0\ 0)

Bioinformatics
with Python
Cookbook (

Third Edition

Use modern Python libraries and applications to
solve real-world computational biology problems

Tiago Antao <P

Bioinformatics with
Python Cookbook
Third Edition

Use modern Python libraries and applications to solve
real-world computational biology problems

Tiago Antao

<packb

BIRMINGHAM—MUMBAI

EBSCChost - printed on 2/9/2023 7:03 AMvia . All use subject to https://wmv. ebsco.coniterns-of-use

EBSCChost -

Bioinformatics with Python Cookbook
Third Edition

Copyright © 2022 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval system, or transmitted
in any form or by any means, without the prior written permission of the publisher, except in the case
of brief quotations embedded in critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of the information
presented. However, the information contained in this book is sold without warranty, either express
or implied. Neither the author, nor Packt Publishing or its dealers and distributors, will be held liable
for any damages caused or alleged to have been caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the companies and
products mentioned in this book by the appropriate use of capitals. However, Packt Publishing cannot
guarantee the accuracy of this information.

Publishing Product Manager: Devika Battike

Senior Editor: David Sugarman

Content Development Editor: Joseph Sunil

Technical Editor: Rahul Limbachiya

Copy Editor: Safis Editing

Project Coordinator: Farheen Fathima

Proofreader: Safis Editing

Indexer: Pratik Shirodkar

Production Designer: Shankar Kalbhor

Marketing Coordinator: Priyanka Mhatre

First published: June 2015
Second edition: November 2018
Third edition: September 2022

Production reference: 1090922
Published by Packt Publishing Ltd.
Livery Place

35 Livery Street

Birmingham

B3 2PB, UK.

ISBN 978-1-80323-642-1

www . packt.com

printed on 2/9/2023 7:03 AMvia . Al use subject to https://ww.ebsco. coniterns-of-use

http://www.packt.com

Contributors

About the author

Tiago Antao is a bioinformatician who is currently working in the field of genomics. A former computer
scientist, Tiago moved into computational biology with an MSc in bioinformatics from the Faculty
of Sciences at the University of Porto, Portugal, and a PhD on the spread of drug-resistant malaria
from the Liverpool School of Tropical Medicine, UK. Post his doctoral, Tiago worked with human
datasets at the University of Cambridge, UK and with mosquito whole-genome sequencing data at the
University of Oxford, UK, before helping to set up the bioinformatics infrastructure at the University
of Montana, USA. He currently works as a data engineer in the biotechnology field in Boston, MA.
He is one of the co-authors of Biopython, a major bioinformatics package written in Python.

EBSCChost - printed on 2/9/2023 7:03 AMvia . All use subject to https://wmv. ebsco.coniterns-of-use

About the reviewers

Urminder Singh is a bioinformatician, computer scientist, and developer of multiple open source
bioinformatics tools. His educational background encompasses physics, computer science, and
computational biology degrees, including a Ph.D. in bioinformatics from Iowa State University, USA.

His diverse research interests include novel gene evolution, precision medicine, sociogenomics, machine
learning in medicine, and developing tools and algorithms for big heterogeneous data. You can visit
him online at urmi-21.github.io.

Tiffany Ho works as a bioinformatics associate at Embark Veterinary. She holds a BSc from the
University of California, Davis in genetics and genomics, and an MPS from Cornell University in
plant breeding and genetics.

EBSCChost - printed on 2/9/2023 7:03 AMvia . All use subject to https://wmv. ebsco.coniterns-of-use

EBSCChost -

printed on 2/9/2023 7:03 AMvia .

Table of Contents

Preface

xiii

Python and the Surrounding Software Ecology 1
Installing the required basic software Interfacing with R via rpy2 9
with Anaconda 2 Getting ready 9
Getting ready 2 How to do it... 10
How to do it... 4 There’s more... 15
There’s more... 5 See also 16
Installing the required software Performing R magic with Jupyter 16
with Docker 7 Getting ready 16
Getting ready 7 How to do it... 17
How to do it... 8 There’s more... 18
See also 8 See also 18
Getting to Know NumPy, pandas, Arrow, and Matplotlib 19
Using pandas to process vaccine- Getting ready 26
adverse events 20 Howtodoit.. 27
Getting ready 20 There’s more... 29
How to do ... 20 Reducing the memory usage of

There’s more... 25 pandas DataFrames 29
Seealso 26 Getting ready 29
Dealing with the pitfalls of joining How to do it... 29
pandas DataFrames 26 Seealso 32

Al'l use subject to https://ww.ebsco. confterns-of-use

Vi

- printed on 2/9/2023 7:03 AMvia .

Table of Contents

Accelerating pandas processing Getting ready 36
with Apache Arrow 32 Howtodoit... 36
Getting ready 33 See also 39
How to doit... 33 Introducing Matplotlib
There’s more... 35 for chart generation 39
Understanding NumPy as the Getting ready 40
engine behind Python data How to do it... 40
science and bioinformatics 36 There’s more... 47
See also 47
3
Next-Generation Sequencing 49
Accessing GenBank and moving How to do it... 66
around NCBI databases 50 There’s more... 72
Getting ready 50 See also 72
How to do it... >l Extracting data from VCF files 73
There’s more... 53 Getting ready 73
Seealso >4 How to do it... 74
Performing basic sequence analysis 55 There’s more... 75
Getting ready 55 See also 76
How to do it... > Studying genome accessibility and
There’s more... 6 filtering SNP data 76
Seealso >7 Getting ready 76
Working with modern sequence How to do it... 78
formats 57 There’s more... 88
Getting ready 57 See also 88
Howto doit... 58 Processing NGS data with HTSeq 88
There’s more... 64 Getting ready 89
Seealso 65 How to do it... 920
Working with alignment data 66 There’s more... 92
Getting ready 66

Al use subject to https://ww.ebsco.conterns-of-use

Table of Contents

4

Advanced NGS Data Processing 93
Preparing a dataset for analysis 93 There’s more... 111
Getting ready %4 Finding genomic features from

How to dofit... 94 sequencing annotations 111
Using Mendelian error information How to do it... 111
for quality control 101 Theres more... 114
Howto doit... 101" Doing metagenomics with

There’s more... 105 QIIME 2 Python API 114
Exploring the data with Getting ready 114
standard statistics 106 Howtodoit.. 116
How to do it... 106 There’s more... 119
Working with Genomes 121
Technical requirements 121 Extracting genes from a reference
Working with high-quality using annotations 137
reference genomes 122 Getting ready 137
Getting ready 122 How to do it... 138
How to do it... 123 There’s more... 140
There’s more... 127 See also 140
Seealso 128 Finding orthologues with the

genome references 128 Getting ready 141
Getting ready 128 How to do it... 141
How to do it... 129 There’s more... 144
There’s more... 133 Retrieving gene ontology

Seealso 134 information from Ensembl 144
Traversing genome annotations 134 Getting ready 144
Getting ready 134 How to do it... 145
How to do it... 134 There’s more... 149
There’s more... 136 Seealso 149
See also 137

EBSCChost - printed on 2/9/2023 7:03 AMvia . Al use subject to https://ww.ebsco.con terns-of-use

Vii

EBSCChost -

viii

printed on 2/9/2023 7:03 AMvia .

Table of Contents

6

Population Genetics 151
Managing datasets with PLINK 152 Analyzing population structure 167
Getting ready 152 Getting ready 168
How to do it... 154 How to do it... 168
There’s more... 158 See also 174
Seealso 158 Performing a PCA 174
Using sgkit for population genetics Getting ready 174
analysis with xarray 158 Howtodoit... 175
Getting ready 159 There’s more... 177
How to do it... 159 See also 177
Theres more... 163 Investigating population structure
Exploring a dataset with sgkit 163 with admixture 177
Getting ready 163 Getting ready 177
How to do it... 163 How to do it... 178
There’s more... 167 There’s more... 183
See also 167
7
Phylogenetics 185
Preparing a dataset for phylogenetic Reconstructing phylogenetic trees 200
analysis 185 Getting ready 200
Getting ready 186 How to do it... 201
How to do it... 186 There’s more... 204
Theres more... 192 Playing recursively with trees 205
See also 192

Getting ready 205
Aligning genetic and genomicdata 192 Howto doit... 205
Getting ready 192 There’s more... 209
Howto doit... 193 Visualizing phylogenetic data 210
Comparing sequences 195 Getting ready 210
Getting ready 195 How to do it... 210
How to do it... 195 There’s more... 215
There’s more... 200

Al use subject to https://ww.ebsco.conterns-of-use

EBSCChost -

Table of Contents

8

Using the Protein Data Bank 217
Finding a protein in multiple Getting ready 233
databases 218 Howtodoit... 233
Getting ready 218 performing geometric operations 237
?:w Eo doit... 218 Getting ready 237
eres more 222 How to do it... 237
Introducing Bio.PDB 222 There’s more 240
Getting ready 223 Animating with PyMOL 241
How t,o doit... 223 Getting ready 241
There’s more 228 How to do it... 241
Extracting more information There’s more 247
fror.n a PDB file 228 Parsing mmCIF files
Getting ready 228 using Biopython 247
How to do it... 228 Getting ready 247
Computing molecular distances How to do it... 247
on a PDB file 232 There’s more 248
Bioinformatics Pipelines 249
Introducing Galaxy servers 250 Deploying a variant analysis pipeline

Getting ready 250 with Snakemake 260

How to do it... 250 Getting ready 260

There’s more 252 How to do it... 261

Accessing Galaxy using the API 25y her¢smore 266

Getting ready 252 Deploying a variant analysis pipeline

How to do it... 254 with Nextflow 267
Getting ready 267
How to do it... 268
There’s more 272

printed on 2/9/2023 7:03 AMvia .

Al use subject to https://ww.ebsco.conterns-of-use

EBSCChost -

X Table of Contents

10

Machine Learning for Bioinformatics 273
Introducing scikit-learn with Exploring breast cancer traits using
a PCA example 273 Decision Trees 282
Getting ready 274 Getting ready 283
How to do it... 274 How to do it... 283
Theres more... 276 Predicting breast cancer outcomes
Using clustering over PCA using Random Forests 286
to classify samples 276 Getting ready 286
Getting ready 277 How to do it... 286
How to do it... 277 There’s more... 289
There’s more... 282
11
Parallel Processing with Dask and Zarr 291
Reading genomics data with Zarr 292 Using Dask to process genomic data
Getting ready 292 based on NumPy arrays 300
How to do it... 292 Getting ready 300
There’s more... 297 How to do it... 301
See also 297 There’s more... 305
Parallel processing of data using Seealso 305
Python multiprocessing 297 Scheduling tasks with dask.
Getting ready 297 distributed 305
How to do it... 298 Getting ready 305
There’s more... 299 How to do it... 307
See also 300 There’s more... 311
See also 311

printed on 2/9/2023 7:03 AMvia . Al use subject to https://ww.ebsco.con terns-of-use

Table of Contents xi

12

Functional Programming for Bioinformatics 313
Understanding pure functions 314 Usinglazy programming for
Getting ready 314 Pipelining 321
How to do it... 314 Getting ready 321
There’s more... 316 How to do it... 321
. . J There’ 323
Understanding immutability 316 eres more
Getting ready 317 The limits of recursion with Python 323
How to do it... 317 Getting ready 324
There’s more... 318 How to do it... 324
1 s There’ 326
Avoiding mutability as a robust cres more
development pattern 318 A showcase of Python’s functools
Getting ready 319 module 326
How to do it... 319 Getting ready 326
There’s more... 320 How to do it... 326
There’s more... 328
See also... 328
Index 329
Other Books You May Enjoy 338

EBSCChost - printed on 2/9/2023 7:03 AMvia . Al use subject to https://ww.ebsco.con terns-of-use

EBSCChost - printed on 2/9/2023 7:03 AMvia . All use subject to https://wmv. ebsco.coniterns-of-use

EBSCChost -

Preface

Bioinformatics is an active research field that uses a range of simple-to-advanced computations to
extract valuable information from biological data, and this book will show you how to manage these
tasks using Python.

This updated edition of the Bioinformatics with Python Cookbook begins with a quick overview of the
various tools and libraries in the Python ecosystem that will help you convert, analyze, and visualize
biological datasets. As you advance through the chapters, you'll cover key techniques for next-generation
sequencing, single-cell analysis, genomics, metagenomics, population genetics, phylogenetics, and
proteomics with the help of real-world examples. You'll learn how to work with important pipeline
systems, such as Galaxy servers and Snakemake, and understand the various modules in Python for
functional and asynchronous programming. This book will also help you explore topics such as SNP
discovery using statistical approaches under high-performance computing frameworks, including
Dask and Spark, and the application of machine learning algorithms to bioinformatics.

By the end of this bioinformatics Python book, you’ll be equipped with the knowledge to implement
the latest programming techniques and frameworks, empowering you to deal with bioinformatics
data on every kind of scale.

Who this book is for

This book is for bioinformatics analysts, data scientists, computational biologists, researchers, and
Python developers who want to address intermediate-to-advanced biological and bioinformatics
problems. Working knowledge of the Python programming language is expected. Basic knowledge
of biology would be helpful.

What this book covers

Chapter 1, Python and the Surrounding Software Ecology, tells you how to set up a modern bioinformatics
environment with Python. This chapter discusses how to deploy software using Docker, interface with
R, and interact with the Jupyter Notebooks.

Chapter 2, Getting to Know NumPy, pandas, Arrow, and Matplotlib, introduces the fundamental
Python libraries for data science: NumPy for array and matrix processing; Pandas for table-based data
manipulation; Arrow to optimize Pandas processing and Matplotlib for charting.

printed on 2/9/2023 7:03 AMvia . Al use subject to https://ww.ebsco. coniterns-of-use

EBSCChost -

Xiv

Preface

Chapter 3, Next-Generation Sequencing, provides concrete solutions to deal with next-generation
sequencing data. This chapter teaches you how to deal with large FASTQ, BAM, and VCF files. It also
discusses data filtering.

Chapter 4, Advanced NGS Processing, covers advanced programming techniques to filter NGS data.
This includes the use of mendelian datasets that are then analyzed by standard statistics. We also
introduce metagenomic analysis

Chapter 5, Working with Genomes, not only deals with high-quality references—such as the human
genome—but also discusses how to analyze other low-quality references typical in nonmodel species.
It introduces GFF processing, teaches you to analyze genomic feature information, and discusses how
to use gene ontologies.

Chapter 6, Population Genetics, describes how to perform population genetics analysis of empirical
datasets. For example, in Python, we could perform Principal Components Analysis, computer FST,
or structure/admixture plots.

Chapter 7, Phylogenetics, uses complete sequences of recently sequenced Ebola viruses to perform real
phylogenetic analysis, which includes tree reconstruction and sequence comparisons. This chapter
discusses recursive algorithms to process tree-like structures.

Chapter 8, Using the Protein Data Bank, focuses on processing PDB files, for example, performing the
geometric analysis of proteins. This chapter takes a look at protein visualization.

Chapter 9, Bioinformatics Pipelines, introduces two types of pipelines. The first type of pipeline is
Python-based Galaxy, a widely used system with a web interface targeting mostly non-programming
users although bioinformaticians might still have to interact with it programmatically. The second
type will be based on snakemake and nextflow, a type of pipeline that targets programmers.

Chapter 10, Machine Learning for Bioinformatics, introduces machine learning using an intuitive
approach to deal with computational biology problems. The chapter covers Principal Components
Analysis, Clustering, Decision Trees, and Random Forests.

Chapter 11, Parallel Processing with Dask and Zarr, introduces techniques to deal with very large datasets
and computationally intensive algorithms. The chapter will explain how to use parallel computation
across many computers (cluster or cloud). We will also discuss the efficient storage of biological data.

Chapter 12, Functional Programming for Bioinformatics, introduces functional programming which
permits the development of more sophisticated Python programs that, through lazy programming
and immutability are easier to deploy in parallel environments with complex algorithms

printed on 2/9/2023 7:03 AMvia . Al use subject to https://ww.ebsco. coniterns-of-use

To get the most out of this book xv

To get the most out of this book

Software/Hardware covered in the book | OS Requirements
Python 3.9 Windows, Mac OS X, and Linux (Preferred)
Numpy, Pandas, Matplolib

Biopython

Dask, zarr, scikit-learn

If you are using the digital version of this book, we advise you to type the code yourself or access
the code via the GitHub repository (link available in the next section). Doing so will help you
avoid any potential errors related to the copying and pasting of code.

Download the example code files

You can download the example code files for this book from GitHub at https://github.com/
PacktPublishing/Bioinformatics-with-Python-Cookbook-third-edition.
In case there’s an update to the code, it will be updated on the existing GitHub repository.

We also have other code bundles from our rich catalog of books and videos available at https: //
github.com/PacktPublishing/. Check them out!

Download the color images

We also provide a PDF file that has color images of the screenshots/diagrams used in this book. You
can download it here: https: //packt . 1link/3KQQO.

Conventions used

There are a number of text conventions used throughout this book.

Code in text: Indicates code words in text, database table names, folder names, filenames, file
extensions, pathnames, dummy URLs, user input, and Twitter handles. Here is an example: “call
genotype has a shape of 56,241x1,1198,2, that is it is dimensioned variants, samples, ploidy”

A block of code is set as follows:

from Bio import SeqIO

genome_name = 'PlasmoDB-9.3 Pfalciparum3D7_Genome.fasta'
recs = SeqlO.parse (genome name, 'fasta')

for rec in recs:

print (rec.description)

EBSCChost - printed on 2/9/2023 7:03 AMvia . All use subject to https://wmv. ebsco.coniterns-of-use

https://github.com/PacktPublishing/Bioinformatics-with-Python-Cookbook-third-edition
https://github.com/PacktPublishing/Bioinformatics-with-Python-Cookbook-third-edition
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://packt.link/3KQQO

XVi Preface

When we wish to draw your attention to a particular part of a code block, the relevant lines or items
are set in bold:

AgamP4 2L | organism=Anopheles gambiae PEST | version=AgamP4 |
length=49364325 | SO=chromosome
AgamP4 2R | organism=Anopheles gambiae PEST | version=AgamP4 |
length=61545105 | SO=chromosome

Bold: Indicates a new term, an important word, or words that you see onscreen. For example, words
in menus or dialog boxes appear in the text like this. Here is an example: “For the Chunk column,
see Chapter 11 — but you can safely ignore it for now.”

Tips or important notes

Appear like this.

Sections

In this book, you will find several headings that appear frequently (Getting ready, How to do it..., How
it works..., There’s more..., and See also).

To give clear instructions on how to complete a recipe, use these sections as follows:

Getting ready

This section tells you what to expect in the recipe and describes how to set up any software or any
preliminary settings required for the recipe.

How to do it...

This section contains the steps required to follow the recipe.

How it works...

This section usually consists of a detailed explanation of what happened in the previous section.

EBSCChost - printed on 2/9/2023 7:03 AMvia . All use subject to https://wmv. ebsco.coniterns-of-use

Get in touch XVii

There’s more...

This section consists of additional information about the recipe in order to make you more knowledgeable
about the recipe.

See also

This section provides helpful links to other useful information for the recipe.

Get in touch

Feedback from our readers is always welcome.

General feedback: If you have questions about any aspect of this book, mention the book title in the
subject of your message and email us at customercare@packtpub. com.

Errata: Although we have taken every care to ensure the accuracy of our content, mistakes do happen.
If you have found a mistake in this book, we would be grateful if you would report this to us. Please
visit www . packtpub.com/support/errata, selecting your book, clicking on the Errata
Submission Form link, and entering the details.

Piracy: If you come across any illegal copies of our works in any form on the Internet, we would
be grateful if you would provide us with the location address or website name. Please contact us at
copyright@packt . com with a link to the material.

If you are interested in becoming an author: If there is a topic that you have expertise in and you
are interested in either writing or contributing to a book, please visit authors . packtpub. com.

Reviews

Please leave a review. Once you have read and used this book, why not leave a review on the site that
you purchased it from? Potential readers can then see and use your unbiased opinion to make purchase
decisions, we at Packt can understand what you think about our products, and our authors can see
your feedback on their book. Thank you!

For more information about Packt, please visit packt . com.

EBSCChost - printed on 2/9/2023 7:03 AMvia . All use subject to https://wmv. ebsco.coniterns-of-use

https://customercare@packtpub.com
https://www.packtpub.com/support/errata
https://copyright@packt.com
https://authors.packtpub.com
https://packt.com

Xviii Preface

Share Your Thoughts

Once you've read Bioinformatics with Python Cookbook, wed love to hear your thoughts! Please click
here to go straight to the Amazon review page for this book and share your feedback.

Your review is important to us and the tech community and will help us make sure we're delivering
excellent quality content.

EBSCChost - printed on 2/9/2023 7:03 AMvia . All use subject to https://wmv. ebsco.coniterns-of-use

https://packt.link/r/1-803-23642-6
https://packt.link/r/1-803-23642-6

1
Python and the Surrounding

Software Ecology

We will start by installing the basic software that is required for most of this book. This will include
the Python distribution, some fundamental Python libraries, and external bioinformatics software.
Here, we will also look at the world outside of Python. In bioinformatics and big data, R is also a
major player; therefore, you will learn how to interact with it via rpy2, which is a Python/R bridge.
Additionally, we will explore the advantages that the IPython framework (via Jupyter Lab) can give
us in order to efficiently interface with R. Given that source management with Git and GitHub is
pervasive, we will make sure that our setup plays well with them. This chapter will set the stage for all
of the computational biologies that we will perform in the remainder of this book.

As different users have different requirements, we will cover two different approaches for installing
the software. One approach is using the Anaconda Python (http://docs.continuum.
io/anaconda/) distribution and another approach for installing the software is via Docker
(which is a server virtualization method based on containers sharing the same operating system
kernel; please refer to https://www.docker.com/). This will still install Anaconda for
you but inside a container. If you are using a Windows-based operating system, you are strongly
encouraged to consider changing your operating system or using Docker via some of the existing
options on Windows. On macOS, you might be able to install most of the software natively, though
Docker is also available. Learning using a local distribution (Anaconda or something else) is easier
than Docker, but given that package management can be complex in Python, Docker images
provide a level of stability.

In this chapter, we will cover the following recipes:

o Installing the required software with Anaconda

o Installing the required software with Docker

Interfacing with R via rpy2

o Performing R magic with Jupyter

EBSCChost - printed on 2/9/2023 7:03 AMvia . All use subject to https://wmv. ebsco.coniterns-of-use

http://docs.continuum.io/anaconda/
http://docs.continuum.io/anaconda/

EBSCChost -

Python and the Surrounding Software Ecology

Installing the required basic software with Anaconda

Before we get started, we need to install some basic prerequisite software. The following sections will
take you through the software and the steps that are needed to install them. Each chapter and section
might have extra requirements on top of these — we will make those clear as the book progresses. An
alternative way to start is to use the Docker recipe, after which everything will be taken care of for
you via a Docker container.

If you are already using a different Python distribution, you are strongly encouraged to consider
Anaconda, as it has become the de-facto standard for data science and bioinformatics. Also, it is
the distribution that will allow you to install software from Bioconda (https://bioconda.
github.io/).

Getting ready

Python can be run on top of different environments. For instance, you can use Python inside the Java
Virtual Machine (JVM) (via Jython or with .NET via IronPython). However, here, we are not only
concerned with Python but also with the complete software ecology around it. Therefore, we will use
the standard (CPython) implementation, since the JVM and .NET versions exist mostly to interact
with the native libraries of these platforms.

For our code, we will be using Python 3.10. If you were starting with Python and bioinformatics,
any operating system will work. But here, we are mostly concerned with intermediate to
advanced usage. So, while you can probably use Windows and macOS, most of the heavy-duty
analysis will be done on Linux (probably on a Linux high-performance computing or HPC
cluster). Next-generation sequencing (NGS) data analysis and complex machine learning are
mostly performed on Linux clusters.

If you are on Windows, you should consider upgrading to Linux for your bioinformatics work because
most modern bioinformatics software will not run on Windows. Note that macOS will be fine for
almost all analyses unless you plan to use a computer cluster, which will probably be Linux-based.

If you are on Windows or macOS and do not have easy access to Linux, don’t worry. Modern
virtualization software (such as VirtualBox and Docker) will come to your rescue, which will allow
you to install a virtual Linux on your operating system. If you are working with Windows and decide
that you want to go native and not use Anaconda, be careful with your choice of libraries; you will
probably be safer if you install the 32-bit version for everything (including Python itself).

Note

If you are on Windows, many tools will be unavailable to you.

printed on 2/9/2023 7:03 AMvia . Al use subject to https://ww.ebsco. coniterns-of-use

https://bioconda.github.io/
https://bioconda.github.io/

EBSCChost -

Installing the required basic software with Anaconda

Bioinformatics and data science are moving at breakneck speed; this is not just hype, its a reality.
When installing software libraries, choosing a version might be tricky. Depending on the code
that you have, it might not work with some old versions or perhaps not even work with a newer
version. Hopefully, any code that you use will indicate the correct dependencies — though this is not
guaranteed. In this book, we will fix the precise versions of all software packages, and we will make
sure that the code will work with them. It is quite natural that the code might need tweaking with
other package versions.

The software developed for this book is available at https://github.com/
PacktPublishing/Bioinformatics-with-Python-Cookbook-third-
edition. To access it, you will need to install Git. Getting used to Git might be a good idea because
lots of scientific computing software is being developed with it.

Before you install the Python stack properly, you will need to install all of the external non-Python
software that you will be interoperating with. The list will vary from chapter to chapter, and all
chapter-specific packages will be explained in their respective chapters. Fortunately, since the
previous editions of this book, most bioinformatics software has become available via the Bioconda
project; therefore, installation is usually easy.

You will need to install some development compilers and libraries, all of which are free. On Ubuntu,
consider installing the build-essential package (apt-get install build-essential),
and on macOS, consider Xcode (https://developer.apple.com/xcode/).

In the following table, you will find a list of the most important software to develop bioinformatics
with Python:

Name Application | URL Purpose
Project All chapters https://jupyter.org/ Interact}ve
Jupyter computing
pandas All chapters https://pandas.pydata.org/ Data processing
NumPy All chapters http://www.numpy.org/ Array/rflatrlx
processing
SciPy All chapters https://www.scipy.org/ Scientific computing
. Bioinf. :
Biopython | All chapters https://biopython.org/ . loinformatics
library
Statistical chart
seaborn All chapters http://seaborn.pydata.org/ .
library
R BlOlnfOI'.In.athS https://www.r-project .org/ Lan.gu.age for .
and Statistics statistical computing
rpy2 R connectivity | https://rpy2.readthedocs.io | Rinterface
PyVCF NGS https://pyvcf.readthedocs.io | VCF processing

printed on 2/9/2023 7:03 AMvia . Al use subject to https://ww.ebsco. coniterns-of-use

https://github.com/PacktPublishing/Bioinformatics-with-Python-Cookbook-third-edition
https://github.com/PacktPublishing/Bioinformatics-with-Python-Cookbook-third-edition
https://github.com/PacktPublishing/Bioinformatics-with-Python-Cookbook-third-edition
https://developer.apple.com/xcode/

EBSCChost -

4 Python and the Surrounding Software Ecology

https://github.com/pysam- |SAM/BAM
Pysam NGS .
developers/pysam processing
HTSeq NGS/Genomes | https://htseq.readthedocs.io | NGS processing
DendroPY | Phylogenetics |https://dendropy.org/ Phylogenetics
Molecul
PyMol Proteomics https://pymol.org i © ec.u aF
visualization
scikit-learn Mach.lne http://scikit-learn.org MaChme learning
learning library
Cython Big data http://cython.org/ High performance
Numba Big data https://numba.pydata.org/ High performance
Dask Big data http://dask.pydata.org Parallel processing

Figure 1.1 — A table showing the various software packages that are useful in bioinformatics

We will use pandas to process most table data. An alternative would be to use just standard Python.
pandas has become so pervasive in data science that it will probably make sense to just process all

tabular data with it (if it fits in memory).

All of our work will be developed inside project Jupyter, namely Jupyter Lab. Jupyter has become
the de facto standard to write interactive data analysis scripts. Unfortunately, the default format for
Jupyter Notebooks is based on JSON. This format is difficult to read, difficult to compare, and needs
exporting to be fed into a normal Python interpreter. To obviate that problem, we will extend Jupyter
with jupytext (https://jupytext.readthedocs.io/), which allows us to save

Jupyter notebooks as normal Python programs.

How to do it...

To get started, take a look at the following steps:

1. Start by downloading the Anaconda distribution from https://www.anaconda.
com/products/individual. We will be using version 21.05, although you will
probably be fine with the most recent one. You can accept all the installation’s default
settings, but you might want to make sure that the conda binaries are in your path (do
not forget to open a new window so that the path can be updated). If you have another
Python distribution, be careful with your PYTHONPATH and existing Python libraries.
It’s probably better to unset your PYTHONPATH. As much as possible, uninstall all other

Python versions and installed Python libraries.

2. Lets go ahead with the libraries. We will now create a new conda environment called
bioinformatics basewithbiopython=1.70,asshown in the following command:

conda create -n bioinformatics base python=3.10

printed on 2/9/2023 7:03 AMvia .

Al'l use subject to https://ww.ebsco. confterns-of-use

https://jupytext.readthedocs.io/

Installing the required basic software with Anaconda

3. Let’s activate the environment, as follows:

conda activate bioinformatics base

4. Let’s add the bioconda and conda-forge channels to our source list:

conda config --add channels bioconda

conda config --add channels conda-forge

5. Also, install the basic packages:

conda install \
biopython==1.79 \
jupyterlab==3.2.1 \
jupytext==1.13 \
matplotlib==3.4.3 \
numpy==1.21.3 \
pandas==1.3.4 \
scipy==1.7.1

6. Now, let’s save our environment so that we can reuse it later to create new environments in
other machines or if you need to clean up the base environment:

conda list -explicit > bioinformatics base.txt

7. We can even install R from conda:
conda install rpy2 r-essentials r-gridextra

Note that r-essentials installs a lot of R packages, including ggplot2, which we will
use later. Additionally, we install r-gridextra since we will be using it in the Notebook.

There’s more...

If you prefer not to use Anaconda, you will be able to install many of the Python libraries via pip
using whatever distribution you choose. You will probably need quite a few compilers and build
tools — not only C compilers but also C++ and Fortran.

We will not be using the environment we created in the preceding steps. Instead, we will use it
as a base to clone working environments from it. This is because environment management with
Python - even with the help of the conda package system - can still be quite painful. So, we will
create a clean environment that we never spoil and can derive from if our development environments
become unmanageable.

EBSCChost - printed on 2/9/2023 7:03 AMvia . All use subject to https://wmv. ebsco.coniterns-of-use

6 Python and the Surrounding Software Ecology

For example, imagine you want to create an environment for machine learning with scikit-
learn. You can do the following:

1. Create a clone of the original environment with the following:

conda create -n scikit-learn --clone bioinformatics base

2. Addscikit-learn:

conda activate scikit-learn
conda install scikit-learn

When inside JupyterLab, we should open our jupytext files with the notebook, not the text editor. As
the jupytext files have the same extension as Python files - this is a feature, not a bug - by default,
JupyterLab would use a normal text editor. When we open a jupytext file, we need to override the
default. When opening it, right-click and choose Notebook, as shown in the following screenshot:

: File Edit View Run Kemel Tabs Settings Help

L s c 4 Launcher +

|
| Filter files by name Q
o / Chapterol | Chapter01
= MName - Last Modified IE' Notebook
[A] base_setup.sh an hour ago
* [bicinformatics_base.txt an hour ago
a ﬁ
out.png & Open
[R_magicpy Open With » |] Motebook b
+ Open in New Browser Tab Editor

™ sequence.ind
Jupytext Notebook

Rename F2

% Delete N Console

3 Cut Ctrl+X

T copy ctrisc

[Paste Ctri+V a \Q
0 Duplicate Ctrl+D

* Download (m‘:ﬂj} "
0 Copy Download Link

™ Copy Path Other

n
U

Copy Shareable Link

= Mew File —
—
™ Mew Notebook _—
—
Mew Folder
Terminal Text File

Shift+Right Click for Brow

Figure 1.2 - Opening a jupytext file in Notebook

EBSCChost - printed on 2/9/2023 7:03 AMvia . Al use subject to https://ww.ebsco.con terns-of-use

EBSCChost -

Installing the required software with Docker

Our jupytext files will not be saving graphical outputs and that will suffice for this book. If you want
to have a version with images, this is possible using paired notebooks. For more details, check the
Jupytext page (https://github.com/mwouts/jupytext).

Warning

As our code is meant to be run inside Jupyter, many times throughout this book, I will not use
print to output content, as the last line of a cell will be automatically rendered. If you are
not using notebooks, remember to do a print.

Installing the required software with Docker

Docker is the most widely-used framework for implementing operating system-level virtualization.
This technology allows you to have an independent container: a layer that is lighter than a virtual
machine but still allows you to compartmentalize software. This mostly isolates all processes, making
it feel like each container is a virtual machine.

Docker works quite well at both extremes of the development spectrum: it’s an expedient way to
set up the content of this book for learning purposes and could become your platform of choice
for deploying your applications in complex environments. This recipe is an alternative to the
previous recipe.

However, for long-term development environments, something along the lines of the previous recipe
is probably your best route, although it can entail a more laborious initial setup.

Getting ready

If you are on Linux, the first thing you have to do is install Docker. The safest solution is to get the
latest version from https://www.docker . com/. While your Linux distribution might have
a Docker package, it might be too old and buggy.

If you are on Windows or macOS, do not despair; take a look at the Docker site. There are various
options available to save you, but there is no clear-cut formula, as Docker advances quite quickly on
those platforms. A fairly recent computer is necessary to run our 64-bit virtual machine. If you have
any problems, reboot your machine and make sure that the BIOS, VT-X, or AMD-V is enabled. At
the very least, you will need 6 GB of memory, preferably more.

Note

This will require a very large download from the internet, so be sure that you have plenty of
bandwidth. Also, be ready to wait for a long time.

printed on 2/9/2023 7:03 AMvia . Al use subject to https://ww.ebsco. coniterns-of-use

7

https://github.com/mwouts/jupytext
https://www.docker.com/

EBSCChost -

8 Python and the Surrounding Software Ecology

How to do it...
To get started, follow these steps:
1. Use the following command on your Docker shell:

docker build -t bio https://raw.githubusercontent.com/
PacktPublishing/Bioinformatics-with-Python-Cookbook-
third-edition/main/docker/main/Dockerfile

On Linux, you will either need to have root privileges or be added to the Docker Unix group.

2. Now you are ready to run the container, as follows:

docker run -ti -p 9875:9875 -v YOUR DIRECTORY:/data bio

3. Replace YOUR DIRECTORY with a directory on your operating system. This will be shared
between your host operating system and the Docker container. YOUR_DIRECTORY will be
seen in the container in /data and vice versa.

-p 9875:9875 will expose the container’s TCP port 9875 on the host computer port,
9875.

Especially on Windows (and maybe on macOS), make sure that your directory is actually
visible inside the Docker shell environment. If not, check the official Docker documentation
on how to expose directories.

4. Now you are ready to use the system. Point your browser tohttp://localhost:9875,
and you should get the Jupyter environment.

If this does not work on Windows, check the official Docker documentation (https://docs.
docker.com/) on how to expose ports.

See also
The following is also worth knowing:

o Docker is the most widely used containerization software and has seen enormous growth in
usage in recent times. You can read more aboutitat https: //www.docker.com/.

o A security-minded alternative to Docker is rkt, which can be found atht tps: //coreos.
com/rkt/.

o If you are not able to use Docker, for example, if you do not have the necessary permissions,
as will be the case on most computer clusters, then take a look at Singularity at https://
www.sylabs.io/singularity/.

printed on 2/9/2023 7:03 AMvia . Al use subject to https://ww.ebsco. coniterns-of-use

https://docs.docker.com/
https://docs.docker.com/
https://www.docker.com/
https://coreos.com/rkt/
https://coreos.com/rkt/
https://www.sylabs.io/singularity/
https://www.sylabs.io/singularity/

EBSCChost -

Interfacing with R via rpy2

Interfacing with R via rpy2

If there is some functionality that you need and you cannot find it in a Python library, your first port
of call is to check whether it’s been implemented in R. For statistical methods, R is still the most
complete framework; moreover, some bioinformatics functionalities are only available in R and are
probably offered as a package belonging to the Bioconductor project.

rpy2 provides a declarative interface from Python to R. As you will see, you will be able to write
very elegant Python code to perform the interfacing process. To show the interface (and to try out
one of the most common R data structures, the DataFrame, and one of the most popular R libraries,
ggplot2), we will download its metadata from the Human 1,000 Genomes Project (http://
www.1000genomes .oxrg/). This is not a book on R, but we want to provide interesting and
functional examples.

Getting ready

You will need to get the metadata file from the 1,000 Genomes sequence index. Please check
https://github.com/PacktPublishing/Bioinformatics-with-
Python-Cookbook-third-edition/blob/main/Datasets.py, and download
the sequence. index file. If you are using Jupyter Notebook, open the Chapter01l/
Interfacing R.py file and simply execute the wget command on top.

This file has information about all of the FASTQ files in the project (we will use data from the Human
1,000 Genomes Project in the chapters to come). This includes the FASTQ file, the sample ID, the
population of origin, and important statistical information per lane, such as the number of reads and
the number of DNA bases read.

To set up Anaconda, you can run the following:

conda create -n bioinformatics r --clone bioinformatics base
conda activate bioinformatics r

conda install r-ggplot2=3.3.5 r-lazyeval r-gridextra rpy2
With Docker, you can run the following:

docker run -ti -p 9875:9875 -v YOUR DIRECTORY:/data tiagoantao/
bioinformatics r

Now we can begin.

printed on 2/9/2023 7:03 AMvia . Al use subject to https://ww.ebsco. coniterns-of-use

http://www.1000genomes.org/
http://www.1000genomes.org/
https://github.com/PacktPublishing/Bioinformatics-with-Python-Cookbook-third-edition/blob/main/Datasets.py
https://github.com/PacktPublishing/Bioinformatics-with-Python-Cookbook-third-edition/blob/main/Datasets.py

EBSCChost -

10 Python and the Surrounding Software Ecology

How to do it...
To get started, follow these steps:
1. Lets start by doing some imports:

import os

from IPython.display import Image

import rpy2.robjects as robjects

import rpy2.robjects.lib.ggplot2 as ggplot2

from rpy2.robjects.functions import
SignatureTranslatedFunction

import pandas as pd
import rpy2.robjects as ro
from rpy2.robjects import pandas2ri

from rpy2.robjects import local converter

We will be using pandas on the Python side. R DataFrames map very well to pandas.

2. We will read the data from our file using Rs read . delim function:

read delim = robjects.r('read.delim')

seq data = read delim('sequence.index', header=True,
stringsAsFactors=False)

#In R:

seqg.data <- read.delim('sequence.index', header=TRUE,
stringsAsFactors=FALSE)

The first thing that we do after importing is to access the read.delim R function, which
allows you to read files. The R language specification allows you to put dots in the names
of objects. Therefore, we have to convert a function name into read_delim. Then, we
call the function name proper; note the following highly declarative features. Firstly, most
atomic objects, such as strings, can be passed without conversion. Secondly, argument names
are converted seamlessly (barring the dot issue). Finally, objects are available in the Python
namespace (however, objects are actually not available in the R namespace; we will discuss
this further later).

For reference, I have included the corresponding R code. I hope it’s clear that it’s an easy
conversion. The seq_data object is a DataFrame. If you know basic R or pandas, you are
probably aware of this type of data structure. If not, then this is essentially a table, that is, a
sequence of rows where each column has the same type.

printed on 2/9/2023 7:03 AMvia . Al use subject to https://ww.ebsco. coniterns-of-use

Interfacing with R via rpy2

3. Let’s perform a basic inspection of this DataFrame, as follows:

print ('This dataframe has %d columns and %d rows' %
(seq_data.ncol, seq data.nrow))

print (seq data.colnames)

#In R:

print (colnames (seqg.data))

print (nrow(seqg.data))

print (ncol (seqg.data))

Again, note the code similarity.

4. You can even mix styles using the following code:

my cols = robjects.r.ncol (seq data)

print (my cols)

You can call R functions directly; in this case, we will call ncol if they do not have dots in
their name; however, be careful. This will display an output, not 26 (the number of columns),
but [26], which is a vector that’s composed of the 26 element. This is because, by default,
most operations in R return vectors. If you want the number of columns, you have to perform
my cols[0]. Also, talking about pitfalls, note that R array indexing starts with 1, whereas
Python starts with 0.

5. Now, we need to perform some data cleanup. For example, some columns should be interpreted
as numbers, but instead, they are read as strings:

as_integer = robjects.r('as.integer')

match = robjects.r.match

my col = match('READ COUNT', seq data.colnames) [0] #
vector returned

print ('Type of read count before as.integer: %s' % seq
data[my col - 1].rclassl[0])
seq data[my col - 1] = as_integer(seq data[my col - 1])

print ('Type of read count after as.integer: %s' % seq
data[my col - 1] .rclass[0])

The mat ch function is somewhat similar to the index method in Python lists. As expected,
it returns a vector so that we can extract the 0 element. It’s also 1-indexed, so we subtract 1
when working on Python. The as_integer function will convert a column into integers.
The first print will show strings (that is values surrounded by "), whereas the second print
will show numbers.

EBSCChost - printed on 2/9/2023 7:03 AMvia . All use subject to https://wmv. ebsco.coniterns-of-use

EBSCChost -

12 Python and the Surrounding Software Ecology

6. We will need to massage this table a bit more; details on this can be found in the notebook.
Here, we will finalize getting the DataFrame to R (remember that while it’s an R object, it’s
actually visible on the Python namespace):

robjects.r.assign('seqg.data', seq data)

This will create a variable in the R namespace called seq.data, with the content of the
DataFrame from the Python namespace. Note that after this operation, both objects will be
independent (if you change one, it will not be reflected in the other).

Note

While you can perform plotting on Python, R has default built-in plotting functionalities
(which we will ignore here). It also has a library called ggplot2 that implements the
Grammar of Graphics (a declarative language to specify statistical charts).

7. Regarding our concrete example based on the Human 1,000 Genomes Project, first, we will
plot a histogram with the distribution of center names, where all sequencing lanes were
generated. For this, we will use ggplot:

from rpy2.robjects.functions import
SignatureTranslatedFunction

ggplot2.theme = SignatureTranslatedFunction (ggplot2.
theme, init prm translate = {'axis text x': 'axis.
text.x'})

bar = ggplot2.ggplot (seq data) + ggplot2.geom bar() +
ggplot2.aes string(x='CENTER NAME') + ggplot2.theme (axis
text x=ggplot2.element text (angle=90, hjust=1))
robjects.r.png('out.png', type='cairo-png')

bar.plot ()

dev_off = robjects.r('dev.off!')

dev_off ()

The second line is a bit uninteresting but is an important piece of boilerplate code. One of
the R functions that we will call has a parameter with a dot in its name. As Python function
calls cannot have this, we must map the axis.text .x R parameter name to the axis
text r Python name in the function theme. We monkey patch it (that is, we replace
ggplot2. theme with a patched version of itself).

Then, we draw the chart itself. Note the declarative nature of ggplot2 as we add features
to the chart. First, we specify the seq_data DataFrame, then we use a histogram bar plot
called geom_bar. Following this, we annotate the x variable (CENTER_NAME). Finally,

printed on 2/9/2023 7:03 AMvia . Al use subject to https://ww.ebsco. coniterns-of-use

Interfacing with R via rpy2 13

we rotate the text of the x-axis by changing the theme. We finalize this by closing the R
printing device.

8. Now, we can print the image in the Jupyter Notebook:
Image (filename="'out.png')

The following chart is produced:

120000-

90000 -

i I

BGI-
BI

O
%]

454MSC-
ABI

BCM-
ILLUMINA
MPIMG-
WUGSC

CENTER_NAME

Figure 1.3 - The ggplot2-generated histogram of center names, which is responsible for
sequencing the lanes of the human genomic data from the 1,000 Genomes Project

9. As a final example, we will now do a scatter plot of read and base counts for all of the
sequenced lanes for Yoruban (YRI) and Utah residents with ancestry from Northern and
Western Europe (CEU), using the Human 1,000 Genomes Project (the summary of the data of
this project, which we will use thoroughly, can be seen in the Working with modern sequence
formats recipe of Chapter 3, Next-Generation Sequencing). Additionally, we are interested in
the differences between the different types of sequencing (for instance, exome coverage, high

EBSCChost - printed on 2/9/2023 7:03 AMvia . All use subject to https://wmv. ebsco.coniterns-of-use

14 Python and the Surrounding Software Ecology

coverage, and low coverage). First, we generate a DataFrame with just the YRT and CEU lanes,
and limit the maximum base and read counts:

robjects.r('yri ceu <- seqg.datal[seq.data$POPULATION
%in% c("YRI", "CEU") & seq.data$BASE COUNT < 2E9 & seq.
data$READ_COUNT < 3E7, 1")

yri ceu = robjects.r('yri ceu')
10. Now we are ready to plot:

scatter = ggplot2.ggplot (yri ceu) + ggplot2.
aes_string(x='BASE_COUNT', y='READ COUNT',

shape='factor (POPULATION) ', col='factor (ANALYSIS GROUP) ')
+ ggplot2.geom point ()

robjects.r.png('out.png')

scatter.plot ()

Hopefully, this example (please refer to the following screenshot) makes the power of the
Grammar of Graphics approach clear. We will start by declaring the DataFrame and the type
of chart in use (that is, the scatter plot implemented by geom_point).

Note how easy it is to express that the shape of each point depends on the POPULATION
variable and that the color depends on the ANALYSIS GROUP variable:

3e+07 -

factor(POPULATION)
. CEU
A YRI
NA

2e+07 -

factor(ANALYSIS_GROUP)

© exome

READ_COUNT

© exon targetted
© high coverage
© low coverage

1e+07 - - '

0e+00-

0.06+00 5.00+08 156409 2.06+09

1.0e+09
BASE_COUNT

Figure 1.4 - The ggplot2-generated scatter plot with base and read counts for all sequencing lanes read;
the color and shape of each dot reflects categorical data (population and the type of data sequenced)

EBSCChost - printed on 2/9/2023 7:03 AMvia . All use subject to https://wmv. ebsco.coniterns-of-use

Interfacing with R via rpy2

11. Because the R DataFrame is so close to pandas, it makes sense to convert between the two
since that is supported by rpy2:

import rpy2.robjects as ro
from rpy2.robjects import pandas2ri
from rpy2.robjects.conversion import localconverter
with localconverter (ro.default converter + pandas2ri.
converter) :

pd yri ceu = ro.conversion.rpy2py (yri ceu)
del pd yri ceu['PAIRED FASTQ']
with localconverter (ro.default converter + pandas2ri.
converter) :

no paired = ro.conversion.py2rpy(pd yri ceu)
robjects.r.assign('no.paired', no paired)

robjects.r ("print (colnames (no.paired))")

We start by importing the necessary conversion module - rpy2 provides many strategies to convert
data from R into Python. Here, we are concerned with data frame conversion. We then convert
the R DataFrame (note that we are converting yri ceu in the R namespace, not the one on the
Python namespace). We delete the column that indicates the name of the paired FASTQ file on the
pandas DataFrame and copy it back to the R namespace. If you print the column names of the new
R DataFrame, you will see that PATRED FASTQ is missing.

There’s more...

It's worth repeating that the advances in the Python software ecology are occurring at a breakneck
pace. This means that if a certain functionality is not available today, it might be released sometime
in the near future. So, if you are developing a new project, be sure to check for the very latest
developments on the Python front before using functionality from an R package.

There are plenty of R packages for Bioinformatics in the Bioconductor project (http://www.
bioconductor.org/). This should probably be your first port of call in the R world for
bioinformatics functionalities. However, note that many R Bioinformatics packages are not on
Bioconductor, so be sure to search the wider R packages on Comprehensive R Archive Network
(CRAN) (refer to CRAN athttp://cran.rproject.org/).

There are plenty of plotting libraries for Python. Matplotlib is the most common library, but you
also have a plethora of other choices. In the context of R, it’s worth noting that there is a ggplot2-like
implementation for Python based on the Grammar of Graphics description language for charts,
and - surprise, surprise - this is called ggplot! (http://yhat .github.io/ggpy/).

- printed on 2/9/2023 7:03 AMvia . Al use subject to https://ww.ebsco.conlterns-of-use

15

http://www.bioconductor.org/
http://www.bioconductor.org/
http://cran.rproject.org/
http://yhat.github.io/ggpy/

EBSCChost -

16

Python and the Surrounding Software Ecology

See also
To learn more about these topics, please refer to the following resources:

o There are plenty of tutorials and books on R; check the R web page (http://www.r-
project.org/) for documentation.

o ForBioconductor, checkthedocumentationathttp: //manuals.bioinformatics.
ucr.edu/home/R_BioCondManual.

o If you work with NGS, you might also want to take look at high throughput sequence analysis
with Bioconductor at http://manuals.bioinformatics.ucr.edu/home/
ht-seq.

o The rpy library documentation is your Python gateway to R and can be foundathttps: //
rpy2.bitbucket.io/.

o The Grammar of Graphics approach is described in a book aptly named The Grammar of
Graphics, by Leland Wilkinson, Springer.

o In terms of data structures, similar functionality to R can be found in the pandas library.
You can find some tutorials at http://pandas.pydata.org/pandas-docs/
dev/tutorials.html. The book, Python for Data Analysis, by Wes McKinney, O’Reilly
Media, is also an alternative to consider. In the next chapter, we will discuss pandas and use
it throughout the book.

Performing R magic with Jupyter

Jupyter provides quite a few extra features compared to standard Python. Among those features,
it provides a framework of extensible commands called magics (actually, this only works with the
IPython kernel of Jupyter since it is actually an IPython feature, but that is the one we are concerned
with). Magics allow you to extend the language in many useful ways. There are magic functions that
you can use to deal with R. As you will see in our example, it makes R interfacing much easier and
more declarative. This recipe will not introduce any new R functionalities, but hopefully, it will make
it clear how IPython can be an important productivity boost for scientific computing in this regard.

Getting ready

You will need to follow the previous Getting ready steps of the Interfacing with R via rpy2 recipe. The
notebook is Chapter01/R_magic.py. The notebook is more complete than the recipe presented
here and includes more chart examples. For brevity, we will only concentrate on the fundamental
constructs to interact with R using magics. If you are using Docker, you can use the following:

docker run -ti -p 9875:9875 -v YOUR DIRECTORY:/data tiagoantao/
bioinformatics r

printed on 2/9/2023 7:03 AMvia . Al use subject to https://ww.ebsco. coniterns-of-use

http://www.r-project.org/
http://www.r-project.org/
http://manuals.bioinformatics.ucr.edu/home/R_BioCondManual
http://manuals.bioinformatics.ucr.edu/home/R_BioCondManual
http://manuals.bioinformatics.ucr.edu/home/ht-seq
http://manuals.bioinformatics.ucr.edu/home/ht-seq
https://rpy2.bitbucket.io/
https://rpy2.bitbucket.io/
http://pandas.pydata.org/pandas-docs/dev/tutorials.html
http://pandas.pydata.org/pandas-docs/dev/tutorials.html

Performing R magic with Jupyter

How to do it...

This recipe is an aggressive simplification of the previous one because it illustrates the conciseness
and elegance of R magics:

1. The first thing you need to do is load R magics and ggplot2:

import rpy2.robjects as robjects
import rpy2.robjects.lib.ggplot2 as ggplot2
$load ext rpy2.ipython

Note that % starts an IPython-specific directive. Just as a simple example, you can write $R
print (c (1, 2)) ontoa Jupyter cell

Check out how easy it is to execute the R code without using the robjects package.
Actually, rpy2 is being used to look under the hood.

2. Letsread the sequence . index file that was downloaded in the previous recipe:

o\°

%R

seqg.data <- read.delim('sequence.index', header=TRUE,
stringsAsFactors=FALSE)

seqg.data$SREAD COUNT <- as.integer (seg.data$READ COUNT)
seq.data$BASE COUNT <- as.integer (seq.data$BASE COUNT)

Then, you can specify that the entire cell should be interpreted as R code by using $%R (note
the double %%).

3. We can now transfer the variable to the Python namespace:
seqg data = %R seqg.data

print (type (seq data)) # pandas dataframe!

The type of the DataFrame is not a standard Python object, but a pandas DataFrame. This
is a departure from previous versions of the R magic interface.

4. As we have a pandas DataFrame, we can operate on it quite easily using the pandas
interface:

my col = list(seq data.columns) .index ("CENTER NAME")

seq data['CENTER NAME'] = seq data['CENTER NAME'] .
apply (lambda™ x: x.upper/())

5. Let’s put this DataFrame back into the R namespace, as follows:

$R -1 seq data

%R print (colnames (seq_data))

EBSCChost - printed on 2/9/2023 7:03 AMvia . All use subject to https://wmv. ebsco.coniterns-of-use

17

18 Python and the Surrounding Software Ecology

The - i argument informs the magic system that the variable that follows on the Python space
is to be copied into the R namespace. The second line just shows that the DataFrame is indeed
available in R. The name that we are using is different from the original - it's seq data,
instead of seq.data.

6. Let’s do some final cleanup (for further details, see the previous recipe) and print the same
bar chart as before:

o\

%R

bar <- ggplot(seq data) + aes(factor (CENTER NAME)) +
geom bar () + theme(axis.text.x = element text (angle = 90,
hjust = 1))

print (bar)

Additionally, the R magic system allows you to reduce code, as it changes the behavior of the
interaction of R with IPython. For example, in the ggplot2 code of the previous recipe, you do
not need to use the . png and dev.of £ R functions, as the magic system will take care of this for
you. When you tell R to print a chart, it will magically appear in your notebook or graphical console.

There’s more...

The R magics have seemed to have changed quite a lot over time in terms of their interface. For
example, I have updated the R code for the first edition of this book a few times. The current version
of the DataFrame assignment returns pandas objects, which is a major change.

See also
For more information, check out these links:

« For basic instructions on IPython magics, see https://ipython.readthedocs.
io/en/stable/interactive/magics.html.

o Alist of third-party extensions for IPython, including magic ones can be foundatht tps: //
github.com/ipython/ipython/wiki/Extensions-Index.

EBSCChost - printed on 2/9/2023 7:03 AMvia . All use subject to https://wmv. ebsco.coniterns-of-use

https://ipython.readthedocs.io/en/stable/interactive/magics.html
https://ipython.readthedocs.io/en/stable/interactive/magics.html
https://github.com/ipython/ipython/wiki/Extensions-Index
https://github.com/ipython/ipython/wiki/Extensions-Index

2

Getting to Know NumPy,
pandas, Arrow, and Matplotlib

One of Python’s biggest strengths is its profusion of high-quality science and data processing libraries.
At the core of all of them is NumPy, which provides efficient array and matrix support. On top of
NumPy, we can find almost all of the scientific libraries. For example, in our field, there’s Biopython.
But other generic data analysis libraries can also be used in our field. For example, pandas is the de facto
standard for processing tabled data. More recently, Apache Arrow provides efficient implementations
of some of pandas’ functionality, along with language interoperability. Finally, Matplotlib is the most
common plotting library in the Python space and is appropriate for scientific computing. While these
are general libraries with wide applicability, they are fundamental for bioinformatics processing, so
we will study them in this chapter.

We will start by looking at pandas as it provides a high-level library with very broad practical applicability.
Then, we'll introduce Arrow, which we will use only in the scope of supporting pandas. After that, we'll
discuss NumPy, the workhorse behind almost everything we do. Finally, we'll introduce Matplotlib.

Our recipes are very introductory — each of these libraries could easily occupy a full book, but the recipes
should be enough to help you through this book. If you are using Docker, and because all these libraries
are fundamental for data analysis, they can be found in the tiagoantao/bioinformatics
base Docker image from Chapter 1.

In this chapter, we will cover the following recipes:

« Using pandas to process vaccine-adverse events

+ Dealing with the pitfalls of joining pandas DataFrames

o Reducing the memory usage of pandas DataFrames

o Accelerating pandas processing with Apache Arrow

« Understanding NumPy as the engine behind Python data science and bioinformatics

o Introducing Matplotlib for chart generation

EBSCChost - printed on 2/9/2023 7:03 AMvia . All use subject to https://wmv. ebsco.coniterns-of-use

20 Getting to Know NumPy, pandas, Arrow, and Matplotlib

Using pandas to process vaccine-adverse events

We will be introducing pandas with a concrete bioinformatics data analysis example: we will be
studying data from the Vaccine Adverse Event Reporting System (VAERS, https://vaers.
hhs.gov/). VAERS, which is maintained by the US Department of Health and Human Services,
includes a database of vaccine-adverse events going back to 1990.

VAERS makes data available in comma-separated values (CSV) format. The CSV format is quite
simple and can even be opened with a simple text editor (be careful with very large file sizes as they
may crash your editor) or a spreadsheet such as Excel. pandas can work very easily with this format.

Getting ready

First, we need to download the data. It is available at https://vaers.hhs.gov/data/
datasets.html. Please download the ZIP file: we will be using the 2021 file; do not download a
single CSV file only. After downloading the file, unzip it, and then recompress all the files individually
withgzip -9 *csv to save disk space.

Feel free to have a look at the files with a text editor, or preferably with a tool such as less (zless
for compressed files). You can find documentation for the content of the filesat ht tps: //vaers.
hhs.gov/docs/VAERSDataUseGuide en September2021.pdf.

If you are using the Notebooks, code is provided at the beginning of them so that you can take care
of the necessary processing. If you are using Docker, the base image is enough.

The code can be found in Chapter02/Pandas_Basic.py.

How to do it...
Follow these steps:
1. Let’s start by loading the main data file and gathering the basic statistics:

vdata = pd.read csv(

"2021VAERSDATA.csv.gz", encoding="iso-8859-1")
vdata.columns
vdata.dtypes

vdata.shape

We start by loading the data. In most cases, there is no need to worry about the text encoding
as the default, UTE-8, will work, but in this case, the text encoding is legacy iso-8859-
1. Then, we print the column names, which start with VAERS ID, RECVDATE, STATE,

EBSCChost - printed on 2/9/2023 7:03 AMvia . All use subject to https://wmv. ebsco.coniterns-of-use

https://vaers.hhs.gov/
https://vaers.hhs.gov/
https://vaers.hhs.gov/data/datasets.html
https://vaers.hhs.gov/data/datasets.html
https://vaers.hhs.gov/docs/VAERSDataUseGuide_en_September2021.pdf
https://vaers.hhs.gov/docs/VAERSDataUseGuide_en_September2021.pdf

Using pandas to process vaccine-adverse events

AGE_ YRS, and so on. They include 35 entries corresponding to each of the columns. Then,
we print the types of each column. Here are the first few entries:

VAERS ID inté64
RECVDATE object
STATE object
AGE YRS floaté64
CAGE_YR floaté64
CAGE MO float64
SEX object

By doing this, we get the shape of the data: (654986, 35). This means 654,986 rows and 35
columns. You can use any of the preceding strategies to get the information you need regarding
the metadata of the table.

2. Now; let’s explore the data:

vdata.
vdata

vdata.
vdata.
vdata

vdata.

iloc[0]

= Vdata.Set_index("VAERS_ID")
loc[916600]

head (3)

.iloc[:3]

iloc[:5, 2:4]

There are many ways we can look at the data. We will start by inspecting the first row, based

on location.

Here is an abridged version:

VAERS_ID 916600
RECVDATE 01/01/2021
STATE TX
AGE_YRS 33.0
CAGE_YR 33.0

CAGE MO NaN

SEX F
TODAYS

DATE 01/01/2021
BIRTH DEFECT NaN
OFC_VISIT Y

EBSCChost - printed on 2/9/2023 7:03 AMvia . All use subject to https://wmv. ebsco.coniterns-of-use

21

EBSCChost -

22 Getting to Know NumPy, pandas, Arrow, and Matplotlib

ER_ED VISIT NaN

ALLERGIES Pcn and
bee venom

After we index by VAERS _ID, we can use one ID to get a row. We can use 916600 (which is
the ID from the preceding record) and get the same result.

Then, we retrieve the first three rows. Notice the two different ways we can do so:
* Using the head method
* Using the more general array specification; that is, iloc [: 3]

Finally, we retrieve the first five rows, but only the second and third columns -iloc[:5,
2:4]. Here is the output:

AGE_YRS CAGE YR

VAERS_ID

916600 33.0 33.0
916601 73.0 73.0
916602 23.0 23.0
916603 58.0 58.0
916604 47.0 47.0

3. Let’s do some basic computations now, namely computing the maximum age in the dataset:

vdata ["AGE_YRS"] .max ()
vdata.AGE_YRS.max ()

The maximum value is 119 years. More importantly than the result, notice the two dialects
for accessing AGE_ YRS (as a dictionary key and as an object field) for the access columns.

4. Now, let’s plot the ages involved:

vdata ["AGE_YRS"] .sort values () .plot (use index=False)
vdata ["AGE_YRS"] .plot.hist (bins=20)

printed on 2/9/2023 7:03 AMvia . Al use subject to https://ww.ebsco. coniterns-of-use

EBSCChost

Using pandas to process vaccine-adverse events

This generates two plots (a condensed version is shown in the following step). We use pandas
plotting machinery here, which uses Matplotib underneath.

5. While we have a full recipe for charting with Matplotlib (Introducing Matplotlib for chart
generation), let’s have a sneak peek here by using it directly:

import matplotlib.pylot as plt
fig, ax = plt.subplots(l, 2, sharey=True)
fig.suptitle ("Age of adverse eventsg")
vdata ["AGE YRS"] .sort values () .plot (
use index=False, ax=ax[0],
xlabel="0Obervation", ylabel="Age")

vdata ["AGE_YRS"] .plot.hist (bins=20,
orientation="horizontal")

This includes both figures from the previous steps. Here is the output:

Age of adverse events

120 A

100 A

80 A

60 A

Age

40 -

20 4

0 200000 400000 600000 O 20000 40000 60000
Frequency

Figure 2.1 - Left - the age for each observation of adverse effect;
right - a histogram showing the distribution of ages

6. We can also take a non-graphical, more analytical approach, such as counting the events per year:

vdata ["AGE_YRS"] .dropna () .apply (lambda x: int(x)) .value
counts ()

- printed on 2/9/2023 7:03 AMvia . Al use subject to https://wmv. ebsco.contterns-of -use

23

EBSCChost -

24 Getting to Know NumPy, pandas, Arrow, and Matplotlib

The output will be as follows:

50 11006
65 10948
60 10616
51 10513
58 10362

7. Now, let’s see how many people died:

vdata.DIED.value counts (dropna=False)
vdata["is dead"] = (vdata.DIED == "Y")

The output of the count is as follows:
NaN 646450
Y 8536
Name: DIED, dtype: inté64

Note that the type of DIED is not a Boolean. It's more declarative to have a Boolean representation
of a Boolean characteristic, so we create is_dead for it.

Tip

Here, we are assuming that NaN is to be interpreted as False. In general, we must be careful
with the interpretation of NaN. It may mean False or it may simply mean - as in most cases
- alack of data. If that were the case, it should not be converted into False.

8. Now, let’s associate the individual data about deaths with the type of vaccine involved:

dead = vdatal[vdata.is dead]

vax = pd.read csv("2021VAERSVAX.csv.gz",
encoding="1is0-8859-1") .set_index ("VAERS_ ID")

vax.groupby ("VAX TYPE") .size () .sort wvalues()
vaxl9 = vax[vax.VAX TYPE == "COVID19"]
vaxl9 dead = dead.join(vaxl9)
After we get a DataFrame containing just deaths, we must read the data that contains vaccine

information. First, we must do some exploratory analysis of the types of vaccines and their
adverse events. Here is the abridged output:

HPV9 1506

printed on 2/9/2023 7:03 AMvia . Al use subject to https://ww.ebsco. coniterns-of-use

EBSCChost -

Using pandas to process vaccine-adverse events

FLU4 3342
UNK 7941
VARZOS 11034
COVID19 648723

After that, we must choose just the COVID-related vaccines and join them with individual data.

Finally, let’s see the top 10 COVID vaccine lots that are overrepresented in terms of deaths and
how many US states were affected by each lot:

baddies = vax1l9 dead.groupby ("VAX LOT") .size() .sort
values (ascending=False)

for I, (lot, cnt) in enumerate (baddies.items()) :

print (lot, cnt, len(vaxl9 dead[vaxl9 dead.VAX LOT ==
lot] .groupby""STAT"")))

if 1 == 10:

break

The output is as follows:

Unknown 254 34
EN6201 120 30
EN5318 102 26
EN6200 101 22
EN6198 90 23
039K20A 89 13
EL3248 87 17
EL9261 86 21
EM9810 84 21
EL9269 76 18
EN6202 75 18

That concludes this recipe!

There’s more...

The preceding data about vaccines and lots is not completely correct; we will cover some data analysis
pitfalls in the next recipe.

In the Introducing Matplotlib for chart generation recipe, we will introduce Matplotlib, a chart library
that provides the backend for pandas plotting. It is a fundamental component of Python’s data
analysis ecosystem.

printed on 2/9/2023 7:03 AMvia . Al use subject to https://ww.ebsco. coniterns-of-use

25

26 Getting to Know NumPy, pandas, Arrow, and Matplotlib

See also
The following is some extra information that may be useful:

o While the first three recipes of this chapter are enough to support you throughout this book,
there is plenty of content available on the web to help you understand pandas. You can start
with the main user guide, which is available at ht tps: / /pandas.pydata.org/docs/
user guide/index.html.

o If you need to plot data, do not forget to check the visualization part of the guide since it
is especially helpful: https://pandas.pydata.org/docs/user guide/
visualization.html.

Dealing with the pitfalls of joining pandas DataFrames

The previous recipe was a whirlwind tour that introduced pandas and exposed most of the features
that we will use in this book. While an exhaustive discussion about pandas would require a complete
book, in this recipe - and in the next one — we are going to discuss topics that impact data analysis
and are seldom discussed in the literature but are very important.

In this recipe, we are going to discuss some pitfalls that deal with relating DataFrames through joins:
it turns out that many data analysis errors are introduced by carelessly joining data. We will introduce
techniques to reduce such problems here.

Getting ready

We will be using the same data as in the previous recipe, but we will jumble it a bit so that we can
discuss typical data analysis pitfalls. Once again, we will be joining the main adverse events table
with the vaccination table, but we will randomly sample 90% of the data from each. This mimics, for
example, the scenario where you only have incomplete information. This is one of the many examples
where joins between tables do not have intuitively obvious results.

Use the following code to prepare our files by randomly sampling 90% of the data:

vdata = pd.read csv("2021VAERSDATA.csv.gz",
encoding="iso-8859-1")

vdata.sample (frac=0.9) .to_csv("vdata sample.csv.gz",
index=False)

vax = pd.read csv("2021VAERSVAX.csv.gz", encoding="iso-8859-1")
vax.sample (frac=0.9) .to_csv("vax sample.csv.gz", index=False)

EBSCChost - printed on 2/9/2023 7:03 AMvia . All use subject to https://wmv. ebsco.coniterns-of-use

https://pandas.pydata.org/docs/user_guide/index.html
https://pandas.pydata.org/docs/user_guide/index.html
https://pandas.pydata.org/docs/user_guide/visualization.html
https://pandas.pydata.org/docs/user_guide/visualization.html

EBSCChost -

Dealing with the pitfalls of joining pandas DataFrames

Because this code involves random sampling, the results that you will get will be different from the
ones reported here. If you want to get the same results, I have provided the files that I used in the
Chaptero02 directory. The code for this recipe can be found in Chapter02/Pandas_Join.py.

How to do it...
Follow these steps:
1. Lets start by doing an inner join of the individual and vaccine tables:

vdata = pd.read csv("vdata sample.csv.gz")
vax = pd.read csv("vax sample.csv.gz")
vdata with vax = vdata.join(
vax.set_index ("VAERS ID"),
on="VAERS ID",
how="inner")

len(vdata), len(vax), len(vdata with vax)

The 1en output for this code is 589,487 for the individual data, 620,361 for the vaccination data,
and 558,220 for the join. This suggests that some individual and vaccine data was not captured.

2. Let’s find the data that was not captured with the following join:

lost vdata = vdata.loc[~vdata.index.isin(vdata with vax.
index)]

lost_vdata
lost vax = vax[~vax["VAERS ID"] .isin(vdata.index)]

lost vax
You will see that 56,524 rows of individual data aren’t joined and that there are 62,141 rows
of vaccinated data.

3. There are other ways to join data. The default way is by performing a left outer join:

vdata with vax left = vdata.join(
vax.set index ("VAERS ID"),
on="VAERS ID")

vdata with vax left.groupby ("VAERS ID") .size() .sort
values ()

A left outer join assures that all the rows on the left table are always represented. If there are
no rows on the right, then all the right columns will be filled with None values.

printed on 2/9/2023 7:03 AMvia . Al use subject to https://ww.ebsco. coniterns-of-use

27

28 Getting to Know NumPy, pandas, Arrow, and Matplotlib

(7

Warning

There is a caveat that you should be careful with. Remember that the left table - vdata - had
one entry per VAERS _ID. When you left join, you may end up with a case where the left-hand
side is repeated several times. For example, the groupby operation that we did previously
shows that VAERS ID of 962303 has 11 entries. This is correct, but it's not uncommon to
have the incorrect expectation that you will still have a single row on the output per row on
the left-hand side. This is because the left join returns 1 or more left entries, whereas the inner
join above returns 0 or 1 entries, where sometimes, we would like to have precisely 1 entry. Be
sure to always test the output for what you want in terms of the number of entries.

- J

4. 'There is a right join as well. Let’s right join COVID vaccines - the left table — with death events

- the right table:
dead = vdata[vdata.DIED == "Y"]
vaxl9 = vax[vax.VAX TYPE == "COVID19"]

vaxl9 dead = vaxl9.join(dead.set index("VAERS ID"),
on="VAERS ID", how="right")

len(vax1l9), len(dead), len(vaxl9 dead)
len(vax1l9 dead[vaxl9 dead.VAERS ID.duplicated()])
len(vax1l9 dead) - len(dead)

As you may expect, a right join will ensure that all the rows on the right table are
represented. So, we end up with 583,817 COVID entries, 7,670 dead entries, and a right
join of 8,624 entries.

We also check the number of duplicated entries on the joined table and we get 954. If we subtract
the length of the dead table from the joined table, we also get, as expected, 954. Make sure you
have checks like this when you’re making joins.

5. Finally, we are going to revisit the problematic COVID lot calculations since we now understand
that we might be overcounting lots:

vaxl9 dead["STATE"] = vaxl9 dead["STATE"] .str.upper ()

dead lot = vaxl1l9 dead[["VAERS ID", "VAX LOT", "STATE"]].
set index(["VAERS ID", "VAX LOT"])

dead lot clean = dead lot[~dead lot.index.duplicated()]
dead lot clean = dead lot clean.reset index()
dead lot clean[dead lot clean.VAERS ID.isna()]

baddies = dead lot clean.groupby ("VAX LOT") .size() .sort
values (ascending=False)

for i, (lot, cnt) in enumerate (baddies.items()) :

print (lot, cnt, len(dead lot clean[dead lot clean.

EBSCChost - printed on 2/9/2023 7:03 AMvia . All use subject to https://wmv. ebsco.coniterns-of-use

EBSCChost -

Reducing the memory usage of pandas DataFrames

VAX LOT == lot] .groupby ("STATE")))
if i == 10:
break

Note that the strategies that we've used here ensure that we don’t get repeats: first, we limit the
number of columns to the ones we will be using, then we remove repeated indexes and empty
VAERS_ID. This ensures no repetition of the VAERS ID, VAX LOT pair, and that no lots
are associated with no IDs.

There’s more...

There are other types of joins other than left, inner, and right. Most notably, there is the outer join,
which assures all entries from both tables have representation.

Make sure you have tests and assertions for your joins: a very common bug is having the wrong
expectations for how joins behave. You should also make sure that there are no empty values on the
columns where you are joining, as they can produce a lot of excess tuples.

Reducing the memory usage of pandas DataFrames

When you are dealing with lots of information - for example, when analyzing whole genome sequencing
data - memory usage may become a limitation for your analysis. It turns out that naive pandas is not
very efficient from a memory perspective, and we can substantially reduce its consumption.

In this recipe, we are going to revisit our VAERS data and look at several ways to reduce pandas memory
usage. The impact of these changes can be massive: in many cases, reducing memory consumption may
mean the difference between being able to use pandas or requiring a more alternative and complex
approach, such as Dask or Spark.

Getting ready

We will be using the data from the first recipe. If you have run it, you are all set; if not, please follow
the steps discussed there. You can find this code in Chapter02/Pandas_Memory .py.
How to do it...

Follow these steps:

1. First, let’s load the data and inspect the size of the DataFrame:

import numpy as np
import pandas as pd
vdata = pd.read csv("2021VAERSDATA.csv.gz",

printed on 2/9/2023 7:03 AMvia . Al use subject to https://ww.ebsco. coniterns-of-use

29

30 Getting to Know NumPy, pandas, Arrow, and Matplotlib

encoding="1s0-8859-1")

vdata.info (memory usage="deep")

Here is an abridged version of the output:

RangeIndex: 6549

#

W o W N o

9
31
34

Column

VAERS ID
STATE
AGE_YRS

SEX

SYMPTOM TEXT
DIED

BIRTH DEFECT
ALLERGIES

dtypes: float64 (

memory usage: 1.

86 entries, 0 to 654985

Data columns (total 35 columns):

Non-Null Count
654986 non-null
572236 non-null
583424 non-null
654986 non-null
654828 non-null
8536 non-null

383 non-null

330630 non-null

object
float64
object
object
object
object
object

5), int64(2), object(28)

3 GB

Here, we have information about the number of rows and the type and non-null values of each
row. Finally, we can see that the DataFrame requires a whopping 1.3 GB.

2. We can also inspect the size of eac