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Preface
This book contains five invited expository articles resulting from the workshop
“Large-Scale Inverse Problems and Applications in the Earth Sciences” which took
place from October 24th to October 28th, 2011, at the Johann Radon Institute for
Computational and Applied Mathematics (RICAM), Austrian Academy of Sciences at
the Johannes Kepler University in Linz, Austria. This workshop was part of a special
semester at the RICAM devoted to “Multiscale Simulation and Analysis in Energy and
the Environment” which took place from October 3rd to December 16th, 2011. The
special semester was designed around four workshops with the ambition to invoke
interdisciplinary cooperation between engineers, hydrologists, meteorologists, and
mathematicians.

The workshop on which this collection of articles is based was devoted more
specifically to establishing ties between specialists engaged in research involving
real-world applications, e.g. in meteorology, hydrology and geosciences, and experts
in the theoretical background such as statisticians and mathematicians working on
Bayesian inference, inverse problem and control theory.

The two central problems discussed at the workshop were the processing and
handling of large scale data andmodels in earth sciences, and the efficient extraction
of the relevant information from them. For instance, weather forecasting models in-
volve hundreds of millions of degrees of freedom and the available data easily exceed
millions of measurements per day. Since it is of no practical use to predict tomor-
row’s weather from today’s data by a process that takes a couple of days, the need
for efficient and fast methods to manage large amounts of data is obvious. The sec-
ond crucial aspect is the extraction of information (in a broad sense) from these data.
Since this information is often “hidden” or perhaps only accessible by indirect mea-
surements, it takes special mathematical methods to distill and process it. A general
mathematical methodology that is useful in this situation is that of inverse problems
and regularization and, closely related, that of Bayesian inference. These two paths
of information extraction can very roughly be distinguished by the fact that in the
former, the information is usually considered a deterministic quantity, while in the
latter, it is treated as a stochastic one.

A loose arrangement of the articles in this book follows this structuring of infor-
mation extraction paradigms; all in view of large scale data and real-world applica-
tions:
• Aspects of inverse problems, regularization and data assimilation. The article by
Freitag and Potthast provides a general theoretical framework for data assimilation,
a special type of inverse problem and puts the theory of inverse problems in context,
providing similarities and differences between general inverse problems and data as-
similation problems. Lawless discusses state-of-the-art methodologies for data assim-
ilation as a state estimation problem in current real-world applications, with partic-
ular emphasis on meteorology. In both cases, the need to treat spatial and temporal
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vi Preface

correlations effectively makes the application somewhat different from many other
applications of inverse problems.
• Aspects of inverse problems and Bayesian inference. The survey paper by Reich
and Cotter gives an introduction to mathematical tools for data assimilation coming
from Bayesian inference. In particular, ensemble filter techniques and Monte Carlo
methods are discussed. In this case, the need to incorporate spatial and temporal
correlations makes cost-effective implementation very challenging.
• Aspects of inverse problems and regularization in imaging applications. The article
by Burger, Dirks andMüller is an overview of the process of acquiring, processing, and
interpretation of data and the associated mathematical models in imaging sciences.
While this article highlights the benefits of the nowadays very popular nonlinear (l1-
based) regularizations, the article by van den Doel, Ascher and Haber complements
the picture by contrasting these benefits with the draw-backs of l1-based approaches
and by attempting to somewhat restore the “lost honor” of the more traditional and
effective, linear l2-type regularizations.

The review-type articles in this book contain basic material as well as many interest-
ing aspects of inverse problems, regularization and data assimilation, with the provi-
sion of excellent and extensive references to the current literature. Hence, it should be
of interest to both graduate students and researchers, and a valuable reference point
for both practitioners and theoretical scientists.

We would like to thank the authors of these articles for their commendable con-
tributions to this book. Without their time and commitment, the production of this
book would not have been possible. We would also like to thank Nathan Smith (Uni-
versity of Bath) and Peter Jan van Leeuwen (University of Reading) who helped review
the articles. Additionally, we would like to express our gratitude to the speakers and
participants of the workshop, who contributed to a successful workshop in Linz.

Moreover, we would like to thank Prof. Heinz Engl, founder and former director
of RICAM, and Prof. Ulrich Langer, former director of RICAM for their hospitality and
for giving us the opportunity to organize this workshop at the RICAM. In addition,
we would like to acknowledge the work of the administrative and computer support
team at RICAM, Susanne Dujardin, Annette Weihs, Wolfgang Forsthuber and Florian
Tischler, as well as the local scientific organizers Jörg Willems, Johannes Kraus and
Erwin Karer. The special semester, the workshops and this book would not have been
possible without their efforts.

More information on the special semester and the fourworkshops can be found at
http://www.ricam.oeaw.ac.at/specsem/specsem2011/.

Exeter Mike Cullen
Bath Melina A. Freitag
Linz Stefan Kindermann
Bath Robert Scheichl
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Melina A. Freitag and Roland W. E. Potthast
Synergy of inverse problems and data
assimilation techniques
Abstract: This review article aims to provide a theoretical framework for data assimila-
tion, a specific type of an inverse problem arising, for example, in numerical weather
prediction, hydrology and geology.

We consider the general mathematical theory for inverse problems and regular-
ization, before we treat Tikhonov regularization, as one of the most popular meth-
ods for solving inverse problems. We show that data assimilation techniques such
as three-dimensional and four-dimensional variational data assimilation (3DVar and
4DVar) as well as the Kalman filter and Bayes’ data assimilation are, in the linear case,
a form of cycled Tikhonov regularization. We give an introduction to key data assimi-
lationmethods as currently used in practice, link them and show their similarities.We
also give an overviewof ensemblemethods. Furthermore,we provide an error analysis
for the data assimilation process in general, show research problems and give numer-
ical examples for simple data assimilation problems. An extensive list of references is
given for further reading.

Keywords: Inverse problems, ill-posedness, regularization theory, Tikhonov regular-
ization, error analysis, 3DVar, 4DVar, Bayesian perspective, Kalman filter, Kalman
smoother, ensemble methods, advection diffusion equation, Lorenz-95 system
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2 Melina A. Freitag and Roland W. E. Potthast

1 Introduction
Inverse problems appear inmany applications and have received a great deal of atten-
tion from applied mathematicians, engineers and statisticians. They occur, for exam-
ple, in geophysics, medical imaging (such as ultrasound, computerized tomography
and electrical impedance tomography), computer vision, machine learning, statisti-
cal inference, geology, hydrology, atmospheric dynamics and many other important
areas of physics and industrial mathematics.

This article aims to provide a theoretical framework for data assimilation, a spe-
cific inverse problem arising, for example, in numerical weather prediction (NWP)
and hydrology [48, 57, 58, 70, 83]. A few introductory articles on data assimilation
in the atmospheric and ocean sciences are available, mainly from the engineering
and meteorological point of view, for example, [20, 44, 48, 51, 63, 66, 71]. However,
a comprehensive mathematical analysis in light of the theory of the inverse problem
is missing. This expository article aims to achieve this.

An inverse problem is a problem which is posed in a way that is inverse to most
direct problems. The so-called direct problem we have in mind is that of determining
the effect f from given causes and conditions ϕ when a definite physical or mathe-
matical modelH in form of a relation

H(ϕ) = f (1.1)

is given. In general, the operator H is nonlinear and describes the governing equa-
tions that relate the model parameters to the observed data. Hence, in an inverse
problem, we are looking for ϕ, that is, a special cause, state, parameter or condi-
tion of a mathematical model. The solution of an inverse problem can be described
as the construction of ϕ from data f (see, for example, [22, 49]). We now consider
the specific inverse problem arising in data assimilation which usually also contains
a dynamic aspect.

Data assimilation is, loosely speaking, a method for combining observations of
the state of a complex system with predictions from a computer model output of that
same state where both the observations and the model output data contain errors
and (in case of the observations) are often incomplete. The task in data assimilation
(and hence the inverse problem) is seeking the best state estimate with the available
information about the physical model and observations.

Let X be the state space. For the remainder of this article, we generally assume
that X (and also Y ) are Hilbert spaces unless otherwise stated. Letϕ ∈ X, whereϕ
is the state (of the atmosphere, for example), that is, a vector containing all state vari-
ables. Furthermore, letϕk ∈ X be the state at time tk andMk : X → X the (generally
nonlinear) model operator at time tk which describes the evolution of the states from
time tk to time tk+1, that is,ϕk+1 = Mk(ϕk). For the moment, we consider a perfect
model, that is, the true system dynamics are assumed to be known. We also use the
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Inverse problems and data assimilation 3

notation
Mk,� = Mk−1Mk−2 · · ·M�+1M�, k > � ∈ N0, (1.2)

to describe the evolution of the system dynamics from time t� to time tk.
Let Yk be the observation space at time tk and fk ∈ Yk be the observation vector,

collecting all the observations at time tk. Finally, let Hk : X → Yk be the (generally
nonlinear) observation operator at time tk, mapping variables in the state space to
variables in the observation space. The data assimilation problem can then be defined
as follows.

Definition 1.1 (Data assimilation problem). Given observations fk ∈ Yk at time tk,
determine the statesϕk ∈ X from the operator equations

Hk (ϕk) = fk , k = 0,1,2, . . . (1.3)

subject to the model dynamics Mk : X → X given by ϕk+1 = Mk(ϕk), where k =
0,1,2, . . . .

In numerical weather prediction, the operatorMk involves the solution of a time-
dependent nonlinear partial differential equation. Usually, the observation opera-
tor Hk is dynamic, that is, it changes at every time step. However, for simplicity, we
often letHk := H. Both the operatorHk and the data fk contain errors. Also, in prac-
tice, the dynamical modelMk involves errors, that is,Mk does not represent the true
system dynamics because of model errors. For a detailed account on errors occurring
in the data assimilation problem, we refer to Section 4.Moreover, the model dynamics
represented by the nonlinear operatorsMk are usually chaotic. In the context of data
assimilation, additional informationmight be given through known prior information
(background information) about the state variable denoted byϕ(b)k ∈ X.

The operator equation (1.3) (see also (1.1)) is usually ill-posed, that is, at least
one of the following well-posedness conditions according to Hadamard [33] is not
satisfied.

Definition 1.2 (Well-Posedness [49, 82]). Let X,Y be normed spaces and H : X → Y
be a nonlinear mapping. Then, the operator equation H(ϕ) = f from (1.1) is called
well-posed if the following holds:
• Existence: For every f ∈ Y , there exists at least oneϕ ∈ X such thatH(ϕ) = f ,

that is, the operatorH is surjective.
• Uniqueness: The solutionϕ fromH(ϕ) = f is unique, that is, the operatorH is

injective.
• Stability: The solutionϕ depends continuously on the data f , that is, it is stable

with respect to perturbations in f .

Equation (1.1) is ill-posed if it is not well-posed.
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4 Melina A. Freitag and Roland W. E. Potthast

Note that for a general nonlinear operatorH, both the existence and uniqueness
of the operator equation need not be satisfied. If the existence condition in Defini-
tion 1.2 is not satisfied, then it is possible that f ∈ R(H). However, for a perturbed
right-hand side fδ, we have fδ �∈ R(H), whereR(H) = {f ∈ Y , f = H(ϕ), ϕ ∈
X} is the range ofH. Existence of a generalized solution can sometimes (for instance,
in the finite-dimensional case) be ensured by solving the minimization problem

min
∥∥f −H(ϕ)∥∥2

Y , (1.4)

which is equivalent to (1.1) if f ∈ R(H). The norm ‖ · ‖Y is a generic norm in Y . The
second condition in Definition 1.2 implies that an inverse operator H−1 : R(H) ⊆
Y → X withH−1(f) = ϕ exists. If the uniqueness condition is not satisfied, then it is
possible to ensure uniqueness by looking for special solutions, for example, solutions
that are closest to a reference elementϕ∗ ∈ X, or, solutions with a minimum norm.
Hence, at least in the linear case, uniqueness can be ensured if∥∥f −H(ϕuni)∥∥Y =min

ϕ∈X

∥∥f −H(ϕ)∥∥Y , (1.5)

where ‖ϕuni − ϕ∗‖X = min{‖ϕ −ϕ∗‖X,ϕ ∈ X, ϕ is a minimizer in (1.5)}. The
third condition in Definition 1.2 implies that the inverse operatorH−1 : R(H) ⊆ Y →
X is continuous. Usually, this problem is the most severe one as small perturbations
in the right-hand side f ∈ Y lead to large errors in the solution ϕ ∈ X and the
problem needs to be regularized. We will look at this aspect in Section 2.

From the above discussion, it follows that the operator equation (1.3) is well-
posed if the operator Hk is bijective and has a well-defined inverse operator H−1

k
which is continuous. A least squares solution can be found by solving the minimiza-
tion problem

min
ϕk∈X

∥∥fk −Hk(ϕk)∥∥2
Y , k = 0,1,2, . . . . (1.6)

We can solve (1.6) at every time step k, which is a sequential data assimilation prob-
lem. If we include the nonlinear model dynamics constraint Mk : X → X given by
ϕk+1 = Mk(ϕk), over the time steps tk, k = 0, . . . , K, and take the sum of the least
squares problem in every time step, the minimization problem becomes

min
ϕk∈X

K∑
k=0

∥∥fk −Hk(ϕk)∥∥2
Y = min

ϕ0∈X

K∑
k=0

∥∥fk −HkMk,0(ϕ0)
∥∥2
Y , (1.7)

where Mk,0 denotes the evolution of the model operator from time t0 to time tk, that
is, Mk,0 = Mk−1Mk−2 · · ·M0, using the system dynamics (1.2), and Mk,k = I. Both
the sequential data assimilation system (1.6) and the data assimilation system (1.7)
can be written in the form

min
ϕ∈X

∥∥∥f −H(ϕ)∥∥∥2

Y
, (1.8)
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Inverse problems and data assimilation 5

with an appropriate operator H. Problem (1.8) is equivalent to H(ϕ) = f (cf. (1.1)) if
f ∈ R(H). For the sequential assimilation system (1.6), we have H := Hk, f := fk
andϕ := ϕk at every step k = 0,1, . . . . For the system (1.7), we haveϕ := ϕ0,

H :=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

H0

H1M1,0

H2M2,0
...

HKMK,0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
and f :=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

f0

f1

f2

...
fK

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

In general, H is a nonlinear operator since both the model dynamicsMk and the ob-
servation operators Hk are nonlinear. If the equation H(ϕ) = f is well-posed, then
H has a well-defined continuous inverse operatorH−1 andR(H) = Y .

Now, ifH is a linear operator in Banach spaces, then well-posedness follows from
the first two conditions in Definition 1.2, which are equivalent to R(H) = Y and
N (H) = {0} whereN (H) is the null space ofH. Moreover, ifH is a linear operator
on a finite-dimensional Hilbert space (in particular, if R(H) is of finite dimension),
then the stability condition in Definition 1.2 holds automatically and well-posedness
follows from either one of the first two conditions in 1.2. (The last condition in Def-
inition 1.2 follows from the compactness of the unit ball in finite dimensions [49].)
For linearH, the uniqueness conditionN (H) = {0} is clearly satisfied if the observ-
ability matrix H has full row rank. In this case, the system is observable, that is, it is
possible to determine the behavior of the entire system from the systems output, see
[47, 73].

The remaining question is the stability of the (injective) operator equation
H(ϕ) = f (orHϕ = H(ϕ) = f , a notation which we are going to use from now on)
for a compact linear operator H : X → Y in infinite dimensions. As a compact linear
operator is always ill-posed in an infinite-dimensional space (asR(H) is not closed),
we need some form of regularization.

Note that the discretization of an infinite-dimensional unstable ill-posed problem
naturally leads to a finite-dimensional problem which is well-posed, that is, accord-
ing to Definition 1.2. However, the discrete problem will be ill-conditioned, that is,
an error in the input data will still lead to large errors in the solution. Hence, some
form of regularization is also needed for finite-dimensional problems arising from
infinite-dimensional ill-posed operators.

In the following, we consider compact linear operators H for which a singular
value decomposition exists (see, for example, [49]).

Lemma 1.3 (Singular system of compact linear operators). Let H : X → Y be a com-
pact linear operator. Then, there exist sets of indices J = {1, . . . ,m} for dim(R(H)) =
m and J = N for dim(R(H)) = ∞, orthonormal systems {uj}j∈J in X and {vj}j∈J
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6 Melina A. Freitag and Roland W. E. Potthast

in Y and a sequence {σj}j∈J of positive real numbers with the following properties:

{σj}j∈J is non-increasing and lim
j→∞

σj = 0 for J = N , (1.9)

Huj = σjvj, (j ∈ J) and H∗vj = σjuj , (j ∈ J) . (1.10)

For allϕ ∈ X, there exists an elementϕ0 ∈N (H) with

ϕ =ϕ0 +
∑
j∈J

〈
ϕ,uj

〉
X
uj and Hϕ =

∑
j∈J
σj
〈
ϕ,uj

〉
X
vj . (1.11)

Furthermore,
H∗f =

∑
j∈J
σj
〈
f , vj

〉
Y
uj (1.12)

holds for all f ∈ Y . The countable set of triples {σj,uj, vj}j∈J is called a singular
system, {σj}j∈J are called singular values, {uj}j∈J are right singular vectors and form
an orthonormal basis forN (H)⊥ and {vj}j∈J are left singular vectors and form an or-
thonormal basis forR(H).

In the following, we mostly consider compact linear operators, although the con-
cept of ill-posedness can be extended to nonlinear operators [23, 40, 49, 82] by consid-
ering linearizations of the nonlinear problem using, for example, the Fréchet deriva-
tive of the nonlinear operator. One can show that for compact nonlinear operators,
the Fréchet derivative is compact as well, leading to the concept of locally ill-posed
problems for nonlinear operator equations. For solving nonlinear problems compu-
tationally, usually some form of linearization is required. Hence, most of our results
for linear problems can be extended to the case of iterative solutions to nonlinear
problems (where a linear problem needs to be solved at each iteration).

2 Regularization theory
Problems of the formHϕ = f with a compact operator H are ill-posed in infinite di-
mensions since the inverse ofH is not uniformly bounded. However, in order to solve
Hϕ = f (or, for f �∈ R(H), its equivalent minimization problem min‖Hϕ − f‖2),
regularization is needed.

Let H : X → Y and denote its adjoint operator by H∗ : Y → X. Furthermore, let
ϕ be the unique solution to the least squaresminimization problemmin‖Hϕ−f‖2.
Then, the solution to the minimization problem is equivalent to the solution of the
normal equations

H∗Hϕ = H∗f . (1.13)

Clearly, if H : X → Y is compact, then H∗H is compact and the normal equations
(1.13) remain ill-posed. However, if we replace (1.13) by(

αI +H∗H)ϕα = αϕα +H∗Hϕα = H∗f (1.14)
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Inverse problems and data assimilation 7

withα > 0, then the operator (αI+H∗H) has a bounded inverse. The equation (1.14)
is typically referred to as Tikhonov regularization andα is a regularization parameter.
We have the following theorem (see, for example, [17, 40, 62, 78, 82]).

Theorem 1.4 (Tikhonov regularization). Let H : X → Y be a compact linear operator.
Then, the operator (αI +H∗H) has a bounded inverse and the problem (1.14) is well-
posed for α > 0 and ϕα = (αI + H∗H)−1H∗f is the Tikhonov approximation of
a minimum-norm least squares solution ϕ of (1.13). Furthermore, the solution ϕα is
equivalent to the unique solution of the minimization problem

min
ϕ∈X

Tα(ϕ) :=min
ϕ∈X

{∥∥f −Hϕ∥∥2
Y +α‖ϕ‖2

X

}
, (1.15)

where Tα(ϕ) is the so-called Tikhonov functional.

In general, Tikhonov regularization can be used with a known reference element
ϕ(b), that is, the term ‖ϕ‖2

X in (1.15) is replaced by ‖ϕ−ϕ(b)‖2
X , and the problem is

often referred to as generalized Tikhonov regularization. We consider this problem in
Section 3.

We have the following definition for a general linear regularization scheme.

Definition 1.5 (Regularization scheme). A family of bounded linear operators
{Rα}α>0, Rα : Y → X is a linear regularization scheme for the compact bounded
linear injective operatorH if

lim
α→0

RαHϕ = ϕ ∀ϕ ∈ X . (1.16)

Clearly, the family of approximate inverses Rα = (αI + H∗H)−1H∗ : Y → X is
a linear regularization scheme forH. If the range ofH,R(H), is not closed, then

lim
α→0

‖Rα‖ = ∞ . (1.17)

If we apply the regularization operator Rα to noisy data fδ with noise level δ, that is,
‖fδ − f‖Y ≤ δ, we get regularized solutions

ϕδα = Rαfδ .

Using the singular system of a compact operator from Lemma 1.3, we may also write
the regularized solution arising from Tikhonov regularization via the minimization
problem in (1.15) as

ϕδα =
∑
j∈J

σj
σ 2
j +α

〈
fδ,vj

〉
Y
uj . (1.18)

We observe that for α = 0, the solutionϕδα amplifies the noise in fδ, since for com-
pact operators limj→∞σj = 0.

Furthermore, for the exact unique solution, we have ϕ = H†f , where H† :

R(H) + R(H)⊥ → X denotes the Moore–Penrose pseudoinverse of H [82] and it
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8 Melina A. Freitag and Roland W. E. Potthast

is continuous ifR(H) is closed. Therefore, we may estimate the total regularization
error ∥∥∥ϕδα −ϕ∥∥∥X ≤ ‖Rα‖δ+ ∥∥∥Rαf −H†f∥∥∥X ,
or, forN (H) = {0}, ∥∥∥ϕδα −ϕ∥∥∥X ≤ ‖Rα‖δ+ ‖RαHϕ −ϕ‖X . (1.19)

Hence, the total regularization error consists of a stability component ‖Rα‖δ which
represents the influence of the data error δ and a component ‖RαHϕ −ϕ‖X which
represents the approximation error of the regularization scheme. For smallα, the sec-
ond component will be small (1.16), but the first component will be large (1.17). How-
ever, for large values of α, the first term will be small and the second one large. We
will see this in the examples in Section 9. Hence, finding a good value for the reg-
ularization parameter α is important. Techniques for regularization parameter esti-
mation aim to find a reasonably good value for α (see, for example, [37, 38, 82]). The
most prominent ones are the L-curve method, generalized cross-validation and the
discrepancy principle.

A regularization scheme is called convergent if from the convergence of the data
error to zero, it follows that the regularized solution converges to the exact solution.
One can show that a regularization scheme Rα = (αI +H∗H)−1H∗ : Y → X arising
in Tikhonov regularization is a convergent regularization if α(δ) → 0 and δ2

α(δ) → 0

as δ → 0 [22]. For Tikhonov regularization, one may choose α = O(δ) such that this
holds [82].

Other regularization schemes for inverse problems are also possible, some of the
most famous ones being the truncated singular value decomposition (TSVD) and the
Landweber iteration (see, for example, [22, 34, 35]). Moreover, it is possible to change
the penalty term ‖ϕ‖2

X in (1.15). Other penalty functionals can be used to incorporate
a priori information about the solutionϕ. Prominent methods are total variation reg-
ularization or the use of sparsity promoting norms (like the L1-norm, for example) in
the penalty functional. There is a fast growing literature on this topic, see, for exam-
ple, [1, 7, 13, 82, 86] and the articles by Burger et al. [10] and van den Doel et al. [81]
in this book.

In the following, we use the results from inverse problems and regularization the-
ory to develop a coherent mathematical framework for several data assimilation tech-
niques used in practice.

3 Cycling, Tikhonov regularization and 3DVar
Data assimilation aims to solve a dynamic inverse problem which includes measure-
ment data f1, f2, f3, . . . , fk, . . . at various times t1 < t2 < t3 < · · · < tk < · · · . At
every time tk, the inversion problem is given by (1.3). However, usually the data fk do
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not contain enough information to recover the state ϕk at time tk completely. Thus,
it is crucial to take the dynamical evolution of the states into account.

Assume that we are given some reconstruction ϕ(a)k at time tk for some k ∈ N.
Then, we expect that

ϕ(b)k+1 := Mk
(
ϕ(a)k

)
(1.20)

is a reasonable first guess for the system state at time tk+1, where Mk describes the
model dynamics and is given in Definition 1.1. In data assimilation,ϕ(b) is called the
background or first guess. At time tk+1, we would like to assimilate the data fk+1 to
calculate a reconstruction ϕ(a)k+1, which is also called the analysis in data assimila-
tion. Then, the background ϕ(b)k+2 at time tk+2 can be calculated using (1.20) with k
replaced by k + 1 and another reconstruction can be carried out at time tk+2. This
approach is called cycling of reconstruction and dynamics.

Definition 1.6 (Cycling for data assimilation). Start with some initial state ϕ(a)0 at
time t0. For k = 0,1,2, . . . , carry out the cycling steps:
(i) Propagation Step.Use the system dynamicsMk to calculate a backgroundϕ(b)k+1 at

time tk+1 using (1.20).
(ii) Analysis Step. With the data fk+1 at time tk+1 (and the knowledge of the back-

groundϕ(b)k+1), calculate a reconstruction or analysisϕ
(a)
k+1.

Increase the index k to k+ 1 and go to Step (i).

A key characteristic of a data assimilation system is its Analysis Step (ii). Here,
for any step k, the task is to calculate a reconstructionϕ(a)k using the data fk and the
knowledge of the background ϕ(b)k . We need to choose or develop a reconstruction
method which optimally combines the given information.

To carry out the analysis, we will study two basic approaches, one coming from
optimization and optimal control theory, the other arising from stochastics and prob-
ability theory. In this section, we focus on the optimization approach and Section 5
will provide an introduction to the stochastic approach using Bayes’ formula. The re-
lationship between the two approaches will be discussed in detail in Section 5.

With a norm ‖ · ‖X in the state space X and a norm ‖ · ‖Y in the data (or obser-
vation) space Y , we can combine the given information at step k, namely, the obser-
vation data fk ∈ Y and the backgroundϕ(b)k ∈ X by minimizing the inhomogeneous
Tikhonov functional

Jk(ϕ) := α
∥∥∥ϕ −ϕ(b)k ∥∥∥2

X
+
∥∥fk −Hϕ∥∥2

Y (1.21)

at time tk. H : X → Y is the observation operator defined in Section 1. With ϕ̃k :=
ϕ −ϕ(b)k , this is transformed into the Tikhonov functional (1.15) in the formula

J̃k(ϕ̃k) := α ‖ϕ̃k‖2
X +

∥∥∥(fk −Hϕ(b)k )−Hϕ̃k∥∥∥2

Y
. (1.22)
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10 Melina A. Freitag and Roland W. E. Potthast

According to Theorem 1.4, it is minimized by

ϕ̃(a)k := (αI +H∗H)−1H∗
(
fk −Hϕ(b)k

)
, (1.23)

leading to the minimizer

ϕ(a)k = ϕ(b)k + (αI +H∗H)−1H∗
(
fk −Hϕ(b)k

)
(1.24)

of the functional (1.21). We denote the cycling of Definition 1.6 with an analysis calcu-
lated by (1.24) as cycled Tikhonov regularization.

Often, data assimilation works in spaces X = Rn and Y = Rm of dimensions
n ∈ N and m ∈ N. The norms in the spaces X and Y are given explicitly using
the standard L2-norms and some weighting matrices B ∈ Rn×n and R ∈ Rm×m. In
Section 5, these matriceswill be chosen to coincidewith the error covariancematrices
of the state distributions in X and the error covariance matrices of the observation
distributions in Y . For the moment, we assume the matrices to be symmetric, positive
definite and invertible. Then, we define a weighted scalar product in X = Rn by

〈ϕ,ψ〉B−1 :=ϕTB−1ψ, ϕ,ψ ∈ X = Rn , (1.25)

and a weighted scalar product in Y = Rm by〈
f , g

〉
R−1 := fTR−1g, f , g ∈ Y = Rm . (1.26)

With the corresponding norms ‖ · ‖B−1 in X and ‖ · ‖R−1 in Y , we can rewrite the
functional (1.21) into the form

Jk(ϕ) = α
(
ϕ −ϕ(b)k

)T
B−1

(
ϕ −ϕ(b)k

)
+ (fk −Hϕ)T R−1 (fk −Hϕ) . (1.27)

In the framework of the cycling given by Definition 1.6, this functional is known as
the three-dimensional variational data assimilation scheme (3DVar), see, for example,
[20, 51]. Often, the notation x and x(b) for the state and the background, as well
as y for the observations, is used in the meteorological literature of data assimila-
tion. Here, by building a bridge to the functional analytic framework, we will use
ϕ ∈ X for the states and f ∈ Y for the observations. Also, x,y will be points in the
physical spaceR3, respectively. This is also advantageous when we employ ensemble
methods and analyze localization techniques.

The functional (1.27) can easily be transformed into the general Tikhonov regu-
larization form. By H′, we denote the adjoint operator of H with respect to the stan-
dard L2 scalar products in X = Rn and Y = Rm. The notation H∗ is used for the
adjoint operator with respect to the weighted scalar products 〈. , .〉B−1 and 〈. , .〉R−1 .
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Inverse problems and data assimilation 11

Then, we calculate

〈ϕ ,Hψ〉R−1 =
〈
ϕ,R−1Hψ

〉
=
〈
H′R−1ϕ,ψ

〉
=
〈
H′R−1ϕ,BB−1ψ

〉
=
〈
BH′R−1ϕ,B−1ψ

〉
=
〈
BH′R−1ϕ,ψ

〉
B−1

= 〈H∗ϕ,ψ〉B−1 ,

(1.28)

leading to
H∗ = BH′R−1 .

Thismeans that the minimizer (1.24) of (1.21) with the norms based on the scalar prod-
ucts (1.25) and (1.26) is given by

ϕ(a)k = ϕ(b)k + (αI +H∗H)−1H∗(fk −Hϕ(b)k )
= ϕ(b)k + (αI + BH′R−1H)−1BH′R−1(fk −Hϕ(b)k ) .

(1.29)

The operator αI +H∗H maps the state space X into itself. In large scale data assim-
ilation problems, the dimension n of the state space is often much larger than the
dimensionm of the data space Y . In this case, the inversion ofαI+H∗H is not feasi-
ble, and it is advantageous to derive a different form of the update formula known as
measurement space inversion. Using the invertibility of the operators αI +H∗H in X
and αI +HH∗ in Y , we start from

(αI +H∗H)H∗ = H∗(αI +HH∗) .

Wemultiply with the inverse (αI+H∗H)−1 from the left and by (αI+HH∗)−1 from
the right to obtain

H∗(αI +HH∗)−1 = (αI +H∗H)−1H∗ . (1.30)

With the help of (1.30), we transform (1.29) into

ϕ(a)k = ϕ(b)k +H∗(αI +HH∗)−1(fk −Hϕ(b)k )
= ϕ(b)k + BH′R−1(αI +HBH′R−1)−1(fk −Hϕ(b)k )
= ϕ(b)k + BH′(αR +HBH′)−1(fk −Hϕ(b)k ) .

(1.31)

Here, the inversion of (αI +HH∗) or (αR +HBH′), respectively, takes place in the
space Y = Rm. The solution is then projected into the state space by the application
of BH′. In the meteorological literature of data assimilation, the solution (1.29) is of-
ten referred to as the solution arising from Optimal Interpolation (OI) [29, 68]. It refers
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12 Melina A. Freitag and Roland W. E. Potthast

to a direct method being used to solve the 3DVar minimization problem (1.27) rather
than an iterative optimization technique. In the linear case, Optimal Interpolation
and 3DVar are equivalent. Method (1.31) is often called the PSAS (physical space sta-
tistical analysis) scheme in the literature on meteorology and oceanography [16, 18].

We summarize our results in the following theorem.

Theorem 1.7 (Equivalence of cycled Tikhonov regularization and 3DVar). 3DVar or three-
dimensional variational data assimilation (1.29) or (1.31) is equivalent to cycled Tikhonov
regularization (1.24) when the norms are arising from the weighted inner products (1.25)
and (1.26).

Theorem 1.7 shows that 3DVar ismerely a cycled Tikhonov regularization in an ap-
propriately chosen norm.

4 Error analysis
In this part, we investigate the error arising in data assimilation, that is, we consider
the error between the true solution and the solution obtained from a data assimila-
tion scheme. The solution obtained from solving a data assimilation problem is often
referred to as analysis in the data assimilation literature. As a generic method, we
will study cycled Tikhonov regularization, which, according to Theorem 1.7, includes
three-dimensional variational assimilation.Wewill later see that this also carries over
to cycled four-dimensional variational data assimilation, which we will discuss in
Section 6.

We need to take into account errors which can arisewhen we cycle the update for-
mula (1.24) according to Definition 1.6. Assume thatϕ(true)

k is the true state at time tk,
k = 0,1,2, . . . and f (true)k are the true values of the data. The errors we need to take
into account include
(1) Measurement error: Errors in the data fk, that is, wemeasure fδk with a data error

dδk := fδk − f (true)k of size ‖dδk‖ ≤ δ. This error was discussed in Section 2 and
arises through errors in the measurements and noisy data.

(2) Observation operator error: Errors in themeasurement operator H, that is, we use
a measurement operatorH which is different from the true mappingH(true) of the
stateϕ to the data f .

(3) Reconstruction/approximation error: Reconstruction errors by using the inverse
Rα = (αI +H∗H)−1H∗ as an approximation to the inverseH−1 ofH. This error
was discussed in Section 2.

(4) Model error: The model operator which we defined in Section 1 is usually only
an approximation M to the true system dynamics M (true). Model error arises as
the dynamical model does not usually describe the system behavior exactly. It in-
corporates numerical error arising from discretization of the partial differential
equations that need to be solved and includes inaccuracies in the physical pa-
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rameters, forcing terms and as well as in the model itself which is usually merely
a simplification of the reality.

(5) Accumulated errors: There will be accumulated errors in the background in the
sense that the analysis error from the previous step leads to an error in the back-
ground of the next step in contrast to the background which would be arising
from the true stateϕ(true).

In every analysis step of the assimilation, we obtain an error contribution by the mea-
surement error, by the error in the observation operator H and by the regularization
operator Rα approximating the inversion of H. For the propagation step, we obtain
an error caused by the model M approximating the true dynamicsM (true). Moreover,
the errors may accumulate over time.

Theorem 1.8. The evolution of the analysis error ek := ϕ(a)k − ϕ(true)
k for cycled

Tikhonov regularization and three-dimensional variational assimilation is given by

ek+1 =
reconstruction error︷ ︸︸ ︷
(I − RαH)

propagation of previous error and model error︷ ︸︸ ︷{
Mkek +

(
Mk −M(true)

k

)
ϕ(true)
k

}

+
data error influence︷ ︸︸ ︷
Rαdδk+1 +

observation operator error︷ ︸︸ ︷
Rα

((
H(true) −H)ϕ(true)

k+1

)
.

(1.32)

Proof. We know from Theorem 1.7 that 3DVar and Tikhonov regularization are equiv-
alent. We use the update formula (1.24) and the Tikhonov regularization operator
Rα := (αI +H∗H)−1H∗. With (1.20), as well as

ϕ(true)
k+1 = M (true)

k ϕ(true)
k and f (true)k = H(true)ϕ(true)

k ,

and subtractingϕ(true)
k+1 fromϕ(a)k+1, we calculate

ek+1 : = ϕ(a)k+1 −ϕ(true)
k+1

= ϕ(b)k+1 −ϕ(true)
k+1 +Rα

(
fk+1 − f (true)k+1

)
+ Rα

(
f (true)k+1 −Hϕ(b)k+1

)
(1.33)

= Mkϕ(a)k −M (true)
k ϕ(true)

k + Rαdδk+1

+ Rα
(
H(true)ϕ(true)

k+1 −Hϕ(b)k+1

)
= Mk

(
ϕ(a)k −ϕ(true)

k

)
+
(
Mk −M (true)

k

)
ϕ(true)
k + Rαdδk+1

+ Rα
((
H(true) −H)ϕ(true)

k+1 +H
(
ϕ(true)
k+1 −ϕ(b)k+1

))
. (1.34)

We treat the last term in (1.33) similarly to the first term in (1.34). Then, collecting all
parts, we derive (1.32).
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If the model error and the error in the observation operator in Theorem 1.8 is
excluded, we obtain

ek+1 = Rαdδk+1 + (I − RαH)Mkek ,

and, taking norms and using ‖dδk‖ ≤ δ, this is precisely the regularization error aris-
ing in Tikhonov regularization (1.19). If we select an appropriate value forα, this error
can be made very small.

However, in many (practical) cases, the errors arising from the model and the
observation operator are much bigger than the regularization error. Model error, in
particular, can be very large due to insufficient resolution and inaccuracies in the
physical model dynamics. This is specifically the case for a chaotic behavior of the
system. The model error is a very important part of the total error and a very active
area of current research (see, for example, [14, 27, 52, 80, 87]).

We also notice that even if there is no model error, no observation error and no
data error, then ek+1 = (I − RαH)Mkek, and the errors can accumulate if α is cho-
sen too large, in particular, if ‖(I − RαH)Mk‖ > 1 (see also [60, 67]). Note that for
any regularization scheme, condition (1.16) holds and therefore α needs to be chosen
small enough.

We have shown that within cycled data assimilation schemes, various forms of
errors occur and influence each other which is important to consider when applying
data assimilation methods in practice.

We will see in Section 6 that cycled four-dimensional variational data assimila-
tion can be covered by the same framework of error analysis since cycled 4DVar is
a form of cycled nonlinear Tikhonov regularization.

In the remainder of this article, we assume that no model error is present, that is,
the model operatorMk represents the perfect model dynamics.

5 Bayesian approach to inverse problems
Probability theory provides a wide set of tools which can be used to solve inverse
problems. In particular, the Bayesian theory has become quite popular as a generic
approach which can be applied to inverse and ill-posed problems as well (see, for
example, [5, 12, 75, 85]).

Bayesian theory has the potential to provide a stochastic background for many
ideas which might appear ad hoc in the area of deterministic inverse problems and
functional analysis. Also, Bayesian theory provides much more than just a solution
to the inverse or data assimilation problem, but a full-grown theory to calculate esti-
mates for the uncertainty as well.

However, we will see that all algorithms which can be formulated on a Bayesian
background have their deterministic counterpart and, alternatively, can be studied
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purely within the framework of functional analysis and optimization. In this section,
we apply Bayesian ideas to the observation and background errors.

Let us consider the equation

H(ϕ) = f , (1.35)

as introduced in (1.1) as a starting point, where in this section we assume thatX = Rn
andY = Rm,m,n ∈ N. Themore general casewith probabilitymeasures on infinite-
dimensional spaces can be done formally in a similar way, but involves some nontriv-
ial technicalities.

In the stochastic framework, the task of inverting equation (1.35) given somemea-
surement f does not ask for one special solution. Since f is just one draw from some
random distribution πY , any particular solution is of limited value and significance,
but wewant to know the conditional probability distribution ofϕ given some informa-
tion about the error distribution of f . This conditional distribution can then be used
either to calculate an expectation value forϕ given f or to evaluate the uncertainty of
this estimate measured, for example, by its variance.

We need to formulate our setup in more detail and with well-defined spaces and
operators. Stochastic theory assumes that the quantity ϕ is a random variable on
some probability space (Ω,Σ, P) with values in X. Here, Σ denotes some σ -algebra
and P is a probability measure which maps any subset A ⊂ Ω for whichA ∈ Σ into
a number P(A) ∈ [0,1]. Also, P(A) is the probability of the set A. We then obtain
a probability PX of the values ofϕ to be in some set C ⊂ X by

PX(ϕ ∈ C) := P({ω : ϕ(ω) ∈ C}). (1.36)

We also assume that the measurement f is a random variable with some probability
distribution PY on Y . This probability distributionwill depend on the true value f (true)
and is our model for measurement error during the process of measuring f . Here, we
assume that the probability distribution (1.36) on X has a probability density πX :

X → [0,1] such that
PX(C) =

∫
C

πX(ϕ)dϕ , (1.37)

for every open subset C ⊂ X. In the same way, we assume that PY has a probability
density πY on Y such that

PY (U) =
∫
U

πY (f)df ,

for every open subset U ⊂ Y . Usually, for simplicity, we drop the letters X and Y .
Clearly, since the conditional probability of some event C ⊂ X given some event

C̃ ⊂ X is defined by P(C|C̃) := P(C ∩ C̃)/P(C̃), we have that the conditional proba-
bility of event C given U is

P(C|U) = P
({
ω : ϕ(ω) ∈ C and f(ω) ∈ U})
P
({
ω : f(ω) ∈ U}) ,
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where P(
{
ω : f(ω) ∈ U}) > 0. In terms of the probability density functions (PDFs),

the conditional probability is formulated by

π(ϕ|f) = π(ϕ,f)
π(f)

, (1.38)

where π(ϕ,f) is the joint probability density ofϕ and f living on the space X × Y
andπ(f) ≠ 0 is the probability density of f inX. Equation (1.38) also holds with the
role ofϕ and f exchanged, i.e. we have

π(f |ϕ) = π(ϕ,f)
π(ϕ)

, (1.39)

assuming that π(ϕ) ≠ 0. Now, from equations (1.38) and (1.39), we get the famous
Bayes’ formula for conditional probability densities, that is,

π(ϕ|f) = π(ϕ)π(f |ϕ)
π(f)

. (1.40)

Note that the value of π(f) can be obtained by the knowledge that the integral of
π(ϕ|f) over the whole space X should be equal to one, i.e. it is not necessary to
know π(f) (it is merely a normalizing constant).

Bayes’ formula now provides a “simple” solution to the stochastic inverse prob-
lem of inverting equation (1.35). Given a probability density π(ϕ) on X and some
error density π on Y which can be used to calculate the density of the data distribu-
tion (often called the “measurement model” in statistics),

π(f |ϕ) = π(f −H(ϕ)) . (1.41)

We employ (1.40) to calculate the conditional probability density function π(ϕ|f).
This probability density is also known as posterior density or analysis density function.
It is the density of the unobservable ϕ ∈ X given the data f ∈ Y , that is, the prob-
ability of observing the data f as a function of ϕ. The density function π(ϕ) on X
is denoted as prior density. The posterior density is considered as the solution to the
inverse problem.

Remark 1.9. Note that Bayes’ formula seems to provide a very easy and stable
approach to solving the inverse problem. The calculation of the posterior densi-
ty π(ϕ|f) is obtained by a multiplication of two given distributions π(ϕ) and
π(f − H(ϕ)). However, the calculation of the mean of the posterior distribution
involves the solution of an ill-posed equation. In general, the full ill-posedness of the
task is implicitly involved in Bayes’ data assimilation as it is in all other schemes as
well.

We can now formulate a general approach to data assimilation based on Bayes’
formula.
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Definition 1.10 (Bayes’ data assimilation). Bayes’ data assimilation determines prob-
ability density functions π(a)k at time tk for the states ϕ ∈ X given data fk ∈ Y at
time tk by cycling the following propagation and analysis steps:
(i) Propagation Step. Calculate the prior density π(b)k (ϕ) at time tk by propagating

the analysis density π(a)k−1 from time tk−1 to tk based on the (linear or nonlinear)
model dynamicsMk−1.

(ii) Analysis Step. Calculate the posterior or analysis densityπ(a)k (ϕ|fk) at time tk by
Bayes’ formula (1.40) using the measurement model (1.41).

An important special case of Bayes’ formula is the setup where all densities are
normal or Gaussian distributions. For the prior distribution, we assume that it is
a multivariate Gaussian distribution, that is, the probability density function is given
by

π(ϕ) = 1√
(2π)n det(B)

e−
1
2 (ϕ−μ)T B−1(ϕ−μ), ϕ ∈ Rn (1.42)

around somestateμ :=ϕ(b) ∈ X = Rnwith somesymmetric positivedefinematrixB.
Gaussian densities are completely determined by their mean value μ = E(ϕ) ∈ Rn
and the matrix B, which is well known to be the covariance matrix, that is,

B = E
(
(ϕ − μ)(ϕ − μ)T

)
, (1.43)

of the Gaussian distribution (1.42). We write ϕ ∼ N (μ, B). The normalization is
based on the integral formula

∫
Rn

e−
1
2ϕ

TB−1ϕdϕ =
√
(2π)n

det(B−1)
=
√
(2π)n det(B) .

Let us study the case where the probability density π(f |ϕ) of the measurements f
is also given by a Gaussian distribution with probability density function

π(f |ϕ) = 1√
(2π)m det(R)

e−
1
2 (f−H(ϕ))T R−1(f−H(ϕ)), f ∈ Rm, (1.44)

around the values H(ϕ) ∈ Y = Rm with the symmetric positive definite covariance
matrix R ∈ Rm×m of the observation error. Then, according to Bayes’ formula (1.40),
we obtain

π(ϕ|f) ∝ exp
{
−1

2
((ϕ − μ)TB−1(ϕ − μ)+ (f −H(ϕ))TR−1(f −H(ϕ)))

}
for the probability density function of the posterior distribution. IfH is linear, this is
again a normal distribution with probability density

π(ϕ|f)∝ exp
{
−1

2
(ϕ − μ̃)T B̃−1 (ϕ − μ̃)

}
.
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18 Melina A. Freitag and Roland W. E. Potthast

Using μ = ϕ(b), its mean μ̃ is given by

μ̃ =ϕ(b) + BH∗(R +HBH∗)−1(f −Hϕ(b)) =ϕ(b) + K(f −Hϕ(b)), (1.45)

and its covariance matrix B̃ is given by

B̃ = (B−1 +H∗R−1H
)−1 = (I − KH)B, (1.46)

where K = BH∗(R + HBH∗)−1 is called the (Kalman) gain. The proof of (1.45) and
(1.46) will be worked out in detail in Section 7 on the Kalman filter, see equations
(1.77) and (1.79). The equivalence of the two different expressions in (1.46) can also
be obtained via the Sherman–Morrison–Woodbury formula (see, for example, [31]),
though here it is worked out elementarily in Lemma 1.16. We summarize the above
arguments in the following theorem.

Theorem 1.11 (Bayes’ data assimilation for Gaussian probability densities). In the
case of a linear observation operator H, assume that the prior distribution is Gaus-
sian with probability density function π(ϕ) and the same is true for the distribution of
the measurements with probability density function π(f |ϕ) as given in (1.44). Then,
the posterior distribution with density function π(ϕ|f) is Gaussian as well. Its mean
is calculated by the update formula (1.45) and its covariance matrix is given by (1.46).

Note that the update formula (1.45) for the mean of the posterior Gaussian dis-
tribution is the same as for the update vector (or reconstruction)ϕ(a)k obtained from
(cycled) Tikhonov regularization (1.31), which is equivalent to 3DVar. In this respect,
we see that Bayes’ data assimilation gives more information by calculating a whole
probability distribution of a state estimate, whereas Tikhonov regularization/3DVar
only provides the mean of the estimate.

Further, when the dynamics M of a dynamical system is linear, then it maps
a Gaussian distribution into a Gaussian distribution. The covariancematrix B in (1.45)
and (1.46) needs to be replaced by its transported version B(b) calculated from the
matrix B at the previous assimilation step by B(b) := MBM∗. The propagation B(b)
arises from the definition of the covariance matrix (1.43) and the linearity of the ex-
pected value. In this case, we can formulate the full cycling of the Bayesian approach
explicitly.

Definition 1.12 (Gaussian Bayes’ data assimilation for linear systems). For linear dy-
namical systems Mk and linear observation operators Hk, we start with some prior
distribution with probability density function π(a)0 (ϕ) given by its mean ϕ(a)0 and
its covariance matrix B(a)0 . Then, for k = 1,2,3, . . . , we carry out Bayes’ data assimi-
lation by cycling the following propagation and analysis steps.
(i) Propagation Step. Calculate the mean state ϕ(b)k and the covariance matrix B(b)k

of the prior density π(b)k (ϕ) at time tk by

ϕ(b)k =Mk−1ϕ
(a)
k−1, B(b)k :=Mk−1B

(a)
k−1M

∗
k−1. (1.47)
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(ii) Analysis Step. Calculate the Gaussian posterior or analysis density π(a)k (ϕ|fk) at
time tk by its mean and covariance

ϕ(a)k :=ϕ(b)k + B(b)k H∗k
(
R +HkB(b)k H∗k

)−1 (
fk −Hkϕ(b)k

)
, (1.48)(

B(a)k
)−1

:=
(
B(b)k

)−1 +H∗k R−1Hk. (1.49)

The above calculations treat the case of linear systems. Of course, Bayes’ formula
also works for nonlinear dynamics and nonlinear observation operators for which
the numerics is much more difficult to carry out efficiently. A numerical method to
approximately calculate the densities by ensemble approaches will be introduced in
Section 8.

6 4DVar
A natural approach to the solution of a time-dependent state estimation problem is to
put all available measurements into one big minimization problem. Given measure-
ments fk+1, . . . , fk+K ∈ Y , this leads to

Jk(ϕ) :=
∥∥∥ϕ −ϕ(b)k ∥∥∥2

X
+

K∑
j=1

∥∥∥fk+j −HMk+j,k(ϕ)∥∥∥2

Y
, (1.50)

whereMk+j,k is defined in (1.2). For simplicity, we use a fixed (possibly nonlinear) ob-
servation operatorH. Similar to the approach in Section 1, we can rewrite the problem
(1.50) in a 3DVar type form like (1.21) by putting all the measurements fk+1, . . . , fk+K
into one long vector and removing the sum and defining a new (possibly nonlinear)
operatorHk, that is,

Jk(ϕ) :=
∥∥∥ϕ −ϕ(b)k ∥∥∥2

X
+
∥∥∥fk −Hk(ϕ)∥∥∥2

Y
,

where

fk =

⎡⎢⎢⎢⎢⎢⎣
fk+1

fk+2

...
fk+K

⎤⎥⎥⎥⎥⎥⎦ and Hk =

⎡⎢⎢⎢⎢⎢⎣
HMk+1,k

HMk+2,k
...

HMk+K,k

⎤⎥⎥⎥⎥⎥⎦ .

The minimization of (1.50) corresponds to the fit of the full dynamic trajectory of the
states to the givenmeasurements fk+j, j = 1, . . . , K over the timewindow between tk
and tk+K . As in Section 3, we can transform the functional (1.50) into a (generally non-
linear) Tikhonov functional of the form (1.15), for example, [28, 45]. Note that some-
times the observation fk at time step tk is included in the sum (here, in the functional
(1.50) it is not included).
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Denote the minimum of (1.50) by ϕ(a)k . A cycling of the assimilation is then ob-
tained by using a new background at time tk+K defined by

ϕ(b)k+K := Mk+K,k
(
ϕ(a)k

)
, (1.51)

for k = 0, K,2K,3K, . . . . The process of minimizing the functional (1.50) and us-
ing the minimizing φ as the initial condition for the forecast is known as four-
dimensional variational data assimilation (4DVar) [6, 19, 50, 51, 72]. The repeated
minimization of (1.50) combined with (1.51) is then a cycled 4DVar scheme. As we can
write 4DVar in the form of 3DVar, this is merely a form of (nonlinear) cycled Tikhonov
regularization as shown in Section 3.

Usually, the minimization of (1.50) is carried out by a gradient method, that is, we
calculate the gradient∇ϕJk(ϕ)|ϕ(�) at pointsϕ(�) in the state space and update

ϕ(�+1) :=ϕ(�) − h∇ϕJk(ϕ)|ϕ(�) (1.52)

with some appropriately chosen step-size h > 0 and starting guess ϕ(0) (often
ϕ(0) := ϕ(b)k is used).

For simplicity, we consider the case where X = Rn and Y = Rm, and the scalar
products are the l2 scalar products. Let us study terms of the form

g(ϕ) :=
∥∥f −HMϕ∥∥2

Y , (1.53)

with f ∈ Y and some linear operatorM : X → X. The gradient of g(ϕ) with respect
toϕ is given by

∇ϕg(ϕ) = −2
(
M∗H∗(f −HMϕ)

)
. (1.54)

IfM is a nonlinear operator, then we obtain the nonlinear version

∇ϕg(ϕ) = −2

((dM(ϕ)
dϕ

)∗
H∗

(
f −HM(ϕ)

))
(1.55)

of (1.54), where dM(ϕ)/dϕ denotes the Fréchet derivative of M(ϕ) with respect
toϕ. The derivative

M(ϕ) := dM(ϕ)
dϕ

(1.56)

is also known as the tangent linear model [26, 50].
For many applications, the dynamical model is given as a system of ordinary dif-

ferential equations in the form
�
ϕ = F(ϕ), ϕ(0) = ϕ0. (1.57)

Since the model dynamics is given by ϕ(t) = Mt,0(ϕ(0)) = Mt,0(ϕ0), this means
that

F(ϕ) = d
dt
Mt,0(ϕ0) . (1.58)
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We denote the derivative with respect to the initial stateϕ0 by

ϕ′(t) := dϕ
dϕ0

. (1.59)

Note thatϕ′ is a linear mapping from X into X; when X = Rn, it is the n×n-matrix
with elements ∂ϕj/∂ϕ0,i for i, j = 1, . . . , n.

We assume that the solution ϕ = ϕ(t) is continuously differentiable with re-
spect to the initial stateϕ0 as well as with respect to the time t. In this case, we can
exchange the differentiation with respect to time t and the initial state ϕ0 and, dif-
ferentiating (1.57) with respect toϕ0, we obtain

d
�
ϕ

dϕ0
= d
dϕ0

d
dt
Mt,0(ϕ0) = d

dt
d
dϕ0

Mt,0(ϕ0) = d
dt
ϕ′(t) . (1.60)

Therefore, the time evolution of the derivativeϕ′ is given by

d
dt
ϕ′(t) = d

dϕ0
F(ϕ(t)) = F ′(ϕ(t))dϕ(t)

dϕ0
. (1.61)

At time t = 0, this is equal to F ′(ϕ0) = dF(ϕ)/dϕ0|ϕ=ϕ0 , that is,

d
dt
ϕ′(t)|t=0 = F ′(ϕ0) . (1.62)

This means that the tangent linear modelϕ′ can be calculated by solving the system

d
dt
ϕ′(t) = F ′(ϕ(t))ϕ′(t), t ≥ 0 (1.63)

of ordinary differential equations with initial condition ϕ′(0) = I and with the so-
lution ϕ of the original system of equations (1.57). Using ϕ(t) = Mt,0(ϕ0) and
ϕ′(t) = dMt,0(ϕ0)/dϕ0 as well as (1.56), we obtain

ϕ′(t) = dMt,0(ϕ0)
dϕ0

=: Mt,0(ϕ0)

for the tangent linear model.
We remark that the tangent linear adjoint is an n × n matrix which might be

huge when n is large. Thus, efficient methods for its evaluation need to be setup. To
evaluate the adjoint in (1.54), we define a functionψ(t) ∈ X on the interval [tk+1, tk]
by

�
ψ= −F ′(ϕ(t))∗ψ(t) , (1.64)

with final condition
ψ(tk+1) = H∗(fk+1 −HM(ϕk)) . (1.65)

Lemma 1.13. For t ∈ [tk, tk+1], the inner product

h(t) :=
〈
ϕ′(t)(δϕ0),ψ(t)

〉
is constant over time for any δϕ0 ∈ X.
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Proof. We differentiate h(t) with respect to t and calculate

dh(t)
dt

= d
dt

〈
ϕ′(t)(δϕ0),ψ(t)

〉
=
〈 d
dt
ϕ′(t)(δϕ0),ψ(t)

〉
+
〈
ϕ′(t)(δϕ0),

d
dt
ψ(t)

〉
=
〈
F ′(ϕ(t))ϕ′(t)(δϕ0),ψ(t)

〉
+
〈
ϕ′(t)(δϕ0),−F ′(ϕ(t))∗ψ(t)

〉
=
〈
ϕ′(t)(δϕ0), F ′(ϕ(t))∗ψ(t)

〉
−
〈
ϕ′(t)(δϕ0), F ′(ϕ(t))∗ψ(t)

〉
= 0 (1.66)

where we have used (1.63) and (1.64). Since the derivative of h(t) is zero by (1.66), we
obtain the statement of the lemma.

Let ej , j = 1, . . . , n be the canonical basis of Rn. We can now calculate the gra-
dient∇g of (1.54) by

∇gj(ϕk) = −2
〈
ϕ′(tk+1)ej,H∗(fk+1 −HM(ϕk))

〉
= −2

〈
ϕ′(tk+1)ej,ψ(tk+1)

〉
= −2

〈
ϕ′(tk)ej,ψ(tk)

〉
= −2

〈
ej,ψ(tk)

〉
= −2ψ(tk)j

(1.67)

for j = 1, . . . , n. Thus, the gradient is calculated by propagating the field forward
in time by (1.57), then propagating the observation error back by (1.64), (1.65) and
calculating the gradient using (1.67).

In general, we consider the time step tk as the initial time step or, subsequently,
the intermediate time step, and thus (1.57) becomes

�
ϕ = F(ϕ), ϕ(0) =ϕk, where ϕk := ϕ(tk), (1.68)

and the derivative ′ with respect to the initial state ϕk is given by ϕ′(t) := dϕ
dϕk .

Hence, discretizing (1.68) using, for example, a simple finite difference between time
steps tk and tk+1 leads to

ϕk+1 −ϕk
Δt

= F(ϕk) , (1.69)

and therefore the discretized model operatorMk from time step tk to time step tk+1 is
given by

ϕk+1 = ϕk +ΔtF(ϕk) =Mk(ϕk) =Mk+1,k(ϕk) .

Moreover, discretizing (1.63) leads to

ϕ′
k+1 −ϕ′

k
Δt

= F ′(ϕk). (1.70)
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Hence, usingϕ′
k = dϕ′

k/dϕ
′
k = I, the (discretized) tangent linear model is given by

ϕ′
k+1 = I +ΔtF ′(ϕk) =Mk(ϕk) =Mk+1,k(ϕk) := dMk

dϕ
|ϕk =

dMk+1,k

dϕ
|ϕk ,

which can also be obtained by differentiating (1.69) with respect to ϕk. Note that we
can similarly find the (nonlinear) operators Mk+j,k and their tangent linear models
Mk+j,k(ϕk) := dMk+j,k

dϕ |ϕk for any j = 1, . . . , K, and, by the chain rule applied to (1.2),
it follows that

Mk+j,k(ϕk) = Mk+j,k+j−1 · · ·Mk+2,k+1Mk+1,k(ϕk) .

Studying the case X = Rn and Y = Rm, and using the weighted scalar product
(1.25) and (1.26), we may compute the gradient∇ϕJk(ϕ) of the full functional Jk(ϕ)
given in (1.50) by

∇ϕJk(ϕ) := 2B−1
(
ϕ −ϕ(b)k

)
− 2

K∑
j=1

Mk+j,k(ϕ)∗H∗R−1
(
fk+j −HMk+j,k(ϕ)

)
.

(1.71)
A gradient method like (1.52) can then be used to obtain a local minimizer for the
functional Jk(ϕ) in (1.50). Another method which may be used to find a local mini-
mum of Jk(ϕ) in (1.50) is the Gauss–Newton method [21]. We solve∇ϕJk(ϕ) = 0 in
order to find the minimum of (1.50) using Newton’s method, that is,

ϕ(�+1) := ϕ(�) −
(
∇∇ϕJk(ϕ)|ϕ(�)

)−1
∇ϕJk(ϕ)|ϕ(�) ,

with some starting guessϕ(0) where∇∇ϕJk(ϕ)|ϕ(�) is the Jacobian of∇ϕJk(ϕ) at
ϕ(�), that is, the Hessian. Usually, the starting guess ϕ(0) = ϕ(b)k is taken. Often,
instead of the correct Hessian ∇∇ϕJk(ϕ)|ϕ(�) , an approximate version is used, ne-
glecting terms involving the gradient of the tangent linear model, thereby leading to
a quasi-Newton method. The gradient method usually only gives linear convergence.
The Gauss–Newton method with approximate Hessian converges superlinearly for
well-posed problems and a sufficiently close starting guess. For linear observation
operatorsH and linear model dynamicsMk, the Newton and Gauss–Newton method
are the same and any local minimizer of (1.50) is clearly also a global minimizer (see,
for example, [32]) and the convergence speed to the global minimum is quadratic.

7 Kalman filter and Kalman smoother
The Kalman filter is a method to solve the data assimilation problem (1.3) similarly
to the cycled Tikhonov regularization, 3DVar or 4DVar. But in addition to calculating
an analysis in every step, it also iteratively updates the norm of the state space to
include the knowledge from previous assimilation cycles.
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We can introduce the Kalman filter using deterministic and stochastic arguments.
Here, we will start with a deterministic approach, which also proves equivalence of
the Kalman filter and Kalman smoother to the four-dimensional variational data as-
similation for linear model dynamics Mk : X → X and linear observation operators
H : X → Y . Then, we discuss a stochastic approach to the Kalman filter.

Let us study assimilation for a linear model dynamics Mk, a linear observation
operator H and measurements f1 and f2 at times t1 and t2. Then, four-dimensional
variational data assimilationwith weighted norms as in Section 3minimizes the func-
tional (1.50)

J4DVar(ϕ) :=
∥∥∥ϕ −ϕ(b)0

∥∥∥2

B−1
+
∥∥f1 −HM0ϕ

∥∥2
R−1 +

∥∥f2 −HM1M0ϕ
∥∥2
R−1 , (1.72)

withB ∈ Rn×n andR ∈ Rm×m. Alternatively, we study the assimilation of the data f1

in a first step by minimization of

J1(ϕ) :=
∥∥∥ϕ −ϕ(b)0

∥∥∥2

B−1
+
∥∥f1 −HM0ϕ

∥∥2
R−1 , (1.73)

with minimizer ϕ̃(a) and the assimilation of f2 in a second step by minimizing

J2(ϕ) :=
∥∥∥ϕ − ϕ̃(a)∥∥∥2

B̃−1
+
∥∥f2 −HM1M0ϕ

∥∥2
R−1 , (1.74)

with a weight matrix B̃. The key question here is to determine the new weight B̃ such
that the minimizer of J2 is equal to the minimizer of the full functional J4DVar in
(1.72). This is the case if we can choose B̃ such that J2(ϕ) = J4DVar (ϕ) + c with
some constant c, where J1 is implicitly used via ϕ̃(a) in (1.74). The problem is solved
if we can determine ϕ̃(a) and B̃ such that J1 and the first term of J2 are identical.
Starting with J1, we obtain

J1(ϕ) =
〈
ϕ −ϕ(b)0 , B−1(ϕ −ϕ(b)0

〉
+
〈
f1 −HM0ϕ,R−1(f1 −HM0ϕ)

〉
=
〈
ϕ,(B−1 +M∗

0 H
∗R−1HM0)ϕ

〉
− 2

〈
ϕ,B−1ϕ(b)0 +M∗

0 H
∗R−1f1

〉
+ c,

(1.75)

with some constant c independent ofϕ. The first term of J2 is given by∥∥∥ϕ − ϕ̃(a)∥∥∥2

B̃−1
=
〈
ϕ, B̃−1ϕ

〉
− 2

〈
ϕ, B̃−1ϕ̃(a)

〉
+ c̃, (1.76)

with some constant c̃ not depending on ϕ. A comparison of the coefficients of the
quadratic and linear terms in (1.75) and (1.76) immediately shows that with

B̃−1 := B−1 +M∗
0 H

∗R−1HM0 (1.77)

and
B̃−1ϕ̃(a) := B−1ϕ(b)0 +M∗

0 H
∗, R−1f1 (1.78)
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the functional J1 given by (1.75) and the first term of the functional J2 given by (1.76)
are the same up to some constant not depending onϕ. Finally, from (1.78) using (1.77),
we derive

ϕ̃(a) = B̃
(
B−1ϕ(b)0 +M∗

0 H
∗R−1f1

)
= (I + BM∗

0 H
∗R−1HM0)−1

(
ϕ(b)0 + BM∗

0 H
∗R−1f1

)
.

(1.79)

After some algebraic manipulations inserting

I =
(
I + BM∗

0 H
∗R−1HM0

)
− BM∗

0 H
∗R−1HM0,

we obtain

ϕ̃(a) = ϕ(b)0 +
(
I + BM∗

0 H
∗R−1HM0

)−1
BM∗

0 H
∗R−1

(
f1 −HM0ϕ(b)0

)
= ϕ(b)0 + BM∗

0 H
∗ (R +HM0BM∗

0 H
∗)−1

(
f1 −HM0ϕ

(b)
0

)
,

which is the minimizer of J1 as in (1.29) or (1.31) when the propagation M0 from ϕ0

at time t0 toϕ1 at time t1, that is,ϕ1 = M0ϕ0 is used. The above approach can be
carriedout successively for themeasurements f1, f2, f3 etc. This sequential approach
leads to the Kalman smoother (see, for example, [27, 53, 59]). We will see later in
Theorem 1.18 that the Kalman smoother is equivalent to the Kalman filter at the final
time.

Definition 1.14 (Kalman smoother (KS)). Let Hk : X → Y and Mk : X → X, k =
0,1,2, . . . given in Definition 1.1 be linear and assume that measurements f1, f2, . . .
at times t1, t2, . . . are given. Then, we calculate weight matrices

B̃−1
k := B̃−1

k−1 +M∗
k,0H

∗
k R

−1HkMk,0 , k = 1,2, . . . , (1.80)

with B̃0 := B, whereMk,0 is defined in (1.2), and analysis states ϕ̃(a)k at time tk defined
by

ϕ̃(a)k : = ϕ̃(a)k−1

+ B̃k−1M∗
k,0H

∗
k

(
R +HkMk,0B̃k−1M∗

k,0H
∗
k

)−1 (
fk −HkMk,0ϕ̃(a)k−1

) (1.81)

for k = 1,2, . . . with ϕ̃(a)0 :=ϕ(b)0 .

From our derivation, it is clear that the following theorem holds.

Theorem 1.15 (Equivalence of 4DVar and Kalman smoother). Let Hk and Mk for k =
0,1,2, . . . be linear operators and data f1, f2, . . . be given. Then, 4DVar carried out
with data f1, . . . , fk is equivalent to the Kalman smoother given in Definition 1.14 in the
sense that the minimum of the 4DVar functional taking k = 0 and k = K in (1.50) is
given by the analysis ϕ̃(a)k for k = 1,2, . . . , K according to (1.81).
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Proof. The proof for k = 1 is given in equations (1.72) to (1.79). The general case is
directly obtained by iterating the arguments.

In Definition 1.14, we worked with states at time t0. Usually, the states of the
Kalman filter are calculated at times t1, t2 etc. We need to propagate the states ϕ̃(a)k
from time t0 to tk by

ϕ(b)k = Mk,0ϕ̃(a)k−1, and ϕ(a)k =Mk,0ϕ̃(a)k , (1.82)

for k = 1,2,3, . . . , which means that

ϕ(b)k =Mk−1

(
ϕ(a)k−1

)
(1.83)

propagates the state from tk−1 to tk (see also (1.20)). The matrices B̃ are propagated
from t0 to tk by

B(b)k = Mk,0B̃k−1M∗
k,0, and B(a)k = Mk,0B̃kM∗

k,0 , (1.84)

for k = 1,2,3, . . . , where the backgroundmatrix at time tk is obtained by propagating
the analysis matrix from time tk−1 to tk by

B(b)k = Mk−1B
(a)
k−1M

∗
k−1. (1.85)

Note that the propagation of the state (1.83) and the propagation of the weight matrix
(1.85) are equivalent to the propagation step in Bayes’ data assimilation for Gaussian
probability densities and linear systems, see (1.47).

Using (1.82) and (1.84), the iterative version of (1.81) is then given by

ϕ(a)k =ϕ(b)k + B(b)k H∗k
(
R +HkB(b)k H∗k

)−1 (
fk −Hkϕ(b)k

)
, (1.86)

for k ∈ N, often written in the form
ϕ(a)k = ϕ(b)k +Kk

(
fk −Hkϕ(b)k

)
(1.87)

with the Kalman gain matrix

Kk := B(b)k H∗k
(
R +HkB(b)k H∗k

)−1
. (1.88)

Note that the Kalman gain matrix is identical to the Tikhonov regularization matrix
(1.31). Using (1.85) and (1.80), we readily verify that the analysis matrix B(a)k at time tk
is obtained from the background matrix B(b)k at time tk by(

B(a)k
)−1 =

(
B(b)k

)−1 +H∗k R−1Hk, (1.89)

for k ∈ N. Note that the analysis matrix B(a)k in (1.89) and the analysis state ϕ(a)k
in (1.86) is equivalent to the updated covariance matrix and the updated state in the
analysis step in Bayes’ data assimilation for Gaussian probability densities and linear
systems, see (1.48 and (1.49)).

Often, another version of (1.89) is used, where the matrices appear without their
inverse (see also (1.46)).
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Lemma 1.16. For k ∈ N and B(a)k in (1.89), we have

B(a)k = (I −KkHk)B(b)k , (1.90)

whereKk is given by (1.88).

Proof. We start from (1.89) in the form

B(a)k =
(
I + B(b)k H∗k R−1Hk

)−1
B(b)k . (1.91)

We expand

T : =
(
I + B(b)k H∗k R

−1Hk
)
(I − KkHk)

=
(
I + B(b)k H∗k R

−1Hk
)(
I − B(b)k H∗k (R +HkB(b)k H∗k )−1Hk

)
= I + B(b)k H∗k R−1Hk︸ ︷︷ ︸

=:S

−B(b)k H∗k
(
R +HkB(b)k H∗k

)−1
Hk︸ ︷︷ ︸

=:S1

− B(b)k H∗k R−1HkB
(b)
k H

∗
k

(
R +HkB(b)k H∗k

)−1
Hk︸ ︷︷ ︸

:=S2

(1.92)

and remark that

S = B(b)k H∗k R
−1
(
R +HkB(b)k H∗k

)(
R +HkB(b)k H∗k

)−1
Hk = S1 + S2,

yielding T = I. Thus, (
I + B(b)k H∗k R

−1Hk
)−1

= (I − KkHk)

and the proof is complete.

We are now ready to define the Kalman filter (see, for example, [2, 39, 53]).

Definition 1.17 (Kalman filter). Starting with an initial stateϕ(b)0 and an initial weight
matrix B(a)0 := B, for k ∈ N, the Kalman filter iteratively calculates an analysisϕ(a)k
at time tk for k = 1,2, . . . by
(i) propagating the stateϕ(a)k−1 from tk−1 to tk via (1.83):

ϕ(b)k =Mk−1

(
ϕ(a)k−1

)
,

(ii) propagating B(a)k−1 from tk−1 to tk following (1.85):

B(b)k = Mk−1B
(a)
k−1M

∗
k−1,

(iii) calculating the Kalman gain by (1.88):

Kk = B(b)k H∗k
(
R +HkB(b)k H∗k

)−1
,
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(iv) calculating an analysis state by (1.86):

ϕ(a)k =ϕ(b)k + Kk
(
fk −Hkϕ(b)k

)
,

(v) calculating an analysis weight by (1.90):

B(a)k = (I − KkHk)B(b)k .

The first two steps of the Kalman filter are often referred to as the predictor steps
as they predict a state and a covariance estimate by propagating them forward via the
model dynamics. The last two steps are called analysis steps to update the state and
covariance estimate.

The relationship between the Kalman filter, the Kalman smoother and 4DVar is
summarized in the following theorem.

Theorem 1.18 (Equivalence of 4DVar, Kalman filter and Kalman smoother). Let the
operators Hk : X → Y for k ∈ N and Mk : X → X for k ∈ N0 be linear. Let ϕ(a)k be
the analysis of the Kalman filter at time tk, ϕ̃(a)k the analysis of the Kalman smoother
with data f1, . . . , fk at time t0, ϕ̃(a)4DVar,k the minimizer of the 4DVar functional (1.50) at
time t0 and define

ϕ(a)4DVar,k := Mk,0ϕ̃(a)4DVar,k, k = 1,2,3, . . . (1.93)

Then, 4DVar is equivalent to the Kalman filter and to the Kalman smoother in the sense
that

ϕ(a)4DVar,k = ϕ(a)k = Mk,0ϕ̃(a)k , (1.94)

if we start the iterations with the same initial background stateϕ(b)0 and the same initial
error covariance matrix B(a)0 := B.

Proof. The equivalence of the Kalman smoother with the Kalman filter is obtained by
our reformulation based on (1.82) worked out in equations (1.85) to (1.90). The equiv-
alence to 4DVar is then a consequence of Theorem 1.15.

Theorem 1.18 states that the Kalman smoother is equivalent to the Kalman filter
(and 4DVar) at the end of some time window for linear operators.

We finally consider the stochastic approach to the Kalman filter, which we formu-
late as a basic theorem. Observing that the formulas for Bayes’ data assimilation with
Gaussian densities as given in Definition 1.12 are identical to the update formulas for
the Kalman filter according to Definition 1.17, the proof of this result is straightfor-
ward.

Theorem 1.19 (Equivalence of Kalman filter and Bayes’ data assimilation). For linear
systemsMk : X → X, linear observation operators Hk : X → Y , and Gaussian proba-
bility densities, the Kalman filter as given in Definition 1.17 is identical to Bayes’ data
assimilation given by Definition 1.12.
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For nonlinear system dynamicsMk : X → X and nonlinear observation operators
Hk : X → Y , the above equivalences do not hold any more. However, we may still
apply the Kalman filter if we linearize both the model Mk and the observation oper-
ator Hk about the considered state. This leads to the Extended Kalman Filter (EKF)
[2, 46]. The linearizations of the model operatorMk and the observation operatorHk,
which are used within the Kalman filter (1.17), are given by

Mk(ϕk) := dMk
dϕ

|ϕk and Mk(ϕk) := dHk
dϕ

|ϕk ,

where Mk is the tangent linear model (1.56).
We have introduced several data assimilation methods and shown that for linear

systems, they are all essentially equivalent to cycled Tikhonov regularization with
a weighted norm. In the next section, we consider ensemble methods which provide
a way of (approximately) updating probability distributions and covariance matrices
within the assimilation schemes.

8 Ensemble methods
We have introduced several methods for data assimilation in the previous sections,
including Tikhonov data assimilation, 3DVar, 4DVar, Bayes’ data assimilation and the
Kalman filter.

Evaluating the different approaches, we note that 3DVar or Tikhonov data assim-
ilation works with fixed norms at every time step and do not fully include all the dy-
namic information which is available from previous assimilations. Since 4DVar uses
full trajectories over some time window, it implicitly includes such information and
we can expect it to be superior to the simple 3DVar. However, Bayes’ data assimi-
lation or the Kalman filter are equivalent to 4DVar for linear systems and include all
available information by updating the weightmatrices and propagating them through
time. This is essentially done implicitly in 4DVar. In general, we can expect them to
yield results comparable to those of 4DVar.

The need to propagate some probability distribution is a characteristic feature
of the Bayes’ data assimilation and the Kalman filter. It is also their main challenge
since the matrices B(a)k or B(b)k have dimension n × n, which for large n is usually
not feasible in terms of computation time or storage, even when supercomputers are
employed for the calculation as in most operational centers for atmospheric data as-
similation. Thus, a key need for these methods is to formulate algorithms which give
a reasonable approximation to the weight matricesB(b)k with less computational costs
than by the use of (1.85) and (1.89) or (1.90).

Often, the approach to ensemble methods is carried out via stochastic estimators.
Here, we want to stay within the framework of the previous sections and study the
ensemble approach from the viewpoint of applied mathematics. The stochastic view
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will be discussed in a second step. One of themost popular ensemble filter techniques
is the Ensemble Kalman filter [3, 11, 24, 25, 41–43, 65, 70, 77, 84].

Definition 1.20 (Ensemble). An ensemble with N members is any finite set of vectors
ϕ(�) ∈ X for � = 1, . . . , N. We can propagate the ensemble through time by applying
the model dynamicsM : X → X orMk : X → X, respectively. Starting with an initial
ensembleϕ(�)0 , � = 1, . . . ,N, this leads to ensemble members

ϕ(�)k = Mk−1ϕ
(�)
k−1, k = 1,2,3, . . . (1.95)

for � = 1, . . . ,N.

We start with the construction of a particular family of ensembles generated by
the eigenvalue decomposition of the weight matrix B := B(b) defined in Section 7
with X = Rn. B is a self-adjoint and a positive definite matrix, hence, there is a com-
plete set of eigenvectors of B, i.e. we have vectorsψ(1), . . . ,ψ(n) ∈ X and eigenvalues
λ(1), . . . , λ(n) such that

Bψ(�) = λ(�)ψ(�), � = 1, . . . , n . (1.96)

The eigenvalues are real valued and positive and we will always assume that they
are ordered according to their size λ(1) ≥ λ(2) ≥ · · · ≥ λ(n). With the matrix Λ :=
diag[

√
λ(1), . . . ,

√
λ(n)] and the orthogonal matrixU := [ψ(1), . . . ,ψ(n)], we obtain

B = UΛ2U∗ = (UΛ)(UΛ)∗ , (1.97)

where we note that U∗ = U−1. This representation corresponds to the well-known
principle component analysis of the quadratic form defined by

E(ϕ,ψ) :=ϕTBψ, ϕ,ψ ∈ X . (1.98)

Geometrically, B defines a hypersurface of second-order with positive eigenvalues,
whose level curves form a family of n − 1-dimensional ellipses in X. The principal
axis of this ellipse are given by the eigenvectorsψ(l), � = 1, . . . , n.

The application of B to some vector ϕ ∈ X according to (1.97) is carried out by
a projection of ϕ onto the principle axis ψ(�) of B, followed by the multiplication
with λ(�). This setup can be a basis for further insight to construct a low-dimensional
approximation of B.

Before we continue the ensemble construction, we first need to discuss themetric
in which we want an approximation of the B-matrix. We remark that the role of B in
the Kalman filter is mainly in the update formulas (1.85), (1.86) and (1.90). Here, to ob-
tain a good approximation of the vector updates in L2, we need B to be approximated
in the operator norm based on L2 onX = Rn. That is what we will use as the basis for
the following arguments.
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Lemma 1.21. Weconstruct an ensemble of vectors by choosing theN−1maximal eigen-
values of B and its corresponding eigenvectorsψ(1), . . . ,ψ(N−1). We define

Q :=
[√
λ(1)ψ(1), . . . ,

√
λ(N−1)ψ(N−1)

]
. (1.99)

Then, we have the error estimate∥∥B −QQ∗∥∥ = sup
j=N,...,n

∣∣∣λ(j)∣∣∣ = ∣∣∣λ(N)∣∣∣ = λ(N). (1.100)

Proof. The proof is obtained from

B −QQ∗ = UΛ̃2U∗ , (1.101)

with Λ̃2 = diag[0, . . . ,0, λ(N), λ(N+1), . . . , λ(n)], where there are N − 1 zeros on the
diagonal of Λ̃. Since U is an orthogonal matrix, the norm estimate (1.100) is straight-
forward.

We are now going to use arbitrary ensembles ϕ(1), . . . ,ϕ(N) and construct ap-
proximate weight matrices. From the Courant minimum-maximum principle, we
know that

λ(�) = min
dimU=�−1

max
ϕ∈U⊥,‖ϕ‖=1

〈ϕ,Bϕ〉 . (1.102)

For an arbitrary ensembleϕ(1), . . . ,ϕ(N), we use the mean

μ = 1
N

N∑
�=1

ϕ(�) (1.103)

to define the ensemble matrix

Q :=
[
ϕ(1) − μ, . . . ,ϕ(N) − μ

]
, (1.104)

and we define the ensemble subspaceUQ by

UQ = span
{
ϕ(1) − μ, . . . ,ϕ(N) − μ

}
. (1.105)

We call the vectors ϕ(�) − μ, � = 1, . . . ,N the centered ensemble. We remark that
dimUQ = N − 1. Then, we have∥∥B −QQ∗∥∥ ≥ sup

Bϕ⊥UQ,‖ϕ‖=1

∥∥(B −QQ∗)ϕ∥∥
≥ sup
Bϕ⊥UQ,‖ϕ‖=1

‖Bϕ‖

≥ sup
Bϕ⊥UQ,‖ϕ‖=1

〈ϕ,Bϕ〉

≥ min
dimU=N−1

sup
ϕ⊥U,‖ϕ‖=1

〈ϕ,Bϕ〉

= λ(N).

(1.106)

The above results are summarized in the following theorem.
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Theorem 1.22. Let the eigenvalues λ(1) ≥ λ(2) ≥ · · · ≥ λ(n) of the self-adjoint weight
matrix B be ordered according to its size and letϕ(1), . . . ,ϕ(N) with N ∈ N be an ar-
bitrary ensemble of states in X. Then, the error for the approximation of the weight
matrix B byQQ∗ withQ defined in (1.104) is estimated by∥∥B −QQ∗∥∥2 ≥ λ(N). (1.107)

Remark 1.23. The optimal error λ(N) can be achieved if the centered ensemble spans
the space of theN−1 eigenvectorsψ(1), . . . ,ψ(N−1) of B corresponding to the largest
eigenvalues λ(1), . . . , λ(N−1) with appropriate coefficients as in (1.99).

Ensembles can be used to approximate the weight matrix B(b)k+1 when the weight
matrixB(a)k is given, see (1.85). IfB(a)k is approximated by the ensembleϕ(1)k , . . . ,ϕ

(N)
k

in the form
B(a)k ≈ Q(a)k

(
Q(a)k

)∗
, (1.108)

withQ(a)k := [(ϕ(1))(a)−μ(a), . . . , (ϕ(N))(a)−μ(a)], then by (1.85), we derive an ap-
proximation for B(b)k+1 by

B(b)k+1 = MkB(a)k M∗
k

≈ MkQ(a)k
(
Q(a)k

)∗
M∗
k

= MkQ(a)k
(
MkQ

(a)
k

)∗
= Q(b)k+1

(
Q(b)k+1

)∗
,

(1.109)

whereQ(b)k+1 = MkQ(a)k .

Lemma 1.24. Consider the approximation of B(a)k by an ensembleϕ(1)k , . . . ,ϕ
(N)
k with

ensemble matrixQ(a)k . If the error satisfies∥∥∥∥B(a)k −Q(a)k
(
Q(a)k

)∗∥∥∥∥ ≤ ε, (1.110)

for some ε > 0, then the error estimate for the propagated ensemble at time tk+1 is
given by ∥∥∥∥B(b)k+1 −Q(b)k+1

(
Q(b)k+1

)∗∥∥∥∥ ≤ ∥∥∥Mk∥∥∥∥∥∥M∗
k

∥∥∥ ε. (1.111)

Proof. Based on (1.109), the proof is straightforward.

A key question of ensemble methods is how to update the ensemble in the data
assimilation step. Given the data fk at time tk, how do we get an ensemble which
approximates the analysis covariance matrix B(a)k given an ensemble which approx-
imates the background error covariance matrix B(b)k ? We know that for the Kalman
filter, the analysis covariance matrix B(a)k is calculated from B(b)k by (1.90). In terms of
the ensemble approximations, this means

Q(a)k
(
Q(a)k

)∗ = (I −KkHk)Q(b)k (
Q(b)k

)∗
(1.112)
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with the ensemble Kalman matrix

Kk := Q(b)k
(
Q(b)k

)∗
H∗k

(
R +HkQ(b)k

(
Q(b)k

)∗
H∗k

)−1

, (1.113)

leading to

Q(a)k
(
Q(a)k

)∗
= Q(b)k

{
I −

(
Q(b)k

)∗
H∗k

(
R +HkQ(b)k

(
Q(b)k

)∗
H∗k

)−1

HkQ
(b)
k︸ ︷︷ ︸

=:T

}
(Q(b)k )

∗. (1.114)

Thematrix T in the curly brackets is self-adjoint and positive semidefinite, and hence
there exists a matrix L such that T = LL∗. This finally leads to

Q(a)k = Q(b)k L, (1.115)

which we denote as square root filter [4, 8, 65, 79].

Lemma 1.25. Assume thatϕ(1)k , . . . ,ϕ
(N)
k is an ensemble which satisfies∥∥∥∥B(b)k −Q(b)k

(
Q(b)k

)∗∥∥∥∥ ≤ ε, (1.116)

with some ε < ‖B(b)k ‖. Then, for the analysis ensemble defined by (1.115), we have∥∥∥∥B(a)k −Q(a)k
(
Q(a)k

)∗∥∥∥∥ ≤ Cε, (1.117)

with some constant C not depending onQ(a)k .

Proof. Using the notationK(true)
k for the Kalman gain matrix in the general case ((1.88)

and (1.90)), andQ(a)k (Q
(a)
k )

∗ from (1.112), we write

B(a)k −Q(a)k
(
Q(a)k

)∗ = (I − K(true)
k Hk

)(
B(b)k −Q(b)k

(
Q(b)k

)∗)
+
(
Kk − K(true)

k

)
HkQ

(b)
k

(
Q(b)k

)∗
,

(1.118)

withKk defined by (1.113). We remark that due to its special structure, the norm of the
inverse (R + HkQ(b)k (Q(b)k )∗H∗k )−1 in (1.113) is bounded uniformly independent of
Q(b)k . Furthermore, using ε < ‖B(b)k ‖, the norm∥∥∥∥Q(b)k (

Q(b)k
)∗∥∥∥∥ = ∥∥∥∥B(b)k +

(
Q(b)k

(
Q(b)k

)∗ − B(b)k )∥∥∥∥
≤
∥∥∥B(b)k ∥∥∥+ ε

≤ 2
∥∥∥B(b)k ∥∥∥

(1.119)
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is bounded uniformly, leading to∥∥∥K(true)
k − Kk

∥∥∥ ≤ cε , (1.120)

with a constant c not depending onQ(b)k . Finally, a similar estimate applied to (1.118)
yields the desired result (1.117) and the proof is complete.

For further insight into ensemble methods, we refer to the article [69] in this book.

9 Numerical examples
Weexaminedata assimilation techniques discussed in this article and their relation to
inverse problem theory for simple model problems. First, we consider an advection–
diffusion equation in Section 9.1 and then the Lorenz-95 system in Section 9.2.

9.1 Data assimilation for an advection-diffusion system

Consider the following linear (one-dimensional) advection-diffusion problem (see,
for example, [15]). The system dynamics are described by

∂
∂t
ϕ(x, t) = ν ∂

2

∂x2
ϕ(x, t)− a ∂

∂x
ϕ(x, t) (1.121)

for x ∈ (0,1) and t ∈ (0, T ). As boundary and initial conditions, we have

ϕ(0, t) = 0, t ∈ (0, T ),
ϕ(1, t) = 0, t ∈ (0, T ),
ϕ(x,0) =ϕ0(x), x ∈ (0,1) .

Here, ν > 0 is the diffusion coefficient and a is the advection parameter. We want
to determine the initial conditionϕ0 from the measurements of the solutionϕ(x, t)
at certain points in space and time. Let 0 = x0 < x1 · · · < xn = 1 and xi = ih,
i = 0, . . . , n+ 1 and h = 1

n+1 . With the discretizations of the spatial derivatives

∂2

∂x2
ϕ ≈ ϕ

i+1 − 2ϕi +ϕi−1

h2
, and ∂

∂x
ϕ ≈ ϕ

i −ϕi−1

h
,

for i = 0, . . . , n, we obtain a system of ordinary differential equations of the form

ϕ̇(t) = F(ϕ), t ∈ (0, T ], ϕ(0) = ϕ0 , (1.122)
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where, in this case, F(ϕ) = Kϕ(t), that is, F is linear, with

K =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−2 ν
h2 − a

h
ν
h2

ν
h2 + a

h −2 ν
h2 − a

h
ν
h2

ν
h2 + a

h −2 ν
h2 − a

h
ν
h2

. . . . . . . . .
ν
h2 + a

h −2 ν
h2 − a

h
ν
h2

ν
h2 + a

h −2 ν
h2 − a

h

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
∈ Rn+2×n+2

andϕ(t) = [ϕ0(t), . . . ,ϕn+1(t)]T ∈ Rn+2. To satisfy the boundary conditions, we
set ϕ0(t) = ϕn+1(t) = 0 throughout. As an initial condition, we choose ϕi(0) =
ϕ0(xi), i = 0 . . . , n. The solution to the linear system of ordinary differential equa-

Figure 1.1: Solution ofϕ(t) = (expKt)ϕ0, t ∈ [0,0.5] (discretized advection–diffusion equation
(1.121)) for initial conditionϕ0(x) = sin(πx).

tions with constant coefficients (1.122) is given by

ϕ(t) = (expKt)ϕ0, t ∈ [0, T ] , (1.123)

where expKt ∈ Rn+2×n+2, or, using an explicit first-order Euler scheme, we obtain
the discrete linear model

ϕk+1 = ϕk +ΔtKϕk, k = 0, . . . ,
T
Δt
, (1.124)

whereϕk = [ϕ0
k, . . . ,ϕ

n+1
k ]T ∈ Rn+2 andϕ0

k =ϕn+1
k = 0 throughout. Note that we

use a lower index to describe the time steps and an upper index to describe points in
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space/components ofϕk. The approach (1.124) is a more practical implementation as
the analytical solution (1.123) would only be available for certain problems. We solve
the advection-diffusion problem (1.121) (using the Forward Euler method) with a = 1,
ν = 0.01, n = 100, final time T = 0.5, time step Δt = 0.001 and initial condition
ϕ0(xi) = sin(πxi). The solution is shown in Figure 1.1.

For the inverse problem (data assimilation problem), we suppose we do not know
the initial condition ϕ0(x). We want to estimate ϕ0(x) from measurements of r
components ϕ

n
r (t),ϕ2 nr (t), . . . ,ϕn(t) of the solution ϕ(t) at times t1 = 0.002,

t2 = 0.004, . . . , tm = 0.5. For our experiment, we use r = 5, and hence we observe 5

out of n = 100 components. Take noisy measurements of Hϕ(t1),Hϕ(t2), . . . ,
Hϕ(tm), where H ∈ Rr×n+2 is the observation operator matrix (which is linear in
this case) given by Hij = 1 if j = n

r i and Hij = 0 otherwise. We obtain the (linear)
least squares problem

min
ϕ0∈Rn+2

∥∥∥Hϕ0 − f
∥∥∥2

2
, (1.125)

withH and f for the forward Euler method and observations every second time step
given by

H =

⎡⎢⎢⎢⎢⎢⎣
H(I + 2ΔtK)
H(I + 2ΔtK)2

...
H(I + 2ΔtK)m

⎤⎥⎥⎥⎥⎥⎦ ∈ Rrm×n+2 and f =

⎡⎢⎢⎢⎢⎢⎣
f1

f2

...
fm

⎤⎥⎥⎥⎥⎥⎦ ∈ Rrm .

The observations are obtained using the output from the exact initial condition and
the measurements usually contain noise (see Section 4 for a detailed description of
the errors), that is, f = fδ = f (true) + dδ, where the noise is usually normally dis-
tributed, that is, dδ ∼ N (0, ρ2I), where ρ is the standard deviation. If we solve the
problem using a naive approach with a standard least squares implementation [74],
we obtain the result in Figure 1.2 (a).

Using the singular value decomposition given in Lemma 1.3, we haveH = VΣU∗
and, with f = f (true) + dδ, we obtain

ϕδ0 =
n+2∑
j=1

〈fδ,vj〉Y
σj

uj =
n+2∑
j=1

⎛⎝vTj f (true)
σj

+
vTj d

δ

σj

⎞⎠uj ,
and clearly for small singular values σj, the noise is magnified, hence the naive so-
lution in Figure 1.2 (a). Figure 1.2 (b) shows what happens for this particular example.
The singular valuesσj decay rapidly and only the coefficients |vTj f | = |vTj fδ| above
the noise level (here we chose dδ ∼ N (0, ρ2I) with ρ = 0.1) are useful and carry
clear information about the data.

In order to compute a better solution ϕ0 for the initial condition than the one
given in Figure 1.2 (a), we apply Tikhonov regularization. From (1.31), the Tikhonov
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Figure 1.2: Naive solution to the least squares problem (1.125) and singular values ofH.

regularized solution is given by

ϕ(a)0 = ϕ(b)0 + BH∗
(
αR +HBH∗

)−1 (
f −H∗ϕ(b)0

)
.

For our problem, we use the observation error covariance matrix R = 0.01I (in line
with the noise on the observations). For this particular problem, we chose ϕ(b)0 =
1 − 0.5π2(x − 0.5)2 for the background estimate, which is the truncated Taylor se-
ries expansion of the true initial condition ϕ0. For the background error covariance
matrix, we take B with entries Bij = 0.01× exp(−|i−j|50 ) and forα, we choose the val-
ueα = 0.00359whichminimizes both the total error consisting of perturbation error
‖Rαdδ‖whereRα = BH∗(αR +HBH∗)−1 and regularization error ‖RαHϕ0−ϕ0‖,

0 0.005 0.01 0.015

10−1

Regularization parameter α 

er
ro

r

Regularization/reconstruction
Perturbation/data error

Figure 1.3: Regularization/reconstruction and data/measurement error for different values ofα
between 0 and 0.015. The optimalα in this case is found to beα = 0.00359.
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Figure 1.4: Exact initial condition and regularized solution for the regularization parameter
α = 0.00359 and the l2-norm error between the exact and regularized solution for the linear
advection equation (1.121).

see (1.19). The plots in Figure 1.3 show both the regularization and perturbation error
for this problem. For the value α = 0.00359, the reconstruction of the initial con-
dition is plotted in Figure 1.4 (a) and the initial condition error is displayed in Fig-
ure 1.4 (b). Note that similar computations can be done using no background ϕ(b)0 ,
the standard situation in Tikhonov regularization, different background estimates,
as well as different choices for the background error covariance matrices B. For the
choice of α, which corresponds to the choice of the Tikhonov regularization param-
eter, several heuristics are available, for example, the L-curve criterion [36], general-
ized cross-validation [30] and the discrepancy principle [61], where the latter is most
appropriate for large scale computations.

We have essentially solved a 4DVar data assimilation problem, since we have
shown in Section 6 that 4DVar can be written in the form of 3DVar which is merely
a Tikhonov regularization, discussed in Section 3.

The situation described above was an ideal situation. In reality, models are non-
linear and imperfect, that is, they include model error. We give examples for these
situations. First, consider a nonlinear problem. Instead of (1.121), consider

∂
∂t
ϕ(x, t) = ν ∂

2

∂x2
ϕ(x, t)− a ∂

∂x
ϕ(x, t)+ϕ(x, t)3 ,

and the discrete nonlinear problem becomes

ϕk+1 =ϕk +ΔtKϕk +ϕ3
k =Mk(ϕk), k = 0, . . . ,

T
Δt
. (1.126)

We set up the nonlinear least squares problem

min
ϕ0∈Rn+2

∥∥∥H(ϕ0)− f
∥∥∥2

2
,
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Figure 1.5: Exact initial condition and regularized solution for the regularization parameterα = 1
and the l2-norm error between exact and regularized solution for the nonlinear advection equation.

where hereH is a nonlinear operator. The minimization problem can be solved using
the Gauss–Newton method [21, 64]. The results for the reconstructed initial condition
for the same data as for the linear problem are displayed in Figure 1.5 (a) and the
initial condition error is displayed in Figure 1.5 (b).

Finally, consider the case where some model error is present. To this end, we as-
sume that the observations are created by the true model for the nonlinear advection-
diffusion equation (1.121) with a = 1, ν = 0.01. The model used in the data assimi-
lation process uses perturbed parameters apert = 1.1, νpert = 0.009. The results for
the reconstructed initial condition are shown in Figure 1.6 (a) and the initial condition
error is displayed in Figure 1.6 (b). As the model contains an error, we are trying to fit
an initial condition for the wrong model and hence the error for this problem is rather
large, as seen in Figures 1.6 (a) and 1.6 (b).

However, in Figures 1.7 (a) and 1.7 (b), we see that this relatively large error in
the initial condition does not lead to large errors in the solution. Figure 1.7 (a) shows
the solution to the nonlinear advection equation with exact initial condition and Fig-
ure 1.7 (b) shows the solution with the perturbed initial condition obtained after solv-
ing the inverse (data assimilation) problem. We see that as the solution is propagat-
ed forward in time, the error in the initial condition is smoothed. The reason is the
smoothing property of the forward operator. We have ϕk+1 = Mk(ϕk) where Mk is
a linear (that is, I + ΔtK) or a nonlinear (1.126) operator. If the initial condition is
perturbed by ζk, then we haveϕk+1 + ζk+1 = Mk(ϕk + ζk), and to leading order

ζk+1 =Mk(ϕk)ζk ,

whereMk is the discretized tangent linearmodel. Assuming thatMk(ϕk) = M (which
holds for our linear example), then in the limit, we haveζk = Mkζ0. Frombasic linear
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Figure 1.6: Exact initial condition and regularized solution for the regularization parameterα = 1
and the l2-norm error between exact and regularized solution for the nonlinear advection equation
when a model error is present.

Solution to nonlinear discretized advection-
diffusion equation for initial condition
ϕ0(x) = sin(πx).

Solution to nonlinear discretized advection-
diffusion equation for perturbed initial condition
computed from data assimilation problem.

Figure 1.7: Solution to nonlinear advection-diffusion problem with exact and perturbed initial
condition.

algebra [31], we have that ζk → 0 if ρ(M) < 1, where ρ(M) = max{|λ|, λ ∈ Λ(M)}
is the spectral radius. In our example, both for the linear and linearized nonlinear
model dynamics, the eigenvalues of Mk(ϕk) are within the unit circle, explaining
the smoothing of the error in the initial condition as the solution propagates in time.

In the next example, we consider problems which are more sensitive to the initial
conditions, that is, systems that exhibit chaotic dynamics (and hence more accurate-
ly represent the effects in, say, weather forecasting). One such system is the Lorenz-
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95 model. In reality, we would expect a mix of situations arising from chaotic and
smoothing systems.

9.2 Data assimilation for the Lorenz-95 system

As a second example, consider the Lorenz-95 system [55, 56], that is, a generalization
of the well-known three-dimensional Lorenz-63 system [54]. The model is given by
a system of N coupled nonlinear ordinary differential equations whose solution ϕ
with componentsϕ = [ϕ1, . . . ,ϕN] satisfies

dϕi

dt
= −ϕi−2ϕi−1 +ϕi−1ϕi+1 −ϕi + f , t ∈ (0, T ], ϕi(0) = ϕi0 , (1.127)

where i = 0, . . . ,N, with cyclic boundary conditions ϕ0 = ϕN , ϕ−1 = ϕN−1,
ϕN+1 = ϕ1 and f is a forcing term. For a forcing term f = 8, the system is chaotic
(i.e. it has positive Lyapunov exponents, see [76]). For N = 40, the system has 13

positive Lyapunov exponents. Lorenz [55] observed that this system has a similar er-
ror growth characteristic as an operational numerical weather prediction system if
a time T = 1 is associated with 5 days.

We solve (1.127) using the classical 4th order explicit Runge–Kutta scheme, which
gives

ϕk+1 = Mk(ϕk), where ϕk =
[
ϕ1
k, . . . ,ϕ

N
k

]T
, (1.128)

and Mk is the nonlinear model operator which propagates ϕk to ϕk+1. The solu-
tion trajectory of two components ofϕ computed with the Runge–Kutta method, and
Δt = 0.01 and T = 21 is displayed in Figure 1.8. In order to illustrate the chaotic
dynamics of the Lorenz-95 model, we run it with slightly perturbed initial conditions.
Perturbing the initial condition randomly with an error of about 10 % gives the en-
semble of forecasts in Figure 1.9 (a) and using a perturbation of about 0.1 % gives the
forecast ensemble in Figure 1.9 (b). We only show the trajectory of site 20.

The figures show an unperturbed solution trajectory and an ensemble where the
initial conditions have been slightly perturbed. It is easy to see that the larger the
perturbation in the initial condition, the more the error in the forecast grows. For this
problem, the eigenvalues of the matrix Mk(ϕk) from the linearization of (1.128) are
not necessarily within the unit disk.

We carry out some data assimilation experiments with this problem. First, con-
sider the 4DVar minimization problem (1.50). We need to minimize

J(ϕ0) :=
(
ϕ0 −ϕ(b)0

)T
B−1

(
ϕ0 −ϕ(b)0

)
+
K∑
j=1

(
fj −H(ϕj)

)T
R−1

(
fj −H(ϕj)

)
,

(1.129)
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Figure 1.8: Components 1 and 20 of the solution to (1.127).
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Figure 1.9: Trajectory of site 20 of Lorenz-95 system of size 40. Green thick line: unperturbed
forecast. Black lines: Ensemble of 20 perturbed forecasts.

whereϕj = Mj−1(ϕj−1) is given by (1.128). We have

∇ϕ0J(ϕ0) = 2B−1(ϕ0 −ϕ(b)0 )− 2
K∑
j=1

(Mj,0(ϕ0)THTR−1(fj −HMj,0(ϕ0)) ,
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whereMj,0 is given by (1.2) andMj,0 is the tangent linear model. In order to minimize
the cost function, we need ∇ϕ0J(ϕ0) and in order to solve this problem, we apply
Newton’s method. The Hessian (or the Jacobian for Newton’s method) is given by

∇∇ϕ0J(ϕ0) = 2B−1 + 2
K∑
j=1

(Mj,0(ϕ0)THTR−1HMj,0(ϕ0))+Q(ϕ0) ,

where Q(ϕ0) involves terms including second derivatives of the system dynamics.
These are usually neglected since for large problems, they are inefficient, impractica-
ble and often infeasible to calculate. Hence, we solve

∇∇ϕ0J(ϕ0)Δϕ
(�)
0 = −∇ϕ0J(ϕ

(�)
0 ),

ϕ(�+1)
0 =ϕ(�)0 +Δϕ(�)0 ,

for � = 0,1, . . . , where ϕ(�)0 is the �th iterate of Newton’s method. For the initial
condition, the background state is usually chosen, that is,ϕ(0)0 = ϕ(b)0 . We perform
data assimilation for a single assimilation window of length 100 time steps, followed
by a forecast of 2000 time steps. First, we carry out an experiment with perfect ob-
servations. For the background estimate, we choose a perturbed initial condition and
B = 0.01I. Checking the singular values of the observability matrix for this prob-
lem, we obtain that the singular values lie between 4 and 30, and the problem is not
ill-conditioned. This is in contrast to the problem in Section 9.1, where the forward
operator has very small singular values, which, however, led to a smoothing property
of the forecast. The problem here lies in the fact that the forecast error grows severely.
The inverse problem is not actually ill-conditioned as such, but the forward prob-
lem exhibits severe error growth for small perturbations! Figure 1.10 shows the 1st
and 20th component of ϕ before and after the data assimilation process. The error
between the true solution and the trajectory before and after the 4DVar data assimi-
lation process is shown in Figure 1.11. We observe that the error in the analysis (thick
line) is reduced significantly (compared to the background) in the first 600 time steps
(where the assimilation window is of length 100 time steps). After that, we see that
the effect of the chaotic dynamics emerges and the error grows since the initial con-
dition of the analysis vector is perturbed from the true initial condition. The initial
condition error is of orderO(10−3) at each of the sites. From Figure 1.9 (b), we cannot
anticipate a better performance of the forecast. We expect the results to be best for
perfect and full observations. Next, we carry out an experiment with noisy observa-
tions. The observations are generated from the truth with an error of mean zero and
covariance R = 0.01I. Moreover, we only take observations every five time steps and
we only observe 8 of the 40 variables (precisely, we observe every 5th component).
For the background state, we use a perturbed initial condition, though this time with
background error covariance matrix B with entries Bij = 0.01 exp(−|i−j|50 ). We ob-
serve that the singular values of the observability matrix for this problem lie between
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Figure 1.10: Components 1 and 20 of the solution to (1.127) for full and perfect observations. The plot
shows the observations, the assimilation window, the exact trajectory, the background trajectory
and the final solution (analysis) after 4DVar.

0.02 and 7, and, not surprisingly, the problem is slightly worse conditioned than the
one for full observations.

Figure 1.12 shows the error between the true solution and the trajectory before
and after the 4DVar data assimilation process. We observe that the error in both com-
ponents is not reduced as much as the error in Figure 1.11 (for perfect and full obser-
vations), which is to be expected as we observe fewer components and moreover, the
observations are noisy. Note that with our setup, the 1st component is an “observed
site,” where the 20th component is unobserved. We can therefore explain the slightly
worse assimilation results of the trajectory of the 20th component compared to the
trajectory of the 1st component in Figure 1.12.

To explore this relation further, Figure 1.13 shows the absolute value of the error in
the initial condition for this problem, including the sites of the observations. Clearly,
at the observation sites, the analysis error is generally smaller than at the unobserved
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Figure 1.11: Error of components 1 and 20 of the solution to (1.127) for full and perfect observations.
The plot shows the error in the background trajectory and the error in the final solution (analysis)
after 4DVar.

sites. However, this is not always true as information about the true state from the
observations is spread to the unobserved sites through the coupling of the problem
and via the background error covariance matrix B.

We carried out tests with other data assimilation algorithms such as 3DVar and
the Extended Kalman Filter (EKF). We do not report the results for 3DVar here, but
mention that for full perfect observations, 3DVar produces very small errors at the end
of the assimilation window as we have perfect observations which are sequentially
assimilated into the trajectory. Then, the forecast is run from a very small error at
the end of the assimilation window. With fewer and noisy observations, 3DVar gives
worse results than 4DVar (as in 4DVar, the missing information is assimilated via the
system dynamics). Also, if a model error is included in the system dynamics (that is,
the observations are created from the true trajectory, whereas in the data assimilation
process, we use a different, perturbed model, replicating the practical situation), we
obtain worse results than for the perfect model, as would be expected (Section 9.1).
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Figure 1.12: Error of components 1 and 20 of the solution to (1.127) for partial and noisy
observations. The plot shows the error in the background trajectory and the error in the final
solution (analysis) after 4DVar.
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Figure 1.13: Error in the initial condition and observed sites for the solution to (1.127) after 4DVar for
partial and noisy observations.
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Finally, we apply the EKF to the Lorenz-95 problem. If we use the same back-
ground error covariancematrix and the same initial condition as for 4DVar, we obtain
essentially the same results as for 4DVar (as would be expected from Theorem 1.18).
The results here are only approximately equivalent as Theorem 1.18 only holds for the
Kalman filter applied to linear system dynamics. However, when plotting the error,
we hardly observe any difference.

A better result as for 4DVar is obtained for the EKF if a better background error
covariance matrix is chosen. To this end, we use the covariance matrix produced by
the EKF (after one data assimilation cycle at time step 100) as the initial background
error covariance matrix for a new EKF experiment applied to the data assimilation
problem we consider. This should give a better (flow-dependent) background error
covariance matrix. This is indeed true as seen in Figure 1.14 compared to Figure 1.12.
The new (flow-dependent) background covariance matrix can also be used for 4DVar,
resulting in a hybrid method [9].
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Figure 1.14: Error of components 1 and 20 of the solution to (1.127) for partial and noisy
observations. The plot shows the error in the background trajectory and the error in the final
solution (analysis) after applying the EKF.
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10 Concluding remarks
Inverse problems are an area of research dealing with the reconstruction of functions
or parameter distributions from measurements. It has evolved over nearly 100 years
in many applications, for example, in electromagnetics and acoustics, in medical
imaging and elastography. Today, a growing community of researchers employs both
a large set of well-established methods for linear and nonlinear inverse problems as
well as a large variety of specific new methods for reconstructions and imaging.

Data assimilation has evolved as a very important and popular research area from
specific applications such as weather prediction or hydrology. Using measurement
data to control the evolution of dynamical systems shares many of the features which
are integral parts of inverse problems. Since World War II data assimilation has fo-
cused on the state estimation problem, that is, the reconstruction of the stateϕ ∈ X
of the dynamical system under consideration, where X denotes the particular state
space. Often, parameter functions are also involved and lead to an extended state
space which includes unknown parameter functions as well. The algorithms which
have been introduced here can easily be applied to this most general situation.

Historically, the communities of inverse problems and data assimilation have
evolved independently, with particular notation and approaches which are similar in
content, but have been expressed in a different type of notation or terminology. One
main goal of this article has been to describe key approaches to data assimilation
in an inverse problems terminology, such that the dynamic inverse problems can be
easily identified by the inverse problems community. At the same time, we provide
an introduction into a functional analytic view for the data assimilation community
which is often second priority by those working on important applications.

Today, the convergence of inverse problems and data assimilation is driven by the
evolution of modern remote sensing measurement technologies. For example, there
is an increasing set of satellite infrared and microwave sounders, such that their as-
similation into atmospheric models involves the use of ill-posed measurement oper-
ators. New radar machines not only measure Doppler shift and reflectivity of atmo-
spheric meteors, but also polarization. Ground-based LIDaRs involve further highly
ill-posed measurement operators. Further techniques, for example, GPS/GNSS slant
delay measurements, lead to ill-posed tomographic problems which become integral
parts of operational data assimilation. We believe that the framework which we pre-
sented provides an adequate approach to the further development of these systems.

There is also a need for convergence on the level of assimilation algorithms. Clear-
ly, methods like 3DVar or 4DVar are basically a version of Tikhonov regularization.
Additionally, modern ensemble or particle methods increase the need for mathemat-
ical analysis with tools from functional analysis and approximation theory since for
typical applications, only a very limited number of ensembles or particles can be used
and we are in the range of low-dimensional approximation theory rather than in the
stochastic limit of an infinite ensemble.
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Our article has aimed to contribute to the convergence by presenting a concise
introduction into key algorithms and results in a functional analytic language which
has the potential to be understood by a large range of mathematicians, thus building
a basis for further research and developments. We have included both the viewpoint
of deterministic mathematics, numerical analysis and functional analysis as well as
stochastics and Bayesian reasoning. Understanding important state-of-the-art algo-
rithms within a uniform framework is a key step today to further develop the tools
which are known to have the highest impact on society with respect to such crucial
areas as high-impactweather, logistics, travel and energy supply by renewable energy
resources.
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Variational data assimilation for very large
environmental problems
Abstract: Variational data assimilation is commonly used in environmental forecast-
ing to estimate the current state of the system from a model forecast and observation-
al data. The assimilation problem can be written simply in the form of a nonlinear
least squares optimization problem. However, the practical solution of the problem
in large systems requires many careful choices to be made in the implementation. In
this article, we present the theory of variational data assimilation and then discuss
in detail how it is implemented in practice. Current solutions and open questions are
discussed.
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1 Introduction
Data assimilation is the process of combining a numerical model forecast with obser-
vational data in order to estimate the current state of a dynamical system. It has been
an essential part of numerical weather prediction (NWP) since its beginnings in the
1940s, when it was recognized that errors in the initial model state could rapidly lead
to large errors in the forecast. Early data assimilation schemes were based on a sim-
ple interpolation between the observations and the model state, with later schemes
also taking account of the statistics of the errors in the data. Such schemes included
smoothing splines, successive correction, optimal interpolation and analysis correc-
tion [82, 85]. The possible use of methods based on variational calculus was proposed
by Sasaki [103, 104] in the late 1950s and 1960s, but at the time a practical implemen-
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tationwas not possible. A real breakthrough in the application of variational schemes
to NWP came in the late 1980s with a series of papers demonstrating how the prob-
lem could be solved using techniques from the theory of optimal control, in particu-
lar the use of adjoint equations to calculate the gradient of an objective function, or
cost function [77, 107]. This led to a series of papers in which the feasibility of vari-
ational data assimilation was studied on a series of different simplified atmospheric
models [26, 93, 98, 108] (these experiments usually only included the large scale at-
mospheric dynamics and not the subgrid-scale processes of full weather prediction
models).

Despite the encouraging results of these experiments, variational data assimila-
tion remained impractical for operational use due to the high computational cost.
The introduction of the incremental method of variational assimilation in 1994 [27],
together with increasing computing power, opened up the possibility of an affordable
implementation for operational weather prediction. Over the following decade, many
weather forecasting centers began to develop variational data assimilation for oper-
ational use [42, 43, 61, 84, 99, 100]. At the same time, variational data assimilation
began to be applied to other applications, such as ocean forecasting [112, 116] and
atmospheric chemistry [38].

A common feature of many of these applications is that the size of the state vari-
able being estimated is extremely large. Current numerical weather predictionmodels
may require the initialization of the order of 108 variables in order to make a forecast.
As computing power increases, the spatial resolution of the models tends to increase
and hence so does the number of variables being represented. Furthermore, the real-
time nature of environmental forecasting requires that the data assimilation problem
be solved quickly. These two factors imply that when implementing variational data
assimilation schemes in practice, compromises must be made. Hence, it is important
to design the algorithms carefully to ensure that as accurate a solution as possible is
obtained within the time available. Ideally, such design should also include knowl-
edge of the physics of the problem, so that the final solution is physically realistic. In
the remainder of this article we will discuss some of the different choices that arise
in the implementation of variational data assimilation for very large systems and the
practical approaches that have been developed. First, we briefly present the mathe-
matical theory of variational data assimilation.

2 Theory of variational data assimilation
We consider a discrete nonlinear dynamical system given by the equation

xi+1 =Mi(xi) , (2.1)

where xi ∈ Rn is the state vector at time ti andMi is the nonlinear model operator
that propagates the state at time ti to time ti+1 for i = 0,1, . . . ,N−1. We assume that
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we have imperfect observations yi ∈ Rpi at times ti, i = 0, . . . , N that are related to
the system state through the equation

yi =Hi(xi)+ εi , (2.2)

whereHi : Rn → Rpi is known as the observation operator andmaps the state vector
to observation space. The observation errors εi are usually assumed to be unbiased,
serially uncorrelated, Gaussian errors with known covariancematricesRi. For the nu-
merical weather prediction problem, the vector xi would contain several meteorolog-
ical variables, for example, pressure, temperature and the three-dimensional wind at
each grid point of the model domain. The observation operatorHi may just be a sim-
ple interpolation in space if the state variable is observed directly. However, it could
be a muchmore complicated nonlinear function of the state. For example, for a satel-
lite radiancemeasurement, the observation operator can include a complex radiative
transfer model.

We assume that at the initial time t0 we have an a priori estimate of the state,
usually referred to as a background field, that we denote xb. This background field
is assumed to have unbiased, Gaussian errors with known covariance matrix B. In
practice, the background field is usually a short-term forecast of the state from a pre-
vious assimilation cycle. The problem of four-dimensional variational data assimila-
tion (4DVar)1 is then to find the initial state that minimizes the weighted least squares
distance to this background while minimizing the weighted least squares distance of
the model trajectory to the observations over the time interval [t0, tN]. Mathematical-
ly, we can formulate this as an optimization problem: Find the state xa0 at time t0 that
minimizes the function

J(x0) = 1
2

(
x0 − xb

)T
B−1

(
x0 − xb

)
+ 1

2

N∑
i=0

(Hi(xi)−yi
)T

R−1
i
(Hi(xi)−yi

)
(2.3)

subject to the states xi satisfying the nonlinear dynamical system (2.1). In the case
where N = 0 there is no model evolution and the scheme is referred to as three-
dimensional variational data assimilation (3DVar). The solution xa0 is commonly re-
ferred to as the analysis. In environmental data assimilation, the function J(x0) is
usually called the cost function, but the terms objective function and penalty function
are often used in other fields.

The minimization problem given by equation (2.3) can be interpreted in a statis-
tical or deterministic sense. From Bayes’ theorem, it can be shown that xa0 gives the
maximum a posteriori estimate of the state under the assumptions given [82]. This in-
cludes the assumption of Gaussianity of the error statistics for the background field

1 The scheme is referred to as four-dimensional since we usually fit three spatial dimensions in time,
with time being the fourth dimension.
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and observations. In practice, this assumptionmay not always hold. For example, for
variables that are inherently nonnegative, such as humidity in the atmosphere or con-
centrations in chemical models, Gaussian statistics may not be appropriate. In some
cases these errors may be treated by assuming a lognormal distribution and using
this to transform to variables whose statistics are Gaussian [13, 41]. Some allowance
for non-Gaussian observation errors may also be made using the method of varia-
tional quality control, as discussed in Section 3.3. Furthermore, nonlinearity in the
dynamical model implies that the background errors are likely to be non-Gaussian if
the background comes from a forecast whose length is beyond the linearity regime of
the model. For this reason, in numerical weather prediction the background field is
usually from a forecast of only 6 or 12 hours. In some applications, such as the identi-
fication of the source of an atmospheric tracer, it may be more appropriate to specify
other prior error distributions [12]. The alternative, deterministic interpretation of the
minimization problem is to consider the term measuring the fit to the background
state as a form of Tikhonov regularization in fitting the observations [29, 65, 90]. Each
of these interpretations is able to provide different insights into the practical formu-
lation of the problem.

It is instructive to consider the solution to the 3DVar problem under the hypothe-
sis that the observation operatorH0 is approximately linear, that is,

H0

(
xb
)
−H0(x0) ≈ H0

(
xb
)(

xb − x0

)
(2.4)

where H0(xb) is the Jacobian ofH0 evaluated at xb (This assumption (2.4) is referred
to as the tangent linear hypothesis). In this case, the minimum value of (2.3) can be
written explicitly as

xa = xb + BHT0
(
H0BHT0 + R0

)−1 (
y0 −H0

(
xb
))
. (2.5)

This solution is equal to the best linear unbiased estimate (or BLUE). We see then
that the analysis increment, defined as the difference between the analysis and the
background xa−xb, lies in the range space of the background error covariancematrix
B. We return to the implications of this in Section 3.2.

The covariance of the analysis error in this case is given by

A =
(
B−1 +HT0 R−1

0 H0

)−1
. (2.6)

We find that for both 3DVar and 4DVar, this is equal to the inverse of the Hessian of
the cost function, that is,

A =
(
∇2J

)−1
. (2.7)

In general, an exact solution cannot be found and the cost function is minimized
using iterative numericalmethods, such as conjugate gradient or quasi-Newtonmeth-
ods. The use of these methods in data assimilation is discussed in more detail in Sec-
tion 3.4. On each iteration of such methods, the value of the cost function and its
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gradient at the current iterate must be calculated. In order to calculate the gradient
of (2.3) with respect to the initial state x0, we consider the discrete Euler–Lagrange
equations. We introduce Lagrange multipliers λi at time ti and define the Lagrangian
by

L(xi,λi) = J(x0)+
N−1∑
i=0

λTi+1(xi+1 −Mi(xi)) . (2.8)

Then, necessary conditions for a minimum of (2.3) subject to the constraint are found
by taking variations of L with respect to λi and xi. The first of these leads to the
original nonlinear model equations (2.1), while the latter gives the discrete adjoint
equations

λi = MT
i λi+1 −HTi R−1

i
(Hi(xi)− yi

)
(2.9)

for i = 1, . . . ,N with boundary condition λN+1 = 0, where Hi and Mi are the Jaco-
bians of the nonlinear operatorsHi andMi with respect to the state variable xi. In
the data assimilation literature, these Jacobians are referred to as the tangent linear
operator and the tangent linear model (TLM) and the operators HTi and MT

i are the
adjoints of the observation operator and the nonlinear model operator. From (2.8) we
then have that the gradient of the Lagrangian with respect to the initial state x0 is
given by

∂L
∂x0

= −MT
0λ1 +HT0 R−1

0

(
H0(x0)− y0

)
+ B−1

(
x0 − xb

)
. (2.10)

From the theory of Lagrange multipliers, this is equal to the gradient of the function
under the constraint, and thus we can write

∇J(x0) = −λ0 + B−1
(
x0 − xb

)
, (2.11)

where we have introduced the extra variable

λ0 = MT
0λ1 −HT0 R−1

0 (H0(x0)− y0) , (2.12)

which can be calculated from the adjoint equations (2.9) with i = 0. Hence, the ad-
joint equations provide an efficient method for calculating the gradient information
needed for the minimization algorithm. Each iteration of a numerical optimization
method therefore requires one run of the forward model (2.1) to calculate the value of
the cost function and one run of the adjointmodel (2.9) to calculate the gradient. This
makes 4DVar very expensive from a computational point of view.

We note that in this derivation, we have implicitly taken the adjoint with respect
to the Euclidean inner product. For a general linear operator L : X1 → X2 and in-
ner products 〈. , .〉X1, 〈. , .〉X2 in the spaces X1, X2 respectively, the adjoint of L is the
operator L∗ : X2 → X1 such that

〈Lx1,x2〉X2 =
〈
x1,L∗x2

〉
X1 (2.13)
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for all x1 ∈ X1,x2 ∈ X2. In the case where the Euclidean inner product is used
in both spaces, the adjoint is equal to the transpose operator, which is why we define
the transpose matricesHTi andMT

i as the adjoint operators. In this case, the Lagrange
multipliers provide the correct gradient of the cost function with respect to the state
vector, but it is difficult to interpret physically what these variables mean. For oth-
er applications of adjoint modeling, for example, generating initial perturbations for
ensembles of forecasts, it may be desirable to give a physical interpretation to the
gradients calculated from the Lagrange multipliers. In these applications, other in-
ner products may be used, for example, based on the energy or enstrophy2 of the
system [95].

2.1 Incremental variational data assimilation

The possibility of implementing variational data assimilation in an operational set-
ting came with the proposal of incremental variational data assimilation [27]. In this
formulation, the solution to the nonlinear minimization problem (2.3) is approximat-
ed by a sequence of minimizations of linear quadratic cost functions. We define x(k)0

to be the kth estimate to the solution and linearize the cost function (2.3) around the
model trajectory forecast from this estimate. The next estimate is then defined by

x(k+1)
0 = x(k)0 + δx(k)0 , (2.14)

where the perturbation δx(k)0 ∈ Rn is a solution of the linearized cost function

J̃(k)
(
δx(k)0

)
= 1

2

(
δx(k)0 −

[
xb − x0

(k)
])T

B−1
0

(
δx(k)0 −

[
xb − x0

(k)
])

+ 1
2

N∑
i=0

(
Hiδx(k)i − d(k)i

)T
R−1
i

(
Hiδx(k)i − d(k)i

)
.

(2.15)

Here, d(k)i = yi − Hi(x
(k)
i ), where x(k)i is the nonlinear trajectory calculated from

the current estimate at the initial time using the nonlinear model equation (2.1). The
perturbation δxi satisfies the linear dynamical equation

δxi+1 =Miδxi . (2.16)

The linearized observation operator Hi and the tangent linear model operator Mi are
evaluated at the current estimate of the nonlinear trajectory, usually called the lin-
earization state. The minimization (2.15) is referred to as the inner loop, while the up-
date of the nonlinear model trajectory x(k)i is the outer loop. On each iteration of the

2 In fluid dynamics, the enstrophy is defined as the mean square vorticity of the fluid [58, Sec-
tion 13.4].
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inner loop, the TLM is integrated to calculate the evolution of the perturbation in or-
der to calculate the cost function (2.15), and the adjoint model is integrated to provide
the gradient.

The incremental method was later shown to be equivalent to an inexact Gauss–
Newton method applied to the original nonlinear cost function (2.3) [72]. If we consid-
er a general nonlinear least squares cost function

φ(x) = 1
2

f(x)T f(x) (2.17)

with f(x) : Rn → Rp and let J(x) be the Jacobian of f(x) with respect to x, then the
Gauss–Newton method for minimizingφ is

Algorithm 2.1 (Gauss-Newton).
step 0: choose x(0)

step 1: repeat until convergence

step 1.1: compute δx = −((J((x(k))T J((x(k)))−1J((x(k))T f((x(k))

step 1.2: update x(k+1) = x(k) + δx.

Sufficient conditions can be found such that the algorithmwill converge to a local
minimum of (2.17) [34]. Step 1.1 of the algorithm is equivalent to solving the minimiza-
tion problem

min
δx
‖J(x)δx + f(x)‖2

2 . (2.18)

If we define

f(x0) = −

⎛⎜⎜⎜⎜⎜⎝
B−1

(
x0 − xb

)
R−1

0

(
H0[x0]− yo0

)
...

R−1
N
(
HN[xN]− yon

)

⎞⎟⎟⎟⎟⎟⎠ (2.19)

subject to (2.1), then the general cost function (2.17) is equal to the 4DVar cost func-
tion (2.3). Applying the Gauss–Newton method to solve this problem, we find that the
inner minimization step (2.18) is equivalent to the linearized cost function (2.15).

An advantage of using this method to solve the nonlinear problem is that each
inner minimization problem is quadratic in δx. Hence, whereas the nonlinear prob-
lem may have multiple minima, the inner problem has a unique solution that can
be found efficiently using iterative minimizationmethods (we discuss these methods
further in Section 3.4). Since these minimization methods are usually truncated ac-
cording to some stopping criterion, the inner step of the Gauss–Newton method is
not solved exactly. In this case, the outer loop iterations can be shown to be local-
ly convergent under certain conditions, provided that the inner loop minimization is
solved to sufficient accuracy [45, 71].
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In practice, very few outer loop steps are performed. For example, the Met Office
in the U.K. performs only one, while the European Centre for Medium-range Weather
Forecasts (ECMWF) performs three [39, 100]. As for the fully nonlinear problem, the
incremental method can be run as 3DVar (no model evolution) or 4DVar (including
the model evolution). An alternative formulation that is often implemented is known
as 3D-FGAT (First Guess at Appropriate Time). This includes the nonlinear model evo-
lution in the calculation of the vectors di, but no evolution is included for the per-
turbation and the TLM operator Mi in equation (2.16) is replaced by the identity. This
ensures that the observations are compared with the nonlinear trajectory at the cor-
rect time, but approximates the perturbation in such a way that no TLM or adjoint
model is needed. In this way, some of the benefits of 4DVar can be achieved without
too much extra computational cost [70, 87].

A major advantage of the incremental approach is that the inner loop minimiza-
tion problem may be solved in a smaller dimensional space than the outer loop step,
for example, at a lower spatial resolution. In this way, the TLM and adjoint model
need only be run at the lower resolution on each inner loop iteration, while the lin-
earization trajectory from the nonlinear model is still calculated at the higher resolu-
tion on each outer loop. This is discussed further in Section 3.5. The computational
savings made by implementing the inner loop in this way made incremental 4DVar
feasible for operational weather and ocean forecasting.

Having presented the basic theory of variational data assimilation, we now ex-
amine some of the issues that arise in its practical implementation. For the very large
systems found in environmental modeling, it is not always possible to apply the the-
ory in an intuitive way. Many choices must be made in order to setup and solve the
assimilation problem efficiently and compromises must often bemade. It is the atten-
tion to detail in these choices that can determine the success or otherwise of the data
assimilation scheme.

3 Practical implementation
3.1 Model development

The development of a 4DVar scheme for the large models used in operational weather
and ocean forecasting is a huge undertaking. Inmost cases, the nonlinear model code
already exists and has been developed over many years. These models are very large
pieces of software, with maybe close to one million lines of code. In order to develop
an incremental 4DVar scheme, the code for the TLM and adjoint model must first be
written. The development of a TLM code and adjointmodel code from the source code
of a nonlinear model is a fairly automatic procedure. The correct code for the TLM can
be found from a linearization of each statement of the nonlinear model source code
based on treating the nonlinear model as a series of arithmetic operations and ap-
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plying the chain rule. The adjoint model is then found by a line-by-line transpose of
the TLM source code in reverse order. This method is known as automatic differenti-
ation. We do not go into details of its application here, but refer the reader to several
good introductions in the literature [10, 26, 44, 102]. The automatic nature of this pro-
cedure has led to many software tools being developed that will produce a TLM and
adjoint model code from a nonlinear mode source code. These automatic differentia-
tion tools, or automatic adjoint compilers, are now available commercially for many
different programming languages. 3

In practice, the TLM and adjoint models of many large environmental models
have been developed by hand, rather than using the automatic compilers. There are
several reasons for this. The first is that in many cases of operational weather and
ocean forecasting, the complexity of the already existing nonlinear model codes was
such that simple application of the automatic compilers was not possible. In many
cases, particularly for large codes developed by many people, it is necessary to tidy
the nonlinear model codes to make them suitable for use with the automatic compil-
ers. Many centers felt that the effort to do this would have been greater than coding
the TLM and adjoint model by hand.

The second reason for developing the TLM and adjoint codes by hand arises
from the nature of the incremental approach to variational data assimilation. Since
the TLM and adjoint are run at a lower resolution in the inner loop, the TLM is al-
ready an approximate linearization of the nonlinear model used in the outer loop. It
is therefore justifiable to make further simplifications in the TLM in order to reduce
the computational cost. As long as the adjoint model is derived from the approximate
TLM, then the inner loop minimization will contain the correct gradient information
for convergence. In coding the models by hand, it is easier to make such simplifica-
tions based on physical arguments. For example, many meteorological models con-
tain parametrizations of subgrid-scale processes (known as the physics in the meteo-
rological literature), including such things as clouds, precipitation and surface drag.
The schemes used to represent these processes can be highly complex and often in-
clude nondifferentiable functions, such as on-off switches. While it is possible for
automatic differentiation to deal with such functions, it is usually felt that this level
of complexity is not necessary in the TLM and adjoint model. Hence, a series of sim-
pler parametrizations have been developed solely for use in incremental 4DVar that
capture the main behavior of the more complex schemes [64, 88, 99, 118].

An alternative approach, devised by the Met Office, is to start from the premise
that the linear model must evolve finite and not infinitesimal perturbations so that
there is no need for the linear model to be tangent to any nonlinear model. In this
approach, the linear model is designed with this in mind. In particular, the resolved
dynamics is approximated by a discretization of the linearized continuous equations,

3 The term automatic differentiation refers to the approach itself, not just to the automatic tools.
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with various simplifications in the equations and the discretization. Then simplified
parametrizations can be used to represent subgrid-scale processes [74, 86]. The ad-
joint model is derived from this approximate linear model by the process of automatic
differentiation, ensuring that it provides the exact gradient of the discrete linear cost
function.

An essential part of the development of the linear and adjoint models is their
testing, as any small mistakes could lead to lack of convergence of the minimization
algorithms. Robust tests exist to check the coding of a TLMand adjointmodel. The test
for the TLM is based on comparing the evolution of a perturbation in the TLMwith the
evolution of the same perturbation in the nonlinear model. A Taylor series expansion
of the nonlinear model operator shows that the evolutions should be closer together
as the perturbation size is reduced [79, 98]. When an inexact TLM is used, the test
is not able to differentiate between small coding errors and the desired inexactness.
In this case, other more subjective tests must be performed [74]. The adjoint model
code can be tested by a verification of the adjoint identity (2.13). If we assume that the
spaces X1 andX2 are both equal to Rn, then we must have

〈Miδxi,Miδxi〉 = 〈δxi,M∗
i (Miδxi)〉 , (2.20)

which, in the Euclidean inner product, is equivalent to

(Miδxi)T (Miδxi) = δxTi
(
MT
i (Miδxi)

)
. (2.21)

This identity can be tested for random perturbations δxi. If the adjoint operator MT
i

has been correctly coded, then this identity will hold to machine precision [93]. For
large codes, each of these tests should be available for each subroutine, as well as at
higher levels. A further test, also based on a Taylor expansion, is used to verify that
the gradient of the cost function has been correctly coded [93].

3.2 Background error covariances

The background field xb is a very important part of practical data assimilation sys-
tems in environmental forecasting. Since in many operational forecasting systems
the background field is a forecast from a previous assimilation cycle, it contains infor-
mation from observations assimilated at earlier times. In one of the early 4DVar sys-
tems at ECMWF, it was shown that at any assimilation time, the background field has
an approximately 85% influence on the analysis, with the new observations contribut-
ing only 15% [24]. The background error covariance matrix B determines the relative
weight between the background field and observations, and hence plays an essential
role in the data assimilation algorithm. However, the calculation of these covariances
for the assimilation system is a hugely complex task and very dependent on the spe-
cific system beingmodeled. Here, we are only able to give an outline of the main steps
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involved. For further details in the context of atmospheric data assimilation, the read-
er is referred to the comprehensive two-part review article of Bannister [6, 7].

As was seen from (2.5) in Section 2, under certain simplified assumptions the
analysis increment of 3DVar can be shown to lie in the subspace spanned by the
columns of the matrix B. In order to understand the implications of this, we consider
the case where we have a single observation y of the kth component of the vector x,
with error varianceσ 2

o . In this case, the observation operator is linear and is given by
the kth unit vector ek and the analysis equation (2.5) becomes

xa = xb +

⎛⎜⎜⎜⎜⎜⎝
b1,k

b2,k
...
bN,k

⎞⎟⎟⎟⎟⎟⎠
y − xb(k)
bk,k + σ 2

o
, (2.22)

where bi,k, i = 1, . . . ,N indicates the (i, k) element of the matrix B and xb(k) is
the kth component of xb. Hence, we see that the value of each entry bi,k, which is
the covariance between the errors in the components of the background field xb(i)
and xb(k), determines the analysis increment to the ith component of the state given
an observation of the kth component. As a consequence, the entries of this matrix de-
termine how observations are used to infer information about unobserved parts of the
state. Thus, this matrix is fundamental in allowing information to be inferred about
unobserved physical variables or unobserved regions of space. However, it is usual-
ly impossible to represent this matrix in matrix form. If the state vector is of size n,
then the matrix B is of size n × n and when n is of order 108, this matrix is impos-
sible to calculate or store. Instead, the action of this matrix is usually represented by
a variable transform.

We consider the variable transform in the context of incremental variational data
assimilation since that is how it is usually implemented. We define a new variable
δzi ∈ Rn and a transformation matrix Ui ∈ Rn×n such that

δxi = Uiδzi , i = 0, . . . ,N . (2.23)

In terms of this new variable, the incremental cost function (2.15) can be written as

J̃(k)
(
δz(k)0

)
= 1

2

(
δz(k)0 −

[
zb − z0

(k)
])T

UT0 B−1U0

(
δz(k)0 −

[
zb − z0

(k)
])

+ 1
2

N∑
i=0

(
HiUiδz(k)i − d(k)i

)T
R−1
i

(
HiUiδz(k)i − d(k)i

)
.

(2.24)

If the variables δz are chosen in such a way that they are uncorrelated, then they
have the identity covariance matrix by definition and so UT0 B−1U0 can be replaced
with the identity in the cost function (2.24). In this case, the cost function no longer
contains the original background error covariance matrix; instead, it is implicitly de-
fined through the variable transform with B = U0UT0 .
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Furthermore, this variable transform is expected to lead to a better conditioned
problem. To understand this, we note that the Hessian of the original inner loop cost
function (2.15) is given by

G = B−1 +
N∑
i=0

M(ti, t0)THTi R−1
i HiM(ti, t0) , (2.25)

where
M(ti, t0) = Mi−1Mi−2 . . .M0 (2.26)

is the tangent linear model solution operator from time t0 to time ti. Equivalently, we
can write this as

G = B−1 + ĤT R̂−1Ĥ , (2.27)

where

Ĥ =

⎛⎜⎜⎜⎜⎜⎝
H0

H1M(t1, t0)
...

HNM(tN , t0)

⎞⎟⎟⎟⎟⎟⎠ (2.28)

and R̂ is a block diagonal matrix with blocks equal to Ri, i = 0, . . . ,N. If the back-
ground error covariance matrix is ill-conditioned, then we expect this to dominate
the conditioning of the Hessian G. We return to an examination of this in Section 3.4.
On the other hand, the Hessian of the transformed problem (2.24) is given by

G̃ = I+
N∑
i=0

UTi M(ti, t0)THTi R−1
i HiM(ti, t0)Ui . (2.29)

Usually, the number of observations is less than the number of state variables being
estimated and so the Hessian (2.29) is equal to the identity plus a low rank matrix.
Then, it has a minimum eigenvalue equal to one and the condition number (in the
two-norm) is equal to the largest eigenvalue. Thus, we would expect the transformed
problem to be better conditioned.

Of course, this theory all relies on being able to choose appropriate variables δz

that are truly uncorrelated and it is here that a knowledge of the physical problem
is necessary. In presenting how the transform is designed in practice, it is easier to
think about it in terms of the inverse transform, from model variables δx to uncorre-
lated variablesδz. A common approach in numericalweather prediction is to split the
inverse transform into two parts. The first part, which we write as U−1

p , is known as
the parameter transform and transforms to physical variables δχwhose errors are as-
sumed to be uncorrelated between themselves, but still contain spatial correlations.
The spatial transform, U−1

s , then removes spatial correlations between the physical
variables δχ. We thus have the steps

δχ = U−1
p δx (2.30)

δz = U−1
s δχ , (2.31)
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where for ease of notation, we assume the transforms to be time-invariant. In prac-
tice, the transforms Up and Us may not be square and a generalization of the inverse
operator is needed. We now consider each of these transforms in turn.

3.2.1 Parameter transform
In designing a suitable transform of parametersU−1

p , it is necessary to have an under-
standing of the particular system being modeled in order to decide which variables
have errors that are likely to be uncorrelated. For atmospheric models, the transform
is based on the concept of balanced variables. Balance relationships are diagnostic re-
lationships that exist between certain atmospheric variables. For example, in midlat-
itudes and at large horizontal length scales, the horizontal wind is approximately in
balance with the gradient of the pressure field through the relationship of geostrophic
balance. This relationship can be used in the parameter transform by assuming that
errors in the balanced part of the flow are uncorrelated with those in the unbalanced
part [7]. This can be justified by an eigenanalysis of the linearized equation set, which
shows that the balanced flow can be associated with one eigenvector and the unbal-
anced flow with the remaining eigenvectors. Hence, under linear evolution, these will
evolve independently.

The variable that best represents the balanced flow in the atmosphere is potential
vorticity (PV) [59] and so it would be natural to use this variable as the basis for the
parameter transform. However, the transform from PV to the original model variables
requires the solution of a three-dimensional elliptic equation as part of the applica-
tion of the operator Up. In dynamical regimes with small characteristic horizontal
length scales, the PV is well-approximated by the vorticity, which only requires the
solution of a two-dimensional equation [117]. Hence, early work in this area proposed
a transform based on this variable [97] and this is still the basis of the parameter
transform in many operational weather forecasting systems [7]. It is recognized that
this approximation is not valid in all parts of the atmosphere and it has been demon-
strated on simple systems that significant correlations can remain between errors in
the transformed variables [66]. For this reason, attempts are beingmade to implement
a transformation based on PV in large scale systems [8, 28].

A similar approach may be followed in other applications, for example, in ocean
forecasting, though here there has been less work on the design of appropriate trans-
forms than in the meteorological context. In many cases, it may be assumed that er-
rors in the model variables such as salinity and temperature are uncorrelated and
only the spatial transform is needed [116], but work on defining balance relationships
has allowed multivariate covariances to be introduced [114].
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3.2.2 Spatial transform
Once the parameter transform has been performed, it is assumed that the errors in
the resulting variables are uncorrelated between themselves. At this point, it is neces-
sary to specify the autocovariance information for each parameter through the spatial
transform. In atmospheric models, it is common to assume that the transforms in the
horizontal and vertical planes are separable. In most systems, a Fourier transform is
used in the horizontal and for the vertical correlations a transformation to the eigen-
vectors of a vertical error covariance matrix is used. The order in which these trans-
formations are performed varies between systems. If the horizontal transform is per-
formed first, then the horizontal spectral modes are assumed to be uncorrelated and
vertical correlations are specified separately for eachmode. This assumption leads to
correlations that are homogeneous (independent of horizontal position) and isotrop-
ic (independent of orientation) in the transformed parameters [7]. Themethod allows
vertical correlations that vary with horizontal scale, so that features with large hori-
zontal scale have deeper vertical correlations [36]. However, it does not allow vertical
correlations to vary with horizontal position [62]. The alternative is to first perform
the vertical transform and then, assuming that these modes are independent, apply
the Fourier transform to each vertical mode. This allows more variation of vertical
correlations with horizontal position (for example, with latitude). However, it is more
difficult to obtain an appropriate variation in horizontal correlation length scales with
height [62, 84]. In both cases, a scaling transformation is also needed to ensure that
the variance of the transformed variables is equal to one. In an ideal case, we would
like to obtain covariances that depend on both horizontal scale and horizontal posi-
tion. This has led to the development of spatial transforms based on a wavelet basis
[5, 36]. Such a transform has been implemented in the operational NWP system of
ECMWF.

In ocean models, the complex boundaries near the coast prohibit the simple use
of a Fourier transform in the horizontal and so other methods must be used to repre-
sent spatial correlations. For example, the application of a correlation operator can
be shown to be equivalent to the integration of an appropriately-constructed diffusion
equation [113]. This can be used to design correlation models for use in data assimila-
tion systems with irregular boundary conditions [115, 116].

The use of transforms for spatial covariances requires the specification of corre-
lation length scales and variances for each of the transformed variables. Since the
background field is usually a short-term forecast, these statistics must represent the
structure of errors in the forecasting system being used and thus be diagnosed from
that. An early method for obtaining these statistical parameters used the difference
between the observations and the background field (known as the innovations) [57].
However, a disadvantage of this method is that it relies on having a sufficient num-
ber of observations and is therefore biased towards data-dense areas. The most pop-
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ular method in atmospheric data assimilation is the “NMC method” [97]4. In this
method, the difference between two different forecasts valid at the same time is tak-
en as a proxy for forecast errors and statistics are taken over a sample of many such
forecasts. In atmospheric forecasting, usually two forecasts starting 24 hours apart
are used, with the earlier one run for 48 hours and the later one for 24 hours. By us-
ing an interval of 24 hours, problems arising from modeling the diurnal variation of
the atmosphere are avoided. However, this means that the differences are taken over
a much longer time interval than the normal background forecast, which is usually 6
or 12 hours. As a result, the covariance structures of the forecasts differences do not
necessarily reflect those of the background error and often they need to be modified
for use in the assimilation system [36, 62].

This has motivated the development of ensemble methods to generate statistics
from shorter forecasts. Such a method for estimating background error statistics from
an ensemble of short forecasts was developed for use at ECMWF in [36]. The basis of
this method is that if the inputs to the assimilation system (for example, the back-
ground, observations and physical boundary conditions) are perturbed within the
statistics of their errors, then the perturbation in the resulting analysis will be drawn
from the distribution of analysis error. If a short forecast is produced from this analy-
sis, then we expect the perturbation to the forecast to be drawn from the distribution
of forecast error. This perturbed forecast can then be used as a background field for
the next assimilation time and the process repeated to produce the next analysis and
another forecast. Suppose that we run two such cycles in parallel for l cycles, starting
from two different sets of perturbations at time t0. Then, at each assimilation time
ti, i = 1, . . . , l, this will produce two perturbed short forecasts xb1

i and xb2
i . It can

be shown that the statistics of the true forecast error can then be calculated from the
sample covariance of the differences between these pairs [6],

B ≈ 1
2(l− 1)

l∑
i=1

(
xb1
i − xb2

i

)(
xb1
i − xb2

i

)T
, (2.32)

under the assumption that the errors in the two forecasts are uncorrelated. The factor
of 1/2 arises since the sample covariance itself is equal to the sum of the error covari-
ances of the two different sets of forecasts. Since the forecasts used in this method are
of the same length as the forecasts used to obtain the background field in the assimi-
lation, the error statistics produced in this way are a more realistic representation of
the true error statistics.

A key assumption in the methods presented so far is that the error covariancema-
trix represents a statistical average over time. The computational expense of calculat-
ing these statistics means that the matrix is kept constant from day to day, perhaps

4 So-called because it was first introduced in the National Meteorological Center of the USA, now the
National Center for Environmental Prediction.
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with different statistics being used with a change of season. More recently, there has
been interest in developingmethods for estimating statistics that vary from day to day
since it is expected that the actual background errors will depend on the underlying
flow. Such flow-dependent statistics arise naturally in ensemble methods of data as-
similation, such as the ensemble Kalman filter. Methods are currently being designed
to obtain some flow-dependent information in variational assimilation by combining
information from ensembles of forecasts with the statistically-averaged error covari-
ance matrix, for example, [15, 18].

3.3 Observation errors

As well as representing the errors in the background field, it is important to treat
the errors in the observations properly within a variational data assimilation sys-
tem. Observational data received into operational weather and forecasting centers
can contain errors from a variety of sources, including limitations in the measur-
ing instrument, biases in the measurements and errors simply due to human error
in recording the measurement. Furthermore, other errors arise from the way the data
are used within the data assimilation system, both from inaccuracies in the operators
used to map the model state to observation space and from the differences in spatial
resolution between the model and the observations. The theory of variational data
assimilation assumes that all observational errors are random, unbiased errors with
a Gaussian distribution and known covariance. It is therefore important that as many
of these sources of error as possible are accounted for in the data assimilation system.

A first essential step in an operational data assimilation system is to perform
a quality control check on the data themselves. This may consist of several stages.
First, a check for obvious errors in the reporting of the data is made, for example,
errors in the reported position. For example, if a ship observation is reported over
a land point, it will be rejected from the assimilation. Then, a so-called “background
check” may be made to see how close the observation is to the forecast background
field. If the difference from the background is too large when compared with its
expected error variance, then the observation may be rejected and not used in the
assimilation [2]. Once this check has been performed, the next step is to identify
observations that may have gross errors, that is, errors that are unlikely to satisfy
the assumption of being random and normally distributed. This can be done either
outside or within the assimilation process. Outside the assimilation, each observa-
tion can be checked against nearby observations and any observations that largely
disagree with others can be rejected [100]. Alternatively, this check can be included
in the assimilation process using the variational quality control method [2, 63]. In this
method, the probability density function of the observation errors are assumed to be
a weighted combination of a standard Gaussian distribution and a flat probability
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distribution function, with the weights determined by the probability of gross error of
the observation. Thus, for each single observation y with weight αy , the probability
density function of the observation error is assumed to be of the form

PQC = (1−αy)PN +αyPF , (2.33)

where PN indicates the appropriate Gaussian probability density function and PF is
a flat distribution over a finite interval centered at zero and is equal to zero outside
this interval (the size of this interval is taken to be a multiple of the observation er-
ror standard deviation). The observation part of the cost function is then taken to be
equal to the negative logarithm of PQC . In the case where αy = 0, this corresponds
to the observation term in the original nonlinear cost function (2.3). In this method,
observations that have a high probability of gross error are given very little weight in
the analysis. Initially, these probabilities are assigned to each observation based on
a study of historical data. The probabilities are then updated on each iteration of the
minimization procedure by comparison with the current estimate of the state to al-
low observations to be given more or less weight as the assimilation progresses. The
introduction of non-Gaussianity means that variational quality control can introduce
multiple minima into the cost function and so it is necessary to have a good starting
point for the minimization. For this reason the minimization is first run for several
iterations without the quality control term before switching it on [1].

A second important aspect of observation errors is the treatment of systematic er-
rors, or biases, in the observations. This is particularly important for satellite radiance
data where biases may occur from changes in the measuring instrument over time or
from errors in the radiative transfer model needed as part of the observation opera-
tor [54]. Since the assimilation scheme assumes that the observations are unbiased,
any biases in the observations can introduce biases into the analyses. As with the
quality control, these biases may be treated offline or within the assimilation scheme.
For each satellite channel, a bias model is assumed in such a way that we can define
a new observation operator for the biased measurement

H̃ (x,β) =H (x)+ b(β,x) , (2.34)

with

b(β,x) =
Np∑
j=0

βjpj(x) , (2.35)

where pj are predictors for j = 0, . . . , Np andβj are scalar coefficients [33]. A few pre-
dictor states are chosen that may be related to the state at the observation positions.
The coefficients β can then be estimated in an offline regression using a few weeks
of data [54] or a variational procedure can be used to estimate these coefficients. This
can be included directly in the assimilation procedure by including (2.34) in the cost
function in place of the standard observation operator and including a background
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estimate βb of β with covariance Bβ. The 4DVar assimilation problem is then to min-
imize

Jβ(x0,β) = 1
2

(
x0 − xb

)T
B−1

(
x0 − xb

)
+ 1

2

(
β− βb

)T
B−1
β

(
β− βb

)
+ 1

2

N∑
i=0

(Hi(xi)+ b(β,xi)− yi)T R−1
i (Hi(xi)+ b(β,xi)− yi)

(2.36)

subject to the dynamical equations in order to estimate the state x0 and the coeffi-
cients β simultaneously [33]. Alternatively, a variational procedure can be used to
estimate these coefficients offline at regular intervals using the previous value as the
background for the new estimate [3].

Finally, we consider the specification of the observation error covariance matrix,
which represents the covariance of the random components of the observation error.
It is important to note that this error is defined by the difference between the actual
measurement and the model representation of the true state xt mapped into observa-
tion space by the observation operator, that is, the error εoi at time ti is given by

εoi = yi −Hi

(
xti
)
. (2.37)

This means that the error includes different components arising from the accuracy
of the measuring instrument (instrument error), errors in the observation operator
Hi and errors due to the difference in spatial resolution between the measurement
and the model state (known as the representativity error). The instrument error is
the easiest to treat since the variances of this error can usually be obtained from the
instrument manufacturer and it is normally safe to assume that these errors are un-
correlated. However, this may not always be the case. For example, measurements
derived by preprocessing satellite data may include spatial correlations [17]. Errors
in the observation operator may include such things as errors in the radiative trans-
fer models used to model satellite data which can lead to error correlations between
different satellite channels [16, 105].

Although it is recognized that observation error correlations exist, particularly
with respect to satellite data, the correlations are not usually very well treated in cur-
rent operational forecasting systems. Often, the correlations are ignored and it is as-
sumed that the observation error covariance matrix is diagonal. To balance this as-
sumption, either the error variances are inflated [56] or the data are thinned so that
fewer of them are used [32]. The reasons for this are the difficulty in calculating what
the error correlations should be and the difficulty in then representing these correla-
tions within an assimilation scheme in a way that the inverse correlation matrix can
easily be applied. To estimate the correlations in satellite data, the methods that have
mainly been used are a comparison with independent measurements from radioson-
des based on the method of [57], and the use of diagnostics calculated from the data
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assimilation system itself based on [35]. Various ways of representing these correla-
tions within the data assimilation system have been proposed, including the use of
a circulant matrix [55], an eigenvalue decomposition [37] and a Markov matrix [105].
However, thus far, little use of these methods exists in operational practice.

3.4 Optimization methods

The minimization of the inner loop cost function (2.15) requires the use of a suitable
optimization algorithm. For the large problems of environmental modeling, there are
two particularly important constraints. The first is that because of the number of vari-
ables in the system, it is not possible to obtain second derivative information. The
Hessian or second derivative matrix would contain of the order 1016 elements, which
is impossible to calculate or to store. Hence, only methods that require first derivative
information can be used. The second constraint is that often these problems must be
solved within a real-time forecasting system and hence the computer time that can
be used to solve the problem is very limited. Hence, the methods use as few function
evaluations as possible. This means that usually the problem is not allowed to run to
full convergence and the use of any line search algorithms is prohibitively expensive.
Traditionally, the algorithms that are most commonly used within data assimilation
systems are quasi-Newton algorithms and conjugate gradient or related Lanczos algo-
rithms, which only require first derivative information to be provided. Themathemat-
ical details of these algorithms are well explained elsewhere (e.g. [94]), and so here
we limit the discussion to their implementation in data assimilation systems.

An essential aspect of the minimization procedure for variational data assimi-
lation is an appropriate preconditioning. Experimental evidence indicates that the
Hessian of the inner loop cost function (2.15) is badly conditioned and that this aris-
es from the ill-conditioning of the background error covariance matrix [83]. This has
been further confirmed by theoretical results that bound the condition number of the
Hessian of the cost function in terms of the condition number of this covariance ma-
trix [50, 51]. The first level of preconditioning that is applied is therefore to transform
the problem to new variables, as described in Section 3.2. The transformed problem
(2.24) can be shown in general to be better conditioned both in theory and in practice
[42, 50, 51, 83]. However, even after this transformation, the problem is not very well-
conditioned and can have a condition number of order 103–104 [39, 52]. Experiments
in the ECMWF system showed that the ill-conditioning that remains is related to the
inclusion of dense, accurate surface observations over Europe [110] and this has also
been shown to be true for the system of the Met Office [52]. This can be explained by
theoretical bounds obtained by [50, 52], which show that the condition number of the
transformed problem increases as the spacing between observations decreases and as
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observations becomemore accurate. Hence, ideally, a second level of preconditioning
is required after the variable transformation has been performed.

In order to implement a further preconditioning, it is necessary to find a precondi-
tioning matrix K that is inexpensive to compute and such that the eigenvalues of KG̃

are more clustered than those of the Hessian G̃ of the transformed problem. Often,
the preconditioning matrix may be represented in the factored form K = PPT and the
preconditioningmatrixP is then used directly, for example in the preconditioned con-
jugate gradient method [111]. In order to design such a preconditioner, some knowl-
edge of the Hessian (2.29) of the transformed cost function is required. One way that
this can be obtained is by using a Lanczos algorithm to perform the inner loop min-
imization. The Lanczos method produces estimates of the leading eigenvectors and
eigenvalues of the Hessian of the function being minimized. If the firstm eigenvalues
λj and eigenvectors uj , j = 1, . . . ,m have sufficiently converged, then the inverse of
the Hessian (2.29) can be approximated by the expression

K = I+
m∑
j=1

(λj − 1)ujuTj . (2.38)

This expression can then be used for the preconditioning of subsequent minimiza-
tions under the assumption that the Hessian does not change greatly between one
minimization and another [39, 111]. This method, known as spectral preconditioning,
is used in the operational forecast system of ECMWF, where three outer loops are per-
formed for each assimilation. During the first inner loop minimization, the Lanczos
vectors are stored and these are then used to precondition the minimization of the
second and third inner loop cost functions [39]. It has been shown that this precon-
ditioner belongs to a larger class of limited memory preconditioners [111]. In order to
define this class, we let si ∈ Rn, i = 1, . . . , l, with l < n, be a set of G̃-conjugate
vectors. Then, the limited-memory preconditioning matrix is given by

Kl =
⎛⎝In −

l∑
i=1

sis
T
i

sTi G̃si
G̃

⎞⎠⎛⎝In −
l∑
i=1

G̃
sis

T
i

sTi G̃si

⎞⎠+ l∑
i=1

sis
T
i

sTi G̃si
. (2.39)

If the vectors si are chosen to be the eigenvectors of G̃, then this formula results in the
spectral preconditioning matrix (2.38).

The authors of [111] propose an alternative preconditioner from the same class
based on the Ritz pairs of the Hessian. Ritz pairs are approximate eigenpairs (θi,vi)
defined in an appropriately chosen subspace. By choosing the subspace to be that
spanned by the Lanczos vectors, the authors obtain the Ritz limited memory precon-
ditioner

KRitz
l =

⎛⎝In −
l∑
i=1

vivTi
θi

G̃

⎞⎠⎛⎝In −
l∑
i=1

G̃
vivTi
θi

⎞⎠+ l∑
i=1

vivTi
θi

. (2.40)

They found that the use of this preconditioner can provide an improvement over spec-
tral preconditioning when the estimates of the Hessian eigenpairs are inaccurate.
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A similar result was also found in the Regional Ocean Modeling System (ROMS) in
which both of these preconditioners are implemented [91]. One drawback of both of
these methods is that in order to generate the required information, the first mini-
mization must be performed in order to generate the vectors si before any precondi-
tioning can be applied. Thus far, little attention has been paid to preconditioning of
this first minimization.

With any minimization method, it is important to specify appropriate stopping
criteria and this is also the case in variational data assimilation. As discussed in Sec-
tion 2.1, it has been proved that the inner loop step of the Gauss–Newtonmethod (step
1.1 of Algorithm 2.1) needs to be solved to sufficient accuracy in order to ensure con-
vergence of the outer loops [45]. The theory has been used to show how it is natural to
use an inner loop stopping criterion based on the relative change in the norm of the
gradient, of the form

‖∇J̃(k)(l) ‖2

‖∇J̃(k)(0)‖2

< ε , (2.41)

where the subscript indicates the inner loop iteration index and ε is a specified toler-
ance [73]. The tolerance used to stop the iterations must therefore be chosen careful-
ly. If it is too high, then there is no guarantee that the outer loop steps will converge.
However, the convergence should not be pushed below the level of noise on the ob-
servations, as then small spatial scales are adjusted to fit the observational noise [68].
In many practical forecasting problems, such care is not always taken and other cri-
teria are introduced. There are two main reasons for this. One is that in a time-critical
forecasting system, it may be considered more important to solve each minimization
problem using approximately the same amount of wall-clock time rather than to the
same accuracy. The second reason is that the preconditioning techniques described
in this section require aminimumnumber of iterations to be performed on the first in-
ner loop minimization in order to acquire sufficiently accurate information about the
Hessian. Hence, criteria that have been introduced include stopping the iterations
when the value of the cost function is close to its expected minimum value [84] or
using a fixed number of iterations, particularly for the first minimization [110].

3.5 Reduced order approaches

As was mentioned in Section 2.1, a major advantage of the incremental approach is
that the inner loop problem may be solved in a smaller dimensional space than the
outer loop update of the linearization trajectory. Within environmental prediction,
lower spatial resolution systems have often been used in the inner loop step, with the
full resolution nonlinear model being used in the outer loop. Further simplifications
may also be made to the linear dynamical model used in the inner loop, such as us-
ing simplified parametrizations of subgrid-scale processes as described in Section 3.1.
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While a change in resolution is certainly the simplest way to achieve a more compu-
tationally tractable inner loop problem, it does not necessarily provide the most ac-
curate low order representation of the linearized cost function and its constraint. In
order to improve on this, other reduced order approaches have been investigated in
the context of incremental 4DVar. These essentially fall into two categories, methods
based on principal component analysis and methods based on near-optimal reduc-
tion of dynamical systems.

Principal component analysis, which is often referred to as principal orthogonal
decomposition (POD) or the method of empirical orthogonal functions (EOFs), aims
to represent the solution of the assimilation problem as a linear combination of basis
vectors. The basis vectors are chosen to represent the leading directions of variability
in the model and are calculated using a series of model states, or “snapshots”, from
an integration of the nonlinear model. Such amethod was used in an oceanmodel as-
similation by [101]. From the sample of model states, the authors generate the matrix
X = (X1, . . . ,Xl), where Xi is the difference between the model state at time ti and
the mean state. The covariance matrix XXT /(l − 1) is then diagonalized to find a set
of orthonormal eigenvectors vi (EOFs) and associated eigenvalues λi, i = 1, . . . , l.5
The solution δx0 to the inner loop minimization problem (2.15) is then defined by
an expansion of the leading r eigenvectors

δx0 =
r∑
i=0

wivi = Vw (2.42)

where V = (v1, . . . ,vr ) is the matrix of the leading r eigenvectors and the vector
w = (w1, . . . ,wr )T contains the weights to be determined. In this case, the matrix
V acts as a variable transformation in a similar way to the parameter transform (2.23)
and so the background term can be written in the form

Jb(w) = 1
2
wTB−1

w w , (2.43)

where the covariancematrix Bw is taken to be the diagonalmatrix of eigenvalues. The
number of vectors r that are used in the expansion is chosen in order to ensure that
a large fraction of the total variance is retained, where this fraction is calculated from
the eigenvalues as ∑r

i=1 λi∑l
i=1 λi

. (2.44)

This method has been applied to assimilation in ocean models in an idealized setting
[101] and using real data [60]. It is noted that the assumption behind this method is
that the variability of the system can be well described by a low-dimensional space.

5 In practice, the eigenvalues can be found by diagonalizing the much smaller matrix XTX/(l − 1)
[11].
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Although the approach reduces the size of the space in which the minimization is
performed, the tangent linear model (2.16) must still be integrated at full resolution
on each iteration.

An alternative approach, based on POD, was put forward by [22, 23]. In that work,
the solution to the full nonlinear 4DVar problem is expressed as a perturbation from
the sample mean that is expanded in terms of basis functions Φi such that

δx0 =
r∑
i=0

wiΦi , (2.45)

wherewi are againweights to be determined. The basis functions are derived in a sim-
ilar way to the EOFs, but by then projecting the perturbation fields X onto the eigen-
vectors vi, and thus

Φ = {Φ1, . . . ,Φl} = XV . (2.46)

The number of basis functions that are used in the expansion is again determined us-
ing the fractional variance (2.44). In this work, the authors solve the nonlinear 4DVar
cost function (2.3) in the reduced space. As well as expressing the background term in
terms of coefficients of the basis functions, they also derive a Galerkin projection of
the dynamical model onto the basis functions for use in the observation term. Thus,
this formulation has the advantage that the dynamical model and its adjoint are also
expressed in the reduced space. Again, this method relies on the snapshots being able
to capture a low-dimensional subspace that adequately describes the full system.

A disadvantage with both the EOF and POD methods is that they do not use
any information about the data assimilation problem itself within the reduction pro-
cedure. There have been two approaches proposed to improve on this. The first is
an adaption of the POD method, called dual-weighted POD. In this method the snap-
shot perturbations X are weighted according to the sensitivity of the cost function at
the time of the snapshot, where the weights are calculated using the adjoint mod-
el [30]. The other approach, put forward in the series of papers [14, 75, 76], is to use
near-optimal model order reduction methods for linear dynamical systems to derive
a reduced order model and observation operator. The inner loop problem of incre-
mental 4DVar (2.15) is subject to the dynamical system described by the evolution
equation (2.16) and the output equation

di = Hiδxi . (2.47)

Model reduction seeks linear restriction operators STi and prolongation operators Ti
that map the perturbation δxi ∈ Rn to δx̂i ∈ Rr with r � n. These operators are
chosen such that the output of the projected system

δx̂i+1 = STi MiTiδx̂i (2.48)

d̂i = HiTiδx̂i (2.49)
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approximates well the output of the full dynamical system di. The inner loop problem
can then be defined in the reduced space as the minimization of

min Ĵ(k)
[
δx̂(k)0

]
= 1

2

(
δx̂(k)0 − ST0

[
xb − x0

(k)
])T

×
(
ST0 B0S0

)−1 (
δx̂(k)0 − ST0

[
xb − x0

(k)
])

+ 1
2

N∑
i=0

(
HiTiδx̂(k)i − d(k)i

)T
R−1

(
HiTiδx̂(k)i − d(k)i

)
,

subject to the reduced dynamicalmodel (2.48). The linearization state is then updated
with the perturbation

δx(k)0 = T0δx̂(k)0 . (2.50)

The authors of these papers use themethod of balanced truncation [92] to demon-
strate this method in the case where the operators M and H are time-invariant. The
aim of balanced truncation is to truncate the states of the system that are least affect-
ed by the inputs and have least effect on the outputs. Since these are not generally
the same, the first step in the method is to transform the system into one in which
these states coincide, the “balancing” step. It is first necessary to find the state co-
variance matrices P andQ associated with the inputs and outputs respectively. These
are found by solving the Stein equations

P =MPMT + B (2.51)
and Q =MTQM+HTR−1H . (2.52)

The balancing transformation Ψ is then given by the matrix of eigenvectors of PQ,
while the eigenvalues of PQ are equal to the Hankel singular values of the full system.
The reduction step then calculates the restriction and prolongation operators from

ST = [Ir ,0]Ψ−1 (2.53)

T = Ψ
[

Ir
0

]
, (2.54)

where the decay of the Hankel singular values is used to choose the model reduction
order r . In idealized models the studies [14, 75, 76] show how this method improves
the solution with respect to using low resolution models and how it is important to
use information about the assimilation problem in the reduction procedure, including
information about the background and observation error covariance matrices. How-
ever, whereas reductionmethods based on POD can be implemented in large systems,
the method of balanced truncation cannot. Although efficient numerical methods
are available to apply balanced truncation to systems of moderately large size (e.g.
[25, 53, 69]), these are not suitable for the very large systems found in environmental
prediction. Efforts are being made to design near-optimal reductionmethods for such
systems based on Krylov methods [21], but these methods have not yet been tried out
in data assimilation for large systems.
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3.6 Issues for nestedmodels

For very high resolution weather and ocean forecasting operational centers often use
models covering only the domain of interest that are nested in a larger model, often of
lower resolution, which we refer to here as the parent model. In most of the systems
the nesting is a one-way nesting, whereby lateral boundary conditions for the nest-
ed model are provided by the parent model, but there is no feedback from the high
resolution nested model to the parent model. This presents particular challenges for
the application of variational data assimilation. For problems specific to high resolu-
tion weather forecasting we refer the reader to the review articles [96] and [31]. Here
we consider only more general problems arising from using a high resolution nested
grid, in particular treatment of the lateral boundary conditions and of the difference
in representation of spatial scales between the parent and nested models.

With respect to the lateral boundary conditions, a decision must be made as to
whether to estimate them as part of the assimilation procedure or to assume that they
do not change. Both approaches have been used in practice. In the operational weath-
er forecasting system of the Met Office the lateral boundary conditions are not updat-
ed, but are fixed by the parent model. Hence the increment δx on the boundary is
set to zero. This has advantages for the practical implementation of the scheme. In
particular it allows a simple sine transform to be used in the definition of the spa-
tial background error covariances described in Section 3.2, which then enforces zero
boundary increments [83]. However, observational information close to the bound-
aries can be difficult to use, since the nested model cannot use observations lying
outside the domain and the analysis inside the domain may not be consistent with
the boundary conditions provided [4, 47]. This can lead to features being artificially
cut-off close to the boundaries.

The alternative approach is to estimate the boundary variables within the assim-
ilation procedure [48, 49, 67]. This means that the state vector x is defined to include
both the variables in the interior of the domain and on the lateral boundaries. In this
way observations inside the nested domain can update the boundary values and so it
is possible to ensure that the analysis is consistent throughout the domain. However
in this case it is no longer possible to apply a sine transform to impose the spatial
background error covariances. In order to be able to apply a spectral transformation
an extension zone is created around the domain to obtain fields that are horizontal-
ly periodic. A Fourier transform can then be applied. One difficulty in analyzing the
boundaries in this way is that the lateral boundary conditions are only updated dur-
ing the assimilation period. During the subsequent forecast no updates are available
and the values from the parent model must be used, so there is some inconsistency
between the boundary conditions of the analysis and those of the forecast. Howev-
er, some consistency over the assimilation window can be ensured by estimating the
boundary conditions at the beginning and end of the assimilation window, with both

 EBSCOhost - printed on 2/10/2023 4:36 PM via . All use subject to https://www.ebsco.com/terms-of-use



80 Amos S. Lawless

constrained by background values from the parent model. In this case the cost func-
tion to be solved is of the form

J (x0,xlbc) = 1
2
(x0 − xb)TB−1(x0 − xb)+ 1

2

(
xlbc − xblbc

)T
B−1
lbc

(
xlbc − xblbc

)
+ 1

2

N∑
i=0

(Hi (xi)− yi)T R−1
i (Hi (xi)− yi) ,

(2.55)

where x0 represents the model variables in the interior of the domain and the lateral
boundary conditions at initial time t0, xlbc is the lateral boundary condition at final
time tN , xb is the background estimate of x0, with error covariance matrix B and xblbc
is the background estimate of xlbc, with error covariance matrix Blbc [67].

The second challenge we consider is the difference in the spatial scales that can
be represented in the nested and parent models. In particular, since the nested model
often covers only a small domain, the assimilation scheme is not able to adequately
analyze scales of the size of the domain and larger. In applications such as weather
prediction, it is important to capture these larger scales since the physical system is
inherently multiscale with strong feedbacks between large and small scales. Hence,
attempts have beenmade to improve the large scale information in nested model data
assimilation by providing information on these scales from a parent model analysis.
For example, the Met Office experimented with a system that combined large scale
increments from a parent model analysis with the small scale increments from the
nested model analysis [4]. In this method, the large scales of the nested model analy-
sis are forced to be equal to those of the parent model.

An alternative, proposed by [47], is to use the large scales of the parent analysis
over the nestedmodel domain as aweak-constraint on the variational problem.We let
xap be the analysis from the parent model and define operatorsHp andHn such that
Hp(xap) represents some large scales of the parent analysis on the nested domain
andHn(x) represents the same large scales from the nested model field x. Then, the
difference between the large scales of the global analysis and those forecasted by the
nested model can be constrained by adding an extra term to the cost function (2.3) of
the form

1
2

(
Hp

(
xap
)
−Hn (x)

)T
B−1
p

(
Hp

(
xap
)
−Hn (x)

)
, (2.56)

where Bp is the error covariance matrix of the parent model large scales. This means
that the analysis is constrained by large scales from the parent model through this
additional term, and by large scales from the nested model through the background
term. In theory, this should introduce another term including the cross-correlation
between these two sources of information. However, in their demonstration of the
method in a 3DVar scheme of the ALADIN model at Météo-France, the authors of [47]
concluded that this cross-correlation could be neglected, though at the cost of some
inaccuracy.
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Amore theoretical study of this problemwas carried out by [9]. They used a spec-
tral analysis to show how information from waves longer than the domain size is pro-
jected onto different scales in the nested model domain corresponding to the lowest
wave numbers that can be represented on this domain. They demonstrated that by
giving more weight to these scales in the background term of the cost function, it
was possible to retain more of the large scale information from a parent model back-
ground. In this method, the large spatial scales from only the parent model are used
as a constraint in the assimilation, as in [4], but they are not imposed exactly andmay
be altered by the assimilation process. The authors of [9] demonstrated benefit from
this in an idealized system, but the method has not been tested in a realistic model.

3.7 Weak-constraint variational assimilation

The formulation of variational data assimilation presented in Section 2 assumes that
the discrete dynamical model (2.1) is an exact representation of the physical system
being observed. In practice, we know that the models contain errors caused by lim-
itations in our knowledge of the physical equations and limitations in the numeri-
cal modeling, for example, the need for subgrid scale parametrizations. In theory, it
is possible to account for and estimate such errors in variational data assimilation,
though implementation in practice is more complicated. We assume an additive error
to the model equations, and thus the true dynamical system can be written as

xi+1 =Mi(xi)+ ηi , (2.57)

where ηi are the unknown model errors at times ti which are assumed to be random,
serially uncorrelated, Gaussian errors with covariancematrixQi. Then, we can define
a weak-constraint 4DVar problem in which the model equations do not have to be
exactly satisfied over the assimilation window. We define a cost function of the form

J(x0,η0, . . . ,ηN−1) =
1
2

(
x0 − xb

)T
B−1

(
x0 − xb

)
+ 1

2

N∑
i=0

(Hi (xi)− yi)T R−1
i (Hi (xi)− yi)+ 1

2

N−1∑
i=0

ηTi Q−1
i ηi

(2.58)

subject to (2.57). The weak-constraint problem is then to minimize (2.58) with respect
to the initial state x0 and all the model errors ηi.

An alternative formulation of the weak-constraint problem (2.58) is to write it in
terms of the model state xi at each time ti rather than in terms of the model errors.
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This leads to the cost function

J(x0,x1, . . . ,xN) = 1
2

(
x0 − xb

)T
B−1

(
x0 − xb

)
+ 1

2

N∑
i=0

(Hi(xi)− yi
)T

R−1
i
(Hi(xi)− yi

)

+ 1
2

N−1∑
i=0

(xi+1 −Mi(xi))TQ−1
i (xi+1 −Mi(xi)) .

(2.59)

In [109], both formulations were presented in the incremental version of 4DVar as
possibilities for inclusion in the ECMWF system.

The inclusion of the model errors at each observation time increases the size of
the argument of J by a factor of N + 1, the number of observation times. One way
to reduce this cost is by assuming a relationship in time between the model errors
ηi. Theoretical work by [46] used an augmented state approach to solve for the state
and the model error, with a dynamical equation used to explain the evolution of the
error. The authors introduced a general form for the error evolution, including both
a systematic and random component of the error. Various options for the systematic
evolutionwere proposed, including a constant bias error and simple dynamical evolu-
tions, and themethods were illustrated on simple systems. In the context of a regional
atmosphericmodel, [119] demonstrated aweak-constraint 4DVar system under the as-
sumption that the model error was serially correlated and obeyed a first-order Markov
process.

Since this early work, there have been several idealized studies with weak-
constraint 4DVar, but the move towards operational implementations in large scale
systems has been slow. One of the biggest remaining challenges is the specification of
the model error covariance matrix Qi for real systems. An initial idea was to take this
matrix to be a scalar multiple of the background error covariance matrix B. However,
in experiments with the ECMWF atmospheric forecasting system using formulation
(2.58), [110] showed that this choice implies that corrections to the model error lie
in the same space as those to the background. This leads to estimates of model er-
ror that are very similar to the increments to the initial conditions. An alternative
method, proposed in the same paper, is based on the use of model tendency fields,
that is, fields of the change in model variables over a model time step. The statis-
tics of Qi are estimated from an ensemble of differences between model tendency
fields using the NMC method in a similar way that differences between the model
fields themselves are used in the estimation of the background error covariances (as
explained in Section 3.2). [110] interprets differences between these tendencies as
a proxy for the uncertainty in the model forcing. The statistics from this sample are
then fit to the same statistical model as is used for the matrix B. The use of a covari-
ance matrix estimated in this way was tested in weak-constraint 4DVar experiments
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that assumed a constant error over the assimilation window. This was shown to give
an improvement over the use of a covariancematrix defined by a scalar multiple of B.

The work of [80] illustrated the implementation of weak-constraint 4DVar using
such a matrix, again in the ECMWF system, to estimate a constant bias error in the
stratosphere where the model is known to have biases. A similar scheme has been
introduced into the operational assimilation system of ECMWF [40]. In this imple-
mentation, the deviation of the error from its mean value is minimized, and thus the
last term of (2.58) becomes

1
2
(η− η̄)T Q−1 (η− η̄) , (2.60)

where η̄ is the estimate of the model bias from the previous analysis cycle. In this way,
the assimilation ensures that the estimated error does not vary too quickly from one
analysis cycle to the next.

Despite these initial successes, much more work is needed. One particular dif-
ficulty is that it is not clear how to differentiate between model bias and observa-
tion bias since the assimilation only measures the difference between the model and
the observations. [110] showed a case study of observation bias being interpreted as
a model error by weak-constraint 4DVar. This problem was discussed further by [78]
in the context of ocean data assimilation. They suggested that to estimate both model
and observation bias, it is necessary to include information on the spatial and tempo-
ral structure of these biases in the covariance matrices.

In order to then move away from the assumption of a constant bias and treat
time-varying systematic and random model errors, more sophisticated methods for
describing the evolution of errors must be developed. This evolution is likely to be
dependent on the specific model being used, yet general methods for representing
this are also needed. At the same time, efficient and accurate representations of the
covariances of these model errors must be found. The use of the weak-constraint for-
mulation of 4DVar holds much promise to counteract the inadequacies of models, but
many challenges remain open to be able to implement this in very large environmen-
tal models.

4 Summary and future perspectives
Variational data assimilation is now a well-established method for combining obser-
vational data with very large environmental models. However, as illustrated in this
article, its successful implementation requires careful and judicious choices in each
aspect of the assimilation scheme. In some cases, these choices are determined by
the physical system being modeled or the observational data available, for example,
the specification of the error covariances in the system. In other cases, the choices
may be determined by the size of the problem and the need to solve it in an efficient
manner, often for real-time forecasting, or by features of the numerical model itself,
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such as lateral boundary conditions. In each instance, the choices to be made will in-
evitably be a compromise between the ideal solution and what is practically feasible
in a given system. We have presented some of the solutions that have been found that
have allowed variational data assimilation to be implemented in large environmen-
tal forecasting systems. Nevertheless, much research continues to improve on these
solutions so as to find better estimates of the state and so produce better forecasts.

One particularly active area in numerical weather prediction is the desire to use
more information from ensembles of forecasts to provide time-varying covariances
for the background errors, combining the advantages of ensemble filtering methods
with the advantages of 4DVar. ECMWF have implemented a system in which an en-
semble of 4DVar assimilations are run and the statistics from this ensemble are used
to update the variances of the background errors [15]. Extensions to this method to
also calculate the covariance information are being sought. An alternative approach
is to use information from ensembles of forecasts to calculate covariance information
throughout the whole assimilation window. This method was proposed by [81] and
tested in a global weather prediction model by [19, 20]. An advantage of this method
is that the tangent linear and adjoint models are not required in the 4DVar since all
the evolution information comes through the ensemble of nonlinear model forecasts.
Hence, this makes development of the system much easier.

Besides the many great challenges that we have discussed in this article, new
challenges are arising for the future evolution of variational data assimilation
systems. The advent of massively parallel computers means that the algorithms
used currently to solve the assimilation problem may no longer be efficient on fu-
ture computer architectures. Hence, work is needed to develop new algorithms to
solve the problem, particularly with respect to efficient minimization and precon-
ditioning methods. This may be easier as systems move to a weak-constraint form
of 4DVar but, as discussed above, that introduces its own difficulties [40]. Another
challenge comes from the move towards more integrated Earth-system models, with
different environmental models coupled to each other. For example, for seasonal to
decadal prediction, it is now common to use coupled atmosphere-ocean models, but
the initialization of these models with data assimilation is still in its infancy. Partic-
ular problems arise from the very different time scales in the atmosphere and ocean
system and from the model biases in atmosphere and ocean models. Some work
has been done to implement 4DVar in such systems in order to estimate the ocean
state and coupling parameters [89, 106], but the estimation of the complete state in
coupled atmosphere-ocean models remains an open problem for the coming years.
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Ensemble filter techniques for intermittent
data assimilation
Abstract: This survey paper is written with the intention of giving a mathematical
introduction to filtering techniques for intermittent data assimilation, and to survey
some recent advances in the field. The paper is divided into three parts. The first part
introduces Bayesian statistics and its application to statistical inference and estima-
tion. Basic aspects of Markov processes, as they typically arise from scientific models
in the form of stochastic differential and/or difference equations, are covered in the
second part. The third and final part describes the filtering approach to estimation of
model states by assimilation of observational data into scientific models. While most
of the material is of survey type, very recent advances in the field of nonlinear data
assimilation covered in this paper include a discussion of Bayesian inference in the
context of optimal transportation and coupling of random variables, as well as a dis-
cussion of recent advances in ensemble transform filters. References and sources for
further reading material will be listed at the end of each section.
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1 Bayesian statistics
In this section, we summarize the Bayesian approach to statistical inference and esti-
mation in which probability is interpreted as a measure of uncertainty (of the system
state, for example). Contrary to closely related inverse problem formulations, all vari-
ables involved are considered to be uncertain and are described as random variables.
Furthermore, uncertainty is only discussed in the context of available information,
requiring the computation of conditional probabilities; Bayes’ formula is used for sta-
tistical inference. We start with a short introduction to random variables.
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1.1 Preliminaries

We start with a sample spaceΩwhich characterizes all possible outcomes of an exper-
iment. An event is a subset ofΩ and we assume that the setF of all events forms a σ -
algebra (i.e.F is nonempty and closed over complementation and countable unions).
For example, suppose that Ω = R. Then, events can be defined by taking all possible
countable unions and complements of intervals (a, b] ⊂ R; these are known as the
Borel sets.

Definition 3.1 (Probability measure). A probability measure is a function
P : F → [0,1]with the following properties:
(i) Total probability equals one: P(Ω) = 1.
(ii) Probability is additive for independent events: If A1, A2, . . . , An, . . . is a finite or

countable collection of events Ai ∈ F and Ai ∩Aj = ∅ for i �= j, then

P (∪iAi) =
∑
i
P (Ai) .

The triple (Ω,F ,P) is called a probability space.

Definition 3.2 (Random variable). A function X : Ω → R is called a (univariate) ran-
dom variable if

{ω ∈ Ω : X(ω) ≤ x} ∈ F
for all x ∈ R. The (cumulative) probability distribution function of X is given by

FX(x) = P ({ω ∈ Ω : X(ω) ≤ x}) .

The cumulative probability distribution function implies a probability measure on R
which we denote by μX .

Often, when working with a random variableX, the underlying probability space
(Ω,F ,P) is not emphasized; one typically only specifies the target spaceX = R and
the probability distribution or measure μX onX. We then say that μX is the law of X
and write X ∼ μX . A probability measure μX introduces an integral overX and

EX [f] =
∫
X
f(x)μX(dx)

is called the expectation value of a function f : R → R (f is called a measurable
function where the integral exists). We also use the notation law(X) = μX to indicate
that μX is the probability measure for a random variable X. Two important choices
for f are f(x) = x, which leads to the mean x = EX[x] ofX, and f(x) = (x−x)2,
which leads to the variance σ 2 = EX[(x − x)2] of X.
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Univariate random variables naturally extend to the multivariate case, i.e.
X = RN , N > 1. A probability measure μX on X is called absolutely continuous
(with respect to the standard Lebesgue measure dx on RN ) if there exists a probabili-
ty density function (PDF)πX : X → R with πX(x) ≥ 0, and

EX[f] =
∫
X
f(x)μX(dx) =

∫
RN

f(x)πX(x)dx

for all measurable functions f . The shorthand μX(dx) = πXdx is often adopted.
The implication is that one can, for all practical purposes, work within the classical
Riemann integral framework and does not need to resort to Lebesgue integration.
Again, we can define the mean x ∈ RN of a multivariate random variable and its
covariance matrix

P = EX
[
(x − x) (x − x)T

]
∈ RN×N .

Here, aT denotes the transpose of a vector a. We now discuss a few standard distri-
butions.

Example 3.3 (Gaussian distribution). We use the notation X ∼ N(x,σ 2) to denote
a univariate Gaussian random variable with meanx and varianceσ 2, with PDF given
by

πX(x) = 1√
2πσ

e−
1

2σ2 (x−x)2 , x ∈ R.

In the multivariate case, we use the notation X ∼ N(x,Σ) to denote a Gaussian ran-
dom variable with PDF given by

πX(x) = 1
(2π)N/2|Σ|1/2 exp

(
− 1

2 (x − x)TΣ−1(x − x)
)
, x ∈ RN.

Example 3.4 (Laplace distribution and Gaussian mixtures). The univariate Laplace
distribution has PDF

πX(x) = λ
2
e−λ|x| , x ∈ R.

This may be rewritten as

πX(x) =
∞∫
0

1√
2πσ

e−x
2/(2σ2) λ

2

2
e−λ

2σ/2dσ ,

which is a weighted Gaussian PDF with mean zero and variance σ 2 integrated over
σ . By replacing the integral by a Riemann sum over a sequence of quadrature points
{σj}Jj=1, we obtain

πX(x) ≈
J∑
j=1

αj
1√

2πσj
e−x

2/(2σ2
j ) , αj ∝ λ2

2
e−λ

2σj/2(σj − σj−1)
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and the constant of proportionality is chosen such that the weights αj sum to one.
This is an example of a Gaussian mixture distribution, namely, a weighted sum of
Gaussians. In this case, the Gaussians are all centered on x = 0; the most general
form of a Gaussian mixture is

πX(x) =
J∑
j=1

αj
1√

2πσj
e−(x−xj)

2/
(
2σ2
j

)
,

with weightsαj > 0 subject to
∑J
j=1αj = 1, and locations−∞ < xj <∞. Univariate

Gaussian mixtures generalize to mixtures of multivariate Gaussians in the obvious
manner.

Example 3.5 (Point distribution). As a final example, we consider the point measure
μx0 defined by ∫

X
f(x)μx0(dx) = f(x0) .

Using the Dirac delta notation δ(·), this can be formally written as μx0(dx) =
δ(x−x0)dx. The associated random variableX has the certain outcomeX(ω) = x0

for almost allω ∈ Ω. One can call such a random variable deterministic, and write
X = x0 for short. Note that the point measure is not absolutely continuous with
respect to the Lebesgue measure, i.e. there is no corresponding probability density
function.

We now briefly discuss pairs of random variables X1 andX2 over the same target
spaceX. Formally, we can treat them as a single random variable Z = (X1, X2) over
Z = X ×X with a joint distribution μX1X2(x1, x2) = μZ(z).

Definition 3.6 (Marginals, independence, conditional probability distributions). LetX1

and X2 denote two random variables on X with joint PDF πX1X2(x1, x2). The two
PDFs

πX1(x1) =
∫
X
πX1X2(x1, x2)dx2

and
πX2(x2) =

∫
X
πX1X2(x1, x2)dx1 ,

respectively, are called the marginal PDFs, i.e. X1 ∼ πX1 and X2 ∼ πX2 . The two
random variables are called independent if

πX1X2(x1, x2) = πX1(x1)πX2(x2) .

We also introduce the conditional PDFs

πX1(x1|x2) = πX1X2(x1, x2)
πX2(x2)
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and
πX2(x2|x1) =

πX1X2(x1, x2)
πX1(x1)

.

Example 3.7 (Gaussian joint distributions). AGaussian joint distributionπXY(x,y),
x,y ∈ R, with mean (x,y) and covariance matrix

Σ =
[
σ 2
xx σ 2

xy
σ 2
yx σ 2

yy

]

leads to a Gaussian conditional distribution

πX(x|y) = 1√
2πσc

e−(x−xc)
2/(2σ2

c ), (3.1)

with conditional mean
xc = x +σ 2

xyσ
−2
yy(y − y)

and conditional variance

σ 2
c = σ 2

xx − σ 2
xyσ−2

yyσ 2
yx.

For a given y, we define X|y as the random variable with conditional probability
distribution πX(x|y) and write X|y ∼ N(xc,σ 2

c ).

1.2 Bayesian inference

We start this section by considering transformations of random variables. A typical
scenario is the following one. Given a pair of independent random variables Ξ with
values in Y = RK and X with values in X = RN together with a continuous map
h : RN → RK , we define a new random variable

Y = h(X)+ Ξ . (3.2)

Themaph is called the observation operator, yielding observed quantities given a par-
ticular value x of the state variable X, and Ξ represents measurement errors.

Theorem 3.8 (PDF for transformed random variable). Assume that both X and Ξ are
absolutely continuous, then Y is absolutely continuous with PDF

πY (y) =
∫
X
πΞ

(
y − h(x))πX(x)dx . (3.3)

If X is a deterministic variable, i.e. X = x0 for an appropriate x0 ∈ RN , then the PDF
simplifies to

πY (y) = πΞ
(
y − h(x0)

)
.
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Proof. We start with X = x0. Then, Y − h(x0) = Ξ which immediately implies the
stated result. In the general case, consider the conditional probability

πY (y|x0) = πΞ
(
y −h(x0)

)
.

Equation (3.3) then follows from the implied joint distribution

πXY(x,y) = πY (y|x)πX(x)

and subsequent marginalization, i.e.

πY (y) =
∫
X
πXY(y,x)dx =

∫
X
πY(y|x)πX(x)dx .

The problem of predicting the distribution πY of Y given a particular configu-
ration of the state variable X = x0 is called the forward problem. The problem of
predicting the distribution of the state variable X given an observation Y = y0 gives
rise to an inference problem, which is defined more formally as follows.

Definition 3.9 (Bayesian inference). Given a particular value y0 ∈ RK, we consider
the associated conditional PDFπX(x|y0) for the random variableX. From

πXY(x,y) = πY(y|x)πX(x) = πX(x|y)πY (y),

we obtain Bayes’ formula

πX(x|y0) = πX(y0|x)πX(x)
πY(y0)

. (3.4)

The object of Bayesian inference is to obtainπX(x|y0).

SinceπY (y0) �= 0 is a constant, equation (3.4) can be written as

πX(x|y0)∝ πX(y0|x)πX(x) = πΞ
(
y0 −h(x)

)
πX(x) ,

where the constant of proportionality only depends on y0. We denote by πX(x) the
prior PDF of the random variable X and πX(x|y0) the posterior PDF. The function
π(y0|x) is called the likelihood function.

Having obtained a posterior PDFπX(x|y0), it is often necessary to provide an es-
timate of a “most likely” value of x conditioned on y0. Bayesian estimators for x are
defined as follows.

Definition 3.10 (Bayesian estimators). Given a posterior PDF πX(x|y0), we define
a Bayesian estimator x̂ ∈ X by

x̂ = arg minx′∈X
∫
X

L(x′, x)πX(x|y0)dx
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where L(x′, x) is an appropriate loss function. Popular choices include themaximum
a posteriori (MAP) estimator, with x̂ corresponding to the modal value of πX(x|y0).
The MAP estimator formally corresponds to the loss function L(x′, x) = 1{x′ �=x}. The
posterior median estimator corresponds to L(x′, x) = ‖x′ − x‖ while the minimum
mean square error estimator (or conditional mean estimator)

x̂ =
∫
X
xπX(x|y0)dx

results from L(x′, x) = ‖x′ − x‖2.

We now consider an important example for which the posterior can be computed
analytically.

Example 3.11 (Bayes’ formula for Gaussian distributions). Consider the case of a scalar
observation, i.e. K = 1, with Ξ ∼ N(0, σ 2

rr ). Then,

πΞ(h(x)−y) = 1√
2πσrr

e
− 1

2σ2
rr
(h(x)−y)2

.

We also assume that X ∼ N(x, P) and that h(x) = Hx. Then, the posterior distribu-
tion of X given y = y0 is also Gaussian with mean

xc = x − PHT
(
HPHT +σ 2

rr

)−1
(Hx −y0)

and covariance matrix

Pc = P − PHT
(
HPHT + σ 2

rr

)−1
HP .

These are the famous Kalman update formulas which follow from the fact that the
product of two Gaussian distributions is also Gaussian, where the variance of Y =
HX + Σ is given by

σ 2
yy = HPHT + σ 2

rr

and the vector of covariances betweenx ∈ RN andy = Hx ∈ R is given by PHT. For
Gaussian random variables, the MAP, posterior median, and minimum mean square
error estimators coincide and are given by xc . The case of vector-valued observations
will be discussed in Section 3.3. Finally, note thatxc solves the minimization problem

xc = arg min
x∈RN

{
1
2
(x − x)TP−1(x − x)+ 1

2R
(Hx −y0)2

}
,

which can be viewed as a regularization of the ill-posed inverse problem

y0 = Hx, x ∈ RN , N > 1 ,

in the sense of Tikhonov. A standard Tikhonov regularization would be based on
P−1 = δI with the regularization parameter δ > 0 appropriately chosen. In the
Bayesian approach to inverse problems, the regularization term is instead determined
by the Gaussian priorπX .
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We mention in passing that Bayes’ formula has to be replaced by the Radon–
Nikodym derivative in the case where the prior distribution is not absolutely contin-
uous with respect to the Lebesgue measure (or in case the space X does not admit
a Lebesgue measure). Consider, as an example, the case of an empirical measure μX
centered about the M samples xi ∈ X, i = 1, . . . ,M, i.e. a weighted sum of point
measures given by

μX(dx) = 1
M

M∑
i=1

μxi(dx) .

Then, the resulting posterior measure μX(·|y0) is absolutely continuous with respect
to μX , i.e. there exists a Radon–Nikodym derivative such that∫

X
f(x)μX(dx|y0) =

∫
X
f(x)

dμX(x|y0)
dμX(x)

μX(dx)

and the Radon–Nikodym derivative satisfies

dμX(x|y0)
dμX(x)

∝ πΞ
(
h(x)−y0

)
.

Furthermore, the explicit expression for the posterior measure is given by

μX(dx|y0) =
M∑
i=1

wi μxi(dx) ,

with weightswi ≥ 0 defined by

wi ∝ πΞ
(
h(xi)−y0

)
,

and the constant of proportionality is determined by the condition
∑M
i=1wi = 1.

1.3 Coupling of random variables

We have seen that under Bayes’ formula, a prior probability measure μX(·) on X is
transformed into a posterior probability measure μX(·|y0) on X conditioned on the
observation y0 = Y(ω). With each of the probability measures, we can associate
random variables such that, e.g.X1 ∼ μX andX2 ∼ μX(·|y0). However, while Bayes’
formula leads to a transformation of measures, it does not imply a specific transfor-
mation on the level of the associated random variables; many different transforma-
tions of random variables lead to the same probability measure. In this section, we
will, therefore, introduce the concept of coupling two probability measures.

Definition 3.12 (Coupling). Let μX1 and μX2 denote two probability measures on
a space X. A coupling of μX1 and μX2 consists of a pair Z = (X1, X2) of random
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variables such that X1 ∼ μX1 , X2 ∼ μX2 , and Z ∼ μZ . The joint measure μZ on the
product space Z = X ×X is called the transference plan for this coupling. The set of
all transference plans is denoted by Π(μX1 , μX2).

Here, we will discuss different forms of couplings, assuming that both the source
and target distributions are explicitly known, whilst applications to Bayes’ formula
(3.4) will be discussed in Sections 1.4 and 3. In practice, the source distribution of-
ten needs to be estimated from available realizations of the underlying random vari-
able X1. This is the subject of parametric and nonparametric statistics and will not
be discussed in this survey paper. In the context of Bayesian statistics, knowledge
of the source (prior) distribution and the likelihood implies knowledge of the target
(posterior) distribution.

Since prior distributions in Bayesian inference are generally assumed to be abso-
lutely continuous, the discussion of couplings will be restricted to the less abstract
case of X = RN and μX1(dx) = πX1(x)dx, μX2(dx) = πX2(x)dx. In other words,
we assume that the marginal measures are absolutely continuous. We cannot, howev-
er, assume that the coupling is absolutely continuous on Z = X ×X = R2N . Clearly,
couplings always exist since one can use the trivial product coupling

πZ(x1, x2) = πX1(x1)πX2(x2) ,

in which case the associated random variablesX1 andX2 are independent. The more
interesting case is that of a deterministic coupling.

Definition 3.13 (Deterministic coupling). Assume that we have a random variable X1

with law μX1 and a second probability measure μX2 . A diffeomorphism T : X → X is
called a transport map if the induced random variableX2 = T(X1) satisfies∫

X
f(x2)μX2(dx2) =

∫
X
f (T(x1)) μX1(dx1)

for all suitable functions f : X → R. The associated coupling

μZ(dx1,dx2) = δ(x2 − T(x1)) μX1(dx1)dx2 ,

where δ(·) is the standard Dirac distribution, is called a deterministic coupling. Note
that μZ is not absolutely continuous, even if both μX1 and μX2 are.

Using ∫
X
f(x2)δ (x2 − T(x1))dx2 = f (T(x1)) ,

it indeed follows from the above definition of μZ that∫
X
f(x2)μX2(dx2) =

∫
Z
f(x2)μZ(dx1,dx2) =

∫
X
f (T(x1)) μX1(dx1) .

We discuss a simple example.
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Example 3.14 (One-dimensional transport map). Let πX1(x) ≥ 0 and πX2(x) > 0

denote two PDFs onX = R.We define the associated cumulative distribution functions
by

FX1(x) =
x∫
−∞
πX1(x′)dx′ , FX2(x) =

x∫
−∞
πX2(x′)dx′ .

Since FX2 is monotonically increasing, it has a unique inverse F−1
X2
(p) for p ∈ [0,1].

The inverse may be used to define a transport map that transforms X1 into X2 as
follows,

X2 = T(X1) = F−1
X2

(
FX1(X1)

)
.

For example, consider the case where X1 is a random variable with uniform distri-
bution U([0,1]), and X2 is a random variable with standard normal distribution
N(0,1). Then, the transport map between X1 and X2 is simply the inverse of the cu-
mulative distribution function

FX2(x) =
1√
2π

x∫
−∞
e−(x

′)2/2dx′ ,

which provides a standard tool for converting uniformly distributed randomnumbers
to normally distributed ones.

We now extend this transformmethod to random variables inRN withN = 2.

Example 3.15 (Knothe–Rosenblatt rearrangement). LetπX1(x1, x2) andπX2(x1, x2)
denote two PDFs on x = (x1, x2) ∈ R2. A transport map between πX1 and πX2

can be constructed in the following manner. We first find the two one-dimensional
marginals πX1

1
(x1) and πX1

2
(x1) of the two PDFs. In the previous example, we have

seen how to construct a transport map X1
2 = T1(X1

1) which couples these two one-
dimensional marginal PDFs. Here, X1

i denotes the first component of the random
variables Xi, i = 1,2. Next, we write

πX1

(
x1, x2

)
= πX2

1

(
x2|x1

)
πX1

1

(
x1
)
, πX2

(
x1, x2

)
= πX2

2

(
x2|x1

)
πX1

2

(
x1
)

and find a transport map X2
2 = T2(X1

1 , X
2
1) by considering one-dimensional cou-

plings between πX2
1
(x2|x1) and πX2

2
(x2|T(x1)) with x1 fixed. The associated joint

distribution is given by

πZ
(
x1

1 , x
2
1 , x

1
2 , x

2
2

)
= δ

(
x1

2 − T1

(
x1

1

))
δ
(
x2

2 − T2

(
x1

1 , x
2
1

))
πX1

(
x1

1 , x
2
1

)
.

This is called the Knothe–Rosenblatt rearrangement, also well known to statisti-
cians under the name of conditional quantile transforms. It can be extended to RN ,
N ≥ 3 in the obvious way by introducing the conditional PDFs

πX3
1

(
x3|x1, x2

)
, πX3

2

(
x3|x1, x2

)
,
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and by constructing an appropriatemapX3
2 = T3(X1

1 , X
2
1 , X

3
1) from those conditional

PDFs for fixed pairs (x1
1 , x

2
1) and (x1

2 , x
2
2) = (T1(x1

1), T2(x1
1 , x

2
1)) etc. While the

Knothe–Rosenblatt rearrangement can be used in quite general situations, it has the
undesirable property that the map depends on the choice of ordering of the variables,
i.e. in two dimensions a different map is obtained if one instead first couples the x2

components.

Example 3.16 (Affine transport maps for Gaussian distributions). Consider twoGaus-
sian distributions N(x1,Σ1) and N(x2,Σ2) in RN with means x1 and x2 and covari-
ance matrices Σ1 and Σ2, respectively. We first define the square root Σ1/2 of a sym-
metric positive definite matrix Σ as the unique symmetric positive definite matrix
which satisfies Σ1/2Σ1/2 = Σ. Then, the affine transformation

x2 = T(x1) = x2 + Σ1/2
2 Σ−1/2

1 (x1 − x1) (3.5)

provides a deterministic coupling. Indeed, we find that

(x2 − x2)T Σ−1
2 (x2 − x2) = (x1 − x1)T Σ−1

1 (x1 − x1)

under the suggested coupling. The proposed coupling is, of course, not unique since

x2 = T(x1) = x2 + Σ1/2
2 QΣ−1/2

1 (x1 − x1) ,

where Q is an orthogonal matrix, and also provides a coupling. We will see in Sec-
tion 3.3 that a coupling between Gaussian random variables is also at the heart of the
ensemble square root filter formulations of sequential data assimilation.

Deterministic couplings can be viewed as a special case of a Markov process
{Xn}n∈{1,2} defined by

πX2(x2) =
∫
X1

π(x2|x1)πX1(x1)dx1 ,

where π(x2|x1) denotes an appropriate conditional PDF for the random variableX2

given X1 = x1. Indeed, we simply have

π(x2|x1) = δ(x2 − T(x1))

for deterministic couplings. We will come back to Markov processes in Section 2.
The trivial coupling πZ(x1, x2) = πX1(x1)πX2(x2) leads to a zero correlation

between the induced random variablesX1 andX2 since their covariance is

cov(X1, X2) = EZ
[
(x1 − x1)(x2 − x2)T

]
= EZ

[
x1xT

2

]
− x1xT

2 = 0 ,

where xi = EXi[x]. A transport map leads instead to the covariance matrix

cov(X1, X2) = EZ
[
x1xT

2

]
− EX1 [x1]

(
EX2 [x2]

)T = EX1

[
x1T(x1)T

]
− x1xT

2 ,
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which is nonzero in general. If several transport maps exist, then one could choose
the one that maximizes the covariance. Now consider, for example, univariate ran-
dom variables X1 and X2. Maximizing their covariance for given marginal PDFs has
an important geometric interpretation: it is equivalent to minimizing themean square
distance between x1 and T(x1) = x2 given by

EZ
[
|x2 − x1|2

]
= EX1

[
|x1|2

]
+ EX2

[
|x2|2

]
− 2EZ [x1x2]

= EX1

[
|x1|2

]
+ EX2

[
|x2|2

]
− 2EZ [(x1 − x1) (x2 − x2)]− 2x1x2

= EX1

[
|x1|2

]
+ EX2

[
|x2|2

]
− 2x1x2 − 2cov(X1, X2) .

Hence, finding a joint measure μZ that minimizes the expectation of (x1 − x2)2 si-
multaneously maximizes the covariance between X1 andX2. This geometric interpre-
tation leads to the celebrated Monge–Kantorovitch problem.

Definition 3.17 (Monge–Kantorovitch problem). A transference planμ∗Z ∈ Π(μX1 , μX2)
is called the solution to the Monge–Kantorovitch problem with cost function
c(x1, x2) = ‖x1 − x2‖2 if

μ∗Z = arg infμZ∈Π(μX1 ,μX2 ) EZ
[
‖x1 − x2‖2

]
. (3.6)

The associated functionW(μX1 , μX2), defined by

W(μX1 , μX2)2 = EZ
[
‖x1 − x2‖2

]
, law(Z) = μ∗Z ,

is called the L2-Wasserstein distance of μX1 and μX2 .

Theorem 3.18 (Optimal transference plan). If the measuresμXi , i = 1,2, are absolute-
ly continuous, then the optimal transference plan that solves the Monge–Kantorovitch
problem corresponds to a deterministic coupling with transfer map

X2 = T(X1) = ∇xψ(X1)

for some convex potentialψ : RN → R.

Proof. We only demonstrate that the solution to the Monge–Kantorovitch problem is
of the desired form when the infimum in (3.6) is restricted to deterministic couplings.
See [33, 53] for a complete proof based on approximative couplings using linear pro-
gramming, the geometric concept of cyclical monotonicity of the support of an opti-
mal coupling, and Rockafellar’s theorem.

We denote the associated PDFs by πXi , i = 1,2. We also introduce the inverse
transfer map X1 = S(X2) = T−1(X2) and consider the functional

L[S,Ψ] = 1
2

∫
RN

‖S(x)− x‖2πX2(x)dx

+
∫
RN

[
Ψ (S(x))πX2(x)− Ψ(x)πX1(x)

]
dx
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in S and a potential Ψ : RN → R. We note that∫
RN

[
Ψ (S(x))πX2(x)− Ψ(x)πX1(x)

]
dx

=
∫
RN

Ψ(x)
[
πX2 (T(x)) |DT(x)| −πX1(x)

]
dx

by a simple change of variables. Here, |DT(x)| denotes the determinant of the Jaco-
bian matrix of T at x and the potential Ψ can be interpreted as a Lagrange multiplier
enforcing the coupling of the two marginal PDFs under the desired transport map.

Taking variational derivatives with respect to S and Ψ , we obtain

δL
δS

= πX2(x) [(S(x)− x)+∇xΨ (S(x))] = 0

and
δL
δΨ

= −πX1(x)+πX2 (T(x)) |DT(x)| = 0, (3.7)

characterizing critical points of the functional L. The first equality implies

x2 = x1 +∇xΨ (x1) = ∇x
(

1
2
xT

1x1 + Ψ (x1)
)
=: ∇xψ(x1)

and the second recovers our Ansatz that T transforms πX1 into πX2 as a result of the
Lagrange multiplier Ψ .

Example 3.19 (Optimal transport maps for Gaussian distributions). Consider two Gaus-
sian distributionsN(x1,Σ1) andN(x2,Σ2) inRN with meansx1 andx2, and covari-
ance matrices Σ1 and Σ2, respectively. We had previously discussed the deterministic
coupling (3.5). However, the induced affine transformation x2 = T(x1) cannot not
be generated from a potential ψ since the matrix Σ1/2

2 Σ−1/2
1 is not symmetric. In-

deed the optimal coupling in the sense of Monge–Kantorovitch with cost function
c(x1, x2) = ‖x1 − x2‖2 is provided by

x2 = T(x1) := x2 + Σ1/2
2

[
Σ1/2

2 Σ1Σ
1/2
2

]−1/2
Σ1/2

2 (x1 − x1) . (3.8)

See [41] for a derivation. The following generalization will be used in Section 3.3. As-
sume that a matrix A ∈ RN×M is given such that Σ2 = A AT. Clearly, we can chose
A = Σ1/2

2 in which case M = N and A is symmetric. However, we allow for A to be
nonsymmetric andM can be different from N. An important observation is that one
can replace Σ1/2

2 in (3.8) by A and AT, respectively, i.e.

T(x1) = x2 +A
[
ATΣ1A

]−1/2
AT (x1 − x1) . (3.9)

While optimal couplings are of broad theoretical and practical interest, their
computational implementation can be very demanding. In Section 3, we will discuss
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an embedding method originally due to Jürgen Moser [38], which leads to a gener-
ally nonoptimal, but computationally more tractable formulation in the context of
Bayesian statistics and data assimilation. Alternatively, we may replace the coupling
problem by an appropriate finite-dimensional linear programming problem [46].

1.4 Monte Carlo methods

Monte Carlo methods, also called particle or ensemble methods depending on the
context in which they are being used, can be used to approximate statistics, name-
ly, expectation values EX[f], for a random variable X. We begin by discussing the
special case f(x) = x, namely, the mean.

Definition 3.20 (Empirical mean). Given a sequence Xi, i = 1, . . . ,M, of independent
random variables with identical measure μX , the empirical mean is

xM = 1
M

M∑
i=1

Xi(ω) = 1
M

M∑
i=1

xi

with samples xi = Xi(ω).

Of course, xM itself is the realization of a random variable XM and we consider
themean squared error (MSE)

MSE(x) = EXM [(xM − x)2]
= (EXM [xM]− x)2 + EXM

[
(xM − EXM [xM])2

] (3.10)

with respect to the exact mean value x = EX[x]. We have broken down the MSE
into two components: squared bias and variance. Such a decomposition is possible
for any estimator and is known as the bias-variance decomposition. The particular
estimator XM is called unbiased since EXM [xM] = x for any M ≥ 1. Furthermore,
XM converges weakly to x under the central limit theorem provided μX has finite
second-order moments, i.e.

lim
M→∞

EXM
[
(xM − EXM [xM])2

]
= 0 .

It remains to generate samples xi = Xi(ω) from the required distribution. Meth-
ods to do this include the von Neumann rejection method and Markov chain Monte
Carlo methods, which we will briefly discuss in Section 2. Often, the prior distribu-
tion is assumed to be Gaussian, in which case explicit random number generators are
available. We now turn to the situation where samples from the prior distribution are
available, and are to be used to approximate the mean of the posterior distribution
(or any other expectation value).

Importance sampling is a classical method to approximate expectation values of
a random variableXt ∼ πXt using samples from a random variableXp ∼ πXp , which
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requires that the target PDFπXt is absolutely continuouswith respect to proposal PDF
πXp . This is the case for the prior and posterior PDFs from Bayes’ formula (3.4), i.e.
we set the proposal distributionπXp(x) equal to the prior distributionπX(x) and the
posterior distributionπX(x|y0)∝ πY (y0|x)πX(x) becomes the target distribution
πXt(x).

Definition 3.21 (Importance sampling for Bayesian estimation). Letxprior
i , i = 1, . . . ,M,

denote samples from the prior PDF πX(x), then the importance sampler estimate of
the mean of the posterior πX(x|y0) is

xpost
M =

M∑
i=1

wix
prior
i (3.11)

with importance weights

wi =
πY

(
y0|xprior

i

)
∑M
i=1πY

(
y0|xprior

i

) . (3.12)

Importance sampling becomes statistically inefficient when the weights have
largely varying magnitude which becomes particularly significant for high-dimen-
sional problems. To demonstrate this effect, consider a uniform prior on the unit
hypercube V = [0,1]N . Each of the M samples xi from this prior formally repre-
sent a hypercube with volume 1/M. However, the likelihood measures the distance
of a sample xi to the observation y0 in the Euclidean distance and the volume of
a hypersphere decreases rapidly relative to that of an associated hypercube as N in-
creases. Within the framework of the bias-variance decomposition of a mean squared
error, for example, (3.10), the curse of dimensionality manifests itself in large vari-
ances for finiteM.

To counteract this curse of dimensionality, one may utilize the concept of cou-
pling. In other words, assume that we have a transport map xpost = T(xprior)
which couples the prior and posterior distributions. Then, with transformed sam-
ples xpost

i = T(xprior
i ), i = 1, . . . ,M, we obtain the estimator

xpost
M =

M∑
i=1

ŵix
post
i

with equal weights ŵi = 1/M.
Sometimes, one cannot couple the prior and posterior distribution directly, or

the coupling is too expensive computationally. Then, one can attempt to find a cou-
pling between the prior PDF πX(x) and an approximation π̃X(x|y0) to the posteri-
or PDF πX(x|y0) ∝ πY (y0|x)πX(x). Given an associated transport map Xprop =
T̃ (Xprior), i.e.

π̃X(T̃ (x)|y0) = πX(x)|DT̃(x)|−1 ,
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one then takes π̃X(x|y0) as the proposal density πXp(x) in an importance sampler
with realizations xprop

i , i = 1, . . . ,M, defined by

xprop
i = T̃

(
xprior
i

)
.

An asymptotically unbiased estimator for the posterior mean is now provided by

xpost
M =

M∑
i=1

w̃ix
prop
i (3.13)

with weights

w̃i ∝
πY

(
y0|xprop

i

)
πX

(
xprop
i

)
π̃X

(
xprop
i |y0

) = πY
(
y0|xprop

i

)∣∣∣DT̃ (xprior
i

)∣∣∣ πX
(
xprop
i

)
πX

(
xprior
i

) ,
(3.14)

i = 1, . . . ,M. The constant of proportionality is chosen such that
∑M
i=1 w̃i = 1. In-

deed, if πXp(x) = π̃X(x|y0) = πX(x|y0), we recover the case of equal weights
w̃i = 1/M, and πXp(x) = π̃X(x|y0) = πX(x) leads to standard importance sam-
pling using prior samples, i.e. xprop

i = xprior
i .

We will return to the subject of sampling from the posterior distribution in Sec-
tions 2.3 and 3.2.

References

An excellent introduction to many topics covered in this survey is [22]. Bayesian infer-
ence and a Bayesian perspective on inverse problems are discussed in [24, 31, 39]. The
monographs [52, 53] provide an in depth introduction to optimal transportation and
coupling of random variables. Monte Carlomethods are covered in [32]. We also point
to [20] for a discussion of estimation and regression methods from a bias-variance
perspective. A discussion of infinite-dimensional Bayesian inference problems can
be found in [51].

2 Stochastic processes
In this section, we collect basic results concerning stochastic processes.

Definition 3.22 (Stochastic process). Let T be a set of indices. A stochastic process is
a family {Xt}t∈T of random variables on a common spaceX, i.e. Xt(ω) ∈ X.

In the context of dynamical systems, the variable t corresponds to time. We dis-
tinguish between continuous time t ∈ [0, tend] ⊂ R or discrete time tn = nΔt,
n ∈ {0,1,2, . . .} = T , with Δt > 0 a time-increment. In cases where subscript in-
dices can be confusing, we will also use the notations X(t) andX(tn), respectively.
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A stochastic process can be seen as a function of two arguments: t and ω. For
fixedω,Xt(ω) becomes a function of t ∈ T , which we call a realization or trajectory
of the stochastic process. We will restrict ourselves to the case where Xt(ω) is con-
tinuous in t (with probability 1) in the case of a continuous time. Alternatively, one
can fix the time t ∈ T and consider the random variable Xt(·) and its distribution.
More generally, one can consider l-tuples (t1, t2, . . . , tl) and associated l-tuples of
random variables (Xt1(·), Xt2(·), . . . , Xtl (·)) and their joint distributions. This leads
to concepts such as temporal correlation.

2.1 Discrete time Markov processes

First, we develop the concept of Markov processes for discrete time processes.

Definition 3.23 (Discrete time Markov processes). The discrete time stochastic pro-
cess {Xn}n∈T with X = RN and T = {0,1,2, . . .) is called a (time-independent)
Markov processwith transition kernel π(x′|x) if its joint PDFs can be written as

πn (x0, x1, . . . , xn) = π (xn|xn−1)π (xn−1|xn−2) · · ·π (x1|x0)π0 (x0)

for all n ∈ {0,1,2, . . .} = T . The associated marginal distributions πn = πXn satisfy
the Chapman–Kolmogorov equation

πn+1
(
x′
) = ∫

RN

π
(
x′|x)πn (x)dx (3.15)

and the process can be recursively repeated to yield a family of marginal distributions
{πn}n∈T for given π0. This family can also be characterized by the linear Frobenius–
Perron operator

πn+1 = Pπn , (3.16)

which is induced by (3.15).

The above definition is equivalent to themore traditional definition that a process
is Markov if the conditional distributions satisfy

πn (xn|x0, x1, . . . , xn−1) = π (xn|xn−1) .

Note that, contrary to Bayes’ formula (3.4), which directly yields marginal distri-
butions, the Chapman–Kolmogorov equation (3.15) starts from a given coupling

πXn+1Xn (xn+1, xn) = π (xn+1|xn)πXn (xn)

followed by marginalization to derive πXn+1(xn+1). A Markov process is called time-
dependent if the conditional PDFπ(x′|x) depends on tn. While we have considered
time-independent processes in this section, we will see in Section 3 that the idea of
coupling applied to Bayes’ formula leads to time-dependent Markov processes.
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2.2 Stochastic difference and differential equations

We start from the stochastic difference equation

Xn+1 = Xn +Δtf (Xn)+
√

2ΔtZn, tn+1 = tn +Δt , (3.17)

where Δt > 0 is a small parameter (the step-size), f is a given (Lipschitz continu-
ous) function, andZn ∼ N(0,Q) are independent and identically distributed random
variables with correlation matrixQ.

The time evolution of the associated marginal densities πXn is governed by the
Chapman–Kolmogorov equation with conditional PDF

π(x′|x) = 1
(4πΔt)N/2|Q|1/2

× exp
(
− 1

4Δt
(
x′ − x −Δtf(x))TQ−1 (x′ − x −Δtf(x))) . (3.18)

Proposition 3.24 (Stochastic differential and Fokker–Planck equation). Taking the
limit Δt → 0, one obtains the stochastic differential equation (SDE)

dXt = f (Xt)dt +
√

2Q1/2dWt (3.19)

for Xt , where {Wt}t≥0 denotes standard N-dimensional Brownian motion, and the
Fokker–Planck equation

∂πX
∂t

= −∇x · (πXf)+∇x · (Q∇xπX) (3.20)

for the marginal density πX(x, t). Note that Q = 0 (no noise) leads to the Liouville,
transport or continuity equation

∂πX
∂t

= −∇x · (πXf) , (3.21)

which implies that we may interpret f as a given velocity field in the sense of fluid me-
chanics.

Proof. The difference equation (3.17) is called the Euler–Maruyama method for ap-
proximating the SDE (3.19). See [21, 26] for a discussion on the convergence of (3.17)
to (3.19) as Δt → 0.

The Fokker–Planck equation (3.20) is the linear combination of a drift and a dif-
fusion term. To simplify the discussion, we derive both terms separately from (3.17)
by first considering f = 0,Q �= 0 and then Q = 0, f �= 0. To simplify the derivation
of the diffusion term even further, we also assume x ∈ R andQ = 1. In other words,
we show that scalar Brownian motion

dXt =
√

2dWt
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leads to the heat equation
∂πX
∂t

= ∂
2πX
∂x2

.

We first note that the conditional PDF (3.18) reduces to

π(x′|x) = (4πΔt)−1/2 exp

(
−(x

′ − x)2
4Δt

)

under f(x) = 0,Q = 1,N = 1, and the Chapman–Kolmogorov equation (3.15) be-
comes

πn+1(x′) =
∫
R

1√
4πΔt

e−y
2/(4Δt)πn(x′ +y)dy (3.22)

under the variable substitution y = x − x′. We now expand πn(x′ +y) in y about
y = 0, i.e.

πn
(
x′ +y) = πn (x′)+y ∂πn∂x (

x′
)+ y2

2
∂2πn
∂x2

(
x′
)+ · · · ,

and substitute the expansion into (3.22):

πn+1
(
x′
) = ∫

R

1√
4πΔt

e−y
2/(4Δt)πn

(
x′
)

dy

+
∫
R

1√
4πΔt

e−y
2/(4Δt)y

∂πn
∂x

(
x′
)

dy

+
∫
R

1√
4πΔt

e−y
2/(4Δt) y2

2
∂2πn
∂x2

(
x′
)

dy + · · · .

The integrals correspond to the zeroth, first and second-order moments of the Gaus-
sian distribution with mean zero and variance 2Δt. Hence,

πn+1
(
x′
) = πn (x′)+Δt ∂2πn

∂x2

(
x′
)+ · · ·

and it can also easily be shown that the neglected higher-order terms contribute with
O(Δt2) terms. Therefore,

πn+1 (x′)−πn (x′)
Δt

= ∂
2πn
∂x2

(
x′
)+O (Δt) ,

and the heat equation is obtained upon taking the limit Δt → 0. The nonvanishing
drift case, i.e. f(x) �= 0, while being more technical, can be treated in the same
manner.

One can also use (3.7) to derive Liouville’s equation (3.21) directly. We set

T(x) = x +Δtf(x)
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and note that
|DT(x)| = 1+Δt∇x · f +O(Δt2) .

Hence, (3.7) implies

πX1 = πX2 +ΔtπX2∇x · f +Δt
(∇xπX2

) · f +O(Δt2)
and

πX2 −πX1

Δt
= −∇x ·

(
πX2f

)+O (Δt) .
Taking the limit Δt → 0, we obtain (3.21).

Following the work of Felix Otto (see, e.g. [42, 52]), we note that in the case of
pure diffusion, i.e. f = 0, the Fokker–Planck equation can be rewritten as a gradient
flow system. We first introduce some notation.

Definition 3.25 (differential geometric structure on manifold of probability densities).
We formally introduce themanifold of all PDFs onX = RN

M=

⎧⎪⎨⎪⎩π : RN → R : π(x) ≥ 0,
∫
RN

π(x)dx = 1

⎫⎪⎬⎪⎭
with tangent space

TπM=

⎧⎪⎨⎪⎩φ : RN → R :
∫
RN

φ(x)dx = 0

⎫⎪⎬⎪⎭ .
The variational derivative of a functional F : M→ R is defined as∫

RN

δF
δπ
φdx = lim

ε→0

F (π + εφ)− F(π)
ε

whereφ is a function such that
∫
RN φdx = 0, i.e. φ ∈ TπM.

Consider the potential

V (πX) =
∫
RN

πX lnπXdx , (3.23)

which has the functional derivative
δV
δπX

= lnπX

since

V (πX + εφ) = V (πX)+ ε
∫
RN

(φ lnπX +φ)dx +O(ε2)

= V (πX)+ ε
∫
RN

φ lnπX dx +O(ε2) .
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Hence, we find that the diffusion part of the Fokker–Planck equation is equivalent to

∂πX
∂t

= ∇x · (Q∇xπX) = ∇x ·
{
πXQ∇x δVδπX

}
. (3.24)

This formulation allows us to treat diffusion in form of a vector field

v(x, t) = −Q∇x δVδπX
which, contrary to vector fields arising from the theory of ordinary differential equa-
tions, depends on the PDF πX . See the following Section 2.3 for an application.

Proposition 3.26 (Gradient on the manifold of probability densities). Letgπ be amet-
ric tensor defined on TπM as

gπ (φ1,φ2) =
∫
RN

(∇xψ1) · (M∇xψ2) πdx

with potentials ψi, i = 1,2, determined by the elliptic partial differential equation
(PDE)

−∇x · (πM∇xψi) = φi ,
whereM ∈ RN×N is a symmetric, positive-definite matrix.

Then, the gradient of a potential F(π) under gπ satisfies

gradπF(π) = −∇x ·
(
πM∇x δFδπ

)
. (3.25)

Proof. Given the metric tensor gπ , the gradient is defined by

gπ
(
gradπF(π),φ

) = ∫
RN

δF
δπ
φdx (3.26)

for allφ ∈ TπM. Since any elementφ ∈ TπM can be written in the form

φ = −∇x · (πM∇xψ)

with suitable potentialψ, a potential ψ̂ exists such that

gradπF(π) = −∇x ·
(
πM∇xψ̂

)
∈ TπM

and we need to demonstrate that
ψ̂ = δF

δπ
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is consistent with (3.26). Indeed, we find that∫
RN

δF
δπ
φdx = −

∫
RN

δF
δπ

∇x · (πM∇xψ)dx

=
∫
RN

π∇x δFδπ · (M∇xψ)dx

=
∫
RN

(
∇xψ̂

)
· (M∇xψ)πdx

= gπ
(
gradF (π) ,φ

)
.

It follows that the diffusion part of the Fokker–Planck equation can be viewed as
a gradient flow on the manifoldM. More precisely, set F(π) = V(πX) and M = Q to
reformulate (3.24) as a gradient flow

∂πX
∂t

= −gradπXV (πX)

with potential (3.23). We will find in Section 3 that related geometric structures arise
from Bayes’ formula in the context of filtering. We finally note that

dV
dt

=
∫
RN

δV
δπX

∂πX
∂t

dx = −
∫
RN

(
∇x δVδπX

)
·
(
Q∇x δVδπX

)
πXdx ≤ 0 .

2.3 Ensemble prediction and sampling methods

In this section, we extend the Monte Carlo method from Section 1.4 to the approxi-
mation of the marginal PDFs πX(x, t), t ≥ 0, evolving under the SDE model (3.19).
Assume that we have a set of independent samples xi(0), i = 1, . . . ,M, from the
initial PDF πX(x,0).

Definition 3.27 (ensemble prediction). A Monte Carlo approximation to the time-
evolved marginal PDFsπX(x, t) can be obtained from solving the SDEs

dxi = f (xi)dt +
√

2Q1/2dWi(t) (3.27)

for i = 1, . . . ,M, where {Wi(t)}Mi=1 denote realizations of independent standard N-
dimensional Brownian motion and the initial conditions {xi(0)}Mi=1 are realizations
of the initial PDF πX(x,0). This approximation provides an example for a particle or
ensemble predictionmethod and it can be shown that the estimator

xM(t) = 1
M

M∑
i=1

xi(t) (3.28)

provides a consistent and unbiased approximation to the mean EXt [x].
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Alternatively, using formulation (3.24) of the Fokker–Planck equation (3.20) in
the pure diffusion case, we may reformulate the random part in (3.27) and introduce
particle equations

dxi
dt

= f (xi)−Q∇x δVδπX (
xi)

= f (xi)− 1
πX (xi, t)

Q∇xπX (xi, t) ,
(3.29)

i = 1, . . . ,M. Contrary to the SDE (3.27), this formulation requires the PDF πX(x, t),
which is not explicitly available in general. However, a Gaussian approximation can
be obtained from the available ensemble xi(t), i = 1, . . . ,M, using

πX(x, t) ≈ 1
(2π)N/2|P |1/2 exp

(
−1

2
(x − xM(t))TP(t)−1(x − xM(t))

)
with empirical mean (3.28) and empirical covariance matrix

P = 1
M − 1

M∑
i=1

(xi − xM) (xi − xM)T . (3.30)

Substituting this Gaussian approximation into (3.29) yields the ensemble evolution
equations

dxi
dt

= f (xi)+QP−1 (xi − xM) , (3.31)

which becomes exact in case the vector field f is linear, i.e. f(x) = Ax + u, the
initial PDF πX(x,0) is Gaussian and for ensemble sizesM →∞.

We finally discuss the application of a particular type of SDEs (3.19) as a way of
generating samples xi from a given PDF such as the posterior πX(x|y0) of Bayesian
inference. To do this, consider the SDE (3.19) with the vector field f being generated
by a potentialU(x), i.e. f(x) = −∇xU(x), andQ = I. Then, it can easily be verified
that the PDF

π∗X (x) = Z−1 exp (−U(x)) , Z =
∫
RN

exp (−U(x))dx

is stationary under the associated Fokker–Planck equation (3.20). Indeed,

∇x ·
(
π∗X∇XU

)+∇x · ∇xπ∗X = ∇x · (π∗X∇xU +∇xπ∗X ) = 0 .

Furthermore, it can be shown that π∗X is the unique stationary PDF and that any ini-
tial PDF πX(t = 0) approaches π∗X at an exponential rate under an appropriate as-
sumption on the potential V . Hence, Xt ∼ π∗X for t → ∞. This allows us to use
an ensemble of solutions xi(t) of (3.27) with an arbitrary initial PDF πX(x,0) as
a method for generating ensembles from the prior or posterior Bayesian PDFs pro-
vided U(x) = − lnπX(x) or U(x) = − lnπX(x|y0), respectively. Note that the
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temporal dynamics of the associated SDE (3.19) is not of any physical significance
in this context, but instead the SDE formulation is only taken as a device for generat-
ing the desired samples. If the SDE formulation is replaced by the Euler–Maruyama
method (3.17), time-stepping errors lead to sampling errors which can be corrected
for by combining (3.17) with a Metropolis accept-reject criterion. The Metropolis ad-
justed method gives rise to particular instances ofMarkov chain Monte Carlo (MCMC)
methods, for example, the Metropolis adjusted Langevin algorithm (MALA) or the hy-
bridMonte Carlo (HMC) method. The basic idea of MALA (as well as HMC) is to rewrite
(3.17) with f(x) = −∇xU(x),Q = I as

pn+1/2 = pn − 1
2

√
2Δt∇xU(xn), (3.32)

xn+1 = xn +
√

2Δtpn+1/2, (3.33)

pn+1 = pn+1/2 − 1
2

√
2Δt∇xU(pn), (3.34)

having introduced a dummymomentum variable p with pn being a realization of the
random variable Zn ∼ N(0, I). Under the Metropolis accept-reject criterion, xn+1 is
accepted with probability

min
{
1, exp (− (En+1 − En))

}
,

where
En = 1

2
pT
npn + U(xn) , En+1 = 1

2
pT
n+1pn+1 + U(xn+1)

are the initial and final energies. Upon rejection, one continues with xn. The momen-
tum value pn+1 is discarded after a completed time-step (regardless of its acceptance
or rejection) and a new momentum value is drawn from N(0, I). It should however
be noted that |En+1 − En| → 0 as the step-size Δt goes to zero, and, in practice, the
application of the Metropolis accept-rejection step is often not necessary unless Δt
is chosen too large. The HMC method differs from MALA in that several iterations of
(3.32–3.34) are applied before the Metropolis accept-reject criterion is being applied.

References

A gentle introduction to stochastic processes can be found in [17] and [10]. A more
mathematical treatment can be found in [8, 40] and numerical issues are discussed
in [21, 26]. See [42, 52] for a discussion of the gradient flow structure of the Fokker–
Planck equation. The ergodic behavior of Markov chains is covered in [34]. Markov
chainMonte Carlomethods and the hybridMonte Carlomethod in particular are treat-
ed in [32]. See also [47] for the Metropolis adjusted Langevin algorithm (MALA).
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3 Data assimilation and filtering
In this section, we combine Bayesian inference and stochastic processes to tackle the
problem of assimilating observational data into scientific models.

3.1 Preliminaries

We select a model written as a time-discretized SDE, such as (3.17), with the initial
random variable satisfying X0 ∼ π0. In addition to the pure prediction problem of
computing πn, n ≥ 1, for given π0, we assume that model states x ∈ X = RN

are partially observed at equally spaced instances in time. These observations are to
be assimilated into the model. More generally, intermittent data assimilation is con-
cerned with fixed observation intervals Δtobs > 0 and model time-steps Δt such that
Δtobs = LΔt, L ≥ 1, which allows one to take the limit L → ∞, Δt = Δtobs/L → 0.
For simplicity, wewill restrict the discussion to the casewhere observationsy0(tn) =
Yn(ω) ∈ RK are made at every time step tn = nΔt, n ≥ 1 and the limit Δt → 0 is
not considered here. We will further assume that the observed random variables Yn
satisfy the model (3.2), i.e.

Yn = h(Xn)+ Ξn
and the measurement errors Ξn ∼ N(0, R) are mutually independent with common
error covariance matrix R. We introduce the notation Yk = {y0(ti)}i=1,...,k to denote
all observations up to and including time tk.

Definition 3.28 (Data assimilation). Data assimilation is the estimation of marginal
PDFs πn(x|Yk) of the random variable Xn = X(tn) conditioned on the set of obser-
vations Yk. We distinguish three cases: (i) filtering k = n, (ii) smoothing k > n, and
(iii) prediction k < n.

The subsequent discussions are restricted to the filtering problem. We have al-
ready seen that evolution of the marginal distributions under (3.17) alone is governed
by the Chapman–Kolmogorov equation (3.15) with transition probability density
(3.18). We denote the associated Frobenius–Perron operator (3.16) by PΔt . Given
X0 ∼ π0, we first obtain

π1 = PΔtπ0 .

This time propagated PDF is used as the prior PDFπX = π1 in Bayes’ formula (3.4) at
t = t1 with y0 = y0(t1) and likelihood

πY (y|x) = 1
(2π)N/2|R|1/2 exp

(
−1

2

(
y − h(x))T R−1 (y −h(x))) .

Bayes’ formula implies the posterior PDF

π1 (x|Y1)∝ πY
(
y0 (t1) |x

)
π1(x) ,
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where the constant of proportionality only depends on y0(t1).

Proposition 3.29 (Sequential filtering). The filtering problem leads to the recursion

πn+1 (·|Yn) = PΔtπn (·|Yn) ,
πn+1 (x|Yn+1)∝ πY

(
y0 (tn+1) |x

)
πn+1 (x|Yn) ,

(3.35)

n ≥ 0, and Xn ∼ πn(·|Yn) solves the filtering problem at time tn. The constant of
proportionality only depends ony0(tn+1).

Proof. The recursion follows by induction.

Recall that the Frobenius–Perron operator PΔt is generated by the stochastic dif-
ference equation (3.17). On the other hand, Bayes’ formula only leads to a transition
from the predicted πn+1(x|Yn) to the filtered πn+1(x|Yn+1). Following our discus-
sion on transport maps from Section 1.3, we assume the existence of a transport map
X′ = Tn+1(X), depending on y0(tn+1), that couples the two PDFs. The use of opti-
mal transport maps in the context of Bayesian inference and intermittent data assim-
ilation was first proposed in [37, 43].

Proposition 3.30 (Filtering by transport maps). Assuming the existence of appropriate
transport maps Tn+1, which coupleπn+1(x|Yn) andπn+1(x|Yn+1), the filtering prob-
lem is solved by the following recursion for the random variables Xn+1,n ≥ 0:

Xn+1 = Tn+1

(
Xn +Δtf(Xn)+

√
2ΔtZn

)
, (3.36)

which gives rise to a time-dependent Markov process.

Proof. Follows trivially from (3.35).

The rest of this section is devoted to several Monte Carlo methods for sequential
filtering.

3.2 Sequential Monte Carlo method

In our framework, a standard sequential Monte Carlo method, also called bootstrap
particle filter, may be described as an ensemble of random variables Xi and associ-
ated realizations (referred to as “particles”) xi = Xi(ω), which follow the stochastic
difference equation (3.17), choosing the transport map in (3.36) to be the identity map.
Observational data is taken into account using importance sampling as discussed in
Section 1.4, i.e. each particle carries a weightwi(tn), which is updated according to
Bayes’ formula

wi(tn+1)∝ wi(tn)π
(
y0(tn+1)|xi(tn+1)

)
.

The constant of proportionality is chosen such that the new weights {wi(tn+1)}Mi=1

sum to one.
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Whenever the particleweightswi(tn) start to become highly nonuniform (or pos-
sibly also after each assimilation step), resampling is necessary in order to generate
a new family of random variables with equal weights.

Most available resampling methods start from the weighted empirical measure

μX(dx) =
M∑
i=1

wiμxi(dx) (3.37)

associated with a set of weighted samples {xi,wi}Mi=1. The idea is to replace each of
the original samples xi by ξi ≥ 0 offsprings with equal weights ŵi = 1/M such that
E[ξi] = wiM. The distribution of offsprings is chosen to be equal to the distribution
of M samples (with replacement) drawn at random from the empirical distribution
(3.37). In other words, the offsprings {ξi}Mi=1 follow amultinomial distribution defined
by

P (ξi = ni, i = 1, . . . ,M) = M!∏M
i=1ni!

M∏
i=1

(wi)ni (3.38)

with ni ≥ 0 such that
∑M
i=1ni = M. In practice, independent resampling is often re-

placed by residual or systematic resampling. We next summarize residual resampling
while we refer the reader to [3] for an algorithmic description of systematic resam-
pling.

Definition 3.31 (Residual resampling). Residual resampling generates

ξi = �Mwi� + ξi ,

offsprings of each ensemble member xi with weight wi, i = 1, . . . ,M. Here, �x�
denotes the integer part of x and ξi follows the multinomial distribution (3.38) with
weightswi being replaced by

wi = Mwi − �Mwi�∑M
j=1

(
Mwj − �Mwj�

)
and with a total of

M∑
i=1

ni =M := M −
∑
i
�Mwi�

independent trials.

In generalization of (3.38), we introduce the notation Mult(L;ω1, . . . ,ωM) to de-
note the multinomial distribution of L independent trials, where the outcome of each
trial is distributed among M possible outcomes according to probabilities {ωi}Mi=1.
The following algorithm draws random samples from Mult(L;ω1, . . . ,ωM). We first
introduce the generalized right inverse

F−1
emp(u) = i ⇐⇒ u ∈

⎛⎝i−1∑
j=1

ωj,
i∑
j=1

ωj

⎤⎦
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of the cumulative distribution function F−1
emp : [0,1] → {1, . . . ,M} for the empirical

measure (3.37). We next draw L independent samples ul ∈ [0,1] from the uniform
distribution U([0,1]) and initially set the number of copies ξi, i = 1, . . . ,M, equal
to zero. For l = 1, . . . , L, we now increment ξIl by one for indices Il ∈ {1, . . . ,M},
l = 1, . . . , L, defined by

Il = F−1
emp(ul) = arg min

i≥1

i∑
j=1

ωj ≥ ul .

Both independent and residual resampling can be viewed as providing a cou-
pling between the empiricalmeasure (3.37) with all weights being equal towi = 1/M
and the target measure (3.37) with identical samples {xi}, but nonuniform weights.
Clearly, residual resampling provides a coupling with a smaller transport cost. This
can already be concluded from the trivial case of equal weights in the target measure
in which case residual resampling reduces to the identity map with zero transport
cost, while independent resampling remains nondeterministic and produces a nonze-
ro transport cost. The following example outlines the optimal transportation perspec-
tive on resampling more precisely for two discrete, univariate random variables.

Example 3.32 (Coupling discrete random variables). Let us consider two discrete,
univariate random variablesXi : Ω → X, i = 1,2, with target set

X = {x1, x2, . . . , xM} ∈ RM.

We furthermore assume that

P (X1(ω) = xi) = 1/M , P (X2(ω) = xi) = wi

for given probabilities/weights wi ≥ 0, i = 1, . . . ,M. Any coupling of X1 and X2 is
characterized by a matrix T ∈ RM×M such that tij = (T )ij ≥ 0 and

M∑
i=1

tij = 1/M ,
M∑
j=1

tij = wi.

Given a coupling T and the mean values

x1 = 1
M

∑
i
xi , x2 =

∑
i
wixi,

the covariance between X1 and X2 is defined by

cov(X1, X2) =
∑
i,j
(xi − x2)tij(xj − x1).

The induced Markov transition matrix from X1 to X2 is simply given by MT . Inde-
pendent resampling corresponds to tij = wi/M and leads to a zero correlation be-
tween X1 and X2. On the other hand, maximizing the correlation results in a linear

 EBSCOhost - printed on 2/10/2023 4:36 PM via . All use subject to https://www.ebsco.com/terms-of-use



Ensemble filter techniques for intermittent data assimilation 119

programming problem for theM2 unknowns {tij}. Its solution then also defines the
solution to the associated optimal transportation problem (3.6). Implementations of
this approach for sequential data assimilation are discussed in [46].

More generally, sequential Monte Carlo methods differ by the way resampling is
implemented and also in the choice of proposal step which, in our context, amounts
to choosing transport maps Tn+1 in (3.36) which are different from the identity map.
See also the discussion in Section 3.5 below.

3.3 Ensemble Kalman filter (EnKF)

We now introduce an alternative to sequential Monte Carlo methods which has be-
come hugely popular in the geophysical community in recent years. The idea is to
construct a simple, but robust transport map T ′n+1 which replaces Tn+1 in (3.36). This
transport map is based on the Kalman update equations for linear SDEs and Gaussian
prior and posterior distributions. We recall the standard Kalman filter update equa-
tions.

Proposition 3.33 (Kalman update for Gaussian distributions). Let the prior distribu-
tion πX be Gaussian with mean xf and covariance matrix Pf . Observations y0 are
assumed to follow the linear model

Y = HX + Ξ ,

where Ξ ∼ N(0, R) and R is a symmetric, positive-definite matrix. Then, the posterior
distribution πX(x|y0) is also Gaussian with mean

xa = xf − PfHT(HPfHT + R)−1(Hxf −y0) (3.39)

and covariance matrix

Pa = Pf − PfHT(HPfHT +R)−1HPf . (3.40)

Here, we adopt the standard meteorological notation with superscript f (forecast) de-
noting prior statistics, and superscript a (analysis) denoting posterior statistics.

Proof. By straightforward generalization to vector-valued observations of the case of
a scalar observation already discussed in Section 1.2.

EnKFs rely on the assumption that the predicted PDF πn+1(x|Yn) is approxi-
mately Gaussian. The ensemble {xi}Mi=1 of model states is used to estimate the mean
and the covariance matrix using the empirical estimates (3.28) and (3.30), respective-
ly. The key novel idea of EnKFs is to then interpret the posterior mean and covariance
matrix in terms of appropriately adjusted ensemble positions. This adjustment can
be thought of as a coupling of the underlying prior and posterior random variables of
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which the ensembles are realizations. The original EnKF [9] uses perturbed observa-
tions to achieve the desired coupling.

Definition 3.34 (Ensemble Kalman Filter). The EnKF with perturbed observations for
a linear observation operator h(x) = Hx is given by

Xfn+1 = Xn +Δtf (Xn)+
√

2ΔtZn , (3.41)

Xn+1 = Xfn+1 − Pfn+1H
T
(
HPfn+1H

T +R
)−1 (

HXfn+1 −y0 + Σn+1

)
, (3.42)

where the random variables Zn ∼ N(0,Q), Σn+1 ∼ N(0, R) are mutually indepen-
dent, y0 = y0(tn+1), xfn+1 = EXfn+1

[x], and

Pfn+1 = EXfn+1

[(
x − xfn+1

)(
x − xfn+1

)T
]
.

Next, we investigate the properties of the assimilation step (3.42).

Proposition 3.35 (EnKF consistency). The EnKF update step (3.42) propagates the
mean and covariance matrix of X in accordance with the Kalman filter equations for
Gaussian PDFs.

Proof. It is easy to verify that the ensemble mean satisfies

xn+1 = xfn+1 − Pfn+1H
T
(
HPfn+1H

T + R
)−1 (

Hxfn+1 −y0

)
,

which is consistent with the Kalman filter update for the ensemble mean. Further-
more, the deviation δX = X − x satisfies

δXn+1 = δXfn+1 − Pfn+1H
T
(
HPfn+1H

T + R
)−1 (

HδXfn+1 + Σn+1

)
,

which implies

Pn+1 = Pfn+1 − 2Pfn+1H
T
(
HPfn+1H

T + R
)−1

HPfn+1

+ Pfn+1H
T
(
HPfn+1H

T +R
)−1

R
(
HPfn+1H

T + R
)−1

HPfn+1

+ Pfn+1H
T
(
HPfn+1H

T +R
)−1

HPfn+1H
T
(
HPfn+1H

T + R
)−1

HPfn+1

= Pfn+1 − Pfn+1H
T
(
HPfn+1H

T + R
)−1

HPfn+1

for the update of the covariance matrix, which is also consistent with the Kalman
update step for Gaussian random variables.

Practical implementations of the EnKF with perturbed observations replace the
exact mean and covariance matrix by ensemble based empirical estimates (3.28) and
(3.30), respectively.
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Alternatively, we can derive a transport map T under the assumption of Gaussian
prior and posterior distributions as follows. Using the empirical ensemble mean x,
we define ensemble deviations by δxi = xi − x ∈ RN and an associated ensemble
deviation matrix δX = (δx1, . . . , δxM) ∈ RN×M . Using this notation, the empirical
covariance matrix of the prior ensemble at tn+1 is then given by

Pfn+1 =
1

M − 1
δX

f
n+1

(
δX

f
n+1

)T
.

We next seek a matrix S ∈ RM×M such that

Pn+1 = 1
M − 1

δX
f
n+1SS

T
(
δX

f
n+1

)T
,

where the rows of S sum to zero in order to preserve the zero mean property of
δXn+1 = δX

f
n+1S. Suchmatrices do exist (see, e.g. [15]), and give rise to the ensemble

square root filters. More specifically, Kalman’s update formula (3.40) for the posterior
covariance matrix implies

Pa = 1
M − 1

δXf
{
I − 1

M − 1

(
δYf

)T [
HPfHT +R

]−1
δYf

}(
δXf

)T

= 1
M − 1

δXf SST
(
δXf

)T
,

where we have dropped the time index subscript and introduced the ensemble pertur-
bations δYf = HδXf in observation spaceY. Recalling now the definition of a matrix
square root from Section 1.3 and making use of the Sherman–Morrison–Woodbury
formula [18], we find that

S =
{
I − 1

M − 1

(
δYf

)T [
HPfHT +R

]−1
δYf

}1/2

=
{
I + 1

M − 1

(
δYf

)T
R−1δYf

}−1/2
.

(3.43)

The complete ensemble update of an ensemble square root filter is then given by

xi (tn+1) = xn+1 + δX
f
n+1Sei , (3.44)

where ei denotes the ith basis vector in RM and

xn+1 = xfn+1 − Pfn+1H
T
(
HPfn+1H

T +R
)−1 (

Hxfn+1 −y0 (tn+1)
)

denotes the updated ensemble mean.
We now discuss the update (3.44) from the perspective of optimal transportation

which, in our context, reduces to finding a matrix SOT ∈ RM×M such that the trace of

cov
(
δX

f
n+1, δXn+1

)
= E

[
δX

f
n+1S

T
OT

(
δX

f
n+1

)T
]

is maximized.
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Proposition 3.36 (Optimal update for ensemble square root filter). The trace of the
covariance matrix cov(δX

f
n+1, δXn+1) is maximized for

δXn+1 = δX
f
n+1SOT

with transform matrix

SOT = 1√
M − 1

S
[
S
(
δX

f
n+1

)T
Pfn+1δX

f
n+1S

]−1/2
S
(
δX

f
n+1

)T
δX

f
n+1

and S ∈ RM×M given by (3.43).

Proof. Follows from (3.9) with A = δX
f
n+1S/

√
M − 1 and Σ1 = Pfn+1. The left multi-

plication in (3.8) is finally rewritten as a right multiplication by SOT ∈ RM×M in terms
of ensemble deviations δX

f
n+1.

We finish this section by briefly discussing a couple of practical issues. It is im-
portant to recall that the Kalman filter can be viewed as a linear minimum variance
estimator [14]. At the same time, it has been noted [30, 55] that the updated ensem-
ble mean xn+1 is biased in case where the prior distribution is not Gaussian. Hence,
the associated mean squared error (3.10) does not vanish asM → ∞ even though the
variance of the estimator goes to zero. If desired, the bias can be removed by replac-
ing xn+1 in (3.44) by (3.11) with weights (3.12), where y0 = y0(tn+1) and xprior

i =
xfi (tn+1). Higher-order moment corrections can also be implemented [30, 55]. How-
ever, the filter performance only improves for sufficiently large ensemble sizes.

We mention the unscented Kalman filter [23] as an alternative extension of the
Kalman filter to nonlinear dynamical systems. We also mention the rank histogram
filter [2], which is based on first constructing an approximative coupling in the ob-
served variable y alone followed by linear regression of the updates in y onto the
state space variable x.

Practical implementations of EnKFs for high-dimensional problems rely on addi-
tional modifications, in particular, inflation and localization. While localization mod-
ifies the covariance matrix Pfn+1 in the Kalman update (3.42) in order to increase its
rank and to localize the spatial impact of observations in physical space, inflation in-
creases the ensemble spread δxi = xi − x by replacing xi by x + α(xi − x) with
α > 1. Note that the second term on the right-hand side of (3.31) achieves a similar ef-
fect and ensemble inflation can be viewed as a simple parametrization of (stochastic)
model errors. See [15] for more details on inflation and localization techniques.

3.4 Ensemble transform Kalman–Bucy filter

In this section, we describe an alternative implementation of ensemble square root fil-
ters based on the Kalman–Bucy filter. We first describe the Kalman–Bucy formulation
of the linear filtering problem for Gaussian PDFs.
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Proposition 3.37 (Kalman–Bucy equations). The Kalman update step (3.39)–(3.40)
can be formulated as a differential equation in artificial time s ∈ [0,1]. The Kalman–
Bucy equations are

dx
ds

= −PHTR−1 (Hx −y0
)

and
dP
ds

= −PHTR−1HP .

The initial conditions are x(0) = xf and P(0) = Pf , and the Kalman update is ob-
tained from the final conditions xa = x(1) and Pa = P(1).

Proof. Wepresent the proof forN = 1 (one-dimensional state space) andK = 1 (a sin-
gle observation). Under this assumption, the standard Kalman analysis step (3.39)–
(3.40) gives rise to

Pa = PfR
Pf +R , xa = x

fR +y0Pf

Pf + R ,

for a given observation value y0.
We now demonstrate that this update is equivalent to twice the application of

a Kalman analysis step with R replaced by 2R. Specifically, we obtain

P̂a = 2PmR
Pm + 2R

, Pm = 2PfR
Pf + 2R

for the resulting covariance matrix P̂a with intermediate value Pm. The analyzed
mean x̂a is provided by

x̂a = 2xmR +y0Pm
Pm + 2R

, xm = 2xfR +y0Pf

Pf + 2R
.

We need to demonstrate that Pa = P̂a and xa = x̂a. We start with the covariance
matrix and obtain

P̂a =
4Pf R
Pf+2RR

2Pf R
Pf+2R + 2R

= 4PfR2

4PfR + 4R2
= PfR
Pf +R = P

a .

A similar calculation for x̂a yields

x̂a =
2 2xf R+y0Pf

Pf+2R R +y0
2Pf R
Pf+2R

2R + 2Pf R
Pf+2R

= 4xfR2 + 4y0PfR
4R2 + 4RPf

= xa .

Hence, by induction, we can replace the standard Kalman analysis step by D > 2

iterative applications of a Kalman analysis with R replaced by DR. We set P0 = Pf ,
x0 = xf , and iteratively compute Pj+1 from

Pj+1 =
DPjR
Pj +DR

, xj+1 =
DxjR +y0Pj
Pj +DR
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for j = 0, . . . ,D− 1. We finally set Pa = PD and xa = xD. Next, we introduce a step-
size Δs = 1/D and assumeD� 1. Then,

xj+1 =
xjR +Δsy0Pj
R +ΔsPj

= xj −ΔsPjR−1(xj −y0)+O(Δs2)

as well as
Pj+1 =

PjR
R +ΔsPj

= Pj −ΔsPjR−1Pj +O(Δs2) .

Taking the limit Δs → 0, we obtain the two differential equations

dP
ds

= −PR−1P ,
dx
ds

= −PR−1(x −y0)

for the covariance and mean, respectively. The equation for P can be rewritten in
terms of its square root Y (i.e. P = Y 2) as

dY
ds

= −1
2
PR−1Y . (3.45)

Upon formally setting Y = δX/
√
M − 1 in (3.45), the Kalman–Bucy filter equa-

tions give rise to a particular implementation of ensemble square root filters in terms
of evolution equations in artificial time s ∈ [0,1].

Definition 3.38 (Ensemble transform Kalman–Bucy filter equations). The ensemble
transform Kalman–Bucy filter equations [1, 5, 6] for the assimilation of an observation
y0 = y0(tn) at tn are given by

dxi
ds

= −1
2
PHTR−1 (Hxi +Hx − 2y0(tn)

)
in terms of the ensemble members xi, i = 1, . . . ,M, and are solved over a unit time
interval in artificial time s ∈ [0,1]. Here, P denotes the empirical covariance matrix
(3.30) and x denotes the empirical mean (3.28) of the ensemble.

The Kalman–Bucy equations are realizations of an underlying differential equa-
tion

dX
ds

= −1
2
PHTR−1 (HX +Hx − 2y0(tn)

)
(3.46)

in the random variable X with mean

x = EX[x] =
∫
xπXdx

and covariance matrix
P = EX

[
(x − x)(x − x)T

]
.
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The associated evolution of the PDF πX (here assumed to be absolutely continu-
ous) is given by Liouville’s equation

∂πX
∂s

= −∇x · (πXv) (3.47)

with vector field

v(x) = −1
2
PHTR−1 (Hx +Hx − 2y0(tn)

)
. (3.48)

Recalling the earlier discussion of the Fokker–Planck equation in Section 2.2, we note
that (3.47) with vector field (3.48) also has an interesting geometric structure.

Proposition 3.39 (Ensemble transform Kalman–Bucy equations as a gradient flow).
The vector field (3.48) is equivalent to

v(x) = −P∇x δFδπX
with potential

F (πX) = 1
4

∫
RN

(
Hx −y0 (tn)

)T R−1 (Hx −y0 (tn)
)
πXdx

+ 1
4

(
Hx −y0 (tn)

)T R−1 (Hx −y0 (tn)
)
.

(3.49)

Liouville’s equation (3.47) can be stated as

∂πX
∂s

= −∇x · (πXv) = −gradπXF(πX) ,

where we have used M = P in the definition of the gradient (3.25).

Proof. The result can be verified by direct calculation.

Nonlinear forward operators can be treated in this framework by replacing the
potential (3.49) by, for example,

F (πX) = 1
4

∫
RN

(
h(x)−y0 (tn)

)T R−1 (h(x)−y0 (tn)
)
πXdx

+ 1
4

(
h(x)−y0 (tn)

)T R−1 (h(x)−y0 (tn)
)
.

Efficient time-steppingmethods for the ensemble transformKalman–Bucy filter equa-
tions are discussed in [1] and an application to continuous data assimilation can be
found in [6].
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3.5 Guided sequential Monte Carlo methods

EnKF techniques are limited by the fact that the empirical PDFs do not converge to
the filter solution in the limit of ensemble sizes M → ∞ unless the involved PDFs
are Gaussian. Sequential Monte Carlo methods, on the other hand, can be shown
to converge under fairly general assumptions, but they do not work well in high-
dimensional phase spaces since importance sampling is not sufficient to guarantee
good performance of a particle filter for finite ensemble sizes. In particular, the vari-
ance in the associated mean squared error (3.10) can be very large for ensemble sizes
typically used in geophysical applications.

The combination of modified particle positions and appropriately adjusted par-
ticle weights appears therefore as a promising area for research and might achieve
a better bias-variance trade-off than either the EnKF or traditional sequential Monte
Carlo methods. In particular, combining ensemble transform techniques, such as
EnKF, with sequential Monte Carlo methods appears as a natural research direction.
Indeed, in the framework of Monte Carlo methods discussed in Section 1.4, the stan-
dard sequential Monte Carlo approach consists of importance sampling using pro-
posal PDF π ′X(x) = πn+1(x|Yn) and subsequent reweighting of particles according
to (3.12). Also, as discussed in Section 1.4, the performance of importance sampling
can be improved by applying modified proposal densities with the aim of pushing the
updated ensemble members xi(tn+1) to regions of high and nearly equal probability
in the targeted posterior PDF πn+1(x|Yn+1) (compare with equation (3.14)). We call
the resulting filter algorithms guided sequential Monte Carlo methods.

More precisely, a guided sequential Monte Carlo method is defined by a condi-
tional proposal PDF π̃n+1(x′|x,y0(tn+1)) and an associated joint PDF

π̃X′X(x′, x|Yn+1) = π̃n+1
(
x′|x,y0(tn+1)

)
πn(x|Yn) . (3.50)

An ideal proposal density (in the sense of coupling) should be identical to the poste-
rior PDF πn+1(x|Yn+1). In guided sequential Monte Carlo methods, a mismatch be-
tween the proposal density and π̃n+1(x|Yn+1) is treated by adjusted particle weights
wi(tn+1). Following the general methodology of importance sampling, one obtains
the recursion

wi (tn+1)∝
πY

(
y0 (tn+1) |x′i

)
π
(
x′i|xi

)
π̃n+1

(
x′i|xi,y0 (tn+1)

) wi (tn) .

Here, π(x′|x) denotes the conditional PDF (3.18) describing the model dynamics,
(x′i, xi), i = 1, . . . ,M, are realizations from the joint PDF (3.50) with weightswi(tn),
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xi = xi(tn), and the approximation

EXn+1

[
g
] = 1

πY
(
y0 (tn+1)

) ∫
RN

∫
RN

f
(
x′, x

)
π̃X′X

(
x′, x|Yn+1

)
dx′dx

≈ 1
πY

(
y0 (tn+1)

) M∑
i=1

wi (tn) f
(
x′i, xi

)

∝
M∑
i=1

wi (tn+1)g
(
x′i
)

with
f
(
x′, x

) = g (x′) πY (y0 (tn+1) |x′
)
π (x′|x)

π̃n+1
(
x′|x,y0 (tn+1)

)
has been used. The guided sequential Monte Carlo method is continued with
xi(tn+1) = x′i and new weightswi(tn+1).

Numerical implementations of guided sequential Monte Carlomethods have been
discussed, for example, in [7, 11, 28, 36]. More specifically, a combined particle and
Kalman filter is proposed in [28] to achieve almost equal particle weights (see also
the discussion in [7]), while in [11, 36], new particle positions xi(tn+1) are defined
by means of implicit equations. We emphasize that both implementation approaches
give up the requirement of unbiased estimation in hopes of reduced variance at finite
ensemble sizes and hence for an overall reduction of the associated mean squared
error (3.10). See also [45] for a discussion of guided sequential Monte Carlo methods
from a coupling and transport perspective.

Another broad class of methods is based on Gaussian mixture approximations to
the prior PDF πn+1(x|Yn). Provided that the forward operator h is linear, the poste-
rior PDFπn+1(x|Yn+1) is then also a Gaussian mixture and several procedures have
been proposed to adjust the proposals xfi (tn+1) such that the adjusted xi(tn+1) ap-
proximately follow the posterior Gaussianmixture PDF; see, for example, [16, 49, 50].
Broadly speaking, these methods can be understood as providing approximate trans-
port maps T ′n+1 instead of an exact transport map Tn+1 in (3.36). However, none of
these methods avoid the need for particle reweighting and resampling. Recall that re-
sampling can be implemented such that it corresponds to a nondeterministic optimal
transference plan.

The following section is devoted to an embedding technique for constructing ac-
curate approximations to the transport map Tn+1 in (3.36).

3.6 Continuous ensemble transform filter formulations

The implementation of (3.36) requires the computation of a transport map T . Opti-
mal transportation (i.e. maximizing the covariance of the transference plan), leads to
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T = ∇xψ and the potential satisfies the highly nonlinear, elliptic Monge–Ampere
equation

πX2(∇xψ)|D∇xψ| = πX1 .

A direct numerical implementation for high-dimensional state spacesX = RN seems
to be presently out of reach. Instead, in this section, we utilize an embedding method
due to Moser [38], replacing the optimal transport map by a suboptimal transport
map which is defined as the time-one flow map of a differential equation in artificial
time s ∈ [0,1]. At each time instant, determining the right-hand side of the differen-
tial equation requires the solution of a linear elliptic PDE; nonlinearity is exchanged
for linearity at the cost of suboptimality. In some cases, such as Gaussian PDFs and
mixtures of Gaussian, the linear PDE can be solved analytically. In other cases, fur-
ther approximations, for example, the mean field approach discussed later in this
section, are necessary.

Inspired by the embeddingmethod of Moser [38], we first summarize a dynamical
systems formulation [43] of Bayes’ formula which generalizes the continuous EnKF
formulation from Section 3.4. We first note that a single application of Bayes’ formula
(3.4) can be replaced by anD-fold recursive application of the incremental likelihood
π̂ :

π̂(y|x) = 1
(2π)K/2|R|1/2 exp

(
− 1

2D
(
h(x)−y)T R−1 (h(x)−y)) , (3.51)

i.e. we first write Bayes formula as

πX(x|y0) ∝ πX(x)
D∏
j=1

π̂(y0|x) ,

where the constant of proportionality depends only on y0, and then consider the
implied iteration

πj+1(x) =
πj(x) π̂(y0|x)∫

RN dxπj(x) π̂(y0|x)
with π0 = πX andπX(·|y0) = πD. We may now expand the exponential function in
(3.51) in the small parameter Δs = 1/D in the limit D → ∞, obtaining the evolution
equation

∂π
∂s

= −1
2

(
h(x) −y0

)T R−1 (h(x)−y0
)
π + μπ (3.52)

in the fictitious time s ∈ [0,1]. The scalar Lagrange multiplier μ is equal to the ex-
pectation value of the negative log likelihood function

L(x;y0) = 1
2

(
h(x)−y0

)T R−1 (h(x)−y0
)

(3.53)

with respect toπ and ensures that
∫
RN (∂π/∂s)dx = 0. We also setπ(x,0) = πX(x)

and obtainπX(x|y0) = π(x,1).
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We now rewrite (3.52) in the equivalent, but more compact, form

∂π
∂s

= −π
(
L− L

)
, (3.54)

where L = EX[L] and EX denote expectation with respect to the PDF πX = π(·, s).
It should be noted that the continuous embedding defined by (3.54) is not unique.
Moser [38], for example, used the linear interpolation

π(x, s) = (1− s)πX(x)+ sπX(x|y0) ,

which results in
∂π
∂s

= πX(x|y0)−πX(x) . (3.55)

Yet another interpolation is given by the displacement interpolation of McCannwhich
is based on the optimal transportationmap andwhich has an attractive “fluid dynam-
ics” interpretation [52, 53].

Equation (3.54) (or, alternatively, (3.55)) defines the change (or transport) of the
PDF π in fictitious time s ∈ [0,1]. Alternatively, following Moser’s work [38, 52], we
can view this change as being induced by a continuity (Liouville) equation

∂π
∂s

= −∇x ·
(
πg

)
(3.56)

for an appropriate vector field g(x, s) ∈ RN .
At any time s ∈ [0,1], the vector fieldg(·, s) is not uniquely determined by (3.54)

and (3.56) unless we also require that it is the minimizer of the kinetic energy

T (v) = 1
2

∫
RN

πvTM−1v dx

over all admissible vector fields v : RN → RN (i.e. g satisfies (3.56) for given π and
∂π/∂s), where M ∈ RN×N is a positive definite matrix. Under these assumptions,
minimization of the functional

L [v,φ] = 1
2

∫
RN

πvTM−1v dx +
∫
RN

φ
{∂π
∂s

+∇x · (πv)
}

dx

for given π and ∂π/∂s leads to the Euler–Lagrange equations

πM−1g −π∇xψ = 0 ,
∂π
∂s

+∇x ·
(
πg

) = 0

in the velocity field g and the potential ψ. Hence, provided that π > 0, the desired
vector field is given by g = M∇xψ, and we have shown the following result.
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Proposition 3.40 (Transport map from gradient flow). If the potential ψ(x, s) is the
solution of the elliptic PDE

∇x · (πXM∇xψ) = πX(L− L) , (3.57)

then the desired transport map x′ = T(x) for the random variable X with PDF
πX(x, s) is defined by the time-one flow map of the differential equations

dx
ds

= −M∇xψ .

The continuous Kalman–Bucy filter equations correspond to the special case M = P
andψ = δF/δπX with the functional F given by (3.49).

The elliptic PDE (3.57) can be solved analytically for Gaussian approximations to
the PDF πX and the resulting differential equations are equivalent to the ensemble
transform Kalman–Bucy equations (3.46). Appropriate analytic expressions can also
be found in the case where πX can be approximated by a Gaussian mixture and the
forward operator h(x) is linear (see [44] for details).

Gaussian mixtures are contained in the class of kernel smoothers. It should how-
ever be noted that approximating a PDF πX over high-dimensional phase spaces
X = RN using kernel smoothers is a challenging task, especially if only a relatively
small number of realizationsxi, i = 1, . . . ,M, from the associated random variableX
are available.

In order to overcome this curse of dimensionality, we outline a modification to
the above continuous formulation, which is inspired by the rank histogram filter of
Anderson [2]. For simplicity of exposition, consider a single observation y ∈ R with
forward operator h : RN → R. We augment the state vector x ∈ RN byy = h(x), i.e.
we consider (x,y) and introduce the associated joint PDF

πXY(x,y) = πX(x|y)πY (y) .

We apply the embedding technique first to y alone, resulting in

dy
ds

= fy(y, s)

with
∂y(πY (y)fy(y)) = πY (y)(L− L) .

One then finds an equation in the state variable x ∈ RN from

∇x ·
(
πX(x|y)fx(x,y, s)

)+ fy(y, s)∂yπX(x|y) = 0

and
dx
ds

= fx(x,y, s) .

 EBSCOhost - printed on 2/10/2023 4:36 PM via . All use subject to https://www.ebsco.com/terms-of-use



Ensemble filter techniques for intermittent data assimilation 131

Next, we introduce themean field approximation

π1(x1|y)π2(x2|y) · · ·πN(xN |y) (3.58)

for the conditional PDF πX(x|y) with the components of the state vector written
as x = (x1, x2, . . . , xN)T ∈ RN . Under the mean field approximation, the vector
field fx = (fx1 , fx2 , . . . , fxN )T can be obtained component-wise by solving scalar
equations

∂z
(
πk

(
z|y)fxk (z,y))+ fy (y) ∂yπk (z|y) = 0 , (3.59)

k = 1, . . . ,N, for fxk(z, y) with z = xk ∈ R. The (two-dimensional) conditional
PDFsπk(xk|y) need to be estimated from the available ensemble members xi ∈ RN
by either using parametric or nonparametric statistics.

We first discuss the case for which both the prior and the posterior distributions
are assumed to be Gaussian. In this case, the resulting update equations in x ∈ RN
become equivalent to the ensemble transform Kalman–Bucy filter. This can be seen
by first noting that the update in a scalar observable y ∈ R is

dy
ds

= −1
2
σ 2
yyR−1 (y + y − 2y0

)
.

Furthermore, if the condition PDF πk(z|y), z = xk ∈ R, is of the form (3.1), then
(3.59) leads to

fxk(xk, y) = σ 2
xyσ−2

yyfy(y) ,

which, combined with the approximation (3.58), results in the continuous ensemble
transform Kalman–Bucy filter formulation discussed previously.

The rank histogram filter of Anderson [2] corresponds in this continuous embed-
ding formulation to choosing a general PDFπY (y), while a Gaussian approximation
is used for the conditional PDFsπk(xk|y).

Other ensemble transform filters can be derived by using appropriate approxima-
tions to themarginal PDFπY and the conditional PDFsπk(xk|y), k = 1, . . . ,N, from
the available ensemble members xi, i = 1, . . . ,M.

References

An excellent introduction to filtering and Bayesian data assimilation is [22]. The linear
filter theory (Kalman filter) can, for example, be found in [48]. Fundamental issues
of data assimilation in a meteorological context are covered in [25]. Ensemble filter
techniques and the ensemble Kalman filter are treated in depth in [15]. Sequential
Monte Carlomethods are discussed in [3, 4, 13] and by [7, 27] in a geophysical context.
See also the recent monograph [19]. The transport view has been proposed in [12] for
continuous filter problems and in [43] for intermittent data assimilation. Gaussian
mixtures are a special class of nonparametric kernel smoothing techniques which are
discussed, for example, in [54].
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4 Concluding remarks
We have summarized the Bayesian perspective on sequential data assimilation and
filtering in particular. Special emphasis has been put on discussing Bayes’ formula in
the context of coupling of random variables, which allows for a dynamical system’s
interpretation of the data assimilation step. Within a Bayesian framework, all vari-
ables are treated as random.While this implies an elegant mathematical treatment of
data assimilation problems, any Bayesian approach should be treated with caution
in the presence of sparse data, high-dimensional model problems, and limited sam-
ple sizes. It should be noted in this context that successful assimilation techniques
such as 4DVar (not covered in this survey) and the EnKF lead to biased approxima-
tions to the state estimation problem. In both cases, the bias is due to the fact that the
algorithms are derived under the assumption that the prior distributions are Gaus-
sian. Nevertheless, 4DVar and EnKF often work well in terms of the observed mean
squared error (3.10) since the variance of the estimator remains small, even for rel-
atively small ensemble sizes M. On the contrary, asymptotically unbiased Bayesian
approaches such as sequential Monte Carlo methods suffer from the curse of dimen-
sionality, generally lead to large variances in the estimators for small M and have
therefore not yet found systematic applications in operational forecasting, for exam-
ple. To overcome this limitation, one could consider more suitable proposal steps
such as guided sequential Monte Carlomethods and/or impose certain independence
assumptions such as mean field approximations which lead to an improved balance
between bias and variance in the mean squared error (3.10). See also the discussion
of [20] on the bias-variance trade-off in the context of supervised learning. Promising
results for guided particle filters have been reported very recently in [29, 35]. Alterna-
tively, non-Bayesian approaches to data assimilation could be explored in the future,
for example, (i) shadowing for partially observed reference solutions, (ii) a nonlinear
control approach with transport maps as dynamic feedback laws, and (iii) derivation
and analysis of ensemble filter techniques within the framework of stochastic inter-
acting particle systems.
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Inverse problems in imaging
Abstract: This chapter provides an overview of inverse problems in imaging, with
a particular focus on biomedical imaging applications and current developments. We
discuss some basics in the mathematical modeling of images, image reconstruction,
and imaging devices. Then, we proceed to three topics of high current interest, name-
ly, problems with missing data as appearing in inpainting or imaging from surface
measurements, nonlinear inverse problems created by the need to perform additional
calibrations, and finally high-dimensional inverse problems in dynamic imaging.
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Nowadays, life is hard to imagine without the use of images and videos, with in-
creasing fraction in digital format. While humans conveyed a huge amount of in-
formation via audio and audio-type signals (speeches, telephone, telegraphs, radio)
one-hundred years ago, we increasingly use image and video-based methods now
(television, computers, internet). This also applies to many other parts of daily life,
engineering, medicine, and science. As examples, consider the transition from stetho-
scopes to modern medical imaging devices or from ground based meteorological sta-
tions to satellite-based weather surveillance.

The increasing use of images and videos has led to a new branch of science, of-
ten called imaging science, where mathematical methods play an important role. In-
verse problems are an important part in this area since they arise at two fundamental
points:
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• The way to the image: Most measurement devices are not able to automatical-
ly deliver high-quality images, but rather raw data from which images need to
be reconstructed. Image reconstruction is a classical inverse problem, particular-
ly tomographic setups are currently widely studied with different mathematical
techniques.

• The (quantitative) interpretation of the image: In many cases, images and videos
are of interest due to the quantitative information they carry. In order to benefit
from the latter, an appropriate link to mathematical models is needed which can
also be cast in the framework of inverse problems.

Wewill provide a brief overview of themathematical issues arising from these two
questions in this chapter with a focus on recent developments and open questions.
Our aim is by no means to give an extensive overview of mathematical techniques
nor of imaging devices and problems. Rather, we focus on variational methods which
allow for a unified treatment of large classes of problems and build on a sound math-
ematical background, and on certain classes of problems that we think can highly
benefit from further development in inverse problems. We start with the basic math-
ematical modeling of images and their properties in Section 1 and then proceed to
some examples of imaging devices and related mathematical models in order to fur-
ther motivate the subsequent investigations. In the subsequent Section 3, we review
some classical mathematical problems in image reconstruction. Afterwards, we turn
to three areas of high current interest: The first are effectively underdetermined prob-
lems discussed in Section 4, where the appropriate incorporation of prior informa-
tion becomes of ultimate importance. The second are problems usually arising in fast
measurements, when the system parameters cannot be well calibrated and need to be
estimated together with the image, as we will highlight in Section 5. Finally, we will
discuss dynamic problems in imaging, i.e. related to videos, and the link to mathe-
matical models for the dynamics in Section 6.

1 Mathematical models for images
Images can be modeled as densities or intensities (gray values) on an image domain
Ω ⊂ Rd, which means the image u : Ω → R is simply a nonnegative function. Fre-
quently, the density is not a priori a distribution of gray values, but directly a density
of some physical quantity carrying quantitative information, e.g. tracer substances
in medical imaging. Thus, inverse problems dealing with images as unknowns can
directly be related to the bulk of other inverse problems dealing with reconstructing
functions. A major difference to the majority of such inverse problems is that images
are not expected to be smooth functions, but have specific structures of particular
importance:
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• Edges: A highly important part of images are edges, which are related mainly to
discontinuities in the functionu. The edges and the cartoon, i.e. a piecewise con-
stant approximation of the image between the edges, are often the first quantity
of interest in the interpretation of the image. Hence, it is of high importance that
solution methods for inverse problems do not destroy edges.

• Textures: In natural images, these are small scale patterns, i.e. locally struc-
tured high-frequency information. Different patterns are usually separated by
the edges, and thus the interplay with edges is crucial. Since the high-frequency
information is highly damped by typical forward operators, it is often out of reach
to reconstruct textures in inverse problems.

• Morphology: Images are frequently interpreted in a morphological way, i.e. the
exact gray values are of limited interest, but rather the isocontours or the level
sets of the image provide the relevant information.

It has become a standard setting to consider cartoon images as functions of
bounded variationu ∈ BV(Ω). Assuming a normalization of the image such as∫

Ω

udx = 1, (4.1)

the cartoon should be characterized by a rather small total variation

TV(u) = sup
g∈C∞0 (Ω;Rd),‖g‖L∞≤1

∫
Ω

u∇ · g dx . (4.2)

Note that for a piecewise constant functionu, i.e. an image consisting of regions with
homogeneous gray values separated by sharp edges, the total variation is just the
perimeter of the jump set weighted by the jump height. Another description of the
cartoon comes from the work of Mumford and Shah [71], and was originally designed
for image segmentation. Their description consists of an edge set Γ ⊂ Ω and a smooth
component u ∈ H1(Ω \ Γ). The corresponding functional that is thought to be small
for good cartoon images is of the form

JMS(u, Γ) =
∫
Ω\Γ

|∇u|2 dx +H d−1(Γ) , (4.3)

whereH d−1 denotes the d− 1-dimensional Hausdorff-measure.
The texture part is more difficult to characterize, as it is usually attributed to

oscillatory parts in the image, but consequently difficult to separate from potential
noise. In analogy to the cartoon part, Meyer [66] proposed a dual approach and tried
to characterize texture as parts v with ‖v‖∗ rather small, where for a distribution
v ∈ BV(Ω)∗ with zero mean,

‖v‖∗ = sup
ϕ∈BV(Ω),TV(ϕ)≤1

〈v,ϕ〉 . (4.4)
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Other approaches are based on representations in negative Sobolev spaces ([78, 98]),
nonlocal versions of total variation or Sobolev norms exploiting similarities of patch-
es, which will be discussed below. While image decomposition into structure and tex-
ture is a highly relevant problem in many parts of image processing, it is often of less
importance for inverse problems in imaging. Themain reason is a smoothing property
of the forward operators which are usually strongly damping the high-frequency com-
ponents. Hence, in reconstructions of images, the focus is laid on the cartoon parts,
which is also a reason why total variation is a very popular penalty in variational reg-
ularizationmethods (cf. [22] for a detailed discussion of total variation reconstruction
methods).

Several bases or frames such as wavelets, curvelets, or shearlets have been pro-
posed to efficiently represent images. They are based on multiscale decompositions,
usually in a dyadic rescaling of space. �1-norms on the coefficients of such systems, in
particular on wavelet coefficients, induce norms on Besov spaces. A particularly well
studied case is the Besov space B1

1,1, which is quite close to the space of functions of
bounded variation. Also, the wavelet approximation of total variation functionals has
been frequently studied (cf., e.g. [24, 34]).

A strong recent trend are nonlocal approaches for images motivated by the non-
local filter introduced by Buades and coworkers [19]. Roughly speaking, the idea is
to interpret an image not as a collection of single gray values, but as a collection of
local patches. A corresponding continuum model is to consider the image as a func-
tionU onΩ×Σ, where Σ is a small neighborhood of the origin modeling a patch. The
consistency is obtained by U(x,y) = U(x + y,0) for all y ∈ Σ. From this space
of patch-functions, a set of weights w(x, ξ) for x, ξ ∈ Ω is computed by comparing
patches, i.e. the functionsU(x, ·) andU(ξ, ·). This yields a weighted graph structure
on the image which can be further analyzed ([19, 59, 85, 88]). One option is to use dis-
crete calculus on graphs to define analogues of total variation or other functionals for
these patch-functions ([48, 59, 85]). In particular, for natural images, such approach-
es yield superior results in many tasks such as denoising since one can exploit that
similar patches appear several times within the image, e.g. in textures.

In most areas of imaging, in particular those related to inverse problems where
one does not just play with given images, variational approaches (respectively Bayes-
ian methods with particular focus on MAP estimation) have become a standard tool.
There are two natural functionals involved, namely, the fidelity D(u,f) (which can
be interpreted as the negative log-likelihood of obtaining the data f conditioned on
the image u) and the regularization functional R(u). A standard solution approach
is the minimization of the energy functional

E(u) = λD(u, f)+ R(u) , (4.5)

with a weighting parameter λ > 0. Clearly, such approaches are an equivalent formu-
lation to Tikhonov-type regularization in inverse problems, with regularization pa-

 EBSCOhost - printed on 2/10/2023 4:36 PM via . All use subject to https://www.ebsco.com/terms-of-use



Inverse problems in imaging 139

rameter α = 1
λ . We will discuss the detailed modeling of prior information and the

relation to Bayesian models below.

2 Examples of imaging devices
In the following, we give a brief overview of the most frequently used types of de-
vices for acquiring imaging data. We focus on the basic structures and implications
for mathematical modeling and inverse problems rather than on the detailed device
physics and specific application context.

2.1 Optical imaging

Optical imaging based on recording photons (usually found in CCD devices nowa-
days) is probably the most intuitive way of obtaining image data used in various
digital camera systems (from microscopes over hand-held systems, high level movie
cameras up to astronomical telescopes). In this case, one can interpret the record-
ing directly as an image via translating the number of photons (possibly at different
wavelengths) into a grayscale (or a color scale). Effects to be taken into account in for-
ward models are certain factors that can lead to a convolution (e.g. defocus) or make
it necessary to investigate the structure of the noise (e.g. low light intensity).

Active research in optical imaging is still related to denoising and deconvolution,
also in the version of blind deconvolution as we shall discuss below. Since, in many
cases, the recorded images or image sequences themselves are of reasonable quality,
most research is rather related to processing digital images and videos. Another quite
active field is to acquire three-dimensional information from stereo or other multi-
camera systems.

The applications of optical imaging are ubiquitous as digital images and videos
are part of almost everyone’s daily life in the modern world. In addition to usual op-
tical frequencies, an increasing number of devices use other or larger parts of the fre-
quency band of electromagnetic waves. In particular, multi- and hyperspectral imag-
ing is a strong trend since it can provide much better information than just the usual
three primary colors we can distinguish.

2.2 Transmission tomography

In transmission tomography, rays (X-rays, electrons) are sent through the object from
different positions and their attenuation is recorded on the opposite side. The classi-
cal forward model is the Radon transform, i.e. the line integrals of the object density,
since the attenuation is proportional to the density along the line. The principle of
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Figure 4.1: Illustration of transmission tomography: Micro-CT imaging of a kid toy. Top row: two
projections from different angles. Bottom row: 3D Image reconstruction (threshold segmented).
Data courtesy of European Institute for Molecular Imaging and SFB 656, Münster.
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transmission tomography is illustrated by micro-CT data in Figure 4.1, with two pro-
jections from different sides and the final 3D image reconstruction.

Tomography is a very well studied mathematical topic (cf., e.g. [73, 74]). Current
challenges are related to exact reconstruction formulas for three-dimensional scan-
ning geometries and problems with limited data, e.g. limited angles which are severe-
ly ill-posed in contrast to the full data case.

Major applications of transmission tomography are inmedicine andmaterial test-
ing. In physics and biology, there is increasing interest in electron tomography for
visualizing three-dimensional structures at the nanoscale ([43, 60]).

2.3 Emission tomography

Emission tomography such as positron emission tomography (PET) and single pho-
ton emission computed tomography (SPECT) are based on recording photons emitted
in the case of radioactive decay of some tracer inside the body. Since the radioactive
decay is random, the forwardmodels for emission tomography naturally need to be of
stochastic nature. In PET, one uses tracers emitting photons to the opposite direction,
and thus to each recorded coincidence of photons, one can attribute a decay event on
the line in between. The tracers used in SPECT only emit a single photon in random
direction and one uses collimators to get information about the direction, that is, the
line on which the decay event has taken place. Since clearly the probability of a decay
event is proportional to the tracer density along the corresponding interval, one ob-
tains a stochastic sampling of the Radon transform in both cases. It is quite standard
to use the Poisson distribution as a model for the randomness of the decay. Subtle

Figure 4.2: Illustration of emission tomography: Reconstruction of a cardiac PET scan in two
different slice views. Data courtesy of SFB 656, Münster (subproject C1).
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differences between PET and SPECT are in the detailed modeling of attenuation. We
will come back to the issues arising in SPECT below.

The major application of emission tomography is nuclear medicine. Due to their
potential of monitoring time-dependent physiological processes (in a quite specific
way when using appropriate tracers), these techniques have received increasing at-
tention within in vivo imaging. The trade-off between spatial resolution and speci-
ficity in emission tomography is illustrated in Figure 4.2 via a cardiac scan clearly
displaying the concentration of the tracer in the ventricles.

Figure 4.3: Illustration of MR imaging: Reconstruction of a cardiac MR scan of the same subject as in
Figure 4.2, in two different slice views (top) and 3D visualization (bottom) of two different time
frames. Data courtesy of SFB 656, Münster (subproject C1).

 EBSCOhost - printed on 2/10/2023 4:36 PM via . All use subject to https://www.ebsco.com/terms-of-use



Inverse problems in imaging 143

2.4 MR imaging

Magnetic Resonance (MR) imaging is probably the technique with the most complex
physics, though on the other hand, it yields the least ill-posed reconstruction prob-
lem. The principle of MR is to induce nuclear magnetic relaxation of protons or cer-
tain molecules by applying magnetic fields. The measurements consist of electrical
signals at the same frequency.

The usual forward model in MR is related to the Fourier transform, and hence the
inverse problemof reconstructing the image from full data iswell-posed. However, the
acquisition in slices is rather time-consuming, and thus a main challenge is to make
MR faster in order to obtain high resolution images with increasing time resolution.
The current image quality in MR is illustrated by a cardiac MR scan in Figure 4.3.

The major application of MR is nowadays a medical one. Due to the absence of
radiation exposure compared to X-ray or radioactivity based techniques, MR can be
frequently used for various tasks. Functional versions of MR scans play a prominent
(and recently strongly debated) role in neurosciences.

2.5 Acoustic imaging

In acoustic imaging, like in ultrasound or seismic data acquisition, an acoustic wave
is usually sent into the body or earth, and the echo is recorded on the surface. The nat-
ural forward model is the wave equation with a spatially varying wave speed, and the
inverse problem is to reconstruct the wave speed. Mainly for computational reasons,
frequency domain formulations or several approximations (e.g. Eikonal equations or
first arrival data) of the wave equation have been used in the past.

While inversion is quite frequently used in geophysics, it is used less in medical
ultrasound since one can usually interpret the data directly. In the latter, image pro-

Figure 4.4: Illustration of acoustic imaging: Cardiac echo scan of the same subject as in Figure 4.2.
Left: closed mitral valve during systolic phase. Right: opened mitral valve during diastolic phase.
Data courtesy of SFB 656, Münster (subproject C1).
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cessing and automatic image analysis techniques are of interest, particularly for deal-
ing with the large speckle noise artifacts appearing in such image sequences ([93]).
A lot of recent interest in inversion has been in the novel hybrid technique of photoa-
coustic imaging, where the acoustic wave is modulated by an optical laser ([100]).

A major advantage of ultrasound imaging is the inherently high time resolution
which allows one to monitor relevant processes such as, e.g. heartbeat. Together with
speckle artifacts, this is illustrated in Figure 4.4.

2.6 Electromagnetic imaging

In electromagnetic imaging, one records electrical potentials created from currents in-
side or on the boundary of the object in arrays of electrodes around the object surfaces
or magnetometers in small distance to the surface. The forward models are clearly
the Maxwell equations or in many cases, reductions to the Poisson equation (and the
Biot–Savart law for themagnetic field). The term imaging in such applications is often
debated since the forward problems are severely ill-posed and the reconstructions are
hence of limited quality and mainly restricted to low frequency components.

Due to the high remaining challenges in electromagnetic imaging, this is a very
active field of research in applied mathematics, particularly in inverse problems.
In pure surface imaging of electrical activity created inside the object, a major
challenge is the appropriate modeling of prior information to decrease or elimi-
nate the nonuniqueness of the reconstruction problem. The technology of electrical
impedance tomography ([33]), where different currents between the electrodes are
sent into the body and the resulting potentials are measured, received enormous at-
tention in inverse problems and is also known as the Calderon problem ([25]). The
inversion can be formulated as reconstructing the conductivity in the Poisson equa-
tion from the knowledge of the Dirichlet-to-Neumann (or Neumann-to-Dirichlet)map,
which has a rich mathematical structure.

Besides material testing and geology, applications of electromagnetic imaging
have been found recently in medicine, e.g. in brain (EEG/MEG), heart (ECG/MCG) or
muscle studies (EMG). The technique of EIT is mainly applied in material testing and
inmonitoring lung activity. Also, hybrid techniques find increasing attention ([4, 64]).

3 Basic image reconstruction
The first fundamental step is the reconstruction of images from raw data. The most
prominent image reconstruction problem nowadays is related to X-ray tomography,
which is based on inverting the Radon transform as we shall recall below. In optical
imaging devices like photography, telescopes, or microscopy, one obtains an image
directly, but it quite frequently suffers from defects or does not yet have the desired
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resolution. Here, the reconstruction step can also be interpreted as a correction step,
e.g. of defocus or atmospheric blur.

In a canonical mathematical formulation, classical image reconstruction can be
formulated as the solution of a linear operator equation

Ku = f , (4.6)

with given (noisy) data f and a usually compact forward operator K. Due to the non-
closed range of compact operators, most image reconstruction problems become ill-
posed problems in the sense of Hadamard ([42]). We shall discuss some standard is-
sues in the following.

3.1 Deblurring and point spread functions

A standard problem in imaging is blur, e.g. caused by lack of focus or motion. The
mathematical model for blurring is an integral operator of the form

Ku(x) =
∫
Ω

k(x −y,y)u(y)dy , (4.7)

where often the Point Spread Function (PSF) k is approximated as spatially indepen-
dent, i.e. k only depends on the first variable.

In many cases, blur can be approximated well by a Gaussian due to the following
two reasons: On the one hand, blur is caused by diffusion-type processes, and the
solution of the diffusion equation is just a convolution with a Gaussian. On the other
hand, blur is sometimes caused by repeated random processes, and the central limit
theorem again leads to a Gaussian PSF. For these reasons, Gaussians are also routine-
ly used as PSFs inmany tests of reconstruction algorithms and as first approximations
for many devices. In such cases, only the variance of the Gaussian (often translated
into the full-width-at-half-maximum) has to be determined, which is frequently possi-
ble using phantom measurements.

Another recent trend for many imaging devices is an experimental determination
of the PSF. In such tests, very small objects (i.e. images uz with very small support
around a point z) are used, and since these approximate a Dirac-delta at z under
appropriate rescaling, one obtains via

cKuz(x) ≈
∫
Ω

k(x −y,y)δ(z −y)dy = k(x − z, z) (4.8)

an approximate read-out of the PSF from the corresponding measurements. Although
this is a purely experimental procedure, it creates an interesting mathematical prob-
lem due to the fact that such sources cannot be placed at an arbitrary number of
positions in the device due to costs, time consumption, limited precision in placing
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the sources, or other issues. In practice, one obtains a rather sparse sampling of the
PSF and thus, the problem of PSF interpolation occurs ([7, 11, 14, 46, 62, 63, 101, 106]).

3.2 Noise

The modeling of noise in imaging is an interesting issue and taking into account the
statistics of noise can indeed yield significantly improved reconstructions in many
cases. In some inherently stochastic forward problems such as emission tomography,
where photons are created by random radioactive decay, the modeling of noise has
a rather long tradition (cf., e.g. [97]). In other problems, noise modeling and its use in
reconstruction algorithms has become a very active field of research in the last years
(cf., e.g. [10, 93]). In particular, the form of the noise has consequences for the form
of the data likelihood and thus on the appropriate modeling of variational or iterative
reconstruction methods.

A frequently used standard model for the noise is additive Gaussian noise, i.e.

f |D = g|D +σηD (4.9)

for each detector D with σ > 0 and independent normally distributed ηD. Clearly,
this yields a Gaussian distribution of the noise, and the corresponding negative log-
likelihood is of the form

Ld(Ku|f) = 1
2σ 2

∑
D
(f |D −Ku|2D) . (4.10)

Asymptotically, the negative log-likelihood converges to the squared L2-norm

D(u,f) = L(Ku|f) = 1
2σ 2

∫
(Ku− f)2 dx . (4.11)

In imaging devices based on photon counts, different noise statistics are in place.
A standard model is a Poisson distribution for the counts, i.e. the number of counts
per detectorD is a Poisson-distributed random variable with mean valueKu|D . Here
(by adding terms independent of u), the data term can be written as the Kullback–
Leibler divergence

D(u,f) = 1
2

∫
[f log

f
Ku

− f + Ku]dx . (4.12)

In the case of good statistics, i.e. a high number intensity, the Poisson distribution
can be approximated via a Gauss distributionwith the samemean and variance (both
equal to Ku in the Poisson model). Thus, one obtains

DG1(u, f) = 1
2

∫
(Ku− f)2
Ku

dx . (4.13)
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Since this model is convex but still nonquadratic in u, frequently a further approxi-
mation based on the reasoning Ku ≈ f for the denominator is used, i.e.

DG2(u, f) = 1
2

∫
(Ku − f)2

f
dx , (4.14)

which can also be interpreted as a second-order Taylor expansion of the Kullback–
Leibler divergence in Ku around f .

Recently, a variety of different noise models have been investigated. This con-
cerns variants of the salt-and-pepper noise ([32]), other multiplicative models (cf.,
e.g. [89]), and Rayleigh-type distributions for modeling speckle noise as, e.g. appear-
ing in ultrasound ([55, 99]).

3.3 Reconstructionmethods

Various reconstruction methods have been proposed over the last decades for dif-
ferent tasks of imaging. There is a first distinction between direct and iterative re-
construction methods. Direct reconstructions rely on exact formulas for the inverse
operator of K and a numerical implementation of these. A standard example is the
Radon transform, which can be inverted exactly using the Fourier transform and ef-
ficient numerical implementations can be obtained using FFT techniques. Due to the
ill-posedness of the inverse problem, it does usually not work to directly use the noisy
data in the inversion, but filtering has to be used before. This leads to

u = K−1Fα(f) , (4.15)

where Fα is a filtering operation with parameter α (which is a regularization param-
eter for the inverse problem in the sense of mollification methods, cf. [72]). Currently,
linear filters are mainly used, which are easy to implement and analyze, though in
principle, one can think of using nonlinear filters as well.

Iterative reconstruction methods are usually based on a variational formulation.
In the unregularized case, i.e. for the minimization of the functional u � D(u,f),
one uses appropriate early termination of iterations to receive optimal results. Exam-
ples are the simple descent method

uk+1 = uk − τ∂uD(uk, f) , (4.16)

and for nonnegative image restoration, positivity preserving schemes like the EM-type
algorithm

uk+1 = uk − τuk∂uD(uk, f) (4.17)

for appropriate τ, which is specifically used for Poisson noise models as

uk+1 = ukK∗
(
f
Kuk

)
. (4.18)
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Figure 4.5: Effect of noise and iteration number in iterative regularization methods illustrated by EM
iterations on the cardiac PET software Phantom XCAT (simulated data courtesy of European Institute
for Molecular Imaging, Münster). First row: 5 Iterations (left) and 10 iterations (right). Second row: 15
Iterations (left) and 20 iterations (right). Third row: 60 Iterations (left) and 100 iterations (right).
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Figure 4.5 is illustrating the so-called semiconvergence properties of such iterative
methods, for example, here EM for Poisson noise. The iterates first approach a good
reconstruction, but with too many iterations, noise effects enter the reconstruction
again and distorts the image quality. In the case of additional regularization, onemin-
imizes a functional D(u,f) + R(u) instead, where R is a regularization functional.
In the following, we shall always consider cases with appropriate regularization R,
which prevents the instability in case of noisy data. The properties of the noise are en-
coded in the specific form ofD (as discussed in the previous section) and the weight-
ing between data fidelity and regularization. Depending on the specific form of R,
various iterative methods to compute a minimizer have been proposed, e.g. based on
splitting and augmented Lagrangian methods ([23, 35, 49, 104, 107]).

4 Missing data and prior information
A popular trend in recent years is to consider image reconstruction with missing da-
ta which is related to the main line of research in compressed sensing ([38, 41]). Ill-
posedness in such problems is created in the sense of nonuniqueness of the solution
in the inverse problem rather than by instability. The key idea to obtain good solu-
tions to the inverse problem is to incorporate prior information. Again, variational
methods are a standard approach and we shall discuss some favorable properties as
well as some current limitations.

4.1 Prior information

Several kinds of prior information have been used to improve image reconstruction
and, in particular, to enablemeaningful reconstruction alsowithmissing data. Nowa-
days, the standard way of modeling prior information is (at least at a formal level)
Bayesianmodeling. Its basis is Bayes’ theorem, which yields the posterior probability
density ofu being the underlying image given the data f as

p(u|f) = p(f |u)p(u)
p(f)

. (4.19)

Here, p(f |u) is the likelihood of the data given the image u, and p(u) respectively
p(f) are prior probabilities for the image and data. Since f is fixed, the latter is on-
ly a scaling factor and of no particular importance. The interesting part is the prior
probability of the image, which can encode relevant prior information.

Several estimates can be obtained from the posterior distribution. The most fre-
quently used and most straightforward one to compute is the Maximum a posteriori
Probability (MAP) estimate given by

û = argmax
u
p(u|f) . (4.20)
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Using the equivalent minimization of the negative logarithm, we find that MAP es-
timation can be formulated as Tikhonov-type regularization of an inverse problem,
namely,

û ∈ argmin
u

(
D(u,f)+R(u)) , (4.21)

where R(u) = − logp(u) takes the role of the regularization functional.
While Gaussian priors, respectively quadratic regularization functionals, were

very popular for many years due to their computational and analytical simplicity,
a different paradigm has evolved, particularly in the last decades. In many instances,
it was found that �1-type regularization functionals, i.e. Laplacian prior distributions,
yield superior properties. The first such approach was the ROF model for image de-
noising ([83]), which used the total variation as a regularization. Total variation has
a nice geometric meaning via the coarea formula. For sufficiently regular BV functions
([44]), we have

TV(u) =
∫
R

H d−1(∂{u < α})dα , (4.22)

whereH d−1 denotes thed−1-dimensionalHausdorff measure. Hence, the total vari-
ation penalizes the surface area of the level sets of the image. One observes that this
is also true for functions u with discontinuities, as long as the discontinuity set is
Hausdorff-measurable. The latter is a key property of total variation models. While
regularizations based on standard Sobolev-type norms do not allow one to obtain re-
constructions with discontinuities, i.e. images with edges, the total variation model
can realize reconstructions with realistic edges.

A popular alternative to MAP estimates are conditional mean (CM) estimates giv-
en by

ũ =
∫
u p(u|f)du . (4.23)

A major difficulty for CM estimates is their reasonably efficient computation since
a high-dimensional integration problem needs to be solved. The standard approach
are Markov chain Monte Carlo methods. We refer to [27, 56, 57] for further details of
those and, in general, Bayesian inversion. In the following, we shall focus on MAP
estimation, namely, the corresponding variational model (4.21).

There are several ways of using prior information. In a rough classification, we
can distinguish three approaches:
(1) General structure information, e.g. geometrical information such as a lack of os-
cillations and smoothness between reasonable edge sets as modeled by total varia-
tion and Mumford–Shah minimization. Related approaches are based on looking for
sparse representations in wavelet, curvelet, shearlet, or similar frame systems. Such
approaches are frequently used since prior knowledge is intuitive and quite minimal.
(2) Available dictionaries of “typical” solutions. Dictionaries are learned such that
some kind of sparse representation of the image in terms of the dictionary can be
expected. There are two standard approaches to sparsity in dictionaries, namely,
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synthesis-based and analysis based ([39, 82]). In both cases, one frequently uses
convex relaxations, respectively log-concave prior distributions like Laplace distribu-
tions on the coefficients. If a suitable dictionary is available, such approaches can be
extremely efficient, but a major trouble, particularly in inverse problems, is that a dic-
tionary of possible solutions is hardly accessible. In medical applications, a further
concern about such approaches is the danger that the available dictionary does not
include the pathologies arising in certain patients which might then be eliminated in
the image reconstructions.
(3) Available prior information of the local content in an additional dimension. This
could be possible time dynamics or spectral signatures in each pixel. Again, there is
some kind of sparsity prior that can be used here. Given a dictionary of the typical
local content, it is natural to assume that in each pixel, there is only a mixture (mod-
eled as linear combination) of few elements. For example, in hyperspectral images,
one can assume that in each pixel there is only a combination of a few different mate-
rials, and hence, a sparse mixture of material spectral signatures. From this example,
one can also understand that the sparsity should be expected to increase with spatial
resolution.

In variationalmodels of the form (4.21), it is usually beneficial to use convex func-
tionals R for theoretical purposes as well as to avoid computational difficulties in
computing global minimizers. Thus, sparsity priors are usually relaxed from mini-
mizing the number of nonzero coefficients (the so-called �0-norm) to minimizing the
�1-norm of the coefficients. Since this step is often made in an ad hoc fashion in liter-
ature, we give a simple explanation why the �1-norm is a reasonable relaxation in the
following. For this sake, consider the case of an operator K acting on �1(I) with a fi-
nite or countable index set I and assume further that some upper bound Ci on each
element ui is available, which is reasonable in most applications. Thus, we can for-
mulate the sparsity minimization problem as a mixed integer programming problem
of the form

D(Ku,f)+
∑
i∈I
pi → min

u∈�1(I),pi∈{0,1}
(4.24)

subject to the constraints

|ui| ≤ Ci, (1− pi)ui = 0 . (4.25)

One observes that this constrained minimization can be equivalently rewritten as
(4.24) subject to

|ui| ≤ Cipi, (4.26)

since for ui ≠ 0, only pi = 1 is possible and for ui = 0, the minimizer will clearly
satisfy pi = 0. The straightforward convex relaxation is to replace pi ∈ {0,1} by
pi ∈ [0,1]. For the resulting problem

D(Ku, f)+
∑
i
pi → min

u∈�1(I),pi∈[0,1]
(4.27)
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subject to (4.26), the optimal value of pi can be computed as pi = |ui|
Ci . By eliminat-

ing this variable, we end up with minimizing the weighted �1-regularized problem
(ωi = 1

Ci )
D(Ku, f)+

∑
i
ωi|ui| → min

u∈�1(I),|ui|≤Ci
. (4.28)

Several recent concepts have been proposed for improvements, particularly hy-
perprior frameworks where one has a regularization of the form R(u;p) depending
on additional parameters for which another prior distribution is available. The MAP
estimate then amounts to solve

(û, p̂) ∈ argmin
(u,p)

(
D(u,f)+ R(u;p)+ S(p)) . (4.29)

A related example is the idea of inf-convolution, which represents the image as a sum
of two parts for which separate prior information is available. The corresponding vari-
ational model is of the form

(û, v̂) ∈ arg min
(u,v)

(
D(u,f)+ R1(u − v)+R2(v)

)
, (4.30)

which has been of particular interest in total variation combined with a higher-order
functional for smooth parts in the image ([15, 16, 87]).

A systematic error of MAP estimates is to underestimate R(u), which, e.g. results
in contrast losses in the case of total variation regularization. In order to cure this,
the Bregman iteration has been proposed ([77]), which, instead of a single solution of
a variational model, constructs a sequence

uk+1 ∈ argmin
u

(
τD(u, f)+R(u)− 〈pk,u〉) (4.31)

for pk ∈ ∂R(uk) and small τ. The behavior is the one of an iterative regularization
method, and hence appropriate termination is necessary for optimal results.

4.2 Undersampling and superresolution

A frequently studied issue is the case of undersampled data, i.e. one tries to achieve
a higher spatial resolution than the Shannon sampling theorem allows for the num-
ber of measurements. Obviously, this is possible only with the use of strong prior
information. Let S denote a sampling operator. Then, the inverse problem can be re-
formulated as

SKu = g = Sf . (4.32)

In this case, the most important issue is not necessarily the noise (for rather low-
dimensional range of S the instability decreases and, e.g. the Moore–Penrose inverse
becomes continuous), but rather the null space. Hence, it is important to understand
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Figure 4.6: Illustration of the impact of using prior knowledge in noisy image reconstruction on
a cardiac PET scan (measurement data courtesy of European Institute for Molecular Imaging,
Münster). Top row: EM-reconstruction with 20 minutes of data, i.e. low noise level, representing
ground truth (left) and EM-reconstruction with five seconds of data, i.e. high noise level (right).
Bottom row: Reconstruction from a variational model with TV-regularization (left) and improvement
by Bregman iteration (right), both with five seconds of data.

how one can favor the type of solutions corresponding well to the prior knowledge.
For this sake, it is of particular interest to study the problem

R(u)→ min
u satisfying (4.32)

. (4.33)

In the finite-dimensional sparsity case with R being the �1-norm, the study of this
problem has led to celebrated results of compressed sensing. Under certain condi-
tions on the operator A = SK, which is then just a matrix with large null space, one
can indeed uniquely reconstruct very sparse solutions of (4.32) in this way, even for
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the low-dimensional range of S. Classical conditions, by now, are low incoherence in
the matrixA, i.e. for two different rows Ai andAj of A, one should have

|Ai ·Aj| � 1 , (4.34)

and the celebrated restricted isometry property, which requests A to be close to
an isometry on subspaces of k-sparse inputs u. The set of conditions needed for this
sake has been refined in the last years (cf., e.g. [28, 30, 37, 47, 95]) and extended
also to exact reconstruction in the case of the unconstrained problem (4.21) and to
related problems such as the reconstruction of low-rank matrices ([29]) or matrices
with certain sparsity patterns in rows or lines (cf., e.g. [31, 108]) by convex variational
methods.

From the inverse problems point of view, a potential issue in applying the com-
pressed sensing theory is the fact that it is formulated in a strictly finite-dimensional
setting, while it is more natural to study the limit of infinite dimensions in the inver-
sion. In particular, it would be desirable to have a theory that works at different image
resolutions in this context, but it is neither well studied how sparsity priors apply at
different resolutions nor how the conditions for exact recovery change when refin-
ing the image resolution. The first issue has recently been studied ([1, 2]) and led to
several interesting results. The second issue is more severe in the case of ill-posed in-
verse problems. Due to the ill-posedness, it is clear that the coherence between some
rows needs to converge to one. Also, the restricted isometry property will be diffi-
cult to satisfy for reasonable values of the sparsity level k, even for k = 1 one can
construct simple counterexamples for compact operators based on the singular val-
ue decomposition. Indeed, it has been verified computationally that even reasonable
discretizations of simple forward operators like the Radon or X-ray transform are far
from satisfying restricted isometry properties ([40]). Hence, it seems that in the study
of superresolution in an inverse problems setting, it is more reasonable to pose the
question in a different way and to rather understand for the given operator which so-
lutions are reconstructed nicely or even favored. In the sparsity setting, this would
mean to ask on which k-dimensional subspaces conditions for exact reconstruction
are satisfied. A condition that can be generalized to infinite dimensions is the exact
recovery condition [47, 95] which has been used for inverse problems in [94] and [10].

For more general convex regularizations R like total variation, it is more difficult
to analyze the structure of solutions. For this sake, classical concepts in regularization
theory, like the source condition

∃q : K∗S∗q ∈ ∂R(u) (4.35)

or even more the stronger source condition

∃q : K∗S∗SKw ∈ ∂R(u), (4.36)

are useful. Such conditions were mainly used to obtain error estimates for variational
regularizations. However, in the case of singular regularization functionals like �1 or
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total variation, which have large subdifferentials ∂R(u), it turns out that error esti-
mates like in [81] can indeed imply exact reconstruction.We refer to [10, 68] for further
discussion and for establishing relations between source conditions and other condi-
tions used in compressed sensing. Another recently proposed concept that allows one
to study the exact solution is a generalization of singular vectors and singular values
to the case of nonlinear regularization defined by

λK∗S∗SKuλ ∈ ∂R(uλ) . (4.37)

The value λ and the corresponding singular vector uλ can also be defined to define
and analyze properties at different scales in an abstract way.

4.3 Inpainting

Inpainting is a classical multidimensional interpolation problem, i.e. the restoration
of an image in a subregionΣ ⊂ Ω, which is generally named as the inpainting domain.
In the predigital era, inpainting was already carried out by restorers in arts, who used
their conception of the overall image and the original painter’s approach to inpaint
damaged regions in paintings. This history is also the reason for the nomenclature
inpainting instead of interpolation. Another key difference to classical interpolation
theory and methods usually taught in numerical analysis is the kind of prior knowl-
edge and of the desired results. While classical interpolation methods work well for
smooth functions and small gaps to be interpolated (which is reflected by standard er-
ror estimates), inpainting of images again needs to preserve (or continue) edges and
textures, i.e. the nonsmooth components.

In a simple inverse problems formulation, we can formulate inpainting as an op-
erator equation (4.6) with

K : U(Ω) →U(Ω \ Σ), u� u|Ω\Σ , (4.38)

whereU(Ω) is an appropriate function space, e.g. BV(Ω) in the case of cartoon im-
ages. Note that K can also be written as

(Ku)(x) = χΩ\Σ(x)u(x) , (4.39)

where χD is the indicator function of a set D (equal to one inside and zero outside).
This immediately implies that K has a large null space (all function supported in Σ),
but behaves well (like the identity) orthogonal to the null space.

Well-known models for image inpainting consist of minimizing a variational
functional

J(u) = D(u,f)+αR(u)→ min
u

(4.40)

with a distance term D(u,f) that first projects u to the smaller support Ω \ Σ and
then compares it with the given data f . The regularization term R(u) specifies the
method of inpainting on Σ (see Figure 4.7 for an illustration).
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• Laplace inpainting:We set the data termD(u,f) as the squared difference from f
and choose the regularization as the squared gradient norm to assure smooth areas
inside the inpainting domain and obtain

1
2

∫
Ω\Σ
(Ku − f)2 +α

∫
Ω

|∇u|2 → min
u
, (4.41)

where K is the so-called downscaling operator. Calculating optimality conditions re-
sults in

K∗(Ku − f) |Ω\Σ −αΔu = 0 (4.42)

and we see that for solving the variational problem, we have to calculate the Laplace
equation on the inpainting domain Σ with boundary conditions that come from the
known image.
• TV inpainting: Again, we choose a quadratic penalty for the known data. Howev-
er, for the regularizer, we would like to minimize the total variation of u, and hence

1
2

∫
Ω\Σ
(Ku− f)2 +α

∫
Ω

|∇u| → min
u
. (4.43)

This regularizer will fill the inpainting domain with piecewise constant areas. The
optimality conditions are given by

K∗(Ku − f) |Ω\Σ −α∇ ·
[ ∇u
|∇u|

]
= 0 . (4.44)

For the implementation by a steepest descent algorithm, we obtain a nonlinear diffu-
sion-reaction system

∂u
∂t

= K∗(Ku− f) |Ω\Σ +α∇ ·
[ ∇u
|∇u|

]
. (4.45)

To avoid a singularity of 1/ |∇u|, the norm is usually rearranged to |∇u|ε =√
ε2 + |∇u|2 with ε being a small positive constant.

• TV -H−1 inpainting: Both Laplace and TV inpainting belong to the class of
second-order inpainting methods, where the order is given by the highest deriva-
tive in the corresponding Euler–Lagrange optimality scheme. Second-order methods
generally have two important drawbacks. First, they are not able to connect edges
over large distances and secondly, a continuous curvature is not propagated from
the image into the inpainting domain. Methods of higher order are able to fix these
drawbacks. A method of particular interest is called TV -H−1 inpainting. The image
is inpainted via

∂u
∂t

= K∗(Ku − f) |Ω\Σ +αΔp , p ∈ ∂TV(u) (4.46)
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Figure 4.7: Results of different inpainting methods. First row: Original image (left) and damaged
image with 50% missing pixels (right). Second row: Restoration with Laplace-inpainting (left) and
restoration with TV-inpainting (right).

where ∂TV(u) denotes the subdifferential of TV(u). The element p is approximated
by ∇ · [∇u/|∇u|ε] where |∇u|ε is again a smoothed version of |∇u| (see above).
For the implementation of the resulting PDE

∂u
∂t

= K∗(Ku− f) |Ω\Σ +αΔ∇ ·
[
∇u
|∇u|ε

]
, (4.47)

we refer to ([86]).

An even more recent problem is the inpainting of videos. It poses further chal-
lenges on computation and modeling, but also offers more prior information. An ex-
ample is the inpainting of damaged parts in single frames of a video, where clearly the
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previous and subsequent frames can be used to gain information. We refer to [20, 36]
for further information.

4.4 Surface imaging

As already mentioned in the case of tomography, it is only possible to acquire mea-
surements related to images on outside surfaces inmost cases, particularly inmedical
imaging devices. This means the data are effectively taken on a surface, while the un-
known image is a function in the inside volume. In tomography, the dimensionality
of the data is matched with the one of the image by the additional rotational degree
of freedom, but in some modalities, this is not the case. Limited-angle tomography,
e.g. with C-bow devices or electron tomography, are already borderline cases being
severely ill-posed, that is, underdetermined. Extreme cases are optical tomography
(fluorescence or bioluminescence) or electromagnetical imaging (EEG/MEG, that is,
ECG/MCG). In the optical case, data can be acquired only for a few different frequen-
cies and a few different angles, if at all. In the case of electrical and magnetic data,
one has no further options to obtain data. Additional prior information can be due
to physiological considerations on the one hand, e.g. sparsity of sources in space in
some optical investigations or in EEG/MEG, and anatomical prior information from
X-ray, CT, or MR information on the other hand. The latter can particularly restrict the
support of the unknown image to the relevant structures.

As a simplified example that well reflects the mathematical issues in such prob-
lems, let us consider a source reconstruction problem for the Poisson equation, i.e.

−Δv = u inΩ ⊂ R3, (4.48)

with homogeneous Neumann boundary conditions ∂v∂n = 0 on ∂Ω. The forward oper-
ator K : Lp (Ω) → L2

 (∂Ω), given by the map u � v, where v is the unique solution
of (4.48) with ∫

∂Ω

v dσ = 0 . (4.49)

By Lp (Ω), we denote the subspace of Lp(Ω) consisting of those functions with∫
Ω

udx = 0 . (4.50)

Obviously, the forward operatorK has a huge null space, including, in particular,
the Laplacian of any compactly supported smooth function. In order to understand
how the null space is affected by a variational regularization used to incorporate prior
information, we again consider the problem

R(u) → min
u

subject to Ku = f . (4.51)
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This problem can be formulated as a constrained minimization problem with the La-
grangian

L(u, p,q) = R(u)+
∫
∂Ω

(v − f)p dσ +
∫
Ω

(∇v · ∇q − fu)dx . (4.52)

If there exist Lagrange-multipliers p andq, which corresponds to the so-called source
condition in regularization theory ([21, 42]), then they solve

q ∈ ∂R(u) (4.53)
−Δq = 0 inΩ (4.54)

p + ∂q
∂n

= 0 on ∂Ω . (4.55)

Now, let us consider some regularization functionals R and their impact. We shall
denote by w a weight representing anatomical prior knowledge, i.e. w(x) is large
if x is likely to be an element of the support of u and w(x) ≈ 0. We consider the
following cases:
• Minimum-Norm Solutions: This case, usually used if no specific prior information
is available, corresponds to

R(u) = 1
2

∫
Ω

u2 dx. (4.56)

One easily checks ∂R(u) = {u} and thus (4.53)–(4.55) is satisfied if u is a harmonic
function in Ω. Due to elliptic regularity, the reconstruction will be smooth inside Ω
and cannot have compact support. Moreover, note that by the maximum principle
for harmonic functions, u attains its maximum on ∂Ω. One observes that the latter
explains the so-called depth bias frequently observed in such problems ([26, 61, 70]),
i.e. the minimum norm solution shifts the mass of the reconstruction towards the
surface.
• Weighted-Norm Solutions: Including the prior by the weightw in the L2-norm, we
have

R(u) = 1
2

∫
Ω

u2

w
dx. (4.57)

One easily checks ∂R(u) = { uw } and thus (4.53)–(4.55) is satisfied if u = wq for
a harmonic function q inΩ. The weighting can clearly reduce the depth bias depend-
ing onw. Inside regions of homogeneous weightsw, the reconstructionu is still har-
monic, and thus the maximum principle holds for u. Hence, the mass is still shifted
towards the outside surface as much as possible.
• Sparse Solutions: In order to obtain solutions with very small support, it is natural
to use L1-type priors, i.e.

R(u) =
∫
Ω

|u|dx. (4.58)
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Formally, the subdifferential is given by ∂R(u) = {s}, where

s(x)

⎧⎪⎪⎪⎨⎪⎪⎪⎩
= 1 ifu(x) > 0

= −1 ifu(x) < 0

∈ [0,1] ifu(x) = 0

(4.59)

is the multivalued sign.
Condition (4.53)–(4.55) is satisfied if s is a harmonic function in Ω. Again, by the
strong maximumprinciple, s is either constant or attains its maximum andminimum
only at the boundary. In the first case, we need to further distinguish three cases: If
the absolute value of the constant is less than one, thenu vanishes everywhere. If the
constant equals one, then u is nonnegative everywhere and needs to be equal to zero
again due to the vanishing mean value. If the constant equals minus one, an analo-
gous argument holds. Clearly, the absolute value of s cannot be larger than one, and
thus in any case, u ≡ 0 if s is constant. If s is not constant, it attains its maximum
and minimum on ∂Ω and thus, the absolute value of s is necessary for less than one
in the interior of Ω, which means again u vanishes there. The consequence is that u
needs to be concentrated on ∂Ω, which of course does not work with an L1-theory,
but can be made rigorous in a usual way by considering Radon measures and their
total variation instead of L1-functions and their norm. This way, we observe the ex-
treme consequences of the depth bias on sparsity, that is, the solution will always be
concentrated at zero depth.
• Weighted Sparse Solutions: Again, L1-type priors can be weighted using anatom-
ical prior information, i.e.

R(u) =
∫
Ω

|u|
w
dx. (4.60)

Formally, the subdifferential is given by ∂R(u) = { sw }, where s is a multivalued sign
of u. Now, (4.53)–(4.55) is satisfied if s = wq for a harmonic function q in Ω. For
appropriate weights, s can achieve its minimum and maximum inside the domainΩ
such that the support is not necessarily on the outer surface. However, the possible
maximum still strongly depends on the properties of w. For homogeneous regions,
a maximum will again be on the part closer to the outer surface, and thus a depth
bias prevails. Some depth bias can be eliminated if w is scaled with the operator,
respectively.
• Total Variation Regularization: If we use total variation regularization, formally

R(u) =
∫
Ω

|∇u|dx, (4.61)

then the subdifferential contains elements of the form∇·g, withg = ∇u
|∇u| on smooth

parts with nonvanishing gradients. Basic arguments in differential geometry imply
that indeed∇·g is the mean curvature of level sets ofu. Now, since∇·g is harmonic,
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we need to expect that the maximal curvature is attained on ∂Ω. Hence, we cannot
expect to reconstruct small features (with large curvature) correctly with increasing
distance from the measurement surface.

From the above discussion, one observes that all standard approaches to incor-
porate prior knowledge suffer from severe shortcomings in the application to imaging
from (underdetermined) surface data. It remains an important future challenge to de-
velop improved approaches that can provably reconstruct structures corresponding
to the available prior knowledge.

5 Calibration problems
In the last decades and years, significant technical improvements have been made
in existing devices and new modalities have been invented such that resolution is
continuously improving. Novel devices to increase spatial resolution and fast mea-
surements to increase time resolution lead, however, to a novel kind of mathematical
problems whichwewant to summarize under the term calibration problems in the fol-
lowing. Themajor issues are that a good characterizationof the device properties (e.g.
the PSF of a microscope) is not (yet) possible or depends on the subject to be imaged,
or that the need to take fast measurements does not leave enough time to calibrate
the device well (e.g. coils in fast MR imaging).

The resulting mathematical structure is typically of the form

K(p)u = f , (4.62)

now with K(p) a linear operator depending (possibly in a nonlinear way) on the pa-
rameter (functions) encoded by p. Even if the dependence on p is linear, the overall
inverse problem becomes nonlinear, often a bilinear problem, which is clearly more
difficult to solve than the linear inversion for given p. Moreover, even if the problem
for given p can be overdetermined, the joint reconstruction ofu andpmay be under-
determined and thus again enforces the use of appropriate prior information. Clearly,
the prior information on the parameters is quite different than the one on the image.
Usually, good mean values are available for p as well as a strong perception of spa-
tial smoothness, which means that such functions are usually modeled as elements
in Sobolev spaces (often of high order), with a small distance to the given prior value.
Moreover, other structural constraints such as nonnegativity can be available.
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5.1 Blind deconvolution

A classical problem of the above type is blind deconvolution, in its original version
with p being the point spread function itself, i.e. the bilinear forward operator

[K(p)u](x) =
∫
Ω

p(x −y)u(y)dy , (4.63)

where u is a single image or even a vector of images. Due to the obvious underde-
termination of the nonlinear inverse problem, it is essential to use appropriate prior
information on the kernel p and the image u. An obvious constraint is nonnegativity
and a scaling property of p such as

∫
Rd p(x)dx = 1. Further knowledge is usual-

ly introduced via appropriate regularization, particularly by minimizing functionals
like

D(K(p)u, f)+α1R1(u)+α2R2(p), (4.64)

where D is a standard distance functional such as the squared L2-norm or the
Kullback–Leibler divergence. The functionals Ri are different regularization terms
with regularization parameter αi.

In many instances, the blind deconvolution problem can be modified with ad-
ditional modeling of the point spread function. Prominent examples are the phase
effects appearing in various optical imaging modalities from astronomy down to
nanoscopy. For the phase being the parameter to be determined, we have

[K(p)u](x) =
∫
Ω

k
(
x −y,p(x))u(y)dy , (4.65)

with a given form of the kernel k, usually

k(x, p) = k0(x)
∣∣∣E1(x)− eipE2(x)

∣∣∣2
, (4.66)

where E1 andE2 become the counterpropagating fields. Using variational approaches
like (4.64) even with quadratic priors for the image u and (in higher Sobolev spaces)
the phase p, a sufficiently good estimate of the phase can be found. It has been
demonstrated that this phase can be used to obtain reconstructions of superior qual-
ity by advanced total variation reconstruction methods ([90]). Such a two-step ap-
proach is indeed tempting for many calibration problems since one can here benefit
from the fact that the forward operator is not too sensitive with respect to the param-
eter p. Hence, even a rough estimate of p is sufficient for strong improvements in
the estimation of u, which, in the end, is indeed the quantity of interest. A thorough
mathematical analysis of such a two-step procedure is still missing.

 EBSCOhost - printed on 2/10/2023 4:36 PM via . All use subject to https://www.ebsco.com/terms-of-use



Inverse problems in imaging 163

5.2 Nonlinear MR imaging

A class of calibration problems that has gained high interest recently are those arising
from fast measurements inMRI. In the standard setting, one obtainsMR-data from the
model

f(t) =
∫
Ω

u(x)s(x)e−2πik(t)·x dx , (4.67)

where s is the known (precalibrated) coil profile and k(t) encodes the specific tra-
jectory used for MR-measurements. If one tries to obtain fast measurements, there
is often not enough time to calibrate the coils accurately, and hence p = s is to be
treated as an unknown. Thus, one ends up with a bilinear inverse problem, however,
with a good prior s0(x) from the precalibration. Deviations of s from s0 can be ex-
pected to be small and smooth, and hence one can use a smoothness prior with high
regularization parameter on s − s0.

In some cases, further effects such as relaxation or field inhomogeneities become
relevant, a more appropriate forward model is then given by

f(t) =
∫
Ω

u(x)s(x)eiω(x)te−R
∗
2 (x)te−2πik(t)·x dx , (4.68)

where R∗2 is a relaxation time andωmodels the local field inhomogeneity. Potential
candidates for the parameter p are the coil sensitivities ([96]), the field inhomogene-
ity ([92]), and the relaxation time ([76]). So far, there exist few, rather practical, ap-
proaches to the solution of these nonlinear underdetermined inverse problems. A de-
tailed analysis highlighting the potential and limitations of the joint reconstruction is
an important future task.

5.3 Attenuation correction in SPECT

As mentioned in Section 2.3, SPECT imaging has a challenging structure with respect
to attenuation. The forward operator is of the form

(Ku)(z, θ) =
∫

L(z,θ)

e−
∫
Lx(z,θ) ρ(y)dyu(x)dx , (4.69)

where by L(z, θ), we denote the line starting at z in direction θ and by Lx(z, θ),
the line segment between z andx. Note that the tracer densityu is different from the
(scaled) physical density ρ, and thus the latter is usually determined by an X-ray scan
before the SPECTmeasurement.

In several instances, e.g. in the case of patient movement or dynamic imaging of
moving objects, the attenuation determined initially does not remain valid. Thus, it
becomes necessary to reconstruct the attenuation density ρ together with u, i.e. the
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inverse problem becomes nonlinear and of the form (4.62) with ρ = p. The additional
degrees of freedom do not necessarily lead to an underdetermined problem since the
original SPECT data set from all directions indeed overdetermines u. However, the
solution of the problem remains challenging from a theoretical perspective ([6, 84])
as well as from a computational point of view. For the latter, various iterative tech-
niques have been investigated ([79]), the most natural being of course an alternating
minimization technique of a functional like (4.64).

A different approach is to partly use the previously measured function ρ and in-
stead measure the deformation that appeared before the PET scan. Thus, the param-
eter p is a vectorial quantity, with a strong prior of p being close to the identity. The
forward model thus becomes

[K(p)u](z, θ) =
∫

L(z,θ)

e−
∫
Lx(z,θ) ρ(p(y))dyu(x)dx , (4.70)

with ρ given. Already with simple parameterizations, one can obtain significant im-
provements ([102]). With advanced techniques of nonlinear image registration ([67]),
further steps have been made recently ([8]).

5.4 Blind spectral unmixing

With the recent advances in multi- and hyperspectral imaging, the unmixing of spec-
tral signals into basic components has received increasing attention. Blind spectral
unmixing is a classical problem in audio applications. Some striking examples are
the decomposition of party talk into single person statements and the decomposition
of an orchestra recording into the different instruments. In the imaging context, one
usually seeks a decomposition of the spectrum into spectra of basic materials to ob-
tain a good characterization of the content of a certain region.

In discrete modeling, the spectral image is a matrix F ∈ RN×M , where N is the
number of pixels (or voxels) and M is the number of spectral points. The spectral
unmixing looks for a coefficient matrix U ∈ RN×K, where Uij is the coefficient with
respect to the j-th spectral basis function in pixel i. By collecting the basis spectra in
a matrix B ∈ RK×M , one thus has to solve the matrix equation

UB = F. (4.71)

While B is given in the classical unmixing problem, it is an unknown itself in the
blind unmixing or blind separation problem. Since the data F as well as U and B
have naturally nonnegative elements, solving (4.71) can also be cast in the framework
of nonnegative matrix factorization. In the above framework, we have u = U , p = B
and K(p) being the multiplication operator. One also observes the relation to blind
deconvolution problems, whose discrete version is a special form of blind unmixing
with B restricted to the class of Toeplitz matrices.
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A particular property in hyperspectral imaging is a spatial correlation between
the pixels which can be modeled in the regularization in order to decrease the
nonuniqueness in unmixing. With the popular TV prior, this naturally leads to

‖UB − F‖2 +α
∑
j
TV(U·j)+ β

∑
i
R(Ui·)+ γS(B) , (4.72)

where U·j denotes the j-th column and Ui· the i-th row of U . Moreover, TV denotes
the total variation of a discrete image, the functional R is a local prior in each pixel,
e.g. the �1-norm to enforce sparsity with respect to the basis, and S is a functional
that models specific prior knowledge on the basis elements, e.g. an �1-type norm to
enforce sparsity in a certain basis.

So far, most of the analysis of blind unmixing is carried out in finite dimension,
thus rather for ill-conditioned than ill-posed inverse problems. However, with increas-
ing spatial and spectral resolution of imaging devices, it becomes interesting to study
the asymptotics of unmixing problems as N and K tend to infinity (independently or
in appropriate relative scaling). Useful reconstruction approaches and algorithms cer-
tainly should be characterized by a robust behavior with respect to the asymptotics.
Such modeling of the asymptotics and different spatial resolution is also relevant if
hybrid imaging is used. In several cases, the hyperspectral data are acquired with low
spatial resolution at the same time as a conventional color image at high spatial reso-
lution. The superresolution in the hyperspectral image based on the correlation with
the color image is a challenging inverse problems; we refer to [69] for further details.

In addition to the pure unmixing, an interesting inverse problem is to study joint
image reconstruction and unmixing. With a forward operator acting on the pixel di-
mension, the problem becomes

AUB = F, (4.73)

with a given matrixA.

6 Model-based dynamic imaging
An ultimate goal in a variety of modern imaging approaches is to obtain (quantita-
tive) information about dynamics instead of only still images. Roughly speaking, this
means that instead of a single image u, a whole sequence u(t) for varying time t
needs to be reconstructed and its dynamics needs to be analyzed. The inverse prob-
lem of reconstructing dynamic images can usually be formulated as

Ku(t) = f(t), t ∈ [0, T ] (4.74)

since the forward operator is hardly changingwith the dynamics. In several instances,
the time resolution is so low that it seemsmore appropriate to consider a time discrete
model

Ku(ti) = f(ti), i = 1, . . . ,M . (4.75)
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It is obvious from the fact that K does not depend on time that the image recon-
struction problem can be split into several stationary reconstruction steps at differ-
ent times, making all standard methods applicable. However, important information
is lost this way. In general, the images u(t) and consequently also the data f(t)
are strongly correlated in time since they are typically generated by a smooth time
evolution rather than arbitrary changes. One way to incorporate this kind of prior
information is to use regularization functionals that penalize large changes in time.
Frequently used examples (mainly due to their simplicity) are

R(u) =
T∫
0

R0
(
u(t)

)
dt + 1

2

T∫
0

‖∂tu(t)‖2 dt , (4.76)

where R0 is a regularization functional in space, respectively

R(u) =
M∑
i=1

R0
(
u(ti)

)+ 1
2

M−1∑
i=1

‖u(ti+1)−u(ti)‖2 . (4.77)

Besides such all-purpose approaches, a different paradigm taking into account the
mathematical modeling of the underlying dynamics has evolved. The correlation is
guaranteed by using ODE (ordinary differential equation) or PDE (partial differential
equation) models appropriately describing the dynamics, usually with unknown pa-
rameter functions to be reconstructed. The image sequence is obtained implicitly by
solving the forwardmodel with reconstructed parameters. Since either good priors for
those parameter functions exist or they are of lower dimensionality (e.g. independent
of time), thus making the inversion overdetermined, improved reconstructions can be
gained from such approaches. The main bottlenecks are the mathematical difficulty
and computational challenges compared to separate reconstructions at different time
steps. Instead of reconstructing a series of images from a linear stationary forward
problem, one now has to identify parameters in nonlinear time-dependent differen-
tial equations, which, as a further complication to well-known parameter identifica-
tion problems, have to be combined with the forward operator of the imaging system.
For these reasons, the majority of such approaches, with some exceptions for reason-
ably simple forward problems, are rather at the level of basic mathematical research,
but they have high potential to lead to practical advances.

6.1 Kinetic models

Kinetic models are used to model biochemical effects or also as coarse descriptions
of the diffusion and exchange of blood traced in examinations with emission tomog-
raphy ([103]). The majority of such models uses first-order kinetics, i.e. the dynamics
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of the image is given by

u(x, t) =
k∑
j=1

ωj
(
x,P(x)

)
uj(x, t)+ω0

(
x,P(x)

)
I(t), (4.78)

where ω0 andωj are weights modeling the fraction of the components in different
subregions. Here, the vector U = (uj) of different states follows an ODE system of
the form

∂tU(x, t) = A
(
x, P(x)

)
U(x, t)+ B(x,P(x))I(t), (4.79)

where P is the vector of unknown parameters, A and B are matrices in Rk×k depend-
ing linearly on P , and I is a vector of input functions, which we assume to be given
here (in practice, they are sometimes estimated from data first, which is a different
issue).

A simple example is the one-compartment model for perfusion used in positron
emission tomography (PET) with radioactive water (H2

15O), that is, a tracer which
follows the blood flow. The tracer activity in the heart, which is the image in PET, can
be written as

u(x, t) =ω0(x)I0(t)+ω1(x)u1(x, t) , (4.80)

with a concentration of the tracer in tissue u1 and the (homogeneous) arterial con-
centration I0. The weightsω0 andω1 correspond to the respective volume fractions
of arteries and tissues and can be written as

ω0(x) = χ(x)p3(x), ω1(x) = χ(x)
(
1− p3(x)

)
(4.81)

where χ is an indicator function of the heart, namely, the region containing blood,
which we again consider as given. The ODE system describing the dynamics is given
by

∂tu1(x, t) = −p1(x)u1(x, t)+ p2(x)I(t). (4.82)

The model-based inversion now looks for the parameter vector P = (p1, p2, p3) re-
lated to the perfusion of tissue (in ml blood per second per ml tissue) and the tissue
fraction using the above model equations. In this case, the parameters themselves
are more interesting than the image sequence anyway. The current state of the art is
to first reconstruct the image sequenceu(t) and then extract parameters in regions of
interest in order to obtain a quantitative analysis of perfusion. Due to the inherently
high noise in time-resolved PET, the reconstructed images are of rather low quality,
which limits the success of subsequent parameter estimation, in particular the spa-
tial resolution. By directly inverting for the parameters ([12]), one obtains significantly
less degrees of freedom than by inverting for the image sequence, which allows one
to increase the spatial resolution. Let us also mention that the above time-continuous
modeling seems appropriate for data acquisition in a list-mode format, i.e. for all de-
cay events, the exact time is recorded and saved such that the data can be interpreted
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as a Poisson sampling from the time-continuous forward projected image sequence.
If one works with rebinned and gated data, the discrete modeling in time is more ap-
propriate. One only obtains information about K time intervals, and the model of the
image at time ti instead becomes

u(x, ti) =
ti∫
ti−1

(
ω0(x)I(t)+ω1(x)u1(x, t)

)
dt . (4.83)

Similar problems arise in dynamic SPECT and MR ([3, 50]).
At a first glance, it is natural to solve for the parameters in (4.74), (4.78), (4.79) in

the framework of a nonlinear parameter identification problem. On the other hand,
using prior information for possible values of P , it is often possible to partially dis-
cretize the parameters, and since (4.79) is usually a simple system of linear ODEs,
it allows for explicit solutions in many cases. Using these explicit solutions for a dis-
crete set of parameters is the basis to rewrite the identification as a basis pursuit prob-
lem, which we discuss as an alternative approach in Section 6.3.

6.2 Parameter identification

The variational formulation of the nonlinear inversion as a parameter identification
problem is rather straightforward. In the case of noisy data, we can minimize a com-
bination of the log-likelihood with regularization functionals R acting on the param-
eters P , i.e.

λ
T∫
0

L
(
f(t)|Ku(t))dt + R(P) (4.84)

subject to (4.78), (4.79). Standard priors for the parameters again lead to spatial
smoothness, possibly with edges, such that Dirichlet energies or total variation are
useful choices. Several authors have used such approaches in studies in emission to-
mography ([13, 58, 105]) and the numerical results confirm significant improvements
in results.

The two major questions related to analysis and numerical solution are the fol-
lowing:
• Analysis: Provide estimates (in dependence on the noise level) confirming and

quantifying the gain of quality in reconstructions when using the nonlinear in-
version scheme instead of linear reconstructions ofuwith subsequent parameter
estimation in every point x.

• Numerical Solution: Construct numerical schemes to solve the inverse problem
efficiently in three spatial and one time dimension.
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So far, the first issue is completely open. Although several approaches to error
estimation for regularization methods for nonlinear inverse problems exist, the ap-
plication to the above problem is not straightforward due to the combination of the
spatial operator K and the time dynamics. However, an even more severe issue is the
comparison to the simpler approach of first reconstructing an image sequence and
then estimating parameters for which no advanced concepts in inverse problems are
available. The study of such questions, possibly also combined with statistical noise
models as in emission tomography, is highly relevant for future research however.

With respect to the efficient numerical solution, further advance has been made
recently. In designing computational algorithms, several goals and also limitations
have to be taken into account. First of all, the operator K, respectively its discretiza-
tion as a matrix, is rather complex and can usually neither be stored nor inverted effi-
ciently. Thus, an algorithm for solving the inverse problem should be basedmainly on
the application of K and its adjointK∗ instead of solving large linear systems includ-
ing K. Secondly, the problem dimension will be huge if space- and time-dependence
are taken into account simultaneously. Thus, it seems more appropriate to use split-
ting algorithms which can iterate in an alternating way between an image reconstruc-
tion and a parameter identification step. A further complication can arise due to the
spatial regularization on the parameters which additionally couples the parameter
estimation step and might enforce further splitting.

In order to highlight the structure and couplings, let us derive the first-order opti-
mality conditions for the inverse problem in a constrained formulation. Thus, we look
for saddle points of the Lagrangian

L(u,U, P ;v,w) = λ
T∫
0

L(f(t)|Ku(t)) dt + R(P)

+
T∫
0

∫
Ω

⎛⎝u(x, t)− K∑
j=1

ωj(x, P(x))uj(x, t)

+ω0(x, P(x))I(t)

⎞⎠v(x, t)dx dt
+
T∫
0

∫
Ω

(∂tU(x, t)−A(x, P(x))U(x, t)

+ B(x, P(x))I(t)) ·w(x, t)dx dt .

 EBSCOhost - printed on 2/10/2023 4:36 PM via . All use subject to https://www.ebsco.com/terms-of-use



170 Martin Burger, Hendrik Dirks and Jahn Müller

First-order optimality is given by vanishing first derivatives of the Lagrangian, i.e.

0 = ∂uL = K∗∂KuL
(
f(t)|Ku(t)) + v(t)

0 = ∂UL = −ωv − ∂tw +Aw

0 = ∂PL = −
T∫
0

⎛⎝ K∑
j=1

(∂Pωjuj + ∂Pω0I)v + (∂PA U − ∂PBI) ·w
⎞⎠ dt +R′(P) ,

whereω = (ω1(x, P(x)), . . . ,ωK(x, P(x))) is the vector of weights. One observes
that the way we introduced constraints naturally separates the image reconstruction
and the parameter identification steps: The optimality with respect to u can be con-
sidered as an image reconstruction problem for u at each time step t. The forward
equation for U together with the adjoint equation arising from the optimality with re-
spect to U and the optimality with respect to P constitute a parameter identification
for an ordinary differential equation in a Banach space. Thus, in algorithms, it is nat-
ural to split these two subproblems, e.g. by Augmented Lagrangianmethods (ADDM).
If done appropriately, this usually permits one to use available methods for static im-
age reconstruction at each time step in the first part. For the parameter identification,
one observes that all parts, except potentially R′(P), are purely local on each pixel,
and hence one obtains systems of decoupled ODEs in each pixel, which can be solved
efficiently andparallelized in a trivialway. IfR′ is local, like forLp-penalties, then one
directly obtains algorithms with reasonable efficiency this way. If R′ is a differential
operator in space, like in regularization with total variation or Sobolev norms, then
a further splitting based on doubling the parameter, i.e. a novel constraint Q = P
seems reasonable. If the splitting is performed such that P appears in R′(P), but the
coupling to the U andw is viaQ, one again obtains efficient algorithms, leaving the
ODEs local in space.

6.3 Basis pursuit

As an alternative approach that receives increasing attention in emission tomography,
we consider a basis pursuit solution which we discuss for simplicity in the special
case of the single compartment model (4.82), which we rewrite for simpler notation
as

∂tv(x, t) = −a(x)v(x, t)+ b(x)I(t) , (4.85)

subject to initial conditions v(x,0) = 0 (usually modeling injection of the tracer at
time 0) and overall concentration given by

u(x, t) = c(x)v(x, t)+ (1− c(x))I(t) . (4.86)
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The differential equation can be solved easily, yielding

u(x, t) = c(x)b(x)
t∫

0

ea(x)(s−t)I(s)ds + (1− c(x))I(t) . (4.87)

Now, a further key step is to discretize the parameter a into a set of possible values
a1, . . . , aN ∈ R+. Thus, we can write the image as

u(x, t) =
N∑
j=0

αj(x)ϕj(t), (4.88)

with unknown coefficients αj(x) and time basis functions

ϕ0(t) = I(t), ϕj(t) =
t∫

0

eaj(s−t)I(s) ds , (4.89)

which can be precomputed. We need to keep in mind, however, that (4.88) is equiva-
lent to the previous form only if the following conditions are met for each x ∈ Ω:

αj(x) ≥ 0, α0(x) < 1 ‖(α1, . . . , αN)‖l0 = 1 . (4.90)

If these conditions are met, we can reconstruct the parameters in the original model
via

a(x) = aJ(x) b(x) = αJ(x)
1−α0(x)

c(x) = 1−α0(x) , (4.91)

where J(x) is the index such that αJ(x) ≠ 0.
A particularly attractive feature of the basis pursuit formulation is that the for-

ward model is now linear and has some separation of spatial and temporal features,
i.e.

f(t) =
N∑
j=0

(Kαj)ϕj(t). (4.92)

The major challenges – as usual in basis pursuit – come from the sparsity constraint
in (4.90). One heuristic approach is to ignore the constraint and consider nonsparse
decompositions or subsequent thresholding (cf., e.g. [80]). For low data quality, one
however loses the disadvantages of the modeling approach and the reconstructions
can become rather arbitrary. An alternative is to investigate convex relaxations, as
frequently used in compressed sensing. This means that the sparsity constraint is
usually formulated as a penalty (respectively regularization) and then relaxed from
the nonconvex �0 to the convex �1-norm. The case of coefficient vectors with only one
nonzero entry is usually the easiest one to deal with in compressed sensing. Exact
reconstruction is possible, even with some data noise if the basis functions ϕj are
normalized in a Hilbert space scalar product ([51]), which is easy to achieve (e.g. by
redefining the coefficients).
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Unfortunately the latter argument does not apply directly to the inverse problem
in (4.92) since one has to solve many inverse problems with sparsity constraints for
every x, which are coupled by the operator K. The appropriate sparsity prior is thus
of the form

‖α‖∞,0 = sup
x∈Ω

‖α(x)‖�0 , (4.93)

where α(x) is the vector of coefficients. A convex relaxation is given by

‖α‖∞,1 = sup
x∈Ω

‖α(x)‖�1 , (4.94)

which motivates one to further study problems of the form

λ
T∫
0

L(f |Ku) dt + ‖α‖∞,1 , (4.95)

subject to (4.88).

6.4 Motion and deformation models

A particularly important process in many applications is motion, and thus also its
modeling receives growing attention in image reconstruction. There are two main as-
pects of motion in imaging: It can either simply cause disturbances of the images,
e.g. as motion blur or by motion of the imaged subject between two time frames, or it
can be the process of interest itself, e.g. in quantifying flow behavior. In any case, it
is important to use appropriate models for motion, namely, deformations introduced
by them. Using motion models, the problem is related to classical motion estimation
in image sequences, e.g. via the celebrated optical flow ([5, 54]). Using deformation
models between different time frames is related to image registration or fusion ([67]).

Let us start with motion models corresponding to flow dynamics. If the image is
modeled via its evolving density in three spatial dimensions (e.g. tracers in fluores-
cence microscopy, emission tomography, or MR), then it is appropriately modeled via
the transport equation

∂tu+∇ · (Vu) = 0 (4.96)

in Ω × [0, T ], where V is a velocity vector field to be determined. We mention that
in the case of an incompressible substance, the standard relation ∇ · V = 0 holds,
which reduces the degrees of freedom.

A variational reconstruction scheme including the motion model is then of the
form

λ
T∫
0

D
(
Ku(t), f(t)

)
dt +

T∫
0

R
(
u(t), V(t)

)
dt → min

(u,V)
, (4.97)
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subject to (4.96), where R is a regularization functional for density and velocity. Such
a formulation is related to several classical problems, e.g. the fluid-dynamic formula-
tion of optimal transport ([9]) or optimal control formulations of optical flow ([18, 75])
in the incompressible case. At first glance, the use of (4.96) seems an unnecessary
complication in the problem since it increases the degrees of freedom from a scalar
function to a vector field and it makes the overall reconstruction nonlinear due to the
bilinear constraint in u and V . However, the transport formulation yields important
advantages: First of all, the correlation between different time steps is appropriately
modeled and using regularization functionals that prevent overly large velocities, it
is possible to coherently follow the motion. Moreover, by determining u and V , one
obtains a quantification of the flow together with the image reconstruction.

In [17], a reconstruction approach using optimal transport regularizers has been
developed using

R(u,V) = |V |2
2u

+

⎛⎜⎝∫
Ω

|∇u|p
⎞⎟⎠
q

, (4.98)

with particular focus on the total variation case p = 1. For pq > 1, the existence of
a minimizer can be shown and the minimization is convex for standard choices of L.

An alternative to flowmodels are deformationmodels which rather correspond to
the usual Lagrangian approach in solidmechanics. In this case, we use a deformation
y : Ω× [0, T ] → R3 instead of the velocity field V and obtain a solution of (4.96) as

u(x, t) = u0
(
y(x, t)

)
det

(∇y(x, t)) , (4.99)

whereu0 = u(x,0) is the initial value. The variational reconstruction scheme in this
case can be formulated as

λ
T∫
0

D
(
Ku(t), f(t)

)
dt +

T∫
0

R
(
u(t), y(t)

)
dt → min

(u,y)
(4.100)

with u given by (4.99). Since u is given by an explicit formula in terms of u0 and y,
the minimization can be carried out with respect to the latter two variables. Such
an approach was taken by [65] for PET. We also refer to [91] for a recent study with
hyperelastic regularization of the deformation.

Note that themain difference in the properties ofminimizers in the Eulerian (4.97)
and Lagrangian (4.100) approaches comes from the way regularization and thus pri-
or knowledge is introduced. In the Eulerian approach, velocities are penalized over
time, and hence the goal is an efficient flow as in fluids. In the Lagrangian approach,
deformations are penalized, e.g. by elastic or hyperelastic energies, which rather cor-
respond to typical situations in solids.
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6.5 Advanced PDE models

So far, advanced fluid models like Navier–Stokes equations for fluids or reaction-dif-
fusion systems are rarely used. Although, in several cases, advancedmodels are avail-
able. The reasons for not using such models in imaging are twofold: First of all, the
computational complexity of inverse problems strongly increases with the complexi-
ty of the forward models and it is often not clear if the results can be so significantly
improved that it justifies a strong increase in computation time. The second reason
is that including more complex models also potentially increases the model uncer-
tainty. The reason is that with each new model part, additional parameters and mod-
eling assumptions are introduced. Take, as a simple example, the quantification of
intracellular fluid flow from 4D fluorescence microscopy data. Standard flow estima-
tion algorithms simply use the transport equation for the density of the fluorescence
tracer with some regularization on the velocity field. One could, however, use the in-
compressible Stokes model for the fluid flow and estimate the force field, for which
good prior knowledge is available. However, using this advanced model, one needs
a further assumption of incompressibility and introduces the viscosity as a further
uncertain parameter, and hence the overall uncertainty of the forward model is in-
creased.

Besides these issues, there is still growing interest in using advanced PDEmodels
in several fields of image reconstruction and analysis (cf., e.g. [45, 52, 53]), and a large
amount of research in this direction is to be expected in the next years.
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The lost honor of �2-based regularization
Abstract: In the past two decades, regularization methods based on the �1 norm, in-
cluding sparse wavelet representations and total variation, have become immensely
popular. So much so, that we were led to consider the question whether �1-based
techniques ought to altogether replace the simpler, faster and better known �2-based
alternatives as the default approach to regularization techniques.

The occasionally tremendous advances of �1-based techniques are not in doubt.
However, such techniques also have their limitations. This article explores advan-
tages and disadvantages compared to �2-based techniques using several practical
case studies. Taking into account the considerable added hardship in calculating so-
lutions of the resulting computational problems, �1-based techniquesmust offer sub-
stantial advantages to be worthwhile. In this light, our results suggest that in many
applications, though not all, �2-based recovery may still be preferred.
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1 Introduction
Ill-posed problems typically require some regularization in order to compute a credi-
ble approximate solution in a stable, well-definedmanner. In this article, we consider
such problems where the objective is to recover a function u(x), with x ∈ Ω ⊂ IRd

(typically d = 2 or d = 3), from observed and discrete data b. Given is a forward
operator, F(u), which predicts data for any suitable function u, and the challenge is
to findu such that the predicted data match the observed data to within a reasonable
tolerance.
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It is convenient for our discussion at this point to consider a linear forward oper-
ator, with u discretized on some mesh inΩ and reshaped as a vector of unknowns u,
and with the observed and predicted data likewise written as b and F(u) = Ju, re-
spectively. Here, J is anm×n sensitivity matrix,m ≤ n, which often has a nontrivial
null space. Then, we write down the Tikhonov-type regularized problem [25, 60, 61]

min
u

1
2
‖Ju− b‖2

2 + βR(u) , (5.1)

where ‖ · ‖p denotes the usual vector �p norm, β > 0 is a parameter, and R is a regu-
larization operator. We focus on the following possibilities for R:
(1) Consider

R(u) = 1
p
‖Wu‖pp , (5.2)

for the choicesp = 1 (referred to as L1) orp = 2 (referred to as L2). Here,W is ann×n
weight matrix, e.g. somewavelet or curvelet transform, or just the identity [10, 24, 33].
For notational purposes, we stipulate thatW is not a discretized gradient operator.1
(2) Recalling that u represents a discretization of a functionu(x) onΩ, chooseR(u)
to be an appropriate discretization of

R(u) = 1
p

∫
Ω

|∇u|p , (5.3)

again considering the cases p = 2 or p = 1. The case p = 2 leads to a discretization
of the Laplacian operator on Ω when considering necessary conditions for the min-
imization (5.1): denote this by L2G. The case p = 1 leads to total variation [51, 53]:
denote this by L1G.2

For many years, the almost automatic choices of regularization in (5.2) and (5.3)
have been based on the �2-norm, i.e. p = 2. This yields a straightforward linear least
squares problem that can be effectively solved even when the problem is very large
(see, e.g. [32, 55]). Large computational problems are manageable even if F is nonlin-
ear inu, andR is more complex but still �2-based (see, e.g. [16, 17, 29]). Furthermore,
the �2-based regularization enjoys a favorable statistical interpretation for models

1 Of course, wavelet function bases do approximate derivatives as well. For instance, our distinction
as such is particularly blurred by tight frame wavelets [7]. However, the distinction of L1 from L1G
should be intuitively clear. Note also that one can always transform L1 and L2 by a change of vari-
ables into a form where W becomes the identity. However, we retain our notational redundancy for
convenience.
2 Note that the gradient magnitude |∇u| is the �2 norm of ∇u. Thus, the L1G expression is one of
a discrete �1 norm only if d = 1. Also, a further regularization is required when using L1G upon
considering necessary conditions for (5.1); see, e.g. [1].
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with a prior that is normally distributed [8, 41, 58, 61]. In the past two decades, how-
ever, regularization methods based on the �1-norm (i.e. p = 1 in (5.2) and (5.3)) have
become immensely popular; see, e.g. the books [24, 46, 51]. In fact, we have been led
to consider the idea that �1-based techniques should altogether replace the simpler,
faster and better known �2-based alternatives. There are two essential motivations for
this exciting trend.
• It is natural to choose for the regularization term a penalty function as in (5.3),
thus expressing the a priori information that u(x) ought to be smooth. However, if
u(x) has jump discontinuities, then using L2G essentially smears out such disconti-
nuities because the Dirac δ-function is not square integrable. On the other hand, the
δ-function is integrable, and thus using L1G better accommodates jump discontinu-
ities.
• Whether the term R is aimed at penalizing the magnitude of the gradient or the
solution itself, the �1-based regularization tends to produce sparse approximations.
In the L1G context, this is expressed in the observation that the reconstruction tends
toward being piecewise constant, so the gradient is mostly zero and thus sparse. In
the L1 wavelet (or DCT) approximation context, whereWu in (5.2) corresponds to coef-
ficients of different wavelet (or cosine) basis functions, a compressed approximation
involving only a few basis functions often results (unlike the case when using p = 2).

The rather fundamental importance of the above two reasons for using p = 1 is
not in doubt. Among many other researchers, we have contributed to this volume
of work [1, 30, 36]. We have found that for well-conditioned problems with suffi-
cient high-quality data,3 �1-based regularization can, in many cases, “deliver on its
promise.” However, for problems with poor data, or ill-conditioned problems typi-
cally resulting from discretizations of highly ill-posed problems, we have found that
this is often not the case. To demonstrate and motivate the ensuing discussion, let us
consider the following example.

Example 5.1 (Image Deblurring). Let J be a discretization of a known image blurring
operator and u be an image reshaped into a vector. Our goal is to recover the clean im-
age given noisy blurred data. For the following numerical experiments, we have used
three codes: (i) RestoreTools [33], which employs an L2-type recovery strategy (viz.
p = 2 andW = I in (5.2)); (ii) the GPSR package [26], which employs a wavelet L1 re-
covery algorithm; and (iii) a straightforward total variation (L1G) code. The above two
packages, in our opinion, are both excellent representations of good software for the
problems they aim to solve. However, the L2 code requires, comparatively speaking,

3 We further explain in Section 3 what we mean by the intuitive terms “high-quality” versus “poor”
data.
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Figure 5.1: The ground truth image (a) is blurred and corrupted by noise to create the data (b).
Recovered solutions obtained for this data by RestoreTools (L2), GPSR (L1) and total variation (L1G)
are displayed in (c–e), respectively.

only a small fraction of computational time to terminate successfully, and hence it is
to be preferred unless the L1 reconstructions are demonstrably better.

The “true image,” or ground truth is a 128×128MRI image fromMatlab’s collec-
tion. The blurring kernel is e−‖x‖2

2/2σ with σ = 0.01 and the blurred data is further
corrupted by 1 %white noise. In all three methods, the data is fit to an accuracy of 1 %

by tuning the regularization parameter β (see, e.g. [61]). The results are presented in
Figure 5.1.

It is apparent that, at least for this problem, the �1-based reconstructions do not
yield more pleasing results than the simple �2-based one. The L1G image is typically
blocky, and in the present context, itmay be considered the worst of the three: indeed,
sparsity of the surface gradient is not a good regularization objective here. The first
two recoveries are more comparable in terms of quality. In fact, it may be argued that
the L2 result is altogether better than the �1-based ones.

Image deblurring is a favorite application in the literature for discussing and com-
paring both L1 and L1G techniques. Indeed, in many such examples, �1-based regu-
larization is to be preferred (see, e.g. [11, 24, 36]). However, Example 5.1 is by nomeans
esoteric. Furthermore, similar comparative observations arise when working on cer-
tain nonlinear ill-posed problems such as electrical impedance tomography (EIT) and
direct current (DC) resistivity [1]; we return to this in Section 4.
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The goals of this paper are therefore to explore, bearing in mind the occasion-
ally impressive advances of �1-based regularization techniques, also some of their
limitations. Taking into account the often considerable added hardship in calculat-
ing solutions of the resulting computational problems, �1-based techniques must of-
fer substantial advantages to be worthwhile. In this light, our results suggest that in
many applications, �2-based recovery may be preferred. To this end, we provide the
following cautionary notes:
(1) Only the left term in the objective function of (5.1) is really mandated by the stat-

ed data fitting problem. The choice of regularization is discretionary: different
choices may generally yield different solutions that as such must all be consid-
ered acceptable. The further specification of regularization reflects a prior which
depends on additional knowledge that may or may not be truly available.

(2) It is not true that one must always seek a sparse approximate solution, especially
if an appropriate basis to span the solution is not known.

(3) Codes such as those reported in [3, 4, 26, 42], which perform well when applied
in the context of using wavelets for denoising or deblurring, may occasionally
perform relatively poorly when applied in a wider context.

(4) In our experience, if the data is not of sufficiently high quality, in the sense that
there is too much noise, then �1-based methods may occasionally perform worse
than the corresponding �2-based methods.

(5) If the data is not of sufficiently high-quality, in the sense that it is too sparse
or rare, then �1-based methods may occasionally perform worse than the cor-
responding �2-based methods.

(6) If the computational problem is highly ill-conditioned, then �1-based methods
may occasionally perform worse than the corresponding �2-based methods.

In this paper, we explore examples, or case studies, which demonstrate the
claims above and explain when �2-based methods merit prime consideration. Some
analysis is also provided. We group our discussion into two classes: problems with
poor data, considered in Section 3, and highly ill-conditioned problems, considered
in Section 4. The latter section is far longer and more involved than the others, and
Theorem 5.4, as well as the analysis in Section 4.1, are new. Before these, Section 2
provides a quick review of �1-based regularization. We review the theory and the
requisite assumptions necessary for �1-based recovery to perform well.

Finally, we summarize the paper in Section 5.

2 �1-based regularization
Several books, e.g. [11, 24, 46, 51, 56], contain descriptions of �1-based regularization
methods in the context mentioned earlier, and it is not our intention to reproduce
them here. We only touch upon a few items. For early efforts in geophysics and data
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assimilation, see [14, 59]. For advanced uses of such methods in machine learning,
see, e.g. [47, 49].

In the context of a discrete cosine or a wavelet-type transform, the problem (5.1)
may be viewed as a noisy version of the problem

min
u
R(u) , (5.4a)

s.t. Ju = b , (5.4b)

where J has a full row rankm< n. Note that this can be a well-conditioned problem
for both choices of p in (5.2). For L1 (i.e. p = 1 in (5.2)), problem (5.4) can be cast as
a linear programming problem, and linear programming theory already guarantees
that there is an optimal basic feasible solution which ism-sparse (i.e. with only at
mostm nonzero components) [50, 62]. In contrast, when using L2, all components of
the optimal u are typically nonzero.

This has been well known since at least the 1960s. Moreover, though, since the
above transforms utilize elaborate basis functions, it is reasonable to expect that
much fewer than m basis functions may suffice, corresponding to a much sparser
solution. The discovery [13, 20, 22] that using L1 often yields such a sparse solution,
effectively solving a very hard combinatorial problem, is much newer and constitutes
a major breakthrough.

However, it is not always the case that the solution of the constrained optimiza-
tion problem using the �1 norm yields a sparse solution. Furthermore, for (5.1) in
general, it does not automatically follow that if such a sparse solution exists, it is
an appropriate estimate of the true solution, see [19] and Section 4.1.

Much effort has been devoted to the question, namely, under what conditions the
�1 solution of (5.4) produces the sparsest possible solution of (5.4b), referred to as the
�0 solution. Of course, a more practical goal would probably be to seek a “sufficient-
ly sparse” solution, but the quest for optimum in this regard sheds light on what is
required more generally. The restricted isometry property (RIP) [9] and the null space
property of [15, 21] both provide sufficient conditions, whereas the γ-condition of [40]
is both necessary and sufficient for obtaining the sparsest solution by L1.

These conditions are of great value for understanding the design of compressed
sensing methods. Unfortunately, though, for realistic instances of the matrix J, they
are generally intractable (NP-hard) to verify numerically. Moreover, in Section 4.1, we
show that such conditions are violated for a specific case of the inverse potential prob-
lem when attempting to recover a pair of point charges by �1-based methods.

The vector norm function ‖ · ‖p is well known to be convex only when p ≥ 1.
Thus, �1 is marginally convex. Even more sparsity-inducing is the use of a noncon-
vex norm with 0 < p < 1 [12, 44, 54]. However, there is a price to pay for lack of
convexity, in terms of both poorer theory and the necessity of convergent algorithms
which typically apply a continuation (homotopy) procedure starting from a convex
�p-norm.
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Several famous codes cited earlier for solving (5.4) use methods that are based
on gradient projection with acceleration (see, for instance, the extended Chapter 6
of [5] and references therein). The advantage of these methods is that they extend
directly to problems with nonsmooth constraints and require the objective function
gradient to be only Lipschitz continuous. However, bear in mind that for solving sim-
ple unconstrained convex quadratic problems, such methods boil down to acceler-
ated gradient descent without preconditioning, generally thought to be unforgivably
slow. These methods seem to work well for compressed sensing problems because the
corresponding problems (5.4) are well-conditioned in an appropriate sense. Unfortu-
nately, other applications involving, for instance, PDE-constrained optimization (as
in Section 4), are highly ill-conditioned and therefore, similar numerical optimiza-
tion methods should not be expected to be robust and efficient in the latter context.

Total variation (L1G) has been discovered and peaked earlier than sparse wavelet
basis reconstruction and compressed sensing. The books [11, 51, 61] and many papers
develop both theory and algorithms using this approach. In practice, some regular-
ization such as a Huber switching function [56] is often used, and this really gives
a mix of �1 with �2 elements while still retaining the L1G spirit [1]. See also [6] for
another approach to round excessive L1G sharpness. Moreover, one popular iterative
scheme to carry out the resulting algorithm is lagged diffusivity, which is a special
case of iteratively reweighted least squares (IRLS) [1, 61].

Unlike the case for wavelet-type solutions, where a sparse representation is
sought for the same high-quality surface or image approximation, here the regu-
larization is applied directly to the surface variables to be recovered. Along with the
advantage in directly penalizing piecewise smoothness, the tendency of the L1G reg-
ularization to give sparse gradients, translating into a “blocky image,” is not always
what one necessarily wants (see, e.g. Figure 5.1 (e)) L1G penalizes large jumps in the
solution more than small jumps, and this may introduce distortion in the reconstruct-
ed surface. Various nonconvex alternatives to L1G are listed in [56], for instance, and
these occasionally yield sharper results for some applications. However, the non-
convex nature of these regularizations again leads to both theoretical and practical
additional difficulties.

Our focus in this article is on exploring situations where use of the L1 or L1G reg-
ularization (p = 1 in (5.2), (5.3)) may reasonably be compared to use of L2 or L2G
(p = 2 in (5.2), (5.3)). Therefore, employing any of the even sharper nonconvex op-
tions mentioned above is not under further consideration.

The above synopsis has been restricted to linear problems. There is very little
�1 theory for nonlinear problems. Moreover, it is easy to see that some of the basic
sparsity arguments fail for this case. Consider the problem

min
u
‖u‖1

s.t. F(u) = b ,
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Figure 5.2: When the constraint (solid) is nonlinear, it does not need to intersect the level set of
‖u‖1 (dashed) at a vertex, so the solution is not necessarily sparse.

where the forward mapping function F : IRn → IRm is smooth and has significant
curvature (see Figure 5.2). In such a case, the problem need not even havem-sparse
solutions; indeed, the optimal solution may haven nonzero entries. Thus, the justifi-
cation of using L1 for nonlinear problems is far from obvious. On the other hand, L1G
is interesting because of its sharpening property. In Section 4.3, we explore the use of
L1G for a particular popular nonlinear case study.

3 Poor data
The perceived quality of a given data set depends on several factors, and not sim-
ply on some idealized noise level. One of these is the inverse problem operator. For
instance, in Example 5.1, the deblurring operation, which is essentially to improve
contrast and sharpness of the image, counters an image smoothing operation which
aims to remove noise. Thus, a noise level in the data which may otherwise be consid-
ered benign (say, in a pure denoising application) can be an important obstruction
here.

In the context of data fitting, it has been known for decades that �1 data fitting is
more robust than �2 against outliers in the data. See, for instance, [50] and also [45]
for a recent use in the context of 3D graphics. However, such a comparative statement
does not necessarily hold true for other types of noise such as white noise.

In general, bearing inmind the additional complications in carrying out �1-based
regularization, the data must be of sufficiently high-quality to allow its favorable
properties (when relevant) to be expressed. A common situation yielding lack of suf-
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ficiently good data is when the data is relatively rare, being given only at relatively
few locations inΩ. Let us next discuss a simple example where the data locations are
rare (or sparse) in the domain of the definition.

Example 5.2 (Rare data reconstruction of piecewise smooth functions). Consider the
recovery of a (real) signal u∗(t) on [0,1] fromm noisy samples ui ≈ u∗(ti), and
assumewe know thatu∗ is piecewise smooth, butmay have jump discontinuities. We
discretize the interval [0,1]with a uniform grid ofn = 512 points, and use in a given
experiment a subset ofm� n samples taken at random points tj from this grid. The
integral appearing in (5.3) is discretized using a piecewise linear function u(t) on
all n grid points. Thus, the recovery problem is formulated as in (5.1), with J being
them × n matrix consisting ofm columns forming an identity matrix interspersed
with n −m zero columns. In the limit case of no noise, the formulation (5.4) yields
interpolation through the data points (ti, ui) of the sample.

We compare L2G and L1G regularizations. It is easy to verify that in the L2G case,
these data points are connected by straight lines, whereas with L1G (total variation)
regularization, the behavior is indeterminate, only restricting u to be monotone.

Figures 5.3 and 5.4 depict reconstruction results form = 9 andm = 28 samples.
The ground truth signalu∗(t) contains two jumps, and we added 5 % Gaussian noise
to the selected values to form the corresponding data sets. Figure 5.3 shows the result
for 9 samples, with the regularization parameters tuned by the discrepancy principle
to obtain a data misfit of 5± 0.1 %. There is little difference between the L1G and L2G
reconstructions.

The reconstruction in Figure 5.4 (a) using 28 samples starts to show the advan-
tages of L1G. Because the data contains two samples across the right discontinuity,
the regularization parameter βL2G now had to be decreased to βL2G = .002 in order to
obtain the desired misfit of roughly 5 %. As a result, the L2G reconstruction exhibits
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Figure 5.3: Reconstructions of a piecewise smooth function from a few noisy samples: using L2G and
L1G form= 9 data pairs, with βL2G = 0.04, βL1G = 0.08.
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Figure 5.4: Reconstructions of a piecewise smooth function from a few noisy samples: using L2G and
L1G form= 28 data pairs. (a) βL2G = 0.002, βL1G = 0.08, (b) βL2G = 0.02, βL1G = 0.08

considerable oscillation in the flat sections, although note that the second jump is
reproduced as well as by the L1G method. In Figure 5.4 (b), we increased βL2G until
the flat sections became reasonably smooth according to the “eyeball norm.” Observe
that the oscillation has disappeared, but the second jump is now completely blurred
as well.

Example 5.2 illustrates that L1G regularization performs well when there is
enough quality data to require the reconstructed model to have discontinuities. How-
ever, when the data is “too sparse”, L2G regularization performs as well as L1G,
even in the presence of discontinuities in the underlying ground truth function. This
lesson seems perhaps obvious in hindsight. However, it extends to more complex
situations where the insight is no longer so obvious. For instance, the problems con-
sidered in Section 4 have data specified only at the boundary of a given physical
domain Ω, which is a lower-dimensional manifold; several examples can be found
in the literature where some L1G variant is applied to such problems. For another
instance, consider a point cloud in 3D, obtained as a set of somewhat noisy and not
very dense 3D laser scan measurements of a body with edges, such as a desk corner.
In order to obtain a good surface reconstruction, we need at each point the normal to
the surface that the (cleaned) point cloud represents [38]. Since the curvature across
an edge is infinite, the data can be effectively very sparse there, and indeed a global
�1-reconstruction approach [2] might not work well then See Figure 10 in [39] for
such an example. Poor data are often encountered in ocean and atmospheric data
assimilation, as well as in other time-dependent geophysical applications [23, 27].
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4 Large, highly ill-conditioned problems
In this section, we consider applying �1-based techniques to large, highly ill-condi-
tioned problems that typically arise in applications involving PDE-constrained opti-
mization. As a first example, we show in § 4.1 that L1 techniques may not only be
expensive to carry out, but also have difficulty in producing solutions which are as
sparse as a given ground truth. In § 4.2, we then supply some analytical evidence sup-
porting this observation. Finally, in § 4.3, we show by another example that while L1G
is not nearly as severely afflicted as L1, its advantage over L2G in recovering surface
discontinuities requires favorable conditions to shine through.

4.1 Inverse potential problem

In the inverse potential problem, one seeks to recover an electrical source distribution
in a given domain Ω from measurements of the potential on the domain’s boundary.
This problem arises in EEG source modeling [48] and in electromyography [18, 19]. In
[19], the sought source is a combination of discrete tripoles corresponding to muscle
fibers, and as such invites a sparse reconstruction. However, in 3D, the computational
problem using L1 indeed became much too large and difficult to work with, and our
eventual success in solving the research problem stated in [19] followed a further re-
alization that, given the specific goals of those computations, the sparse viewwas not
the most effective. This has left the question open regarding what an L1 reconstruc-
tion can do for such a problem (regardless of cost), a question that we now proceed to
explore in a more manageable 2D context, withΩ being the unit square.

The forward model
−Δv = u(x) , x ∈ Ω , (5.5)

with Neumann boundary conditions on v, predicts the potential v for given electrical
source u. The total charge must be zero due to these boundary conditions. Note that
v(x) is only determined up to an overall additive constant, reflecting the physical
principle that only a potential difference is physically meaningful.

The inverse problem of finding u from values of v on the boundary does not
have a unique solution, even under idealized conditions [35]. The best one can do is
construct an “equivalent source”u that explains the data. Such a reconstruction gives
incomplete, though still useful, information about the actual source. Hence, the role
of regularization is to provide additional information leading to a distribution u that
conforms to prior expectations, a rather fundamental difference from sparse signal
reconstruction. Denoting the discretized Poisson operator of (5.5) by A and the data
projection operator by Q (see [19] for details), we obtain a problem in the form (5.1)
with

J =QA−1 . (5.6)
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Figure 5.5: Reconstructions of a piecewise constant charge distribution from boundary data. (a) True,
(b) L2G, (c) L1G.

Figure 5.6: Reconstructions of a smoothed-step charge distribution from boundary data. (a) True,
(b) L2G, (c) L1G

Example 5.3 (Inverse potential problem). In this numerical experiment, the support
of the sourceu is restricted to the offset inner square (assumed to be known in the re-
construction) as depicted in Figures 5.5–5.7. The potential is measured on the bound-
ary, taking the average boundary potential as the ground level, i.e. we subtract the
average boundary potential from each datum. This is necessary as only potential dif-
ferences are measurable. Figures 5.5–5.7 depict results for three different source dis-
tributions in the region. In each case, synthetic data is computed on a 642 grid, to
which we add a 1 % Gaussian noise. The reconstruction is done with our various reg-
ularizations (5.3) and (5.2) on a 322 grid. The regularization constant β is tuned to
obtain a resulting misfit of 1± 0.1 % (see, e.g. [61]).

Figures 5.5 and 5.6 serve as an appetizer We consider, respectively, piecewise
constant and smoothed-step dipole distributions. Observe that the L1G reconstruc-
tion results in a well-defined interface between the positively and negatively charged
regions, whereas the L2G reconstruction is smooth, irrespective of the true model.
As such, the use of L1G is especially recommended if we know a priori that u is
piecewise smooth. However, it is not possible to determine from the reconstructions
whether u has a jump or not: notice the similarity between Figures 5.5 (b) and 5.6 (b),
and that between Figures 5.5 (c) and 5.6 (c).

Next, we explore the main theme of this section by considering a point charge
pair. The true model (ground truth) depicted in Figure 5.7 (a) is now very sparse.

 EBSCOhost - printed on 2/10/2023 4:36 PM via . All use subject to https://www.ebsco.com/terms-of-use



The lost honor of �2-based regularization 193

Figure 5.7: Reconstructions of a point charge pair from boundary data using gradient regularization.
(a) True, (b) L2G, (c) L1G.

Figure 5.8: Reconstructions of a point charge pair from boundary data using regularizations (5.2).
(a) L2, (b) L1, (c) Weighted L1

The results shown in Figure 5.7 are similar to those in Figures 5.5 and 5.6. The
dipole structure is apparent from the L2G andL1G reconstructions, though notmuch
more is. The L1G reconstruction hints at a dipole pair, but may mislead one to infer
an incorrect orientation.

For this last source distribution, a sparse reconstruction seems natural, and one
such, obtained using an L1 regularization, is depicted in Figure 5.8 (b). The L2 recon-
struction is depicted in Figure 5.8 (a) for comparison. We see that the L1 reconstruc-
tion is somewhat sparse, but all the reconstructed sources are on the boundary of the
support of u(x), and the L1 solution is not as sparse as the true model.

The reason for the observed source distribution is that sources near the detector
affect the data more and are therefore favored [31]. This effect can be reduced by a lo-
cation dependent reweighting of the regularization function as suggested in [28, 43],
which amounts to normalizing the columns of J to unit 2-norm. Letting

aj =
⎛⎝ m∑
i=1

(Jij)2
⎞⎠1/2

Ĵij = Jij/aj ûi = aiui ,

we can write Ju = b as Ĵû = b and apply the L1 regularization to û. (Note though
that computing ai for large scale problems may not be practical.) The resulting re-
construction is depicted in Figure 5.8 (c). The sparsity has improved a little, but we
are still far from the �0 solution.
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For this example, since Ĵ has normalized columns, the famous RIP condition de-
fined and analyzed in [9] applies. This condition requires that there be a δ ≤ √2 − 1

such that for all 4-sparse u, we have

(1− δ)‖û‖2
2 ≤ ‖Ju‖2

2 ≤ (1+ δ) ‖û‖2
2 . (5.7)

However, here it can be shown to be violated on physical grounds. Let u be a 4-sparse
source, i.e. nonzero only for indices i in a setT with |T | = 4, and further, let it have
values±1, so

‖û‖2
2 =

∑
i∈T
a2
i ≥ 4 min

k

(
a2
k

)
> 0 .

(The valueai is just the 2-norm of the boundary potential when a unit source is placed
at location i.) Note that ‖Ju‖2

2 is the �2 norm of the boundary potential. By placing
the positive and negative charges very close together, so that they almost cancel each
other, we can make the boundary potential and thereby ‖Ju‖2

2 arbitrary small, and
thus δ becomes arbitrarily close to 1. Hence, the RIP condition is violated. Note that
this does not prove that the sparsest solution cannot be obtained, as the RIP is a suf-
ficient, though not necessary condition.

The necessary and sufficient γ-condition of [40] for obtaining the �0 solution
from the �1 solution relies on properties of the solution y to the equation

(JTy)i = zi , (5.8)

for selected indices i such that zi ≠ 0. In our case, to determine if it is possible to
recover a 2-sparse source, the n-vector z should be 2-sparse with entries ±1, so (5.8)
has just two equations. Further, JTy = A−1QTy, andwe can interpret y as describing
electrical sources on the boundary only, such that the generated potential equals 1

at point p1 and −1 at point p2. These correspond to the location of the point charges
described by z. The γ-condition then implies that we can find ay such that the poten-
tial JTy is between −1 and 1 everywhere else. Unfortunately, however, on physical
grounds, we can see that this is not possible. To see this note that if we place p1 and
p2 very close together, then a very large electrical field will exist between the points,
which must be caused by very large boundary sources, which in turn will generate
close to those sources an even larger (> 1) field. Analytically, we observe that in the
continuum limit, since z is a harmonic function, it must take its extreme values on
the boundary. Since it takes on values ±1 inside, it must take on larger values on the
boundary, and hence the γ-condition is violated.

4.2 The effect of ill-conditioning on L1 regularization

In this subsection, we consider the regularized L1 problem

min
u

1
2
‖Ju− b‖2

2 + β‖Wu‖1 , (5.9)
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and show, for a special choice ofW , which in a sense favors sparsity, that in the highly
ill-conditioned case and in the presence of noise, the correct sparsity of a ground truth
model can be recovered only if the singular values of J and the sparsity structure com-
bine in a beneficial manner. This helps explain the negative results of Example 5.3.

Let the singular value decomposition (SVD) of them×nmatrix J be given by

J = UΣV# ,

whereU and V are orthogonal matrices and Σ = diag {σ1, . . . , σm} ism×nwith the
singular values ordered so that σ1 ≥ σ2 ≥ · · · ≥ σm. Further, consider a true model
u∗ such that z∗ = VTu∗ satisfies

z∗i =
⎧⎨⎩1 i ∈ T

0 i ∉ T
. (5.10)

The emphasis in (5.10) is on the nature of T , i.e. the sparsity: setting the nonzero
values to 1 is just for convenience. For notational simplicity, let us also assume, with-
out loss of generality, that U = I, the identity. Then, it also makes sense to consider
the case where z∗i = 0, i > m. Suppose further that the data b is contaminated by
Gaussian noise ε with mean 0 and covariance ρ2I. We have

b = Σz∗ + ε.

Thus, for i ∈ T , z∗i = (bi − εi)/σi = 1.
Turning to approximate solutions and setting z = VTu, recall first the truncated

SVD method, even though it has nothing to do with L1 methods. Thus, we set β = 0

in (5.9), obtaining the least squares problem

min
z

1
2
‖Σz− b‖2

2 , (5.11)

and then, since the noise εi is obviously magnified by σ−1
i , we set

zi =
⎧⎨⎩bi/σi i ≤ r

0 i > r
, (5.12)

where the effective rank r , r ≤ m, is such that the error term depending on σ−1
r

has tolerable size. Using this regularization method, it is obvious that a necessary
and sufficient condition for obtaining the same sparsity for z and z∗ is that T =
{1,2, . . . , r}. Indeed, no (very) small singular value index can be tolerated in the
set T of the given true model. In particular, we cannot stably obtain the sparse ap-
proximate solution for just any true model. This requirement becomes rather restric-
tive in the highly ill-conditioned case, where r �m.

Of course, the truncated SVD method not only does not have L1 magic, it also
requires carrying out the SVD, something we wish to avoid for the large problems
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considered in this section. Let us now return to the Tikhonov-type method (5.9) with
β > 0, and consider the special case of the L1 approach with W = V#. This special
case is in a sense the most favorable for the sparsity-inducing algorithm to work well.
This is so because the subspace defined by Σz = b has the best possible orientation,
with respect to the faces of the polyhedron ‖z‖1 = constant, to cause intersection
at a face corresponding to the correct sparsity. See, for example, Figure 1 in [10] for
a sparsity spoiling orientation that cannot occur in our case. So, if we encounter dif-
ficulties caused by ill-conditioning in this special case, then they will persist upon
using a more generalW .

Thus, we are considering the problem

min
z

1
2
‖Σz− b‖2

2 + β‖z‖1 . (5.13)

Because (5.13) is just a sum of decoupled terms, we can solve it explicitly for each
component of z. The solution has zi = 0 where the gradient of the data fitting term is
bounded by the gradient of the regularization term, which gives

β ≥
∣∣∣σi(σiz∗i + εi)∣∣∣ .

Otherwise,
zi = ((σiz∗i + εi)± β/σi)/σi ,

where the sign in front of β is not needed for our purposes.
In order for z to have the same sparsity as z∗, we therefore must have

β ≤ |σi(σi + εi)| for i ∈ T ,
β ≥ |σiεi| for i ∉ T .

Squaring these inequalities and replacing ε2
i by its expected value ρ2 gives the con-

dition
max
i∉T

ρ2σ 2
i ≤ β2 ≤min

i∈T
σ 2
i (σ

2
i + ρ2) .

Thus, the regularization parameter βmust satisfy

ρσ+ ≤ β ≤ σ−
√
σ 2− + ρ2 , (5.14a)

with
σ+ = max

i∉T
σi , σ− =min

i∈T
σi . (5.14b)

From (5.14), it follows that the correct sparsity pattern can be comfortably recovered
if σ+ ≤ σ−, i.e. if all small singular values are not in T and all others are in T , just
as for the truncated SVD method.

The case where L1 may offer potential advantage over truncated SVD is when
σ+ > σ−. In this case, (5.14a) yields the requirement

ρ ≤ σ 2
−√

σ 2+ −σ 2−
. (5.15)
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We summarize this as follows:

Theorem 5.4. Consider the L1 regularization problem (5.9). For the specific case de-
fined above using (5.10), (5.13) and (5.14b), the true and reconstructedmodels, z∗ and z,
are expected to have the same zero structure only if either σ+ ≤ σ− or (5.15) holds.

Unfortunately, if σ− � 1 and/or σ+ � σ−, then the condition (5.15) may be too
restrictive in practice, possibly holding only for an unrealistically small noise level.

Further difficulties arise upon considering the usual practical process of selecting
the regularization parameter β by the discrepancy principle (see, e.g. [61]), i.e. such
that the total misfit μ satisfies

μ2 = 1
m

∑
i

(
σi
(
zi − z∗i

)
− εi

)2 ≈ ρ2 .

Let us next compute the misfit for β satisfying (5.14a), assuming ρ is such that this is
possible, i.e. one of the conditions of Theorem 5.4 holds, and show that the misfit can
easily be much too large in the ill-conditioned case. Conversely, this means that if β
was selected by the discrepancy principle, condition (5.14a) would be violated.

Let us choose β = ρσ+, i.e. the smallest possible β satisfying (5.14a). Replacing
ε2
i by its expected value, the expected misfit squared becomes

μ2 = 1
m

⎛⎝ ∑
i∉T ,i≤m

ρ2 +
∑
i∈T

ρ2σ 2
+/σ

2
i

⎞⎠ .
The discrepancy principle requirement μ ≈ ρ can now be written as

1
|T |

∑
i∈T

σ 2
+/σ

2
i ≈ 1 .

However if J is ill-conditioned, the mean value of σ 2+/σ 2
i over the set T could be

very large, implying that β (chosen to recover the correct sparsity) is too large to sat-
isfy the discrepancy principle. Conversely, the value of β selected by the discrepancy
principle will be too small to recover the correct sparsity of z∗.

It is important to emphasize that we do not claim that L1 variants cannot work
for highly ill-conditioned problems. Rather, they may not necessarily work. It all de-
pends on how the sparsity of the true solution T and the singular values of J relate.
Moreover, we do not know of a method that does better than L1 in the present sense.
However then, our expectations regarding sparsity are lower for most other methods
in the first place.
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4.3 Nonlinear, highly ill-posed examples

In this subsection, we study the DC resistivity problemon the unit square. The forward
problem for v, given by

−∇ · (σ(u)(x)∇v) = q(x) , x ∈ Ω , (5.16)

subject to Neumann boundary conditions, predicts the potential v for given external
source q and conductivity σ (parameterized in terms of u). The inverse problem is to
recover the conductivity σ(u) from partial measurements of the potential vi, when
different current patterns qi, i = 1, . . . , s, are injected into the region.

For experiment i, qi consists of a positive point source on the left boundary and
an opposite point source on the right boundary, and thus

qi(x) = δ
x,piL

L
− δ

x,piR
R
,

where piL
L and piR

R are located on the left and right boundaries. Different data sets are
obtained by varying the positions piR

L and piR
R of the two opposing point sources. We

place each at
√
s equidistant points including the corners, in all possible combina-

tions, which gives a total of s data sets for a perfect square. Voltage is measured on
the boundary, so the number of point in each data set is the number of boundary
points of the discretization mesh. See [17, 52] and references therein for details of the
problem setup such as the discretization of (5.16) and the solution of the resulting
optimization problem.

For this nonlinear inverse problem, it is well-known that, unlike for the inverse
potential problem, increasing the number of data sets s allows a more accurate re-
covery of the resistivity 1/σ . There is no reason to apply L1 here, and the purpose of
the following experiments is to determine, for a piecewise continuous surface recov-
ery, roughly at what point of such computational refinement the L1G regularization
becomes worthwhile.

Example 5.5 (EIT and DC-resistivity). We have chosen to recover a grid approxima-
tion u of

u(x) = P−1(σ(x)) , (5.17a)

where the transfer function

P(t) = 1
2
(σmax − σmin)tanh(t)+ 1

2
(σmax +σmin) (5.17b)

enforces a priori known upper and lower bounds on the possible conductivity.
A synthetic conductivity model is used to compute the data b, which is calculated

on a grid that is twice as fine as the grid used for the reconstruction, and either 3 % or
1 % Gaussian noise is added to it.

The ground truth model used to synthesize data consists of an object with con-
ductivity σ = 1 (black) placed in a background of conductivity σ = 10 (white);
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Figure 5.9: Conductivity reconstructions for different numbers s of data sets with noise level 3 %.
(a) True model, (b) s = 4, L2G, (c) s = 4, L1G,(d) s = 64, L2G, (e) s = 64, L1G.

see Figure 5.9 (a). In (5.17b), we set σmin = 1 and σmax = 10. The inverse prob-
lem involves minimizing expressions of the form (5.1), (5.3). We compare p = 1 (total
variation, or L1G) withp = 2 (L2G). A 1282 uniform grid is used in these calculations.

Figure 5.9 shows the obtained reconstructions using s = 4 and s = 64 current
configurations at a noise level of 3 %. The regularization parameter β was tuned to
result in amisfit of 3±0.1%. Observe that in the case of rare data s = 4, there appears
to be no advantage to using the L1G regularization, whereas with 64 data sets the L1G
reconstruction is only marginally better than L2G.

Next, we use s = 1024 data sets at a noise level of 1 %, with β correspondingly
tuned. In order to accommodate so many right-hand sides, we employ the stochastic
adaptive algorithm described in [17]. The results are depicted in Figure 5.10. At this in-
creased model accuracy and resolution, the result obtained using L1G is clearly better
than that obtained using L2G.

The situation described in Example 5.5 is not uncommon in practice. Often in geo-
physical experiments, results of the sort depicted in Figure 5.9 (d,e) are of sufficient
quality and the lower noise level and larger number of experiments s required for
obtaining the result in Figure 5.10 (b) is a sort of luxury that is not always attained.
Moreover, the forward problem considered in this section is often indicative of what
is observed numerically, also for more complex problems such as low frequency elec-
tromagnetic and seismic data inversions. Finally, weighted L2G variants that are rou-
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Figure 5.10: Reconstructions for a larger number of data sets s = 1024 and with the noise level at
only 1 %. Here, L1G clearly outshines L2G. (a) s = 1024, L2G, (b) s = 1024, L1G.

tinely used in geophysical applications may further improve reconstructions without
resorting to �1-based regularization. In view of the occasionally significantly high-
er cost of computing with L1G, it cannot be automatically concluded that the latter is
worthwhile for this application, although it is a viable option that we always entertain
in the course of our research.

5 Summary
In this paper, we have investigated the relative performance of �1-based regulariza-
tion techniques on several examples and case studies. We have shown cases where
such methods are worse than �2-based ones in the sense of costing more without de-
livering more (Examples 5.1 and 5.5), and other cases where such methods produce
better results (see Figures 5.4b and 5.10). Further, we have shown cases where the
�1-based results appear to be more misleading than corresponding �2-based results
(Example 5.3).

In Section 4.2, we have analyzed the effect of ill-conditioning on the ability of
an L1 method to correctly recover solution sparsity. Theorem 5.4 and the arguments
following it suggest severe limitations in case of extreme ill-conditioning that perhaps
arises in certain inverse problems.

The results in Section 4.3 demonstrate how and when L1G becomes favored as
the quality of the data improves. This in itself is intuitively expected, but less clear
is where the crossover point occurs in realistic situations. Unfortunately, we had to
tweak the problem beyond what may be expected in many geophysical situations in
order to observe the L1G takeover.

Let us again stress our overall conviction that the swing of the pendulum in recent
years towards �1-based techniques is rather important and notmerely refreshing. Our
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purpose here, far from opposing this trend, is to simply suggest that this virtual pen-
dulum should not swing too far and away, to realms beyond reason. To this end, we
note the following.
• In many situations, �1-based regularization is well-worth using. Such techniques

can provide exciting advances (e.g. in model reduction, computer graphics, im-
age processing and reconstruction of surfaces with discontinuities).

• However, such techniques are not good for all problems, and it is dangerous (and
may consume many student-years) to apply them blindly.

• In practice, we recommend to always consider first using �2-based regularization
techniques because they are simpler, more easy to compute with, and do not in-
troduce nonlinearities or lower smoothness. Only upon deciding that these are
not sufficiently good for the given application, it is highly advisable to proceed to
examine �1-based alternatives (when this makes sense).

• Last but not least, the possibility of combining �1- and �2-based techniques sug-
gests itself. We have already commented on using the Huber switching function
as well as IRLS techniques [1, 30, 33, 56, 61] for this purpose in the L1G–L2G con-
text, but these ideas are also very popular in the image processing and computer
vision literature in mixing the L1 and L2 approaches [34]. Another popular ap-
proach is to employ an empirical Bayesian framework in order to learn an appro-
priate mix [37, 57].
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