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Thephotoelectrochemicalwatersplittingprocesshasalucidandefficaciousimpact,whichemulatesthe
naturalphotosynthesisprocessbyconvertingsolarenergyintochemicalenergy.Theconstructionofa
PECsystemcanconvertH2OtoH2orCO2toC-basedfuels.Toachieveartificialphotosynthesis,rate-
determiningkineticsoftheOERisregardedasahighlyefficientphoto-anode.BiVO4grabbedstrong
attentionasaphotoanodeinthecommunalofPEC.OwingtoamoderatebandgapandtheEarth-abundant
natureoftheconstituents,itisconsideredaninexpensiven-typesemiconductorforPECH2Osplitting.
ThischapterdiscussedtherecentprogressofBiVO4-basedphotoanodesfabrication,includingcontrol
inthesurface,effectsofdopant,differentsynthesistechniques,co-catalyst,etc.Typicalunbiasedtandem
devicesofaphotoanodesysteminthepresenceofBiVO4arealsoreflected.Thereportalsodemonstrated
thephotocatalysisprinciplesregardingthedegradationoforganicpollutants.
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Inthisresearch,aproficientmethodforthesynthesisofTiO2/PPyandTiO2/PPy/GOnanocompositesis
explored.Thesenanocompositeswerepreparedbyone-stepinsitudepositionoxidativepolymerization
ofpyrrolehydrochlorideusingAmmoniumpersulfate (APS)asanoxidant in thepresenceofTiO2
nanoparticlescooledinanicebath.TheobtainednanocompositeswerecharacterizedbyXRD,TEM,SEM,
UV-Vis,andFTIRtechniques.TheobtainedresultsshowedthatTiO2nanoparticleshavebeenencapsulated
byPPywithastrongeffectonthemorphologyofTiO2/PPyandTiO2/PPy/GOnanocomposites.The
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Two-dimensional(2D)MXenehasbeenconsideredasahotspottowardenvironmentalphotocatalysis
becauseofitsoutstandingstructuralstability,highlyefficientconductivity,andversatilehydrophilicity.
Asanefficientphotocatalyticcandidate,MXenesofferrapidphotogeneratedchargecarrierisolation,
thereby providing plentiful availability for surface functional groups in respect of light-harvesting
promisingmaterials,andadditionallyexecutingasuitablefoundationinfavorofsuperiorphotoconversion
proficiency.Thischaptersummarizesacomprehensiveanalysisofrecentstudiesonfabricationmethodfor
MXenephotocatalystsandphotocatalyticperformanceforcontaminantdegradations.Moresignificantly,
MXenesarefrequentlyemployedascocatalyststoboosttheefficacyofphotocatalyticactivitieswhen
combinedwithothertraditionalphotocatalystssuchasmetaloxide,metalsulfide,g-C3N4,andsoon.
Furthermore,inanefforttodisclosetheuniquequalitiesofMXene-basednanocomposites,thestability
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threatsinacosteffectiveandcleanmanner.Thepresentstudyhasbeenfocusedonthesuccessfulremoval
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plants.Thepresentstudyestablishesthefactthatcarboxylicacidgroupplaysanimportantroleinthe
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Developing innovative technologies for the effective treatment of organic contaminants comprising
agriculturalwastes,industrialdyes,andchemicalsisgainingextraordinaryimportanceacrosstheglobe.
Inthelastfewyears,photocatalyticdegradationhasbecomeaneffectiveandestablishedroutetoeliminate
thesepollutantsfromaqueoussolutionrelativetosimpleadsorption.2Dnanomaterialsexhibitgreat
potentialasaneffectualphotocatalyst indegradationofcontaminants,especiallyhybridizationwith
otherfunctionalcomponentsduetowide-rangingbandstructures,sufficientactivesites,andsignificant
specificsurfacearea.Herein,theuniquehybridizationof2Dnanomaterialswithnumerousfunctional
speciesisreviewedcomprehensivelybyhighlightingtheirimprovedphotocatalyticperformancesand
remarkable environmentally friendlyactivity.Thechapteroutlines themechanismofphotocatalytic
degradationtoexploretheadvantages/disadvantagesofregular2Dmaterialsanddiscoverthesignificance
ofdevelopinghybrid2Dphotocatalysts.
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Waterisavitalcomponentoflife,anditsavailabilityiscriticalforalllivingthings.Duetorisingwater
demand, traditional water/wastewater treatment methods are inefficient in supplying adequate safe
water.Theleachingofharmfulcompoundsintotheprocesswaterisaproblemwithmostcommercial
andchemicallymanufacturedmaterials forwater treatment.Asa resultof research intodeveloping
bettermaterialsthatcouldachievehighefficiencywithoutposingahealthconcern,non-toxiccomposite
materialsmadeofcelluloseandmetaloxideswereinvestigated.Duetoitsgreatphysical,chemical,and
mechanicalqualities,celluloseisoneofthematerialsgainingpopularity.Nanocompositeshavebeen
approvedasasolutionforwaterpurificationthatavoidstheissuesassociatedwithusingsimplymetal
oxides.Thepurposeofthisstudyistoreviewthepotentialapplicationsofcelluloseintegratedwithmetal
oxidesforwastewatertreatmentandharmfulmetalremovalfromdyesviaindustrialwaste.
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Biopolymer-basednanocomposites,particularlychitosan,cellulose,alginate,starch,andcarrageenan,are
increasinglybeingemployedasreinforcementsforcompositematerialsbecausetheyarebiodegradable,
recyclable,renewable,abundant,convenientlyavailable,cost-effective,andnon-abrasivetoprocessing
equipment.Thesebiopolymernanocompositematerialsarealsolightweight,stiff,andhavegoodmechanical
properties.Biopolymernanocompositeshaveinterfaciallimitationsbecauseallnanocompositebiopolymers
arehydrophilic.Waterrecyclinghasbeenmadepossiblebybiopolymer-basednanocompositematerials,
which have a variety of applications for cleaning wastewater, making it a viable and cost-effective
solutiontowaterscarcity.Thegrowingconcernaboutheavymetalcontaminationhasnecessitatedthe
developmentofnewandbetter-suitedsorbentmaterialsforeffectivedetoxification.
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The TiO2/PAni and TiO2/PAni/GO nanocomposites were prepared by one-step in situ oxidative
polymerizationofanilinehydrochlorideusingammoniumpersulphateasanoxidantinthepresenceof
powderofTiO2nanoparticlescooledinanicebath.Theobtainednanocompositeswerecharacterized
byXRD,TEM,SEM,BET,FTIR,andDRS.TheobtainedresultsshowedthatTiO2nanoparticleshave
beenencapsulatedbyPAni.TheFTIRcharacterizationconfirmsthattheTiO2/GOmoleculesarewell
combinedwithpolyanilinestructure.ThemaximumphotodegradationofThymolbluewasfoundin
TiO2/PAni/GOat25ppmconcentrationofdye,1600mg/Lamountofphotocatalyst,pH7,and120
minirradiationofvisiblelight.Hence,thephotocatalyticactivityofTitaniahasbeenincreasedbythe
coatingofPAniandGrapheneoxide.
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Accesstosafedrinkingwaterisoneofthemostpressingchallengesinthe21stcentury.Newandbetter
technologiesforthetreatmentofwastewaterarecriticallyneeded.Carbonnanotubesareemergingas
effectiveandenvironmentallyfriendlyalternativeadsorbentsforwaterpurificationduetotheirporous
structure,relativelylargespecificsurfaceareas,andstronghydrophobicity.Nevertheless,carbonnanotubes
alsosuffertheinherentchallengesofnanomaterialswithpotentialhealthrisks.Thischapterpresents
adetailedreviewoftheprogressmadeintheutilizationofcarbonnanotubesandtheircompositesin
thesequestrationoforganicandinorganicpollutantsfromwater.Thefactorsaffectingperformance,the
adsorptioncapacities,andmechanismsareconciselydiscussed.Additionally,theassociatedhealthrisks
ofcarbonnanotubesarehighlighted,andriskassessmentstrategiesarerecommended.Overall,carbon
nanotubesareshowntobesuitablecandidatesforwatertreatmentregimes.
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Microencapsulation is a well-established process of enveloping or surrounding one substance into
anothersubstancethatprovidescapsuleshavingrangefromonemicrontomanyhundredmicronsin
size.Oneamongthehighlyefficientmethodsismicroencapsulation.Theencapsulationefficiencyof
microcapsules,microparticles,ormicrospheresdependonvariousfactorslikesolubilityofpolymerin
solvent,concentrationofpolymer,solubilityoforganicsolventinwater,rateofsolventremoval,etc.
Substancesareoftenencapsulatedinsuchawaythatthecorematerialisconfinedwithincapsuleshells
(coatingmaterial)foraparticularintervaloftime.Differenttypesoftechniquesareusedforpreparation
ofmicrocapsules.Thesetechniquesareutilizedindifferentfieldslikepharmaceutical,agriculture,textile,
food,printing,anddefence.Thistextcoversareviewonmicroencapsulationandmaterialsinvolved,
microencapsulationtechniques,anduseofmicroencapsulationintextiles.
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Carbonnanotubes(CNTs)areauniquecarbonmaterialwithphysical,chemical,mechanical,optical,
structural,andelectricalcharacteristicsresearchedandtestedforawiderangeofuses.Thesafeguards
ofenvironmentalhealthhavebeenidentifiedasoneofthemostcriticalsustainabilitygoalsinrecent
decades. When it concerns identifying atmospheric toxins, carbon nanotube-based detectors offer
greatsensibilityandprecision,alongwithcarbonnanotubesdisplaying theability foradsorption to
remove impurities with great rates and excellent amelioration competency. Carbon nanotubes have
madeessentialcontributionstoaresponsiblefutureinwastewatertreatment,airpollutionmanagement,
biotechnologies,nanosensors,andsorbents.Carbonnanotubesarealsoutilizedasareinforcingmaterial
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benign.Theutilisationofcarbonnanotubesashybridfilters,nanosensors,sorbents,andothermaterials
iscoveredinthischapter,aswellasitsadvantagesfortheenvironment.
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metal-organicpolymer,carbonnanotubes,andnanofibres.Differentmethodologieswereadoptedto
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Waterisavitalcomponentoflife.Itisnaturallyavailableasearthhydrosphereandplaysanimportant
roleintheworldeconomy,anditessentialforbalancingoftheecosystem.Numerousmicrobesandother
toxinssuchaschemicalsandheavymetalsareintegratedintorainwaterandflowingwater,resulting
inwaterpollution.Thischapterexaminesthenumerouswaysinwhichnanomaterialscanbeusedto
removevariouskindsofcontaminantsfrompollutedwater.Inthischapter,carbon-basedadsorbents
material, that is, carbonaceousmaterials,hasdescribed.Carbonaceousmaterials suchas stimulated
carbon,carbonnanotubes,andgrapheneoxidehavegoodperformanceandhighadsorptionvaluefor
medicinal active chemicals. Inpresent-day investigations, researchershave found that carbon-based
nanomaterialshavebeenlocatedprogressivelybeingappliedinrecyclingofwastewatertreatmentresearch
withoverwhelminglypositiveresults.

Chapter 15
SyntheticMethodsofNanomaterials.................................................................................................. 279
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Theword“nano”isfromtheGreekword“nanos”meaning“dwarf.”Itisaprefixusedtodescribe“one
billionth”ofsomething.Ananometer(nm)isabillionthofameteroramillionthofamillimeter.This
chapterstartedwithanintroductiontonanosciencefollowedbywhatnanostructureisanditsapplications
ofnanotechnology(basicidea)andvarioussize-dependentpropertiesofnanomaterials.Inthischapter,
someuniquepropertieslike1)semiconductingnanoparticlesand2)metallicnanoparticlesareexplained
withexamples.Synthesisaspectsofnanomaterialsalsoneed tobeunderstoodusingbottom-upand
top-downapproachesincludingmechanicalalloyingandshapeandsizecontrolofnanomaterials.In
the current scenario, the research and development of nanotechnology is very active globally, and
nanotechnologiesarealreadyusedinmanyproducts.Further,nanotechnologiesarealsobeingdeveloped
foruseinenvironmentalapplications(e.g.,clean-upofenvironmentalpollutants).
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Preface



Waterpollutionisdefinedasthecontaminationofwatersourcesbycontaminantsthatrenderthewater
unfitfordrinking,cooking,cleaning,swimming,andotheruses.Chemicals,waste,germs,andparasites
areallexamplesofpollutants.Alltypesofpollutantsultimatelyendupinwater.Pollutionfromthe
atmospheresettlesonlakesandseas.Pollutionfromthelandcanflowintoanundergroundstream,then
intoariver,andeventuallyintotheocean.Asaresult,rubbishthrownonanemptylotmightultimately
damageawatersource.

Humanactivitiesgeneratewastewater,whichmaybeharmfultotheenvironmentandresultinwater
lossinareaswherewaterislimited.Whenwastewatercontaminatesriversandgroundwatertables,the
waterresourceisrendereduseless.Asaresult,wastewatermustbetreatedbeforeitisdischargedinto
theenvironment,andiffeasible,treatedtomakeitdrinkable.

Thegoalofwastewatertreatmentistodecreasepollutantstofewerthanthemaximumallowablelevels
inordertoprotecttheenvironmentandhumanhealth.Todothis,wastewateriscollectedandprocessed
inmassiveplantsbeforebeingdischargedbackintotheenvironment.Waterthatgoesintodrainsorthe
sewagesystemfromdwellingsisreferredtoaswastewater.Largeamountsofwastewaterareroutinely
contributedtosewagecollectingsystemsbyindustriesandenterprises.

Thediscoveryofnewandnovelmaterialscapableofimprovingtheefficiencyofindustrialwastewater
treatmentprocesses,andeventhemanipulationofthesematerials’characteristicstoincreasepollutant
recovery,hasmadesteadyprogress.Secondaryeffluentsincludingheavymetalsandradionuclidesare
producedbyanthropogenicactivitiessuchasmining,manufacturing,andenergygeneration.Giventheir
potentialinfluenceonwaterquality,thedevelopmentofinnovativetechnologiesaimedatrecovering
suchpollutantsisatoppriority.Adsorptionisregardedausefulapproachinwaterpollutionprevention
becauseofitsbasicdesign,universalnature,highefficacy,andeaseofoperationandregeneration.

Weseekarticlesinthisbookthathighlightresearchfindingsinthecreationofnovelmaterialsfor
theremovalofsolubleformsofhazardouschemicals,dyes,andheavymetals.Asidefromthescientific
originalityoftherecommendedmaterials,theauthorsshouldunderlinethepossibilityofimplement-
ingtheirtechniqueinfull-scalefacilitiesworkingunderactualliquideffluenttreatmentcircumstances.
Weacceptcontributionsfromseveraldisciplinesofresearchinthisbook,includingmaterialscience,
chemicalengineeringandprocessing,chemistry,adsorption,andphotochemistry.

Thefocusofthisbookistheproductionofnovelmaterials(bulk,composites,andhybrids)through
theimprovement/transformationofcertainwastewatertreatmentprocedures.Papersonthefollowing
themeswillbegivenspecialconsiderationamongtheareasofinterest:

xv
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• Development of novel procedures for the synthesis of nanomaterial, nanocomposites, carbon-
basednanomaterials,andothernanomaterialsbyfine-tuningsynthesisconditionstogettheopti-
mumadsorptioncharacteristics;

• Innovativecompositematerialsarebeingdevelopedforuseinliquid-phaseadsorptionprocesses.
• Elaborationofbio-sourcedmaterials(biochars,hydrochars,chars,activatedcarbons)fromvari-

ousbiomassesorcarbonmaterialsfortheparticularremovalofdyes,hazardouschemicals,and
heavymetals;

• Highselectivitypolymersorpolymercompositesarebeingdeveloped.

SOLUTION

Theeffortsofscientistsarethekeydrivingforcebehindnanotechnologyinnovation,viatheassessmentof
thetechniquesusedtogenerateNanomaterialsforwaterandwastewatertreatment,andthesetechnologies
mustbedemonstratedinthefuture.Withoutaquestion,nanoparticleshaveplayedasignificantrolein
theadvancementofwastewatertreatmenttechnology.Tominimizethepossibilityforthesenanomaterials
tobecomeasourceofenvironmentalcontamination,researchersmustconcentrateunderstandingofthe
relatednegativehazardousandenvironmentaleffects.Effectivelearningintheuseofnanotechnology
forsustainabilitymaybeacriticalstepindevelopinglearningexperiencesthatcultivatetheknowledge
andskillsrequiredtodrivechangeinasustainablemanner.

BOOK ORGANIZATION

Inthisbook,wehaveselectedthe15researchandreviewarticlesforpublication.Thechaptersinthis
bookreflectawiderangeoffundamentalandappliedresearchinwaterandwastewatertreatmentby
thenanomaterialsandinterdisciplinarysubjects.Thisbookisauniquecollectionoffullresearchpapers
aswellasreviews.

Inthe1stchapter,thephotoelectrochemicalwatersplittingprocessaswellasthephotocatalysisprocess
forpollutantdegradationofBVOphotoanodehasbeendiscussed.Growthofvisiblelightactiveefficient
andstablephotocatalystcandegradepollutantswithanenvironmentalimpact.SincetheBVO-based
semiconductorscanbeactivatedundervisiblelightirradiation,thesematerialswouldgainmuchpopular-
ity,especiallyforinwatersplittingprocessaswellasdegradationofpollutantsinairandsurfacewater.

Inthe2ndchapter,describesaproficientmethodforsynthesisofTiO2/PPyandTiO2/PPy/GOnano-
composites.ThePhotocatalyticdegradationofRoseBengalandVictoriabluedyewasdoneatdifferent
conditionvizconcentrationofdye,timeofillumination,pHanddoseofphotocatalyst.Themaximum
photodegradationwerefoundat7pH,20ppmconcentrationofVictoriablueand25ppmofrosebengal
dyesolution,800mg/LforVBand1600mg/LforRBamountofphotocatalystand120minirradiation
ofvisiblelight.

Inthe3rdchapter,asanefficientphotocatalyticmaterials,MXeneoffersrapidphotogeneratedcharge
carrierisolation,therebyprovidingplentifulavailabilityforsurfacefunctionalgroupsinrespectoflight-
harvestingpromisingmaterials,andadditionallyexecutingasuitablefoundationinfavourofsuperior
photoconversionproficiency.Thischaptersummarizesacomprehensiveanalysisofrecentstudieson
fabricationmethodforMXene-basedphotocatalystsandphotocatalyticperformanceforcontaminant

xvi
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degradations.Moresignificantly,MXenesarefrequentlyemployedascocatalyststoboosttheefficacy
ofphotocatalyticactivitieswhencombinedwithothertraditionalphotocatalystssuchasmetaloxide,
metalsulfide,g-C3N4andsoon.

Inthe4thchapter,heavymetalshavecomeupasathreateningpollutantinaqueousmedia,leadingto
lifethreateningconsequences.BiomaterialhasbeenanovelandinnovativewingofGreenChemistry,
eradicatingthethreatsinacosteffectiveandcleanmanner.Thepresentstudyhasbeenfocusedonthe
successfulremovalofalifethreateningheavymetalCd(II)fromaqueoussolution,usingbiosorbent
createdusingselectedplants.Thepresentstudyestablishesthefactthatcarboxylicacidgroupplaysan
importantroleinthemetalbindingprocessusingprotectionofCOOHgroupbypropylaminationand
Esterification.WecouldalsoconcludethattheenrichmentofCOOHgroupontothebiomaterialusing
syntheticmodificationsSuccinationleadstotheincreaseinthesorptionefficiency.

Inthe5thchapter,describe2Dmaterials,intensiveeffortshavebeendevotedinrecentyears.The
dauntingquestforunique2Dmaterialsremainsongoingandisprimarilyintendedtodiscovernovel2D
materialsandtheirremarkableproperties.Inthischapter,weaimedtorepresentathoroughanalysisof
thelatestinnovationsmadeinthefieldofphotocatalyticdegradationby2Dmaterials.Inadditionto
currentprogressinphotocatalysis,athrowbackofbasicknowledgeisoutlined.Variouscombinationof
fabricationmethodsemployedforpreparingnovel2DNMsisalsoillustrated.Itiswidelybelievedthat
2Dmaterialsexhibitexcellentphotocatalyticperformance.Thepotentialforvarious2Dnanomaterials
hasbeenreportedatlengthtoremediateaqueoussystemscontaminatedwithdyes.

Inthe6thchapter,celluloseisabiodegradable,non-toxic,low-costmaterialthatcanbefoundina
widerangeofnaturalresourcesandagriculturalwaste.Toremoveavarietyofimpurities,including
harmfulmetalsanddyes,cellulosecouldbeusedinavarietyofwatertreatmentmethods.Asaresult,
duetotheirhighsurfacearea,lightstability,andlowtoxicity,theapplicationofcellulose-metaloxide
compositeasanefficientdyeadsorptionandphotodegradationinwater.Incorporationofmetaloxide
intocelluloseimprovesthestabilityofthematerial,preventdesorptionofthenanoparticlesintothewater
system,reducetoxicityeffectsandalsohelpsthematerialtobelong-lasting.Moreover,multi-metalor
polymetaloxidescanbeusedwiththecelluloseinsteadofpuremetaloxidesinthecomposites.Overall,
whenallproceduresarerelativelysafe,wouldexhibitlessaggregationandofferadvancedyeremoval
fromwastewaterpurificationprocess.

Inthe7thchapter,biopolymer-basednanocomposites,particularlychitosan,cellulose,alginate,starch,
andcarrageenan,areincreasinglybeingemployedasreinforcementsforcompositematerialsbecause
theyarebiodegradable,recyclable,renewable,abundant,convenientlyavailable,cost-effective,andnon-
abrasivetoprocessingequipment.Thesebiopolymernanocompositematerialsarealsolightweight,stiff,
andhavegoodmechanicalproperties.Biopolymernanocompositeshaveinterfaciallimitationsbecause
allnanocompositebiopolymersarehydrophilic.Waterrecyclinghasbeenmadepossiblebybiopolymer-
basednanocompositematerials,whichhaveavarietyofapplicationsforcleaningwastewater,makingita
viableandcost-effectivesolutiontowaterscarcity.Thegrowingconcernaboutheavymetalcontamination
hasnecessitatedthedevelopmentofnewandbetter-suitedsorbentmaterialsforeffectivedetoxification.

Inthe8thchapter,theTiO2/PAniandTiO2/PAni/GOnanocompositeswerepreparedbyone-stepinsitu
oxidativepolymerizationofanilinehydrochlorideusingammoniumpersulphateasoxidantinthepresence
ofpowderofTiO2nanoparticlescooledinanicebath.Theobtainednanocompositeswerecharacter-
izedbyXRD,TEM,SEM,BET,FTIRandDRS.TheobtainedresultsshowedthatTiO2nanoparticles
havebeenencapsulatedbyPAni.TheFTIRcharacterisationconfirmsthattheTiO2/GOmoleculesare
wellcombinedwithpolyanilinestructure.ThemaximumphotodegradationofThymolbluewasfound

xvii
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inTiO2/PAni/GOat25ppmconcentrationofdye,1600mg/Lamountofphotocatalyst,pH7and120
minirradiationofvisiblelight.Hence,thephotocatalyticactivityofTitaniahasbeenincreasedbythe
coatingofPAniandGrapheneoxide.

Inthe9thchapter,carbonnanotubes(CNTs)havethepotentialtosupportpointofuse-basedtreat-
mentapproachforremovalofwaterhardness,chemical,andbiologicalcontaminantsfromwater.Gen-
erally,CNTsexhibithigheradsorptioncapacitiesintheremovalofheavymetals,dyesandemerging
contaminantsrelativetootheradsorbents.Thisisattributabletotheirfibrousshapewithhighaspect
ratio,largesurfaceareaandwelldevelopedmesopores.TherelativelyhighcostofCNTsstandsasa
majorconstrainttowardsapplicationofCNTsoindustrialscaleforwaterpurification.Additionally,the
releaseofcontaminant-ladenunrecoveredCNTsintotheenvironmentandconcomitanthumanexposure
toCNTsremainscontentiousduetotheassociatedhealthrisks.Adsorbentrecoverystrategiesneedto
befurtherexploredincludingtheuseoflifecycleassessment(LCA)toolinadsorptionstudiesbothat
laboratoryandpilotscaleexperiments.

Inthe10thchapter,intoday’sworldofdevelopingtechnologies,thetechniqueofmicroencapsulation
isappliedinmostthefields.It’sbecomeaprominentlyeffectivetechniquewhichreinforcestheproperty
impartedtothematerialandassuresitsdurability.It’sfascinatingthatourclothingisnowreadytoactively
moisturize,healandevencanreleasefragrancestoscalebackanxiety.Thegrowinghealthawareness
amongconsumersisfurtherpropellingresearcherstoundertakeandtestallpossibleingredientstodeliver
expectedperformance.Newmaterialsarebeingexploredandaseriousshiftistowardstheutilization
oforganiccompoundsbothinsheathandcore.There’slittlequestionthatthistechnologyfeaturesa
promisingfuture,however,oneaspectthatseemscriticalisthattheintendeddeliveryoftheencapsulated
coreonparticularexternalstimulus.There’sarequirementtooptimizethemethodsofmanufacturing
microcapsulesandextendthetimeperiodoftreatedmaterialstorealizelargescaleindustrialproduction
foreveryspecificapplication.Ahugeuseofthissystemisoftenwitnessedinfunctionalfinishfabrics,
medicalandhealthcaretextiles,aromatherapy,cosmetictextilesandlotsofmore.

Inthe11thchapter,carbonnanotubes(CNTs)areauniquecarbonmaterialBecauseoftheirunique
physical,chemical,andelectricalcharacteristics.CNTsshowtremendouspromiseasaviablemate-
rial for usage invarious environmental sectorswhen evaluated for specificuses.When it concerns
identifyingatmospherictoxins,carbonnanotube-baseddetectorsoffergreatsensibilityandprecision,
alongwithcarbonnanotubesdisplayingtheabilityforadsorptiontoremoveimpuritieswithgreatrates
andexcellentameliorationcompetency.Carbonnanotubeshavemadeessentialcontributionstoare-
sponsiblefutureinwastewatertreatment,airpollutionmanagement,biotechnologies,nanosensors,and
sorbents.Carbonnanotubesarealsoutilizedasareinforcingmaterialingreennanocomposites,which
areessentialforachievingdesiredcharacteristicsandareecologicallybenign.Theutilisationofcarbon
nanotubesashybridfilters,nanosensors,sorbents,andothermaterialsiscoveredinthisarticle,aswell
asitsadvantagesfortheenvironment.

Inthe12thchapter,nanotechnologyisbroadlyusedinthedifferentfieldsofsciencesuchasbiomedi-
cine,pharmaceuticals,electronics,diagnosticinstruments,andenvironmentaldetection.Nanoparticles
havegreatpotentialtopurifywastewateranddecontaminatewastewater.Nanoparticlescaneliminate
inorganic/organicpollutants,heavymetals,andchemicaldyefromcontaminatedwater.Nanoparticles
aresynthesizedwithvariousmethodssuchasphysical,chemical,andbiosynthesized.Plantextractis
usedforthesynthesisofmetallicnanoparticlesbecauseplantextractcontainsdifferenttypesofprimary
andsecondarymetabolites.Thesemetabolitesactasstabilizingandreducingagentsinthesynthesis
ofnovelmetallicnanoparticles.Thesizeandshapeofnanoparticleshaveuniquepropertiesthusthey
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arewidelyusedforremovingpollutantsfromwater.Thechapterdiscussedgreensynthesizedmetallic
nanoparticlesandtheirapplicationinthetreatmentofwastewatertreatment.

Inthe13thchapter,wehavediscussedbrieflyaboutthevarioustypesofnanocompositesanditsrole
inpollutionprevention.Asstatedintheintroduction,increasingpopulationandrapidindustrialization
causesaseriousthreattotheenvironmentbywaterpollution.Theeffluentsfromdyeindustriesarea
seriousproblem,whichcanbesolvedtosomeextentbyscienceandtechnologydevelopments.Various
typesofnanomaterialsandnanocompositesplayaveryvitalroleindyedegradation.Nanocomposite
preparationcharacterisation,degradationmethodologyanditsefficiencytowardsdegradationofvarious
typesofdyesarediscussedinthischapter.

Inthe14thchapter,waterisavitalcomponentoflife,itnaturallyavailableasearthhydrosphereand
playanimportantroleinworldeconomyanditessentialforbalancingoftheecosystem.Numerous
microbesandothertoxinssuchaschemicalsandheavymetalsareintegratedintorainwaterandflowing
water,resultinginwaterpollution.Thischapterexaminesthenumerouswaysinwhichnanomaterials
canbeusedtoremovevariouskindsofcontaminantsfrompollutedwater.Inthischapter,carbon-based
adsorbents material that is carbonaceous materials has described. Carbonaceous materials such as
stimulatedcarbon,carbonnanotubesandgrapheneoxidehavegoodperformanceandhighadsorption
valueformedicinalactivechemicals.Inpresent-dayinvestigations,researchershavefoundthatcarbon-
basednanomaterialshavebeenlocatedprogressivelybeingappliedinrecyclingofwastewatertreatment
research,withoverwhelminglypositiveresults.

Inthe15thchapter,thewordnanoisfromtheGreekword‘Nanos’meaningDwarf.Itisaprefixused
todescribe“onebillionth”ofsomething.Ananometre(nm)isabillionthofameteroramillionthofa
millimeter.ThischapterstartedwithanIntroductiontoNanosciencethenwhatisnanostructureandits
ApplicationsofNanotechnology(basicidea),varioussize-dependentpropertiesofnanomaterials.In
thischaptersomeuniquepropertieslikea)Semiconductingnanoparticlesb)Metallicnano-particlesare
explainedwithexamples.SynthesisaspectsofnanomaterialsalsoneedtounderstandusingBottom-up
andTop-downapproachesincludemechanicalalloying,shapeandsizecontrolofnanomaterials.Inthe
currentscenario,theresearchanddevelopmentofnanotechnologyisveryactiveglobally,andnanotech-
nologiesarealreadyusedinmanyproducts,Further,nanotechnologiesarealsobeingdevelopedforuse
inenvironmentalapplications,e.g.,clean-upofenvironmentalpollutants.

Azad Kumar
M.L.K. P.G. College, India
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Waterpollutionhasbecomeahugeconcerntolivingorganismsinrecentyearsasaconsiderableamount
ofhazardousindustrialwastecomprisingdyes,pigments,pharmaceuticalgoods,industrialchemicals,
andnumerousorganiccompoundsisthrownintobodiesofwater,pollutingthewater.Becausethese
wastesareresistanttoaerobicdigestionandarestabletolightandoxidisingchemicals,theyposemajor
ecologicalhazards.Accordingtosomestudies,roughly12percentofsynthetictextiledyesusedeach
year,suchasCaramineandIndigoRed,arelostduringmanufacturingandprocessingactivities,and20
percentofthesetoxicdyesenterwaterthrougheffluents.Whilechemical,biological,andadsorption
treatmentshavebeenusedinthepasttoremovetoxicdyesfromindustrialwastewater,thesemethods
areineffectiveforeliminatingdye,pigments,pharmaceuticalgoods,industrialchemicals,andnumerous
organiccompoundspollutants.

Advancedmaterialsaremadeofdistinctmaterialsthatdifferintheirnature,properties,shape,andsize.
Becauseofitsusesinthedesignandproductionofnovelgoodsinavarietyofdisciplines,thedevelop-
mentofadvancedmaterialshasbecomeakeyscientificandtechnicalfocusinrecentyears.Oneofthese
istheuseofmodernwatertechnologies.Examplesincludewaterfilters,pollutantsadsorptionmateri-
als,andphotocatalysis,amongothers.Theseinnovativetechnologiesarerequiredduetotheincreasing
demandforhigh-qualitywater.Theseconcerns, togetherwith thegrowingconsequencesofclimate
change,necessitatethesearchfornovelsolutionstotheseissues.

Thepurposeofthisbookistoofferawiderangeofstudiesonhotissuesinadvancedmaterialsforap-
plicationinwaterqualityandwastewatertreatment.However,innovativematerialssaveenergy,such
asenergycellsand thecreationandoptimizationofmaterialsderived fromforest leftovers suchas
nanocelluloseandothernaturalpolymers.Thisadvancementinhighlyinnovativematerialsapplications
inbothwaterandwastewatertreatmentinordertooptimisetheenergysystemwillleadtoincreased
sustainabilityinthefuture.
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ABSTRACT

The photoelectrochemical water splitting process has a lucid and efficacious impact, which emulates 
the natural photosynthesis process by converting solar energy into chemical energy. The construction 
of a PEC system can convert H2O to H2 or CO2 to C-based fuels. To achieve artificial photosynthesis, 
rate-determining kinetics of the OER is regarded as a highly efficient photo-anode. BiVO4 grabbed 
strong attention as a photoanode in the communal of PEC. Owing to a moderate bandgap and the Earth-
abundant nature of the constituents, it is considered an inexpensive n-type semiconductor for PEC H2O 
splitting. This chapter discussed the recent progress of BiVO4-based photoanodes fabrication, including 
control in the surface, effects of dopant, different synthesis techniques, co-catalyst, etc. Typical unbiased 
tandem devices of a photoanode system in the presence of BiVO4 are also reflected. The report also 
demonstrated the photocatalysis principles regarding the degradation of organic pollutants.

Modifications of BiVO4 
Semiconductors for Oxidation 
of Water and Detoxification 

of Organic Waste:
Photoelectrochemical Applications 

of Semiconductors

Sangeeta Ghosh
Indian Institute of Engineering Science and 

Technology, Shibpur, India

Paramita Hajra
Indian Institute of Engineering Science and 

Technology, Shibpur, India

Debasis Sariket
Indian Institute of Engineering Science and 

Technology, Shibpur, India

Debasish Ray
Indian Institute of Engineering Science and 

Technology, Shibpur, India

Swarnendu Baduri
Indian Institute of Engineering Science and 

Technology, Shibpur, India

Chinmoy Bhattacharya
Indian Institute of Engineering Science and 

Technology, Shibpur, India

 EBSCOhost - printed on 2/14/2023 11:47 AM via . All use subject to https://www.ebsco.com/terms-of-use



2

Modifications of BiVO4 Semiconductors for Oxidation of Water and Detoxification of Organic Waste
 

INTRODUCTION

With the advancement of technology and ever amplifying population creates a huge energy demand in 
the 21st century, whereas the primary source of energy remains coal, oil, and natural gas, which are non-
renewable and also during the production and use of energy from these sources increases the amount of 
carbon dioxide (CO2) which is a potential Greenhouse gas and brought adverse effect on the environment. 
(Crabtree et al., 2004; Ginley et al., 2008) Since these conventional energy sources are going to finish 
once and they are concentrated in certain regions of the world, so scientists have introduced some energy 
sources which are clean, renewable, and significant to meet the global energy demand and also address 
the environmental issues at the same time. Solar energy, wind energy and tidal energy are introduced as 
alternatives to conventional energy sources. Immense research should be undertaken to develop of clean, 
renewable, and sustainable energy sources that can replace fossil-fuel energy and are commercially ac-
cessible across the globe. Nevertheless, the most developed renewable energy source that can produce 
electricity, or fuel that is transportable and storable, remains a challenge still now.

Solar energy, the never-ending energy on the earth considered the most promising candidate for clean, 
sustainable energy sources. (Park & Holt, 2010) A photoelectrochemical solar energy conversion device 
primarily focuses on the conversion of sunlight into chemical energy in the form of hydrogen gas. The 
solar water splitting comes with several advantages like ample sunlight on the earth, an abundance of 
salty water, minimal reaction potential, and zero greenhouse gas emission. (Walter et al., 2010)

Origin of PEC Water Splitting

TiO2 and SrTiO3 were mainly used as photocatalysts to explore water splitting during the 1970s and the 
first half of the 1980s. The TiO2 photocatalyst acts as an active material with the modification of the 
co-catalyst. The reaction is performed in a suitable aqueous medium or a gas phase. There is no activity 
after the dispersion of native TiO2 powder in water. Beginning in the post-1980s, some new photocata-
lyst materials, e.g., K4Nb6O17 (Kudo et al., 1989), K2La2Ti3O10 (Ikeda et al., 1997), BaTi4O9 (Inoue et 
al., 1998), ZrO2, and Ta2O5 (Sayama & Arakawa, 1994), other than TiO2 and SrTiO3, were introduced 
for the water splitting reaction. Many tantalite photocatalysts have been developed since the post-1990s 
(Kato & Kudo, 2003). In addition, few metal oxide photocatalysts having d10 electronic configuration, 
e.g., Ga(III), In(III), Ge(IV), Sn(IV), Sb(V) etc. and assisted with RuO2 co-catalyst, have been reported 
very recently. Non-oxide Ge3N4 also behaves as a promising photocatalyst after the addition of some co-
catalyst like RuO2. (Sato et al., 2005) Hence, the photocatalytic water-splitting process of photocatalysts 
has been grown of immense importance in the last two decades.

Generally, photocatalysts comprising only d0 and d10 metal cations respond in the presence of UV light 
wide band gaps (i.e., BG ≥ 3.0 eV). Highly active photocatalysts for H2 or O2 evolution under visible light 
irradiation, even in the presence of sacrificial reagents, were only Pt/CdS (Reber & Rusek, 1986) and 
WO3 (Darwent & Mills, 1982) during the earlier era of the 1990s. There had been quite limited materi-
als to become visible-light-driven photocatalysts. However, many oxides, oxy-nitrides, and oxy-sulfides 
have recently been reported to be active materials for H2 and O2 evolution in the presence of visible light 
irradiation with the help of sacrificial reagents. Recently, several two-photon photocatalyst processes, 
Z-scheme, as seen in photosynthesis by green plants have been reported for water splitting. Pt/SrTiO3: 
Cr, Ta or Pt/TaON, is an example of combined systems, for the hydrogen evolution photocatalyst and 
WO3 for the oxygen evolution photocatalyst, are responsible for water splitting into hydrogen and oxygen 
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respectively in stoichiometric amounts in the presence of an iodate-iodide redox couple. For the overall 
process of water splitting reaction, Cr-Rh oxide / GaN:ZnO is also an active photocatalyst, developed 
by combining the solid solution of GaN and ZnO.

Basic Principles of Photocatalytic Water Splitting

Natural photosynthesis is a process in which plants converts carbon dioxide and water into carbohydrates 
and oxygen by utilizing sunlight is termed. Whereas solar hydrogen production is done using a similar 
kind of technique in semiconductors, utilizing sunlight that splits water into hydrogen and oxygen is 
known as artificial photosynthesis. (Osterloh & Parkinson, 2011)

Solar-to-chemical energy conversion can be achieved by PEC device, the most popular approach 
combining the electro-catalytic and light-absorbing functions. The process occurs in sunlight by the 
photoactive materials, producing e− - h+ pairs. The electron in the conduction band is responsible for the 
water reduction (2H+ + 2e−→ H2), and the hole in the VB will involve the four-electron water oxidation 
process (2H2O → 4H+ + O2 + 4e−).

The overall process of water-splitting reactions (Fujishima & Honda, 1972) take place in three con-
secutive steps, as presented in Fig. 1-

• Absorption of sunlight by semiconductor; the energy of the photon must be higher than the band-
gap of the semiconductor.

• Generation of electron and hole and charge separation on the interface.
• Surface chemical reaction where oxidation and reduction of water take place simultaneously.

The semiconductor absorbs photons having higher energy than the band gap of it. It is also noted that 
the position of VB must be more positive compared to the oxygen evolution potential.

An electrochemical workstation is implemented via a 3-electrode configuration system for PEC 
measurements to detect the photoactive current by applying a bias voltage.

The water splitting reaction follows the mechanism mentioned below:

Semiconductor → e− + h+ (1)

Generation of excitons

2H+ + 2e- → H2 (2)

Hydrogen evolution reaction (HER)

2 H2O + 4h+ → 4H++ O2 (3)

Oxygen evolution reaction (OER)
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JUSTIFICATION FOR CHOOSING BiVO4

n-type bismuth vanadate (BVO)semiconductor has been paid a lot of attention as one of the most en-
couraging photoanode based on the following requirements: its valance band edge situated at ~2.4 V vs. 
RHE, and the conduction band position is situated just little of the thermodynamic level for H2 to provide 
sufficient over potential to photo-oxidize water with holes. Although BVO, having a band gap of 2.4 eV, 
it is to some extent larger than the desired photoanode. In 1998, Kudo et al. first identified the practical 
utilization of BVO electrodes in the solar oxidation process. (Kudo et al., 1998) Fundamental work of 
BVO essentially concentrated on a system consisting of small particles kept dispersed by agitation for 
water splitting reaction or photodegradation of organic compound. As the conduction band does not permit 
water reduction reaction, Ag (I) generally behaves as a sacrificial electron scavenger in these studies.

Naturally occurring crystal BVO is the pucherite mineral having an orthorhombic configuration. 
(Yao et al., 2008) Moreover, when it is synthesized in the laboratory, it crystallizes either in a zircon 
(z) or scheelite(s) like structure despite adopting the pucherite structure as presented in Figure 2 (Park 
et al., 2013). The scheelite (s) structure can exist in three different arrangement; tetragonal (t) crystal 
configuration with a = b = 5.1470 Å & c = 11.7216 Å or a monoclinic (m) crystal configuration (a = 
5.1935 Å, b = 5.0898 Å, c = 11.6972 Å) whereas the zircon (z)-type structure has a tetragonal (t) crystal 
configuration with a = b = 7.303 Å & c = 6.584 Å. (Dreyer & Tillmanns, 1981)

In the scheelite structure, as presented in Figure 2 (a), each vanadium ion is coordinated with four 
oxygen atoms in a tetrahedral site, and each bismuth ion is coordinated by eight oxygen atoms from 
eight different VO4 tetrahedral units. The vanadium centre (coordination number 4) alternates towards 

Figure 1. Fundamental principle of photocatalytic water splitting on semiconductor
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the (Crabtree et al., 2004) direction with the bismuth centre (coordination number 8); each oxygen atom 
is also connected with two bismuth centres and one vanadium centre in this arrangement. This bismuth 
and vanadium centres hold together composes a 3-D arrangement. In between the tetragonal scheelite 
(t-s) and monoclinic scheelite (m-s) arrangement, the vicinal environments of Bi and V ions are distorted 
more significantly in the monoclinic arrangement to remove the four-fold symmetry, which is very obvi-
ous for a tetragonal arrangement.

In the zircon-type arrangement, bismuth is coordinated by eight oxygen atoms; four oxygen atoms 
still stabilize vanadium. Moreover, only six VO4 units are surrounded by each Bi because two VO4 units 
provide two oxygen atoms to bismuth. All oxygen atoms also have connectivity between two bismuth 
centres and one vanadium centre to allot the vanadium and bismuth centres together to compose a three-
dimensional arrangement, as presented in Figure 2.

The fabrication of BVO photoanode at low temperatures leads to a zircon-type arrangement. However, 
kinetics plays a vital role at low temperatures to determine products or structure type. Depending on the 
synthesis technique and reaction environments, it may vary. It has also been reported that an irreversible 
phase transition occurs to achieve monoclinic scheelite configuration from tetragonal zircon structure in 
between the temperature region 670-770 K. The high temperature tetragonal phase includes all scheelite 
structures. The reversible phase transition is stuck with monoclinic in addition to tetragonal scheelite 
BVO at 528 K. (Kudo et al., 1999)

The photocatalytic (PC) activity of BVO has strong connectivity with its crystal structure. Figure 3 
represented the schematic band structures of BiVO4 having tetragonal zircon and monoclinic scheelite-

Figure 2. Crystal structures of (a) tetragonal scheelite and (b) zircon-type BiVO4 (red: V, purple: Bi, and 
grey: O). The crystal structure of monoclinic scheelite is very similar to what is shown in (a) and local 
coordination of V and Bi ions in (c) tetragonal scheelite, (d) monoclinic scheelite, (e) and zircon-type 
BiVO4 structure with bond lengths 
Reprinted with permission from Ref. (Park et al., 2013) copyright from Royal Society of Chemistry.
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type arrangement. Kudo et al. described a monoclinic scheelite BVO achieved the better performance 
of photoactivity for water splitting reaction to convert O2 in the presence of Ag(I) ions as an electron 
scavenger when prepared as powder type photocatalysts. Due to the enhancement of photon absorption 
in the case of scheelite(s) BVO, the improved photoactivity of this structure appears over zircon-type 
BVO. This is because the band gap energies for scheelite type BVO appear in 2.4 eV whereas zircon-
type BVO is 2.9 eV.

The band gap transition occurs due to the charge transportation from 2p orbitals of an oxygen atom 
to vacant 3d orbital of vanadium atom in the zircon type of arrangement. The band gap decreased due 
to the appearance of Bi-6s state over the O-2p state. The transition from Bi-6s orbital or may be hybrid-
ization of Bi-6swith O-2p orbitals to the V-3d is also responsible for the reduction of band gap in the 
scheelite like system.

A monoclinic-scheelite (m-s) system (Figure 2 (c)) contributes much better performances towards the 
photocatalytic (PC) water oxidation process in comparison to a tetragonal-scheelite (t-s) structure (Figure 
2 (d)) among all BVO having scheelite structures, as reported by Tokunaga et al. Although the band gap 
energies are comparable for the different arrangements of scheelite type BVO, in m-s BVO, superior 
performance was observed due to the more severe distortion of the metal polyhedron. In a scheelite like 
arrangement, the neighbour environment of the bismuth atom in the monoclinic phase is too distorted 

Figure 3. Band structures of tetragonal BiVO4 (zircon) and monoclinic BiVO4 (scheelite)
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compared to the tetragonal phase. Tokunaga et al. further stated that the effects of the e− - h+ separation 
are favourable with distortion of the provincial polarization.

Unbiased Tandem Device Using BiVO4 as Photoanodes

Unassisted tandem device configurations are classified into three different types presented in Fig. 4. 
There are two absorbers to complete the cell in Type A and B, which comprises a photoanode to occur 
water oxidation (modified BVO) and a photocathode with a small band gap semiconductor (Cu2O) for 
water reduction. In Type A, any conductive material, e.g., graphite or metal is used as the conductive 
matrix, whereas an e– - h+ pair recombination layer is responsible for forming a transparent conductive 
membrane in Type B.

In both types, to fulfil a complimentary light absorption, the most important is the position of the 
CB of the photoanode (minimum ECB) must situate at a more negative potential than the valance band of 
the photocathode (maximum EVB). The oxidation and reduction potentials of water must overlap with its 
band gap so that photo-activated electrons and holes thermodynamically can effort the hydrogen evolu-
tion reaction (HER) and oxygen evolution reaction (OER), respectively, as discussed.

On the other hand, in Type C, a photoanode system is in combination with a photovoltaic device. 
The device with less energy than the band gap of BVO mainly affords an external bias to the photoanode 
after modification of BVO by harvesting the transmitted photons. (Andrei et al., 2018) To become a high 
transmittance photoanode, BVO is required, while a TCO layer, considered as the recombination layer, 
is required for photoactive holes (from Photovoltaic device) and electrons (from PEC system) of BVO.

Meanwhile, the PEC system, in combination with the photovoltaic system (PEC/PV tandem cell), is 
more flexible to choose the photoanode materials to compare to the PEC system in connection with the 
PEC system (PEC/PEC tandem cell), which is generated by the PV cell. To match the energy levels in 
the photovoltaic system is not an essential requirement, which is a basic criterion for the PEC system 
junction with PEC cell (PEC/PEC tandem cell).

In practical applications, the water-splitting process on the basis of the PEC system should behave 
as an isolated device. The utilization of solar light is to supply the external energy without any bias 
voltage. The PEC-based device can play dual roles of energy converter and light absorber and is a more 
straightforward approach compared to the photovoltaic electrolyzer by the interface of semiconductor 
and electrolyte of the one PEC system. The ultimate goal for modifications of BVO is to fabricate an 
efficient photo-electrolysis is to achieve the hydrogen evolution and oxygen evolution reaction in an 
unbiased tandem device.

The PEC system in combination with photovoltaic cell (PEC/PV tandem cell) of any tandem device 
is mainly determined by two factors: one is photoanode i.e., the front light absorber which can achieve 
a better photocurrent (Iph) by applying lower bias or not and the other is the photocathode performance 
or rear photovoltaic system. To become a more efficient PEC tandem device junction with the photo-
voltaic system (PEC/PV tandem cell), there is a correlation with short circuit Iph and fill factor, whereas 
in the case of the photovoltaic system, it correlates with only increased open circuit photovoltage. For a 
photocathode, to become a more efficient PEC tandem device in combination with PEC system (PEC/
PEC tandem cell), a higher Iph with more positive onset potential can contribute effectively. This is due 
to the determination of Iph, which can be achieved by both photoanode and rear counterpart.
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COMMON SYNTHESIS METHODS TO PREPARE BiVO4 SEMICONDUCTOR

There are so many routes that have been proposed to prepare a BVO semiconductor. We classify these 
methods into the electrospinning method and depending upon phases; these are divided into three major 
categories; the solid phase technique, the liquid phase technique, and the vapour phase technique. Next, 
we will demonstrate the technique to fabricate a semiconductor in detail accordingly.

Figure 4. Different devices of the tandem cell for water splitting.
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Electrospinning

This method is especially effective for preparing nanofiber materials. Cheng et al. synthesized BVO 
nanofiber via electrospinning technique using bismuth nitrate and ammonium metavanadate as starting 
material in the presence of citric acid as a chelating agent, (Cheng et al., 2015) the phase junction struc-
ture of scheelite, monoclinic and tetragonal phases of electrospun BVO were obtained by the controlled 
heating. FR. P. Antony et al. prepared BVO and Mo-doped BVO nanoparticles by the electrospinning 
process (Antony et al., 2016) to measure PEC performance which indicates that due to the doping of Mo, 
the water oxidation photocurrent of BVO increases by four times that of pure semiconductor.

Solid Phase Technique

This method has great advantages with simple technique and favourable process, uniformity in particle size, 
and adjustable force. Li et al. synthesized BVO powder by the solid phase technique. (Li et al., 2019) The 
BVO prepared by heating at 500oC showed the best photocatalytic reduction efficiency against Cr (VI).

Sol-Gel Technique

The sol-gel method is the most important wet chemical synthetic approach for the preparation of nanopar-
ticles. Drisya et al. prepared TiO2/BVO nanocomposite via sol-gel method, (Drisya et al., 2020) the 
composites exhibit significant PC performance under the visible light irradiation; it was also noted that 
the PC efficiency is increased when percentage of BVO decreased in the nanocomposite. Pookmanee et 
al. developed BVO powder by sol-gel method, (Pookmanee, Kojinok, Punthaeod et al, 2013) and reported 
that the particle size, crystallinity and purity of the sample depend upon the calcined temperature. Wang 
et al. prepared molybdenum doped BVO by the sol-gel method, which shows enhanced photocatalytic 
activity than the bare BVO. (Wang, Shan, Wu et al, 2017)

Precipitation or Co- Precipitation Technique

For synthesizing nanomaterials, the most popular method is the precipitation method, where different 
chemical components are mixed together. The composite prepared by the precipitation technique dem-
onstrated significant light absorption potentiality and also promote the separation of electrons and holes 
to improve PC performance. Pérez et al. synthesized BVO powder by surfactant-assisted co-precipitation 
technique. (Pérez et al., 2012) The PC activity for the photodegradation of Rhodamine B (Rh B) of the 
as-prepared m-BVO in the presence of Pluronic non-ionic surfactants performs a greater activity than 
the samples synthesized via solid-state reaction. The PC efficiency of BVO which was prepared by 
Cruz et al. (Cruz & Pérez, 2010) through the co-precipitation process for the photodegradation of Rh 
B revealed the high capability to bleach the dye solution. Ganeshbabu et al. synthesized BVO nanopar-
ticles via chemical precipitation technique. BVO nanoparticles calcined at 400oC exhibit the highest PC 
performance as it degrades Methylene blue (MB) dye about 92.25% within the duration of 120 min. 
(Ganeshbabu et al., 2020)
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Hydrothermal Technique

It is the most useful technique for preparing nanoparticles which is basically an approach of solution-
based reaction. Lei et al. employed BVO photocatalyst via the hydrothermal method; the sample pre-
pared at the pH3.0 shows the best photocatalytic activity. (Lei et al., 2014) Jiang et al. synthesized BVO 
photocatalyst with various kinds of morphologies via hydrothermal method in the presence or absence 
of poly (vinyl pyrrolidine), in which the spherical shaped BVO demonstrated the highest photocatalytic 
activity. (Jiang et al., 2012) J. Yu fabricated BVO nanofiber by this method where the BET surface area 
of the nanofibrous was higher compared to bulk BVO. (Yu & Kudo, 2005) H. Jiang examined the PC 
performances for degradation of MO using BVO photocatalyst synthesized hydrothermally to achieve 
improved performance under visible light irradiation. BVO photocatalyst was also prepared by Ran et 
al. through this approach. (Ran et al., 2015) The BVO photocatalyst prepared through hydrothermal 
techniques in comparison with other techniques revealed improved surface morphological properties 
of the photocatalyst.

Microwave-Assisted Synthesis Technique

A major innovation and a dramatic change were observed through microwave synthesis for BVO nano-
materials. Pookmanee et al. synthesized BVO powder through microwave-assisted synthesis technique. 
(Pookmanee, Longchin, Kangwansupamonkon et al, 2013) Multi-phase monoclinic and tetragonal 
structures of BVO (surface area ~ 4.89-15.90 m2 g−1) were produced by the microwave irradiation of 
600-800 W for duration 4-6 min. BVO photocatalyst was also developed by Intaphong et al. in micro-
wave-assisted technique with irradiation of 500 W for 2 min, 4 min and 6 min. (Intaphong et al., 2016) 
The best photocatalytic performance is shown for the sample which is prepared for 4 min. Souza et al. 
obtained BVO nanoflowers modified with gold nanoparticles through microwave irradiation to increase 
the photocatalytic efficiency. (Souza et al., 2019) Another example for BVO heterojunction formation 
was revealed by Yan et al. through facial microwave-assisted technique. (Yan et al., 2015) They explored 
higher photo catalytic efficiency when tetracycline is degraded due to faster transfer of charges between 
the heterojunction of the various phases of BVO.

Electrodeposition

Electrodeposition is a flexible, low-cost method for the fabrication of a wide variety of two and three 
dimensional materials such as coatings and films. Ye et al. synthesized Bi2O3/BiVO4hetero-structurenano-
spheres via electrodeposition method with a photocurrent of 2.58 mA cm–2 at 1.2 V vs. Ag/AgCl which 
is almost 5 times higher than the pristine BVO. (Ye et al., 2015) Kong et al. prepared Ni-doped BVO 
photoanode by the electrodeposition method, where 5% Ni-doped BVO exhibits the highest photocur-
rent of 2.39 mA cm–2 at 1.23 V vs. RHE which is about 2.5 times higher than the pure BVO. (Kong et 
al., 2019)Cho et al. synthesized W doped BVO photoanodes by the electrodeposition technique; the 
photocurrent of W doped BVO is increased three times than that of pure BVO. (Cho et al., 2013) A. J. 
Bard et al. electrodeposited amorphous TiO2 on W: BVO/F: SnO2 resulting in almost 5.5 times higher 
water oxidation photocurrent than pure BVO. (Eisenberg et al., 2014)
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Spin Coating

It is generally used for the development of nanocomposite film. Tayyebi et al. synthesized monoclinic BVO 
photocatalyst via spin coating followed by calcination method, the photocatalytic activity of monoclinic 
BVO is increased with an increase in the basicity of the medium. (Tayyebi et al., 2019) Sitaraman et al. 
synthesized WO3/BiVO4heterojunction by spin-coating technique; from the PEC studies it was evident 
that the WO3/BiVO4 shows higher photocurrent density (0.64 mA cm–2 at 1.23 V vs. RHE) than the bare 
WO3 and BiVO4. (Sitaaraman et al., 2021) Wang et al. prepared BVO thin film by spin coating followed 
by annealing, the thin film annealed at higher temperature (500oC-540oC) shows better PEC performance 
compared to the others prepared at a lower temperature. (Shi et al., 2018) Russo et al. synthesized BVO 
thin film via spin coating technique, from the PEC study it is evident that the charge transfer kinetics is 
three times faster than that of the porous film. (Hernándeza et al., 2016).

STRATEGIES FOR ENHANCING PEC PERFORMANCE

Various approaches such as control in surface morphology, composite construction, the effect of dopant, 
and heterojunction of photocatalysts have been employed to improve the overall PEC water splitting 
performance.

Heterojunction

Kalanur et al. synthesized WO3/BVO via a combination of hydrothermal and spin-coating technique; 
different amount of ethyl cellulose is added during the spin coating, whereas the highest photocurrent 
(Iph) is observed in the presence of 200 mg of ethyl cellulose which acts as an organic binder (Kalanura 
et al., 2017). Later they electrodeposited TiO2 on the optimized WO3/BVO heterojunction, fabricated 
WO3/BVO/TiO2 and studied surface modification by using Co-phosphate as a co-catalyst. Photoelectro-
chemical studies of WO3/BVO electrode shows higher photocurrent (~3.9 mA cm–2 at 1.23 V vs. RHE) 
compared to individual WO3 and BVO electrode whereas WO3/BVO/TiO2 composite shows maximum 
photocurrent of ~4.2 mA cm–2 at 1.23 V vs. RHE. Jang et al. designed a triple planar heterojunction 
SnO2/ WO3/BVO films via electron beam deposition followed by a wet chemical method and the thick-
ness of the SnO2and WO3 layer are varied during the deposition. (Bhat et al., 2018) Among the different 
thicknesses of the SnO2 and WO3 layer, SnO2 50 nm/ WO3 50 nm /BVO shows the highest Iph of ~2.01 
mA cm–2 and 1.80 mA cm–2at 1.23 V under front & back illumination, respectively.

Doping Approach

Doping is also one of the most intentional tactics to tune the properties of a bulk semiconductor. Due to 
the enhancement of e−- h+ recombination and reducing the depletion layer bandwidth, the effect of dop-
ing will not always be favourable. Park et al. (Park et al., 2011) demonstrated that BVO photoanode with 
co-dopants 2 at% Mo and 6 at% W performed more upgraded activity than the bare or only W modified 
BVO. The addition of Mo to the W-doped BVO sample indicates twice the carrier density compared to 
only the W-doped sample, as measured through Mott-Schottky analysis. A structural change occurs for 
Mo/W-doped as well as W-doped BVO from monoclinic scheelite to tetragonal scheelite phases. Berglund 
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et al. (Berglund et al., 2012) reproduced the results of Park et al. where W, Mo and Mo/W-doped BVO 
photoanodes were synthesized via ballistic deposition technique. An important technique - inductively 
coupled plasma mass spectroscopy (ICPMS) was used to verify the doping composition. Compared to 
BVO photoanodes containing different percentages of W & Mo or the sample doped with either of W or 
Mo individually, the BVO electrode coupled with 2 at% Mo and 6 at% W achieved the best performance. 
The modification of Mo and W became quite popular owing to their unique effects whose addition is 
more facile and no further improvement in Iph with the increase in the doping level of either Mo or W 
compared to co-doping of Mo and W for the identification of the synergistic effect of Mo and W.

Luo et al. investigated the effect of BVO electrodes doped in the presence of different metal ion W, 
Zr, La, Mo, Sr, Ag, Ta, Si, Zn, Ti as prepared through modified metal-organic decomposition method. 
The Iph was found to enhance via doping with either of Mo6+ or W6+- ion (Luo et al., 2011). A modified 
BVO sample prepared with 3 at% Mo exhibited significant improvement in Iph as well as IPCE in natural 
seawater due to photo-oxidation of Cl–. The Raman spectral study of the modified samples indicated that 
Mo6+ ions were located within the V5+ sites.

Phosphorous, non-metal constituent was also incorporated into BVO through the urea-precipitation 
method as reported by Jo et al. (Jo et al., 2012) where a small fraction of VO4

3−oxoanions was replaced 
by PO4

3−oxoanions. In the host structure, the incorporation of PO4
3− oxoanions, which were added as a 

phosphorous precursor, caused shifts in the XRD peaks indicating an increase in cell parameters. The 
electrophoretic deposition of Bi(VO4)0.998(PO4)0.002 achieved a better performance to generate an appre-
ciably higher photocurrent compared to the pure BVO electrode. The charge transfer resistance of BVO 
remarkably decreases upon the addition of PO4

3−.

Co-Catalyst

Chiang et al. demonstrated the effect of photochemically modified nano porous BVO with Co2+ in acetate 
buffer on PEC water oxidation. The surface modification in the presence of Co-acetate gives a cathodic 
shift of onset potential (~0.45 V); the Iph of the modified BVO is 2.05 mA cm–2 at 1.23 V vs. RHE which 
is almost 3.4 times higher than that of the pure one. Wang et al. synthesized modified BVO photoanode 
by using iron-cobalt oxide as a co-catalyst and the photoanode shows the Iph of 4.82 mA cm–2 at 1.23 V 
vs. RHE, whereas the IPCE value reaches up to ~ 86% upon loading of FeCoOx layers on BVO. Wu et 
al. synthesized Co3 (PO4)2decorated BVO via solid-state reaction and observed Iph of 0.30 mA cm–2 at 
1.23 V vs. RHE which is higher than pure BVO. (Wu et al., 2020) Gamelin et al. (Zhong et al., 2011) 
demonstrates low onset potential of 0.31 V vs. RHE at pH8 for Co-Pi modified tungsten doped BVO 
photoanode. Liu et al. (Tang et al., 2018) synthesized a CoOOH-over layer coated coral-like BVO pho-
toanode which also has a low onset potential of 0.2 V vs. RHE, a maximum Iph of 4.0 mA cm–2 at 1.23 V 
vs. RHE. Pilli et al. synthesized Co-Pi catalyst modified Mo doped BVO, showing Iph of 1.0 mA cm–2 at 
1.0 V vs. Ag/AgCl. (Pilli et al., 2011) Nam et al. synthesized W-Mo doped BVO photoanode modified 
with iron oxy-hydroxide electrocatalyst via a two-step process drop-casting followed by photo-assisted 
electro-deposition, the co-catalyst modified doped BVO photoanode attained at least two-fold higher Iph 
(at 0.3 V vs. Ag/AgCl) than that of the doped BVO photoanode. (Joo et al., 2016)
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Figure 5. (a) Linear sweep voltammograms of undoped BiVO4 (blue), W-doped BiVO4 (red), and W/Mo-
doped BiVO4 (black) in the 0.1 M Na2SO4 aqueous solution (pH 7) with chopped light under UV-visible 
irradiation and XRD patterns of (i) 2 at % W & 6 at % Mo-doped BiVO4, (ii) 5 at % W-doped BiVO4, 
and (iii) undoped BiVO4. 
Reprinted with permission from Ref. (Park et al., 2011) copyright from American Chemical Society.
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GENERAL PRINCIPLES AND MECHANISM OF 
PHOTOCATALYSIS FOR THE SEMICONDUCTOR

A photocatalytic reaction usually proceeds through four basic steps mentioned below:

Photocatalysts�
h�

e−
CB+ h+

VB (1)

Photocatalysts (e−
CB) + O2→O2

• − (2)

Photo catalysts (h+
VB) + H2O →H+ + •OH (3)

Pollutants + •OH + O2
• −→Degradation products (4)

A photocatalyst plays the role to speed up the oxidation and reduction process in the presence of light 
as a source of energy specifically. However, the photocatalytic (PC) materials have an intimate associa-
tion to the morphology, crystallinity and particle size of the photocatalysts. The surface recombination 
of photogenerated charge carriers is higher for the larger crystal size.

Photocatalytic Effect of BiVO4 Through the Incorporation 
of D - Block and F - Block Element

The photocatalytic activity was first explored in 1986 by Sato and co-workers where N/TiO2photocata-
lyst was used for ethane and carbon monoxide oxidation. A superior photocatalytic (PC) activity was 
demonstrated by N/TiO2photocatalyst in comparison with pure TiO2.(Sato, 1986) There are so many 
examples of the BVO photoanode used for decomposition of different dyes through the incorporation 
of different d-block and f-block metal ions as dopants along with their synthesis technique. Thereafter 
a lot of attention has been paid to the modification of BVO with these elements as suitable dopants. 
Geng et al. (Geng et al., 2015) fabricated Co/BVO in the presence of chelating agent e.g. EDTA through 
a hydrothermal method. The PC performance of the composite was evaluated for the decomposition of 
MB. Co/BVO optimized composite exhibits higher PC activity compare with pure BVO. It has been 
reported that the improvement of light absorption occurs with the reduced band gap and deliberate re-
combination rate is also attributed to the enhancement of PC performances. The visible-light-driven Co/
BVO photocatalyst was also reported by Regmi et al. (Regmi, Kim, Ray et al, 2017) via microwave-
assisted hydrothermal technique. They synthesized photocatalyst was explored for the decomposition of 
malachite green. An inactivation bacterial cell growth of Escherichia Coli (E. coli) and Chlamydomonas 
Pulsatilla (CP) was observed during this process. Around 99% of malachite green was decomposed 
within 90 min of illumination, whereas bare BVO degrades only 61% after 130 min of illumination. The 
improved light absorption in the visible region revealed the improved PC activity with lowering of band 
gap energy. It is also noted that the passivation of E.coli influences 81.3% after 5 h, but CP influences 
only 65.6% after exposure to visible light for 60 min. Ni-doped BVO can also be synthesized by the 
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microwave-assisted hydrothermal process which was reported by Regmi et al. (Regmi, Kshetri, Kim, 
Pandey, Ray et al, 2017) The PCA of 1 wt% Ni/BVO composite was revealed 92% photocatalytic deg-
radation proficiency when it exposed towards the ibuprofen. With the decreasing migratory time period 
of the excited carrier, the separation proficiency of the e− - h+ pair increases and the oxygen vacancies 
of the composite behave as an electron-trapping centre. Wang et al. (Wang, Guo, Chai et al, 2017) pre-
pared Cu/BVO in the presence of chelating agent EDTA via solvothermal technique. The optimized Cu/
BVO composite showed 5 folds higher PC performance than bare one in the presence of Rh B dye. It 
was assigned to lower band gap with the improvement of light absorption, surface morphology reduced 
rate of recombination reaction of the photogenerated charge transporters. The electrons (e−) of the Cu/
BVO photocatalyst from VB are activated under visible-light illumination, and a situation arises where 
the promotion of e− from the valence band to the conduction band takes place with h+ left in the valence 
band. On the surface reactive sites of Cu/BVO produce O2•–radicals and the electrons are confined by 
adsorbed oxygen molecules. To produce strong oxidizing agents like •OH radicals, the photoinduced 
h+ of the VB can interact with H2O and OH-. Any active species (e.g. •OH radicals) holes can attack the 
Rh B molecules. However, Cu2+ and V4+ captured the excited electrons of the CB to enhance the charge 
separation effectiveness of photoactivated charge transporters. Enhanced photocatalytic degradation 
efficiency for Rh B was observed due to the promotion and involvement of sufficient amounts of elec-
trons and holes in the photocatalytic reaction. Chen et al. (Chen et al., 2015) developed Cu-doped BVO 
to obtain the highly active optimized composite via the microwave-assisted hydrothermal process for 
not only UV light but also visible-light photodegradation of MB. Due to electrostatic attraction e−s in 
the conduction band and h+s in the valence band are adjacent to each other during the irradiation process. 
As Cu was inefficient compared to BVO, the charge transporters were identified only when the amount 
of Cu incorporation was appreciable. However, the Fermi’s level played an important role. There is no 
shifting of photo-generated electrons from an upper Fermi level of BVO to a lower Fermi level of 
metal until the energy levels became the same. Thus, Cu (II) behaves as a resourceful dopant to sig-
nificantly improve PC performance. Chen et al. (Chen et al., 2013) developed an Ag-modified BVO 
composite in the presence of L-lysine with the help of the sol-gel method to obtain a porous structure 
composite. They evaluated the catalyzed activity of the Ag modified BVO composite for the MB and 
Rh B decomposition. The 6.5 wt% modified composite was assessed as an optimized photocatalyst due 
to its enormous surface area in comparison with bare BVO. Xu et al. (Xu et al., 2016) also studied the 
role of Ag-doped BVO for the photodegradation of MB with high efficiency. A red shift occurred for 
Ag/BVO than that of pure BVO, as confirmed through DRS analysis and the band positions were 
evaluated from the band diagram. The VB and the CB of BVO loaded with Ag nanoparticles shifted 
towards the negative direction in comparison with pure BVO. These behaviours proposed a unique 
electronic structure which increases the capability of photo-oxidation of the excited charge transporters 
to encourage visible-light activity. Booshehri et al. (Booshehri et al., 2014) prepared an Ag-based BVO 
composite to investigate the disinfection activity of photocatalyst. The authors evaluated this activity for 
E.Coli after exposure to visible light where bacterial growth was around 100% after 3 h of illumination 
in the presence of Ag-BVO composite. Due to the presence of Ag nanoparticles, it acts as a trapping 
agent of electrons on the surface of BVO. Therefore, PC activity of Ag-based BVO enhanced with the 
separation of photoexcited charge transporters to generate reactive species like oxygen. The photocata-
lytic performance of Cu modified BVO and Ag modified BVO composite was examined by Bian et al. 
(Bian et al., 2014) as developed through the hydrothermal path. After exposure to visible light the Cu 
modified BVO photoanode exhibited 89% decay of ibuprofen, whereas the Ag modified sample assessed 
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96% decomposition efficiency after 5 h irradiation. Lower band gap energies with greater surface areas 
indicate the slower recombination of charge transporters. Consequently, photocatalytic activity increased 
with the absorption of additional active sites and degraded constituents are also excluded in the presence 
of Ag metal as a dopant. Zhang et al. (Zhang & Zhang, 2010a) made hydrothermally synthesized Au/
BVO composite to explore the photocatalytic behaviour under visible-light irradiation for the decolouriza-
tion of methyl orange (MO). Among all samples, optimized 1.48wt% Au-BVO photoanode presented 
highest photocatalytic activity where Au metal ion exhibits a crucial role to suppress combination effect 
and increase the charge carrier mobility. Recently, Chala et al. (Chala et al., 2014) prepared Fe-doped 
BVO to evaluate the photodecomposition of MB via hydrothermal technique. The sample exhibited 
outstanding photocatalytic behaviour than that of bare BVO. In the presence of visible-light illumination, 
the maximum photodegradation proficiency is ~81% with an optimal (5 mol %) Fe-loading. After the 
addition of iron, the photocatalytic performance improved due to more proficient electron capturing by 
Fe(III) ions resulting in an enhancement of e−-h+ separation. Regmi et al. (Regmi, Kshetri, Kim, Pandey, 
& Lee, 2017) also prepared Fe-modified BVO photoanode via microwave-assisted hydrothermal tech-
nique for use in the decomposition of ibuprofen in the presence of visible-light irradiation. The author 
assessed that 80% of ibuprofen is degraded with optimized 1 wt% Fe-modified BVO after 3 h exposure 
to visible-light. The development of monoclinic and tetragonal hetero structures endorses the interfacial 
charge transfer between these two phases and the photoinduced charge transporters are emphasized due 
to suppress the ion of the internal recombination to facilitate the PC performance. Additionally, it has 
been reported that there is an intimate connection between Fe3+ and BVO in the composite so that dif-
fraction peaks in the XRD plots are modified to some extent, as mentioned in Figure 6.

By using microwave-assisted method Pt-modified BVO was produced by Shi et al. (Shi et al., 2013) 
The PC performance of 2 wt% Pt/BVO photocatalyst demonstrated showed 92% degradation efficiency 
of ciprofloxacin were recorded under visible-light exposure, which is 25% greater than that of pure BVO. 
The charge collection and transportation lead a more reactive surface site to enhance photodegradation 

Figure 6. (a) XRD patterns of BiVO4 with various wt% of Fe and (b) enlarged view of (121) peak at 
2θ=28.5o. 
Reprinted with permission from Ref. (Regmi, Kshetri, Kim, Pandey, & Lee, 2017) copyright from Elsevier
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of the organic molecule through the addition of Pt. Ge et al. (Ge, 2008) synthesized visible-light-driven 
Pd-incorporated BVO photocatalyst via impregnation method. Figure 7 represents the photocatalytic 
mechanism of palladium oxide doped BiVO4 composite in the presence of visible-light. The photo-
decomposition of MO was examined with 1.0 wt% Pd/BVO which indicates higher efficacy (~100%) 
in comparison than that of pristine BVO (~42%) after 15 h of irradiation with visible-light as shown 
in Figure 8. This added element can act as an electron capturing agent for boosting the charge carrier 
separation and promoting the PC reaction rate using a Pd-based BVO sample.

The band gap energy of pure BVO and Pd/BVO can be calculated from DRS analysis, as shown in 
Figure 9. The light absorption ability of the composite increased and a red shift occurred after Pd spe-
cies was incorporated, indicating improved PC performance for BVO samples after introducing the Pd 
species. The change in phase structure of the Pd/BVO photocatalyst was explored using XRD analysis. 
(Figure 10) The monoclinic phase of BVO exhibited improved PC activity under visible light irradiation 
and this phase must be invariant after Pd was added as a dopant.

Tl-modified BVO was developed by Karunakaran et al. (Karunakaran & Kalaivani, 2014) via the hy-
drothermal route to study the decay of MB in the presence of visible light. The authors reported that 19.3 
at% Tl-modified BVO showed much better PC performance than others at % Tl-modified BVO and pure 

Figure 7. Photocatalytic mechanism of palladium oxide doped BiVO4 composite photocatalysts under 
visible-light illumination.
Reprinted with permission from Ref. (Ge, 2008) copyright from Elsevier
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sample. The enhanced activity of the Tl-modified photocatalyst is due to the restricted recombination of 
photogenerated e− and h+ pairs. La-B/BVO photocatalysts were prepared by Min et al. (Min et al., 2013) 
through the sol-gel process. For photocatalytic degradation of MO a much higher rate constant i.e. 0.075 
min-1, was recorded for the optimized La-modified B-based BVO photocatalyst compare to the pristine 
BVO with a rate constant of 0.004 min-1 whereas only B-based BVO demonstrated the value as 0.007 
min-1 under visible-light irradiation. The dramatic improvement in PC performance of the La-B modified 
BVO was assigned to the effective separation of photogenerated charge transporters due to the synergic 
effects of La and B in modifying the crystallites. Gao et al. (Gao et al., 2015) studied Nd-doped BVO 
composite with rod-like morphology, obtained via the hydrothermal method in the presence of sodium 
dodecyl benzenesulfonate (SDBS) as a surfactant with rod-like morphology. The authors demonstrated 
that although the crystallinity of BVO did not change significantly with the doping of Nd the amount of 
dopant controlled the photocatalytic (PC) performance of the composite. An optimal 0.8 wt% Nd-doped 
BVO composite was evaluated as the best desulfurization agent of the thiophene and degradation of 
phenol under visible light irradiation with almost 14 times higher in PC activity in comparison to pure 
BVO. By using the sol-gel process, Wang et al. (Wang et al., 2015) examined N and Sm co-doped BVO 
composite where the corn stem was used as a template. They analyzed the photodecomposition of MO 
under suitable illumination to optimize Sm modified N-based BVO composite. It achieved the enhance-
ment of PCA in comparison to the any other BVO composite due to the cumulative impact of the N 
and Sm ions in the composite photocatalyst. Zhang et al. investigated europium-doped BVO (Eu/BVO) 
composite for employing it as visible-light-driven photocatalyst as prepared via hydrothermal route. The 
optimized 1.46 wt % Eu-based BVO composite was decolorized almost cent percent of MO solution 
with 180 min illumination. (Zhang & Zhang, 2010b) The light absorption in the visible region reduces 

Figure 8. The decrease of MO over different BiVO4 and Pd/BiVO4 composite photocatalysts (initial MO 
concentration 10 mg L−1; pH = 3)
Reprinted with permission from Ref. (Ge, 2008) copyright from Elsevier
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the recombination rate between the photoinduced charges to raise the PC activity of the composite. Xue 
et al. (Xue et al., 2017) prepared Eu-F-codoped BVO microspheres by using the hydrothermal method. 
This visible-light-driven photocatalyst (with a diameter of ~1-3 μm) is used for the degradation of Rh 
B as a noxious organic waste, as shown in Figure 11. The composite semiconductor revealed a gradual 
enhancement of PC performance than that of either bare BVO or individual europium-doped or fluorine-
doped BVO materials. The synergistic effects of europium and fluorine co-dopant were recorded. As a 
result, PC performance was improved due to an increase in both surface area and separation proficiency 
of the photoactivated e- and h+.

Luo et al. (Luo et al., 2016) examined the PC efficiency of Gd-modified BVO photocatalyst as ob-
tained through microwave-assisted hydrothermal route for use in photocatalyzed decay of Rh B under 
irradiation of visible light. All gadolinium doped BVO nanocomposite exhibits the tetragonal BVO phase 
whereas pure BVO crystallized in only monoclinic system, as confirmed by XRD analysis. After 120 
min illumination, the optimal 10 at% Gd based BVO revealed ~96% degradation of Rh B. The enhanced 
PCA for Gd doped material could be the phase transition of BVO from monoclinic phase to tetragonal 
phase, as the formation of BVO tetragonal phase is facilitated through the incorporation of Gd metal.

Figure 9. UV-Vis diffuses absorption spectra of photocatalysts: (a) BiVO4; (b) Pd/BiVO4. 
Reprinted with permission from Ref. (Ge, 2008) copyright from Elsevier
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A C-based BVO with a hierarchical butterfly wing structure was fabricated by Yin et al. (Yin et al., 
2013) through a sol-gel technique whereas template wings of butterfly were used for the utilization in 
visible-light-driven photocatalyst to degrade the MB. The improvement of photo-activated charge trans-
porters revealed the optimized C/BVO photocatalyst as an enriched photocatalytic performer.

CONCLUSION

In this review, the photoelectrochemical water splitting process as well as the photocatalysis process 
for pollutant degradation of BVO photoanode has been discussed. This semiconductor attracts a lot of 
interest due to low band gap energy and facile synthetic routes to fabricate efficient photoexcited ma-
terials for solar renewable energy production. However, there are still remaining challenges regarding 
inadequate information for enhancing the stability of BVO. In this chapter, the role of surface morphol-
ogy, co-catalyst, structural modification, and metal doping or heterojunction structure of BVO have been 
highlighted for H2-O2 gas production in PEC water splitting. Growth of visible light active efficient and 

Figure 10. XRD patterns of pure BiVO4 and Pd/BiVO4 composite photocatalysts. 
Reprinted with permission from Ref. (Ge, 2008) copyright from Elsevier.
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Figure 11. Comparisons of photocatalytic performance of bare BiVO4 and doped BiVO4 in degradation 
of Rh B under metal halide lamp irradiation. (a) Rh B concentration changes; (b) Degradation rate 
comparison of Rh B over different samples after 60 min light irradiation.
Reprinted with permission from Ref. (Xue et al., 2017) copyright from Elsevier.
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stable photocatalyst can degrade pollutants with an environmental impact. This review also indicates that 
further studies must be focused on the restriction of recombination between photogenerated electrons 
and holes to understand the better photocatalysis mechanism. A discussion over the growth of more ef-
fective morphologies, compositions, and photon absorption of BVO is also needed.

Since the BVO-based semiconductors can be activated under visible light irradiation, these materials 
would gain much popularity, especially for in water splitting process as well as degradation of pollutants 
in air and surface water.

ACKNOWLEDGMENT

The author sincerely acknowledges the Department of Science & Technology, Government of India, for 
financial support (vide reference no. SR/WOS-A/CS-10/2018, dated 02.01.2019) under DST-Women 
Scientist Scheme - A (DST-WOS-A) to carry out this work. The financial support from CSIR (File no. 
01(2876)/17/EMR-II, 02.05.2017) to the Department of Chemistry, IIESTS is gratefully acknowledged.

REFERENCES

Andrei, V., Hoye, R. L. Z., Quesada, M. C., Bajada, M., Ahmad, S., Volder, M. D., Friend, R., & Reisner, 
E. (2018). Scalable triple cation mixed halide perovskite-BiVO4 tandems for bias-free water splitting. 
Advanced Energy Materials, 8(25), 1801403. doi:10.1002/aenm.201801403

Antony, R. P., Bassi, P. S., Abdi, F. F., Chiam, S. Y., Ren, Y., Barber, J., Loo, J. S. C., & Wong, L. H. 
(2016). Electrospun Mo-BiVO4 for efficient photoelectrochemical water oxidation: Direct evidence of 
improved hole diffusion length and charge separation. Electrochimica Acta, 211, 173–182. doi:10.1016/j.
electacta.2016.06.008

Berglund, S. P., Rettie, A. J. E., Hoang, S., & Mullins, C. B. (2012). Incorporation of Mo and W into 
nanostructured BiVO4 films for efficient photoelectrochemical water oxidation. Physical Chemistry 
Chemical Physics, 14(19), 7065–7075. doi:10.1039/c2cp40807d PMID:22466715

Bhat, S. S. M., Lee, S. A., Suh, J. M., Hong, S. P., & Jang, H. W. (2018). Triple planar hetero-junction of 
SnO2/WO3/BiVO4 with enhanced photoelectrochemical performance under front illumination. Applied 
Sciences (Basel, Switzerland), 8(10), 1765. doi:10.3390/app8101765

Bian, Z. Y., Zhu, Y. Q., Zhang, J. X., Ding, A. Z., & Wang, H. (2014). Visible-light driven degrada-
tion of ibuprofen using abundant metal-loaded BiVO4 photocatalysts. Chemosphere, 117, 527–531. 
doi:10.1016/j.chemosphere.2014.09.017 PMID:25268078

Booshehri, A. Y., Goh, S. C. K., Hong, J., Jiang, R., & Xu, R. (2014). Effect of depositing silver nanoparticles 
on BiVO4 in enhancing visible light photocatalytic inactivation of bacteria in water. Journal of Materials 
Chemistry. A, Materials for Energy and Sustainability, 2(17), 6209–6217. doi:10.1039/C3TA15392D

Chala, S., Wetchakun, K., Phanichphant, S., Inceesungvorn, B., & Wetchakun, N. (2014). Enhanced 
visible-light-response photocatalytic degradation of methylene blue on Fe-loaded BiVO4 photocatalyst. 
Journal of Alloys and Compounds, 597, 129–135. doi:10.1016/j.jallcom.2014.01.130

 EBSCOhost - printed on 2/14/2023 11:47 AM via . All use subject to https://www.ebsco.com/terms-of-use



23

Modifications of BiVO4 Semiconductors for Oxidation of Water and Detoxification of Organic Waste
 

Chen, L., Huang, R., Ma, Y. J., Luo, S. L., Au, C. T., & Yin, S. F. (2013). Controllable synthesis of 
hollow and porous Ag/BiVO4 composites with enhanced visible-light photocatalytic performance. RSC 
Advances, 3(46), 24354–24361. doi:10.1039/c3ra43691h

Chen, X., Li, L., Yi, T., Zhang, W. Z., Zhang, X., & Wang, L. (2015). Microwave assisted synthesis 
of sheet-like Cu/BiVO4 and its activities of various photocatalytic conditions. Journal of Solid State 
Chemistry, 229, 141–149. doi:10.1016/j.jssc.2015.05.026

Cheng, J., Feng, J., & Pan, W. (2015). Enhanced Photocatalytic Activity in Electrospun Bismuth Vanadate 
Nano-fibers with Phase Junction. ACS Applied Materials & Interfaces, 7(18), 9638–9644. doi:10.1021/
acsami.5b01305 PMID:25856118

Cho, S. K., Park, H. S., Lee, H. C., Nam, K. M., & Bard, A. J. (2013). Metal doping of BiVO4 by com-
posite electrodeposition with improved photoelectrochemical water oxidation. The Journal of Physical 
Chemistry C, 117(44), 23048–23056. doi:10.1021/jp408619u

Crabtree, G. W., Dresselhaus, M. S., & Buchanan, M. V. (2004). The hydrogen economy. Physics Today, 
57(12), 39–45. doi:10.1063/1.1878333

Cruz, A. M., & Pérez, U. M. G. (2010). Photocatalytic properties of BiVO4 prepared by the co-precipi-
tation method: Degradation of rhodamine B and possible reaction mechanisms under visible irradiation. 
Materials Research Bulletin, 45(2), 135–141. doi:10.1016/j.materresbull.2009.09.029

Darwent, J. R., & Mills, A. (1982). Photo-oxidation of water sensitized by WO3powder. Journal of the 
Chemical Society. Faraday Transactions II, 78(2), 359–367. doi:10.1039/f29827800359

Dreyer, G., & Tillmanns, E. (1981). NeuesJahrb. Mineral. Monatshe, 151-154.

Drisya, K. T., López, M. S., Ramírez, J. J. R., Álvarez, J. C. D., Rousseau, A., Velumani, S., Asomoza, 
R., Kassiba, A., Jantrania, A., & Castaneda, H. (2020). Electronic and optical competence of TiO2/BiVO4 
nanocomposites in the photocatalytic processes. Scientific Reports, 10(1), 13507. doi:10.103841598-
020-69032-9 PMID:32782289

Eisenberg, D., Ahn, H. S., & Bard, A. J. (2014). Enhancedphotoelectrochemical water oxidation on bis-
muth vanadate by electrodeposition of amorphous titanium dioxide. Journal of the American Chemical 
Society, 136(40), 14011–14014. doi:10.1021/ja5082475 PMID:25243345

Fujishima, A., & Honda, K. (1972). Electrochemical photolysis of water at a semiconductor electrode. 
Nature, 238(5358), 37–38. doi:10.1038/238037a0 PMID:12635268

Ganeshbabu, M., Kannan, N., Venkatesh, P. S., Paulraj, G., Jeganathan, K., & Ali, D. M. (2020). Synthe-
sis and characterization of BiVO4 nanoparticles for environmental applications. RSC Advances, 10(31), 
18315–18322. doi:10.1039/D0RA01065K PMID:35517221

Gao, X., Wang, Z., Zhai, X., Fu, F., & Li, W. (2015). Thesynthesize of lanthanide doped BiVO4 and 
its enhanced photocatalytic activity. Journal of Molecular Liquids, 211, 25–30. doi:10.1016/j.mol-
liq.2015.06.058

 EBSCOhost - printed on 2/14/2023 11:47 AM via . All use subject to https://www.ebsco.com/terms-of-use



24

Modifications of BiVO4 Semiconductors for Oxidation of Water and Detoxification of Organic Waste
 

Ge, L. (2008). Novel Pd/BiVO4 composite photocatalysts for efficient degradation of methyl orange 
under visible light irradiation. Materials Chemistry and Physics, 107(2-3), 465–470. doi:10.1016/j.
matchemphys.2007.08.016

Geng, Y., Zhang, P., Li, N., & Sun, Z. (2015). Synthesis of Co doped BiVO4 with enhanced visible-
light photocatalytic activities. Journal of Alloys and Compounds, 651, 744–748. doi:10.1016/j.jall-
com.2015.08.123

Ginley, D., Green, M. A., & Collins, R. (2008). Solar energy conversion toward 1 terawatt. MRS Bulletin, 
33(4), 355–364. doi:10.1557/mrs2008.71

Hernándeza, S., Gerardia, G., Bejtkab, K., Finaa, A., & Russo, N. (2016). Evaluation of the charge transfer 
kinetics of spin-coated BiVO4 thin films for sun-driven water photoelectrolysis. Applied Catalysis B: 
Environmental, 190, 66–74. doi:10.1016/j.apcatb.2016.02.059

Ikeda, S., Tanaka, A., Shinohara, K., Hara, M., Kondo, J. N., Maruya, K., & Domen, K. (1997). Hetero-
geneous photocatalyst materials for water splitting. Microporous and Mesoporous Materials, 9, 253–258. 
doi:10.1016/S0927-6513(96)00112-5

Inoue, Y., Kohno, M., Kaneko, T., Ogura, S., & Sato, K. (1998). Dispersion of ruthenium oxide on barium 
titanates (Ba6Ti17O40, Ba4Ti13O30, BaTi4O9 and Ba2Ti9O20) and photocatalytic activity for water decom-
position. Journal of the Chemical Society, Faraday Transactions, 94(1), 89–94. doi:10.1039/a704947a

Intaphong, P., Phuruangrat, A., & Pookmanee, P. (2016). Synthesis and characterization of BiVO4 
photocatalyst by microwave method. Integrated Ferroelectrics, 175(1), 51–58. doi:10.1080/10584587
.2016.1200910

Jiang, H., Dai, H., Meng, X., Zhang, L., Deng, J., Liu, Y., & Au, C. T. (2012). Hydrothermal fabrication 
and visible-light-driven photocatalytic properties of bismuth vanadate with multiple morphologies and/
or porous structures for Methyl Orange degradation. Journal of Environmental Sciences (China), 24(3), 
449–457. doi:10.1016/S1001-0742(11)60793-6 PMID:22655358

Jo, W. J., Jang, J. W., Kong, K. J., Kang, H. J., Kim, J. Y., Jun, H., Parmar, K. P. S., & Lee, J. S. (2012). 
Phosphatedoping into monoclinic BiVO4 for enhanced photoelectrochemical water oxidation activity. An-
gewandte Chemie International Edition, 51(13), 3147–3151. doi:10.1002/anie.201108276 PMID:22344930

Joo, E. J., Park, G., Gwak, J. S., Seo, J. H., Jang, K. Y., Oh, K. H., & Nam, K. M. (2016). Efficient 
photoelectrochemical water oxidation by metal-doped bismuth vanadate photoanode with Iron oxyhy-
droxideelectrocatalyst. Journal of Nanomaterials, 1827151.

Kalanura, S. S., Yoo, I. L., Park, H. J., & Seo, H. (2017). Insights into the electronic bands ofWO3/BiVO4/
TiO2, revealing high solar water splitting efficiency. Journal of Materials Chemistry. A, Materials for 
Energy and Sustainability, 5(4), 1455–1461. doi:10.1039/C6TA07592D

Karunakaran, C., & Kalaivani, S. (2014). Enhanced visible light-photocatalysisby hydrothermally synthe-
sized thallium-doped bismuth vanadate nanoparticles. Materials Science in Semiconductor Processing, 
27, 352–361. doi:10.1016/j.mssp.2014.07.004

 EBSCOhost - printed on 2/14/2023 11:47 AM via . All use subject to https://www.ebsco.com/terms-of-use



25

Modifications of BiVO4 Semiconductors for Oxidation of Water and Detoxification of Organic Waste
 

Kato, H., & Kudo, A. (2003). Photocatalytic water splitting into H2 and O2 over various tantalite photo-
catalysts. Catalysis Today, 78(1-4), 561–569. doi:10.1016/S0920-5861(02)00355-3

Kong, D., Qi, J., Liu, D., Zhang, X., Pan, L., & Zou, J. (2019). Ni-doped BiVO4 with V4+ species and 
oxygen vacancies for efficient photoelectrochemical water splitting. Transactions of Tianjin University, 
25(4), 340–347. doi:10.100712209-019-00202-1

Kudo, A., Omori, K., & Kato, H. (1999). A novel aqueous process for preparation of crystal form-
controlled and highly crystalline BiVO4 powder from layered vanadates at room temperature and its 
photocatalytic and photo physical properties. Journal of the American Chemical Society, 121(49), 
11459–11467. doi:10.1021/ja992541y

Kudo, A., Sayama, K., Tanaka, A., Asakura, K., Domen, K., Maruya, K., & Onishi, T. (1989). Nickel-
loaded K4Nb6O17photocatalyst in the decomposition of H2O into H2 and O2: Structure and reaction 
mechanism. Journal of Catalysis, 120(2), 337–352. doi:10.1016/0021-9517(89)90274-1

Kudo, A., Ueda, K., Kato, H., & Mikami, I. (1998). Photocatalytic O2 evolution under visible light irradiation 
on BiVO4 in aqueous AgNO3 solution. Catalysis Letters, 53(3/4), 229–230. doi:10.1023/A:1019034728816

Lei, B. X., Zeng, L. L., Zhang, P., Sun, Z. F., Sun, W., & Zhang, X. X. (2014). Hydrothermal synthesis 
and photocatalytic properties of visible-light induced BiVO4 with different morphologies. Advanced 
Powder Technology, 25(3), 946–951. doi:10.1016/j.apt.2014.01.014

Li, J., Chen, Y., Chen, C., & Wang, S. (2019). Solid-phase synthesis of visible-light-driven BiVO4 pho-
tocatalyst and photocatalytic reduction of aqueous Cr (VI). Bulletin of Chemical Reaction Engineering 
& Catalysis, 14(2), 336–344. doi:10.9767/bcrec.14.2.3182.336-344

Luo, W., Yang, Z., Li, Z., Zhang, J., Liu, J., Zhao, Z., Wang, Z., Yan, S., Yu, T., & Zou, Z. (2011). Solar 
hydrogen generation from seawater with a modified BiVO4 photoanode. Energy & Environmental Sci-
ence, 4(10), 4046–4051. doi:10.1039/c1ee01812d

Luo, Y., Tan, G., Dong, G., Ren, H., & Xi, A. (2016). A comprehensive investigation of tetragonal Gd-
doped BiVO4 with enhanced photocatalytic performance under sun-light. Applied Surface Science, 364, 
156–165. doi:10.1016/j.apsusc.2015.12.100

Min, W., Yinsheng, C., Chao, N., Mingyan, D., & Duo, D. (2013). Lanthanum and boron co-doped 
BiVO4 with enhanced visible light photocatalytic activity for degradation of methyl orange. Journal of 
Rare Earths, 31(9), 878–884. doi:10.1016/S1002-0721(12)60373-1

Osterloh, F. E., & Parkinson, B. A. (2011). Recent developments in solar water splitting photocatalysis. 
MRS Bulletin, 36(1), 17–22. doi:10.1557/mrs.2010.5

Park, H. G., & Holt, J. K. (2010). Recent advances in nano-electrode architecture for photochemical 
hydrogen production. Energy & Environmental Science, 3(8), 1028–1036. doi:10.1039/b922057g

Park, H. S., Kweon, K. E., Ye, H., Paek, E., Hwang, G. S., & Bard, A. J. (2011). Factors in the metal 
doping of BiVO4 for improved photoelectrocatalytic activity as studied by scanning electrochemical 
microscopy and first-principles density-functional calculation. The Journal of Physical Chemistry C, 
115(36), 17870–17879. doi:10.1021/jp204492r

 EBSCOhost - printed on 2/14/2023 11:47 AM via . All use subject to https://www.ebsco.com/terms-of-use



26

Modifications of BiVO4 Semiconductors for Oxidation of Water and Detoxification of Organic Waste
 

Park, Y., McDonald, K. J., & Choi, K. S. (2013). Progress in bismuth vanadate photoanodes for use 
in solar water oxidation. Chemical Society Reviews, 42(6), 2321–2337. doi:10.1039/C2CS35260E 
PMID:23092995

Pérez, U. M. G., Guzmán, S. S., Cruz, A. M. l., & Peral, J. (2012). Selective Synthesis of Monoclinic 
Bismuth Vanadate Powders by Surfactant-Assisted Co-Precipitation Method: Study of Their Electro-
chemical and Photocatalytic Properties. International Journal of Electrochemical Science, 7, 9622–9632.

Pilli, S. K., Furtak, T. E., Brown, L. D., Deutsch, T. G., Turner, J. A., & Herring, A. M. (2011). Cobalt-
phosphate (Co-Pi) catalyst modified Mo-doped BiVO4photoelectrodes for solar water oxidation. Energy 
& Environmental Science, 4(12), 5028–5034. doi:10.1039/c1ee02444b

Pookmanee, P., Kojinok, S., Punthaeod, R., Sangsricharan, S., & Phanichapat, S. (2013). Preparation 
and Characterization of BiVO4 Powder by the Sol- gel Method. Ferroelectrics, 456(1), 45–54. doi:10.
1080/00150193.2013.846197

Pookmanee, P., Longchin, P., Kangwansupamonkon, W., Puntharod, R., & Phanichphant, S. (2013). 
Microwave-assisted synthesis Bismuth Vanadate (BiVO4) Powder. Ferroelectrics, 455(1), 35–42. doi:1
0.1080/00150193.2013.843414

Ran, R., McEvoy, J. G., & Zhang, Z. (2015). Synthesis and Optimization of Visible Light Active BiVO-
4Photocatalysts for the Degradation of Rh B. International Journal of Photoenergy, 612857.

Reber, J. F., & Rusek, M. (1986). Photochemical hydrogen production with platinized suspensions of 
cadmium sulphide and cadmium zinc sulphide modified by silver sulphide. Journal of Physical Chem-
istry, 90(5), 824–834. doi:10.1021/j100277a024

Regmi, C., Kim, T. H., Ray, S. K., Yamaguchi, T., & Lee, S. W. (2017). Cobalt-doped BiVO4 (Co-
BiVO4) as a visible-light-driven photocatalyst for the degradation of malachite green and inactivation 
of harmful microorganisms in wastewater. Research on Chemical Intermediates, 43(9), 5203–5216. 
doi:10.100711164-017-3036-y

Regmi, C., Kshetri, Y. K., Kim, T. H., Pandey, R. P., & Lee, S. W. (2017). Visible-light-induced Fe-
doped BiVO4photocatalyst for contaminated water treatment. Mol. Catal., 432, 220–231. doi:10.1016/j.
mcat.2017.02.004

Regmi, C., Kshetri, Y. K., Kim, T. H., Pandey, R. P., Ray, S. K., & Lee, S. W. (2017). Fabrication of Ni-
doped BiVO4 semiconductors with enhanced visible-light photocatalytic performances for wastewater 
treatment. Applied Surface Science, 413, 253–265. doi:10.1016/j.apsusc.2017.04.056

Sato, J., Saito, N., Yamada, Y., Maeda, K., Takata, T., Kondo, J. N., Hara, M., Kobayashi, H., Domen, 
K., & Inoue, Y. (2005). RuO2-loaded β-Ge3N4 as a non-oxide photocatalyst for overall water splitting. 
Journal of the American Chemical Society, 127(12), 4150–4151. doi:10.1021/ja042973v PMID:15783179

Sato, S. (1986). Photocatalytic activity of NOx-doped TiO2 in the visible light region. Chemical Physics 
Letters, 123(1-2), 126–128. doi:10.1016/0009-2614(86)87026-9

 EBSCOhost - printed on 2/14/2023 11:47 AM via . All use subject to https://www.ebsco.com/terms-of-use



27

Modifications of BiVO4 Semiconductors for Oxidation of Water and Detoxification of Organic Waste
 

Sayama, K., & Arakawa, H. (1994). Effect of Na2CO3 addition on photocatalytic decomposition of liquid 
water over various semiconductor catalysis. Journal of Photochemistry and Photobiology A Chemistry, 
77(2-3), 243–247. doi:10.1016/1010-6030(94)80049-9

Shi, L., Zhuo, S., Abulikemu, M., Mettela, G., Palaniselvam, T., Rasul, S., Tang, B., Yan, B., Saleh, N. 
B., & Wang, P. (2018). Annealing temperature effects on photoelectrochemical performance of bismuth 
vanadate thin film photoelectrodes. RSC Advances, 8(51), 29179–29188. doi:10.1039/C8RA04887H 
PMID:35548013

Shi, W., Yan, Y., & Yan, X. (2013). Microwave- assisted synthesis of nano-scale BiVO4 photocatalysts 
and their excellent visible-light-driven photocatalytic activity for the degradation of ciprofloxacin. 
Chemical Engineering Journal, 215, 740–746. doi:10.1016/j.cej.2012.10.071

Sitaaraman, S. R., Shanmugapriyan, M. I., Varunkumar, K., Grace, A. N., & Sellappan, R. (2021). 
Synthesis of heterojunction tungsten oxide (WO3) and Bismuth vanadate (BiVO4) photoanodes by spin 
coating method for solar water splitting applications. Materials Today: Proceedings, 45, 3920–3926. 
doi:10.1016/j.matpr.2020.07.601

Souza, J. S., Hirata, F. T. H., & Corio, P. (2019). Microwave-assisted synthesis of bismuth vanadate 
nano-flowers decorated with gold nanoparticles with enhanced photocatalytic activity. Journal of 
Nanoparticle Research, 35, 1–9.

Tang, F., Cheng, W., Su, H., Zhao, X., & Liu, Q. (2018). Smoothing surface trapping states in 3D coral-
like CoOOH-wrapped-BiVO4 for efficient photoelectrochemical water oxidation. ACS Applied Materials 
& Interfaces, 10(7), 6228–6234. doi:10.1021/acsami.7b15674 PMID:29384358

Tayyebi, A., Soltani, T., & Lee, B. K. (2019). Effect of pH on photocatalytic and photoelectrochemical 
(PEC) properties of monoclinic bismuth vanadate. Journal of Colloid and Interface Science, 534, 37–46. 
doi:10.1016/j.jcis.2018.08.095 PMID:30205253

Walter, M. G., Warren, E. L., McKone, J. R., Boettcher, S. W., Mi, Q., Santori, E. A., & Lewis, N. S. 
(2010). Solar water splitting cells. Chemical Reviews, 110(11), 6446–6473. doi:10.1021/cr1002326 
PMID:21062097

Wang, G. L., Shan, L. W., Wu, Z., & Dong, L. M. (2017). Enhanced photocatalytic properties of molyb-
denum-doped BiVO4 prepared by sol-gel method. J. Alloys Comp., 36(2), 129–133. doi:10.100712598-
015-0669-0

Wang, M., Guo, P., Chai, T., Xie, Y., Han, J., You, M., Wang, Y., & Zhu, T. (2017). Effects of Cu dopants 
on the structures and photocatalytic performance of cocoon-like Cu-BiVO4 prepared via ethylene glycol 
solvothermal method. Journal of Alloys and Compounds, 691, 8–14. doi:10.1016/j.jallcom.2016.08.198

Wang, M., Niu, C., Liu, J., Wang, Q., Yang, C., & Zheng, H. (2015). Effective visible light- active ni-
trogen and samarium co-doped BiVO4 for the degradation of organic pollutants. Journal of Alloys and 
Compounds, 648, 1109–1115. doi:10.1016/j.jallcom.2015.05.115

 EBSCOhost - printed on 2/14/2023 11:47 AM via . All use subject to https://www.ebsco.com/terms-of-use



28

Modifications of BiVO4 Semiconductors for Oxidation of Water and Detoxification of Organic Waste
 

Wu, Y. T., Lin, L. Y., Tao, S. M., Chen, Y. S., Ma, J. S., Lee, P. Y., & Sung, Y. S. (2020). Novel in situ 
synthesis of BiVO4photocatalyst/Co3(PO4)2 co-catalyst powder via the one-step solid-state process for 
photoelectrochemicalcatalyzing water oxidation. ACS Sustainable Chemistry & Engineering, 8(7), 
2948–2956. doi:10.1021/acssuschemeng.9b07517

Xu, X., Du, M., Chen, T., Xiong, S., Wu, T., Zhao, D., & Fan, Z. (2016). New insights into Ag-doped 
BiVO4 microspheres as visible light photocatalysts. RSC Advances, 6(101), 98788–98796. doi:10.1039/
C6RA20850A

Xue, S., He, H., Wu, Z., Yu, C., Fan, Q., Peng, G., & Yang, K. (2017). An interesting Eu, F-codoped 
BiVO4 microsphere with enhanced photocatalytic performance. Journal of Alloys and Compounds, 694, 
989–997. doi:10.1016/j.jallcom.2016.10.146

Yan, M., Yan, Y., Wu, Y., Shi, W., & Hua, Y. (2015). Microwave-assisted synthesis of monoclinic-
tetragonal BiVO4 hetero-junctions with enhanced visible-light-driven photocatalytic degradation of 
tetracycline. RSC Advances, 5(110), 90255–90264. doi:10.1039/C5RA13684A

Yao, W., Iwai, H., & Ye, J. (2008). Effects of molybdenum substitution on the photocatalyticbehaviour 
of BiVO4. Dalton Transactions (Cambridge, England), (11), 1426–1430. doi:10.1039/b713338c

Ye, K. H., Yu, X., Qiu, Z., Zhu, Y., Lu, X., & Zhang, Y. (2015). Facile synthesis of bismuth oxide/bismuth 
vanadate hetero-structures for efficient photoelectrochemical cells. RSC Advances, 5(43), 34152–34156. 
doi:10.1039/C5RA03500G

Yin, C., Zhu, S., Chen, Z., Zhang, W., Gu, J., & Zhang, D. (2013). One step fabrication of C-doped 
BiVO4 with hierarchical structures for a high-performance photocatalyst under visible-light irradia-
tion. Journal of Materials Chemistry. A, Materials for Energy and Sustainability, 1(29), 8367–8378. 
doi:10.1039/c3ta11833a

Yu, J., & Kudo, A. (2005). Hydrothermal Synthesis of Nano-fibrous Bismuth Vanadate. Chemistry Let-
ters, 34(6), 850–851. doi:10.1246/cl.2005.850

Zhang, A., & Zhang, J. (2010a). Characterization and photocatalytic properties of Au/BiVO4 composites. 
Journal of Alloys and Compounds, 491(1-2), 631–635. doi:10.1016/j.jallcom.2009.11.027

Zhang, A., & Zhang, J. (2010b). Effects of europium doping on the photocatalyticbehaviour of BiVO4. 
Journal of Hazardous Materials, 173(1-3), 265–272. doi:10.1016/j.jhazmat.2009.08.079 PMID:19729243

Zhong, D. K., Choi, S., & Gamelin, D. R. (2011). Near-complete suppression of surface recombination 
in solar photoelectrolysis by “Co-Pi” catalyst-modified W:BiVO4. Journal of the American Chemical 
Society, 133(45), 18370–18377. doi:10.1021/ja207348x PMID:21942320

 EBSCOhost - printed on 2/14/2023 11:47 AM via . All use subject to https://www.ebsco.com/terms-of-use



29

Copyright © 2022, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

Chapter  2

DOI: 10.4018/978-1-6684-4553-2.ch002

ABSTRACT

In this research, a proficient method for the synthesis of TiO2/PPy and TiO2/PPy/GO nanocomposites 
is explored. These nanocomposites were prepared by one-step in situ deposition oxidative polymeriza-
tion of pyrrole hydrochloride using Ammonium persulfate (APS) as an oxidant in the presence of TiO2 
nanoparticles cooled in an ice bath. The obtained nanocomposites were characterized by XRD, TEM, 
SEM, UV-Vis, and FTIR techniques. The obtained results showed that TiO2 nanoparticles have been 
encapsulated by PPy with a strong effect on the morphology of TiO2/PPy and TiO2/PPy/GO nanocom-
posites. The photocatalytic degradation of rose Bengal, and Victoria blue dye was done under different 
conditions regarding concentration of dye, time of illumination, pH, and dose of the photocatalyst. The 
maximum photodegradation was found at 7 pH, 20 ppm concentration of VB and 25 ppm of RB dye 
solution, 800 mg/L for VB and 1600 mg/L for RB amount of photocatalyst, and 120 min irradiation of 
visible light. Kinetics of photodegradation were investigated for Victoria blue and rose Bengal dye and 
found first order kinetics.

INTRODUCTION

The industrial wastewater containing the various dyes are responsible for water pollution, due to their 
carcinogenic behaviour. Lots of investigations reported that 10-12% of dyes are used every year in textile 
industries such as Rose Bengal, Victoria blue, Thymol blue, Caramine, Indigo Red, Red 120, Rhodamine 
B, Methylene Blue, Eriochrome Black-T (EBT) (Kaur & Singhal 2014; Fox & Duxbury 1993; Mai et 
al., 2008; Azmi, et al., 1998) of which are major portion (20%) lost during synthesis and processing 
operations, which enter into water through effluents. The wastewater released from industries contains 
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highly hazardous and coloured pigments which causes serious ill effect on aquatic life and also human 
beings. Rose bengal is a significant xanthene dye used in textile and photochemical industries whose 
molecular structure as shown in Figure 1(a). It has severe toxic effects on the human health (Konstanti-
nou & Albanis, 2004; Deng et al., 2013; Xu et al., 2010) and become dangerous contact with skin and 
causing itchiness, irritation, reddening and blistering. It also affects to eyes causing inflammation, eye 
redness, itching etc (Wang et al., 2008). Victoria blue is another triphenylmethane derivatized dye which 
is extensively used in the textile industry. It has been extensively used as textile dyes for silk, wool, and 
cotton, in the preparation of inks and in the surface-coating and dyeing of paper (Park et al., 2010; Li-
ang et al., 2009; Ferreira & Li, 2001) as colorants in foods, drugs, cosmetics (Saquib & Muneer, 2003), 
as biological stains, and as anti-infective, antimicrobial, and anthelmintic agents (Li et al., 1999). The 
photocytotoxicity of triphenylmethane dyes, based on the production of the reactive oxygen species, is 
tested extensively with the regard to their photodynamic treatment (Deng et al., 2012). In the past, sev-
eral physical techniques like photodegradation, coagulation, flocculation, reverse osmosis, adsorption 
on the activated carbon, ion exchange method ultra-filtration and chemical methods like photosensitized 
oxidation, adsorption (Chen et al., 2007), have been used to reduce the toxic dye effluents from waste-
water (Okano et al., 1987; Wang et al., 2012; Wang et al., 2008). These methods are fairly effective in 
removing pollutants. However, the main drawback of these techniques is formation of secondary waste 
product which cannot be treated again and dumped as such (Sedlačík et al., 2012)

Titanium dioxide (TiO2) Nanoparticles (NPs) have many excellent properties, such as low cost, simple 
preparation, good stability, non-toxicity, and better photodegradation ability (Chen et al., 2007), mak-
ing it a good prospect for application in solar cells (Linsebigler et al., 1995) photocatalysis (Tai et al., 
2007), and photocatalytic hydrogen production (Arenas et al., 2013). The wide band gap of pure TiO2 
nanoparticles have low sunlight energy conversion efficiency but also a high rate of photogenerated hole 
and electron recombination. Therefore, improvement of the photocatalytic properties of TiO2 is essential.

In order to enhance the photocatalytic properties of TiO2 number of manipulation such as metal or 
non-metal doping (Nag et al., 2012), compositing with other semiconductors (Vinodgopal et al., 1996), 
compositing with conductive materials such as graphene (Huang et al., 2015) or carbon nanotubes (Chen 
et al., 2007), sensitization with organic dyes and conductive polymers, such as polyaniline (Li et al., 
2013), polythiophene (Deng et al., 2012), and polypyrrole (PPy) have been tested in the past (Sun et al., 
2013). TiO2 (NPs) with among these routes, the coating of conductive polymers is one of the most ef-
fective methods for the generation of good photocatalyst (Yang et al., 2013). The coating of conductive 
polymers can reduce the recombination rate of electron hole (e--h+) simultaneously (Vautier et al., 2001) 
act as sensitizer making effective large band gap semiconductor like TiO2 (Mor et al., 2006) Among the 
various conductive polymers, PPy is one of the most promising coating agents owing to its good conduc-
tivity, high absorption coefficient in the visible part of sunlight, high charge carrier mobility and good 
environmental stability (Thompson et al., 2006). Therefore, PPy is suitable conducting polymer stable 
photosensitizer to improve the photocatalytic activity of TiO2 in solar light. Over TiO2 surface further, 
the TiO2/PPy nanocomposite is successively used in solar cells and for the photocatalytic degradation 
of organic species, however its application in photodegradation of organic dyes is rarely reported.

There are many methods of preparing TiO2/PPy nanocomposite, for example, anodic co-deposition 
(Kar et al., 2009), self-assembly techniques (Baran et al., 2003), photoelectrochemical polymerization 
(Wei et al., 2011), and hydrothermal methods (Matthews, 1988). However, in- situ chemical polymer-
ization is promise method for preparation of TiO2/PPy owing to its simplicity, good reproducibility, and 
easy scale up.
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In present study, TiO2, TiO2/PPy and TiO2/PPy/GO nanocomposites have been preared by one-step in 
situ polymerization of pyrrole in the reaction medium. The photocatalytic degradation of Victoria Blue 
and Rose Bengal have been studied in the presence of TiO2, TiO2/PPy and TiO2/PPy/GO nanocompos-
ites at different parameters i.e., concentration of dye, dose of photocatalyst, pH of reaction mixture and 
irradiation time. The kinetics for the photodegradation process has also been investigated in this work.

Figure 1. Molecular Structure of dyes (a) Victoria Blue (b) Rose Bengal

Table 1. Showing the structure and properties of dyes
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EXPERIMENTAL

Materials

Pyrrole monomer, having molar mass of 67 g/mol and density of 0.97 g/cm3 (Merck India) was triply 
distilled until a colourless liquid was obtained. The distilled pyrrole was stored at lower than 5 °C tem-
perature in the absence of light. TiO2 nanoparticles were prepared with an average particle size of 50 
nm. All other chemicals were reagent grade or purer.

Preparation of PPy

1.727 ml pyrrole was dissolved in 50 ml of de-ionized water and stirred for 15 min using a magnetic 
stirrer. 2.717 ml dilute H2SO4 was added slowly using drop to the pyrrole monomer solution. 2.28 g am-
monium per sulphate was dissolved in 50 ml of de-ionised water and slowly added drop by drop from a 
burette vertically to the above prepared solution for half an hour. After stirring for 4 h, the solution was 
filtered and the residual was washed with double distilled water, methanol, and acetone, and then dried 
in an oven at 60oC. Subsequently the product is grinded to get powder of polypyrrole (Kwon et al., 2004).

Preparation of Graphene Oxide

Graphene oxide was synthesized from graphite powder using a modiðed Hummer’s method. In brief, 
ðrst, 0.5 g of powdered ñake of graphite and 0.5 g of NaNO3 were added into 24 mL of H2SO4 and 
were stirred until dissolved. Then, 3 g of KMnO4 was added slowly, preventing the temperature of the 
suspension from exceeding 20 °C. After the mixture was stirred continuously for 1 h at 35 °C, 40 ml of 
distilled water was slowly added to dilute the mixture and the temperature was raised to 90 °C. To reduce 
the residual permanganate and manganese dioxide to colourless soluble manganese sulphate, 5 ml of 
34.5% H2O2 was added, and the suspension was ðltered with distilled water until pH 7.0. The obtained 
yellow-brown suspension was exfoliated to produce single layer graphene oxide using a sonicator, and 
the unexfoliated precipitation was removed by centrifugation. Finally, we obtained a brown dispersion 
of homogeneously exfoliated graphene oxide (Pradhan et al., 2013).

Preparation of TiO2/PPy Nanocomposites

3.454 ml pyrrole and 5.434 ml dilute H2SO4 were stirred with100 ml double distilled water and further 
1.036 g TiO2 added in the pyrrole reaction medium. 4.56 g ammonium per sulphate was dissolved in 100 
ml of de-ionized water and slowly added drop by drop from a burette vertically to the above prepared 
solution for half an hour. After stirring for 4 h, the solution was filtered and the residual was washed 
with double distilled water, methanol and acetone, and then dried in an oven at 60 oC. This was grinded 
into powder (Guo et al., 2009).

Preparation of TiO2/PPy/GO Nanocomposites

3.454 ml pyrrole and 5.434 ml dilute H2SO4 were stirred with double distilled water and further 1.0362 
g TiO2 and 60 mg graphene oxide added in the pyrrole reaction medium. 4.56 g ammonium per sulphate 
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was dissolved in 100 ml of de-ionized water and slowly added drop by drop from a burette vertically 
to the above prepared solution for half an hour. After stirring for 4 h, the solution was filtered and the 
residual was washed with double distilled water, methanol and acetone, and then dried in an oven at 
90oC.This was grinded into powder (Pare et al., 2009).

Characterizations

The prepared TiO2, PPy, TiO2/PPy and TiO2/PPy/GO nanocomposites were characterized by x-ray dif-
fraction (XRD) patterns in the range of 2θ = 20–80° ((Cullity et al., 2001). The particle size of TiO2 
and morphology of particles was investigated with transmission electron microscope (TEM). The 
morphology of neat TiO2, PPy, and TiO2/PPy nanocomposites was investigated by scanning electron 
microscopy. Diffused Reflectance spectroscopy was used to determine band gap energy of prepared 
nanocomposites and Photoluminescence was used for the hydroxyl radical mechanism determination 
and e--h+ recombination determination.

Irradiation Procedure

The mixture of dye and photocatalysts TiO2, PPy, TiO2/PPy and TiO2/PPy/GO suspension was stirred 
in the dark for 30 min to reach adsorption equilibrium. The desired concentration of Victoria Blue and 
Rose Bengal dye (20 mL) aqueous solutions in a 100 mL beaker were taken. The Irradiation of visible 
light on the surface of the reaction medium with constant stirring for 30 to 180 min. Degradations were 
performed The amount of nanocomposites material varies from 100 mg/L to 1600 mg/L at different pH 
values. Irradiations were carried out using one lamp (500 W). At any given irradiation time interval, the 
dispersion was sampled (5 mL), centrifuged, and subsequently filtered through a Millipore filter to separate 
the TiO2 particles and take UV- Vis spectra to determine the residual concentration (Gole et al., 2004).

Photo-Degradation of Dyes

The photocatalytic degradation of Victoria Blue and Rose Bengal has been studied in the presence of 
TiO2, TiO2/PPy and TiO2/PPy/GO nanocomposites at different concentration of dye solution. The solu-
tion of dye was prepared in 10:1 (V/V) ratio of water and alcohol. The known amount of photocatalyst 
was dispersed in the dye solution (20 ml) and the reaction mixture was irradiated with visible light with 
constant stirring on magnetic stirrer. After different time interval, an aliquot of solution was separated, 
centrifuged and absorption was recorded spectrophotometrically. The results obtained for the % degrada-
tion of Victoria Blue and Rose Bengal and Rose Bengal are shown in Figures 6-9 (Vautier et al., 2001; 
Reddy et al., 2002). The % degradation efficiency of dye was calculated by Equation (1).

% *�
�A A
A

O F

O

100  (1)

Where η is the degradation efficiency, Ao is the initial absorbance and AF is the final absorbance
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RESULTS AND DISCUSSION

XRD Patterns of Nanocomposites

XRD patterns of pure TiO2, PPy, TiO2/PPy and the TiO2/PPy/GO synthesized nanocomposites are pre-
sented in Figure 2. The main diffraction peaks of pure TiO2 nanoparticles are corresponding to 25°, 38°, 
and 48° (Figure 2a). The broad peak in the region of 2θ = 10–30° in XRD pattern of pure PPy (Figure 
2b) shows that the synthesized PPy in the absence of TiO2 nanoparticles is amorphous. It can be seen 
from Figures 2c–d that the main peaks of TiO2/PPy nanocomposites are similar to those of neat TiO2 
nanoparticles. XRD patterns of TiO2/PPy nanocomposites show that the broad weak diffraction peak 
of PPy still exists, but its intensity has been decreased. It implies that when pyrrole is polymerized on 
TiO2, each phase maintains his initial structure (Cullity et al., 2001, Gole et al., 2004).

Determination of Average Size of Particles/Grains in Samples

Utilizing the observed X-ray diffraction data of samples, Scherrer’s calculations were attempted to 
know the average size of particles/grains in the samples (Sarmah and Kumar, 2011). Although, Scher-

Figure 2. X-Ray diffraction of (a) TiO2 (b) Pure PPy (c) TiO2/PPy (d) TiO2/PPy/GO
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rer’s calculations are only approximate in nature, but definitely provide a first-hand idea of the average 
size of the particles/ grains in the samples, which may be quite accurate, provided the size of particles/ 
grains is below 100 nm.

B
t

�
0 9.

Cos

�
�

 (2)

The mean size of TiO2, TiO2/PPy and TiO2/PPy/GO nanocomposites, calculated by Scherrer’s Equa-
tion, are about 19, 24 nm and 30 nm, respectively. The results of Scherrer’s calculations are presented in 
Table 2. The results suggest average size of the particles/ grains in the samples lying in nm range. The 
result is in good agreement with the TEM.

Transmission Electron Microscopy

TEM analysis of nanocomposites gives the size and shape of the particles on the scale of atomic diam-
eters. Figure 3 shows the TEM image of TiO2, PPy, TiO2/PPy and the TiO2/PPy/GO prepared by wet 
synthesis. It is observed that the particles are found in the 100 nm and are mostly of cube and hexagonal 
shape. Figure 3(a) shows that the particles size of TiO2/PPy was found in 100 nm and Figure 3(b) shows 
that the particles size of TiO2/PPy/graphene oxide was found in 100 nm (Kaur & Singhal, 2014).

SEM of Nanocomposites

The morphology and shape of pure TiO2 nanoparticles, neat PPy, and TiO2/PPy nanocomposites were 
characterized by SEM instrument and the obtained pictures are presented in Figure 4. As shown in Figure 
4(a), TiO2 nanoparticles were aggregated due to their high surface energy. Figure 4(c) shows that the 
morphology of composite at low content of TiO2 (0.025 g TiO2) is much like that of neat PPy and with 
increasing contents of TiO2, the morphology of composites appears as nanoparticles. It indicates that 
the TiO2 nanoparticles have a nucleus effect on the pyrrole polymerization and caused a homogeneous 
PPy shell around them. The SEM images help us draw a conclusion that the doping of TiO2 has a strong 
effect on PPy’s morphology and with the increase of TiO2 contents, the composites show a transforma-
tion in morphology from typical PPy to nanoparticles (Pradhan et al., 2013).

Determination of Optical Band Gap of Nanocomposites

The band gap of polypyrrole (polypyrrole/TiO2) was determined from absorption spectra and Tauc 
relation (Eq. 3)

Table 2. Average size of particles/grains in the samples of TiO2 and TiO2, TiO2/PPy, TiO2/PPy/GO

Sample Particle Size

TiO2
TiO2/PPy
TiO2/PPy/GO

19 
24 
30

 EBSCOhost - printed on 2/14/2023 11:47 AM via . All use subject to https://www.ebsco.com/terms-of-use



36

Photodegradation of Dyes in Visible Light by TiO2/PPy/GO Nanocomposites
 

a.hv = B(hv – Egap)m (3)

where α is the absorption coefficient, hν is the photon energy, and m = 1/2 for direct band gap material 
shown in Figure 5. To describe a direct method for fitting and determination of band gap using Tauc 
relation (Epling & Lin 2002). After substitutions in Eq. (2), we can write that equation (4)

Abs
m

B
gap

.�
� �

1 1 1
� �

�

�
��

�

�
��  (4)

where λ is the wavelength and Abs. the corresponding value of measured absorbance. λgap can be easily 
obtained from curve (Abs./λ)1/m vs. 1/λ at condition (Abs./λ)1/m = 0. The band gap value is obtained from 
relation Egap = 1239.83/λgap. The band gap of samples was calculated by extrapolation of the (αhv)2 versus 
hv plots, where α is the absorption coefficient and hv is the photon energy, hv = (1239/λ) eV. The value 
of hv extrapolated to α = 0 gives an absorption energy, which corresponds to a band gap (Eg). Figure 

Figure 3. TEM of (a) TiO2 (b) Pure PPy (c) TiO2/PPy (d) TiO2/PPy/GO
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5 yields an Eg value of 3.2 eV for TiO2, 2.98 for pure PPy 2.65 for TiO2 / PPy and 2.45 for TiO2/PPy/
GO (Yang et al., 2011). The slight decrease in band gap energy is due to the electrons can be excited 
from the HOMO to the LUMO of PPy, whereas holes were left in the HOMO of PPy. The excited-state 
electrons can be readily injected into the CB of TiO2 (Hema et al., 2013).

Photodegradation

Effect of Dye Concentration

The effect of dye concentration photocatalytic degradation was studied in presence of TiO2 TiO2/PPy and 
TiO2/PPy/GO nanocomposites materials, keeping the amount of catalyst constant. Known concentration 
of dye solution was prepared in water: alcohol 10:1 (V: V) ratio. The known amount of photocatalyst 
was dispersed in the different concentration of dye (20, 40, 60, 80 and 100 ppm for Victoria blue and 
25, 50, 75, 100 and 125 ppm Rose Bengal) and reaction mixture was irradiated by visible light. The ef-
fect of photocatalytic degradation with time was measured and results are shown in Figure 6. When the 
concentration of solution increased, the number of dye molecule also increased therefore the effective 

Figure 4. SEM images of (a) pure PPy, (b) pure TiO2, (c) TiO2/PPy (d) TiO2/PPy/GO nanocomposites.
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number of photons penetrating the dye reached at the catalyst surface also reduced, owing to hindrance 
in the path of light, thereby reducing the reactive hydroxyl and superoxide radicals and decreasing the 
% degradation (Guo, 2009).

Effect of pH

The photodegradation of dyes (Victoria blue and Rose Bengal) reaction was also carried out under varying 
pH conditions from (2 to 9), by addition of H2SO4 and NaOH, keeping other parameter same. The results 
Figure 7 shown that degradation of dye is highest in neutral medium (at pH = 7) while it decreases with 
increase in pH and ultimately becomes constant after pH 7. This implies that acidic condition is favour-
able for formation of the reactive intermediate hydroxyl radicals. This further helps in enhancing the 
reaction rate. On the other hand, in neutral condition the formation of reactive intermediate is relatively 
less favourable and hence not feasible (Vulliet et al., 2003).

Effect of Photocatalyst and Dose

It is clear from the results shown in Figure 8 that TiO2, TiO2/PPy and TiO2/PPy/Go are proving as an 
effective photocatalyst for degradation of Victoria Blue and Rose Bengal dye; however, TiO2/PPy/Go 

Figure 5. Band Gap energy of (a) pure TiO2 (b) TiO2/PPy, (c) pure PPy (d) TiO2/PPy/GO nanocomposites.
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seems to be more effective photocatalyst for degradation of Victoria Blue and Rose Bengal. Effect of 
dose of photocatalyst on photodegradation of Victoria Blue and Rose Bengal

The effect of photocatalyst dose on the photodegradation of Victoria Blue and Rose Bengal was stud-
ied by applying different concentration (200mg/L, 100mg/L and 50mg/L) of the photocatalyst shown in 
Figure 9. The Degradation rate of Victoria Blue and Rose Bengal was found to increase by increasing 
the dose of photocatalyst from 50 mg/L to 200mg/L. this is due to the no active site increased. When 
the Ni is incorporated in TiO2 the band gap energy is decreased which enhanced the photo efficiency, 
the surface area of photocatalyst also increased the photo efficiency of photocatalyst.

Figure 6. Effect of concentration on photodegradation efficiency of dyes Victoria blue and rose bengal 
(a) TiO2 (b) TiO2/PPy and (c) TiO2/PPy/Go

Figure 7. Effect of pH on photodegradation efficiency of dyes Victoria blue and rose bengal (a) TiO2 
(b) TiO2/PPy and (c) TiO2/PPy/Go
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Recyclability of Photocatalyst

The photocatalyst recyclability has been studied. The photocatalyst and Victoria Blue and Rose Bengal 
mixture was agitated, illuminated with visible light and after desired time, the mixture was centrifuged to 
remove the photocatalyst. The obtained photocatalyst washed three times with distilled water and finally 
kept in oven for 24 h at 60 oC temperature and further it is reuse for the degradation of Victoria Blue and 
Rose Bengal. The photodegradation of Victoria Blue and Rose Bengal by the recyclized Photocatalyst 
are showing in Figures 10 and 11 for Victoria blue and rose bengal. The result shows that the recyclized 
photocatalyst efficiency is decreased due to the loss of some active sites and decrease of collection ef-
ficiency of photon (Guettaı & Ait Amar 2005).

Figure 8. Effect of irradiation time on photodegradation efficiency of dyes Victoria blue and rose bengal 
(a) TiO2 (b) TiO2/PPy and (c)TiO2/PPy/Go

Figure 9. Effect of photocatalyst amount on efficiency of dyes Victoria blue and rose bengal (a) TiO2 
(b) TiO2/PPy and (c)TiO2/PPy/Go
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Figure 10. Photodegradation of Victoria Blue by Photocatalyst and recyclable Photocatalyst (a) TiO2 
(b) Recyclized TiO2 (c) TiO2/PPy (d) Recyclized TiO2/PPy (e) TiO2/PPy/GO (f) Recyclized TiO2/PPy/GO

Figure 11. Photodegradation of Rose Bengal by Photocatalyst and recyclable Photocatalyst (a) TiO2 (b) 
Recyclized TiO2 (c) TiO2/PPy (d) Recyclized TiO2/PPy (e) TiO2/PPy/GO (f) Recyclized TiO2/PPy/GO
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Hydroxyl Radical Formation

To determine whether reactive oxygen species involved in the photocatalytic degradation of dyes is hy-
droxyl radical or not, terephthalic acid photoluminescence probing technique was used. In this, alkaline 
solution of terephthalic acid, having TiO2, TiO2/PPy and TiO2/PPy/GO nanocomposites was irradiated 
with visible light. After 30 min of irradiation, sample was withdrawn from the reaction mixture and was 
centrifuged to separate photocatalyst particles. The photoluminescence spectrum of sample was recorded 
between 335 and 600 nm at an excitation wavelength of 325 nm and variation in intensity of peak at 425 
nm was monitored using Perkin Elmer LS 55 Fluorescence Spectrometer.

As hydroxyl radical performs the key role for the decomposition of the organic pollutants, it is 
necessary to investigate the amount of hydroxyl radicals produced by each photocatalyst. Thus, there 
is a technique to establish the formation of hydroxyl radicals using terephthalic acid (TA) as a probe 
molecule. In this method, TA was directly attacked by OH radical forming 2- hydroxyl terephthalic acid 
(TAOH) which gives a fluorescence signal at 426 nm. Figure 12 depicts the fluorescent signal of all the 
photocatalysts after reacting with TA solution. The fluorescent intensity is linearly related to the number 
of hydroxyl radicals formed by the photocatalysts. It means higher is the generation of hydroxyl radical, 
yield of TAOH will be more and hence more intense will be the fluorescence peak. Thus, TiO2/PPy/GO 
with highest intensity confirms the generation a greater number of hydroxyl radicals compared to other 
photocatalysts. The fluorescence intensity follows the trend (i,e. TiO2, < TiO2/PPy < TiO2/PPy/GO) of 
photocatalytic performance of all the photocatalyst (Pradhan et al., 2013, Chen & Ray 1999).

Lowering of Electron-Hole Recombination

Photoluminescence spectra have been used to examine the mobility of the charge carriers to the surface 
as well as the recombination process involved by the electron-hole pairs in semiconductor particles. 
PL emission results from the radiative recombination of excited electrons and holes. In other words, it 
is a critical necessity of a good photocatalyst to have minimum electron-hole recombination. To study 
the recombination of charge carriers, PL studies of synthesized materials have been undertaken. PL 
emission intensity is directly related to recombination of excited electrons and holes. Figure 13 shows 
the photoluminescence spectra of synthesized photocatalysts. It means TiO2 and TiO2/PPy with strong 
PL intensity has high recombination of charge carriers whereas TiO2/PPy/GO has weak intensity. The 
weak PL intensity of TiO2/PPy/GO may arise due to the coating of polypyrrole on Titania lattice, so that 
decrease in band gap of TiO2/PPy/GO was found which resulting the decolourisation of photo excited 
electrons. This delays the electrons- holes recombination process and hence is utilized in the redox reac-
tion leading to improved photocatalytic activity (Chen & Ray 1999).

Mechanism of Photo-Oxidation Process

The acceleration of a chemical transformation by the presence of a catalyst with light is called photo-
catalysis. The catalyst may accelerate the photoreaction by interaction with the substrate in its ground 
or excited state and/or with a primary photoproduct, depending upon the mechanism of the photoreac-
tion and itself remaining unaltered at the end of each catalytic cycle. Heterogeneous photocatalysis is a 
process in which two active phases solid and liquid are present. The solid phase is a catalyst, usually a 
semiconductor. The molecular orbital of semiconductors has a band structure. The bands of interest in 
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Figure 12. PL spectra of photocatalyst with terephthalic acid (0.001M) TiO2, TiO2/PPy and TiO2/PPy/GO

Figure 13. Photoluminescence Spectra of TiO2, TiO2/PPy and TiO2/PPy/GO
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photocatalysis are the populated valence band (Victoria Blue and Rose Bengal) and its largely vacant 
conduction band (CB), which is commonly characterized by band gap energy (Ebg). The semiconductors 
may be photo-excited to form electron-donor sites (reducing sites) and electron-acceptor sites (oxidising 
sites), providing great scope for redox reaction. When the semiconductor is illuminated with light (hυ) 
of greater energy than that of the band gap, an electron is promoted from the Victoria Blue and Rose 
Bengal to the CB leaving a positive hole in the valence band and an electron in the conduction band as 
illustrated in Figure 14.

If charge separation is maintained, the electron and hole may migrate to the catalyst surface where 
they participate in redox reactions with absorbed species. Specially, h+ Victoria Blue and Rose Bengal 
may react with surface-bound H2O or OH- to produce the hydroxyl radical and e-

cb is picked up by oxy-
gen to generate superoxide radical anion (O2

-), as indicated in the following equations 5-7; absorption 
of efficient photons by titania (hυ 3 Ebg = 3.2 ev)

TiO
2
� � �� �h e hcb dye  (5)

Formation of superoxide radical anion

O O
2 2
� �� �ecb - (6)

Neutralization of OH- group into OH by the hole

H O H OH OH H
2

� �� � � � �� � � � �ads hdye ( )  (7)

It has been suggested that the hydroxyl radical (●OH) and superoxide radical anions (O2
.-) are the 

primary oxidizing species in the photocatalytic oxidation processes (Matthews, 1988, Vautier et al., 
2001). These oxidative reactions would results in the degradation of the pollutants as shown in the fol-
lowing equations 8-9;

Oxidation of the organic pollutants via successive attack by OH radicals

R OH R H O
2

� � � �  (8)

or by direct reaction with holes

R + h+ ® R+ ® degradation products (9)
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Kinetic Study of Photocatalytic Degradation

For kinetic study of photocatalytic degradation, a control experiment was first carried out under two 
conditions, vis (i) dye + Visible light (no catalyst) (ii) catalyst+ dye in dark without any irradiation (Fig-
ure 15). It can be seen that in under dark conditions, the amount of catalyst adsorbed becomes constant 
after 20 min, where adsorption equilibrium is achieved. For the kinetic study of bleaching of Victoria 
Blue and Rose Bengal, the initial concentration of the dyes was varied and the experiments were first 
conducted in dark for 20 min and then immediately followed by irradiation (Figure 15). The amount of 
catalyst was kept constant (0.2 g) throughout the experiment.

Figure 14. Mechanism of Photodegradation by Ti encapsulated PPy

Figure 15. % Adsorption of Victoria Blue and Rose Bengal dye under dark condition in presence of (a) 
TiO2, (b) TiO2/PPy and (c) TiO2/PPy/GO
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Applying the Langmuir Hinshelwood model for determining the oxidation rate of the photocatalysis 
of dye:

Rate r dC
dt

k kK C
K C
A

A
� � � � � � �

�
� �

1
 (10)

Where k is the rate constant (mg/L min-1), C is the concentration of dye, KA is the adsorption constant 
of the dye (L/mg), and t is the illumination time (min).

During the course of reaction, the initial pH, amount of catalyst, and photo intensity were kept same. 
In addition to it, the formation of intermediates may interfere in the rate determination; hence the calcu-
lation was done at the beginning of irradiation. The rate expression can be written as:

r kK C
K Co
A o

A o

�
�1

 (11)

Where ro is the initial rate of degradation of Victoria Blue and Rose Bengal and Co is the initial concentra-
tion (almost equal to Ceq). When the initial concentration Cinitial is very small, Co will also be small and 
Eq. (11) can be simplified as an first-order equation (Zepp & Crosby 1994; Vullie et al., 2003; Guettaı 
et al., 2005; Kansa et al., 2007).:

� � � �
dC
dt

kK C C
C

kK tA o
o

A
ln

 (12)

C C eo
k phototf� �  (13)

Where

kf, Photo= k kA 

The value of kf,photo can be determined from the plot of ln Ct/Co vs. t (Figure 16).
The slope of the straight line obtained will be the value of first order rate constant [66]. The Value 

of apparent rate constant were determined at definite concentrations of dye solution for photocatalysis 
reaction in presence of TiO2, TiO2/PPy and TiO2/PPy/GO showing in Figure 16.

The rate constant values for the photocatalytic degradation of Victoria Blue and Rose Bengal follow 
the first order kinetic for both photocatalyst. This is confirmed that photocatalytic degradation of Vic-
toria Blue and Rose Bengal follows first order kinetic in presence of TiO2, TiO2/PPy and TiO2/PPy/GO.
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CONCLUSION

The present research work describes a proficient method for synthesis of TiO2/PPy and TiO2/PPy/GO 
nanocomposites. These nanocomposites were prepared by one-step in situ deposition oxidative polym-
erization of pyrrole hydrochloride using Ammonium per sulphate (APS) as an oxidant in the presence 
of ultra-fine grade powder of TiO2 nanoparticles cooled in an ice bath. The obtained nanocomposites 
were characterized by XRD, TEM, SEM and UV-Vis for band gap determination. The obtained results 
showed that TiO2 nanoparticles have been encapsulated by PPy with a strong effect on the morphology 
of TiO2/PPy and TiO2/PPy/GO nanocomposites. The Photocatalytic degradation of Rose Bengal and 
Victoria blue dye was done at different condition viz concentration of dye, time of illumination, pH and 
dose of photocatalyst. The maximum photodegradation were found at 7 pH, 20 ppm concentration of 
Victoria blue and 25 ppm of rose bengal dye solution, 800 mg/L for VB and 1600 mg/L for RB amount 
of photocatalyst and 120 min irradiation of visible light. Kinetics of photodegradation was investigated 
for Victoria blue and Rose Bengal dye and found first order kinetics. The coating of PPy and GO were 
enhanced the photocatalytic activity of Titania. Hence TiO2/PPy and TiO2/PPy/GO are the efficient 
photocatalyst for the degradation of Rose Bengal and Victoria Blue dye than pure TiO2.
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ABSTRACT

Two-dimensional (2D) MXene has been considered as a hotspot toward environmental photocatalysis 
because of its outstanding structural stability, highly efficient conductivity, and versatile hydrophilicity. 
As an efficient photocatalytic candidate, MXenes offer rapid photogenerated charge carrier isolation, 
thereby providing plentiful availability for surface functional groups in respect of light-harvesting prom-
ising materials, and additionally executing a suitable foundation in favor of superior photoconversion 
proficiency. This chapter summarizes a comprehensive analysis of recent studies on fabrication method 
for MXene photocatalysts and photocatalytic performance for contaminant degradations. More signifi-
cantly, MXenes are frequently employed as cocatalysts to boost the efficacy of photocatalytic activities 
when combined with other traditional photocatalysts such as metal oxide, metal sulfide, g-C3N4, and 
so on. Furthermore, in an effort to disclose the unique qualities of MXene-based nanocomposites, the 
stability of MXene-based nanocomposite photocatalysts is briefly examined.
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1. INTRODUCTION

The widespread growth specifically for urban areas associated with expanding worldwide population has 
been considered a dynamic issue regarding the need of securing suitable and drinkable water (Shao & 
Chen, 2013). In addition, fast pace toward industrialization has caused to production of harmful waste 
spreading adverse influences on health as well as environment (Jasper et al., 2017). Severe occurrence 
of contaminants such as substantial metal ions, salt-like entities, medications, aromatic complexes, 
textile colorants, and other pollutants into drinking water and wastewater streams have posed a global 
eco-friendly challengeable issue caused by major impurities that are toxic in nature and therefore re-
alized aggressive toward living organisms (Carolin et al., 2017; Gavrilescu et al., 2015). Therefore, 
necessarily numerous biotic and physicochemical strategies likewise aerobic/anaerobic assimilation, 
biochar treatment (Ye et al., 2019), membrane/sheath filtration (Bagheri & Mirbagheri, 2018), adsorption 
(Crini et al., 2019), and other favorable approaches have been predictably executed to remove variety 
of environmental impurities. Moreover, efficient nanomaterials have become frugally worthwhile and 
environment-friendly choices in favor of active environmentally removing agents such as adsorbents, 
catalysts, antibacterial mediators along with active membranes facilitating water/wastewater treatment 
(Das et al., 2017; Santhosh et al., 2016).

Additionally, the most promising functional nanomaterials in this respect are zeolites, metal-organic 
frameworks, ceramics and glasses, conductive polymers, and carbonaceous nanostructures. The architec-
ture of functional nanomaterial-derived devices may provide an opportunity for achieving new areas of 
research pertaining to efficient sensitivity, suitable selectivity, high efficiency, and finally mechanically 
stability toward versatile ecological remediation applications (M. Sun & Li, 2018). No doubt, 2D-materials 
inherit atomic scale thin assemblies associated with lateral dimensions lying among ten nanometers and 
few micrometers. The larger lateral dimension with nanometer thickness have endowed 2D nanomateri-
als showing higher specific surface area that provide them anticipation for overabundance of ecological 
remediation applications as that of adsorption, catalysis and sensing contribution in removal activities 
(Ikram et al., 2020; Raza et al., 2021; Raza et al., 2020; Tan et al., 2017; Tan & Zhang, 2015; Wei et 
al., 2021). For environmental remediation platform, graphene-derivatives have imparted great part in 
the form of sorbents, membrane isolation, photocatalysts nanomaterials toward surplus sanitization, 
or behaving sensitive nanomaterials for contamination control as well as removal (J. Xu et al., 2018). 
Further, graphene-based materials and their derivatives have exhibited enormous performance like wa-
ter purifying membranes connected with ideal properties likewise ultrahigh water fluidity, selectively 
molecules/ions filtering along with high resistance existing for biofouling (Ikram et al., 2020; Ikram 
et al., 2020; Ikram et al., 2020; Sun & Li, 2018). To date, GO and its derivatives are considered as the 
most extensive family of 2D nanomaterials regarding the removal of variety of pollutants except soils/
clays (Ersan et al., 2017; Sarkar et al., 2014; Shen & Chen, 2015; Xu et al., 2018).

Rather, MXenes (Figure 1a) are introductory of newly created 2D material family emerging from 
diversified class attributing to transition metal carbides (TMC), transition metal nitrides (TMN), and 
transition metal carbonitrides (TMCN) identified with common formula Mn+1XnTx (n = 1-3), denoting 
M as primary transition metals group, whereas X indicating carbon and/or nitrogen, Tx as significantly 
surface terminating groups like –OH, –O–, and/or –F respectively (Lei, Zhang, & Zhou, 2015). Up till 
now, nearly thirty MXenes were strongly synthesized, and the most popular among them are, Ti3C2Tx, 
Ti2CTx, Nb4C3Tx (Ghidiu et al., 2014) Ti3CNTx, Ta4C3Tx (Naguib et al., 2012), Nb2CTx, V2CTx (Lukatskaya 
et al., 2013), Nb4C3Tx (Ghidiu et al., 2014). However, further variety has been theoretically anticipated 
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depending upon availability of MAX phase precursors (Lukatskaya Maria et al., 2013). Among those 
promising MXenes titanium derived MXenes like Ti2CTx and Ti3C2Tx have been suggested synergetic 
toward eco-friendly applications caused by elemental plenty with non-piousness disintegration yields, 
and especially titanium carbide (Ti3C2Tx) has been extensively studied from MXene family. Addition-
ally, various MXene configurations are added comprising more than one transition metals incorporating 
M layers into ordered/disordered architectures in the form of Mo2Ti2C3, (Ti0.5,Nb0.5)2C, (V0.5,Cr0.5)3C2) 
(Anasori, Lukatskaya, & Gogotsi, 2017; Kurtoglu, Naguib, Gogotsi, & Barsoum, 2012). Besides carbides, 
nitrides, and carbonitride MXene’s class, there is further exploring glance in literature for other areas of 
research as that of electrochemical energy storage devices (Naguib et al., 2017) as well as biomedical 
sensing applications (K. Huang, Li, Lin, Han, & Huang, 2018), and thereby enormous forecasts related 
with properties. However, the remaining challengeable foundation for producing nitride MXenes via 
selective acid etching strategy is under discussion (Figure 1b). But an exception in this regard has been 
proposed as titanium carbonitride (Ti3CN) since it has been researched toward various desired applications.

Figure 1. MAX Phase along with MXene Chemistry containing (a) Periodic table illustrating amended 
MAX phase configurations associated with latest reported versatile MAX phases connected with A = 
Co, Zn, Cu and Ni, whereas Mn as well as Fe resides at M or A location (b) Schematically illustration 
for etching owing to Ti3AlC2 MAX segment precursor over Ti3C2Tx MXene. 
Reproduced with permission from ref. (Lin, Shao, Xu, Taberna, & Simon, 2020) Copyright 2020, Elsevier Inc.
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Further, it has been considered reliable and prominent limiting factor of widespread exploring nitride 
as well as carbonitride MXenes toward substantial ecological remediation applications. MXenes have been 
offered extensive interest to broaden their applications in ecological remediation because of possessing 
hydrophilicity, large surface area, abundant active metal hydroxide sites, associated with eco-friendly 
features (Zhang et al., 2018). Pristine MXenes occupy unique combination containing metallic electronic 
conductive and hydrophilic channels owing to large electron density along with significant surface 
functionality. Moreover, above mentioned “conductive clay-like” characteristics for MXenes provide 
an opportunity for easy processing through a variety of routes enveloping spray coating, painting, and 
filtration for designing active functional devices (Anasori et al., 2017). Furthermore, MXene-polymers, 
MXene graphene-based hybrids are developed for the improvement of performance connected with 
pristine parts like reduced agglomeration, provision of conductive pathways, thereby refining stability 
as a whole. In addition, more evolving applications in favor of MXenes encompass transparently conduc-
tive electrodes (C. Zhang & Nicolosi, 2019), electromagnetically interference shielding (Shahzad et al., 
2016), assistances to composites (W.-T. Cao et al., 2018), photocatalysis, electrocatalysis and chemical 
catalysis (Lu et al., 2017), gas sensors and biosensors, respectively (Sinha et al., 2018). Economically, 
MXenes are regarded among those ideal 2D materials to be synthesized in 100 g quantity containing 
each batch preparing in research laboratory employing wet chemical approach. Previously mentioned 
MXenes have been declared as non-toxic and more abundant elements like Ti, C or N, hence, ecological 
degradation leading CO2, N2 as well as Ti, that are supposed to be non-toxic byproducts. Resultantly, 
MXene investigation has searched an appropriate position at chief area pertaining to environmental 
remediation applications.

2. STRUCTURE OF MXENES

MXenes architecture is just an analogy for ternary nitrides as well as carbides (MAX) as MXene is sig-
nificantly achieved via etching A-atoms owing to precursor material as that of MAX. Generally, three 
various types for unit cells occupying hexagonal closed-packed structure showing space group of P63/
mmc related with MAX (Figure 2d-f). The layered structure encompasses A layer for MAX incorpo-
rates into closed-packing M layers, whereas X atoms appear at octahedral sites existing among M layers 
(Barsoum & Radovic, 2011). Clearly, octahedral interstitial sites belonging MXenes occupy hexagonal 
closely-packed (HCP) envelope of X atoms. It has been proved that three types for crystal structure of 
Mn+1Xn, where n = 1, 2, 3 and are named as MXM, MXM1XM, and MXM1X1M1XM respectively, and 
M and M1 indicate various symmetrical sites associated with transition metal atoms, and further X and 
X1 atoms represent Carbon(C) or Nitrogen (N) atoms (Jiang et al., 2020). Specific M and M1 locations 
are apparently engaged by single or two varieties for elements; moreover, as for M2X MXene indicating 
two various structures containing single-M element structure along with solid-solution nature M-metal 
structure exhibiting transition metals that are irregularly aligned in M layer of same nature. Additionally, 
M3X2 with M4X3 were added to two types of structures as already described in the order containing M 
element structure involving single or double layer owing to pristine M elements that are injected through 
2nd transition metal resided with sandwich structure and is considered as a common structure (Figure 
2a-c) (Anasori et al., 2017; Jiang et al., 2020). No doubt, synthetic approach shows greater impact on 
lattice structure for MXene, likewise ultrathin α-Mo2C that has been synthesized employing chemical 
vapor deposition where Mo atoms are to some extent distorting hexagonally closed packing form along 

 EBSCOhost - printed on 2/14/2023 11:47 AM via . All use subject to https://www.ebsco.com/terms-of-use



57

MXene-Based Nanocomposite Photocatalysts for Wastewater Treatment
 

with C atoms inhabiting ordered sites behaving like octahedral voids belonging Mo lattice, thereby in-
dicating orthorhombic crystal structure (C. Xu et al., 2015). Additionally, in case of V2N is reproduced 
introducing N atoms to substitute C atoms in MXene, then V2N structure is clearly transformed in the 
form of combined layered nature structure exploring trigonal geometry of V2N whereas cubic geometry 
of VN (Urbankowski et al., 2017). Moreover, at the stage of alike morphology for MXenes, a large variety 
among them exhibits accordion nature multi-layered structure. Further, various MXenes are prepared 
by employing same routes but occupy variety of crystal structures.

As an example, Naguib et al. (Naguib et al., 2011) has prepared scrolled type structure of Ti3C2 il-
lustrated in Figure 3a,b, as radii for few Ti3C2 nanosheets are measured as smaller than 20 nm that is 
closely related to sonication procedure followed in exfoliation process. To add, flowery nature porous 
structure of Ti3C2Tx has been prepared via hydrothermal method in ethylenediamine environment at 
80◦C for 8 hours (Figure 3c) (Xiao et al., 2019). However, in some particular circumstances, MXene 
nanofibers (Figure 3d) (W. Y. Yuan et al., 2018), as well as nanoribbons (Figure 3e,f), have been suc-
cessfully collected (Lian et al., 2017). Moreover, employing HF (hydrofluoric acid) treatment, exposing 
M atoms owing to MXenes were observed in active form, and in this way, they were likely to be binding 
form associated with enormously electronegatively charged surface terminating moieties, and it has been 
proved through verification by density functional theory as shown in Figure 2d-f. Certainly, -F, -O, and 
-OH are suggested well-known surface terminal species belonging MXenes. Further, various anionic 
moieties containing -Cl and -S may be combined excellently attached with transition metals (Liu et 
al., 2018). In addition, simple formula showing Mn+1XnTx indicates surface termination for MXenes by 

Figure 2. (a) The Mono-M MAX phases containing M2AX, M3AX2 and M4AX3, in group layered form of 
red atoms, (b) Formation of MXenes with selective etching associated with surface terminations creation 
(as indicating by yellow atoms) with T labelling. (c) Probable elements revealing M, A, X, and T into 
MAX as well as MXene phases. Unit cells along with crystal structures showing (d) 211, (e) 312, (f) 
413 phases owing to MAX.
(a-c) Reproduced with permission from ref. (Hong, Wyatt, Nemani, & Anasori, 2020) Copyright 2020, Springer Nature. 
(d-f) Reproduced with permission from ref. (Barsoum & Radovic, 2011) Copyright 2011, Annual Review.
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Tx, whereas exact expression is formulated by Mn+1Xn(OH)xOyFz. As far as surface terminal groups are 
concerned their probability may be somewhere at three locations, as a first on top location of M atoms, 
secondly residing at hollow site among top M atoms, whereas thirdly in the form of holes lying among 
proceeding stacking layers for X atoms (Hu et al., 2015; Jiang et al., 2020). Generally, surface terminations 
attached with MXenes were arbitrarily dispersed along with mixed nature showing vital character while 
rendering with synthetic conditions, with transition metal elements, and finally treating after synthesis.

3. PREPARATION OF MXENES-BASED PHOTOCATALYSTS

The calcination approach, as well as hydrothermal oxidation strategy, has been extensively followed 
to prepare MXene-derivative photocatalysts through employing in situ oxidation strategy for MXene 
precursors. Recently, TiO2 is studied as the most investigated semiconducting photocatalyst because of 
its friendly environment nature, lower cost effect, and redox potential along excellent photosensitivity. 
Moreover, unique TiO2 shows certain disadvantages and difficulty to overcome large bandgap associated 

Figure 3. (a) TEM photographs for Ti3C2 nanoscrolling. (b) schematical appearance for MXene nanoscroll-
ing. (c) Schematically SEM analysis showing flowery nature for Ti3C2Tx. (d) Prominently SEM results 
showing Ti3C2 nanofiber. (e) Clearly TEM analysis for alkalized Ti3C2 as (a-Ti3C2) MXene nanoribbons 
(MNRs) and in the last (f) Prominently HRTEM study toward a-Ti3C2 MNRs. 
(a & b) Reproduced with permission from ref. (Michael Naguib et al., 2011) Copyright 2011, John Wiley & Sons. 
(c) Reproduced with permission from ref. (Zhubing Xiao, Zhi Yang, Zhonglin Li, Pengyue Li, & Ruihu Wang, 2019) Copyright 
2019, American Chemical Society. 
(d) Reproduced with permission from ref. (W. Yuan, L. Cheng, Y. An, H. Wu, et al., 2018) Copyright 2018, American Chemical Society. 
(e & f) Reproduced with permission from ref. (Lian et al., 2017) Copyright 2017, Elsevier B.V.
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with highly photogenerated for carrier recombining efficiency. A lot of efforts were made for expanding 
light-responsive ranging and improving utility rate for photogenerated charge carriers through utiliz-
ing a sequence of approaches containing metal doping and non-metal doping, cocatalysts filling, and 
heterojunction architecture (Katal et al., 2020; Low et al., 2017).

3.1 Calcination Oxidation

In recent decades, 2D Ti type MXenes are supposed to be an attractive candidate to synthesize TiO2 
along with TiO2 type photocatalysts. In this regard, Yuan et al. (Yuan et al., 2017) have very firstly pub-
lished 2D layer C/TiO2 hybrid structure that is created by oxidized CO2 along with Ti3C2 (Figure 4a), 
whereas layered structure is successfully preserved (Figure 4b). The oxidation mechanism is rendered 
from CO2 gas molecules through breaking-up of Ti-C bonding and formation of new Ti3C2 molecules at 
700 ◦C, thereby making TiO2. The synthesis method was afterward upgraded while obtaining carbon and 
sulfur-doped TiO2 products of LDC-S-TiO2/C (laminated junction composed by defect-controlled and 
S-doped TiO2 with C substrate) involving sulfur intercalation owing to Ti3C2 associated with oxidation 
mechanism (Figure 4c,d) (Yuan et al., 2018). The TiO2/C derivative of Ti3C2 was realized much atten-
tion in research field. Recently, Huang et al. (H. Huang et al., 2019) have achieved 2D-layered N-doped 
TiO2@C by utilizing Ti3C2 in the form of C and Ti basis. Ti3C2 decorated with negative charges may be 
necessarily united with N-involving compounds which are regarded as positively charged melamine along 
with cetyltrimethylammonium bromide attained by electrostatic attraction, thereby changing composites 
through in situ method into N-doped TiO2@C through calcination during CO2 environment. Additionally, 
Kong et al. (Kong et al., 2020) have produced in order as layer-to-layer TiO2/carbon super architecture 
of NPT-TiO2/C founded by defect manufacturing for Ti3C2 employing nitriding-pretreatment. N atoms 
injection in Ti3C2 maintain 2D nanostructure and increase interlayer distance as 5.1 Å that becomes more 
beneficent toward subsequent intercalation for TiO2 nanoplates caused by higher-temperature oxidation. 
An experimental study has confirmed that layer-by-layer intercalation belonging to superstructures may 
effectively prove efficient separation related with photogenerated carriers which in turn provide better 
active sites. Wu et al. (Z. Wu et al., 2020) have explored graphene/TiO2/g-C3N4 through calcination of 
Ti3C2 with melamine during air environment. Resultantly, graphene decoration on TiO2 surface behaves 
like an active mediator for Z-scheme favoring transformation of electrons.

To date, less amount of literature concerning non-Ti3C2 MXenes hybrid nano photocatalysts have 
been published. As an illustration, depending upon the oxidative property for Nb2C MXene, Nb2O5/C/
Nb2C hybrid has been prepared following CO2 oxidation mechanism (Su et al., 2018). Furthermore, 
amorphous carbon is provided among Nb2O5 and Nb2C, thereby generating the Schottky barrier which 
in turn improves charge transformation along with carrier separation. Nb2O5/C/Nb2C/g-C3N4 heterojunc-
tions have also been achieved by calcination of Nb2O5/C/Nb2C with melamine mixture performing at 550 
◦C during N2 environment (Jiang et al., 2020). As a familiar technique, the morphology owing to nano 
photocatalysts performs vital role toward catalytic activity. Li et al. (2018) have successfully published 
Ti3C2- TiO2 flowery nanoparticles through adopting many steps reaction mechanisms (Figure 4e). Firstly, 
Na2Ti3O7-Ti3C2 hybrid products have been collected during hydrothermal atmosphere at 140 ◦C for 12 
hrs. Afterward, Na2Ti3O7-Ti3C2 nanocomposites are attained through substituting Na+ species with H+ 
ions by adding them into dilute-HCl solution. Consequently, Ti3C2-TiO2 nanoflowers are significantly 
prepared via calcining at various temperatures (Figure 4f–h).
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Figure 4. (a) Schematically pictorial for synthesis process, (b) Schematic SEM results for C/TiO2. (c) 
Schematically illustrated synthesis process and (d) Prominently TEM photographs for LDC-S-TiO2/C. 
(e) Schematically illustration for synthesis of Ti3C2-TiO2 nanoflower-type and (f-h) The conforming 
morphology appearing at various temperatures.
(a&b) Reproduced with permission from ref. (Yuan et al., 2017) Copyright 2017, John Wiley & Sons. 
(c&d) Reproduced with permission from ref. (W. Yuan, L. Cheng, Y. An, S. Lv, et al., 2018) Copyright 2018, John Wiley & Sons. 
(e-h) Reproduced with permission from ref. (Y. Li et al., 2018) Copyright 2018, Elsevier B.V.
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3.2 Hydrothermal Oxidation

The calcination approach and hydrothermal strategy are both considered favorable for the synthesis of 
MXene-derivatives as photocatalysts; rather MXenes may be entirely or partly oxidizable while incor-
porating it into TiO2 or TiO2/MXene composites. Currently, Li et al. (Li et al., 2019) have architecture 
2D/2D/2D Ti3C2/MoS2/TiO2 composites following two-phase hydrothermal mechanism (Figure 5a). TiO2 
nanosheets are formed by in situ strategies for Ti3C2, whereas combined MoS2 and TiO2 have developed 
photogenerated charge carriers on TiO2 surface, and enhanced photocatalytic activity (Figure 5b, c). Ad-
ditionally, molybdenum vacancies were achieved for MoxS/TiO2/Ti3C2 composites through hydrothermal 
procedure by utilizing NaBH4 in the form of reducing agents. The molybdenum vacancies have increased 
density of active sites associated with inhibited charge carrier recombination.

Further, two-phase hydrothermal method is utilized to design novelty into an octahedral phase of 
WS2@TiO2@Ti3C2 as photocatalyst, and significantly Ti3C2 with WS2 have played vital role like electron 
acceptors (Li et al., 2019). Shao et al. (B. Shao et al., 2020) have hydrothermal approach to synthesize 
Ti3C2/TiO2 as it was decorated by black phosphorus (BP) composites. A number of characterizations have 
revealed Ti3C2 along with Schottky barrier created among BP as well as Ti3C2/TiO2 that have prominently 
developed photocatalytic performance. Not only calcination but also hydrothermal routes and some 
exceptional strategies likewise higher-energy ball-milling and wet-chemically oxidized form that were 

Figure 5. (a) Schematically presentation for synthesis of Ti3C2@TiO2@MoS2 composites. (b, c) Schemati-
cally photocatalytic performance toward Ti3C2@TiO2@MoS2 composites irradiated with solar light.
Reproduced with permission from ref. (Y. Li, Yin, et al., 2019) Copyright 2019, Elsevier B.V.
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employed for preparing MXene-derivative photocatalysts. As an illustration, Cheng et al. (Cheng et al., 
2018) have fabricated Ti3C2 nanosheets with 30% H2O2 addition at normal temperature for fabricating 
Ti3C2/TiO2-x nanodots. Thereafter, Sun et al. (Y. Sun et al., 2019) have utilized hot water at 60 ◦C for 
oxidizing Ti3C2 precursors, and thereby obtaining collection of TiO2/Ti3C2@amorphous nature carbon 
hybrids. Generally, similar preparation approaches for MXene-based photocatalysts as well as MXene-
derived photocatalysts were hydrothermal along with calcination routes. The main difference between 
two approaches was that of synthesis for which former requires preventing oxidation for MXenes through 
governing particular reaction environment. On comparing between hydrothermal as well as calcination 
approaches, the most suggested routes were mechanical/ultrasonic mixing as well as electrostatic self-
assembly as they were very straight forward for synthesizing MXene-based photocatalysts during mild 
environment. As far as MXene-derived photocatalysts are concerned, there was existence of typical 
calcination oxidation containing residual occupancy for carbon nanomaterials that may be useable in 
the form of cocatalyst because of enhancing visible light adsorption as well as inhibiting recombination 
for charge carriers (Zhong et al., 2021).

3.3 Mechanical and Electrostatic Self-Assembly

The mechanical/ultrasonic combined form approach has been suggested as the simplest strategy to 
prepare MXene-based photocatalysts. For keeping close connection among MXene and photocatalyst, 
highly mechanical stirring along with large power of ultrasonic vibration is often practiced (Zhong et 
al., 2021). As an example, Li et al. (2020) have been equipped with chlorophyll-a (Chl)-derived whereas 
multilayered Ti3C2Tx composite as Chl/Ti3C2Tx through combining both constituents until dry. 2D layered 
structure for Chl/Ti3C2Tx has not varied apparently while mixing Chl with Ti3C2Tx in various proportions, 
thereby showing only 2% of Chl/Ti3C2Tx composite that has explored highest H2 return. In the same 
way, Chen et al. (Ji, Zeng, & Li, 2019) have prepared Ti3C2Tx-based 3D hydrogel that was collected 
through stirring process of Ti3C2Tx solution, Eosin Y solution, and graphene oxide solution during 0.5 
hours, afterward maintaining mixtures at 70 ◦C along with protecting by N2 gas. Apparently, because 
of electrostatic interactions, the semiconductors containing positive carrier’s assembly connected with 
MXenes along with numerous negative carriers resulting in production for 0D/2D nature, 1D/2D form, 
or 2D/2D nature for MXene-based photocatalysts. Monolayer MXenes are induced to cluster collectively, 
during this course they may be often sonicated prior to mixing procedure. Su et al. (Su et al., 2019) have 
fabricated 0D P25 as well as 2D single layer of Ti3C2Tx composites that were aided with ultrasonic mix-
ing. In an electrostatically self-assembled procedure, the P25 units may be homogeneously dispersed 
over single layer of Ti3C2Tx. Currently, Li et al. (2020) have fabricated architecture of 1D/2D CdS/Ti3C2 
composites through rendering electrostatically self-assembled procedure, as illustrated in Figure 6a. A 
wide variety of characterizations have proved well-combined forms of Ti3C2 nanosheets associated with 
CdS nanowires by utilizing electrostatic attraction, whereas CdS nanowires are well-decorated over Ti3C2 
nanosheets (Figure 6b-d). Moreover, the architecture for 2D/2D photocatalysts is shown attractable at-
tention. Further, the 2D/2D structure has presented favorable impact on photocatalytic characteristics. 
In addition, on comparing 0D/2D with 1D/2D nanostructures, the 2D/2D nanostructures possess largely 
touch areas while intimating interfacial interaction, thereby improving effective electron exploitation. 
Classically, 2D Ti3C2, as well as 2D g-C3N4, may be rendered through ultrasound along with mechanical 
stirring for set-up of 2D/2D Ti3C2/g-C3N4 composite (Figure 6e-g) (Y. Yang et al., 2019). As revealed in 

 EBSCOhost - printed on 2/14/2023 11:47 AM via . All use subject to https://www.ebsco.com/terms-of-use



63

MXene-Based Nanocomposite Photocatalysts for Wastewater Treatment
 

Figure 6g, the connection among two constituents may be regarded as intimate due to which interfacial 
junction has successfully formed.

4. MXENE-BASED COMPOSITE PHOTOCATALYSTS

4.1 MXene-Metal Oxides

TiO2 is considered the best photocatalyst as has been widely applied to break down organic as well as 
inorganic pollutants because of possessing high performance, abundant availability, environment-friendly 
type, and fine chemical stability. It is remarkable as photocatalytic characteristics belonging toTiO2 are 

Figure 6. (a) Schematically presentation of showing fabrication for CdS/Ti3C2 composite. Prominently 
SEM photographs owing to (b) Ti3C2, (c) CdS and (d) CdS/Ti3C2 composite. Also TEM study for (e) Ti3C2, 
(f) g-C3N4 and (g) Ti3C2/g-C3N4.
(a-d) Reproduced with permission from ref. (J.-Y. Li et al., 2020) Copyright 2020, Elsevier B.V. 
(e-g) Reproduced with permission from ref. (Yang et al., 2019) Copyright 2019, Elsevier B.V.
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narrowly connected to its nanostructure caused by unlike atomic configuration as well as surface energy 
related to variety of crystalline facets. The (001) facets corresponding to anatase nature of TiO2 have 
revealed greater photocatalytic performance as compared with (001) facets (Xiao et al., 2011). Therefore, 
the (001) TiO2/Ti3C2 composite is synthesized by employing superficial hydrothermal oxidation route. 
In this way, 2D Ti3C2Tx MXene offers an ideal platform for loading TiO2, whereas Ti-decorated atoms 
on Ti3C2 create suitable nucleation sites. Therefore, interfacial heterojunction existing among TiO2 and 
Ti3C2 nanosheets based on atomic-scale become conducive in nature so that reduction process related 
with defect-oriented recombination for photoexcited ions must be assured.

Figure 7. (a) Schematically charge-transfer mechanism on (001) TiO2/Ti3C2, (b) Schematically band 
associations with charge flowing into {001} TiO2-Ti3C2 interfaces, (c) scavenger’s impact on degrading 
efficiency for MO along with (001)TiO2/Ti3C2-160 oC-12h irradiated with UV light, (d) the recycling 
investigation for (001)TiO2/Ti3C2-160 oC-12h to degrade MO irradiated with UV light. FESEM study for 
(e) Ti3C2 associated with layered-nature structure, and (f) (001) TiO2/Ti3C2 composite while synthesizing 
by hydrothermal strategy at 160 oC during 12 hrs. The inset view (f) showing of enlargement as HRSEM 
study for TiO2-Ti3C2 heterojunctions existing in area indicated by green squares, whereas schematically 
illustration owing to anatase-TiO2 crystal structure corresponding to {001} as well as {101} facets.
Reproduced with permission from ref. (Peng et al., 2016) Copyright 2016, American Chemical Society.
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Moreover, photocatalytic oxidation mechanism for methyl orange (MO), the hydroxyl species (OH) 
are considered the most prominent reactive substances, that are significantly investigated with the addi-
tion of variety of scavengers. Three scavengers comprising of efficient isopropanol [IPA], most reactive 
ammonium oxalate [AO] with benzoquinone [BQ]) maybe impeded during reaction process revealing 
the inequality relation as IPA > AO > BQ have been successfully studied (Peng et al., 2016). Probably, 
mechanisms \concerned with photocatalytic degradation of MO illustrated in Figure 7a, b; prominently 
photogenerated holes rather than electrons may jump from TiO2 toward Ti3C2-OH caused with work 
function for Ti3C2-OH becomes lower as compared with TiO2 surface, that is 6.578 eV of (101) surface 
accordingly. Additionally, the Schottky barrier generated among Ti3C2 and TiO2 inhibits reverse move-
ment of photogenerated holes, thereby offering to prolong duration for electrons. Figure 7e,f shows the 
surface morphology of Ti3C2 and TiO2 with 001 exposed plane. The degradation efficiency of MO drops 
dramatically with N2 bubbling, as seen in Figure 7c, d, revealing that MO degradation is a photocatalytic 
oxidation (PCO) process. The process may be quenched by three scavengers in the following order: IPA 
> AO > BQ, demonstrating that ROS contributes more to MO degradation than h+. According to these 
findings, the most significant reactive species in the TiO2-catalyzed PCO process of MO is •OH, which 
is in agreement with Hirakawa and Nosaka (2002). The combined effect of Fe2O3 with Ti3C2 MXene 
significantly exhibits highly efficient performance toward photocatalytic remediation from dirty water 
(H. Zhang et al., 2020). The α-Fe2O3/ZnFe2O4@Ti3C2 composite has presented photocurrent feedback 
indicating low carrier transformation hurdles belonging to Ti3C2 MXene possessing fine conductivity 
and showing close connection among α-Fe2O3/ZnFe2O4 as well as Ti3C2, investigating via transient pho-
tocurrent response evaluations as well as electrochemical impedance spectroscopy results. In addition, 
the CeO2/Ti3C2 MXene composite comprises of Schottky junction resulting from integrated electric field 
hindering photoexcited carrier recombination caused by increasing significant photocatalytic performance 
(Shen et al., 2019). Moreover, ZnO-nanorods/MXene product may be synthesized employing ultrasonic 
oscillation, thereby removing maximum rate of 98% for RhB (Liu & Chen, 2020). In this way, superior 
activity may be investigated toward increasing surface area influenced by ZnO nanorods whereas reduc-
ing opposition for transformation of photoexcited electron-hole pairing is greatly affected by MXene.

4.2 MXene-Metal Sulfides

Certainly, metal sulfides like that of CdS, ZnS, and In2S3 have played a vital role in photocatalysis field 
(Ran et al., 2017; H. Wang et al., 2018). Intentionally, for achieving developed photocatalytic performance 
for metal sulfides, a ternary Ti3C2-OH/ln2S3/CdS composite containing photocatalytic system may be 
fabricated by employing hydrothermal method (H. Fang et al., 2019). Figure 8a,b reveal as-prepared 
products in the form of spherical structure associated with great surface area for 4-TIC (Ti3C2-OH/ln2S3/
CdS along with 4 wt% Ti3C2-OH), that is considered promising to absorb dye molecules, thereby provid-
ing suitable active sites. In addition, more favorable electrical conductivity owing to Ti3C2-OH whereas 
intimating contacts existing among above mentioned three materials likely ensured healthy degrading 
efficiency for Ti3C2-OH/ln2S3/CdS hybrid. Photocatalytic stuff belonging to some other ternary catalyst 
(In2S3/anatase TiO2@ Ti3C2Tx) have been investigated to degrade MO as well as tetracycline hydrochlo-
ride (TC) (H. Wang et al., 2018). The aforesaid quasi-core-shell photocatalytic system, Ti3C2 MXene 
connected with derivative of TiO2 has offered a robust platform for loading In2S3, whereas additionally 
the surface with edge relating toTi3C2 MXene may be enveloped by plentiful and irregular In2S3 (Figure 
8e-h). Remarkably, type-II heterojunction associated with Schottky junction architecture with In2S3, TiO2, 
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and Ti3C2Tx provides a wide variety of channels facilitating the migration for photoexcited electrons. 
The charge separation mechanism along with transferring process has clearly revealed in Figure 8c, d, 
and exposed with visible light, electrons are significantly transferred from In2S3 toward TiO2 penetrat-
ing the heterojunction. Further, the Schottky junction activation among TiO2 and Ti3C2Tx may boost up 
charge separation spatially and transferring and blocking revert flow for diffusion of electrons. Figure 
8i,j shows photocatalytic degradation with time and pseudo-first order rate constants of all samples.

4.3 MXene-g-C3N4

The Ti3C2/porous g-C3N4 (Ti3C2/PCN) heterostructures as photocatalysts associated with day and night 
photocatalytic performance have been structured by investigating Liu et al. (Liu et al., 2020) following 
superficial vacuum filtering strategy. This ideal photocatalyst scheme, offer porous nature g-C3N4 dis-
playing highly efficient visible light absorption with the connection of providing abundant photocatalytic 
active sites closely related with great specific surface area. Particularly, for 2D Ti3C2 MXene, the promi-
nent van der Waals heterostructures forming among Ti3C2 as well as g-C3N4 may boost up dynamics of 
photoexcited charge carriers extracting from g-C3N4 toward MXene. During this interval but without 
visible light, Ti3C2 may exploit the retained electrons for decomposing existing pollutants. Electrons 
residing on conduction band for g-C3N4 are vastly excited toward valence band through visible light as 

Figure 8. (a) Schematically SEM study for 4-TIC photocatalytic mechanism and (b) enlarging view for 
designated area in (a). (c) Prominently charge separation along with transfer, (d) the proposing mecha-
nism owing to contaminant removal from InTi-16 system irradiated with visible light. Schematic FESEM 
study for (e, f) Ti3C2Tx as well as InTi-16, (g, h) for In2S3/anatase TiO2@ Ti3C2Tx, and (i) Photocatalytic 
activity for MO under time, (j) the pseudo-first-order rate constants toward individual samples.
(a&b) Reproduced with permission from ref. (H. Fang et al., 2019) Copyright 2019, Elsevier B.V. 
(c-j) Reproduced with permission from ref. (H. Wang et al., 2018) Copyright 2018, Elsevier B.V.
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illustrated by equation 1. Resultantly, photoexcited electrons transfer from permeable g-C3N4 toward Ti3C2 
surface as indicated by equation 2, whereas electrons reacting with O2 for producing O2 are represented 
by equation 3. Moreover, additional generation of OH radicals is also given by equation 4, respectively. 
Further, during exposing sunlight of h+, O2 as well as OH involved for breaking down pollutants like that 
of phenol toward CO2 and water. When the sun is set, then without light contaminants may continue to 
degrade via O2 and OH, which has been formed through storage of electrons into Ti3C2 as illustrated by 
equations 3 and 4, respectively. As shown in Figure 9a, a visual illustration showing functioning process 
owing to Ti3C2/porous g-C3N4 as a photocatalyst during day-night reactions is given as under:

PCN + hv(visible light) → PCN(e- + h+ (1)

PCN(e-) + Ti3C2 → PCN + Ti3C2(e
-) (2)

Ti3C2(e
-) + O2 → ∆O2

- (3)

2∙O2
- + 2H+ → ∆OH (4)

It has been reported that well-known ternary photocatalysts are one of those utmost utilitarian 
choices due to which photocatalytic efficiency may be greatly developed. As an illustration, 2D TiO2@
Ti3C2/g-C3N4 as a ternary heterojunction has also been fabricated by employing an ultrasonic-assisted 
calcination strategy. As a result, heterojunctions, as well as Schottky barriers, are formed into TiO2@
Ti3C2/g-C3N4 composite that becomes conducive in nature toward photocatalytic activities, as given in 
Figure 9b, c (Ding et al., 2019).

4.4 MXene Bi-Based

Bismuth oxyhalide being a photocatalyst has been studied as a common catalytic material, occupying 
an indispensable position relevant with photocatalysis having environment-friendly behavior, favorable 
energy band, non-toxic nature, and other peculiarities (Wu, Su, Zhu, Zhang, & Zhu, 2020). The prob-
lems associated with rapid recombination of photo-induced charge carriers may be handled inherited 
in naked BiOBr (Raza et al., 2021; Wei et al., 2021). In this regard Huang et al. (Q. Huang, Liu, Cai, 
& Xia, 2019) have fabricated BiOBr/Ti3C2 composite via self-assembly strategy based on electrostati-
cally enforcement, thereby displaying outstanding photocatalytic efficiency to degrade Cr(VI), active 
2,4-dinitrophenol as well as RhB, on comparing with simple BiOBr, the BiOBr/Ti3C2 has demonstrated 
highly efficient degradation capability (Huang et al., 2019). In this way, photocatalytic performance 
offered by BiOBr/Ti3C2 MXene is essentially originated from close connection as well as Schottky 
junction that was created among BiOBr along with Ti3C2 interface, as depicted in Figure 10a, b. On the 
other hand, one more bismuth oxyhalide (BiOCl) has been incorporated intoTi3C2Tx MXene for achiev-
ing desired results connected with photocatalytic performance. Moreover, degradation reaction constant 
owing to BT-2.0 showing 2.0%wt Ti3C2 is significantly 3.3 folds superior to pristine BiOCl (C. Wang, 
Shen, Chen, Cao, & Jin, 2020). Clearly, manufacturing mechanism belonging to active species has been 
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illustrated in Figure 10c. Further, Figure 10d reveals that 40% Ti3C2-Bi/BiOCl has offered significantly 
red shift toward visible light as compared with BiOCl as well as Bi/BiOCl caused by whole-spectrum 
absorbance for Ti3C2. Remarkably, the photoelectrons generated on semi-metallic bismuth which are 
resulted because of surface-plasmon-resonance impact, are conveyed toward Ti3C2 surface via direct 
and/or indirect channels. In addition to bismuth oxyhalides, there is another synergetic photocatalytic 
material Bi2WO6 forming Schottky junction contact with Nb2CTx MXene for boosting the catalytic per-
formance. The flowery structure of Bi2WO6/Nb2CTx, as shown in Figure 10e, has presented wide BET 
(Brunauer–Emmett–Teller) surface-area as compared with pristine Bi2WO6, thereby resulting numer-
ous active sites present in Bi2WO6/Nb2CTx hybrid (Cui et al., 2020). The optimum BET surface-area 
stemming with the involvement for introducing Nb2CTx MXene, which one reduce thickness owing to 
Bi2WO6 and forming little holes residing between Bi2WO6 nanosheets. Consequently, photocatalytic 
performance attributing to supporting nature semiconductor photocatalysts are suggested better one to 
degrade pollutants as indicated by Table 3.

Figure 9. (a) Schematically mechanism owing to day-night photocatalytic performance related with 
porous nature g-C3N4 nanolayers. (b, c) Schematically exhibition for charge transfer as well as separa-
tion through TiO2@Ti3C2/g-C3N4 heterojunction toward RhB degradation.
(a) Reproduced with permission from ref. (N. Liu et al., 2020) Copyright 2020, Elsevier B.V. 
(b&c) Reproduced with permission from ref. (Ding et al., 2019) Copyright 2019, Springer Nature.
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4.5 Others MXenes-Based Photocatalysts

Ag3PO4 was freely changed into Ag+ species for photocatalytic reaction. In this way, Ag3PO4/Ti3C2 nano-
composite has been adopted for enhancing photocatalytic degrading activity in favor of various organic 
pollutants, like MO, tetracycline hydrochloride, and chloramphenicol irradiated with visible-light of 300 
W for Xe lamp along with λ > 420 nm) (Cai et al., 2018). Above mentioned compounds show degrada-
tion from MXene nanocomposite in a specific order of tetracycline hydrochloride (0.32) > MO (0.094) 

Figure 10. Schematic diagram showing energy-band-structure belonging to Ti3C2 as well as BiOBr (a) 
prior and (b) post establishment for Schottky barrier. (c) Efficient photodegradation mechanism for 
BT-2.0. (d) The UV-vis DRS owing to individual as-prepared samples. (e) Clearly view for SEM image 
belonging to BN-2
(a&b) Reproduced with permission from ref. (Q. Huang et al., 2019) Copyright 2019, Elsevier B.V. 
(c) Reproduced with permission from ref. (C. Wang et al., 2020) Copyright 2020, Elsevier B.V. 
(d) Reproduced with permission from ref. (S. Wu et al., 2020) Copyright 2020, Elsevier B.V. 
(e) (Cui et al., 2020) Copyright 2020, Elsevier B.V.

 EBSCOhost - printed on 2/14/2023 11:47 AM via . All use subject to https://www.ebsco.com/terms-of-use



70

MXene-Based Nanocomposite Photocatalysts for Wastewater Treatment
 

> chloramphenicol (0.025) depending upon rate constants (min-1). Generally, a few hidden inorganic 
along with organic compounds exist in combined form into water surface and/or wastewater which may 
significantly influence photodegradation toward desired pollutants. In addition, humic acid, as well as 
fulvic acid, have offered clearly inhibitory effect upon degradation rate, caused by complete activity 
occurring among natural organic compounds as well as tetracycline hydrochloride behaving like humic 
acid associated with fulvic acid toward creation of photo-affected holes along with ·OH radicals (Long 
et al., 2017). Photocatalytic peculiarities for Ag2WO4/Ti3C2 nanocomposites have been investigated with 
respect to remediation tetracycline hydrochloride as well as sulfadimidine stimulated by visible light 
possessing 300 W Xe lamp toward wavelength ranging from 780 nm to 420 nm (Y. Fang, Cao, & Chen, 
2019). Moreover, degradation rate owing to tetracycline hydrochloride and also involving sulfadimidine 
along with Ag2WO4/Ti3C2 nanocomposites have been examined as 25% and 80% better as compared with 
Ag2WO4 nanoparticles during 40 minutes. In addition, incorporating electrical field within Ag2WO4/Ti3C2 
nanocomposites motivate transferring of e- from Ag2WO4 toward wide surface area for Ti3C2 MXene, 
thereby creating a big source of enhancement for photocatalytic performance (Zhang et al., 2020). The 
conductivity of metallic nature Ti3C2 MXene has confirmed photo-generated charge transfer to enhance 
duration that is closely related with Ag2WO4/Ti3C2 nanocomposites.

In Photocatalytic view, dynamic species have been evaluated for ammonium oxalate, active isopro-
panol, and benzoquinone scavengers belonging to photo-excited holes (h+), hydroxyl (·OH), and oxide 
(·O2

-) to endorse photocatalytic activity (Ghobadifard & Mohebbi, 2018). In literature, numerous findings 
have suggested significantly for removal process h+ and ·OH as prominent species, out of which ·OH 
plays comparatively vital role toward degradation system. Further, photocatalytic properties inherited 
into Ti3C2-OH/ln2S3/CdS nanocomposites have been analyzed through degradation rate for Rhodamine 
B (RhB) and that of MO irradiated with visible light range (Fang et al., 2019). in dark media, Ti3C2-OH/
ln2S3/CdS nanocomposites showing 81% performance have offered excellent adsorption performance 
owing to RhB species than pristine CdS as well as In2S3 (estimated as < 5% and 60%), apparently caused 
by suitable layer distance for Ti3C2-OH, thereby enabling highly efficient adsorption toward organic 
compounds. Furthermore, in favor of photodegradation performance belonging to Ti3C2-OH/ln2S3/CdS 
nanocomposites (estimated 95%) that are exploring significantly superior performance as compared with 
pure CdS and In2S3 photocatalysts (indicated with 48% and 54% efficiencies) during (8 min) interval 
of time. Resultantly, valence band as well as conduction band energy of states owing to photocatalysts 
have become inevitable parameters to determine photocatalytic characteristics for Ti3C2-OH/ln2S3/CdS 
nanocomposites. In this regard, valence band and conduction band energies were 0.39/1.74 eV of CdS 
whereas 0.89/1.31 eV of In2S3. Upon irradiating visible light toward Ti3C2-OH/ln2S3/CdS photocatalysts, 
e- is excited which jump from valence band toward conduction band concerning with CdS as well as In2S3. 
Ti3C2-OH incorporated into CdS and In2S3 as photocatalysts may have facilitated instantaneously transfer 
of photo-oriented e- toward Ti3C2-OH emitted from conduction band corresponding to photocatalyst, 
which on turn probably enhance suitable separation for photo-induced e- and h+ pairs (Zou et al., 2019). 
In literature, photocatalytic performance associated with Ti3C2-OH/Bi2WO6:Yb3+/Tm3+ nanocomposites 
have been analyzed through removing RhB irradiated by visible region, whereas visible/near-infrared 
region and close-infrared light are also studied, respectively (Fang et al., 2020).

Out of three situations, remediation for RhB has suggested better one irradiated under visible/near-
infrared limitations. Moreover, photocatalytic performance for Ti3C2-OH/Bi2WO6:Yb3+/Tm3+ was remark-
ably preferred than pure Ti3C2-OH or Bi2WO6 irradiated with visible/near-infrared region. Findings were 
preliminarily advanced toward heterojunction configuration for Ti3C2-OH/Bi2WO6 as well as outstanding 
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electrical conductivity in favor of Ti3C2-OH. Generally, a notable and ideal electrical conductivity owing to 
Ti3C2-OH into Ti3C2-OH/Bi2WO6:Yb3+/Tm3+ nanocomposites apparently increase charge pairs separation, 
thereby decreasing photo-induced e-h+ pair reoccurring to improve photocatalytic reactions for Ti3C2-OH/
Bi2WO6:Yb3+/Tm3+ nanocomposites. To add, an improvement in heterojunction formation among Ti3C2 
- OH as well as Bi2WO6 may accelerate photocatalytic reactions attributing with nanocomposites (Cao 
et al., 2018). However, an extra concentration for Ti3C2-OH leads to serious scarcity of nanocomposite 
photocatalytic mechanism. The reason behind overabundant Ti3C2-OH offers light absorption toward 
pure Bi2WO6 (Zhang et al., 2018). To visible/near-infrared light, photosensitive lanthanide ions owing 
to Yb3+ may consecutively absorb near-infrared light irradiation, whereas photoactive lanthanide ions 
owing to Tm3+ may also simultaneously renovate near-infrared light toward ultraviolet region as well as 
visible light range (Fang et al., 2020). Consequently, the Ti3C2-OH/Bi2WO6:Yb3+/Tm3+ photocatalysts 
are considered for absorbing an ultraviolet as well as visible light instantaneously to generate e- and h+ 
species into valence bands and conduction bands.

5. STABILITY OF PHOTOCATALYSTS

To find stability owing to photocatalysts has become indispensable, because of photo corrosion belonging 
to catalysts is severely limited toward their applications. Anti-photo corrosion investigation for Ag3PO4/
Ti3C2 has been carried out by performing eight cycles upon tetracycline hydrochloride for its removal 
activity (Cai et al., 2018). Resultantly, photocatalytic degradation for pristine Ag3PO4 was decreased by 
90% for eight cycles, thereby significantly offering Ag3PO4 decomposition caused by photo corrosion. 
In addition, comparatively a little amount of reduction is observed as 30% toward photocatalytic degra-
dation that was exhibited while performing eight cycles on Ag3PO4/Ti3C2 nanomaterial, associated with 
exploring of improvement in anti-photo corrosion efficiency. Moreover, the accelerated factors behind 
enhanced photocatalytic performance as well as anti-photo corrosion efficiency owing to Ag3PO4/Ti3C2 
may be explained; firstly Ti3C2 possesses a plenteous surface containing hydrophilic functional groups 
that leads to creating a solid interfacial connection along with Ag3PO4 in facilitation for charge carrier 
transfer. Secondly, electron removal reactions that are carried with proper oxidation-reduction reactions 
occurring on Ti surface become helpful in enhancing ·OH generation. Thirdly, Schottky junction created 
at interfacial of Ag3PO4/Ti3C2 composite will rapidly transfer electrons toward Ti3C2 surface, leading to 
perform role for a built-in electric field that may prohibit photo corrosion-related with Ag3PO4 caused 
by photo-induced electrons (Cai et al., 2018).

For verifying renewability owing to Ag2WO4/Ti3C2 nanocomposite, an active cycling examination 
has been performed toward degrading efficiency for antibiotics (Fang et al., 2019). With the comple-
tion of three cycles, reducing behavior for cyclic output has been observed caused by reducing efficient 
removal relevant with tetracycline hydrochloride as 9% whereas sulfadimidine as 22%, respectively. 
The removal decline may occur probably due to some mechanisms like photo corrosion, photolysis, and 
photocatalyst if again use. Generally, little concentration for Ag has been observed to be expected for 
creation while preliminary fabrication owing to Ag2WO4/Ti3C2 nanocomposites in the form of strong 
oxidation-reduction reactions occurring on terminal metal locations for Ti3C2 MXene (Fang et al., 2019). 
In another study, reusability survey owing to Ti3C2-OH/ln2S3/CdS nanocomposites has demonstrated for 
photocatalytic performance that is observed same after three cycles repeating degradation treatments 
along with RhB as > 95% (Fang et al., 2019). The photocatalytic performance stability investigation for 
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monolayer of TiO2/Ti3C2Tx nanocomposites has been explored during four-cycle (duration with 16 h) 
reactivity, whereas photocatalytic activity toward H2 growth rate has been curtailed ranging 2.7-2.3 mmol 
g-1 h-1 (Su et al., 2019). The Ti3C2Tx is considered approximately constant while performing chemically 
reactive activities. Nevertheless, a very small decrement into TiO2/Ti3C2Tx light absorbance has also 
been evaluated on comparing with fresh samples, probably caused by detachment for TiO2 particles with 
nanocomposites accordingly (Su et al., 2019). For further study, though facing hindrance attached with 
inactivation owing to AgInS2 toward remarkable enhancement for interfacial carrier transfer occurring 
in 0D/2D AgInS2-50/Ti3C2 Z-scheme hybrid, NH3 generation in an average way is lessened with an 
estimation of 95 -70 mmol.g-1h-1 while carrying out three cycles investigation toward N2 photo reducing 
circumstances as clearly depicted in Figure 11 (Qin et al., 2019).

Figure 11. (a) The comparative study revealing yield rate, and (b) the recycling investigation toward 
AgInS2-30/Ti3C2. (c) The energy-band-structure situations, and (d) the pictorial view of spatial charge 
distance as well as conveyance during course of photocatalytic activity from AgInS2/Ti3C2 nanosheets.
Reproduced with permission from ref. (Qin et al., 2019) Copyright 2019, Elsevier B.V.
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6. CONCLUSION

The technique of synthesis, structure, and photocatalytic characteristics are briefly reviewed in this 
chapter. This chapter presents a comprehensive review of recent research on MXene-based photocatalyst 
production processes and contaminant degrading photocatalytic performance. When paired with other 
photocatalysts including a metal oxide, metal sulfide, g-C3N4, and other materials covered in this chapter, 
MXenes are widely used as cocatalysts to increase the efficacy of photocatalytic activities. This chapter 
also briefly investigates the stability of MXene-based nanocomposite photocatalysts in order to reveal 
the distinctive properties of MXene-based nanocomposites.
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ABSTRACT

Heavy metals have come up as a threatening pollutant in aqueous media, leading to life threatening 
consequences. Biomaterial has been a novel and innovative wing of Green Chemistry, eradicating the 
threats in a cost effective and clean manner. The present study has been focused on the successful removal 
of a life-threatening heavy metal Cd (II) from aqueous solution using biosorbent created using selected 
plants. The present study establishes the fact that carboxylic acid group plays an important role in the 
metal binding process using protection of COOH group by propylamination and esterification. We could 
also conclude that the enrichment of COOH group onto the biomaterial using synthetic modifications 
succination leads to the increase in the sorption efficiency.

INTRODUCTION

The problem originates with the tremendous increase in quantity of various toxic pollutants, encountered 
in wastewater (Brostlap et al.,1988), toxic metals are very imperative associate of filthy dozen club of 
pollutants. Thus, the decontamination of metal bearing waste water seems to be a critical environmental 
concern. The conventional methods utilized for the subsiding of toxic metals are often inadequate due 
to the technical and economic constraints (Delvin et al., 2002). For that reason, the search has brought 
newly emerging conception of Green Chemistry which is being considered as a novel opinion guiding 
the upcoming generation products and proceedings (Gardea-Torresdey et al., 1996, Ahalya et al., 2003).
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Biomaterial generated via green path has acquired much significance for decontamination of wa-
ter (Adrehold et al., 1996, Baig et al., 1999). Bioremediation incorporates procedures that trim down 
complete treatment charge via the relevant use of aboriginal agricultural byproducts and wastes (Isabel 
et al., 2004), which appears to be a wise choice as they reduce direct dependence on expensive water 
purifying chemicals, insignificant transportation necessities and propose indisputable local resources, as 
suitable solutions to deal with local affair of water standards. Rejuvenation of the biosorbent escalates 
the cost efficiency of the process thus warrants its future success (Kar et al., 1992; Khalid et al., 1998). 
However, biomaterials have been found to be linked with drawbacks associated to constancy and simul-
taneous sorption range of lethal metals, limiting their viable utilizations (Stenberg et.al 2002; Adesola 
et al., 2006). Consequently, biosynthetic improvisation improves the binding capability selectivity and 
steadiness of natural biomaterials has fascinated the eager attention of scientific community (Kobya et 
al., 2004; Manju et al., 1997). The use of green methods for structural modifications on biomaterials to 
maximize their bioefficacy adds further important dimension to the popularity of biosorption process 
for decontamination of water (Martins et al., 2004; Meunier et al., 2003; Nicholas et al., 2003)

Heavy Metals: Environmental Threat

Heavy metals being the significant affiliate of filthy dozen toxic pollutants encounter various ecosys-
tem environment (Tiwari et al., 1999). As they are biologically imperishable, their danger multiplies 
by their agglomeration resulting into serious ecological concern. Heavy metals, although are found in 
trace amount in the earth’s shell, anthropogenic actions viz, manufacturing processing and utilization of 
metals, amalgam and metallic compounds largely summing up their natural environmental levels. Land 
dumping of solid wastes, indiscriminate use and disposal of pesticides, contamination of water, all badly 
insult the natural sink and disperse a large amount of various toxic metals into all the three components 
of environment viz: atmosphere, hydrosphere lithosphere. The toxic metals enter the human organiza-
tion by two prominent ways (Hima et al., 2003). First, the metals impose bad effects due to their direct 
consumption as potable water and through inhalation. Secondly, circuitous uptake of lethal metals via 
consumption of food, depending upon the water composition of the ecosystem metals enters in to the hu-
man body. Based on ecological pollution viewpoint, metals can be divided into categories viz: Toxic and 
accessible, Nontoxic but accessible and Toxic but non accessible (Sure et al., 1953; Tegbe et al., 2006).

It is the first category of potential toxic and comparatively accessible metals which has attracted the 
eager attention of the researchers (Tiemann et al., 2002). These toxic metals are called rare metal as 
they occur in extremely minute quantity in the earth’s crust. Based on their densities they are further 
subdivided, those with densities more than 5 g/cm3 are elected as heavy metals (IARC and Namasivayam 
et.al). Present study has been focused on the decontamination of Cadmium from aqueous medium.

Decontamination Techniques

The use of available water sources are being strongly impacted due to the constant increase in the degrees 
of industrialization and increasing standards of livelihood. Mastering toxic metals release and remov-
ing lethal heavy metals from aqueous solutions has turn out to be a confront for the present time. Most 
commonly utilized measures for eradicating metal ions from aqueous streams involve methods like, 
precipitation, ion exchange, reverse osmosis, electro dialysis, coagulation and flocculation etc. (Coupal 
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et al., 1976; Gardea-Torresdey et al., 1990). The basic principle, procedural details and commercially 
accessible instrumentation for the above discussed phenomenon has been described in short.

Reverse Osmosis (RO)

Being a separation process pressure reverse osmosis uses pressure technique it forces a solution via a 
membrane which retains the solute particles on one side and allows the passage of pure solvent to other 
side. In other words, it can be described as the process of flowing or passage of a solvent from a sec-
tion of high solute concentration via a membrane towards a region having low solute concentration by 
applying a pressure more than the osmotic pressure (Ajmal et al., 2000; Asheh et al., 1998). Reverse 
osmosis is basically the opposite of the usual osmosis process, here the solvent goes from a low solute 
concentration, high solute concentration area via a membrane when no external pressure is exerted. The 
semipermeable membrane present here allows only the passage of solvent but does not allows the solute 
to pass through it. But the technique is associated with several demerits which reduces its utilization, it 
need periodic replacement of filters, not successful in removing bacteria, the semipermeable membrane 
gets clogged resulting into the sludge trouble, large amount of water get wasted in removing the sludge 
hence the technique proves out to be an expensive technique (Banat et al., 2003, Azab et al., 1989).

Electrodialysis (ED)

Electrodialysis is a technique which is utilized to carry salt ions through ion exchange membranes from 
one solution to another solution, beneath the impact of applied galvanic potential variance (Basso et 
al., 2002, Gardea-Torresdey et al., 2004). The process is carried out in an electrodialysis cell. The cell 
comprises of a feed cubicle and another compartment is concentrate compartment which is devised by 
a cation swap layer and an anion swap membrane which is located in-between the two electrodes. Ap-
proximately in all the electrodialysis procedures, manifold electrodialysis compartments are organized 
into electrodialysis stack, which alternates the cation and anion exchange membranes developing numer-
ous electrodialysis cells.

Ultrafiltration (UF)

Ultrafiltration is variety of water decontamination technique where liquid is forced against a semi per-
meable membrane via hydrostatic pressure. The semipermiable membrane retains the solutes of high 
moleculer weight and suspended particles, whereas molecules of low molecular weight and water eas-
ily pass via the membrane. Ultrafiltration separation procedure is utilized in the industries, purification 
research work and for concentrating macromolecular solutions, specially protein solutions (Krishnan et 
al., 2003, Basu et al., 2003). Fundamentally this technique is not very distinct from reverse osmosis or 
micro filtration else than it can retain size range of molecules.

Ion Exchange

In this technique ions are exchanged between a solution of electrolyte and complex or among two elec-
trolytes. In the majority of cases, the term ion exchange is utilized to denote the processes of decon-
tamination, purification and separation of aqueous solutions with the help of mineral ion exchangers or 
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solid polymeric exchangers. Distinctive ion exchangers are viz: gel polymers or functionalized porous 
ion exchange resins, clay and humus and zeolites etc. The ion exchangers are either cation or anion ex-
changers, positively charged ions (cations) are exchanged in cation exchangers, negatively charged ions 
are exchanged in anion exchangers (anions) (Basso et al., 2002, EES). Certain amphoteric exchangers 
are also available they are capable of exchanging together cations and anions. The process is associated 
with certain demerits which restrict its usage viz, restricted accessibility; time to time resin needs to be 
replaced and the process does not inactivate microbes.

Chemical Precipitation

In the process of chemical precipitation during chemical reaction solid is formed in the solution. When 
the chemical reaction takes place and precipitation happens precipitate is formed the liquid retained on 
top of the solid is the supernate. Chemical precipitation reactions can be utilized for qualitative chemi-
cal analysis, making pigments and for removing salts from water. The technique requires a specialized 
handling and generates a large amount of sludge which is difficult to separate (Low et al., 1991; Paknikar 
et al., 2003).

However, all these prior mentioned methods have disadvantages like incomplete metal removal, 
high reagent and energy requirements, very expensive and none of the stabilizers are persistent, Boddu 
et al., 2003.

Biosorption: An Emerging Pathway

Biosorption is comparatively a novel practice that came to existence during 1980’s and procured substan-
tial consideration as it has emerged out to be very potential in the elimination of taint from effluvium in 
an environmental affable manner (Gardea-Torresdey et al., 1996a; Volesky 2001). For the cost effective 
remediation of lethal metal ions from aqueous system ample amount of attention has been provided to the 
use of living and non-living biological resources leading to the cost-effective decontamination. (Iqbal et 
al., 2002; Regin et al., 2000). Lifeless organisms provide various benefits over living organisms because 
no maintenance is required by the lifeless resources neither it ever gets affected by the high concentrations 
of pollutants. On the contrary living creatures always require dietetic care and supply and they usually 
get affected by elevated concentration of contaminants (Gardea-Torresdey et al., 1996b). As compared 
to the artificial ion exchange resins, plant based biosorbing materials never need toxic chemicals for 
their preparation. Hence, the plant originated biosorbent materials are measured additionally effective 
for removing toxic heavy metal ions out of the aquatic system in a sustainable, cost effective and eco-
friendly manner (Goodwin et al., 1975; Ghimire et al., 2002; Gonzalez et al., 2006).

PLANTS UNDER STUDY

Saraca indica (Ashoka) leaf Powder, the plant Saraca indica is a naturally Occurring herb. With dark 
green foliage and very bright and fragrant yellow and orange flowers is an evergreen plant. It is a small 
tree having height up to 10 m, with reddish brown wood and almost black bark leaves are paripinnate, 
stipules intra petiolar, united, scarious, oblong, lanceolate, and glabrous; flowers orange to scarlet. 
Flowering time is December to May and fruiting time is June to July. It occurs up to the altitudes 600 
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meters. The Leaves are membranous, alternate, paripinnate, 15-20 cm long, leaf-lets 6-12 oblong or 
oblong lanceolate, 1.25 cm in width. The shoots: young shoots are pendent. Flowers are orange or yel-
low eventually turning vermillion, very fragrant scents at night, 2.5-3.8 cm across (Pagnelli et al., 2002, 
2003). Pedicles slender small pubescent, sepals 4 mm long. Seeds are 4-8 ellipsoid, oblong 38 cm and 
packed together.

Ficus religiosa (Pipal) leaf Powder, Pipal exhibits immense therapeutic importance. The leaves of 
pipal serve as a magnificent laxative as well as a wonderful stimulant for the body. It proves to be very 
helpful for the patients suffering from Jaundice. It assists in controlling the excessive urine released during 
jaundice. Leaves of Pipal are extremely efficient in the treatment of heart related disorders (Sawalha et 
al., 2005; Nagarnaik et al., 2005). It also helps in managing the palpitation of heart and thereby helps in 
fighting cardiac weakness. Pipal the holy tree is also known by variety of names in different languages 
and regions like Bodhi in Sanskrit, Piplo in Gujrati, Al or Aryal in Malayalam etc. It is a belief that this 
tree protects humans from the negative energies, evil eye and also keeps away dreadful dreams. The 
Pipal-bark has light grey color and is smooth. The leaves have a distinctive shape of heart and have long 
and tapering tips, colors of flower is red. Flowers in the month of February and Fruits in May / June, 
widely found in uplands and plain area.

Azadirachta indica (Neem) leaf Powder, Neem is a tree of the mahogany family Meliaceae. Neem 
twigs are utilized for brushing teeth in India, Bangladesh and Pakistan this practice is almost the oldest 
and most valuable forms of dental care. Several parts of the tree viz, seeds, leaves, flowers and bark 
are utilized for preparing several diverse therapeutic preparations. It is a very fast-growing tree which 
reaches a height of 15-20 m, and sometimes even 35-45 m. Neem is evergreen tree but it may not survive 
in severe drought condition (Shukla et al., 2004, Rosa et al., 2003). Neem tree has wide spread branches, 
the dense top of the tree use to be roundish or oval and may acquire a diameter of 15-20 m in mature 
and free standing specimen. The roots are sturdy taproot and well developed lateral roots. Leaves of 
neem are usually 25-45 cm long, the terminal leaflet is frequently missing. The trunk is comparatively 
short and straight and can reach a diameter of 1.2 m. The bark use to be very hard, fissured or scaly, the 
color varies from whitish-grey to reddish-brown. The flowers are white and have fragrance, flowers are 
usually arranged axillary, in general relatively drooping panicles usually 25 cm long. Individual flower 
use to be 5-6 mm long and 8-12 mm wide.

Objectives

Objectives of sorption studies involve evaluation of efficiency of individual and compost biomaterial 
[ashoka, pipal and neem] for abatement of heavy metal, sorption efficiency (%) of Cadmium from aque-
ous system using biosorbent. Determination of equilibrium isotherms, followed by mechanistic modeling 
using adsorption isotherms and modification of the composite for enhancing sorption efficiency.

Material and Methods

Biosorbent Preparation

The leaves of different plants: Neem, Ashoka and Pipal has been collected in the month of January and 
washed with water to get rid of the sticked dirt, dried at 65°C for 24 hours, crushed and sieved via (105 
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um, 210 um) mesh copper sieves. Prior to the implementation of the adsorption experiment no physical 
or chemical treatments have been provided to the biosorbent.

Sorption Studies

Sorption study consists of series of experiments as a function of single biosorbent material (Ashoka, 
Pipal and Neem leaf powder] individually (1.0, 2.0, 4.0, 6.0 g) as well as mixed or ternary biosorbent 
dosage (0.5, 1.0g, 2.0, 4.0g), contact time 40 minutes, metal concentration (1, 5, 10, 25 and 50 mg/L), 
particle size (105 μm) all the study has been performed in different batch of experiments. The solution 
containing Cd (II) as Cadmium Nitrate has been taken into separate Erlenmeyer flasks. After pH adjust-
ment, required quantity of biosorbent (single as well as mixed biosorbent) has been introduced and as 
a final point metal bearing suspension was permitted to settle down. The remaining/residual biomate-
rial absorbed/adsorbed with metal ion has been filtered using Whatman filter paper no. 42. Filtrate has 
been collected and subjected to metal ion estimation using Atomic Absorption Spectroscopy (Perkin 
Elmer-A analyst 100). Total Sorption of percent metal by the sorbent has been computed utilizing the 
following equation:

% Sorption = (Co-Ce) / Co x 100 

Where, Co is initial concentration of metal ions in the solution and Ce is the final concentration of metal 
ions in the solution.

Adsorption Studies

Cadmium sorption by biosorbent has been calculated (Vankar et al., 2002, Volesky 2001) utilizing the 
mass balance equation for the biosorbent:

q= [V (Ci-Cf)] / S 

Where, q is the cadmium metal uptake (mg metal/g dry weight), V represents the volume of metal 
containing solution contacted (batch) with the biosorbent (L), Ci is the initial concentration of metal 
in solution (mg/L), Cf is the final concentration of target metal in solution (mg/L), S representing dry 
weight of biosorbent added (g)

Sorption Isotherm

The metal biosorption equilibrium onto biomaterial has been interpreted utilizing Freundlich and Lang-
muir isotherms. The classical Freundlich equation has been depicted below:

q = Kf Ce
1/n 

Where, Kf and n are the characteristic constants, Ce, is the final concentration of metal (mg/L) in the 
solution and q is the heavy metal adsorbed on the biosorbent (mg/g dry weight).

The classical Langmuir equation can be expressed as:
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Ce/qe= (1/Q0b) + (Ce/Qb) 

Where, qe is the quantity of Cadmium adsorbed at equilibrium, Ce is the equilibrium concentration, Q0 
and b are the Langmuir constants linked with adsorption capacity and energy of adsorption respectively.

The biosorption capacity of the sorbent i.e Kf and Qo and biosorption intensity/energy (1/n and b) has 
been estimated utilizing the slope and intercept of the Langmuir and Freundlich isotherms.

Chemical Modification onto Biomaterial

Chemical modification has been done for identification of the functional groups responsible for the 
sorption. All the three biomaterials (Neem, Pipal and Ashoka) under study have been reported contain 
free amino acids as constituent of their chemical composition. (Becker et. Al 1997, Jose et al 1999, Ray 
et al 1995) Efforts has been made to establish the role of carboxylic acids for the sorption process.

Identification of the Functional Groups Responsible for the Sorption

1.  Esterification: The plant biomaterial has been subjected to esterification of carboxylic groups 
in a similar manner explained by Gardea-Torresdey et al, 1998. 10.0 gm of biomaterial sorbent 
material has been suspended in 640.0 ml of methanol. 5.4 ml of conc. HCI has been mixed in the 
suspension to compose the mixture of 0.1 M in HCl. Periodically over a two days period three 3.0 
ml aliquots has been removed (Abdel-Ghani et al., 2007, Karta et al., 2005). All these samples and 
final products have been washed several times with deionized water to get rid of excess HCI and 
CH3OH. The final product has been freeze-dried and further stored for consequent experiments.

2.  Propylamination: in this process 4.0 g of biomaterial has been washed with acetone, filtered using 
Whatman 42 filter paper, again washing has been done with water and finally washed with acetone 
(Ashkenazy et al., 1996, Poon et al., 1986). This acetone washed biomaterial further has been 
washed with propylamine and kept over the magnetic stirrer for approximately 30 min. Biomaterial 
obtained has been then centrifuged. The obtained biomaterial was then used for further IR studies 
and sorption studies.

Modifications for Increasing the Sorption Efficiency of Biomaterial

1.  Acetylation: Amino group on the biomaterial has been acetylated via washing 12.0 gm of bioma-
terial first in 0.1 M HCl to remove any debris. Followed by washing in sodium phosphate/sodium 
acetate buffer (0.1M Na3PO4/1.0M NaC2H3O2) at pH 7.2. The biomaterial has been reacted with 64.0 
ml of acetic anhydride and stirred while maintaining pH of 7.2 for 1 hr. The acetylated biomaterial 
has been then centrifuged for 5 min at 3000 rpm. After removing the supernatant, biomaterial was 
then resuspended in 1M hydroxylamine for removing O-acetyl groups. The biomaterial was then 
washed with 0.1M HCI to remove any more soluble materials and finally washed de-ionised water.

2.  Succination: The amino groups on the biomaterial have been succinated by washing 12.0 gm of 
biomaterial first in 0.1 M HCI to remove any debris, followed by washing in 0.1M Sodium acetate 
at pH 8.0. The biomaterial was then resuspended 500 ml of 1M NaC2H302.H2O at 8.0. An addi-
tional 16.0 gm anhydride has been added after 15 minute interval for the next 1.5 hrs. leading to 6 
additions of 16.0 g succinic anhydride to the biomaterial. Then biomaterial has been washed with 
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0.1 M HCI centrifuged and then washed repeatedly with de-ionised water. Now, the amino group 
is neutralized, but forms additional carboxyl group. This must lead to enhanced metal binding for 
those metals which bind to carboxyl ligands.

Results and Discussion

Table 1 represents soluble Cd (II) concentration in percentage, after sorption on powdered, Azadiracta 
Indica (Neem), Ficus Religiosa (Pipal) and Saraca Indica (Ashoka), leaf powder individually as a func-
tion of biomass dosage (1-6 g) and metal concentration (5-50 ppm) at particles size 105 (µm), pH 6.5, 
volume (200 ml) respectively.

Table 2 represents soluble Cd (II) ion concentration (%) after sorption on mixed powdered biosorbents 
under same experimental conditions mentioned above.

A scrutiny of the tables clearly depicts the fact that the biomaterial Azadiracta Indica shows maximum 
affinity (97.60%) for sorption of Cd (II), while the minimum value (92.46%) has been shown by Saraca 
indica. It is also evident from the tables, that when the mixed biosorbent (ternary) used the percentage 
of sorption for Cd (II) ions increases from 97.60% to 98% for Cd (II). Apparently overall increase in 
sorption is not very clearly visible but the significant increase in sorption can be clearly observed by 
reducing the amount of biomaterial dosage up to just half.

Identification of Sorption Responsible Functional Groups

Synthetic approach for the protection of COOH group by esterification and propylamination has been 
considered. The esterification of carboxylic acids was accomplished by methanol. The protection of 
COOH group leading to the development of ester has resulted into the decreased sorption efficiency 
and thus role of COOH group in metal binding has got highlighted.

RCOOH + CH3OH ⟶ RCOOCH3 + H2O 

In a very similar way the carboxylic acid group has also been transformed into amide by reaction with 
propylamine. Propylamination of the biomaterial lead to the decreased sorption efficiency supporting 
the function of carboxylic acid for metal sorption Reacting the carboxylic groups with propylamine, 
neutralizes these anions, considerably decreasing the metal ion uptake, demonstrating that negatively 
charged carboxylic group has an important role to play in biosorption process because of the electrostatic 
attraction.

CH3CH2CH2NH2 + RCOOH ⟶ RCOONH2 + CH3CH2CH3 
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Table 1. Sorption efficiency (%) of Saraca Insica, Ficus religiosa and Azadirachta indica for Cd (II) 
as afunction of metal concentration and biomass dosage, at volume (200 ml), pH 6.5 and particle size 
(105 µM)

Initial Conc. mg/L
Soluble Cd (II) concentration on Saraca indica leaf powder

Biomass dosage 1.0 g Biomass dosage 2.0 g Biomass dosage 4.0 g Biomass dosage 6.0 g

5 43.19 56.71 69.81 69.97

10 54.12 72.56 83.32 83.46

25 66.83 81.28 92.46 92.63

50 66.99 81.39 92.71 92.79

Initial Conc. mg/L
Soluble Cd (II) concentration on Ficus religiosa leaf powder

Biomass dosage 1.0 g Biomass dosage 2.0 g Biomass dosage 4.0 g Biomass dosage 6.0 g

5 43.78 62.49 72.83 72.93

10 56.18 71.63 80.71 80.83

25 63.32 82.63 94.82 94.93

50 63.49 82.79 94.98 95.04

Initial Conc. mg/L
Soluble Cd (II) concentration on Azadirachta indica leaf powder

Biomass dosage 1.0 g Biomass dosage 2.0 g Biomass dosage 4.0 g Biomass dosage 6.0 g

5 48.56 62.19 74.33 74.42

10 52.39 76.39 82.92 83.01

25 73.83 92.32 97.60 97.78

50 73.99 92.41 97.63 97.72

Table 2. Sorption efficiency (%) of composite biomaterial for Cd (II) as a function of metal concentration 
and biomass dosage, at volume 200 ml, pH 6.5 and particle size (105 µM)

Initial Conc. mg/L
Soluble Cd (II) concentration on composite biomaterial

Biomass dosage 0.5 g Biomass dosage 1.0 g Biomass dosage 2.0 g Biomass dosage 4.0 g

5 53.19 63.83 76.27 76.36

10 62.89 73.15 84.67 84.76

25 71.83 82.56 98.17 98.31

50 71.97 82.67 98.29 98.39

Table 3. Freundlich & Langmuir isotherm constants for sorption of Cadmium onto plant biomaterial

Kf 1/n R2 Q0 b R2

Pipal 0.76 0.69 0.93 2.63 0.24 0.93

Ashoka 0.71 0.74 0.95 2.56 0.29 0.92

Neem 0.65 0.82 0.95 2.51 0.34 0.95

Mixture 0.58 0.91 0.98 2.46 0.43 0.98
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CHEMICAL MODIFICATIONS ONTO BIOMATERIAL: 
IMPROVING SORPTION EFFICIENCY

Based on our studies, it was determined that carboxyl ligands play an important role in binding metal 
ions to the sorbents. Thus, escalating the quantity of these groups should enhance the biomaterial metal 
binding capability. This has been achieved via acetylation and succination of the biomaterial.

In the process of acetylation of the biomaterial, available amino ligands are obstructed by acetic 
anhydride leading to amplify metal binding capacity. Acetylation leads into the neutralization of amino 
groups. It reduces the number of positively charged sites on biomaterial surface that leads to the modest 
enhancement in metal uptake capacity.

Biomaterials thus modified by above two possible ways and sorption efficiency was found to be 
increased using the same amount of biomaterial (4.0 g) for the metal under study.

Sorption effectiveness of all the three modified biomaterial for Cadmium metal was also monitored 
at biomaterial dose of 2.0 g. more interestingly almost equally good percentage of sorption was obtained 
at considerably lower biomaterial dosage [2.0 g] under the same experimental conditions.

Figure 1. Succination of novel biomaterial has been done to add a carboxyl group on to nitrogen ligand.

Table 4. Enhancement of sorption efficiency of different chemically modified biomaterial in case of Cd 
(II) metal solution (Biomaterial dosage 4.0 gm).

Pipal Neem Ashoka Mixture

Biomaterial dosage 4.0 gm

Unmodified 94.82 98.60 92.46 98.17

Acetylated Biomass 96.12 98.37 94.69 98.79

Succinaed Biomass 98.06 99.19 97.23 99.79
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Table 5. Enhancement of sorption efficiency of different chemically modified biomaterial in case of Cd 
(II) metal solution (Biomaterial dosage 2.0 gm).

Pipal Neem Ashoka Mixture

Biomaterial dosage 2.0 gm

Unmodified 82.63 92.32 81.28 98.17

Acetylated Biomass 84.48 95.16 83.56 98.59

Succinaed Biomass 92.13 97.68 89.56 99.37

Figure 2a. Freundlich isotherm plot for the adsorption of Cd (II) ion on Ficus religiosa leaf powder

Figure 2b. Freundlich isotherm plot for the adsorption of Cd (II) ion on Saraca indica leaf powder
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Figure 2c. Freundlich isotherm plot for the adsorption of Cd (II) ion on Azadirachta indica leaf powder

Figure 2d. Freundlich isotherm plot for the adsorption of Cd (II) ion composite (ternary) mixture
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Figure 3a. Langmuir isotherm plot for the adsorption of Cd (II) ion on Ficus religiosa leaf powder

Figure 3b. Langmuir isotherm plot for the adsorption of Cd (II) ion on Saraca indica leaf powder
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ABSTRACT

Developing innovative technologies for the effective treatment of organic contaminants comprising agri-
cultural wastes, industrial dyes, and chemicals is gaining extraordinary importance across the globe. In 
the last few years, photocatalytic degradation has become an effective and established route to eliminate 
these pollutants from aqueous solution relative to simple adsorption. 2D nanomaterials exhibit great 
potential as an effectual photocatalyst in degradation of contaminants, especially hybridization with 
other functional components due to wide-ranging band structures, sufficient active sites, and significant 
specific surface area. Herein, the unique hybridization of 2D nanomaterials with numerous functional 
species is reviewed comprehensively by highlighting their improved photocatalytic performances and 
remarkable environmentally friendly activity. The chapter outlines the mechanism of photocatalytic deg-
radation to explore the advantages/disadvantages of regular 2D materials and discover the significance 
of developing hybrid 2D photocatalysts.
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INTRODUCTION

The need for industrial and agricultural products has been increasing substantially with a rise in popu-
lation across the globe, which results in release of organic contaminants in environment. Numerous 
environmental factors pose huge impact on quality of life because of poisonousness and prolonged 
persistence of the pollutants produced by pesticide production pharmaceutical production, textile in-
dustries, and other organic compound production (Hasija et al., 2019; Perreault et al., 2015; Suyana et 
al., 2017). Though, organic dyes are hazardous even at minute amounts and can bring adverse effects 
to ecosystem and human health. Recently, the elimination of dyes and other contaminants from water 
has become a challenging task (Rafiq et al., 2021). Hence, several technologies have been adopted to 
eliminate water pollutants, comprising biodegradation, adsorption, catalytic degradation, sedimenta-
tion, membrane filtering, and coagulation (Ahmed et al., 2018; Ge et al., 2018). The photodegradation 
of impurities has gained noteworthy importance in the past several years. The photocatalytic reaction 
involves heterogeneous catalysis, where a semiconductor photocatalyst absorbs UV light to reduce nu-
merous environmental pollutants. Photodegradation offers advantages over the traditional wastewater 
treatment approaches. For instance, the complete degradation of contaminants using photocatalysts can 
take place within a few hours at room temperature (Rafiq et al., 2021).

Functional 2D materials are being widely studied for photocatalysis owing to exceptional properties 
ascribed to structure properties. 2D nanostructures exhibit remarkable advantages in charge separation, 
architecture modulation, light-harvesting, and tunability relative to 0D and 1D nanomaterials (Ali et al., 
2021; Y. Liu et al., 2019; Raza, Qumar, et al., 2022; Yasir et al., 2022). The significant lateral size of 2D 
nanosheets provides adequate active sites for adsorption of contaminant and surface reaction (Sun et al., 
2015). Additionally, the ultrathin thickness prefers charge diffusion to material surface via reducing the 
transportation distance (Deng et al., 2016), which is a unique aspect of 2D materials. Several efforts have 
been carried out to design effective photocatalysts with 2D nanomaterials due to exclusive electronic, 
optical, and physicochemical features of 2D nanosheets, in addition to the assessment of their potential 
for water decontamination (Qumar et al., 2022; Raza, Altaf, et al., 2022; Raza, Rafiq, et al., 2022; Su 
et al., 2018; Tan et al., 2017).

In the hybrid photocatalyst, graphene enhances electron transport to separate photogenerated elec-
trons from holes, even though attaining a greater affinity for adsorption due to its larger surface area 
(Huang et al., 2012; Li et al., 2016; Perreault et al., 2015; Raza, Zhang, et al., 2022). When employed as 
a photocatalyst or co-photocatalyst for the elimination of impurities, MoS2 nanosheets with a bandgap 
of 1.8 eV are normally utilized (Wang & Mi, 2017). Other photocatalysts like Bi2O3 (2.5 eV), g-C3N4 
(2.6 eV), WO3 (2.7 eV), and BiOX (3.0 eV) have also been widely employed as visible light-stimulated 
photocatalysts (Haque et al., 2017; Jiang et al., 2017; Patnaik et al., 2016). Keeping in view the impor-
tance of numerous 2D materials for photocatalytic degradation of harmful chemicals and dyes here, this 
chapter is specifically focused on a brief review and discussion of various hybrid 2D photocatalysts and 
to enhance their activity by defect and hybridization engineering.

GRAPHENE-BASED PHOTOCATALYSTS

Graphene exhibit 2D π-conjugated nanostructure by covalent bonding (σ bonds) among adjacent car-
bons, hence exploring higher charge mobility and thermal conductivity, huge specific surface area, and 
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outstanding mechanical strength (Guan & Han, 2019). Recently, extensive research has been carried out 
on graphene-based hybrid materials as unique sorbent or photocatalyst for purification of contaminants 
(Huang et al., 2012; Perreault et al., 2015). Normally, graphene is cited as graphene oxide (GO) or re-
duced graphene oxide (rGO) in photocatalytic system and is capable of tuning the photocatalysts band 
structure and repress the electron-hole pairs recombination for a substantial photocatalytic enhancement 
(Zhang et al., 2012). In this chapter, we summarize current developments on the hybrid photocatalysts 
synthesis consisting of graphene and various structural materials, and their practices in photocatalysis.

Graphene Hybridized with g-C3N4 Nanosheets

The g-C3N4 nanosheets displaying the monoatomic layer such as graphene, exhibiting absorption in visible 
range and considered supreme to synthesize hybrid photocatalysts using graphene for ecological applica-
tions. Up to now, numerous effectual approaches are being designed to prepare 2D/2D nanocomposites 
exhibiting various combined formats, which considerably increase their photocatalytic activity. Figure 
1a reveals the fabrication of a 3D g-C3N4/GO structure by the hydrothermal coassembly for designing an 
effectual photocatalyst of g-C3N4 with an enhanced transfer of electrons using GO (Tong et al., 2015). 
The elimination of methyl orange (MO) by employing the highly interconnected porous aerogel reached 
up to 92% within 4 h, whereas the pristine g-C3N4 value was only 12%. On the other hand, g-C3N4-rGO 
hybrids had been immobilized on 3D nickel foam via facile dip-coating technique. After absorption 
of visible light, a successive hydrazine hydrate reduction method for tetracycline and MO decoloriza-
tion was observed (Wang et al., 2018), maximum photocatalytic performance was monitored when the 
rGO/g-C3N4 ratio was 1:9 in weight. Both nitrogen-doped carbon nanotubes (N-CNT) and oxygen modi-
fied monolayer g-C3N4 had been hybridized using GO by electrostatic contact to attain ample coupling 
heterointerfaces, hence a membrane heterostructured was formed after vacuum filtration (Figure 1b) 
(Córdoba et al., 2018). The GO and N-CNT presence under the visible light irradiation can effectively 
decrease the photogenerated charge carriers’ recombination in 94.30% tetracycline hydrochloride degra-
dation. Another study was carried out to prepare 3D hybrid photocatalyst with extraordinarily advanced 
photocatalytic performance for removal of MB in which 1D Ag@AgVO3 nanowires were penetrated 
via graphene and protonated g-C3N4 nanosheets. The resultant increment in photocatalytic activity was 
accredited to numerous synergistic effects from the enhanced surface area of unique composition, out-
standing graphene conductivity, and strong Ag@AgVO3 absorption for visible light (Zhang et al., 2015). 
Zeng’s et al employed Ag@Ag3PO4/g-C3N4/rGO to prepare an indirect reproductive Z-scheme network 
for eliminating pollutant 2,2¢,4,4¢ -tetrabrominated diphenyl ether (BDE-47) within 93.4% efficacy in 
visible light exposure in 120 min, displaying an improvement of »174 times relative to pristine g-C3N4 
sheets (Liang, Zhang, et al., 2019). Additionally, several research groups reported the various 2D nano-
materials combination into g-C3N4/graphene nanocomposite to fabricate ternary photocatalysts using 
2D/2D/2D configuration. For instance, an in situ adsorption technique was employed for insetting g-C3N4 
sheets in the center of MoS2 sheets and graphene to display an unusual photocatalytic response result-
ing from close contacted surface among two adjacent nanosheets, that was ~4.8 times greater relative 
to pure g-C3N4 nanosheets for the decolorization of RhB (Tian et al., 2018). Tonda’s and his colleagues 
combined CoAl-layered double hydroxide, g-C3N4, and rGO employing a one-step hydrothermal ap-
proach to design innovative heterostructures with upgraded photocatalytic activity in the decolorization 
of Congo red (CR) and tetracycline (Jo & Tonda, 2019). To increase the interfacial charge transfer for 

 EBSCOhost - printed on 2/14/2023 11:47 AM via . All use subject to https://www.ebsco.com/terms-of-use



104

Hybrid 2D Nanomaterials for Photocatalytic Degradation of Wastewater Pollutants
 

substantial improvement of photocatalytic performance, the 2D/2D/2D arrangement was employed to 
provide a large intimate interfacial contact.

Hybridized with Metal Oxides

Graphene exhibits unusual conductivity and remarkable electron mobility, whereas metal oxides (MOs) 
display significant light-harvesting aptitude in visible and UV regions. Therefore, their combination is 
favorable for designing hybrid photocatalysts exhibiting notable photocatalytic activity. Furthermore, the 
TiO2/rGO composites also displayed a considerably significant aptitude for persulfate activation under 
exposure of in to generate more hydroxyl radicals and sulfate radicals (SO4

•−) for whole elimination 
of micro contaminants like SMX, bisphenol A (BPA), acetaminophen and phenol (Yang et al., 2019). 
Wang’s et al studied the electronic properties and chemical structure of TiO2–graphene composites by 
employing density functional theory (DFT) simulation and explored that TiO2–graphene (Akola et al., 
2008) heterostructures retained exceptional charge carrier separation and oxidation capabilities, and the 
time-consuming lifetimes of photogenerated radicals relative to other nanocomposites comprising TiO2 
with numerous planes (Yang et al., 2013). The coupling of rGO sheets improved harvesting potential 

Figure 1. Hybridization of g-C3N4 with GO sheets for photocatalytic decolorization. (a) Depiction for the 
preparation of 3D g-C3N4/GO aerogel and its enhanced properties for photodegradation. (b) Synthesis 
of O-g-C3N4/GO/N-CNT nanocomposites by electrostatic interaction and mechanism for photocatalytic 
degradation of impurities.
(a) Reproduced with permission from ref. (Tong et al., 2015) Copyright 2015, American Chemical Society. 
(b) Reproduced with permission from ref. (Qu et al., 2018) Copyright 2018, American Chemical Society.
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for visible light, lessened its BG, increased charge carrier separation, and repressed the accumulation of 
TiO2-x nanoparticles (NPs) to absorb more organic contaminants for Ti3+ and O2 vacancies self-doped 
TiO2 (Xu et al., 2018). The hybrid TiO2−x/rGO photocatalysts TiO2/rGO, and TiO2-x samples, revealed a 
rapid reaction rate relative to pure TiO2 for BPA degradation. TiO2 and Ni were affixed in Shin’s work 
onto the surface of GO sheets via microwave and the resultant Ni-integrated TiO2/GO photocatalysts 
displayed outstanding adsorption skill for target impurities in dark and enhanced photodegradation rate 
under exposure of visible light (Pham et al., 2016). Likewise, Ag and Pt NPs have been improved onto/
into GO-TiO2 mesocrystals using in situ reducing approach (Sreeja et al., 2019). The variation of Pt 
and rGO abridged the BG of TiO2 and considerably increased the absorption potential for visible light 
illumination and electron-hole separation rate, which offered an increased MO photo decolorization 
relative to pure TiO2, Pt/TiO2, and rGO/TiO2, respectively (Huo et al., 2019). TiO2–rGO/MoS2 is an ad-
ditional significant ternary photocatalyst where the interfacial charge moved from the TiO2 to the MoS2 
via middle rGO nanosheets for efficiently constraining the recombination of comparatively advantageous 
electrons-holes (Nimbalkar et al., 2016). The electron-hole pair recombination had suppressed collab-
oratively in the ternary photocatalyst with the S-scheme heterostructure creation and Schottky junction 
among rGO and TiO2 nanosheets. For superior photocatalytic performances, Fe-based compounds are 
also commonly used to hybridize with graphene. For example, with the addition of 10% rGO loading in 
magnetite (Fe3O4) the decolorization efficacy for 2-methylisoborneol (MIB) was improved from 22.5% 
to 99% (Moztahida et al., 2019). Moreover, silver-magnetite/graphene nanomaterials had been employed 
as a broadspectrum catalyst exhibiting excellent proficiency for removal of pollutants under illumination 
of ultraviolet source (Saleh & Taufik, 2019). Additionally, rGO hybridization with silver and magnetite 
NPs might be utilized for activating peroxydisulfate (PDS) in the effectual photodegradation of endocrine-
disrupting compounds and pharmaceuticals (Park et al., 2018). The preliminary pseudo-first-order rate 
of phenol elimination was recorded as »8 times greater compared to magnetite NPs. The rGO nanosheets 
can improve the mobility of photoexcited charge carriers and construct various heterojunctions for the 
separation of photoinduced electrons and holes in the Z-scheme rGO–Fe2O3–MoS2 composites in 3D 
configuration (Chen et al., 2017). Under the exposure of visible light, the ternary nanocomposites revealed 
considerably upgraded photocatalytic performance and exceptional stability in degradation of MB and 
RhB relative to pure Fe2O3 NPs. Currently, rGO and NiFe0.7Co1.3O4 has been hybridized simultaneously 
as an outstanding photocatalyst to stimulate persulfate for degrading BPA,(Xu et al., 2019) whereas mag-
netically separated Co–Fe Prussian blue analogs and rGO have joined into nanocomposites for increasing 
the photocatalytic activity to levofloxacin hydrochloride after peroxymonosulfate (PMS) activation (Pi et 
al., 2018). Other MOs are also used for synthesizing hybrid photocatalysts using graphene in addition to 
TiO2 and Fe-based compounds. Normally, a WO3 and rGO nanocomposite was developed by employing 
a hydrothermal route in the RhB photodegradation (Ahmed et al., 2018). For elimination of neutral red 
and ciprofloxacin photo catalytically from wastewater, manganese dioxide (MnO2) nanorods have been 
loaded on rGO sheets using facile hydrothermal method to attain closed interaction of 1D/2D composite 
with sufficient reaction sites and large surface area. (Chhabra et al., 2019) Meanwhile, MnO2 sheet/N-
doped graphene aerogel has been controllably synthesized to boost up PMS for IBP degradation (Dong 
et al., 2019). For effectual removal of 4-nitrophenol by improving light absorption, Park et al (Zhou et 
al., 2019) fabricated a ternary composite of rGO/zirconium dioxide(ZrO2)/Ag3PO4 exhibiting band gap 
of about 2.3 eV.
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Hybridization with Other Compounds

MoS2 nanomaterials exhibiting BG (»1.8 eV) may rapidly supply photogenerated electrons-holes, whereas 
graphene having excellent conductivity are advantageous in faster separation of photogenerated carriers. 
Hence, MoS2–GO composite hydrogel has been synthesized using one-step hydrothermal technique in 
decolorization of MB with enhanced photocatalytic activity (Ding et al., 2015). To attain a better pho-
tocatalytic performance of 99% within 28 min for MB, MoS2/graphene composites have been fabricated 
(Zhao et al., 2017). On the other hand, the rGO/MoS2 hybrid nanostructures have been fabricated using 
ultrasound-driven mixed MoS2 and GO exfoliation in an ethanol/water combination and successive GO 
reduction (Cravanzola et al., 2016). Currently, ZnS–MoS2 hybrid was attached over rGO sheets using 
solvent thermal approach as a unique photocatalyst exhibiting enhanced absorption in visible region (Hu 
et al., 2018) rGO/ZnS–MoS2 photocatalyst effectually removes industrial discharge due to their effective 
charge separation and modified band structure. Similarly, Ag3PO4 microcrystals have been grown on a 
MoS2 and graphene hybrid using two-step hydrothermal method for removal of phenol impurities and 
served as a favorable photocatalyst as shown in Figure 2 (Peng et al., 2014). Various other metal sulfides 
have also described in literature to hybrid on rGO sheets other than MoS2 in organic dyes photodegrada-
tion. Normally, CdS NPs (10 nm-sized) have been anchored on rGO using facile condensation method 
in dimethylformamide to prepare CdS/rGO composites exhibiting superior activity by »3 times relative 
to pure CdS in RhB decolorization (Meng et al., 2016). By employing surface modification approach, 
CdS NPs, nanosheets, and nanorods are grafted on rGO sheets using potential electronic reactions (Bera 
et al., 2015). Consequently, the 2D/2D heterostructure photodegradation was observed to be »4 and 
»3.4 times greater compared to 0D/2D and 1D/2D hybrid nanocomposite, respectively. Furthermore, 
it has also been observed that the 2D/2D photocatalyst displayed significant degradation response of 
»2.5 times that of pristine CdS nanosheets. Likewise, CdS sheet–rGO nanomaterials were employed 
to decrease heteroaromatic, aromatic, aliphatic, and sulfonyl azides photocatalytically to the analogous 
amines in the occurrence of hydrazine hydrate (Singha et al., 2018). On the other hand, Cu2SnS3 and 
Cu2SnSe3 quantum dots (QDs) had been hybridized onto rGO sheets using one-pot colloidal fabrication, 
resulting in extraordinarily improved photocatalytic responses for MO and RhB degradation (Han et al., 
2018). The CdS/ZnIn2S4/rGO ternary photocatalyst was also prepared by uniform growth of ultrathin 
ZnIn2S4 sheets perpendicular to the CdS nanowires surface using facile solvothermal method, followed 
by successive incorporation of rGO acting as a cocatalyst for considerably enhancing their stability and 
photoactivity (Tian et al., 2017). To utilize the adsorptive nature and strengthened charge transfer of 
rGO and silver surface plasmon resonance effect, Ag nanomaterials (8 nm-sized) have been dispersed 
on wrinkled rGO nanosheets to obtain a maximum degradation response in textile discharges (V et al., 
2019). Though, GO enwrapped Ag phosphate (GO/Ag3PO4) nanomaterials showed excellent activities 
in the elimination of several polycyclic aromatic hydrocarbons photocatalytically (Yang et al., 2018) Ma 
et al. utilized commercial K4Fe(CN)6 to prepare Fe3C@N-CNT/graphene nanomaterials, which showed 
outstanding photocatalytic activity in PMS enhancement for BPA elimination (Ma et al., 2019). On the 
other hand, Niu’s and his colleagues employed a surface charge-mediated self-assembly to develop Bi@
Bi5O7I/rGO 2D/2D heterostructure for excellent degradation efficiency in levofloxacin decomposition 
(Liang, Niu, et al., 2019).

 EBSCOhost - printed on 2/14/2023 11:47 AM via . All use subject to https://www.ebsco.com/terms-of-use



107

Hybrid 2D Nanomaterials for Photocatalytic Degradation of Wastewater Pollutants
 

MoS2-BASED PHOTOCATALYSTS

MoS2 monolayers with three layers of atoms are composed by sandwiching a Mo among two S layers. 
MoS2 crystals comprise of three crystalline stages: metallic 1T level, semiconductor 2H level, and 3R 
stage, that will display diverse features in various hybridized photocatalysts (Guan & Han, 2019). MoS2 
materials have been regarded as outstanding photocatalysts or cocatalysts for the photocatalytic degradation 
of contaminants due to their strong light adsorption, high photocatalytic capability, and cost-effectiveness 
(Wu et al., 2018). Especially, MoS2 thin films with perpendicularly aligned layers showed several 2D 
sites because of their developed dangling bonds that presented excellent chemical reactivity for effectual 
degradation of harmful compounds (Islam et al., 2017). Concurrently, TiO2/MoS2 nanocomposites have 
been prepared to impede charge recombination and improve absorption in visible region (Rahmanian et 
al., 2018). Furthermore, CDs and Ag3PO4 NPs have been deposited on MoS2 sheets for enhancing their 
photodegraded capability by separating photoproduced electrons-holes effectually (Li et al., 2019). The 

Figure 2. The synthesis and photocatalytic activity of Ag3PO4–MoS2/graphene (GR) photocatalyst. (a) 
Synthesis technique, (b) photocatalytic dichlorophenol degradation by various photocatalysts, (c) deg-
radation of numerous organic phenols via hybrid photocatalyst.
Reproduced with permission from ref. (Peng et al., 2014) Copyright 2014, Royal Society of Chemistry.
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incorporation of 1T-MoS2 sheets using MIL-53(Fe) generated needle-shaped nanocomposites exhibit-
ing mesopores and micropores, that enhanced the IBP photocatalytic rate relative to pure MIL-53(Fe) 
and1T-MoS2, respectively (N. Liu et al., 2019). Heterojunctions can be prepared by modifying MoS2 
as cocatalysts to stimulate the photoproduced electrons transfer and hence increase their photocatalytic 
activity (Peng et al., 2017). This part will summarize the MoS2-based photodegraded systems by high-
lighting the significant MoS2 role as catalysts or cocatalysts for industrial decontamination.

Hybridization with Metal Oxides

The absorption band of TiO2 becomes wider to have maximum absorption in visible region after in-
sertion of MoS2. Hence, the MoS2 and TiO2 hybridization is much important for designing effective 
photocatalysts. TiO2/MoS2 photocatalysts are being prepared to improve photocatalytic performance 
of TiO2 using combined solvothermal and liquid exfoliation approaches (Zhang et al., 2016). At a mo-
lecular cluster level, DFT simulation had employed to explore the active sites and binding sites on the 
surface and showed that MoS2 and TiO2 have been coupled via chemical bonds instead of van der Waals 
contact. Therefore, the photodegraded potential of hybrid photocatalysts has been observed to be higher 
relative to physical mixture of TiO2 and MoS2. For better degradation of MB and RhB, 2H MoS2/TiO2 
nanocomposite has been prepared using forming TiO2 on the MoS2 nanosheets surface in a hydrothermal 
reaction (Sabarinathan et al., 2017). Yang’s et al fabricated two categories of TiO2/MoS2 cocatalysts 
exhibiting an exceptional interface for easy electrons-holes separation by employing a polymer assisted 
targeted-etching approach, as shown in Figure 3a-f (Sun et al., 2018). Similarly, 1T MoS2 nanosheets 
have been chemically exfoliated and employed in Xiong’s work (Bai et al., 2015) as supportive cocata-
lyst to prepare hybrid photocatalyst of TiO2 exhibiting enhanced RhB degradation, which shows better 
performance photocatalytically relative to pristine TiO2 and the hybrid of TiO2 and 2H-MoS2 (Figure 
4a-d). Normally, MoS2 sheet-decorated TiO2 nanobelts were synthesized by employing hydrothermal 
route to obtain a superior adsorption ability for numerous organic dyes and display a considerably 
increased photocatalytic response (Zhou et al., 2013). For efficient MO degradation under UV and vis-
ible source, the (Akola et al., 2008) faces of TiO2 nanosheets were vertically developed in Cui’s work 
on the graphite fibers and then MoS2 sheets were further fabricated at TiO2 nanosheets interface (Lu et 
al., 2017). Liu et al. effectively prepared a sandwich-like TiO2/MoS2/TiO2 photocatalyst by integrating 
the in situ chemical reduction, mechanochemical process, and extreme calcination temperature in argon 
atmosphere (e.g., 350 °C) (Liu et al., 2016). The rate of degradation of MO was up to 89.86% by using 
the sandwich-like photocatalyst owing to development of heterojunctions.

Hybridization with Noble Metals, BiOI and Black Phosphorus

The degradation efficacy over MoS2 nanosheets can be considerably enhanced via integrating noble met-
als by localized interface plasmon and rapid photoexcited electrons transferring (Islam et al., 2017). For 
example, 1T@2H-MoS2 nanosheets decorated with Au NPs showed enhanced photocatalytic response in 
91.2% MB degradation in 2 h (Lin et al., 2019). The 2H phase modification into the 1T was stimulated 
by loading of Au NPs and intraparticle charge transferring arise from 2H to 1T MoS2 for increasing the 
photogenerated electron-hole pair separation (Lee et al., 2008). Other research findings were reported 
on BSA-coated Au nanoclusters and explored that these nanoclusters can be employed as an exfoliating 
agent for MoS2 nanosheets along with precursor in epitaxially growing Au NPs on MoS2 in the exfolia-
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tion method (Figure 4e-h) (Guan et al., 2018). The Au-decorated MoS2 nanosheets showed an improved 
degradation of organic dyes photocatalytically by rapid transfer of photogenerated electrons (Figure 4i, j). 
MoS2 nanosheets may also control the Pd catalyst’s electronic structure via interfacial electronic metal−
support reaction (Shi et al., 2019). Furthermore, a Z-scheme ternary MoS2/BiOI/AgI hierarchical system 
was attained by precipitation method in mixed water solution and ethylene glycol (Jahurul Islam et al., 
2016). In BiOI samples, the presence of O-vacancies and the 2D alignment of MoS2 materials extended 
the lifetime of charge carrier and enhanced the RhB degradation for 7 and 16 times relative to BiOI/AgI 
and BiOI, respectively. Liu’s group affixed black phosphorus QDs (BPQDs) onto MoS2 nanosheets for 
consuming maximum sunlight to generate 0D/2D nanohybrids using grinding and sonicating method 
(Feng et al., 2018). The photoactivity was observed to be increased up to 3 × 10−2 min−1, due to increased 
light absorption and accelerated charge separation, which was appeared to be 13 and 27 folds higher 
compared to pristine BPQDs and MoS2, respectively. WO3 has been gaining importance to remediate 
environmental pollution due to exhibiting friendly environment, earth richness and photoresponse in 
visible range (Haque et al., 2017). WO3 can be synthesized into numerous nanostructural materials to 
promote an increment in photocatalytic degradation. Normally, 2D WO3 nanomaterials have been fabri-
cated recently to deliver more active sites for improving photocatalytic degradation (Guan et al., 2017). 

Figure 3. TEM micrographs of (a) monodispersed TiO2 microspheres and (b) MoS2/TiO2 core-shell 
microspheres, (c) HRTEM of inset portion of (b), (d) HRTEM of core–shell microspheres. Elemental 
mapping micrographs of (e) Mo/S and (f) Ti/O.
Reproduced with permission from ref. (Sun et al., 2018) Copyright 2017, Royal Society of Chemistry.
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WO3 nanoplates displayed the paramount degradation of RhB photocatalytically among various micro-
structures of WO3 (i.e., nanoplate, nanorod and nanosphere) (Farhadian et al., 2015). Excellent catalytic 
activity was also observed for WO3 in CR and MB dyes degradation relative to nanorods (Parthibavarman 
et al., 2018). Moreover, the hybridization process for different functional structures could considerably 
enhance the degradation potential of WO3 materials using synergistic effect (Liu et al., 2014). In this 
unit, WO3 nanosheets applications for dye degradation will be described photocatalytically to highlight 
the innovative hybrid structures comprising WO3 nanosheets and their enhanced photocatalytic activity.

Figure 4. Hybridization of MoS2 nanosheets. (a) Illustration for fabricating TiO2–MoS2(1T) and TiO2–
MoS2(2H) hybrid structures. TEM micrographs of (b) TiO2–MoS2(1T) and (c) TiO2–MoS2(2H) structure, 
(d) photocatalytic decolorization curves of RhB with various products. (e) Schematic exfoliation of MoS2 
nanosheets and surface growth of Au25 clusters into Aum NPs, (f) TEM and (g) HRTEM micrographs 
of Aum/MoS2 nanosheets, (h) TEM micrograph of Aum+n/MoS2 nanosheets attained after reaction with 
H2O2 for 4 h, (i) depiction for photocatalytic degradation on Aum+n/MoS2 nanosheets, (j) photocatalytic 
performances of several samples.
(a-d) Reproduced with permission from ref. (Bai et al., 2015) Copyright 2015, Tsinghua University Press. 
(e-j) Reproduced with permission from ref. (Guan et al., 2018) Copyright 2018, Royal Society of Chemistry.
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C3N4-BASED PHOTOCATALYST

Hybridization with Metal Oxides

For attaining enhanced photocatalytic degradation for elimination of pollutants, the hybridization of 
sheets of g-C3N4 with oxides of metals (e.g., ZnO, V2O5, WO3, TiO2, and Fe3O4) is also productive via 
effectual interface contact. Calculations based on DFT have recommended that the TiO2–C3N4 hetero-
junction interface can deliver rapid separation of charge and transfer by both C–O and bridges of Ti–N. 
Hence, easing the quick separation/transfer of photoinduced electrons and holes (W.-K. Wang et al., 
2019). A photocatalyst that is heterojunction comprising of layers of g-C3N4 and particles of TiO2 was 
synthesized for the enhanced degradation of CBZ and diclofenac (Hu et al., 2019) Superoxide holes and 
radicals were certified as vital oxidative species by the scrounger experiments under exposure of visible 
light. Likewise, anatase TiO2−x particles were fabricated on g-C3N4 sheets for developing heterostructures 
that are Z-scheme with an enhanced rate of separation of photoproduced electron–hole pairs (Tan et al., 
2018), which detached electrons from TiO2 and holes from g-C3N4 for considerably decreasing intrapar-
ticle recombination of electron–hole (Maldonado et al., 2019). Moreover, a ternary carbon plane/C3N4/
TiO2 photocatalyst was fabricated by calcining tetracycline/melamine mixture and then combination with 
TiO2, which displayed extraordinary degradation activity in effectual elimination of numerous pollutants: 
norfloxacin (95.3%), MB (98.6%), and tetracycline (94.0%) (Liu et al., 2019). A heterogeneous ZnTiO3 
photocatalyst nanofibers and sheets of C3N4 was prepared in Lee’s work by employing an electrospin-
ning and sonication technique, and the photocatalyst that is hybrid showed a substantial improvement 
in removal of 4-nitrophenol, 4-chlorophenol, MB, and phenol photocatalytically under irradiation of 
visible light (Pawar et al., 2017). Ag NPs were decorated on the Bi5FeTi3O15 interface layers and g-C3N4 
sheets in Zhang’s work to prepare Ag-bridged Bi5FeTi3O15/C3N4 heterojunctions for enhanced tetracycline 
dilapidation (Wang et al., 2019). DFT calculations confirmed that g-C3N4 and Bi5FeTi3O15 had matched 
band structures to make an extra fast Z-scheme transfer route for charge carriers. The presence of Ag NPs 
increased the absorption of light region and reduced the recombination of photoproduced electron−hole 
pairs. g-C3N4 layers were formed in the interlayers of N-KTiNbO5 nanosheets by space-confined effect 
for enhancing the contact area between N-KTiNbO5 and g-C3N4 nanosheets in N-doped KTiNbO5/C3N4 
heterostructures, producing an effectual charge transfer across ample interfaces and a considerably en-
hanced degradation activity of BPA and RhB (Liu et al., 2018). V2O5 nanorods were adapted onto the 
surface of g-C3N4 nanosheets in Guttena’s work for developing 1D/2D hybrid photocatalysts exhibiting 
higher degradation activity relative to pristine V2O5 and g-C3N4 for elimination of CR (Dadigala et al., 
2019). WO3 materials were explored to design C3N4 hybrid as effective photocatalysts due to their out-
standing properties and 2D structures. By synthesis of direct Z-scheme heterostructures, a heterogeneous 
WO3–C3N4 composite was prepared using hydrothermal approach to improve degradation of SMX (Zhu 
et al., 2017). Heterostructure and oxygen vacancy was concurrently formed using one-step calcination 
method to prepare a WO3−x/C3N4 photocatalyst for increasing degradation of tetracycline, RhB, and S. 
aureus under exposure to imitation light (Zhang et al., 2019). Conversely, the Z-scheme photocatalysts 
of WO3/C3N4 were prepared by anchoring WO3 nanoplates at the surface of g-C3N4 using in-situ acidic 
precipitation and following calcination process (Chai et al., 2018). This close interaction between C3N4 
and WO3 was not only enhanced interfacial reaction areas but also assisted the transferring and separa-
tion of photoproduced carriers, generating a considerably increased photocatalytic performance. The 
photocatalytic performance of hybrid photocatalysts was increased up to 4.70 times relative to one of 
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pristine C3N4 in the decolorization of RhB (Deng et al., 2019), Ag NPs have been incorporated in WO3/
C3N4 for employing surface plasmon resonance effect to enhance absorption in visible range for effectual 
decolorization of tetracycline and RhB. ZnO nanomaterials were also dropped on g-C3N4 effectively to 
formulate Z-scheme heterojunctions just like WO3 (Figure 5a), which revealed 0.0735 min−1 interaction 
rate constant for photodegradation of cephalexin, ~5.4 & ~8.1 times superior than pure g-C3N4 and ZnO, 
respectively (Figure 5b-d) (Li et al., 2018). On the other hand, Co3O4 NPs have been formed uniformly 
in the network of g-C3N4 sheets by one-pot melamine pyrolysis and cobalt nitrate, that considerably 
increased the photocatalytic activity of MB and tetracycline because of interactive role of Co3O4 NPs 
in g-C3N4 network (Suyana et al., 2017). Literature also reported the fabrication of Co3O4 QD–C3N4 
heterostructures by attaching Co3O4 QDs onto the g-C3N4 surface by employing a facile chemically and 
subsequently annealing reaction in air (Figure 5e) (Gao et al., 2018). Exceptional enhancement in pho-
tocatalytic activity was attained by employing the 0D/2D heterostructures as catalysts in numerous dye 
solutions on account of the synergistic effect (Figure 5f). Furthermore, a ZnFe2O4−C3N4 photocatalyst 
through magnetic property was prepared after reflux treating the mixed ZnFe2O4 and C3N4 in methanol 
at 90 °C, which were employed to design the photo-Fenton system with H2O2 for decolorization of Or-
ange II (Yao et al., 2014). Consequently, a higher 0.012 min−1 degradation rate was attained to reveal 
»2.4 times improvement than physical mixture of ZnFe2O4 and C3N4 NPs., the recyclability of hybrid 
catalysts had been examined to display outstanding efficiency with five successive runs by magnetic 
separation method. 0D Cu-doped FeOOH clusters have been incorporated onto the g-C3N4 surface by 
Wang and his colleagues to fabricate 0D/2D heterostructures, which displayed improvement in MB re-
duction relative to pristine C3N4 nanosheets (Zhang et al., 2018). However, 0D/2D photocatalyst showed 
exceptional degradation activity to specify their high stability and good robustness after being utilized 
for ten cycles at various pH (4.8–10.1).

ENGINEERING PROTOCOLS

Defect Engineering in 2D Photocatalysts

Anion Vacancies

Due to the low formation energy of oxygen vacancies, they have been considered as more prevalent and 
extensively studied defects in transition-MOs (Yan et al., 2017). Due to the atomic thickness of the O 
vacancies (VO), the electronic structure and physiochemical properties of 2DMs are being effectively 
customized, affecting the photocatalytic efficiency (Hou et al., 2017). Along with altering the carrier 
concentration and electronic structure, engineered Vo can aid in the molecule activation, including O2, 
N2, and CO2, as well as enhanced photocatalytic efficiency. Zhang and colleagues discovered that the 
VO in BiOBr contains clustered electrons for -back-donation, which can cause changes in the adsorbed 
N2 molecule, lengthening the bond between N-atoms from 1.078 to 1.133 for free molecular nitrogen 
(Li et al., 2015). Regarding that, the N2 molecule can also be effectively reduced to NH3 using electrons 
transmitted through the interface from its excited BiOBr. Comparable to N2 activation, it has been shown 
that VO in ultra-thin ZnAl-LDH is conducive to CO2 activation (Zhao et al., 2015). An increase in the 
density of VO was observed upon gradual decrement in thickness of prepared samples (210 to 2.7 nm) 
due to the emergence of various unsaturated coordinate Zn ions adjacent to the O2 vacancies.
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Kong and group adopted the plasma engraving method to produce defects of O-vacancy and Ti3+ on 
TiO2 nanosheets’ surface (Kong et al., 2018). The electronic configuration of the 2D TiO2 nanosheets 
undergoes considerable variation as a result of the manufactured defects, with BG decreasing (3.13-2.88 
eV), along with upshifting of CB and VB edges forming a defective state in the forbidden gap. Due to 
the formation of this defective state, the H2 generation activity reached dramatically twofold as com-
pared to pure TiO2. Besides facilitating the forming of intermediate bands in the BG, the VO in WO3 
atomic layers promotes the adsorption and activation of CO2 into radical COOH• species (Liang et al., 
2020). The critical function of VO in WO3 layers enables the creation of more CO and O2 in the infrared 
region. Fengcai Lei and colleagues achieved totally controlled formation of Vo rich and Vo deficient 
In2O3 NSs by rapidly heating In(OH)3 NSs in the presence of oxygen or air (Lei et al., 2014). Vo was 
detected in the ESR and XPS spectra. The observed 531.4 eV peak indicated the formation of ultra-thin 
In2O3 NSs enriched with VO and a peak maxima region, indicating that more VO rich In2O3 NSs were 
produced than Vo poor In2O3 NSs or their analogous bulk forms. Additionally, a strong Vo signal at g = 
2.004 was detected in the ESR, indicating that the Vo-rich In2O3 contains the largest amount of oxygen 
vacancies. Vo innovation significantly altered the electronic structure of In2O3 NSs with high Vo mate-
rial. As shown by DRS and XPS examination, Vo-doped In2O3 sample exhibited a narrower energy gap 
and an upshift was observed in VB tip. DFT calculations clearly demonstrated that abundant density of 

Figure 5. Typical hybridized systems of g-C3N4 and metal oxides. (a) HRTEM micrograph of g-C3N4@
ZnO hybrids, (b) mechanism for photocatalytic reaction of antibiotic over g-C3N4@ZnO system. (c) 
photocatalytic degradation and (d) pseudo-first-order kinetic fitting of cephalexin vis different samples. 
(e) TEM image of Co3O4 QDs on g-C3N4 nanosheets, (f) concentration ratio of numerous dye solution 
before and after degradation.
(a-d) Reproduced with permission from ref. (Li et al., 2018) Copyright 2018, Elsevier B.V. 
(e-f) Reproduced with permission from ref. (Gao et al., 2018) Copyright 2018, Wiley-VCH.
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states was produced at valence band maxima, and a new concentration of defects revealed that Vo rich 
In2O3 NSs were more abundant than Vo poor In2O3 NSs. As a result, the Vo-doped In2O3 produced a 
stronger electric field and a higher carrier level. Irradiation further excited the electrons into CB. Thus, 
Vo rich In2O3 NSs outperformed Vo weak In2O3 NSs and bulk In2O3 by 2.5 and 15 times, respectively, 
for H2O oxidation. These findings substantiated the efficacy of anion vacancy in electronic configura-
tion engineering.

Hybridization Engineering

2DMs have an extremely high SSA, which enhances the importance of the surface state relative to the 
bulk inside. Charge carriers produced by photons are dispersed at the surface to take part in the oxidation/
reduction reactions. Thus, hybridization of surfaces to boost the effective ingestion of excitons is envi-
able in the absence of a 2D structure. In this section, consistent with surface hybridization, various 2D 
hybridization techniques with robust case studies are added, including QDS/2DMs, single atoms/2DMs, 
molecular/2DMs, and layered 2D/2D hybridization.

Single Atoms/2D Materials Hybridization

In order to boost photocatalytic performance, it is possible that NPs could be reduced to single atoms. 
However, the fraction of monoatomic with unsaturated coordination bonds is maximized, enabling a 
high surface effect (Feng et al., 2017). Zhang et al pioneering’s work on monoatomic-based catalysis 
attracted attention in the photocatalysis domain. The monoatomic-dependent photocatalyst was focused 
on the dispersion or coordination of secluded mono-atoms on the surface of the support material. 
Monoatomic-based strategies may enhance photocatalytic behavior and provide another method for 
adjusting selectivity. Additionally, active single atoms, chemical bonding between single atoms, and 
2DMs based supports have developed into a robust and straightforward charge transfer process. Thus, 
it is highly desirable to build a single atom/2DMs hybridization in order to achieve a superior photo-
catalytic response (Chen et al., 2016). Via calcination, protonation, and coupled exfoliation, single Rh 
atoms have been scattered on uniform ultra-thin 2D TiO2 NSs (Ida et al., 2015). In the HAADF STEM 
image, distinct brightest spots indicated Rh atoms, while moderate brightness spots indicated Ti atoms. 
In addition to that, the EXAFS analysis revealed that Rh atoms in prepared samples exhibited a chemi-
cal environment similar to that of Rh2O3, which exhibited the bonding with O atoms and undergoing 
oxidation. Fabricated co-catalysts were used as the reaction center for photocatalytic H2 generation, as 
predicted by DFT simulations. Thus, the rate of H2 evolution was increased tenfold as compared with 
pure TiO2 NSs. Wu and colleagues investigated the use of single Pt atoms as co-catalysts in order to 
enhance the hydrogen generation behavior of C3N4 NSs under irradiation (Xin et al., 2014). To form Pt 
single atoms/C3N4, a basic liquid phase reaction with H2PtCl6 and C3N4 was used in conjunction with 
low-temperature annealing. HAADF STEM technique was used to determine the dispersion and structure 
of Pt. Specific transparent spots have been observed to be uniformly scattered on graphitic-C3N4 sheets, 
with 99.4% of Pt having a size greater than 0.2 nm, indicating that Pt exists entirely as monoatomic. As 
the doping concentration of Pt exceeded 0.38%, dispersion of Pt atoms became denser and numerous 
nanoclusters were formed. The local atomic configuration of the Pt/C3N4 has been investigated using 
extended EXAFS spectroscopy. The coordination number was evaluated to be approximately 5 for the Pt 
atoms which confirmed the decoration of monoatomic on the top of g-C3N4 surface having BG value of 
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2.03 eV. The photocatalytic H2 evolution behavior was significantly enhanced regarding the fabrication 
of a single Pt atom/C3N4 structure. Pt/C3N4 (0.16 wt % Pt loading) reached a production rate of nearly 
318 mol h-1, about 50 times relative to pristine C3N4. Concurrently, prepared structures demonstrated 
remarkable stability during the photocatalytic H2 generation after several cycles. The advantageous 
quality of UTAS, surface trap states of C3N4 was largely altered by the secluded single Pt atom, which 
increases the exciton life period and increases the possibility of e-s engaging in H+ reduction. The obser-
vation that secluded metal atoms possess high surface energy was shown, as well as the possibility that 
these atoms cooperate closely with the surface of the supports. Through the interaction of affected metal 
atoms with available defects on the surface of support, the hybridization energy scheme can become a 
local minimum. Hence, these atoms could be secured as well as maintained in their stable state. Surface 
defects are more likely to form in ultrathin 2DMs due to the extremely high SSA and minute atomic 
flee radiation. Thus, a monoatomic-anchored surface DR ultrathin 2D structure can be constructed to 
enhance photocatalytic behavior (Di et al., 2018).

CONCLUSION

Regarding the field of 2D materials, intensive efforts have been devoted in recent years. The daunting 
quest for unique 2D materials remains ongoing and is primarily intended to discover novel 2D materi-
als and their remarkable properties. In this chapter, we aimed to represent a thorough analysis of the 
latest innovations made in the field of photocatalytic degradation by 2D materials. In addition to cur-
rent progress in photocatalysis, a throwback of basic knowledge is outlined. Various combination of 
fabrication methods employed for preparing novel 2D NMs is also illustrated. It is widely believed that 
2D materials exhibit excellent photocatalytic performance. The potential for various 2D nanomaterials 
has been reported at length to remediate aqueous systems contaminated with dyes.
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ABSTRACT

Water is a vital component of life, and its availability is critical for all living things. Due to rising wa-
ter demand, traditional water/wastewater treatment methods are inefficient in supplying adequate safe 
water. The leaching of harmful compounds into the process water is a problem with most commercial 
and chemically manufactured materials for water treatment. As a result of research into developing bet-
ter materials that could achieve high efficiency without posing a health concern, non-toxic composite 
materials made of cellulose and metal oxides were investigated. Due to its great physical, chemical, and 
mechanical qualities, cellulose is one of the materials gaining popularity. Nanocomposites have been 
approved as a solution for water purification that avoids the issues associated with using simply metal 
oxides. The purpose of this study is to review the potential applications of cellulose integrated with metal 
oxides for wastewater treatment and harmful metal removal from dyes via industrial waste.

INTRODUCTION

Rapid industrialization, urbanization, and population growth have put a major strain on water supplies, 
which has resulted in a significant increase in the demand for clean water (Velusamy et al., 2021). Be-
cause the use of chemicals is unavoidable owing to economic expansion, it is critical to ensure their safe 
use and disposal (Pai et al., 2021). Our ocean, rivers, reservoirs, lakes, and ocean are all drowning. As 
a result of research into developing better materials that could achieve high efficiency without posing 
a health concern, non-toxic composite materials made of cellulose and metal oxides were investigated 
(Oyewo et al., 2020). The dumping of industrial effluents into our waterways is a major cause of water 
pollution, which is a serious environmental issue (Oyewo et al., 2020). Contaminants such as viruses, 
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heavy metals, dyes, and pigments may be present in these discharges. According to the World Health 
Organization’s (WHO) most recent study, over 844 million people worldwide do not have access to safe 
drinking water (Wutich et al., 2019). Many diseases are transferred by waterborne pathogens in the form 
of disease-causing bacteria, viruses, or protozoa, Cholera, typhoid, hepatitis, and COVID-19 (Sharma 
et al., 2020) are some of the most common diseases (Sarkar et al., 2020). Industrial effluents can be 
absorbed or recycled but most of the wastewater percolates through the soil or directly into the water 
system, changing the concentration of the aquifers beneath the earth’s surface.

As a result, the main targets are effluent from the printing, textile, paints, cosmetics, food, and min-
ing industries. Despite the damage to the environment, the continued demand for these toxic metals and 
dyes cannot be overlooked. Some of the metals are utilized in medicine, neutron radiography, mineral 
identification, and steel manufacture as an additive. Arsenic, lead, chromium, cadmium, iron, and va-
nadium are heavy metals that have recently been linked to water pollution. In India’s biggest cities, an 
estimated 38354 million liters per day (MLD) of sewage is created, but the sewage treatment capacity 
is only 11786 MLD (Velusamy et al., 2021). Similarly, just 60% of industrial wastewater is treated, 
largely from large-scale companies in india. Even at trace levels, the presence of heavy metals in resi-
dential water can cause unthinkable health problems such as brain damage, cancer, and system diseases. 
Furthermore, 20 percent of individuals die each year as a result of using contaminated drinking water 
(Hunge et al., 2015). Textile industries, power plants, and chemical industries discharge wastewater that 
contains hazardous and non-biodegradable recalcitrant organic compounds and heavy metals (Abdel Aal 
et al., 2009; Kansal et al., 2007). Textile wastewater contamination poses a significant hazard to water 
resources and the economy. Hence, textile industries stand out among diverse industries because they 
consume a significant amount of water, energy, and chemicals (Akarslan et al., 2018)

Chemically synthesized water treatment solutions have also been used, although they have been 
linked to a number of drawbacks, including the leaching of harmful compounds back into the process 

Figure 1. Shows the water pollution creates by industrial effluents.
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water. As a result, non-toxic, cost-effective, highly efficient, and biodegradable materials are essential 
for complete removal of these contaminants from water; cellulose is a preferable substitute. Figure 2 
Shows cellulose polymer chemical structure.

Cellulose is mostly derived from plants (e.g., wood and cotton), although it can also be made by 
bacteria, tunicates, and fungi (Eichhorn et al., 2010). Among the agricultural byproducts investigated as 
sources of cellulose, such as sugar beet, sisal fibres, and barley straw, the rice husk and straw have gotten 
a lot of attention. Cellulose is a glycosidic bond-linked linear homopolymer of -D, 1,4 glucose units. 
It is made up of nano-sized microfibrils that are surrounded by lignin and hemicellulose (Habibi et al., 
2010). As shown in Figure 3, around 36 glucose chains are attached to each other by van der Waals forces 
and intra- and intermolecular hydrogen bonds to form protofibrils, which stack together to form long 
fibres called microfibrils, which then join together to form cellulosic fibres (Habibi, 2014; Rojas et al., 
2015). The diameter of single cellulose microfibrils varies from 2 to 20 nanometers (Azizi et al., 2005).

Cellulose is biodegradable, non-toxic, low-cost, and plentiful in a variety of natural resources and 
agricultural wastes. cellulose could be used in a variety of water treatment methods to remove a variety 
of impurities, including harmful metals and dyes. As a result, the use of cellulose-metal oxide composite 
photocatalysts in water treatment could be more appealing due to their high surface area, light stability, 
and low toxicity (Noohpisheh et al., 2020; Jing et al., 2018). As a result, the importance of cellulose 
and metal oxide chemistry, as well as their interactions, is rigorously examined in this study (Oyewo et 
al., 2020).

DYES

Dyes are one of many compounds found in industrial wastewater that are considered significant con-
taminants. Because of their excellent thermal and photostability, dyes can last a long time in the environ-
ment. Textile industries utilize 80% of all dye produced, making them the largest dye consumers. Dyes 
are difficult to remove from wastewater using traditional procedures due to their high-water solubility. 

Figure 2. Shows cellulose polymer chemical structure
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Many dyes, as well as the breakdown products of dyes, are carcinogenic, mutagenic, and hazardous to 
living things. Dyes raise the BOD of wastewater, which has an impact on aquatic life. They are not eas-
ily degradable, and wastewater treatment systems and traditional procedures such as adsorption, ultra-
filtration, chemicals, and electrochemical approaches rarely remove them from water (Subha et al., 2018).

By hydrogen bonding, van der Waals forces, or electrostatic interactions, the dye molecule attaches to 
the fiber’s surface. Excess dyestuffs mix with water and are released as effluent as a result of the incor-
rect coloring process. If these dyestuffs are released into the environment, they can pose a major threat. 
Much research has looked into the toxicity of various dyes, with the conclusion that dyes are extremely 
genotoxic and carcinogenic. The dye can enter the body through the pores of the skin, inhalation, or 
ingestion (Pai et al., 2021).

Classification of Dyes

Dyes are classified by their ingredients, colors, and applications, with application being the most often 
used method for dye categorization (Clarke & Anliker, 1980; Gupta, 2000). Dyes, on the other hand, can 
be cationic or anionic and can be used in a variety of sectors, including textiles, leather, pulp & paper, 
and paint. Figure 4 Shows the dye classification based on ionic charge.

Figure 3. Shows the cellulose fibers and microfibers’ structural arrangement (Rojas et al., 2015).

 EBSCOhost - printed on 2/14/2023 11:47 AM via . All use subject to https://www.ebsco.com/terms-of-use



130

Metal Oxide-Cellulosic Nanocomposite for the Removal of Dyes From Wastewater
 

Table 1 (Hunger, 2003) shows the classification of dyes based on their many applications: vat, mordant, 
and disperse dyes. Furthermore, dyes commonly used in the textile industry are classified as cationic 
(all basic dyes), anionic (direct, acid, and reactive dyes), or non-ionic (disperse dyes) based on how well 
they dissolve in aqueous solutions (Mishra & Tripathy, 1993; Purkait et al., 2005; Ruan et al., 2019). 
Because of their complicated structure, dyes are rendered useless in the presence of heat, light, microor-
ganisms, and even oxidizing substances, making dye breakdown difficult. Dyes in water reduce sunlight 
penetration and oxygen solubility, lowering water quality and impeding photosynthesis in aquatic plants 
and wildlife (Clarke & Anliker, 1980; Rafatullah et al., 2010). It can also cause serious health problems 
in humans, such as an increase in heart rate, vomiting, shock, the formation of Heinz bodies, cyanosis, 
jaundice, quadriplegia, and tissue necrosis (Bell et al., 2000). Heavy metals are classed as inorganic 
water pollutants, while dye molecules are categorized as organic water pollutants (Oyewo et al., 2020).

Methods for Dye Removal

For the scavenging of dyes, a variety of technologies have been developed and applied, which can be 
grouped into three categories: biological approaches, chemical methods, and physical methods (Kobya 
et al., 2005). Their practical applications are limited by high capital costs, low efficiency, and the forma-
tion of surplus sludge. Some of these procedures have been proven to be more adaptable and superior to 
others, and they may be used to remove a wide spectrum of colors from wastewater (Foo et al., 2010). 
Adsorption and photocatalysis are better alternatives due to their cheap initial cost, produces nontoxic 
by-products, and removes colors fully even from dilute solutions (Srinivasan and Viraraghavan, 2010).

A stage in wastewater treatment called physicochemical fractionation separates hydrophilic and hydro-
phobic components (Kim & Yu, 2005). The methodologies and adsorbents used in wastewater treatment 
have recently been compared (Crini & Lichtfouse, 2019; Crini et al., 2019). Some of the technologies 
used to remediate dye-contaminated waters include reverse osmosis, coagulation, flocculation, ion 

Figure 4. Dye classification based on ionic charge
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exchange, activated carbon adsorption, advanced oxidation, ozonation, photocatalysis, Fenton process, 
photo-Fenton, electrochemical oxidation (Lade et al., 2015), and filtration (Singh et al., 2015). These 
procedures are frequently expensive, and amine remnants in sludges may be detected after treatment. 
Some methods for dye removal are given below.

Coagulation

Coagulant is a substance used in coagulation to improve the density of colloidal form. The efficiency 
of the coagulant is determined by the coagulant’s kind, dosage, pH, temperature, alkalinity, and mixing 
circumstances. Although coagulation is effective at removing heavy metals from wastewater, it has the 
drawback of generating secondary pollutants that are detrimental to both humans and the environment. 
As a result, it must be subjected to additional secondary treatment for complete removal.

Ion Exchange

Ion exchange is a separation method that replaces ions with one another in order to achieve high removal 
efficiency. This approach produces less sludge than other methods, which is its biggest advantage. The 
sole drawback to this method is that it causes matrix fouling at high concentration.

Table 1. Dye classification, examples, applications, water solubility, and toxicity.
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Membrane Filtration

Membrane Filtration is a type of filtration that uses a membrane is becoming more popular in water pu-
rification; depending on the driving power and ionic and molecular flow modes through the membrane, 
the membrane can be characterized as dense or porous. Toxic metal ions have been successfully removed 
from wastewater using a variety of membranes, including ultrafiltration, reverse osmosis, microfiltra-
tion, electrodialysis and nanofiltration. The main disadvantages of this technology are high-power costs, 
membrane fouling and handling rejection, while the benefits include relatively low energy requirements, 
high efficiency, ease of operation and reliability (Eriksson, 1988).

Chemical Precipitation

This is used to treat wastewater effluent because it is cost-effective and simple to implement (Matlock 
et al., 2002; Izadi et al., 2017). Sulphide precipitation and hydroxide precipitation are also included. To 
reduce metals to an acceptable level for discharge into the environment, the hydroxide approach neces-
sitates the use of numerous chemicals (Jüttner et al., 2000).

Electrochemical Method

Electrochemical wastewater treatment technologies are very successful at removing heavy metal ions 
from industrial wastewater effluent. Using anodic and cathodic processes in an electrochemical cell, 
this approach recovers heavy metals in their elemental metallic state. Furthermore, it necessitates a 
significant financial investment as well as increased power supply, restricting its industrial applications.

Bioremediation

For the elimination of industrial wastewater effluents, bioremediation employs microorganisms. This 
microbe-assisted approach is also commonly used to remove harmful heavy metal contaminants, although 
conventional wastewater treatment is not cost-effective. It also pollutes the aquatic environment with 
harmful secondary contaminants.

Adsorption

Metal ions such as Cd, Pb, Cr, Zn, Cu, Co, Hg, and As are widespread contaminants in an aquatic envi-
ronment, and adsorption using graphene-based materials in wastewater treatment is a severe complica-
tion worldwide.

Nanocomposite

Nanocomposites are multi-phase materials with dimensions in the nano range (10–100 nm) in at least 
one phase. Nanocomposite materials have recently emerged as viable options for overcoming the limits 
of various engineering materials. The dispersed matrix and dispersion phase materials of nanocomposite 
materials can be categorized (Pandey et al., 2017). Nanocomposites’ unique features have brought in a 
revolution in bioremediation (Mohanraj et al., 2020). Several research groups have recently experimented 
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with various biopolymeric nanocomposites for enhanced degradation of synthetic azo dyes, such as metal/
metal oxide/biopolymer or metal oxide/conducting polymer. Chitosan/ZnO/AgCl nanocomposite based 
on hydrogel beads is an example of a biopolymer/metal oxide nanocomposite that allows for complete 
photocatalytic degradation of methylene blue (Taghizadeh et al., 2020; Adnan et al., 2020; Sathiyavimal 
et al., 2020).

Metal Oxide-cellulose (MOC) Nanocomposites Chemistry

Metal oxide-cellulose (MOC) nanocomposites are a new field that allows inorganic nanoparticles to be 
incorporated into multifunctional natural-based materials. To avoid aggregation, the synthesis of MOC 
nanocomposites should be done with care to ensure that the metal oxide nanoparticles are well dispersed 
within the cellulose matrices. Cellulose is a natural polymeric substance with extended OH groups that 
can be changed to improve its characteristics by adding other functional groups. Carboxymethylcellulose 
(CMC), ethylhydroxypropylcellulose (EHPC), hydroxylpropylcellulose (HPC), cellulose carbamate, 
cellulose acetate and amino cellulose have all been developed in this area. cellulose microfiber (CMF), 
cellulose microcrystal (CMC), cellulose nanofiber (CNF) and cellulose nanocrystal (CNC), are some 
of the nanostructures found in nanocellulose (Oyewo et al., 2020).

Metal oxide nanoparticles provide efficient surface area for photocatalysis and other processes in the 
composite. Biodegradability, nontoxicity, high thermal strength, ion-adsorption capacity, biocompat-
ibility, stability and sensitivity are some of the features of nanocellulose components (Ali et al., 2016).

Preparation Methods for Metal Oxide-cellulose Nanocomposites

The synthesis of metal-oxide cellulose nanocomposites can be done in a variety of ways, including hydro-
thermal or wet chemical, solvothermal, wet spinning, sol-gel, coprecipitation, and microwave (Ramesh 
et al., 2018; Li et al., 2013; Fu et al., 2015). Some methods for metal oxide-cellulose nanocomposites 
are given below.

Hydrothermal

A high-porosity combination of natural cellulose fibers and manganese dioxide nanosheets was created 
using a simple hydrothermal technique. The cellulose matrix was impregnated with aqueous potassium 
permanganate (KMnO4) solution and oleic acid, which served as a reducing agent (Biliuta & Coseri, 
2019). The reaction conditions might also be tweaked to get varied forms of integrated MnO2 nanopar-
ticles (Oyewo et al., 2020).

Sol-gel Method

In the synthesis of organic–inorganic nanocomposite, polar and hydrophilic polymers, such as polyvinyl 
alcohol, are used. Biocompatibility, ease of processing, and high-water swelling ability are all advantages 
of this approach. A sol-gel method of synthesizing cellulose-PVA-TiO2 nanocomposites was published by 
Ramesh et al. (Ramesh et al. 2018). After heating and stirring a cellulose/LiCl/N, N-dimethylacatamide 
solution, tetra ethylene glycol and PVA were added to the cellulose sol. Finally, titanium tetraisopro-
poxide was added, and the entire solution was heated for 10 hours at 95 degrees Celsius. To make the 
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composite, the solution was rinsed with ethanol and dried in the oven. Martins et al. made NFC/ZnO 
nanocomposites by treating nano fibrillated cellulose with poly (diallyldimethylammonium chloride) 
(PDDA) solution and then adding ZnO nanoparticle solution (Martins et al., 2013; Oyewo et al., 2020).

Wet Spinning Method

In a NaOH/urea aqueous solution, cellulose-Fe2O3 nanocomposite fibres with super active characteristics 
were generated by wet spinning (Yu et al., 2013). The presence of reactive hydroxyl groups on cellulose 
was allowed to impact the nature of composite formation or the growth strategy of ZnO nanostructures 
in the synthesis of ZnO-cellulose (Ma et al., 2016; Bakhsh et al., 2018).

If anhydrides, acetates, or epoxides were added to the cellulose, they might replace some of the 
reactive OH, causing ZnO to grow and agglomerate differently on the cellulose structures. All of the 
highlighted preparation methods depict cellulose as a good platform for inorganic nanoparticle develop-
ment (Ma et al., 2016).

Microwave Method

The microwave oven approach was used to make ZnO-mediated cellulose carbamate nanocomposites 
(Yu et al., 2013). To make cellulose carbamate, the cellulose was first treated with urea in aqueous solu-
tion. The cellulose carbamate was then rinsed after being distributed in a NaOH/ZnO aqueous solution. 
Because it produces a high yield, completes the reaction quickly, has control over the heating process, 
and does not come into contact with the materials, the microwave approach has several benefits over the 
traditional heating method (Mahmoud et al., 2015).

Liquid-phase Deposition

SnO2 was produced by dissolving SnF2 in aqueous medium and heating it to a low temperature. SnO2 
was consistently deposited onto the flexible, non-exfoliable cellulose surface (Mahadeva & Kim, 2011).

Classification of Metal Oxide-cellulose Nanocomposites

Metal-oxide cellulose nanocomposites come in a variety of forms and have been made in a variety of 
techniques. Metal oxide-cellulose nanocomposites (for example, Ag-cellulose), metal oxide-modified 
cellulose nanocomposites (for example, Fe2O3-cellulose acetate), and metal oxide PVA-cellulose nano-
composites are among them (e.g. TiO2-PVA-cellulose) (Oyewo et al., 2020).

• metal oxide-cellulose nanocomposites
• metal oxide-modified cellulose nanocomposites
• metal oxide PVA- cellulose nanocomposites
• bacterial cellulose nanocomposites

Bacterial cellulose nanocomposites that can be changed for regeneration utilizing N-methyl-mor-
pholine-N-oxide monohydrate is bacterial cellulose combined with metal oxides. The metal oxides were 
appropriately adhered to the regenerated bacterial cellulose’s surface and internal matrix. They are said 
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to have good thermal, antibacterial properties, and mechanical as well as reasonable biocompatibility 
and low toxicity (Ullah et al., 2013).

Application of Metal Oxide-cellulose (MOC) Nanocomposites 
for Removal of Dyes from Wastewater

The organic and inorganic hybrid effects in MOC nanocomposites result in new optical, mechanical, 
and thermal functions (Mahadeva & Kim, 2011). The nanoparticles integrated into the cellulose matrix 
have a high surface area, which provides it a stable nature and retention ability that avoids leaching or 
contamination. The number of nanoparticles on the surface of a nanocomposite material contributes to 
the extent of dye degradation because the surface area of the material is a significant element in photo-
catalytic reactions.

ZnO-cellulose, iron oxide-cellulose, and TiO2-cellulose nanocomposites have all been developed 
and employed in the photodegradation of dye components in water. Incorporating metal oxides or 
inorganic minerals into cellulose is a novel technique to improve material qualities, and it could also 
serve as a foundation for water purification. It has been reported that a bead cellulose integrated iron 
oxyhydroxide was used to remove arsenic ions from aqueous solutions, which may include chelation 
or ion exchange (Guo et al., 2009; Yu et al., 2013). The production of MOC composites sorbents for 
water treatment reduces the dangers associated with metal oxide nanoparticles (Guo et al., 2007). The 
functional groups in cellulose, or their modified forms, have a role in the formation of complexes with 
metal ions in wastewater.

Nanohybrids are receiving a lot of attention for multifunctional water purification systems, and their 
size-dependent features are different in their aspect towards photocatalysis and water purification (Kri-
voshapkin et al., 2019). Low-cost nanoparticles such as TiO2, ZnO, and Fe2O3 are the most studied in 
composite creation with cellulose materials. They are photosensitive, have a high quantum efficiency, have 
a high absorption power, are largely non-toxic, and have a wide bandgap. The breakdown of methylene 
blue dye using ZnO/cellulose nanocomposites, and the nanocomposites were more efficient than ZnO 
nanoparticles alone (Lefatshe et al., 2015).

Polyamide-amine-epichlorohydrin (PAE) was used to cross-link the cellulosic fibres and stable the 
TiO2 NPs on the nanomatrix, resulting in microfibrillated cellulose (MFC)-TiO2 composites (Garusinghe 
et al., 2018). The nanocomposite was utilised to degrade methyl orange dye and did not desorb into the 
methyl orange solution, indicating that it is a stable and suitable water purification material. MFC is 
recyclable, biocompatible, has a high retention capacity, is stable, and has a low cost. The photocatalytic 
efficiency is also determined by the amount and kind of metal oxide in the cellulose matrix (Oyewo et 
al., 2020).

CONCLUSION

Cellulose is the most abundant, renewable, and environmentally friendly biopolymer on the earth and 
may be derived in vast quantities from plants, crops and forest trash. Cellulose and some environmen-
tally friendly metal oxides materials are readily available, and their composites are effective waste-water 
treatment materials. Cellulose is a biodegradable, non-toxic, low-cost material that can be found in a 
wide range of natural resources and agricultural waste. To remove a variety of impurities, including 
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harmful metals and dyes, cellulose could be used in a variety of water treatment methods. As a result, 
due to their high surface area, light stability, and low toxicity, the application of cellulose-metal oxide 
composite as an efficient dye adsorption and photo degradation in water. Incorporation of metal oxide 
into cellulose improves the stability of the material, prevent desorption of the nanoparticles into the water 
system, reduce toxicity effects and also helps the material to be long-lasting. Moreover, multi-metal or 
polymetal oxides can be used with the cellulose instead of pure metal oxides in the composites. Overall, 
when all procedures are relatively safe, would exhibit less aggregation and offer advance dye removal 
from wastewater purification process.
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ABSTRACT

Biopolymer-based nanocomposites, particularly chitosan, cellulose, alginate, starch, and carrageenan, 
are increasingly being employed as reinforcements for composite materials because they are biode-
gradable, recyclable, renewable, abundant, conveniently available, cost-effective, and non-abrasive to 
processing equipment. These biopolymer nanocomposite materials are also lightweight, stiff, and have 
good mechanical properties. Biopolymer nanocomposites have interfacial limitations because all nano-
composite biopolymers are hydrophilic. Water recycling has been made possible by biopolymer-based 
nanocomposite materials, which have a variety of applications for cleaning wastewater, making it a vi-
able and cost-effective solution to water scarcity. The growing concern about heavy metal contamination 
has necessitated the development of new and better-suited sorbent materials for effective detoxification.
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INTRODUCTION

Water treatment technology that is cleaner and more efficient is needed to reduce pollution from sev-
eral common industrial and household activities. Water treatment refers to the procedures that are used 
to make water more suitable for a specific purpose. It can be used for a variety of purposes, including 
residential, industrial, medical, and many more. All water treatment methods aim to remove impurities 
from the water and make it drinkable (Ahmad et al., 2015; Zhang et al., 2016). The treatment of water 
before it is used and the treatment of sewage, household, agricultural, and industrially produced after it 
has been utilized are included in water treatment. For the aforementioned sorts of water treatment tech-
niques, there are numerous possibilities. All have advantages and disadvantages, as well as convenience 
of use, cost-effectiveness, and end usage, which all impact their choice (Ritter et al., 2002; Rajasekhar 
et al., 2018; Jassby et al., 2018; Rodriguez-Proteau et al., 2006). New self-assembly technologies allow 
nanoparticles to self-assemble in a controlled manner, resulting in novel materials with novel transport, 
optical, mechanical, magnetic, electrical, and electronic properties that could be used to remove pol-
lutants from aqueous systems at low cost or even at low concentration (Khan et al., 2019; Kumar et al., 
2014). Nowadays, the major problem is the contamination of the drinking water with pollutants such as 
sediments and suspended solids, industrial, agricultural, inorganic, organic, biological, and radioactive 
pollutants like strontium, lanthanides, and actinides (Bharagava et al., 2018; Saxena et al., 2019). The 
main source of these radioactive pollutants is the operation of nuclear power plants, research facilities, 
and the use of radioisotopes in the industry as well as diagnostic medicine (Lytle et al., 2014). The de-
velopment of industrialization and urbanization has resulted in a daily worsening of the water situation. 
Pharmaceuticals, textile, dyes, fertilizer, smelting processes, mining, and others all produce enormous 
amounts of wastewater (Bharagava and Chandra, 2010; Kishor et al., 2019; Houa et al., 2020).

Figure 1. Different types of water pollutants
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Water covers about 70% of our earth’s surface is covered with water and out of this 97.5% of water 
is present in seas and oceans and 1.73% is present in the form of glaciers. Only 0.77% of fresh water 
is available on the earth’s surface for human and agricultural use (Ahuja, S., 2015). According to the 
World Health Organization, about 1.7 million people have died as a result of water pollution, and four 
billion cases of various health conditions have been documented annually owing to waterborne infec-
tions (Briggs et al., 2016).

Biopolymers are biodegradable polymers that are either manufactured fully by living organisms or 
are derived from natural sources. according to the International Union of Pure and Applied Chemists 
(IUPAC), A biopolymer is a substance made up of a single type of biomacromolecule (Vert et al., 2012). 
A biopolymer-based nanocomposite has just entered the water treatment field. Many different types of 
biopolymer-based nanocomposite materials are being researched and used in water treatment systems 
(Crini, 2005). Water recycling has been made possible by biopolymer-based nanocomposite materi-
als, which have a variety of applications for cleaning wastewater, making it a viable and cost-effective 
solution to water scarcity. The growing concern about heavy metal contamination has necessitated the 
development of new and better-suited sorbent materials for effective detoxification. Biopolymers like 
cellulose, chitosan, alginate, and carrageenan are effective in the treatment of wastewater (Nasrollahza-
deh et al., 2020). Polymeric materials become more effective when they are chemically altered with 
grafting functionalization or chelating agents (Beaugeard et al., 2020; Gao et al., 2018; Rivas et al., 
2018). This work will give an overview of current advances in biopolymer nanocomposites and their 
use in wastewater treatment. Due to their high toxicity and bioaccumulation through the food chain and 
hence in the human body, the presence of heavy metals such as Cd, Hg, Pb, Ni, Cr, Cu, and others in 
both freshwater sources and industrial effluent is a serious health and environmental hazard (Oyaro et 
al., 2007). The efficacy of biopolymers in wastewater treatment has been established. When grafting 
functionalization or chelating agents are used to chemically modify biopolymeric materials, they become 
more effective. Biopolymer-based nanocomposites are being studied and employed in water treatment 

Figure 2. Distribution of water on earth
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systems in a variety of ways. Biopolymer-based nanocomposites can be used for desalination, filtration, 
and wastewater treatment, to name a few. Biopolymer nanocomposites combine cutting-edge purification 
and wastewater treatment technologies with core knowledge research and development. These innova-
tive materials contain a one-of-a-kind small separation between organic and inorganic phases that can 
be easily adjusted to work under certain conditions. Because of the growing concern about heavy metal 
contamination, new, more precisely tailored sorbent materials are needed for effective detoxification. 
In this field, biopolymers such as cellulose, chitosan, alginate, starch, and carrageenan have shown to 
be very effective in wastewater treatment. This chapter will give an overview of current advances in the 
field of biopolymer-based nanocomposites and their use in wastewater treatment.

There has been a surge in interest in creating biopolymer-based alternative sorbents in recent years. 
Synthesis of functionalized bio-based particulate matter/nanoparticles for pollutant removal in stimulated 
aqueous systems. Polymer analog reactions increased the efficiency of the newly generated value-added 
product. The synthesis approach proved successful in terms of zero waste generation. The potential of 
particulate matter for the desired contaminants was investigated due to the dynamic character of an aquatic 
system (Berber, 2020; Yeamin et al., 2021; Mohamed et al., 2018). In recent years, there has been a lot 
of interest in the development of various nanocomposites for wastewater applications. Nanotechnology 
provides a platform for generating custom-made smart multi-purpose materials with a wide range of uses 
in industry and commerce, as the need for environmentally friendly materials grows. A biodegradable 
and biocompatible polymer, whether natural or synthetic, is essential for supplying matrices for nano-
filler reinforcement to generate a composite with the highest potential performance (Ali et al., 2007).

Figure 3. Biopolymer used in wastewater treatment.
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Nanotechnology is engineering at the atomic or molecular level. It is a group of enabling technolo-
gies that involves the manipulation of matter at the nanoscale to create new materials, structures, and 
devices (Allhoff, 2007). Chemical and physical properties of materials, such as color, magnetism, and 
the ability to conduct electricity, can change at this very small scale, allowing for whole new ways 
based on molecular self-assembly to be developed from traditional mechanisms (Nadeem Baig et al., 
2021). Membrane separation (Ezugbe & Rathilal, 2020), chemical-physical, and biological treatment 
techniques (Ashkanani et al., 2019), coagulation/ flocculation (Al-Qodah et al., 2020), ion exchange 
(Wu et al., 2021), chemical precipitation (Wawrzkiewicz et al., 2017), reverse osmosis (Gao et al., 2021), 
photocatalysis (Almomani et al., 2019), advanced oxidation methods (Al-Bsoul et al., 2020), solvent 
extraction (Yadav et al., 2020) are some of the physicochemical and biological treatment technologies 
used in wastewater purification procedures.

Water Treatment Processes Using Biopolymer-Based Nanocomposites

Contamination by heavy metals of water has become a global environmental hazard, demanding the 
treatment and disposal of tainted industrial wastewater. There are a variety of biopolymer-based nano-
composites with heavy metal removal capabilities. Heavy metal pollution is a major issue that affects 

Figure 4. Water treatment processes

 EBSCOhost - printed on 2/14/2023 11:47 AM via . All use subject to https://www.ebsco.com/terms-of-use



146

Biopolymer-Based Nanocomposite Materials for Detection and Removal of Pollutants in Wastewater
 

both industrialized and developing countries. Choosing an efficient adsorbent for removing pollutants 
from an aqueous medium has always been a challenge. Reduced adsorbents are being investigated for 
heavy metal adsorption and subsequent release (Qasem et. al., 2021). In the field, biopolymer-based 
nanocomposites are being developed as potential heavy metal adsorbent substitutes for traditional and 
expensive adsorbents. Researchers and policymakers have been drawn to biopolymer-based nanocompos-
ites because of their unique properties, such as their abundance, cost-effectiveness, excellent adsorption 
capacity, biocompatibility, biodegradability, and simplicity of structural modification (Ahmad et al., 2015; 
Rendón-Villalobos et al., 2016). The use of nanoparticles as an integrated material in cellulose, alginate, 
and chitosan nano-based biopolymer composites for heavy metal removal from wastewater is one of 
the most widely used nanocomposites products ever developed. In the presence of other heavy metals, 
biopolymer-based nanocomposites have been shown to have high selectivity for heavy metals (Zia et al., 
2020). There is now a lot of potential for producing various types of adsorbents using biopolymer-based 
nanocomposites, as well as assessing their practicality for wastewater treatment. Because of their acute 
and long-term toxicity, the presence of hazardous metal ions in the environment is a matter of concern 
(Ghaedi and Mosallanejad, 2013). Pesticide manufacture, mining, paper production, fossil fuel refining, 
textile production, and biomedicine all produce hazardous metal ions, which are found in water. As a 
result, industrial effluents include high levels of metal ions, posing a considerable environmental risk 
(Dixit et al., 2015; Bolan et al., 2014). Hg, Pb, and Cd are resistant to chemicals and environmental 
conditions, as well as microbial attacks. Because of these characteristics, standard biological treatments 
have a hard time removing harmful metal ions from effluents. Cr, Cu, Pb, Cd, Hg, and Ca, for example, 
are widely used in the textile and chemical sectors (Agarwal and Singh, 2017; Barakat, 2011). Toxicity, 
mutagenicity, and carcinogenicity are all well-known characteristics. It is necessary to find effective 
technologies for removing hazardous metals from wastewater.

Figure 5. Water treatment processes using biopolymer-based nanocomposites
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Adsorption of heavy metals on nanomaterials seems to be a promising approach for their removal from 
contaminated water (Fu F. and Wang Q. 2011). Many adsorbents are reported for the removal of these 
metal ions such as natural and modified biopolymer, cellulose, alginate, starch, chitosan, and carrageenan.

Chitosan

The development of chitosan biopolymer-based products has received a great deal of interest in current 
history. Chitosan is a crustacean exoskeleton-derived alkaline deacetylated chitin derivative. It is non-
toxic, hydrophilic, and biocompatible (Salehi, E. t al., 2016; Kasiri, M. B. 2018). Chitosan is capable of 
adsorbing a range of metal ions due to its amino group’s ability to behave as chelation sites (Ngah, W. 
S. W., et al., 2011). Chitosan has three major reactive groups that can be used to modify it chemically. 
They are C2-NH2, C3-OH, and C6-OH, as shown in Fig. 6. Researchers are particularly interested in 
their biodegradability and antibacterial properties, which can be exploited in wastewater treatment. These 
are the most basic materials that can be employed as adsorbents for a variety of hazardous metal ions 
(Olivera, S. et al., 2016). A chitosan derivative with potential for optical properties in water treatment 
applications must be created to verify that chemical procedures used in converting biopolymer to usable 
material are safe (Bhatnagar and Sillanpää, 2009). The removal of heavy metals from wastewater streams 
has been extensively documented using chitosan-based adsorbents and chitosan derivatives (Wu et al. 
2010). Physical and chemical approaches could be used to modify chitosan-based adsorbents, allowing 
them to be used in more applications. The physical structure of chitosan, which has a larger surface area, 
higher porosity, and smaller size, can speed up the adsorption process and reduce the time it takes to 
reach equilibrium (Zhang et al., 2016).

Figure 6. Chemical structure of chitin and chitosan.
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Su et al. (2016) developed nanoscale zero-valent iron/chitosan composite foams (ICCFs) for notori-
ous arsenic which is exhibited excellent adsorption activity of arsenite remarkably superior to the two 
with including mechanical stability and a porous structure, because of its larger specific surface area, 
enhanced acid strength and improved adsorption capacity. Recently, diverse nanostructures have been 
coupled with chitin/chitosan-based bio(nano)composites (i.e., titanium dioxide-TiO2, iron oxide-Fe3O4, 
etc.) (Anaya-Esparza et al., 2020; Li et al., 2010). To remove aqueous nitrate ions, Rajeswari et al. (2016) 
presented PVA-chitosan and PEG-chitosan composites.

A new approach to making chitosan-based bead photocatalysts was reported by Pinus et al. (2018) by 
coating CS beads with nano-TiO2 and crosslinking them with copper. Zhang et al. (2019) investigated a 
nanoelectrode made by in-situ polymerization of polypyrrole (PPy)/CS/CNT with different mass ratios 
of PPy and CS, revealing intriguing results for copper ion absorption from water/wastewater. For the 
biosorption of pesticides and organic/inorganic pollutants from water, nanosorbents and polysaccharide-
based adsorbents have been used. Chitosan demonstrated its ability to remove a herbicide (oxadiazon) 
from aqueous solutions with removal effectiveness of more than 90% (Arvand, M. et al., 2009). Cd2+/
Cr6+ complexation has been examined using carboxymethyl chitosan nanocomposites, whereas Pb2+ com-
plexation has been proposed using goethite/chitosan nanocomposites (Borsagli et al., 2015). The –NH2 
and –OH groups performed a significant influence on the absorption of Pb (II) by magnetic chitosan 
nanocomposites (Liu, Hu, Fang, Zhang & Zhang, 2008). Cu (II) removal experiments using magnetic 
nanoparticles of chitosan revealed that the chitosan –NH2 and –OH functional groups were crucial in 
adsorbing Cu (II) (Yuwei & Jianlong, 2011). Electrostatic attraction between oppositely charged ions 
was identified as the main mechanism in another research of nano chitosan–chromium (VI) interactions 
(Sivakami et al., 2013). By using an ion-exchange mechanism, a chitin/chitosan nano-hydroxyapatite 
composite could remove Cu (II) (Gandhi et al., 2011).

Cellulose

Cellulose is the most abundant biomass source and has tremendous potential. Because of its tremen-
dous strength and rigidity, cellulose has gotten a lot of attention. Cellulose is a high-molecular-weight, 
renewable, biodegradable biopolymer composed of 1,4-anhydro-D-glucopyranose monomers linked 
together in a chain (Moon et al., 2011). Because of their improved mechanical, thermal, and biodegra-
dation capabilities, cellulose nanocomposites can be employed as reinforcement in composite materials 
(Ray et al., 2015). Because of the improved mechanical, thermal, and biodegradation qualities of com-
posites, cellulose nanofibers can be employed as reinforcement. Due to the hydrophilicity of cellulose 
nanocomposites, increasing their surface roughness is required for the production of composites with 
improved characteristics (Trache et al., 2017). The majority of cellulose is made up of crystallites, with 
amorphous regions with low degree of order interspersed. These cellulose crystallites have attracted a 
lot of attention in the last two decades due to their remarkable mechanical characteristics and nanoscale 
dimensions, as well as their high surface area-to-volume ratios and potential for surface functionaliza-
tion (Shatkin et al., 2013).

These characteristics make them ideal for detecting hazardous metal ions, for example wood, plants 
(wheat, maize, potato, cotton, and corn), algae, tunicates, and bacteria are some of the sources of cel-
lulose. To ensure that chemical techniques used in converting biopolymer to usable material are safe, a 
cellulose derivative with potential for water treatment applications must be developed (Carpenter et al., 
2015). Cellulosic nanocomposites are structured in micro fibrils in plants and are sequentially combined 

 EBSCOhost - printed on 2/14/2023 11:47 AM via . All use subject to https://www.ebsco.com/terms-of-use



149

Biopolymer-Based Nanocomposite Materials for Detection and Removal of Pollutants in Wastewater
 

with other chemical components such as hemicelluloses, lignin, and pectin. For polymeric materials, 
it has a lot of strength and reinforcing potential. The chemical treatment of acid hydrolysis and the 
physical/mechanical treatment of the pressure homogenizer can produce cellulosic nanocomposites and 
micro fibrils. Because cellulose nanocomposites are renewable and biodegradable, they are being used 
as reinforcement for the sorption of organic contaminants (O’Connell et al., 2008). Varghese (2019) 
demonstrated the dye and heavy metal adsorption capacity of several lignocellulosic adsorbents, both 
before and after physical and chemical treatment.

Cellulose nanocomposite materials adsorbing various toxic metal ions (Jamshaid et al., 2017). Nano-
sized cellulose and chitosan–based polymers are being considered as a possible wastewater treatment 
solution. Unlike standard submicron and micron–sized cellulose and chitosan materials, which have severe 
limits in terms of adsorption behaviour, nano–sized counterparts can offer appealing qualities such as 
smaller size, increased porosities leading to bigger surface area, and the absence of internal diffusion and 
quantum size effects (Lam E. et al., 2012). As an adsorbent for the removal of Cr, amino-functionalized 
magnetic cellulose nanocomposite was used (VI) (Sun X. et al., 2014). A study of Pb2+ biosorption 
using cellulosic nanofibers found that 94.2% of Pb2+ was absorbed (Kardam et al., 2012). A nanocel-
lolosic fiber–modified carbon paste electrode was used in another investigation to determine Pb2+ and 
Cd2+ (Rajawat et al., 2013). Ultrahigh effective and reversible removal of Cu (II) ions from water using 
multi-wall perforated nanocellulose-based polyethylenimine aerogels (Mo L. et. al., 2019). The focus 
is on developing sensor materials for detecting heavy metal ions that are quick, simple, and easy to use 
by non-experts. The chemical interactions of dangerous metal ions such as mercury with nanomateri-
als, as well as the effect of metal ion concentration and medium pH on their interaction (Johari, 2016).

Dyes

Azo dyes are the most often used type of dye in business. As a result, industrial effluents include high 
levels of dyes, posing a significant environmental risk. Azo dyes are chemically stable, resistant to en-
vironmental conditions, and microbially resistant (Yan et al., 2020). Standard biological treatments are 
unable to remove the colours from effluents due to these properties. For example, methyl orange dye 

Figure 7. Structure of cellulose
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has a wide range of uses in the textile, automotive, and chemical industries. The properties of toxicity, 
mutagenicity, and carcinogenicity are all well-known.

CONCLUSION

Biopolymer-based nanocomposites have gained increasing attention due to the high strength and stiff-
ness, biodegradability and renewability and their production and application in development of polymer 
composites. The use of cellulose nanofibers in composites development is a relatively recent field of 
study. Because of the improved mechanical, thermal, and biodegradation properties of composites, 
biopolymer macro- and nanofibers can be employed as reinforcement in composite materials. Because 
biopolymers are hydrophilic, increasing their surface roughness is required for the production of com-
posites with improved characteristics. The purification of wastewater by heavy metals utilising various 
ways has been described in this article. Heavy metal contamination is a serious problem that affects both 
developed and developing countries. Reduced adsorbents are being investigated for heavy metal adsorp-
tion and subsequent release. Biopolymers are preferred because of their natural source and abundance. 
Novel functional nanocomposites materials with integrated nanoparticles are at the heart of nano-based 
water treatment. One of the most cost-effective nanocomposites products ever devised is recently cre-
ated nano-based polymer composites using nanoparticles as an integrated material and its applications 

Figure 8. Types of dyes
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in heavy metal removal from wastewater. There are a variety of polymer-based nanocomposites having 
heavy metal removal properties built in. The hybrid composite surpasses typical heavy metal removal 
technologies when paired with metal nanoparticles.
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ABSTRACT

The TiO2/PAni and TiO2/PAni/GO nanocomposites were prepared by one-step in situ oxidative po-
lymerization of aniline hydrochloride using ammonium persulphate as an oxidant in the presence of 
powder of TiO2 nanoparticles cooled in an ice bath. The obtained nanocomposites were characterized 
by XRD, TEM, SEM, BET, FTIR, and DRS. The obtained results showed that TiO2 nanoparticles have 
been encapsulated by PAni. The FTIR characterization confirms that the TiO2/GO molecules are well 
combined with polyaniline structure. The maximum photodegradation of Thymol blue was found in 
TiO2/PAni/GO at 25 ppm concentration of dye, 1600 mg/L amount of photocatalyst, pH 7, and 120 min 
irradiation of visible light. Hence, the photocatalytic activity of Titania has been increased by the coat-
ing of PAni and Graphene oxide.

1. INTRODUCTION

Titania can be used to destroy a wide range of organic pollutants present in water and aqueous effluents. 
The TiO2 absorbs only 5% UV radiation of the solar light spectrum due to the large band gap energy 
and recombination of electron (e-) - hole (h+) pairs (Li et al 2013, Moghaddam & Nasirian 2014, Su 
2017). Consequently, hundreds of TiO2 variants and other oxide/non-oxides have been developed and 
tested in propose to conquer the recombination process and reduction of band gap energy (Clifford et 
al 2017). It is believed that availability of visible light absorbing photocatalysts would largely solve the 
technological problems of photo reactor considerations. For harnessing of sunlight the band gap energy 
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should be reduced (Nasirian et al 2014). The coating of conducting polymers on TiO2 surface is improve 
the visible light photoactivity and electron transfer performance; e.g., Polyaniline/TiO2 (Su & Gan 2012), 
polypyrrole/ TiO2 (Arora 2015) and polythiophene/TiO2 (Chowdhury & Balasubramanian 2014). Many 
published reports focussed on the preparation and photo catalytic studies on nanocomposites consisting of 
polyaniline and TiO2 (PAni/TiO2) (Al-Hussaini et al 2016, Patil et al 2015, Lai et al 2010). morphology 
of TiO2/PAni and TiO2/PAni/GO nanocomposites. The prepared nanocomposites were used as photo-
catalyst for the degradation of Thymol blue dye at different parameters i.e. concentration, dose, time and 
pH. The TiO2/PAni/GO nanocomposite shows the highest activity amongst all the synthesized materials.

2. METHODS AND MATERIALS

2.1. Synthesis of TiO2/PAni and TiO2/PAni/GO nanocomposite

10 mL of CCl4 and 4.0 mL of TTIP were placed in a beaker to which 1 mL of aniline were added. The 
entire system was stirred constantly on an ice bath. To the above dispersion of aniline, the solution of 
oxidant (0.5 M APS in 100 mL of 1M HCl) was added drop-wise, which simultaneous initiated the 
polymerization of aniline and the synthesis of TiO2. The reaction mixture soon turned into greenish 
black slurry, which was filtered and washed with water and acetone to remove the excess APS and PAni 
oligomers. Same method was used for the synthesis of TiO2/PAni/GO only added 60 mg of graphene 
oxide with aniline (Prasad et al 2006).

3. RESULTS AND DISCUSSION

3.1. XRD

The XRD patterns of TiO2, PAni, TiO2/PAni and TiO2/PAni/GO nanocomposite are showing in Fig.1. In 
Fig. 1(a), a series of characteristic peaks: 2θ = 25.32° (101), 37.86° (004), 48.06° (200), 55.09° (211) 
and 62.75° (204) are observed, which correspond to the tetragonal anatase phase of TiO2 (JCPDS file 
No: 86-1157). The XRD pattern of PAni in Fig. 1(b) resembles the Emeraldine Salt crystalline form 
of PAni. The XRD patterns of the TiO2/PAni and TiO2/PAni nanocomposites in Fig. 1(c and d) show 
characteristic peaks of PAni and TiO2 (Wang et al 2016).

3.2. SEM and TEM analysis

The SEM images of TiO2, PAni, TiO2/PAni and TiO2/PAni/GO are indicating that the particle morphol-
ogy is in spherical shape and in nanodiamension Shown in Fig.2. The TiO2 molecule is agglomerate 
with PAni to form chips like structures which are partially spherical and disc shape. The TEM images 
of TiO2, PAni, TiO2/PAni and TiO2/PAni/GO are shown in Fig 2. It was morphologically spherical with 
the average particle size of 10 nm.
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3.3. Bruner Earner Taylor (BET)

The specific surface areas (from BET and Surface area, pore volume and the pore radius of the TiO2, 
TiO2/PAni and TiO2/PAni/GO nanocomposite are showing in Table 1. The surface area of TiO2, TiO2/
PAni and TiO2/PAni/GO nanocomposites were observed 37. 52, 76.68 and 96.24 m2/g respectively. 
There is an increase in pore volume (Vp) of TiO2, TiO2/PAni and TiO2/PAni/GO nanocomposite and 
pore radius is decreased. From these results, it may be concluded that the high surface area of the TiO2/
PAni/GO nanocomposite may favour rapid electron transport and high ion diffusion, allowing improved 
photochemical performance. Moreover, the BET surface areas increased remarkably in the TiO2/PAni/
GO nanocomposite, which suggests that TiO2 is well intercalated in PAni matrix and may also provide 
direct conduction pathway for electrons. The formation of TiO2 with PAni by co-deposition oxidation 
synthesis resulted in the generation of well dispersed TiO2 in PAni Matrix giving one TiO2/PAni system 
with a unique set of properties.

Figure 1. XRD Pattern of (a) TiO2 (b) PAni (c) TiO2/PAni (d) TiO2/PAni/GO
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Figure 2a. SEM photographs of (a) TiO2 (b) PAni (c) PAni/TiO2 (d) PAni/TiO2/GO

Figure 2b. TEM photographs of (a) TiO2 (b) PAni (c) PAni/TiO2 (d) PAni/TiO2/GO
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3.4. Band Gap Energy

The band gap of samples was calculated by tauc plot. Fig.3 yields an Eg value of 3.2 eV for TiO2 and 
3.0 for PAni/TiO2. The slight decrease in band gap energy in case of PAni/TiO2, is due to formation of 
sub-band level between valence band and conduction band caused coating of PAni on TiO2 host (Zhang 
et al 2006).

3.5. Photodegradation

The photo-catalytic degradation of Thymol Blue in the presence of TiO2, TiO2/PAni and TiO2/PAni/GO 
has been studied. The solution of dye was prepared in 5:1 (V/V) ratio of water and alcohol. The known 
amount of photocatalyst was dispersed in the dye solution. The reaction mixture was illuminated under 
visible light, while kept continuously under agitation, for the different time intervals. The residual con-

Table 1 showing the surface area, pore volume, pore radius of the TiO2, TiO2/PAni and PAni/TiO2/GO

Sample Surface area (m2/g) Pore volume (cm3/g) Pore radius (nm)

TiO2 37. 52 3.132 1.21

TiO2/PAni 76.68 6.5124 1.64

TiO2/PAni/GO 96.24 9.5124 1.84

Figure 3. Band gap energy of (a) TiO2 (b) pure PAni (c) TiO2/PAni (d) TiO2/PAni/GO
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centration of dye in the reaction mixture was measured spectrophotometrically. The results obtained 
for the degradation of Thymol Blue is shown in Fig 4. Photocatalytic degradation efficiencies (η) are 
obtained by using following equation (Albelda et al 2017).

�
�TB TB
TB
O F

O

 

where TB0 is the initial absorbance and TBF is the final sampled absorbance for a given time.

3.5.1. Effect of Concentration of Dye

Effect of dye concentration Keeping the catalyst loading concentration constant at 800 mg/litre of the 
dye solution, the effect of varying concentration of the dye was studied on its rate of degradation (25, 
50,75, 100 and 125 ppm) as given in Fig.4. The rate of photodegradation was decrease with increas-
ing concentration of TB. This is because as the number of dye molecules increase, the amount of light 
(quantum of photons) penetrating into the dye solution to reach the catalyst surface is reduced owing to 
the hindrance in the path of light (Ameen et al 2011).

3.5.2. Effect of Photocatalyst Amount

The effect of photocatalyst amount is showing in Fig.4. The photodegradation of Thymol blue was 
increased with increase the amount of photocatalyst. It is observed that TiO2/PAni/GO is the more ef-
fective photocatalyst than TiO2 and TiO2/PAni. When the photocatalyst amount increases, the number 
of active site increase for the reaction of dyes. The amount of photocatalyst increases two times the rate 
of photodegradation increase about 30% and 60 %, in presence of TiO2, TiO2/PAni and TiO2/PAni/GO 
respectively (Tjong et al 2006).

3.5.3. Effect of Irradiation Time

The effect of irradiation time of visible light was investigated. TiO2/PAni/GO seems to be more effective 
as photo-catalyst for the degradation of Thymol Blue (TB). The prominent degradation of Thymol Blue 
was found in 180 min (Fig.4) study in the presence of TiO2/PAni/GO in comparison to the prepared TiO2 
and TiO2/PAni. This is due to the coating of polyaniline of Titania surface which provide the electron 
from the HOMO to LUMO. The electrons of HOMO get excited into LUMO which is further jump into 
the conduction band of Titania (Arora et al 2014).

3.5.4. Effect of pH

The photodegradation was carried out under varying pH conditions from (3 to 11), by adjusting with 
H2SO4 and NaOH, with TiO2 kept at constant amounts of photocatalyst of 800 mg/L and 25 ppm con-
centration of dye solutions (Fig. 4). The photodegradation was found highest rates at neutral ranges of 
pH. While at lower pH it was found to decrease. In the basic condition, the photodegradation rate was 
found slow and very poor degradation. Hence highly acidic and basic condition is not favourable for the 
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degradation of TB. This implies that neutral conditions are favourable towards the formation of the reac-
tive intermediates that is hydroxyl radicals is significantly enhanced, which further help in enhancing the 
reaction rate. On the other hand, in basic and acidic conditions, the formation of reactive intermediates 
is relatively less favourable and hence less spontaneous (Sultana et al 2012, Zięba et al 2010).

3.6. Recyclability of Photocatalyst

The photocatalyst recyclability has been studied. The photocatalyst and Thymol blue mixture was agi-
tated, illuminated with visible light and after desired time, the mixture was centrifuge to remove the 
photocatalyst. The removed photocatalyst washed three times with distilled water and finally kept in 
oven for 24 h at 60 oC temperature and further it is reuse for the degradation of Thymol Blue.

The photodegradation of Thymol blue by the recyclized Photocatalyst showed in Fig. 5. The result 
shows that the recyclized photocatalyst efficiency is decreased due to the loss of some active sites and 
decrease of collection efficiency of photon (Epling & Lin 2002).

Figure 4. Photodegradation of Thymol blue at various condition with (a) TiO2 (b) TiO2/PAni (c) TiO2/
PAni/GO
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3.7. Lowering of Electron-Hole Recombination

Photoluminescence spectra have been used to examine the mobility of the charge carriers to the surface 
as well as the recombination process involved by the electron-hole pairs in semiconductor particles. 
PL emission results from the radiative recombination of excited electrons and holes. In other words, it 
is a critical necessity of a good photocatalyst to have minimum electron-hole recombination. To study 
the recombination of charge carriers, PL studies of synthesized materials have been undertaken. PL 
emission intensity is directly related to recombination of excited electrons and holes. Fig. 6 shows the 
photoluminescence spectra of synthesized photocatalysts. It means TiO2 and TiO2/PAni with strong PL 
intensity has high recombination of charge carriers where as TiO2/PAni/GO has weak intensity. The 
weak PL intensity of TiO2/PAni/GO may arise due to the coating of polypyrrole on Titania lattice, so 
that decrease in band gap of TiO2/PAni/GO was found which resulting the decolourisation of photo 
excited electrons. This delays the electrons- holes recombination process and hence is utilized in the 
redox reaction leading to improved photocatalytic activity (Kordouli et al 2015).

3.8. Hydroxyl Radical Formation

To determine whether reactive oxygen species involved in the photocatalytic degradation of dyes is hy-
droxyl radical or not, terephthalic acid photoluminescence probing technique was used. In this, alkaline 
solution of terephthalic acid, having TiO2, TiO2/PAni and TiO2/PAni/GO nanocomposites was irradiated 
with visible light. After 30 min of irradiation, sample was withdrawn from the reaction mixture and was 
centrifuged to separate photocatalyst particles. The photoluminescence spectrum of sample was recorded 
between 335 and 600 nm at an excitation wavelength of 325 nm and variation in intensity of peak at 425 
nm was monitored using Perkin Elmer LS 55 Fluorescence Spectrometer.

As hydroxyl radical performs the key role for the decomposition of the organic pollutants, it is 
necessary to investigate the amount of hydroxyl radicals produced by each photocatalyst. Thus, there 
is a technique to establish the formation of hydroxyl radicals using terephthalic acid (TA) as a probe 

Figure 5. Recyclability of Photocatalyst for the degradation of Thymol Blue.
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molecule. In this method, TA was directly attacked by OH radical forming 2- hydroxyl terephthalic acid 
(TAOH) which gives a fluorescence signal at 426 nm. Fig. 6 depicts the fluorescent signal of all the 
photocatalysts after reacting with TA solution. The fluorescent intensity is linearly related to the number 
of hydroxyl radicals formed by the photocatalysts. It means higher is the generation of hydroxyl radical, 
yield of TAOH will be more and hence more intense will be the fluorescence peak. Thus, TiO2/PAni/
GO with highest intensity confirms the generation more number of hydroxyl radicals compared to other 
photocatalysts. The fluorescence intensity follows the trend (i,e. TiO2, < TiO2/PAni < TiO2/PAni/GO) 
of photocatalytic performance of all the photocatalyst (Wang et al 2008).

3.9. Kinetic Study of Photocatalytic Degradation

For kinetic study of photocatalytic degradation, a control experiment was first carried out under two 
conditions, vis (i) dye + Visible light (no catalyst) (ii) catalyst+ dye in dark without any irradiation (Fig. 
7). It can be seen that in under dark conditions, the amount of catalyst adsorbed becomes constant after 
20 min, where adsorption equilibrium is achieved. For the kinetic study of bleaching of Thymol Blue, 
the initial concentration of the dyes was varied and the experiments were first conducted in dark for 20 
min and then immediately followed by irradiation (Fig. 7). The amount of catalyst was kept constant 
(0.2 g) throughout the experiment.

Applying the Langmuir Hinshelwood model for determining the oxidation rate of the photocatalysis 
of dye:

Rate r dC
dt

k kK C
K C
A

A
� � � � � � �

�
� �

1
 (1)

Where k is the rate constant (mg/L min-1), C is the concentration of dye, KA is the adsorption constant 
of the dye (L/mg), and t is the illumination time (min).

Figure 6. (I) Photolumiscence Spectra of TiO2, TiO2/PAni and TiO2/PAni/GO, (II) PL spectra of photo-
catalyst with terephthalic acid (0.001M) TiO2, TiO2/PAni and TiO2/PAni/GO
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During the course of reaction, the initial pH, amount of catalyst, and photo intensity were kept same. 
In addition to it, the formation of intermediates may interfere in the rate determination; hence the calcu-
lation was done at the beginning of irradiation. The rate expression can be written as:

r kK C
K Co
A o

A o

�
�1

 (2)

Where ro is the initial rate of degradation of Thymol Blue and Co is the initial concentration (almost 
equal to Ceq). When the initial concentration Cinitial is very small, Co will also be small and Eq. (2) can 
be simplified as a first-order equation 4:

� � � �
dC
dt

kK C C
C

kK tA o
o

A
ln

 (3)

Figure 7. % Adsorption of Thymol Blue dye under dark condition in presence of (a) TiO2, (b) TiO2/PAni 
and (c) TiO2/PAni/GO
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C C eo
k phototf� �  (4)

Where

kf, Photo= k kA 

The value of kf,photo can be determined from the plot of ln Ct/Co vs. t (Fig.8).
The slope of the straight line obtained will be the value of first order rate constant (Guettaı & Ait 

Amar 2005). The Value of apparent rate constant were determining at definite concentrations of dye 
solution for photocatalysis reaction in presence of TiO2, TiO2/PAni and TiO2/PAni/GO showing in Fig.8.

This is confirmed that photocatalytic degradation of Thymol Blue follows first order kinetic in pres-
ence of TiO2, TiO2/PAni and TiO2/PAni/GO.

CONCLUSION

In this research, the different techniques were used for the characterisation of the nano composite such as 
XRD, SEM, TEM, FTIR and UV spectrophotometer. The SEM study conðrms that spherical morphology 
of the nanocomposite. The TEM analysis confirms that the size of nanocomposite (10 nm). The FTIR 
characterisation confirms that the TiO2/GO molecules are well combined with polyaniline structure. 

Figure 8. Linear first order reaction of Langmuir Hinshelwood kinetics of Thymol Blue dye vs. time (a) 
TiO2 (b) TiO2/PAni (c) TiO2/PAni/GO
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The maximum photodegradation of Thymol blue was found in TiO2/PAni/GO at 25 ppm concentration 
of dye, 1600 mg/L amount of photocatalyst, pH 7 and 120 min irradiation of visible light. Hence, the 
photocatalytic activity of Titania has been increased by the coating of PAni and Graphene oxide.
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ABSTRACT

Access to safe drinking water is one of the most pressing challenges in the 21st century. New and better 
technologies for the treatment of wastewater are critically needed. Carbon nanotubes are emerging as 
effective and environmentally friendly alternative adsorbents for water purification due to their porous 
structure, relatively large specific surface areas, and strong hydrophobicity. Nevertheless, carbon nano-
tubes also suffer the inherent challenges of nanomaterials with potential health risks. This chapter pres-
ents a detailed review of the progress made in the utilization of carbon nanotubes and their composites 
in the sequestration of organic and inorganic pollutants from water. The factors affecting performance, 
the adsorption capacities, and mechanisms are concisely discussed. Additionally, the associated health 
risks of carbon nanotubes are highlighted, and risk assessment strategies are recommended. Overall, 
carbon nanotubes are shown to be suitable candidates for water treatment regimes.

INTRODUCTION

Many technologies have been developed for water treatment, however, and a majority require high capital 
investment for implementation especially in developing countries. Adsorption is described as a simple, 
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techno-economical and efficient method for the removal of organic and inorganic contaminants from 
water (Tome et al., 2021; Shikuku and Mishra, 2021). Among the various adsorbents, those derived 
from lignocellulosic biomass such as activated carbons (ACs), are the widely used type of adsorbents in 
water treatment, because of their local availability, chemical inertness, broad-spectrum removal capa-
bility toward pollutants, and thermal stability (Sanou et al., 2016; Sanou et al., 2019; Liu et al., 2012). 
However, the use of ACs in water treatment is limited by several bottlenecks, such as slow adsorption 
kinetics and difficulty for regeneration (Liu et al., 2012). To overcome these constraints, activated carbon 
fibers (ACFs) were developed as the second generation of carbonaceous adsorbents and their pores are 
directly opening on the surface of carbon matrix, which shortens the diffusion distance of pollutants to 
the adsorption sites. Consequently, adsorption kinetics of ACFs is higher than those of ACs. On the other 
hand, carbon nanotubes (CNTs) are considered like miniaturized ACFs with one dimensional structure 
and all adsorption sites are located on their inner and outer layer surface. Theoretically, CNTs may be 
a promising third generation of carbonaceous adsorbents with a tunable surface chemistry. These new 
types of adsorbents have been used for adsorption of metal ions (Li et al., 2002), anionic contaminants 
(Li et al., 2001; Peng et al., 2005), organic compounds (Cho et al., 2011), removal of biological con-
taminants (Venkata et al., 2009), and for the softening of hard water (Maryam and Toraj, 2011). A great 
number of organic compounds and heavy metals have been studied as the target pollutants on CNTs 
in water treatment with various physical structures and surface chemistry. The influence of operating 
conditions on solution chemistry, including solution pH, ionic strength, and co-existing matter, must be 
investigated for application in industrial scale to clean real wastewaters. In addition, the study of kinetic 
and isotherm models is important in order to explain the adsorption mechanisms. The use of CNTs for 
water treatment is not without difficulties. When using CNT powder as an adsorbent on an industrial 
scale, combining the CNTs with hard water with ultrasonic agitation is neither economical nor techni-
cally feasible. Furthermore, without centrifugation process, it is impossible to entirely recover the spent 
and contaminant-laden CNTs powder from treated water following the adsorption process. Adsorbent 
recovery by filtration is also difficult since the CNTs can quickly clog the filter (Maryam and Toraj, 
2011). Furthermore, CNTs have been reported to be potentially toxic and their occurrence in water is 
contentious from a safety standpoint (Das et al., 2018). This chapter discusses the preparation and appli-
cation of CNTs and their composites for the removal of dyes, heavy metals, and emerging contaminants 
from water. Catalytic properties of CNTs have also been highlighted. The associated toxicity and risks 
of CNTs are also presented.

Preparation of Carbon Nanotubes (CNTs)

The main methods employed in the synthesis of CNTs are chemical vapour deposition, arc discharge 
and laser ablation (Prasek et al., 2011). Chemical vapour deposition technique is considered the most 
feasible and economic of the three methods because it requires low power input, and it produces CNTs 
of relatively high purity (Prasek et al., 2011; Anzar et al., 2020).

Generally, the carbon sources used in the fabrication of CNTs include methane, ethylene, benzene, 
xylene, carbon monoxide, among others (Endo et al., 1993; Yamamoto, Inoue, Matsumura, 2017; Lv el 
al., 2021). Chemical vapour deposition involves pumping the carbon source into a quartz tube that acts as 
a furnace in the presence of an inert gas. The carbon is vaporized at a temperature of about 500-900þC in 
argon gas to form carbon atoms which join through van der Waals forces to form CNTs. First described 
by Iijima (1991), arc discharge technique utilizes pure graphite electrodes placed in a quartz chamber at 
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a pressure of 500 torr in the presence of helium. A high temperature (>3000°C) ionizes carbon atoms 
which then move to the cathode where they are deposited and with proper cooling, uniform CNTs are 
formed. This method mostly produces multi-walled carbon nanotubes (MWCNTs), however, incorpora-
tion of metal catalysts such as iron, cobalt, nickel, and yttrium, at either the anode or cathode produces 
single walled carbon nanotubes (SWCNTs). The size and purity of the resulting CNTs depend on the 
metal concentration, type and pressure of inert gas, and temperature used (Arora and Sharma, 2014). 
Laser ablation is similar to the arc discharge process except that it uses a laser beam at a temperature 
of 1200°C and to produce SWCNTs, metal catalysts are added to the graphite target (Yuge et al 2012). 
The quality of the CNTs produced depend on the amount and type of catalyst used, type of inert gas, the 
laser power and wavelength, temperature and pressure used (Arepalli, 2004). These synthesis processes 
have undergone several improvements with time, in order to attain scale-up production of size-controlled 
CNTs for commercial purposes.

Modification of CNTs

As-produced CNTs tend to aggregate due to their bundle-like nature with high van der Waals attractions. 
Aggregation reduces the availability of the outer space of as-produced CNTs for adsorption of pollutants 
and prevents wettability of the CNTs. To overcome this challenge, ultra-sonication is employed when 
working CNTs into aqueous media (Zhang et al. 2012). Modification of CNTs through processes such 
oxidation also reduces aggregation by altering the CNTs surface chemistry and improve their dispers-
ibility in water and other solvents (Datsyuk et al 2008). Various methods of oxidation of CNTs including 
wet chemical methods (Andrade et al., 2013), photo-induced oxidation (Savage et al., 2003), plasma 
treatment (Ren et al., 2011) have been reported. The most common oxidation technique applied is the 
wet chemical treatment of CNTs, in which acids or oxidizing reagents such as nitric acid, sulfuric acid, 
and potassium permanganate among others are used. The oxidation removes metal impurities left on the 
CNTs during their synthesis and also introduces oxygen functionalities on the CNTs surfaces (Datsyuk 
et al 2008; Wepasnick et al., 2011). These functional groups including –COOH, OH and –C=O, act 
as sites upon which pollutants attach themselves (Ihsanulah et al., 2016), thus enhancing the adsorp-
tion capacity of the CNTs for the target water pollutants. The surface characteristics of the CNTs have 
also been modified to form CNT-based materials by metal/metal oxide impregnation (Mallakpour and 
Khadem, 2016), doping with heteroatoms (Yi et al., 2020) or grafting functional molecules (Guo et al., 
2019) which play a selective and synergic role of trapping of pollutants of interest. Magnetic material 
can also be loaded onto CNTs for easy separation of adsorption materials from aqueous media using an 
external magnet (Bhatia et al., 2019).

APPLICATON CNTs IN THE REMOVAL OF ORGANIC POLLUTANTS

Organic pollutants include pesticides, organic dyes, pharmaceuticals, phenols, aromatic compounds 
among others. These pollutants find their way into the environment when effluents industries such as 
textile, pharmaceutical, paper and leather tanning, are not properly treated before discharge. CNTs and 
CNTs-based materials have been applied as adsorbents, catalytic support, electrodes or membranes for 
the removal of these organic pollutants from wastewater. Adsorptive and catalytic applications of CNT 
materials for removal of organic pollutants are discussed herein.
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Due to their porous structure, relatively large specific surface area and strong hydrophobicity CNTs 
have shown a great potential as adsorbents for organic pollutants such as 1, 2-dicholorobenzene (Peng 
et al 2003), polycyclic aromatic hydrocarbons (PAHs) (Akinpelu et al., 2018), dyes such as methylene 
blue, methyl orange, rhodamine B etc. (Li et., 2020; Saxena et al., 2020; Zhao et al., 2013; Pete et al., 
2021), phenols (Lawal et al., 2019), and isonicotinic acid (Bhatia et al., 2019) among others.

The organic pollutants can be trapped in the pores or adsorbed onto the CNTs surfaces through dif-
ferent interaction such as hydrophobic interactions, π-π interactions, van der Waals forces, electrostatic 
attraction, and hydrogen bonding; in most cases these interactions act simultaneously (Pyrzynska, 2008). 
The sorption process of some organic compounds especially organic dyes as also been reported to be 
dependent on the morphology of the adsorbate. Liu et al. (2008) observed that the most easily adsorbed 
dyes are the planar polynuclear dyes (RhB), followed by non- planar conjugated molecules (Orange G) 
and the least, non- planar non-conjugated (bromothymol blue). Langmuir and Freudlinch equations are 
the most common models used to describe the adsorption equilibrium data. The Langmuir equation 
describes monolayer sorption on homogenous surfaces while Freudlinch equation is fitted on surfaces 
considered heterogeneous (Lawal et al., 2019; Saxena et al., 2020). The change in adsorption with time 
is usually fitted in the pseudo-first-order and pseudo-second-order kinetic models. The pseudo-first-order 
reaction implies that the reaction rate depends only on the concentration of one the reactants while the 
pseudo-second-order rate is determined by the concentration of two reactants simultaneously. Thus, the 
pseudo-second-order rate indicates that both the concentrations of the adsorbent and adsorbates are in-
volved in the adsorption process (Bhatia et al., 2019). Among organic contaminants, dyes and chemicals 
of emerging concern are hereunder discussed.

ADSORPTION OF DYES

Zhao et al. (2013) investigated the sorption of methyl orange from water using MWCNTs at varying 
adsorption conditions. The study observed that the adsorption capacity of the MWCNTs increased with 
increase in stirring speed, methyl orange concentration and temperature but it decreased with increase in 
the mass of adsorbent. Pete et al. (2021) compared the adsorption performance of a binary composite of 
MWCNTs with polyaniline (PANI-MWCNTs) to that of MWCNTs in the removal of methyl orange. The 
research established that the composite had a greater removal efficiency for methyl orange than when 
PANI or MWCNTs were applied individually. The maximum adsorption capacity of PANI-MWCNTs 
for methyl orange was reported as 149.25 mgg-1 which was well described by Langmuir isotherm model 
while the kinetic studies fitted well on the pseudo-second order model. Furthermore, the PANI-MWCNTs 
adsorbent was found to have excellent reusability and it could be regenerated using 1 M HCl. In another 
study, the removal of methylene blue from water using MWCNTs functionalized with tyrosine (CNT-TYR) 
showed a maximum adsorption capacity of 440 mgg-1 (Saxena et al., 2020). The adsorption mechanism 
was reported to be as a result of different interactions namely; electrostatic, π-π interactions and hydrogen 
bonding. The reaction fitted well with pseudo-second order (PSO) kinetic model and Langmuir adsorp-
tion model. Lawal and group (2019), also investigated the removal of crystal violet (CRV) and phenol 
(PHE) using CNTs and CNTs functionalized with eutectic solvent (CNT-DES). The group found out 
that adsorption of capacity of CNTs was 128.6 mgg-1 and 312 mgg-1 and CNT-DES was 298 mgg-1 and 
394 mgg-1 for CRV and PHE, respectively. The adsorption reaction was best described by pseudo second 
order kinetics and Freundlich isotherms, while the reaction mechanism was hydrophobic interactions 

 EBSCOhost - printed on 2/14/2023 11:47 AM via . All use subject to https://www.ebsco.com/terms-of-use



175

Carbon Nanotubes in Water Treatment
 

through π-π interactions. Table 1 is a summary of the adsorption capacities of CNTs for different dyes 
of varying structural frameworks under varying experimental conditions.

Adsorption of Chemicals of Emerging Concern (CEC)

With increasing robustness of analytical tools and methods, the detection of previously unreported and 
unregulated chemicals in water resources has been on the rise. These include pharmaceutically active 
ingredients (PAIs), and personal care products (PCPs). These have been shown to be toxic even at low 
concentrations and antibiotics in the environment have been linked with the development of drug-resistant 
bacterial strains, raising serious environmental concerns. Such unregulated chemicals are generally 
referred to us chemicals of emerging concern (CEC) or emerging contaminants (ECs).

Carbon nanotubes and its composites have been shown to a suitable adsorbent for the removal of 
various classes of emerging contaminants. Cho et al. (2011) described the adsorptive properties of 
single-walled carbon nanotubes (SWCNTs) and multi-walled carbon nanotubes (MWCNTs) for the 
uptake of phenol and ibuprofen and triclosan from water. The adsorption capacity of SWNCT was 223 
mg/g and 558 mg/g for ibuprofen and triclosan, respectively. SWCNTs exhibited higher adsorption 
capacity than SWCNTs owing to the large surface area. A similar observation was reported for the 
adsorption of perfluorooctane sulfonate (PFOS) onto SWCNTs and MWCNTs (Chen et al., 2011b). 
Elsewhere, Carabineiro et al. (2011) reported that MWCNT has an adsorption capacity of 150 mg/g for 
ciprofloxacin. Besides facilitating separation of adsorbent from solution by use of an external magnet, 
Bhatia et al. (2019) observed that there was synergistic effect between Fe3O4 and MWCNTs when the 
binary composite MWCNTs/Fe3O4 was applied in the removal of isonicotinic acid. The results showed 
that the maximum adsorption capacity for isonicotinic acid by MWCNTs and MWCNTs/Fe3O4 was 671 
and 1234 mgg-1, respectively. Moreover, both adsorbents exhibited good reusability, thus indicating that 
both adsorbents had great potential for removing isonicotinic acid from wastewater. Table 2 lists several 
other emerging contaminants evaluated against CNTs.

Table 1. Application CNT-based adsorbents for various organic pollutants from wastewater

Adsorbent Dye Qmax (mgg-1) References

SWCNTs Reactive red 120 426.4 Walker et al., 2004

PANI-MWCNTs Methyl orange 149.25 Pete et al., 2021

MWCNTs Crystal violet 312 Lawal et al., 2019

MWCNT-DES Crystal violet 394 Lawal et al., 2019

MWCNT-TYR Methylene blue 440 Saxena et al., 2020

MWCNTs Maxilon blue 260.7 Alkaim et al., 2015

MWCNTs Congo red 352.1 Zare et al., 2015b

MWCNTs Malachite green 142.8 Shirmardi et al., 2013

MWCNTs Acid red 18 166.6 Shirmardi et al., 2012
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APPLICATION CNTs AND ITS DERIVATIVES IN 
THE REMOVAL OF HEAVY METALS

Inorganic pollutants such as heavy metal ions, released into the environment, particularly due to indus-
trialization have resulted to serious water pollution. In trace levels some heavy metal ions are essential 
for to human lives. However, when high levels are ingested, they cause harmful effects on life.

There are many reports on the application of CNTs and its derivatives in the removal of heavy metal 
ions from aqueous solution (Li et al., 2003; Ihsanulah et al., 2016). The treatment of wastewater with 
CNTs for removal of heavy metal ions is attributed to their superior properties including large specific 
surface area (SSA), porosity, fast adsorption kinetics and relatively high adsorption capacity (Ren et 
al., 2011). Most studies have described the driving force in the sorption of heavy metal ions as mainly; 
electrostatic interaction, ion exchange, surface complexation and physisorption (Gusain, Kumar & Ray, 
2020). Similarly, to determine the maximum adsorption capacities the most commonly used isotherm 
models are those of Langmuir and Freudlinch. Noteworthy, is the fact that adsorption performance of 
the acid treated CNTs is much higher than that of pristine CNTs (Vukovic et al., 2011; Nyairo et al., 
2018). This is attributed to the negative charge on CNTs surfaces that interacts with the heavy metal 
cations through electrostatic attraction. Furthermore, studies have also indicated that the modification 
of CNTs with other nanoparticles/molecules enhances their adsorptive performances as indicated in 
Table 2. For instance, MWCNTs modified by 2-vinylpyridine showed a better adsorption capacity for 
Pb(II) that as-produced MWCNTs (Ren et al., 2011). A study carried out by Gusain et al. (2019) shows 
that the composite of molybdenum sulfide/thiol functionalized MWCNTs (MoS2/SH-MWCNTs) had 
a significantly better adsorption capacity for Pb(II) than o-MWCNTs. The performance was attributed 
to the additional functional groups (S, O, and C) present on the composite that promoted lead-sulphur 
complexation. At the same time, the zeta potential of the composite was comparatively higher than that 
of o-MWCNTs implying that there were higher metal ion interactions with the higher negatively charged 
surface of the composite. Table 3 presents the performance of CNTs-based adsorbents for the removal 
of heavy metals from water.

CATALYTIC PROPERTIES OF CARBON NANOTUBES

Recently, CNTs-based materials have been employed as catalysts/catalytic support in advanced oxida-
tion process (AOPs) for removal of organic pollutants from wastewater through ozonation, fenton-like 

Table 2. Application CNT-based adsorbents for removal of emerging contaminants

Adsorbent CEC Qmanx (mgg-1) References

MWCNTs Perchlorate 3.55 Fang and Chen, 2012

MWCNTs Tetrabromobisphenol A 33.7 Ji et al., 2012

MWCNTs Roxarsone 13.5 Hu et al., 2012

MWCNTs Diuron 28.37 Deng et al., 2012a

MWCNTs Isonicotinic acid 671 Bhatia et al., 2019

Magnetic MWCNTs Isonicotinic acid 1234 Bhatia et al., 2019
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systems, and persulfates among others. In this process, the CNTs-based materials are used to catalyze 
different oxidants which produce more reactive oxidative species (ROS) that destroy the organic pol-
lutants (Liu et al., 2011).

Catalytic ozonation by CNT-based materials has successfully been employed in removing organic 
pollutants such as indigo (Qu et al., 2015), sulphamethoxazole (Goncalves, Orfa and Pereira, 2012), ox-
alic acid (Liu et al., 2011) from wastewater. Generally, the catalytic ozonation activity of the MWCNTs/
O3 is attributed to oxygen functionalities on the CNTs’ surface. According to Zhang et al. (2015), the 
suggested mechanism follows two pathways, namely; production of HO• when ozone attacks the active 
sites on the surface of CNTs and conversion of ozone to O2

•- radicals by CNT initiators. Liu et al. (2011) 
investigated the effect of operating conditions (such as initial solution pH and initial concentration of 
oxalic acid) in water on the catalytic performance of MWCNTs. The study established that the degrada-
tion efficiency of oxalic acid was pH dependent, and this was attributed to the surface characteristics of 
the MWCNTs. In another study, Goncalves et al. (2012) compared the catalytic activity of MWCNTs 
to that of activated carbon in the ozonation of sulphamethoxazole (SMX). The results from the study 
indicated that MWCNTs had a higher performance than activated carbon, which was attributed to the 
surface chemistry of the MWCNTs. Furthermore, the lowest acute toxicity was achieved when MWCNTs/
O3 was used compared to activated carbon.

CNT-Fenton like systems which involves the reaction of peroxides (mostly H2O2) with iron ions to 
form radicals that oxidize the target compounds have also been used in the abatement of organic pollut-
ants such as methyl orange (Yu et al., 2012), SMX (Nawaz et al., 2020), methylene blue (Fayazi, 2021) 
in wastewater. Nawaz et al. (2020) investigated the photo-Fenton effect of different contents (10, 15, 20, 
25, 50 wt%) of MWCNTs in a composite of nickel ferrite and MWCNTs (NiFe-CNT). The study applied 
the highly photo active reagent under UV-A light (in the presence and absence of H2O2) to determine 
the degradation of SMX in aqueous solution. It was observed that by increasing MWCNTs content, 

Table 3. The sorption capacities of raw, oxidized and CNTs modified with other molecules in aqueous 
solutions.

Adsorbent Metal 
ions

qmax 
(mgg-1)

Adsorption 
conditions

Isotherm 
models

Kinetic 
models References

MWCNTs Pb(II) 15.9 pH=6 Langmuir - Ren et al. (2011)

MWCNTs/2-
vinylpyridine Pb(II) 37.0 - Langmuir - Ren et al. (2011)

DTC/MWCNT
Cd(II) 
Cu(II) 
Zn(II)

167.2 
98.1 
11.2

pH=6, T=298K, 
t =150 min Langmuir PSO Li et al. (2015)

p-MWCNTs Cu(II) 4.27 pH=5, T=298K Langmuir PSO Nyairo et al. (2018)

o-MWCNTs Cu(II) 16.95 pH=5, T=298K Langmuir PSO Nyairo et al. (2018)

MWCNTs/Ppy Cu(II) 24.39 pH=5, T=298K Langmuir PSO Nyairo et al. (2018)

o-MWCNTs Pb(II) 
Cd(II)

27.027 
24.4 pH=6, T=298K Langmuir PSO Gusain et al. (2019)

MoS2/SH-MWCNTs Pb(II) 
Cd(II)

90 
66.6 pH=6, T=298K Freudlinch PSO Gusain et al. (2019)

Key: DTC- Dithiocarbamate, Ppy-polypyrrole, MoS2/SH –Molybdenum sulfide thiol, T-temperature, t-time
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the photocatalytic activity of the composite was enhanced with a maximum being achieved at 25 wt%. 
The findings also showed that under UV-A, the composite containing 25 wt% MWCNTs, completely 
degraded 5 mg/L SMX within 2 h.

TOXICITY AND RISKS OF CNTs

CNTs are classified in two main categories, single wall carbon nanotubes (SWCNTs) and multiwall carbon 
nanotubes (MWCNTs), according to the number of layers. They are considered to have carcinogenicity 
and can cause lung tumors. However, the carcinogenicity of CNTs may attenuate if the fiber length is 
shorter. The available data provide initial information on the potential reproductive and developmental 
toxicity of CNTs. They can be altered to resist biodegradation, increased cellular uptake, reactivity and 
toxicity to terrestrial, aquatic and aerial flora and fauna. In other part, CNTs have similar pathological 
effects to asbestos causing other societal perceptions intending to ban CNTs.

CNTs can induce proliferation and differentiation of neurons and osteoblasts and serve as drug and 
vaccine delivery vehicles for cancer treatment (Gorityala et al., 2010). Some investigations have reported 
toxic effects following the exposure of several cell types to both SWCNTs and MWCNTs. It has been 
demonstrated that a number of factors such as impurities, surface modification, structure, and exposure 
routes that may influence the toxicity of CNTs. The presence of metal impurities could lead to conflict-
ing data about the biocompatibility, toxicity, and risk assessment of CNTs and may limit their further 
industrial applications. Contamination of CNTs by catalyst residues is unavoidable during large-scale 
production by chemical vapor deposition techniques (Pumera, 2007).

As described above, research regarding CNTs hazard has been driven primarily by the potential 
for exposure via respiratory and dermal routes, particularly during their manufacture. In addition, the 
longevity at the exposure site and potential for distribution within the body subsequent to exposure has 
also been addressed within a limited number of conducted studies. Some investigations also assess the 
biocompatibility of CNTs used in biomedical applications, such as drug delivery. Different exposures 
including pulmonary, oral, dermal and cardiovascular, absorption distribution metabolism excretion and 
intraperitoneal injection of CNTs have been discovered as consequences of CNTs for humans (Johnston 
et al., 2010). Previous studies reported that the CNTs exposure to the respiratory system could lead to 
asthma, bronchitis, emphysema and lung cancer (Lam et al., 2006). It is important to note that some 
factories are dustier possibly due to the lack of industrial hygiene standards (Lam et al., 2006). Working 
with pulverized CNTs or mixtures that contain fine CNT particles could pose a risk of inhalation. Many 
experimental studies conducted on inhalation exposure have contributed to the assessment of the effects 
of CNTs on respiratory tract and identification of exposure limits (Das et al., 2018).

The circulation of CNTs within the blood may affect blood components (specifically cells) or allow for 
their distribution to a number of targets that are potentially detrimentally affected by exposure (see later). 
Entry into the blood could of course occur in a medical application via direct intravenous injection, but 
might also occur if their translocation into the circulation from other organs (including the lungs, skin or 
gastrointestinal tract) is realized (Johnston et al., 2010). Due to the cost and technical difficulty of tracing 
CNT translocation following inhalation or instillation, very few studies of this nature have been studied 
to date. Intraperitoneal exposure of the mesothelial lining of the abdominal cavity to CNTs has been used 
as a surrogate for the mesothelial lining of the pleural cavity surrounding the lungs. Direct injection into 
the pleural cavity is technically difficult and so the intraperitoneal model provides a convenient model 
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for investigating mesothelial responses (Johnston et al., 2010). The limited number of available studies 
suggests that there is a hazard associated with the exposure of skin to CNTs, with the response being 
primarily inflammatory in nature. In future studies it is necessary to consider the systemic availability 
of CNTs following dermal exposure. The recurrent appearance of granulomas following subcutaneous 
exposure is interesting as it suggests that this pathological hallmark is not limited to the respiratory sys-
tem or mesothelium, but that such a response may occur in many different tissue types, independent of 
the route of delivery. Furthermore, the results of many studies suggest that granuloma formation might 
be related to the agglomeration status of the nanotubes, with greater agglomeration being more likely 
to induce more extensive pathology. In addition, as demonstrated in the lung, inflammatory and oxida-
tive driven responses appear to be replicated within the skin, thus reinforcing the importance of their 
development when assessing CNTs toxicity.

CONCLUSION

Carbon nanotubes (CNTs) have the potential to support point of use-based treatment approach for removal 
of water hardness, chemical, and biological contaminants from water. Generally, CNTs exhibit higher 
adsorption capacities in the removal of heavy metals, dyes and emerging contaminants relative to other 
adsorbents. This is attributable to their fibrous shape with high aspect ratio, large surface area and well 
developed mesopores. The relatively high cost of CNTs stands as a major constraint towards application 
of CNTs o industrial scale for water purification. Additionally, the release of contaminant-laden unrecov-
ered CNTs into the environment and concomitant human exposure to CNTs remains contentious due to 
the associated health risks. Adsorbent recovery strategies need to be further explored including the use 
of life cycle assessment (LCA) tool in adsorption studies both at laboratory and pilot scale experiments.
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ABSTRACT

Microencapsulation is a well-established process of enveloping or surrounding one substance into 
another substance that provides capsules having range from one micron to many hundred microns in 
size. One among the highly efficient methods is microencapsulation. The encapsulation efficiency of 
microcapsules, micro particles, or microspheres depend on various factors like solubility of polymer 
in solvent, concentration of polymer, solubility of organic solvent in water, rate of solvent removal, etc. 
Substances are often encapsulated in such a way that the core material is confined within capsule shells 
(coating material) for a particular interval of time. Different types of techniques are used for preparation 
of microcapsules. These techniques are utilized in different fields like pharmaceutical, agriculture, textile, 
food, printing, and defence. This text covers a review on microencapsulation and materials involved, 
microencapsulation techniques, and use of microencapsulation in textiles.

INTRODUCTION

Environment concerns and demands for environment friendly processing of textiles has led to the event 
of many new, cleaner, and greener technologies (Gunay, 2013). Science has come up with many tech-
nologies for the eco processing of textiles, which incorporate, Enzymatic Finishing, Plasma Technology, 
Finishing by Natural products and Microencapsulation (Shrimali and Dedhia, 2015). Fragrances play a 
crucial role in revitalizing the mind and also the body. Addition of fragrances to textiles has been there 
for several years within the sort of fabric conditioners for the aim of washing and while tumble drying. 
These products were designed to impart fresh aroma to the textiles treated with it, but couldn’t retain the 
fragrances for an extended time. This became possible only with the appearance of the microencapsulation 
technology in textiles. It’s an efficient method wont to control the discharge properties of active ingredients 
that lengthens the effect of fragrances. Microencapsulation is the technique where small solid particles, 
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liquid droplets, or minute bubbles of gas are coated, and when certain quantity or pressure is exerted or 
the surface is scratched, it releases the compounds inside the capsules. Currently microencapsulation is 
employed in textiles for anti-bacterial treatments, UV protection, for moisturizing and skin treatments, 
vital sign regulation, repellence, Industrial chemicals, Agro chemicals, Food additives, Adhesives and for 
perfume or fragrance releases. The applying of the technique for fragrance releases however is of high 
demand. (Umer et al., 2011). The core substances enclosed within the capsule are released instantly on the 
material, when a mechanical movement like abrasion, deformation and friction occurs and ultimately the 
active agents are released on the skin. There are various methods and techniques of microencapsulation 
which involves tiny solid, liquid or gas particles which are between 50 nm and 2 mm and are covered 
with a natural or synthetic polymeric membrane. The smaller the capsules, greater are the covering of 
the merchandise, and consequently longer the fragrances would last. The material that’s encapsulated is 
named the fill, internal phase or core material. The outer wall that encloses the fill is termed the shell or 
the coating. Various materials are utilized in coating like modified polysaccharides, gums, lipids, protein 
materials, and ample of synthetic polymers. Utilizing a specific sort of core material and the covering 
relies upon the technique utilized for micro-encapsulation of aromas.

Encapsulation is basic to shield fragrances from oxidation in view of warmth, light, dampness and 
openness to different components in the course of their life. It likewise forestalls unpredictable mixes 
present in fragrances from getting dissipated. There are numerous physiochemical, compound, and 
mechanical strategies. Ensuing are a few strategies of micro-encapsulation of fragrances in textiles 
(Fibre2Fashion, n.d.).

TECHNIQUES OF MICROENCAPSULATION

Various techniques are existing for encapsulation of core material. Mainly the techniques are dived into 
three types listed in Table 1.

1.  Physio-chemical
2.  Physio -mechanical and
3.  Chemical methods

Physio-Chemical

Phase Separation and Coacervation

Phase coacervation, including simple and complex coacervation, is one among the oldest and widely used 
microencapsulation techniques. This technique is based on the separation of macromolecular solution 
into two immiscible liquid phases corresponding to the coacervate and the dilute equilibrium phases. 
The simple coacervation method requires the use of one colloidal solute, whereas within the complex 
coacervation two oppositely charged colloid polymers are used. The microencapsulation process is 
administered in three or four consecutive steps under stirring, i.e., (i) dispersion of the active principle 
in a solution containing the surface-active hydrocolloid; (ii) precipitation of the hydrocolloid onto the 
dispersed droplets by decreasing the solubility of the hydrocolloid, with the utilization of a non-solvent, 
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a pH or/and temperature change, or the addition of an electrolyte solution; (iii) addition of a second 
hydrocolloid to induce the polymer-polymer complex in the case of complex coacervation; and (iv) sta-
bilization and hardening of the microcapsule shell by crosslinking agent addition, such formaldehyde, 
glutaraldehyde, tripolyphosphate or genipin. Essential oils are one among the foremost active principles, 
for textile applications, encapsulated via either simple coacervation with gum acacia (Sharma and Goel, 
2018) or ethyl cellulose (Türkoğlu et al., 2017) or via complex coacervation with chitosan/gum Arabic 
(Sharkawy et al., 2017; Poonam et al., 2015) chitosan/ carboxymethyl cellulose (Roy et al., 2017) gelatin/
gum Arabic or gelatin/carboxy cellulose (Wijesirigunawardana and Perera, 2018).

Solvent Evaporation

This technique is based on the evaporation of a volatile solvent (such as chloroform or dichloromethane). 
Firstly, the solvent, active ingredient, and coating polymer are mixed then this mixture is dispersed in a 
continuous medium in which the polymer and active ingredient are not miscible, and the solvent is not 
miscible. This step is generally carried out by mechanical agitation, but can also be obtained by extru-
sion or by using static mixers, which allow the rapid and continuous production of an emulsion with a 
narrow size distribution. The formation of microparticle is obtained by removing the solvent, causing the 
solubility of the polymer to decrease and then precipitate. The solvent can be extracted by diluting the 
medium, adding a co-solvent. The microparticles obtained are then recovered by filtration, rinsed and 
dried. This process easily achieves excellent yields, close to 100%, rapid production of large quantities of 
suitable quality capsules and predictable release of the active ingredient. Some parameters such as low 
pressure contributing to extraction the high viscosity of the solvent or the high viscosity of the dispersed 
phase thus favour the quality the encapsulation of active drug ingredients. However, it is limited by using 
a volatile solvent (which must be recycled) and a polymer that is not soluble in the continuous phase. 
The particles obtained are microspheres containing 30 to 40% by weight of the active ingredient. The 
particle size depends on the formulation and solubility of the polymer, emulsion parameters, evaporation 
conditions, and physico-chemical parameters of the products used (Zimniewska et al., 2019).

Supercritical CO2 Assisted Microencapsulation

Compressed carbon dioxide in the liquid or supercritical state is attractive as a solvent in microencapsu-
lation processes. - Carbon dioxide is non-toxic, non-flammable, and inexpensive. - The high volatility 
of carbon dioxide allows it to be easily separated from polymeric materials by lowering pressure. - The 
supercritical fluid state is reached when the temperature and pressure of a substance are above its critical 
temperature and pressure. For carbon dioxide, the critical temperature is 31°C and the critical pressure 
is 74 bar. Phase diagram of CO2. -Generally there are three steps in the impregnation: First, the polymer 

Table 1. Different techniques used for microencapsulation

Physio-chemical methods Physio –mechanical methods Chemical methods

• Phase separation and Coacervation 
• Solvent evaporation 
• Supercritical CO2 assisted microencapsulation

• Spray drying and congealing 
• Air-suspension coating 
• Pan coating/fluid bed 
• centrifugal extrusion

• Interfacial polymerization 
• In situ polymerization 
• Matrix polymerization 
• Poly condensation
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materials are exposed to supercritical CO2 for a while; then the solution of additives in CO2 is introduced 
and the solute is transferred from CO2 to polymer - Last, CO2 is released and the solute is trapped in the 
polymer material. - When suspensions of polymer particles in water are exposed to supercritical CO2 
with the presence of additives in water, the transport of the additive into polymer particles can also be 
enhanced. After releasing CO2, additives can be trapped in colloidal polymer particles (Essam. 2012).

Physio-Mechanical Methods

A low-cost commercial process in which microencapsulation is done by spray-drying and it is mostly 
used for the encapsulation of fragrances, flavors and oils. In which core particles are dispersed in a 
polymer solution and sprayed into hot chamber. The shell material solidifies onto the core particles as 
the solvent evaporates such that the microcapsules obtained are of poly-nuclear or matrix type. Very 
often the encapsulated particles are aggregated and the use of large amounts of core material can lead 
to uncoated particles. However, higher loadings of core particles of up to 50–60% have been reported. 
Water-soluble polymers are mainly used as shell materials because a solvent-borne system produces 
unpleasant odors and environmental problems (Ghosh, 2006).

• Spray drying and congealing
• Fluid bed coating
• Pan coating

Spray Drying and Congealing

It is a low-cost process in which microencapsulation is done by spray-drying. When an active mate-
rial is dissolved or suspended during a melt or polymer solution and becomes trapped within the dried 
particle. The main advantage is that the power to handle labile materials thanks to the short contact 
time within the dryer, additionally the operation is economical. In modern spray dryers the viscosity of 
the solutions to be sprayed are often as high as 300mPa. Spray drying and spray congealing processes 
are similar therein both involve dispersing the core material during a liquefied coating substance and 
spraying or introducing the core - coating mixture into some condition, whereby, relatively rapid solidi-
fication (and formation) of the coating is affected. The principal difference between the two methods is 
that how coating solidification is accomplished. Coating solidification within the case of spray drying 
is affected by rapid evaporation of a solvent during which the coating material is dissolved. Coating 
solidification in spray congealing methods, however, is accomplished by thermally congealing a molten 
coating material or by solidifying a dissolved coating by introducing the coating - core material mixture 
into a non-solvent. Removal of the non-solvent or solvent from the coated product is then accomplished 
by sorption, extraction, or evaporation techniques (Garg et al., 2018).

Spray drying serves as a microencapsulation technique when an active material is dissolved or sus-
pended in a melt or polymer solution and becomes trapped in the dried particle. The main advantages 
is the ability to handle labile materials because of the short contact time in the dryer, in addition, the 
operation is economical. In modern spray dryers the viscosity of the solutions to be sprayed can be as 
high as 300mPa. Spray drying and spray congealing processes are similar in that both involve dispers-
ing the core material in a liquefied coating substance and spraying or introducing the core - coating 
mixture into some environmental condition, whereby, relatively rapid solidification (and formation) 
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of the coating is affected. The principal difference between the two methods is the means by which 
coating solidification is accomplished. Coating solidification in the case of spray drying is effected by 
rapid evaporation of a solvent in which the coating material is dissolved. Coating solidification in spray 
congealing methods, however, is accomplished by thermally congealing a molten coating material or 
by solidifying a dissolved coating by introducing the coating - core material mixture into a non-solvent. 
Removal of the non-solvent or solvent from the coated product is then accomplished by sorption, extrac-
tion, or evaporation techniques.

Air-Suspension Coating

This procedure gives a better control and flexibility. The particles are coated while suspended in an 
upward-moving air stream. They are supported by a perforated plate having different patterns of holes 
inside and outside a cylindrical insert. Just sufficient air is permitted to rise through the outer annular 
space to fluidize the settling particles. Most of the rising air (usually heated) flows inside the cylinder, 
causing the particles to rise rapidly. At the top, as the air stream diverges and slows, they settle back onto 
the outer bed and move downward to repeat the cycle. The particles pass through the inner cylinder many 
times in a few minutes’ methods. The air suspension process offers a wide variety of coating materials 
candidates for microencapsulation. The process has the capability of applying coatings in the form of 
solvent solutions, aqueous solution, emulsions, dispersions, or hot melt in equipment ranging in capaci-
ties from one pound to 990 pounds. Core materials comprised of micron or submicron particles can be 
effectively encapsulated by air suspension techniques, but agglomeration of the particles to some larger 
size is normally achieved (Bansode et al., 2010)

Pan Coating/Fluid Bed

Fluid-bed coating is a microencapsulation technique used extensively to encapsulate pharmaceuticals 
into coated particles or tablets (Teunou and Poncelet, 2002). It is a variation of the pan coating method. 
The pan coating process, widely used in the pharmaceutical industry, is among the oldest industrial 
procedures for forming small, coated particles or tablets. The particles are tumbled in a pan or other de-
vice while the coating material is applied slowly. The pipe of the blower stretches into pot for an evenly 
heating distribution while the coating pan is rotating. Solid particles greater than 600 microns in size 
are generally considered essential for effective coating (Thoke, 2012).

Chemical Methods

• Interfacial polymerization
• In situ polymerization
• Poly condensation
• Matrix polymerization

Interfacial Polymerization

According to this technique the monomer (alkyl acrylates) is added dropwise to the stirred aqueous 
polymerisation medium containing the fabric to be encapsulated (core material) and an appropriate 
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emulsifier. The polymerisation begins and initially produced polymer molecules precipitate within 
the aqueous medium to make primary nuclei because the polymerisation proceeds, these nuclei grow 
gradually and simultaneously entrap the core material to make the ultimate microcapsules. Generally 
lipophilic materials (insoluble or scarcely soluble in water) are more suitable for encapsulation by this 
system. Insulin loaded poly (alkyl cyanoacrylate) nanocapsules are synthesised by using this system. 
Additionally, to the entrapment of drug during microcapsule formation, drug loading also can be ac-
complished by incubation of cyanoacrylate nanocapsules (empty nanocapsules) with the dissolved or 
finely dispersed drug (Salaün et al., 2008).

In Situ Polymerization

In situ polymerization is one among the chemical microencapsulation processes often used for tech-
nical applications, including textiles. The process takes place in oil-in-water emulsions; the result’s 
nicely smooth, spherical, reservoir-type microcapsules with transparent polymeric pressure-sensitive 
microcapsule walls. Typical wall materials for in situ polymerization are aminoplast resins, such as 
melamine–formaldehyde, urea-formaldehyde, urea–melamine-formaldehyde or resorcinol-modified 
melamine–formaldehyde polymers. In situ processes can start either directly from amine and aldehyde 
monomers or from the precondensates. Typically, all materials for the formation of microcapsule wall 
originate from the continual aqueous phase of the oil-in-water emulsion system and thus need to be 
water-soluble. To achieve better process control and improved mechanical properties of microcapsules, 
modifying agents/protective colloids are added, like styrene-maleic acid anhydride copolymers, poly-
acrylic acid or acrylamidopropylsulfonate and methacrylic acid/acrylic acid copolymers (Jadupati et al., 
2012; Dubey, 2009).

Interfacial Polycondensation

In interfacial polycondensation, the two reactants in a polycondensation meet at an interface and react 
rapidly. The basis of this method is the classical Schotten-Baumann reaction between an acid chloride 
and a compound containing an active hydrogen atom, such as an amine or alcohol, polyesters, polyurea, 
polyurethane. Under the right conditions, thin flexible walls form rapidly at the interface. A solution of 
the pesticide and a diacid chloride are emulsified in water and an aqueous solution containing an amine 
and a polyfunctional isocyanate is added. Base is present to neutralize the acid formed during the reac-
tion. Condensed polymer walls form instantaneously at the interface of the emulsion droplets.

Matrix Polymerization

In a number of processes, a core material is imbedded in a polymeric matrix during formation of the 
particles. A simple method of this type is spray-drying, in which the particle is formed by evaporation 
of the solvent from the matrix material. However, the solidification of the matrix also can be caused by 
a chemical change (“Micro-encapsulation”, 2022).
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MICROENCAPSULES IN TEXTILES

Fragrance Finishes

Fragrance finishes are directly applied on to fibers and fabrics numerous times, but the aroma doesn’t 
last for quite two wash cycles. Microencapsulation of fragrances may be a technique which when used 
on the material gives extended effect. This system is usually utilized in aromatherapy during which 
microcapsules may contain volatile oil flavours like lavender, rosemary, pine etc. This is basically done 
to treat insomnia, headache, and to stop bad odour.

Phase-Change Materials

Phase-change materials perform the function of adjusting the aggregation from solid to liquid within 
certain range of temperature. Microcapsules of phase-change materials reduce the effect of utmost 
variations in temperatures. This facilitates the thermoregulation of clothing and therefore the constant 
temperature is provided. These sorts of microcapsules are applied to different materials, vests, parkas, 
snowsuits, blankets, mattresses, duvets etc. (Nelson, 2002).

Fire Retardants

Microcapsules with fire retardant core were developed to beat the matter of reduced softness which is 
caused by the direct application of fireside retardant materials. They’re applied to fabrics utilized in 
military applications like tentage (Nelson, 2002).

Polychromic and Thermo-chromic Microcapsules (Color-changing Technology)

The colour changing systems changes color response to temperature, which is termed as thermo chromatic 
and therefore the other changes color response to UV light, this is often referred to as photo chromatic. 
In textiles, polychromic and thermo-chromic microcapsules are often found in product labelling, medi-
cal and security applications. There are microencapsulated thermo-chromatic dyes that change colour 
at specific temperature - in response of human contact (Nelson, 2002).

Antimicrobials

Bacteria often cause microbiological decay of materials which successively causes loss of varied useful 
properties of materials. These problems are often prevented by the utilization of anti-microbial finishes 
which will be applied with the assistance of microencapsulation. This finish is particularly for textiles 
for medical and technical use. (Shrimali and Dedhia, 2015).

Counterfeiting

Imitation of high added value textiles, branded and designer goods are often addressed by the utiliza-
tion of microencapsulation. Microcapsules applied to label contain a color former or an activator. By 
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the utilization of UV Microencapsulation for textile finishing or a solvent, microcapsules break open, 
the content is released, colour is developed and during this way detection is achieved (Nelson, 2002)

CONCLUSION

In today’s world of developing technologies, the technique of microencapsulation is applied in most 
the fields. It’s become a prominently effective technique which reinforces the property imparted to the 
material and assures its durability. It’s fascinating that our clothing is now ready to actively moisturize, 
heal and even can release fragrances to scale back anxiety. The growing health awareness among con-
sumers is further propelling researchers to undertake and test all possible ingredients to deliver expected 
performance. New materials are being explored and a serious shift is towards the utilization of organic 
compounds both in sheath and core. There’s little question that this technology features a promising 
future, however, one aspect that seems critical is that the intended delivery of the encapsulated core on 
particular external stimulus. There’s a requirement to optimize the methods of manufacturing micro-
capsules and extend the time period of treated materials to realize large scale industrial production for 
every specific application. The samples of application of this system discussed during this paper are just 
a couple of of very interesting ones. A huge use of this system is often witnessed in functional finish 
fabrics, medical and healthcare textiles, aromatherapy, cosmetic textiles, and lots more.
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ABSTRACT

Carbon nanotubes (CNTs) are a unique carbon material with physical, chemical, mechanical, optical, 
structural, and electrical characteristics researched and tested for a wide range of uses. The safeguards 
of environmental health have been identified as one of the most critical sustainability goals in recent 
decades. When it concerns identifying atmospheric toxins, carbon nanotube-based detectors offer great 
sensibility and precision, along with carbon nanotubes displaying the ability for adsorption to remove 
impurities with great rates and excellent amelioration competency. Carbon nanotubes have made essential 
contributions to a responsible future in wastewater treatment, air pollution management, biotechnolo-
gies, nano sensors, and sorbents. Carbon nanotubes are also utilized as a reinforcing material in green 
nanocomposites, which are essential for achieving desired characteristics and are ecologically benign. 
The utilisation of carbon nanotubes as hybrid filters, nano sensors, sorbents, and other materials is 
covered in this chapter, as well as its advantages for the environment.
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INTRODUCTION

In recent years, innovative nanometer-scale elements have been discovered, developed, and, in some 
cases, massively processed and distributed. These new nanomaterials are made up of inorganic or or-
ganic ingredients, and that they have just recently been studied in terms of their environmental impact. 
Carbon nanotubes are used in all of them (CNTs). Carbon nanotubes (CNTs) are carbon allotropes 
that are tubular and composed of graphite. Their diameter and chirality determine their values. Carbon 
nanotubes offer a broad radius-length ratio, muscular mechanical strength and long service life. Carbon 
nanotubes may be utilized as metallic, semi-conductive, or insulating materials, and they are proving to 
be quite valuable right now. The employment of high mechanical characteristics, exceptional electrical 
features, high chemical and thermal stability, and large, particular surface areas is expanding in prospec-
tive methods, such as wastewater treatment, air pollution, nanosensors, compost filters, absorbers and 
antimicrobial agents, etc.

Radushkevich and Lukyanovich (1952) published explicit pictures of carbon tubes with diameters of 
50 nanometers in the Soviet Journal of Physical Chemistry in 1952. In a 1976 publication, Oberlin, Endo 
and Koyama showed hollow, nanometer-wide carbon fibers utilizing a steam-growth technique. In addi-
tion, John Abrahamson gave evidence of carbon nanotubes during the 14th Carbon Biennial Conference 
in 1979 at Penn State University. According to a conference report, carbon nanotubes are carbon fibers 
produced on carbon anodes during arc release (Abrahamson et al., 1999). The conclusions of chemical 
and structural characterization of carbon nanoparticles synthesised by thermocatalytical disproportion-
ation of carbon monoxide were published by Soviet researchers in 1981. The authors claimed that their 
“carbon multi-layer tubular crystals” were based on TEM images and XRD patterns to roll graphene 
layers into cylinders (Izvestiya Akademii Nauk SSSR, 1982). Hyperion Catalysis’ In 1987, Howard G. 
Tenen received a US patent for “cylindrical discrete carbon fibroids” with a “constant diameter between 

Figure 1. Single wall nanotube (SWCNT) schematic designs and multi wall carbon nanotube schematics 
(MWCNT) (1).
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approximately 3.5 and 70 nanometers, 102-fold in size and several layers of decreed carbon atoms and 
a separate inner centre, essentially continuous in the external area”. In 1991, according to a significant 
number of scholarly and general literature, the Sumio Iijima company of Nippon Electric company was 
credited for the development of hollow, nanometer-sized pipes formed of graphical carbon. In 2006, a 
journal, carbon, published by Marc Monthioux and Vladimir Kuznetsov, identified the carbon nano-
tube’s genesis (Monthioux and Kuznetsov, 2006). Carbon nanotubes contain a sp2 bond comparable to 
graphite, with each atom linked to three neighbors. Therefore, the tubes can be seen as roll-up graphite 
sheets (graphene is a single layer of graphite). This binding mechanism, which is more robust than the 
sp3 link in diamonds, gives the molecules unique strength. Nanotubes may merge at high pressure and 
exchange some sp2 connections to produce sp3 connections, which allow solid, end-to-end wires to form 
through high-pressure nanotubes. Carbon nanotubes (CNTs) have been the focus of considerable study 
and development since their discovery by Iijima (1991), because of their unique electrical, chemical, 
mechanical, and structural properties. CNTs, like graphene sheets, are produced in hexagonal networks 
from sp2 carbon atoms (Merkoçi, 2006). These could be classified as single-walled carbon nanotubes 
(SWCNT) or multi-walled carbon nanotubes (MWCNTs). SWCNT is made by rolling a sheet of graphene 
into a cylinder and cutting it with hemispheric ends caused by the pentagon in its hexagonal carbon 
network. SWCNTs are around 0.4 to 3 nm in diameter and are many μm long (Balasubramanian and 
Burghard, 2005). MWCNT is a stack of graphene sheets wrapped in concentrated cylinders of 2 and 25 
nm diameters with a gap of around 0.34 nm between sheets and interface (Ajayan, 1999). CNTs have 
several unique physical features, including 100 times the strength of steel’s tensile, higher than most 
other materials thermal conductivity, apart from for pure copper-like diamonds and electric conductiv-
ity but have considerably higher currents (Merkoçi, 2006). The transmission rate of CNTs over the 
sidewall is high, resulting in the high electrical conductivity of CNTs. The chemical reactivity of CNTs 
is primarily due to the sidewall curvature and structural flaws (Balasubramanian and Burghard, 2008). 
Due to the distortion from the typically flat C–C bonds of sp2 hybridization and the misalignment of p 
orbitals, exoedral chemical reactivity on the CNT’s convective surface increases by increasing curvature. 
The overall chemical reactivity of CNTs is strongly reliant on build-up defects such as vacancies and 
Stone–Wales defects, which allow for the formation of localised double bonds between faulty carbon 
atoms, hence increasing local chemical reactivity. CNTs absorb the available surface area as well as the 
nanotube’s pore type. The nanotubes can indeed be opened by removing the caps, and chemical processing 
of CNTs can substantially alter the adsorption characteristics by altering the surface and porous structure. 
In general, CNTs had greater condensing pressures and lower adsorption temperatures than graphite, 
which resulted in superior adsorption (Masenelli-Varlot et al., 2002). CNTs have two different areas: 
the sides of the CNT and tube ends and contribute to their electrochemical behavior. CNT purification, 
a result of chemical or thermal transformation, CNTs are partially oxidised, oxidised functional groups 
at tubular ends can be formed and defects eliminated (Gong et al., 2005).

The purified CNTs are cyclically voltammetric (CV) in a redox process, and the peaks attributable to 
the oxygenated functional groups in the CNTs are a redox process (Luo et al., 2001; Barisci et al., 2000). 
The CNT’s sidewall’s electrochemical behavior resembles the base level of highly orientated pyrolytic 
graphite, and their tube ends electrochemical conduct resembles the edge plane of highly oriented pyrolytic 
graphite (Banks and Compton, 2006). Carbon nanotubes may be utilized as energy storage, as a gaseous 
adsorption membrane, and applications to absorb hydrogen and separate gases for the environment. In 
this section, we explain the key principles underlying the function of carbon nanotubes, in particular for 
the treatment of wastewater, air pollution, creation of green nanocomposites, composite filters, antimi-
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crobials, etc. We also address the possible applications of CNTs for environmental monitoring sensors 
and adsorbents and CNT-based green nanocomposite creation to protect the environment.

Nanotubes in the realm of nanotechnology are relatively young yet well researched materials. Due 
to their extraordinary mechanical, electrical, and chemical features, carbon nanotubes are promising to 
bring new and better technology in the environment, as sensors and sorbent material, to detect and treat 
current pollutants and avoid further environmental and engineering contamination. Nanotubes, existing 
as tiny particles, can potentially offer ecological risks on their own (Masciangioli and Zhang, 2003). 
Nanotechnology offers numerous problems and potential which scientists have just recently begun to 
investigate. Control of the environment authorities, academics and the public are worried that trace ele-
ments are increasingly mobilized and released into the environment. Heavy metals e.g., mercury (Hg), 
lead (Pb), cadmium (Cd)) and organic compounds are the substances of considerable significance for soil 
remediation, sediment, and groundwater (e.g., Cyclohexa-1,3,5-triene, chlorinated solvents and toluene). 
However, numerous types of trace pollutants were adsorbed by nanotubes (Li et al., 2002; 2003a). The 
physical and chemical composition of nanotube surfaces connected to sorbent capacity and interference 
with the gas mixture of other constituents lack basic comprehension in the water. Many items might be 
lighter, stronger, cleaner, cheaper, and more precise with nanotechnology. Nanotechnology can enhance 
environmental protection considerably. This chapter is, therefore, an attempt to describe the ecological 
protection status of carbon nanotubes.

WASTEWATER TREATMENT OF CARBON NANOTUBES

Water resources can become contaminated by a variety of processes, including metallurgy, mining, 
tanning, chemical production, fossil fuel refinery, battery manufacturing, and the creation of plastics, 
which often uses metal compounds, particularly as heat stabilisers. Additionally, more pollutants are 
emerging while traditional pollutants’ problems have yet to be fully overcome. Clean water for all and 
environmental conservation are hampered by the removal of toxic metals (Muyibi et al., 2008; Bansal 

Table 1. Species that can be discovered using CNTs electrocatalysis (17).

Species Media CNTs

Catechol 
Dopamine 
Epinephrine 
AA 
DOPAC 
Nitric oxide 
Cysteine 
Glutathione 
Homocysteine 
NADH 
H2O2
Uric acid 
Oxygen 
Glucose 
Adenine 
Guanine 
Insulin

PBS (pH 7.0) 
PBS (pH 6.9) 
B-R buffer (pH 6.9) 
PBS (pH 7.0) 
PBS (pH 7.0) 
PBS (pH 7.0) 
0.2 M H2SO4 
PBS (pH 7.0) 
PBS (pH 7.0) 
PBS (pH 7.4) 
PBS (pH 7.4) 
PBS (pH 7.0) 
0.1 M NaOH 
0,1 M NaOH 
Acetate buffer (pH 5.0) 
Acetate buffer (pH 5.0) 
PBS (pH 7.4)

MWNT 
SW/MWNT 
SWNT 
MWNT 
MWNT 
MWNT 
CNTPE 
MWNT 
MWNT 
MWNT 
MWNT 
SWNT 
MWNT 
MWNT 
CNTPE 
CNTPE 
MWNT
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and Goyal, 2005). Water contaminated with metals can lead to a number of illnesses, including anaemia, 
cancer, kidney disease, and damage to the nervous system (Friberg et al., 1998; Calderón et al., 2001; 
Li et al., 2002). When carbon nanotubes (CNTs), a unique alloform of the carbon family, were first 
found in 1991 (Iijima, 1991), they displayed extraordinary physical, chemical, mechanical, electrical, 
and mechanical features (Ajayan, 1999; Terrones, 2003; Dai and Mau, 2001). This is the consequence 
of promising future applications in various fields, including applications in nanoelectronics (Collins et 
al., 1997), microelectronic devices (Javey et al., 2003), field emissions (de Heer et al., 1995; Wang et 
al., 1998), catalyst support (Planeix et al., 1994; Che et al., 1998), chemical sensors (Kong et al., 2000; 
Collins et al., 2000), and strengthening applications for composite materials (Dalton et al., 2003). CNTs 
are good candidates for kinetic adsorption because of their large, specific region, great temperature 
stability, and simple, mass manufacture (Wang et al., 2002). Comparing CNTs to activated carbon, the 
former has a substantially higher capacity for adsorption (AC). This is due to the surface area’s expan-
sion, which encourages CNT and dioxin contact. (Long and Yang, 2001). These CNTs have the potential 
to be heavy-weight, making them useful for removing radioactive nuclides (Li et al., 2003; Wang et al., 
2005; Lin et al., 2006; Chen et al., 2007) as well as the heavier metal ions zinc (Zn) (Lu and Chiu, 2006; 
Lu et al., 2006), cadmium (Cd) (Li et al., 2003a; Vuković et al., 2010; Gao et al., 2008), lead (Pb) (Li et 
al., 2006 Peng et al., 2005), nickel (Ni) (Kandah and Meunier, 2007; Lu et al., 2006; Chen et al., 2006), 
copper (Li et al., 2003b, 2003c), fluoride (Li et al., 2001 Li et al., 2003d), and nickel (Ni).

CNTs have a great deal of promise and are also highly interested in gas adsorption. Studies on the 
adsorption of various gases, including as ammonia (Tuzen and Soylak, 2007; Bauschlicher and Ricca, 
2004), nitrogen and methane (Bienfait et al., 2004; Talapatra and Migone, 2002), hydrogen (Dillon et 
al., 1997 Chen et al., 1999; Liu et al.,1999; Lee and Lee, 2000), ozone (Yim and Liu, 2004), carbon 
monoxide and carbon dioxide (Varghese et al., 2001), 1,2-dichlorobenzene (Lin et al., 2002 Peng et al., 
2003), and dioxin, have been detailed in the CNTs (Long and Yang, 2001; Fagan et al., 2007). The use 
of CNTs for the adsorption of single or binary/tertiary wastewater heavy metal separation is also pro-
posed as an important topic for discussion. The most promising choices for heavy metal separation and 
removal from wastewater treatment systems are CNTs. The CNTs have significant adsorption capacity 
due to their porosity, surface area, and broad spectrum of functional surface groups. The attraction, pre-
cipitation, and chemical interaction between metal ions and CNT surface function groups is what makes 
methods for integrating metal ions with CNTs so challenging (Rao et al., 2007). CNTs are essential for 
the removal of certain organic salts, toxic colours, and heavy metals from water. However, when CNTs 
fail to operate, a more exceptional adsorption ability towards non-polar molecules, such as polycyclic 
aromatic hydrocarbons, is observed (Yang et al., 2006; Wang et al., 2008). Lu et al. (2008) Ni2+.’s adsorp-
tion and desorption in CNTs were demonstrated by regeneration study. However, after a few cycles, the 
amount of granular activated carbon (GAC) significantly decreased (Lu et al., 2008). It is more difficult 
to desorb Ni2+ because of the GAC’s porous nature because the ions must travel from the inside. CNTs 
are currently used in technology as nano filters to reduce wastewater particles and serve as a sorbent 
for organic and inorganic contaminants (Srivastava et al., 2004; Jin et al., 2007; Tahaikt et al., 2007).

Similar to sorbents, different functionalities can be added to the pores to manage a specific CNT 
filter selectivity (Fornasiero et al., 2008). In spite of their hydrophobic characteristics, CNTs have 
demonstrated outstanding efficacy in water transportation. Due to the hydrophobic property of CNT 
pores, which denotes weak interactions with water molecules, quick, almost immature water circulation 
molecular dynamic simulations are possible (Noy et al., 2007). Hummer et al. (2001) claims that nano-
scale confinement, which results in a narrowing of the interaction energy distribution and a reduction 
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in the contact with water, is the source of the frictionless water flow. Additionally, recent CNT-based 
filtration studies have demonstrated the ability of Nanofilters CNT for the removal of pathogens from the 
surface of CNTs, such as bacteria, viruses, and protozoa, employing a deep-filtration process (Bohonak 
and Zydney, 2005; Brady-Estévez et al., 2008). Brady-Estévez et al. (2008) have reported the effective 
method for getting rid of E. coli bacteria using SWCNT filters. Using a microporous membrane made of 
the SWCNT’s internal nanotube bundles, E. coli cells could be completely captured and held (PVDF). 
Also suggested was a modification that would immobilise SWCNTs on a microporous ceramic filter. In 
a different study, Mostafavi et al. (2009) created an adjustable nano-scale porosity CNT-based filter with 
maximal efficacy in MS2 virus eradication at a pressure of 8–11 bar using a spray pyrolysis approach. 
The usage of CNTs in wastewater treatment goes beyond filtration and sorbent; multiple studies found 
that CNTs had superb antibacterial properties (Mostafavi et al., 2009). This property makes carbon 
nanotubes an innovative and efficient alternative to chemical disinfectants for the treatment of micro-
biological diseases. Utilizing CNTs in water disinfection treatment avoids the formation of dangerous 
disinfection byproducts (DBPs) such trihalomethanes, haloacetic acids, and aldehydes because they are 
not strong oxidants and are often inert in water (Savage and Diallo, 2005; Kang et al., 2007; Li et al., 
2008; Nepal et al., 2008; Cortes et al., 2009).

CARBON NANOTUBES IN AIR POLLUTION

Researchers wanted to examine the possible uses of CNTs as sensing components for detecting and 
monitoring the concentration of hazardous gas discharged into the environment through their exceptional 
electrical, electrochemical, and optical characteristics (Wei et al., 2006 Van Hieu et al., 2008 Bondavalli 
et al., 2009; Di Francia et al., 2009; Lu et al., 2009; Penza et al., 2009a, 2009b; Zhang and Zhang, 2009). 
The CNTs feature unique and adjustable electronic elements, which substantially impact their metallic 
or semiconducting structure, including their size and chirality. CNT gas sensor has several benefits over 
conventional semi-conductor metal oxide gas sensors, such as low power consumption, low operating 
temperatures and high sensitivity (Endo et al., 2007). A 180-micron thick glass insulator is a thin film 
range of CNTs acting as a cathode. The single CNTs produce a strong electric field close to the ultra-fine 
tips and enhance the total area to accelerate the gas ionization process (Bogue, 2004). Due to direct gas 
contact, the detection by this gas sensor is dependent on the resistance or conducting change in CNT.

In numerous research studies, CNT-based gaseous sensors were utilized for the detection (Ueda et 
al., 2008a, 2008b) of nitrogen oxides (NO2), (Kong et al., 2000; Cantalini et al., 2003; Valentini et al., 
2004; Cho et al., 2006; Moon et al., 2001), ammonia (NH3) (Nguyen et al., 2006; Quang et al., 2006; 
Nguyen et al., 2007), and room temperature of sulfide dioxide (SO2) (Suehiro et al., 2005). Although 
the findings demonstrated a high and quick gas sensor response, the time-consuming recovery is chal-
lenging. Several techniques were suggested to improve gas desorption from the sensor. For example, the 
heating and flow rate of purging gases might increase the gas degradation from the sensor by utilizing 
UV lighting. Attempts have been undertaken to enhance CNT-based gas sensors’ greater sensitivity and 
selectivity by polymerization (Wei et al., 2006; Lu et al., 2009).

CNTs in conveyor polymers like polyaniline and polypyrrole lead to increased sensitivity for specific 
gases or vapors. A polymer coating research (Qi et al., 2003) has shown that a polyethylene-coated CNT-
based gas sensor offering a solid NO2-detection affinity at concentrations less than one ppb without NH3 
interference due to the poor binding relationship and the adhesive coefficient of NH3 on electron-rich 
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CNTs. In contrast to the PEI-coated sensor, a nafion (polymeric sulfonic acid ionomer) CNT-based gas 
sensor has increased selective capacity for CNT sensing by inhibiting the NO2 of CNT. Nafion is also 
available. The production of a small wireless gas sensor based on a composite chemical resistor CNT/
poly(methylmethacrylate) (PMMA) was also shown (Abraham et al., 2004) to enhance sensitivity to 
exposures such as dichloromethane, chloroform, or acetone vapor to volatile organic chemicals. Although 
CNT-based gas sensors compete with conventional metal oxide sensors, non-stop advancements to 
enhance conventional gas sensors have been implemented. In addition to the high working temperature 
limitations, the integration of CNTs in metal oxide sensors has been observed (Wei et al., 2004; Espinosa 
et al., 2007; Duc Hoa et al., 2007; Van Duy et al., 2008; Van Hieu et al., 2008; Wang et al., 2008). In ad-
dition to this, considerable improvements were seen in sensitivity and responsiveness time for detecting 
at room temperature of NO2 and NH3 using CNT/metal oxide sensors. The improved performance has 
been attributed to the efficient access of the gas to nanopassages and the change of conduct following 
CNT gas adsorption (Duc Hoa et al., 2007 Gong et al., 2008).

GREEN NANOCOMPOSITE DESIGN OF CARBON NANOTUBES

The production of waste is equal to the economic growth of the globe. Wastes, in particular synthetic 
polymer waste, create adverse environmental consequences. To solve that problem, it has been suggested 
by the Europe to develop a waste management strategy based on two complementary strategies: waste 
avoidance via improved product design and increased waste recycling with a concentration on life cycle 
assessment (Baillie, 2004). Within the wave of next-generation materials, the prospect for waste man-
agement has led to the problem of synthesizing the green nanocomposites by employing biodegradable 
polymers (Mojumdar and Raki, 2005; Wang et al., 2005). The green nanocomposite movement using 
renewable natural resources covers the idea of life cycle assessment that promotes waste recycling and 
reuse. Biodegradable polymers have a high potential economic value and, because of their degrad-
ability, have garnered a significant deal of attention from researchers to replenish non-renewable pyro-
technic polymers. However, most biodegradable polymers have lower mechanical characteristics and 
low-temperature distortion, limiting their usage in broad applications. As a result, CNTs can serve as 
nano reinforcements for biodegradable polymers to improve mechanical parts, increase durability, and 
increase thermal stability in a range of composite materials. The biodegradable nanocomposite quality 
is typically based on the alignment with CNT, the adhesion of CNT-biodegradable polymers and the 
distribution of CNT in a biodegradable matrix of polymers (Grossiord et al., 2005; Ray et al., 2006; 
Vaudreuil et al., 2006).

Song and Qiu (2009) confirmed that the thermal strength of poly (butylene succinate) (PBSU) has 
been increased by around 10°C after inclusion into CNTs. Sitharaman et al. (2008) have shown that 
ultra-short CNTs may substantially strengthen poly propylene fumarate (PPF) that is generally restricted 
to load-bearing applications because of their mechanical characteristics. Besides, CNT/PPF nanocom-
posites have compatibility in vivo that promise use as a bone tissue engineering prototype scaffold. The 
green nanocomposites give the capacity to recycle the inserted CNTs owing to the degradability of the 
biodegradable polymer. The biodegradation of the polymer can be accomplished under specified pH 
and temperature settings by both microbial degradation and enzyme degradation. The recovered CNTs 
can function as strengtheners for the production of newly developed composites following deterioration. 
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The method of reuse and recycling of CNTs can at the same time minimize waste disposal and make 
material treatment economical.

Carbon Nanotubes in Biotechnology

In recent years, the fast rise in biotechnology, where live organisms are used to produce goods or processes 
for specific usage, has resulted in an increased need for new, environmentally friendly technologies. The 
development of biotechnology allows CNTs to be involved particular in biological fuel cells (biofuel cells).

Biofuel cells, as specified by (Palmore and Whitesides, 1994), are fuel cells that use biocatalytic 
activity in power production. They may generally be categorized as microbial fuel cells (MFC) or en-
zyme biofuel cell (EFC). The MFC uses microbial catabolism for electrical power generation. Even as 
material resource containing intricate organic waste and renewable biomass in wastewater they have 
been regarded as future alternatives in wastewater treatment (Logan et al., 2006; Watanabe, 2008). But, 
mainly due to low performance and lack of technological maturity, the technology is not practicably 
practicable. Due to their high conductivity and wide area, much study was focused on using and modify-
ing CNTs as electrodes to enhance MFC power generation (Morozan et al., 2007; Qiao et al., 2007). By 
coating CNTs on carbon cloth, Tsai et al. (2007) have produced a novel electrode design to develop a 
highly conductive MFC particular area electrode. The inclusion of CNTs improved the power density by 
250% compared to an electrode not covered with a CNT. Sharma et al. (2008) tested the CNT electron 
performance against a graphite-flavored electrode; the CNT electrode was shown to increase the power 
density of the electrode by about six times over that of the graphite electrode. MFC biocompatibility of 
CNTs with microorganisms may be produced to optimize power density further.

Although CNTs have been asserted to be antibacterial, the cytotoxicity comportment diminishes after 
being modified and functionalized, as previously mentioned (Sayes et al., 2006). Staphylococcus aureus 
biocompatibility with Morozan et al. (2007) obligations in CNT modified cell culture media resulted 
in rapid microorganism multiplication. If MFC anodic design is applied, this suggests the possibility of 
decreasing energy loss. Instead of microbial catalytic activity, EFC employs enzymes or protein catalysis 
to convert chemical energy into electric energy. EFC’s short-life, low stability, and low power density 
of enzymes continue to limit its use as a power source for low-power sensors, communications devices, 
and medical implants (Kim et al., 2006; Minteer et al., 2007). Nevertheless, CNTs are a significant ad-
vance for EFC as biologic electrodes. Besides the mediation of load transfer, CNTs showed considerable 
effectiveness in EFC by providing a robust enzyme immobilization platform (Fischback et al., 2006; 
Asuri et al., 2007; Li et al., 2008 Zhao et al., 2009). CNTs enable the covalent attachment of enzyme 
molecules to their surface and encourage large loads of enzymes by allowing cross-linked enzymes to 
be assembled. The stability of the Enzyme in EFC is significant because it gives outstanding operational 
resilience, which is expected to pave the way to increase the power density and extend the life of EFC. 
For example, the stable activity of CNT-coated glucose Oxidase allowed for more than 16 hours of con-
tinuous operation by an EFC (Fischback et al., 2006). Furthermore, CNTs can improve enzyme stability 
in the nano-scale environment. The covalent connecting of enzymes to CNTs have been shown to have 
a high level of peace because of the covalent connection (Govardhan, 1999; Sheldon, 2007). In another 
sense, CNT curvature increases the distance between enzyme molecules, reducing harmful interactions 
between enzymes and improving the enzymes (Asuri et al., 2006).
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CONCLUSION

CNTs applications are increasingly important from a research perspective from their prospective usage 
for future energy conversion and storage technology, environmental monitoring and wastewater treat-
ment, and green nanocomposite design. This review looks at the characteristics of CNTs in electrical and 
energy appliances as the electrode material or conductive filter. In addition to the growth as adsorbents to 
remove contaminants in wastewater treatment, the potential development of CNTs as a sensing material 
for environmental monitoring in nanosensors is highlighted. The concluding section describes the ben-
efits of green nanocomposites conferred by CNTs and their effect on the environment. CNTs with their 
exceptional structural, electrical and mechanical characteristics revealed beneficial potential in energy 
and environmental applications. Developing integrated energy conversion technology developed by CNT 
with an effective energy storage system has demonstrated successful advances in tackling energy chal-
lenges for clean, sustainable energy sources in the future. In the field of environmental pollution analysis, 
industrial emissions monitoring and control as well as wastewater treatment, CNTs are a fantastic option 
for developing sensor and adsorbent products. In addition, the creation of green nanocomposites solves 
the environmental problems of synthetic polymers and finds intriguing potentials in several sectors. In 
short, CNTs provide new possibilities for energy and ecological growth with beneficial potential. In-
tensive research is needed to enhance further the performance and the practical uses of integrated CNT 
devices towards marketing and protection of the environment.
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ABSTRACT

Nanotechnology is broadly used in the different fields of science such as biomedicine, pharmaceuticals, 
electronics, diagnostic instruments, and environmental detection. Nanoparticles have great potential to 
purify wastewater and decontaminate wastewater. Nanoparticles can eliminate inorganic/organic pol-
lutants, heavy metals, and chemical dye from contaminated water. Nanoparticles are synthesized with 
various methods such as physical, chemical, and biosynthesized. Plant extract is used for the synthesis 
of metallic nanoparticles because plant extract contains different types of primary and secondary 
metabolites. These metabolites act as stabilizing and reducing agents in the synthesis of novel metallic 
nanoparticles. The size and shape of nanoparticles have unique properties; thus, they are widely used 
for removing pollutants from water. The chapter discussed green synthesized metallic nanoparticles and 
their application in the treatment of wastewater.

INTRODUCTION

The nanotechnology field mainly covers chemistry, biology, physics, and material science. It develops new 
therapeutic nanoparticles with significant applications in different areas of science like energy, biomass, 
nutrition, and medicine (Chandran et al., 2006). The size and shape of nanoparticles are challenging work 
in the field of biomedical science and also developed novel nanoparticles in the pharma industry to cure 
different types of viral and bacterial diseases (Song and Kim, 2009). The synthesis of nanoparticles with 
the different methods but the biosynthesis methods/green synthesis methods have more compensation 
over the chemical synthesis methods due to the eco-friendly procedures. Today, the researchers focused 
on drugs from medicinal plants and also rich biodiversity regions, thus plant parts’ easy availability has 
been extremely explored for the nanoparticle’s synthesis (Monda et al., 2011). Medicinal plants contain 
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several types of novel secondary metabolites like terpenoids, diterpenoids, alkaloids, flavonoids, phe-
nolic acid/phenol, and other secondary metabolites. These secondary metabolites are responsible for the 
formation of nanoparticles/metallic nanoparticles into bulk (Figure 1) (Aromal and Philip, 2012). The 
plant metabolites are involved in the redox reaction to synthesize eco-friendly metallic nanoparticles 
and also reported several studies, biosynthesized nanoparticles effectively controlled apoptosis-related 
changes, genotoxicity, and oxidative stress (Kim et al., 2007). Furthermore, biosynthesized nanoparticles 
have extensive application in the plant sciences and agriculture industry.

Water is an essential thing for the survival and development of living beings. Water is covered about 
70% earth’s surface due to the reflecting blue colour. Water is further catharized in saline water cover 
about 97.5%, while freshwater cover about 2.5% in the different form of glacier, snow, and ice. Freshwater 
is only 0.3% easily available and is an elementary quality for a flourishing society as well as a thriving 
economy (Kurniawan et al., 2012). The rapid development of urban regions and industrialization are 
causing contamination of the environment and deterioration of the quality of water (Singh et al., 2020; 
Kamali et al., 2019), which has become a severe problem for humans and other living organisms. Today, 
it is a big issue to protect the drinking water from contamination such as organic dyes, metal anions, 
cations, and other pollutants (Karthikeyan et al., 2020; Karthikeyan and Meenakshi, 2019). Drinking 
water is a vital element for all living organisms and also a demand in agriculture for large production. 
The freshwater is high consumption by households, industry, and another sector is about 8%, 22%, and 
70% respectively (Naseem and Durrani, 2020). Modern industries such as food, leather, and cosmetic 
industries most of them are toxins and harmful to the life of humans and all living organisms (Sirajud-
heen et al., 2020). The pollutants (anionic) like nitrate, phosphate ions in water have become a serious 
issue and cause several carcinogenic and mutagenic diseases/disorders like lung cancer, liver inflam-
mation, dermatitis, and chronic ulcers and also affected environment (Karthikeyan et al., 2019). Thus, 
it is important to remove/eliminate these ions from water for humans and all other living organisms. 
Nanomaterials/nanoparticles is commonly developed at atomic and molecular level to craft new structure/
system have optical, electronic, magnetic, and conductive properties. Therefore, nanoparticles have been 
found to be effective in removal of different types of pollutants from wastewater (Kumar et al., 2014). 
In this chapter, I have discussed green synthesized nanoparticles apply for the elimination of pollutants 
from wastewater to become potable drinking water.

BACKGROUND

Worldwide people face diverse challenges of water supply, around 1.2 billion people do not have access 
to drinking water (Herschy, 2012). About 2.6 billion population struggles to fulfil basic sanitation and 
polluted water communicated different types of diseases thus million people, mostly children, have lost 
their lives and (Kumar et al., 2014). Mostly developing countries several parts are affected because their 
wastewater organization is commonly non-existent. The wastewater is mainly divided into two types 
municipal and industrial wastewater based on the source, which contains urine, industrial, food waste, and 
agricultural wastewater sources (Figure 2) (Abou El-Nour et al., 2010). Municipal wastewater contains 
several types of contaminates like inorganic/organic soluble compounds, microorganisms, and differ-
ent types of heavy metals (Figure 3). These contaminants are changed to clean water properties (Abou 
El-Nour et al., 2010). Nowadays, wastewater treatment is essential due to the toxic effects of microor-
ganisms, agriculture, animals, hazards on humans, and the environment. The treatment of wastewater 
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can involve biological, chemical, and physical procedures (dye, volatile, dissolved, total solid) (Bitton, 
2005; Borgohain and Mahamuni, 2002). In wastewater, several types of bacteria can cause various 

Figure 1. Synthesis mechanism of metallic nanoparticles using plant extracts.
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types of waterborne diseases like Shigella, Typhoid, and Cholera while some bacteria cause less seri-
ous effects like streptococcus, Klebsiella pneumonia, Escherichia coli, and others. In 2004, wastewater 
caused approx. 1.5 million dead children under the age of five (Baek and An, 2011). Physical procedure 
total dissolved solid method is dissolved in wastewater and can potentially include metals and inorganic 
salts like potassium, magnesium, sodium bicarbonates, calcium, chlorides, and also organic materials 
in low amount. The particles size range for dissolved solids is from 0.01 to 1.00μm (Chang and Zeng, 
2004; Cheremisinoff, 2002). Organic impurities like proteins (10%), carbohydrates (40%), oils, and fats 
(50%) are generally present in wastewater (Cheremisinoff, 2002). The quality of organic impurities in 
water is calculated through the calculation of chemical oxygen demand (COD) and biological oxygen 
demand (BOD). 

Nanotechnology is an inexpensive wastewater treatment compared to a huge organization because it 
is a very effective, integrated, and multifunctional field of science (Vilardi et al., 2017). Nanoparticles 
are very small in size thus leading to several changes in physical properties such as improvement of the 
surface area and quantum properties on the particle size. Other properties like catalytic activity, reac-
tivity, and high adsorption are also associated with nanoparticles (Khan et al., 2019). Several studies 
have been reported, different types of nanoparticles eliminated various types of pollutants like organic, 
inorganic, bacteria, and metals present in wastewater (Du et al., 2020; Varjani et al., 2017). In past, some 
important methods have been developed for example ultrafiltration, gravity separation, reverse osmosis, 
electrodialysis, solvent extraction, oxidation, microfiltration, sedimentation, precipitation, coagulation, 
adsorption, distillation, electrolysis, flotation, and ion exchange for treating wastewater (Stoller et al., 
2018; Vilardi et al., 2018).

Figure 2. Represented different sources of wastewater.
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Synthesis of Metallic Nanoparticles

Metal oxide nanoparticles are considered the maximum promising as having remarkable biological ap-
plications because of their large surface area, which is of interest to scientists due to their increasing vast 
application in science (Ahmed et al., 2016). Metallic nanoparticles are synthesized using several methods 
like chemical (electrodeposition, chemical vapor deposition, Langmuir Blodgett method, catalytic route, 
hydrolysis, wet chemical method, etc.), physical (spray pyrolysis, ball milling, ultra-thin films, thermal 

Figure 3. Represented various types of pollutants present in wastewater.
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evaporate, plasma arcing, etc.), biological, and enzymatic (Joerger et al., 2000; Gan et al., 2012). Both 
chemical and physical approaches have been using high concentrated reductants and stabilizing agents 
and radiation that are harmful to human health and also the environment. Some other limitations have 
such the mechanism of action not being fully understood, toxicity features, expansive analysis require-
ments, recycle/reuse/regeneration. Those limitations are opening novel and excessive chances in this 
developing field of research.

Green synthesis/biologically synthesized nanoparticles are a new method to be counter those limi-
tations, thus gaining great attention in current research in nanotechnology. Generally, green synthesis 
nanoparticles have been produced by clean-up, control, regulation, and remediation processes, which 
will directly help uplift their environmental friendliness. The green synthesis methods are using different 
types of biological materials such as bacteria, fungi, algae, and plant extracts. Plant extract-mediated 
green synthesis methods for the synthesis of metallic nanoparticles is a relatively simple and easy process 
compared to bacteria/fungi-mediated synthesis. Plant extracts have contained several types of effective 
phytochemicals in different parts of plants such as phenols, terpenoids, flavones, alkaloids, amides, 
carboxylic acids, and much more which are capable of reducing metal salts and helpful to synthesize 
metallic/metal oxide nanoparticles (Singh et al., 2018). Thus, nanoparticles are biologically synthesis 
in a single-step bio-reduction approach with less energy (Sathishkumar et al., 2009).

Plant Parts used to Synthesize Metallic Nanoparticles

The different parts of the plant such as leaves, root, stem, flowers, fruit, seed, callus, and peel are used 
to synthesize metallic nanoparticles in various shapes and sizes by biological approaches. Several metal-
lic nanoparticles like nickel, zinc, silver, copper, titanium, platinum, and gold were synthesized using 
different parts of plants and have been studied exclusively (Chandran et al., 2006; Dubey et al., 2010).

Scientists have used green synthesis approaches for the synthesis of metallic nanoparticles through 
plant leaf extracts to further explore their different applications. Plant leaves have various types of phy-
tochemicals with exemplary potential to reduce metal salt into nanoparticles. Several plant leaves are 
used for the preparation of various types of metallic nanoparticles for example Tulsi (Ocimum sanctum), 
Mustard (Brassica juncea), Oat (Avena sativa), aloe vera (Aloe barbadensis Miller), alfalfa (Medicago 
sativa), Coriander (Coriandrum sativum), Lemon (Citrus limon), Lemongrass (Cymbopogon flexuosus) 
and Neem (Azadirachta indica) have been applied to synthesize gold and silver nanoparticles. Also, 
coriander (Coriandrum sativum) (Anastas et al., 1998), Green Tea (Camellia sinensis) (Maensiri et al., 
2008), crown flower (Calotropis gigantean) (Vidya et al., 2013), China rose (Hibiscus rosa-sinensis) 
(Devi et al., 2014), aloe leaf broth extract (Aloe barbadensis Miller) (Gunalan et al.,2012) and copper 
leaf (Acalypha indica) (Gnanasangeetha et al., 2014) have been used for the synthesis of zinc oxide 
nanoparticles with a great diversity of plant leaf extracts. This type of study has explored the ex vivo 
synthesis of nanoparticles for example observed in vivo synthesis of nanoparticles like cobalt, copper, 
nickel, and zinc in sunflower (Helianthus annuus), alfalfa (Medicago sativa), and mustard (Brassica 
juncea) (Marchiol et al., 2012). These metallic nanoparticles have been applied to treat microbial activi-
ties and display good antimicrobial activity.

Plant parts stem is also used for the synthesis of metallic nanoparticles. Callicarpa maingayi was 
prepared methanolic extract using stem and it is used for the synthesis of silver nanoparticles. The plant 
parts stem extract displays, various types of functional groups, like carboxyl, amine, phenolic, aldehyde, 
amide I, and other compounds. The stem extract of the plant contains an aldehyde group which can 
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reduce silver ions to silver nanoparticles. The other secondary metabolites such as polypeptides, amide 
I are responsible for the capping of ionic substances into silver nanoparticles (Shameli et al., 2021). 
Vanaja et al. has also reported the synthesis of silver nanoparticles using Cissus quadrangularis stem 
extracts (Vanaja et al., 2013). Garibo et al. reported the synthesis of silver nanoparticles using Lysiloma 
acapulcensis stem to distill water extract and applied it against microorganisms (Garibo et al., 2020).

Seed extracts of medicinal plants contained high flavonoids and other phytochemicals like lignin, 
saponin, and vitamins. A seed extract has good reducing agents and also acts as a better surfactant for 
the synthesis of gold nanoparticles (Mittal et al., 2013). The other example of Macrotyloma uniflorum 
aqueous seed extract increased the reduction rate of silver ions for the synthesis of silver nanoparticles. 
Caffeic acid is present in the plant extract, which is enhanced the reduction reaction few minutes (Kup-
pusamy et al., 2014). The seed extract of Tectona grandis has been used for the synthesis of silver 
nanoparticles and applied against microbial activity (Rautela et al., 2019).

Astragalus tribuloides root extract has been used as a key drug in traditional medicine in China, 
Russia, and Bulgaria. The root extract has rich sources of flavonoids, saponins, polysaccharides, and 
phenolics (Li et al., 2019; Li et al., 2014). It is applied for the treatment of throat, eye diseases, tumors, 
liver diseases, and chest pain (Chaudhary et al., 2008). A. tribuloides root extract is used for the synthesis 
of silver nanoparticles and is active against microbial activity (Sharifi-Rad et al., 2020). Dangi et al. also 
reported the synthesis of silver nanoparticles using aqueous root extract of Berberis asiatica and treated 
human pathogens such as Staphylococcus aureus positive bacteria and negative bacteria Escherichia coli, 
K. pneumonia, and Salmonella typhimurium. Silver nanoparticles showed good antibacterial activity 
(Doan et al., 2020). Bekele et al. (2020) reported the synthesis of Titanium Oxide nanoparticles at dif-
ferent volume compositions (1:2, 1:1, and 2:1) of titanium tetrabutoxide using root extract of Kniphofia 
foliosa respectively. TiO2 nanoparticles have been applied against human pathogen bacteria strains of 
Streptococcus pyogenes, S. aureus, K. pneumonia, and E. coli and showed potential activity against the 
human pathogen (Bekele et al., 2020).

The extract of rose petals has been used for the environmentally friendly synthesis of gold nanopar-
ticles. Petals of Rose extract contained proteins and sugars and these functional compounds reduced 
tetrachloroaurate salt in bulk gold nanoparticles (Noruzi et al., 2011). Clitoria ternatea, Nyctanthes 
arbortristis, and Catharanthus roseus different groups of flowers are used for the synthesis of metal 
oxide nanoparticles. Synthesized nanoparticles have been efficiently controlling human pathogenic 
bacteria (Das et al., 2011). Vankar and Bajpai also reported the synthesis of gold nanoparticles using 
an aqueous extract of Mirabilis jalapa flowers that acts as a reducing agent (Vankar and Bajpai, 2010). 
Abelmoschus esculentus (L.) Moench is also known as okra and an economically important malvaceous 
vegetable crop which a rich source of vitamins, minerals, and nutrients. The extracts of the flowers of A. 
esculentus were used for the synthesis of silver nanoparticles. Silver nanoparticles have been applied for 
the treatment of Gram-positive pathogens B. subtilis, S. aureus, S. epidermidis, and S. pyogenes and the 
Gram-negative pathogens K. pneumonia, E. coli, Pseudomonas aeruginosa, Proteus vulgaris, Salmonella 
typhimurium, and Shigella sonnei and found promising antibacterial activity (Devanesan et al., 2021).

The fruit extracts have bioactive phytomolecules that are known to possess a significant therapeutic 
potential and are also used for the synthesis of metallic nanoparticles. Tribulus terrestris fruit extracts 
are used for the synthesis of silver nanoparticles with different concentrations (Gopinath et al., 2012). 
The extract has contained various types of active phytochemicals that are responsible for the reduction 
reaction and synthesize nanoparticles. Silver nanoparticles were prepared through T. terrestris fruits 
extract applied against multidrug-resistant human pathogens and found admirable antimicrobial activity 
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(Gopinath et al., 2012). Amarnath et al. (2012) also reported synthesizing palladium nanoparticles using 
polyphenol from grapes and treating efficiently against bacterial diseases (Amarnath et al., 2012). Several 
plant extracts of fruits have been used for the synthesis of metallic nanoparticles for the example Cornus 
mas L. (copper oxide nanoparticles), Citrullus lanatus (gold nanoparticles), Vitis vinifera (zinc oxide 
nanoparticles), Terminalia arjuna (silver nanoparticles), and Punica granatum L (silver nanoparticles) 
(Timoszyk et al., 2018; Shende et al., 2015; Patra et al., 2015; Devanesan et al., 2018).

Wastewater Treatment Using Nanoparticles

Metallic nanoparticles/metal oxide nanoparticles are huge applications in different fields of science 
like personal care products (cosmetics), medicine, drug delivery, and another field of science (physics, 
chemistry, and material sciences). Metallic nanoparticles can be prepared through different methods like 
chemical synthesis and green synthesis methods. Today mainly plants are used for the green synthesis 
of metallic nanoparticles compared to microbes and enzymes because they have unique properties like 
sustainability, renewable suppliers, ability to light energy transformed into chemical energy, antioxidant, 
etc. thus plants are considered the main factory for the green synthesis of metallic nanoparticles/metal 
oxide nanoparticles. Metallic nanoparticles have inimitable opto-electrical features due to recognized 
surface plasmon resonance characteristics and also few metals like Ag, Cu, and Au have wide absorption 
bands. Metallic nanoparticles’ size and shape are also of significant importance (Dreaden et al., 2012). 
Nanoparticles have unique characteristics, including a high removal capacity and heavy metals selectiv-
ity. The treatment of wastewater through metallic nanoparticles depends on different factors like size, 
shape, stability, and aggregation. Here discussed green synthesized metal oxide/metallic nanoparticles 
used for the removal/elimination of pollutant from wastewater.

Zinc Nanoparticles

Zinc oxide has high chemical stability and excellent photocatalytic activity thus it is a good agent for 
removing water pollutants. Zinc oxide has an exciton binding energy of 60meV at room temperature 
and also has a wide bandgap of 3.37 eV (Naseem and Durrani, 2020). Different types of zinc oxide 
nanoparticles developed but hollow spheres are better for wastewater treatment because of their high 
surface area, light-harvesting efficiencies, low density, good surface permeability, and highly enhanced 
photocatalytic activity. Several studies have been reported, zinc oxide nanoparticles removed bacterial 
contamination from wastewater (Gondal et al., 2011; Ray et al., 2008). Zinc oxide nanoparticles are 
tested in various concentrations against bacterial and found potential antibacterial activity due to reactive 
oxygen species. The smaller size of zinc nanoparticles is also able to kill bacteria present in wastewater. 
Zinc oxide nanoparticles are quickly aggregated with wastewater compared to pure water (Tso et al., 
2010). Esmailzadeh et al. (2016) reported zinc oxide nanoparticles and mixing low-density polyethylene 
(nanocomposite) tested against B. subtilis and Enterobacter aerogenes (Esmailzadeh et al. 2016). The 
results displayed nanoparticles more effective against gram-positive bacteria. Adams et al. (2006) also 
testified zinc oxide nanoparticles are antibacterial against B. subtilis and Escherichia coli (Adams et 
al., 2006). EI Saeed et al. (2015) also reported different type concentrations of zinc oxide nanoparticles 
(0.1% to 2.0%) displayed antibacterial activity. The finding showed gram-positive bacteria were more 
sensitive to gram-negative bacteria under 2% zinc oxide nanoparticles (El Saeed et al., 2015). Zinc oxide 
nanoparticles have been synthesized using Cassava starch and Aloe vera. Both metal oxide nanoparticles 
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are able to able to removed copper from wastewater. It is displayed at a low Cu2+ ion concentration with 
the same removal efficiency (Primo et al., 2020).

Copper Nanoparticles

Copper oxide is a semiconductor and many useful chemical and physical characteristics (Ren et al., 2009). 
Thus, copper oxide nanoparticles have various types of applications like catalysis/hydro-catalysis. The 
use of Copper oxide nanoparticles with smaller size distributions for these applications would further 
encourage the chemical reactivity of nanoparticles as the particle size reduces the surface-to-volume 
ratio and thus the number of reactive sites (Dagher et al., 2014). Copper oxide nanoparticles were syn-
thesized through the green synthesis method and tested against S. aureus and E. coli (Wang et al., 2002). 
The finding showed copper oxide nanoparticles are more active against E. coli, gram-positive bacteria 
(Borgohain and Mahamuni, 2002). Heinlaan et al., (2008) also tested copper oxide nanoparticles and 
bulk-copper oxide against Thamnocephalus platyurus, Vibrio fischeri, and Daphnia magna (Heinlaan 
et al., 2008). The finding displayed copper oxide nanoparticles are more antibacterial than bulk copper 
oxide (Heinlaan et al., 2008). Green synthesized cubic copper oxide nanoparticles confirm their efficacy 
in the photodegradation of wastewater and antimicrobial activity (Nwanya et al. 2019). Nwanya et al. 
(2019) reported copper oxide nanoparticles able to stop the growth of E. coli and S. aureus, it is better 
suited for Pseudomonas aeruginosa and Bacillus licheniformis (Nwanya et al. 2019).

Silver Nanoparticles

Silver oxide nanoparticles have potential antibacterial activity and are used for many commercial products 
(Martinez and Silley, 2010). Silver oxide nanoparticles were synthesized using Lippia citriodora plant 
powder and tested against S. aureus, finding potential antibacterial activity (Li et al., 2019). Shah et al. 
(2019) reported that green synthesized silver nanoparticles using fresh leaves extract of Paeonia emodi 
and performed antibacterial activity against two gram-positive and two gram-negative bacteria (Shah 
et al., 2019). The results displayed a strong growth inhibitor of gram-positive bacteria. Silver nanopar-
ticles are also able to reduce 97.78% methylene blue in 3hours (Shah et al., 2019). Li et al. (2019) and 
Manikandan et al. (2017) both were green synthesized silver nanoparticles using different types of plant 
extracts and ficus benghalensis prop root extract respectively (Li et al., 2019; Manikandan et al., 2017). 
Synthesized silver oxide nanoparticles displayed strong growth inhibiter against S. aureus, Lactobacilli 
sp., and S. mutans. Abdulrazzak et al. (2018) were synthesized silver nanoparticles as a combination of 
Ag2O, AgO, and Ag from hydrogen peroxide and silver nitrate. The synthesized nanoparticles displayed 
an inhibitory effect on Acinetobacter baumannii bacteria (Abdulrazzak et al., 2018). Therefore, silver 
oxide nanoparticles are able to eliminate microorganism form wastewater.

Titanium Nanoparticles

Titanium oxide (TiO2) is the most widely studied metal oxide due to its reasonable price, and physical 
characteristics like photostability, photocatalytic activity, and chemical stability (Guesh et al., 2016). 
TiO2 has a large bandgap energy of 3.2ev and ultraviolet excitation due to these properties’ particles 
separated based on charge. TiO2 nanoparticles can kill a wide array of microorganisms (bacteria, vi-
ruses, algae, fungi, and protozoa) due to their photocatalytic properties (Foster et al., 2011). Several 
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researchers synthesized TiO2 nanoparticles and used them for the removal of contamination in water. 
TiO2 nanoparticles were able to remove Pb2+, Ni, Cd, Cu, Cu2+, Fe2+, Zn, and Zn2+ from tap wa-
ter and contaminated water (Engates et al., 2011; Youssef et al., 2014). Mousa et al., (2022) have also 
prepared green synthesized TiO2 nanoparticles using three different plant aqueous extracts Seder, 
Pomegranate (Pom), and Beta vulgaris. The biologically synthesized titanium oxide nanoparticles have 
greater photocatalytic activity compared to chemically synthesized titanium oxide nanoparticles. The 
finding indicated TiO2 nanoparticles can able to remove organic pollutants from wastewater (Mousa 
et al., 2022). The biologically synthesized TiO2 nanoparticles using Syzygium cumini aqueous extract. 
TiO2 nanoparticles displayed good photocatalytic activity and were applied for the removal of lead from 
industrial wastewater treatment (Sethy et al., 2020).

Iron Nanoparticles

Iron bases nanoparticles are widely used for the removal of heavy metals due to properties like an im-
proved membrane, strength, high surface area, and small particle size (Lei et al., 2014). Iron oxide Fe3O4 
(Magnetic), γ-Fe2O4 (magnetic maghemite), and α-Fe2O3 (nonmagnetic) are used as nano adsorbents, 
and these are also easily separate and recovered from the system. Iron oxide nanoparticles have been 
successfully used for the removal of various types of heavy metals from wastewater as sorbent material 
(Ngomsik et al., 2012). Bibi et al. (2019) reported synthesized Iron oxide nanoparticles (Fe2O3 NPs) 
using pomegranate (Punica granatum) seeds extract. The seed extracts have contained magnolol, benzoic 
acid, 3-deoxyflavonoids, methyl gallate, pinocembrin, catechin, gallic acid, kaempferol-3-O-sophoroside, 
ferulic acid, and vanillic acid, confirm through the LCMS/MS which can work as reducing agents at 
the time of synthesis of iron oxide nanoparticles. Biosynthesized Iron nanoparticles displayed excellent 
photocatalytic activity and were able to degrade dyes in wastewater (Bibi et al., 2019). Green synthesized 
Iron oxide (α-Fe2O3) nanoparticles were synthesized using papaya (Carica papaya) leaf extract. Iron 
oxide nanoparticles were degraded remazol yellow RR dye due to photocatalytic activity. Nanoparticles 
were also displayed potential antibacterial activity against Klebsiella spp., E. Coli, Pseudomonas spp., 
S. aureus bacterial strains (Bhuiyan et al., 2020). Biosynthesized Iron oxide nanoparticles were using 
different leaf extracts such as A. indica, Magnolia champaca, Murraya Koenigii, and Mangifera indica. 
The synthesized nanoparticles were able to remove phosphates and ammonia nitrogen from wastewater. 
Among the various green synthesized iron nanoparticles, A. indica displayed 98.08% of phosphate, 
84.32% ammonia nitrogen removed from wastewater (Devatha et al., 2016).

FUTURE PROSPECTS

Metal oxide nanoparticles have played a vital role in different fields of science especially in biological 
science and nanomedicine. Metallic nanoparticles have also been used for the removal of contamina-
tion agents from water. Thus, it is required to synthesize nanoparticles on a commercial scale. The plant 
parts that have been used to synthesized nanoparticles should be low cost, environmentally friendly, 
and sustainable. For future research, it is significant to produce monodispersed nanoparticles. Currently, 
nanoparticles’ mechanism of action is not clear so future research should focus on the mechanism of ac-
tion and synthesis of nanoparticles. The toxicity of metallic nanoparticles is also an important challenge 
thus in the future reduce toxicity and expand the use of nanoparticles in therapeutic applications. Novel 

 EBSCOhost - printed on 2/14/2023 11:47 AM via . All use subject to https://www.ebsco.com/terms-of-use



223

Synthesis of Plant-Mediated Metallic Nanoparticles for Wastewater Treatment
 

approaches are being technologically advanced to overcome such challenges by the use of new metal 
nanoparticles by changes in nanotechnology, therefore, their effects on anthropological health factors 
should be taken into account before their widespread use.

CONCLUSION

Green synthesis of metallic nanoparticles using plant parts extracts is hugely studied in the last few 
years. Plant parts have contained metabolites (primary and secondary) which are induce the production 
of metal oxide nanoparticles in an environmentally friendly manner. The plant’s extract and purified 
metabolites is a novel substrate for the large-scale production of metallic nanoparticles with eco-friendly. 
Biosynthesized metallic nanoparticles have to be used in different areas like medicine, therapeutics, 
commercial products, and energy. Today, several research published to eliminate pollutants from waste-
water using green synthesized nanoparticles. Nanoparticles have physical and chemical properties to kill 
microorganisms and remove pollutants from wastewater. Metallic nanoparticles are able to absorption of 
heavy metals and other organic waste. The nanoparticle’s success has been credited due to their chemical 
and physical properties but nanoparticle uses are still limited in wastewater treatment. In this chapter, 
I have discussed in detail an overview of four metallic nanoparticles zinc, copper, silver, and titanium 
nanoparticles synthesized through the green synthesis method. Zinc nanoparticles are mostly used for 
various types of wastewater treatment compared to the other three nanoparticles. Silver nanoparticles 
are mostly used for the treatment of antimicrobial activities and the other three nanoparticles are used 
in various applications like adsorption, photocatalytic and antibacterial activities. Overall, these green 
synthesized metal oxide nanoparticles are useful for the treatment of wastewater with eco-friendly.
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ABSTRACT

Nanocomposites are a class of nanomaterials where there is more than one phase in nano dimension. 
Simply, they are multiphase solid materials in nano dimension. Nanocomposites are found to be attrac-
tive because of their large aspect ratio. There are different types of nanocomposites like metal, organic, 
metal-organic polymer, carbon nano tubes, and nano fibres. Different methodologies were adopted to 
synthesize the nanocomposite which includes sol-gel, wet chemical method, thermal decomposition, 
Pechini method, insitu polymerisation, solution blending methods, etc. The nanocomposites are found to 
be used mainly in photodegradation, drug delivery, sensors, biomedical applications, artificial implants, 
and batteries. Significant research has been carried out to analyse the dye degradation property of the 
nanocomposites. This chapter particularly concentrates to explain the synthesis of nanocomposite and 
their catalytic activity towards dye degradation.

INTRODUCTION

Increasing population and industrialization remains a threat to the world due to the environmental pol-
lution particularly to the water bodies. The abandoned release of industrial wastes into the water assets 
deteriorates the quality of water. The contagions like pigments, drugs, chemicals, pesticides and other 
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organic contaminations are the main cause for pollution. (Prabhuraj et al., 2021). In this modern scenario 
the dyes are playing inevitable role in various industries such as printing, papermaking, textile, food 
processing, pharmaceutical, and cosmetics industries. The dyes concentrations in the textile wastewaters 
can reach values as high as 300 mg L-1 (Nidheesh et al., 2018) near the exit of the factories. The untreated 
water cause irritation to the eyes, skin, digestive region, and respiratory system when affected. Therefore, 
it is necessary to apply efficient treatment methods such as physical separation (membrane filtration), 
and chemical treatments, to reduce dye contaminants, organic, and inorganic pollutants before they enter 
in to the ecosystem (Ahmad et al., 2021). However, the operation cost and maintenance costs of these 
methods are considered as the basic and determining factors for large-scale applications (Adeleye et al., 
2016). Many different techniques have been applied for industrial effluent water treatment such as coagu-
lation, flocculation, membrane filtration, adsorption, precipitation, biological oxidation, photochemical 
decolorization, chlorination and ozonation. Although each of these processes has their own merits and 
demerits. Nowadays, eradication of environmental pollution due to dye pollutants, by photocatalytic 
transformation of the organic dyes into nontoxic molecules, becomes one of the widely researched top-
ics (Kajbafvala et al., 2012; Keshavarz). Metal nano particles have attracted a great interest in scientific 
research and industrial applications owing to large surface to-volume ratios and quantum-size effects. 
Metal nanoparticles generally exhibit small sizes, well defined and regular shapes and a narrow size 
distribution curve. Industrial catalysts usually work on the surface of metals, the metal nanoparticles 
which possess much larger surface area per unit volume or weight of metal than the bulk metal, have been 
considered as promising materials for catalysts. Photocatalysis is one of the environmentally friendly 
methods, in which depending upon absorption of photons by the catalyst (NCs) degrades greatly reactive 
radical dyes (Zang & Tang, 2015). In recent years, nanomaterials in their different forms, shapes, and 
sizes have been discovered to be efficient in the removal of dye contaminants through photocatalytic 
activities (Sharma et al., 2019; Singh et al., 2018). This is attributed to their unique physicochemical 
properties such as their structures, high mechanical strength, high width-to-height ratio, high thermal and 
electrical conductivities, slight advantage metal/semi-metallic weight and behaviour, and high surface 
area (Pugazhendhi et al., 2019; Salem & Fouda, 2021). Various types of nanomaterials, such as copper, 
zinc, iron and titanium, are employed in various treatments of dyes, including precipitation, decoloriza-
tion, adsorption, and photo-degradation, as well as in the treatment of textile waste dyes (Aminuzzaman 
et al., 2017; Bhuyan et al., 2015; Thandapani et al., 2018). The main textual features obtained when two 
metal oxides semiconductors are coupled include high thermal stability and high surface area, which 
accelerate their reaction by enabling more active sites on their surfaces. Also, this coupling induces 
mass and electron transfer without photo-corrosion of the nanocomposites and improves their efficacy. 
Therefore, nanocomposites have a broad scope of bio-applications due to their physical, chemical, and 
low toxicity properties (Elfeky et al., 2020; Fouda et al., 2019).

Photocatalytic activity in metal oxide nanocomposites is mainly due to their morphology, band 
gap and electronic structure of the catalyst. The photo degradation kinetics of the dyes usually follows 
Langmuir–Hinshelwood mechanism

r dC
dt

k Cn
n� � �  

Where n is the order of the reaction and kn is rate constant.(Choo, 2018)
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The photocatalytic decoloration efficiency was calculated using the below formula

Decoloration C C
C
o to

o

% �
�

*100  

where C0 is the initial concentration of dye solution and Cto is final the concentration of dye solution 
with respective time.

In the photocatalytic mechanism, when light falls on metal oxide semiconductors the electrons (e-) 
get excited from valence band (VB) to conduction band (CB) and leaving the holes in VB. Generally, the 
photoinduced electrons and holes (h+) have tendency to recombine as soon as possible and only limited 
electrons and holes can reach the electrolyte solution for photocatalytic reaction. Presence of impurities 
providing the way to transfer the photoinduced electrons to the surface of photocatalyst, consequently, 
react with the oxygen in the solution to form oxygen radical (O2-), which can oxidize the dye in solution 
for degradation (Li et al., 2013; Zhang et al., 2015). This hydroxyl radical produces efficient oxidants 
which produce enormous heat enormous heat, the organic dyes are degraded (El-Bindary et al., 2019; 
Mekasuwandumrong et al., 2010).

The photocatalytic behaviour also depends on the surface property like the hydrophilic-hydrophobic 
balance (Jung et al., 2010). Many metal oxide nano materials like CuO, CuO2, ZnO, AgO, TiO2, WO3, 
CeO2, Fe2O3, Graphene oxide (GO), Al2O3, SiO2 enhances the catalytic behaviour of materials (Dhivya 
and Yadav, 2022; Alhebshi et al., 2020; Aly and Abd-Elhamid, 2018; Gan et al., 2016; Nabi et al., 2021; 
Neves et al., 2017; Salem & Kazemi, 2020; Wang et al., 2020; Yang et al., 2020). In this CuO, AgO, 
ZnO, and Fe2O3 are investigated due to their high efficiency, photochemical stability, non-toxic nature 
and low cost. Certain green synthesised nano particles play a major role in dye degradation. They pos-
sess an advantage of single-step reaction, ease of synthesis and low incubation period (Menon et al., 
2021). As the amount of catalyst is increased, the collision between the particles increases, leading to the 
formation of aggregates which results in decreased surface area. The high catalyst loading also induces 
opacity to the solution leading to decrease in the photo flux and hence reducing the rate of degradation. 
The analysis for the effect of pH on dye degradation is a very difficult task. The pH of the solution alters 
the electrical double layer of the metal oxide and dye solution interface. This affects the adsorption/de-
sorption and separation of the photo-generated electron-hole pairs from the surface of the semiconductor 
particles. Factors such as pH, zero-point charge of pH, size of the photocatalyst, adsorption-desorption 
equilibrium, efficiency and reusability rate play a major role in dye degradation using nanocomposites. 
Additionally, the geometry of vessel has a strong influence on the rate of degradation.

SILVER BASED NANOCOMPOSITES

The important silver-based nanocomposites are Ag-AgO2 -BiNbO4, Ag-ZnO, Ag-ZnO carbon nano-
spheres, silver doped ZrO2, biomass derived polymer with dopamine Ag aggregates, Ag-CdS-PrTiO2, 
Ag-Cu nanocatalyst, Ag-Ni, AgTiO2, Cu2O-AgO-Ag nanoparticles, Ag-RGO-g-C3N4 ternary OD and 
2D nanocomposite, MoO3 and Ag synthesized TiO2, NiO-ZnO-Ag nanocomposite, Ag loaded ZnO gra-
phene hybrid nanocomposite (Aydoghmish et al., 2019; Hasan Khan Neon & Islam, 2019, 2019; Liu et 
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al., 2019; Pragathiswaran et al., 2021; Stanley et al., 2021; Rashid Al-Mamun et al., 2021; Singh et al., 
2021; Singhal et al., 2018; Wan et al., 2019; Xu et al., 2017).

It is seen that traditional technologies like adsorption, sedimentation, filtration, osmosis degradation 
is carried out for effluent treatments (Guo et al., 2014; Gupta & Suhas, 2009; Ihsanullah et al., 2016; 
Singhal et al., 2018). Ag-ZnO composites are prepared by hydrothermal and reduction and various other 
routes (Andrade et al., 2017; Chen et al., 2017; Jadhav & Biswas, 2018; Liu et al., 2019; Liu et al., 2018; 
Mendoza-Mendoza et al., 2018; Xu et al., 2017; Zhang et al., 2017). Methods like membrane separa-
tion (Hu et al., 2020), adsorption (Li et al., 2019), oxidation methods like Fenton and Ozone oxidation 
(Hao et al., 2020; Szpyrkowicz et al., 2001) are already employed for waste water treatments. Coupling 
of semiconductor nanomaterials causes the photocatalyst to absorb more solar energy since their band 
gaps are larger (Borges et al., 2016; Douafer et al., 2019; Singh et al., 2021).

Microwave assisted one-pot synthesis of Zinc acetate with sodium peroxide and silver nitrate resulted 
the product as investigated by Liu et al. (2019). Increase in silver content enhances the photocatalytic 
activity of the nanocomposite towards Rhodamine B dye degradation when compared with ZnO when 
irradiated with solar light. Here Ag nanoparticle acts as store house of electrons and prevents the com-
bination of hole and excited electrons and is shown in figure 1 (a) (Liu et al., 2019).

Benzene is pyrolyzed at a temperature of 1000 °C in a quartz substrate. Composite of ZnO carbon 
nanospheres when sonicated with silver nitrate in ethanol medium gave precipitates which was annealed 
in Argon. Ag deposited Nanocomposite degrades Methylene blue dye effectively say about 95% by UV 
irradiation when compared to with ZnO-CNS nanocomposite as shown in figure 1 (b) (Singhal et al., 
2018). Similarly, in Ag-ZnO nanocomposites, the absorption is shifted from UV to visible region when 
Ag is added to ZnO. Photocatalytic degradation of Methylene blue, Rhodamine B and Methyl orange 
dyes were performed under sunlight. The electron hole union was hindered by Ag addition. Hydroxyl 
free radical and oxide anion radical are found as active species towards Methylene blue dye degradation 
(Stanley et al., 2021).

Figure 1. (a) Schematic illustration of charges transfer and radical generation over Ag-ZnO composite for 
dye degradation, (b) Photocatalytic mechanism of Ag deposited Nanocomposite photocatalyst degradation.
Sources: (a) Liu et al. (2019) and (b) Singhal et al. (2018)
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Biomass derived catalysts have significant applications due to their cost effectiveness, simplicity, 
higher efficacy, and sustainability (Crini & Lichtfouse, 2019; Crini et al., 2019; Ong et al., 2018). Poly-
meric material with dopamine and silver (BHP-PDA-Ag) was prepared by biomass of Trans-anethole 
(ANE) and Maleic anhydride (MAH) and the schematic and mechanism is shown in figure 2 (a) and (b).

Silver-CdS-Pr-TiO2 shell nanomaterials were synthesized by sol-gel technique and seems to have 
98% dye degradation efficiency against methyl orange dye in 30 mins time duration (Singh et al., 2021). 
whereas Bimetallic Ag-Cu nanomaterials due to the synergetic influence of Ag-Cu in the ratio of 25:75 
gave good degradation efficiency for methylene blue and methyl orange dyes. The mechanism behind 
this degradation is oxidative and reductive degradation (Tantawy et al., 2021).

Green synthesis derived Ag-TiO2 from activated carbon of tea for dyes (Wu et al., 2021) and using Beta 
vulgaris outer skin extract are discussed (Jayapriya & Arulmozhi, 2021). Ag-TiO2 from activated carbon 

Figure 2. (a) Schematic illustration and preparation of BHP-PDA-Ag, (b) Mechanistic pathway for 
catalytic-degradation of dyes in aqueous solution by BHPs-PDA-Ag catalyst in the presence of NaBH4 
reducing agent and without NaBH4.
Sources: (a) Raza et al. (2021) and (b) Raza et al. (2021)
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of tea due to high porosity of material it gives nearly 95% efficiency in methylene blue dye removal. 
Photocatalyst has good recyclability and cost effectiveness. The catalytic efficiency of the synthesized 
Ag-TiO2 nanocomposite using Beta vulgaris outer skin extract exhibit higher degradation efficiency of 
92%, 84%, and 88% for Methylene blue (MB), Congo red (CR) and Methyl orange (MO) in 9 min, 20 
min and 10 min. Pure Ag NPs were synthesized using Areca catechu and Crataegus pentagyna fruit 
extract (CP-AgNPs) which exhibiting similar results as reported by (Ebrahimzadeh et al., 2020; Vinay 
& Chandrasekhar, 2019).

COPPER BASED NANOCOMPOSITES

Catalytic performance of copper nanoparticles under UV and visible light is due to the high dispersion 
of Copper nanoparticle, low degree of agglomeration, high specific surface area and small crystallite 
size (Wongkaew et al., 2013). The aqueous solution with the precursor is stirred in the dark to achieve 
adsorption-desorption equilibrium and subjected to light for measuring degradation. The quasi first-
order kinetic model (Langmuir–Hinshelwood (L–H) model) is used to validate experimental data and 
corresponding photo-degradation efficiency (Barzegar et al., 2019). Fan et al (2021) synthesized CuO 
and investigated its photodegradation in 4-nitrophenol (4-NP). Degradation efficiency of 4-NP as high 
as 95.3% could be achieved under the conditions of pH 6.0. Regarding pH zero-point charge of CuO 
varies between 6.5 to 8.5 pH. This means CuO surface is neutral and there is no charge on the surface 
of CuO nanoparticles between these pH values showing high catalytic rates in the region. Therefore, 
the surfaces of CuO particles are negatively charged at pH 9.0 and positively charged under alkaline 
conditions reducing the catalytic activity. The synthesized CuO nanoparticles exhibited higher catalytic 
activity in the mentioned pH and could be reused at least six times without decreasing their catalytic 
activity (Fan et al., 2021). Cu-CuO nanorods were employed in the photo-degradation of alizarin yellow 
and was optimized by central composite design (CCD) and response surface methodology (RSM) was 
discussed by Barzegar et al. (2019) and is shown in figure 3. Degradation percentages of alizarin yellow 
under blue light irradiation were maximum and about 96.47% (Barzegar et al., 2019).

CuO nano structures via green synthesis using Aglaia elaeagnoidea flowers exhibited excellent ho-
mogenous and heterogeneous catalytic property in the degradation (Manjari et al., 2017). Tamarindus 
indica L extract was also used to synthesize CuO nanoparticles at elevated temperatures and the effect 
of heat treatment on the size of nanoparticles were discussed. The microspheres made of agglomerated 
nanosheets were used to carry out the photocatalytic degradation of rhodamine B (RhB) and xylenol 
orange (XO) dyes exhibits photodegraded 96% of RhB and 87% of XO in 150 and 90 min of light il-
lumination, respectively(Gudipati et al., 2021).

Heterostructured Cu-based catalysts, such as Cu2O-TiO2, Co3O4-CuO, and Cu-Cu2O, were found to be 
superior when compared to their unitary components. The CuO-Cu mesh has proven to be an excellent 
photoactive catalyst with 100% degradation for MB which maintains at 98.8% efficiency after two suc-
cessive photocatalytic cycles. The mechanism of photocatalytic activity is shown in figure 4 (Alhebshi 
et al., 2020). In addition, CuO-Cu2O nanocomposite on Cu foil shows good degradation under different 
LED colors and resulted that blue one has the highest photonic efficiency (Behjati et al., 2020; Xu et 
al., 2021).

Synthesis of hybrid composites using the organic-inorganic hybrid strategy for synthesis of catalyst 
such as CuO-PVDF (polyvinylidene fluoride) (Gao et al., 2015) and Sepiolite-Cu2O-Cu (P. Wang et al., 
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2019) shows 95.8% and 95.1% efficiency in visible light which plays major role in treating wastewater. 
When considering pure chitosan with CS-CuO nanocomposite, the CS-CuO is found to be more degra-
dation efficiency of 97% with congo red and eriochrome black dye (Srivastava & Choubey, 2021). La 
doped CuO nanoparticles in the degradation of (~98% in 90 minutes) MB dye under visible light, thus 
delivering high Photo-Fenton activity and stability for lanthanum doped copper oxide nanoparticles 
(Rodney et al., 2018).

Direct Blue 71 (DB 71) degradation with Cu doped ZnO showed excellent effect at pH 6.8 and has 
a reusability of 3 cycles with an efficiency of 97% under visible light(Fouda et al., 2020; Sharma et al., 
2020; Thennarasu & Sivasamy, 2016). The g-C3N4-ZnO-Cu2O (Rajendran et al., 2021) and Cu-Cu2O-ZrO2 
(Zhao et al., 2021) composite photocatalyst revealed a supreme photocatalytic efficiency in Rhodamine 
B dye of 91.4% (Rajendran et al., 2021). These are found to have good efficiency than CuO-TiO2 nano-
composite which showed 85-90% degradation of methylene blue (Simamora et al., 2012; Udayabhanu 
et al., 2020). When we consider the effect of CuO – transition metal nano composites George et al. 
(2022) stated that when compared to CuO doped with Ni, the Zn or Fe doped samples exhibited good 
degradation of methylene blue dye. A degradation efficiency of around 63% and 62% was witnessed on 
doping CuO with Zn or Fe respectively.

IRON BASED NANOCOMPOSITES

Iron based nanocomposites such as Fe-Fe2O3, Fe2O3-graphene-CuO, Fe3O4- Ag nano alloys, NRGO-
CoWO4 -Fe2O3 nanocomposite, Fe2O3 -Mn2O3 nanocomposite, Fe2O3 nanoparticle doped with In2O3 have 
provided to be good photocatalysts for degradation of dyes and preventing pollution of water bodies 
which is discussed below (Nuengmatcha et al., 2019; Yang et al., 2020).

Figure 3. Schematic mechanism of photocatalytic degradation of alizarin yellow.
Source: Barzegar et al. (2019)
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Fe-Fe2O3 core shell nanoparticle assisted by NaHSO3 is utilized for degradation of orange II dye. The 
dye degradation occurs at solid-liquid interface. Generally, Zerovalent iron is used to remove arsenic and 
organic substances. Iron degrades by oxidation of Fe0 to FeII, the presence of Fe0 with Fe2O3 enhances 
molecular oxygen which is activated by phosphate ion. The phosphate ion prevents the corrosion of iron 
materials. The degradation of dye is accelerated by fast electron transfer of Fe-Fe2O3 and its mechanism 
is shown in figure 5. The catalyst was applied in acidic and alkaline conditions and it showed 90% ef-
ficiency against Orange II in 5 mins (Yang et al., 2020).

Numerous Iron nanoparticles are reported in the literature (Atla et al., 2018; Atrak et al., 2019; Ku-
biak et al., 2020; Sayadi et al., 2021; Wang et al., 2019). Fe2O3-graphene-CuO (FGC) possess a band 
gap of 1.82 eV which is prepared by solvothermal method and is employed for Methylene blue dye 

Figure 4. Schematic diagram of proposed photocatalytic activity.
Source: Alhebshi et al. (2020)
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degradation. The degradation was carried out under visible light in a closed UV chamber at normal 
temperatures which resulted in 90% efficiency at 40°C. The maximum efficiency of dye removal was 
73.83% at pH 5.8 (Nuengmatcha et al., 2019). Nano Fe3O4 modified granular activated carbon was used 
as catalyst for degradation of Azo dye Reactive Red 2 in anaerobic condition using microorganisms like 
Halomonas, Pseudomonas and Bacillus bacteria in reactors. Direct interspecies electron transfer called 
DIET occurs in pseudomonas and methanosarcina species in presence of catalyst nano Fe3O4 modified 
granular activated carbon (Wan et al., 2021). Αlpha-Fe2O3-Cu2O nanomaterials reported by Norouzi & 
Nezamzadeh-Ejhieh (2020) was prepared by solvothermal method. The band gap of Fe2O3 which was 
2.28 eV gives a bathochromic shift to 1.95 eV by Cu2O introduction. Methylene blue dye was degraded 
using this catalyst which followed first order kinetics with a rate constant of 0.025 min-1 It is understood 
that 1 mg of dye molecules can be degraded in 27 minutes.

Fe3O4- Ag nanoalloy synthesized by green routes using Justicia spicigera plant by sonication technique. 
The catalytic material is employed against Red Cango dye degradation. It is a good magnetic material 
(Ruíz-Baltazar, 2020). Iron oxide prepared using Fan palm, Dombeya wallichi and Pyrus comminis 
extracts and depicted in figure 6. Maximum absorption was seen at pH 3 for a dosage of 0.01g/50 mL 
adsorbent at 65° C for an initial concentration of 200 mg/L with an average of 80 mins contact time 
towards reactive blue dye (Noreen et al., 2020).

Fe2O3 - Mn2O3 nanocomposite is used for methylene blue degradation. Catalyst has α- Fe2O3 and 
β-Mn2O3 and possess a band gap of 1.11 eV, such low value show that they are efficient light absorbers 
in visible and UV- light. It showed 80-95% efficiency of dye degradation in 75 s. The active species are 
hydroxyl free radical and holes which are responsible for degradation (Ghaffari et al., 2020). α- Fe2O3-

Figure 5. Mechanism of Fe-Fe2O3 system on orange II degradation
Source: Yang et al. (2020).
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WO3 nanocomposite is used for Reactive Blue (RB19) dye degradation under UV and LED lights. The 
mechanism behind the dye removal is it stops the recombination of holes and electrons. The removal 
efficiency is good for 6 continuous cycles and aids in good reusability (Delnavaz et al., 2021).

Fe2O3 nanoparticle doped with In2O3 was reported by Guo et al. (2020). The degradation percentage 
of Rhodamine was 94% with 10% In2O3. The Rhodamine B (100 mg/L) removal was efficient at pH 4 
in presence of H2O2. The active hydroxyl free radical attack the pi system of Rhodamine B at the same 
time the -C2H5 group is attacked by hydroxyl free radical during which denitrification and decarbox-
ylation happens. Finally evolution of CO2 and H2O occurs (Guo et al., 2020). Iron oxide and SiO was 
used to get the composite material by facile impregnation process. About 5 nm sized iron nanoparticle 
got dispersed in SiO2. The dye molecules namely Janus green B, methylene blue, tartrazine and cango 
red were degraded using this composite material. The dye degradation % for Tartrazine is 98.5%. The 
degradation efficiency of dyes was found to be 82% after the fifth cycle (Vu et al., 2019).

Figure 6. Iron oxide prepared using Fanpalm, Dombeya wallichi and Pyrus comminis extracts
Source: Noreen et al. (2020).
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ZINC BASED NANOCOMPOSITES

Among the metal oxides semiconductor, Zinc Oxide (ZnO), is an important n-type semiconducting ma-
terials has been extensively used in wastewater treatment because of its low toxicity, earth abundance and 
high electron mobility (Kumar et al., 2013; Li & Haneda, 2003). It has materials with exceptional features 
like high electron mobility, tunable band positions, high catalytic activity, high photo sensitivity, excel-
lent chemical and thermal stability, non-toxicity and cost effectiveness. ZnO is a versatile semiconductor 
with a wide direct band gap (3.37eV) and a large exciton binding energy (60 meV) at room temperature 
has a wide range of applications in solar cells, optical and electrical fields, gas and chemical sensing, 
biomedical applications and also in catalysis and photocatalysis (Basnet et al., 2018; Dhatshanamurthi 
et al., 2017). Mostly the ZnO nanoparticles are prepared from Zinc Acetate Dihydrate ((CH3COO)2Zn. 
2H2O, 99%) by solvothermal, hydrothermal method sol-gel method, solution combustion, ultra-sonic 
spray pyrolysis and sonochemical method, laser ablation, inert gas condensation, and vapour phase 
process etc (Dhivya and Yadav, 2022; Ahmed Quraishi et al., 2020; Fouda et al., 2020; Mohaghegh et 
al., 2014; Pavithra & Jessie Raj, 2021; Prabhuraj et al., 2021; Saad et al., 2020; Velumani et al., 2020; 
Vidya et al., 2017; Zyoud et al., 2016). ZnO exist in hexagonal wurtzite structure and the shape of the 
nanoparticles are decided by the impurities, surfactants, catalysts and other preparation conditions like 
temperature and pH. Mainly the zinc oxide nano particles are applied to degrade azo dyes like methylene 
blue (MB), Rhodamine (Rh), Orange M2R, malachite green (MG), Methyl Orange (MO), Eosin Y (EY) 
and Congo Red (CR) (Dhivya and Yadav, 2022; Fouda et al., 2020; Prabhuraj et al., 2021; Zyoud et al., 
2016). There are three different reaction mechanisms which contribute to dye degradation, (1) Attack by 
hydroxyl radical, (2) Direct oxidation by the positive hole on the valence band, and (3) Direct reduction 
by the electron in the conduction band

ZnO + hv(light) → ZnO(e- + h+) 

ZnO(e-) + O2 → O2- 

ZnO(h+) + OH- → OH 

All the produced radicals react with dye and results the efficient decolouration along with by-products. 
The photocatalytic reactions mostly take place on the surface of ZnO catalysts. Hence, the ZnO surface 
area is a key factor in the kinetic and efficiency of photocatalytic reaction. It was known that supported 
photocatalysts with high adsorption ability can (i) attract the pollutant substances near the reactive 
surface of the catalyst particles, (ii) create a lot of active sites for adsorption of intermediates, (iii) ex-
tend lifetime and reusability of the photocatalyst and(iv)decrease recombination rate of photogenerated 
electron–hole pairs. So, it can promote the degradation rate and enhance photocatalytic activity of ZnO 
(Kahouli et al., 2015; Ong et al., 2014).

However, there are hurdles to attain the high photocatalytic efficiency due to i) wide band gap (3.37 
eV) could limit the visible light absorption and ii) predominant photoexcited charge recombination rate. 
The pure form of metal oxides efficiency is low due to its high recombination rate and low quantum 
efficiency affect the hands-on applications of metal oxides. So, the researchers used some strategy to 
enhance the efficiency which are doping with some other additives or composite with additional semi-
conductor materials (Hisatomi et al., 2015). Photo degradation of the pure ZnO is around 63% whereas 
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the addition of dopants like graphene oxide increases its efficiency to 96% (Dhivya and Yadav, 2022). 
The efficiency of the degradation varies and depend on the source of light used. The band gap of ZnO 
is 3.3 eV and bandgap of this material is easily can tuned by doping with transition metal ions (Mn, Fe, 
Ag, Au, Pd Pb, Ti) and rare earth ions (Ce, Nd, Eu and etc.) (Achouri et al., 2016; Basnet et al., 2019; 
Basnet; Kumaresan et al., 2017; Saleh & Djaja, 2014; Ullah & Dutta, 2008). The t2g orbital level of Mn 
is very adjacent to the valence band of ZnO and so it can overlap straightforward with the d-electrons of 
Mn which reduces the bandgap of ZnO (Yang et al., 2010). Depending upon the concentration of Man-
ganese (Mn) in ZnO decreases the band gap and it varies from 2.95 eV to 2.755 eV. Decrease in the band 
gap considerably enriches the photocatalytic activities by suppressing the electron-hole recombination. 
Dhivya and Yadav (2022) reported the addition of H2O2 on Mn doped Zn hinder the recombination of 
electron- hole and improved the oxidation and reduction mechanism.

The visible light absorption could be extended by doping with metal ions or introduction of light 
sensitizers like quantum dots and carbon dots on the surface of ZnO and also which could suppress the 
charge recombination rate (Phang & Tan, 2019). Graphene Oxide (GO) is considered as one of the best 
impurities to Zn for photodegradation as it shows 96.9% efficiency even after 5 cycles in rhodamine die 
under UV light irradiation (Ong et al., 2014; Prabhuraj et al., 2021). The high adsorption activity and low 
recombination rate of hybrid metal oxides-graphene composite shows enhanced photocatalytic activity(Liu 
et al., 2010; Mishra et al., 2020). Zn-GO nanocomposite shows around 24% of catalytic enhancement 
and reduce the bandgap to 2.97 eV from 3.3 eV, due to the wide-ranging background absorption of GO 
(Bao et al., 2011; Gu et al., 2017). Carbon dots (CQD) Zn nano composite is yet another important 
favourable material to suppress the charge recombination rate (Phang & Tan, 2019). H. Bozetine et al. 
reported the synthesis of ZnO-carbon quantum dots (ZnO-CQDs) nanocomposites by hydrothermal 
method and studied their photocatalytic activity by degradation of Rhodamine B (RhB) under simulated 
solar light. The degradation efficiency was 94% degradation; it is higher than compared with pure ZnO 
(Bozetine et al., 2016). The degradation rate was reached 96% for ZnO-C-dots nanocomposite when the 
photocatalytic reaction time reaches 30 min. Meanwhile only 63% photocatalytic degradation efficiency 
was obtained for pure ZnO (Velumani et al., 2020).

One of the main advantages of CNTs in the interaction with ZnO is the charge transfer process through 
the channels of the tube which preventing the agglomeration of ZnO nanoparticles therefore, CNTs-ZnO 
nanostructure could be the optimum choice for the degradation process. ZnO-CNT nanocomposites 
were successfully synthesized by the laser ablation process under particular conditions of time change 
in laser ablation duration of zinc target immersed in dispersed functionalized CNT solution producing 
ZnO-CNT nanocomposite with different amounts of ZnO nanoparticles by

Mostafa et al. (2021) observed that the efficiency of the prepared Zn-CNT nanocomposite with dif-
ferent amounts of nanoparticles in catalytic degradation was mainly depends on the amount of deposited 
ZnO as a factor of ablation time. Also, they concluded that it is not necessary as the concentration of 
ZnO on the surface of CNT increases, the efficiency of catalytic degradation process increases but it 
increases to a critical value then the efficiency would be decreased which might be related to the change 
in the mechanical properties of the CNT when the amount of decoration was extreme leading to a drop 
in the catalytic degradation efficiency.

Among various metal dopants, lead (Pb) substitution on the ZnO lattice plays a major role in enlighten-
ing the photocatalytic and antibacterial activity (Panchal et al., 2020). The decrease of band hole vitality 
incredibly affects the quantity of photo-generated electrons and gaps in photocatalytic response (Kong et 
al., 2009). Towards this effort, to remove anionic textile dyes from an aqueous solution, lead ions (Pb) 
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have been chosen as a dopant to improve the Azo dye degradation and antibacterial efficiency through 
altering the electronic structure, optical and morphological property of zinc oxide (Kahouli et al., 2015). 
Pb-ZnO nanocomposites ultrasonicated for 21600 s has a huge surface area that has the capability to 
absorb significant amounts of hydroxyl groups. 5 mol% Pb loaded ZnO enhances the transfer of photo 
excited carriers, decreases the recombination rate and shows more photo catalytic activities when com-
pared to ZnO (Pavoski et al., 2019; Shanmugam & Jeyaperumal, 2018). Whereas the removal efficiency 
of about 97% was achieved by CuO-ZnO (20-80) after 85 min of irradiation, whereas CuO-ZnO (20-80) 
nanocomposite achieved a maximum removal efficiency of 65% after 130 min (Fouda et al., 2020).

The absorption band is red shifted and reduced band gap is observed in cerium (Ce) doped ZnO 
NCs (Saad et al., 2020). Effect of Chitosan (CH) the natural polymer in the Ce-Zno composite is also 
reported by Zhong et al. (2020) in Methyl orange and Saad et al. (2020) in Malachite green. For the 
degradation of M.G by CH-ZnO, the complete removal of 5 mg/L M.G was achieved after 270 min of 
visible light illumination. Doping of ZnO with cerium in CH-Ce-ZnO reflected considerable enhancing 
the photocatalytic activity as the complete removal of the M.G dye (5 mg/L) was achieved after 90 min 
only. Additionally, the maximum degradation results which were obtained for 10 mg/L and 15 mg/L of 
M.G dye using CH-ZnO are 83% and 76%, respectively while the application of CH-Ce-ZnO resulted in 
complete degradation of MG for the same concentrations after 180 min and 210 min in the same order. 
Saad et al. (2020) showed that nZnO-CS possesses an UV-shielding rate of more than 70% at 220-380 
nm and MO decolorization rate of more than 80%.

Asperagus racemosus root assisted ZnO nanoparticles (Ar-ZnO) were prepared by green synthesis 
and investigated for the degradation of malachite green (MG) dye solution under visible light at wave-
length 617 nm. The removal efficiency of Ar-ZnO for MG dye was 93.20% on treatment for 3 hours was 
discussed by Pallela et al. (2020). Similarly, ZnO nanoflowers synthesised via green route using Panos 
extract shows good photocatalytic degradation against MB, EY and MG using UV as light source. ZnO-
QNF exhibited >99% of degradation efficiency at 15 and 5 mg/L of all the three dyes, such as, MB dye 
degraded within 80 and 30 min, EY dye degraded within 90 and 35 min, and MG dye degraded within 
110 and 40 min of contact time, respectively (Kaliraj et al., 2019).

During photo-degradation of water pollutant, ZnO nanoparticles tend to agglomerate and may also 
float on water surface resulting decrease in the photocatalytic efficiency (Kim et al., 2015). Presence of 
surface-active materials like zeolite, activated carbon, fly ash, biochar, natural clay etc with ZnO forms 
a composite. So, the photo generated electron-hole pairs of the nanocomposite photocatalyst remain 
separated, for photo-degradation of water pollutants (Thirumalai et al., 2016).

Sarkar et al. (2021) focused-on synthesis of ZnO nanoparticle and LD slag geopolymer composite 
photocatalyst by applying a facile hydrothermal method to increase the photo-degradation capacity under 
visible light irradiation by increasing its charge transfer capability. This ZnO-Geopolymer nanocomposite 
yields the maximum CR photo-degradation around 96.97% (initial CR concentration: 5 mg/L; pH: 6; 
photocatalyst dosage: 1 g/L) under visible light; and highest first order reaction rate constant (k) value 
as 0.0487 min-1 compared to other similar photocatalysts (Sarkar et al., 2021).

CONCLUSION

In this chapter we have discussed briefly about the various types of nanocomposites and its role in pol-
lution prevention. As stated in the introduction, increasing population and rapid industrialization causes 
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a serious threat to the environment by water pollution. The effluents from dye industries are a serious 
problem, which can be solved to some extent by science and technology developments. Various types of 
nanomaterials and nanocomposites play a very vital role in dye degradation. Nanocomposite preparation 
characterisation, degradation methodology and its efficiency towards degradation of various types of 
dyes are discussed in this chapter.
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ABSTRACT

Water is a vital component of life. It is naturally available as earth hydrosphere and plays an important 
role in the world economy, and it essential for balancing of the ecosystem. Numerous microbes and other 
toxins such as chemicals and heavy metals are integrated into rainwater and flowing water, resulting 
in water pollution. This chapter examines the numerous ways in which nanomaterials can be used to 
remove various kinds of contaminants from polluted water. In this chapter, carbon-based adsorbents 
material, that is, carbonaceous materials, has described. Carbonaceous materials such as stimulated 
carbon, carbon nanotubes, and graphene oxide have good performance and high adsorption value for 
medicinal active chemicals. In present-day investigations, researchers have found that carbon-based 
nanomaterials have been located progressively being applied in recycling of wastewater treatment re-
search with overwhelmingly positive results.

INTRODUCTION

Water is an important natural resource of the earth on which all the living beings are depends. The water 
present on earth that cycling endlessly through the environment called hydrological cycle. Out of total 
water reserved of the earth, near about 97% present as salty and about 3% water present as fresh water. 
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About 9.86% of total freshwater resources of the earth are present as in the form of ground water. The 
water (Drinking or non-drinking) present in the nature, it has properties to dissolve many substances in 
it, therefore got polluted by different way, it is defined as alteration in chemical, physical and biological 
characteristics of water making it unsuitable for selected use in its normal state.

There are different sources that cause the water pollution, ground water polluted by textile industries, 
tanneries and chemical industries etc. In surface water pollution, the main role of marine water pollution, 
rivers bring pollutants from drainage basins, catchment area that is industries, hospitals waste, hotels; 
agricultural wastes directly come in this water. Oil drilling and shipment a big issue of marine water 
pollution because, petroleum, paint industries, ship-accidents add to marine water cause a pollution.

Due to because of the pollution, it necessary to create a mechanism to purify the water present on the 
earth, in which nano-composite and carbon-based material play a substantial role in wastewater treatment. 
The classification of wastewater treatment is well described by given pictorial charts shown in Figure 1.

The term “nano” is resultant from the Greek word nanus, which meaning “dwarf.” Physics professor 
Richard Feynman initially introduced the concept of nanotechnology on December 29, (Feynman, 1960). 
The University of Tokyo was first devised the word “Nanotechnology” in 1974 year. Development in 
nanotechnology and nano-mediated domains has exploded in recent years, attracting academics, inves-
tors, governments, and the corporate sector. Quantum and nanodevices arose in the early 1980s as a 
result of significant advances in material modelling, as well as significant advances in characterisation, 
such as the scanning tunnelling microscope (STM) also atomic force microscope (AFM) (Capek, 2006). 
Quantum and functions are linked to the fabrication and characterisation of foundations based on size, 
shape, self-assembly, surface, and imperfection features using various nanotechnology-based physico-
chemical characterization approaches. Each of these fields has its own unique applications based on 
the fundamental principles of nanotechnology. Their applications often include nanomedicine, nuclear 
physics, and nanocatalysis, among others (Guisbiers et al., 2012).

The ability to construct new nanostructures at the atomic scale too has resulted in novel materials and 
techniques with wide-ranging applications. In order to satisfy our ever-increasing energy needs, major 
advances must be made in the energy sector. Environment, food, health, water, and a range of other is-
sues are all at risk in the modern world.

Wastewater obtained from different sources and its treatment could be divided into the following 
category such as chemical, physical, and biological treatments (El-Gendy et al., 2020; Russell, 2006). 
In case of Chemical method following steps involved like oxidation, ion exchange, photo-oxidation, 
coagulation and electrochemical processes, photo-oxidation further divided in two steps such as pho-
tolysis and photocatalysis; electrochemical processes are also further divided into electrocoagulation and 
electro degradation (Rajasulochana & Preethy, 2016). There are numerous applications for adsorption 
in wastewater treatment, as it is a physical/chemical remediation process that can handle practically any 
sort of contamination including organic chemicals, dyes, heavy metals, etc., (Das, & Poater, 2021). In 
this chapter, Authors have explained the variety of carbon-based adsorbent material used in remediation 
as well as purification of water. These types of materials are cost-effective and easily available.
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CARBON BASED MATERIALS

In the nature variety of carbon-based materials present that is naturally occurring as well as synthetic. 
Nano-composite and carbon-based material play the main role in purification of Wastewater. In detail 
we have discuss about Carbon based material as in following.

Activated Carbon

There are two most common methods such as filtration and purification, in which activated carbons (ACs) 
used as in adsorption processes. Moreover, stimulated carbon could be adsorbed unwanted metals and 
contaminants that have been suspended in the water. Because of its large superficial area, it is also used 
in commercial convenience and environmental applications. For example, ACs has been explored for 
the elimination of many pharmacological active substances. Such as tetracycline (an antibiotic medica-
tion) was removed from aqueous media using several forms of ACs. It was employed to remove three 
pharmaceutical active chemicals (tetracycline, penicillins, and quinolones) with a tetracycline adsorption. 
Among these it to remove tetracycline adsorption efficiency was found to be 455.33 mg /g (Wang et 
al., 2017b). In this adsorption processes following adsorption parameters including pH studies, contact 
time, as well as temperature were all examined.

Figure 1. Classification of wastewater treatment technologies
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Carbon Nanotube

Carbon nanotube (CNTs) nanostructures have sp2 hybridization with all carbon atoms. Further, CNTs are 
arranged in bundles to form a complex network by Van-der Waals interactions (Avcı et al., 2020). The 
electrical conductivity of hexagonal rings is regulated by their arrangement end-to-end on the tubular 
form of CNTs. Due to their special properties, which including high surface area, nanocavities, and 
electrical conductivity as a promising application that a diversity of nano technological significance of 
CNTs and its applications.

Graphene and Graphene Oxide

It is a carbonaceous single layer nanomaterial with a 2-dimensional structure made with sp2 hybridized 
carbon atoms, it has high catalytic activity, and huge surface area is a few of the properties of graphene-
based nanomaterial (Subodh et al., 2018; Baby et al., 2019). Various carbon-based material including 
fullerene, Carbon nanotube and Graphite is shown in Figure-2. These unexpected physical characteristics 
and they were recommended for a wide range of possible purposes as adsorptive material for remedia-
tion of toxic dye from wastewater.

Graphene/Graphene Oxide and Reduced Graphene Oxide

Exfoliations of graphite with chemical oxidation produce a single layer/multilayer graphene of highly 
oxygenated functional groups. RGO is identical to GO have functional groups are chemically, thermally, 
or physiologically reduced. Graphene nanoparticles and its functionalized forms have enormous surface 
area and excellent catalytic activity, could be used in a multitude of scenarios, including the eliminating 

Figure 2. Representation of the structure of carbon-based material like fullerene, Carbon nanotube and 
Graphite.
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of toxic dye (Subodh et al., 2018; Kumar & Masram, 2021). They demonstrated the adsorption of dye 
with the surface of graphene that cation interactions were responsible for the bulk of adsorption.

One of the core drawbacks of someone with graphene as adsorbents is that aggregation diminishes 
its surface area in solutions, decreasing its adsorption capacity. Crosslinking or otherwise modifying 
graphene with specific organic compounds or metals may be the most effective strategy to overcome 
this restriction while providing improved graphene’s adsorption capacity. Some were using a graphene 
oxide functionalized by magnetic nanoparticles to evaluate the surface assimilative removal of quatern 
tetracycline (TC) pharmaceutical energetic chemicals after aqueous solution. The largest adsorption was 
found to be 39.1 mg/g (Zhao and Liu, 2009; Wang et al., 2017a).

Single Layer Graphene

Single layer graphene (SLG) remains in a single layer and has sp2 hybridized bonded carbon atoms 
arranged with hexagonally. It found in a variety of sizes from nano to micro level in nanotechnology. 
Graphene and graphene oxide can be attached to a substrate or suspended in an aqueous solution for 
dispersion. Multi-layer graphene (MLG) a variety of graphene that is made up from a few flaks of single 
coating graphene and might even be required to make nanostructured materials composites (Vijayaran-
gamuthu et al., 2016).

APPLICATIONS IN WASTEWATER TREATMENT

Including both organic and inorganic subtraction contaminants ion conversation, membrane purification, 
organic precipitation, chemical oxidation, adsorption, and photocatalysis have all been frequently em-
ployed in treatment of wastewater. Adsorption and photocatalysis have garnered significant consideration 
in the field of remediation of wastewater, among the approaches indicated above. As a result, the next 
section will focus on the usage of several categories of carbon-based nanomaterials in the adsorption-
based experiment utilized it for remediation of several contaminants from wastewater.

Adsorption

Adsorption may be exact as the gathering of liquid solutes/gas upon the superficial of a solid adsorbent 
material. This methodology is recognised as a hygienic and multipurpose solution for the amputation 
of impurities from wastewater due to the very high skill; ease of process, and with low cost (Radaei et 
al., 2017). It frequently happens fashionable one of two ways reliant on how the interaction of adsor-
bent and adsorbates may be chemical adsorption or physisorption. Physical adsorption also known as 
physisorption is a reversible exothermic event that happens when the van der Waals forces of interaction 
are weak interactions between adsorbates and the adsorbent molecule. (Demirkıran et al., 2017). As op-
posed to electrostatic attraction, chemisorption sometimes referred to as chemical adsorption in which 
the formation of strong chemical bonds among adsorbate and adsorbent molecule, which results in an 
irreversible exothermic process. Some factor like Temperature, compression, type of adsorbate, and 
surface area of adsorbent can affect the chemisorption and physisorption (Access, 2018). The adsorp-
tion volume of the adsorbents utilised is right related to the efficiency at which pollutants are removed 
during the adsorption process (Thines et al., 2017). Surface properties like definite surface area, surface 
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active sites, and affinity of adsorbent towards contaminants have a major impact on remediation of pol-
lutant. Temperature, nature of adsorbates, adsorbents, pH of solution, and interaction time are tentative 
parameters in the adsorption process (Ali, 2010). Freundlich, Langmuir, Halsey, Henderson, Smith, 
and Elovich liquid flick dispersal are some of the isotherm models were commonly used to describe 
the adsorption mechanism (Ali, 2012). Furthermore, these models provide a good thoughtful of the 
communication between an adsorbent and the adsorbates on the surface. In the field of treatment of 
wastewater, Langmuir and Freundlich models were indeed frequently used to estimate the interaction 
of adsorbates such as chemicals, dye and other wastes material with adsorbents (Mubarak et al., 2017). 
In the case of monolayer coverage, the Langmuir adsorption isotherm models are generally used, but 
in the condition of heterogeneous surface coverage, the Freundlich isotherm method is frequently used 
(Anastopoulos et al., 2019). The kinetics of adsorption process was studied using the following models 
like pseudo-first-order, pseudo-second order, Elovich, and intra-atom diffusion models (Jun et al., 2018). 
A Schematically representation of adsorption process is show in Figure 3.

Application of Carbon Nanoparticles in the Remediation of Contaminants

Nanomaterials and polymeric nanoparticle often have size in range of 10-100 nm in diameter that as-
sembled from a wide range of biodegradable such as chitosan polymeric nanoparticle. The behaviour and 
classification of nanomaterials have been influenced by the particle composition and surface possessions 
of the composite nanostructures. Furthermore, improving the chemical reactivity and functionalities of 
these carbon nanostructures by the improving their surface characteristics. It is possible to use these 
nanoparticles on their own or in combination with the additional of materials such as membranes or 
additional structural components.

Mining, battery manufacturing, galvanization and metal finishing are just some of the many industries 
that produce heavy metal ions containing wastewater and discharge it into nearby water sources (Mubarak 

Figure 3. Schematically representation of adsorption process.
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et al., 2014). By the reprocessing the purified water after treatment, we can save both the environment 
as well as water resources. Additionally, the treatment of impaired groundwater and superficial water 
should be treated seriously because it is essential for maintaining a fresh and healthy environment. Fol-
lowing are the section will look at how different forms of carbon, carbon nanotube and nanomaterials 
are utilised in the various wastewater treatment processes.

Adsorption Technique for Purifying Water

Adsorptions have been shown the greatest effective water handling or treatment processes for removing 
pollutants by using carbon-based nanomaterials. An adsorption procedure is characterised as the attrac-
tion and accumulation of gas/liquid solutes are on the surface of adsorbent molecule (Kaneko, 1994). 
Physisorption and chemisorption are two types of adsorptions that can occur, in case of chemisorption, 
the molecules of adsorbates are connected to the adsorbent’s surface by a solid organic interaction, while 
physisorption occurs when molecules are organised by van der Waals force of attraction (Krishnamurthy 
& Agarwal, 2013). The ratio of contaminants removed from the water influences the presentation of an 
adsorption metho, which is approximately equal to the adsorption volume of the adsorbent arranged. If 
Surface of adsorbent possess high definite surface area, active regions, and pollutant kinship are essential 
for an integral adsorbent’s efficiency to adsorb contaminants. Carbon nanotubes (CNTs) impregnated on 
triggered carbon, and nanomaterials are efficient adsorbents because of their huge accurate superficial 
area and effective dynamic chemical properties (Ibrahim et al., 2016; Abdullah et al., 2014). The ap-
plication of various forms of carbon nanomaterial as adsorbent will be examined in the future portion, 
which will investigate the adsorption of toxins such as contaminants present in wastewater.

With its high melting point and ability to form bonds with a wide variety of other elements, carbon 
is one of the periodic table’s most multidimensional elements. CNTs are first revealed in 1991 (Goel 
et al., 2005), had been widely used in research to demonstrate their capacity to purify the water. CNTs 
are cylinder in shape macromolecules with radiuses as tiny as a rare nanometres and lengths as long 
as 20 cm. identified that the principal component of the tube walls is a hexagonal arrangement of car-
bon particles, which corresponds to the atomic planes of graphite. CNTs are two types such as single 
walled CNTs (SWCNTs) and many walled CNTs (MWCNTs). MWCNTs consisting of hundreds of 
concentric tubes and SWCNTs containing of a single layer of carbon particles (Hirsch and Vostrowsky, 
2007). MWCNT’s could have sizes of up to the range 100 nm, whereas SWCNTs have diameters rang-
ing from 0.4 to 3 nm. SWCNT’s have an advantage over MWCNTs in that they can be wrapped up into 
dissimilar types of graphene pieces to make a variety of CNTs. They have been regarded as one of the 
greatest promising nanostructured resources, and the prospect of mass production of CNTs has piqued 
the interest of all researchers (Luo et al., 2000). CNTs a novel member of the carbon family, have been 
shown to have exceptional properties, leading to a wide range of applications including hydrogen storing 
(Cheng et al., 2001)., organic sensors (Kong et al., 2000)., separation and sanitization (Mubarak et al., 
2010, 2011), and compound material reinforcing (Dalton et al., 2003). On the other hand, CNTs have a 
hollow and covered structure as well as a huge exact surface zone (Li et al., 2006), which makes them 
ideal for eliminating heavy metals from wastewater using the adsorption approach (AlSaadi et al., 2016; 
Mubarak et al., 2016; AlOmar et al., 2016). CNTs can be functionalized in the influence of acid and alkali 
solution to improve their performance. Because of the impurities introduced during CNT formation, 
clean CNTs do not always deliver the best efficiency in the field of adsorption. The occurrence of these 
contaminants on the surface of CNTs would result in a change in the CNTs’ vital properties. As a result, 
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pollutants will be removed from CNTs using an acid or alkaline strategy to prevent the characteristics 
from being altered. Functionalization, in other words, is the process of adding a new functional group to 
CNTs’ surface. By swapping weak interactions by considerable electrostatic forces, a negatively charged 
functional set introduced to the exposed end or sidewall of CNTs would improve their solubility in any 
solvent and improve their surface area (Georgakilas et al., 2002; Hu et al., 2009). Nitric acid (Yang et 
al., 2009), sulphuric acid and potassium permanganate are commonly acidic and alkaline solutions 
used to functionalize CNTs (Lu and Chiu, 2008). Further, this functionalization approach incorporates 
functional groups (–COOH, -OH, and –C=O) at the opening end of CNTs (Krishnamurthy and Agarwal, 
2013; Mubarak et al., 2015).

One of the wide-ranging interferences for the groundwater environmental problem is the deposition 
of heavy metal ions, obviously or covertly, to any local water properties from firms including mining, 
batteries manufacture, and metal finishing. Along with its relatively cheap price, productivity, and flex-
ibility, adsorption has been highlighted as a multifunction technique (Li et al., 2005). Mubarak et al. 
(2012) just published an experiment comparing non-functionalized and derivatized CNTs in the aqueous 
environment for Cu2+ adsorption. As a consequence, CNTs were chosen as an adsorbent in order to get 
a more attractive and effective alternatives it may be required to extract metal ions also including Cd2+, 
Cu2+, Ni2+, and Pb2+ from aqueous solution, however according (Rao et al., 2007) discovered that metal 
ion adsorption to dissimilar kinds of CNTs followed basically the direction Pb2+ > Ni2+ > Zn2+ > Cu2+ > 
Cd2+, with surface oxidised CNTs through HNO3, NaOCl, as well as KMnO4 having a greater adsorption 
volume than raw CNTs. Both the raw and chemically modified CNTs are becoming more prominent in 
the removal of impurities containing divalent metal ions. In addition to heavy metals, toxic amounts of 
expected various organic matter in drinking water, such as trihalomethanes (THMs), have been shown 
to stimulate bacterial growth and biofilm development in the water distribution system when Organic 
matter levels exceed the permissible limit (Lu and Chu, 2005). And a need for organic matter removal 
from the environment has increased as a result of these chemicals’ harmful effects on consumer health 
and aesthetics. Researchers Su and Lu (2007) showed that after being introduced to 10 cycles of water 
treatment and reactivation, CNTs demonstrated better adsorption capacity and lost less weight. While 
CNTs are more expensive in terms of its synthesis, they have the potential to be an even better Organic 
matter adsorbent, preventing microorganisms in drinking water from deteriorating, culminating in a 
higher-quality also healthier water supply. Dyes have been recognized as one of the hazardous chemical 
compounds found in manufacturing waste, and their contamination of water has a detrimental impact 
since it reduces light dispersion, prohibiting aquatic plants from photosynthesis. Colors in drinking 
water induce allergic responses, skin rashes, and cancer (Alves de Lima et al., 2007; Carneiro et al., 
2010) and inversion in people, according to the statement. MWCNTs destroyed at least 98.7% of the 
dye in a solution including high salt attentions (Machado et al., 2011). Methanol and NaOH (4 mol/L) 
could this be used to recover the MWCNTs from oversensitive Red M-2BE dye-loaded MWCNTs. As 
according (Wu & co-worker’s, 2007), CNTs were particularly successful in decreasing Procion Bloodshot 
MX-5B from aqueous solution. The excellent adsorption capacity was reached by applying 0.25 g/L of 
CNTs, which reduced the dye’s adsorption at high pH and temperature. Excess adsorption volume was 
introduced into the Langmuir isotherm model in order to fit the adsorption data at 321 K. On the same 
note, the pseudo second order model accurately matched the adsorption kinetic data. According to (Kuo 
et al., 2008), investigated and described that CNTs were used to successfully remove direct dyes from 
aqueous solutions.
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Fullerenes being discovered and synthesised before CNTs were discovered and synthesised. In fact, 
the identification of fullerenes is often considered as a critical juncture in the creation of a wide variety 
of carbon-based nanomaterials. Fullerenes, often notorious as bucky balls, are the third kind of carbon 
allotrope between diamond and graphite. The primary distinction among CNTs and fullerenes is the 
figure of the carbons, with CNTs consisting of nanotubes and fullerenes consisting of a cage-like struc-
ture with 5-member rings and indeterminate number of 6-member rings. Fullerenes are hexagonal rings 
in which the carbon atoms are arranged. Weak sp3 bonding, more strain, and more subtle carbon sites 
are all well-known benefits of structures with fewer hexagons. Moreover, isomers featuring adjoining 
pentagons generally have lesser stability and virtual abundance than isomers having isolated pentagons 
(Kroto, 1987; Campbell et al., 1996), delocalize aromatic bonds over the fullerene structures. C-60 is a 
fullerene that has been icosahedral symmetric (Johnson et al., 1990) with the use of resonance structures 
that support a carbon atom with something like a power conditioning state and bonding geometry (John-
son et al., 1992). Because of its comparable stability, C-60 has become a stand-alone starting material 
for chemical processes. Transformations that have been covalent, supramolecular and endohedral also 
allow for manipulation of substances and the production of polymeric materials for specialised eco-
friendly applications. The features of fullerene have been successfully utilised in order to expand its use 
in the environmental domain. A number of research have been conducted out using fullerene to absorb 
heavy metal ions from wastewater as an adsorbent. Yang et al. (2006) asserted that all of the adsorption 
isotherms are nonlinear and well represented by the Polanyi–Manes model. CNTs adsorb second to four 
orders of magnitude stronger phenanthrene than fullerene, with SWCNTs greater then MWCNTs greater 
than fullerene has always been the direction. SWCNT showed highest adsorption performance relatively 
large, larger surface and reduced particle size which strengthened their applicability in environmental 
risk supervision and even had a considerable influence on the ultimate fate of PAHs once unrestricted 
into the environment. CNTs adsorb second to four orders of magnitude greater phenanthrene than fuller-
ene, SWCNTs > MWCNTs > fullerene seems to be the ranking. SWCNT showed highest adsorption 
capability due to the greater porous structure as well as reduced particle size.

Activated Nanoporous Carbon in the Purification of Water

The carbon-based porous materials should be synthesised and used as adsorbent that have application in 
wastewater treatment. Carbon-based Nanoporous materials are used as adsorbents such as dust (Ansari 
and Pornahad, 2010), gripe shells (Pradhan et al., 2005), petroleum by-products (Rao et al., 2002), wal-
nut stone waste (Fiol et al., 2006), and adsorbents fabric (Babić et al., 2002). Even though, all of these 
carbon-based adsorbents demonstrated as high catalytic activity for removing pollutants from wastewater. 
As a by-product, the adsorption volume of this activated carbon may be employed to improve the higher 
surface area. In other words, this stimulated carbon could well be turned into nanoporous stimulated 
charcoal and surface functionalization, which can substantially adsorb the pollutants. According to Xiao 
and Thomas (2005), synthesised stimulated carbon was created by varying the nitrogen concentration 
throughout invention and were used to assess the adsorption of metals. The surfaces of these carbons are 
wrapped in oxygen functional groups. The fragmentation of surface oxygen functional groups causes a 
reduction in oxygen content and an improvement in the carbon series. Moreover, the quantity of separate 
transition metals adsorbed on the adsorbent declines during competitive adsorptions between these ions 
as compared to a single ion system adsorption (Xiao & Thomas, 2004). When it came to ion adsorption, 
the order was Hg2+ > Pb2+ > Cd2+ > Ca2+ for Hg2+, Pb2+. Electrostatic influence, numerous ion species 
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in solution play a role in metal ion adsorption onto the adsorbents. Mangun et al. (201) utilized manu-
factured nanoporous stimulated carbon fibres (SCFs) with a normal pore size and surface areas ranging 
from 171 to 483 m2/g to investigate the adsorption capacity of toluene, ethylbenzene and pxylene. The 
adsorption information obtained perfectly linked the Freundlich adsorption isotherm, and SCFs have 
been shown to have good adsorption than granular stimulated carbon. Takeuchi et al. (1999) evaluated 
and demonstrated the use an effective adsorbent for PAH components such as fluorine, anthracene, 
naphthalene, and also pyrene in aqueous solution. Pyrene, acenaphthene, anthracene, fluorine, fluoran-
thene, and naphthalene all grew in hydrophobicity in a logical sequence, with pyrrole at the top. Few 
studies have employed activated charcoal granules or carbon fibres to establish the adsorption capabil-
ity for chlorinated compounds from water, and the results have indeed been outstanding (Sakoda et al., 
1987). Takeuchi and companions decided to carry out a successful research project on the production of 
stimulated carbon with a high specific surface area of 3000 m2/g in granular maintained on honeycomb 
board, and this stimulated carbon demonstrated great adsorption volume of pentachlorophenol vapours 
including such as trichloroethylene (TCE), methylchloroform (MC) and also tetrachloroethylene (TCE) 
(O’Mahony et al., 2002). The adsorbate and adsorbent interact more effectively with a high-surface-area 
material, resulting in increased adsorption capacity. If dye exceeds the allowable limits in any water 
resource, as environmental disclosure in this text, it is considered harmful. Azo dyes are some kinds 
of dye that has at least having one azo bond (-N=N-) with aromatic rings making them a significant 
component in the international dyestuffs market (Yang and Al-Duri, 2001). One form of azo dye is 
reactive dyes, which are employed for their vivid colours and high colourfastness (O’Mahony et al., 
2002). Some azo dyes are proven to be harmful to aquatic species and may be used to kill them directly. 
These azo dyes, which make up the majority of oversensitive dyes, are typically azo compounds joined 
together by an azo bridge (Cohen, 1947). On the other hand, standard physicochemical and biological 
treatment procedures are unable to remove these reactive colours from wastewater. Adsorption of these 
colours from industrial wastewater has been demonstrated to be highly successful by a few researchers 
who used carbon sources in the adsorption approach (Ahmad and Hameed, 2010). Adsorption of basic 
dyes from aqueous solution onto granular stimulated carbon was also reported by Meshko et al. (2001). 
Özacar and Şengil (2002) established that dye from manufacturing effluent may very well be obtained 
using activated charcoal as the adsorbent.

Graphene in the Water Treatment Industry

Due to its distinctive 2-dimensional structure which is made up of a rare atomic layered that have special 
mechanical, thermal, and electrical abilities have been used to research as well in as in the field of adsorp-
tion for wastewater treatment (Su et al., 2009). Graphene oxide nanosheets produced from graphite powder 
with the improved properties were used as the adsorbent for the exclusion of Cd2+ and Co2+ from huge 
capacities of aqueous solutions (Zhao et al., 2011). The effects of pH, surface charge, and carbonaceous 
acid on Cd2+ also Co2+ demonstrate that pH has a major impact on metal ion absorption on graphene 
oxide nanosheets, although ionic strength has a slight impact. Cd2+ and Co2+ adsorption on graphene 
oxide nanosheets at pH 8 was hindered by humic acid. For Cd2+ and Co2+ at pH 6.0, the greatest sorption 
strengths were found to be 106.3 and 68.2 mg/g for graphene oxide nanosheets at 303 K. Furthermore, 
graphene oxide nanosheets would have been the ideal material for purifying water if mass-produced at 
a low-priced rate. According to Deng et al. (2010) used potassium treatment and prevention solution as 
the electrolyte in a modest and low-cost electrolysis to produce synthesised graphene. The adsorption 
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isotherm data of both the isotherm such as Langmuir and Freundlich isotherm models is good agree-
ment. Pb2+ was completely removed from an aqueous solution using graphene nanosheets (GNSs) at 
room temperature (Huang et al., 2011). The concomitant adsorption of Pb2+ ions also protons on GNSs 
strengthens overall Lewis’s basicity, which is further explained by the high-vacuum thermal treatment. 
Permanent magnet monolayer hybrids been employed to create a chemical reaction with 10 nm-sized 
magnetite (Chandra et al., 2010) and by using magnetic graphene hybrids, the elimination ratio of arsenic 
compound within 1 ppb reached 99.9%. Along with the adsorption of heavy metals, a number of studies 
have shown that graphene may be used for the adsorption of textile colours, resulting in a cleaner water 
supply. After oxidising graphite with both the Hummers–Offeman reaction, Bradder et al. (2011) suc-
cessfully implemented it for dye adsorption from aqueous solution. The presence of negatively charged 
with functional groups on the adsorbent’s surface, adsorption has also been characterized as electrostatic 
attraction. Researchers have reported hydroxy graphite has also been used to eliminate lubricating oil 
and colours from wastewater. Exfoliated graphite with maximum adsorption volume for methyl orange 
has been generated from residual sulphuric acid compounds in natural graphite (Tryba et al., 2003). 
From the (Zhao and Liu, 2009) discovered that modulated expansion graphite residue might be used as 
a permeable adsorbent to adsorb cationic dyes also including methylene blue from acidic suspension.

Disinfection

In addition to adsorption have introduced by disinfection and was discovered to be an amazing technol-
ogy for removing toxins from several wastewater. Water treatment agencies are under more pressure to 
eradicate pathogens in raw waters as a result of the improved value of drinking water that is required 
(Kfir et al., 1995). An issue through pathogen removal is the inconstant concentration and variety of 
pathogens present fashionable influent water quality. According to (LeChevallier et al., 2004). investiga-
tion, the clearance effectiveness of microbiological particles which have varied from 0.04 to 5.5 logs. 
According to research conducted by Upadhyayula et al. (2009), when water is treated with microbes such 
as cyanobacteria it releases poisonous microcystins. According to Krasner et al. (2006), the synthesis of 
disinfection by products DBPs is facilitated by the presence of some chemical oxidants which are found 
in water or in the water treatment. Some diseases such as Cryptosporidium and Giardia are very resistant 
to disinfectants, which necessary to remove an increased dosage of disinfectants in order to control this 
pathogen. The existence of microorganisms that are resistant to disinfection has been classified as an 
important problem in water treatment. As a result, nanotechnology was adopted as the solution worker 
for this problem in order to gap the production of disinfection by products DBPs and advance the value 
of treated wastewater (Li et al., 2008).

Recently, a number of synthetic nanomaterials included silver nanoparticles (n-Ag) (Morones et al., 
2005; Badireddy et al., 2007), n-C60 fullerene nanoparticles (Lyon et al., 2006), and CNTs (Kang et al., 
2007), have been shown to be effective disinfectants. These synthetic nanoparticles are highly effective 
against microorganisms. Due to their safety and lack of production of hazardous disinfection by prod-
ucts DBPs, these nanomaterials have been proven to be ideal disinfectants in the wastewater treatment.

Carbon Nanotubes used in Disinfection

CNTs are composed of carbon sheets and folded upon the layer of tubes, resulting it have two form 
such as SWCNTs and MWCNTs. There have been few studies on the influence of carbon nanotubes on 
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the elimination of bacteria and virus activity from water. Apart from heavy metals emitted by industry, 
one of the biggest contaminants in the water is the result of bacteria and virus activity. According to 
Wick et al. (2007), with toxicity levels of water reduces by treating with SWCNT, MWCNT, and C60 
nanomaterials (Jia et al., 2001). Microbial adhesion and befouling development on the surface of CNTs 
were then inhibited by CNTs. To maximise the CNTs performance as a disinfectant, the matching sta-
bilising affected by organic matter (Hyung et al., 2007) degree of accumulation (Kang et al., 2007) and 
bioavailability of the CNTs (Brunet et al., 2008) have to be active in another investigation. According to 
(Lyon et al., 2006) have as long as the first direct proof that extremely pure SWCNTs have a substantial 
antibacterial action and show that direct contact with SWCNTs causes severe cell membrane damage. 
However, CNTs have been discovered to have trouble dispersing in water, resulting in deficient contact 
between CNT and microorganisms for decontamination. Supplementary processes such as functional-
ization and covering can improve the disinfectant efficacy of CNTs by immobilising pristine SWCNTs 
on a membrane filter surface. From the (Brady-Estévez et al., 2008) covered a thin layer of SWCNTs 
with microporous membrane and achieved effective E. coli inactivation and bacteriophage eradication. 
CNTs can also be integrated into hollow fibres to effectively inactivate E. coli and poliovirus, according 
to (Srivastava, 2004). According to (Kfir et al., 1995) investigated the sporicidal effects of SWCNTs and 
SWCNTs in combination with oxidising antimicrobial compounds like H2O2 and NaOCl on Bacillus 
antharacis (B. antharacis) spores. Antimicrobial compounds were also utilised, which rendered the spores 
more permeable to the chemicals. Arias and Yang (2009) investigated the antibacterial properties of both 
SWCNTs and MWCNs linked to bacterial pathogens such as Gram-negative versus Gram-positive types. 
When compared to SWCNTs with functional groups of –NH2, SWCNTs with surface functional groups 
of –OH and –COOH had higher antibacterial action against both Gram-positive and Gram-negative 
bacterial cells. In the case of SWCNTs-NH2, the presence of functional groups in a lengthy chain will 
impact the connections between the SWCNTs-NH2 and bacterial cells. Since the cylinder structure of 
CNTs may not be in direct hint with the bacteria cell walls, resulting in a reduction in SWCNTs-NH2 
antimicrobial movement. As a result of the decreased toxicity level of MWCNTs compared to SWCNTs, 
they were found to have reduced antibacterial activity.

Fullerenes as a Disinfectant

The use of fullerenes as an antibacterial agent is still relatively new, and many academics are just begin-
ning to explore the possibility of using fullerene as a disinfectant. Despite their well-known antibacterial 
properties, many fullerenes did not produce extremely effective antibacterial movement. When fullerene 
was examined as antiseptic for mammalian cells, Lyon et al. (2008) found that it has neither high toxic-
ity nor not show antibacterial action. C60 molecules can be produced to collective into steady fullerene 
water suspension (FWS) with properties different from bulk solids of C60 by four unlike techniques, 
(Lyon et al., 2005). The antibacterial activities of these created FWS, which were made without the 
use of any intermediary solvents, are being investigated further. In accumulation to surface area, the 
morphologies of these interruptions were discovered to have an impact on antibacterial activity. Both 
crystalline and amorphous collections make up the separated C60 suspensions. These suspensions were 
centrifuged, resulting in a slighter size fraction with bigger amorphous aggregates than the greater size 
fraction. Because the aggregates with a lower proportion lack the recurring structure that determines 
crystallinity, they seem more amorphous.
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Nanoporous Activated Carbon as Antiseptic

Activated carbon is familiar for its incredible as adsorbent and it is also operating as disinfect into research 
reveal antimicrobial effects by minimizing its surface area. Using Granular activated carbon (GAC) 
as an antiseptic to examine effluent from a predicted water purification pilot plant. Stewart & Wolfe 
(1990) found that GAC had a positive influence on the water’s microbial quality. Samples including 
both disinfected and non-disinfected industrial effluent were examined for microorganisms after being 
visible to chloramines and chlorine for 1 hour. Bacteria such as Flavobacterium spp. were bred using 
chloramines and chlorine, respectively. Stimulated carbon fibres (ACF) were used as electrodes to dis-
infect the microorganisms such as Escherichia coli, E. coli in consumption water reported by Stewart & 
Wolfe (1994). Rather than carbon fabric or rough stimulated carbon, E. coli was successfully absorbed 
onto ACF. Furthermore, E. coli cells that had been adsorbed on the ACF were electrochemically done 
when a voltage of 0.8 V was given to a saturated calomel electrode (SCE). This study established that 
the drinking water is become disinfected without chlorination.

Membrane’s Process

Membrane’s process has been used in the elimination of pollutants from water. It is classified as a physical 
procedure that works by causing atoms to move depending on a varying concentration equal or a variance 
in atom size between the two sides of the membrane. An automated and adaptable design is provided 
by a membrane, which uses relatively little land and chemicals (Qu et al., 2013). A membrane’s total 
performance is influenced by its two critical factor such selectivity and permeability. When it comes 
to defining permeability and selectivity, permeability and selectivity are exact as the invention of flow 
and membrane width alienated by the pressure differential diagonally the membrane (Freeman, 1999). 
A simplified definition of permeability is the capacity of water-borne contaminants to pass through the 
membrane and there are two types of membrane (Hsu, 2004). As a rule, a membrane with high perme-
ability and exercising judgment is the best choice in most cases, when the permeability of the membrane 
is improved; less membrane area is needed to treat the water, lowering its initial investment cost. The 
composition of a membrane’s substance determines its overall performance. One of the most effective 
materials to be put into the membrane is one that can provide high permeability, high selectivity, and low 
energy consumption. On that topic, effective research has shown that incorporating carbon nanotubes 
into membranes improves permeability, stability, and fouling resistance by leaps and bounds.

Membranes with Carbon Nanotubes and Companies

CNTs will often be mixed with other biodegradable polymers as well as nanomaterials to generate nano-
composite membranes. Shawky et al. (2011) has proposed the polymer grafting procedure to combine 
MWNCTs with aromatic polyamide to create nanocomposite membranes. MWCNTs were originated 
to be well diffused in the polyamide matrix, and an enhancement in MWCNT content increased the 
membrane’s roughness, and structural rigidity. The solid interaction becomes stronger as the MWCNT 
level rises, resulting in greater permeability and salt rejection (Lee et al., 2007). MWCNTs can be 
used in conjunction with polyethersulfone (C/P) to balance sheaths, (Celik et al., 2011). The C/P mix 
membranes were originated to be extra hydrophilic and to have larger clean water fluidity than the poly-
ethersulfone (PES) membranes. The volume of MWCNTs used in the blend membranes was shown to 
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have a significant impact on the shape and permeability properties of the membranes. However, due to 
the hydrophobic landscape of CNT pore walls, aligned CNTs combined into mix membranes will cause 
an in-height fouling (Kim and Van der Bruggen, 2010). The obtained results reveal that the flow of the 
bare PES membrane dropped by up to 43 percent as compared to the operation time (Fan & Harris, 
2001). The SWCNTs were effectively covalently bound to the surface of thin film membranes (TFMs) 
(Tiraferri et al., 2011).

Membranes Made of Fullerenes

Fullerenes were similarly used to integrate into membranes, and the results of the study reveal that they 
are effective at removing toxins from water. Jin et al. (2007) testified the development of a novel poly-
mer membrane founded on the aquaphobic polymer poly (2, 6-dimethyl-1, 4-phenylene oxide) (PPO) 
improved by C60, which was used to investigate the adsorption behaviour of estrogenic chemicals found 
in superficial water and filtered wastewater. Membranes were made by combining sulfonated polystyrene 
and also with fullerene reported by Saga et al. (2008). The addition of fullerene in the polyelectrolyte 
membrane increased the membrane’s oxidation resistance and reduced the methanol crossing. Another 
study found that adding fullerene to the membrane did not improve its mechanical strength. The mem-
brane’s Young’s modulus, rupture pressure, and extreme stress all dropped as the fullerene content in the 
membranes enlarged. The MeOH permeability of the fullerene composite membranes was 50% lower than 
that of the PS membrane, with the MeOH penetrability of the 1.4 percent influenza-phosphalidylserine 
Flu-PS and 2.8 percent Flu-PS membranes being 50% lesser than that of the PS membrane. This study 
shows the Fullerenes incorporated membranes, has been shown more effective for removing the toxins 
material form wastewater.

CONCLUSION

There are different sources of polluted water such as textile industries, tanneries and chemical industries, 
Industrial effluents, Sewage water and agrochemicals. Marine water got polluted from; wastewater of 
rivers brings pollutants from drainage, Catchment area that is industries, agricultural wastes. Oil drilling 
and shipment a big issue of marine water pollution because washing of ship and ship-accidents add to 
marine water cause pollution. It necessary to create a mechanism to purify the water present on the earth, 
in which carbon-based material play an important role in Wastewater treatment. There are numerous types 
of nanomaterials that have tremendous potential for effectively treating polluted water (including metal 
toxins and various organic and inorganic contaminants) due to their unique qualities such as increased 
surface area, high porosity, and ability to work at low concentrations. Although technologies utilizing 
nanostructured catalytic membranes, nanosorbents, and nanocomposites to remove contaminants from 
wastewater are environmentally friendly and effective to purify the wastewater.
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ABSTRACT

The word “nano” is from the Greek word “nanos” meaning “dwarf.” It is a prefix used to describe “one 
billionth” of something. A nanometer (nm) is a billionth of a meter or a millionth of a millimeter. This 
chapter started with an introduction to nanoscience followed by what nanostructure is and its applica-
tions of nanotechnology (basic idea) and various size-dependent properties of nanomaterials. In this 
chapter, some unique properties like 1) semiconducting nanoparticles and 2) metallic nanoparticles are 
explained with examples. Synthesis aspects of nanomaterials also need to be understood using bottom-up 
and top-down approaches including mechanical alloying and shape and size control of nanomaterials. 
In the current scenario, the research and development of nanotechnology is very active globally, and 
nanotechnologies are already used in many products. Further, nanotechnologies are also being developed 
for use in environmental applications (e.g., clean-up of environmental pollutants).

INTRODUCTION TO NANO SCIENCE

Nanoscience is a combine word consisting with two parts, nano and science. Although nano is a refer 
as in nanometer, nanoampere, nanosecond, etc. in nanoscience, it refers specifically to nanometer. 
Therefore, nanoscience is the science of objects in the size regime of nanometers. The ‘nano’ word 
basically is a Greek prefix meaning dwarf or something very small and depicts one billionth (10–9) of a 
unit Nanomaterials, therefore, refer to the class of materials with at least one of the dimensions in the 
nanometric range. For an immediate comparison, a nanometer represents a dimension about a few tens 
of thousand times thinner than human hair. Table 1 gives an idea of the scale of different objects, from 
macroscale to nanoscale. In the case of polycrystalline materials, the grain size is typically of the order 
of 1 – 100 microns (1 micron = 10– 6 m). Nanocrystalline materials have a grain size of the order of 
1 − 100 nm and are therefore 100 – 1000 times smaller than conventional grain dimensions. However, 
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compared to the size of an atom (0.2 – 0.4 nm in diameter), nanocrystalline grains are still significantly 
large. (Mansoori and Soelaiman, 2005).

Applications of Nanoscience

Nanoscience is the study of structures and materials on an ultra-small scale, and the unique and inter-
esting properties these materials demonstrate. Nanoscience is cross-disciplinary, meaning scientists 
from a range of fields including chemistry, physics, biology, medicine, computing, materials science 
and engineering are studying it and using it for following stream areas of society as shown in Figure 1.

1.  Computers
2.  Clothing
3.  Furniture
4.  Adhesives
5.  Coatings for car paintwork
6.  Sports
7.  Cosmetics
8.  Pharmaceutical etc.

Nanostructure

Hundreds of years ago nanomaterials have been produced and used by humans on daily basis. on the 
other hand, the understanding of certain materials as nanostructured materials is relatively current, 
made possible by the advent of advanced tools that are capable of resolving information at nanoscale. 
Nanostructured materials have generated extensive interest among chemists in recent years because of 
their physicochemical and plasmonic properties and potential applications. The extraordinary physico-
chemical and biological properties of materials at the nanoscale enable new applications ranging from 

Table 1. The list of small dimensions

Number Name Symbol

0.1 deci d

0.01 centi c

0.001 milli m

0.000 001 micro μ

0.000 000 001 nano n

0.000 000 000 001 pico p

0.000 000 000 000 001 femto F

0.000 000 000 000 000 001 atto a

0.000 000 000 000 000 000 001 zepto z

0.000 000 000 000 000 000 000 001 yocto y
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energy conservation and structural strength enhancement to antimicrobial characteristics and self-cleaning 
surfaces. The discovery of new materials and structures at the nanoscale, and the development of new 
theoretical and experimental methods for research, can provide novel opportunities for the development 
and improvement of hitherto unknown nanomaterials.

Nanostructures have obtained prominence in technological developments owing to their tunable 
physicochemical properties including their melting points, electrical and thermal conductivities, light 
absorption and scattering properties, optical sensitivity, (photo) catalytic activity, and wettability result-
ing in their significantly enhanced performance over their bulk counterparts.

The International Organization for Standardization (ISO)

This defines a nanostructured material as a “material with any external nanoscale dimension or having 
the internal nanoscale surface structure”. Similarly, the European Commission describes nanostructures 
as a “manufactured or natural material that possesses unbounded aggregated or agglomerated particles 
with external dimensions between 1-100 nm size range”. (Atkins and Overton, 2010)

Figure 1. Nanoscience and Society
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Classification of Nanostructures Based on Dimension

Nanostructures are structures between 1 and 100 nm in size that are made up of carbon, composite, 
metal, metal oxide, organic, or inorganic material. A new scheme of nanostructure classification was 
provided by Pokropivny and Skorokhod (2007). Here, nanostructures were classified depending on their 
dimensions into one of four categories:

1.  0D, where length, height, and breadth parameters are fixed at a single point, for instance at a dot.
2.  1D, where only one the parameter exists, for instance graphene,
3.  2D, where parameters of length and breadth exist, for instance, carbon nanotubes.
4.  3D, where all three parameters exist, for instance Pd and ZnO NPs.

Types of Nanostructures

Nanostructures have different shapes, sizes, structures and origins. They can be spherical, conical, spiral, 
cylindrical, tubular, flat, hollow, or irregular in shape and be from 1 to 100 nm in size. Most nanostruc-
tured materials can be generally divided into four material-based categories

1.  Carbon-Based Nanostructures
2.  Organic-Based Nanostructures
3.  Inorganic-Based Nanostructures
4.  Composite-Based Nanostructures

Carbon-Based Nanostructures

Nanostructures made of carbon are known as carbon-based nanostructures. They can have different 
morphologies, such as ellipsoid, hollow tube, or sphere.

• Generally, these nanostructures can be classified into diamonds, fullerenes (C60, C80, and C240), 
carbon nanotubes (CNTs), graphene, and carbon nanofibers.

• Eg. Fullerene (C60) is a carbon-based molecule that is spherical in morphology and made up of 
carbon atoms held together via sp2 hybridization.

• Generally, the other fullerenes (0D), such as C76, C80, C240, etc, are synthesized from larger num-
bers of carbon atoms.

• Fullerenes are comprised of between 28 and 1500 carbon atoms that form spherical structures.
• Single-layer fullerenes have diameters up to 8.2 nm while multilayer fullerenes have diameters of 

between 4 and 36 nm.
• Over the past few years, solar cells have attracted much attention due to their important role in the 

production of energy.

Organic-Based Nanostructures

Dendrimers, liposomes, micelles, polymer NPs, etc., are usually known as organic nanostructures or 
polymers.
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• These include nanostructures made mostly from organic material, excluding carbon-based or in-
organic-based nanostructures.

• These nanostructures are nontoxic, biodegradable, and some of their structures,
• e.g., liposomes and micelles, have hollow cores (also known as nanocapsules).

Inorganic-Based Nanostructures

Inorganic nanostructures and nanoparticles are structures and particles that are not made from carbon-
based or organic-based NPs.

• These nanostructures include metal and metal oxide NPs.
• Metal-based and metal oxide-based NPs are commonly categorized as inorganic nanostructures.
• These nanostructures can be synthesized into metal NPs, such as Pd or Au, metal oxide NPs like 

TiO2, and also semiconductors, such as ceramics and silicon.

Composite-Based Nanostructures

Nanocomposites can be described as multiphase nanostructures with one phase being at the nanoscale 
dimension.

• They can either combine nanostructures with other NPs or NPs with bulk-type or larger materials 
(e.g., hybrid nonporous materials) or more complicated structures.

• Nanocomposites can be any combination of metal-based, carbon-based, or organic-based nano-
structures with any form of ceramic, metal, or polymer bulk materials. (Murty et al., 2013)

NANOTECHNOLOGY

The coming decades could well be dominated by nanotechnology (‘Nano Age’), a deviation from the 
practice of identification of an era based on materials to one based on technology. The term ‘nanotech-
nology’ was first coined by Norio Taniguchi in 1974 to describe semiconductor processes such as thin 
film deposition and ion beam milling, where the features can be controlled at the nanometric level.

The creation of functional materials, devices and systems through control of matter on the nanometer 
length scale (1–100 nm), and exploitation of novel phenomena and properties (physical, chemical, bio-
logical) at that length scale (Dino, 2008).

Uses

1.  Nanotechnology is being used in developing countries to help treat disease and prevent health 
issues.

2.  The umbrella term for this kind of nanotechnology is Nano-medicine.
3.  Nanotechnology is also being applied to or developed for application to a variety of industrial and 

purification processes
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4.  Food and agricultural systems, such as food security.
5.  Disease treatment delivery methods,
6.  Molecular and cellular biology,
7.  Materials for pathogen detection
8.  Protection of the environment

SIZE-DEPENDENT PROPERTIES OF NANOMATERIALS

For a science that is all about size, one of the most interesting aspects of nanoscience is that properties 
of nanoparticles change with size.

It has been shown that many fundamental properties are size dependent on the nanoscale.
For example, the most stable crystalline phase of a material is size dependent. From thermody-

namic considerations, the total free energy is a sum of the free energy of the bulk and the surface of the 
nanoparticle.

Gnanoparticle = Gsurface + Gbulk 

For nanoparticles, Gsurface is no longer a minor component but in fact becomes a large component of 
the total free energy. Surface free energies and surface stress are important components to the overall 
phase stability of nanoparticles. Titanium dioxide is interesting as anatase becomes more stable than 
rutile (Anatase and rutile two forms of Titanium dioxide TiO2) for a particle size below 14 nm. (Weller 
et al., 2014)

PHYSICAL PROPERTIES OF NANOPARTICLES

Physical properties of nanoparticles are dependent on:

• Size
• Shape (spheres, rods, platelets, etc.)
• Composition
• Crystal Structure (FCC, BCC, etc.)
• Surface ligands or capping agents
• The medium in which they are dispersed
• As the percentage of atoms at the surface increases, the mechanical, optical, electrical, chemical, 

and magnetic properties change.
• For example, optical properties (color) of gold and silver change, when the spatial dimensions are 

reduced and the concentration is changed.

Semiconducting Nanoparticles

Quantum dots (QDs) are a particular kind of semiconducting crystalline nanostructure containing a 
metallic semiconductor core that is most commonly coated in a shell to improve its optical behavior.
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• A quantum dot has a discrete quantized energy spectrum.
• Typical quantum dot sizes range between 2 and 20 nm. The color they glow depends on the size 

of the nanoparticle.
• The capability to tune the size of Quantum dots is advantageous for many applications.
• Due to their unique properties, such as bright fluorescence, broad UV excitation, narrow emission, 

and high photostability.
• Quantum dots have an enormous impact on pharmaceutical research and drug development.
• Physics can be used to explain the basis of Quantum dots performance. When an atom is exposed 

to energy it absorbs some of it, causing an electron to move to a higher energy level. When the 
electron falls back to its lower level a photon is emitted with the same energy as that absorbed by 
the original atom.

• However, different atoms emit different colors. This is possible because the energy levels in atoms 
have set values; on the other hand, they are quantized.

• Two important effects occur in semiconductors when electrons are confined to tiny regions. First, 
the HOMO-LUMO energy gap increases from the value observed in bulk crystals. Second, the 
energy levels of electrons in the LUMOs (and holes-the absence of electrons in the HOMOs) are 
quantized, like those of a particle in a box. Both effects play an important role in determining the 
optical properties of Quantum dots. (Sengupta and Sarkar, 2015)

Metallic Nanoparticles

The optical properties of metallic nanoparticles arise from a complex electrodynamic effect that is 
strongly influenced by the surrounding dielectric medium. Light impinging on metallic particles causes 
optical excitations of their electrons.

• The principal type of optical excitation that occurs is the collective oscillation of electrons in the 
valence band of the metal. Such coherent oscillations occur at the interface of a metal with a di-
electric medium and are called surface plasmons.

• In bulk particles, the surface plasmons are travelling waves and are characterized by a linear 
momentum.

• To excite plasmons using photons in bulk metals, the momenta of the plasmon and the photon 
must match.

• This matching is possible only for very specific geometries of the interaction between light and 
matter and is a weak contributor to the optical properties of the metal.

• In nanoparticles, however, the surface plasmons are localized and have no characteristic momentum.
• As a result, the momenta of the plasmon and the photon do not need to match and plasmon excita-

tion occurs with a greater intensity.
• The peak intensity of the surface plasmon absorption for gold and silver occurs in the optical re-

gion of the spectrum, and so these metallic nanoparticles are useful as pigments.
• The characteristics of plasmon absorption depend strongly on the metal and the dielectric sur-

roundings as well as on the size and shape of the nanoparticle.
• To control the dielectric surroundings, so-called core–shell composite nanoparticles have been de-

signed in which metallic shells of nanometer-scale thickness encapsulate a dielectric nanoparticle.
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• Metallic nanoparticles and metallic nano-shells are used as dielectric sensors because their optical 
properties change when they come into contact with different dielectric materials.

• In particular, biological sensing is of interest because biological analytes can bind to the surface 
of the nanoparticle, causing a detectable shift in the plasmon absorption band.

• Gold nanoparticles are common examples of metallic nanoparticles and have found practical 
applications as biological and chemical sensors, ‘smart bombs’ for cancer therapy, and optical 
switching and fluorescent display materials. (Kuno, 2005)

SYNTHESIS ROUTE OF NANOMATERIALS

Nanoparticle synthesis refers to methods for creating nanoparticles. Nanoparticles can be derived from 
larger molecules or synthesized by ‘bottom-up’ methods or Top-down approaches. For example, nucleate 
and grow particles from fine molecular distributions in liquid or vapour phase. (Klabunde and Sergeev, 
2013.)

Synthesis can also include functionalization by conjugation to bioactive molecules.

Bottom-Up Approaches

The bottom-up approach consists of the building up of nanomaterials from smaller building blocks. 
This approach has given rise to nano-chemistry, typically with the use of self-assembly methods for 
the formation of highly ordered two- and three-dimensional nanoscale structures. The idea of building 
nanomaterials atom-by-atom was first popularized by Drexler in the mid-1980s, who envisioned the 
construction of ‘nanorobots’

Chemical Vapor Deposition (CVD)

Chemical vapor deposition (CVD) is a famous thin film deposition technique in which vapors condense 
into solid phase onto the surface of a substrate as a result of chemical reaction. The conventional CVD 
is also known as thermal CVD in which the deposition is carried out in a furnace usually at high tem-
perature to vaporize the precursor material and promote the chemical reaction. A typical CVD process 
involves several steps. The precursors placed in the reaction chamber/furnace are evaporated and the 
reactant vapors are transported towards the substrate with the gas flow. The reactants are adsorbed on the 
surface of the substrate followed by diffusion, nucleation, and chemical reaction which leads to forma-
tion of deposition of material of interest in the form of thin film. In parallel to this, The precursor vapors 
can also go through gas phase reaction to produce products and by-products in gaseous phase. These 
products can adsorb on the substrate surface or ejected out of the furnace with gas flow. A conventional 
CVD reactor consists of several components which basically include:

1.  Reactor chamber or furnace
2.  Substrate holder
3.  Carrier gas as H, N, Ar, or mixture of these gases
4.  Heating source
5.  Boats to load precursors in the chamber
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6.  Exhaust system
7.  Vacuum system.

The schematic diagram of a conventional CVD reactor is given in Figure 2 The conventional CVD 
process involving vapor–solid mechanism is not efficient for deposition of nanomaterials (e.g., NWs) 
because direct adsorption of vapors on solid is a slow process. The synthesis stages include:

1.  Loading of the precursor reactants and inert gases into the chamber,
2.  Shifting of vapor species to substrate.

Spray Pyrolysis

The spray pyrolysis deposition (SPD) is a simple and cost-effective deposition technique based on chemi-
cal synthesis method in which layer of thin film is deposited on the surface of substrate by spraying the 
solution. This technique is used for deposition of mono or multilayer thin films having high density, 
controlled thickness, and usually porous structure. A speciality of this technique is the preparation of the 
product material in the form of porous or dense powder comprising of ultrafine grains. This capability 
of spray pyrolysis makes it a suitable technique for synthesis of nanomaterials.

The processing via this technique basically consists of spraying the precursor solution onto the surface 
of heated substrate. For controlled deposition of the desired products, the growth process is carried out in 
thermally insulated chamber equipped with necessary components. In this technique, the initial solution 
is prepared by melting the metal salt into a solvent. The small droplets of solution are then atomized into 
the furnace where the velocity and concentration of these droplets establish the morphology and size 
of the grown NPs. In this method, the characteristic solvent evaporation time and characteristic solute 
diffusion time are important and define the deposition rate and quality of grown layers. The product 
composition can be controlled by composition of reactants in precursor solution, growth parameters, and 
dynamics of the chemical reaction. The product particle will be a porous material or a hollow particle, 
the morphology of the particles is decided by the characteristic times. Temperature plays an important 

Figure 2. Chemical vapor deposition (CVD)
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role in determining the density of the nanomaterial, higher density gives the further spherical shape of 
the particles. The influence of growth parameters on the properties of the product in the form of thin 
films or powder can be found in literature. Spray pyrolysis is comparatively low-cost, eco-friendly, 
scalable and can be appropriate for a variety of substrate. The apparatus required for SPD comprises of 
precursor in solution form, substrate holder, electrical heaters, temperature controller, cooling system, 
filters, spray nozzle or atomizer, and thermally insulated chamber. The option to adjust the opening of 
nozzle tip offers the control on particle size of the product which points to suitability of this technique 
for growth of NPs. The deposition rate and quality of the product strongly depend upon the processes, 
equipment, and growth parameters. Though, several atomizers have been tested but air blast, ultrasonic, 
and electrostatic type atomizers have been commonly utilized. The schematic diagram showing spray 
pyrolysis process is sketched in Figure 3. (Brechignac and Houdy, 2007)

Sol-Gel Process

A description of the sol-gel process can be formation of an oxide network through polycondensation 
reactions of a molecular precursor in a liquid. In general, in this process, several stages are identified, 
starting with a silicate solution and then forming a sol, which will then be transformed into a gel, and 
finally, a dry gel is obtained which is generally formed by a three-dimensional network of silica, with 

Figure 3. Schematic Diagram of Spray Pyrolysis Process
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numerous pores of various sizes interconnected. Figure 4 presents an outline of the routes of this mecha-
nism Among the advantages of using the sol-gel process in the synthesis is because it can be carried 
out at room temperature, it allows us to produce a wide range of novel and functional materials, with 
potential applications in different areas; and finally, it is really attractive compared to other methods, 
due to its low production costs.

Sol-gel samples can be designed with a wide variety of morphologies, such as monoliths, films, fibers, 
and powders. In particular, films are the most important from the technological point of view. The pro-
cess begins with the formation of a “sol,” which is a stable dispersion of colloidal particles (amorphous 
or crystalline) or polymers in a solvent. A “gel” is formed by a three-dimensional continuous network, 
which contains a liquid phase, or by the joining of polymer chains. In a colloidal gel, the network is built 
from agglomerates of colloidal particles. Generally, van der Waals forces or hydrogen bonds dominate 
the interactions between the sol’s particles. During synthesis, in most gel systems, covalent-type inter-
actions dominate, and the gel process is irreversible. The gelation process may be reversible if there 
are other interactions involved. The purpose behind the sol-gel synthesis is to dissolve a compound in a 
liquid to obtain a solid controlling the factors of given synthesis. Using a controlled stoichiometry, sols 
of different reagents can be mixed to prepare multicomponent compounds. The sol-gel method prevents 
the problems with coprecipitation, which may be inhomogeneous, as it is a gelation reaction. It allows 
mixing at an atomic level to form small particles, which are easily sinter able. Typically, in the sol-gel 
chemistry, there is a reaction of an organometallic compound, which is generally an alkoxide, nitrate, or 
chloride under aqueous conditions to form a solid product. This product can be a dense glass monolith, 
a high surface area molecular filter, an aerogel to a metal oxide, a nitride coating, or nanoparticle. The 
process begins with reactions of hydrolysis and condensation of a precursor to form a gel followed by 
aging, solvent extraction, and finally drying. These reactions may be catalyzed by the addition of an 
acid or a base, which will produce dense or diffuse networks, respectively, by altering the hydrolysis 
kinetics. The selection of the precursor and catalyst depends ultimately on what you would like to make. 
In the gelation step, condensations are produced from the gel precursors in aqueous solution which are 
hydrolyzed and polymerized through alcohol or water. When starting the gelation, when the average size 

Figure 4. Schematic of Sol-gel Process
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of the conglomerate is very small, they are best modeled with an approximation at the atomic level. In 
the next stage, syneresis can occur during the aging of the gel, which is the expulsion of solvent due to 
the contraction of the gel matrix. The process of drying the gel consists in eliminating the water from 
the gel system, with simultaneous collapse of the gel structure, under conditions of constant temperature, 
pressure, and humidity Usually, the dry gel is given a calcination treatment to turn it into a crystalline 
material.

Top-Down Approaches

There is top-down physical technique for the preparation of NPs in which precursors are grinded via 
milling systems. The grinding mill systems comprise balls which are used as the agitation media to carry 
out mechanochemical processes for the synthesis of NPs

Mechanical Alloying

The bulk material is placed inside the milling jar and grinding balls are used in synthesis process of 
nanomaterials. During this high-energy ball milling process (Figure 5), there is a choice to add a sur-
factant. Without a surfactant, the aggregation process takes place because of high surface energy of the 
particles, which results in the formation of larger NPs during mechanical grinding. If the surfactant is 
added, then the surfactant molecules form an organic layer on the surface of particles. The adsorption 
of these molecules lowers the surface energy of particles, and consequently no agglomeration takes 
place and NPs are produced with smaller size range and desired surface properties. The rotation speed 
of the ball’s collision determines the efficiency of the grinding mechanism. The grinding capability also 
depends upon the number of balls and ball diameter, as the ball diameter is inversely proportional to 
the frequency of the ball’s collisions. The structure, shape, and morphology of nanomaterials strongly 
depend upon parameters of bill milling strategy. The variety of milling parameters, growth conditions, 
and growth velocity directions produce nanomaterials in the form of diverse shapes like particles, 
rods, cubes, fibers, etc. In this method, it is very easy to introduce the impurities with less effort, high 
uniformity, and high yield. The top-down techniques are inexpensive, well-established, and traditional 
methods for the preparation of large-scale nanomaterials. However, the synthesized nanomaterials are 
often irregular in shapes and may have defects.

Mechanical Alloying (MA) is described as a high energy milling process in which powder particles 
are subjected to repeated cold welding, fracturing, and rewelding. The transfer of mechanical energy to 
the powder particles results in introduction of strain into the powder through generation of dislocations 
and other defects which act as fast diffusion paths. Additionally, refinement of particle and grain sizes 
occurs, and consequently the diffusion distances are reduced. Further, a slight rise in powder temperature 
occurs during milling. All these effects lead to alloying of the blended elemental powders during the 
milling process. The result could be constitutional changes formation of solid solutions (both equilibrium 
and supersaturated), intermetallic phases (equilibrium, metastable and quasi-crystalline), and amorphous 
phases or microstructural changes leading to development of ultrafine-grained and nanostructured phases
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ROLE OF SURFACTANT IN SHAPE AND SIZE CONTROL OF NANOMATERIALS

Surfactants can be categorized according to the charge present in the hydrophilic portion of the molecule 
(after dissociation in aqueous solution):

1.  Anionic surfactants
2.  Nonionic surfactants
3.  Cationic surfactants
4.  Amphoteric surfactants

SURFACTANTS PLAY MAJOR ROLES IN THE 
FORMATION OF NANOEMULSIONS

By lowering the interfacial tension, Laplace pressure P (the difference in pressure between inside and 
outside the droplet) is reduced and hence the stress needed to break up a drop is reduced. (Grassian, 2008)

• Surfactants prevent coalescence of newly formed drops
• Surfactants play an important role in microemulsion reactions by lowering the tension among 

microemulsion and excess phases and to prepare the smaller NPs with narrow size distribution.
• They facilitate the synthesis of NPs in limited space by acting as a reagent to make the system 

stable and it can also merge with a co-surfactant.

Figure 5. Ball Mailing
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• The shapes and sizes are very diverse and which consist of spheres, cubes, nanorods, nanowires, 
nanopyramids, etc

• Chemists have made remarkable dedication to study the various interactions between nanopar-
ticles and the surface- active agents.

• These findings were utilized to control fundamental properties of nanoparticles. like shape and 
size, and morphology, environment protection.

• Surfactants provide extra stability to the nanoparticles and the surface forces, which play a major 
role in the stability as well as shape and size of the Nanoparticles.

• The nanoparticles have also been shows application like surface modifications. (Ling et al., 2019)

SURFACE MODIFICATION NANOPARTICLES

To understand the surface modification, we have taken Magnetic iron oxide nanoparticles (MIONPs) 
as a standard example: These are nanoparticles particularly attractive in biosensor, antibacterial activ-
ity, targeted drug delivery, cell separation, magnetic resonance imaging tumor magnetic hyperthermia, 
and so on because of their particular properties including Immobilisation property, superparamagnetic 
behavior, low toxicity, biocompatibility, etc. Surface modification of MIONPs with inorganic materials, 
organic molecules, and polymer molecules; applications of MIONPs or modified MIONPs; the technical 
challenges of synthesizing MIONPs; and their limitations in biomedical applications were described in 
this review to provide the theoretical and technological guidance for their future applications. (Schmidt 
and Brown, 2017).

Preparation of Nanoparticles Using Surfactants

The synthesis procedure for the preparation of metal nanoparticles from water-in oil microemulsions 
is simple. Two microemulsions are formulated, one with a metal salt or a metal complex dissolved in 
the water pools and one with a reducing agent, such as sodium borohydride or hydrazine. The reaction 
leading to the solid materials, such as a reduction of a metal salt to the metal. The overall kinetics of the 
system are usually such that the particles cease to grow when they have reached a size comparable with 
the size of starting microemulsion. Thus, for systems involving fast reaction steps within the droplets, the 
overall reaction kinetics are mainly governed by transport of species through the hydrocarbon domain 
and by droplet fusion, which governs the size and the size distribution of the nanoparticles. The water 
droplets of the starting water in-oil microemulsion should not be seen as a mold that is being filled with 
product during the course of the reaction.

CONCLUSION

In this chapter, We have gave synthestic aspects of nanomaterials and need to understand methods like 
Bottom-up and Top-down approaches include mechanical alloying, shape and size control of nanoma-
terials. By understanding the current scenario, the research and development of nanotechnology is very 
active globally, and nanotechnologies are already used in many products, In this chapter importance of 
nanotechnologies ho threy being developed for use in environmental applications were discuss.
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