read count before as.integer: %s' % seq_
data[my_col - 1].rclass[0])

seq_data[my_col - 1] = as_integer(seq_data[my_col - 1])

print('Type of read count after as.integer: %s' % seq_
data[my_col - 1].rclass[0])

The match function is somewhat similar to the index method in Python lists. As expected, 
it returns a vector so that we can extract the 0 element. It’s also 1-indexed, so we subtract 1 
when working on Python. The as_integer function will convert a column into integers. 
The first print will show strings (that is values surrounded by "), whereas the second print 
will show numbers.
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6.	 We will need to massage this table a bit more; details on this can be found in the notebook. 
Here, we will finalize getting the DataFrame to R (remember that while it’s an R object, it’s 
actually visible on the Python namespace):

robjects.r.assign('seq.data', seq_data)

This will create a variable in the R namespace called seq.data, with the content of the 
DataFrame from the Python namespace. Note that after this operation, both objects will be 
independent (if you change one, it will not be reflected in the other).

Note
While you can perform plotting on Python, R has default built-in plotting functionalities 
(which we will ignore here). It also has a library called ggplot2 that implements the 
Grammar of Graphics (a declarative language to specify statistical charts).

7.	 Regarding our concrete example based on the Human 1,000 Genomes Project, first, we will 
plot a histogram with the distribution of center names, where all sequencing lanes were 
generated. For this, we will use ggplot:

from rpy2.robjects.functions import 
SignatureTranslatedFunction

ggplot2.theme = SignatureTranslatedFunction(ggplot2.
theme, init_prm_translate = {'axis_text_x': 'axis.
text.x'})

bar = ggplot2.ggplot(seq_data) + ggplot2.geom_bar() + 
ggplot2.aes_string(x='CENTER_NAME') + ggplot2.theme(axis_
text_x=ggplot2.element_text(angle=90, hjust=1))

robjects.r.png('out.png', type='cairo-png')

bar.plot()

dev_off = robjects.r('dev.off')

dev_off()

The second line is a bit uninteresting but is an important piece of boilerplate code. One of 
the R functions that we will call has a parameter with a dot in its name. As Python function 
calls cannot have this, we must map the axis.text.x R parameter name to the axis_
text_r Python name in the function theme. We monkey patch it (that is, we replace 
ggplot2.theme with a patched version of itself).

Then, we draw the chart itself. Note the declarative nature of ggplot2 as we add features 
to the chart. First, we specify the seq_data DataFrame, then we use a histogram bar plot 
called geom_bar. Following this, we annotate the x variable (CENTER_NAME). Finally, 
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we rotate the text of the x-axis by changing the theme. We finalize this by closing the R 
printing device.

8.	 Now, we can print the image in the Jupyter Notebook:

Image(filename='out.png')

The following chart is produced:

Figure 1.3 – The ggplot2-generated histogram of center names, which is responsible for 

sequencing the lanes of the human genomic data from the 1,000 Genomes Project

9.	 As a final example, we will now do a scatter plot of read and base counts for all of the 
sequenced lanes for Yoruban (YRI) and Utah residents with ancestry from Northern and 
Western Europe (CEU), using the Human 1,000 Genomes Project (the summary of the data of 
this project, which we will use thoroughly, can be seen in the Working with modern sequence 
formats recipe of Chapter 3, Next-Generation Sequencing). Additionally, we are interested in 
the differences between the different types of sequencing (for instance, exome coverage, high 

 EBSCOhost - printed on 2/9/2023 7:03 AM via . All use subject to https://www.ebsco.com/terms-of-use



Python and the Surrounding Software Ecology14

coverage, and low coverage). First, we generate a DataFrame with just the YRI and CEU lanes, 
and limit the maximum base and read counts:

robjects.r('yri_ceu <- seq.data[seq.data$POPULATION 
%in% c("YRI", "CEU") & seq.data$BASE_COUNT < 2E9 & seq.
data$READ_COUNT < 3E7, ]')

yri_ceu = robjects.r('yri_ceu')

10.	 Now we are ready to plot:

scatter = ggplot2.ggplot(yri_ceu) + ggplot2.
aes_string(x='BASE_COUNT', y='READ_COUNT', 
shape='factor(POPULATION)', col='factor(ANALYSIS_GROUP)') 
+ ggplot2.geom_point()

robjects.r.png('out.png')

scatter.plot()

Hopefully, this example (please refer to the following screenshot) makes the power of the 
Grammar of Graphics approach clear. We will start by declaring the DataFrame and the type 
of chart in use (that is, the scatter plot implemented by geom_point).

Note how easy it is to express that the shape of each point depends on the POPULATION 
variable and that the color depends on the ANALYSIS_GROUP variable:

Figure 1.4 – The ggplot2-generated scatter plot with base and read counts for all sequencing lanes read; 

the color and shape of each dot reflects categorical data (population and the type of data sequenced)
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11.	 Because the R DataFrame is so close to pandas, it makes sense to convert between the two 
since that is supported by rpy2:

import rpy2.robjects as ro

from rpy2.robjects import pandas2ri

from rpy2.robjects.conversion import localconverter 

with localconverter(ro.default_converter + pandas2ri.
converter):

  pd_yri_ceu = ro.conversion.rpy2py(yri_ceu)

del pd_yri_ceu['PAIRED_FASTQ']

with localconverter(ro.default_converter + pandas2ri.
converter):

  no_paired = ro.conversion.py2rpy(pd_yri_ceu)

robjects.r.assign('no.paired', no_paired)

robjects.r("print(colnames(no.paired))")

We start by importing the necessary conversion module – rpy2 provides many strategies to convert 
data from R into Python. Here, we are concerned with data frame conversion. We then convert 
the R DataFrame (note that we are converting yri_ceu in the R namespace, not the one on the 
Python namespace). We delete the column that indicates the name of the paired FASTQ file on the 
pandas DataFrame and copy it back to the R namespace. If you print the column names of the new 
R DataFrame, you will see that PAIRED_FASTQ is missing.

There’s more...

It’s worth repeating that the advances in the Python software ecology are occurring at a breakneck 
pace. This means that if a certain functionality is not available today, it might be released sometime 
in the near future. So, if you are developing a new project, be sure to check for the very latest 
developments on the Python front before using functionality from an R package.

There are plenty of R packages for Bioinformatics in the Bioconductor project (http://www.
bioconductor.org/). This should probably be your first port of call in the R world for 
bioinformatics functionalities. However, note that many R Bioinformatics packages are not on 
Bioconductor, so be sure to search the wider R packages on Comprehensive R Archive Network 
(CRAN) (refer to CRAN at http://cran.rproject.org/).

There are plenty of plotting libraries for Python. Matplotlib is the most common library, but you 
also have a plethora of other choices. In the context of R, it’s worth noting that there is a ggplot2-like 
implementation for Python based on the Grammar of Graphics description language for charts, 
and – surprise, surprise – this is called ggplot! (http://yhat.github.io/ggpy/).
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See also

To learn more about these topics, please refer to the following resources:

•	 There are plenty of tutorials and books on R; check the R web page (http://www.r-
project.org/) for documentation.

•	 For Bioconductor, check the documentation at http://manuals.bioinformatics.
ucr.edu/home/R_BioCondManual.

•	 If you work with NGS, you might also want to take look at high throughput sequence analysis 
with Bioconductor at http://manuals.bioinformatics.ucr.edu/home/
ht-seq.

•	 The rpy library documentation is your Python gateway to R and can be found at https://
rpy2.bitbucket.io/.

•	 The Grammar of Graphics approach is described in a book aptly named The Grammar of 
Graphics, by Leland Wilkinson, Springer.

•	 In terms of data structures, similar functionality to R can be found in the pandas library. 
You can find some tutorials at http://pandas.pydata.org/pandas-docs/
dev/tutorials.html. The book, Python for Data Analysis, by Wes McKinney, O’Reilly 
Media, is also an alternative to consider. In the next chapter, we will discuss pandas and use 
it throughout the book. 

Performing R magic with Jupyter
Jupyter provides quite a few extra features compared to standard Python. Among those features, 
it provides a framework of extensible commands called magics (actually, this only works with the 
IPython kernel of Jupyter since it is actually an IPython feature, but that is the one we are concerned 
with). Magics allow you to extend the language in many useful ways. There are magic functions that 
you can use to deal with R. As you will see in our example, it makes R interfacing much easier and 
more declarative. This recipe will not introduce any new R functionalities, but hopefully, it will make 
it clear how IPython can be an important productivity boost for scientific computing in this regard.

Getting ready

You will need to follow the previous Getting ready steps of the Interfacing with R via rpy2 recipe. The 
notebook is Chapter01/R_magic.py. The notebook is more complete than the recipe presented 
here and includes more chart examples. For brevity, we will only concentrate on the fundamental 
constructs to interact with R using magics. If you are using Docker, you can use the following:

docker run -ti -p 9875:9875 -v YOUR_DIRECTORY:/data tiagoantao/
bioinformatics_r
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How to do it...

This recipe is an aggressive simplification of the previous one because it illustrates the conciseness 
and elegance of R magics:

1.	 The first thing you need to do is load R magics and ggplot2:

import rpy2.robjects as robjects

import rpy2.robjects.lib.ggplot2 as ggplot2

%load_ext rpy2.ipython

Note that % starts an IPython-specific directive. Just as a simple example, you can write %R 
print(c(1, 2)) onto a Jupyter cell.

Check out how easy it is to execute the R code without using the robjects package. 
Actually, rpy2 is being used to look under the hood.

2.	 Let’s read the sequence.index file that was downloaded in the previous recipe:

%%R

seq.data <- read.delim('sequence.index', header=TRUE, 
stringsAsFactors=FALSE)

seq.data$READ_COUNT <- as.integer(seq.data$READ_COUNT)

seq.data$BASE_COUNT <- as.integer(seq.data$BASE_COUNT)

Then, you can specify that the entire cell should be interpreted as R code by using %%R (note 
the double %%).

3.	 We can now transfer the variable to the Python namespace:

seq_data = %R seq.data

print(type(seq_data))  # pandas dataframe!

The type of the DataFrame is not a standard Python object, but a pandas DataFrame. This 
is a departure from previous versions of the R magic interface.

4.	 As we have a pandas DataFrame, we can operate on it quite easily using the pandas 
interface:

my_col = list(seq_data.columns).index("CENTER_NAME")

seq_data['CENTER_NAME'] = seq_data['CENTER_NAME'].
apply(lambda` x: x.upper())

5.	 Let’s put this DataFrame back into the R namespace, as follows:

%R -i seq_data

%R print(colnames(seq_data))

 EBSCOhost - printed on 2/9/2023 7:03 AM via . All use subject to https://www.ebsco.com/terms-of-use



Python and the Surrounding Software Ecology18

The -i argument informs the magic system that the variable that follows on the Python space 
is to be copied into the R namespace. The second line just shows that the DataFrame is indeed 
available in R. The name that we are using is different from the original – it’s seq_data, 
instead of seq.data.

6.	 Let’s do some final cleanup (for further details, see the previous recipe) and print the same 
bar chart as before:

%%R

bar <- ggplot(seq_data) +  aes(factor(CENTER_NAME)) + 
geom_bar() + theme(axis.text.x = element_text(angle = 90, 
hjust = 1))

print(bar)

Additionally, the R magic system allows you to reduce code, as it changes the behavior of the 
interaction of R with IPython. For example, in the ggplot2 code of the previous recipe, you do 
not need to use the .png and dev.off R functions, as the magic system will take care of this for 
you. When you tell R to print a chart, it will magically appear in your notebook or graphical console.

There’s more...

The R magics have seemed to have changed quite a lot over time in terms of their interface. For 
example, I have updated the R code for the first edition of this book a few times. The current version 
of the DataFrame assignment returns pandas objects, which is a major change. 

See also

For more information, check out these links:

•	 For basic instructions on IPython magics, see https://ipython.readthedocs.
io/en/stable/interactive/magics.html.

•	 A list of third-party extensions for IPython, including magic ones can be found at https://
github.com/ipython/ipython/wiki/Extensions-Index.
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2
Getting to Know NumPy, 

pandas, Arrow, and Matplotlib

One of Python’s biggest strengths is its profusion of high-quality science and data processing libraries. 
At the core of all of them is NumPy, which provides efficient array and matrix support. On top of 
NumPy, we can find almost all of the scientific libraries. For example, in our field, there’s Biopython. 
But other generic data analysis libraries can also be used in our field. For example, pandas is the de facto 
standard for processing tabled data. More recently, Apache Arrow provides efficient implementations 
of some of pandas’ functionality, along with language interoperability. Finally, Matplotlib is the most 
common plotting library in the Python space and is appropriate for scientific computing. While these 
are general libraries with wide applicability, they are fundamental for bioinformatics processing, so 
we will study them in this chapter.

We will start by looking at pandas as it provides a high-level library with very broad practical applicability. 
Then, we’ll introduce Arrow, which we will use only in the scope of supporting pandas. After that, we’ll 
discuss NumPy, the workhorse behind almost everything we do. Finally, we’ll introduce Matplotlib.

Our recipes are very introductory – each of these libraries could easily occupy a full book, but the recipes 
should be enough to help you through this book. If you are using Docker, and because all these libraries 
are fundamental for data analysis, they can be found in the tiagoantao/bioinformatics_
base Docker image from Chapter 1.

In this chapter, we will cover the following recipes:

•	 Using pandas to process vaccine-adverse events

•	 Dealing with the pitfalls of joining pandas DataFrames

•	 Reducing the memory usage of pandas DataFrames

•	 Accelerating pandas processing with Apache Arrow

•	 Understanding NumPy as the engine behind Python data science and bioinformatics

•	 Introducing Matplotlib for chart generation
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Using pandas to process vaccine-adverse events 
We will be introducing pandas with a concrete bioinformatics data analysis example: we will be 
studying data from the Vaccine Adverse Event Reporting System (VAERS, https://vaers.
hhs.gov/). VAERS, which is maintained by the US Department of Health and Human Services, 
includes a database of vaccine-adverse events going back to 1990.

VAERS makes data available in comma-separated values (CSV) format. The CSV format is quite 
simple and can even be opened with a simple text editor (be careful with very large file sizes as they 
may crash your editor) or a spreadsheet such as Excel. pandas can work very easily with this format.

Getting ready

First, we need to download the data. It is available at https://vaers.hhs.gov/data/
datasets.html. Please download the ZIP file: we will be using the 2021 file; do not download a 
single CSV file only. After downloading the file, unzip it, and then recompress all the files individually 
with gzip –9 *csv to save disk space.

Feel free to have a look at the files with a text editor, or preferably with a tool such as less (zless 
for compressed files). You can find documentation for the content of the files at https://vaers.
hhs.gov/docs/VAERSDataUseGuide_en_September2021.pdf.

If you are using the Notebooks, code is provided at the beginning of them so that you can take care 
of the necessary processing. If you are using Docker, the base image is enough.

The code can be found in Chapter02/Pandas_Basic.py.

How to do it...

Follow these steps:

1.	 Let’s start by loading the main data file and gathering the basic statistics:

vdata = pd.read_csv(

    "2021VAERSDATA.csv.gz", encoding="iso-8859-1")

vdata.columns

vdata.dtypes

vdata.shape

We start by loading the data. In most cases, there is no need to worry about the text encoding 
as the default, UTF-8, will work, but in this case, the text encoding is legacy iso-8859-
1. Then, we print the column names, which start with VAERS_ID, RECVDATE, STATE, 
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AGE_YRS, and so on. They include 35 entries corresponding to each of the columns. Then, 
we print the types of each column. Here are the first few entries:

VAERS_ID          int64

RECVDATE         object

STATE            object

AGE_YRS         float64

CAGE_YR         float64

CAGE_MO         float64

SEX              object

By doing this, we get the shape of the data: (654986, 35). This means 654,986 rows and 35 
columns. You can use any of the preceding strategies to get the information you need regarding 
the metadata of the table.

2.	 Now, let’s explore the data:

vdata.iloc[0]

vdata = vdata.set_index("VAERS_ID")

vdata.loc[916600]

vdata.head(3)

vdata.iloc[:3]

vdata.iloc[:5, 2:4]

There are many ways we can look at the data. We will start by inspecting the first row, based 
on location. Here is an abridged version:

VAERS_ID                                       916600

RECVDATE                                       01/01/2021

STATE                                          TX

AGE_YRS                                        33.0

CAGE_YR                                        33.0

CAGE_MO                                        NaN

SEX                                            F

…

TODAYS_
DATE                                          01/01/2021

BIRTH_DEFECT                                  NaN

OFC_VISIT                                     Y
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ER_ED_VISIT                                       NaN

ALLERGIES                                       Pcn and 
bee venom

After we index by VAERS_ID, we can use one ID to get a row. We can use 916600 (which is 
the ID from the preceding record) and get the same result.

Then, we retrieve the first three rows. Notice the two different ways we can do so: 

	� Using the head method

	� Using the more general array specification; that is, iloc[:3]

Finally, we retrieve the first five rows, but only the second and third columns –iloc[:5, 
2:4]. Here is the output:

          AGE_YRS  CAGE_YR

VAERS_ID                  

916600       33.0     33.0

916601       73.0     73.0

916602       23.0     23.0

916603       58.0     58.0

916604       47.0     47.0

3.	 Let’s do some basic computations now, namely computing the maximum age in the dataset:

vdata["AGE_YRS"].max()

vdata.AGE_YRS.max()

The maximum value is 119 years. More importantly than the result, notice the two dialects 
for accessing AGE_YRS (as a dictionary key and as an object field) for the access columns.

4.	 Now, let’s plot the ages involved:

vdata["AGE_YRS"].sort_values().plot(use_index=False)

vdata["AGE_YRS"].plot.hist(bins=20) 
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This generates two plots (a condensed version is shown in the following step). We use pandas 
plotting machinery here, which uses Matplotib underneath.

5.	 While we have a full recipe for charting with Matplotlib (Introducing Matplotlib for chart 
generation), let’s have a sneak peek here by using it directly:

import matplotlib.pylot as plt

fig, ax = plt.subplots(1, 2, sharey=True)

fig.suptitle("Age of adverse events")

vdata["AGE_YRS"].sort_values().plot(

    use_index=False, ax=ax[0],

    xlabel="Obervation", ylabel="Age")

vdata["AGE_YRS"].plot.hist(bins=20, 
orientation="horizontal")

This includes both figures from the previous steps. Here is the output:

Figure 2.1 – Left – the age for each observation of adverse effect;  

right – a histogram showing the distribution of ages 

6.	 We can also take a non-graphical, more analytical approach, such as counting the events per year:

vdata["AGE_YRS"].dropna().apply(lambda x: int(x)).value_
counts()
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The output will be as follows:

50     11006

65     10948

60     10616

51     10513

58     10362

      ...

7.	 Now, let’s see how many people died:

vdata.DIED.value_counts(dropna=False)

vdata["is_dead"] = (vdata.DIED == "Y")

The output of the count is as follows:

NaN    646450

Y        8536

Name: DIED, dtype: int64

Note that the type of DIED is not a Boolean. It’s more declarative to have a Boolean representation 
of a Boolean characteristic, so we create is_dead for it.

Tip
Here, we are assuming that NaN is to be interpreted as False. In general, we must be careful 
with the interpretation of NaN. It may mean False or it may simply mean – as in most cases 
– a lack of data. If that were the case, it should not be converted into False.

8.	 Now, let’s associate the individual data about deaths with the type of vaccine involved:

dead = vdata[vdata.is_dead]

vax = pd.read_csv("2021VAERSVAX.csv.gz", 
encoding="iso-8859-1").set_index("VAERS_ID")

vax.groupby("VAX_TYPE").size().sort_values()

vax19 = vax[vax.VAX_TYPE == "COVID19"]

vax19_dead = dead.join(vax19)

After we get a DataFrame containing just deaths, we must read the data that contains vaccine 
information. First, we must do some exploratory analysis of the types of vaccines and their 
adverse events. Here is the abridged output:

           …

HPV9         1506
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FLU4         3342

UNK          7941

VARZOS      11034

COVID19    648723

After that, we must choose just the COVID-related vaccines and join them with individual data.

9.	 Finally, let’s see the top 10 COVID vaccine lots that are overrepresented in terms of deaths and 
how many US states were affected by each lot:

baddies = vax19_dead.groupby("VAX_LOT").size().sort_
values(ascending=False)

for I, (lot, cnt) in enumerate(baddies.items()):

    print(lot, cnt, len(vax19_dead[vax19_dead.VAX_LOT == 
lot].groupby""STAT"")))

    if i == 10:

        break

The output is as follows:

Unknown 254 34

EN6201 120 30

EN5318 102 26

EN6200 101 22

EN6198 90 23

039K20A 89 13

EL3248 87 17

EL9261 86 21

EM9810 84 21

EL9269 76 18

EN6202 75 18

That concludes this recipe!

There’s more...

The preceding data about vaccines and lots is not completely correct; we will cover some data analysis 
pitfalls in the next recipe.

In the Introducing Matplotlib for chart generation recipe, we will introduce Matplotlib, a chart library 
that provides the backend for pandas plotting. It is a fundamental component of Python’s data 
analysis ecosystem.
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See also

The following is some extra information that may be useful:

•	 While the first three recipes of this chapter are enough to support you throughout this book, 
there is plenty of content available on the web to help you understand pandas. You can start 
with the main user guide, which is available at https://pandas.pydata.org/docs/
user_guide/index.html. 

•	 If you need to plot data, do not forget to check the visualization part of the guide since it 
is especially helpful: https://pandas.pydata.org/docs/user_guide/
visualization.html. 

Dealing with the pitfalls of joining pandas DataFrames
The previous recipe was a whirlwind tour that introduced pandas and exposed most of the features 
that we will use in this book. While an exhaustive discussion about pandas would require a complete 
book, in this recipe – and in the next one – we are going to discuss topics that impact data analysis 
and are seldom discussed in the literature but are very important.

In this recipe, we are going to discuss some pitfalls that deal with relating DataFrames through joins: 
it turns out that many data analysis errors are introduced by carelessly joining data. We will introduce 
techniques to reduce such problems here.

Getting ready

We will be using the same data as in the previous recipe, but we will jumble it a bit so that we can 
discuss typical data analysis pitfalls. Once again, we will be joining the main adverse events table 
with the vaccination table, but we will randomly sample 90% of the data from each. This mimics, for 
example, the scenario where you only have incomplete information. This is one of the many examples 
where joins between tables do not have intuitively obvious results.

Use the following code to prepare our files by randomly sampling 90% of the data:

vdata = pd.read_csv("2021VAERSDATA.csv.gz", 
encoding="iso-8859-1")

vdata.sample(frac=0.9).to_csv("vdata_sample.csv.gz", 
index=False)

vax = pd.read_csv("2021VAERSVAX.csv.gz", encoding="iso-8859-1")

vax.sample(frac=0.9).to_csv("vax_sample.csv.gz", index=False)
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Because this code involves random sampling, the results that you will get will be different from the 
ones reported here. If you want to get the same results, I have provided the files that I used in the 
Chapter02 directory. The code for this recipe can be found in Chapter02/Pandas_Join.py.

How to do it...

Follow these steps:

1.	 Let’s start by doing an inner join of the individual and vaccine tables:

vdata = pd.read_csv("vdata_sample.csv.gz")

vax = pd.read_csv("vax_sample.csv.gz")

vdata_with_vax = vdata.join(

    vax.set_index("VAERS_ID"),

    on="VAERS_ID",

    how="inner")

len(vdata), len(vax), len(vdata_with_vax)

The len output for this code is 589,487 for the individual data, 620,361 for the vaccination data, 
and 558,220 for the join. This suggests that some individual and vaccine data was not captured.

2.	 Let’s find the data that was not captured with the following join:

lost_vdata = vdata.loc[~vdata.index.isin(vdata_with_vax.
index)]

lost_vdata

lost_vax = vax[~vax["VAERS_ID"].isin(vdata.index)]

lost_vax

You will see that 56,524 rows of individual data aren’t joined and that there are 62,141 rows 
of vaccinated data.

3.	 There are other ways to join data. The default way is by performing a left outer join:

vdata_with_vax_left = vdata.join(

    vax.set_index("VAERS_ID"),

    on="VAERS_ID")

vdata_with_vax_left.groupby("VAERS_ID").size().sort_
values()

A left outer join assures that all the rows on the left table are always represented.  If there are 
no rows on the right, then all the right columns will be filled with  None values.

 EBSCOhost - printed on 2/9/2023 7:03 AM via . All use subject to https://www.ebsco.com/terms-of-use



Getting to Know NumPy, pandas, Arrow, and Matplotlib28

Warning
There is a caveat that you should be careful with. Remember that the left table – vdata – had 
one entry per VAERS_ID. When you left join, you may end up with a case where the left-hand 
side is repeated several times. For example, the groupby operation that we did previously 
shows that VAERS_ID of 962303 has 11 entries. This is correct, but it’s not uncommon to 
have the incorrect expectation that you will still have a single row on the output per row on 
the left-hand side. This is because the left join returns 1 or more left entries, whereas the inner 
join above returns 0 or 1 entries, where sometimes, we would like to have precisely 1 entry. Be 
sure to always test the output for what you want in terms of the number of entries.

4.	 There is a right join as well. Let’s right join COVID vaccines – the left table – with death events 
– the right table:

dead = vdata[vdata.DIED == "Y"]

vax19 = vax[vax.VAX_TYPE == "COVID19"]

vax19_dead = vax19.join(dead.set_index("VAERS_ID"), 
on="VAERS_ID", how="right")

len(vax19), len(dead), len(vax19_dead)

len(vax19_dead[vax19_dead.VAERS_ID.duplicated()])

len(vax19_dead) - len(dead)

As you may expect, a right join will ensure that all the rows on the right table are 
represented. So, we end up with 583,817 COVID entries, 7,670 dead entries, and a right 
join of 8,624 entries. 

We also check the number of duplicated entries on the joined table and we get 954. If we subtract 
the length of the dead table from the joined table, we also get, as expected, 954. Make sure you 
have checks like this when you’re making joins.

5.	 Finally, we are going to revisit the problematic COVID lot calculations since we now understand 
that we might be overcounting lots:

vax19_dead["STATE"] = vax19_dead["STATE"].str.upper()

dead_lot = vax19_dead[["VAERS_ID", "VAX_LOT", "STATE"]].
set_index(["VAERS_ID", "VAX_LOT"])

dead_lot_clean = dead_lot[~dead_lot.index.duplicated()]

dead_lot_clean = dead_lot_clean.reset_index()

dead_lot_clean[dead_lot_clean.VAERS_ID.isna()]

baddies = dead_lot_clean.groupby("VAX_LOT").size().sort_
values(ascending=False)

for i, (lot, cnt) in enumerate(baddies.items()):

    print(lot, cnt, len(dead_lot_clean[dead_lot_clean.
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VAX_LOT == lot].groupby("STATE")))

    if i == 10:

        break

Note that the strategies that we’ve used here ensure that we don’t get repeats: first, we limit the 
number of columns to the ones we will be using, then we remove repeated indexes and empty 
VAERS_ID. This ensures no repetition of the VAERS_ID, VAX_LOT pair, and that no lots 
are associated with no IDs.

There’s more...

There are other types of joins other than left, inner, and right. Most notably, there is the outer join, 
which assures all entries from both tables have representation.

Make sure you have tests and assertions for your joins: a very common bug is having the wrong 
expectations for how joins behave. You should also make sure that there are no empty values on the 
columns where you are joining, as they can produce a lot of  excess tuples.

Reducing the memory usage of pandas DataFrames
When you are dealing with lots of information – for example, when analyzing whole genome sequencing 
data – memory usage may become a limitation for your analysis. It turns out that naïve pandas is not 
very efficient from a memory perspective, and we can substantially reduce its consumption.

In this recipe, we are going to revisit our VAERS data and look at several ways to reduce pandas memory 
usage. The impact of these changes can be massive: in many cases, reducing memory consumption may 
mean the difference between being able to use pandas or requiring a more alternative and complex 
approach, such as Dask or Spark.

Getting ready

We will be using the data from the first recipe. If you have run it, you are all set; if not, please follow 
the steps discussed there. You can find this code in Chapter02/Pandas_Memory.py.

How to do it…

Follow these steps:

1.	 First, let’s load the data and inspect the size of the DataFrame:

import numpy as np

import pandas as pd

vdata = pd.read_csv("2021VAERSDATA.csv.gz", 
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encoding="iso-8859-1")

vdata.info(memory_usage="deep")

Here is an abridged version of the output:

RangeIndex: 654986 entries, 0 to 654985

Data columns (total 35 columns):

#   Column        Non-Null Count   Dtype  

---  ------        --------------   -----  

0   VAERS_ID      654986 non-null  int64  

2   STATE         572236 non-null  object 

3   AGE_YRS       583424 non-null  float64

6   SEX           654986 non-null  object 

8   SYMPTOM_TEXT  654828 non-null  object 

9   DIED          8536 non-null    object 

31  BIRTH_DEFECT  383 non-null     object 

34  ALLERGIES     330630 non-null  object 

dtypes: float64(5), int64(2), object(28)

memory usage: 1.3 GB

Here, we have information about the number of rows and the type and non-null values of each 
row. Finally, we can see that the DataFrame requires a whopping 1.3 GB.

2.	 We can also inspect the size of each column:

for name in vdata.columns:

    col_bytes = vdata[name].memory_usage(index=False, 
deep=True)

    col_type = vdata[name].dtype

    print(

        name,

        col_type, col_bytes // (1024 ** 2))

Here is an abridged version of the output:

VAERS_ID int64 4

STATE object 34

AGE_YRS float64 4

SEX object 36

RPT_DATE object 20

SYMPTOM_TEXT object 442
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DIED object 20

ALLERGIES object 34

SYMPTOM_TEXT occupies 442 MB, so 1/3 of our entire table.

3.	 Now, let’s look at the DIED column. Can we find a more efficient representation?

vdata.DIED.memory_usage(index=False, deep=True)

vdata.DIED.fillna(False).astype(bool).memory_
usage(index=False, deep=True)

The original column takes 21,181,488 bytes, whereas our compact representation takes 656,986 
bytes. That’s 32 times less!

4.	 What about the STATE column? Can we do better?

vdata["STATE"] = vdata.STATE.str.upper()

states = list(vdata["STATE"].unique())

vdata["encoded_state"] = vdata.STATE.apply(lambda state: 
states.index(state))

vdata["encoded_state"] = vdata["encoded_state"].
astype(np.uint8)

vdata["STATE"].memory_usage(index=False, deep=True)

vdata["encoded_state"].memory_usage(index=False, 
deep=True)

Here, we convert the STATE column, which is text, into encoded_state, which is a 
number. This number is the position of the state’s name in the list state. We use this number 
to look up the list of states. The original column takes around 36 MB, whereas the encoded 
column takes 0.6 MB.

As an alternative to this approach, you can look at categorical variables in pandas. I prefer to 
use them as they have wider applications.

5.	 We can apply most of these optimizations when we load the data, so let’s prepare for that. But 
now, we have a chicken-and-egg problem: to be able to know the content of the state table, we 
have to do a first pass to get the list of states, like so:

states = list(pd.read_csv(

    "vdata_sample.csv.gz",

    converters={

       "STATE": lambda state: state.upper()

    },

    usecols=["STATE"]

)["STATE"].unique())
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We have a converter that simply returns the uppercase version of the state. We only return the 
STATE column to save memory and processing time. Finally, we get the STATE column from 
the DataFrame (which has only a single column).

6.	 The ultimate optimization is not to load the data. Imagine that we don’t need SYMPTOM_TEXT 
– that is around 1/3 of the data. In that case, we can just skip it. Here is the final version:

vdata = pd.read_csv(

    "vdata_sample.csv.gz",

    index_col="VAERS_ID",

    converters={

       "DIED": lambda died: died == "Y",

       "STATE": lambda state: states.index(state.upper())

    },

    usecols=lambda name: name != "SYMPTOM_TEXT"

)

vdata["STATE"] = vdata["STATE"].astype(np.uint8)

vdata.info(memory_usage="deep") 

We are now at 714 MB, which is a bit over half of the original. This could be still substantially 
reduced by applying the methods we used for STATE and DIED to all other columns.

See also

The following is some extra information that may be useful:

•	 If you are willing to use a support library to help with Python processing, check the next recipe on 
Apache Arrow, which will allow you to have extra memory savings for more memory efficiency.

•	 If you end up with DataFrames that take more memory than you have available on a single 
machine, then you must step up your game and use chunking - which we will not cover in 
the Pandas context - or something that can deal with large data automatically. Dask, which 
we’ll cover in Chapter 11, Parallel Processing with Dask and Zarr, allows you to work with 
larger-than-memory datasets with, among others, a pandas-like interface.

Accelerating pandas processing with  
Apache Arrow
When dealing with large amounts of data, such as in whole genome sequencing, pandas is 
both slow and memory-consuming. Apache Arrow provides faster and more memory-efficient 
implementations of several pandas operations and can interoperate with it.
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Apache Arrow is a project co-founded by Wes McKinney, the founder of pandas, and it has several 
objectives, including working with tabular data in a language-agnostic way, which allows for language 
interoperability while providing a memory- and computation-efficient implementation. Here, we will 
only be concerned with the second part: getting more efficiency for large-data processing. We will do 
this in an integrated way with pandas.

Here, we will once again use VAERS data and show how Apache Arrow can be used to accelerate 
pandas data loading and reduce memory consumption.

Getting ready

Again, we will be using data from the first recipe. Be sure you download and prepare it, as explained 
in the Getting ready section of the Using pandas to process vaccine-adverse events recipe. The code is 
available in Chapter02/Arrow.py.

How to do it...

Follow these steps:

1.	 Let’s start by loading the data using both pandas and Arrow:

import gzip

import pandas as pd

from pyarrow import csv

import pyarrow.compute as pc 

vdata_pd = pd.read_csv("2021VAERSDATA.csv.gz", 
encoding="iso-8859-1")

columns = list(vdata_pd.columns)

vdata_pd.info(memory_usage="deep") 

vdata_arrow = csv.read_csv("2021VAERSDATA.csv.gz")

tot_bytes = sum([

    vdata_arrow[name].nbytes

    for name in vdata_arrow.column_names])

print(f"Total {tot_bytes // (1024 ** 2)} MB")

pandas requires 1.3 GB, whereas Arrow requires 614 MB: less than half the memory. For large 
files like this, this may mean the difference between being able to process data in memory or 
needing to find another solution, such as Dask. While some functions in Arrow have similar 
names to pandas (for example, read_csv), that is not the most common occurrence. For 
example, note the way we compute the total size of the DataFrame: by getting the size of each 
column and performing a sum, which is a different approach from pandas.
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2.	 Let’s do a side-by-side comparison of the inferred types:

for name in vdata_arrow.column_names:

    arr_bytes = vdata_arrow[name].nbytes

    arr_type = vdata_arrow[name].type

    pd_bytes = vdata_pd[name].memory_usage(index=False, 
deep=True)

    pd_type = vdata_pd[name].dtype

    print(

        name,

        arr_type, arr_bytes // (1024 ** 2),

        pd_type, pd_bytes // (1024 ** 2),)

Here is an abridged version of the output:

VAERS_ID int64 4 int64 4

RECVDATE string 8 object 41

STATE string 3 object 34

CAGE_YR int64 5 float64 4

SEX string 3 object 36

RPT_DATE string 2 object 20

DIED string 2 object 20

L_THREAT string 2 object 20

ER_VISIT string 2 object 19

HOSPITAL string 2 object 20

HOSPDAYS int64 5 float64 4

As you can see, Arrow is generally more specific with type inference and is one of the main 
reasons why memory usage is substantially lower.

3.	 Now, let’s do a time performance comparison:

%timeit pd.read_csv("2021VAERSDATA.csv.gz", 
encoding="iso-8859-1")

%timeit csv.read_csv("2021VAERSDATA.csv.gz")

On my computer, the results are as follows:

7.36 s ± 201 ms per loop (mean ± std. dev. of 7 runs, 1 
loop each)

2.28 s ± 70.7 ms per loop (mean ± std. dev. of 7 runs, 1 
loop each)
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Arrow’s implementation is three times faster. The results on your computer will vary as this is 
dependent on the hardware.

4.	 Let’s repeat the memory occupation comparison while not loading the SYMPTOM_TEXT 
column. This is a fairer comparison as most numerical datasets do not tend to have a very 
large text column:

vdata_pd = pd.read_csv("2021VAERSDATA.csv.gz", 
encoding="iso-8859-1", usecols=lambda x: x != "SYMPTOM_
TEXT")

vdata_pd.info(memory_usage="deep")

columns.remove("SYMPTOM_TEXT")

vdata_arrow = csv.read_csv(

    "2021VAERSDATA.csv.gz",

     convert_options=csv.ConvertOptions(include_
columns=columns))

vdata_arrow.nbytes

pandas requires 847 MB, whereas Arrow requires 205 MB: four times less.

5.	 Our objective is to use Arrow to load data into pandas. For that, we need to convert the data 
structure:

vdata = vdata_arrow.to_pandas()

vdata.info(memory_usage="deep")

There are two very important points to be made here: the pandas representation created by 
Arrow uses only 1 GB, whereas the pandas representation, from its native read_csv, is 1.3 
GB. This means that even if you use pandas to process data, Arrow can create a more compact 
representation to start with.

The preceding code has one problem regarding memory consumption: when the converter is running, 
it will require memory to hold both the pandas and the Arrow representations, hence defeating 
the purpose of using less memory. Arrow can self-destruct its representation while creating the 
pandas version, hence resolving the problem. The line for this is vdata = vdata_arrow.
to_pandas(self_destruct=True).

There’s more...

If you have a very large DataFrame that cannot be processed by pandas, even after it’s been loaded by 
Arrow, then maybe Arrow can do all the processing as it has a computing engine as well. That being 
said, Arrow’s engine is, at the time of writing, substantially less complete in terms of functionality 
than pandas. Remember that Arrow has many other features, such as language interoperability, but 
we will not be making use of those in this book.
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Understanding NumPy as the engine behind Python data 
science and bioinformatics
Most of your analysis will make use of NumPy, even if you don’t use it explicitly. NumPy is an array 
manipulation library that is behind libraries such as pandas, Matplotlib, Biopython, and scikit-learn, 
among many others. While much of your bioinformatics work may not require explicit direct use of 
NumPy, you should be aware of its existence as it underpins almost everything you do, even if only 
indirectly via the other libraries.

In this recipe, we will use VAERS data to demonstrate how NumPy is behind many of the core libraries 
that we use. This is a very light introduction to the library so that you are aware that it exists and that 
it is behind almost everything. Our example will extract the number of cases from the five US states 
with more adverse effects, splitting them into age bins: 0 to 19 years, 20 to 39, up to 100 to 119.

Getting ready

Once again, we will be using the data from the first recipe, so make sure it’s available. The code for it 
can be found in Chapter02/NumPy.py.

How to do it…

Follow these steps:

1.	 Let’s start by loading the data with pandas and reducing the data so that it’s related to the top 
five US states only:

import numpy as np

import pandas as pd

import matplotlib.pyplot as plt

vdata = pd.read_csv(

    "2021VAERSDATA.csv.gz", encoding="iso-8859-1")

vdata["STATE"] = vdata["STATE"].str.upper()

top_states = pd.DataFrame({

    "size": vdata.groupby("STATE").size().sort_
values(ascending=False).head(5)}).reset_index()

top_states["rank"] = top_states.index

top_states = top_states.set_index("STATE")

top_vdata = vdata[vdata["STATE"].isin(top_states.index)]

top_vdata["state_code"] = top_vdata["STATE"].apply(

    lambda state: top_states["rank"].at[state]

).astype(np.uint8)
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top_vdata = top_vdata[top_vdata["AGE_YRS"].notna()]

top_vdata.loc[:,"AGE_YRS"] = top_vdata["AGE_YRS"].
astype(int)

top_states

The top states are as follows. This rank will be used later to construct a NumPy matrix:

Figure 2.2 – US states with largest numbers of adverse effects

2.	 Now, let’s extract the two NumPy arrays that contain age and state data:

age_state = top_vdata[["state_code", "AGE_YRS"]]

age_state["state_code"]

state_code_arr = age_state["state_code"].values

type(state_code_arr), state_code_arr.shape, state_code_
arr.dtype

age_arr = age_state["AGE_YRS"].values

type(age_arr), age_arr.shape, age_arr.dtype

Note that the data that underlies pandas is NumPy data (the values call for both Series 
returns NumPy types). Also, you may recall that pandas has properties such as .shape or 
.dtype: these were inspired by NumPy and behave the same.

3.	 Now, let’s create a NumPy matrix from scratch (a 2D array), where each row is a state and each 
column represents an age group:

age_state_mat = np.zeros((5,6), dtype=np.uint64)

for row in age_state.itertuples():

    age_state_mat[row.state_code, row.AGE_YRS//20] += 1

age_state_mat

The array has five rows – one for each state – and six columns – one for each age group. All the 
cells in the array must have the same type.
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We initialize the array with zeros. There are many ways to initialize arrays, but if you have a 
very large array, initializing it may take a lot of time. Sometimes, depending on your task, it 
might be OK that the array is empty at the beginning (meaning it was initialized with random 
trash). In that case, using np.empty will be much faster. We use pandas iteration here: this 
is not the best way to do things from a pandas perspective, but we want to make the NumPy 
part very explicit.

4.	 We can extract a single row – in our case, the data for a state – very easily. The same applies to 
a column. Let’s take California data and then the 0-19 age group:

cal = age_state_mat[0,:]

kids = age_state_mat[:,0]

Note the syntax to extract a row or a column. It should be familiar to you, given that pandas 
copied the syntax from NumPy and we encountered it in previous recipes.

5.	 Now, let’s compute a new matrix where we have the fraction of cases per age group:

def compute_frac(arr_1d):

    return arr_1d / arr_1d.sum()

frac_age_stat_mat = np.apply_along_axis(compute_frac, 1, 
age_state_mat)

The last line applies the compute_frac function to all rows. compute_frac takes a 
single row and returns a new row where all the elements are divided by the total sum.

6.	 Now, let’s create a new matrix that acts as a percentage instead of a fraction – simply because 
it reads better:

perc_age_stat_mat = frac_age_stat_mat * 100

perc_age_stat_mat = perc_age_stat_mat.astype(np.uint8)

perc_age_stat_mat

The first line simply multiplies all the elements of the 2D array by 100. Matplotlib is smart 
enough to traverse different array structures. That line will work if it’s presented with an array 
with any dimensions and would do exactly what is expected.

Here is the result:

Figure 2.3 – A matrix representing the distribution of vaccine-adverse effects  

in the five US states with the most cases
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7.	 Finally, let’s create a graphical representation of the matrix using Matplotlib:

fig = plt.figure()

ax = fig.add_subplot()

ax.matshow(perc_age_stat_mat, cmap=plt.get_cmap("Greys"))

ax.set_yticks(range(5))

ax.set_yticklabels(top_states.index)

ax.set_xticks(range(6))

ax.set_xticklabels(["0-19", "20-39", "40-59", "60-79", 
"80-99", "100-119"])

fig.savefig("matrix.png")

Do not dwell too much on the Matplotlib code – we are going to discuss it in the next recipe. The 
fundamental point here is that you can pass NumPy data structures to Matplotlib. Matplotlib, like 
pandas, is based on NumPy.

See also

The following is some extra information that may be useful:

•	 NumPy has many more features than the ones we’ve discussed here. There are plenty of books 
and tutorials on them. The official documentation is a good place to start: https://numpy.
org/doc/stable/.  

•	 There are many important issues to discover with NumPy, but probably one of the most important 
is broadcasting: NumPy’s ability to take arrays of different structures and get the operations 
right. For details, go to https://numpy.org/doc/stable/user/theory.
broadcasting.html.

Introducing Matplotlib for chart generation
Matplotlib is the most common Python library for generating charts. There are more modern alternatives, 
such as Bokeh, which is web-centered, but the advantage of Matplotlib is not only that it is the most 
widely available and widely documented chart library but also, in the computational biology world, 
we want a chart library that is both web- and paper-centric. This is because many of our charts will 
be submitted to scientific journals, which are equally concerned with both formats. Matplotlib can 
handle this for us.

Many of the examples in this recipe could also be done directly with pandas (hence indirectly with 
Matplotlib), but the point here is to exercise Matplotlib.

Once again, we are going to use VAERS data to plot some information about the DataFrame’s metadata 
and summarize the epidemiological data.
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Getting ready

Again, we will be using the data from the first recipe. The code can be found in Chapter02/
Matplotlib.py.

How to do it...

Follow these steps:

1.	 The first thing that we will do is plot the fraction of nulls per column:

import numpy as np

import pandas as pd

import matplotlib as mpl

import matplotlib.pyplot as plt

vdata = pd.read_csv(

    "2021VAERSDATA.csv.gz", encoding="iso-8859-1",

    usecols=lambda name: name != "SYMPTOM_TEXT")

num_rows = len(vdata)

perc_nan = {}

for col_name in vdata.columns:

    num_nans = len(vdata[col_name][vdata[col_name].
isna()])

    perc_nan[col_name] = 100 * num_nans / num_rows

labels = perc_nan.keys()

bar_values = list(perc_nan.values())

x_positions = np.arange(len(labels))

labels is the column names that we are analyzing, bar_values is the fraction of null values, 
and x_positions is the location of the bars on the bar chart that we are going to plot next.

2.	 Here is the code for the first version of the bar plot:

fig = plt.figure()

fig.suptitle("Fraction of empty values per column")

ax = fig.add_subplot()

ax.bar(x_positions, bar_values)

ax.set_ylabel("Percent of empty values")

ax.set_ylabel("Column")

ax.set_xticks(x_positions)

ax.set_xticklabels(labels)
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ax.legend()

fig.savefig("naive_chart.png")

We start by creating a figure object with a title. The figure will have a subplot that will contain 
the bar chart. We also set several labels and only used defaults. Here is the sad result:

Figure 2.4 – Our first chart attempt, just using the defaults
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3.	 Surely, we can do better. Let’s format the chart substantially more:

fig = plt.figure(figsize=(16, 9), tight_layout=True, 
dpi=600)

fig.suptitle("Fraction of empty values per column", 
fontsize="48")

ax = fig.add_subplot()

b1 = ax.bar(x_positions, bar_values)

ax.set_ylabel("Percent of empty values", fontsize="xx-
large")

ax.set_xticks(x_positions)

ax.set_xticklabels(labels, rotation=45, ha="right")

ax.set_ylim(0, 100)

ax.set_xlim(-0.5, len(labels))

for i, x in enumerate(x_positions):

    ax.text(

        x, 2, "%.1f" % bar_values[i], rotation=90,

        va="bottom", ha="center",

        backgroundcolor="white")

fig.text(0.2, 0.01, "Column", fontsize="xx-large")

fig.savefig("cleaner_chart.png")

The first thing that we do is set up a bigger figure for Matplotlib to provide a tighter layout. We 
rotate the x-axis tick labels 45 degrees so that they fit better. We also put the values on the bars. 
Finally, we do not have a standard x-axis label as it would be on top of the tick labels. Instead, 
we write the text explicitly. Note that the coordinate system of the figure can be completely 
different from the coordinate system of the subplot – for example, compare the coordinates of 
ax.text and fig.text. Here is the result:
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Figure 2.5 – Our second chart attempt, while taking care of the layout

4.	 Now, we are going to do some summary analysis of our data based on four plots on a single 
figure. We will chart the vaccines involved in deaths, the days between administration and 
death, the deaths over time, and the sex of people who have died for the top 10 states in terms 
of their quantity:

dead = vdata[vdata.DIED == "Y"]

vax = pd.read_csv("2021VAERSVAX.csv.gz", 
encoding="iso-8859-1").set_index("VAERS_ID")

 EBSCOhost - printed on 2/9/2023 7:03 AM via . All use subject to https://www.ebsco.com/terms-of-use



Getting to Know NumPy, pandas, Arrow, and Matplotlib44

vax_dead = dead.join(vax, on="VAERS_ID", how="inner")

dead_counts = vax_dead["VAX_TYPE"].value_counts()

large_values = dead_counts[dead_counts >= 10]

other_sum = dead_counts[dead_counts < 10].sum()

large_values = large_values.append(pd.Series({"OTHER": 
other_sum}))

distance_df = vax_dead[vax_dead.DATEDIED.notna() & vax_
dead.VAX_DATE.notna()]

distance_df["DATEDIED"] = pd.to_datetime(distance_
df["DATEDIED"])

distance_df["VAX_DATE"] = pd.to_datetime(distance_
df["VAX_DATE"])

distance_df = distance_df[distance_df.DATEDIED >= "2021"]

distance_df = distance_df[distance_df.VAX_DATE >= "2021"]

distance_df = distance_df[distance_df.DATEDIED >= 
distance_df.VAX_DATE]

time_distances = distance_df["DATEDIED"] - distance_
df["VAX_DATE"]

time_distances_d = time_distances.astype(int) / (10**9 * 
60 * 60 * 24)

date_died = pd.to_datetime(vax_dead[vax_dead.DATEDIED.
notna()]["DATEDIED"])

date_died = date_died[date_died >= "2021"]

date_died_counts = date_died.value_counts().sort_index()

cum_deaths = date_died_counts.cumsum()

state_dead = vax_dead[vax_dead["STATE"].notna()]
[["STATE", "SEX"]]

top_states = sorted(state_dead["STATE"].value_counts().
head(10).index)

top_state_dead = state_dead[state_dead["STATE"].isin(top_
states)].groupby(["STATE", "SEX"]).size()#.reset_index()

top_state_dead.loc["MN", "U"] = 0  # XXXX

top_state_dead = top_state_dead.sort_index().reset_
index()
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top_state_females = top_state_dead[top_state_dead.SEX == 
"F"][0]

top_state_males = top_state_dead[top_state_dead.SEX == 
"M"][0]

top_state_unk = top_state_dead[top_state_dead.SEX == "U"]
[0]

The preceding code is strictly pandas-based and was made in preparation for the plotting activity.

5.	 The following code plots all the information simultaneously. We are going to have four subplots 
organized in 2 by 2 format:

fig, ((vax_cnt, time_dist), (death_time, state_reps)) = 
plt.subplots(

    2, 2,

    figsize=(16, 9), tight_layout=True)

vax_cnt.set_title("Vaccines involved in deaths")

wedges, texts = vax_cnt.pie(large_values)

vax_cnt.legend(wedges, large_values.index, loc="lower 
left")

time_dist.hist(time_distances_d, bins=50)

time_dist.set_title("Days between vaccine administration 
and death")

time_dist.set_xlabel("Days")

time_dist.set_ylabel("Observations")

death_time.plot(date_died_counts.index, date_died_counts, 
".")

death_time.set_title("Deaths over time")

death_time.set_ylabel("Daily deaths")

death_time.set_xlabel("Date")

tw = death_time.twinx()

tw.plot(cum_deaths.index, cum_deaths)

tw.set_ylabel("Cummulative deaths")

state_reps.set_title("Deaths per state stratified by 
sex") state_reps.bar(top_states, top_state_females, 
label="Females")

state_reps.bar(top_states, top_state_males, 
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label="Males", bottom=top_state_females)

state_reps.bar(top_states, top_state_unk, 
label="Unknown",

               bottom=top_state_females.values + top_
state_males.values)

state_reps.legend()

state_reps.set_xlabel("State")

state_reps.set_ylabel("Deaths")

fig.savefig("summary.png")

We start by creating a figure with 2x2 subplots. The subplots function returns, along with 
the figure object, four axes objects that we can use to create our charts. Note that the legend is 
positioned in the pie chart, we have used a twin axis on the time distance plot, and we have a 
way to compute stacked bars on the death per state chart. Here is the result:

Figure 2.6 – Four combined charts summarizing the vaccine data

 EBSCOhost - printed on 2/9/2023 7:03 AM via . All use subject to https://www.ebsco.com/terms-of-use



Introducing Matplotlib for chart generation 47

There’s more...

Matplotlib has two interfaces you can use – an older interface, designed to be similar to MATLAB, 
and a more powerful object-oriented (OO) interface. Try as much as possible to avoid mixing the 
two. Using the OO interface is probably more future-proof. The MATLAB-like interface is below the 
matplotlib.pyplot module. To make things confusing, the entry points for the OO interface 
are in that module – that is, matplotlib.pyplot.figure and matplotlib.pyplot.
subplots.

See also

The following is some extra information that may be useful:

•	 The documentation for Matplolib is really, really good. For example, there’s a gallery of visual 
samples with links to the code for generating each sample. This can be found at https://
matplotlib.org/stable/gallery/index.html. The API documentation is 
generally very complete.

•	 Another way to improve the looks of Matplotlib charts is to use the Seaborn library. Seaborn’s 
main purpose is to add statistical visualization artifacts, but as a side effect, when imported, 
it changes the defaults of Matplotlib to something more palatable. We will be using Seaborn 
throughout this book; check out the plots provided in the next chapter.
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3
Next-Generation Sequencing

Next-generation sequencing (NGS) is one of the fundamental technological developments of the century 
in life sciences. Whole-genome sequencing (WGS), restriction site-associated DNA sequencing 
(RAD-Seq), ribonucleic acid sequencing (RNA-Seq), chromatin immunoprecipitation sequencing 
(ChIP-Seq), and several other technologies are routinely used to investigate important biological 
problems. These are also called high-throughput sequencing technologies, and with good reason: they 
generate vast amounts of data that needs to be processed. NGS is the main reason that computational 
biology has become a big-data discipline. More than anything else, this is a field that requires strong 
bioinformatics techniques.

Here, we will not discuss each individual NGS technique per se (this would require a whole book of 
its own). We will use an existing WGS dataset—the 1,000 Genomes Project—to illustrate the most 
common steps necessary to analyze genomic data. The recipes presented here will be easily applicable 
to other genomic sequencing approaches. Some of them can also be used for transcriptomic analysis 
(for example, RNA-Seq). The recipes are also species-independent, so you will be able to apply them 
to any other species for which you have sequenced data. The biggest difference in processing data 
from different species is related to genome size, diversity, and the quality of the reference genome 
(if it exists for your species). These will not affect the automated Python part of NGS processing 
much. In any case, we will discuss different genomes in Chapter 5, Working with Genomes.

As this is not an introductory book, you are expected to know at least what FASTA (FASTA), FASTQ, 
Binary Alignment Map (BAM), and Variant Call Format (VCF) files are. I will also make use of basic 
genomic terminology without introducing it (such as exomes, nonsynonymous mutations, and so on). 
You are required to be familiar with basic Python. We will leverage this knowledge to introduce the 
fundamental libraries in Python to perform NGS analysis. Here, we will follow the flow of a standard 
bioinformatics pipeline.

However, before we delve into real data from a real project, let’s get comfortable with accessing existing 
genomic databases and basic sequence processing—a simple start before the storm.

If you are running the content via Docker, you can use the tiagoantao/bioinformatics_ngs 
image. If you are using Anaconda Python, the required software for the chapter will be introduced 
in each recipe. 
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In this chapter, we will cover the following recipes:

•	 Accessing GenBank and moving around National Center for Biotechnology Information 
(NCBI) databases

•	 Performing basic sequence analysis

•	 Working with modern sequence formats

•	 Working with alignment data

•	 Extracting data from VCF files

•	 Studying genome accessibility and filtering single-nucleotide polymorphism (SNP) data

•	 Processing NGS data with HTSeq

Accessing GenBank and moving around NCBI databases
Although you may have your own data to analyze, you will probably need existing genomic datasets. 
Here, we will look at how to access such databases from NCBI. We will not only discuss GenBank 
but also other databases from NCBI. Many people refer (wrongly) to the whole set of NCBI databases 
as GenBank, but NCBI includes the nucleotide database and many others—for example, PubMed.

As sequencing analysis is a long subject and this book targets intermediate to advanced users, we will 
not be very exhaustive with a topic that is, at its core, not very complicated.

Nonetheless, it’s a good warm-up for the more complex recipes that we will see at the end of this chapter.

Getting ready

We will use Biopython, which you installed in Chapter 1, Python and the Surrounding Software Ecology. 
Biopython provides an interface to Entrez, the data retrieval system made available by NCBI.

This recipe is made available in the Chapter03/Accessing_Databases.py file.

Tip
You will be accessing a live application programming interface (API) from NCBI. Note that 
the performance of the system may vary during the day. Furthermore, you are expected to be 
a “good citizen” while using it. You will find some recommendations at https://www.
ncbi.nlm.nih.gov/books/NBK25497/#chapter2.Usage_Guidelines_
and_Requiremen. Notably, you are required to specify an email address with your query. 
You should try to avoid a large number of requests (100 or more) during peak times (between 
9.00 a.m. and 5.00 p.m. American Eastern Time on weekdays), and do not post more than three 
queries per second (Biopython will take care of this for you). It’s not only good citizenship, 
but you risk getting blocked if you overuse NCBI’s servers (a good reason to give a real email 
address, because NCBI may try to contact you).
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How to do it...

Now, let’s look at how we can search and fetch data from NCBI databases:

1.	 We will start by importing the relevant module and configuring the email address:

from Bio import Entrez, SeqIO

Entrez.email = 'put@your.email.here'

We will also import the module to process sequences. Do not forget to put in the correct 
email address.

2.	 We will now try to find the chloroquine resistance transporter (CRT) gene in Plasmodium 
falciparum (the parasite that causes the deadliest form of malaria) on the nucleotide 
database:

handle = Entrez.esearch(db='nucleotide', term='CRT[Gene 
Name] AND "Plasmodium falciparum"[Organism]')

rec_list = Entrez.read(handle)

if int(rec_list['RetMax']) < int(rec_list['Count']):

    handle = Entrez.esearch(db='nucleotide', 
term='CRT[Gene Name] AND "Plasmodium 
falciparum"[Organism]', retmax=rec_list['Count'])

    rec_list = Entrez.read(handle)

We will search the nucleotide database for our gene and organism (for the syntax of the 
search string, check the NCBI website). Then, we will read the result that is returned. Note that 
the standard search will limit the number of record references to 20, so if you have more, you 
may want to repeat the query with an increased maximum limit. In our case, we will actually 
override the default limit with retmax. The Entrez system provides quite a few sophisticated 
ways to retrieve a large number of results (for more information, check the Biopython or NCBI 
Entrez documentation). Although you now have the identifiers (IDs) of all of the records, you 
still need to retrieve the records properly.

3.	 Now, let’s try to retrieve all of these records. The following query will download all matching 
nucleotide sequences from GenBank, which is 1,374 at the time of writing this book. You 
probably won’t want to do this all the time:

id_list = rec_list['IdList']

hdl = Entrez.efetch(db='nucleotide', id=id_list, 
rettype='gb')

Well, in this case, go ahead and do it. However, be careful with this technique, because you will 
retrieve a large number of complete records, and some of them will have fairly large sequences 
inside. You risk downloading a lot of data (which would be a strain both on your side and on 
the NCBI servers).
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There are several ways around this. One way is to make a more restrictive query and/or download 
just a few at a time and stop when you have found the one that you need. The precise strategy 
will depend on what you are trying to achieve. In any case, we will retrieve a list of records in 
the GenBank format (which includes sequences, plus a lot of interesting metadata).

4.	 Let’s read and parse the result:

recs = list(SeqIO.parse(hdl, 'gb'))

Note that we have converted an iterator (the result of SeqIO.parse) to a list. The advantage 
of doing this is that we can use the result as many times as we want (for example, iterate many 
times over), without repeating the query on the server. 

This saves time, bandwidth, and server usage if you plan to iterate many times over. The disadvantage 
is that it will allocate memory for all records. This will not work for very large datasets; you 
might not want to do this conversion genome-wide as in Chapter 5, Working with Genomes. 
We will return to this topic in the last part of this book. If you are doing interactive computing, 
you will probably prefer to have a list (so that you can analyze and experiment with it multiple 
times), but if you are developing a library, an iterator will probably be the best approach.

5.	 We will now just concentrate on a single record. This will only work if you used the exact same 
preceding query:

for rec in recs:

    if rec.name == 'KM288867':

        break

print(rec.name)

print(rec.description)

The rec variable now has our record of interest. The rec.description file will contain 
its human-readable description.

6.	 Now, let’s extract some sequence features that contain information such as gene products and 
exon positions on the sequence:

for feature in rec.features:

     if feature.type == 'gene':

         print(feature.qualifiers['gene'])

     elif feature.type == 'exon':

         loc = feature.location

         print(loc.start, loc.end, loc.strand)

     else:

         print('not processed:\n%s' % feature)
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If the feature.type value is gene, we will print its name, which will be in the qualifiers 
dictionary. We will also print all the locations of exons. Exons, as with all features, have locations 
in this sequence: a start, an end, and the strand from where they are read. While all the start and 
end positions for our exons are ExactPosition, note that Biopython supports many other 
types of positions. One type of position is BeforePosition, which specifies that a location 
point is before a certain sequence position. Another type of position is BetweenPosition, 
which gives the interval for a certain location start/end. There are quite a few more position 
types; these are just some examples.

Coordinates will be specified in such a way that you will be able to easily retrieve the sequence 
from a Python array with ranges, so generally, the start will be one before the value on the record, 
and the end will be equal. The issue of coordinate systems will be revisited in future recipes.

For other feature types, we simply print them. Note that Biopython will provide a human-readable 
version of the feature when you print it.

7.	 We will now look at the annotations on the record, which are mostly metadata that is not 
related to the sequence position:

for name, value in rec.annotations.items():

    print('%s=%s' % (name, value))

Note that some values are not strings; they can be numbers or even lists (for example, the 
taxonomy annotation is a list).

8.	 Last but not least, you can access a fundamental piece of information—the sequence:

print(len(rec.seq))

The sequence object will be the main topic of our next recipe.

There’s more...

There are many more databases at NCBI. You will probably want to check the Sequence Read Archive 
(SRA) database (previously known as Short Read Archive) if you are working with NGS data. The 
SNP database contains information on SNPs, whereas the protein database has protein sequences, 
and so on. A full list of databases in Entrez is linked in the See also section of this recipe.

Another database that you probably already know about with regard to NCBI is PubMed, which 
includes a list of scientific and medical citations, abstracts, and even full texts. You can also access it 
via Biopython. Furthermore, GenBank records often contain links to PubMed. For example, we can 
perform this on our previous record, as shown here:

from Bio import Medline

refs = rec.annotations['references']

for ref in refs:
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    if ref.pubmed_id != '':

        print(ref.pubmed_id)

        handle = Entrez.efetch(db='pubmed', id=[ref.pubmed_id], 
rettype='medline', retmode='text')

        records = Medline.parse(handle)

        for med_rec in records:

            for k, v in med_rec.items():

                print('%s: %s' % (k, v))

This will take all reference annotations, check whether they have a PubMed ID, and then access the 
PubMed database to retrieve the records, parse them, and then print them.

The output per record is a Python dictionary. Note that there are many references to external databases 
on a typical GenBank record.

Of course, there are many other biological databases outside NCBI, such as Ensembl (http://
www.ensembl.org) and University of California, Santa Cruz (UCSC) Genome Bioinformatics 
(http://genome.ucsc.edu/). The support for many of these databases in Python will vary a lot.

An introductory recipe on biological databases would not be complete without at least a passing 
reference to Basic Local Alignment Search Tool (BLAST). BLAST is an algorithm that assesses the 
similarity of sequences. NCBI provides a service that allows you to compare your sequence of interest 
against its own database. Of course, you can use your local BLAST database instead of using NCBI’s 
service. Biopython provides extensive support for this, but as this is too introductory, I will just refer 
you to the Biopython tutorial.

See also

This additional information will also be useful:

•	 You can find more examples on the Biopython tutorial at http://biopython.org/
DIST/docs/tutorial/Tutorial.html.

•	 A list of accessible NCBI databases can be found at http://www.ncbi.nlm.nih.gov/
gquery/.

•	 A great question and answer (Q&A) site where you can find help for your problems with 
databases and sequence analysis is Biostars (http://www.biostars.org); you can 
use it for all of the content in this book, not just for this recipe.
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Performing basic sequence analysis
We will now do some basic analysis of DNA sequences. We will work with FASTA files and do some 
manipulation, such as reverse complementing or transcription. As with the previous recipe, we will 
use Biopython, which you installed in Chapter 1, Python and the Surrounding Software Ecology. These 
two recipes provide you with the necessary introductory building blocks with which we will perform 
all the modern NGS analysis and then genome processing in this chapter and Chapter 5, Working 
with Genomes.

Getting ready

The code for this recipe is available in Chapter03/Basic_Sequence_Processing.py. 
We will use the human lactase (LCT) gene as an example; you can get this using your knowledge 
from the previous recipe, by using the Entrez research interface:

from Bio import Entrez, SeqIO, SeqRecord

Entrez.email = "your@email.here"

hdl = Entrez.efetch(db='nucleotide', id=['NM_002299'], 
rettype='gb') # Lactase gene

gb_rec = SeqIO.read(hdl, 'gb')

Now that we have the GenBank record, let’s extract the gene sequence. The record has a bit more than 
that, but let’s get the precise location of the gene first:

for feature in gb_rec.features:

    if feature.type == 'CDS':

        location = feature.location  # Note translation 
existing

cds = SeqRecord.SeqRecord(gb_rec.seq[location.start:location.
end], 'NM_002299', description='LCT CDS only')

Our example sequence is available on the Biopython sequence record.

How to do it...

Let’s take a look at the following steps:

1.	 As our sequence of interest is available in a Biopython sequence object, let’s start by saving it 
to a FASTA file on our local disk:

from Bio import SeqIO

w_hdl = open('example.fasta', 'w')
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SeqIO.write([cds], w_hdl, 'fasta')

w_hdl.close()

The SeqIO.write function takes a list of sequences to write (in our case, it’s just a single 
one). Be careful with this idiom. If you want to write many sequences (and you could easily 
write millions with NGS), do not use a list (as shown in the preceding code snippet) because 
this will allocate massive amounts of memory. Use either an iterator or the SeqIO.write 
function several times with a subset of the sequence on each write.

2.	 In most situations, you will actually have the sequence on the disk, so you will be interested 
in reading it:

recs = SeqIO.parse('example.fasta', 'fasta')

for rec in recs:

    seq = rec.seq

    print(rec.description)

    print(seq[:10])

Here, we are concerned with processing a single sequence, but FASTA files can contain multiple 
records. The Python idiom to perform this is quite easy. To read a FASTA file, you just use 
standard iteration techniques, as shown in the following code snippet. For our example, the 
preceding code will print the following output:

NM_002299 LCT CDS only

 ATGGAGCTGT

Note that we printed seq[:10]. The sequence object can use typical array slices to get part 
of a sequence.

3.	 As we now have an unambiguous DNA, we can transcribe it as follows:

rna = seq.transcribe()

print(rna)

4.	 Finally, we can translate our gene into a protein:

prot = seq.translate()

print(prot)

Now, we have the amino acid sequence for our gene. 

There’s more...

Much more can be said about the management of sequences in Biopython, but this is mostly introductory 
material that you can find in the Biopython tutorial. I think it’s important to give you a taste of 
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sequence management, mostly for completion purposes. To support those of you who might have 
some experience in other fields of bioinformatics but are just starting with sequence analysis, there 
are, nonetheless, a few points that you should be aware of:

•	 When you perform an RNA translation to get your protein, be sure to use the correct genetic 
code. Even if you are working with “common” organisms (such as humans), remember that 
the mitochondrial genetic code is different.

•	 Biopython’s Seq object is much more flexible than what’s shown here. For some good examples, 
refer to the Biopython tutorial. However, this recipe will be enough for the work we need to 
do with FASTQ files (see the next recipe).

•	 To deal with strand-related issues, there are—as expected—sequence functions such as 
reverse_complement.

•	 The GenBank record from which we started includes a lot of metadata information about the 
sequence, so be sure to explore it.

See also

•	 Genetic codes known to Biopython are the ones specified by NCBI, available at http://
www.ncbi.nlm.nih.gov/Taxonomy/Utils/wprintgc.cgi.

•	 As in the previous recipe, the Biopython tutorial is your main port of call and is available at 
http://biopython.org/DIST/docs/tutorial/Tutorial.html.

•	 Be sure to also check the Biopython SeqIO page at http://biopython.org/wiki/
SeqIO.

Working with modern sequence formats
Here, we will work with FASTQ files, the standard format output used by modern sequencers. You 
will learn how to work with quality scores per base and also consider variations in output coming 
from different sequencing machines and databases. This is the first recipe that will use real data (big 
data) from the human 1,000 Genomes Project. We will start with a brief description of the project.

Getting ready

The human 1,000 Genomes Project aims to catalog worldwide human genetic variation and takes 
advantage of modern sequencing technology to do WGS. This project makes all data publicly available, 
which includes output from sequencers, sequence alignments, and SNP calls, among many other 
artifacts. The name “1,000 Genomes” is actually a misnomer, because it currently includes more than 
2,500 samples. These samples are divided into hundreds of populations, spanning the whole planet. 
We will mostly use data from four populations: African Yorubans (YRI), Utah Residents with 
Northern and Western European Ancestry (CEU), Japanese in Tokyo (JPT), and Han Chinese 
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in Beijing (CHB). The reason we chose these specific populations is that they were the first ones 
that came from HapMap, an old project with similar goals. They used genotyping arrays to find 
out more about the quality of this subset. We will revisit the 1,000 Genomes and HapMap projects 
in Chapter 6, Population Genetics.

Tip
Next-generation datasets are generally very large. As we will be using real data, some of the 
files that you will download will be big. While I have tried to choose the smallest real examples 
possible, you will still need a good network connection and a considerably large amount of disk 
space. Waiting for the download will probably be your biggest hurdle in this recipe, but data 
management is a serious problem with NGS. In real life, you will need to budget time for data 
transfer, allocate disk space (which can be financially costly), and consider backup policies. 
The most common initial mistake with NGS is to think that these problems are trivial, but 
they are not. An operation such as copying a set of BAM files to a network, or even to your 
computer, will become a headache. Be prepared. After downloading large files, at the very 
least, you should check that the size is correct. Some databases offer Message Digest 5 (MD5) 
checksums. You can compare these checksums with the ones on the files you downloaded by 
using tools such as md5sum.

The instructions to download the data are at the top of the notebook, as specified in the first cell 
of Chapter03/Working_with_FASTQ.py. This is a fairly small file (27 megabytes (MB)) 
and represents part of the sequenced data of a Yoruban female (NA18489). If you refer to the 1,000 
Genomes Project, you will see that the vast majority of FASTQ files are much bigger (up to two orders 
of magnitude bigger).

The processing of FASTQ sequence files will mostly be performed using Biopython.

How to do it...

Before we start coding, let’s take a look at the FASTQ file, in which you will have many records, as 
shown in the following code snippet:

@SRR003258.1 30443AAXX:1:1:1053:1999 length=51

 ACCCCCCCCCACCCCCCCCCCCCCCCCCCCCCCCCCCACACACACCAACAC

 +

 =IIIIIIIII5IIIIIII>IIII+GIIIIIIIIIIIIII(IIIII01&III

Line 1 starts with @, followed by a sequence ID and a description string. The description string will 
vary from a sequencer or a database source, but will normally be amenable to automated parsing.

The second line has the sequenced DNA, which is just like a FASTA file. The third line is a + sign, 
sometimes followed by the description line on the first line.
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The fourth line contains quality values for each base that’s read on line 2. Each letter encodes a Phred 
quality score (http://en.wikipedia.org/wiki/Phred_quality_score), which 
assigns a probability of error to each read. This encoding can vary a bit among platforms. Be sure to 
check for this on your specific platform.

Let’s take a look at the following steps:

1.	 Let’s open the file:

import gzip

from Bio import SeqIO

recs = SeqIO.parse(gzip.open('SRR003265.filt.fastq.
gz'),'rt', encoding='utf-8'), 'fastq')

rec = next(recs)

print(rec.id, rec.description, rec.seq)

print(rec.letter_annotations)

We will open a GNU ZIP (GZIP) file so that we can use the Python gzip module. We 
will also specify the fastq format. Note that some variations in this format will impact the 
interpretation of the Phred quality scores. You may want to specify a slightly different format. 
Refer to http://biopython.org/wiki/SeqIO for all formats.

Tip
You should usually store your FASTQ files in a compressed format. Not only do you gain 
a lot of disk space, as these are text files, but you probably also gain some processing time. 
Although decompressing is a slow process, it can still be faster than reading a much bigger 
(uncompressed) file from a disk.

We print the standard fields and quality scores from the previous recipe into rec.letter_
annotations. As long as we choose the correct parser, Biopython will convert all the Phred 
encoding letters to logarithmic scores, which we will use soon.

For now, don’t do this:

recs = list(recs) # do not do it!

Although this might work with some FASTA files (and with this very small FASTQ file), if you 
do something such as this, you will allocate memory so that you can load the complete file in 
memory. With an average FASTQ file, this is the best way to crash your computer. As a rule, 
always iterate over your file. If you have to perform several operations over it, you have two 
main options. The first option is to perform a single iteration or all operations at once. The 
second option to is open a file several times and repeat the iteration.
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2.	 Now, let’s take a look at the distribution of nucleotide reads:

from collections import defaultdict

recs = SeqIO.parse(gzip.open('SRR003265.filt.fastq.gz', 
'rt', encoding='utf-8'), 'fastq')

cnt = defaultdict(int)

for rec in recs:

    for letter in rec.seq:

        cnt[letter] += 1

tot = sum(cnt.values())

for letter, cnt in cnt.items():

    print('%s: %.2f %d' % (letter, 100. * cnt / tot, 
cnt))

We will reopen the file and use defaultdict to maintain a count of nucleotide references 
in the FASTQ file. If you have never used this Python standard dictionary type, you may want 
to consider it because it removes the need to initialize dictionary entries, assuming default 
values for each type.

Note
There is a residual number for N calls. These are calls in which a sequencer reports an unknown 
base. In our FASTQ file example, we have cheated a bit because we used a filtered file (the fraction 
of N calls will be quite low). Expect a much bigger number of N calls in a file that comes out 
of the sequencer unfiltered. In fact, you can even expect something more with regard to the 
spatial distribution of N calls.

3.	 Let’s plot the distribution of Ns according to their read position:

import seaborn as sns

import matplotlib.pyplot as plt

recs = SeqIO.parse(gzip.open('SRR003265.filt.fastq.gz', 
'rt', encoding='utf-8'), 'fastq')

n_cnt = defaultdict(int)

for rec in recs:

    for i, letter in enumerate(rec.seq):

        pos = i + 1

        if letter == 'N':

            n_cnt[pos] += 1

seq_len = max(n_cnt.keys())

positions = range(1, seq_len + 1)
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fig, ax = plt.subplots(figsize=(16,9))

ax.plot(positions, [n_cnt[x] for x in positions])

fig.suptitle('Number of N calls as a function of the 
distance from the start of the sequencer read')

ax.set_xlim(1, seq_len)

ax.set_xlabel('Read distance')

ax.set_ylabel('Number of N Calls')

We import the seaborn library. Although we do not use it explicitly at this point, this library 
has the advantage of making matplotlib plots look better, because it tweaks the default 
matplotlib style.

We then open the file to parse again (remember that you do not use a list but iterate again). We 
iterate through the file and get the position of any references to N. Then, we plot the distribution 
of Ns as a function of the distance from the start of the sequence:

Figure 3.1 – The number of N calls as a function of the distance from the start of the sequencer read
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You will see that until position 25, there are no errors. This is not what you will get from a 
typical sequencer output. Our example file is already filtered, and the 1,000 Genomes filtering 
rules enforce that no N calls can occur before position 25.

While we cannot study the behavior of Ns in this dataset before position 25 (feel free to use one 
of your own unfiltered FASTQ files with this code in order to see how Ns distribute across the 
read position), we can see that after position 25, the distribution is far from uniform. There is 
an important lesson here, which is that the quantity of uncalled bases is position-dependent. 
So, what about the quality of the reads?

4.	 Let’s study the distribution of Phred scores (that is, the quality of our reads):

recs = SeqIO.parse(gzip.open('SRR003265.filt.fastq.gz', 
'rt', encoding='utf-8'), 'fastq')

cnt_qual = defaultdict(int)

for rec in recs:

    for i, qual in enumerate(rec.letter_
annotations['phred_quality']):

        if i < 25:

            continue

        cnt_qual[qual] += 1

tot = sum(cnt_qual.values())

for qual, cnt in cnt_qual.items():

    print('%d: %.2f %d' % (qual, 100. * cnt / tot, cnt))

We will start by reopening the file (again) and initializing a default dictionary. We then get the 
phred_quality letter annotation, but we ignore sequencing positions that are up to 24 base 
pairs (bp) from the start (because of the filtering of our FASTQ file, if you have an unfiltered 
file, you may want to drop this rule). We add the quality score to our default dictionary and, 
finally, print it.

Note
As a short reminder, the Phred quality score is a logarithmic representation of the probability 
of an accurate call. This probability is given as . So, a Q of 10 represents 90 percent call 
accuracy, 20 represents 99 percent call accuracy, and 30 will be 99.9 percent. For our file, the 
maximum accuracy will be 99.99 percent (40). In some cases, values of 60 are possible (99.9999 
percent accuracy).
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5.	 More interestingly, we can plot the distribution of qualities according to their read position:

recs = SeqIO.parse(gzip.open('SRR003265.filt.fastq.gz', 
'rt', encoding='utf-8'), 'fastq')

qual_pos = defaultdict(list)

for rec in recs:

    for i, qual in enumerate(rec.letter_
annotations['phred_quality']):

        if i < 25 or qual == 40:

           continue

        pos = i + 1

        qual_pos[pos].append(qual)

vps = []

poses = list(qual_pos.keys())

poses.sort()

for pos in poses:

    vps.append(qual_pos[pos])

fig, ax = plt.subplots(figsize=(16,9))

sns.boxplot(data=vps, ax=ax)

ax.set_xticklabels([str(x) for x in range(26, max(qual_
pos.keys()) + 1)])

ax.set_xlabel('Read distance')

ax.set_ylabel('PHRED score')

fig.suptitle('Distribution of PHRED scores as a function 
of read distance')

In this case, we will ignore both positions sequenced as 25 bp from the start (again, remove this 
rule if you have unfiltered sequencer data) and the maximum quality score for this file (40). 
However, in your case, you can consider starting your plotting analysis with the maximum. 
You may want to check the maximum possible value for your sequencer hardware. Generally, 
as most calls can be performed with maximum quality, you may want to remove them if you 
are trying to understand where quality problems lie.

Note that we are using the boxplot function of seaborn; we are only using this because 
the output looks slightly better than the standard boxplot function of matplotlib. If you 
prefer not to depend on seaborn, just use the stock matplotlib function. In this case, 
you will call ax.boxplot(vps) instead of sns.boxplot(data=vps, ax=ax).

As expected, the distribution is not uniform, as shown in the following screenshot:
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Figure 3.2 – The distribution of Phred scores as a function of the 

distance from the start of the sequencer read

There’s more...

Although it’s impossible to discuss all the variations of output coming from sequencer files, paired-end 
reads are worth mentioning because they are common and require a different processing approach. 
With paired-end sequencing, both ends of a DNA fragment are sequenced with a gap in the middle 
(called the insert). In this case, two files will be produced: X_1.FASTQ and X_2.FASTQ. Both 
files will have the same order and the exact same number of sequences. The first sequence will be in 
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X_1 pairs with the first sequence of X_2, and so on. With regard to the programming technique, if 
you want to keep the pairing information, you might perform something such as this:

f1 = gzip.open('X_1.filt.fastq.gz', 'rt, enconding='utf-8')

f2 = gzip.open('X_2.filt.fastq.gz', 'rt, enconding='utf-8')

recs1 = SeqIO.parse(f1, 'fastq')

recs2 = SeqIO.parse(f2, 'fastq')

cnt = 0

for rec1, rec2 in zip(recs1, recs2):

    cnt +=1

print('Number of pairs: %d' % cnt)

The preceding code reads all pairs in order and just counts the number of pairs. You will probably want 
to do something more, but this exposes a dialect that is based on the Python zip function that allows 
you to iterate through both files simultaneously. Remember to replace X with your FASTQ prefix.

Finally, if you are sequencing human genomes, you may want to use sequencing data from Complete 
Genomics. In this case, read the There’s more… section in the next recipe, where we briefly discuss 
Complete Genomics data.

See also

Here are some links with more information:

•	 The Wikipedia page on the FASTQ format is quite informative (http://en.wikipedia.
org/wiki/FASTQ_format). 

•	 You can find more information on the 1,000 Genomes Project at http://www.1000genomes.
org/.

•	 Information about the Phred quality score can be found at http://en.wikipedia.
org/wiki/Phred_quality_score.

•	 Illumina provides a good introduction page to paired-end reads at https://www.illumina.
com/science/technology/next-generation-sequencing/paired-end-
vs-single-read-sequencing.html.

•	 The Computational methods for discovering structural variation with next-generation sequencing 
paper from Medvedev et al. on nature methods (http://www.nature.com/nmeth/
journal/v6/n11s/abs/nmeth.1374.html); note that this is not open access.
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Working with alignment data
After you receive your data from the sequencer, you will normally use a tool such as Burrows-Wheeler 
Aligner (bwa) to align your sequences to a reference genome. Most users will have a reference genome 
for their species. You can read more on reference genomes in Chapter 5, Working with Genomes.

The most common representation for aligned data is the Sequence Alignment Map (SAM) format. 
Due to the massive size of most of these files, you will probably work with its compressed version 
(BAM). The compressed format is indexable for extremely fast random access (for example, to speedily 
find alignments to a certain part of a chromosome). Note that you will need to have an index for your 
BAM file, which is normally created by the tabix utility of SAMtools. SAMtools is probably the 
most widely used tool for manipulating SAM/BAM files.

Getting ready

As discussed in the previous recipe, we will use data from the 1,000 Genomes Project. We will use the 
exome alignment for chromosome 20 of female NA18489. This is just 312 MB. The whole-exome 
alignment for this individual is 14.2 gigabytes (GB), and the whole genome alignment (at low coverage 
of 4x) is 40.1 GB. This data is a paired end with reads of 76 bp. This is common nowadays, but slightly 
more complex to process. We will take this into account. If your data is not paired, just simplify the 
following recipe appropriately.

The cell at the top of Chapter03/Working_with_BAM.py will download the data for you. 
The files you will want are NA18490_20_exome.bam and NA18490_20_exome.bam.bai.

We will use pysam, a Python wrapper to the SAMtools C API. You can install it with the following 
command:

conda install –c bioconda pysam

OK—let’s get started.

How to do it...

Before you start coding, note that you can inspect the BAM file using samtools view -h (this is 
if you have SAMtools installed, which we recommend, even if you use the Genome Analysis Toolkit 
(GATK) or something else for variant calling). We suggest that you take a look at the header file and the 
first few records. The SAM format is too complex to be described here. There is plenty of information 
on the internet about it; nonetheless, sometimes, there’s some really interesting information buried 
in these header files.
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Tip
One of the most complex operations in NGS is to generate good alignment files from raw 
sequence data. This not only calls the aligner but also cleans up data. Now, in the @PG headers 
of high-quality BAM files, you will find the actual command lines used for most—if not all—of 
the procedures used to generate this BAM file. In our example BAM file, you will find all the 
information needed to run bwa, SAMtools, GATK IndelRealigner, and the Picard application 
suite to clean up data. Remember that while you can generate BAM files easily, the programs 
after it will be quite picky in terms of the correctness of the BAM input. For instance, if you use 
GATK’s variant caller to generate genotype calls, the files will have to be extensively cleaned. 
The header of other BAM files can thus provide you with the best way to generate yours. A final 
recommendation is that if you do not work with human data, try to find good BAMs for your 
species, because the parameters of a given program may be slightly different. Also, if you use 
something other than the WGS data, check for similar types of sequencing data.

Let’s take a look at the following steps:

1.	 Let’s inspect the header files:

import pysam

bam = pysam.AlignmentFile('NA18489.chrom20.ILLUMINA.bwa.
YRI.exome.20121211.bam', 'rb')

headers = bam.header

for record_type, records in headers.items():

    print (record_type)

    for i, record in enumerate(records):

        if type(record) == dict:

            print('\t%d' % (i + 1))

            for field, value in record.items():

                print('\t\t%s\t%s' % (field, value))

        else:

            print('\t\t%s' % record)

The header is represented as a dictionary (where the key is record_type). As there can be 
several instances of the same record_type, the value of the dictionary is a list (where each 
element is—again—a dictionary, or sometimes a string containing tag/value pairs).

2.	 We will now inspect a single record. The amount of data per record is quite complex. Here, 
we will focus on some of the fundamental fields for paired-end reads. Check the SAM file 
specification and the pysam API documentation for more details:

for rec in bam:

    if rec.cigarstring.find('M') > -1 and rec.
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cigarstring.find('S') > -1 and not rec.is_unmapped and 
not rec.mate_is_unmapped:

    break

print(rec.query_name, rec.reference_id, bam.getrname(rec.
reference_id), rec.reference_start, rec.reference_end)

print(rec.cigarstring)

print(rec.query_alignment_start, rec.query_alignment_end, 
rec.query_alignment_length)

print(rec.next_reference_id, rec.next_reference_
start,rec.template_length)

print(rec.is_paired, rec.is_proper_pair, rec.is_unmapped, 
rec.mapping_quality)

print(rec.query_qualities)

print(rec.query_alignment_qualities)

print(rec.query_sequence)

Note that the BAM file object can be iterated over its records. We will transverse it until we find 
a record whose Concise Idiosyncratic Gapped Alignment Report (CIGAR) string contains 
a match and a soft clip.

The CIGAR string gives an indication of the alignment of individual bases. The clipped part of 
the sequence is the part that the aligner failed to align (but is not removed from the sequence). 
We will also want the read, its mate ID, and position (of the pair, as we have paired-end reads) 
that was mapped to the reference genome.

First, we print the query template name, followed by the reference ID. The reference ID is a 
pointer to the name of the sequence on the given references on the lookup table of references. 
An example will make this clear. For all records on this BAM file, the reference ID is 19 (a 
non-informative number), but if you apply bam.getrname(19), you will get 20, which 
is the name of the chromosome. So, do not confuse the reference ID (in this case, 19) with the 
name of the chromosome (20). This is then followed by the reference start and reference end. 
pysam is 0-based, not 1-based, so be careful when you convert coordinates to other libraries. 
You will notice that the start and end for this case are 59,996 and 60,048, which means an 
alignment of 52 bases. Why are there only 52 bases when the read size is 76 (remember—the 
read size used in this BAM file)? The answer can be found on the CIGAR string, which in our 
case will be 52M24S, which is a 52-bases match, followed by 24 bases that were soft-clipped.

Then, we print where the alignment starts and ends and calculate its length. By the way, you 
can compute this by looking at the CIGAR string. It starts at 0 (as the first part of the read is 
mapped) and ends at 52. The length is 76 again.
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Now, we query the mate (something that you will only do if you have paired-end reads). We 
get its reference ID (as shown in the previous code snippet), its start position, and a measure 
of the distance between both pairs. This measure of distance only makes sense if both mates 
are mapped to the same chromosome.

We then plot the Phred score (refer to the previous recipe, Working with modern sequence 
formats, on Phred scores) for the sequence, and then only for the aligned part. Finally, we 
print the sequence (don’t forget to do this!). This is the complete sequence, not the clipped 
one (of course, you can use the preceding coordinates to clip).

3.	 Now, let’s plot the distribution of the successfully mapped positions in a subset of sequences 
in the BAM file:

import seaborn as sns

import matplotlib.pyplot as plt

counts = [0] * 76

for n, rec in enumerate(bam.fetch('20', 0, 10000000)):

    for i in range(rec.query_alignment_start, rec.query_
alignment_end):

        counts[i] += 1

freqs = [x / (n + 1.) for x in counts]

fig, ax = plt.subplots(figsize=(16,9))

ax.plot(range(1, 77), freqs)

ax.set_xlabel('Read distance')

ax.set_ylabel('PHRED score')

fig.suptitle('Percentage of mapped calls as a function of 
the position from the start of the sequencer read')

We will start by initializing an array to keep the count for the entire 76 positions. Note that 
we then fetch only the records for chromosome 20 between positions 0 and 10 megabase 
pairs (Mbp). We will just use a small part of the chromosome here. It’s fundamental to have 
an index (generated by tabix) for these kinds of fetch operations; the speed of execution 
will be completely different.

We traverse all records in the 10 Mbp boundary. For each boundary, we get the alignment 
start and end and increase the counter of mappability among the positions that were aligned. 
Finally, we convert this into frequencies, and then plot it, as shown in the following screenshot:
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Figure 3.3 – The percentage of mapped calls as a function of the 

position from the start of the sequencer read

It’s quite clear that the distribution of mappability is far from being uniform; it’s worse at the 
extremes, with a drop in the middle.

4.	 Finally, let’s get the distribution of Phred scores across the mapped part of the reads. As you 
may suspect, this is probably not going to be uniform:

from collections import defaultdict

import numpy as np

phreds = defaultdict(list)

for rec in bam.fetch('20', 0, None):

    for i in range(rec.query_alignment_start, rec.query_
alignment_end):

        phreds[i].append(rec.query_qualities[i])

maxs = [max(phreds[i]) for i in range(76)]

tops = [np.percentile(phreds[i], 95) for i in range(76)]

medians = [np.percentile(phreds[i], 50) for i in 
range(76)]

bottoms = [np.percentile(phreds[i], 5) for i in 
range(76)]

medians_fig = [x - y for x, y in zip(medians, bottoms)]

tops_fig = [x - y for x, y in zip(tops, medians)]

maxs_fig = [x - y for x, y in zip(maxs, tops)]
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fig, ax = plt.subplots(figsize=(16,9))

ax.stackplot(range(1, 77), (bottoms, medians_fig,tops_
fig))

ax.plot(range(1, 77), maxs, 'k-')

ax.set_xlabel('Read distance')

ax.set_ylabel('PHRED score')

fig.suptitle('Distribution of PHRED scores as a function 
of the position in the read')

Here, we again use default dictionaries that allow you to use a bit of initialization code. We 
now fetch from start to end and create a list of Phred scores in a dictionary whose index is the 
relative position in the sequence read.

We then use NumPy to calculate the 95th, 50th (median), and 5th percentiles, along with the 
maximum of quality scores per position. For most computational biology analyses, having a 
statistical summarized view of the data is quite common. So, you’re probably already familiar 
with not only percentile calculations, but also with other Pythonic ways to calculate means, 
standard deviations, maximums, and minimums.

Finally, we will perform a stacked plot of the distribution of Phred scores per position. Due to 
the way matplotlib expects stacks, we have to subtract the value of the lower percentile 
from the one before with the stackplot call. We can use the list for the bottom percentiles, 
but we have to correct the median and the top, as follows:

Figure 3.4 – The distribution of Phred scores as a function of the position in the 

read; the bottom blue color spans from 0 to the 5th percentile; the green color up 

to the median, red to the 95th percentile, and purple to the maximum
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There’s more...

Although we will discuss data filtering in the Studying genome accessibility and filtering SNP data recipe 
of this chapter, it’s not our objective to explain the SAM format in detail or give a detailed course in data 
filtering. This task would require a book of its own, but with the basics of pysam, you can navigate 
through SAM/BAM files. However, in the last recipe of this chapter, we will take a look at extracting 
genome-wide metrics from BAM files (via annotations on VCF files that represent metrics of BAM 
files) for the purpose of understanding the overall quality of our dataset.

You will probably have very large data files to work with. It’s possible that some BAM processing will 
take too much time. One of the first approaches to reducing the computation time is subsampling. 
For example, if you subsample at 10 percent, you ignore 9 records out of 10. For many tasks, such as 
some of the analysis done for the quality assessment of BAM files, subsampling at 10 percent (or even 
1 percent) will be enough to get the gist of the quality of the file.

If you use human data, you may have your data sequenced at Complete Genomics. In this case, the 
alignment files will be different. Although Complete Genomics provides tools to convert to standard 
formats, you might be served better if you use its own data.

See also

Additional information can be found at the following links:

•	 The SAM/BAM format is described at http://samtools.github.io/hts-specs/
SAMv1.pdf.

•	 You can find an introductory explanation of the SAM format on the Abecasis group wiki page 
at http://genome.sph.umich.edu/wiki/SAM.

•	 If you really need to get complex statistics from BAM files, Alistair Miles’ pysamstats 
library is your port of call, at https://github.com/alimanfoo/pysamstats.

•	 To convert your raw sequence data to alignment data, you will need an aligner; the most widely 
used is bwa (http://bio-bwa.sourceforge.net/).

•	 Picard (surely a reference to Star Trek: The Next Generation) is the most commonly used tool 
to clean up BAM files; refer to http://broadinstitute.github.io/picard/.

•	 The technical forum for sequence analysis is called SEQanswers (http://seqanswers.
com/).

•	 I would like to repeat the recommendation on Biostars here (which is referred to in the previous 
recipe, Working with modern sequence formats); it’s a treasure trove of information and has a 
very friendly community, at http://www.biostars.org/.

•	 If you have the Complete Genomics data, take a look at the frequently asked questions (FAQs) 
at http://www.completegenomics.com/customer-support/faqs/.
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Extracting data from VCF files
After running a genotype caller (for example, GATK or SAMtools), you will have a VCF file reporting 
on genomic variations, such as SNPs, insertions/deletions (INDELs), copy number variations (CNVs), 
and so on. In this recipe, we will discuss VCF processing with the cyvcf2 module. 

Getting ready

While NGS is all about big data, there is a limit to how much I can ask you to download as a dataset 
for this book. I believe that 2 to 20 GB of data for a tutorial is asking too much. While the 1,000 
Genomes VCF files with realistic annotations are in this OOM, we will want to work with much less 
data here. Fortunately, the bioinformatics community has developed tools to allow for the partial 
download of data. As part of the SAMtools/htslib package (http://www.htslib.org/), 
you can download tabix and bgzip, which will take care of data management. On the command 
line, perform the following operation:

tabix -fh ftp://ftp-

trace.ncbi.nih.gov/1000genomes/ftp/release/20130502/supporting/
vcf_with_sample_level_annotation/ALL.chr22.phase3_shapeit2_
mvncall_integrated_v5_extra_anno.20130502.genotypes.vcf.gz 
22:1-17000000 | bgzip -c > genotypes.vcf.gz

tabix -p vcf genotypes.vcf.gz

The first line will partially download the VCF file for chromosome 22 (up to 17 Mbp) of the 1,000 
Genomes Project. Then, bgzip will compress it.

The second line will create an index, which we will need for direct access to a section of the genome. 
As usual, you have the code to do this in a notebook (the Chapter03/Working_with_VCF.
py file).

You will need to install cyvcf2:

conda install –c bioconda cyvcf2

Tip
If you have conflict resolution problems, you can try using pip instead. This is a last-resort 
solution that you will find yourself doing with conda, as it is incapable of resolving package 
dependencies, something that happens more often than not. You can execute pip install 
cyvcf2.
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How to do it...

Take a look at the following steps:

1.	 Let’s start by inspecting the information that we can get per record:

from cyvcf2 import VCF

v = VCF('genotypes.vcf.gz')

rec = next(v)

print('Variant Level information')

info = rec.INFO

for info in rec.INFO:

    print(info)

print('Sample Level information')

for fmt in rec.FORMAT:

    print(fmt)

We start by inspecting the annotations that are available for each record (remember that each 
record encodes a variant, such as SNP, CNV, INDELs, and so on, and the state of that variant 
per sample). At the variant (record) level, we find AC—the total number of ALT alleles in called 
genotypes, AF—the estimated allele frequency, NS—the number of samples with data, AN—the 
total number of alleles in called genotypes, and DP—the total read depth. There are others, 
but they are mostly specific to the 1,000 Genomes Project (here, we will try to be as general as 
possible). Your own dataset may have more annotations (or none of these).

At the sample level, there are only two annotations in this file: GT—genotype, and DP—the 
per-sample read depth. You have the per-variant (total) read depth and the per-sample read 
depth; be sure not to confuse both.

2.	 Now that we know what information is available, let’s inspect a single VCF record:

v = VCF('genotypes.vcf.gz')

samples = v.samples

print(len(samples))

variant = next(v)

print(variant.CHROM, variant.POS, variant.ID, variant.
REF, variant.ALT, variant.QUAL, variant.FILTER)

print(variant.INFO)

print(variant.FORMAT)

print(variant.is_snp)

str_alleles = variant.gt_bases[0]

alleles = variant.genotypes[0][0:2]
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is_phased = variant.genotypes[0][2]

print(str_alleles, alleles, is_phased)

print(variant.format('DP')[0])

We will start by retrieving the standard information: the chromosome, position, ID, reference base 
(typically just one) and alternative bases (you can have more than one, but it’s not uncommon 
as a first filtering approach to only accept a single ALT, for example, only accept biallelic 
SNPs), quality (as you might expect, Phred-scaled), and filter status. Regarding the filter status, 
remember that whatever the VCF file says, you may still want to apply extra filters (as in the 
next recipe, Studying genome accessibility and filtering SNP data).

We then print the additional variant-level information (AC, AS, AF, AN, DP, and so on), 
followed by the sample format (in this case, DP and GT). Finally, we count the number of 
samples and inspect a single sample to check whether it was called for this variant. Also, the 
reported alleles, heterozygosity, and phasing status (this dataset happens to be phased, which 
is not that common) are included.

3.	 Let’s check the type of variant and the number of nonbiallelic SNPs in a single pass:

from collections import defaultdict

f = VCF('genotypes.vcf.gz')

my_type = defaultdict(int)

num_alts = defaultdict(int)

for variant in f:

    my_type[variant.var_type, variant.var_subtype] += 1

    if variant.var_type == 'snp':

        num_alts[len(variant.ALT)] += 1

print(my_type)

We will now use the now-common Python default dictionary. We find that this dataset has 
INDELs, CNVs, and—of course—SNPs (roughly two-thirds being transitions with one-third 
transversions). There is a residual number (79) of triallelic SNPs.

There’s more...

The purpose of this recipe is to get you up to speed with the cyvcf2 module. At this stage, you should 
be comfortable with the API. We will not spend too much time on usage details because this will be 
the main purpose of the next recipe: using the VCF module to study the quality of your variant calls.

While cyvcf2 is quite fast, it can still take a lot of time to process text-based VCF files. There are 
two main strategies for dealing with this problem. One strategy is parallel processing, which we will 
discuss in the last chapter, Chapter 9, Bioinformatics Pipelines. The second strategy is to convert to a 
more efficient format; we will provide an example of this in Chapter 6, Population Genetics. Note that 
VCF developers are working on a Binary Variant Call Format (BCF) version to deal with parts of 
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these problems (http://www.1000genomes.org/wiki/analysis/variant-call-
format/bcf-binary-vcf-version-2).

See also

Some useful links are as follows:

•	 The specification for VCF is available at http://samtools.github.io/hts-specs/
VCFv4.2.pdf.

•	 GATK is one of the most widely used variant callers; check out https://www.
broadinstitute.org/gatk/ for details.

•	 SAMtools and htslib are used for variant calling and SAM/BAM management; check out 
http://htslib.org for details.

Studying genome accessibility and filtering SNP data
While the previous recipes were focused on giving an overview of Python libraries to deal with 
alignment and variant call data, in this recipe, we will concentrate on actually using them with a clear 
purpose in mind.

If you are using NGS data, chances are that your most important file to analyze is a VCF file, which 
is produced by a genotype caller such as SAMtools, mpileup, or GATK. The quality of your VCF 
calls may need to be assessed and filtered. Here, we will put in place a framework to filter SNP data. 
Rather than giving you filtering rules (an impossible task to be performed in a general way), we will 
give you procedures to assess the quality of your data. With this, you can devise your own filters.

Getting ready

In the best-case scenario, you have a VCF file with proper filters applied. If this is the case, you can 
just go ahead and use your file. Note that all VCF files will have a FILTER column, but this might not 
mean that all of the proper filters were applied. You have to be sure that your data is properly filtered.

In the second case, which is one of the most common, your file will have unfiltered data, but you’ll 
have enough annotations and can apply hard filters (there is no need for programmatic filtering). If 
you have a GATK annotated file, refer to http://gatkforums.broadinstitute.org/
discussion/2806/howto-apply-hard-filters-to-a-call-set.

In the third case, you have a VCF file that has all the annotations that you need, but you may want to 
apply more flexible filters (for example, “if read depth > 20, accept if mapping quality > 30; otherwise, 
accept if mapping quality > 40”).
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In the fourth case, your VCF file does not have all the necessary annotations and you have to revisit 
your BAM files (or even other sources of information). In this case, the best solution is to find whatever 
extra information you can and create a new VCF file with the required annotations. Some genotype 
callers (such as GATK) allow you to specify which annotations you want; you may also want to use extra 
programs to provide more annotations. For example, SnpEff (http://snpeff.sourceforge.
net/) will annotate your SNPs with predictions of their effect (for example, if they are in exons, are 
they coding or non-coding?).

It’s impossible to provide a clear-cut recipe, as it will vary with your type of sequencing data, your 
species of study, and your tolerance to errors, among other variables. What we can do is provide a set 
of typical analyses that is done for high-quality filtering.

In this recipe, we will not use data from the human 1,000 Genomes Project. We want dirty, unfiltered data 
that has a lot of common annotations that can be used to filter it. We will use data from the Anopheles 
gambiae 1,000 Genomes Project (Anopheles is a mosquito vector involved in the transmission of a 
parasite that causes malaria), which makes filtered and unfiltered data available. You can find more 
information on this project at http://www.malariagen.net/projects/vector/
ag1000g.

We will get a part of the centromere of chromosome 3L for around 100 mosquitoes, which is followed 
by a part somewhere in the middle of this chromosome (and index both):

tabix -fh ftp://ngs.sanger.ac.uk/production/ag1000g/phase1/
preview/ag1000g.AC.phase1.AR1.vcf.gz 3L:1-200000 |bgzip -c > 
centro.vcf.gz

tabix -fh ftp://ngs.sanger.ac.uk/production/ag1000g/phase1/
preview/ag1000g.AC.phase1.AR1.vcf.gz 3L:21000001-21200000 
|bgzip -c > standard.vcf.gz

tabix -p vcf centro.vcf.gz

tabix -p vcf standard.vcf.gz

If the links do not work, be sure to check https://github.com/PacktPublishing/
Bioinformatics-with-Python-Cookbook-third-edition/blob/main/
Datasets.py for updates. As usual, the code for downloading this data is available in the 
Chapter02/Filtering_SNPs.ipynb notebook.

Finally, a word of warning on this recipe: the level of Python here will be slightly more complicated 
than usual. The more general code we write, the easier it will be for you to reuse it for your specific case. 
We will use functional programming techniques (lambda functions) and the partial function 
application extensively.
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How to do it...

Take a look at the following steps:

1.	 Let’s start by plotting the distribution of variants across the genome in both files:

from collections import defaultdict

import functools

import numpy as np

import seaborn as sns

import matplotlib.pyplot as plt

from cyvcf2 import VCF

def do_window(recs, size, fun):

    start = None

    win_res = []

    for rec in recs:

        if not rec.is_snp or len(rec.ALT) > 1:

            continue

        if start is None:

            start = rec.POS

        my_win = 1 + (rec.POS - start) // size

        while len(win_res) < my_win:

            win_res.append([])

        win_res[my_win - 1].extend(fun(rec))

    return win_res

wins = {}

size = 2000

names = ['centro.vcf.gz', 'standard.vcf.gz']

for name in names:

 recs = VCF(name)

 wins[name] = do_window(recs, size, lambda x: [1])

We will start by performing the required imports (as usual, remember to remove the first line if 
you are not using the IPython Notebook). Before I explain the function, note what we are doing.

For both files, we will compute windowed statistics. We will divide our file, which includes 
200,000 bp of data, into windows of size 2,000 (100 windows). Every time we find a biallelic 
SNP, we will add a 1 to the list related to this window in the window function.
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The window function will take a VCF record (a rec.is_snp SNP that is not biallelic len 
(rec.ALT) == 1), determine the window where that record belongs (by performing an 
integer division of rec.POS by size), and extend the list of results of that window by the 
function passed to it as the fun parameter (which, in our case, is just a 1).

So, now we have a list of 100 elements (each representing 2,000 bp). Each element will be 
another list that will have a 1 for each biallelic SNP found.

So, if you have 200 SNPs in the first 2,000 bp, the first element of the list will have 200 ones.

2.	 Let’s continue, as follows:

def apply_win_funs(wins, funs):

    fun_results = []

    for win in wins:

        my_funs = {}

        for name, fun in funs.items():

            try:

                my_funs[name] = fun(win)

            except:

                my_funs[name] = None

        fun_results.append(my_funs)

    return fun_results

stats = {}

fig, ax = plt.subplots(figsize=(16, 9))

for name, nwins in wins.items():

    stats[name] = apply_win_funs(nwins, {'sum': sum})

    x_lim = [i * size for i in range(len(stats[name]))]

    ax.plot(x_lim, [x['sum'] for x in stats[name]], 
label=name)

ax.legend()

ax.set_xlabel('Genomic location in the downloaded 
segment')

ax.set_ylabel('Number of variant sites (bi-allelic 
SNPs)')

fig.suptitle('Number of bi-allelic SNPs along the 
genome', fontsize='xx-large')

Here, we perform a plot that contains statistical information for each of our 100 windows. 
apply_win_funs will calculate a set of statistics for every window. In this case, it will 
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sum all the numbers in the window. Remember that every time we find an SNP, we add 1 to 
the window list. This means that if we have 200 SNPs, we will have 200 ones; hence, summing 
them will return 200.

So, we are able to compute the number of SNPs per window in an apparently convoluted way. 
Why we perform things with this strategy will become apparent soon. However, for now, let’s 
check the result of this computation for both files, as shown in the following screenshot:

Figure 3.5 – The number of biallelic SNP distributed windows of 2,000 bp in size for an area of 200 kilobase 
pairs (kbp) near the centromere (orange), and in the middle of the chromosome (blue); both areas come 

from chromosome 3L for circa 100 Ugandan mosquitoes from the Anopheles 1,000 Genomes Project

Tip
Note that the amount of SNPs in the centromere is smaller than in the middle of the chromosome. 
This is expected because calling variants in chromosomes is more difficult than calling in the 
middle. Also, there is probably less genomic diversity in centromeres. If you are used to humans 
or other mammals, you will find the density of variants obnoxiously high—that’s mosquitoes 
for you!

3.	 Let’s take a look at the sample-level annotation. We will inspect mapping quality 
zero (refer to https://www.broadinstitute.org/gatk/guide/
tooldocs/org_broadinstitute_gatk_tools_walkers_annotator_
MappingQualityZeroBySample.php for details), which is a measure of how well 
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sequences involved in calling this variant map clearly to this position. Note that there is also 
an MQ0 annotation at the variant level:

mq0_wins = {}

size = 5000

def get_sample(rec, annot, my_type):

    return [v for v in rec.format(annot) if v > 
np.iinfo(my_type).min]

for vcf_name in vcf_names:

    recs = vcf.Reader(filename=vcf_name)

    mq0_wins[vcf_name] = do_window(recs, size, functools.
partial(get_sample, annot='MQ0', my_type=np.int32))

Start inspecting this by looking at the last for; we will perform a windowed analysis by reading 
the MQ0 annotation from each record. We perform this by calling the get_sample function, 
which will return our preferred annotation (in this case, MQ0) that has been cast with a certain 
type (my_type=np.int32). We use the partial application function here. Python allows 
you to specify some parameters of a function and wait for other parameters to be specified later. 
Note that the most complicated thing here is the functional programming style. Also, note that 
it makes it very easy to compute other sample-level annotations. Just replace MQ0 with AB, AD, 
GQ, and so on. You immediately have a computation for that annotation. If the annotation is 
not of the integer type, no problem; just adapt my_type. It’s a difficult programming style if 
you are not used to it, but you will reap its benefits very soon.

4.	 Now, let’s print the median and the top 75 percentile for each window (in this case, with a size 
of 5,000):

stats = {}

colors = ['b', 'g']

i = 0

fig, ax = plt.subplots(figsize=(16, 9))

for name, nwins in mq0_wins.items():

    stats[name] = apply_win_funs(nwins, {'median':np.
median, '75': functools.partial(np.percentile, q=75)})

    x_lim = [j * size for j in range(len(stats[name]))]

    ax.plot(x_lim, [x['median'] for x in stats[name]], 
label=name, color=colors[i])

    ax.plot(x_lim, [x['75'] for x in stats[name]], '--', 
color=colors[i])
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    i += 1

ax.legend()

ax.set_xlabel('Genomic location in the downloaded 
segment')

ax.set_ylabel('MQ0')

fig.suptitle('Distribution of MQ0 along the genome', 
fontsize='xx-large')

Note that we now have two different statistics on apply_win_funs (percentile and median). 
Again, we pass functions as parameters (np.median and np.percentile), with partial 
function application done on np.percentile. The result looks like this:

Figure 3.6 – Median (continuous line) and 75th percentile (dashed) of MQ0 of sample SNPs 

distributed on windows of 5,000 bp in size for an area of 200 kbp near the centromere 

(blue) and in the middle of chromosome (green); both areas come from chromosome 3L 

for circa 100 Ugandan mosquitoes from the Anopheles 1,000 Genomes Project

For the standard.vcf.gz file, the median MQ0 is 0 (it’s plotted at the very bottom and 
is almost unseen). This is good as it suggests that most sequences involved in the calling of 
variants map clearly to this area of the genome. For the centro.vcf.gz file, MQ0 is of 
poor quality. Furthermore, there are areas where the genotype caller cannot find any variants 
at all (hence the incomplete chart).
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5.	 Let’s compare heterozygosity with DP, the sample-level annotation. Here, we will plot the 
fraction of heterozygosity calls as a function of the sample read depth (DP) for every SNP. 
First, we will explain the result and then the code that generates it.

The following screenshot shows the fraction of calls that are heterozygous at a certain depth:

Figure 3.7 – The continuous line represents the fraction of heterozygosite calls computed at 

a certain depth; in orange is the centromeric area; in blue is the “standard” area; the dashed 

lines represent the number of sample calls per depth; both areas come from chromosome 

3L for circa 100 Ugandan mosquitoes from the Anopheles 1,000 Genomes Project

In the preceding screenshot, there are two considerations to take into account. At a very low 
depth, the fraction of heterozygote calls is biased—in this case, lower. This makes sense, as the 
number of reads per position does not allow you to make a correct estimate of the presence of 
both alleles in a sample. Therefore, you should not trust calls at very low depth.

As expected, the number of calls in the centromere is way lower than outside it. The distribution 
of SNPs outside the centromere follows a common pattern that you can expect in many datasets.

The code for this is presented here:

def get_sample_relation(recs, f1, f2):

    rel = defaultdict(int)

    for rec in recs:

        if not rec.is_snp:
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             continue

        for pos in range(len(rec.genotypes)):

            v1 = f1(rec, pos)

            v2 = f2(rec, pos)

            if v1 is None or v2 == np.iinfo(type(v2)).
min:

                continue  # We ignore Nones

            rel[(v1, v2)] += 1

            # careful with the size, floats: round?

        #break

    return rel get_sample_relation(recs, f1, f2):

rels = {}

for vcf_name in vcf_names:

    recs = VCF(filename=vcf_name)

    rels[vcf_name] = get_sample_relation(

        recs,

        lambda rec, pos: 1 if rec.genotypes[pos][0] != 
rec.genotypes[pos][1] else 0,

        lambda rec, pos: rec.format('DP')[pos][0])

Start by looking for the for loop. Again, we use functional programming; the get_sample_
relation function will traverse all SNP records and apply two functional parameters. The 
first parameter determines heterozygosity, whereas the second parameter acquires the sample 
DP (remember that there is also a variant of DP).

Now, since the code is as complex as it is, I opted for a naive data structure to be returned 
by get_sample_relation: a dictionary where the key is a pair of results (in this case, 
heterozygosity and DP) and the sum of SNPs that share both values. There are more elegant data 
structures with different trade-offs. For this, there are SciPy sparse matrices, pandas DataFrames, 
or you may want to consider PyTables. The fundamental point here is to have a framework that 
is general enough to compute relationships between a couple of sample annotations.

Also, be careful with the dimension space of several annotations. For example, if your annotation 
is of the float type, you might have to round it (if not, the size of your data structure might 
become too big).

6.	 Now, let’s take a look at the plotting code. Let’s perform this in two parts. Here is part one:

def plot_hz_rel(dps, ax, ax2, name, rel):

    frac_hz = []

    cnt_dp = []
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    for dp in dps:

        hz = 0.0

        cnt = 0

        for khz, kdp in rel.keys():

            if kdp != dp:

                continue

            cnt += rel[(khz, dp)]

            if khz == 1:

                hz += rel[(khz, dp)]

        frac_hz.append(hz / cnt)

        cnt_dp.append(cnt)

    ax.plot(dps, frac_hz, label=name)

    ax2.plot(dps, cnt_dp, '--', label=name)

This function will take a data structure, as generated by get_sample_relation, expecting 
that the first parameter of the key tuple is the heterozygosity state (0=homozygote, 1=heterozygote) 
and the second parameter is DP. With this, it will generate two lines: one with the fraction of 
samples (which are heterozygotes at a certain depth) and the other with the SNP count.

7.	 Now, let’s call this function:

fig, ax = plt.subplots(figsize=(16, 9))

ax2 = ax.twinx()

for name, rel in rels.items():

    dps = list(set([x[1] for x in rel.keys()]))

dps.sort()

plot_hz_rel(dps, ax, ax2, name, rel)

ax.set_xlim(0, 75)

ax.set_ylim(0, 0.2)

ax2.set_ylabel('Quantity of calls')

ax.set_ylabel('Fraction of Heterozygote calls')

ax.set_xlabel('Sample Read Depth (DP)')

ax.legend()

fig.suptitle('Number of calls per depth and fraction of 
calls which are Hz', fontsize='xx-large')

Here, we will use two axes. On the left-hand side, we will have the fraction of heterozygous 
SNPs. On the right-hand side, we will have the number of SNPs. We then call plot_hz_rel 
for both data files. The rest is standard matplotlib code.
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8.	 Finally, let’s compare the DP variant with a categorical variant-level annotation (EFF). EFF 
is provided by SnpEff and tells us (among many other things) the type of SNP (for example, 
intergenic, intronic, coding synonymous, and coding nonsynonymous). The Anopheles dataset 
provides this useful annotation. Let’s start by extracting variant-level annotations and the 
functional programming style:

def get_variant_relation(recs, f1, f2):

    rel = defaultdict(int)

    for rec in recs:

        if not rec.is_snp:

            continue

    try:

        v1 = f1(rec)

        v2 = f2(rec)

        if v1 is None or v2 is None:

            continue # We ignore Nones

        rel[(v1, v2)] += 1

    except:

        pass

    return rel

The programming style here is similar to get_sample_relation, but we will not delve 
into any samples. Now, we define the type of effect that we’ll work with and convert its effect 
into an integer (as this will allow us to use it as an index—for example, matrices). Now, think 
about coding a categorical variable:

accepted_eff = ['INTERGENIC', 'INTRON', 'NON_SYNONYMOUS_
CODING', 'SYNONYMOUS_CODING']

def eff_to_int(rec):

    try:

        annot = rec.INFO['EFF']

        master_type = annot.split('(')[0]

        return accepted_eff.index(master_type)

    except ValueError:

        return len(accepted_eff)

9.	 We will now traverse the file; the style should be clear to you now:

eff_mq0s = {}

for vcf_name in vcf_names:
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    recs = VCF(filename=vcf_name)

    eff_mq0s[vcf_name] = get_variant_relation(recs, 
lambda r: eff_to_int(r), lambda r: int(r.INFO['DP']))

10.	 Finally, we plot the distribution of DP using the SNP effect:

fig, ax = plt.subplots(figsize=(16,9))

vcf_name = 'standard.vcf.gz'

bp_vals = [[] for x in range(len(accepted_eff) + 1)]

for k, cnt in eff_mq0s[vcf_name].items():

    my_eff, mq0 = k

    bp_vals[my_eff].extend([mq0] * cnt)

sns.boxplot(data=bp_vals, sym='', ax=ax)

ax.set_xticklabels(accepted_eff + ['OTHER'])

ax.set_ylabel('DP (variant)')

fig.suptitle('Distribution of variant DP per SNP type', 
fontsize='xx-large')

Here, we just print a boxplot for the non-centromeric file, as shown in the following diagram. 
The results are as expected: SNPs in coding areas will probably have more depth because they 
are in more complex regions that are easier to call than intergenic SNPs:

Figure 3.8 – Boxplot for the distribution of variant read depth across different SNP effects
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There’s more...

The whole issue of filtering SNPs and other genome features will need a book of its own. This approach 
will depend on the type of sequencing data that you have, the number of samples, and potential extra 
information (for example, a pedigree among samples).

This recipe is very complex as it is, but parts of it are profoundly naive (there is a limit regarding the 
complexity that I can force on you in a simple recipe). For example, the window code does not support 
overlapping windows. Also, data structures are simplistic. However, I hope that they give you an idea 
of the general strategy to process genomic, high-throughput sequencing data. You can read more in 
Chapter 4, Advanced NGS Processing.

See also

More information can be found via these links:

•	 There are many filtering rules, but I would like to draw your attention to the need for reasonably 
good coverage (clearly above 10x). Refer to Meynert et al., Variant detection sensitivity and biases 
in whole genome and exome sequencing, at http://www.biomedcentral.com/1471-
2105/15/247/.

•	 bcbio-nextgen is a Python-based pipeline for high-throughput sequencing analysis and 
is worth checking out (https://bcbio-nextgen.readthedocs.org).

Processing NGS data with HTSeq
HTSeq (https://htseq.readthedocs.io) is an alternative library that’s used for processing 
NGS data. Most of the functionality made available by HTSeq is actually available in other libraries 
covered in this book, but you should be aware of it as an alternative way of processing NGS data. 
HTSeq supports, among others, FASTA, FASTQ, SAM (via pysam), VCF, General Feature Format 
(GFF), and Browser Extensible Data (BED) file formats. It also includes a set of abstractions for 
processing (mapped) genomic data, encompassing concepts such as genomic positions and intervals 
or alignments. A complete examination of the features of this library is beyond our scope, so we will 
concentrate on a small subset of features. We will take this opportunity to also introduce the BED 
file format.

The BED format allows for the specification of features for annotations’ tracks. It has many uses, 
but it’s common to load BED files into genome browsers to visualize features. Each line includes 
information about at least the position (chromosome, start, and end) and also optional fields such as 
name or strand. Full details about the format can be found at https://genome.ucsc.edu/
FAQ/FAQformat.html#format1.
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Getting ready

Our simple example will use data from the region where the LCT gene is located in the human genome. 
The LCT gene codifies lactase, an enzyme involved in the digestion of lactose.

We will take this information from Ensembl. Go to http://uswest.ensembl.org/
Homo_sapiens/Gene/Summary?db=core;g=ENSG00000115850 and choose Export 
data. The Output format should be BED Format. Gene information should be selected (you can 
choose more if you want). For convenience, a downloaded file called LCT.bed is available in the 
Chapter03 directory.

The notebook for this code is called Chapter03/Processing_BED_with_HTSeq.py.

Take a look at the file before we start. An example of a few lines of this file is provided here:

track name=gene description="Gene information"

 2       135836529       135837180       ENSE00002202258 
0       -

 2       135833110       135833190       ENSE00001660765 
0       -

 
2       135789570       135789798       NM_002299.2.16  0       -

 
2       135787844       135788544       NM_002299.2.17  0       -

 
2       135836529       135837169       CCDS2178.117    0       -

 
2       135833110       135833190       CCDS2178.116    0       -

The fourth column is the feature name. This will vary widely from file to file, and you will have 
to check it each and every time. However, in our case, it seems apparent that we have Ensembl 
exons (ENSE...), GenBank records (NM_...), and coding region information (CCDS) from the 
Consensus Coding Sequence (CCDS) database (https://www.ncbi.nlm.nih.gov/
CCDS/CcdsBrowse.cgi).

You will need to install HTSeq:

conda install –c bioconda htseq

Now, we can begin.
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How to do it...

Take a look at the following steps:

1.	 We will start by setting up a reader for our file. Remember that this file has already been supplied 
to you, and should be in your current work directory:

from collections import defaultdict

import re

import HTSeq

lct_bed = HTSeq.BED_Reader('LCT.bed')

2.	 We are now going to extract all the types of features via their name:

feature_types = defaultdict(int)

for rec in lct_bed:

    last_rec = rec

    feature_types[re.search('([A-Z]+)', rec.name).
group(0)] += 1

print(feature_types)

Remember that this code is specific to our example. You will have to adapt it to your case.

Tip
You will find that the preceding code uses a regular expression (regex). Be careful with regexes, 
as they tend to generate read-only code that is difficult to maintain. You might have better 
alternatives. In any case, regexes exist, and you will find them from time to time.

The output for our case looks like this:

defaultdict(<class 'int'>, {'ENSE': 27, 'NM': 17, 'CCDS': 
17})

3.	 We stored the last record so that we can inspect it:

print(last_rec)

print(last_rec.name)

print(type(last_rec))

interval = last_rec.iv

print(interval)

print(type(interval))
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There are many fields available, most notably name and interval. For the preceding code, 
the output looks like this:

<GenomicFeature: BED line 'CCDS2178.11' at 2: 135788543 
-> 135788322 (strand '-')>

 CCDS2178.11

 <class 'HTSeq.GenomicFeature'>

 2:[135788323,135788544)/-

 <class 'HTSeq._HTSeq.GenomicInterval'>

4.	 Let’s dig deeper into the interval:

print(interval.chrom, interval.start, interval.end)

print(interval.strand)

print(interval.length)

print(interval.start_d)

print(interval.start_as_pos)

print(type(interval.start_as_pos))

The output looks like this:

2 135788323 135788544

 -

 221

 135788543

 2:135788323/-

 <class 'HTSeq._HTSeq.GenomicPosition'>

Note the genomic position (chromosome, start, and end). The most complex issue is how to 
deal with the strand. If the feature is coded in the negative strand, you have to be careful with 
processing. HTSeq offers the start_d and end_d fields to help you with this (that is, they 
will be reversed with regard to the start and end if the strand is negative).

Finally, let’s extract some statistics from our coding regions (CCDS records). We will use CCDS 
since it’s probably better than the curated database here:

exon_start = None

exon_end = None

sizes = []

for rec in lct_bed:

    if not rec.name.startswith('CCDS'):

        continue

    interval = rec.iv
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    exon_start = min(interval.start, exon_start or 
interval.start)

    exon_end = max(interval.length, exon_end or interval.
end)

    sizes.append(interval.length)

sizes.sort()

print("Num exons: %d / Begin: %d / End %d" % (len(sizes), 
exon_start, exon_end))

print("Smaller exon: %d / Larger exon: %d / Mean size: 
%.1f" % (sizes[0], sizes[-1], sum(sizes)/len(sizes)))

The output should be self-explanatory:

Num exons: 17 / Begin: 135788323 / End 135837169

 Smaller exon: 79 / Larger exon: 1551 / Mean size: 340.2

There’s more...

The BED format can be a bit more complex than this. Furthermore, the preceding code is based on 
quite specific premises with regard to the contents of our file. However, this example should be enough 
to get you started. Even at its worst, the BED format is not very complicated.

HTSeq has much more functionality than this, but this recipe is mostly provided as a starting point for 
the whole package. HTSeq has functionality that can be used as an alternative to most of the recipes 
that we’ve covered thus far.
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Advanced NGS Data Processing

If you work with next-generation sequencing (NGS) data, you know that quality analysis and 
processing are two of the great time-sinks in getting results. In the first part of this chapter, we will 
delve deeper into NGS analysis by using a dataset that includes information about relatives – in our 
case, a mother, a father, and around 20 offspring. This is a common technique for performing quality 
analysis, as pedigree information will allow us to make inferences on the number of errors that our 
filtering rules might produce. We will also take the opportunity to use the same dataset to find genomic 
features based on existing annotations.

The last recipe of this chapter will delve into another advanced topic using NGS data: metagenomics. 
We will QIIME2, a Python package for metagenomics, to analyze data. 

If you are using Docker, please use the tiagoantao/bioinformatics_base image. The QIIME2 content 
has a special setup process that will be discussed in the relevant recipe.

In this chapter, there are the following recipes:

•	 Preparing a dataset for analysis

•	 Using Mendelian error information for quality control

•	 Exploring data with standard statistics

•	 Finding genomic features from sequencing annotations

•	 Doing metagenomics with QIIME2

Preparing a dataset for analysis
Our starting point will be a VCF file (or equivalent) with calls made by a genotyper (Genome Analysis 
Toolkit (GATK) in our case), including annotations. As we will be filtering NGS data, we need reliable 
decision criteria to call a site. So, how do we get that information? Generally, we can’t, but if we need 
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to do so, there are three basic approaches:

•	 Using a more robust sequencing technology for comparison – for example, using Sanger 
sequencing to verify NGS datasets. This is cost-prohibitive and can only be done for a few loci.

•	 Sequencing closely related individuals, for example, two parents and their offspring. In this 
case, we use Mendelian inheritance rules to decide whether a certain call is acceptable or not. 
This was the strategy used by both the Human Genome Project and the Anopheles gambiae 
1000 Genomes project.

•	 Finally, we can use simulations. This setup is not only quite complex but also of dubious 
reliability. It’s more of a theoretical option.

In this chapter, we will use the second option, based on the Anopheles gambiae 1000 Genomes project. 
This project makes available information based on crosses between mosquitoes. A cross will include 
the parents (mother and father) and up to 20 offspring.

In this recipe, we are going to prepare our data for usage in the later recipes.

Getting ready

We will download our files in HDF5 format for faster processing. Please be advised that these files are 
quite big; you will need a good network connection and plenty of disk space:

wget -c ftp://ngs.sanger.ac.uk/production/ag1000g/phase1/AR3/
variation/main/hdf5/ag1000g.phase1.ar3.pass.3L.h5

wget -c ftp://ngs.sanger.ac.uk/production/ag1000g/phase1/AR3/
variation/main/hdf5/ag1000g.phase1.ar3.pass.2L.h5

The files have four crosses with around 20 offspring each. We will use chromosome arms 3L and 
2L. At this stage, we also compute Mendelian errors (a subject of the next recipe, so we will delay a 
detailed discussion until then).

The relevant notebook is Chapter04/Preparation.py. There is also a local sample metadata 
file in the directory called samples.tsv.

How to do it…

After downloading the data, follow these steps:

1.	 First, start with a few imports:

import pickle

import gzip

import random
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import numpy as np

import h5py

import pandas as pd

2.	 Let’s get the sample metadata:

samples = pd.read_csv('samples.tsv', sep='\t')

print(len(samples))

print(samples['cross'].unique())

print(samples[samples['cross'] == 'cross-29-2'][['id', 
'function']])

print(len(samples[samples['cross'] == 'cross-29-2']))

print(samples[samples['function'] == 'parent'])

We also print some basic information about the cross we are going to use and all the parents.

3.	 We prepare to deal with chromosome arm 3L based on its HDF5 file:

h5_3L = h5py.File('ag1000g.crosses.phase1.ar3sites.3L.
h5', 'r')

samples_hdf5 = list(map(lambda sample: sample.
decode('utf-8'), h5_3L['/3L/samples']))

calldata_genotype = h5_3L['/3L/calldata/genotype']

MQ0 = h5_3L['/3L/variants/MQ0']

MQ = h5_3L['/3L/variants/MQ']

QD = h5_3L['/3L/variants/QD']

Coverage = h5_3L['/3L/variants/Coverage']

CoverageMQ0 = h5_3L['/3L/variants/CoverageMQ0']

HaplotypeScore = h5_3L['/3L/variants/HaplotypeScore']

QUAL = h5_3L['/3L/variants/QUAL']

FS = h5_3L['/3L/variants/FS']

DP = h5_3L['/3L/variants/DP']

HRun = h5_3L['/3L/variants/HRun']

ReadPosRankSum = h5_3L['/3L/variants/ReadPosRankSum']

my_features = {

    'MQ': MQ,

    'QD': QD,

    'Coverage': Coverage,
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    'HaplotypeScore': HaplotypeScore,

    'QUAL': QUAL,

    'FS': FS,

    'DP': DP,

    'HRun': HRun,

    'ReadPosRankSum': ReadPosRankSum

}

num_features = len(my_features)

num_alleles = h5_3L['/3L/variants/num_alleles']

is_snp = h5_3L['/3L/variants/is_snp']

POS = h5_3L['/3L/variants/POS']

4.	 The code to compute Mendelian errors is the following:

#compute mendelian errors (biallelic)

def compute_mendelian_errors(mother, father, offspring):

    num_errors = 0

    num_ofs_problems = 0

    if len(mother.union(father)) == 1:

        # Mother and father are homogenous and 
the            same for ofs in offspring:

            if len(ofs) == 2:

                # Offspring is het

                num_errors += 1

                num_ofs_problems += 1

            elif len(ofs.intersection(mother)) == 0:

                # Offspring is homo, but opposite from 
parents

                num_errors += 2

                num_ofs_problems += 1

    elif len(mother) == 1 and len(father) == 1:

        # Mother and father are homo and different

        for ofs in offspring:

            if len(ofs) == 1:

                # Homo, should be het

                num_errors += 1

                num_ofs_problems += 1
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    elif len(mother) == 2 and len(father) == 2:

        # Both are het, individual offspring can be 
anything

        pass

    else:

        # One is het, the other is homo

        homo = mother if len(mother) == 1 else father

        for ofs in offspring:

            if len(ofs) == 1 and ofs.intersection(homo):

                # homo, but not including the allele from 
parent that is homo

                num_errors += 1

                num_ofs_problems += 1

    return num_errors, num_ofs_problems

We will discuss this in the next recipe, Using Mendelian error information for quality control.

5.	 We now define a support generator and function to select acceptable positions and accumulate 
basic data:

def acceptable_position_to_genotype():

    for i, genotype in enumerate(calldata_genotype):

        if is_snp[i] and num_alleles[i] == 2:

            if len(np.where(genotype == -1)[0]) > 1:

                # Missing data

                continue

            yield i

def acumulate(fun):

    acumulator = {}

    for res in fun():

        if res is not None:

            acumulator[res[0]] = res[1]

    return acumulator

6.	 We now need to find the indexes of our cross (mother, father, and 20 offspring) on the HDF5 file:

def get_family_indexes(samples_hdf5, cross_pd):

    offspring = []

    for i, individual in cross_pd.T.iteritems():
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        index = samples_hdf5.index(individual.id)

        if individual.function == 'parent':

            if individual.sex == 'M':

                father = index

            else:

                mother = index

        else:

            offspring.append(index)

    return {'mother': mother, 'father': father, 
'offspring': offspring}

cross_pd = samples[samples['cross'] == 'cross-29-2']

family_indexes = get_family_indexes(samples_hdf5, cross_
pd)

7.	 Finally, we will actually compute Mendelian errors and save them to disk:

mother_index = family_indexes['mother']

father_index = family_indexes['father']

offspring_indexes = family_indexes['offspring']

all_errors = {}

def get_mendelian_errors():

    for i in acceptable_position_to_genotype():

        genotype = calldata_genotype[i]

        mother = set(genotype[mother_index])

        father = set(genotype[father_index])

        offspring = [set(genotype[ofs_index]) for ofs_
index in offspring_indexes]

        my_mendelian_errors = compute_mendelian_
errors(mother, father, offspring)

        yield POS[i], my_mendelian_errors

mendelian_errors = acumulate(get_mendelian_errors)
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pickle.dump(mendelian_errors, gzip.open('mendelian_
errors.pickle.gz', 'wb'))

8.	 We will now generate an efficient NumPy array with annotations and Mendelian error information:

ordered_positions = sorted(mendelian_errors.keys())

ordered_features = sorted(my_features.keys())

num_features = len(ordered_features)

feature_fit = np.empty((len(ordered_positions), len(my_
features) + 2), dtype=float)

for column, feature in enumerate(ordered_features):  # 
'Strange' order

    print(feature)

    current_hdf_row = 0

    for row, genomic_position in enumerate(ordered_
positions):

        while POS[current_hdf_row] < genomic_position:

            current_hdf_row +=1

        feature_fit[row, column] = my_features[feature]
[current_hdf_row]

for row, genomic_position in enumerate(ordered_
positions):

    feature_fit[row, num_features] = genomic_position

    feature_fit[row, num_features + 1] = 1 if mendelian_
errors[genomic_position][0] > 0 else 0

np.save(gzip.open('feature_fit.npy.gz', 'wb'), feature_
fit, allow_pickle=False, fix_imports=False)

pickle.dump(ordered_features, open('ordered_features', 
'wb'))

Buried in this code is one of the most important decisions of the whole chapter: how do we 
weigh Mendelian errors? In our case, we only store a 1 if there is any kind of error, and we 
store a 0 if there is none. An alternative would be to count the number of errors – as we have 
up to 20 offspring, that would require some sophisticated statistical analysis that we will not 
be doing here.
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9.	 Changing gears, let’s extract some information from chromosome arm 2L now:

h5_2L = h5py.File('ag1000g.crosses.phase1.ar3sites.2L.
h5', 'r')

samples_hdf5 = list(map(lambda sample: sample.
decode('utf-8'), h5_2L['/2L/samples']))

calldata_DP = h5_2L['/2L/calldata/DP']

POS = h5_2L['/2L/variants/POS']

10.	 Here, we are only interested in the parents:

def get_parent_indexes(samples_hdf5, parents_pd):

    parents = []

    for i, individual in parents_pd.T.iteritems():

        index = samples_hdf5.index(individual.id)

        parents.append(index)

    return parents

parents_pd = samples[samples['function'] == 'parent']

parent_indexes = get_parent_indexes(samples_hdf5, 
parents_pd)

11.	 We extract the sample DP for each parent:

all_dps = []

for i, pos in enumerate(POS):

    if random.random() > 0.01:

        continue

    pos_dp = calldata_DP[i]

    parent_pos_dp = [pos_dp[parent_index] for parent_
index in parent_indexes]

    all_dps.append(parent_pos_dp + [pos])

all_dps = np.array(all_dps)

np.save(gzip.open('DP_2L.npy.gz', 'wb'), all_dps, allow_
pickle=False, fix_imports=False)

Now, we have prepared the dataset for analysis in this chapter.
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Using Mendelian error information for quality control
So, how can we infer the quality of calls using Mendelian inheritance rules? Let’s look at expectations 
for different genotypical configurations of the parents:

•	 For a certain potential bi-allelic SNP, if the mother is AA and the father is also AA, then all 
offspring will be AA.

•	 If the mother is AA and the father TT, then all offspring will have to be heterozygous (AT). 
They always get an A from the mother, and they always get a T from the father.

•	 If the mother is AA and the father is AT, then the offspring can be either AA or AT. They always 
get an A from the mother, but they can get either an A or a T from the father.

•	 If both the mother and the father are heterozygous (AT), then the offspring can be anything. 
In theory, there is not much we can do here.

In practice, we can ignore mutations, which is safe to do with most eukaryotes. The number of mutations 
(noise, from our perspective) is several orders of magnitude lower than the signal we are looking for.

In this recipe, we are going to do a small theoretical study of the distribution and Mendelian errors, 
and further process the data for downstream analysis based on errors. The relevant notebook file is 
Chapter04/Mendel.py.

How to do it…

1.	 We will need a few imports:

import random

import matplotlib.pyplot as plt

2.	 Before we do any empirical analysis, let’s try to understand what information we can extract 
from the case where the mother is AA and the father is AT. Let’s answer the question, If we 
have 20 offspring, what is the probability of all of them being heterozygous?:

num_sims = 100000

num_ofs = 20

num_hets_AA_AT = []

for sim in range(num_sims):

    sim_hets = 0

    for ofs in range(20):

        sim_hets += 1 if random.choice([0, 1]) == 1 else 
0
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    num_hets_AA_AT.append(sim_hets)

    

fig, ax = plt.subplots(1,1, figsize=(16,9))

ax.hist(num_hets_AA_AT, bins=range(20))

print(len([num_hets for num_hets in num_hets_AA_AT if 
num_hets==20]))

We get the following output:

Figure 4.1 - Results from 100,000 simulations: the number of offspring that are 

heterozygous for certain loci where the mother is AA and the father is heterozygous

Here, we have done 100,000 simulations. In my case (this is stochastic, so your result might 
vary), I got exactly zero simulations where all offspring were heterozygous. Indeed, these 
are permutations with repetition, so the probability of all being heterozygous is 

1
220  or 

9.5367431640625e-07 – not very likely. So, even if for a single offspring, we can have AT or 
AA; for 20, it is very unlikely that all of them are of the same type. This is the information we 
can use for a less naive interpretation of Mendelian errors.

3.	 Let’s repeat the analysis where the mother and the father are both AT:

num_AAs_AT_AT = []

num_hets_AT_AT = []

for sim in range(num_sims):
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    sim_AAs = 0

    sim_hets = 0

    for ofs in range(20):

        derived_cnt = sum(random.choices([0, 1], k=2))

        sim_AAs += 1 if derived_cnt == 0 else 0

        sim_hets += 1 if derived_cnt == 1 else 0

    num_AAs_AT_AT.append(sim_AAs)

    num_hets_AT_AT.append(sim_hets)

fig, ax = plt.subplots(1,1, figsize=(16,9))

ax.hist([num_hets_AT_AT, num_AAs_AT_AT], histtype='step', 
fill=False, bins=range(20), label=['het', 'AA'])

plt.legend()

The output is as follows:

Figure 4.2 - Results from 100,000 simulations: the number of offspring that are AA or 

heterozygous for a certain locus where both parents are also heterozygous

In this case, we have also permutations with repetition, but we have four possible values, 
not two: AA, AT, TA, and TT. We end up with the same probability for all individuals 
being AT: 9.5367431640625e-07. It’s even worse (twice as bad, in fact) for all of them being 
homozygous of the same type (all TT or all AA).
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4.	 OK, after this probabilistic prelude, let’s get down to more data-moving stuff. The first thing 
that we will do is check how many errors we have. Let’s load the data from the previous recipe:

import gzip

import pickle

import random

import numpy as np

mendelian_errors = pickle.load(gzip.open('mendelian_
errors.pickle.gz', 'rb'))

feature_fit = np.load(gzip.open('feature_fit.npy.gz', 
'rb'))

ordered_features = np.load(open('ordered_features', 
'rb'))

num_features = len(ordered_features)

5.	 Let’s see how many errors we have:

print(len(mendelian_errors), len(list(filter(lambda x: 
x[0] > 0,mendelian_errors.values()))))

The output is as follows:

(10905732, 541688)

Not many of the calls have Mendelian errors – only around 5%, great.

6.	 Let’s create a balanced set where roughly half of the set has errors. For that, we will randomly 
drop a lot of good calls. First, we compute the fraction of errors:

total_observations = len(mendelian_errors)

error_observations = len(list(filter(lambda x: x[0] > 
0,mendelian_errors.values())))

ok_observations = total_observations - error_observations

fraction_errors = error_observations/total_observations

print (total_observations, ok_observations, error_
observations, 100*fraction_errors)

del mendelian_errors
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7.	 We use that information to get a set of accepted entries: all the errors plus an approximately 
equal quantity of OK calls. We print the number of entries at the end (this will vary as the OK 
list is stochastic):

prob_ok_choice = error_observations / ok_observations

def accept_entry(row):

    if row[-1] == 1:

        return True

    return random.random() <= prob_ok_choice

accept_entry_v = np.vectorize(accept_entry, 
signature='(i)->()')

accepted_entries = accept_entry_v(feature_fit)

balanced_fit = feature_fit[accepted_entries]

del feature_fit

balanced_fit.shape

len([x for x in balanced_fit if x[-1] == 1]), len([x for 
x in balanced_fit if x[-1] == 0])

8.	 Finally, we save it:

np.save(gzip.open('balanced_fit.npy.gz', 'wb'), balanced_
fit, allow_pickle=False, fix_imports=False)

There’s more…

With regards to Mendelian errors and their impact on cost functions, let’s think about the following 
case: the mother is AA, the father is AT, and all offspring are AA. Does this mean that the father 
is wrongly called, or that we failed to detect a few heterozygous offspring? From this reasoning, 
it’s probably the father that is wrongly called. This has an impact in terms of some more refined 
Mendelian error estimation functions: it’s probably more costly to have a few offspring wrong than 
just a single sample (the father) wrong. In this case, you might think it’s trivial (the probability of 
having no heterozygous offspring is so low that it’s probably the father), but if you have 18 offspring 
AA and two AT, is it still “trivial”? This is not just a theoretical problem, because it severely impacts 
the design of a proper cost function.

Our function in a previous recipe, Preparing the dataset for analysis, is naive but is enough for the level 
of refinement that will allow us to have some interesting results further down the road.
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Exploring the data with standard statistics
Now that we have the insights for our Mendelian error analysis, let’s explore the data in order to get 
more insights that might help us to better filter the data. You can find this content in Chapter04/
Exploration.py.

How to do it…

1.	 We start, as usual, with the necessary imports:

import gzip

import pickle

import random

import numpy as np

import matplotlib.pyplot as plt

import pandas as pd

from pandas.plotting import scatter_matrix

2.	 Then we load the data. We will use pandas to navigate it:

fit = np.load(gzip.open('balanced_fit.npy.gz', 'rb'))

ordered_features = np.load(open('ordered_features', 
'rb'))

num_features = len(ordered_features)

fit_df = pd.DataFrame(fit, columns=ordered_features + 
['pos', 'error'])

num_samples = 80

del fit

3.	 Let’s ask pandas to show a histogram of all annotations:

fig,ax = plt.subplots(figsize=(16,9))

fit_df.hist(column=ordered_features, ax=ax)

The following histogram is generated:
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Figure 4.3 - Histogram of all annotations for a dataset with roughly 50% of errors

4.	 For some annotations, we do not get interesting information. We can try to zoom in, for 
example, with DP:

fit_df['MeanDP'] = fit_df['DP'] / 80

fig, ax = plt.subplots()

_ = ax.hist(fit_df[fit_df['MeanDP']<50]['MeanDP'], 
bins=100)

Figure 4.4 - Histogram zooming in on an area of interest for DP
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We are actually dividing DP by the number of samples in order to get a more meaningful 
number.

5.	 We will split the dataset in two, one for the errors and the other for the positions with no 
Mendelian errors:

errors_df = fit_df[fit_df['error'] == 1]

ok_df = fit_df[fit_df['error'] == 0]

6.	 Let’s have a look at QUAL and split it on 0.005, and check how we get errors and correct calls split:

ok_qual_above_df = ok_df[ok_df['QUAL']>0.005]

errors_qual_above_df = errors_df[errors_df['QUAL']>0.005]

print(ok_df.size, errors_df.size, ok_qual_above_df.size, 
errors_qual_above_df.size)

print(ok_qual_above_df.size / ok_df.size, errors_qual_
above_df.size / errors_df.size)

The result is as follows:

6507972 6500256 484932 6114096

0.07451353509203788 0.9405931089483245

Clearly, ['QUAL']>0.005 gets lots of errors, while not getting lots of OK positions. This 
is positive, as we have some hope for filtering it.

7.	 Let’s do the same with QD:

ok_qd_above_df = ok_df[ok_df['QD']>0.05]

errors_qd_above_df = errors_df[errors_df['QD']>0.05]

print(ok_df.size, errors_df.size, ok_qd_above_df.size, 
errors_qd_above_df.size)

print(ok_qd_above_df.size / ok_df.size, errors_qd_above_
df.size / errors_df.size)

Again, we have some interesting results:

6507972 6500256 460296 5760288

0.07072802402960554 0.8861632526472804
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8.	 Let’s take an area where there are fewer errors and study the relationships between annotations 
on errors. We will plot annotations pairwise:

not_bad_area_errors_df = errors_df[(errors_
df['QUAL']<0.005)&(errors_df['QD']<0.05)]

_ = scatter_matrix(not_bad_area_errors_df[['FS', 
'ReadPosRankSum', 'MQ', 'HRun']], diagonal='kde', 
figsize=(16, 9), alpha=0.02)

The preceding code generates the following output:

Figure 4.5 - Scatter matrix of annotations of errors for an area of the search space

9.	 And now do the same on the good calls:

not_bad_area_ok_df = ok_df[(ok_df['QUAL']<0.005)&(ok_
df['QD']<0.05)]

_ = scatter_matrix(not_bad_area_ok_df[['FS', 
'ReadPosRankSum', 'MQ', 'HRun']], diagonal='kde', 
figsize=(16, 9), alpha=0.02)

The output is as follows:
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Figure 4.6 - Scatter matrix of annotations of good calls for an area of the search space

10.	 Finally, let’s see how our rules would perform on the complete dataset (remember that we are 
using a dataset roughly composed of 50% errors and 50% OK calls):

all_fit_df = pd.DataFrame(np.load(gzip.open('feature_
fit.npy.gz', 'rb')), columns=ordered_features + ['pos', 
'error'])

potentially_good_corner_df = all_fit_df[(all_fit_
df['QUAL']<0.005)&(all_fit_df['QD']<0.05)]

all_errors_df=all_fit_df[all_fit_df['error'] == 1]

print(len(all_fit_df), len(all_errors_df), len(all_
errors_df) / len(all_fit_df))

We get the following:

10905732 541688 0.04967002673456491

Let’s remember that there are roughly 10.9 million markers in our full dataset, with around 
5% errors.

11.	 Let’s get some statistics on our good_corner:

potentially_good_corner_errors_df = potentially_good_
corner_df[potentially_good_corner_df['error'] == 1]

print(len(potentially_good_corner_df), len(potentially_
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good_corner_errors_df), len(potentially_good_corner_
errors_df) / len(potentially_good_corner_df))

print(len(potentially_good_corner_df)/len(all_fit_df))

The output is as follows:

9625754 32180 0.0033431147315836243

0.8826325458942141

So, we reduced the error rate to 0.33% (from 5%), while having only reduced to 9.6 million markers.

There’s more…

Is a reduction in error from 5% to 0.3% while losing 12% of markers good or bad? Well, it depends 
on what analysis you want to do next. Maybe your method is resilient to loss of markers but not too 
many errors, in which case this might help. But if it is the other way around, maybe you prefer to 
have the complete dataset even if it has more errors. If you apply different methods, maybe you will 
use different datasets from method to method. In the specific case of this Anopheles dataset, there is 
so much data that reducing the size will probably be fine for almost anything. But if you have fewer 
markers, you will have to assess your needs in terms of markers and quality.

Finding genomic features from sequencing annotations
We will conclude this chapter and this book with a simple recipe that suggests that sometimes you 
can learn important things from simple unexpected results, and that apparent quality issues might 
mask important biological questions.

We will plot read depth – DP – across chromosome arm 2L for all the parents on our crosses. The 
recipe can be found in Chapter04/2L.py.

How to do it…

We’ll get started with the following steps:

1.	 Let’s start with the usual imports:

from collections import defaultdict

import gzip

import numpy as np

import matplotlib.pylab as plt
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2.	 Let’s load the data that we saved in the first recipe:

num_parents = 8

dp_2L = np.load(gzip.open('DP_2L.npy.gz', 'rb'))

print(dp_2L.shape)

3.	 And let’s print the median DP for the whole chromosome arm, and a part of it in the middle 
for all parents:

for i in range(num_parents):

    print(np.median(dp_2L[:,i]), 
np.median(dp_2L[50000:150000,i]))

The output is as follows:

17.0 14.0

23.0 22.0

31.0 29.0

28.0 24.0

32.0 27.0

31.0 31.0

25.0 24.0

24.0 20.0

Interestingly, the median for the whole chromosome sometimes does not hold for that big 
region in the middle, so let’s dig further.

4.	 We will print the median DP for 200,000 kbp windows across the chromosome arm. Let’s start 
with the window code:

window_size = 200000

parent_DP_windows = [defaultdict(list) for i in 
range(num_parents)]

def insert_in_window(row):

    for parent in range(num_parents):

        parent_DP_windows[parent][row[-1] // window_
size].append(row[parent])

insert_in_window_v = np.vectorize(insert_in_window, 
signature='(n)->()')

_ = insert_in_window_v(dp_2L)
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5.	 Let’s plot it:

fig, axs = plt.subplots(2, num_parents // 2, figsize=(16, 
9), sharex=True, sharey=True, squeeze=True)

for parent in range(num_parents):

    ax = axs[parent // 4][parent % 4]

    parent_data = parent_DP_windows[parent]

    ax.set_ylim(10, 40)

    ax.plot(*zip(*[(win*window_size, np.mean(lst)) for 
win, lst in parent_data.items()]), '.')

6.	 The following plot shows the output:

Figure 4.7 - Median DP per window for all parents of the dataset on chromosome arm 2L

You will notice that for some mosquitoes, for example, the ones on the first and last columns, there 
is a clear drop of DP in the middle of the chromosome arm. In some of them, such as in the third 
column, there is a bit of drop – not so pronounced. And for the bottom parent of the second column, 
there is no drop at all.
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There’s more…

The preceding pattern has a biological cause that ends up having consequences for sequencing: 
Anopheles mosquitoes might have a big chromosomal inversion in the middle of arm 2L. Karyotypes 
that are not the same as those on the reference genome used to make the calls are harder to call due 
to evolutionary divergence. These make the number of sequencer reads in that area lower. This is very 
specific to this species, but you might expect other kinds of features to appear in other organisms.

A more widely known case is Copy Number Variation (CNV): if a reference genome has only a copy 
of a feature, but the individual that you are sequencing has n, then you can expect to see a DP of n 
times the median across the genome.

But, in the general case, it is a good idea to be on the lookout for strange results throughout the 
analysis. Sometimes, that is the hallmark of an interesting biological feature, as it is here. Either that, 
or it’s a pointer to a mistake: for example, Principal Components Analysis (PCA) can be used to 
find mislabeled samples (as they might cluster in the wrong group).

Doing metagenomics with QIIME 2 Python API
Wikipedia says that metagenomics is the study of genetic material that’s recovered directly from 
environmental samples. Note that “environment” here should be interpreted broadly: in the case of our 
example, we will deal with gastrointestinal microbiomes in a study of a fecal microbiome transplant in 
children with gastrointestinal problems. The study is one of the tutorials of QIIME 2, which is one of 
the most widely used applications for data analysis in metagenomics. QIIME 2 has several interfaces: 
a GUI, a command line, and a Python API called the Artifact API.

Tomasz Kościółek has an outstanding tutorial for using the Artifact API based on the most well-developed 
(client-based, not artifact-based) tutorial on QIIME 2, the “Moving Pictures” tutorial (http://
nbviewer.jupyter.org/gist/tkosciol/29de5198a4be81559a075756c2490fde). 
Here, we will create a Python version of the fecal microbiota transplant study that’s available, as with 
the client interface, at https://docs.qiime2.org/2022.2/tutorials/fmt/. You should 
get familiar with it as we won’t go into the details of the biology here. I do follow a more convoluted 
route than Tomasz: this will allow you to get a bit more acquainted with QIIME 2 Python internals. 
After you get this experience, you will probably want to follow Tomasz’s route, not mine. However, 
the experience you get here will make you more comfortable and confident with QIIME’s internals.

Getting ready

This recipe is slightly more complicated to set up. We will have to create a conda environment where 
packages from QIIME 2 are segregated from packages from all other applications. The steps that you 
need to follow are simple.
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On OS X, use the following code to create a new conda environment:

wget wget https://data.qiime2.org/distro/core/qiime2-2022.2-
py38-osx-conda.yml

conda env create -n qiime2-2022.2 --file qiime2-2022.2-py38-
osx-conda.yml

On Linux, use the following code to create the environment:

wget wget https://data.qiime2.org/distro/core/qiime2-2022.2-
py38-linux-conda.yml

conda env create -n qiime2-2022.2 --file qiime2-2022.2-py38-
linux-conda.yml

If these instructions do not work, check the QIIME 2 website for an updated version (https://
docs.qiime2.org/2022.2/install/native). QIIME 2 is updated regularly.

At this stage, you need to enter the QIIME 2 conda environment by using source activate 
qiime2-2022.2. If you want to get to the standard conda environment, use source deactivate 
instead. We will want to install jupyter lab and jupytext:

conda install jupyterlab jupytext

You might want to install other packages you want inside QIIME 2’s environment using conda 
install.

To prepare for Jupyter execution, you should install the QIIME 2 extension, as follows:

jupyter serverextension enable --py qiime2 --sys-prefix

TIP
The extension is highly interactive and allows you to look at data from different viewpoints that 
cannot be captured in this book. The downside is that it won’t work in nbviewer (some cell 
outputs won’t be visible with the static viewer). Remember to interact with the outputs from 
the extension, since many are dynamic.

You can now start Jupyter. The notebook can be found in the Chapter4/QIIME2_Metagenomics.
py file.

WARNING
Due to the fluidity of package installation with QIIME, we don’t provide a Docker environment 
for it. This means that if you are working from our Docker installation you will have to download 
the recipe and install the packages manually.
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You can find the instructions to get the data of both the Notebook files and the QIIME 2 tutorial.

How to do it...

Let’s take a look at the following steps:

1.	 Let’s start by checking what plugins are available:

import pandas as pd

from qiime2.metadata.metadata import Metadata

from qiime2.metadata.metadata import 
CategoricalMetadataColumn

from qiime2.sdk import Artifact

from qiime2.sdk import PluginManager

from qiime2.sdk import Result

pm = PluginManager()

demux_plugin = pm.plugins['demux']

#demux_emp_single = demux_plugin.actions['emp_single']

demux_summarize = demux_plugin.actions['summarize']

print(pm.plugins)

We are also accessing the demultiplexing plugin and its summarize action.

2.	 Let’s take a peek at the summarize action, namely inputs, outputs, and parameters:

print(demux_summarize.description)

demux_summarize_signature = demux_summarize.signature

print(demux_summarize_signature.inputs)

print(demux_summarize_signature.parameters)

print(demux_summarize_signature.outputs)

The output will be as follows:

Summarize counts per sample for all samples, and generate 
interactive positional quality plots based on `n` 
randomly selected sequences.

 OrderedDict([('data', ParameterSpec(qiime_
type=SampleData[JoinedSequencesWithQuality | 
PairedEndSequencesWithQuality | SequencesWithQuality], 
view_type=<class 'q2_demux._summarize._visualizer._
PlotQualView'>, default=NOVALUE, description='The 
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demultiplexed sequences to be summarized.'))])

 OrderedDict([('n', ParameterSpec(qiime_type=Int, view_
type=<class 'int'>, default=10000, description='The 
number of sequences that should be selected at random for 
quality score plots. The quality plots will present the 
average positional qualities across all of the sequences 
selected. If input sequences are paired end, plots will 
be generated for both forward and reverse reads for the 
same `n` sequences.'))])

 OrderedDict([('visualization', ParameterSpec(qiime_
type=Visualization, view_type=None, default=NOVALUE, 
description=NOVALUE))])

3.	 We will now load the first dataset, demultiplex it, and visualize some demultiplexing statistics:

seqs1 = Result.load('fmt-tutorial-demux-1-10p.qza')

sum_data1 = demux_summarize(seqs1)

sum_data1.visualization

Here is a part of the output from the QIIME extension for Juypter:

Figure 4.8 - A part of the output of the QIIME2 extension for Jupyter
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Remember that the extension is iterative and provides substantially more information than 
only this chart.

TIP
The original data for this recipe is supplied in QIIME 2 format. Obviously, you will have your 
own original data in some other format (probably FASTQ) – see the There’s more... section for 
a way to load a standard format.

QIIME 2’s .qza and .qzv formats are simply zipped files. You can have a look at the content 
with unzip.

The chart will be similar to in the QIIME CLI tutorial, but be sure to check the interactive 
quality plot of our output.

4.	 Let’s do the same for the second dataset:

seqs2 = Result.load('fmt-tutorial-demux-2-10p.qza')

sum_data2 = demux_summarize(seqs2)

sum_data2.visualization

5.	 Let’s use the DADA2 (https://github.com/benjjneb/dada2) plugin for quality 
control:

dada2_plugin = pm.plugins['dada2']

dada2_denoise_single = dada2_plugin.actions['denoise_
single']

qual_control1 = dada2_denoise_single(demultiplexed_
seqs=seqs1,

                                    trunc_len=150, trim_
left=13)

qual_control2 = dada2_denoise_single(demultiplexed_
seqs=seqs2,

                                    trunc_len=150, trim_
left=13)

6.	 Let’s extract some statistics from denoising (first set):

metadata_plugin = pm.plugins['metadata']

metadata_tabulate = metadata_plugin.actions['tabulate']

stats_meta1 = metadata_tabulate(input=qual_control1.
denoising_stats.view(Metadata))

stats_meta1.visualization
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Again, the result can be found online in the QIIME 2 CLI version of the tutorial.

7.	 Now, let’s do the same for the second set:

stats_meta2 = metadata_tabulate(input=qual_control2.
denoising_stats.view(Metadata))

stats_meta2.visualization

8.	 Now, merge the denoised data:

ft_plugin = pm.plugins['feature-table']

ft_merge = ft_plugin.actions['merge']

ft_merge_seqs = ft_plugin.actions['merge_seqs']

ft_summarize = ft_plugin.actions['summarize']

ft_tab_seqs = ft_plugin.actions['tabulate_seqs']

table_merge = ft_merge(tables=[qual_control1.table, qual_
control2.table])

seqs_merge = ft_merge_seqs(data=[qual_control1.
representative_sequences, qual_control2.representative_
sequences])

9.	 Then, gather some quality statistics from the merge:

ft_sum = ft_summarize(table=table_merge.merged_table)

ft_sum.visualization

10.	 Finally, let’s get some information about the merged sequences:

tab_seqs = ft_tab_seqs(data=seqs_merge.merged_data)

tab_seqs.visualization

There’s more...

The preceding code does not show you how to import data. The actual code will vary from case to case 
(single-end data, paired-end data, or already-demultiplexed data), but for the main QIIME 2 tutorial, 
Moving Pictures, assuming that you have downloaded the single-end, non-demultiplexed data and 
barcodes into a directory called data, you can do the following:

data_type = 'EMPSingleEndSequences'

conv = Artifact.import_data(data_type, 'data')

conv.save('out.qza')
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As stated in the preceding code, if you look on GitHub for this notebook, the static nbviewer 
system will not be able to render the notebook correctly (you have to run it yourself). This is far from 
perfect; it is not interactive, since the quality is not great, but at least it lets you get an idea of the 
output without running the code.
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5
Working with Genomes

Many tasks in computational biology are dependent on the existence of reference genomes. If you 
are performing sequence alignment, finding genes, or studying the genetics of populations, you will 
be directly or indirectly using a reference genome. In this chapter, we will develop some recipes for 
working with reference genomes and dealing with references of varying quality, which can range from 
high quality (by high quality, we only refer to the state of the genome’s assembly, which is the focus 
of this chapter), as with the human genome, to problematic with non-model species. We will also 
learn how to deal with genome annotations (working with databases that will point us to interesting 
features in the genome) and extract sequence data using the annotation information. We will also try 
to find some gene orthologs across species. Finally, we will access a Gene Ontology (GO) database.

In this chapter, we will cover the following recipes:

•	 Working with high-quality reference genomes

•	 Dealing with low-quality reference genomes

•	 Traversing genome annotations

•	 Extracting genes from a reference using annotations

•	 Finding orthologues with the Ensembl REST API

•	 Retrieving gene ontology information from Ensembl

Technical requirements
If you are running this chapter’s content via Docker, you can use the tiagoantao/bioinformatics_
genomes image. If you are using Anaconda, the required software for this chapter will be introduced 
in each relevant section.
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Working with high-quality reference genomes
In this recipe, you will learn about a few general techniques to manipulate reference genomes. As 
an illustrative example, we will study the GC content – the fraction of the genome that is based on 
guanine-cytosine in Plasmodium falciparum, the most important parasite species that causes malaria. 
Reference genomes are normally made available as FASTA files.

Getting ready

Organism genomes come in widely different sizes, ranging from viruses such as HIV, which is 9.7 kbp, to 
bacteria such as E. coli, to protozoans such as Plasmodium falciparum, which has a 22 Mbp spread across 
14 chromosomes, mitochondrion, and apicoplast, to the fruit fly with three autosomes, a mitochondrion, 
and X/Y sex chromosomes, to humans with their three Gbp pairs spread across 22 autosomes, X/Y 
chromosomes, and mitochondria, all the way up to Paris japonica, a plant with 150 Gbp of the genome. 
Along the way, you have different ploidy and sex chromosome organizations.

Tip
As you can see, different organisms have very different genome sizes. This difference can be 
of several orders of magnitude. This can have significant implications for your programming 
style. Working with a large genome will require you to be more conservative with memory. 
Unfortunately, larger genomes would benefit from more speed-efficient programming 
techniques (as you have much more data to analyze); these are conflicting requirements. 
The general rule is that you have to be much more careful with efficiency (both speed and 
memory) with larger genomes.

To make this recipe less of a burden, we will use a small eukaryotic genome from Plasmodium falciparum. 
This genome still has many typical features of larger genomes (for example, multiple chromosomes). 
Therefore, it’s a good compromise between complexity and size. Note that with a genome that’s the 
size of Plasmodium falciparum, it will be possible to perform many operations by loading the whole 
genome in memory. However, we opted for a programming style that can be used with bigger genomes 
(for example, mammals) so that you can use this recipe in a more general way, but feel free to use 
more memory-intensive approaches with small genomes like this.

We will use Biopython, which you installed in Chapter 1, Python and the Surrounding Software Ecology. 
As usual, this recipe is available in this book’s Jupyter notebook as Chapter05/Reference_
Genome.py, in the code bundle for this book. We will need to download the reference genome – you 
can find the up-to-date location in the aforementioned notebook. To generate the chart at the end of 
this recipe, we will need reportlab:

conda install -c bioconda reportlab

Now, we’re ready to begin.
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How to do it...

Follow these steps:

1.	 We will start by inspecting the description of all of the sequences in the reference genome’s 
FASTA file:

from Bio import SeqIO

genome_name = 'PlasmoDB-9.3_Pfalciparum3D7_Genome.fasta'

recs = SeqIO.parse(genome_name, 'fasta')

for rec in recs:

    print(rec.description)

This code should look familiar from the previous chapter, Chapter 3, Next-Generation Sequencing. 
Let’s take a look at part of the output:

Figure 5.1 – The output showing the FASTA descriptions for the 

reference genome of Plasmodium falciparum

Different genome references will have different description lines, but they will generally contain 
important information. In this example, you can see that we have chromosomes, mitochondria, 
and apicoplast. We can also view the chromosome sizes, but we will take the value from the 
sequence length instead.

2.	 Let’s parse the description line to extract the chromosome number. We will retrieve the 
chromosome size from the sequence and compute the GC content across chromosomes on a 
window basis:

from Bio import SeqUtils

recs = SeqIO.parse(genome_name, 'fasta')

chrom_sizes = {}

chrom_GC = {}

block_size = 50000

min_GC = 100.0
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max_GC = 0.0

for rec in recs:

    if rec.description.find('SO=chromosome') == -1:

        continue

    chrom = int(rec.description.split('_')[1])

    chrom_GC[chrom] = []

    size = len(rec.seq)

    chrom_sizes[chrom] = size

    num_blocks = size // block_size + 1

    for block in range(num_blocks):

        start = block_size * block

        if block == num_blocks - 1:

            end = size

        else:

            end = block_size + start + 1

        block_seq = rec.seq[start:end]

        block_GC = SeqUtils.GC(block_seq)

        if block_GC < min_GC:

            min_GC = block_GC

        if block_GC > max_GC:

            max_GC = block_GC

        chrom_GC[chrom].append(block_GC)

print(min_GC, max_GC)

Here, we have performed a windowed analysis of all chromosomes, similar to what we did in 
Chapter 3, Next-Generation Sequencing. We started by defining a window size of 50 kbp. This is 
appropriate for Plasmodium falciparum (feel free to vary its size), but you will want to consider 
other values for genomes with chromosomes that are orders of magnitude different from this.

Note that we are re-reading the file. With such a small genome, it would have been feasible 
(in Step 1) to do an in-memory load of the whole genome. By all means, feel free to try this 
programming style for small genomes – it’s faster! However, our code is designed to be reused 
with larger genomes.

3.	 Note that in the for loop, we ignore the mitochondrion and apicoplast by parsing the SO entry 
to the description. The chrom_sizes dictionary will maintain the size of chromosomes.

The chrom_GC dictionary is our most interesting data structure and will contain a list of a 
fraction of the GC content for each 50 kbp window. So, for chromosome 1, which has a size 
of 640,851 bp, there will be 14 entries because this chromosome’s size is 14 blocks of 50 kbp.
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Be aware of two unusual features of the Plasmodium falciparum genome: the genome is very 
AT-rich – that is, GC-poor. Therefore, the numbers that you will get will be very low. Also, 
chromosomes are ordered based on size (as is common) but starting with the smallest size. The 
usual convention is to start with the largest size (such as with genomes in humans).

4.	 Now, let’s create a genome plot of the GC distribution. We will use shades of blue for the GC 
content. However, for high outliers, we will use shades of red. For low outliers, we will use 
shades of yellow:

from reportlab.lib import colors

from reportlab.lib.units import cm

from Bio.Graphics import BasicChromosome

chroms = list(chrom_sizes.keys())

chroms.sort()

biggest_chrom = max(chrom_sizes.values())

my_genome = BasicChromosome.Organism(output_format="png")

my_genome.page_size = (29.7*cm, 21*cm)

telomere_length = 10

bottom_GC = 17.5

top_GC = 22.0

for chrom in chroms:

    chrom_size = chrom_sizes[chrom]

    chrom_representation = BasicChromosome.Chromosome 
('Cr %d' % chrom)

    chrom_representation.scale_num = biggest_chrom

    tel = BasicChromosome.TelomereSegment()

    tel.scale = telomere_length

    chrom_representation.add(tel)

    num_blocks = len(chrom_GC[chrom])

    for block, gc in enumerate(chrom_GC[chrom]):

        my_GC = chrom_GC[chrom][block]

        body = BasicChromosome.ChromosomeSegment()

        if my_GC > top_GC:

            body.fill_color = colors.Color(1, 0, 0)

        elif my_GC < bottom_GC:

            body.fill_color = colors.Color(1, 1, 0)

        else:
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            my_color = (my_GC - bottom_GC) / (top_GC 
-bottom_GC)

            body.fill_color = colors.Color(my_color,my_
color, 1)

        if block < num_blocks - 1:

            body.scale = block_size

        else:

            body.scale = chrom_size % block_size

        chrom_representation.add(body)

    tel = BasicChromosome.TelomereSegment(inverted=True)

    tel.scale = telomere_length

    chrom_representation.add(tel)

    my_genome.add(chrom_representation)

my_genome.draw('falciparum.png', 'Plasmodium falciparum')

The first line converts the return of the keys method into a list. This was redundant in Python 
2, but not in Python 3, where the keys method has a specific dict_keys return type.

We draw the chromosomes in order (hence the sort). We need the size of the biggest chromosome 
(14, in Plasmodium falciparum) to make sure that the size of chromosomes is printed with the 
correct scale (the biggest_chrom variable).

Then, we create an A4-sized representation of an organism with a PNG output. Note that we 
draw very small telomeres of 10 bp. This will produce a rectangular-like chromosome. You 
can make the telomeres bigger, giving them a roundish representation, or you may have the 
arguably better idea of using the correct telomere size for your species.

We declare that anything with a GC content below 17.5% or above 22.0% will be considered an 
outlier. Remember that for most other species, this will be much higher.

Then, we print these chromosomes: they are bounded by telomeres and composed of 50 kbp 
chromosome segments (the last segment is sized with the remainder). Each segment will be 
colored in blue, with a red-green component based on the linear normalization between two 
outlier values. Each chromosome segment will either be 50 kbp or potentially smaller if it’s the 
last one of the chromosome. The output is shown in the following diagram:
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Figure 5.2 – The 14 chromosomes of Plasmodium falciparum, color-coded with the GC content (red is more 

than 22%, yellow less than 17%, and the blue shades represent a linear gradient between both numbers)

Tip
Biopython code evolved before Python was such a fashionable language. In the past, the availability 
of libraries was quite limited. The usage of reportlab can be seen mostly as a legacy issue. I 
suggest that you learn just enough from it to use it with Biopython. If you are planning on learning 
a modern plotting library in Python, then the standard bearer is Matplotlib, as we learned in 
Chapter 2, Getting to Know NumPy, pandas, Arrow, and Matplotlib. Alternatives include Bokeh, 
HoloViews, or Python’s version of ggplot (or even more sophisticated visualization alternatives, 
such as Mayavi, Visualization Toolkit (VTK), and even the Blender API).

5.	 Finally, you can print the image inline in the notebook:

from IPython.core.display import Image

Image("falciparum.png")

And that completes this recipe!

There’s more...

Plasmodium falciparum is a reasonable example of a eukaryote with a small genome that allows you 
to perform a small data exercise with enough features, while still being useful for most eukaryotes. Of 
course, there are no sex chromosomes (such as X/Y in humans), but these should be easy to process 
because reference genomes do not deal with ploidy issues.
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Plasmodium falciparum does have a mitochondrion, but we will not deal with it here due to space 
constraints. Biopython does have the functionality to print circular genomes, which you can also use 
with bacteria. With regards to bacteria and viruses, these genomes are much easier to process because 
their size is very small.

See also

Here are some sources you can learn more from:

•	 You can find many reference genomes of model organisms in Ensembl at http://www.
ensembl.org/info/data/ftp/index.html.

•	 As usual, National Center for Biotechnology Information (NCBI) also provides a large list 
of genomes at http://www.ncbi.nlm.nih.gov/genome/browse/.

•	 There are plenty of websites dedicated to a single organism (or a set of related organisms). 
Apart from PlasmoDB (http://plasmodb.org/plasmo/), which you downloaded 
the Plasmodium falciparum genome from, you will find VectorBase (https://www.
vectorbase.org/) in the next recipe for disease vectors. FlyBase (http://flybase.
org/) for Drosophila melanogaster is also worth mentioning, but do not forget to search for 
your organism of interest.

Dealing with low-quality genome references
Unfortunately, not all reference genomes will have the quality of Plasmodium falciparum. Apart from 
some model species (for example, humans, or the common fruit fly Drosophila melanogaster) and a 
few others, most reference genomes could use some improvement. In this recipe, we will learn how 
to deal with reference genomes of lower quality.

Getting ready

In keeping with the malaria theme, we will use the reference genomes of two mosquitoes that are 
vectors of malaria: Anopheles gambiae (which is the most important vector of malaria and can be found 
in Sub-Saharan Africa) and Anopheles atroparvus, a malaria vector in Europe (while the disease has 
been eradicated in Europe, this vector is still around). The Anopheles gambiae genome is of reasonable 
quality. Most chromosomes have been mapped, although the Y chromosome still needs some work. 
There is a fairly large unknown chromosome, probably composed of bits of X and Y chromosomes, 
as well as midgut microbiota. This genome has a reasonable amount of positions that are not called 
(that is, you will find Ns instead of ACTGs). The Anopheles atroparvus genome is still in the scaffold 
format. Unfortunately, this is what you will find for many non-model species.

Note that we will up the ante a bit. The Anopheles genome is one order of magnitude bigger than the 
Plasmodium falciparum genome (but still one order of magnitude smaller than most mammals).
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We will use Biopython, which you installed in Chapter 1, Python and the Surrounding Software Ecology. 
As usual, this recipe is available in this book’s Jupyter notebook at Chapter05/Low_Quality.
py, in the code bundle for this book. At the start of the notebook, you can find the most up-to-date 
location of both genomes, along with the code to download them.

How to do it...

Follow these steps:

1.	 Let’s start by listing the chromosomes of the Anopheles gambiae genome:

import gzip

from Bio import SeqIO

gambiae_name = 'gambiae.fa.gz'

atroparvus_name = 'atroparvus.fa.gz'

recs = SeqIO.parse(gzip.open(gambiae_name, 'rt', 
encoding='utf-8'), 'fasta')

for rec in recs:

    print(rec.description)

This will produce an output that will include the organism chromosomes (along with a few 
unmapped supercontigs not depicted):

AgamP4_2L | organism=Anopheles_gambiae_PEST | 
version=AgamP4 | length=49364325 | SO=chromosome

AgamP4_2R | organism=Anopheles_gambiae_PEST | 
version=AgamP4 | length=61545105 | SO=chromosome

AgamP4_3L | organism=Anopheles_gambiae_PEST | 
version=AgamP4 | length=41963435 | SO=chromosome

AgamP4_3R | organism=Anopheles_gambiae_PEST | 
version=AgamP4 | length=53200684 | SO=chromosome

AgamP4_X | organism=Anopheles_gambiae_PEST | 
version=AgamP4 | length=24393108 | SO=chromosome

AgamP4_Y_unplaced | organism=Anopheles_gambiae_PEST | 
version=AgamP4 | length=237045 | SO=chromosome

AgamP4_Mt | organism=Anopheles_gambiae_PEST | 
version=AgamP4 | length=15363 | SO=mitochondrial_
chromosome

The code is quite straightforward. We use the gzip module because the files of larger genomes 
are normally compressed. We can see four chromosome arms (2L, 2R, 3L, and 3R), the 
mitochondria (Mt), the X chromosome, and the Y chromosome, which is quite small and has 
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a name that all but indicates that it may not be in the best state. Also, the unknown (UNKN) 
chromosome is a large proportion of the reference genome, to the tune of a chromosome arm.

Do not perform this with Anopheles atroparvus; otherwise, you will get more than a thousand 
entries, courtesy of the scaffold status.

2.	 Now, let’s check the uncalled positions (Ns) and their distribution for the Anopheles gambiae 
genome:

recs = SeqIO.parse(gzip.open(gambiae_name, 'rt', 
encoding='utf-8'), 'fasta')

chrom_Ns = {}

chrom_sizes = {}

for rec in recs:

    if rec.description.find('supercontig') > -1:

        continue

    print(rec.description, rec.id, rec)

    chrom = rec.id.split('_')[1]

    if chrom in ['UNKN']:

        continue

    chrom_Ns[chrom] = []

    on_N = False

    curr_size = 0

    for pos, nuc in enumerate(rec.seq):

        if nuc in ['N', 'n']:

            curr_size += 1

            on_N = True

        else:

            if on_N:

                chrom_Ns[chrom].append(curr_size)

                curr_size = 0

            on_N = False

    if on_N:

        chrom_Ns[chrom].append(curr_size)

    chrom_sizes[chrom] = len(rec.seq)

for chrom, Ns in chrom_Ns.items():

    size = chrom_sizes[chrom]

    if len(Ns) > 0:

        max_Ns = max(Ns)
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    else:

        max_Ns = 'NA'

    print(f'{chrom} ({size}): %Ns ({round(100 * sum(Ns) / 
size, 1)}), num Ns: {len(Ns)}, max N: {max_Ns}')

The preceding code will take some time to run, so please be patient; we will inspect every base 
pair of autosomes. As usual, we will reopen and re-read the file to save memory.

We have two dictionaries: one dictionary that contains chromosome sizes and another that 
contains the distribution of the sizes of runs of Ns. To calculate the runs of Ns, we must 
traverse all autosomes (noting when an N position starts and ends). Then, we must print the 
basic statistics of the distribution of Ns:

2L (49364325): %Ns (1.7), num Ns: 957, max N: 28884

2R (61545105): %Ns (2.3), num Ns: 1658, max N: 36427

3L (41963435): %Ns (2.9), num Ns: 1272, max N: 31063

3R (53200684): %Ns (1.8), num Ns: 1128, max N: 24292

X (24393108): %Ns (4.1), num Ns: 1287, max N: 21132

Y (237045): %Ns (43.0), num Ns: 63, max N: 7957

Mt (15363): %Ns (0.0), num Ns: 0, max N: NA

So, for the 2L chromosome arm (with a size of 49 Mbp), 1.7% are N calls divided by 957 
runs. The biggest run is 28884 bps. Note that the X chromosome has the highest fraction of 
positions with Ns.

3.	 Now, let’s turn our attention to the Anopheles Atroparvus genome. Let’s count the number of 
scaffolds, along with the distribution of scaffold sizes:

import numpy as np

recs = SeqIO.parse(gzip.open(atroparvus_name, 'rt', 
encoding='utf-8'), 'fasta')

sizes = []

size_N = []

for rec in recs:

    size = len(rec.seq)

    sizes.append(size)

    count_N = 0

    for nuc in rec.seq:

        if nuc in ['n', 'N']:

            count_N += 1

    size_N.append((size, count_N / size))

print(len(sizes), np.median(sizes), np.mean(sizes),
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      max(sizes), min(sizes),

      np.percentile(sizes, 10), np.percentile(sizes, 90))

This code is similar to what we looked at previously, but we print slightly more detailed statistics 
using NumPy, so we get the following:

1320 7811.5 170678.2 58369459 1004 1537.1 39644.7

Thus, we have 1371 scaffolds (against seven entries on the Anopheles gambiae genome) with 
a median size of 7811.5 (a mean of 17,0678.2). The biggest scaffold is 5.8 Mbp, while 
the smallest scaffold is 1,004 bp. The tenth percentile for size is 1537.1, while the ninetieth 
is 39644.7.

4.	 Finally, let’s plot the fraction of the scaffold – that is, N – as a function of its size:

import matplotlib.pyplot as plt

small_split = 4800

large_split = 540000

fig, axs = plt.subplots(1, 3, figsize=(16, 9), 
squeeze=False, sharey=True)

xs, ys = zip(*[(x, 100 * y) for x, y in size_N if x <= 
small_split])

axs[0, 0].plot(xs, ys, '.')

xs, ys = zip(*[(x, 100 * y) for x, y in size_N if x > 
small_split and x <= large_split])

axs[0, 1].plot(xs, ys, '.')

axs[0, 1].set_xlim(small_split, large_split)

xs, ys = zip(*[(x, 100 * y) for x, y in size_N if x > 
large_split])

axs[0, 2].plot(xs, ys, '.')

axs[0, 0].set_ylabel('Fraction of Ns', fontsize=12)

axs[0, 1].set_xlabel('Contig size', fontsize=12)

fig.suptitle('Fraction of Ns per contig size', 
fontsize=26)

The preceding code will generate the output shown in the following diagram, in which we 
split the chart into three parts based on the scaffold size: one for scaffolds with less than 4,800 
bp, one for scaffolds between 4,800 and 540,000 bp, and one for larger ones. The fraction of 
Ns is very low for small scaffolds (always below 3.5%); for medium scaffolds, it has a large 
variance (sizes between 0% and above 90%), and a tighter variance (between 0% and 25%) for 
the largest scaffolds:
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Figure 5.3 – The fraction of scaffolds that are N as a function of their size

There’s more...

Sometimes, reference genomes carry extra information. For example, the Anopheles gambiae genome 
is soft masked. This means that some procedures were run on the genome to identify areas of low 
complexity (which are normally more problematic to analyze). This can be annotated by capitalization: 
ACTG will be high complexity, whereas actg will be low.

Reference genomes with lots of scaffolds are more than an inconvenient hassle. For example, very 
small scaffolds (say, below 2,000 bp) may have mapping problems when using an aligner (such as 
Burrows-Wheeler Aligner (BWA)), especially at the extremes (most scaffolds will have mapping 
problems at their extremes, but these will be of a much larger proportion of the scaffold if it’s small). 
If you are using a reference genome like this to align, you will want to consider ignoring the pair 
information (assuming that you have paired-end reads) when mapping to small scaffolds, or at 
least measure the impact of the scaffold size on the performance of your aligner. In any case, the 
general idea is that you should be careful because the scaffold size and number will rear their ugly 
head from time to time.

With these genomes, only complete ambiguity (N) was identified. Note that other genome assemblies 
will give you an intermediate code between the total ambiguity and certainty (ACTG).
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See also

Here are some resources you can learn more from:

•	 Tools such as RepeatMasker can be used to find areas of the genome with low complexity. 
Check out http://www.repeatmasker.org/ for more information.

•	 IUPAC ambiguity codes may be useful to have in hand when processing other genomes. Check 
out http://www.bioinformatics.org/sms/iupac.html for more information.

Traversing genome annotations
Having a genome sequence is interesting, but we will want to extract features from it, such as genes, 
exons, and coding sequences. This type of annotation information is made available in Generic Feature 
Format (GFF) and General Transfer Format (GTF) files. In this recipe, we will learn how to parse 
and analyze GFF files while using the annotation of the Anopheles gambiae genome as an example.

Getting ready

Use the Chapter05/Annotations.py notebook file, which is provided in the code bundle 
for this book. The up-to-date location of the GFF file that we will be using can be found at the top 
of the notebook.

You will need to install gffutils:

conda install -c bioconda gffutils

Now, we’re ready to start.

How to do it...

Follow these steps:

1.	 Let’s start by creating an annotation database with gffutils, based on our GFF file:

import gffutils

import sqlite3

try:

    db = gffutils.create_db('gambiae.gff.gz', 'ag.db')

except sqlite3.OperationalError:

    db = gffutils.FeatureDB('ag.db')

The gffutils library creates a SQLite database to store annotations efficiently. Here, we will 
try to create the database, but if it already exists, we will use the existing one. This step can be 
time-consuming.
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2.	 Now, let’s list all the available feature types and count them:

print(list(db.featuretypes()))

for feat_type in db.featuretypes():

    print(feat_type, db.count_features_of_type(feat_
type))

These features will include contigs, genes, exons, transcripts, and so on. Note that we will use 
the gffutils package’s featuretypes function. It will return a generator, but we will 
convert it into a list (it’s safe to do so here).

3.	 Let’s list all seqids:

seqids = set()

for e in db.all_features():

    seqids.add(e.seqid)

for seqid in seqids:

    print(seqid)

This will show us that there is annotation information for all chromosome arms and sex 
chromosomes, mitochondrion, and the unknown chromosome.

4.	 Now, let’s extract a lot of useful information per chromosome, such as the number of genes, 
number of transcripts per gene, number of exons, and so on:

from collections import defaultdict

num_mRNAs = defaultdict(int)

num_exons = defaultdict(int)

max_exons = 0

max_span = 0

for seqid in seqids:

    cnt = 0

    for gene in db.region(seqid=seqid, 
featuretype='protein_coding_gene'):

        cnt += 1

        span = abs(gene.start - gene.end) # strand

        if span > max_span:

            max_span = span

            max_span_gene = gene

        my_mRNAs = list(db.children(gene, 
featuretype='mRNA'))
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        num_mRNAs[len(my_mRNAs)] += 1

        if len(my_mRNAs) == 0:

            exon_check = [gene]

        else:

            exon_check = my_mRNAs

        for check in exon_check:

            my_exons = list(db.children(check, 
featuretype='exon'))

            num_exons[len(my_exons)] += 1

            if len(my_exons) > max_exons:

                max_exons = len(my_exons)

                max_exons_gene = gene

    print(f'seqid {seqid}, number of genes {cnt}')

print('Max number of exons: %s (%d)' % (max_exons_gene.
id, max_exons))

print('Max span: %s (%d)' % (max_span_gene.id, max_span))

print(num_mRNAs)

print(num_exons)

We will traverse all seqids while extracting all protein-coding genes (using region). In each 
gene, we count the number of alternative transcripts. If there are none (note that this is probably 
an annotation issue and not a biological one), we count the exons (children). If there are 
several transcripts, we count the exons per transcript. We also account for the span size to 
check for the gene that spans the largest region. 

We follow a similar procedure to find the gene and the largest number of exons. Finally, we print a 
dictionary that contains the distribution of the number of alternative transcripts per gene (num_mRNAs) 
and the distribution of the number of exons per transcript (num_exons).

There’s more...

There are many variations of the GFF/GTF format. There are different GFF versions and many 
unofficial variations. If possible, choose GFF version 3. However, the ugly truth is that you will find 
it very difficult to process files. The gffutils library tries as best as it can to accommodate this. 
Indeed, much of the documentation for this library is concerned with helping you process all kinds of 
awkward variations (refer to https://pythonhosted.org/gffutils/examples.html).

There is an alternative to using gffutils (either because your GFF file is strange or because you do 
not like the library interface or its dependency on a SQL backend). Parse the file yourself manually. If 
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you look at the format, you will notice that it’s not very complex. If you are only performing a one-off 
operation, then maybe manual parsing is good enough. Of course, one-off operations tend to not be 
that good in the long run.

Also, note that the quality of annotations tends to vary a lot. As the quality increases, so does the 
complexity. Just check the human annotation for an example of this. You can expect that, over time, 
as our knowledge of organisms evolves, the quality and complexity of annotations will increase.

See also

Here are some resources you can learn more from:

•	 The GFF spec can be found at https://www.sanger.ac.uk/resources/software/
gff/spec.html.

•	 Probably the best explanation of the GFF format, along with the most common versions and 
GTF, can be found at http://gmod.org/wiki/GFF3.

Extracting genes from a reference using annotations
In this recipe, we will learn how to extract a gene sequence with the help of an annotation file to get 
its coordinates against a reference FASTA. We will use the Anopheles gambiae genome, along with 
its annotation file (as per the previous two recipes). First, we will extract the voltage-gated sodium 
channel (VGSC) gene, which is involved in resistance to insecticides.

Getting ready

If you have followed the previous two recipes, you will be ready. If not, download the Anopheles gambiae 
FASTA file, along with the GTF file. You also need to prepare the gffutils database:

import gffutils

import sqlite3

try:

    db = gffutils.create_db('gambiae.gff.gz', 'ag.db')

except sqlite3.OperationalError:

    db = gffutils.FeatureDB('ag.db')

As usual, you will find all of this in the Chapter05/Getting_Gene.py notebook file.
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How to do it...

Follow these steps:

1.	 Let’s start by retrieving the annotation information for our gene:

import gzip

from Bio import Seq, SeqIO

gene_id = 'AGAP004707'

gene = db[gene_id]

print(gene)

print(gene.seqid, gene.strand)

gene_id was retrieved from VectorBase, an online database for the genomics of disease vectors. 
For other specific cases, you will need to know the ID of your gene (which will be dependent 
on the species and database). The output will be as follows:

AgamP4_2L       VEuPathDB       protein_coding_
gene     2358158 2431617 .       +       .       ID=AGAP0
04707;Name=para;description=voltage-gated sodium channel

AgamP4_2L + 

Note that the gene is on the 2L chromosome arm and coded in the positive direction  
(the + strand).

2.	 Let’s hold the sequence for the 2L chromosome arm in memory (it’s just a single chromosome, 
so we will indulge):

recs = SeqIO.parse(gzip.open('gambiae.fa.gz', 'rt', 
encoding='utf-8'), 'fasta')

for rec in recs:

    print(rec.description)

    if rec.id == gene.seqid:

        my_seq = rec.seq

        break

The output will be as follows:

AgamP4_2L | organism=Anopheles_gambiae_PEST | 
version=AgamP4 | length=49364325 | SO=chromosome

3.	 Let’s create a function to construct a gene sequence for a list of CDSs:

def get_sequence(chrom_seq, CDSs, strand):

    seq = Seq.Seq('')
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    for CDS in CDSs:

        my_cds = Seq.Seq(str(my_seq[CDS.start - 1:CDS.
end]))

        seq += my_cds

    return seq if strand == '+' else seq.reverse_
complement()

This function will receive a chromosome sequence (in our case, the 2L arm), a list of coding 
sequences (retrieved from the annotation file), and the strand.

We have to be very careful with the start and end of the sequence (note that the GFF file is 
1-based, whereas the Python array is 0-based). Finally, we return the reverse complement if 
the strand is negative.

4.	 Although we have the gene_id at hand, we only want one of the transcripts of the three 
available for this gene, so we need to choose one:

mRNAs = db.children(gene, featuretype='mRNA')

for mRNA in mRNAs:

    print(mRNA.id)

    if mRNA.id.endswith('RA'):

        break

5.	 Now, let’s get the coding sequence for our transcript, then get the gene sequence, and translate it:

CDSs = db.children(mRNA, featuretype='CDS', order_
by='start')

gene_seq = get_sequence(my_seq, CDSs, gene.strand)

print(len(gene_seq), gene_seq)

prot = gene_seq.translate()

print(len(prot), prot)

6.	 Let’s get the gene that is coded in the negative strand direction. We will just take the gene next 
to VGSC (which happens to be the negative strand):

reverse_transcript_id = 'AGAP004708-RA'

reverse_CDSs = db.children(reverse_transcript_id, 
featuretype='CDS', order_by='start')

reverse_seq = get_sequence(my_seq, reverse_CDSs, '-')

print(len(reverse_seq), reverse_seq)

reverse_prot = reverse_seq.translate()

print(len(reverse_prot), reverse_prot)
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Here, I avoided getting all of the information about the gene and just hardcoded the transcript ID. 
The point is that you should make sure your code works, irrespective of the strand.

There’s more...

This is a simple recipe that exercises several concepts that have been presented in this chapter and 
Chapter 3, Next Generation Sequencing. While it’s conceptually trivial, it’s unfortunately full of 
booby traps.

Tip
When using different databases, be sure that the genome assembly versions are synchronized. It 
would be a serious and potentially silent bug to use different versions. Remember that different 
versions (at least on the major version number) have different coordinates. For example, position 
1,234 on chromosome 3 on build 36 of the human genome will probably refer to a different SNP 
than 1,234 on build 38. With human data, you will probably find a lot of chips on build 36, and 
plenty of whole genome sequences on build 37, whereas the most recent human assembly is 
build 38. With our Anopheles example, you will have versions 3 and 4 around. This will happen 
with most species. So, be aware!

There is also the issue of 0-indexed arrays in Python versus 1-indexed genomic databases. Nonetheless, 
be aware that some genomic databases may also be 0-indexed.

There are also two sources of confusion: the transcript versus the gene choice, as in more rich 
annotation databases. Here, you will have several alternative transcripts (if you want to look at a 
rich-to-the-point-of-confusing database, refer to the human annotation database). Also, fields tagged 
with exon will contain more information compared to the coding sequence. For this purpose, you 
will want the CDS field.

Finally, there is the strand issue, where you will want to translate based on the reverse complement.

See also

Here are some resources you can learn more from:

•	 You can download MySQL tables for Ensembl at http://www.ensembl.org/info/
data/mysql.html.

•	 The UCSC genome browser can be found at http://genome.ucsc.edu/. Be sure to 
check the download area at http://hgdownload.soe.ucsc.edu/downloads.html.

•	 With a reference to genomes, you can find GTFs of model organisms in Ensembl at http://
www.ensembl.org/info/data/ftp/index.html.

•	 A simple explanation of CDSs and exons can be found at https://www.biostars.
org/p/65162/.
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Finding orthologues with the Ensembl REST API
In this recipe, we will learn how to look for orthologues for a certain gene. This simple recipe will 
not only introduce orthology retrieval but also how to use REST APIs on the web to access biological 
data. Last, but surely not least, it will serve as an introduction to how to access the Ensembl database 
using the programmatic API.

In our example, we will try to find any orthologue for the human lactase (LCT) gene on the horse 
genome.

Getting ready

This recipe will not require any pre-downloaded data, but since we are using web APIs, internet access 
will be needed. The amount of data that can be transferred will be limited.

We will also make use of the requests library to access Ensembl. The request API is an easy-to-use 
wrapper for web requests. Of course, you can use the standard Python libraries, but these are much 
more cumbersome.

As usual, you can find this content in the Chapter05/Orthology.py notebook file.

How to do it...

Follow these steps:

1.	 We will start by creating a support function to perform a web request:

import requests

ensembl_server = 'http://rest.ensembl.org'

def do_request(server, service, *args, **kwargs):

    url_params = ''

    for a in args:

        if a is not None:

            url_params += '/' + a

    req = requests.get('%s/%s%s' % (server, service, 
url_params), params=kwargs, headers={'Content-Type': 
'application/json'})

    if not req.ok:

        req.raise_for_status()

    return req.json()
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We start by importing the requests library and specifying the root URL. Then, we create a 
simple function that will take the functionality to be called (see the following examples) and 
generate a complete URL. It will also add optional parameters and specify the payload to be of 
the JSON type (just to get a default JSON answer). It will return the response in JSON format. 
This is typically a nested Python data structure of lists and dictionaries.

2.	 Then, we will check all the available species on the server, which is around 110 at the time of 
writing this book:

answer = do_request(ensembl_server, 'info/species')

for i, sp in enumerate(answer['species']):

    print(i, sp['name'])

Note that this will construct a URL starting with the http://rest.ensembl.org/info/
species prefix for the REST request. The preceding link will not work on your browser, by 
the way; it should only be used via a REST API.

3.	 Now, let’s try to find any HGNC databases on the server related to human data:

ext_dbs = do_request(ensembl_server, 'info/external_dbs', 
'homo_sapiens', filter='HGNC%')

print(ext_dbs)

We restrict the search to human-related databases (homo_sapiens). We also filter databases 
starting with HGNC (this filtering uses the SQL notation). HGNC is the HUGO database. We 
want to make sure that it’s available because the HUGO database is responsible for curating 
human gene names and maintaining our LCT identifier.

4.	 Now that we know that the LCT identifier is probably available, we want to retrieve the Ensembl 
ID for the gene, as shown in the following code:

answer = do_request(ensembl_server, 'lookup/symbol', 
'homo_sapiens', 'LCT')

print(answer)

lct_id = answer['id']

Tip
Different databases, as you probably know by now, will have different IDs for the same object. 
We will need to resolve our LCT identifier to the Ensembl ID. When you deal with external 
databases that relate to the same objects, ID translation between databases will probably be 
your first task.
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5.	 Just for your information, we can now get the sequence of the area containing the gene. Note 
that this is probably the whole interval, so if you want to recover the gene, you will have to use 
a procedure similar to what we used in the previous recipe:

lct_seq = do_request(ensembl_server, 'sequence/id', lct_
id)

print(lct_seq)

6.	 We can also inspect other databases known to Ensembl; refer to the following gene:

lct_xrefs = do_request(ensembl_server, 'xrefs/id', lct_
id)

for xref in lct_xrefs:

    print(xref['db_display_name'])

    print(xref)

You will find different kinds of databases, such as the Vertebrate Genome Annotation (Vega) 
project, UniProt (see Chapter 8, Using the Protein Data Bank), and WikiGene.

7.	 Let’s get the orthologues for this gene on the horse genome:

hom_response = do_request(ensembl_server, 'homology/id', 
lct_id, type='orthologues', sequence='none')

homologies = hom_response['data'][0]['homologies']

for homology in homologies:

    print(homology['target']['species'])

    if homology['target']['species'] != 'equus_caballus':

        continue

    print(homology)

    print(homology['taxonomy_level'])

    horse_id = homology['target']['id']

We could have acquired the orthologues directly for the horse genome by specifying a 
target_species parameter on do_request. However, this code allows you to inspect 
all the available orthologues.

You will get quite a lot of information about an orthologue, such as the taxonomic level of 
orthology (Boreoeutheria – placental mammals is the closest phylogenetic level between 
humans and horses), the Ensembl ID of the orthologue, the dN/dS ratio (non-synonymous 
to synonymous mutations), and the CIGAR string (refer to the previous chapter, Chapter 3, 
Next-Generation Sequencing) of differences among sequences. By default, you will also get the 
alignment of the orthologous sequence, but I have removed it to unclog the output.
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8.	 Finally, let’s look for the horse_id Ensembl record:

horse_req = do_request(ensembl_server, 'lookup/id', 
horse_id)

print(horse_req)

From this point onward, you can use the previous recipe methods to explore the LCT horse 
orthologue.

There’s more...

You can find a detailed explanation of all the functionalities available at http://rest.ensembl.
org/. This includes all the interfaces and Python code snippets, among other languages.

If you are interested in paralogues, this information can be retrieved quite trivially from the preceding 
recipe. On the call to homology/id, just replace the type with paralogues.

If you have heard of Ensembl, you have probably heard of an alternative service from UCSC: the 
Genome Browser (http://genome.ucsc.edu/). From the perspective of the user interface, 
they are on the same level. From a programmatic perspective, Ensembl is probably more mature. 
Accessing NCBI Entrez databases was covered in  Chapter 3, Next Generation Sequencing.

Another completely different strategy to interface programmatically with Ensembl will be to download 
raw tables and inject them into a local MySQL database. Be aware that this will be quite an undertaking 
in itself (you will probably just want to load a very small subset of tables). However, if you intend 
to be very intensive in terms of usage, you may have to consider creating a local version of part of 
the database. If this is the case, you may want to reconsider the UCSC alternative, as it’s as good as 
Ensembl from the local database perspective.

Retrieving gene ontology information from Ensembl
In this recipe, you will learn how to use gene ontology information again by querying the Ensembl 
REST API. Gene ontologies are controlled vocabularies for annotating genes and gene products. These 
are made available as trees of concepts (with more general concepts near the top of the hierarchy). 
There are three domains for gene ontologies: the cellular component, the molecular function, and 
the biological process.

Getting ready

As with the previous recipe, we do not require any pre-downloaded data, but since we are using web 
APIs, internet access will be needed. The amount of data that will be transferred will be limited.
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As usual, you can find this content in the Chapter05/Gene_Ontology.py notebook file. We 
will make use of the do_request function, which was defined in Step 1 of the previous recipe 
(Finding orthologues with the Ensembl REST API). To draw GO trees, we will use pygraphviz, a 
graph-drawing library:

conda install pygraphviz

OK – we’re all set.

How to do it...

Follow these steps:

1.	 Let’s start by retrieving all GO terms associated with the LCT gene (you learned how to retrieve 
the Ensembl ID in the previous recipe). Remember that you will need the do_request 
function from the previous recipe:

lct_id = 'ENSG00000115850'

refs = do_request(ensembl_server, 'xrefs/id', lct_
id,external_db='GO', all_levels='1')

print(len(refs))

print(refs[0].keys())

for ref in refs:

    go_id = ref['primary_id']

    details = do_request(ensembl_server, 'ontology/id', 
go_id)

    print('%s %s %s' % (go_id, details['namespace'], 
ref['description']))

    print('%s\n' % details['definition'])

Note the free-form definition and the varying namespace for each term. The first two of the 
reported items in the loop are as follows (this may change when you run it, because the database 
may have been updated):

GO:0000016 molecular_function lactase activity

 "Catalysis of the reaction: lactose + H2O = D-glucose + 
D-galactose." [EC:3.2.1.108]

 

 GO:0004553 molecular_function hydrolase activity, 
hydrolyzing O-glycosyl compounds

 "Catalysis of the hydrolysis of any O-glycosyl bond." 
[GOC:mah]
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2.	 Let’s concentrate on the lactase activity molecular function and retrieve more detailed 
information about it (the following go_id comes from the previous step):

go_id = 'GO:0000016'

my_data = do_request(ensembl_server, 'ontology/id', go_
id)

for k, v in my_data.items():

    if k == 'parents':

        for parent in v:

            print(parent)

            parent_id = parent['accession']

    else:

        print('%s: %s' % (k, str(v)))

parent_data = do_request(ensembl_server, 'ontology/id', 
parent_id)

print(parent_id, len(parent_data['children']))

We print the lactase activity record (which is currently a node of the GO tree molecular 
function) and retrieve a list of potential parents. There is a single parent for this record. We 
retrieve it and print the number of children.

3.	 Let’s retrieve all the general terms for the lactase activity molecular function (again, 
the parent and all other ancestors):

refs = do_request(ensembl_server, 'ontology/ancestors/
chart', go_id)

for go, entry in refs.items():

    print(go)

    term = entry['term']

    print('%s %s' % (term['name'], term['definition']))

    is_a = entry.get('is_a', [])

    print('\t is a: %s\n' % ', '.join([x['accession'] for 
x in is_a]))

We retrieve the ancestor list by following the is_a relationship (refer to the GO sites in 
the See also section for more details on the types of possible relationships).

4.	 Let’s define a function that will create a dictionary with the ancestor relationship for a term, 
along with some summary information for each term returned in a pair:

def get_upper(go_id):

    parents = {}
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    node_data = {}

    refs = do_request(ensembl_server, 'ontology/
ancestors/chart', go_id)

    for ref, entry in refs.items():

        my_data = do_request(ensembl_server, 'ontology/
id', ref)

        node_data[ref] = {'name': entry['term']['name'], 
'children': my_data['children']}

        try:

            parents[ref] = [x['accession'] for x in 
entry['is_a']]

        except KeyError:

            pass  # Top of hierarchy

    return parents, node_data

5.	 Finally, we will print a tree of relationships for the lactase activity term. For this, we 
will use the pygraphivz library:

parents, node_data = get_upper(go_id)

import pygraphviz as pgv

g = pgv.AGraph(directed=True)

for ofs, ofs_parents in parents.items():

    ofs_text = '%s\n(%s)' % (node_data[ofs]['name'].
replace(', ', '\n'), ofs)

    for parent in ofs_parents:

        parent_text = '%s\n(%s)' % (node_data[parent]
['name'].replace(', ', '\n'), parent)

        children = node_data[parent]['children']

        if len(children) < 3:

            for child in children:

                if child['accession'] in node_data:

                    continue

                g.add_edge(parent_text, 
child['accession'])

        else:

            g.add_edge(parent_text, '...%d...' % 
(len(children) - 1))

        g.add_edge(parent_text, ofs_text)

print(g)
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g.graph_attr['label']='Ontology tree for Lactase 
activity'

g.node_attr['shape']='rectangle'

g.layout(prog='dot')

g.draw('graph.png')

The following output shows the ontology tree for the lactase activity term:

Figure 5.4 – An ontology tree for the “lactase activity” term (the terms at the top are 

more general); the top of the tree is molecular_function; for all ancestral nodes, the 

number of extra offspring is also noted (or enumerated, if less than three)
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There’s more...

If you are interested in gene ontologies, your main port of call will be http://geneontology.
org, where you will find much more information on this topic. Apart from molecular_function, 
gene ontology also has a biological process and a cellular component. In our recipes, we have followed 
the hierarchical relationship is a, but others do exist partially. For example, “mitochondrial ribosome” 
(GO:0005761) is a cellular component and is part of “mitochondrial matrix” (refer to http://
amigo.geneontology.org/amigo/term/GO:0005761#display-lineage-tab 
and click on Graph Views).

As with the previous recipe, you can download the MySQL dump of a gene ontology database (you 
may prefer to interact with the data in that way). For this, see http://geneontology.org/
page/download-go-annotations. Again, expect to allocate some time to understanding the 
relational database schema. Also, note that there are many alternatives to Graphviz for plotting trees 
and graphs. We will return to this topic later in this book.

See also

Here are some resources you can learn more from:

•	 As mentioned previously, more so than Ensembl, the main resource for gene ontologies is 
http://geneontology.org.

•	 For visualization, we are using the pygraphviz library, which is a wrapper on top of Graphviz 
( http://www.graphviz.org).

•	 There are very good user interfaces for GO data, such as AmiGO (http://amigo.
geneontology.org) and QuickGO (http://www.ebi.ac.uk/QuickGO/).

•	 One of the most common analyses performed with GO is gene enrichment analysis to check 
whether some GO terms are overexpressed or underexpressed in a certain gene set. The 
geneontology.org server uses Panther (http://go.pantherdb.org/), but other 
alternatives are available (such as DAVID, at http://david.abcc.ncifcrf.gov/).
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6
Population Genetics

Population genetics is the study of the changes in the frequency of alleles in a population on the basis 
of selection, drift, mutation, and migration. The previous chapters focused mainly on data processing 
and cleanup; this is the first chapter in which we will actually infer interesting biological results.

There is a lot of interesting population genetics analysis based on sequence data, but as we already have 
quite a few recipes for dealing with sequence data, we will divert our attention elsewhere. Also, we 
will not cover genomic structural variations such as Copy Number Variations (CNVs) or inversions 
here. We will concentrate on analyzing SNP data, which is one of the most common data types. We 
will perform many standard population genetic analyses with Python, such as using the Fixation 
Index (FST) with computing F-statistics, Principal Components Analysis (PCA), and studying 
population structure.

We will use Python mostly as a scripting language that glues together applications that perform necessary 
computations, which is the old-fashioned way of doing things. Having said that, as the Python software 
ecology is still evolving, you can at least perform the PCA in Python using scikit-learn as we will see 
in Chapter 11.

There is no such thing as a default file format for population genetics data. The bleak reality of this 
field is that there is a plenitude of formats, most of them developed with a specific application in mind; 
therefore, none are generically applicable. Some of the efforts to create a more general format (or even 
just a file converter to support many formats) had limited success. Furthermore, as our knowledge 
of genomics increases, we will require new formats anyway (for example, to support some kind of 
previously unknown genomic structural variation). Here, we will work with PLINK (https://www.
cog-genomics.org/plink/2.0/), which was originally developed to perform Genome-Wide 
Association Studies (GWAS) with human data but has many more applications. If you have Next-
Generation Sequencing (NGS) data, you may question, why not use the Variant Call Format (VCF)? 
Well, a VCF file is normally annotated to help with sequencing analysis, which you do not need at this 
stage (you should now have a filtered dataset). If you convert your Single-Nucleotide Polymorphism 
(SNP) calls from VCF to PLINK, you will get roughly a 95 percent reduction in terms of size (this is 
in comparison to a compressed VCF). More importantly, the computational cost of processing a VCF 
file is much bigger (think of processing all this highly structured text) than the cost of the other two 
formats. If you use Docker, use the image tiagoantao/bioinformatics_popgen.
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In this chapter, we will cover the following recipes:

•	 Managing datasets with PLINK

•	 Using sgkit for population genetics analysis with xarray

•	 Exploring a dataset with sgkit

•	 Analyzing population structure

•	 Performing a PCA

•	 Investigating population structure with admixture

First, let’s start with a discussion on file format issues and then continue to discuss interesting  
data analysis.

Managing datasets with PLINK
Here, we will manage our dataset using PLINK. We will create subsets of our main dataset (from the 
HapMap project) that are suitable for analysis in the following recipes.

Warning
Note that neither PLINK nor any similar programs were developed for their file formats. There 
was probably no objective to create a default file standard for population genetics data. In this 
field, you will need to be ready to convert from format to format (for this, Python is quite 
appropriate) because every application that you will use will probably have its own quirky 
requirements. The most important point to learn from this recipe is that it’s not formats that are 
being used, although these are relevant, but a ‘file conversion mentality’. Beyond this, some of 
the steps in this recipe also convey genuine analytical techniques that you may want to consider 
using, for example, subsampling or Linkage Disequilibrium- (LD-) pruning.

Getting ready

Throughout this chapter, we will use data from the International HapMap Project. You may recall that 
we used data from the 1,000 Genomes Project in Chapter 3, Next-Generation Sequencing, and that 
the HapMap project is in many ways the precursor to the 1,000 Genomes Project; instead of whole 
genome sequencing, genotyping was used. Most of the samples of the HapMap project were used in 
the 1,000 Genomes Project, so if you have read the recipes in Chapter 3, Next-Generation Sequencing, 
you will already have an idea of the dataset (including the available population). I will not introduce 
the dataset much more, but you can refer to Chapter 3, Next-Generation Sequencing, and, of course, 
the HapMap site (https://www.genome.gov/10001688/international-hapmap-
project) for more information. Remember that we have genotyping data for many individuals 
split across populations around the globe. We will refer to these populations by their acronyms. Here 
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is the list taken from http://www.sanger.ac.uk/resources/downloads/human/
hapmap3.html:

Acronym Population
ASW African ancestry in Southwest USA
CEU Utah residents with Northern and Western European ancestry from the CEPH collection
CHB Han Chinese in Beijing, China
CHD Chinese in Metropolitan Denver, Colorado
GIH Gujarati Indians in Houston, Texas
JPT Japanese in Tokyo, Japan
LWK Luhya in Webuye, Kenya
MXL Mexican ancestry in Los Angeles, California
MKK Maasai in Kinyawa, Kenya
TSI Toscani in Italy
YRI Yoruba in Ibadan, Nigeria

Table 6.1 - The populations in the Genome Project

Note
We will be using data from the HapMap project that has, in practice, been replaced by the 1,000 
Genomes Project. For the purpose of teaching population genetics programming techniques 
in Python, the HapMap Project dataset is more manageable than the 1,000 Genomes Project, 
as the data is considerably smaller. The HapMap samples are a subset of the 1,000 Genomes 
samples. If you do research in human population genetics, you are strongly advised to use the 
1,000 Genomes Project as a base dataset.

This will require a fairly big download (approximately 1 GB), which will have to be uncompressed. 
Make sure that you have approximately 20 GB of disk space for this chapter. The files can be found at 
https://ftp.ncbi.nlm.nih.gov/hapmap/genotypes/hapmap3_r3/plink_format/.

Decompress the PLINK file using the following commands:

bunzip2 hapmap3_r3_b36_fwd.consensus.qc.poly.map.gz

bunzip2 hapmap3_r3_b36_fwd.consensus.qc.poly.ped.gz

Now, we have PLINK files; the MAP file has information on the marker position across the genome, 
whereas the PED file has actual markers for each individual, along with some pedigree information. 
We also downloaded a metadata file that contains information about each individual. Take a look at 
all these files and familiarize yourself with them. As usual, this is also available in the Chapter06/
Data_Formats.py Notebook file, where everything has been taken care of.
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Finally, most of this recipe will make heavy usage of PLINK (https://www.cog-genomics.
org/plink/2.0/). Python will mostly be used as the glue language to call PLINK.

How to do it...

Take a look at the following steps:

1.	 Let’s get the metadata for our samples. We will load the population of each sample and note all 
the individuals that are offspring of others in the dataset:

from collections import defaultdict

f = open('relationships_w_pops_041510.txt')

pop_ind = defaultdict(list)

f.readline() # header

offspring = []

for l in f:

    toks = l.rstrip().split('\t')

    fam_id = toks[0]

    ind_id = toks[1]

    mom = toks[2]

    dad = toks[3]

    if mom != '0' or dad != '0':

        offspring.append((fam_id, ind_id))

    pop = toks[-1]

pop_ind[pop].append((fam_id, ind_id))

f.close()

This will load a dictionary where the population is the key (CEU, YRI, and so on) and its 
value is the list of individuals in that population. This dictionary will also store information on 
whether the individual is the offspring of another. Each individual is identified by the family 
and individual ID (information that can be found in the PLINK file). The file provided by the 
HapMap project is a simple tab-delimited file, which is not difficult to process. While we are 
reading the files using standard Python text processing, this is a typical example where pandas 
would help.

There is an important point to make here: the reason this information is provided in a separate, 
ad hoc file is that the PLINK format makes no provision for the population structure (this format 
makes provision only for the case and control information for which PLINK was designed). 
This is not a flaw of the format, as it was never designed to support standard population genetic 
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studies (it’s a GWAS tool). However, this is a general feature of data formats in population 
genetics: whichever you end up working with, there will be something important missing.

We will use this metadata in other recipes in this chapter. We will also perform some consistency 
analysis between the metadata and the PLINK file, but we will defer this to the next recipe.

2.	 Now, let’s subsample the dataset at 10 percent and 1 percent of the number of markers, as follows:

import os

os.system('plink2 --pedmap hapmap3_r3_b36_fwd.consensus.
qc.poly --out hapmap10 --thin 0.1 --geno 0.1 --export 
ped')

os.system('plink2 --pedmap hapmap3_r3_b36_fwd.consensus.
qc.poly --out hapmap1 --thin 0.01 --geno 0.1 --export 
ped')

With Jupyter Notebook, you can just do this instead:

!plink2 --pedmap hapmap3_r3_b36_fwd.consensus.qc.poly 
--out hapmap10 --thin 0.1 --geno 0.1 --export ped

!plink2 --pedmap hapmap3_r3_b36_fwd.consensus.qc.poly 
--out hapmap1 --thin 0.01 --geno 0.1 --export ped

Note the subtlety that you will not really get 1 or 10 percent of the data; each marker will have 
a 1 or 10 percent chance of being selected, so you will get approximately 1 or 10 percent of 
the markers.

Obviously, as the process is random, different runs will produce different marker subsets. This 
will have important implications further down the road. If you want to replicate the exact same 
result, you can nonetheless use the --seed option.

We will also remove all SNPs that have a genotyping rate lower than 90 percent (with the 
--geno 0.1 parameter).

Note
There is nothing special about Python in this code, but there are two reasons you may want to 
subsample your data. First, if you are performing an exploratory analysis of your own dataset, 
you may want to start with a smaller version because it will be easy to process. Also, you will 
have a broader view of your data. Second, some analytical methods may not require all your 
data (indeed, some methods might not be even able to use all of your data). Be very careful 
with the last point though; that is, for every method that you use to analyze your data, be sure 
that you understand the data requirements for the scientific questions you want to answer. 
Feeding too much data may be okay normally (even if you pay a time and memory penalty) 
but feeding too little will lead to unreliable results.
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3.	 Now, let’s generate subsets with just the autosomes (that is, let’s remove the sex chromosomes 
and mitochondria), as follows:

def get_non_auto_SNPs(map_file, exclude_file):

    f = open(map_file)

    w = open(exclude_file, 'w')

    for l in f:

        toks = l.rstrip().split('\t')

        try:

            chrom = int(toks[0])

        except ValueError:

            rs = toks[1]

            w.write('%s\n' % rs)

    w.close()

get_non_auto_SNPs('hapmap1.map', 'exclude1.txt')

get_non_auto_SNPs('hapmap10.map', 'exclude10.txt')

os.system('plink2 –-pedmap hapmap1 --out hapmap1_auto 
--exclude exclude1.txt --export ped')

os.system('plink2 --pedmap hapmap10 --out hapmap10_auto 
--exclude exclude10.txt --export ped')

4.	 Let’s create a function that generates a list with all the SNPs not belonging to autosomes. With 
human data, that means all non-numeric chromosomes. If you use another species, be careful 
with your chromosome coding because PLINK is geared toward human data. If your species 
are diploid, have less than 23 autosomes, and a sex determination system, that is, X/Y, this 
will be straightforward; if not, refer to https://www.cog-genomics.org/plink2/
input#allow_extra_chr for some alternatives (such as the --allow-extra-chr flag).

5.	 We then create autosome-only PLINK files for subsample datasets of 10 and 1 percent (prefixed 
as hapmap10_auto and hapmap1_auto).

6.	 Let’s create some datasets without offspring. These will be needed for most population genetic 
analysis, which requires unrelated individuals to a certain degree:

os.system('plink2 --pedmap hapmap10_auto --filter-
founders --out hapmap10_auto_noofs --export ped')
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Note
This step is representative of the fact that most population genetic analyses require samples to 
be unrelated to a certain degree. Obviously, as we know that some offspring are in HapMap, 
we remove them.

However, note that with your dataset, you are expected to be much more refined than this. For 
instance, run plink --genome or use another program to detect related individuals. The 
fundamental point here is that you have to dedicate some effort to detect related individuals 
in your samples; this is not a trivial task.

7.	 We will also generate an LD-pruned dataset, as required by many PCA and admixture algorithms, 
as follows:

os.system('plink2 --pedmap hapmap10_auto_noofs --indep-
pairwise 50 10 0.1 --out keep --export ped')

os.system('plink2 --pedmap hapmap10_auto_noofs --extract 
keep.prune.in --recode --out hapmap10_auto_noofs_ld 
--export ped')

The first step generates a list of markers to be kept if the dataset is LD-pruned. This uses a sliding 
window of 50 SNPs, advancing by 10 SNPs at a time with a cut value of 0.1. The second step 
extracts SNPs from the list that was generated earlier.

8.	 Let’s recode a couple of cases in different formats:

os.system('plink2 --file hapmap10_auto_noofs_ld 
--recode12 tab --out hapmap10_auto_noofs_ld_12 --export 
ped 12')

os.system('plink2 --make-bed --file hapmap10_auto_noofs_
ld --out hapmap10_auto_noofs_ld')

The first operation will convert a PLINK format that uses nucleotide letters from the ACTG to 
another, which recodes alleles with 1 and 2. We will use this in the Performing a PCA recipe later.

The second operation recodes a file in a binary format. If you work inside PLINK (using the 
many useful operations that PLINK has), the binary format is probably the most appropriate 
format (offering, for example, a smaller file size). We will use this in the admixture recipe.

9.	 We will also extract a single chromosome (2) for analysis. We will start with the autosome 
dataset, which has been subsampled at 10 percent:

os.system('plink2 --pedmap hapmap10_auto_noofs --chr 2 
--out hapmap10_auto_noofs_2 --export ped')
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There’s more...

There are many reasons why you might want to create different datasets for analysis. You may want 
to perform some fast initial exploration of data – for example, if the analysis algorithm that you 
plan to use has some data format requirements or a constraint on the input, such as the number 
of markers or relationships between individuals. Chances are that you will have lots of subsets to 
analyze (unless your dataset is very small to start with, for instance, a microsatellite dataset).

This may seem to be a minor point, but it’s not: be very careful with file naming (note that I have 
followed some simple conventions while generating filenames). Make sure that the name of the file 
gives some information about the subset options. When you perform the downstream analysis, you 
will want to be sure that you choose the correct dataset; you will want your dataset management to 
be agile and reliable, above all. The worst thing that can happen is that you create an analysis with an 
erroneous dataset that does not obey the constraints required by the software.

The LD-pruning that we used is somewhat standard for human analysis, but be sure to check the 
parameters, especially if you are using non-human data.

The HapMap file that we downloaded is based on an old version of the reference genome (build 36). 
As stated in the previous chapter, Chapter 5, Working with Genomes, be sure to use annotations from 
build 36 if you plan to use this file for more analysis of your own.

This recipe sets the stage for the following recipes and its results will be used extensively.

See also

•	 The Wikipedia page http://en.wikipedia.org/wiki/Linkage_disequilibrium 
on LD is a good place to start.

•	 The website of PLINK https://www.cog-genomics.org/plink/2.0/ is very well 
documented, something lacking in much of genetics software.

Using sgkit for population genetics analysis with xarray
Sgkit is the most advanced Python library for doing population genetics analysis. It’s a modern 
implementation, leveraging almost all of the fundamental data science libraries in Python. When I 
say almost all, I am not exaggerating; it uses NumPy, pandas, xarray, Zarr, and Dask. NumPy and 
pandas were introduced in Chapter 2. Here, we will introduce xarray as the main data container for 
sgkit. Because I feel that I cannot ask you to get to know data engineering libraries to an extreme level, 
I will gloss over the Dask part (mostly by treating Dask structures as equivalent NumPy structures). 
You can find more advanced details about out-of-memory Dask data structures in Chapter 11.
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Getting ready

You will need to run the previous recipe because its output is required for this one: we will be using 
one of the PLINK datasets. You will need to install sgkit.

As usual, this is available in the Chapter06/Sgkit.py Notebook file, but it will still require you 
to run the previous Notebook file in order to generate the required files.

How to do it...

Take a look at the following steps:

1.	 Let’s load the hapmap10_auto_noofs_ld dataset generated in the previous recipe:

import numpy as np

from sgkit.io import plink

data = plink.read_plink(path='hapmap10_auto_noofs_ld', 
fam_sep='\t')

Remember that we are loading a set of PLINK files. It turns out that sgkit creates a very rich 
and structured representation for that data. That representation is based on an xarray dataset.

2.	 Let’s check the structure of our data – if you are in a notebook, just enter the following:

data

sgkit – if in a notebook – will generate the following representation:
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Figure 6.1 - An overview of the xarray data loaded by sgkit for our PLINK file

data is an xarray DataSet. An xarray DataSet is essentially a dictionary in which each value 
is a Dask array. For our purposes, you can assume it is a NumPy array. In this case, we can see 
that we have 56241 variants for 1198 samples. We have 2 alleles per variant and a ploidy of 2.

In the notebook, we can expand each entry. In our case, we expanded call_genotype. 
This is a three-dimensional array, with variants, samples, and ploidy dimensions. 
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The type of the array is int8. After this, we can find some metadata relevant to the entry, 
mixed_ploidy, and comment. Finally, you have a summary of the Dask implementation. 
The Array column presents details about the size and shape of the array. For the Chunk column, 
see Chapter 11 – but you can safely ignore it for now.

3.	 Another way to get summary information, which is especially useful if you are not using 
notebooks, is by inspecting the dims field:

print(data.dims)

The output should be self-explanatory:

Frozen({'variants': 56241, 'alleles': 2, 'samples': 1198, 
'ploidy': 2})

4.	 Let’s extract some information about the samples:

print(len(data.sample_id.values))

print(data.sample_id.values)

print(data.sample_family_id.values)

print(data.sample_sex.values)

The output is as follows:

1198

['NA19916' 'NA19835' 'NA20282' ... 'NA18915' 'NA19250' 
'NA19124']

['2431' '2424' '2469' ... 'Y029' 'Y113' 'Y076']

[1 2 2 ... 1 2 1]

We have 1198 samples. The first one has a sample ID of NA19916, a family ID of 2431, and 
a sex of 1 (Male). Remember that, given PLINK as the data source, a sample ID is not enough 
to be a primary key (you can have different samples with the same sample ID). The primary 
key is a composite of the sample ID and sample family ID.

TIP
You might have noticed that we add .values to all the data fields: this is actually rendering a 
lazy Dask array into a materialized NumPy one. For now, I suggest that you ignore it, but if you 
revisit this chapter after reading Chapter 11, .values is akin to the compute method in Dask.

The .values call is no nuisance – the reason our code works is that our dataset is small 
enough to fit into memory, which is great for our teaching example. But if you have a very 
large dataset, the preceding code is too naive. Again, Chapter 11 will help you with this. For 
now, the simplicity is pedagogical.
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5.	 Before we look at the variant data, we have to be aware of how sgkit stores contigs:

print(data.contigs)

The output is as follows:

['1', '2', '3', '4', '5', '6', '7', '8', '9', '10', '11', 
'12', '13', '14', '15', '16', '17', '18', '19', '20', 
'21', '22']

The contigs here are the human autosomes (you will not be so lucky if your data is based 
on most other species – you will probably have some ugly identifier here).

6.	 Now, let’s look at the variants:

print(len(data.variant_contig.values))

print(data.variant_contig.values)

print(data.variant_position.values)

print(data.variant_allele.values)

print(data.variant_id.values)

Here is an abridged version of the output:

56241

[ 0  0  0 ... 21 21 21]

[  557616   782343   908247 ... 49528105 49531259 
49559741]

[[b'G' b'A']

 ...

 [b'C' b'A']]

['rs11510103' 'rs2905036' 'rs13303118' ... 'rs11705587' 
'rs7284680'

 'rs2238837']

We have 56241 variants. The contig index is 0, which if you look at the step from the 
previous recipe, is chromosome 1. The variant is in position 557616 (against build 36 of the 
human genome) and has possible alleles G and A. It has an SNP ID of rs11510103.

7.	 Finally, let’s look at the genotype data:

call_genotype = data.call_genotype.values

print(call_genotype.shape)

first_individual = call_genotype[:,0,:]

first_variant = call_genotype[0,:,:]

first_variant_of_first_individual = call_genotype[0,0,:]
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print(first_variant_of_first_individual)

print(data.sample_family_id.values[0], data.sample_
id.values[0])

print(data.variant_allele.values[0])

call_genotype has a shape of 56,241 x 1,1198,2, which is its dimensioned variants, samples,  
and ploidy.

To get all variants for the first individual, you fixate the second dimension. To get all the samples for 
the first variant, you fixate the first dimension.

If you print the first individual’s details (sample and family ID), you get 2431 and NA19916 – as 
expected, exactly as in the first case in the previous sample exploration.

There’s more...

This recipe is mostly an introduction to xarray, disguised as a sgkit tutorial. There is much more to be 
said about xarray – be sure to check https://docs.xarray.dev/. It is worth reiterating that 
xarray depends on a plethora of Python data science libraries and that we are glossing over Dask for now.

Exploring a dataset with sgkit
In this recipe, we will perform an initial exploratory analysis of one of our generated datasets. Now 
that we have some basic knowledge of xarray, we can actually try to do some data analysis. In this 
recipe, we will ignore population structure, an issue we will return to in the following one.

Getting ready

You will need to have run the first recipe and should have the hapmap10_auto_noofs_ld files 
available. There is a Notebook file with this recipe called Chapter06/Exploratory_Analysis.
py. You will need the software that you installed for the previous recipe.

How to do it...

Take a look at the following steps:

1.	 We start by loading the PLINK data with sgkit, exactly as in the previous recipe:

import numpy as np

import xarray as xr

import sgkit as sg

from sgkit.io import plink
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data = plink.read_plink(path='hapmap10_auto_noofs_ld', 
fam_sep='\t')

2.	 Let’s ask sgkit for variant_stats:

variant_stats = sg.variant_stats(data)

variant_stats

The output is the following:

Figure 6.2 - The variant statistics provided by sgkit’s variant_stats
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3.	 Let’s now look at the statistic, variant_call_rate:

variant_stats.variant_call_rate.to_series().describe()

There is more to unpack here than it may seem. The fundamental part is the to_series() 
call. Sgkit is returning a Pandas series to you – remember that sgkit is highly integrated with 
Python data science libraries. After you get the Series object, you can call the Pandas describe 
function and get the following:

count    56241.000000

mean         0.997198

std          0.003922

min          0.964107

25%          0.996661

50%          0.998331

75%          1.000000

max          1.000000

Name: variant_call_rate, dtype: float64

Our variant call rate is quite good, which is not shocking because we are looking at array data 
– you would have worse numbers if you had a dataset based on NGS.

4.	 Let’s now look at sample statistics:

sample_stats = sg.sample_stats(data)

sample_stats
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Again, sgkit provides a lot of sample statistics out of the box:

Figure 6.3 - The sample statistics obtained by calling sample_stats 

5.	 We will now have a look at sample call rates:

sample_stats.sample_call_rate.to_series().hist()

This time, we plot a histogram of sample call rates. Again, sgkit gets this for free by leveraging 
Pandas:
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Figure 6.4 - The histogram of sample call rates

There’s more...

The truth is that for population genetic analysis, nothing beats R; you are definitely encouraged to 
take a look at the existing R libraries for population genetics. Do not forget that there is a Python-R 
bridge, which was discussed in Chapter 1, Python and the Surrounding Software Ecology.

Most of the analysis presented here will be computationally costly if done on bigger datasets. Indeed, 
sgkit is prepared to deal with that because it leverages Dask. It would be too complex to introduce 
Dask at this stage, but for large datasets, Chapter 11 will discuss ways to address those.

See also

•	 A list of R packages for statistical genetics is available at http://cran.r-project.org/
web/views/Genetics.html.

•	 If you need to know more about population genetics, I recommend the book Principles of 
Population Genetics, by Daniel L. Hartl and Andrew G. Clark, Sinauer Associates.

Analyzing population structure
Previously, we introduced data analysis with sgkit ignoring the population structure. Most datasets, 
including the one we are using, actually do have a population structure. Sgkit provides functionality to 
analyze genomic datasets with population structure and that is what we are going to investigate here.
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Getting ready

You will need to have run the first recipe, and should have the hapmap10_auto_noofs_ld data 
we produced and also the original population meta data relationships_w_pops_041510.
txt file downloaded. There is a Notebook file with the 06_PopGen/Pop_Stats.py recipe in it.

How to do it...

Take a look at the following steps:

1.	 First, let’s load the PLINK data with sgkit:

from collections import defaultdict

from pprint import pprint

import numpy as np

import matplotlib.pyplot as plt

import seaborn as sns

import pandas as pd

import xarray as xr

import sgkit as sg

from sgkit.io import plink

 

data = plink.read_plink(path='hapmap10_auto_noofs_ld', 
fam_sep='\t')

2.	 Now, let’s load the data assigning individuals to populations:

f = open('relationships_w_pops_041510.txt')

pop_ind = defaultdict(list)

f.readline()  # header

for line in f:

    toks = line.rstrip().split('\t')

    fam_id = toks[0]

    ind_id = toks[1]

    pop = toks[-1]

    pop_ind[pop].append((fam_id, ind_id))

pops = list(pop_ind.keys())
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We end up with a dictionary, pop_ind, where the key is the population code, and the value 
is a list of samples. Remember that a sample primary key is the family ID and the sample ID.

We also have a list of populations in the pops variable.

3.	 We now need to inform sgkit about to which population or cohort each sample belongs:

def assign_cohort(pops, pop_ind, sample_family_id, 
sample_id):

    cohort = []

    for fid, sid in zip(sample_family_id, sample_id):

        processed = False

        for i, pop in enumerate(pops):

            if (fid, sid) in pop_ind[pop]:

                processed = True

                cohort.append(i)

                break

        if not processed:

            raise Exception(f'Not processed {fid}, 
{sid}')

    return cohort

cohort = assign_cohort(pops, pop_ind, data.sample_family_
id.values, data.sample_id.values)

data['sample_cohort'] = xr.DataArray(

    cohort, dims='samples')

Remember that each sample in sgkit has a position in an array. So, we have to create an array where 
each element refers to a specific population or cohort within a sample. The assign_cohort 
function does exactly that: it takes the metadata that we loaded from the relationships 
file and the list of samples from the sgkit file, and gets the population index for each sample. 

4.	 Now that we have loaded population information structure into the sgkit dataset, we can start 
computing statistics at the population or cohort level. Let’s start by getting the number of 
monomorphic loci per population:

cohort_allele_frequency = sg.cohort_allele_
frequencies(data)['cohort_allele_frequency'].values

monom = {}

for i, pop in enumerate(pops):

    monom[pop] = len(list(filter(lambda x: x, 
np.isin(cohort_allele_frequency[:, i, 0], [0, 1]))))

pprint(monom)
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We start by asking sgkit to calculate the allele frequencies per cohort or population. After that, 
we filter all loci per population where the allele frequency of the first allele is either 0 or 1 
(that is, there is the fixation of one of the alleles). Finally, we print it. Incidentally, we use the 
pprint.pprint function to make it look a bit better (the function is quite useful for more 
complex structures if you want to render the output in a readable way):

{'ASW': 3332,

 'CEU': 8910,

 'CHB': 11130,

 'CHD': 12321,

 'GIH': 8960,

 'JPT': 13043,

 'LWK': 3979,

 'MEX': 6502,

 'MKK': 3490,

 'TSI': 8601,

 'YRI': 5172}

5.	 Let’s get the minimum allele frequency for all loci per population. This is still based in cohort_
allele_frequency – so no need to call sgkit again:

mafs = {}

for i, pop in enumerate(pops):

    min_freqs = map(

        lambda x: x if x < 0.5 else 1 - x,

        filter(

            lambda x: x not in [0, 1],

            cohort_allele_frequency[:, i, 0]))

    mafs[pop] = pd.Series(min_freqs)

We create Pandas Series objects for each population, as this permits lots of helpful functions, 
such as plotting.

6.	 We will now print the MAF histograms for the YRI and JPT populations. We will leverage 
Pandas and Matplotlib for this:

maf_plot, maf_ax = plt.subplots(nrows=2, sharey=True)

mafs['YRI'].hist(ax=maf_ax[0], bins=50)

maf_ax[0].set_title('*YRI*')

mafs['JPT'].hist(ax=maf_ax[1], bins=50)

maf_ax[1].set_title('*JPT*')

maf_ax[1].set_xlabel('MAF')
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We get Pandas to generate the histograms and put the results in a Matplotlib plot. The result 
is the following:

Figure 6.5 - A MAF histogram for the YRI and JPT populations

7.	 We are now going to concentrate on computing the FST. The FST is a widely used statistic that 
tries to represent the genetic variation created by population structure. Let’s compute it with sgkit:

fst = sg.Fst(data)

fst = fst.assign_coords({"cohorts_0": pops, "cohorts_1": 
pops})

The first line computes fst, which, in this case, will be pairwise fst across cohorts or 
populations. The second line assigns names to each cohorts by using the xarray coordinates 
feature. This makes it easier and more declarative.

8.	 Let’s compare fst between the CEU and CHB populations with CHB and CHD:

remove_nan = lambda data: filter(lambda x: not 
np.isnan(x), data)

ceu_chb = pd.Series(remove_nan(fst.stat_Fst.
sel(cohorts_0='CEU', cohorts_1='CHB').values))

chb_chd = pd.Series(remove_nan(fst.stat_Fst.
sel(cohorts_0='CHB', cohorts_1='CHD').values))

ceu_chb.describe()

chb_chd.describe()

We take the pairwise results returned by the sel function from stat_FST to both compare 
and create a Pandas Series with it. Note that we can refer to populations by name, as we have 
prepared the coordinates in the previous step.
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9.	 Let’s plot the distance matrix across populations based on the multi-locus pairwise FST. Before 
we do it, we will prepare the computation:

mean_fst = {}

for i, pop_i in enumerate(pops):

    for j, pop_j in enumerate(pops):

        if j <= i:

            continue

        pair_fst = pd.Series(remove_nan(fst.stat_Fst.
sel(cohorts_0=pop_i, cohorts_1=pop_j).values))

        mean = pair_fst.mean()

        mean_fst[(pop_i, pop_j)] = mean

min_pair = min(mean_fst.values())

max_pair = max(mean_fst.values())

We compute all the FST values for the population pairs. The execution of this code will be 
demanding in terms of time and memory, as we are actually requiring Dask to perform a lot 
of computations to render our NumPy arrays.

10.	 We can now do a pairwise plot of all mean FSTs across populations:

sns.set_style("white")

num_pops = len(pops)

arr = np.ones((num_pops - 1, num_pops - 1, 3), 
dtype=float)

fig = plt.figure(figsize=(16, 9))

ax = fig.add_subplot(111)

for row in range(num_pops - 1):

    pop_i = pops[row]

    for col in range(row + 1, num_pops):

        pop_j = pops[col]

        val = mean_fst[(pop_i, pop_j)]

        norm_val = (val - min_pair) / (max_pair - min_
pair)

        ax.text(col - 1, row, '%.3f' % val, ha='center')

        if norm_val == 0.0:

            arr[row, col - 1, 0] = 1

            arr[row, col - 1, 1] = 1

            arr[row, col - 1, 2] = 0

        elif norm_val == 1.0:

 EBSCOhost - printed on 2/9/2023 7:03 AM via . All use subject to https://www.ebsco.com/terms-of-use



Analyzing population structure 173

            arr[row, col - 1, 0] = 1

            arr[row, col - 1, 1] = 0

            arr[row, col - 1, 2] = 1

        else:

            arr[row, col - 1, 0] = 1 - norm_val

            arr[row, col - 1, 1] = 1

            arr[row, col - 1, 2] = 1

ax.imshow(arr, interpolation='none')

ax.set_title('Multilocus Pairwise FST')

ax.set_xticks(range(num_pops - 1))

ax.set_xticklabels(pops[1:])

ax.set_yticks(range(num_pops - 1))

ax.set_yticklabels(pops[:-1])

In the following diagram, we will draw an upper triangular matrix, where the background color of a 
cell represents the measure of differentiation; white means less different (a lower FST) and blue means 
more different (a higher FST). The lowest value between CHB and CHD is represented in yellow, 
and the biggest value between JPT and YRI is represented in magenta. The value on each cell is the 
average pairwise FST between these two populations: 

Figure 6.6 - The average pairwise FST across the 11 populations in the HapMap project for all autosomes
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See also

•	 F-statistics is an immensely complex topic, so I will direct you firstly to the Wikipedia page at 
http://en.wikipedia.org/wiki/F-statistics.

•	 A very good explanation can be found in Holsinger and Weir’s paper (Genetics in geographically 
structured populations: defining, estimating, and interpreting FST) in Nature Reviews Genetics, 
at http://www.nature.com/nrg/journal/v10/n9/abs/nrg2611.html.

Performing a PCA
PCA is a statistical procedure that’s used to perform a reduction of the dimension of a number of 
variables to a smaller subset that is linearly uncorrelated. Its practical application in population genetics 
is assisting with the visualization of the relationships between the individuals that are being studied.

While most of the recipes in this chapter make use of Python as a glue language (Python calls external 
applications that actually do most of the work), with PCA, we have an option: we can either use an 
external application (for example, EIGENSOFT SmartPCA) or use scikit-learn and perform everything 
on Python. In this recipe, we will use SmartPCA – for a native machine learning experience with 
scikit-learn, see Chapter 10.

TIP
You actually have a third option: using sgkit. However, I want to show you alternatives on how 
to perform computations. There are two good reasons for this. Firstly, you might prefer not to 
use sgkit – while I recommend it, I don’t want to force it – and secondly, you might be required 
to run an alternative method that is not implemented in sgkit. PCA is actually a good example 
of this: a reviewer on a paper might require you to run a published and widely used method 
such as EIGENSOFT SmartPCA.

Getting ready

You will need to run the first recipe in order to make use of the hapmap10_auto_noofs_ld_12 
PLINK file (with alleles recoded as 1 and 2). PCA requires LD-pruned markers; we will not risk using 
the offspring here because it will probably bias the result. We will use the recoded PLINK file with 
alleles as 1 and 2 because this makes processing with SmartPCA and scikit-learn easier.

I have a simple library to help with some genomics processing. You can find this code at https://
github.com/tiagoantao/pygenomics. You can install it with the following command:

pip install pygenomics

For this recipe, you will need to download EIGENSOFT (http://www.hsph.harvard.edu/
alkes-price/software/), which includes the SmartPCA application that we will use.
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There is a Notebook file in the Chapter06/PCA.py recipe, but you will still need to run the 
first recipe.

How to do it...

Take a look at the following steps:

1.	 Let’s load the metadata, as follows:

f = open('relationships_w_pops_041510.txt')

ind_pop = {}

f.readline() # header

for l in f:

    toks = l.rstrip().split('\t')

    fam_id = toks[0]

    ind_id = toks[1]

    pop = toks[-1]

    ind_pop['/'.join([fam_id, ind_id])] = pop

f.close()

ind_pop['2469/NA20281'] = ind_pop['2805/NA20281']

In this case, we will add an entry that is consistent with what is available in the PLINK file.

2.	 Let’s convert the PLINK file into the EIGENSOFT format:

from genomics.popgen.plink.convert import to_eigen

to_eigen('hapmap10_auto_noofs_ld_12', 'hapmap10_auto_
noofs_ld_12')

This uses a function that I have written to convert from PLINK to the EIGENSOFT format. 
This is mostly text manipulation—not exactly the most exciting code.

3.	 Now, we will run SmartPCA and parse its results, as follows:

from genomics.popgen.pca import smart

ctrl = smart.SmartPCAController('hapmap10_auto_noofs_
ld_12')

ctrl.run()

wei, wei_perc, ind_comp = smart.parse_evec('hapmap10_
auto_noofs_ld_12.evec', 'hapmap10_auto_noofs_ld_12.eval')
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Again, this will use a couple of functions from pygenomics to control SmartPCA and then 
parse the output. The code is typical for this kind of operation, and while you are invited to 
inspect it, it’s quite straightforward.

The parse function will return the PCA weights (which we will not use, but you should inspect), 
normalized weights, and then the principal components (usually up to PC 10) per individual.

4.	 Then, we plot PC 1 and PC 2, as shown in the following code:

from genomics.popgen.pca import plot

plot.render_pca(ind_comp, 1, 2, cluster=ind_pop)

This will produce the following diagram. We will supply the plotting function and the population 
information retrieved from the metadata, which allows you to plot each population with a 
different color. The results are very similar to published results; we will find four groups. Most 
Asian populations are located at the top, the African populations are located on the right-hand 
side, and the European populations are located at the bottom. Two more admixed populations 
(GIH and MEX) are located in the middle:

Figure 6.7 - PC 1 and PC 2 of the HapMap data, as produced by SmartPCA

Note
Note that PCA plots can be symmetrical in any axis across runs, as the signal does not matter. 
What matters is that the clusters should be the same and that the distances between individuals 
(and these clusters) should be similar.
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There’s more...

An interesting question here is which method you should use – SmartPCA or scikit-learn, which we 
will use in Chapter 10. The results are similar, so if you are performing your own analysis, you are 
free to choose. However, if you publish your results in a scientific journal, SmartPCA is probably a 
safer choice because it’s based on the published piece of software in the field of genetics; reviewers 
will probably prefer this.

See also

•	 The paper that probably popularized the use of PCA in genetics was Novembre et al.’s Genes 
mirror geography within Europe on Nature, where a PCA of Europeans mapped almost perfectly 
to a map of Europe. This can be found at http://www.nature.com/nature/journal/
v456/n7218/abs/nature07331.html. Note that there is nothing about PCA that 
assures it will map to geographical features (just check our PCA earlier).

•	 The SmartPCA is described in Patterson et al.’s Population Structure and Eigenanalysis, PLoS 
Genetics, at http://journals.plos.org/plosgenetics/article?id=10.1371/
journal.pgen.0020190.

•	 A discussion of the meaning of PCA can be found in McVean’s paper on A Genealogical 
Interpretation of Principal Components Analysis, PLoS Genetics, at http://journals.
plos.org/plosgenetics/article?id=10.1371/journal.pgen.1000686.

Investigating population structure with admixture
A typical analysis in population genetics was the one popularized by the program structure (https://
web.stanford.edu/group/pritchardlab/structure.html), which is used to study 
population structure. This type of software is used to infer how many populations exist (or how 
many ancestral populations generated the current population), and to identify potential migrants 
and admixed individuals. The structure was developed quite some time ago, when far fewer markers 
were genotyped (at that time, this was mostly a handful of microsatellites), and faster versions were 
developed, including one from the same laboratory called fastStructure (http://rajanil.
github.io/fastStructure/). Here, we will use Python to interface with a program of the 
same type that was developed at UCLA, called admixture (https://dalexander.github.
io/admixture/download.html).

Getting ready

You will need to run the first recipe in order to use the hapmap10_auto_noofs_ld binary 
PLINK file. Again, we will use a 10 percent subsampling of autosomes that have been LD-pruned 
with no offspring.
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As in the previous recipe, you will use the pygenomics library to help; you can find these code 
files at https://github.com/tiagoantao/pygenomics. You can install it with the 
following command:

pip install pygenomics

In theory, for this recipe, you will need to download admixture (https://www.genetics.
ucla.edu/software/admixture/). However, in this case, I will provide the outputs of running 
admixture on the HapMap data that we will use, because running admixture takes a lot of time. You 
can either use the results available or run admixture yourself. There is a Notebook file for this in the 
Chapter06/Admixture.py recipe, but you will still need to run the recipe first.

How to do it...

Take a look at the following steps:

1.	 First, let’s define our k (a number of ancestral populations) range of interest, as follows:

k_range = range(2, 10)  # 2..9

2.	 Let’s run admixture for all our k (alternatively, you can skip this step and use the example data 
provided):

for k in k_range:

    os.system('admixture --cv=10 hapmap10_auto_noofs_
ld.bed %d > admix.%d' % (k, k))

Note
This is the worst possible way of running admixture and will probably take more than 3 hours 
if you do it this way. This is because it will run all k from 2 to 9 in a sequence. There are two 
things that you can do to speed this up: use the multithreaded option (-j), which admixture 
provides, or run several applications in parallel. Here, I have to assume a worst-case scenario 
where you only have a single core and thread available, but you should be able to run this more 
efficiently by parallelizing. We will discuss this issue at length in Chapter 11.

3.	 We will need the order of individuals in the PLINK file, as admixture outputs individual results 
in this order:

f = open('hapmap10_auto_noofs_ld.fam')

ind_order = []
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for l in f:

    toks = l.rstrip().replace(' ', '\t').split('\t')

    fam_id = toks[0]

    ind_id = toks[1]

    ind_order.append((fam_id, ind_id))

f.close()

4.	 The cross-validation error gives a measure of the “best” k, as follows:

import matplotlib.pyplot as plt

CVs = []

for k in k_range:

    f = open('admix.%d' % k)

    for l in f:

        if l.find('CV error') > -1:

            CVs.append(float(l.rstrip().split(' ')[-1]))

            break

    f.close()

fig = plt.figure(figsize=(16, 9))

ax = fig.add_subplot(111)

ax.set_title('Cross-Validation error')

ax.set_xlabel('K')

ax.plot(k_range, CVs)

The following graph plots the CV between a K of 2 and 9, the lower, the better. It should be 
clear from this graph that we should maybe run some more K (indeed, we have 11 populations; 
if not more, we should at least run up to 11), but due to computation costs, we stopped at 9.

It would be a very technical debate on whether there is such thing as the “best” K. Modern 
scientific literature suggests that there may not be a “best” K; these results are worthy of some 
interpretation. I think it’s important that you are aware of this before you go ahead and interpret 
the K results:
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Figure 6.8 - The error by K

5.	 We will need the metadata for the population information:

f = open('relationships_w_pops_041510.txt')

pop_ind = defaultdict(list)

f.readline() # header

for l in f:

   toks = l.rstrip().split('\t')

   fam_id = toks[0]

   ind_id = toks[1]

   if (fam_id, ind_id) not in ind_order:

      continue

   mom = toks[2]

   dad = toks[3]

   if mom != '0' or dad != '0':

      continue

 pop = toks[-1]

 pop_ind[pop].append((fam_id, ind_id))

f.close()
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We will ignore individuals that are not in the PLINK file.

6.	 Let’s load the individual component, as follows:

def load_Q(fname, ind_order):

    ind_comps = {}

    f = open(fname)

    for i, l in enumerate(f):

        comps = [float(x) for x in l.rstrip().split(' ')]

        ind_comps[ind_order[i]] = comps

    f.close()

    return ind_comps

comps = {}

for k in k_range:

    comps[k] = load_Q('hapmap10_auto_noofs_ld.%d.Q' % k, 
ind_order)

Admixture produces a file with the ancestral component per individual (for an example, look 
at any of the generated Q files); there will be as many components as the number of k that 
you decided to study. Here, we will load the Q file for all k that we studied and store them in a 
dictionary where the individual ID is the key.

7.	 Then, we cluster individuals, as follows:

from genomics.popgen.admix import cluster

ordering = {}

for k in k_range:

    ordering[k] = cluster(comps[k], pop_ind)

Remember that individuals were given components of ancestral populations by admixture; we 
would like to order them per their similarity in terms of ancestral components (not by their 
order in the PLINK file). This is not a trivial exercise and requires a clustering algorithm.

Furthermore, we do not want to order all of them; we want to order them in each population 
and then order each population accordingly.

For this purpose, I have some clustering code available at https://github.com/
tiagoantao/pygenomics/blob/master/genomics/popgen/admix/__init__.
py. This is far from perfect but allows you to perform some plotting that still looks reasonable. 
My code makes use of the SciPy clustering code. I suggest you take a look (by the way, it’s not 
very difficult to improve upon it).
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8.	 With a sensible individual order, we can now plot the admixture:

from genomics.popgen.admix import plot

plot.single(comps[4], ordering[4])

fig = plt.figure(figsize=(16, 9))

plot.stacked(comps, ordering[7], fig)

This will produce two charts; the second chart is shown in the following diagram (the first chart 
is actually a variation of the third admixture plot from the top).

The first figure of K = 4 requires the components per individual and their order. It will plot all 
individuals, ordered and split by population.

The second chart will perform a set of stacked plots of admixture from K = 2 to 9. It requires 
a figure object (as the dimension of this figure can vary widely with the number of stacked 
admixtures that you require). The individual order will typically follow one of the K (we have 
chosen a K of 7 here).

Note that all K are worthy of some interpretation (for example, K = 2 separates the African 
population from others, and K = 3 separates the European population and shows the admixture 
of GIH and MEX):

Figure 6.9 - A stacked admixture plot (between K of 2 and 9) for the HapMap example
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There’s more...

Unfortunately, you cannot run a single instance of admixture to get a result. The best practice is 
to actually run 100 instances and get the one with the best log likelihood (which is reported in the 
admixture output). Obviously, I cannot ask you to run 100 instances for each of the 7 different K for 
this recipe (we are talking about two weeks of computation), but you will probably have to perform 
this if you want to have publishable results. A cluster (or at least a very good machine) is required to 
run this. You can use Python to go through outputs and select the best log likelihood. After selecting 
the result with the best log likelihood for each K, you can easily apply this recipe to plot the output.
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7
Phylogenetics

Phylogenetics is the application of molecular sequencing that is used to study the evolutionary relationship 
among organisms. The typical way to illustrate this process is through the use of phylogenetic trees. 
The computation of these trees from genomic data is an active field of research with many real-world 
applications.

In this book, we will take the practical approach that is mentioned to a new level: most of the recipes 
here are inspired by a recent study on the Ebola virus, researching the recent Ebola outbreak in 
Africa. This study is called Genomic surveillance elucidates Ebola virus origin and transmission during 
the 2014 outbreak, by Gire et al., published in Science. It is available at https://pubmed.ncbi.
nlm.nih.gov/25214632/. Here, we will try to follow a similar methodology to arrive at similar 
results to the paper.

In this chapter, we will use DendroPy (a phylogenetics library) and Biopython. The bioinformatics_
phylo Docker image includes all the necessary software.

In this chapter, we will cover the following recipes:

•	 Preparing a dataset for phylogenetic analysis

•	 Aligning genetic and genomic data

•	 Comparing sequences

•	 Reconstructing phylogenetic trees

•	 Playing recursively with trees

•	 Visualizing phylogenetic data

Preparing a dataset for phylogenetic analysis
In this recipe, we will download and prepare the dataset to be used for our analysis. The dataset contains 
complete genomes of the Ebola virus. We will use DendroPy to download and prepare the data.
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Getting ready

We will download complete genomes from GenBank; these genomes were collected from various 
Ebola outbreaks, including several from the 2014 outbreak. Note that there are several virus species 
that cause the Ebola virus disease; the species involved in the 2014 outbreak (the EBOV virus, which 
was formally known as the Zaire Ebola virus) is the most common, but this disease is caused by more 
species of the genus Ebolavirus; four others are also available in a sequenced form. You can read more 
at https://en.wikipedia.org/wiki/Ebolavirus.

If you have already gone through the previous chapters, you might panic looking at the potential data 
sizes involved here; this is not a problem at all because these are genomes of viruses that are each 
around 19 kbp in size. So, our approximately 100 genomes are actually quite light.

To do this analysis, we will need to install dendropy. If you are using Anaconda, please perform 
the following:

conda install –c bioconda dendropy

As usual, this information is available in the corresponding Jupyter Notebook file, which is available 
at Chapter07/Exploration.py.

How to do it...

Take a look at the following steps:

1.	 First, let’s start by specifying our data sources using DendroPy, as follows:

import dendropy

from dendropy.interop import genbank

def get_ebov_2014_sources():

    #EBOV_2014

    #yield 'EBOV_2014', genbank.GenBankDna(id_
range=(233036, 233118), prefix='KM')

    yield 'EBOV_2014', genbank.GenBankDna(id_
range=(34549, 34563), prefix='KM0')

def get_other_ebov_sources():

    #EBOV other

    yield 'EBOV_1976', genbank.GenBankDna(ids=['AF272001', 
'KC242801'])

    yield 'EBOV_1995', genbank.GenBankDna(ids=['KC242796', 
'KC242799'])
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    yield 'EBOV_2007', genbank.GenBankDna(id_range=(84, 
90), prefix='KC2427')

def get_other_ebolavirus_sources():

    #BDBV

    yield 'BDBV', genbank.GenBankDna(id_range=(3, 6), 
prefix='KC54539')

    yield 'BDBV', genbank.GenBankDna(ids=['FJ217161']) 
#RESTV

    yield 'RESTV', genbank.GenBankDna(ids=['AB050936', 
'JX477165', 'JX477166',  'FJ621583', 'FJ621584', 
'FJ621585'])

    #SUDV

    yield 'SUDV', genbank.GenBankDna(ids=['KC242783', 
'AY729654', 'EU338380', 'JN638998', 'FJ968794', 
'KC589025', 'JN638998'])

    #yield 'SUDV', genbank.GenBankDna(id_range=(89, 92), 
prefix='KC5453')

    #TAFV

    yield 'TAFV', genbank.GenBankDna(ids=['FJ217162'])

Here, we have three functions: one to retrieve data from the most recent EBOV outbreak, 
another to retrieve data from the previous EBOV outbreaks, and one to retrieve data from the 
outbreaks of other species.

Note that the DendroPy GenBank interface provides several different ways to specify lists or 
ranges of records to retrieve. Some lines are commented out. These include the code to download 
more genomes. For our purpose, the subset that we will download is enough.

2.	 Now, we will create a set of FASTA files; we will use these files here and in future recipes:

other = open('other.fasta', 'w')

sampled = open('sample.fasta', 'w')

for species, recs in get_other_ebolavirus_sources():

    tn = dendropy.TaxonNamespace()

    char_mat = recs.generate_char_matrix(taxon_
namespace=tn,

        gb_to_taxon_fn=lambda gb: tn.require_
taxon(label='%s_%s' % (species, gb.accession)))

    char_mat.write_to_stream(other, 'fasta')

    char_mat.write_to_stream(sampled, 'fasta')
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other.close()

ebov_2014 = open('ebov_2014.fasta', 'w')

ebov = open('ebov.fasta', 'w')

for species, recs in get_ebov_2014_sources():

    tn = dendropy.TaxonNamespace()

    char_mat = recs.generate_char_matrix(taxon_
namespace=tn,

        gb_to_taxon_fn=lambda gb: tn.require_
taxon(label='EBOV_2014_%s' % gb.accession))

    char_mat.write_to_stream(ebov_2014, 'fasta')

    char_mat.write_to_stream(sampled, 'fasta')

    char_mat.write_to_stream(ebov, 'fasta')

ebov_2014.close()

ebov_2007 = open('ebov_2007.fasta', 'w')

for species, recs in get_other_ebov_sources():

    tn = dendropy.TaxonNamespace()

    char_mat = recs.generate_char_matrix(taxon_
namespace=tn,

        gb_to_taxon_fn=lambda gb: tn.require_
taxon(label='%s_%s' % (species, gb.accession)))

    char_mat.write_to_stream(ebov, 'fasta')

    char_mat.write_to_stream(sampled, 'fasta')

    if species == 'EBOV_2007':

        char_mat.write_to_stream(ebov_2007, 'fasta')

ebov.close()

ebov_2007.close()

sampled.close()

We will generate several different FASTA files, which include either all genomes, just EBOV, or 
just EBOV samples from the 2014 outbreak. In this chapter, we will mostly use the sample.
fasta file with all genomes.

Note the use of the dendropy functions to create FASTA files that are retrieved from GenBank 
records through conversion. The ID of each sequence in the FASTA file is produced by a lambda 
function that uses the species and the year, alongside the GenBank accession number.
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3.	 Let’s extract four (of the total seven) genes in the virus, as follows:

my_genes = ['NP', 'L', 'VP35', 'VP40']

def dump_genes(species, recs, g_dls, p_hdls):

    for rec in recs:

        for feature in rec.feature_table:

            if feature.key == 'CDS':

                gene_name = None

                for qual in feature.qualifiers:

                    if qual.name == 'gene':

                        if qual.value in my_genes:

                            gene_name = qual.value

                    elif qual.name == 'translation':

                        protein_translation = qual.value

                if gene_name is not None:

                    locs = feature.location.split('.')

                    start, end = int(locs[0]), 
int(locs[-1])

                    g_hdls[gene_name].write('>%s_%s\n' % 
(species, rec.accession))

                    p_hdls[gene_name].write('>%s_%s\n' % 
(species, rec.accession))

                    g_hdls[gene_name].write('%s\n' % rec.
sequence_text[start - 1 : end])

                    p_hdls[gene_name].write('%s\n' % 
protein_translation)

g_hdls = {}

p_hdls = {}

for gene in my_genes:

    g_hdls[gene] = open('%s.fasta' % gene, 'w')

    p_hdls[gene] = open('%s_P.fasta' % gene, 'w')

for species, recs in get_other_ebolavirus_sources():

    if species in ['RESTV', 'SUDV']:

        dump_genes(species, recs, g_hdls, p_hdls)

for gene in my_genes:

    g_hdls[gene].close()

    p_hdls[gene].close()
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We start by searching the first GenBank record for all gene features (please refer to Chapter 3, 
Next Generation Sequencing, or the National Center for Biotechnology Information (NCBI) 
documentation for further details; although we will use DendroPy and not Biopython here, 
the concepts are similar) and write to the FASTA files in order to extract the genes. We put 
each gene into a different file and only take two virus species. We also get translated proteins, 
which are available in the records for each gene.

4.	 Let’s create a function to get the basic statistical information from the alignment, as follows:

def describe_seqs(seqs):

    print('Number of sequences: %d' % len(seqs.taxon_
namespace))

    print('First 10 taxon sets: %s' % ' '.join([taxon.
label for taxon in seqs.taxon_namespace[:10]]))

    lens = []

    for tax, seq in seqs.items():

        lens.append(len([x for x in seq.symbols_as_list() 
if x != '-']))

    print('Genome length: min %d, mean %.1f, max %d' % 
(min(lens), sum(lens) / len(lens), max(lens)))

Our function takes a DnaCharacterMatrix DendroPy class and counts the number of 
taxons. Then, we extract all the amino acids per sequence (we exclude gaps identified by -) to 
compute the length and report the minimum, mean, and maximum sizes. Take a look at the 
DendroPy documentation for additional details regarding the API.

5.	 Let’s inspect the sequence of the EBOV genome and compute the basic statistics, as shown earlier:

ebov_seqs = dendropy.DnaCharacterMatrix.get_from_
path('ebov.fasta', schema='fasta', data_type='dna')

print('EBOV')

describe_seqs(ebov_seqs)

del ebov_seqs

We then call a function and get 25 sequences with a minimum size of 18,700, a mean size of 
18,925.2, and a maximum size of 18,959. This is a small genome when compared to eukaryotes.

Note that at the very end, the memory structure has been deleted. This is because the memory 
footprint is still quite big (DendroPy is a pure Python library and has some costs in terms of 
speed and memory). Be careful with your memory usage when you load full genomes.

6.	 Now, let’s inspect the other Ebola virus genome file and count the number of different species:

print('ebolavirus sequences')

ebolav_seqs = dendropy.DnaCharacterMatrix.get_from_
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path('other.fasta', schema='fasta', data_type='dna')

describe_seqs(ebolav_seqs)

from collections import defaultdict

species = defaultdict(int)

for taxon in ebolav_seqs.taxon_namespace:

    toks = taxon.label.split('_')

    my_species = toks[0]

    if my_species == 'EBOV':

        ident = '%s (%s)' % (my_species, toks[1])

    else:

        ident = my_species

    species[ident] += 1

for my_species, cnt in species.items():

    print("%20s: %d" % (my_species, cnt))

del ebolav_seqs

The name prefix of each taxon is indicative of the species, and we leverage that to fill a dictionary 
of counts.

The output for the species and the EBOV breakdown is detailed next (with the legend as 
Bundibugyo virus=BDBV, Tai Forest virus=TAFV, Sudan virus=SUDV, and Reston virus=RESTV; 
we have 1 TAFV, 6 SUDV, 6 RESTV, and 5 BDBV).

7.	 Let’s extract the basic statistics of a gene in the virus:

gene_length = {}

my_genes = ['NP', 'L', 'VP35', 'VP40']

for name in my_genes:

    gene_name = name.split('.')[0]

    seqs =    

dendropy.DnaCharacterMatrix.get_from_path('%s.fasta' % 
name, schema='fasta', data_type='dna')

    gene_length[gene_name] = []

    for tax, seq in seqs.items():

        gene_length[gene_name].append(len([x for x 
in  seq.symbols_as_list() if x != '-'])

for gene, lens in gene_length.items():

    print ('%6s: %d' % (gene, sum(lens) / len(lens)))
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This allows you to have an overview of the basic gene information (that is, the name and the 
mean size), as follows:

NP: 2218

L: 6636

VP35: 990

VP40: 988

There’s more...

Most of the work here can probably be performed with Biopython, but DendroPy has additional 
functionalities that will be explored in later recipes. Furthermore, as you will discover, it’s more robust 
with certain tasks (such as file parsing). More importantly, there is another Python library to perform 
phylogenetics that you should consider. It’s called ETE and is available at http://etetoolkit.
org/.

See also

•	 The US Center for Disease Control (CDC) has a good introductory page on the Ebola virus 
disease at https://www.cdc.gov/vhf/ebola/history/summaries.html.

•	 The reference application in phylogenetics is Joe Felsenstein’s Phylip, which can be found at 
http://evolution.genetics.washington.edu/phylip.html.

•	 We will use the Nexus and Newick formats in future recipes (http://evolution.
genetics.washington.edu/phylip/newicktree.html), but do also check out 
the PhyloXML format (http://en.wikipedia.org/wiki/PhyloXML).

Aligning genetic and genomic data
Before we can perform any phylogenetic analysis, we need to align our genetic and genomic data. 
Here, we will use MAFFT (http://mafft.cbrc.jp/alignment/software/) to perform 
the genome analysis. The gene analysis will be performed using MUSCLE (http://www.drive5.
com/muscle/).

Getting ready

To perform the genomic alignment, you will need to install MAFFT. Additionally, to perform the genic 
alignment, MUSCLE will be used. Also, we will use trimAl (http://trimal.cgenomics.org/) 
to remove spurious sequences and poorly aligned regions in an automated manner. All packages are 
available from Bioconda:

conda install –c bioconda mafft trimal muscle=3.8
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As usual, this information is available in the corresponding Jupyter Notebook file at Chapter07/
Alignment.py. You will need to run the previous notebook beforehand, as it will generate the files 
that are required here. In this chapter, we will use Biopython.

How to do it...

Take a look at the following steps:

1.	 Now, we will run MAFFT to align the genomes, as shown in the following code. This task is 
CPU-intensive and memory-intensive, and it will take quite some time:

from Bio.Align.Applications import MafftCommandline

mafft_cline = MafftCommandline(input='sample.fasta', 
ep=0.123, reorder=True, maxiterate=1000, localpair=True)

print(mafft_cline)

stdout, stderr = mafft_cline()

with open('align.fasta', 'w') as w:

    w.write(stdout)

The preceding parameters are the same as the ones specified in the supplementary material of 
the paper. We will use the Biopython interface to call MAFFT.

2.	 Let’s use trimAl to trim sequences, as follows:

os.system('trimal -automated1 -in align.fasta -out trim.
fasta -fasta')

Here, we just call the application using os.system. The -automated1 parameter is from 
the supplementary material.

3.	 Additionally, we can run MUSCLE to align the proteins:

from Bio.Align.Applications import MuscleCommandline

my_genes = ['NP', 'L', 'VP35', 'VP40']

for gene in my_genes:

    muscle_cline = MuscleCommandline(input='%s_P.fasta' % 
gene)

    print(muscle_cline)

    stdout, stderr = muscle_cline()

    with open('%s_P_align.fasta' % gene, 'w') as w:

    w.write(stdout)

We use Biopython to call an external application. Here, we will align a set of proteins.
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Note that to make some analysis of molecular evolution, we have to compare aligned genes, 
not proteins (for example, comparing synonymous and nonsynonymous mutations). However, 
we just have aligned the proteins. Therefore, we have to convert the alignment into the gene 
sequence form.

4.	 Let’s align the genes by finding three nucleotides that correspond to each amino acid:

from Bio import SeqIO

from Bio.Seq import Seq

from Bio.SeqRecord import SeqRecord

for gene in my_genes:

    gene_seqs = {}

    unal_gene = SeqIO.parse('%s.fasta' % gene, 'fasta')

    for rec in unal_gene:

        gene_seqs[rec.id] = rec.seq

    al_prot = SeqIO.parse('%s_P_align.fasta' % gene, 
'fasta')

    al_genes = []

    for protein in al_prot:

        my_id = protein.id

        seq = ''

        pos = 0

        for c in protein.seq:

            if c == '-':

                seq += '---'

            else:

                seq += str(gene_seqs[my_id][pos:pos + 3])

                pos += 3

        al_genes.append(SeqRecord(Seq(seq), id=my_id))

    SeqIO.write(al_genes, '%s_align.fasta' % gene, 
'fasta')

The code gets the protein and the gene coding. If a gap is found in a protein, three gaps are written; 
if an amino acid is found, the corresponding nucleotides of the gene are written.
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Comparing sequences
Here, we will compare the sequences we aligned in the previous recipe. We will perform gene-wide 
and genome-wide comparisons.

Getting ready

We will use DendroPy and will require the results from the previous two recipes. As usual, this 
information is available in the corresponding notebook at Chapter07/Comparison.py.

How to do it...

Take a look at the following steps:

1.	 Let’s start analyzing the gene data. For simplicity, we will only use data from two other species 
of the genus Ebola virus that are available in the extended dataset, that is, the Reston virus 
(RESTV) and the Sudan virus (SUDV):

import os

from collections import OrderedDict

import dendropy

from dendropy.calculate import popgenstat

genes_species = OrderedDict()

my_species = ['RESTV', 'SUDV']

my_genes = ['NP', 'L', 'VP35', 'VP40']

for name in my_genes:

    gene_name = name.split('.')[0]

    char_mat = dendropy.DnaCharacterMatrix.get_from_
path('%s_align.fasta' % name, 'fasta')

    genes_species[gene_name] = {}

    

    for species in my_species:

        genes_species[gene_name][species] = dendropy.
DnaCharacterMatrix()

    for taxon, char_map in char_mat.items():

        species = taxon.label.split('_')[0]

        if species in my_species:

            genes_species[gene_name][species].taxon_
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namespace.add_taxon(taxon)

            genes_species[gene_name][species][taxon] = 
char_map

We get four genes that we stored in the first recipe and aligned in the second.

We load all the files (which are FASTA formatted) and create a dictionary with all of the genes. 
Each entry will be a dictionary itself with the RESTV or SUDV species, including all reads. 
This is not a lot of data, just a handful of genes.

2.	 Let’s print some basic information for all four genes, such as the number of segregating sites 
(seg_sites), nucleotide diversity (nuc_div), Tajima’s D (taj_d), and Waterson’s theta 
(wat_theta) (check out the There’s more... section of this recipe for links on these statistics):

import numpy as np

import pandas as pd

summary = np.ndarray(shape=(len(genes_species), 4 * 
len(my_species)))

stats = ['seg_sites', 'nuc_div', 'taj_d', 'wat_theta']

for row, (gene, species_data) in enumerate(genes_species.
items()):

    for col_base, species in enumerate(my_species):

        summary[row, col_base * 4] = popgenstat.num_
segregating_sites(species_data[species])

        summary[row, col_base * 4 + 1] = popgenstat.
nucleotide_diversity(species_data[species])

        summary[row, col_base * 4 + 2] = popgenstat.
tajimas_d(species_data[species])

        summary[row, col_base * 4 + 3] = popgenstat.
wattersons_theta(species_data[species])

columns = []

for species in my_species:

    columns.extend(['%s (%s)' % (stat, species) for stat 
in stats])

df = pd.DataFrame(summary, index=genes_species.keys(), 
columns=columns)

df # vs print(df)
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3.	 First, let’s look at the output, and then we’ll explain how to build it:

Figure 7.1 – A DataFrame for the virus dataset

I used a pandas DataFrame to print the results because it’s really tailored to deal with an 
operation like this. We will initialize our DataFrame with a NumPy multidimensional array 
with four rows (genes) and four statistics times the two species.

The statistics, such as the number of segregating sites, nucleotide diversity, Tajima’s D, and 
Watterson’s theta, are computed by DendroPy. Note the placement of individual data points 
in the array (the coordinate computation).

Look at the very last line: if you are in Jupyter, just putting df at the end will render the 
DataFrame and the cell output, too. If you are not in a notebook, use print(df) (you can 
also perform this in a notebook, but it will not look as pretty).

4.	 Now, let’s extract similar information, but genome-wide instead of only gene-wide. In this 
case, we will use a subsample of two EBOV outbreaks (from 2007 and 2014). We will perform 
a function to display basic statistics, as follows:

def do_basic_popgen(seqs):

    num_seg_sites = popgenstat.num_segregating_
sites(seqs)

    avg_pair = popgenstat.average_number_of_pairwise_
differences(seqs)

    nuc_div = popgenstat.nucleotide_diversity(seqs)

    print('Segregating sites: %d, Avg pairwise diffs: 
%.2f, Nucleotide diversity %.6f' % (num_seg_sites, avg_
pair, nuc_div))

    print("Watterson's theta: %s" % popgenstat.
wattersons_theta(seqs))

    print("Tajima's D: %s" % popgenstat.tajimas_d(seqs))

By now, this function should be easy to understand, given the preceding examples.
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5.	 Now, let’s extract a subsample of the data properly, and output the statistical information:

ebov_seqs = dendropy.DnaCharacterMatrix.get_from_path(

    'trim.fasta', schema='fasta', data_type='dna')

sl_2014 = []

drc_2007 = []

ebov2007_set = dendropy.DnaCharacterMatrix()

ebov2014_set = dendropy.DnaCharacterMatrix()

for taxon, char_map in ebov_seqs.items():

    print(taxon.label)

    if taxon.label.startswith('EBOV_2014') and 
len(sl_2014) < 8:

        sl_2014.append(char_map)

        ebov2014_set.taxon_namespace.add_taxon(taxon)

        ebov2014_set[taxon] = char_map

    elif taxon.label.startswith('EBOV_2007'):

        drc_2007.append(char_map)

        ebov2007_set.taxon_namespace.add_taxon(taxon)

        ebov2007_set[taxon] = char_map

        #ebov2007_set.extend_map({taxon: char_map})

del ebov_seqs

print('2007 outbreak:')

print('Number of individuals: %s' % len(ebov2007_set.
taxon_set))

do_basic_popgen(ebov2007_set)

print('\n2014 outbreak:')

print('Number of individuals: %s' % len(ebov2014_set.
taxon_set))

do_basic_popgen(ebov2014_set)

Here, we will construct two versions of two datasets: the 2014 outbreak and the 2007 outbreak. 
We will generate one version as DnaCharacterMatrix and another as a list. We will use 
this list version at the end of this recipe.

As the dataset for the EBOV outbreak of 2014 is large, we subsample it with just eight individuals, 
which is a comparable sample size to the dataset of the 2007 outbreak.

Again, we delete the ebov_seqs data structure to conserve memory (these are genomes, 
not only genes).
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If you perform this analysis on the complete dataset for the 2014 outbreak available on GenBank 
(99 samples), be prepared to wait for quite some time.

The output is shown here:

2007 outbreak:

Number of individuals: 7

Segregating sites: 25, Avg pairwise diffs: 7.71, 
Nucleotide diversity 0.000412

Watterson's theta: 10.204081632653063

Tajima's D: -1.383114157484101

2014 outbreak:

Number of individuals: 8

Segregating sites: 6, Avg pairwise diffs: 2.79, 
Nucleotide diversity 0.000149

Watterson's theta: 2.31404958677686

Tajima's D: 0.9501208027581887

6.	 Finally, we perform some statistical analysis on the two subsets of 2007 and 2014, as follows:

pair_stats = popgenstat.
PopulationPairSummaryStatistics(sl_2014, drc_2007)

print('Average number of pairwise differences 
irrespective of population: %.2f' % pair_stats.average_
number_of_pairwise_differences)

print('Average number of pairwise differences between 
populations: %.2f' % pair_stats.average_number_of_
pairwise_differences_between)

print('Average number of pairwise differences within 
populations: %.2f' % pair_stats.average_number_of_
pairwise_differences_within)

print('Average number of net pairwise differences : %.2f' 
% pair_stats.average_number_of_pairwise_differences_net)

print('Number of segregating sites: %d' % pair_stats.num_
segregating_sites)

print("Watterson's theta: %.2f" % pair_stats.wattersons_
theta)

print("Wakeley's Psi: %.3f" % pair_stats.wakeleys_psi)

print("Tajima's D: %.2f" % pair_stats.tajimas_d)
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Note that we will perform something slightly different here; we will ask DendroPy (popgenstat.
PopulationPairSummaryStatistics) to directly compare two populations so that 
we get the following results:

Average number of pairwise differences irrespective of 
population: 284.46

Average number of pairwise differences between 
populations: 535.82

Average number of pairwise differences within 
populations: 10.50

Average number of net pairwise differences : 525.32

Number of segregating sites: 549

Watterson's theta: 168.84

Wakeley's Psi: 0.308

Tajima's D: 3.05

Now the number of segregating sites is much bigger because we are dealing with data from two 
different populations that are reasonably diverged. The average number of pairwise differences among 
populations is quite large. As expected, this is much larger than the average number for the population, 
irrespective of the population information.

There’s more...

If you want to get many phylogenetic and population genetics formulas, including the ones used here, 
I strongly recommend that you get the manual for the Arlequin software suite (http://cmpg.
unibe.ch/software/arlequin35/). If you do not use Arlequin to perform data analysis, its 
manual is probably the best reference to implement formulas. This free document probably has more 
relevant details on formula implementation than any book that I can remember.

Reconstructing phylogenetic trees
Here, we will construct phylogenetic trees for the aligned dataset for all Ebola species. We will follow 
a procedure that’s quite similar to the one used in the paper.

Getting ready

This recipe requires RAxML, a program for maximum likelihood-based inference of large phylogenetic 
trees, which you can check out at http://sco.h-its.org/exelixis/software.html. 
Bioconda also includes it, but it is named raxml. Note that the binary is called raxmlHPC. You can 
perform the following command to install it:

conda install –c bioconda raxml
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The preceding code is simple, but it will take time to execute because it will call RAxML (which is 
computationally intensive). If you opt to use the DendroPy interface, it might also become memory-
intensive. We will interact with RAxML, DendroPy, and Biopython, leaving you with a choice of 
which interface to use; DendroPy gives you an easy way to access results, whereas Biopython is less 
memory-intensive. Although there is a recipe for visualization later in this chapter, we will, nonetheless, 
plot one of our generated trees here.

As usual, this information is available in the corresponding notebook at Chapter07/
Reconstruction.py. You will need the output of the previous recipe to complete this one.

How to do it...

Take a look at the following steps:

1.	 For DendroPy, we will load the data first and then reconstruct the genus dataset, as follows:

import os

import shutil

import dendropy

from dendropy.interop import raxml

ebola_data = dendropy.DnaCharacterMatrix.get_from_
path('trim.fasta', 'fasta')

rx = raxml.RaxmlRunner()

ebola_tree = rx.estimate_tree(ebola_data, ['-m', 
'GTRGAMMA', '-N', '10'])

print('RAxML temporary directory %s:' % rx.working_dir_
path)

del ebola_data

Remember that the size of the data structure for this is quite big; therefore, ensure that you 
have enough memory to load this (at least 10 GB).

Be prepared to wait for some time. Depending on your computer, this could take more than one 
hour. If it takes longer, consider restarting the process, as sometimes a RAxML bug might occur.

We will run RAxML with the GTRΓ nucleotide substitution model, as specified in the paper. 
We will only perform 10 replicates to speed up the results, but you should probably do a lot 
more, say 100. At the end of the process, we will delete the genome data from memory as it 
takes up a lot of memory.
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The ebola_data variable will have the best RAxML tree, with distances included. The 
RaxmlRunner object will have access to other information generated by RAxML. Let’s print 
the directory where DendroPy will execute RAxML. If you inspect this directory, you will find 
a lot of files. As RAxML returns the best tree, you might want to ignore all of these files, but 
we will discuss this a little in the alternative Biopython step.

2.	 We will save trees for future analysis; in our case, it will be a visualization, as shown in the 
following code:

ebola_tree.write_to_path('my_ebola.nex', 'nexus')

We will write sequences to a NEXUS file because we need to store the topology information. 
FASTA is not enough here.

3.	 Let’s visualize our genus tree, as follows:

import matplotlib.pyplot as plt

from Bio import Phylo

my_ebola_tree = Phylo.read('my_ebola.nex', 'nexus')

my_ebola_tree.name = 'Our Ebolavirus tree'

fig = plt.figure(figsize=(16, 18))

ax = fig.add_subplot(1, 1, 1)

Phylo.draw(my_ebola_tree, axes=ax)

We will defer the explanation of this code until we come to the proper recipe later, but if you 
look at the following diagram and compare it with the results from the paper, you will clearly 
see that it looks like a step in the right direction. For example, all individuals from the same 
species are clustered together.

You will notice that trimAl changed the names of its sequences, for example, by adding their 
sizes. This is easy to solve; we will deal with this in the Visualizing phylogenetic data recipe:
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Figure 7.2 – The phylogenetic tree that we generated with RAxML for all Ebola viruses

4.	 Let’s reconstruct the phylogenetic tree with RAxML via Biopython. The Biopython interface is 
less declarative, but much more memory-efficient than DendroPy. So, after running it, it will 
be your responsibility to process the output, whereas DendroPy automatically returns the best 
tree, as shown in the following code:

import random

import shutil
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from Bio.Phylo.Applications import RaxmlCommandline

raxml_cline = RaxmlCommandline(sequences='trim.fasta', 
model='GTRGAMMA', name='biopython', num_replicates='10', 
parsimony_seed=random.randint(0, sys.maxsize), working_
dir=os.getcwd() + os.sep + 'bp_rx')

print(raxml_cline)

try:

    os.mkdir('bp_rx')

except OSError:

    shutil.rmtree('bp_rx')

    os.mkdir('bp_rx')

out, err = raxml_cline()

DendroPy has a more declarative interface than Biopython, so you can take care of a few extra 
things. You should specify the seed (Biopython will put a fixed default of 10,000 if you do not 
do so) and the working directory. With RAxML, the working directory specification requires 
the absolute path.

5.	 Let’s inspect the outcome of the Biopython run. While the RAxML output is the same (save 
for stochasticity) for DendroPy and Biopython, DendroPy abstracts away a few things. With 
Biopython, you need to take care of the results yourself. You can also perform this with DendroPy; 
however, in this case, it is optional:

from Bio import Phylo

biopython_tree = Phylo.read('bp_rx/RAxML_bestTree.
biopython', 'newick')

The preceding code will read the best tree from the RAxML run. The name of the file was 
appended with the project name that you specified in the previous step (in this case, biopython).

Take a look at the content of the bp_rx directory; here, you will find all the outputs from RAxML, 
including all 10 alternative trees.

There’s more...

Although the purpose of this book is not to teach phylogenetic analysis, it’s important to know why 
we do not inspect consensus and support information in the tree topology. You should research this in 
your dataset. For more information, refer to http://www.geol.umd.edu/~tholtz/G331/
lectures/cladistics5.pdf.
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Playing recursively with trees
This is not a book about programming in Python, as the topic is vast. Having said that, it’s not 
common for introductory Python books to discuss recursive programming at length. Usually, recursive 
programming techniques are well tailored to deal with trees. It is also a required programming strategy 
with functional programming dialects, which can be quite useful when you perform concurrent 
processing. This is common when processing very large datasets.

The phylogenetic notion of a tree is slightly different from that in computer science. Phylogenetic trees 
can be rooted (if so, then they are normal tree data structures) or unrooted, making them undirected 
acyclic graphs. Additionally, phylogenetic trees can have weights on their edges. Therefore, be mindful 
of this when you read the documentation; if the text is written by a phylogeneticist, you can expect 
the tree (rooted and unrooted), while most other documents will use undirected acyclic graphs for 
unrooted trees. In this recipe, we will assume that all of the trees are rooted.

Finally, note that while this recipe is mostly devised to help you understand recursive algorithms and 
tree-like structures, the final part is actually quite practical and fundamental for the next recipe to work.

Getting ready

You will need to have the files from the previous recipe. As usual, you can find this content in the 
Chapter07/Trees.py notebook file. Here, we will use DendroPy’s tree representations. Note 
that most of this code is easily generalizable compared to other tree representations and libraries 
(phylogenetic or not).

How to do it...

Take a look at the following steps:

1.	 First, let’s load the RAxML-generated tree for all Ebola viruses, as follows:

import dendropy

ebola_raxml = dendropy.Tree.get_from_path('my_ebola.nex', 
'nexus')

2.	 Then, we need to compute the level of each node (the distance to the root node):

def compute_level(node, level=0):

    for child in node.child_nodes():

        compute_level(child, level + 1)

    if node.taxon is not None:

        print("%s: %d %d" % (node.taxon, node.level(), 
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level))

compute_level(ebola_raxml.seed_node)

DendroPy’s node representation has a level method (which is used for comparison), but the 
point here is to introduce a recursive algorithm, so we will implement it anyway.

Note how the function works; it’s called with seed_node (which is the root node, since the 
code works under the assumption that we are dealing with rooted trees). The default level for 
the root node is 0. The function will then call itself for all its children nodes, increasing the 
level by one. Then, for each node that is not a leaf (that is, it is internal to the tree), the calling 
will be repeated, and this will recurse until we get to the leaf nodes.

For the leaf nodes, we then print the level (we could have done the same for the internal nodes) 
and show the same information computed by DendroPy’s internal function.

3.	 Now, let’s compute the height of each node. The height of the node is the number of edges of 
the maximum downward path (going to the leaves), starting on that node, as follows:

def compute_height(node):

    children = node.child_nodes()

    if len(children) == 0:

        height = 0

    else:

    height = 1 + max(map(lambda x: compute_height(x), 
children))

    desc = node.taxon or 'Internal'

    print("%s: %d %d" % (desc, height, node.level()))

    return height

compute_height(ebola_raxml.seed_node)

Here, we will use the same recursive strategy, but each node will return its height to its parent. 
If the node is a leaf, then the height is 0; if not, then it’s 1 plus the maximum height of its 
entire offspring.

Note that we use a map over a lambda function to get the heights of all the children of the current 
node. Then, we choose the maximum (the max function performs a reduce operation here 
because it summarizes all of the values that are reported). If you are relating this to MapReduce 
frameworks, you are correct; they are inspired by functional programming dialects like these.
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4.	 Now, let’s compute the number of offspring for each node. By now, this should be quite easy 
to understand:

def compute_nofs(node):

    children = node.child_nodes()

    nofs = len(children)

    map(lambda x: compute_nofs(x), children)

    desc = node.taxon or 'Internal'

    print("%s: %d %d" % (desc, nofs, node.level()))

compute_nofs(ebola_raxml.seed_node)

5.	 Now we will print all of the leaves (this is, apparently, trivial):

def print_nodes(node):

    for child in node.child_nodes():

        print_nodes(child)

    if node.taxon is not None:

        print('%s (%d)' % (node.taxon, node.level()))

print_nodes(ebola_raxml.seed_node)

Note that all the functions that we have developed so far impose a very clear traversal pattern 
on the tree. It calls its first offspring, then that offspring will call their offspring, and so on; only 
after this will the function be able to call its next offspring in a depth-first pattern. However, 
we can do things differently.

6.	 Now, let’s print the leaf nodes in a breadth-first manner, that is, we will print the leaves with 
the lowest level (closer to the root) first, as follows:

from collections import deque

def print_breadth(tree):

    queue = deque()

    queue.append(tree.seed_node)

    while len(queue) > 0:

        process_node = queue.popleft()

        if process_node.taxon is not None:

            print('%s (%d)' % (process_node.taxon, 
process_node.level()))

        else:
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            for child in process_node.child_nodes():

                queue.append(child)

print_breadth(ebola_raxml)

Before we explain this algorithm, let’s look at how different the result from this run will be 
compared to the previous one. For starters, take a look at the following diagram. If you print 
the nodes by depth-first order, you will get Y, A, X, B, and C. But if you perform a breath-first 
traversal, you will get X, B, C, Y, and A. Tree traversal will have an impact on how the nodes 
are visited; more often than not, this is important.

Regarding the preceding code, here, we will use a completely different approach, as we will 
perform an iterative algorithm. We will use a first-in, first-out (FIFO) queue to help order 
our nodes. Note that Python’s deque can be used as efficiently as FIFO, as well as in last-in, 
first-out (LIFO). That’s because it implements an efficient data structure when you operate at 
both extremes.

The algorithm starts by putting the root node onto the queue. While the queue is not empty, we 
will take the node out front. If it’s an internal node, we will put all of its children into the queue.

We will iterate the preceding step until the queue is empty. I encourage you to take a pen and 
paper and see how this works by performing the example shown in the following diagram. 
The code is small, but not trivial:

Figure 7.3 – Visiting a tree; the first number indicates the order in which that node 

is visited traversing depth-first, while the second assumes breadth-first

7.	 Let’s get back to the real dataset. As we have a bit too much data to visualize, we will generate 
a trimmed-down version, where we remove the subtrees that have single species (in the case 
of EBOV, they have the same outbreak). We will also ladderize the tree, that is, sort the child 
nodes in order of the number of children:

from copy import deepcopy

simple_ebola = deepcopy(ebola_raxml)
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def simplify_tree(node):

    prefs = set()

    for leaf in node.leaf_nodes():

        my_toks = leaf.taxon.label.split(' ')

        if my_toks[0] == 'EBOV':

            prefs.add('EBOV' + my_toks[1])

        else:

            prefs.add(my_toks[0])

    if len(prefs) == 1:

        print(prefs, len(node.leaf_nodes()))

        node.taxon = dendropy.Taxon(label=list(prefs)[0])

        node.set_child_nodes([])

    else:

        for child in node.child_nodes():

            simplify_tree(child)

simplify_tree(simple_ebola.seed_node)

simple_ebola.ladderize()

simple_ebola.write_to_path('ebola_simple.nex', 'nexus')

We will perform a deep copy of the tree structure. As our function and the ladderization are destructive 
(they will change the tree), we will want to maintain the original tree.

DendroPy is able to enumerate all the leaf nodes (at this stage, a good exercise would be to write a 
function to perform this). With this functionality, we will get all the leaves for a certain node. If they 
share the same species and outbreak year as in the case of EBOV, we remove all of the child nodes, 
leaves, and internal subtree nodes.

If they do not share the same species, we recurse down until that happens. The worst case is that 
when you are already at a leaf node, the algorithm trivially resolves to the species of the current node.

There’s more...

There is a massive amount of computer science literature on the topic of trees and data structures; 
if you want to read more, Wikipedia provides a great introduction at http://en.wikipedia.
org/wiki/Tree_%28data_structure%29.

Note that the use of lambda functions and map is not encouraged as a Python dialect; you can read 
some (older) opinions on the subject from Guido van Rossum at http://www.artima.com/
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weblogs/viewpost.jsp?thread=98196. I presented it here because it’s a very common 
dialect within functional and recursive programming. The more common dialect will be based on a 
list of comprehensions.

In any case, the functional dialect based on using the map and reduce operations is the conceptual 
base for MapReduce frameworks, and you can use frameworks such as Hadoop, Disco, or Spark to 
perform high-performance bioinformatics computing.

Visualizing phylogenetic data
In this recipe, we will discuss how to visualize phylogenetic trees. DendroPy only has simple visualization 
mechanisms based on drawing textual ASCII trees, but Biopython has quite a rich infrastructure, 
which we will leverage here.

Getting ready

This will require you to have completed all of the previous recipes. Remember that we have the files 
for the whole genus of the Ebola virus, including the RAxML tree. Furthermore, a simplified genus 
version will have been produced in the previous recipe. As usual, you can find this content in the 
Chapter07/Visualization.py notebook file.

How to do it...

Take a look at the following steps:

1.	 Let’s load all of the phylogenetic data:

from copy import deepcopy

from Bio import Phylo

ebola_tree = Phylo.read('my_ebola.nex', 'nexus')

ebola_tree.name = 'Ebolavirus tree'

ebola_simple_tree = Phylo.read('ebola_simple.nex', 
'nexus')

ebola_simple_tree.name = 'Ebolavirus simplified tree'

For all of the trees that we read, we will change the name of the tree, as the name will be 
printed later.

2.	 Now, we can draw ASCII representations of the trees:

Phylo.draw_ascii(ebola_simple_tree)

Phylo.draw_ascii(ebola_tree)
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The ASCII representation of the simplified genus tree is shown in the following diagram. Here, 
we will not print the complete version because it will take several pages. But if you run the 
preceding code, you will be able to see that it’s actually quite readable:

Figure 7.4 – The ASCII representation of a simplified Ebola virus dataset

3.	 Bio.Phylo allows for the graphical representation of trees by using matplotlib as a backend:

import matplotlib.pyplot as plt

fig = plt.figure(figsize=(16, 22))

ax = fig.add_subplot(111)

Phylo.draw(ebola_simple_tree, branch_labels=lambda c: 
c.branch_length if c.branch_length > 0.02 else None, 
axes=ax)

In this case, we will print the branch lengths at the edges, but we will remove all of the lengths 
that are less than 0.02 to avoid clutter. The result of doing this is shown in the following diagram:
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Figure 7.5 – A matplotlib-based version of the simplified dataset with branch lengths added

4.	 Now we will plot the complete dataset, but we will color each bit of the tree differently. If a 
subtree only has a single virus species, it will get its own color. EBOV will have two colors, that 
is, one for the 2014 outbreak and one for the others, as follows:

fig = plt.figure(figsize=(16, 22))

ax = fig.add_subplot(111)
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from collections import OrderedDict

my_colors = OrderedDict({

'EBOV_2014': 'red',

'EBOV': 'magenta',

'BDBV': 'cyan',

'SUDV': 'blue',

'RESTV' : 'green',

'TAFV' : 'yellow'

})

def get_color(name):

    for pref, color in my_colors.items():

        if name.find(pref) > -1:

            return color

    return 'grey'

def color_tree(node, fun_color=get_color):

    if node.is_terminal():

        node.color = fun_color(node.name)

    else:

        my_children = set()

        for child in node.clades:

            color_tree(child, fun_color)

            my_children.add(child.color.to_hex())

        if len(my_children) == 1:

            node.color = child.color

        else:

            node.color = 'grey'

ebola_color_tree = deepcopy(ebola_tree)

color_tree(ebola_color_tree.root)

Phylo.draw(ebola_color_tree, axes=ax, label_func=lambda 
x: x.name.split(' ')[0][1:] if x.name is not None else 
None)

This is a tree traversing algorithm, not unlike the ones presented in the previous recipe. As a recursive 
algorithm, it works in the following way. If the node is a leaf, it will get a color based on its species 
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(or the EBOV outbreak year). If it’s an internal node and all the descendant nodes below it are of the 
same species, it will get the color of that species; if there are several species after that, it will be colored 
in gray. Actually, the color function can be changed and will be changed later. Only the edge colors 
will be used (the labels will be printed in black).

Note that ladderization (performed in the previous recipe with DendroPy) helps quite a lot in terms 
of a clear visual appearance.

We also deep copy the genus tree to color a copy; remember from the previous recipe that some 
tree traversal functions can change the state, and in this case, we want to preserve a version without 
any coloring.

Note the usage of the lambda function to clean up the name that was changed by trimAl, as shown 
in the following diagram:

Figure 7.6 – A ladderized and colored phylogenetic tree with the complete Ebola virus dataset
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There’s more...

Tree and graph visualization is a complex topic; arguably, here, the tree’s visualization is rigorous but 
far from pretty. One alternative to DendroPy, which has more visualization features, is ETE (http://
etetoolkit.org/). General alternatives for drawing trees and graphs include Cytoscape (https://
cytoscape.org/) and Gephi (http://gephi.github.io/). If you want to know more 
about the algorithms for rendering trees and graphs, check out the Wikipedia page at http://
en.wikipedia.org/wiki/Graph_drawing for an introduction to this fascinating topic.

Be careful not to trade style for substance, though. For example, the previous edition of this book had 
a pretty rendering of a phylogenetic tree using a graph-rendering library. While it was clearly the most 
beautiful image in that chapter, it was misleading in terms of branch lengths.
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Using the Protein Data Bank

Proteomics is the study of proteins, including their function and structure. One of the main objectives 
of this field is to characterize the three-dimensional structure of proteins. One of the most widely 
known computational resources in the proteomics field is the Protein Data Bank (PDB), a repository 
with the structural data of large biomolecules. Of course, many databases focus on protein primary 
structure instead; these are somewhat similar to the genomic databases that we saw in Chapter 2, 
Getting to Know NumPy, pandas, Arrow, and Matplotlib.

In this chapter, we will mostly focus on processing data from the PDB. We will look at how to parse 
PDB files, perform some geometric computations, and visualize molecules. We will use the old PDB 
file format because, conceptually, it allows you to perform most necessary operations within a stable 
environment. Having said that, the newer mmCIF slated to replace the PDB format will also be 
presented in the Parsing the mmCIF files with Biopython recipe. We will use Biopython and introduce 
PyMOL for visualization. We will not discuss molecular docking here because that is probably more 
suited to a book about chemoinformatics.

Throughout this chapter, we will use a classic example of a protein: the tumor protein p53, a protein 
involved in the regulation of the cell cycle (for example, apoptosis). This protein is highly related to 
cancer. There is plenty of information available about this protein on the web.

Let’s start with something that you should be more familiar with by now: accessing databases, especially 
for a protein’s primary structure (as in, sequences of amino acids).

In this chapter, we will cover the following recipes:

•	 Finding a protein in multiple databases

•	 Introducing Bio.PDB

•	 Extracting more information from a PDB file

•	 Computing molecular distances on a PDB file

•	 Performing geometric operations
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•	 Animating with PyMOL

•	 Parsing the mmCIF files with Biopython

Finding a protein in multiple databases
Before we start performing some more structural biology, we will look at how we can access existing 
proteomic databases, such as UniProt. We will query UniProt for our gene of interest, TP53, and take 
it from there.

Getting ready

To access the data, we will use Biopython and the REST API (we used a similar approach in Chapter 5, 
Working with Genomes) with the requests library to access web APIs. The requests API is an 
easy-to-use wrapper for web requests that can be installed using standard Python mechanisms (for 
example, pip and conda). You can find this content in the Chapter08/Intro.py Notebook file.

How to do it...

Take a look at the following steps:

1.	 First, let’s define a function to perform REST queries on UniProt, as follows:

import requests

server = 'http://www.uniprot.org/uniprot'

def do_request(server, ID='', **kwargs):

    params = ''

    req = requests.get('%s/%s%s' % (server, ID, params), 
params=kwargs)

    if not req.ok:

        req.raise_for_status()

    return req

2.	 We can now query all the p53 genes that have been reviewed:

req = do_request(server, query='gene:p53 AND 
reviewed:yes', format='tab',

 columns='id,entry name,length,organism,organism-id,datab
ase(PDB),database(HGNC)',

 limit='50')
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We will query the p53 gene and request to see all entries that are reviewed (as in, manually 
curated). The output will be in a tabular format. We will request a maximum of 50 results, 
specifying the desired columns.

We could have restricted the output to just human data, but for this example, let’s include all 
available species.

3.	 Let’s check the results, as follows:

import pandas as pd

import io

uniprot_list = pd.read_table(io.StringIO(req.text))

uniprot_list.rename(columns={'Organism ID': 'ID'}, 
inplace=True)

print(uniprot_list)

We use pandas for easy processing of the tab-delimited list and pretty printing. The abridged 
output of the Notebook is as follows:

Figure 8.1 - An abridged list of species for which there is a TP53 protein

4.	 Now, we can get the human p53 ID and use Biopython to retrieve and parse the SwissProt 
record:

from Bio import ExPASy, SwissProt

p53_human = uniprot_list[

    (uniprot_list.ID == 9606) &

    (uniprot_list['Entry name'].str.contains('P53'))]
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['Entry'].iloc[0] 

handle = ExPASy.get_sprot_raw(p53_human)

sp_rec = SwissProt.read(handle)

We then use Biopython’s SwissProt module to parse the record. 9606 is the NCBI taxonomic 
code for humans.

As usual, if there is an error with your network services, it may be a network or server problem. 
If this is the case, just retry at a later date.

5.	 Let’s take a look at the p53 record, as follows:

print(sp_rec.entry_name, sp_rec.sequence_length, sp_rec.
gene_name)

print(sp_rec.description)

print(sp_rec.organism, sp_rec.seqinfo)

print(sp_rec.sequence)

print(sp_rec.comments)

print(sp_rec.keywords)

The output is as follows:

P53_HUMAN 393 Name=TP53; Synonyms=P53;

 RecName: Full=Cellular tumor antigen p53; AltName: 
Full=Antigen NY-CO-13; AltName: Full=Phosphoprotein p53; 
AltName: Full=Tumor suppressor p53;

 Homo sapiens (Human). (393, 43653, 'AD5C149FD8106131')

 MEEPQSDPSVEPPLSQETFSDLWKLLPENNVLSPLPSQAMDDLMLSPDDIEQWFTED 
PGPDEAPRMPEAAPPVAPAPAAPTPAAPAPAPSWPLSSSVPSQKTYQGSYGFRLGF 
LHSGTAKSVTCTYSPALNKMFCQLAKTCPVQLWVDSTPPPGTRVRAMAIYKQSQHM 
TEVVRRCPHHERCSDSDGLAPPQHLIRVEGNLRVEYLDDRNTFRHSVVVPYEPPEVG 
SDCTTIHYNYMCNSSCMGGMNRRPILTIITLEDSSGNLLGRNSFEVRVCACPGRDRR 
TEEENLRKKGEPHHELPPGSTKRALPNNTSSSPQPKKKPLDGEYFTLQIRGRERFEM 
FRELNEALELKDAQAGKEPGGSRAHSSHLKSKKGQSTSRHKKLMFKTEGPDSD

6.	 A deeper look at the preceding record reveals a lot of really interesting information, especially 
on features, Gene Ontology (GO), and database cross_references:

from collections import defaultdict

done_features = set()

print(len(sp_rec.features))

for feature in sp_rec.features:

    if feature[0] in done_features:

        continue
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    else:

        done_features.add(feature[0])

        print(feature)

print(len(sp_rec.cross_references))

per_source = defaultdict(list)

for xref in sp_rec.cross_references:

    source = xref[0]

    per_source[source].append(xref[1:])

print(per_source.keys())

done_GOs = set()

print(len(per_source['GO']))

for annot in per_source['GO']:

    if annot[1][0] in done_GOs:

        continue

    else:

        done_GOs.add(annot[1][0])

        print(annot)

Note that we are not even printing all of the information here, just a summary of it. We print a 
number of features of the sequence with one example per type, a number of external database 
references, plus databases that are referred to, and a number of GO entries, along with three 
examples. Currently, there are 1,509 features, 923 external references, and 173 GO terms just 
for this protein. Here is a highly abridged version of the output:

Total features: 1509

type: CHAIN

location: [0:393]

id: PRO_0000185703

qualifiers:

    Key: note, Value: Cellular tumor antigen p53

type: DNA_BIND

location: [101:292]

qualifiers:

type: REGION

location: [0:320]

qualifiers:
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    Key: evidence, Value: ECO:0000269|PubMed:25732823

    Key: note, Value: Interaction with CCAR2

[...]

Cross references:  923

dict_keys(['EMBL', 'CCDS', 'PIR', 'RefSeq', 'PDB', 
'PDBsum', 'BMRB', 'SMR', 'BioGRID', 'ComplexPortal', 
'CORUM', 'DIP', 'ELM', 'IntAct', 'MINT', 'STRING', 
'BindingDB', 'ChEMBL', 'DrugBank', 'MoonDB', 'TCDB', 
'GlyGen', 'iPTMnet', 'MetOSite', 'PhosphoSitePlus', 
'BioMuta', 'DMDM', 'SWISS-2DPAGE', 'CPTAC', 'EPD', 
'jPOST', 'MassIVE', 'MaxQB', 'PaxDb', 'PeptideAtlas', 
'PRIDE', 'ProteomicsDB', 'ABCD', 'Antibodypedia', 
'CPTC', 'DNASU', 'Ensembl', 'GeneID', 'KEGG', 'MANE-
Select', 'UCSC', 'CTD', 'DisGeNET', 'GeneCards', 
'GeneReviews', 'HGNC', 'HPA', 'MalaCards', 'MIM', 
'neXtProt', 'OpenTargets', 'Orphanet', 'PharmGKB', 
'VEuPathDB', 'eggNOG', 'GeneTree', 'InParanoid', 'OMA', 
'OrthoDB', 'PhylomeDB', 'TreeFam', 'PathwayCommons', 
'Reactome', 'SABIO-RK', 'SignaLink', 'SIGNOR', 'BioGRID-
ORCS', 'ChiTaRS', 'EvolutionaryTrace', 'GeneWiki', 
'GenomeRNAi', 'Pharos', 'PRO', 'Proteomes', 'RNAct', 
'Bgee', 'ExpressionAtlas', 'Genevisible', 'GO', 'CDD', 
'DisProt', 'Gene3D', 'IDEAL', 'InterPro', 'PANTHER', 
'Pfam', 'PRINTS', 'SUPFAM', 'PROSITE'])

Annotation SOURCES: 173

('GO:0005813', 'C:centrosome', 'IDA:UniProtKB')

('GO:0036310', 'F:ATP-dependent DNA/DNA annealing 
activity', 'IDA:UniProtKB')

('GO:0006914', 'P:autophagy', 'IMP:CAFA')

There’s more

There are many more databases with information on proteins – some of these are referred to 
in the preceding record. You can explore its result to try and find data elsewhere. For detailed 
information about UniProt’s REST interface, refer to http://www.uniprot.org/help/
programmatic_access.

Introducing Bio.PDB
Here, we will introduce Biopython’s PDB module for working with the PDB. We will use three models 
that represent part of the p53 protein. You can read more about these files and p53 at http://
www.rcsb.org/pdb/101/motm.do?momID=31.
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Getting ready

You should already be aware of the basic PDB data model of model, chain, residue, and atom objects. A 
good explanation of Biopython’s Structural Bioinformatics FAQ can be found at http://biopython.
org/wiki/The_Biopython_Structural_Bioinformatics_FAQ.

You can find this content in the Chapter08/PDB.py Notebook file.

Of the three models that we will download, the 1TUP model is the one that will be used in the remainder 
of the recipes. Take some time to study this model, as it will help you later on.

How to do it...

Take a look at the following steps:

1.	 First, let’s retrieve our models of interest, as follows:

from Bio import PDB

repository = PDB.PDBList()

repository.retrieve_pdb_file('1TUP', pdir='.', file_
format='pdb')

repository.retrieve_pdb_file('1OLG', pdir='.', file_
format='pdb')

repository.retrieve_pdb_file('1YCQ', pdir='.', file_
format='pdb')

Note that Bio.PDB will take care of downloading files for you. Moreover, these downloads 
will only occur if no local copy is already present.

2.	 Let’s parse our records, as shown in the following code:

parser = PDB.PDBParser()

p53_1tup = parser.get_structure('P 53 - DNA Binding', 
'pdb1tup.ent')

p53_1olg = parser.get_structure('P 53 - Tetramerization', 
'pdb1olg.ent')

p53_1ycq = parser.get_structure('P 53 - Transactivation', 
'pdb1ycq.ent')

You may get some warnings about the content of the file. These are usually not problematic.

3.	 Let’s inspect our headers, as follows:

def print_pdb_headers(headers, indent=0):

   ind_text = ' ' * indent
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   for header, content in headers.items():

       if type(content) == dict:

          print('\n%s%20s:' % (ind_text, header))

          print_pdb_headers(content, indent + 4)

          print()

       elif type(content) == list:

          print('%s%20s:' % (ind_text, header))

          for elem in content:

              print('%s%21s %s' % (ind_text, '->', elem))

      else:

          print('%s%20s: %s' % (ind_text, header, 
content))

print_pdb_headers(p53_1tup.header)

Headers are parsed as a dictionary of dictionaries. As such, we will use a recursive function to 
parse them. This function will increase the indentation for ease of reading and annotate lists 
of elements with the -> prefix. For an example of recursive functions, refer to the previous 
chapter, Chapter 7, Phylogenetics. For an advanced discussion on recursion in Python, go to 
the last chapter, Chapter 12, Functional Programming for Bioinformatics. The abridged output 
is as follows:

                name: tumor suppressor p53 complexed with 
dna

                head: antitumor protein/dna

              idcode: 1TUP

     deposition_date: 1995-07-11

        release_date: 1995-07-11

    structure_method: x-ray diffraction

          resolution: 2.2

 structure_reference:

                   -> n.p.pavletich,k.a.chambers,c.o.pabo 
the dna-binding domain of p53 contains the four conserved 
regions and the major mutation hot spots genes dev. v. 7 
2556 1993 issn 0890-9369 

              author: Y.Cho,S.
Gorina,P.D.Jeffrey,N.P.Pavletich

            compound:

                       2:

                        misc: 
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                    molecule: dna 
(5'-d(*ap*tp*ap*ap*tp*tp*gp*gp*gp*cp*ap*ap*gp*tp*cp*tp*a 
p*gp*gp*ap*a)-3') 

                       chain: f

                  engineered: yes

has_missing_residues: True

    missing_residues:

                   -> {'model': None, 'res_name': 'ARG', 
'chain': 'A', 'ssseq': 290, 'insertion': None}

keywords: antigen p53, antitumor protein/dna complex

             journal: AUTH   Y.CHO,S.
GORINA,P.D.JEFFREY,N.P.PAVLETICHTITL   CRYSTAL 
STRUCTURE OF A P53 TUMOR SUPPRESSOR-DNATITL 2 COMPLEX: 
UNDERSTANDING TUMORIGENIC MUTATIONS.REF    SCIENCE57

4.	 We want to know the content of each chain on these files; for this, let’s take a look at the 
COMPND records:

print(p53_1tup.header['compound'])

print(p53_1olg.header['compound'])

print(p53_1ycq.header['compound'])

This will return all the compound headers printed in the preceding code. Unfortunately, this is 
not the best way to get information on chains. An alternative would be to get DBREF records, 
but Biopython’s parser is currently not able to access these. Having said that, using a tool such 
as grep will easily extract this information.

Note that for the 1TUP model, chains A, B, and C are from the protein, while chains E and F 
are from the DNA. This information will be useful in the future.

5.	 Let’s do a top-down analysis of each PDB file. For now, let’s just get all of the chains, the number 
of residues, and atoms per chain, as follows:

def describe_model(name, pdb):

print()

for model in pdb:

    for chain in model:

        print('%s - Chain: %s. Number of residues: %d. 
Number of atoms: %d.' %

              (name, chain.id, len(chain), 
len(list(chain.get_atoms()))))
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describe_model('1TUP', p53_1tup)

describe_model('1OLG', p53_1olg)

describe_model('1YCQ', p53_1ycq)

We will perform a bottom-up approach in a later recipe. Here is the output for 1TUP:

1TUP - Chain: E. Number of residues: 43. Number of atoms: 
442.

1TUP - Chain: F. Number of residues: 35. Number of atoms: 
449.

1TUP - Chain: A. Number of residues: 395. Number of 
atoms: 1734.

1TUP - Chain: B. Number of residues: 265. Number of 
atoms: 1593.

1TUP - Chain: C. Number of residues: 276. Number of 
atoms: 1610.

 

1OLG - Chain: A. Number of residues: 42. Number of atoms: 
698.

1OLG - Chain: B. Number of residues: 42. Number of atoms: 
698.

1OLG - Chain: C. Number of residues: 42. Number of atoms: 
698.

1OLG - Chain: D. Number of residues: 42. Number of atoms: 
698.

 

1YCQ - Chain: A. Number of residues: 123. Number of 
atoms: 741.

1YCQ - Chain: B. Number of residues: 16. Number of atoms: 
100.

6.	 Let’s get all non-standard residues (HETATM), with the exception of water, in the 1TUP model, 
as shown in the following code:

for residue in p53_1tup.get_residues():

    if residue.id[0] in [' ', 'W']:

        continue

print(residue.id)

We have three zincs, one in each of the protein chains.
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7.	 Let’s take a look at a residue:

res = next(p53_1tup[0]['A'].get_residues())

print(res)

for atom in res:

    print(atom, atom.serial_number, atom.element)

p53_1tup[0]['A'][94]['CA']

This will print all the atoms in a certain residue:

<Residue SER het=  resseq=94 icode= >

 <Atom N> 858 N

 <Atom CA> 859 C

 <Atom C> 860 C

 <Atom O> 861 O

 <Atom CB> 862 C

 <Atom OG> 863 O

 <Atom CA>

Note the last statement. It is there just to show you that you can directly access an atom by 
resolving the model, chain, residue, and finally, the atom.

8.	 Finally, let’s export the protein fragment to a FASTA file, as follows:

from Bio.SeqIO import PdbIO, FastaIO

def get_fasta(pdb_file, fasta_file, transfer_ids=None):

    fasta_writer = FastaIO.FastaWriter(fasta_file)

    fasta_writer.write_header()

    for rec in PdbIO.PdbSeqresIterator(pdb_file):

        if len(rec.seq) == 0:

            continue

        if transfer_ids is not None and rec.id not in 
transfer_ids:

            continue

        print(rec.id, rec.seq, len(rec.seq))

        fasta_writer.write_record(rec)

        

get_fasta(open('pdb1tup.ent'), open('1tup.fasta', 'w'), 
transfer_ids=['1TUP:B'])

get_fasta(open('pdb1olg.ent'), open('1olg.fasta', 'w'), 

 EBSCOhost - printed on 2/9/2023 7:03 AM via . All use subject to https://www.ebsco.com/terms-of-use



Using the Protein Data Bank228

transfer_ids=['1OLG:B'])

get_fasta(open('pdb1ycq.ent'), open('1ycq.fasta', 'w'), 
transfer_ids=['1YCQ:B'])

If you inspect the protein chain, you will see that they are equal in each model, so we export a single 
one. In the case of 1YCQ, we export the smallest one, because the biggest one is not p53-related. As 
you can see, here, we are using Bio.SeqIO, not Bio.PDB.

There’s more

The PDB parser is incomplete. It’s not very likely that a complete parser will be seen soon, as the 
community is migrating to the mmCIF format.

Although the future is the mmCIF format (http://mmcif.wwpdb.org/), PDB files are still 
around. Conceptually, many operations are similar after you have parsed the file.

Extracting more information from a PDB file
Here, we will continue our exploration of the record structure produced by Bio.PDB from PDB files.

Getting ready

For general information about the PDB models that we are using, refer to the previous recipe.

You can find this content in the Chapter08/Stats.py Notebook file.

How to do it...

We’ll get started, using the following steps:

1.	 First, let’s retrieve 1TUP, as follows:

from Bio import PDB

repository = PDB.PDBList()

parser = PDB.PDBParser()

repository.retrieve_pdb_file('1TUP', pdir='.', file_
format='pdb') p53_1tup = parser.get_structure('P 53', 
'pdb1tup.ent')

2.	 Then, extract some atom-related statistics:

from collections import defaultdict

atom_cnt = defaultdict(int)
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atom_chain = defaultdict(int)

atom_res_types = defaultdict(int)

for atom in p53_1tup.get_atoms():

    my_residue = atom.parent

    my_chain = my_residue.parent

    atom_chain[my_chain.id] += 1

    if my_residue.resname != 'HOH':

        atom_cnt[atom.element] += 1

    atom_res_types[my_residue.resname] += 1

print(dict(atom_res_types))

print(dict(atom_chain))

print(dict(atom_cnt))

This will print information on the atom’s residue type, the number of atoms per chain, and the 
quantity per element, as follows:

{' DT': 257, ' DC': 152, ' DA': 270, ' DG': 176, 'HOH': 
384, 'SER': 323, 'VAL': 315, 'PRO': 294, 'GLN': 189, 
'LYS': 135, 'THR': 294, 'TYR': 288, 'GLY': 156, 'PHE': 
165, 'ARG': 561, 'LEU': 336, 'HIS': 210, 'ALA': 105, 
'CYS': 180, 'ASN': 216, 'MET': 144, 'TRP': 42, 'ASP': 
192, 'ILE': 144, 'GLU': 297, ' ZN': 3}

 {'E': 442, 'F': 449, 'A': 1734, 'B': 1593, 'C': 1610}

 {'O': 1114, 'C': 3238, 'N': 1001, 'P': 40, 'S': 48, 
'ZN': 3}

Note that the preceding number of residues is not the proper number of residues, but the 
amount of times that a certain residue type is referred to (it adds up to the number of atoms, 
not residues).

Notice the water (W), nucleotide (DA, DC, DG, and DT), and zinc (ZN) residues, which add to 
the amino acid ones.

3.	 Now, let’s count the instance per residue and the number of residues per chain:

res_types = defaultdict(int)

res_per_chain = defaultdict(int)

for residue in p53_1tup.get_residues():

res_types[residue.resname] += 1

res_per_chain[residue.parent.id] +=1

print(dict(res_types))

print(dict(res_per_chain))
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The following is the output:

{' DT': 13, ' DC': 8, ' DA': 13, ' DG': 8, 'HOH': 384, 
'SER': 54, 'VAL': 45, 'PRO': 42, 'GLN': 21, 'LYS': 15, 
'THR': 42, 'TYR': 24, 'GLY': 39, 'PHE': 15, 'ARG': 51, 
'LEU': 42, 'HIS': 21, 'ALA': 21, 'CYS': 30, 'ASN': 27, 
'MET': 18, 'TRP': 3, 'ASP': 24, 'ILE': 18, 'GLU': 33, ' 
ZN': 3}

 {'E': 43, 'F': 35, 'A': 395, 'B': 265, 'C': 276}

4.	 We can also get the bounds of a set of atoms:

import sys

def get_bounds(my_atoms):

    my_min = [sys.maxsize] * 3

    my_max = [-sys.maxsize] * 3

    for atom in my_atoms:

        for i, coord in enumerate(atom.coord):

            if coord < my_min[i]:

                my_min[i] = coord

            if coord > my_max[i]:

                my_max[i] = coord

    return my_min, my_max

chain_bounds = {}

for chain in p53_1tup.get_chains():

    print(chain.id, get_bounds(chain.get_atoms()))

    chain_bounds[chain.id] = get_bounds(chain.get_
atoms())

print(get_bounds(p53_1tup.get_atoms()))

A set of atoms can be a whole model, a chain, a residue, or any subset that you are interested 
in. In this case, we will print boundaries for all the chains and the whole model. Numbers don’t 
convey it so intuitively, so we will get a little bit more graphical.

5.	 To get a notion of the size of each chain, a plot is probably more informative than the numbers 
in the preceding code:

import matplotlib.pyplot as plt

from mpl_toolkits.mplot3d import Axes3D
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fig = plt.figure(figsize=(16, 9))

ax3d = fig.add_subplot(111, projection='3d')

ax_xy = fig.add_subplot(331)

ax_xy.set_title('X/Y')

ax_xz = fig.add_subplot(334)

ax_xz.set_title('X/Z')

ax_zy = fig.add_subplot(337)

ax_zy.set_title('Z/Y')

color = {'A': 'r', 'B': 'g', 'C': 'b', 'E': '0.5', 'F': 
'0.75'}

zx, zy, zz = [], [], []

for chain in p53_1tup.get_chains():

    xs, ys, zs = [], [], []

    for residue in chain.get_residues():

        ref_atom = next(residue.get_iterator())

        x, y, z = ref_atom.coord

        if ref_atom.element == 'ZN':

            zx.append(x)

            zy.append(y)

            zz.append(z)

            continue

        xs.append(x)

        ys.append(y)

        zs.append(z)

    ax3d.scatter(xs, ys, zs, color=color[chain.id])

    ax_xy.scatter(xs, ys, marker='.', color=color[chain.
id])

    ax_xz.scatter(xs, zs, marker='.', color=color[chain.
id])

    ax_zy.scatter(zs, ys, marker='.', color=color[chain.
id])

ax3d.set_xlabel('X')

ax3d.set_ylabel('Y')

ax3d.set_zlabel('Z')

ax3d.scatter(zx, zy, zz, color='k', marker='v', s=300)

ax_xy.scatter(zx, zy, color='k', marker='v', s=80)

ax_xz.scatter(zx, zz, color='k', marker='v', s=80)
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ax_zy.scatter(zz, zy, color='k', marker='v', s=80)

for ax in [ax_xy, ax_xz, ax_zy]:

    ax.get_yaxis().set_visible(False)

    ax.get_xaxis().set_visible(False)

There are plenty of molecular visualization tools. Indeed, we will discuss PyMOL later. However, 
matplotlib is enough for simple visualization. The most important point about matplotlib is 
that it’s stable and very easy to integrate into reliable production code.

In the following chart, we performed a three-dimensional plot of chains, with the DNA in grey and 
the protein chains in different colors. We also plot planar projections (X/Y, X/Z, and Z/Y) on the 
left-hand side of the following graph:

Figure 8.2 - The spatial distribution of the protein chains – the main figure is a 

3D plot and the left subplots are planar views (X/Y, X/Z, and Z/Y)

Computing molecular distances on a PDB file
Here, we will find atoms closer to three zincs in the 1TUP model. We will consider several distances 
to these zincs. We will take this opportunity to discuss the performance of algorithms.
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Getting ready

You can find this content in the Chapter08/Distance.py Notebook file.

How to do it...

Take a look at the following steps:

1.	 Let’s load our model, as follows:

from Bio import PDB

repository = PDB.PDBList()

parser = PDB.PDBParser()

repository.retrieve_pdb_file('1TUP', pdir='.', file_
format='pdb')

p53_1tup = parser.get_structure('P 53', 'pdb1tup.ent')

2.	 We will now get our zincs, against which we will perform comparisons later:

zns = []for atom in p53_1tup.get_atoms():

if atom.element == 'ZN':

zns.append(atom)

for zn in zns:

    print(zn, zn.coord)

You should see three zinc atoms.

3.	 Now, let’s define a function to get the distance between one atom and a set of other atoms,  
as follows:

import math

def get_closest_atoms(pdb_struct, ref_atom, distance):

    atoms = {}

    rx, ry, rz = ref_atom.coord

    for atom in pdb_struct.get_atoms():

        if atom == ref_atom:

            continue

        x, y, z = atom.coord

        my_dist = math.sqrt((x - rx)**2 + (y - ry)**2 + 
(z - rz)**2)

        if my_dist < distance:
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            atoms[atom] = my_dist

    return atoms

We get coordinates for our reference atom and then iterate over our desired comparison list. 
If an atom is close enough, it’s added to the return list.

4.	 We now compute the atoms near our zincs, the distance of which can be up to 4 Ångströms 
for our model:

for zn in zns:

    print()

    print(zn.coord)

    atoms = get_closest_atoms(p53_1tup, zn, 4)

    for atom, distance in atoms.items():

        print(atom.element, distance, atom.coord)

Here, we show the result for the first zinc, including the element, distance, and coordinates:

[58.108 23.242 57.424]

 C 3.4080117696286854 [57.77  21.214 60.142]

 S 2.3262243799594877 [57.065 21.452 58.482]

 C 3.4566537492335123 [58.886 20.867 55.036]

 C 3.064120559761192 [58.047 22.038 54.607]

 N 1.9918273537290707 [57.755 23.073 55.471]

 C 2.9243719601324525 [56.993 23.943 54.813]

 C 3.857729198122736 [61.148 25.061 55.897]

 C 3.62725094648044 [61.61  24.087 57.001]

 S 2.2789209624943494 [60.317 23.318 57.979]

 C 3.087214470667822 [57.205 25.099 59.719]

 S 2.2253158446520818 [56.914 25.054 57.917]

We only have three zincs, so the number of computations is quite significantly reduced. However, 
imagine that we had more, or that we were doing a pairwise comparison among all the atoms 
in the set (remember that the number of comparisons grows quadratically with the number 
of atoms in a pairwise case). Although our case is small, it’s not difficult to forecast use cases, 
while more comparisons take a lot of time. We will get back to this soon.

5.	 Let’s see how many atoms we get as we increase the distance:

for distance in [1, 2, 4, 8, 16, 32, 64, 128]:

    my_atoms = []

    for zn in zns:

        atoms = get_closest_atoms(p53_1tup, zn, distance)
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        my_atoms.append(len(atoms))

    print(distance, my_atoms)

The result is as follows:

1 [0, 0, 0]

2 [1, 0, 0]

4 [11, 11, 12]

8 [109, 113, 106]

16 [523, 721, 487]

32 [2381, 3493, 2053]

64 [5800, 5827, 5501]

128 [5827, 5827, 5827]

6.	 As we have seen previously, this specific case is not very expensive, but let’s time it anyway:

import timeit

nexecs = 10

print(timeit.timeit('get_closest_atoms(p53_1tup, zns[0], 
4.0)',

      'from __main__ import get_closest_atoms, p53_1tup, 
zns',

      number=nexecs) / nexecs * 1000)

Here, we will use the timeit module to execute this function 10 times and then print the 
result in milliseconds. We pass the function as a string and pass yet another string with the 
necessary imports to make this function work. On a Notebook, you are probably aware of the 
%timeit magic and how it makes your life much easier in this case. This takes roughly 40 
milliseconds on the machine where the code was tested. Obviously, on your computer, you 
will get somewhat different results.

7.	 Can we do better? Let’s consider a different distance function, as shown in the following code:

def get_closest_alternative(pdb_struct, ref_atom, 
distance):

    atoms = {}

    rx, ry, rz = ref_atom.coord

    for atom in pdb_struct.get_atoms():

        if atom == ref_atom:

            continue

        x, y, z = atom.coord

        if abs(x - rx) > distance or abs(y - ry) > 
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distance or abs(z - rz) > distance:

            continue

        my_dist = math.sqrt((x - rx)**2 + (y - ry)**2 + 
(z - rz)**2)

        if my_dist < distance:

            atoms[atom] = my_dist

    return atoms

So, we take the original function and add a very simplistic if with the distances. The rationale 
for this is that the computational cost of the square root, and maybe the float power operation, 
is very expensive, so we will try to avoid it. However, for all atoms that are closer than the target 
distance in any dimension, this function will be more expensive.

8.	 Now, let’s time against it:

print(timeit.timeit('get_closest_alternative(p53_1tup, 
zns[0], 4.0)',

      'from __main__ import get_closest_alternative, 
p53_1tup, zns',

      number=nexecs) / nexecs * 1000)

On the same machine that we used in the preceding example, it takes 16 milliseconds, which 
means that it is roughly three times faster.

9.	 However, is this always better? Let’s compare the cost with different distances, as follows:

print('Standard')

for distance in [1, 4, 16, 64, 128]:

    print(timeit.timeit('get_closest_atoms(p53_1tup, 
zns[0], distance)',

          'from __main__ import get_closest_atoms, 
p53_1tup, zns, distance',

          number=nexecs) / nexecs * 1000)

print('Optimized')

for distance in [1, 4, 16, 64, 128]:

    print(timeit.timeit('get_closest_
alternative(p53_1tup, zns[0], distance)',

          'from __main__ import get_closest_alternative, 
p53_1tup, zns, distance',

          number=nexecs) / nexecs * 1000)
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The result is shown in the following output:

Standard

 85.08649739999328

 86.50681579999855

 86.79630599999655

 96.95437099999253

 96.21982420001132

 Optimized

 30.253444099980698

 32.69531210000878

 52.965772600009586

 142.53310030001103

 141.26269519999823

Note that the cost of the Standard version is mostly constant, whereas the Optimized version varies 
depending on the distance of the closest atoms; the larger the distance, the more cases that will be 
computed using the extra if, plus the square root, making the function more expensive.

The larger point here is that you can probably code functions that are more efficient using smart 
computation shortcuts, but the complexity cost may change qualitatively. In the preceding case, I 
suggest that the second function is more efficient for all realistic and interesting cases when you’re 
trying to find the closest atoms. However, you have to be careful while designing your own versions 
of optimized algorithms.

Performing geometric operations
We will now perform computations with geometry information, including computing the center of 
the mass of chains and whole models.

Getting ready

You can find this content in the Chapter08/Mass.py Notebook file.

How to do it...

Let’s take a look at the following steps:

1.	 First, let’s retrieve the data:

from Bio import PDB

repository = PDB.PDBList()
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parser = PDB.PDBParser()

repository.retrieve_pdb_file('1TUP', pdir='.', file_
format='pdb')

p53_1tup = parser.get_structure('P 53', 'pdb1tup.ent')

2.	 Then, let’s recall the type of residues that we have with the following code:

my_residues = set()

for residue in p53_1tup.get_residues():

    my_residues.add(residue.id[0])

print(my_residues)

So, we have H_ ZN (zinc) and W (water), which are HETATM types; the vast majority are 
standard PDB atoms.

3.	 Let’s compute the masses for all chains, zincs, and waters using the following code:

def get_mass(atoms, accept_fun=lambda atom: atom.parent.
id[0] != 'W'):

    return sum([atom.mass for atom in atoms if accept_
fun(atom)])

chain_names = [chain.id for chain in p53_1tup.get_
chains()]

my_mass = np.ndarray((len(chain_names), 3))

for i, chain in enumerate(p53_1tup.get_chains()):

    my_mass[i, 0] = get_mass(chain.get_atoms())

    my_mass[i, 1] = get_mass(chain.get_atoms(),

        accept_fun=lambda atom: atom.parent.id[0] not in 
[' ', 'W'])

    my_mass[i, 2] = get_mass(chain.get_atoms(),

        accept_fun=lambda atom: atom.parent.id[0] == 'W')

masses = pd.DataFrame(my_mass, index=chain_names, 
columns=['No Water','Zincs', 'Water'])

print(masses)

The get_mass function returns the mass of all atoms in the list that pass an acceptance 
criterion function. Here, the default acceptance criterion involves not being a water residue.

We then compute the mass for all chains. We have three versions: just amino acids, zincs, and 
water. Zinc does nothing more than detect a single atom per chain in this model. The output 
is as follows:
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Figure 8.3 - The mass for all protein chains

4.	 Let’s compute the geometric center and the center of mass of the model, as follows:

def get_center(atoms,

    weight_fun=lambda atom: 1 if atom.parent.id[0] != 'W' 
else 0):

    xsum = ysum = zsum = 0.0

    acum = 0.0

    for atom in atoms:

        x, y, z = atom.coord

        weight = weight_fun(atom)

        acum += weight

        xsum += weight * x

        ysum += weight * y

        zsum += weight * z

    return xsum / acum, ysum / acum, zsum / acum

print(get_center(p53_1tup.get_atoms()))

print(get_center(p53_1tup.get_atoms(),

    weight_fun=lambda atom: atom.mass if atom.parent.
id[0] != 'W' else 0))

First, we define a weighted function to get the coordinates of the center. The default function 
will treat all atoms as equal, as long as they are not a water residue.

We then compute the geometric center and the center of mass by redefining the weight function 
with a value of each atom equal to its mass. The geometric center is computed, irrespective of 
its molecular weights.

For example, you may want to compute the center of mass of the protein without DNA chains.
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5.	 Let’s compute the center of mass and the geometric center of each chain, as follows:

my_center = np.ndarray((len(chain_names), 6))

for i, chain in enumerate(p53_1tup.get_chains()):

    x, y, z = get_center(chain.get_atoms())

    my_center[i, 0] = x

    my_center[i, 1] = y

    my_center[i, 2] = z

    x, y, z = get_center(chain.get_atoms(),

        weight_fun=lambda atom: atom.mass if atom.parent.
id[0] != 'W' else 0)

    my_center[i, 3] = x

    my_center[i, 4] = y

    my_center[i, 5] = z

weights = pd.DataFrame(my_center, index=chain_names,

    columns=['X', 'Y', 'Z', 'X (Mass)', 'Y (Mass)', 'Z 
(Mass)'])

print(weights)

The result is shown here:

Figure 8.4 - The center of mass and the geometric center of each protein chain

There’s more

Although this is not a book based on the protein structure determination technique, it’s important to 
remember that X-ray crystallography methods cannot detect hydrogens, so computing the mass of 
residues might be based on very inaccurate models; refer to http://www.umass.edu/microbio/
chime/pe_beta/pe/protexpl/help_hyd.htm for more information.
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Animating with PyMOL
Here, we will create a video of the p53 1TUP model. For that, we will use the PyMOL visualization 
library. We will start our animation by moving around the p53 1TUP model and then zooming in; 
as we zoom in, we change the rendering strategy so that you can see deeper into the model. You 
can find a version of the video that you will generate at https://odysee.com/@Python:8/
protein_video:8.

Getting ready

This recipe will be presented as a Python script, not as a Notebook. This is mostly because the output 
is not interactive, but a set of image files that will need further post-processing.

You will need to install PyMOL (http://www.pymol.org). On Debian, Ubuntu, or Linux, you 
can use the apt-get install pymol command. If you are on Conda, I suggest not using it, 
as the dependencies will be easy to resolve – furthermore, you will be installing a 30-day-trial-only 
version requiring a license, whereas the version above is fully open source. If you are not on Debian 
or Linux, I suggest that you install the open source version available for your operating system.

PyMOL is more of an interactive program than a Python library, so I strongly encourage you to play 
with it before moving on to the recipe. This can be fun! The code for this recipe is available on the 
GitHub repository as a script, along with this chapter’s Notebook file, at Chapter08. We will use 
the PyMol_Movie.py file in this recipe.

How to do it...

Take a look at the following steps:

1.	 Let’s initialize and retrieve our PDB model and prepare the rendering, as follows:

import pymol

from pymol import cmd

#pymol.pymol_argv = ['pymol', '-qc'] # Quiet / no GUI

pymol.finish_launching()

cmd.fetch('1TUP', async=False)

cmd.disable('all')

cmd.enable('1TUP')

cmd.hide('all')

cmd.show('sphere', 'name zn')

Note that the pymol_argv line makes the code silent. In your first execution, you may want 
to comment this out and see the user interface.
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For movie rendering, this will come in handy (as we will see soon). As a library, PyMOL is 
quite tricky to use. For instance, after the import, you have to call finish_launching. 
We then fetch our PDB file.

What then follows is a set of PyMOL commands. Many web guides for interactive usage can 
be quite useful for understanding what is going on. Here, we will enable all of the models for 
viewing purposes, hiding all (because the default view is of lines and this is not good enough), 
then making the zincs visible as spheres.

At this stage, bar zinc, everything else is invisible.

2.	 To render our model, we will use three scenes, as follows:

cmd.show('surface', 'chain A+B+C')

cmd.show('cartoon', 'chain E+F')

cmd.scene('S0', action='store', view=0, frame=0, 
animate=-1)

cmd.show('cartoon')

cmd.hide('surface')

cmd.scene('S1', action='store', view=0, frame=0, 
animate=-1)

cmd.hide('cartoon', 'chain A+B+C')

cmd.show('mesh', 'chain A')

cmd.show('sticks', 'chain A+B+C')

cmd.scene('S2', action='store', view=0, frame=0, 
animate=-1)

We need to define two scenes. One scene corresponds to us moving around the protein 
(surface-based, thus opaque) and the other corresponds to us diving in (cartoon-based). 
The DNA is always rendered as a cartoon.

We also define a third scene for when we zoom out at the end. The protein will be rendered as 
sticks, and we add a mesh to chain A so that the relationship with the DNA becomes clearer.

3.	 Let’s define the basic parameter of our video, as follows:

cmd.set('ray_trace_frames', 0)

cmd.mset(1, 500)

We define the default ray-tracing algorithm. This line does not need to be there, but try to 
increase the number to 1, 2, or 3 and be ready to wait a lot.

You can only use 0 if you have the OpenGL interface on (with the GUI), so, for this fast version, 
you will need to have the GUI on (pymol_argv should be commented as it is).

We then inform PyMOL that we will have 500 frames.
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4.	 In the first 150 frames, we move around using the initial scene. We move around the model a 
bit and then move nearer to the DNA using the following code:

cmd.frame(0)

cmd.scene('S0')

cmd.mview()

cmd.frame(60)

cmd.set_view((-0.175534308,   -0.331560850,    
-0.926960170,

             0.541812420,     0.753615797,    
-0.372158051,

             0.821965039,    -0.567564785,     
0.047358301,

             0.000000000,     0.000000000,  
-249.619018555,

             58.625568390,   15.602619171,    
77.781631470,

             196.801528931, 302.436492920,   
-20.000000000))

cmd.mview()

cmd.frame(90)

cmd.set_view((-0.175534308,   -0.331560850,    
-0.926960170,

              0.541812420,    0.753615797,    
-0.372158051,

              0.821965039,   -0.567564785,     
0.047358301,

              -0.000067875,    0.000017881,  
-249.615447998,

              54.029174805,   26.956727982,    
77.124832153,

             196.801528931,  302.436492920,   
-20.000000000))

cmd.mview()

cmd.frame(150)

cmd.set_view((-0.175534308,   -0.331560850,    
-0.926960170,

              0.541812420,    0.753615797,    
-0.372158051,
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              0.821965039,   -0.567564785,     
0.047358301,

              -0.000067875,    0.000017881,   
-55.406421661,

              54.029174805,   26.956727982,    
77.124832153,

              2.592475891,  108.227416992,   
-20.000000000))

cmd.mview()

We define three points; the first two align with the DNA and the last point goes in. We get 
coordinates (all of these numbers) by using PyMOL in interactive mode, navigating using the 
mouse and keyboard, and using the get_view command, which will return coordinates that 
you can cut and paste.

The first frame is as follows:

Figure 8.5 - Frame 0 and scene DS0

5.	 We now change the scene, in preparation for going inside the protein:

cmd.frame(200)

cmd.scene('S1')

cmd.mview()

The following screenshot shows the current position:
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Figure 8.6 - Frame 200 near the DNA molecule and scene S1

6.	 We move inside the protein and change the scene at the end using the following code:

cmd.frame(350)

cmd.scene('S1')

cmd.set_view((0.395763457,   -0.173441306,     
0.901825786,

              0.915456235,    0.152441502,    
-0.372427106,

             -0.072881661,    0.972972929,     
0.219108686,

              0.000070953,    0.000013039,   
-37.689743042,

             57.748500824,   14.325904846,    
77.241867065,

             -15.123448372,   90.511535645,   
-20.000000000))

cmd.mview()

cmd.frame(351)

cmd.scene('S2')

cmd.mview()
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We are now fully inside, as shown in the following screenshot:

Figure 8.7 - Frame 350 – scene S1 on the verge of changing to S2

7.	 Finally, we let PyMOL return to its original position, and then play, save, and quit:

cmd.frame(500)

cmd.scene('S2')

cmd.mview()

cmd.mplay()

cmd.mpng('p53_1tup')

cmd.quit()

This will generate 500 PNG files with the p53_1tup prefix.

Here is a frame approaching the end (450):

Figure 8.8 - Frame 450 and scene S2
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There’s more

The YouTube video was generated using ffmpeg on Linux at 15 frames per second, as follows:

ffmpeg -r 15 -f image2 -start_number 1 -i "p53_1tup%04d.png" 
example.mp4

There are plenty of applications that you can use to generate videos from images. PyMOL can generate 
a MPEG, but it requires the installation of extra libraries.

PyMOL was created to be used interactively from its console (which can be extended in Python). Using 
it the other way around (importing from Python with no GUI) can be complicated and frustrating. 
PyMOL starts a separate thread to render images that work asynchronously.

For example, this means that your code may be in a different position from where the renderer is. I 
have put another script called PyMol_Intro.py in the GitHub repository; you will see that the 
second PNG call will start before the first one has finished. Try the script code, see how you expect it 
to behave, and how it actually behaves.

There is plenty of good documentation for PyMOL from a GUI perspective at http://www.
pymolwiki.org/index.php/MovieSchool. This is a great starting point if you want to make 
movies, and http://www.pymolwiki.org is a treasure trove of information.

Parsing mmCIF files using Biopython
The mmCIF file format is probably the future. Biopython doesn’t have full functionality to work with 
it yet, but we will take a look at what currently exists.

Getting ready

As Bio.PDB is not able to automatically download mmCIF files, you need to get your protein file and 
rename it to 1tup.cif. This can be found at https://github.com/PacktPublishing/
Bioinformatics-with-Python-Cookbook-third-Edition/blob/master/
Datasets.py under 1TUP.cif.

You can find this content in the Chapter08/mmCIF.py Notebook file.

How to do it...

Take a look at the following steps:

1.	 Let’s parse the file. We just use the MMCIF parser instead of the PDB parser:

from Bio import PDB

parser = PDB.MMCIFParser()

p53_1tup = parser.get_structure('P53', '1tup.cif')
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2.	 Let’s inspect the following chains:

def describe_model(name, pdb):

    print()

    for model in p53_1tup:

        for chain in model:

            print('%s - Chain: %s. Number of residues: 
%d. Number of atoms: %d.' %

                  (name, chain.id, len(chain), 
len(list(chain.get_atoms()))))

describe_model('1TUP', p53_1tup)

The output will be as follows:

1TUP - Chain: E. Number of residues: 43. Number of atoms: 
442.

1TUP - Chain: F. Number of residues: 35. Number of atoms: 
449.

1TUP - Chain: A. Number of residues: 395. Number of 
atoms: 1734.

1TUP - Chain: B. Number of residues: 265. Number of 
atoms: 1593.

1TUP - Chain: C. Number of residues: 276. Number of 
atoms: 1610.

3.	 Many of the fields are not available in the parsed structure, but the fields can still be retrieved 
by using a lower-level dictionary, as follows:

mmcif_dict = PDB.MMCIF2Dict.MMCIF2Dict('1tup.cif')

for k, v in mmcif_dict.items():

    print(k, v)

    print()

Unfortunately, this list is large and requires some post-processing to make sense of it, but it is available.

There’s more

You still have all the model information from the mmCIF file made available by Biopython, so the 
parser is still quite useful. We can expect more developments with the mmCIF parser than with the 
PDB parser.

There is a Python library for this that’s been made available by the developers of PDB at http://
mmcif.wwpdb.org/docs/sw-examples/python/html/index.html.
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9
Bioinformatics Pipelines

Pipelines are fundamental within any data science environment. Data processing is never a single task. 
Many pipelines are implemented via ad hoc scripts. This can be done in a useful way, but in many cases, 
they fail several fundamental viewpoints, chiefly reproducibility, maintainability, and extensibility.

In bioinformatics, you can find three main types of pipeline system:

•	 Frameworks such as Galaxy (https://usegalaxy.org), which are geared toward users, 
that is, they expose easy-to-use user interfaces and hide most of the underlying machinery.

•	 Programmatic workflows – geared toward code interfaces that, while generic, originate from the 
bioinformatics space. Two examples are Snakemake (https://snakemake.readthedocs.
io/) and Nextflow (https://www.nextflow.io/).

•	 Totally generic workflow systems such as Apache Airflow (https://airflow.incubator.
apache.org/), which take a less data-centric approach to workflow management.

In this chapter, we will discuss Galaxy, which is especially important for bioinformaticians supporting 
users that are less inclined to code their own solutions. While you may not be a typical user of these 
pipeline systems, you might still have to support them. Fortunately, Galaxy provides APIs, which will 
be our main focus.

We will also be discussing Snakemake and Nextflow as generic workflow tools with programmatic 
interfaces that originated in the bioinformatics space. We will cover both tools, as they are the most 
common in the field. We will solve a similar bioinformatics problem using both Snakemake and 
Nextflow. We will get a taste of both frameworks and hopefully be able to decide on a favorite.

The code for these recipes is presented not as notebooks, but as Python scripts available in the 
Chapter09 directory of the book’s repository.

In this chapter, you will find recipes for the following:

•	 Introducing Galaxy servers

•	 Accessing Galaxy using the API
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•	 Developing a variant analysis pipeline with Snakemake

•	 Developing a variant analysis pipeline with Nextflow

Introducing Galaxy servers
Galaxy (https://galaxyproject.org/tutorials/g101/) is an open source system that 
empowers non-computational users to do computational biology. It is the most widely used, user-
friendly pipeline system available. Galaxy can be installed on a server by any user, but there are also 
plenty of other servers on the web with public access, the flagship being http://usegalaxy.org.

Our focus in the following recipes will be the programming side of Galaxy: interfacing using the Galaxy 
API and developing a Galaxy tool to extend its functionality. Before you start, you are strongly advised 
to approach Galaxy as a user. You can do this by creating a free account at http://usegalaxy.
org, and playing around with it a bit. Reaching a level of understanding that includes knowledge of 
the workflows is recommended.

Getting ready

In this recipe, we will carry out a local installation of a Galaxy server using Docker. As such, a local 
Docker installation is required. The level of complexity will vary across operating systems: easy on 
Linux, medium on macOS, and medium to hard on Windows.

This installation is recommended for the next two recipes but you may also be able to use existing 
public servers. Note that the interfaces of public servers can change over time, so what works today 
may not work tomorrow. Instructions on how to use public servers for the next two recipes are available 
in the There’s more... section.

How to do it…

Take a look at the following steps. These assume that you have a Docker-enabled command line:

1.	 First, we pull the Galaxy Docker image with the following command:

docker pull bgruening/galaxy-stable:20.09

This will pull Björn Grüning’s amazing Docker Galaxy image. Use the 20.09 label, as shown 
in the preceding command; anything more recent could break this recipe and the next recipe.

2.	 Create a directory on your system. This directory will hold the persistent output of the Docker 
container across runs.

Note
Docker containers are transient with regard to disk space. This means that when you stop the 
container, all disk changes will be lost. This can be solved by mounting volumes from the host 
on Docker, as in the next step. All content in the mounted volumes will persist.
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3.	 We can now run the image with the following command:

docker run -d -v YOUR_DIRECTORY:/export -p 8080:80 -p 
8021:21 bgruening/galaxy-stable:20.09

Replace YOUR_DIRECTORY with the full path to the directory that you created in step 2. If 
the preceding command fails, make sure you have permission to run Docker. This will vary 
across operating systems.

4.	 Check the content of YOUR_DIRECTORY. The first time the image runs, it will create all of 
the files needed for persistent execution across Docker runs. That means maintaining user 
databases, datasets, and workflows.

Point your browser to http://localhost:8080. If you get any errors, wait a few seconds. 
You should see the following screen:

Figure 9.1 - The Galaxy Docker home page

5.	 Now log in (see the top bar) with the default username and password combination: admin 
and password.

6.	 From the top menu, choose User, and inside, choose Preferences.

7.	 Now, choose Manage API Key.

Do not change the API key. The purpose of the preceding exercise is for you to know where 
the API key is. In real scenarios, you will have to go to this screen to get your key. Just note the 
API key: fakekey. In normal situations, this will be an MD5 hash, by the way.
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So, at this stage, we have our server installed with the following (default) credentials: the user as 
admin, password as password, and API key as fakekey. The access point is localhost:8080.

There’s more

The way Björn Grüning’s image is going to be used throughout this chapter is quite simple; after all, this 
is not a book on system administration or DevOps, but a programming one. If you visit https://
github.com/bgruening/docker-galaxy-stable, you will see that there is an infinite 
number of ways to configure the image, and all are well documented. Our simple approach here works 
for our development purposes.

If you don’t want to install Galaxy on your local computer, you can use a public server such as 
https://usegalaxy.org to do the next recipe. It is not 100% foolproof, as services change 
over time, but it will probably be very close. Take the following steps:

1.	 Create an account on a public server (https://usegalaxy.org or other).

2.	 Follow the previous instructions for accessing your API key.

3.	 In the next recipe, you will have to replace the host, user, password, and API key.

Accessing Galaxy using the API
While Galaxy’s main use case is via an easy-to-use web interface, it also provides a REST API for 
programmatic access. There are interfaces provided in several languages, for example, Python support 
is available from BioBlend (https://bioblend.readthedocs.io).

Here, we are going to develop a script that will load a BED file into Galaxy and call a tool to convert 
it to GFF format. We will load the file using Galaxy’s FTP server.

Getting ready

If you did not go through the previous recipe, please read the corresponding There’s more... section. 
The code was tested in a local server, as prepared in the preceding recipe, so it might require some 
adaptations if you run it against a public server.

Our code will need to authenticate itself against the Galaxy server in order to perform the necessary 
operations. Because security is an important issue, this recipe will not be totally naive with regard to 
it. Our script will be configured via a YAML file, for example:

rest_protocol: http

server: localhost

rest_port: 8080

sftp_port: 8022

user: admin
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password: password

api_key: fakekey

Our script will not accept this file as plain text, but it will require it to be encrypted. That being said, 
there is a big hole in our security plan: we will be using HTTP (instead of HTTPS), which means 
that passwords will pass in the clear over the network. Obviously, this is a bad solution, but space 
considerations put a limit on what we can do (especially in the preceding recipe). Really secure 
solutions will require HTTPS.

We will need a script that takes a YAML file and generates an encrypted version:

import base64

import getpass

from io import StringIO

import os

from ruamel.yaml import YAML

from cryptography.fernet import Fernet

from cryptography.hazmat.backends import default_backend

from cryptography.hazmat.primitives import hashes

from cryptography.hazmat.primitives.kdf.pbkdf2 import 
PBKDF2HMAC

password = getpass.getpass('Please enter the password:').
encode()

salt = os.urandom(16)

kdf = PBKDF2HMAC(algorithm=hashes.SHA256(), length=32, 
salt=salt,

                 iterations=100000, backend=default_backend())

key = base64.urlsafe_b64encode(kdf.derive(password))

fernet = Fernet(key)

with open('salt', 'wb') as w:

    w.write(salt)

yaml = YAML()
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content = yaml.load(open('galaxy.yaml', 'rt', 
encoding='utf-8'))

print(type(content), content)

output = StringIO()

yaml.dump(content, output)

print ('Encrypting:\n%s' % output.getvalue())

enc_output = fernet.encrypt(output.getvalue().encode())

with open('galaxy.yaml.enc', 'wb') as w:

    w.write(enc_output) 

The preceding file can be found at Chapter09/pipelines/galaxy/encrypt.py in the 
GitHub repository.

You will need to input a password for encryption.

The preceding code is not Galaxy-related: it reads a YAML file and encrypts it with a password supplied 
by the user. It uses the cryptography module encryption and ruaml.yaml for YAML processing. 
Two files are output: the encrypted YAML file and the salt file for encryption. For security reasons, 
the salt file should not be public.

This approach to securing credentials is far from sophisticated; it is mostly illustrative that you have 
to be careful with your code when dealing with authentication tokens. There are far more instances 
on the web of hardcoded security credentials.

How to do it…

Take a look at the following steps, which can be found in Chapter09/pipelines/galaxy/
api.py:

1.	 We start by decrypting our configuration file. We need to supply a password:

import base64

from collections import defaultdict

import getpass

import pprint

import warnings

from ruamel.yaml import YAML

from cryptography.fernet import Fernet
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from cryptography.hazmat.backends import default_backend

from cryptography.hazmat.primitives import hashes

from cryptography.hazmat.primitives.kdf.pbkdf2 import 
PBKDF2HMAC

import pandas as pd

Import paramiko

from bioblend.galaxy import GalaxyInstance

pp = pprint.PrettyPrinter()

warnings.filterwarnings('ignore')

# explain above, and warn

with open('galaxy.yaml.enc', 'rb') as f:

    enc_conf = f.read()

password = getpass.getpass('Please enter the password:').
encode()

with open('salt', 'rb') as f:

    salt = f.read()

kdf = PBKDF2HMAC(algorithm=hashes.SHA256(), length=32, 
salt=salt,

                 iterations=100000, backend=default_
backend())

key = base64.urlsafe_b64encode(kdf.derive(password))

fernet = Fernet(key)

yaml = YAML()

conf = yaml.load(fernet.decrypt(enc_conf).decode())

The last line summarizes it all: the YAML module will load the configuration from a decrypted 
file. Note that we also read salt in order to be able to decrypt the file.

2.	 We’ll now get all configuration variables, prepare the server URL, and specify the name of the 
Galaxy history that we will be creating (bioinf_example):

server = conf['server']

rest_protocol = conf['rest_protocol']

rest_port = conf['rest_port']
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user = conf['user']

password = conf['password']

ftp_port = int(conf['ftp_port'])

api_key = conf['api_key']

rest_url = '%s://%s:%d' % (rest_protocol, server, rest_
port)

history_name = 'bioinf_example'

3.	 Finally, we are able to connect to the Galaxy server:

gi = GalaxyInstance(url=rest_url, key=api_key)

gi.verify = False

4.	 We will now list all histories available:

histories = gi.histories

print('Existing histories:')

for history in histories.get_histories():

    if history['name'] == history_name:

        histories.delete_history(history['id'])

    print('  - ' + history['name'])

print()

On the first execution, you will get an unnamed history, but on the other executions, you will 
also get bioinf_example, which we will delete at this stage so that we start with a clean slate.

5.	 Afterward, we create the bioinf_example history :

ds_history = histories.create_history(history_name)

If you want, you can check on the web interface, and you will find the new history there.

6.	 We are going to upload the file now; this requires an SFTP connection. The file is supplied 
with this code:

print('Uploading file')

transport = paramiko.Transport((server, sftp_port))

transport.connect(None, user, password)

sftp = paramiko.SFTPClient.from_transport(transport)

sftp.put('LCT.bed', 'LCT.bed')
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sftp.close()

transport.close()

7.	 We will now tell Galaxy to load the file on the FTP server into its internal database:

gi.tools.upload_from_ftp('LCT.bed', ds_history['id'])

8.	 Let’s summarize the contents of our history:

def summarize_contents(contents):

 summary = defaultdict(list)

 for item in contents:

 summary['íd'].append(item['id'])

 summary['híd'].append(item['hid'])

 summary['name'].append(item['name'])

 summary['type'].append(item['type'])

 summary['extension'].append(item['extension'])

 return pd.DataFrame.from_dict(summary)

print('History contents:')

pd_contents = summarize_contents(contents)

print(pd_contents)

print()

We only have one entry:

                 íd  híd     name  type extension

0  f2db41e1fa331b3e    1  LCT.bed  file      auto

9.	 Let’s inspect the metadata for our BED file:

print('Metadata for LCT.bed')

bed_ds = contents[0]

pp.pprint(bed_ds)

print()

The result consists of the following:

{'create_time': '2018-11-28T21:27:28.952118',

 'dataset_id': 'f2db41e1fa331b3e',

 'deleted': False,

 'extension': 'auto',
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 'hid': 1,

 'history_content_type': 'dataset',

 'history_id': 'f2db41e1fa331b3e',

 'id': 'f2db41e1fa331b3e',

 'name': 'LCT.bed',

 'purged': False,

 'state': 'queued',

 'tags': [],

 'type': 'file',

 'type_id': 'dataset-f2db41e1fa331b3e',

 'update_time': '2018-11-28T21:27:29.149933',

 'url': '/api/histories/f2db41e1fa331b3e/contents/
f2db41e1fa331b3e',

 'visible': True}

10.	 Let’s turn our attention to the existing tools on the server and get metadata about them:

print('Metadata about all tools')

all_tools = gi.tools.get_tools()

pp.pprint(all_tools)

print()

This will print a long list of tools.

11.	 Now let’s get some information about our tool:

bed2gff = gi.tools.get_tools(name='Convert BED to GFF')
[0]

print("Converter metadata:")

pp.pprint(gi.tools.show_tool(bed2gff['id'], io_
details=True, link_details=True))

print()

The tool’s name was available in the preceding step. Note that we get the first element of a list 
as, in theory, there could be more than one version of the tool installed. The abridged output 
is as follows:

{'config_file': '/galaxy-central/lib/galaxy/datatypes/
converters/bed_to_gff_converter.xml',

 'id': 'CONVERTER_bed_to_gff_0',

 'inputs': [{'argument': None,

             'edam': {'edam_data': ['data_3002'],
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                      'edam_formats': ['format_3003']},

             'extensions': ['bed'],

             'label': 'Choose BED file',

             'multiple': False,

             'name': 'input1',

             'optional': False,

             'type': 'data',

             'value': None}],

 'labels': [],

 'link': '/tool_runner?tool_id=CONVERTER_bed_to_gff_0',

 'min_width': -1,

 'model_class': 'Tool',

 'name': 'Convert BED to GFF',

 'outputs': [{'edam_data': 'data_1255',

              'edam_format': 'format_2305',

              'format': 'gff',

              'hidden': False,

              'model_class': 'ToolOutput',

              'name': 'output1'}],

 'panel_section_id': None,

 'panel_section_name': None,

 'target': 'galaxy_main',

 'version': '2.0.0'}

12.	 Finally, let’s run a tool to convert our BED file into GFF:

def dataset_to_param(dataset):

    return dict(src='hda', id=dataset['id'])

tool_inputs = {

    'input1': dataset_to_param(bed_ds)

    }

gi.tools.run_tool(ds_history['id'], bed2gff['id'], tool_
inputs=tool_inputs)

The parameters of the tool can be inspected in the preceding step. If you go to the web interface, 
you will see something similar to the following:
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Figure 9.2 - Checking the results of our script via Galaxy’s web interface

Thus, we have accessed Galaxy using its REST API.

Deploying a variant analysis pipeline with Snakemake
Galaxy is mostly geared toward users who are less inclined to program. Knowing how to deal 
with it, even if you prefer a more programmer-friendly environment, is important because of its 
pervasiveness. It is reassuring that an API exists to interact with Galaxy. But if you want a more 
programmer-friendly pipeline, there are many alternatives available. In this chapter, we explore 
two widely used programmer-friendly pipelines: snakemake and Nextflow. In this recipe, we 
consider snakemake.

Snakemake is implemented in Python and shares many traits with it. That being said, its fundamental 
inspiration is a Makefile, the framework used by the venerable make-building system.

Here, we will develop a mini variant analysis pipeline with snakemake. The objective here is not 
to get the scientific part right – we cover that in other chapters – but to see how to create pipelines 
with snakemake. Our mini pipeline will download HapMap data, subsample it at 1%, do a simple 
PCA, and draw it.

Getting ready

You will need Plink 2 installed alongside snakemake. To display execution strategies, you will also 
need Graphviz to draw the execution. We will define the following tasks:

1.	 Downloading data

2.	 Uncompressing it
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3.	 Sub-sampling it at 1%

4.	 Computing the PCA on the 1% sub-sample

5.	 Charting the PCA

Our pipeline recipe will have two parts: the actual coding of the pipeline in snakemake and a 
support script in Python.

The snakemake code for this can be found in Chapter09/snakemake/Snakefile, whereas 
the Python support script is in Chapter09/snakemake/plot_pca.py.

How to do it…

1.	 The first task is downloading the data:

from snakemake.remote.HTTP import RemoteProvider as 
HTTPRemoteProvider 

HTTP = HTTPRemoteProvider()

download_root = "https://ftp.ncbi.nlm.nih.gov/hapmap/
genotypes/hapmap3_r3"

remote_hapmap_map = f"{download_root}/plink_format/
hapmap3_r3_b36_fwd.consensus.qc.poly.map.gz"

remote_hapmap_ped = f"{download_root}/plink_format/
hapmap3_r3_b36_fwd.consensus.qc.poly.ped.gz"

remote_hapmap_rel = f"{download_root}/relationships_w_
pops_041510.txt"

 

rule plink_download:

    input:

        map=HTTP.remote(remote_hapmap_map, keep_
local=True),

        ped=HTTP.remote(remote_hapmap_ped, keep_
local=True),

        rel=HTTP.remote(remote_hapmap_rel, keep_
local=True)

 

    output:

        map="scratch/hapmap.map.gz",

        ped="scratch/hapmap.ped.gz",

        rel="data/relationships.txt"
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    shell:

        "mv {input.map} {output.map};"

        "mv {input.ped} {output.ped};"

        "mv {input.rel} {output.rel}"

Snakemake’s language is Python-dependent, as you can see from the very first lines, which should 
be easy to understand from a Python perspective. The fundamental part is the rule. It has a set 
of input streams, which are rendered via HTTP.remote in our case, as we are dealing with 
remote files, followed by the output. We put two files in a scratch directory (the ones that 
are still uncompressed) and one in the data directory. Finally, our pipeline code is a simple 
shell script that moves the downloaded HTTP files to their final location. Note how the shell 
script refers to inputs and outputs.

2.	 With this script, downloading the files is easy. Run the following on the command line:

snakemake -c1 data/relationships.txt

This tells snakemake that you want to materialize data/relationships.txt . We will 
be using a single core, -c1 . As this is an output of the plink_download rule, the rule will 
then be run (unless the file is already available – in that case, snakemake will do nothing). 
Here is an abridged version of the output:

Building DAG of jobs...

Using shell: /usr/bin/bash

Provided cores: 1 (use --cores to define parallelism)

Rules claiming more threads will be scaled down.

Job stats:

job               count    min threads    max threads

--------------  -------  -------------  -------------

plink_download        1              1              1

total                 1              1              1

 

Select jobs to execute...

 

[Mon Jun 13 18:54:26 2022]

rule plink_download:

    input: ftp.ncbi.nlm.nih.gov/hapmap/ge [...]

    output: [..], data/relationships.txt

    jobid: 0

    reason: Missing output files: data/relationships.txt
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    resources: tmpdir=/tmp

 

Downloading from remote: [...]relationships_w_
pops_041510.txt

Finished download.

[...]

Finished job 0.

1 of 1 steps (100%) done

Snakemake gives you some information about which jobs will be executed and starts running 
those.

3.	 Now that we have the data, let’s see the rule for uncompressing it:

PLINKEXTS = ['ped', 'map']

rule uncompress_plink:

    input:

        "scratch/hapmap.{plinkext}.gz"

    output:

        "data/hapmap.{plinkext}"

    shell:

        "gzip -dc {input} > {output}"

The most interesting feature here is the way that we can specify multiple files to download. 
Note how the PLINKEXTS list is converted into discrete plinkext elements in the code. 
You can execute by requesting an output from the rule.

4.	 Now, let’s subsample our data to 1%:

rule subsample_1p:

    input:

        "data/hapmap.ped",

        "data/hapmap.map"

 

    output:

        "data/hapmap1.ped",

        "data/hapmap1.map"
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    run:

        shell(f"plink2 --pedmap {input[0][:-4]} --out 
{output[0][:-4]} --thin 0.01 --geno 0.1 --export ped")

The new content is in the last two lines: we are not using script, but run. This tells snakemake 
that the execution is Python-based with a few extra functions available. Here we see the shell 
function, which executes a shell script. The string is a Python f-string – note the reference to 
the snakemake input and output variables in the string. You could put more complex 
Python code here – for example, you could iterate over the inputs.

TIP
Here, we are assuming that Plink is available, as we pre-installed it, but snakemake does 
provide some functionality to deal with dependencies. More specifically, snakemake rules 
can be annotated with a YAML file pointing to conda dependencies. 

5.	 Now that we have our data sub-sampled, let’s compute the PCA. In this case, we will use Plink’s 
internal PCA framework to do the computation:

rule plink_pca:

    input:

        "data/hapmap1.ped",

        "data/hapmap1.map"

    output:

        "data/hapmap1.eigenvec",

        "data/hapmap1.eigenval"

    shell:

        "plink2 --pca --file data/hapmap1 -out data/
hapmap1"

6.	 As with most pipeline systems, snakemake constructs a Directed Acyclic Graph (DAG) of 
operations to execute. At any moment, you can ask snakemake to present you a DAG of what 
you will execute to generate your request. For example, to generate the PCA, use the following:

snakemake --dag data/hapmap1.eigenvec | dot -Tsvg > bio.
svg

This would generate the following figure:
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Figure 9.3 - The DAG to compute the PCA

7.	 Finally, let’s generate the plot rule for the PCA:

rule plot_pca:

    input:

        "data/hapmap1.eigenvec",

        "data/hapmap1.eigenval"

 

    output:

        "pca.png"

 

    script:

        "./plot_pca.py"

The plot rule introduces a new type of execution, script. In this case, an external Python 
script is called to process the rule. 

8.	 Our Python script to generate the chart is the following:

import pandas as pd

 

eigen_fname = snakemake.input[0] if snakemake.input[0].
endswith('eigenvec') else snakemake.input[1]
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pca_df = pd.read_csv(eigen_fname, sep='\t') 

ax = pca_df.plot.scatter(x=2, y=3, figsize=(16, 9))

ax.figure.savefig(snakemake.output[0])

The Python script has access to the snakemake object. This object exposes the content of the 
rule: note how we make use of input to get the PCA data and output to generate the image.

9.	 Finally, the code to produce a rough chart is as follows:

Figure 9.4 - A very rough PCA produced by the Snakemake pipeline

There’s more

The preceding recipe was made to run on a simple configuration of snakemake. There are many 
more ways to construct rules in snakemake.

The most important issue that we didn’t discuss is the fact that snakemake can execute code in many 
different environments, from the local computer (as in our case), on-premises clusters, to the cloud. 
It would be unreasonable to ask for anything more than using a local computer to try snakemake, 
but don’t forget that snakemake can manage complex computing environments.

Remember that snakemake, while implemented in Python, is conceptually based on make. It’s 
a subjective analysis to decide whether you like the (snake)make design. For an alternative design 
approach, check the next recipe, which uses Nextflow.
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Deploying a variant analysis pipeline with Nextflow
There are two main players in the pipeline framework space in bioinformatics: snakemake and 
Nextflow. They provide pipeline functionality whilst having different design approaches. Snakemake is 
based on Python, but its language and philosophy come from the make tool used to compile complex 
programs with dependencies. Nextflow is Java-based (more precisely, it’s implemented in Groovy – a 
language that works on top of the Java Virtual Machine) and has its own Domain Specific Language 
(DSL) for implementing pipelines. The main purpose of this recipe (and the previous recipe) is to 
give you a flavor of Nextflow so that you can compare it with snakemake and choose the one that 
better suits your needs.

TIP
There are many perspectives on how to evaluate a pipeline system. Here, we present a perspective 
based on the language used to specify the pipeline. However, there are others that you should 
consider when choosing a pipeline system. For example, how well does it support your execution 
environment (such as an on-premises cluster or a cloud), does it support your tools (or allow 
easy development of extensions to deal with new tools), and does it provide good recovery 
and monitoring functionalities?

Here, we will develop a pipeline with Nextflow that provides the same functionality as we implemented 
with snakemake, thus allowing for a fair comparison from the pipeline design point of view. The 
objective here is not to get the scientific part right – we cover that in other chapters – but to see how 
to create pipelines with snakemake. Our mini pipeline will download HapMap data, sub-sample it 
at 1%, do a simple PCA, and draw it.

Getting ready

You will need Plink 2 installed along with Nextflow. Nextflow itself requires some software from the 
Java space: notably the Java Runtime Environment and Groovy.

We will define the following tasks:

1.	 Downloading data

2.	 Uncompressing it

3.	 Sub-sampling it at 1%

4.	 Computing the PCA on the 1% sub-sample

5.	 Charting the PCA

The Nextflow code for this can be found in Chapter09/nextflow/pipeline.nf.
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How to do it…

1.	 The first task is downloading the data:

nextflow.enable.dsl=2

download_root = "https://ftp.ncbi.nlm.nih.gov/hapmap/
genotypes/hapmap3_r3"

 process plink_download {

  output:

  path 'hapmap.map.gz'

  path 'hapmap.ped.gz'

  script:

  """

  wget $download_root/plink_format/hapmap3_r3_b36_fwd.
consensus.qc.poly.map.gz -O hapmap.map.gz

  wget $download_root/plink_format/hapmap3_r3_b36_fwd.
consensus.qc.poly.ped.gz -O hapmap.ped.gz

   """

}

Remember that the underlying language for the pipeline is not Python but Groovy, so the syntax 
will be a bit different, such as using braces for blocks or ignoring indentation.

We create a process (a pipeline building block in Nextflow) called plink_download, which 
downloads the Plink files. It only specifies outputs. The first output will be the hapmap.
map.gz file and the second output will be hapmap.ped.gz. This process will have two 
output channels (another Nextflow concept, akin to a stream), which can be consumed by 
another process.

The code for the process is, by default, a bash script. It’s important to note how the script outputs 
files with names that are synchronized with the output section. Also, see how we refer to the 
variables defined in the pipeline (download_root, in our case).

2.	 Let’s now define a process to consume the channels with the HapMap files and decompress them:

process uncompress_plink {

  publishDir 'data', glob: '*', mode: 'copy'

  

  input:

  path mapgz
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  path pedgz

 

  output:

  path 'hapmap.map'

  path 'hapmap.ped'

 

  script:

  """

  gzip -dc $mapgz > hapmap.map

  gzip -dc $pedgz > hapmap.ped

  """

}

There are three issues of note in this process: we now have a couple of inputs (remember that 
we have a couple of outputs from the previous process). Our script also now refers to input 
variables ($mapgz and $pedgz). Finally, we publish the output by using publishDir. 
Therefore, any files that are not published will only be stored temporarily.

3.	 Let’s specify a first version of the workflow that downloads and uncompresses the files:

workflow {

    plink_download | uncompress_plink

}

4.	 We can execute the workflow by running the following on the shell:

nextflow run pipeline.nf -resume

The resume flag at the end will make sure that the pipeline will continue from whatever step 
was already completed. The steps are, on local execution, stored in the work directory.

5.	 If we remove the work directory, we don’t want to download the HapMap files if they were 
already published. As this is outside the work directory, hence not directly tracked, we need 
to change the workflow to track the data in the published directory:

workflow {

    ped_file = file('data/hapmap.ped')

    map_file = file('data/hapmap.map')

    if (!ped_file.exists() | !map_file.exists()) {

        plink_download | uncompress_plink

    }

}
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There are alternative ways of doing this, but I wanted to introduce a bit of Groovy code, as 
you might sometimes have to write code in Groovy. There are ways to use Python code, as 
you will see soon.

6.	 Now, we need to subsample the data:

process subsample_1p {

  input:

  path 'hapmap.map'

  path 'hapmap.ped'

 

  output:

  path 'hapmap1.map'

  path 'hapmap1.ped'

 

  script:

  """

  plink2 --pedmap hapmap --out hapmap1 --thin 0.01 --geno 
0.1 --export ped

  """

}

7.	 Let’s now compute the PCA using Plink:

process plink_pca {

  input:

  path 'hapmap.map'

  path 'hapmap.ped'

  output:

  path 'hapmap.eigenvec'

  path 'hapmap.eigenval'

   script:

  """

  plink2 --pca --pedmap hapmap -out hapmap

  """

}

 EBSCOhost - printed on 2/9/2023 7:03 AM via . All use subject to https://www.ebsco.com/terms-of-use



Deploying a variant analysis pipeline with Nextflow 271

8.	 Finally, let’s plot the PCA:

process plot_pca {

  publishDir '.', glob: '*', mode: 'copy'

 

  input:

  path 'hapmap.eigenvec'

  path 'hapmap.eigenval'

 

  output:

  path 'pca.png'

 

  script:

  """

  #!/usr/bin/env python

  import pandas as pd

 

  pca_df = pd.read_csv('hapmap.eigenvec', sep='\t') 

  ax = pca_df.plot.scatter(x=2, y=3, figsize=(16, 9))

  ax.figure.savefig('pca.png')

  """

}

The new feature of this code is that we specify the bash script using the shebang (#!) operator, 
which allows us to call an external scripting language to process the data.

Here is our final workflow:

workflow {

    ped_file = file('data/hapmap.ped')

    map_file = file('data/hapmap.map')

    if (!ped_file.exists() | !map_file.exists()) {

        plink_download | uncompress_plink | subsample_1p 
| plink_pca | plot_pca

    }

    else {

        subsample_1p(

            Channel.fromPath('data/hapmap.map'),
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            Channel.fromPath('data/hapmap.ped')) | plink_
pca | plot_pca

    }

}

We either download the data or use the already downloaded data.

While there are other dialects for designing the complete workflow, I would like you to note 
how we use subsample_1p when the files are available; we can explicitly pass two channels 
to a process.

9.	 We can run the pipeline and request an HTML report on execution:

nextflow run pipeline.nf -with-report report/report.html

The report is quite exhaustive and will allow you to figure out the parts of the pipeline that are expensive 
from different perspectives, whether related to time, memory, CPU consumption, or I/O.

There’s more

This was a simple introductory example of Nextflow, which hopefully will allow you to get a flavor of 
the framework, particularly so that you can compare it with snakemake. Nextflow has many more 
functionalities and you are encouraged to check out its website.

As with snakemake, the most important issue that we didn’t discuss is the fact that Nextflow can 
execute code in many different environments, from the local computer, on-premises clusters, to the 
cloud. Check Nextflow’s documentation to see which computing environments are currently supported.

As important as the underlying language is, Groovy with Nextflow and Python with snakemake, 
make sure to compare other factors. This includes not only where both pipelines can execute (locally, 
in a cluster, or in a cloud) but also the design of the framework, as they use quite different paradigms.
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Machine Learning  
for Bioinformatics

Machine learning is used in a wide variety of contexts and computational biology is not an exception. 
Machine learning has countless applications in the field, probably the oldest and most known being 
the use of Principal Component Analysis (PCA) to study population structure using genomics. 
There are many other potential applications as this is a burgeoning field. In this chapter, we are going 
to introduce machine learning concepts from a bioinformatics perspective.

Given that machine learning is a very complex topic that could easily fill a book, here we intend to 
take an intuitive approach that will allow you to broadly understand how some machine learning 
techniques can be useful to tackle biological problems. If you find these techniques useful, you will 
understand the fundamental concepts and can proceed to more detailed literature.

If you are using Docker, and because all the libraries in this chapter are fundamental for data analysis, 
they all can be found on the Docker image tiagoantao/bioinformatics_ml.

In this chapter, we will cover the following recipes:

•	 Introducing scikit-learn with a PCA example

•	 Using clustering over PCA to classify samples

•	 Exploring breast cancer traits using Decision Trees

•	 Predicting breast cancer outcomes using Random Forests

Introducing scikit-learn with a PCA example
PCA is a statistical procedure that’s used to perform a reduction of the dimension of a number of 
variables to a smaller subset that is linearly uncorrelated. In Chapter 6, we saw a PCA implementation 
based on using an external application. In this recipe, we will implement the same PCA for population 
genetics but will use the scikit-learn library. Scikit-learn is one of the fundamental Python 
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libraries for machine learning and this recipe is an introduction to the library. PCA is a form of 
unsupervised machine learning – we don’t provide information about the class of the sample. We will 
discuss supervised techniques in the other recipes of this chapter.

As a reminder, we will compute PCA for 11 human populations from the HapMap project.

Getting ready

You will need to run the first recipe from Chapter 6 in order to generate the hapmap10_auto_
noofs_ld_12 PLINK file (with alleles recorded as 1 and 2). From a population genetics perspective, 
we require LD-pruned markers to produce a reliable PCA. We will not risk using the offspring here 
because it would probably bias the result. Our recipe will require the pygenomics library, which 
can be installed using the following command:

pip install pygenomics

The code is in the Chapter10/PCA.py notebook.

How to do it...

Take a look at the following steps:

1.	 We start by loading the metadata for our samples. In our case, we will be loading the human 
population that each sample belongs to:

import os

from sklearn.decomposition import PCA

import numpy as np

from genomics.popgen.pca import plot

f = open('../Chapter06/relationships_w_pops_041510.txt')

ind_pop = {}

f.readline()  # header

for l in f:

    toks = l.rstrip().split('\t')

    fam_id = toks[0]

 EBSCOhost - printed on 2/9/2023 7:03 AM via . All use subject to https://www.ebsco.com/terms-of-use



Introducing scikit-learn with a PCA example 275

    ind_id = toks[1]

    pop = toks[-1]

    ind_pop['/'.join([fam_id, ind_id])] = pop

f.close()

2.	 We now get the order of individuals along with the number of SNPs that we will be processing:

f = open('../Chapter06/hapmap10_auto_noofs_ld_12.ped')

ninds = 0

ind_order = []

for line in f:

    ninds += 1

    toks = line[:100].replace(' ', '\t').split('\t')

    fam_id = toks[0]

    ind_id = toks[1]

    ind_order.append('%s/%s' % (fam_id, ind_id))

nsnps = (len(line.replace(' ', '\t').split('\t')) - 6) // 
2

f.close()

3.	 We create the array that will be fed to the PCA:

pca_array = np.empty((ninds, nsnps), dtype=int)

print(pca_array.shape)

f = open('../Chapter06/hapmap10_auto_noofs_ld_12.ped')

for ind, line in enumerate(f):

    snps = line.replace(' ', '\t').split('\t')[6:]

    for pos in range(len(snps) // 2):

        a1 = int(snps[2 * pos])

        a2 = int(snps[2 * pos])

        my_code = a1 + a2 - 2

        pca_array[ind, pos] = my_code

f.close()

4.	 Finally, we compute the PCA with up to eight components. We then get the 8-D coordinates 
for all samples using a transform method.

my_pca = PCA(n_components=8)

my_pca.fit(pca_array)

trans = my_pca.transform(pca_array)

 EBSCOhost - printed on 2/9/2023 7:03 AM via . All use subject to https://www.ebsco.com/terms-of-use



Machine Learning for Bioinformatics276

5.	 Finally, we plot the PCA:

sc_ind_comp = {}

for i, ind_pca in enumerate(trans):

    sc_ind_comp[ind_order[i]] = ind_pca

plot.render_pca_eight(sc_ind_comp, cluster=ind_pop)

Figure 10.1 - PC1 to PC8 for our dataset as produced by scikit-learn

There’s more...

For publication in scientific journals, I would recommend using the recipe in Chapter 6, simply because 
it’s based on a published and highly regarded method. That being said, the results from this code are 
qualitatively similar and cluster data in a very similar fashion (the inversion of direction on the vertical 
axis, if you compare it with the figure in Chapter 6, is irrelevant when interpreting a PCA chart).

Using clustering over PCA to classify samples
PCA in genomics allows us to see how samples cluster. In many cases, individuals from the same 
population will be in the same area of the chart. But we would like to go further and predict where new 
individuals fall in terms of populations. To do that, we will start with PCA data, as it does dimensionality 
reduction – making working with the data easier – and then apply a K-Means clustering algorithm to 
predict where new samples fall. We will use the same dataset as in the recipe above. We will use all our 
samples save one to train the algorithm, and then we will predict where the remaining sample falls.
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K-Means clustering can be an example of a supervised algorithm. In these types of algorithms, we need 
a training dataset so that the algorithm is able to learn. After training the algorithm, it will be able to 
predict a certain outcome for new samples. In our case, we are hoping that we can predict the population.

WARNING
The current recipe intends to serve as a gentle introduction to supervised algorithms and the 
concepts behind them. The way we are training the algorithm is far from optimal. The issue 
of properly training a supervised algorithm will be alluded to in the last recipe of this chapter.

Getting ready

We will be using the same data as in the previous recipe. The code for this recipe can be found in 
Chapter10/Clustering.py.

How to do it...

Let’s have a look:

1.	 We start by loading the population information – this is similar to what we did in the 
previous recipe:

import os

import matplotlib.pyplot as plt

from sklearn.cluster import KMeans

from sklearn.decomposition import PCA

import numpy as np

from genomics.popgen.pca import plot

f = open('../Chapter06/relationships_w_pops_041510.txt')

ind_pop = {}

f.readline()  # header

for l in f:

    toks = l.rstrip().split('\t')

    fam_id = toks[0]

    ind_id = toks[1]

    pop = toks[-1]

    ind_pop['/'.join([fam_id, ind_id])] = pop

f.close()
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f = open('../Chapter06/hapmap10_auto_noofs_ld_12.ped')

ninds = 0

ind_order = []

for line in f:

    ninds += 1

    toks = line[:100].replace(' ', '\t').split('\t') 
#  for speed

    fam_id = toks[0]

    ind_id = toks[1]

    ind_order.append('%s/%s' % (fam_id, ind_id))

nsnps = (len(line.replace(' ', '\t').split('\t')) - 6) // 
2

print (nsnps)

f.close()

2.	 We now load all sample data – SNPs – into a NumPy array:

all_array = np.empty((ninds, nsnps), dtype=int)

f = open('../Chapter06/hapmap10_auto_noofs_ld_12.ped')

for ind, line in enumerate(f):

    snps = line.replace(' ', '\t').split('\t')[6:]

    for pos in range(len(snps) // 2):

        a1 = int(snps[2 * pos])

        a2 = int(snps[2 * pos])

        my_code = a1 + a2 - 2

        all_array[ind, pos] = my_code

f.close()

3.	 We separate the array into two datasets, namely, a training case with all individuals except one, 
and a case to test with a single individual:

predict_case = all_array[-1, :]

pca_array = all_array[:-1,:]

 

last_ind = ind_order[-1]

last_ind, ind_pop[last_ind]

Our test case is individual Y076/NA19124, who we know belongs to the Yoruban population.
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4.	 We now compute the PCA for the training set that we will use for K-Means clustering:

my_pca = PCA(n_components=2)

my_pca.fit(pca_array)

trans = my_pca.transform(pca_array)

 

sc_ind_comp = {}

for i, ind_pca in enumerate(trans):

    sc_ind_comp[ind_order[i]] = ind_pca

plot.render_pca(sc_ind_comp, cluster=ind_pop)

Here is the output, which will be useful to check clustering results:

Figure 10.2 - PC1 and PC2 with populations color-coded

5.	 Before we start computing K-means clustering, let’s write a function to plot the clustering 
surface from running the algorithm:

def plot_kmeans_pca(trans, kmeans):

    x_min, x_max = trans[:, 0].min() - 1, trans[:, 
0].max() + 1

    y_min, y_max = trans[:, 1].min() - 1, trans[:, 
1].max() + 1

    mesh_x, mesh_y = np.meshgrid(np.arange(x_min, x_max, 
0.5), np.arange(y_min, y_max, 0.5))
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    k_surface = kmeans.predict(np.c_[mesh_x.ravel(), 
mesh_y.ravel()]).reshape(mesh_x.shape)

    fig, ax = plt.subplots(1,1, dpi=300)

    ax.imshow(

        k_surface, origin="lower", cmap=plt.cm.Pastel1,

        extent=(mesh_x.min(), mesh_x.max(), mesh_y.min(), 
mesh_y.max()),

    )

    ax.plot(trans[:, 0], trans[:, 1], "k.", markersize=2)

    ax.set_title("KMeans clustering of PCA data")

    ax.set_xlim(x_min, x_max)

    ax.set_ylim(y_min, y_max)

    ax.set_xticks(())

    ax.set_yticks(())

    return ax

6.	 Let’s now fit the algorithm with our samples. Because we have 11 populations, we will train 
for 11 clusters:

kmeans11 = KMeans(n_clusters=11).fit(trans)

plot_kmeans_pca(trans, kmeans11)

Here is the output:

Figure 10.3 - The cluster surface for 11 clusters
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If you compare with the figure here, you can intuitively see that the clustering makes little sense: it 
doesn’t map to the known populations very well. One could argue that this clustering algorithm with 
11 clusters is not very useful.

TIP
There are many other clustering algorithms implemented in scikit-learn, and in several scenarios, 
they might perform better than K-means. You can find them at https://scikit-learn.
org/stable/modules/clustering.html. It is doubtful that, in this specific case, any 
alternative would perform much better for 11 clusters.

7.	 While it seems K-means clustering cannot resolve the 11 populations, maybe it can still provide 
some predictions if we use a different number of clusters. Simply by looking at the chart, we 
see four separate blocks. What would be the result if we used four clusters? 

kmeans4 = KMeans(n_clusters=4).fit(trans)

plot_kmeans_pca(trans, kmeans4)

Here is the output:

Figure 10.4 - The cluster surface for four clusters

 EBSCOhost - printed on 2/9/2023 7:03 AM via . All use subject to https://www.ebsco.com/terms-of-use

https://scikit-learn.org/stable/modules/clustering.html
https://scikit-learn.org/stable/modules/clustering.html


Machine Learning for Bioinformatics282

The four groups are now mostly clear. But do they make intuitive sense? If they do, we can 
make use of this clustering approach. And in fact, they do. The cluster on the left is composed 
of African populations, the top cluster European ones, and the bottom one East Asians. The 
middle one is the most cryptic as it contains both Gujarati and Mexican descendants, but that 
mix comes originally from PCA and it is not caused by clustering itself.

8.	 Let’s see how prediction does for the single case we left out:

pca_predict = my_pca.transform([predict_case])

kmeans4.predict(pca_predict)

Our sample is predicted to be in cluster 1. We need to dig a little deeper now.

9.	 Let’s find out what cluster 1 means. We take the last individual from the training set, who is 
also a Yoruba, and see to which cluster he is allocated:

last_train = ind_order[-2]

last_train, ind_pop[last_train]

kmeans4.predict(trans)[0]

It is indeed cluster 1, so the prediction is correct.

There’s more...

It is worth reiterating that we are trying to achieve an intuitive understanding of machine learning. At 
this stage, you should have a grasp of what you can gain from supervised learning, and also example 
usage of a clustering algorithm. There is much more to be said about the procedure to train a machine 
learning algorithm, something that we will partially unveil in the last recipe.

Exploring breast cancer traits using Decision Trees
One of the first problems that we have when we receive a dataset is deciding what to start analyzing. 
At the very beginning, there is quite often a feeling of loss about what to do first. Here, we will present 
an exploratory approach based on Decision Trees. The big advantage of Decision Trees is that they 
will give us the rules that constructed the decision tree, allowing us a first tentative understanding of 
what is going on with our data.

In this example, we will be using a dataset with trait observations from patients with breast cancer. 
The dataset with 699 data entries includes information such as clump thickness, uniformity of cell size, 
or type of chromatin. The outcome is either a benign or malignant tumor. The features are encoded 
with values from 0 to 10. More information about the project can be found at http://archive.
ics.uci.edu/ml/datasets/breast+cancer+wisconsin+%28diagnostic%29.
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Getting ready

We are going to download the data along with the documentation:

wget http://archive.ics.uci.edu/ml/machine-learning-databases/
breast-cancer-wisconsin/breast-cancer-wisconsin.data

wget http://archive.ics.uci.edu/ml/machine-learning-databases/
breast-cancer-wisconsin/breast-cancer-wisconsin.names

The data file is formatted as a CSV file. Information about the content can be found in the second 
downloaded file.

The code for this recipe can be found in Chapter10/Decision_Tree.py.

How to do it...

Follow these steps:

1.	 The first thing we do is to remove a small fraction of individuals that have incomplete data:

import numpy as np

import matplotlib.pyplot as plt

import pandas as pd

from sklearn import tree

f = open('breast-cancer-wisconsin.data')

w = open('clean.data', 'w')

for line in f:

    if line.find('?') > -1:

        continue

    w.write(line)

f.close()

w.close()

TIP
Removing individuals with incomplete data is adequate in this case because they are a small 
fraction of the dataset, and we are only doing exploratory analysis. For cases with lots of 
missingness or when we are trying to do something more rigorous, you will have to use methods 
to deal with missing data, which we will not explore here.

 EBSCOhost - printed on 2/9/2023 7:03 AM via . All use subject to https://www.ebsco.com/terms-of-use



Machine Learning for Bioinformatics284

2.	 We are now going to read the data, giving names to all columns:

column_names = [

    'sample_id', 'clump_thickness', 'uniformity_cell_
size',

    'uniformity_cell shape', 'marginal_adhesion',

    'single_epithelial_cell_size', 'bare_nuclei',

    'bland_chromatin', 'normal_nucleoli', 'mitoses',

    'class'

]

samples = pd.read_csv('clean.data', header=None, 
names=column_names, index_col=0)

3.	 We will now separate the features from the outcome and recode the outcome using 0 and 1:

training_input = samples.iloc[:,:-1]

target = samples.iloc[:,-1].apply(lambda x: 0 if x == 2 
else 1)

4.	 Let’s now create a Decision Tree based on this data with a max depth of 3: 

clf = tree.DecisionTreeClassifier(max_depth=3)

clf.fit(training_input, target)

5.	 Let’s start by seeing which features are the most important: 

importances = pd.Series(

    clf.feature_importances_ * 100,

    index=training_input.columns).sort_
values(ascending=False)

importances

The following are the features ranked by importance:

uniformity_cell_size           83.972870

uniformity_cell shape           7.592903

bare_nuclei                     4.310045

clump_thickness                 4.124183

marginal_adhesion               0.000000

single_epithelial_cell_size     0.000000

bland_chromatin                 0.000000

normal_nucleoli                 0.000000

mitoses                         0.000000
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Remember that this is just exploratory analysis. In the next recipe, we will try to produce 
more reliable rankings. The reason why the bottom features are zero is we asked for a max 
depth of 3 and in that case, it is possible that not all features are used.

6.	 We can do some native analysis of the accuracy of our implementation:

100 * clf.score(training_input, target)

We get a performance of 96%. We shouldn’t be testing the algorithm with its own training 
set as this is quite circular. We will revisit that in the next recipe.

7.	 Finally, let’s plot the decision tree:

fig, ax = plt.subplots(1, dpi=300)

tree.plot_tree(clf,ax=ax, feature_names=training_input.
columns, class_names=['Benign', 'Malignant'])

This results in the following output:

Figure 10.5 - The decision tree for the breast cancer dataset

Let’s look at the root node to start: it has a criterion of uniformity_cell_size < 2.5 and 
a classification of benign. The main feature of splitting the tree is the uniformity of the cell size. The 
classification of benign at the top node comes simply from the fact that most samples on the dataset 
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are benign. Now look at the right node from the root: it has 265 samples, most of which are malignant 
and with criteria of uniformity_cell_shape < 2.5.

These rules allow you to have an initial understanding of what might be driving the dataset. Decision 
Trees are not very precise, so take these as your initial step.

Predicting breast cancer outcomes using Random Forests 
We are now going to predict the outcomes for some patients using Random Forests. A random forest 
is an ensemble method (it will use several instances of other machine learning algorithms) that uses 
many decision trees to arrive at robust conclusions about the data. We are going to use the same 
example as in the previous recipe: breast cancer traits and outcomes.

This recipe has two main goals: to introduce you to random forests and issues regarding the training 
of machine learning algorithms.

Getting ready

The code for this recipe can be found in Chapter10/Random_Forest.py.

How to do it…

Take a look at the code:

1.	 We start, as in the previous recipe, by getting rid of samples with missing information:

import pandas as pd

import numpy as np

import pandas as pd

from sklearn.ensemble import RandomForestClassifier

from sklearn.model_selection import train_test_split

from sklearn.tree import export_graphviz

f = open('breast-cancer-wisconsin.data')

w = open('clean.data', 'w')

for line in f:

    if line.find('?') > -1:

        continue

    w.write(line)

f.close()

w.close()
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2.	 We now load the cleaned data:

column_names = [

    'sample_id', 'clump_thickness', 'uniformity_cell_
size',

    'uniformity_cell shape', 'marginal_adhesion',

    'single_epithelial_cell_size', 'bare_nuclei',

    'bland_chromatin', 'normal_nucleoli', 'mitoses',

    'class'

]

samples = pd.read_csv('clean.data', header=None, 
names=column_names, index_col=0)

samples

 

3.	 We separate the data read in features and outcomes:

training_input = samples.iloc[:, :-1]

target = samples.iloc[:, -1]

4.	 We create a classifier and fit the data to it:

clf = RandomForestClassifier(max_depth=3, n_
estimators=200)

clf.fit(training_input, target)

The most important parameter here is n_estimators: we are requesting the Forest be 
constructed with 200 trees.

5.	 We now rank the features in order of importance:

importances = pd.Series(

    clf.feature_importances_ * 100,

    index=training_input.columns).sort_
values(ascending=False)

importances

Here is the output:

uniformity_cell_size           30.422515

uniformity_cell shape          21.522259

bare_nuclei                    18.410346

single_epithelial_cell_size    10.959655
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bland_chromatin                 9.600714

clump_thickness                 3.619585

normal_nucleoli                 3.549669

marginal_adhesion               1.721133

mitoses                         0.194124

The result is non-deterministic, meaning that you might have different results. Also, note 
that the Random Forest has quite different numbers than the Decision Tree of the previous 
recipe. This is to be expected as the Decision Tree is a single estimator where the Forest 
weighs 200 trees and is more reliable.

6.	 We can score this case:

clf.score(training_input, target)

I get a result of 97.95%. You might get a slightly different value as the algorithm is stochastic. 
As we said in the previous recipe, getting a score from the training set is quite circular and 
far from best practice.

7.	 In order to have a more realistic view of the accuracy of the algorithm, we need to separate our 
data into two parts – a training set and a test set:

for test_size in [0.01, 0.1, 0.2, 0.5, 0.8, 0.9, 0.99]:

    X_train, X_test, y_train, y_test = train_test_split(

        trainning_input, target, test_size=test_size)

    tclf = RandomForestClassifier(max_depth=3)

    tclf.fit(X_train, y_train)

    score = tclf.score(X_test, y_test)

    print(f'{1 - test_size:.1%} {score:.2%}')

The output is the following (remember that you will get different values):

99.0% 71.43%

90.0% 94.20%

80.0% 97.81%

50.0% 97.66%

20.0% 96.89%

10.0% 94.80%

1.0% 92.02%
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If you only train with 1% of the data, you only get 71% accuracy, whereas if you train with more, the 
accuracy goes above 90%. Note that accuracy does not monotonically increase with the size of the 
training set. Deciding on the size of the training set is a complex affair with various issues causing 
unexpected side effects.

There’s more...

We only scratched the surface of training and testing machine learning algorithms. For example, 
supervised datasets are normally split into 3, not 2 (training, test, and cross-validation). There are 
many more issues that you need to consider in order to train your algorithm and many more types of 
algorithms. In this chapter, we tried to develop basic intuition to understand machine learning, but 
this is nothing more than your starting point if you intend to follow this route.
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11
Parallel Processing  
with Dask and Zarr

Bioinformatics datasets are growing at an exponential rate. Data analysis strategies based on standard 
tools such as Pandas assume that datasets are able to fit in memory (though with some provision 
for out-of-core analysis) or that a single machine is able to efficiently process all the data. This is, 
unfortunately, not realistic for many modern datasets.

In this chapter, we will introduce two libraries that are able to deal with very large datasets and 
expensive computations:

•	 Dask is a library that allows parallel computing that can scale from a single computer to very 
large cloud and cluster environments. Dask provides interfaces that are similar to Pandas and 
NumPy while allowing you to deal with large datasets spread over many computers.

•	 Zarr is a library that stores compressed and chunked multidimensional arrays. As we will see, 
these arrays are tailored to deal with very large datasets processed in large computer clusters, 
while still being able to process data on a single computer if need be.

Our recipes will introduce these advanced libraries using data from mosquito genomics. You should look 
at this code as a starting point to get you on the path to processing large datasets. Parallel processing 
of large datasets is a complex topic, and this is the beginning—not the end—of your journey.

Because all these libraries are fundamental for data analysis, if you are using Docker, they all can be 
found on the tiagoantao/bioinformatics_dask Docker image.

In this chapter, we will cover the following recipes:

•	 Reading genomics data with Zarr

•	 Parallel processing of data using Python multiprocessing

•	 Using Dask to process genomic data based on NumPy arrays

•	 Scheduling tasks with dask.distributed
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Reading genomics data with Zarr 
Zarr (https://zarr.readthedocs.io/en/stable/) stores array-based data—such as 
NumPy —in a hierarchical structure on disk and cloud storage. The data structures used by Zarr to 
represent arrays are not only very compact but also allow for parallel reading and writing, something 
we will see in the next recipes. In this recipe, we will be reading and processing genomics data 
from the Anopheles gambiae 1000 Genomes project (https://malariagen.github.io/
vector-data/ag3/download.html). Here, we will simply do sequential processing to ease 
the introduction to Zarr; in the following recipe, we will do parallel processing. Our project will be 
computing the missingness for all genomic positions sequenced for a single chromosome. 

Getting ready

The Anopheles 1000 Genomes data is available from Google Cloud Platform (GCP). To download data 
from GCP, you will need gsutil, available from https://cloud.google.com/storage/
docs/gsutil_install. After you have gsutil installed, download the data (~2 gigabytes (GB)) 
with the following lines of code: 

mkdir -p data/AG1000G-AO/

gsutil -m rsync -r \

         -x '.*/calldata/(AD|GQ|MQ)/.*' \

         gs://vo_agam_release/v3/snp_genotypes/all/AG1000G-AO/ 
\

         data/AG1000G-AO/ > /dev/null

We download a subset of samples from the project. After downloading the data, the code to process 
it can be found in Chapter11/Zarr_Intro.py.

How to do it...

Take a look at the following steps to get started:

1.	 Let’s start by checking the structure made available inside the Zarr file: 

import numpy as np

import zarr 

mosquito = zarr.open('data/AG1000G-AO')

print(mosquito.tree())
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We start by opening the Zarr file (as we will soon see, this might not actually be a file). After 
that, we print the tree of data available inside it:

/

├── 2L

│   └── calldata

│       └── GT (48525747, 81, 2) int8

├── 2R

│   └── calldata

│       └── GT (60132453, 81, 2) int8

├── 3L

│   └── calldata

│       └── GT (40758473, 81, 2) int8

├── 3R

│   └── calldata

│       └── GT (52226568, 81, 2) int8

├── X

│   └── calldata

│       └── GT (23385349, 81, 2) int8

└── samples (81,) |S24

The Zarr file has five arrays: four correspond to chromosomes in the mosquito—2L, 2R, 3L, 
3R, and X (Y is not included)—and one has a list of 81 samples included in the file. The last 
array has the sample names included—we have 81 samples in this file. The chromosome data 
is made of 8-bit integers (int8), and the sample names are strings.

2.	 Now, let’s explore the data for chromosome 2L. Let’s start with some basic information:

gt_2l = mosquito['/2L/calldata/GT']

gt_2l

Here is the output:

<zarr.core.Array '/2L/calldata/GT' (48525747, 81, 2) 
int8>

We have an array of 4852547 single-nucleotide polymorphisms (SNPs), for 81 samples. 
For each SNP and sample, we have 2 alleles.

3.	 Let’s now inspect how the data is stored:

gt_2l.info
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The output looks like this:

Name               : /2L/calldata/GT

Type               : zarr.core.Array

Data type          : int8

Shape              : (48525747, 81, 2)

Chunk shape        : (300000, 50, 2)

Order              : C

Read-only          : False

Compressor         : Blosc(cname='lz4', clevel=5, 
shuffle=SHUFFLE, blocksize=0)

Store type         : zarr.storage.DirectoryStore

No. bytes          : 7861171014 (7.3G)

No. bytes stored   : 446881559 (426.2M)

Storage ratio      : 17.6

Chunks initialized : 324/324

There is a lot to unpack here, but for now, we will concentrate on the store type, bytes stored, 
and storage ratio. The Store type value is zarr.storage.DirectoryStore, so 
the data is not in a single file but inside a directory. The raw size of the data is 7.3 GB! But 
Zarr uses a compressed format that reduces the size to 426.2 megabytes (MB). This means 
a compression ratio of 17.6.

4.	 Let’s peek at how the data is stored inside the directory. If you list the contents of the AG1000G-AO 
directory, you will find the following structure:

.

├── 2L

│   └── calldata

│       └── GT

├── 2R

│   └── calldata

│       └── GT

├── 3L

│   └── calldata

│       └── GT

├── 3R

│   └── calldata

│       └── GT

├── samples
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└── X

    └── calldata

        └── GT

5.	 If you list the contents of 2L/calldata/GT, you will find plenty of files encoding the array:

0.0.0

0.1.0

1.0.0

...

160.0.0

160.1.0

There are 324 files inside the 2L/calldata/GT directory. Remember from a previous step 
that we have a parameter called Chunk shape with a value of (300000, 50, 2).

Zarr splits the array into chunks—bits that are easier to process in memory than loading the 
whole array. Each chunk has 30000x50x2 elements. Given that we have 48525747 SNPs, we 
need 162 chunks to represent the number of SNPs (48525747/300000 = 161.75) and then 
multiply it by 2 for the number of samples (81 samples/50 per chunk = 1.62). Hence, we end 
up with 162*2 chunks/files.

Tip
Chunking is a technique widely used to deal with data that cannot be fully loaded into memory 
in a single pass. This includes many other libraries such as Pandas or Zarr. We will see an example 
with Zarr later. The larger point is that you should be aware of the concept of chunking as it is 
applied in many cases requiring big data.

6.	 Before we load the Zarr data for processing, let’s create a function to compute some basic genomic 
statistics for a chunk. We will compute missingness, the number of ancestral homozygotes, 
and the number of heterozygotes:

def calc_stats(my_chunk):

    num_miss = np.sum(np.equal(my_chunk[:,:,0], -1), 
axis=1)

    num_anc_hom = np.sum(

        np.all([

            np.equal(my_chunk[:,:,0], 0),

            np.equal(my_chunk[:,:,0], my_chunk[:,:,1])], 
axis=0), axis=1)

    num_het = np.sum(
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        np.not_equal(

            my_chunk[:,:,0],

            my_chunk[:,:,1]), axis=1)

    return num_miss, num_anc_hom, num_het

If you look at the previous function, you will notice that there is nothing Zarr-related: it’s just 
NumPy code. Zarr has a very light application programming interface (API) that exposes 
most of the data inside NumPy, making it quite easy to use if you know NumPy.

7.	 Finally, let’s traverse our data—that is, traverse our chunks to compute our statistics:

complete_data = 0

more_anc_hom = 0

total_pos = 0

for chunk_pos in range(ceil(max_pos / chunk_pos_size)):

    start_pos = chunk_pos * chunk_pos_size

    end_pos = min(max_pos + 1, (chunk_pos + 1) * chunk_
pos_size)

    my_chunk = gt_2l[start_pos:end_pos, :, :]

    num_samples = my_chunk.shape[1]

    num_miss, num_anc_hom, num_het = calc_stats(my_chunk)

    chunk_complete_data = np.sum(np.equal(num_miss, 0))

    chunk_more_anc_hom = np.sum(num_anc_hom > num_het)

    complete_data += chunk_complete_data

    more_anc_hom += chunk_more_anc_hom

    total_pos += (end_pos - start_pos)

print(complete_data, more_anc_hom, total_pos)

Most of the code takes care of the management of chunks and involves arithmetic to decide 
which part of the array to access. The important part in terms of ready Zarr data is the 
my_chunk = gt_2l[start_pos:end_pos, :, :] line. When you slice a Zarr 
array, it will automatically return a NumPy array.

Tip
Be very careful with the amount of data that you bring into memory. Remember that most 
Zarr arrays will be substantially bigger than the memory that you have available, so if you try 
to load it, your application and maybe even your computer will crash. For example, if you do 
all_data = gt_2l[:, :, :], you will need around 8 GB of free memory to load it—as 
we have seen earlier, the data is 7.3 GB in size.

 EBSCOhost - printed on 2/9/2023 7:03 AM via . All use subject to https://www.ebsco.com/terms-of-use



Parallel processing of data using Python multiprocessing 297

There’s more...

Zarr has many more features than those presented here, and while we will explore some more in the 
next recipes, there are some possibilities that you should be aware of. For example, Zarr is one of the 
only libraries that allow for concurrent writing of data. You can also change the internal format of a 
Zarr representation.

As we have seen here, Zarr is able to compress data in very efficient ways—this is made possible by 
using the Blosc library (https://www.blosc.org/). You can change the internal compression 
algorithm of Zarr data owing to the flexibility of Blosc.

See also

There are alternative formats to Zarr—for example, Hierarchical Data Format 5 (HDF5) (https://
en.wikipedia.org/wiki/Hierarchical_Data_Format) and Network Common Data 
Form (NetCDF) (https://en.wikipedia.org/wiki/NetCDF). While these are more common 
outside the bioinformatics space, they have less functionality—for example, a lack of concurrent writes. 

Parallel processing of data using Python multiprocessing
When dealing with lots of data, one strategy is to process it in parallel so that we make use of all 
available central processing unit (CPU) power, given that modern machines have many cores. In a 
theoretical best-case scenario, if your machine has eight cores, you can get an eight-fold increase in 
performance if you do parallel processing.

Unfortunately, typical Python code only makes use of a single core. That being said, Python has built-in 
functionality to use all available CPU power; in fact, Python provides several avenues for that. In this 
recipe, we will be using the built-in multiprocessing module. The solution presented here works 
well in a single computer and if the dataset fits into memory, but if you want to scale it in a cluster or 
the cloud, you should consider Dask, which we will introduce in the next two recipes.

Our objective here will again be to compute some statistics around missingness and heterozygosity.

Getting ready

We will be using the same data as in the previous recipe. The code for this recipe can be found in 
Chapter11/MP_Intro.py.
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How to do it...

Follow these steps to get started:

1.	 We will be using the exact same function as in the previous recipe to calculate statistics—this 
is heavily NumPy-based:

import numpy as np

import zarr

def calc_stats(my_chunk):

    num_miss = np.sum(np.equal(my_chunk[:,:,0], -1), 
axis=1)

    num_anc_hom = np.sum(

        np.all([

            np.equal(my_chunk[:,:,0], 0),

            np.equal(my_chunk[:,:,0], my_chunk[:,:,1])], 
axis=0), axis=1)

    num_het = np.sum(

        np.not_equal(

            my_chunk[:,:,0],

            my_chunk[:,:,1]), axis=1)

    return num_miss, num_anc_hom, num_het

2.	 Let’s access our mosquito data:

mosquito = zarr.open('data/AG1000G-AO')

gt_2l = mosquito['/2L/calldata/GT']

3.	 While we are using the same function to calculate statistics, our approach will be different for 
the whole dataset. First, we compute all the intervals for which we will call calc_stats. The 
intervals will be devised to match perfectly with the chunk division for variants:

chunk_pos_size = gt_2l.chunks[0]

max_pos = gt_2l.shape[0]

intervals = []

for chunk_pos in range(ceil(max_pos / chunk_pos_size)):

    start_pos = chunk_pos * chunk_pos_size

    end_pos = min(max_pos + 1, (chunk_pos + 1) * chunk_
pos_size)

    intervals.append((start_pos, end_pos))
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It is important that our interval list is related to the chunking on disk. The computation will 
be efficient as long as this mapping is as close as possible.

4.	 We are now going to separate the code to compute each interval in a function. This is important 
as the multiprocessing module will execute this function many times on each process 
that it creates:

def compute_interval(interval):

    start_pos, end_pos = interval

    my_chunk = gt_2l[start_pos:end_pos, :, :]

    num_samples = my_chunk.shape[1]

    num_miss, num_anc_hom, num_het = calc_stats(my_chunk)

    chunk_complete_data = np.sum(np.equal(num_miss, 0))

    chunk_more_anc_hom = np.sum(num_anc_hom > num_het)

    return chunk_complete_data, chunk_more_anc_hom

5.	  We are now finally going to execute our code over several cores:

with Pool() as p:

    print(p)

    chunk_returns = p.map(compute_interval, intervals)

    complete_data = sum(map(lambda x: x[0], chunk_
returns))

    more_anc_hom = sum(map(lambda x: x[1], chunk_
returns))

    print(complete_data, more_anc_hom)

The first line creates a context manager using the multiprocessing.Pool object. The Pool 
object, by default, creates several processes numbered os.cpu_count(). The pool provides a map 
function that will call our compute_interval function across all processes created. Each call will 
take one of the intervals.

There’s more...

This recipe provides a small introduction to parallel processing with Python without the need to 
use external libraries. That being said, it presents the most important building block for concurrent 
parallel processing with Python.

Due to the way thread management is implemented in Python, threading is not a viable alternative 
for real parallel processing. Pure Python code cannot be run in parallel using multithreading. 
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Some libraries that you might use—and this is normally the case with NumPy—are able to make use 
of all underlying processors even when executing a sequential piece of code. Make sure that when 
making use of external libraries, you are not overcommitting processor resources: this happens when 
you have multiple processes, and underlying libraries also make use of many cores.

See also

•	 There is way more to be discussed about the multiprocessing module. You can start 
with the standard documentation at https://docs.python.org/3/library/
multiprocessing.html.

•	 To understand why Python-based multithreading doesn’t make use of all CPU resources, read 
about the Global Interpreter Lock (GIL) at https://realpython.com/python-gil/.

Using Dask to process genomic data based on NumPy 
arrays
Dask is a library that provides advanced parallelism that can scale from a single computer to very 
large clusters or a cloud operation. It also provides the ability to process datasets that are larger than 
memory. It is able to provide interfaces that are similar to common Python libraries such as NumPy, 
Pandas, or scikit-learn.

We are going to repeat a subset of the example from previous recipes—namely, compute missingness 
for the SNPs in our dataset. We will be using an interface similar to NumPy that is offered by Dask.

Before we start, be aware that the semantics of Dask are quite different from libraries such as NumPy 
or Pandas: it is a lazy library. For example, when you specify a call equivalent to—say—np.sum, you 
are not actually calculating a sum, but adding a task that in the future will eventually calculate it. Let’s 
get into the recipe to make things clearer.

Getting ready

We are going to rechunk the Zarr data in a completely different way. The reason we do that is so that 
we can visualize task graphs during the preparation of our algorithm. Task graphs with five operations 
are easier to visualize than task graphs with hundreds of nodes. For practical purposes, you should 
not rechunk in so little chunks as we do here. In fact, you will be perfectly fine if you don’t rechunk 
this dataset at all. We are only doing it for visualization purposes:

import zarr

mosquito = zarr.open('data/AG1000G-AO/2L/calldata/GT')

zarr.array(

    mosquito,

 EBSCOhost - printed on 2/9/2023 7:03 AM via . All use subject to https://www.ebsco.com/terms-of-use

https://docs.python.org/3/library/multiprocessing.html
https://docs.python.org/3/library/multiprocessing.html
https://realpython.com/python-gil/.



Using Dask to process genomic data based on NumPy arrays 301

    chunks=(1 + 48525747 // 4, 81, 2),

    store='data/rechunk')

We will end up with very large chunks, and while that is good for our visualization purpose, they 
might be too big to fit in memory.

The code for this recipe can be found in Chapter11/Dask_Intro.py.

How to do it...

1.	 Let’s first load the data and inspect the size of the DataFrame:

import numpy as np

import dask.array as da

 

mosquito = da.from_zarr('data/rechunk')

mosquito

Here is the output if you are executing inside Jupyter:

Figure 11.1 - Jupyter output for a Dask array, summarizing our data

The full array takes up 7.32 GB. The most important number is the chunk size: 1.83 GB. 
Each worker will need to have enough memory to process a chunk. Remember that we are only 
using such a smaller number of chunks to be able to plot the tasks here.

Because of the large chunk sizes, we end up with just four chunks.

We did not load anything in memory yet: we just specified that we want to eventually do it. We 
are creating a task graph to be executed, not executing—at least for now.

2.	 Let’s see which tasks we have to execute to load the data:

mosquito.visualize()
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Here is the output:

Figure 11.2 - Tasks that need to be executed to load our Zarr array

We thus have four tasks to execute, one for each chunk.

3.	 Now, let’s look at the function to compute missingness per chunk:

def calc_stats(variant):

    variant = variant.reshape(variant.shape[0] // 2, 2)

    misses = np.equal(variant, -1)

    return misses

The function per chunk will operate on NumPy arrays. Note the difference: the code that we use 
to work on the main loop works with Dask arrays, but at the chunk level the data is presented 
as a NumPy array. Hence, the chunks have to fit in memory as NumPy requires that. 

4.	 Later, when we actually use the function, we need to have a two-dimensional (2D) array. Given 
that the array is three-dimensional (3D), we will need to reshape the array:

mosquito_2d = mosquito.reshape(

    mosquito.shape[0],

    mosquito.shape[1] * mosquito.shape[2])

mosquito_2d.visualize()

Here is the task graph as it currently stands:
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Figure 11.3 - The task graph to load genomic data and reshape it

The reshape operation is happening at the dask.array level, not at the NumPy level, so 
it just added nodes to the task graph. There is still no execution.

5.	 Let’s now prepare to execute the function—meaning adding tasks to our task graph—over all our 
dataset. There are many ways to execute it; here, we are going to use the apply_along_axis 
function that dask.array provides and is based on the equally named function from NumPy:

max_pos = 10000000

stats = da.apply_along_axis(

    calc_stats, 1, mosquito_2d[:max_pos,:],

    shape=(max_pos,), dtype=np.int64)

stats.visualize()

For now, we are only going to study the first million positions. As you can see in the task graph, 
Dask is smart enough to only add an operation to the chunk involved in the computation:
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Figure 11.4 - The complete task graph including statistical computing

6.	 Remember that we haven’t computed anything until now. It is now time to actually execute 
the task graph:

stats = stats.compute() 
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This will start the computation. Precisely how the computation is done is something we will discuss 
in the next recipe.

WARNING
Because of the chunk size, this code might crash your computer. You will be safe with at least 16 
GB of memory. Remember that you can use smaller chunk sizes—and you should use smaller 
chunk sizes. We just used chunk sizes like this in order to be able to generate the task graphs 
shown earlier (if not, they would have possibly hundreds of nodes and would be unprintable).

There’s more...

We didn’t spend any time here discussing strategies to optimize the code for Dask—that would be a 
book of its own. For very complex algorithms, you will need to research further into the best practices.

Dask provides interfaces similar to other known Python libraries such as Pandas or scikit-learn that 
can be used for parallel processing. You can also use it for general algorithms that are not based on 
existing libraries.

See also

•	 For best practices with Dask, your best starting point is the Dask documentation itself, especially 
https://docs.dask.org/en/latest/best-practices.html.

Scheduling tasks with dask.distributed
Dask is extremely flexible in terms of execution: we can execute locally, on a scientific cluster, or on 
the cloud. That flexibility comes at a cost: it needs to be parameterized. There are several alternatives to 
configure a Dask schedule and execution, but the most generic is dask.distributed as it is able 
to manage different kinds of infrastructure. Because I cannot assume you have access to a cluster or a 
cloud such as Amazon Web Services (AWS) or GCP, we will be setting up computation on your local 
machine, but remember that you can set up dask.distributed on very different kinds of platforms.

Here, we will again compute simple statistics over variants of the Anopheles 1000 Genomes project.

Getting ready

Before we start with dask.distributed, we should note that Dask has a default scheduler that 
actually can change depending on the library you are targeting. For example, here is the scheduler 
for our NumPy example:

import dask

from dask.base import get_scheduler
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import dask.array as da

mosquito = da.from_zarr('data/AG1000G-AO/2L/calldata/GT')

print(get_scheduler(collections=[mosquito]).__module__)

The output will be as follows:

dask.threaded

Dask uses a threaded scheduler here. This makes sense for a NumPy array: NumPy implementation 
is itself multithreaded (real multithreaded with parallelism). We don’t want lots of processes running 
when the underlying library is running in parallel to itself. If you had a Pandas DataFrame, Dask 
would probably choose a multiprocessor scheduler. As Pandas is not parallel, it makes sense for Dask 
to run in parallel itself.

OK—now that we have that important detail out of the way, let’s get back to preparing our environment.

dask.distributed has a centralized scheduler and a set of workers, and we need to start those. 
Run this code in the command line to start the scheduler:

dask-scheduler --port 8786 --dashboard-address 8787

 We can start workers on the same machine as the scheduler, like this:

dask-worker --nprocs 2 –nthreads 1 127.0.0.1:8786

I specified two processes with a single thread per process. This is reasonable for NumPy code, but 
the actual configuration will depend on your workload (and be completely different if you are on a 
cluster or a cloud).

Tip
You actually do not need to start the whole process manually as I did here. dask.distributed 
will start something for you—not really optimized for your workload—if you don’t prepare the 
system yourself (see the following section for details). But I wanted to give you a flavor of the 
effort as in many cases, you will have to set up the infrastructure yourself. 

Again, we will be using data from the first recipe. Be sure you download and prepare it, as explained 
in its Getting ready section. We won’t be using the rechunked part—we will be doing it in our Dask 
code in the following section. Our code is available in Chapter11/Dask_distributed.py.
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How to do it...

Follow these steps to get started:

1.	 Let’s start by connecting to the scheduler that we created earlier:

import numpy as np

import zarr

import dask.array as da

from dask.distributed import Client

 

client = Client('127.0.0.1:8786')

client

If you are on Jupyter, you will get a nice output summarizing the configuration you created in 
the Getting ready part of this recipe:

Figure 11.5 - Summary of your execution environment with dask.distributed
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You will notice the reference to a dashboard here. dask.distributed provides a real-time 
dashboard over the web that allows you to track the state of the computation. Point your browser 
to http://127.0.0.1:8787/ to find it, or just follow the link provided in Figure 11.5.

As we still haven’t done any computations, the dashboard is mostly empty. Be sure to explore 
the many tabs along the top:

Figure 11.6 - The starting state of the dask.distributed dashboard

2.	 Let’s load the data. More rigorously, let’s prepare the task graph to load the data:

mosquito = da.from_zarr('data/AG1000G-AO/2L/calldata/GT')

mosquito
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Here is the output on Jupyter:

Figure 11.7 - Summary of the original Zarr array for chromosome 2L

3.	 To facilitate visualization, let’s rechunk again. We are also going to have a single chunk for the 
second dimension, which is the samples. This is because our computation of missingness requires 
all the samples, and it makes little sense—in our specific case—to have two chunks per sample: 

mosquito = mosquito.rechunk((mosquito.shape[0]//8, 81, 
2))

As a reminder, we have very large chunks, and you might end up with memory problems. If 
that is the case, then you can run it with the original chunks. It’s just that the visualization will 
be unreadable.

4.	 Before we continue, let’s ask Dask to not only execute the rechunking but also to have the results 
of it at the ready in the workers:

mosquito = mosquito.persist()

The persist call makes sure the data is available in the workers. In the following screenshot, 
you can find the dashboard somewhere in the middle of the computation. You can find which 
tasks are executing on each node, a summary of tasks done and to be done, and the bytes stored 
per worker. Of note is the concept of spilled to disk (see the top left of the screen). If there is 
not enough memory for all chunks, they will temporarily be written to disk:
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Figure 11.8 - The dashboard state while executing the persist function for rechunking the array

5.	 Let’s now compute the statistics. We will use a different approach for the last recipe—we will 
ask Dask to apply a function to each chunk:

def calc_stats(my_chunk):

    num_miss = np.sum(

        np.equal(my_chunk[0][0][:,:,0], -1),

        axis=1)

    return num_miss

stats = da.blockwise(

    calc_stats, 'i', mosquito, 'ijk',

    dtype=np.uint8)

stats.visualize()

Remember that each chunk is not a dask.array instance but a NumPy array, so the code 
works on NumPy arrays. Here is the current task graph. There are no operations to load the 
data, as the function performed earlier executed all of those:
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Figure 11.9 - Calls to the calc_stats function over chunks starting with persisted data

6.	 Finally, we can get our results:

stat_results = stats.compute()

There’s more...

There is substantially more that can be said about the dask.distributed interface. Here, we 
introduced the basic concepts of its architecture and the dashboard.

dask.distributed provides an asynchronous interface based on the standard async module of 
Python. Due to the introductory nature of this chapter, we won’t address it, but you are recommended 
to look at it.

See also

•	 You can start with the documentation of dask.distributed at https://distributed.
dask.org/en/stable/.

•	 In many cases, you will need to deploy your code in a cluster or the cloud. Check out the 
deployment documentation for resources on different platforms: https://docs.dask.
org/en/latest/deploying.html.

•	 After you have mastered the content here, studying asynchronous computation in Python would 
be your next step. Check out https://docs.python.org/3/library/asyncio-
task.html.
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12
Functional Programming  

for Bioinformatics

Python is a multi-paradigm language that allows you to express computations in multiple different 
ways. It is sometimes called an object-oriented (OO) language: sure, you can write code in an OO 
dialect, but you can also use other styles. Most code in Python is written in an imperative style: there 
is no structuring along a class hierarchy, as typical of the OO paradigm, and most code changes state 
that, for example, if you write x = x + 1, you are changing the state of variable x.

If you write complex code, especially code that requires parallel processing, imperative and OO 
paradigms will hit some limits. For simple scripts that run on a single machine, imperative and OO 
styles will do fine, but bioinformatics is a big-data enterprise, and you will often need to scale up and 
scale out, as there is lots of information to process, and many algorithms are computationally heavy.

Functional programming is quite useful for the complex and parallel problems that are becoming more 
common within bioinformatics. Many modern architectures for high-throughput data analysis are 
based on functional programming ideas, for example, the MapReduce paradigm originally developed 
at Google and on platforms such as Apache Spark. These ideas are also directly applicable to Dask 
and even to making sequential code more robust.

Functional programming is based on functions, pure function evaluation, and avoiding mutability. 
In this chapter, we are going to take a very practical approach to presenting these concepts, with 
examples of their use cases within typical bioinformatics applications. By the end, you should have 
a basic conceptual grasp of functional programming, but above all, you will understand its utility 
and applicability.

If you are using Docker, and because all these libraries are fundamental for data analysis, they all can 
be found in the Docker image tiagoantao/bioinformatics_base.
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In this chapter, we will cover the following recipes:

•	 Understanding pure functions

•	 Understanding immutability

•	 Avoiding mutability as a robust development pattern

•	 Using lazy programming for pipelining

•	 The limits of recursion with Python 

•	 A showcase of Python’s functools module

Understanding pure functions 
A pure function has a couple of important properties: for the same inputs, it produces the same 
outputs, and it has no side effects (it doesn’t change global variables and doesn’t do I/O). In this recipe, 
we are going to introduce a few simple examples to make the concept clear. We are mostly – but not 
exclusively – interested in the second property: the lack of side effects. In later recipes, it will be made 
clear why pure functions can be quite useful.

We are going to develop a very simple example where we are counting the genes sequenced per sample. 
We will have a database on a text file with counts for genes. For example, we might have sequenced 
LCT and TP53 on a sample, and LCT, MRAP2, and POMC on another. The total count would be: 
TP53: 1, LCT: 2, MRPA2: 1, and POMC: 1. We will be using a CSV file that can be easily read with 
Pandas or even just the CSV module.

Getting ready

We will be using a simple CSV file as our little database. The code for this recipe can be found in 
Chapter12/Pure.py. The database file is my_genes.csv and there is a saved original state at 
my_genes.csv.base in case you need to get back to the original database state.

How to do it...

Take a look at the following steps to get started:

1.	 Let’s start by creating two simple functions to load and save the data. We also need some time 
to restore the original database:

import shutil

import pandas as pd

 

def restore_db(file_name):

    shutil.copyfile(f'{file_name}.base', file_name)
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def load(file_name):

    df = pd.read_csv(file_name).set_index('gene')

    return dict(df['count'])

 

 def save(dict_db, file_name):

    pd.Series(dict_db).to_csv(

        file_name, index_label='gene', header=['count'])

We use Pandas to take care of persistence. This is a very simple example; you could have also 
only used the csv module.

2.	 We will consider three alternative functions to report the genes seen in a sample; here is the first:

def add_sample_csv(gene_list):

    gene_count = load('my_genes.csv')

    for gene in gene_list:

        gene_count[gene]=gene_count(gene,0)+1

    save(gene_count, 'my_genes.csv')

This function automatically persists the data with a new sample. It has the side effect of reading 
and writing a file, so it’s not a pure function.

3.	 Here is a second alternative to also report the genes in a sample:

def add_sample_global_dict(gene_list):

    global gene_count

    for gene in gene_list:

        gene_count[gene] = gene_count.get(0) + 1

This function uses a global variable from the module and updates it, a side effect. We will not 
be using this function, but it is provided as a bad example of a function with side effects. We 
should avoid global variables.

4.	 Here is a pure function variant:

def add_sample_dict(dict_db, gene_list):

    for gene in gene_list:

        dict_db[gene] = dict_db.get(0) + 1

    return dict_db
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This function mutates one of its parameters – dict_db – and as we will see in the next recipe, 
this is not a best practice from a functional programming perspective. However, it always returns 
the same result for equal output and doesn’t have side effects, so it will be a good first approach.

5.	 Imagine that we now run the following:

add_sample_csv(['MC4R', 'TYR'])

But, if we run it 10 times by mistake, what would be the consequence? We would over-report 
both genes 9 times, corrupting the content of our database from a logical perspective.

6.	 As an alternative, consider the following:

add_sample_dict(gene_count, ['MC4R', 'TYR'])

If you run it 10 times, what would be the consequence? It would still be an error (as we are changing 
gene_count), but at least it is not yet committed to the disk. This dialect would be much more 
comfortable when doing exploratory data analysis – you could run it knowing that no external data 
would be damaged. In the next recipe, we are going to see an alternative to make re-running code 
less problematic.

There’s more...

In the next few recipes, we are going to see, with very practical cases, why pure functions can be very 
useful. But there is one specific case that would be cumbersome to explain with an example and as 
such, we are going to present the theory here.

Pure functions make parallelizing code much easier. Imagine a framework to execute distributed 
computing such as Dask or Spark. Such a framework has to deal with the potential case where 
hardware fails, and code needs to be moved and potentially repeated elsewhere. If your code writes 
to disk (as an example of a side effect) every time it’s run, it’s much more complicated for distributed 
frameworks to recover. If your code has no side effects, the distributed framework could repeat your 
function without any concern for data consistency. Indeed, many distributed frameworks do not allow 
you to have side effects in your parallelizable code. They also might frown at data structure mutability, 
something we are going to discuss now.

Understanding immutability
Another common trait of functional programming is that data structures are typically immutable. 
This is a tough concept to get around when you are used to imperative programming – the idea of 
programming without objects that change state over time. Here, we are going to see a simple example 
of making a function from the previous recipe work in an immutable way: that is, so that no objects 
are changed, and if we need to pass new information, we create new ones. 
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This recipe will give a short presentation on immutability from a data structure perspective. It will 
be, in a sense, the standard presentation that you can find in most books. Our main consideration, 
though, is to discuss mutability as a code design pattern, the topic of the following recipe. But for this, 
we need to understand immutability first.

We will be looking at two functions: one that mutates data structures and another that doesn’t. This 
will be done in the context of the example that we followed in the previous recipes of this chapter.

Getting ready

We will be using the same data as in the previous recipe. The code for this recipe can be found in 
Chapter12/Mutability.py.

How to do it...

Follow these steps:

1.	 From the previous recipe, we have a function that mutates the input dictionary:

def add_sample_dict(dict_db, gene_list):

    for gene in gene_list:

        dict_db.get(gene,0) +1

If you call this code with, say, add_sample_dict(gene_count, ['DEPP']), while 
there are no output parameters, your dictionary’s gene_count will be mutated to add 1 to 
the gene DEPP. If you run this function an excessive number of times – which is typical when 
doing exploratory data analysis – you would change your dictionary erroneously.

2.	 Contrast the previous implementation with the following:

def add_sample_new_dict(dict_db, gene_list):

    my_dict_db = dict(dict_db)

    for gene in gene_list:

        my_dict_db[gene] = my_dict_db.get(0) + 1

    return my_dict_db

In this case, we are copying dict_db to a new dictionary, my_dict_db, and adding the 
extra gene list. There is a memory and time cost of making the copy of the existing dictionary, 
but the original one, dict_db, is not changed.

3.	 If you use this implementation, you are sure that your input parameters are never changed:

new_gene_count = add_sample_new_dict(gene_count, 
['DEPP'])
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gene_count is not changed and new_gene_count is a completely new dictionary. You can repeat 
the execution as many times you want without being worried about the impact of each execution.

There’s more...

This simple recipe provides an example of a function that doesn’t mutate its parameters. We are 
now in a situation where we can execute this function as many times as we want – by mistake or on 
purpose – without any consequences for the rest of the code. This is quite useful when we are testing 
code or running exploratory data analysis, as we don’t have to be worried about side effects. This also 
facilitates the work of distributed executors such as Dask or Spark, as they don’t have to worry about 
checking the state of existing objects: they are fixed.

There are also important lessons here for general software design, even if you don’t use distributed 
executors. That is what we are going to investigate in the following recipe.

Avoiding mutability as a robust development pattern
The previous recipe introduced the concept of immutable data structures. In this recipe, we are going 
to discuss a design pattern that avoids persistent database mutability in your code until the very end. 
In terms of pseudocode, most applications in a long script work as follows:

Do computation 1

Write computation 1 to disk or database

Do computation 2

Write computation 2 to disk or database

….

Do computation n

Write computation n to disk or database

Here, we are going to present an alternative paradigm and discuss why it is generally better from a 
resilience point of view:

Do computation 1

Write computation 1 to temporary storage

Do computation 2

Write computation 2 to temporary storage

...

Do computation n

Write computation n to temporary storage

Take all temporary data and write it to definitive disk and 
database
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First, we will show the code for both approaches, and then discuss why, for complex and sophisticated 
scripts, the latter is a better approach in most cases.

We will use the same example as in the previous recipes: we will report on genes seen in different samples.

Getting ready

We will be using the same data as in the previous recipe. The code for this recipe can be found in 
Chapter12/Persistence1.py and Chapter12/Persistence2.py.

How to do it...

Let’s set up both solutions along with some shared code.

1.	 Both solutions still use load and save functions:

import pandas as pd

  

def restore_db(file_name):

    shutil.copyfile(f'{file_name}.base', file_name)

  

def load(file_name):

    df = pd.read_csv(file_name).set_index('gene')

    return dict(df['count'])

 

def save(dict_db, file_name):

    pd.Series(dict_db).to_csv(

        file_name, index_label='gene', header=['count'])

2.	 The first alternative, where we save as we go, is the following:

def add_sample_csv(gene_list):

    gene_count = load('my_genes.csv')

    for gene in gene_list:

        gene_count[gene]=gene_count(gene,0)+1

    save(gene_count, 'my_genes.csv')

 

add_sample_csv(['MC4R', 'TYR'])

add_sample_csv(['LCT', 'HLA-A'])

add_sample_csv(['HLA-B', 'HLA-C'])
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Every time we add a sample, we update the main database. While this solution is not very efficient 
from an I/O perspective, that is not the issue at hand here – actually, most design patterns of this 
kind tend to be more efficient from an I/O perspective than what we are going to look at next.

3.	 The second alternative, when we store definitive data at the end, is the following:

def add_sample_new_dict(dict_db, gene_list):

    my_dict_db = dict(dict_db)  # next recipe

    for gene in gene_list:

        dict_db.get(gene,0) +1

    return my_dict_db

 

gene_count = load('my_genes.csv')

gene_count = add_sample_new_dict(gene_count, ['MC4R', 
'TYR'])

gene_count = add_sample_new_dict(gene_count, ['LCT', 
'HLA-A'])

gene_count = add_sample_new_dict(gene_count, ['HLA-B', 
'HLA-C'])

save(gene_count, 'my_genes.csv')

In this case, we only update the main database at the very end. We use an in-memory dictionary to 
maintain the intermediate data.

There’s more...

So, why do this? The solution that delays writing the final data is, if anything, more complex, as 
we have to potentially store partial results along the way and manage that (which we do with the 
gene_count dictionary in this case – a simple example). In fact, this is true but code has bugs, 
disk storage fills up, and computers break in the real world, so facing this is the more important 
consideration in pragmatic terms.

Imagine that your first solution stops working in the middle of the execution for some reason. The 
database is in an unknown state, as you don’t know where the code was. You simply cannot restart 
the code from scratch, as part of it might already have been executed. So, you have to check what the 
state of the database is, see where the code stopped, and partially run what is missing, or find a way 
to roll back whatever part was executed. It is both cumbersome and bug-prone.

Now, imagine that there is a problem during the execution of the second approach: you do not have 
to worry about the intermediate state of the data because it doesn’t affect your final database and it 
will be completely recomputed in a second execution. You can just re-run the code, without worrying 
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about inconsistent states. The only exception is the very last line, but not only will this be less common 
but you can also concentrate all your effort on this point to make the process as resilient as possible.

Can this always be done? Or does it only work in some cases? Most code can be done so that it creates 
temporary files. Also, much of bioinformatics analysis is not real-time transactional, so it’s normally 
easy to update a SQL database only at the very end. And you now have a single point of failure that is 
relevant to your whole code – if there is a problem, you know you only need to concentrate on that 
very final part.

This approach, where possible, will make the day-to-day maintenance of complex code much easier.

Using lazy programming for pipelining
Lazy programming is a strategy where we defer computation until it’s really needed. It has many 
advantages compared with its counterpart, eager programming, where we compute everything as 
soon as we invoke a computation.

Python provides many mechanisms for lazy programming – indeed, one of the biggest changes from 
Python 2 to Python 3 is that the language became lazier.

To understand lazy programming, we are going again to take our gene database and do an exercise with 
it. We are going to check whether we have at least n genes with y reads each (for example, three genes 
with five reads each). This can be, say, a measure of the quality of our database – that is, a measure of 
whether we have enough genes with a certain number of samples.

We are going to consider two implementations: one lazy and one eager. We will then compare the 
implications of both approaches.

Getting ready

The code for this recipe can be found in Chapter12/Lazy.py.

How to do it...

Take a look at these two different approaches:

1.	 Let’s start with the eager implementation:

import pandas as pd

def load(file_name):

    df = pd.read_csv(file_name).set_index('gene')

    return dict(df['count'])
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def get_min_reads(all_data, min_reads):

    return {

        gene: count

        for gene, count in all_data.items()

        if count >= min_reads

    }

 

def has_min_observations(subset_data, min_observations):

    return len(subset_data) >= min_observations

print(has_min_observations(

    get_min_reads(

        load('my_genes.csv'), 4

    ), 3))

Notice that the code loads all the data, checks all entries for a count of 4, and sees if there are 
at least 3 observations with that count.

2.	 This is an alternative, lazy version:

def get_rec(file_name):

    with open(file_name) as f:

        f.readline()  # header

        for line in f:

            toks = line.strip().split(',')

            yield toks[0], int(toks[1])

 

def gene_min_reads(source, min_reads):

    for gene, count in source:

        if count >= min_reads:

            yield gene

 

def gene_min_observations(subset_source, min_
observations):

    my_observations = 0

    for gene in subset_source:

        my_observations += 1
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        if my_observations == min_observations:

            return True

    return False

print(gene_min_observations(

    gene_min_reads(

        get_rec('my_genes.csv'), 4

    ), 2))

This code behaves in a completely different way. First, get_rec and gene_min_reads are 
generators (note the yield), so they will only return results when required, one by one. gene_
min_observations will return as soon as it has seen the necessary number of observations. This 
means that the only data that will be read and processed is the bare minimum to arrive at a result. In 
a worst-case scenario, this is still the whole file, but in many cases, it can be much less.

There’s more...

The advantages of this approach can be seen with very large files. While there are no perceivable 
advantages with our toy file, if the file is too large to fit in memory, the first approach would simply crash! 
Also, every step of the pipeline will require enough memory to store all the data that it consumes, and 
all of the steps will need to be in-memory at the same time. So, even for medium-sized files, memory 
problems can occur with the eager version that would be avoided with the lazy version.

Many times, lazy code also does substantially less processing: as in the previous example, it may stop 
computation before seeing all the data. This is not always assured but happens with many use cases.

As a historical note, Python 2 was substantially more eager than Python 3. It is actually one of the 
main changes from Python 2 to Python 3. As a trivial example, consider the behavior of range in 
Python 2 versus 3.

Part of our lazy implementation can be written in a more succinct way by using some Python built-in 
modules – we will revisit this in the final recipe.

The limits of recursion with Python
Recursion – a function calling itself – is a fundamental concept in functional programming. Many 
languages that cater to functional programming are able to recurse ad infinitum. Python is not one 
of those languages. You can use recursion in Python, but you have to be aware of its limits, namely 
that recursion incurs quite a lot of memory costs and that it cannot be used to replace iteration – a 
typical case when writing functional programs.
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To see the limits of recursion with Python, we are going to implement the Fibonacci sequence in 
several ways. As a reminder, Fibonacci can be defined as follows:

Fib(0) = 0

Fib(1) = 1

Fib(n) = Fib(n -1) + Fib(n –2)

We are also computing the factorial function, but in this case only in a recursive way:

Fact(1) = 1

Fact(n) = n * Fact(n –1 )

Getting ready

Our code is available in Chapter12/Recursion.py.

How to do it...

Follow these steps to get started:

1.	 Let’s start with an iterative version of Fibonacci:

def fibo_iter(n):

    if n < 2:

        return n

    last = 1

    second_last = 0

    for _i in range(2, n + 1):

        result = second_last + last

        second_last = last

        last = result

    return result

This version is perfectly sufficient and also quite efficient. We are not suggesting that the iterative 
version is in any way lesser than the recursive version. On the contrary, with Python, it will 
probably perform better.

2.	 Here is a recursive version:

def fibo_naive(n):

    if n == 0:

        return 0
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    if n == 1:

        return 1

    return fibo_naive(n - 1) + fibo_naive(n - 2)

If you run it, you will see that the performance suffers quite substantially when compared with 
the iterative version. Furthermore, if you ask for fibo_naive(1000)  or a similarly large 
number, the code will not perform well at all (it can take many hours for 1,000 cases), whereas 
the iterative version will perform adequately. In the following recipe, we will actually fix part 
of this. But for now, let’s dig deeper into the issues with recursion and Python.

3.	 To make the case quite obvious, let’s implement a factorial function that is as simple as it can 
get from a recursive implementation perspective (even simpler than Fibonacci):

def factorial(n):

    if n == 1:

        return 1

    return n * factorial(n - 1)

If you run this function with a small number, such as factorial(5), you will get the 
correct answer, 5. But if you try a large number, such as factorial(20000), you will get 
the following:

Traceback (most recent call last):

  File "Recursion.py", line 8, in <module>

    factorial(20000)

  File "Recursion.py", line 4, in factorial

    return n * factorial(n - 1)

  File "Recursion.py", line 4, in factorial

    return n * factorial(n - 1)

  File "Recursion.py", line 4, in factorial

    return n * factorial(n - 1)

  [Previous line repeated 995 more times]

  File "Recursion.py", line 2, in factorial

    if n == 1:

RecursionError: maximum recursion depth exceeded in 
comparison

This error suggests that there is a limit to how much you can recurse in Python: Python can only 
recurse to a certain limit (see sys.setrecursionlimit to change this). While you can change 
the number of recursions to something bigger, there will always be a limit bound by the memory 
necessary to maintain the stack. There are also alternative ways to explicitly implement recursion, 
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but at the cost of speed. Many languages implement a feature called Tail Call Optimization (TCO), 
which allows for infinite levels of recursion with high performance, but Python doesn’t implement it.

There’s more...

You can use recursion in Python for simple cases without many recurring calls, but in Python, recursion 
is not a general substitute for iterative solutions. Recursion is probably the least well-implemented 
major feature from the functional world in Python.

A showcase of Python’s functools module
Python has three built-in modules that greatly help when writing code in a functional dialect: 
functools, operator, and itertools. In this recipe, we are going to briefly discuss the 
functools module. For example, the fundamental reduce function (where part of the name of 
MapReduce comes from) is only available if you import functools.

While a detailed exploration of these modules would be too long for a single recipe, we are going 
to showcase some functionality by improving some of the code of the previous recipes with the 
functionality from functools and showcase some illustrative examples of the utility of the module.

Getting ready

Our code is available in Chapter12/Builtin.py. We will make references to previous recipes.

How to do it...

Let’s look at several illustrative examples:

1.	 Remember that our recursive implementation of a factorial function in the previous recipe was 
not very efficient? Let’s mitigate many of its problems in a very simple way:

import functools

 

@functools.cache

def fibo(n):

    if n == 0:

        return 0

    if n == 1:

        return 1

    return fibo(n - 1) + fibo(n - 2)
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If you remember the recursive code in the previous recipe, it was very slow, even for small 
numbers. Doing fibo_naive(1000) could take hours. This function, just by adding the 
@functools.cache decorator, can process much higher numbers far more quickly. This 
is due to the cache decorator implementing memoization.

What is memoization?
Memoization is the process through which the computer caches the results of execution and, the 
next time it is called, instead of computing it again, just returns the stored result. For example, 
the first time you call fibo(10), to get the result, the function is actually executed, but the 
second time you call it, the result was cached on the first run and returned without execution. 
Memoization only works correctly if the function always returns the same output for an equal 
input and has no side effects. That is, memoization only works with pure functions.

2.	 For another example of an alternative to the existing code using a functional approach, take 
the function from the Using lazy programming for pipelining recipe:

def gene_min_reads(source, min_reads):

    for gene, count in source:

        if count >= min_reads:

            yield gene

There is already some functional flavor here, as we are using a generator.

3.	 This function can be written in a more functional dialect:

def gene_min_reads(source, min_reads):

    return map(

        lambda x: x[0],

        filter(lambda x: x[1] >= min_reads,

        source.items()))

There is a lot to unpack here. First, look at the built-in filter function: it will apply the function 
defined in the first parameter to objects of the iterator on the second parameter. In our case, 
objects where the second element is larger or equal to min_reads will be preserved. Then, 
the map function takes each object (which is of the type ('GENE', count)) and returns 
only the first part. map and filter functions are very common in dialects in functional 
programming. Also note the quintessential functional concept of the anonymous function, a 
lambda: this is a function definition that will only be used in a single place – it’s quite useful 
for very tiny functions. In this case, there is no direct reason to rewrite in this fashion (especially 
because the generator type of the previous definition already provides the most important 
feature of a functional dialect to our problem), but you will find many cases where this type of 
representation is more succinct and expressive.
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4.	 Another important concept that you will probably need when using distributed systems is partial 
function application – here is a simple example using the most basic of arithmetic functions:

def multiplication(x, y):

    return x * y

double = functools.partial(multiplication, 2)

double(3)

double is defined as partially resolving one of the arguments of multiplication – hence, we 
use the term partial function application. This is not only a stylistic issue, as sometimes in distributed 
platforms (or even just with the map function of multiprocessing pools), you are limited to only 
supplying a single parameter – hence, a partial function application becomes a necessity.

There’s more...

There are many more interesting applications in the functools module to check out. The itertools 
and operator modules also have many functions that are idiomatic from a functional perspective.

See also...

There are several functional programming libraries for Python – for example, see the following:

•	 Toolz (http://toolz.readthedocs.org/) with extra iterators, function utilities, and 
functional dialects for dictionary.

•	 Pyrsistent implements immutable data structures: https://github.com/tobgu/
pyrsistent.

•	 For general resources on functional programming for Python, be sure to check the awesome 
functional Python list on GitHub: https://github.com/sfermigier/awesome-
functional-python.
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Anaconda
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annotations

used, for extracting genes from 
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Apache Airflow
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API key
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Center for Disease Control (CDC)  192
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D
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Dask best practices
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dask.distributed
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parallel processing, with Python 
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preparing, for phylogenetic analysis  185-191
dataset for analysis
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Ensembl REST API
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genomics data
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Graphviz
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URL  88
used, for processing NGS data  88-92
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IPython third-party extensions
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J
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Jupyter
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jupytext
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K-Means clustering
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last-in, first-out (LIFO)  208
lazy programming
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M
MAFFT

reference link  192
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Matplotlib

reference link  47
used, for chart generation  39-46

Mendelian error information 
for quality control
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Message Digest 5 (MD5)  58
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mmCIF files

parsing, with Biopython  247, 248
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modern sequence formats
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molecular distances

computing, on PDB file  232-237
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multiprocessing
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National Center for Biotechnology 

Information (NCBI)  190
NCBI databases
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data, searching  51-53
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next-generation sequencing (NGS)  2, 93, 151
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NumPy
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bioinformatics  36-39

O
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object-oriented (OO) language  313
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accelerating, with Apache Arrow  32-35
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parallel processing of data
with Python multiprocessing  297-299

PDB file
molecular distances, computing on  228-232
used, for extracting information  232-237

Phred quality score
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reference link  59

phylogenetic analysis
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phylogenetic data
visualizing  210-214

phylogenetic trees
reconstructing  200-204
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lazy programming, using for  321-323
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PLINK
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used, for managing datasets  152-158

population structure
analyzing  167-174
investigating, with admixture  177-183
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installing, with Anaconda  2-7
installing, with Docker  7, 8

Principal Component Analysis (PCA)
about  151, 273
performing  174-177
using, in scikit-learn  273-276

protein
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Protein Data Bank (PDB)  217
proteomics  217
pure functions

about  314, 316
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PyMOL
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Python
about  313
limits of recursion  324, 325

Python Global Interpreter Lock (GIL)
reference link  300

Python multiprocessing
used, for parallel processing of data  297-299

Q
QuickGO

reference link  149

R
Random Forests

used, for predicting breast cancer 
outcomes  286-289

recursion
about  323
limits of recursion, with Python  324, 325

recursive algorithms  205-209
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RepeatMasker
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R programming
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used, for interfacing with R 

programming  9-15
rpy library
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S
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used, for exploring datasets  163-167
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analysis with xarray  158-163
Single-Nucleotide Polymorphism 

(SNP)  151, 293
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variant analysis pipeline, deploying  260-266

SNP data
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scheduling, with dask.distributed  305-311
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UniProt REST interface
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Vaccine Adverse Event Reporting 

System (VAERS)
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vaccine-adverse events
processing, with pandas  20-25
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variant analysis pipeline

deploying, with Nextflow  267-272
deploying, with Snakemake  260-266
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VCF files
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VectorBase
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Zarr
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memory  296

 EBSCOhost - printed on 2/9/2023 7:03 AM via . All use subject to https://www.ebsco.com/terms-of-use



Packt.com

Subscribe to our online digital library for full access to over 7,000 books and videos, as well as 
industry leading tools to help you plan your personal development and advance your career. For more 
information, please visit our website.

Why subscribe?
•	 Spend less time learning and more time coding with practical eBooks and Videos from over 

4,000 industry professionals

•	 Improve your learning with Skill Plans built especially for you

•	 Get a free eBook or video every month

•	 Fully searchable for easy access to vital information

•	 Copy and paste, print, and bookmark content

Did you know that Packt offers eBook versions of every book published, with PDF and ePub files 
available? You can upgrade to the eBook version at packt.com and as a print book customer, you 
are entitled to a discount on the eBook copy. Get in touch with us at customercare@packtpub.
com for more details.

At www.packt.com, you can also read a collection of free technical articles, sign up for a range of 
free newsletters, and receive exclusive discounts and offers on Packt books and eBooks.

 EBSCOhost - printed on 2/9/2023 7:03 AM via . All use subject to https://www.ebsco.com/terms-of-use

http://Packt.com
https://packt.com
https://customercare@packtpub.com
https://customercare@packtpub.com
https://www.packt.com


Other Books You May Enjoy

If you enjoyed this book, you may be interested in these other books by Packt:

Python Data Cleaning Cookbook

Michael Walker

ISBN: 9781800565661

•	 Find out how to read and analyze data from a variety of sources

•	 Produce summaries of the attributes of data frames, columns, and rows

•	 Filter data and select columns of interest that satisfy given criteria

•	 Address messy data issues, including working with dates and missing values

•	 Improve your productivity in Python pandas by using method chaining

•	 Use visualizations to gain additional insights and identify potential data issues

•	 Enhance your ability to learn what is going on in your data

•	 Build user-defined functions and classes to automate data cleaning

 EBSCOhost - printed on 2/9/2023 7:03 AM via . All use subject to https://www.ebsco.com/terms-of-use

https://packt.link/9781800565661


339Other Books You May Enjoy

Hands-On Data Preprocessing in Python

Roy Jafari

ISBN: 9781801072137

•	 Use Python to perform analytics functions on your data

•	 Understand the role of databases and how to effectively pull data from databases

•	 Perform data preprocessing steps defined by your analytics goals

•	 Recognize and resolve data integration challenges

•	 Identify the need for data reduction and execute it

•	 Detect opportunities to improve analytics with data transformation

 EBSCOhost - printed on 2/9/2023 7:03 AM via . All use subject to https://www.ebsco.com/terms-of-use

https://www.packtpub.com/product/hands-on-data-preprocessing-in-python/9781801072137?_ga=2.238617088.16212729.1662956062-1807312482.1626443335


340

Packt is searching for authors like you
If you’re interested in becoming an author for Packt, please visit authors.packtpub.com and 
apply today. We have worked with thousands of developers and tech professionals, just like you, to 
help them share their insight with the global tech community. You can make a general application, 
apply for a specific hot topic that we are recruiting an author for, or submit your own idea.

Share Your Thoughts
Now you’ve finished Bioinformatics with Python Cookbook, we’d love to hear your thoughts! If you 
purchased the book from Amazon, please click here to go straight to the Amazon review page for this 
book and share your feedback or leave a review on the site that you purchased it from.

Your review is important to us and the tech community and will help us make sure we’re delivering 
excellent quality content.

 EBSCOhost - printed on 2/9/2023 7:03 AM via . All use subject to https://www.ebsco.com/terms-of-use

https://authors.packtpub.com
https://packt.link/r/1-803-23642-6


 EBSCOhost - printed on 2/9/2023 7:03 AM via . All use subject to https://www.ebsco.com/terms-of-use


	Cover
	Title Page
	Copyright and Credits
	Contributors
	Table of Contents
	Preface
	Chapter 1: Python and the Surrounding 
Software Ecology
	Installing the required basic software with Anaconda
	Getting ready
	How to do it...
	There’s more...

	Installing the required software with Docker
	Getting ready
	How to do it...
	See also

	Interfacing with R via rpy2
	Getting ready
	How to do it...
	There’s more...
	See also

	Performing R magic with Jupyter
	Getting ready
	How to do it...
	There’s more...
	See also


	Chapter 2: Getting to Know NumPy, pandas, Arrow, and Matplotlib
	Using pandas to process vaccine-adverse events 
	Getting ready
	How to do it...
	There’s more...
	See also

	Dealing with the pitfalls of joining pandas DataFrames
	Getting ready
	How to do it...
	There’s more...

	Reducing the memory usage of pandas DataFrames
	Getting ready
	How to do it…
	See also

	Accelerating pandas processing with 
Apache Arrow
	Getting ready
	How to do it...
	There’s more...

	Understanding NumPy as the engine behind Python data science and bioinformatics
	Getting ready
	How to do it…
	See also

	Introducing Matplotlib for chart generation
	Getting ready
	How to do it...
	There’s more...
	See also


	Chapter 3: Next-Generation Sequencing
	Accessing GenBank and moving around NCBI databases
	Getting ready
	How to do it...
	There’s more...
	See also

	Performing basic sequence analysis
	Getting ready
	How to do it...
	There’s more...
	See also

	Working with modern sequence formats
	Getting ready
	How to do it...
	There’s more...
	See also

	Working with alignment data
	Getting ready
	How to do it...
	There’s more...
	See also

	Extracting data from VCF files
	Getting ready
	How to do it...
	There’s more...
	See also

	Studying genome accessibility and filtering SNP data
	Getting ready
	How to do it...
	There’s more...
	See also

	Processing NGS data with HTSeq
	Getting ready
	How to do it...
	There’s more...


	Chapter 4: Advanced NGS Data Processing
	Preparing a dataset for analysis
	Getting ready
	How to do it…

	Using Mendelian error information for quality control
	How to do it…
	There’s more…

	Exploring the data with standard statistics
	How to do it…
	There’s more…

	Finding genomic features from sequencing annotations
	How to do it…
	There’s more…

	Doing metagenomics with QIIME 2 Python API
	Getting ready
	How to do it...
	There’s more...


	Chapter 5: Working with Genomes
	Technical requirements
	Working with high-quality reference genomes
	Getting ready
	How to do it...
	There’s more...
	See also

	Dealing with low-quality genome references
	Getting ready
	How to do it...
	There’s more...
	See also

	Traversing genome annotations
	Getting ready
	How to do it...
	There’s more...
	See also

	Extracting genes from a reference using annotations
	Getting ready
	How to do it...
	There’s more...
	See also

	Finding orthologues with the Ensembl REST API
	Getting ready
	How to do it...
	There’s more...

	Retrieving gene ontology information from Ensembl
	Getting ready
	How to do it...
	There’s more...
	See also


	Chapter 6: Population Genetics
	Managing datasets with PLINK
	Getting ready
	How to do it...
	There’s more...
	See also

	Using sgkit for population genetics analysis with xarray
	Getting ready
	How to do it...
	There’s more...

	Exploring a dataset with sgkit
	Getting ready
	How to do it...
	There’s more...
	See also

	Analyzing population structure
	Getting ready
	How to do it...
	See also

	Performing a PCA
	Getting ready
	How to do it...
	There’s more...
	See also

	Investigating population structure with admixture
	Getting ready
	How to do it...
	There’s more...


	Chapter 7: Phylogenetics
	Preparing a dataset for phylogenetic analysis
	Getting ready
	How to do it...
	There’s more...
	See also

	Aligning genetic and genomic data
	Getting ready
	How to do it...

	Comparing sequences
	Getting ready
	How to do it...
	There’s more...

	Reconstructing phylogenetic trees
	Getting ready
	How to do it...
	There’s more...

	Playing recursively with trees
	Getting ready
	How to do it...
	There’s more...

	Visualizing phylogenetic data
	Getting ready
	How to do it...
	There’s more...


	Chapter 8: Using the Protein Data Bank
	Finding a protein in multiple databases
	Getting ready
	How to do it...
	There’s more

	Introducing Bio.PDB
	Getting ready
	How to do it...
	There’s more

	Extracting more information from a PDB file
	Getting ready
	How to do it...

	Computing molecular distances on a PDB file
	Getting ready
	How to do it...

	Performing geometric operations
	Getting ready
	How to do it...
	There’s more

	Animating with PyMOL
	Getting ready
	How to do it...
	There’s more

	Parsing mmCIF files using Biopython
	Getting ready
	How to do it...
	There’s more


	Chapter 9: Bioinformatics Pipelines
	Introducing Galaxy servers
	Getting ready
	How to do it…
	There’s more

	Accessing Galaxy using the API
	Getting ready
	How to do it…

	Deploying a variant analysis pipeline with Snakemake
	Getting ready
	How to do it…
	There’s more

	Deploying a variant analysis pipeline with Nextflow
	Getting ready
	How to do it…
	There’s more


	Chapter 10: Machine Learning 
for Bioinformatics
	Introducing scikit-learn with a PCA example
	Getting ready
	How to do it...
	There’s more...

	Using clustering over PCA to classify samples
	Getting ready
	How to do it...
	There’s more...

	Exploring breast cancer traits using Decision Trees
	Getting ready
	How to do it...

	Predicting breast cancer outcomes using Random Forests 
	Getting ready
	How to do it…
	There’s more...


	Chapter 11: Parallel Processing 
with Dask and Zarr
	Reading genomics data with Zarr 
	Getting ready
	How to do it...
	There’s more...
	See also

	Parallel processing of data using Python multiprocessing
	Getting ready
	How to do it...
	There’s more...
	See also

	Using Dask to process genomic data based on NumPy arrays
	Getting ready
	How to do it...
	There’s more...
	See also

	Scheduling tasks with dask.distributed
	Getting ready
	How to do it...
	There’s more...
	See also


	Chapter 12: Functional Programming 
for Bioinformatics
	Understanding pure functions 
	Getting ready
	How to do it...
	There’s more...

	Understanding immutability
	Getting ready
	How to do it...
	There’s more...

	Avoiding mutability as a robust development pattern
	Getting ready
	How to do it...
	There’s more...

	Using lazy programming for pipelining
	Getting ready
	How to do it...
	There’s more...

	The limits of recursion with Python
	Getting ready
	How to do it...
	There’s more...

	A showcase of Python’s functools module
	Getting ready
	How to do it...
	There’s more...
	See also...


	Index
	Other Books You May Enjoy



