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Preface

The changes we made in this second edition of our book are inspired by our
teaching experience from the PDE class. Besides minor revisions, we also added
some new material and slightly reorganized its exposition. We quote from the
Preface to the first edition in order to clarify the original motivation behind
the publication of this book:

“Nowadays, there are hundreds of books (textbooks as well as monographs)
devoted to partial differential equations which represent one of the most power-
ful tools of mathematical modeling of real-world problems. These books contain
an enormous amount of material. This is, on the one hand, an advantage since
due to this fact we can solve plenty of complicated problems. However, on the
other hand, the existence of such an extensive literature complicates the orien-
tation in this subject for the beginners. It is difficult for them to distinguish
an important fact from a marginal information, to decide what to study first
and what to postpone for later time.

Our book is addressed not only to students who intend to specialize in mathe-
matics during their further studies, but also to students of engineering, economy
and applied sciences. To understand our book, only basic facts from calculus
and linear ordinary differential equations of the first and second orders are
needed. We try to present the first introduction to PDEs and that is why our
text is on a very elementary level. Our aim is to enable the reader to understand
what the partial differential equation is, where it comes from and why it must
be solved. We also want the reader to understand the basic principles which
are valid for particular types of PDEs, and to acquire some classical methods
of their solving. We limit ourselves only to the fundamental types of equations
and the basic methods. At present, there are many software packages that can
be used for solving a lot of special types of partial differential equations and can
be very helpful, but these tools are used only as a “black box” without deeper
understanding of the general principles and methods.

We would like to point out that we work with most of the notions only in-
tuitively and avoid intentionally some precise definitions and exact proofs. We
believe that this way of exposition makes the text more readable and the main
ideas and methods used become thus more lucid. Hence, the reader who is not
a mathematician, will be not disturbed by technical hypotheses, which in con-
crete models are usually assumed to be satisfied. On the other hand, we trust
that a mathematician will fill up these gaps easily or find the answers in more
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vi Preface

specialized literature. In order to guide the reader, we put the most important
equations, formulas and facts in shaded boxes, so that he/she could better dis-
tinguish them from intermediate steps. Further, the text contains many solved
examples and illustrating figures. At the end of each chapter there are several
exercises. More complicated and theoretical ones are accompanied by hints,
the exercises based on calculations include the expected solution. We want
to emphasize that there may exist many different forms of a solution and the
reader can easily check the correctness of his/her results by substituting them
in the equation.

In any case, with the limited extent of this text, we do not claim our book
to be comprehensive. It is a selection which is subjective, but which – in our
opinion – covers the minimum which should be understood by everybody who
wants to use or to study the theory of PDEs more deeply. We deal only with
the classical methods which are a necessary starting point for further and more
advanced studies. We draw from our experience that springs not only from our
teaching activities but also from our scientific work.

Finally, we would like to thank our colleagues Petr Girg, Petr Nečesal, Pavel
Krejčí, Alois Kufner, Herbert Leinfelder, Luboš Pick, Josef Polák and Robert
Plato, editor of De Gruyter, for careful reading of the manuscript and valuable
comments. Our special thanks belong to Jiří Jarník for correcting our English.”

The exposition of the material in the second edition is as follows. In Chap-
ter 1, we present the basic conservation and constitutive laws. We also derive
some basic models. Chapter 2 is devoted to different notions of a solution, to
boundary and initial conditions and to the classification of PDEs. Chapter 3
deals with the first-order linear PDEs. Chapters 4–9 study the simplest pos-
sible forms of the wave, diffusion and Laplace (Poisson) equations and explain
standard methods how to find their solutions. In Chapter 10, we point out
the general principles of the above mentioned main three types of second-order
linear PDEs. Chapters 11–13 are devoted to the Laplace (Poisson), diffusion
and wave equations in higher dimensions. For the sake of brevity, we restrict
ourselves to equations in three dimensions with respect to the space variable.

Many standard procedures and methods from our exposition have been widely
used by many other authors. Let us mention, e.g., the textbooks and mono-
graphs by Strauss [21], Logan [15], Arnold [2], Bassanini and Elcrat [5], Evans
[7], Farlow [8], Franců [9], Míka and Kufner [16], Stavroulakis and Tersian [20]
and many others. We do not refer to all of them in our text in order not to
disturb the flow of ideas.

Some of the exercises were also borrowed from the books by Asmar [3], Barták
et al. [4], Keane [12], Logan [15], Snider [19], Stavroulakis and Tersian [20],
Strauss [21], Zauderer [24]. We do not list them explicitly as in the first edition.
Many of them appear in several books parallelly and it is thus difficult to hunt
out the original source.
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Preface vii

We would like to thank our colleagues Martina Langerová, Sarath Sasi, Anoop
Thazhe Veetil, Kalappattil Lakshmi and Athiyanathum Poytl Reshma for care-
ful reading of the final version of this manuscript and for their valuable sug-
gestions. We also thank the editorial staff of De Gruyter for the agreeable
collaboration.

Pilsen, January 2014 Pavel Drábek and Gabriela Holubová
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Chapter 1

Motivation, Derivation of Basic
Mathematical Models

The beginning and development of the theory of partial differential equations
were connected with physical sciences and with the effort to describe some phys-
ical processes and phenomena in the language of mathematics as precisely (and
simply) as possible. With the invasion of new branches of science, this mathe-
matical tool found its usage also outside physics. The width and complexity of
problems studied gave rise to a new branch called mathematical modeling. The
theory of partial differential equations was set apart as a separate scientific
discipline. However, studying partial differential equations still stays closely
connected with the description – modeling – of physical or other phenomena.

In this introductory chapter, we outline the derivation of several basic math-
ematical models, which we will deal with in more detail in the further text.

1.1 Conservation Laws

In our text, the notion of a mathematical model is understood as a mathe-
matical problem whose solution describes the behavior of the studied system.
In general, a mathematical model is a simplified mathematical description of
a real-world problem. In our case, we will deal with models described by partial
differential equations, that is, differential equations with two or more indepen-
dent variables.

Studying natural, technical, economical, biological, chemical and even social
processes, we observe two main tendencies: the tendency to achieve a certain
balance between causes and consequences, or the tendency to break this balance.
Thus, as a starting point for the derivation of many mathematical models, we
usually use some law or principle that expresses such a balance between the so
called state quantities and flow quantities and their spatial and time changes.

Let us consider a medium (body, liquid, gas, solid substance, etc.) that fills
a domain

Ω ⊂ RN .

Here N denotes the spatial dimension. In real situations, usually, N = 3, in
simplified models, N = 2 or N = 1. We denote by

u = u(x, t), x ∈ Ω, t ∈ [0, T ) ⊂ [0,+∞)

the state function (scalar, vector or tensor) of the substance considered at
a point x and time t. In further considerations, we assume u to be a scalar
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2 Chapter 1 Motivation, Derivation of Basic Mathematical Models

function. The flow function (vector function, in general) of the same substance
will be denoted by

φ = φ(x, t), x ∈ Ω, t ∈ [0, T ) ⊂ [0,+∞).

The density of sources at a point x and time t is usually described by a scalar
function

f = f(x, t), x ∈ Ω, t ∈ [0, T ) ⊂ [0,+∞).

Let ΩB ⊂ Ω be an arbitrary inner subdomain (the so called balance domain)
of Ω. The integral

U(ΩB , t) =

∫

ΩB

u(x, t)dx

represents the total amount of the considered quantity u in the balance domain
ΩB at time t. The integral

U(ΩB , t1, t2) =

t2∫

t1

∫

ΩB

u(x, t)dxdt

then represents the total amount of the quantity in ΩB and in the time interval
[t1, t2] ⊂ [0, T ). (The set ΩB × [t1, t2] is called the space-time balance domain.)

In particular, if the state function u(x, t) corresponds to the mass density
�(x, t), then the integral

m(ΩB , t) =

∫

ΩB

�(x, t)dx

represents the mass of the substance in the balance domain ΩB at time t, and
the value

m(ΩB , t1, t2) =

t2∫

t1

∫

ΩB

�(x, t)dxdt

corresponds to the total mass of the substance contained in ΩB during the time
interval [t1, t2].

If we denote by ∂ΩB the boundary of the balance domain ΩB , then the
boundary integral (surface integral in R3, curve integral in R2)

Φ(∂ΩB, t) =

∫

∂ΩB

φ(x, t) · n(x)dS
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represents the amount of the quantity “flowing through” the boundary ∂ΩB in
the direction of the outer normal n at time t. Similarly,

Φ(∂ΩB , t1, t2) =

t2∫

t1

∫

∂ΩB

φ(x, t) · n(x)dS dt

corresponds to the total amount of the quantity flowing through ∂ΩB in the
direction of the outer normal n during the time interval [t1, t2].

As we have stated above, the distribution of sources is usually described by
a function f = f(x, t) corresponding to the source density at a point x and
time t. The integral

F (ΩB , t1, t2) =

t2∫

t1

∫

ΩB

f(x, t)dxdt

then represents the total source production in ΩB during the time interval
[t1, t2].

1.1.1 Evolution Conservation Law

If the time evolution of the system has to be taken into account, we speak
about an evolution process. To derive a balance principle for such a process,
we choose an arbitrary balance domain ΩB ⊂ Ω and an arbitrary time interval
[t1, t2] ⊂ [0,+∞). For simplicity, we consider a scalar state function u = u(x, t),
a vector flow function φ = φ(x, t), and a scalar source function f = f(x, t).

The basic balance law says that the change of the total amount of the quantity
u contained in ΩB between times t1 and t2 must be equal to the total amount
flowing across the boundary ∂ΩB from time t1 to t2, and to the increase (or
decrease) of the quantity produced by sources (or sinks) inside ΩB during the
time interval [t1, t2]. In the language of mathematics, we write it as

∫

ΩB

u(x, t2)dx−
∫

ΩB

u(x, t1)dx

= −
t2∫

t1

∫

∂ΩB

φ(x, t) · n(x)dS dt+

t2∫

t1

∫

ΩB

f(x, t)dxdt.
(1.1)

The minus sign in front of the first term on the right-hand side corresponds
to the fact that the flux is understood as positive in the outward direction.
Equation (1.1) represents the evolution conservation law in its integral (global)
form.
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If we assume u to have continuous partial derivative with respect to t, we
can write the difference u(x, t2) − u(x, t1) as

∫ t2
t1

∂
∂tu(x, t)dt =

∫ t2
t1

ut(x, t)dt
and change the order of integration on the left-hand side of (1.1):

t2∫

t1

∫

ΩB

ut(x, t)dxdt (1.2)

= −
t2∫

t1

∫

∂ΩB

φ(x, t) · n(x)dS dt+
t2∫

t1

∫

ΩB

f(x, t)dxdt.

Since the time interval [t1, t2] has been chosen arbitrarily, we can come (under
the assumption of continuity in the time variable of all functions involved) to
the expression

∫

ΩB

ut(x, t)dx = −
∫

∂ΩB

φ(x, t) · n(x)dS +

∫

ΩB

f(x, t)dx. (1.3)

Now, if we assume φ to be continuously differentiable in the spatial variables,
we can use the Divergence Theorem, according to which we can write

∫

∂ΩB

φ(x, t) · n(x)dS =

∫

ΩB

divφ(x, t)dx.

If we substitute this relation into (1.3), we come to
∫

ΩB

ut(x, t)dx =

∫

ΩB

(− divφ(x, t) + f(x, t)
)
dx. (1.4)

Since the balance domain ΩB has been chosen arbitrarily, the equality must
hold directly for the integrands in (1.4) (under the assumption of continuity of
all involved functions in their spatial variables). Hence, we obtain the evolution
conservation law in the so called local (differential) form

ut(x, t) + divφ(x, t) = f(x, t). (1.5)

The relation (1.5) represents a single equation for two unknown functions u and
φ. The sources f are usually given, however, they can depend on x, t also via
the quantity u, that is, we can have f = f(x, t, u(x, t)).
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1.1.2 Stationary Conservation Law

Sometimes we are not interested in the time evolution of the system consid-
ered. In such cases we study the stationary state, the steady state or stationary
behavior of the system. It means that we suppose all quantities to be time-
independent (they have zero time derivatives). In such cases, we use simplified
versions of conservation laws. In particular, the global form of the stationary
conservation law is given by

∫

∂ΩB

φ(x) · n(x)dS =

∫

ΩB

f(x)dx, (1.6)

and its local version takes the form

divφ(x) = f(x) (1.7)

(under the assumptions of continuity of all functions involved and their spatial
derivatives).

1.1.3 Conservation Law in One Dimension

In some situations, we can assume that all significant changes proceed only in
one direction (for instance, in modeling the convection in a wide tube, when
we are not interested in the situation near the tube walls; or, conversely, in
modeling the behavior of a thin string or a thin bar with constant cross-section).
In such cases, we can reduce our model to one spatial dimension. Since the
corresponding one-dimensional basic conservation law differs in some minor
points from the general one (e.g., φ is now a scalar function), we state it here
explicitly.

a b x
A

Figure 1.1. An isolated tube with cross-section A; the quantities considered change
only in the direction of the x-axis.

Let us consider a tube with constant cross-section A, an arbitrary (but fixed)
segment a ≤ x ≤ b, a time interval [t1, t2], and a quantity with density u. The
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conservation law says that the change of quantity in the spatial segment [a, b]
between times t1 and t2 equals the total flow incoming through the point x = a
minus the total flow outgoing through the point x = b, plus the contribution of
sources acting in [a, b] during the time interval [t1, t2]:

b∫

a

u(x, t2)dx−
b∫

a

u(x, t1)dx

=

t2∫

t1

(
φ(a, t)− φ(b, t)

)
dt+

t2∫

t1

b∫

a

f(x, t)dx dt.

(1.8)

This equation represents the one-dimensional conservation law in its integral
(global) form (cf. (1.1)). If the functions u and φ are smooth enough, we
can proceed similarly as in the general multidimensional case, and obtain the
differential formulation.

To be specific, if u has a continuous partial derivative with respect to t and
φ has a continuous partial derivative with respect to x, equation (1.8) reduces
to the form

t2∫

t1

b∫

a

(
ut(x, t) + φx(x, t)− f(x, t)

)
dx dt = 0.

Since the intervals [a, b] and [t1, t2] have been chosen arbitrarily, the integrand
must be identically equal to zero, thus

ut(x, t) + φx(x, t) = f(x, t). (1.9)

Equation (1.9) is a local version of (1.8) and expresses the one-dimensional
conservation law in its differential (local) form (cf. (1.5)).

If we model a one-dimensional stationary phenomenon, we use the stationary
version of the previous conservation law, that is

φx(x) = f(x), (1.10)

which is actually an ordinary differential equation for the unknown function φ.

1.2 Constitutive Laws

As we have mentioned above, the conservation law represents one equation for
two unknown functions: the state quantity u and flow quantity φ. To cre-
ate a solvable mathematical model, we need another relation between these
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functions. In particular processes and phenomena, the state and flow func-
tions (quantities) have their concrete terms and notation. For example, for the
description of thermodynamic processes, we usually use some of the following
quantities:

state quantities: density flow quantities: velocity
pressure momentum
temperature tension
entropy heat flux

The problem of mutual dependence or independence of these quantities is
very complicated and it is connected with the choice of the mathematical model.
Relations between the state quantity and the relevant flow quantity are usu-
ally based on the generalization of experimental observations and depend on
the properties of the particular medium or material. They are usually called
constitutive laws or material relations.

A typical example of the constitutive law from the elasticity theory is Hook’s
law, which states that, for relatively small deformations of an object, the dis-
placement or size of the deformation (state quantity) is directly proportional
to the deforming force or tension (flow quantity).

1.3 Basic Models

In this chapter, we derive some simple mathematical models of several funda-
mental physical processes: drift of a contaminant by a flowing liquid, diffusion in
a narrow tube and a three-dimensional container, heat conduction in a bar and
a three-dimensional body, and vibrations of a thin string and a two-dimensional
membrane. Via mathematical description of their evolution and stationary be-
havior, we obtain transport, diffusion, wave and Laplace equations, which rep-
resent the fundamental linear partial differential equations. Their properties
and methods of their solving form the basis of the classical theory of partial
differential equations.

1.3.1 Convection and Transport Equation

The one-dimensional evolution model, where the flux density φ is proportional
to the quantity u:

φ = cu

with a constant c, describes, for instance, a drift of a substance in a tube with
a flowing liquid. Here, the state quantity u represents concentration of the
drifted substance (say contaminant) and the parameter c corresponds to the
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8 Chapter 1 Motivation, Derivation of Basic Mathematical Models

velocity of the flowing liquid. The model does not include diffusion. Substitut-
ing this relation into the local conservation law (1.9) and considering a constant
velocity c > 0 and zero forces f , we obtain the so called transport equation (for
the unknown concentration u)

ut + cux = 0. (1.11)

As we will show later, the solution of (1.11) is a function

u(x, t) = F (x− ct), (1.12)

where F is an arbitrary differentiable function. Such a solution is called the
right traveling wave, since the graph of the function F (x− ct) at a given time
t is the graph of the function F (x) shifted to the right by the value ct. Thus,
with growing time, the profile F (x) is moving without changes to the right at
the speed c (see Figure 1.2).

x

u(x, 0)

0

t1

u(x, t1)

t

x = ct F (x)

F (x− ct1)

Figure 1.2. Traveling wave.

If the velocity parameter c is negative, which means that the liquid and so the
drifted substance flow to the left at speed |c|, the solution u(x, t) = F (x− ct)
is called left traveling wave.

If the flux density φ is a nonlinear function of the quantity u, then the
conservation law (in case of f ≡ 0) has the form

ut + (φ(u))x = ut + φ′(u)ux = 0. (1.13)

This relation models nonlinear transport, which, from the point of further anal-
ysis, is more complicated.
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Section 1.3 Basic Models 9

Transport with Decay. The particle decay (for example, radioactive decay
of nuclei) can be described by the decay equation

ut = −λu,

where u is the number of nondecayed particles (nuclei) at time t and λ is a decay
constant. The behavior of the radioactive chemical substance drifting in a tube
at speed c can be modeled by the equation

ut + cux = −λu. (1.14)

In this case we have again φ = cu and f = −λu represents the sources due to
the decay.

1.3.2 Diffusion in One Dimension

Let us study the behavior of a gas in a one-dimensional tube. We denote its
concentration at a point x and time t by u = u(x, t) (the state function) and
the corresponding flux density by φ = φ(x, t) (the flow function). If we do not
admit any sources (f = 0), then these two quantities obey the one-dimensional
conservation law (1.9)

ut + φx = 0.

Experiments show that the molecules of the gas move from the higher concentra-
tion area to the lower concentration area, and that the higher the concentration
gradient, the greater is the flux density. The simplest relation (the constitutive
law) that corresponds to these assumptions is the linear dependence

φ = −kux, (1.15)

where k is a constant of proportionality. The minus sign ensures that if ux < 0,
then φ is positive and the flow moves “to the right”. Equation (1.15) is called
Fick’s Law of diffusion and k is the diffusion constant. If we insert (1.15) into
the conservation law, we obtain the one-dimensional diffusion equation (for the
unknown concentration u)

ut − kuxx = 0. (1.16)

Transport with Diffusion. If we want to include the transport with diffusion
into the model, then the flux density must satisfy the constitutive law

φ = cu− kux,
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10 Chapter 1 Motivation, Derivation of Basic Mathematical Models

and using the conservation law we obtain the equation

ut + cux − kuxx = 0. (1.17)

In this way we can describe, for instance, the density distribution of some
chemical which is drifted by a flowing liquid at a speed c and, at the same
time, diffuses into this liquid with a diffusion constant k.

1.3.3 Heat Equation in One Dimension

The assumptions we have used in the derivation of the diffusion equation can
also be applied in modeling the heat flow. Let us consider a one-dimensional bar
with constant mass density ρ and constant specific heat capacity c. If we denote
the thermodynamic temperature at a point x and time t by u = u(x, t), then
the quantity ρcu(x, t) represents the volume density of internal heat energy.
In this case, the conservation law expresses the balance between the internal
energy ρcu and the heat flux φ:

(ρcu)t(x, t) + φx(x, t) = 0 (1.18)

(for simplicity, we admit no sources). The constitutive law connecting the
density of the heat flux φ and the temperature u is Fourier’s heat law which
says that the density of the heat flux is directly proportional to the temperature
gradient with a negative constant of proportionality:

φ = −Kux.

The constant K represents the heat (or thermal) conductivity. Fourier’s law is
an equivalent of Fick’s law: heat flows from warmer places of the domain to
colder places. If we substitute for the heat flux back into (1.18), we obtain

ut − kuxx = 0, (1.19)

which is again a diffusion equation in one dimension. Here, the constant k =
K
ρc is called the thermal diffusivity. Both phenomena, the heat flow and the
diffusion, can be thus modeled by the same equation.

1.3.4 Heat Equation in Three Dimensions

Deriving the heat flow equation in higher (in this case three) dimensions, we
proceed in a way similar as in the one-dimensional case. Let Ω be a domain
in R3 and let u = u(x, y, z, t) denote the temperature at time t and a point
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(x, y, z) ∈ Ω. We assume that the material which fills the domain is homoge-
neous and characterized by a constant mass density ρ and a constant specific
heat capacity c. The internal energy at the point (x, y, z) and time t corresponds
to the quantity cρu(x, y, z, t), the heat flux is a vector function φ = φ(x, y, z, t),
and the heat sources are described by a scalar function f = f(x, y, z, t). The
conservation law of heat energy (in its differential form) expresses the balance
between these quantities in the following way:

cρut + divφ = f (1.20)

for all (x, y, z) ∈ Ω, t > 0.
The constitutive law is, in this case, a three-dimensional version of Fourier’s

heat law:
φ = −K gradu.

As in the one-dimensional case, this law says that the heat flux is proportional
to the temperature gradient with a negative constant of proportionality (the
heat flows from warmer places to colder areas). If we realize that

Δu = div gradu = ∇ · ∇u = uxx + uyy + uzz,

where Δ denotes the Laplace operator and ∇ the gradient, we obtain, after
substituting into (1.20), the final form of the (nonhomogeneous) heat equation
in three dimensions

ut − kΔu =
1

cρ
f. (1.21)

This equation describes also the behavior of a diffusing substance in a three-
dimensional domain, which is why we call it a (nonhomogeneous) diffusion
equation.

Similarly, we would obtain the same expression also in the case of a two-
dimensional problem. The Laplace operator has then the form Δu = uxx+uyy .

1.3.5 String Vibrations and Wave Equation in One Dimension

In the previous sections, the transport and diffusion equations were derived by
a standard scheme: we substituted a particular constitutive law into the basic
conservation law in its local form and obtained the corresponding model. Now,
we proceed in a little different way to derive another fundamental equation
– the wave equation – that describes one of the most frequent phenomena in
nature, the wave motion (let us recall electromagnetic waves, surface waves, or
acoustic waves).

Let us consider a flexible string of length l and assume that only small vibra-
tions in the vertical direction (in the vertical plane) occur. The displacement
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12 Chapter 1 Motivation, Derivation of Basic Mathematical Models

at a point x and time t will be denoted by a continuously differentiable func-
tion u(x, t). The properties of the string are described by continuous functions
ρ(x, t) and T (x, t) which represent the mass density and the inner tension of
the string at a point x and time t. We assume that the tension T always acts
in the direction tangent to the string profile at a point x. Now, let us consider
an arbitrary but fixed string segment between points x = a, x = b (see Figure
1.3). The angle formed by the tangent at a given point and the horizontal line
will be a continuous function denoted by ϕ(x, t). Let us notice that the relation

tanϕ(x, t) = ux(x, t) (1.22)

holds.

xa b

T (a, t)

T (b, t)

u(a, t) u(b, t)

ϕ(a, t)

ϕ(b, t)

Figure 1.3. String segment.

To derive an equation describing the motion of the string, we use Newton’s
Second Law of Motion, which implies that the rate of change of the momentum
in a given segment is equal to the acting force. We will assume that the only
force which acts on the string segment is the tension caused by the neighboring
parts of the string (gravity and damping are for now neglected). Since there is
no movement in the horizontal direction, the following relation must hold:

T (b, t) cosϕ(b, t)− T (a, t) cosϕ(a, t) = 0. (1.23)

Since [a, b] has been chosen arbitrarily, the quantity T (x, t) cosϕ(x, t) does not
depend on x.
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In the vertical direction, the law of motion implies the kinetic equation for
the displacement u:

d
dt

b∫

a

ρ(x, t)ut(x, t)
√

1 + ux(x, t)2dx (1.24)

= T (b, t) sinϕ(b, t)− T (a, t) sinϕ(a, t).

(The expression
√
1 + ux(x, t)2 dx represents the arc length element.) The

reader should notice that this relation corresponds to the one-dimensional ver-
sion of conservation law (1.3) with momentum as the quantity considered. To be
able to pass to the local relation, we utilize another conservation law – the mass
conservation law. It says that the rate of change of the total mass of a given
segment is zero. (Here, the quantity considered is the mass, the flow as well
as the sources are zero.) This, in other words, means that the mass of a given
segment at an arbitrary time t must be equal to the mass of the same segment
at time t = 0. If we denote ρ0(x) = ρ(x, 0) and suppose that at the beginning,
at time t = 0, the string is in its equilibrium state u(x, 0) ≡ u0 = const., we
obtain the equality

b∫

a

ρ(x, t)
√
1 + ux(x, t)2 dx =

b∫

a

ρ0(x)dx.

However, the interval [a, b] has been chosen arbitrarily, thus the relation

ρ(x, t)
√
1 + ux(x, t)2 = ρ0(x) (1.25)

must hold for any x and t.
Now, we can return to the kinetic equation (1.24). If we use (1.25) and

change the order of differentiation and integration (which requires again some
smoothness assumptions), we obtain

b∫

a

ρ0(x)utt(x, t)dx = T (b, t) sinϕ(b, t)− T (a, t) sinϕ(a, t). (1.26)

Since T (x, t) cosϕ(x, t) does not depend on x as claimed above, we may denote
τ(t) = T (x, t) cosϕ(x, t), and employing (1.22), we can rewrite the right-hand
side of (1.26) in the following way:

T (b, t) cosϕ(b, t) tanϕ(b, t) − T (a, t) cosϕ(a, t) tanϕ(a, t)

= τ(t)(ux(b, t) − ux(a, t)) = τ(t)

b∫

a

uxx(x, t)dx.
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14 Chapter 1 Motivation, Derivation of Basic Mathematical Models

Hence, we obtain

b∫

a

ρ0(x)utt(x, t)dx = τ(t)

b∫

a

uxx(x, t)dx.

This relation must hold again for an arbitrary interval [a, b], thus we get the
differential formulation

ρ0(x)utt(x, t) = τ(t)uxx(x, t).

In the special case ρ0(x) ≡ ρ0, τ(t) ≡ τ0, and if we denote c =
√
τ0/ρ0, we

arrive at the fundamental equation of mathematical modeling, which describes
string vibrations in one dimension:

utt = c2uxx. (1.27)

Equation (1.27) is called the wave equation and the constant c > 0 expresses
the speed of wave propagation.

The basic wave equation can be modified in various ways.

(i) If the presence of external damping (for example, resistance of the sur-
rounding medium) is taken into account, the equation is enriched by
a term proportional to the velocity ut:

utt − c2uxx + rut = 0

with the damping coefficient r > 0.

(ii) If the model considers an elastic force of the string, it takes the form

utt − c2uxx + ku = 0

with the stiffness coefficient k > 0.

(iii) If we want to include the presence of an external force in the model de-
scribed by a function f(x, t), we obtain a nonhomogeneous wave equation

utt − c2uxx = f(x, t).

(iv) All these effects can appear simultaneously. Then we obtain an equation
of the form

utt − c2uxx + rut + ku = f(x, t).
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1.3.6 Wave Equation in Two Dimensions – Vibrating
Membrane

A two-dimensional analogue of the oscillating string is a vibrating membrane
fastened on a fixed frame. Let us consider again only vertical oscillations and
denote the displacement at a point (x, y) and time t by u(x, y, t). Let us choose
an arbitrary fixed subdomain Ω of the membrane (see Figure 1.4) and apply
Newton’s Second Law of Motion and the mass conservation law. We proceed
in a way similar to that used in one dimension (see Section 1.3.5).

u(x, y, t)

Ω

Figure 1.4. Vibrating membrane over the subdomain Ω.

The application of both the above mentioned conservation laws leads to the
equality ∫∫

Ω

ρ0(x, y)utt(x, y, t)dx dy =

∫

∂Ω

T (x, y, t)
∂u

∂n
ds (1.28)

(cf. relation (1.26) for the one-dimensional string). Here ∂Ω denotes the bound-
ary of the domain Ω and we assume that the normal exists at every point of ∂Ω.
The function T = T (x, y, t) represents the inner tension of the membrane and
ρ0 = ρ0(x, y) denotes the mass density distribution of the membrane at time
t = 0. Since we do not consider any motion in the horizontal direction, we can
assume T (x, y, t) independent of x and y, that is, T (x, y, t) = τ(t). If we use
Green’s Theorem, we can transform the curve integral on the right-hand side
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of equation (1.28) to the surface integral:
∫

∂Ω

τ(t)
∂u

∂n
ds =

∫∫

Ω

div
(
τ(t) gradu(x, y)

)
dx dy.

Consequently,
∫∫

Ω

ρ0(x, y)utt(x, y, t)dx dy =

∫∫

Ω

τ(t) div
(
gradu(x, y)

)
︸ ︷︷ ︸

Δu

dx dy,

where Δu = uxx + uyy is the Laplace operator in two dimensions. Since the
domain Ω has been chosen arbitrarily, we can come (imposing some smooth-
ness assumptions on u) to the differential (local) formulation. Moreover, if we
consider the mass density ρ0 as well as the tension τ to be constant, that is,
ρ0(x, y) = ρ0, τ(t) = τ0, and if we denote c =

√
τ0/ρ0, we obtain the relation

utt = c2Δu. (1.29)

It is obvious that a similar process leads to a similar relation in the three-
dimensional case, where, however, Δu = uxx+uyy+uzz is the Laplace operator
in three dimensions. From the physical point of view, models of this type can
describe vibrations in an elastic body, propagation of sound waves in the air,
propagation of seismic waves in the earth crust, electromagnetic waves, etc.

Equation (1.29) is called the wave equation in two or three spatial variables,
respectively.

1.3.7 Laplace and Poisson Equations – Steady States

Studying dynamical models, we are often interested only in the behavior in the
steady (stationary, or equilibrium) state, that is, in the state when the solution
does not depend on time (ut = utt = 0). In such a case, the (in general,
multidimensional) diffusion equation ut = kΔu as well as the wave equation
utt = c2Δu are reduced to the Laplace equation

Δu = 0, (1.30)

which in two dimensions takes the form uxx+uyy = 0. Solutions of the Laplace
equation are the so called harmonic functions.

Let us consider a plane body that is heated in an oven. We assume that
the temperature in the oven is not the same everywhere (it is not spatially
constant). After a certain time, the temperature in the body achieves the
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Section 1.3 Basic Models 17

steady state which will be described by a harmonic function u(x, y). In the
case that the temperature in the oven is spatially constant, the steady state
corresponds also to u(x, y) = const. In one-dimensional case, we can imagine
a laterally isolated rod in which the heat exchange with the neighborhood acts
only at its ends. The function u describing the temperature in the rod then
depends only on x. The Laplace equation has thus the form

uxx = 0

and its solution is any linear function u(x) = c1x + c2. In higher dimensions,
the situation is much more interesting.

The steady state can be studied also in the case when the model includes time-
independent sources. The nonhomogeneous analogue of the Laplace equation
with a given function f is the Poisson equation

Δu = f. (1.31)

Besides the stationary diffusion and wave processes, the Laplace and Poisson
equations appear, for instance, in the following models.

Electrostatics. The Maxwell equations

rotE = 0, divE =
ρ

ε

describe an electrostatic vector field of intensity E in a medium of constant
permittivity ε; ρ represents the volume density of the electric charge. The
first equation implies the existence of the so called electric potential, which is
a scalar function φ satisfying the relation E = − grad φ. If we substitute φ into
the latter equation, we obtain

Δφ = div(gradφ) = − divE = −ρ

ε
,

which is the Poisson equation with the right-hand side f = −ρ
ε .

Steady Flow. Let us assume that we model an irrotational flow described
by the equation rot v = 0, where v is the flow speed (independent of time).
This equation implies the existence of a scalar function φ (the so called velocity
potential) satisfying v = − grad φ. Moreover, let the flowing liquid be incom-
pressible (for example, water) and let the flow be solenoidal (without sources
and sinks). Then divv = 0. If we substitute here the potential φ, we can
write −Δφ = − div(gradφ) = div v = 0. Thus, we obtain the Laplace equation
Δφ = 0.
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18 Chapter 1 Motivation, Derivation of Basic Mathematical Models

Holomorphic Function of One Complex Variable. Let us denote by
z = x+ iy a complex variable and by

f(z) = u(z) + iv(z) = u(x+ iy) + iv(x+ iy),

a complex function of a variable z. Functions u and v are real functions of
a complex variable z and represent the real and imaginary part of the function f .
Since the Gauss complex plane can be identified with R2, we can view u(z) =
u(x, y), v(z) = v(x, y) as functions of two independent real variables x and y.
Theory of functions of a complex variable says that a holomorphic function f
on a domain Ω (it means a complex function f that has a derivative f �(z) for
every z ∈ Ω) can be expanded locally into a power series with a center z0 ∈ Ω.
If z0 = 0, then this expansion of f takes the form

f(z) =
+∞∑
n=0

anz
n,

where an are complex constants. If we substitute for f and z, we obtain

u(x, y) + iv(x, y) =
+∞∑
n=0

an(x+ iy)n.

Formal differentiation of this series (the reader is asked to verify it) leads to

∂u

∂x
=

∂v

∂y
and

∂u

∂y
= −∂v

∂x
,

which are the so-called Cauchy-Riemann conditions for differentiability of a com-
plex function of a complex variable. By further differentiation we find out that

uxx = vyx = vxy = −uyy,

and thus Δu = 0. Similarly, Δv = 0. These formal calculations illustrate
that both the real and imaginary parts of a holomorphic function are harmonic
functions.

1.4 Exercises

1. How would you change the derivation of the conservation law (1.9) in the
case of the tube with a variable cross-section A = A(x)?

2. Derive the model of the vibrating string including the gravitation force:

utt = c2uxx − g.

Here g is the constant representing the gravitational acceleration. Notice
that gravity acts at every point of the string in the vertical direction, that
is, it appears as the source term in the momentum conservation law.
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Section 1.4 Exercises 19

3. Derive a damped wave equation

utt = c2uxx − kut

describing vibrations of the string whose vertical motion is decelerated by
a damping force proportional to the string velocity. Here, k is a damping
coefficient.

4. Consider heat conduction in a rod with perfect lateral insulation, no inter-
nal heat sources, and specific heat, mass density and thermal conductivity
as functions of x, that is, c(x), ρ(x) and K(x). Start with the energy
conservation law and derive a new form of the heat equation.

5. Consider a rod with perfect lateral insulation, but with the cross-sectional
area dependent on x, that is, A(x). Use the conservation law derived in
Exercise 1 and Fourier’s heat law (as a constitutive law) to obtain the
corresponding heat equation.

6. Consider u = u(x, t) to be the density of cars at a point x and time t on
a one-way road without any ramps and exits, and φ = φ(x, t) to be the flux
of the cars. Observe the following facts. If there is no car on the road, the
flux is zero. There exists a critical value of the car density, say uj, for which
the jam occurs and the flux is zero again. And there must exist an optimal
value um, 0 < um < uj, for which the flux is maximal. Try to formulate
a simple constitutive law relating u and φ and derive a basic (nonlinear)
traffic model.

[The traffic constitutive law can have the form φ = u(uj − u) and then the traffic
model is ut + ujux − 2uux = 0.]

7. Derive a nonlinear equation describing the behavior of bacteria in a one-
dimensional tube under the assumption that the population growth obeys
the logistic law ru(1−u/K). Here u = u(x, t) denotes the concentration of
the bacteria, r is a growth constant and K represents the carrying capacity.
Use the basic conservation law with φ = −Dux (the bacteria are diffusing
inside the tube with the diffusion constant D) and f = ru(1 − u/K) (the
sources reflect the reproduction of the population).

[The resulting model ut −Duxx = ru(1− u/K) is known as Fisher’s equation.]

8. Derive the so called Burgers equation

ut −Duxx + uux = 0,

which describes the coupling between nonlinear convection and diffusion
in fluid mechanics. Use the one-dimensional conservation law (1.9) with
no sources and the constitutive relation φ = −Dux + 1

2u
2. Here, the first
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20 Chapter 1 Motivation, Derivation of Basic Mathematical Models

term represents the diffusion process, the latter term corresponds to the
nonlinear transport (or convection).

9. Show that the Burgers equation ut −Duxx + uux = 0 can be transformed
into the diffusion equation ϕt − Dϕxx = 0 using the Cole-Hopf transform
u = ψx, ψ = −2D lnϕ.

10. Model an electric cable which is not well insulated from the ground, so that
leakage occurs along its entire length. Consider that the voltage V (x, t) and
current I(x, t) satisfy the relations Vx = −LIt −RI and Ix = −CVt −GV ,
where L is the inductance, R is the resistance, C is the capacitance, and G
is the leakage to the ground. Show that V and I both satisfy the telegraph
equation

uxx = LCutt + (RC + LG)ut +RGu.

 EBSCOhost - printed on 2/10/2023 4:02 PM via . All use subject to https://www.ebsco.com/terms-of-use



Chapter 2

Classification, Types of Equations, Boundary
and Initial Conditions

One of the main goals of the theory of partial differential equations is to express
the unknown function of several independent variables from an identity where
this function appears together with its partial derivatives. In the sequel, we
keep the following notation: t denotes the time variable, x, y, z, . . . stand for
the spatial variables. The general partial differential equation (PDE) for an
unknown function u = u(x, y, z, t) in 3D can be written as

F (x, y, z, t, u, ux, uy, uz, ut, uxx, uxy, uxz, uxt, . . . ) = 0,

where (x, y, z) ∈ Ω ⊂ R3, t ∈ I, Ω is a given domain in R3 and I ⊂ R is a time
interval. If F is a vector-valued function, F = (F1, . . . , Fm), and we look for
several unknown functions u = u(x, y, z, t), v = v(x, y, z, t), . . . , then

F (x, y, z, t, u, ux, . . . , v, vx, . . . ) = 0

is a system of partial differential equations. It is clear that these relations can
be, in general, very complicated, and only some of their particular cases can be
successfully studied by a mathematical theory. That is why it is important to
know how to recognize these types of equations and to distinguish them.

2.1 Basic Types of Equations

Partial differential equations can be classified from various points of view. If
time t is one of the independent variables of the searched-for function, we speak
about evolution equations. If it is not the case (the equation contains only spa-
tial independent variables), we speak about stationary equations. The highest
order of the derivative of the unknown function in the equation determines the
order of the equation. If the equation consists only of a linear combination of
u and its derivatives (for example, it does not contain products as uux, uxuxy,
etc.), then it is called a linear equation. Otherwise, it is a nonlinear equation.
A linear equation can be written symbolically by means of a linear differential
operator L, i.e., the operator with the property

L(αu+ βv) = αL(u) + βL(v),

where α, β are real constants and u, v are real functions. The equation

L(u) = 0
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22 Chapter 2 Classification, Types of Equations, Boundary and Initial Conditions

is called homogeneous, the equation

L(u) = f,

where f is a given function, is called nonhomogeneous. The function f repre-
sents the “right-hand side” of the equation.

According to the above-mentioned aspects, we can classify the following equa-
tions:

1. The transport equation in one spatial variable:

ut + ux = 0

is evolution, of the first order, linear with L(u) = ut+ux, and homogeneous.

2. The Laplace equation in three spatial variables:

uxx + uyy + uzz = 0

is stationary, of the second order, linear with L(u) = Δu = uxx + uyy + uzz,
and homogeneous.

3. The Poisson equation in two spatial variables:

uxx + uyy = f,

where f = f(x, y) is a given function, is stationary, of the second order,
linear with L(u) = Δu = uxx + uyy, and nonhomogeneous.

4. The wave equation with interaction in one spatial variable:

utt − uxx + u3 = 0

is evolution, of the second order, and nonlinear. The interaction is repre-
sented by the term u3.

5. The diffusion equation in one spatial variable:

ut − uxx = f

is evolution, of the second order, linear with L(u) = ut − uxx, and nonho-
mogeneous.

6. The equation of the vibrating beam:

utt + uxxxx = 0

is evolution, of the fourth order, linear with L(u) = utt + uxxxx, and homo-
geneous.
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7. The Schrödinger equation (a special case):

ut − iuxx = 0

is evolution, of the second order, linear with L(u) = ut − iuxx, and homoge-
neous (here i is the imaginary unit: i2 = −1).

8. The equation of a disperse wave:

ut + uux + uxxx = 0

is evolution, of the third order, and nonlinear.

2.2 Classical, General, Generic and Particular
Solutions

A function u is called a solution of a partial differential equation if, when
substituted (together with its partial derivatives) into the equation, the latter
becomes an identity. It means that the function u must have all derivatives
appearing in the equation. Usually, we require even more. If k is the order
of the given partial differential equation, then by its solution we understand
a function of the class Ck satisfying the equation at each point. In such a case,
we speak about the classical solution of a PDE. If we solve, for example, the
diffusion equation in one spatial variable, that is,

ut = kuxx,

which is of the second order, then its classical solution will be a C2-function,
i.e., a function having continuous partial derivatives up to the second order at
all points (x, t) considered. We thus require the existence and continuity of
derivatives utt and uxt that do not occur in the equation at all!

As in ordinary differential equations (ODEs), solutions of partial differential
equation are not determined uniquely. Concerning ODEs, we speak about the
so called general solution, which includes arbitrary constants and their number
is given by the order of the equation. In the case of PDEs, the situation can
be more interesting. We illustrate this fact by the examples below (cf. [21]
and [6]).

Example 2.1. Let us search for a function of two variables u = u(x, y) satis-
fying the equation

uxx = 0. (2.1)

This problem can be solved by direct integration of equation (2.1). Since we
integrate with respect to x, the integration “constant” can depend, in general,
on “parameter” y. From (2.1) it follows that

ux(x, y) = f(y)
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24 Chapter 2 Classification, Types of Equations, Boundary and Initial Conditions

and, by further integration,

u(x, y) = f(y)x+ g(y).

Thus, we have obtained a solution of (2.1) for arbitrary functions f and g of
the variable y. However, if we want to speak about the classical solution, the
functions f and g must be twice continuously differentiable. �
Example 2.2. Let us search for a function u = u(x, y, z) satisfying the equa-
tion

uyy + u = 0. (2.2)

Similarly to the case of the ODE for the unknown function v = v(t),

v′′ + v = 0,

when the general solution is a function v(t) = A cos t + B sin t with arbitrary
constants A,B ∈ R (the reader is asked to explain why), the classical solution
of equation (2.2) has the form

u(x, y, z) = f(x, z) cos y + g(x, z) sin y,

where f and g are arbitrary twice continuously differentiable functions of the
variables x and z. �
Example 2.3. Let us search for a function u = u(x, y) satisfying the equation

uxy = 0. (2.3)

Integrating (2.3) with respect to y, we obtain

ux = f(x)

(f is an arbitrary “constant” depending on “parameter” x). Further integration
with respect to x then leads to

u(x, y) = F (x) +G(y),

where F ′ = f . Functions F and G are again arbitrary. If we look for the
classical solution u, then both F and G must be again twice continuously
differentiable. Notice that if u ∈ C2, then its second partial derivatives are
exchangeable. Hence we can integrate (2.3) first with respect to x and then
with respect to y with the same result. �
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Section 2.2 Classical, General, Generic and Particular Solutions 25

Based on the previous examples, we could conclude that the solution of any
partial differential equation depends on arbitrary functions (by analogy with
arbitrary constants in the case of ODEs). Moreover, if n denotes the number of
independent variables in the equation, then these functions depend on (n− 1)
variables and their number is given by the order of the equation. This rule,
however, is disproved by the following example.

Example 2.4. Let us search for a function u = u(x, y) satisfying the equation

(uxx)
2 + (uyy)

2 = 0. (2.4)

Equation (2.4) says that the sum of quadratic terms (uxx)
2 and (uyy)

2 has
to be zero. It means that uxx = 0 as well as uyy = 0. The first equality implies

u(x, y) = f1(y)x+ f2(y),

where f1, f2 are arbitrary functions, whereas the latter equality gives us

u(x, y) = g1(x)y + g2(x),

where again g1, g2 are arbitrary functions. Both these formulas must hold
simultaneously, that is, the equality

f1(y)x+ f2(y) = g1(x)y + g2(x)

must hold for any x and y. Since the left-hand side is linear in x and the right-
hand side is linear in y, it follows that fi, gi, i = 1, 2, are linear functions. It
follows from here that

u(x, y) = axy + bx+ cy + d,

where a, b, c, d are arbitrary real numbers. The solution thus depends on four
arbitrary constants instead of two arbitrary function of one variable! �

Based on the above examples we distinguish the so called general solution
and the generic solution.

By the general solution of a partial differential equation we understand a set
of all solutions of the given equation. Very often, the general solution can be
described by a formula including arbitrary functions or constants and their
particular choice leads to one particular solution of the given equation.

By the generic solution of a partial differential equation of order k with n
independent variables we understand a function depending on k arbitrary Ck

functions of (n− 1) variables.
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In many cases, both notions coincide. However, in many other cases, they
differ substantially. As we see later, in the example of the diffusion equation,
there are also PDEs, for which we are not able to find the general or generic
solution at all.

2.3 Boundary and Initial Conditions

As in ODEs, a single PDE does not provide sufficient information to enable us
to determine its solution uniquely. For the unique determination of a solution,
we need further information. In the case of stationary equations, it is usually
boundary conditions which, together with the equation, form a boundary value
problem. For example,

{
uxx + uyy = 0, (x, y) ∈ B(0, 1) = {(x, y) ∈ R2 : x2 + y2 < 1},

u(x, y) = 0, (x, y) ∈ ∂B(0, 1) = {(x, y) ∈ R2 : x2 + y2 = 1}

forms a homogeneous Dirichlet boundary value problem for the Laplace equa-
tion on a unit disc. If, in general, Ω is a bounded domain in R3, we distinguish
the following basic types of (linear) boundary conditions:

(i) the Dirichlet boundary condition:

u(x, y, z) = g(x, y, z), (x, y, z) ∈ ∂Ω,

(ii) the Neumann boundary condition:

∂u

∂n
(x, y, z) = g(x, y, z), (x, y, z) ∈ ∂Ω,

(iii) the Robin (sometimes called also Newton) boundary condition:

A
∂u

∂n
(x, y, z) +Bu(x, y, z) = g(x, y, z), (x, y, z) ∈ ∂Ω,

where ∂u
∂n denotes the derivative with respect to the outer normal n to the

boundary (surface) of the domain Ω; A,B, A2 +B2 �= 0, are given constants.

If on various parts of the boundary ∂Ω different types of boundary conditions
are given, we speak about a problem with mixed boundary conditions. In the
case g ≡ 0, the boundary conditions are called homogeneous, otherwise they
are nonhomogeneous. In one dimension, that is in the case of problems on the
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interval Ω = (a, b), the boundary ∂Ω consists of two points x = a, x = b. Then,
for example, the nonhomogeneous Neumann boundary conditions reduce to

−ux(a) = g1, ux(b) = g2.

On an unbounded domain, for example, on the interval Ω = (0,+∞), where
it is not possible to speak about a value of the given function at the point
“infinity”, the homogeneous Dirichlet boundary condition has the form

u(0) = 0, lim
x→+∞ u(x) = 0.

As the differential equations themselves, the boundary conditions have also
their physical interpretation.

Vibrating string. Vibrations of a string of length l, which is fixed in a zero
position in both ends, are described by a one-dimensional wave equation with
homogeneous Dirichlet boundary conditions u(0, t) = u(l, t) = 0. On the con-
trary, free ends of a string are described by homogeneous Neumann boundary
conditions ux(0, t) = ux(l, t) = 0 (the tension at the end points is zero). Robin
boundary condition could describe the end of a string fastened to a spring
(obeying Hook’s law) that pulls it back to the equilibrium position.

Diffusion. If the diffusing substance is closed in a container Ω so that nothing
can get out or penetrate inside, its flux across the container boundary is zero and
hence (from Fick’s law) ∂u/∂n = 0 on ∂Ω, which is homogeneous Neumann
boundary condition. If the container is constructed in such a way that any
substance reaching the boundary flows immediately out, we have u = 0 on ∂Ω,
i.e., the homogeneous Dirichlet boundary condition.

Heat flow. The heat flow process is again described by the diffusion equation
with temperature as the searched quantity u(x, y, z, t). If the object Ω, where
the heat flows, is perfectly isolated, the heat flux across the boundary is zero
and we obtain homogeneous Neumann boundary condition ∂u/∂n = 0 on ∂Ω.
If the whole object Ω is immersed into a reservoir with a given temperature
g(t) and the heat conductivity is ideal (i.e., infinite), we have the Dirichlet
boundary condition u = g(t) on the boundary ∂Ω. Robin boundary conditions
describe the heat transfer between the object Ω and the surrounding media.
For example, if we model a homogeneous bar of length l, which is laterally
isolated and whose end x = l is immersed into a water with temperature g(t),
then the heat exchange between the bar end and the water occurs and can be
described by Newton’s Law of Cooling

∂u

∂x
(l, t) = −a

(
u(l, t)− g(t)

)
.
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Here, a > 0 is the heat transfer coefficient. For this reason, the Robin conditions
are also known as Newton conditions.

In the case of evolution equations, along with boundary conditions we also
deal with initial conditions. We then speak about an initial boundary value
problem. For example,

{
utt = uxx, t ∈ (0,+∞), x ∈ (0, 1),
u(0, t) = u(1, t) = 0, u(x, 0) = ϕ(x), ut(x, 0) = ψ(x)

forms an initial boundary value problem for the one-dimensional wave equa-
tion. Here the boundary conditions are the homogeneous Dirichlet ones. The
function ϕ denotes the initial displacement and ψ stands for the initial veloc-
ity at a given point x. The derivative ut at time t = 0 is understood as the
derivative from the right. If we look for the classical solution, the functions
ϕ and ψ are supposed to be continuous and also the function u is continuous
(even the partial derivatives of the second order are continuous). That is why
the boundary and initial conditions must satisfy the compatibility conditions

ϕ(0) = ϕ(1) = 0.

By a solution (classical solution) of the initial boundary (or boundary) value
problem, we understand a function differentiable up to the order of the equation
which satisfies the equation as well as the boundary and initial conditions point-
wise. These requirements can be too strong and thus the notion of a solution
of a PDE (or of a system of PDEs) is often understood in another (generalized)
sense. In our text, we confine ourselves mainly to searching for classical solu-
tions. However, in several examples in later chapters we handle more general
situations and we will notify the reader about that.

2.4 Well-Posed and Ill-Posed Problems

Another notion which we introduce in this part, is that of a well-posed boundary
(or initial boundary) value problem. The problem is called well-posed if the
following three conditions are satisfied:

(i) a solution of the problem exists;

(ii) the solution of the problem is determined uniquely ;

(iii) the solution of the problem is stable with respect to the given data, which
means that a “small change” of initial or boundary conditions, right-hand
side (or other problem data) causes only a “small change” of the solution.

 EBSCOhost - printed on 2/10/2023 4:02 PM via . All use subject to https://www.ebsco.com/terms-of-use



Section 2.5 Classification of Linear Equations of the Second Order 29

The last condition concerns especially models of physical problems, since the
given data can never be measured with absolute accuracy. However, the ques-
tion left in the definition of stability is what does “very small” or “small” change
mean. The answer depends on the particular problem and, at this moment, we
put up with only an intuitive understanding of this notion.

The contrary of a well-posed problem is the ill-posed problem, i.e., a problem
which does not satisfy at least one of the three previous requirements. If the
solution exists but the uniqueness is not ensured, the problem can be underde-
termined. Conversely, if the solution does not exist, it can be an overdetermined
problem. An underdetermined problem, overdetermined problem, as well as un-
stable problem can, however, make real sense. Further, it is worth mentioning
that the notion of a well-posed problem is closely connected to the definition
of a solution. As we will see later, the wave equation with non-smooth initial
conditions is, in the sense of the classical solution defined above, an ill-posed
problem, since its classical solution does not exist. However, if we consider the
solution in a more general sense, the problem becomes well-posed, the general-
ized solution exists, it is unique and stable with respect to “small” changes of
given data.

2.5 Classification of Linear Equations of the Second
Order

In this section we state the classification of the basic types of PDEs of the
second order that can be found most often in practical models. We start with
equations with two independent variables.

The basic types of linear evolution equations of the second order are the wave
equation (in one spatial variable):

utt − uxx = 0 (c = 1),

which is of hyperbolic type, and the diffusion equation (in one spatial variable):

ut − uxx = 0 (k = 1),

which is of parabolic type. The basic type of the linear stationary equation of
the second order (in two spatial variables) is the Laplace equation :

uxx + uyy = 0,

which is of elliptic type.
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Formal analogues of these PDEs are equations of conics in the plane: the
equation of a hyperbola, t2 − x2 = 1, the equation of a parabola, t − x2 = 1,
and the equation of an ellipse (here we mention its special case – a circle),
x2 + y2 = 1.

Let us consider a general linear homogeneous PDE of the second order

a11uxx + 2a12uxy + a22uyy + a1ux + a2uy + a0u = 0 (2.5)

with two independent variables x, y and with six real coefficients that can
depend on x and y. Let us denote by

A =

[
a11 a12
a12 a22

]

the matrix formed by the coefficients of the partial derivatives of the second
order. It is possible to show that there exists a linear transformation of variables
x, y, which reduces equation (2.5) to one of the following forms. In this respect,
an important role is played by the determinant detA of the matrix A.

(i) Elliptic form: If detA > 0, that is a11a22 > a212, the equation is reducible
to the form

uxx + uyy + · · · = 0,

where the dots represent terms with derivatives of lower orders.

(ii) Hyperbolic form: If detA < 0, that is a11a22 < a212, the equation is
reducible to the form

uxx − uyy + · · · = 0.

The dots stand for the terms with derivatives of lower orders.

(iii) Parabolic form: If detA = 0, that is a11a22 = a212, the equation is re-
ducible to the form

uxx + · · · = 0, (or uyy + · · · = 0),

unless a11 = a12 = a22 = 0. Here, again, the dots represent terms with
derivatives of lower orders.

Finding the corresponding transformation relations and reducing the equa-
tion is based on the same idea as the analysis of conics in analytic geometry.
For simplicity, let us consider only the principal terms in the equation, that
is, let a1 = a2 = a0 = 0, and let us normalize the equation by a11 = 1. If,
moreover, we denote ∂x = ∂/∂x, ∂2

y = ∂2/∂y2, etc., we can write equation (2.5)
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as
(∂2

x + 2a12∂x∂y + a22∂
2
y)u = 0

and, by formally completing the square, we convert it to

(∂x + a12∂y)
2u+ (a22 − a212)∂

2
yu = 0. (2.6)

Further, let us consider the elliptic case a22 > a212, and denote b = (a22−a212)
1/2,

which means b ∈ R. We introduce new independent variables ξ and η by

x = ξ, y = a12ξ + bη.

The transformed derivatives assume the form

∂ξ = ∂x + a12∂y, ∂η = b∂y

(you can prove it using the chain rule), and equation (2.6) becomes

∂2
ξu+ ∂2

ηu = 0

or, equivalently,
uξξ + uηη = 0.

In the remaining two cases, we would proceed analogously (in the parabolic
case we have b = 0, and in the hyperbolic case, b = i(a212 − a22)

1/2 ∈ C).

Example 2.5. Let us determine types of the following equations:

(a) uxx − 3uxy = 0,

(b) 3uxx − 6uxy + 3uyy + ux = 0,

(c) 2uxx + 2uxy + 3uyy = 0.

In terms of the previous explanation, we decide according to the sign of
detA = a11a22 − a212. Thus, in case (a), we obtain detA = −9/4 < 0 and the
equation is of hyperbolic type. In case (b), we have detA = 0, and thus the
equation is of parabolic type. In case (c), we have detA = 5 > 0, and the
equation is of elliptic type. �

If A is a function of x and y (i.e., the equation has non-constant coefficients),
then the type of the equation may be different in different parts of the xy-plane.
See the following two examples.

Example 2.6. Let us find regions of the xy-plane where the equation

xuxx − uxy + yuyy = 0

is of elliptic, hyperbolic, or parabolic type, respectively.
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In this case the coefficients depend on x and y and we obtain detA =
a11a22−a212 = xy− 1

4 . The equation is thus of parabolic type on the hyperbola
xy = 1

4 , of elliptic type in two convex regions xy > 1
4 , and of hyperbolic type

in the connected region xy < 1
4 . The reader is invited to sketch a picture of

corresponding regions. �
Example 2.7. Again, let us find regions of the xy-plane where the equation

−x2uxx + 2xyuxy + (1 + y)uyy = 0

is of elliptic, hyperbolic, or parabolic type, respectively.
This time we have detA = a11a22 − a212 = −x2(1 + y)− x2y2. The equation

is thus of hyperbolic type in the whole plane except the axis y, where it is of
parabolic type. �

In a similar way as above we can classify linear PDEs of the second order
with an arbitrary finite number of variables N ≥ 3. The coefficient matrix A
is then of type N × N . The type of the equation is related to definiteness of
the matrix A and can be determined by signs of its eigenvalues:

(i) the equation is of elliptic type, if the eigenvalues of A are all positive or
all negative (i.e., A is positive or negative definite);

(ii) the equation is of parabolic type, if A has exactly one zero eigenvalue and
all the other eigenvalues have the same sign (i.e., A is a special case of a
positive or negative semidefinite matrix);

(iii) the equation is of hyperbolic type, if A has only one negative eigenvalue
and all the others are positive, or A has only one positive eigenvalue and
all the others are negative (i.e., A is a special case of an indefinite matrix);

(iv) the equation is of ultrahyperbolic type, if A has more than one positive
eigenvalue and more than one negative eigenvalue, and no zero eigenvalues
(i.e., A is indefinite).

Notice that the matrix A is symmetric, since we consider exchangeable second
partial derivatives, and thus all its eigenvalues have to be real.

2.6 Exercises

1. Determine which of the following operators are linear.

(a) u �→ y ux + uy,
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(b) u �→ uux + uy,

(c) u �→ u3x + uy,

(d) u �→ ux + uy + x+ y,

(e) u �→ (x2 + y2)(sin y)ux + x3 uyxy +
(
arccos (xy)

)
u.

[a,d,e]

2. In the following equations, determine their order and whether they are
nonlinear, linear nonhomogeneous, or linear homogeneous. Explain your
reasoning.

(a) ut − 3uxx + 5 = 0,

(b) ut − uxx + xt3 u = 0,

(c) ut + uxxt + u2ux = 0,

(d) utt − 4uxx + x4 = 0,

(e) iut − uxx + x3 = 0,

(f) ux(1 + u2x)
−1/2 + uy(1 + u2y)

−1/2 = 0,

(g) exux + uy = 0,

(h) ut + uxxxx +
3
√
1 + u = 0.

(i) uxx + etutt = u cos x.

[linear: a,b,d,e,g,i]

3. Verify that the function u(x, y, z) = f(x)g(y)h(z) is a generic solution of
the equation u2uxyz = uxuyuz for arbitrary (differentiable) functions f , g
and h of a single real variable.

4. Show that the nonlinear equation ut = u2x + uxx can be transformed to the
diffusion equation ut = uxx by using the transformation of the dependent
variable w = eu (i.e., introducing a new unknown function w).

5. What are the types of the following equations?

(a) uxx − uxy + 2uy + uyy − 3uyx + 4u = 0,
[hyperbolic]

(b) 9uxx + 6uxy + uyy + ux = 0.
[parabolic]

6. Classify the equation

uxx + 2kuxt + k2utt = 0, k �= 0.
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Use the transformation ξ = x+ bt, τ = x+ dt of the independent variables
with unknown coefficients b and d such that the equation is reduced to the
form uξξ = 0. Find a generic solution of the original equation.

[equation of parabolic type; u(x, t) = f (x− t
k )x+ g(x− t

k )]

7. Classify the equation
xuxx − 4uxt = 0

in the domain x > 0. Solve this equation by a nonlinear substitution τ = t,
ξ = t+ 4 ln x.

[equation of hyperbolic type; u = e−t/4f (t+ 4 lnx) + g(t)]

8. Show that the equation

utt − c2uxx + aut + bux + du = f(x, t)

can be transformed to the form

wξτ + kw = g(ξ, τ ), w = w(ξ, τ )

by substitutions ξ = x − ct, τ = x + ct and u = weαξ+βτ for a suitable
choice of constants α and β.

[α = b+ac
4c2 , β = b−ac

4c2 ]

9. Classify the equation

uxx − 6uxy + 12uyy = 0.

Find a transformation of independent variables which converts it into the
Laplace equation.

[equation of elliptic type; ξ = x, η =
√
3x+ 1√

3
y]

10. Determine in which regions of the xy-plane the following equations are
elliptic, hyperbolic, or parabolic.

(a) 2uxx + 4uyy + 4uxy − u = 0,

(b) uxx + 2y uxy + uyy + u = 0,

(c) sin(xy)uxx − 6uxy + uyy + uy = 0,

(d) uxx − cos(x)uxy + uyy + uy − ux + 5u = 0,

(e) (1 + x2)uxx + (1 + y2)uyy + xux + yuy = 0,

(f) e2xuxx + 2ex+yuxy + e2yuyy + (e2y − ex+y)uy = 0,

(g) uxx − 2 sinxuxy − cos2 xuyy − cos xuy = 0,
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(h) exyuxx + (coshx)uyy + ux − u = 0,

(i)
(
log(1 + x2 + y2)

)
uxx −

(
2 + cosx

)
uyy = 0.

11. Try to find PDEs whose general (and generic) solutions are of the form

(a) u(x, y) = ϕ(x+ y) + ψ(x− 2y),

(b) u(x, y) = xϕ(x+ y) + yψ(x+ y),

(c) u(x, y) = 1
x (ϕ(x− y) + ψ(x + y)).

Here ϕ, ψ are arbitrary differentiable functions.

[(a) 2uxx − uxy − uyy = 0, (b) uxx − 2uxy +uyy = 0, (c) x(uxx − uyy)+ 2ux = 0.]

12. Consider the Tricomi equation

yuxx + uyy = 0.

Show that this equation is

(a) elliptic for y > 0 and can be reduced to

uξξ + uηη +
1

3η
uη = 0

using the transformation ξ = x, η = 2
3y

3/2;

(b) hyperbolic for y < 0 and can be reduced to

uξη − 1

6(ξ − η)
(uξ − uη) = 0

using the transformation ξ = x− 2
3(−y)3/2, η = x+ 2

3(−y)3/2.

13. Show that the equation

uxx + yuyy +
1

2
uy = 0

can be reduced to the (canonical) form uξη = 0 in the region where it is
of hyperbolic type. Use this result to show that in the hyperbolic region it
has the general (and generic) solution

u(x, y) = f(x+ 2
√−y) + g(x− 2

√−y),

where f and g are arbitrary functions.

14. Determine whether the following three-dimensional equations are of elliptic,
hyperbolic, ultrahyperbolic or parabolic type (determine the eigenvalues of
the corresponding matrix A):
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(a) uxx + 2uyz + (cosx)uz − ey
2
u = cosh z,

(b) uxx + 2uxy + uyy + 2uzz − (1 + xy)u = 0,

(c) 7uxx − 10uxy − 22uyz + 7uyy − 16uxz − 5uzz = 0,

(d) ezuxy − uxx = log(x2 + y2 + z2 + 1).

15. Determine the regions of the xyz-space where

uxx − 2x2uxz + uyy + uzz = 0

is of hyperbolic, ultrahyperbolic, elliptic, or parabolic type.
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Chapter 3

Linear Partial Differential Equations of the
First Order

A general linear partial differential equations of the first order for a function
u = u(x, y) of two independent variables x and y has a form

a(x, y)ux + b(x, y)uy + c(x, y)u = f(x, y), (3.1)

where coefficients a, b, c and the right-hand side f are, in general, functions
mapping (x, y) from a set Ω ⊂ R2 into R. A simple example is the transport
equation, which has been derived in Section 1.3.1:

ut + cux = 0. (3.2)

It describes, for instance, the drift of a substance in a tube with a flowing
liquid. The quantity u represents the concentration of the drifted substance
(a contaminant) and the parameter c corresponds to the constant velocity of the
flowing liquid. Let us recall that this simple model does not consider diffusion
of the contaminant into the liquid.

If we model the behavior of a radioactive chemical drifted by a liquid at
constant speed c and we include the particle decay into the transport model,
we obtain the transport equation with decay (see Section 1.3.1):

ut + cux + λu = 0. (3.3)

In this case, u denotes the number of nondecayed particles (nuclei) at time t
and point x and λ represents a decay constant.

In the next sections, we present several ways to find solutions of the transport
equation (3.2), the transport equation with decay (3.3), or the general linear
equation of the first order (3.1), respectively.

3.1 Equations with Constant Coefficients

Let us consider a linear PDE of the first order with two independent variables
and with constant coefficients in the form

aux + buy = 0. (3.4)
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38 Chapter 3 Linear Partial Differential Equations of the First Order

Here u = u(x, y) is the unknown function and a, b are constants such that
a2 + b2 > 0 (they are not both equal to zero). Equation (3.4) is a special
case of the general equation (3.1) with the choice a(x, y) ≡ a, b(x, y) ≡ b,
c(x, y) ≡ f(x, y) ≡ 0. Its solving can be approached from various points of
view. Below, we present three basic methods.

3.1.1 Geometric Interpretation – Method of Characteristics

Let us denote v = (a, b), ∇u = gradu = (ux, uy). The left-hand side of equa-
tion (3.4) can be then considered as a scalar product

aux + buy = v · ∇u =
∂u

∂v

and equation (3.4) can be interpreted in the following way: “the derivative of
the function u in the direction of the vector v is equal to zero,” or “the value of
the function u does not change (is constant) in the direction of the vector v.” In
other words, u is constant on every line with the directional vector v (warning:
this constant differs, in general, on different lines!). Thus,

u(x, y) = f(c) = f(bx − ay), (3.5)

since the function u(x, y) assumes the value f(c) (and it is thus constant) on
the given line bx − ay = c. Here f is an arbitrary differentiable real function.
Lines described by bx−ay = c, c ∈ R, are called the characteristic lines, or the
characteristics of equation (3.4) (see Figure 3.1).
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bx− ay = c

Figure 3.1. Characteristic lines.

Expression (3.5) represents the general (and generic, as well) solution of
equation (3.4). As we have mentioned in Section 1.3.1, a solution in this form
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Section 3.1 Equations with Constant Coefficients 39

is called a right (or left) traveling wave, since the profile of function f is just
shifted to the right (or to the left) along characteristics. To determine the
particular form of the solution, we have to add an initial or boundary condition.
We illustrate the detailed process in the following example.

Example 3.1. Let us solve the equation

2ux − 3uy = 0

with the boundary condition u(0, y) = y2.
On the basis of the previous text and relation (3.5), we can write the general

solution in the form
u(x, y) = f(−3x − 2y),

where f is an arbitrary differentiable function. If we use the condition

y2 = u(0, y) = f(−2y)

and substitute w = −2y, we obtain

f(w) =
w2

4
.

Hence,

u(x, y) =
(3x+ 2y)2

4

(see Figure 3.2).

Finally, we should verify that our function u is indeed a solution to the
equation. Since

ux =
3

2
(3x+ 2y), uy = 3x+ 2y,

after substituting them into the equation we find out that the left-hand side is
equal to the right-hand side:

2ux − 3uy = 3(3x+ 2y)− 3(3x+ 2y) = 0,

and also u(0, y) = y2. �
Remark 3.2. In Example 3.1, we have solved linear equation (3.4) with con-
stant coefficients a �= 0, b �= 0 together with the boundary condition given on
one of the coordinate axes, that is,

u(0, y) = g(y), (3.6)

where g is a given function. In such a case, it is not difficult to prove that the
corresponding solution is determined uniquely. Indeed, if this is not true and
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y x

u(x, y)

Figure 3.2. Solution from Example 3.1.

there are two solutions u1 = u1(x, y) and u2 = u2(x, y) satisfying equation (3.4)
as well as condition (3.6), then their difference w = u1−u2 must solve (3.4) with
the boundary condition w(0, y) = 0. Hence, we obtain w(x, y) = f(bx − ay)
and 0 = w(0, y) = f(−ay). This, however, implies f ≡ 0, and thus w(x, y) ≡ 0.
So, u1 and u2 coincide.

Figure 3.3 depicts the function u(x, t) = e−(3t+x)2 which solves the equation

ut − 3ux = 0

with the condition u(x, 0) = e−x2 . Similarly, Figure 3.4 shows the graph of the
function u(x, t) = − sin(3t− x) which solves the equation

ut + 3ux = 0

with the condition u(x, 0) = sinx. The reader is invited to find solutions of
both problems, and to notice how the boundary conditions “propagate” along
the characteristics.

A disadvantage of the geometric method of characteristics is that it is not ap-
plicable for solving more general problems, for instance, equations with nonzero
right-hand side. For this reason, we introduce other methods for solving linear
PDEs of the first order based on the transformation of coordinates.
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x

t

u(x, t)

Figure 3.3. Solution of ut − 3ux = 0, u(x, 0) = e−x2

.

x

t

u(x, t)

Figure 3.4. Solution of ut + 3ux = 0, u(x, 0) = sinx.
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3.1.2 Coordinate Method

Again, let us consider the linear equation (3.4) with constant coefficients, and
this time, let us introduce a new rectangular coordinate system by

ξ = bx− ay, η = ax+ by, (3.7)

see Figure 3.5.
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Figure 3.5. Transformation of the coordinate system.

According to the chain rule for the derivative of a composite function, we
have

ux =
∂u

∂x
=

∂u

∂ξ

∂ξ

∂x
+

∂u

∂η

∂η

∂x
= buξ + auη,

uy =
∂u

∂y
=

∂u

∂ξ

∂ξ

∂y
+

∂u

∂η

∂η

∂y
= −auξ + buη.

Equation (3.4) can be then written in the form

abuξ + a2uη − abuξ + b2uη = 0,

i.e.,
(a2 + b2)︸ ︷︷ ︸

�=0

uη = 0,

whence
uη = 0.

Thus, it follows that
u(ξ, η) = f(ξ),

where f is an arbitrary differentiable function. After passing to the original
coordinates, we get the already known solution in the form of a traveling wave

u(x, y) = f(bx − ay).
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3.1.3 Method of Characteristic Coordinates

Another method, which can be applied to find the solution of (3.4), is again
based on the change of coordinates. This time, however, we do not rotate the
coordinate system, but we apply the “moving” coordinate system. That is, we
introduce new independent variables called characteristic coordinates:

ξ = bx− ay, τ = y. (3.8)

The variable ξ can be understood as the coordinate propagating together with
the signal, whereas the latter variable (often representing time) stays without
any change. Using the chain rule we easily derive

ux = uξξx + uττx = buξ,

uy = uξξy + uττy = −auξ + uτ .

Substituting into the original relation, we obtain

abuξ − abuξ + buτ = buτ = 0.

And again, we come to the same conclusion

u = f(ξ) = f(bx − ay),

where f is an arbitrary differentiable function.

The coordinate method as well as the method of characteristic coordinates
can be applied to more general linear PDEs of the first order in the form

aux + buy + c(x, y)u = f(x, y), (3.9)

where coefficients a, b are real numbers and c, f are real functions of two real
variables (x, y). Transformation (3.7) converts (3.9) into

(a2 + b2)uη + c(ξ, η)u = f(ξ, η),

while transformation (3.8) leads to

buτ + c(ξ, τ )u = f(ξ, τ ).

Both equations can be understood as an ODE with a parameter and solved
by standard methods. (We point out that we have kept the same notation for
functions c and f after transformation of their independent variables, that is,
we write c(ξ, η) for c(x(ξ, η), y(ξ, η)) and similarly in other cases.)
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Example 3.3. Let us find all solutions of the equation

ux + 2uy + (2x− y)u = 2x2 + 3xy − 2y2. (3.10)

We apply the coordinate method since by introducing new variables

ξ = bx− ay = 2x− y, η = ax+ by = x+ 2y,

equation (3.10) comes to a simpler form

5uη + ξu = ξη.

This is nothing but a linear nonhomogeneous ODE of the first order with the
variable η and the parameter ξ. First, we find the general solution of the
homogeneous equation

uH(ξ, η) = f(ξ)e−
1
5
ξη,

where f is an arbitrary differentiable function. Then, using variation of param-
eters, we determine a particular solution of the nonhomogeneous equation

uP (ξ, η) = η − 5

ξ
.

The general solution of the nonhomogeneous equation is then the sum of func-
tions uH and uP :

u(ξ, η) = η − 5

ξ
+ f(ξ)e−

1
5
ξη

and, after passing to the original variables x, y, we obtain

u(x, y) = x+ 2y − 5

2x− y
+ f(2x− y)e−

1
5
(2x2+3xy−2y2), y �= 2x.

If y = 2x, equation (3.10) reduces to ux +2uy = 0, and thus u(x, y) = c on the
line y = 2x, where c ∈ R is a constant.

The reader is invited to carry out the above steps in detail and to verify the
correctness of the solution. �
Example 3.4. Let us find the general solution of the transport equation

ux + ut − u = t.

This time, we introduce the characteristic coordinates by the relations

ξ = x− t, τ = t

and, according to the instructions above, we transform the equation to the form

uτ − u = τ.

 EBSCOhost - printed on 2/10/2023 4:02 PM via . All use subject to https://www.ebsco.com/terms-of-use



Section 3.2 Equations with Non-Constant Coefficients 45

Now, we treat this equation as an ODE with the variable τ and the parameter ξ.
The general solution of the corresponding homogeneous equation assumes the
form

uH(ξ, τ ) = g(ξ)eτ

with an arbitrary differentiable function g, while a particular solution of the
nonhomogeneous equation can be written as

uP (ξ, τ ) = −(1 + τ).

The general solution of the nonhomogeneous equation is then the sum u =
uH + uP . Finally, we return to the original variables x and t:

u(x, t) = −(1 + t) + g(x− t)et.

The reader is asked to carry out all the above steps in detail and to check the
correctness of the solution. �

3.2 Equations with Non-Constant Coefficients

3.2.1 Method of Characteristics

The method of characteristics, based on the geometric interpretation, can be
used also in the case of equations with non-constant coefficients a(x, y) and
b(x, y). The difference consists in the fact that the characteristics are no more
straight lines but general curves. We start with a simple example.

Example 3.5 (Strauss [21]). Let us solve the equation

ux + yuy = 0. (3.11)

Here we have a = 1, b = y and introduce a variable vector v = (1, y). The
second component of the vector v now depends on the variable y. The set of
all vectors v in the xy plane can be depicted as in Figure 3.6.

As in the case of equations with constant coefficients, equation (3.11) can be
written as

v · ∇u =
∂u

∂v
= 0,

that is, the unknown function u does not change (it is constant) along charac-
teristics determined by the directional vector v. The characteristics are thus
curves for which v is the tangent vector, i.e., their tangents at a given point
have the slope

dy
dx

= y.
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Figure 3.6. Vector field v = (1, y).

By solving this ODE we obtain the characteristics

y = c ex, c ∈ R.

We easily verify that the solution u is a constant along these characteristics.
Indeed, let c ∈ R be an arbitrary constant. Then

∂

∂x
u(x, cex) = ux + uy cex︸︷︷︸

y

= 0,

since u solves equation (3.11); further, we have

∂

∂y
u(x, cex) = ux · 0 + uy · 0 = 0,

since none of the variables depend on y. The solution u is thus constant on
every curve y = cex. The choice of the constant c then determines a particular
curve. The variables x and y along this curve are linked by the relation

ye−x = c.

Thus, for an arbitrary differentiable function f = f(z), the solution u can be
written in the form

u(x, y) = f(c) = f(ye−x).
�

If we deal, in general, with the equation

a(x, y)ux(x, y) + b(x, y)uy(x, y) = 0, (3.12)
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we proceed quite analogously. Now, v(x, y) = (a(x, y), b(x, y)) and character-
istics are curves given by the solution of the ODE

dy
dx

=
b(x, y)

a(x, y)
,

under the assumption a(x, y) �= 0. Let this solution take the form

h(x, y) = c,

where c is a real constant. Then the solution of equation (3.12) is an arbitrary
differentiable function f of the argument c = h(x, y), that is,

u(x, y) = f(c) = f(h(x, y)).

Example 3.6 (Strauss [21]). Let us find all solutions of the equation

ux + 2xy2uy = 0.

Here v = (1, 2xy2) and the characteristics are the curves which solve the
equation

dy
dx

= 2xy2.

We easily find out (for instance, by separation of variables) that the functions

y = − 1

x2 + c
, c ∈ R,

and also
y ≡ 0

describe the required characteristic curves. See Figure 3.7. Hence, we can
express

c = −x2 − 1

y
,

and the solutions can be written as

u(x, y) =

⎧⎨
⎩

f

�
x2 +

1

y

�
for y �= 0,

const. for y = 0.

In general, f can be an arbitrary differentiable function. However, in such
a case, we have to understand the solution in the generalized sense. If we
require u to be the classical solution, we would have to add more assumptions
on f to ensure the continuity of u and its first derivatives at y = 0! �

As in the case of equations with constant coefficients, the geometric method
cannot be applied for solving more general problems than (3.12). For this
purpose, we again use methods based on the transformation of the coordinate
system. However, the geometric method provided us a hint about the type of
transformation to use.
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Figure 3.7. Characteristics of the equation ux + 2xy2uy = 0.

3.2.2 Method of Characteristic Coordinates

In Section 3.1.3 we introduced the method of characteristic coordinates for
equations of the first order with constant coefficients based on the idea that
one of the original coordinates is left without any change, whereas the second
coordinate moves along the characteristics. That is, we have considered a trans-
formation ξ = bx − ay, τ = y, where bx − ay = const. was just the analytic
expression of the characteristics corresponding to the given equation. Now, let
us consider a general equation (3.1), i.e.,

a(x, y)ux + b(x, y)uy + c(x, y)u = f(x, y)

with variable coefficients and let us proceed analogously. We introduce a new
coordinate system so that one independent variable again “travels” along the
characteristics. Due to the previous geometric method, we already know that
characteristics are, in this case, curves described by the ODE

dy
dx

=
b(x, y)

a(x, y)
. (3.13)

If we are able to describe the solution of this equation by the analytic relation
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h(x, y) = const., we can introduce a new coordinate system by

ξ = h(x, y), τ = y.

Using the chain rule, we can write

ux = uξξx + uττx = hxuξ,

uy = uξξy + uττy = hyuξ + uτ .

Since the relation h(x, y) = const. describes the characteristics, we have (using
(3.13))

0 =
d
dx

h(x, y(x)) = hx + hy
dy
dx

= hx + hy
b(x, y)

a(x, y)
,

and hence, a(x, y)hx + b(x, y)hy = 0 at any point (x, y(x)). We thus obtain

a(x, y)ux + b(x, y)uy = (a(x, y)hx + b(x, y)hy)︸ ︷︷ ︸
=0

uξ + b(x, y)uτ ,

and the original equation (3.1) reduces to the form

b(ξ, τ )uτ + c(ξ, τ )u = f(ξ, τ ),

which can be treated as an ODE with the variable τ and the parameter ξ.

Example 3.7. Let us find all solutions of the nonhomogeneous equation

ux + yuy = yey. (3.14)

First of all, we determine the characteristics of the equation. As in Exam-
ple 3.5, these are given by the ODE

dy
dx

= y,

solutions of which are functions y(x) = cex with c ∈ R. The set of character-
istics can be thus described by ye−x = c, c ∈ R. Now, we introduce a new
coordinate system

ξ = ye−x, τ = y.

The new variable ξ is chosen so that it moves along the characteristics, while
the latter variable stays without change. The partial derivatives satisfy

ux = uξξx + uττx = −ye−xuξ,

uy = uξξy + uττy = e−xuξ + uτ
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and – after substituting into (3.14) – we obtain

τuτ = τeτ or uτ = eτ .

Direct integration leads to the solution of this equation in the form

u(ξ, τ ) = eτ + g(ξ).

Passing to the original variables, we obtain the final form of the required solu-
tion

u(x, y) = ey + g(ye−x) (3.15)

with g being an arbitrary differentiable function. The reader is asked to verify
the correctness of the solution. �

3.3 Problems with Side Conditions

In Section 3.1.1 (Example 3.1 and Remark 3.2) we have dealt with an equation
accompanied by a boundary condition given on one of the coordinate axes. Let
us go back to equation (3.14) from Example 3.7, whose general solution is given
by formula (3.15), and let us add, one by one, the following conditions:

u(0, y) = sin y, u(x, 0) = sinx, u(x, 0) = 10.

(i) In the first case, we obtain

sin y = u(0, y) = ey + g(y),

thus g(y) = sin y − ey. Equation (3.14) together with the condition
u(0, y) = sin y has a unique solution given by the formula

u(x, y) = ey + sin(ye−x)− eye
−x

.

(ii) In the second case, the boundary condition implies the equality

sinx = u(x, 0) = 1 + g(0),

which cannot be satisfied and equation (3.14) together with the condition
u(x, 0) = sinx has no solution.

(iii) In the third case, we require the equality

10 = u(x, 0) = 1 + g(0),

which holds true for any function g assuming the value 9 in the origin.
Thus, equation (3.14) together with the condition u(x, 0) = 10 has in-
finitely many solutions.
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Let us notice that in the first case, the condition is assigned on the y-axis,
which intersects all characteristics of equation (3.14) just once and under a non-
zero angle (transversally), while in two other cases, the condition is imposed
on the x-axis, which is in fact one of the characteristics!

The boundary condition can be imposed not only on one of the coordinate
axes, but we can prescribe values of the solution along a general curve γ given
by parametric relations

γ : x = x0(s), y = y0(s), s ∈ I,

where I ⊂ R is a given interval. In such a case, we usually speak about the so
called side condition and it takes the form

u(x, y) = u0(s) for (x, y) ∈ γ,

where u0 is a given function of one real variable (which is actually the parameter
of curve γ). For simplicity, we restrict ourselves to regular curves in further
text. The following assertion is a sufficient condition for unique solvability of
a boundary value problem for the equation of the first order with such a general
side condition.

Theorem 3.8. Let us consider a linear PDE of the first order in the form

a(x, y)ux + b(x, y)uy + c(x, y)u = f(x, y),

where C1 functions a, b, c, f are defined on a domain Ω ⊂ R2, with a side
condition u = u0(s), u0 ∈ C1, imposed on a regular curve

γ :

{
x = x0(s),
y = y0(s),

s ∈ I.

If the condition

dx0
ds

b(x0(s), y0(s))− dy0
ds

a(x0(s), y0(s)) �= 0 ∀s ∈ I, (3.16)

holds true, then there exists a unique solution u = u(x, y) of the given equa-
tion defined on a neighborhood of the curve γ and satisfying the side condition
u(x0(s), y0(s)) = u0(s), s ∈ I.

Remark 3.9. Condition (3.16) says that the vector (a, b) is not a tangent vec-
tor of the curve γ at any point (x0, y0) ∈ γ. It means that γ intersects the
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characteristics of the given equation transversally. Notice as well that Theo-
rem 3.8 ensures the existence of a unique solution only locally.

Example 3.10. Let us solve the equation

ux + uy = 0

with the side condition u(2s, s) = e−s2 , s ∈ R.
The equation has constant coefficients a = 1, b = 1 and its characteristics are

thus straight lines y−x = c, c ∈ R. Note that x0(s) = 2s, y0(s) = s, s ∈ R, i.e.,
γ is the line y = x/2. Before we start to solve the problem, we verify condition
(3.16):

dx0
ds

b− dy0
ds

a = 2− 1 �= 0 ∀s ∈ R.

It corresponds to the fact that the curve γ intersects all characteristics just once
and transversally. (The reader is recommended to draw the characteristics as
well as the curve γ.) According to Theorem 3.8, the unique solvability of our
problem is guaranteed. The general (as well as generic) solution can be written
in the form

u(x, y) = f(y − x),

where f is an arbitrary differentiable function. The particular form of f can be
gained using the prescribed side condition. The equalities

e−s2 = u(2s, s) = f(s− 2s) = f(−s)

must hold for an arbitrary s ∈ R and hence the required solution is a function

u(x, y) = e−(y−x)2 .

Its graph is depicted in Figure 3.8. �

Example 3.11. Let us solve the equation

ux + uy = 0

with the side condition u(cos s, sin s) = s, s ∈ [0, 2π).
This time, we consider the same equation as in the previous example, but

the side condition is imposed on a unit circle

γ :

{
x = cos s,
y = sin s,

s ∈ [0, 2π) .

Condition (3.16) provides us the requirement

dx0
ds

b− dy0
ds

a = − sin s− cos s �= 0,
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x
y

u(x, t)

γ

Figure 3.8. Solution of the problem ux + uy = 0, u(s, 2s) = e−s2 .

which is not satisfied at points s = 3
4π and s = 7

4π. If we want to ensure the
unique solvability of our problem, we have to impose the side condition only
on such a part of the unit circle that does not contain these points. Let us
consider, for instance, the arc

γ :

{
x = cos s,
y = sin s,

s ∈
[
0,

π

2

]
.

The general solution of the equation considered is an arbitrary differentiable
function u = f(y − x). Substituting into the side condition, we obtain

s = u(cos s, sin s) = f(sin s− cos s), s ∈
[
0,

π

2

]
.

If we introduce a new variable w = sin s−cos s and apply standard trigonometric
identities, we easily express

s =
π

4
+ arcsin

w√
2
, w ∈ [−1, 1] .

Thus, f(w) = π
4 + arcsin w√

2
and the solution of our problem with the side

condition on a quarter-circle can be written in the form

u(x, y) =
π

4
+ arcsin

y − x√
2

, −1 ≤ y − x ≤ 1.
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The graph of the solution is depicted in Figure 3.9. Notice that the solution is
determined only in the strip −1 ≤ y − x ≤ 1, that is, in the domain obtained
by moving γ along the characteristics. �

x

y

u(x, t)

γ

Figure 3.9. Solution of the problem ux + uy = 0, u(cos s, sin s) = s, s ∈ [0, π/2].

Example 3.12. Let us solve the equation

ux + yuy = 0

with the side condition u(s, s3) = e−s2 , s ∈ I, where I is an appropriately
chosen interval.

In this case, we have coefficients a = 1, b = y and the side condition is
prescribed along the curve

γ :

{
x = s,
y = s3,

s ∈ I,

or, equivalently, γ : y = x3, x ∈ I. Condition (3.16) has the following form:

dx0
ds

b(x0, y0)− dy0
ds

a(x0, y0) = s3 − 3s2 �= 0,
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which is not satisfied for s = 0 and s = 3. Notice that γ and the corresponding
characteristic have indeed the same tangent line at points (0, 0) and (3, 27).

If we want to ensure the unique solvability of our problem, we must avoid
these points. Let us consider, for instance, s ∈ I = (0, 3). Due to Example 3.5
we already know that the characteristics of the equation ux+yuy = 0 are curves
described by

ye−x = c, c ∈ R,

and the general solution of our problem takes the form

u(x, y) = f(ye−x)

with an arbitrary differentiable function f . Applying the side condition, we
obtain the equality

e−s2 = u(s, s3) = f(s3e−s), s ∈ (0, 3),

that could theoretically provide us the formula for f and hence the final form
of the solution. Unlike the previous examples, we are not able to specify f in
a simple way. In this and similar cases, the explicit analytic expression of the
solution can be difficult or even impossible to obtain. �

3.4 Solution in Parametric Form

Example 3.12 illustrates the fact that sometimes it is difficult (or even im-
possible) to gain the analytic description of the solution of a boundary value
problem for the equation of the first order. In this section, we show that the
parametric form is much more convenient and – in a certain sense – even more
natural. Again, let us consider a general linear PDE of the first order in two
independent variables

a(x, y)ux + b(x, y)uy + c(x, y)u = f(x, y)

with a side condition u(x, y) = u0(s) imposed on a curve

γ :

�
x = x0(s),
y = y0(s),

s ∈ I.

The curve γ is already described in a parametric form with a parameter s. To
search the solution u = u(x, y) in the parametric form means to look for the
expression ⎧⎨

⎩
x = x(t, s),
y = y(t, s),
u = u(t, s),

s ∈ I, t ∈ R,
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so that functions x = x(t, s), y = y(t, s), u = u(t, s) satisfy both the equation
and the side condition. The parameter t will express the motion along the
characteristics and it is usual to choose t = 0 on γ (see Figure 3.10). The
parametric form of the characteristics can be obtained from the system of two
ODEs: ⎧⎪⎨

⎪⎩

∂

∂t
x(t, s) = a(x(t, s), y(t, s)),

∂

∂t
y(t, s) = b(x(t, s), y(t, s))

with the initial conditions x(0, s) = x0(s), y(0, s) = y0(s). Further, we have

a(x, y)ux + b(x, y)uy =
∂x

∂t

∂u

∂x
+

∂y

∂t

∂u

∂y
=

du
dt

and the original PDE reduces to

ut + c(x(t, s), y(t, s))u = f(x(t, s), y(t, s)),

which can be dealt as an ODE with the variable t and parameter s. Finally,
we add the initial condition u(0, s) = u0(s). We illustrate all these steps once
more on Example 3.12.

t = 0

curve γ

���
s

���
t

characteristics

Figure 3.10. Characteristics and curve γ of the transport problem.
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Example 3.13. Let us search for the solution of problem from Example 3.12
in a parametric form. First of all, we find the parametric expression of the
characteristics. It means to solve the system

⎧⎪⎨
⎪⎩

∂

∂t
x(t, s) = 1,

∂

∂t
y(t, s) = y(t, s)

with the initial condition x(0, s) = s, y(0, s) = s3. The corresponding general
solution takes the form:

x(t, s) = t+ g1(s), y(t, s) = g2(s)et, s ∈ I, t ∈ R,

where g1 and g2 are arbitrary functions. Using the initial conditions, we obtain
the parametric description of characteristics:

x(t, s) = t+ s, y(t, s) = s3et, s ∈ I, t ∈ R.

Figure 3.11 illustrates the curve γ and characteristics for the choice I = (−3, 4)
and t ∈ (0, 2). Let us notice two problematic points (0, 0) and (3, 27), we have
already spotted in Example 3.12.
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Figure 3.11. Curve γ : x = s, y = s3 and characteristics of the equation ux+yuy = 0.
Left: s ∈ (−3, 4), right: detail around the origin.
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Further, we have ux + yuy = xtux + ytuy = ut and the original PDE reduces
to the simple form

ut = 0,

whose solution is an arbitrary constant with respect to the variable t, that
is, u(t, s) = f(s). If we apply the initial condition u(0, s) = e−s2 , we obtain
trivially f(s) = e−s2 . The final parametric description of the solution is given
by the trio of relations

⎧⎨
⎩

x(t, s) = t+ s,
y(t, s) = s3et,
u(t, s) = e−s2 ,

s ∈ I, t ∈ R.

(Compare this approach with the one in Example 3.12 and verify correctness
of the solution.) Figure 3.12 illustrates the solution for the choice I = (−1, 2)
and t ∈ (0, 2). �

x

y

u(x, t)

γ

Figure 3.12. Solution of the problem ux+yuy = 0 with the condition u(s, s3) = e−s2 .

Remark 3.14. Condition (3.16) is a sufficient condition, but not a necessary
one. It means that its violation does not necessarily imply the non-existence
or non-uniqueness of the solution. Have a look once more at the previous
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Example 3.13. Although the characteristics does not intersect the curve γ
transversally at the point (0, 0), they form a “fan” (see Figure 3.11 right) and
the solution exists and is given uniquely in the neighborhood of this point.
On the contrary, around the latter suspicious point (3, 27), problems really
occur, the characteristics “flip” over the curve γ, they cross each other and the
problem does not have a unique solution if 3 ∈ I. The parametric expression
of the solution has the disadvantage that its formula does not reveal these
troubles at first sight. However, upon closer examination, we find out that u
cannot be expressed as a function of x, y around the value s = 3. The reader
is recommended to draw the graph of the solution, for instance, for the choice
I = (2, 4).

Remark 3.15. The method of searching solutions in the parametric form can
be easily generalized into higher dimensions. For example, if we solve the
problem

a(x, y, z)ux + b(x, y, z)uy + c(x, y, z)uz + d(x, y, z)u = f(x, y, z)

with three independent variables x, y, z, then the characteristics are curves,
whose parametric description is obtained by solving the system

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

∂

∂t
x(t, s, r) = a(x(t, s, r), y(t, s, r), z(t, s, r)),

∂

∂t
y(t, s, r) = b(x(t, s, r), y(t, s, r), z(t, s, r)),

∂

∂t
z(t, s, r) = c(x(t, s, r), y(t, s, r), z(t, s, r)),

where the variable t represents the motion along the characteristics and s, r are
– at this point – free parameters. The equation itself is then reduced into the
form

ut + c(x(t, s, r), y(t, s, r), z(t, s, r))u = f(x(t, s, r), y(t, s, r), z(t, s, r))

and it is further solvable by ODE techniques. If we want to add a side condition
u(0, s, r) = u0(s, r), it is necessary to impose it on a surface σ:

σ :

⎧⎨
⎩

x = x0(s, r),
y = y0(s, r),
z = z0(s, r),

s ∈ I, r ∈ J,

which intersects again all characteristics just once and under a non-zero angle.
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3.5 Exercises

1. Solve the equation ut − 3ux = 0 with the initial condition u(x, 0) = e−x2

(see Figure 3.3).

[u(x, t) = e−(x+3t)2]

2. Solve the equation ut + 3ux = 0 with the initial condition u(x, 0) = sinx
(see Figure 3.4).

[u(x, t) = sin(x− 3t)]

3. Solve the equation 3uy + uxy = 0 using substitution v = uy.

[u(x, y) = e−3xg(y) + f (x)]

4. Solve the linear equation (1 + x2)ux + uy = 0. Draw some characteristics.

[u(x, y) = f (y − arctanx)]

5. Solve the equation
√
1− x2ux + uy = 0 with the condition u(0, y) = y.

[u(x, y) = y − arcsinx]

6. Using the coordinate method, solve the equation aux + buy + cu = 0.

[u(x, y) = e−
c

a2+b2 f (bx− ay)]

7. Using the coordinate method, solve the equation ux + uy + u = ex+2y with
the initial condition u(x, 0) = 0.

[u(x, y) = 1
4

(
ex+2y − ex−2y

)
]

8. Solve the equation ut+aux = x2t+1, where a is a constant, with the initial
condition u(x, 0) = x+ 2.

[u(x, t) = x− at+ 2 + t+ x2t2

2 − 1
3axt

3 + 1
12a

2t4]

9. Solve the equation ut + tαux = 0, where α > −1 is a constant, with the
initial condition u(x, 0) = ϕ(x).

[u(x, t) = ϕ
(
x− tα+1

α+1

)
]

10. Solve the equation ut+xt ux = x2 with the initial condition u(x, 0) = ϕ(x).

[u(x, t) = ϕ(xe−1/2t2) + x2e−t2
t∫
0

es
2

ds]

11. Find the general solution to the transport equation with decay ut + cux =
−λu using the transformation of independent variables

ξ = x− ct, τ = t.

[u(x, t) = e−λtf (x− ct)]
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12. Show that the decay term in the transport equation with decay

ut + cux = −λu

can be eliminated by the substitution w = ueλt.

13. Solve the Cauchy problem
{

ut + ux − 3u = t, x ∈ R, t > 0,
u(x, 0) = x2, x ∈ R.

[u(x, t) = − 1
3
t− 1

9
+ e3t

(
(x− t)2 + 1

9

)
]

14. Solve the transport equation with the convective term

ut + 2ux = −3u

under the condition u(x, 0) = 1
1+x2 .

[The solution takes the form u(x, t) = e−3t

1+4t2−4tx+x2 and is depicted in Fig-
ure 3.13. Notice the influence of the convective term 3u on the solution on
various time levels.]

t
x

u(x, t)

Figure 3.13. Solution of the problem ut + 2ux = −3u, u(x, 0) = 1/(1 + x2).
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15. Solve the initial boundary value problem
{

ut + cux = −λu, x, t > 0,
u(x, 0) = 0, x > 0, u(0, t) = g(t), t > 0.

Consider separately the cases x > ct and x < ct. The boundary condition
takes effect in the domain x < ct, whereas the initial condition influences
the solution only in the domain x > ct.

[u(x, t) = g(t− x
c )e

−λ
c x for x− ct < 0, u(x, t) = 0 for x− ct > 0]

16. Find an implicit formula for the solution u = u(x, t) of the initial value
problem for the equation of transport reaction

{
ut + vux = − αu

β+u , x ∈ R, t > 0,

u(x, 0) = f(x), x ∈ R.

Here v, α, β are positive constants. Show that u can be always expressed
in terms of x and t from the implicit formula.

[β ln |u(x, t)|+ u(x, t) = −αt+ f (x− vt) + β ln |f (x− vt)|]

17. Find general solutions of the following equations.

(a) ux + x2uy = 0,

(b) ux + sinxuy = 0,

(c) xux + y uy = 0,

(d) ex
2
ux + xuy = 0,

(e) xux + y uy = xn.

18. Solve the linear equation

xux − y uy + y2u = y2, x, y �= 0.

[u(x, y) = f (xy)ey
2/2 + 1]

19. Consider the equation y ux−xuy = 0. Find curves and side conditions along
these curves for which this problem has a unique solution, no solution, or
infinitely many solutions.

[a) u0(x, 0) = x2, b) u0(x, y) = y on x2 + y2 = 1, c) u0(x, y) = 1 on x2 + y2 = 1]

20. Consider the quasi-linear equation uy+a(u)ux = 0 with the initial condition
u(x, 0) = h(x). Show that its solution can be given implicitly by u =
h(x− a(u)y). What are the characteristics? What happens if a(h(x)) is an
increasing function?
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21. Consider the equation
uy =

(y
x
u
)
x
. (3.17)

Show that

(a) the general solution of (3.17) is given by u = xf(x2 + y2);

(b) the function

I(x, y) =
x

y

+∞∫

0

e−y
√
1+t2 cosxtdt

satisfies equation (3.17);

(c) the following identity is satisfied:

+∞∫

0

e−y
√
1+t2 cosxtdt =

y√
x2 + y2

+∞∫

0

e−
√

(1+t2)(x2+y2)dt, y > 0.

22. Show that the initial value problem

ut + ux = 0, u(x, t) = x on x2 + t2 = 1

has no solution. However, if the initial data are given only over the semi-
circle that lies in the half-plane x + t ≤ 0, a solution exists but is not
differentiable along the characteristics coming from the two end points of
the semicircle.

23. Show that the initial value problem

(t− x)ux − (t+ x)ut = 0, u(x, 0) = f(x), x > 0,

has no solution in general. Draw the characteristics.

24. Show that the equation a(x)ux+b(t)ut = 0 has the general solution u(x, t) =
F (A(x)−B(t)), where A�(x) = 1/a(x) and B�(t) = 1/b(t).

25. Show that the equation a(t)ux+b(x)ut = 0 has the general solution u(x, t) =
F (B(x)−A(t)), where B�(x) = b(x) and A�(t) = a(t).

26. Show that the problem

ut + ux = x, u(x, x) = 1

has no solution, and explain why.
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27. Consider the semilinear equation

a(x, y, u(x, y))ux + b(x, y, u(x, y))uy = c(x, y, u(x, y))

and show that the method of characteristics yields

dx
a(x, y, u(x, y))

=
dy

b(x, y, u(x, y))
=

du(x, y)
c(x, y, u(x, y))

.

[Hint: The differential equation can be understood as the scalar product of vectors
(a(x, y, u), b(x, y, u), c(x, y, u)) and (ux, uy,−1), where the last one represents the
normal vector to the solution surface u = u(x, y) in the Euclidean space (x, y, u).]
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Chapter 4

Wave Equation in One Spatial Variable –
Cauchy Problem in R

4.1 General Solution of the Wave Equation

Let us consider the wave equation

utt = c2uxx, x ∈ R, t > 0, (4.1)

which we have derived in Section 1.3.5, and look for its general solution. For
illustration, we can imagine an “infinitely long” string. We will present two
methods for finding the general solution of equation (4.1). Both methods are
standard and the reader can find them in many other textbooks.

4.1.1 Transformation to System of Two First Order Equations

Equation (4.1) can be formally rewritten as
(

∂

∂t
− c

∂

∂x

)(
∂

∂t
+ c

∂

∂x

)
u = 0. (4.2)

If we introduce a new function v by the relation v = ut+ cux, we transform the
original equation (4.1) into a system of two equations of the first order

{
vt − cvx = 0,
ut + cux = v.

(4.3)

Both the equations are now solvable by methods introduced in Section 3.1. The
first equality implies

v(x, t) = h(x+ ct),

where h is an arbitrary differentiable function. We substitute for v into the
latter equation of system (4.3) and obtain

ut + cux = h(x+ ct),

which represents a transport equation with constant coefficients and non-zero
right-hand side. The solution of the corresponding homogeneous equation has
the form

uH(x, t) = g(x− ct). (4.4)
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Since the right-hand side of the equation is formed by an arbitrary differentiable
function of the argument x + ct, the particular solution (which reflects the
influence of the right-hand side) must be also an arbitrary differentiable function
of the same argument, thus

uP (x, t) = f(x+ ct). (4.5)

The general (and generic) solution of the wave equation is then the sum of
solutions (4.4) and (4.5):

u(x, t) = f(x+ ct) + g(x− ct). (4.6)

4.1.2 Method of Characteristics

The second way of derivation of the general solution of the wave equation on
the real line consists of introducing special coordinates

ξ = x+ ct, η = x− ct.

According to the chain rule, we have

∂x = ∂ξ + ∂η, ∂t = c∂ξ − c∂η

and thus

∂t − c∂x = −2c∂η,

∂t + c∂x = 2c∂ξ.

The reader is invited to verify these formulas. After substituting into the ex-
pression (4.2), we obtain a transformed equation

−4c2∂η∂ξu = 0

or, equivalently,
uξη = 0.

Its solution has been found in Chapter 2 (see Example 2.3), namely

u(ξ, η) = f(ξ) + g(η),

where f and g are again arbitrary differentiable functions. If we go back to
the original variables x and t, we obtain the foregoing general solution of the
one-dimensional wave equation in the form (4.6).

As we can see, the solution is the sum of two traveling waves, the left one and
the right one, which move at the speed c > 0. Lines x+ ct = const., x − ct =
const., along which the traveling waves propagate, are called the characteristics
of the wave equation.
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4.2 Cauchy Problem on the Real Line

If we now consider an initial value (Cauchy) problem

{
utt = c2uxx, x ∈ R, t > 0,
u(x, 0) = ϕ(x), ut(x, 0) = ψ(x),

(4.7)

the particular forms of functions f and g from the general solution (4.6) can be
determined in terms of the given functions ϕ and ψ, which describe the initial
displacement and the initial velocity of the searched wave.

If we start with the formula (4.6), then the following equalities hold for t = 0:

ϕ(x) = f(x) + g(x), ψ(x) = cf �(x)− cg�(x).

The first equality implies (assuming that all indicated derivatives exist)

ϕ�(x) = f �(x) + g�(x),

which, in combination with the latter equality, gives

f �(x) =
1

2
ϕ�(x) +

1

2c
ψ(x),

g�(x) =
1

2
ϕ�(x)− 1

2c
ψ(x)

and, after integration,

f(x) =
1

2
ϕ(x) +

1

2c

x∫

0

ψ(τ)dτ + A,

g(x) =
1

2
ϕ(x)− 1

2c

x∫

0

ψ(τ)dτ +B,

where A, B are integration constants. The condition u(x, 0) = ϕ(x), however,
implies A + B = 0. After substituting the previous relations into the general
expression of solution (4.6), we obtain the solution of the Cauchy problem for
the wave equation in one dimension:

u(x, t) =
1

2

(
ϕ(x+ ct) + ϕ(x− ct)

)
+

1

2c

x+ct∫

x−ct

ψ(τ)dτ. (4.8)
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This formula was derived by d’Alembert in 1746. The first term on the right-
hand side expresses the influence of the initial displacement: the initial wave is
divided into two parts, the former proceeding in the direction of the negative x
half-axis at a speed c, and the latter proceeding in the direction of the positive
x half-axis at the same speed c. The integral on the right-hand side expresses
the influence of the initial velocity. The solution expressed by d’Alembert’s
formula is determined uniquely (see Exercise 6 in Section 10.9).

The following assertion is the basic existence and uniqueness result for the
wave equation.

Theorem 4.1. Let ϕ ∈ C2, ψ ∈ C1 on the entire real line R. The Cauchy
problem (4.7) for the wave equation on the real line with the initial displacement
ϕ(x) and the initial velocity ψ(x) has a unique classical solution u ∈ C2 given
by d’Alembert’s formula (4.8).

Example 4.2. Let us find a solution of the wave equation on the real line, if
the initial displacement is zero and the initial velocity is given by sinx.

This problem can be written as a Cauchy problem
{

utt = c2uxx, x ∈ R, t > 0,
u(x, 0) = 0, ut(x, 0) = sinx.

(4.9)

After substituting the initial conditions into d’Alembert’s formula (4.8), we
obtain

u(x, t) =
1

2c

x+ct∫

x−ct

sin τ dτ =
1

2c

(
cos(x− ct)− cos(x+ ct)

)

and, applying the trigonometric formula

cosα− cosβ = −2 sin
α− β

2
sin

α+ β

2
,

the solution u(x, t) can be written in the form

u(x, t) =
1

c
sin ct sinx. (4.10)

�
Let us note the following special feature of solution (4.10): the zero points

of u lie at the points x = kπ, k ∈ Z, for arbitrary t ≥ 0. They do not “travel”
along the x-axis with growing time. Solutions of the wave equation with the
above mentioned property are called standing waves (see Figure 4.1).
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t

x

u(x, t)

−6 −4 −2 0 2 4 6
−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

x

u(x, ti)

Figure 4.1. Standing waves – a solution of the initial value problem (4.9) with c = 4.

Remark 4.3. In fact, a more general assertion than Theorem 4.1 holds:

The initial value problem (4.7) for the wave equation has a unique classical
solution if and only if ϕ ∈ C2 and ψ ∈ C1.

These assumptions on initial conditions are, however, strongly restrictive and
very often contradict the practical problems that necessarily have to be solved
by methods of mathematical modeling. These problems, if they are understood
in the sense of a classical solution, are ill-posed. This fact caused big difficulties
to mathematicians in the eighteenth century and it took a long time before they
came to a more general notion of a solution (weak solution, very weak solution,
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generalized solution, strong solution, etc.).
In this text, we will not deal with these questions in detail. We restrict our-

selves only to the statement that formula (4.8), expressing a solution of the
initial value problem for the wave equation in explicit form, makes sense also
for much more general initial conditions than ϕ ∈ C2, ψ ∈ C1. The solution u
can be then viewed, for instance, as a function which satisfies the differential
equation only at those points where the corresponding partial derivatives utt
and uxx exist. On the other hand, the set of points where these partial deriva-
tives do not exist (and hence the equation itself does not make sense) cannot
be “too large”.

If ϕ is a C2 function and ψ is a C1 function on R with the exception of
a finite number of points (the so called singular points or singularities) then
d’Alembert’s formula (4.8) makes sense, the partial derivatives of u exist and
are continuous with the exception of a finite number of lines in the xt plane
and equation (4.1) holds at every point which does not belong to these lines. In
such a way, we will understand also solutions of the following Cauchy problems.
However, the reader should notice that even more general functions ϕ and ψ can
be considered (for example, locally integrable) and the corresponding solution
of (4.1) makes sense if it is understood in a more general sense. Existence and
uniqueness results can be still proved in such a more general setting.

Example 4.4 (Strauss [21]). Let us solve the wave equation with the initial
displacement

ϕ(x) =

⎧⎨
⎩

b− b

a
|x| for |x| ≤ a,

0 for |x| > a

and with zero initial velocity
ψ(x) ≡ 0.

This problem describes the behavior of an infinitely long string which at
time t = 0 is displaced by “three fingers” and then released. The three points
x ∈ {−a, 0, a} represent singularities of the initial displacement ϕ. According
to d’Alembert’s formula (4.8), the corresponding solution has the form

u(x, t) =
1

2

�
ϕ(x− ct) + ϕ(x+ ct)

�
.

It is a sum of two “triangle functions” which diverge with increasing time. The
shape of the solution on particular time levels is sketched in Figure 4.2, the
whole graph of the function u(x, t) is illustrated by Figure 4.3 (for the values
c = 2, b = 1, a = 2). The reader should observe lines in the xt plane where the
partial derivatives of u do not exist and equation (4.1) makes no sense. �
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Figure 4.2. Solution of Example 4.4 on particular time levels.

x

t

u(x, t)

Figure 4.3. Graph of solution from Example 4.4 for c = 2, b = 1, a = 2.
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Example 4.5 (Strauss [21]). Let us solve the wave equation with zero initial
displacement ϕ(x) ≡ 0 and with the initial velocity

ψ(x) =

{
1 for |x| ≤ a,

0 for |x| > a.

This problem can be regarded as a simplified model of the behavior of an
infinitely long string after a stroke by a hammer of width 2a. Here, the two
points x ∈ {−a, a} represent singularities of the initial velocity ψ. D’Alembert’s
formula implies

u(x, t) =
1

2c

x+ct∫

x−ct

ψ(τ)dτ =
1

2c
× length of interval {(−a, a) ∩ (x− ct, x+ ct)}.

The shape of the solution on particular time levels is sketched in Figure 4.4,
the whole graph of the function u(x, t) is illustrated by Figure 4.5, where the
values of parameters are chosen as c = 2.3 and a = 1.3. The reader is asked
again to pay attention to the lines in the xt plane where the partial derivatives
of u do not exist and equation (4.1) makes no sense. �

�
x

�
x

�
x

�
x

�u

0
t = 0

t = a
2c

t = a
c

t = 2a
c

u ≡ 0

�
��

�
��

3a
2−3a

2

a
2c

�
�

�
��

�
�
�
��

2a−2a

a
c

�
�

�
��

�
�
�
��

3a−3a a−a

a
c

Figure 4.4. Solution of Example 4.5 on particular time levels.
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x

t

u(x, t)

Figure 4.5. Graph of solution from Example 4.5 for c = 2.3, a = 1.3.

4.3 Principle of Causality

Let us investigate the solution of the initial value problem for the wave equation
on the real line in more detail. We find out that the initial condition at the
point (x0, 0) can “spread” only to that part of the xt plane which lies between
the lines with equations x ± ct = x0 (the characteristics passing through the
point (x0, 0)). See Figure 4.6. The sector with these boundary points is called
the domain of influence of the point (x0, 0).

In particular, this means that the initial conditions with the property

ϕ(x) = ψ(x) ≡ 0 for |x| > R

result in the solution which is identically zero “to the right” of the line x−ct = R
and “to the left” of the line x+ ct = −R (see Figure 4.7).

The opposite (dual) view of the above situation is the following: let us choose
an arbitrary point (x, t) and ask what values of the initial conditions on the
x-axis (for t = 0) can influence the value of the solution at a point (x, t). The
above-mentioned information implies that these are just the values ϕ(x − ct),
ϕ(x+ ct) and the values ψ(x) for x from the interval between x− ct and x+ ct
(see Figure 4.8).

 EBSCOhost - printed on 2/10/2023 4:02 PM via . All use subject to https://www.ebsco.com/terms-of-use



74 Chapter 4 Wave Equation in One Spatial Variable – Cauchy Problem in R

x

t

(x0, 0)

x− ct = x0x+ ct = x0

Figure 4.6. Domain of influence of the point (x0, 0) at time t ≥ 0.

x

t

(R, 0)(−R, 0)

u(x, t) ≡ 0u(x, t) ≡ 0

Figure 4.7. Domain of influence of the interval (−R,R) at time t ≥ 0.

The triangle �xt with vertices at the points (x − ct, 0), (x + ct, 0) and
(x, t) is called the domain of dependence (or the characteristic triangle) of the
point (x, t).

4.4 Wave Equation with Sources

Let us now consider the Cauchy problem for the wave equation with a non-zero
right-hand side

{
utt − c2uxx = f(x, t), x ∈ R, t > 0,
u(x, 0) = ϕ(x), ut(x, 0) = ψ(x).

(4.11)

 EBSCOhost - printed on 2/10/2023 4:02 PM via . All use subject to https://www.ebsco.com/terms-of-use



Section 4.4 Wave Equation with Sources 75

x

t

(x, t)

(x+ ct, 0)(x− ct, 0)

Figure 4.8. Domain of dependence (characteristic triangle) of the point (x, t).

The following existence and uniqueness result generalizes Theorem 4.1.

Theorem 4.6. Let ϕ ∈ C2, ψ ∈ C1, f ∈ C1. The initial value problem (4.11)
has a unique classical solution which has the form

u(x, t) =
1

2

(
ϕ(x+ ct) + ϕ(x− ct)

)

+
1

2c

x+ct∫

x−ct

ψ(y)dy +
1

2c

∫∫

�
f(y, s)dy ds.

(4.12)

The symbol � = �xt in the last integral represents the characteristic triangle
(see Figure 4.8), that is,

∫∫

�
f(y, s)dy ds =

t∫

0

x+c(t−s)∫

x−c(t−s)

f(y, s)dy ds.

Notice that the influence of the external force f on the behavior of the modeled
string is given only by the integration of function f over the whole domain of
dependence of the point (x, t) up to the time t = 0. Hence, the principle of
causality holds again.

Remark 4.7. The reader can easily check that the function given by (4.12) is
indeed a classical solution of problem (4.11). (See Exercise 12 in Section 4.5.)
However, the reader should notice that the classical solution exists under the
more general assumption f ∈ C.
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There are several ways how to derive formula (4.12). One of the possibilities
is based on the application of the method of characteristics, and another one
uses the transformation of the wave equation to the system of two transport
equations. The latter derivation is the scope of Exercise 19 in Section 4.5. In
what follows, we focus our attention on other two standard approaches that can
be found in several textbooks and have not been mentioned yet, namely, the use
of Green’s Theorem and application of the Operator Method (cf. Strauss [21]).

4.4.1 Use of Green’s Theorem

For simplicity, let us consider a fixed point (x0, t0) and assume that u is a clas-
sical solution of (4.11). We integrate the wave equation over the domain of
dependence of the point (x0, t0), that is, over the characteristic triangle �:

∫∫

�
f dx dt =

∫∫

�
(utt − c2uxx)dx dt.

Now, we apply Green’s Theorem to the right-hand side. It reads:
∫∫

�
(Px −Qt)dx dt =

∫

∂�
P dt+Q dx

for arbitrary continuously differentiable functions P , Q. The curve integral over
the boundary ∂� of the domain � is considered in the positive direction, that
is in the counterclockwise direction. In our case, we set P = −c2ux, Q = −ut.
If we denote the particular sides of the characteristic triangle by L0, L1, L2

(see Figure 4.9), we obtain
∫∫

�
f dx dt =

∫

L0∪L1∪L2

−c2ux dt− ut dx,

which can be written as a sum of three curve integrals over the corresponding
straight line segments.

On the side L0, we have t = 0, dt = 0 and ut(x, 0) = ψ(x), thus

∫

L0

−c2ux dt− ut dx = −
x0+ct0∫

x0−ct0

ψ(x)dx.

On L1, we have x+ ct = x0 + ct0 and thus dx+ c dt = 0. Hence, we obtain
∫

L1

−c2ux dt− ut dx = c

∫

L1

ux dx+ ut dt = c

∫

L1

du = cu(x0, t0)− cϕ(x0 + ct0),
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x

t

(x0, t0)

(x0 + ct0, 0)(x0 − ct0, 0)

�

L0

L1L2

Figure 4.9. Characteristic triangle of the point (x0, t0).

where du denotes the total differential of function u = u(x, t). Similarly, for
L2, where dx− c dt = 0, we express
∫

L2

−c2ux dt−ut dx = −c

∫

L2

ux dx+ut dt = −c

∫

L2

du = −cϕ(x0−ct0)+cu(x0, t0).

Combining these three partial results, we obtain

∫∫

�
f dx dt = 2cu(x0, t0)− c

(
ϕ(x0 + ct0) + ϕ(x0 − ct0)

)−
x0+ct0∫

x0−ct0

ψ(x)dx

wherefrom the required form of the solution u at the point (x0, t0) follows.

4.4.2 Operator Method

This time we try to derive the solution of the initial value problem for the
nonhomogeneous wave equation on the basis of an analogue of the solution of
the ODE

d2v

dt2
+ A2v(t) = f(t) (4.13)

with initial conditions

v(0) = ϕ,
dv
dt

(0) = ψ,

where ϕ and ψ are real numbers. Applying the variation of constants formula,
the solution of equation (4.13) for a constant A �= 0 can be written in the form

v(t) = S�(t)ϕ+ S(t)ψ +

t∫

0

S(t− s)f(s)ds, (4.14)
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where
S(t) =

1

A
sinAt, S�(t) = cosAt. (4.15)

Thus, in the case ϕ = 0, f = 0, the solution reduces to v(t) = S(t)ψ.
Now, we turn back to our wave equation. We have derived that the solution

of the homogeneous equation for ϕ(x) ≡ 0, f(x, t) ≡ 0 can be written in the
form

u(x, t) =
1

2c

x+ct�

x−ct

ψ(y)dy.

If we define the source operator S(t) by

S(t)ψ(x) = 1

2c

x+ct�

x−ct

ψ(y)dy, (4.16)

we can write
u(x, t) = S(t)ψ(x).

Analogously to the first term on the right-hand side of relation (4.14), we could
expect the reaction on the non-zero initial displacement in the form ∂

∂tS(t)ϕ(x).
Indeed, we have

∂

∂t
S(t)ϕ(x) = ∂

∂t

1

2c

x+ct�

x−ct

ϕ(y)dy =
1

2c

�
cϕ(x+ ct)− (−c)ϕ(x− ct)

�
, (4.17)

which corresponds to d’Alembert’s formula (4.8).
Now, let us consider only the influence of the right-hand side. To this end,

put ϕ = ψ = 0. If we use again the analogue of the solution of the ODE (4.14),
we write the corresponding solution of the wave equation in the form

u(x, t) =

t�

0

S(t− s)f(x, s)ds;

thus, using the definition of S(t) in (4.16), we conclude that

u(x, t) =

t�

0

⎛
⎜⎝ 1

2c

x+c(t−s)�

x−c(t−s)

f(y, s)dy

⎞
⎟⎠ ds =

1

2c

��

�
f(y, s)dy ds. (4.18)

Putting together (4.16)–(4.18), we arrive at (4.12). Using the operator method,
we “guessed” the solution and now we should verify it (which is the purpose of
Exercise 12 in Section 4.5).
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The approach based on the idea that the knowledge of a solution of the ho-
mogeneous equation can be used for the derivation of a solution of the nonho-
mogeneous equation is, in connection with the wave equation, called Duhamel’s
principle.

4.5 Exercises

1. Verify that the function

u(x, t) =
1

2c

x+ct∫

x−ct

g(ξ)dξ

solves the wave equation utt = c2uxx, where c is a constant and g is a contin-
uously differentiable function. Use the rule for the derivative of the integral
with respect to parameters x and t occurring in the limits of integration.

2. A linear approximation of the one-dimensional isotropic flow of an ideal gas
is given by

ut + ρx = 0, ux + c2ρt = 0,

where u = u(x, t) is the velocity of the gas and ρ = ρ(x, t) is its density.
Show that u and ρ satisfy the wave equation.

3. Deriving the general solution (4.6) of the wave equation, we have used
the fact that the linear wave operator L = (∂t)

2 − c2(∂x)
2 is reducible

(or factorable), that is, it can be written as a product of linear first-order
operators: L = L1L2. Using the same idea, find the general solutions of
the following equations.

(a) uxx + ux = uyy + uy.
[L1 = ∂x − ∂y, L2 = ∂x + ∂y + 1. The general solution can be written as
u(x, y) = ϕ(x+y)+e−xψ(x−y) or as u(x, y) = ϕ(x+y)+e−yh(x−y), where
ϕ, ψ and h are arbitrary differentiable functions.]

(b) 3uxx + 10uxy + 3uyy = 0.
[L1 = 3∂x+∂y, L2 = ∂x+3∂y; u(x, y) = ϕ(3x− y)+ψ(x− 3y) with arbitrary
functions ϕ, ψ]

4. Solve the Cauchy problem utt = c2uxx, u(x, 0) = ex, ut(x, 0) = sinx.

[u(x, t) = 1
2 (e

x+ct + ex−ct)− 1
2c(cos(x+ ct)− cos(x− ct))]

5. Solve the Cauchy problem utt = c2uxx, u(x, 0) = ln(1+x2), ut(x, 0) = 4+x.

[u(x, t) = ln
√

(1 + (x+ ct)2)(1 + (x− ct)2) + t(4 + x)]
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6. Solve the Cauchy problem utt−3uxt−4uxx = 0, u(x, 0) = x2, ut(x, 0) = ex.
Proceed in the same way as when deriving the general solution of the wave
equation.

[u(x, t) = x2 + 4t2 + ex+4t−ex−t

5 ]

7. Solve the Cauchy problem utt − uxx = 0, u(x, 0) = 0, ut(x, 0) = −2xe−x2 .

[u(x, t) = 1
2 (e

−(x+t)2 − e−(x−t)2)]

8. Solve the Cauchy problem utt − uxx = 0, u(x, 0) = 0, ut(x, 0) =
x

(1+x2)2
.

[u(x, t) = 1
4 (

1
1+(x−t)2 − 1

1+(x+t)2 )]

9. Solve the Cauchy problem utt − uxx = 0 for

u(x, 0) =

{
e−x, |x| < 1,
0, |x| > 1,

ut(x, 0) = 0.

10. Solve the Cauchy problem utt − uxx = 0 for

u(x, 0) = 0, ut(x, 0) =

{
e−x, |x| < 1,
0, |x| > 1.

11. Prove that the function

u(x, t) =
1

2

[
e−(x−2t)2 + e−(x+2t)2

]

(see Figure 4.10) solves the Cauchy problem
{

utt − 4uxx = 0, x ∈ R, t > 0,

u(x, 0) = e−x2
, ut(x, 0) = 0.

(4.19)

12. By a simple substitution, verify that the function

u(x, t) =
1

2c

∫∫

�
f(y, s)dy ds

solves the nonhomogeneous wave equation utt − c2uxx = f (cf. Theo-
rem 4.6). Explain why we need the assumption f ∈ C1.

13. Solve the Cauchy problem utt = c2uxx + xt, u(x, 0) = 0, ut(x, 0) = 0.

[u(x, t) = xt3

6 ]
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x

t

u(x, t)

Figure 4.10. Solution of problem (4.19).

14. Solve the Cauchy problem utt = c2uxx + eat, u(x, 0) = 0, ut(x, 0) = 0.

[u(x, t) = 1
a2 (eat − at− 1)]

15. Solve the Cauchy problem utt = c2uxx + cosx, u(x, 0) = sinx, ut(x, 0) =
1 + x.

[u(x, t) = cos ct sinx+ (1 + x)t+ cosx
c2 − cosx cos ct

c2 ]

16. Solve the Cauchy problem utt − uxx = ex−t, u(x, 0) = 0, ut(x, 0) = 0.

[u(x, t) = 1
4 (e

x+t − ex−t)− 1
2 te

x−t]

17. Solve the Cauchy problem utt − uxx = sinx, u(x, 0) = cosx, ut(x, 0) = x.

[u(x, t) = cosx cos t+ xt+ sinx− sinx cos t]

18. Solve the Cauchy problem utt − uxx = x2, u(x, 0) = cosx, ut(x, 0) = 0.

[u(x, t) = cosx cos t+ x2t2

2 + t4

12 ]

19. Derive the solution of the nonhomogeneous wave equation in another pos-
sible way:
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(a) Rewrite the equation to the system

ut + cux = v, vt − cvx = f.

(b) In the case of the former equation, find a solution u dependent on v in
the form

u(x, t) =

t∫

0

v(x− ct+ cs, s)ds.

(c) Similarly, solve the latter equation, i.e., find v dependent on f .

(d) Insert the result of part (c) into the result of part (b).

20. Consider the telegraph equation uxx − 1
c2
utt + αut + βu = 0 and put v = u,

w = ux and z = ut. Show that v, w and z satisfy the following system of
three equations:

vt − z = 0,

wt − zx = 0,

zt − c2(wx + αz + βv) = 0.
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Chapter 5

Diffusion Equation in One Spatial Variable –
Cauchy Problem in R

5.1 Cauchy Problem on the Real Line

Let us consider a Cauchy problem for the diffusion equation

{
ut = kuxx, x ∈ R, t > 0,
u(x, 0) = ϕ(x).

(5.1)

From the physical point of view, this problem describes diffusion in an infinitely
long tube or heat propagation in an infinitely long bar. In the former case, the
function ϕ(x) describes the initial concentration of the diffusing substance,
whereas in the latter case, it represents the initial distribution of temperature
in the bar.

Since the general solution is not known for the diffusion equation, we proceed
in a completely different way than we did in the case of the wave equation. We
start with solving problem (5.1) with a special “unit step” initial condition ϕ(x).
More precisely, we solve the problem

{
wt = kwxx, x ∈ R, t > 0,
w(x, 0) = 0 for x < 0; w(x, 0) = w0 ≡ 1 for x > 0.

(5.2)

To derive a solution of this special problem, we use the fact that any physical
law can be transferred into a dimensionless form. In other words, if we con-
sider an equation linking physical quantities q1, . . . , qm of certain dimensions
(time, length, mass, etc.), we can find an equivalent relation with dimensionless
quantities derived from q1, . . . , qm. This process is known as Buckingham Π
Theorem (see, e.g., [14]) and we illustrate it by a simple example. Let us imag-
ine an object that was thrown upright at time t = 0 at speed v. The height h
of the object at time t is given by the formula

h = −1

2
gt2 + vt.

The constant g represents the gravitational acceleration. The quantities used
here are h, t, v and g with dimensions of length, time, length per time, and
length per time-squared, respectively. This law can be written equivalently also
as

h

vt
= −1

2

(
gt

v

)
+ 1.
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If we denote
P1 =

h

vt
and P2 =

gt

v
,

then P1, P2 are quantities without dimensions and the original equation has
the form

P1 = −1

2
P2 + 1.

A similar process can be applied also in the case of our special problem (5.2).
The quantities considered are x, t, w, w0, k, which have – for the heat trans-
fer model – dimensions of length, time, temperature, again temperature, and
length-squared per time, respectively. It is clear that w/w0 is a dimensionless
quantity. The only other dimensionless quantity derived from the remaining
parameters is x/

√
4kt (constant 4 is here only for simplification of further re-

lations). We can thus expect the solution of (5.2) to have the form of a combi-
nation of these dimensionless variables, that is

w

w0
= f

(
x√
4kt

)
,

where f is for now an unknown function that has to be determined. We recall
that w0 ≡ 1. Now, let us introduce a substitution

w = f(z), z =
x√
4kt

and put it into the equation of problem (5.2). According to the chain rule, we
find

wt = f �(z)zt = −1

2

x√
4kt3

f �(z),

wx = f �(z)zx =
1√
4kt

f �(z), wxx =
∂

∂x
wx =

1

4kt
f ��(z).

If we substitute these expressions into (5.2) and simplify, we obtain an ODE

f ��(z) + 2zf �(z) = 0

for an unknown function f(z). We easily derive

f(z) = c1

z∫

0

e−s2 ds+ c2,

where c1, c2 are integration constants. (The reader is asked to do it in detail.)
Thus we obtain a solution of the Cauchy problem (5.2) in the form

w(x, t) = c1

x/
√
4kt∫

0

e−s2 ds+ c2.
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To determine the constants c1, c2, we use the initial condition. Let us consider
a fixed negative x and pass to the limit for t → 0+; then

0 = w(x, 0) = c1

−∞∫

0

e−s2 ds+ c2.

Conversely, for a fixed positive x and t → 0+ we have

1 = w(x, 0) = c1

+∞∫

0

e−s2 ds+ c2.

Since
+∞∫

0

e−s2 ds =

√
π

2
,

we easily determine c1 = 1/
√
π, c2 = 1/2. Hence we obtain a formula for the

solution of problem (5.2):

w(x, t) =
1

2
+

1√
π

x/
√
4kt∫

0

e−s2 ds. (5.3)

Using the so called error function

erf(z) =
2√
π

z∫

0

e−s2 ds,

solution (5.3) can be written in an equivalent form

w(x, t) =
1

2

(
1 + erf

(
x√
4kt

))
. (5.4)

Several time levels of solution (5.4) are depicted in Figure 5.1.

Now, we come to the second step of derivation of a solution of the general
Cauchy problem (5.1). Later (see Chapter 9), we will support our considerations
by arguments based on the Fourier transform. For now, however, we put up
with an intuitive approach based on physical reasoning. First, let us notice
that if w solves the diffusion equation, the partial derivatives wxt, wxxx exist
and wxt = wtx, then wx also solves the same equation, namely,

0 = (wt − kwxx)x = (wx)t − k(wx)xx.
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Figure 5.1. Temperature profile on several time levels for a step initial temperature.

Thus, the function
G(x, t) = wx(x, t),

where w(x, t) is given by formula (5.3), must solve the diffusion equation as
well. By direct differentiation with respect to x we obtain

G(x, t) =
1√
4πkt

e−x2/(4kt). (5.5)

The function G is called the heat (diffusion) kernel or the fundamental solution
of the diffusion equation (sometimes we can also meet the terms Green’s func-
tion, source function, Gaussian, or propagator). Its graph for any fixed t > 0
is a “bell-shaped” curve (see Figure 5.2), which has the property that the area
below for each t is equal to one:

+∞∫

−∞
G(x, t)dx = 1, t > 0.

For t → 0+, G(x, t) “approaches” the so called Dirac distribution δ(x).

Remark 5.1. Let us remark that the Dirac distribution can be understood in-
tuitively as a “generalized function” which achieves an infinite value at point 0,
is equal to zero at the other points, and

∫ +∞
−∞ δ(x)dx = 1. (Note that the inte-

gral has to be understood in a more general sense than the Riemann integral!)
The problem of correct definition of the Dirac distribution and the word “ap-
proaches” is a matter of the theory of distributions and goes beyond the scope
of this text.
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Figure 5.2. Fundamental solution of the diffusion equation (here, with the choice
k = 0.5).

From the physical point of view, the function G(x, t) describes the distribu-
tion of temperature as a reaction to the initial unit point source of heat at the
point x = 0. Further, we observe that the diffusion equation is invariant with
respect to translation. Thus, the shifted diffusion kernel G(x− y, t) also solves
the diffusion equation and represents a reaction to the initial unit point source
of heat at a fixed, but arbitrary point y. If the initial source is not unit, but
has a magnitude ϕ(y), then its contribution at a point x and time t is given
by the function ϕ(y)G(x− y, t). The area below the temperature curve is then
equal to ϕ(y), where y is the point where the source is located.

Let us suppose now that the initial temperature ϕ in problem (5.1) represents
a continuous distribution of heat sources ϕ(y) at points y ∈ R. Then we
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obtain the resulting distribution of temperature as a “sum” of all reactions
ϕ(y)G(x− y, t) to particular sources ϕ(y) at all points y. That is,

u(x, t) =

+∞∫

−∞
ϕ(y)G(x− y, t)dy

=
1√
4πkt

+∞∫

−∞
ϕ(y)e−

(x−y)2

4kt dy.

(5.6)

We can say that the solution of the Cauchy problem for the diffusion equation
is a convolution of the corresponding initial condition ϕ(x) and the diffusion
kernel G(x, t), i.e.,

u(x, t) = (G ∗ ϕ)(x, t).
We have just derived intuitively the following basic existence result for the

diffusion equation.

Theorem 5.2. Let ϕ be a bounded continuous function on R. The Cauchy
problem (5.1) for the diffusion equation on the real line has a classical solution
given by formula (5.6).

Remark 5.3. It can be shown that the function u(x, t) given by formula (5.6)
solves problem (5.1) also in the case that ϕ is only piecewise continuous. Then,
at the points of discontinuity, the solution converges for t → 0+ to the arith-
metical average of the left and right limits of the function ϕ, that is,

u(x, t) → 1

2

(
ϕ(x−) + ϕ(x+)

)
.

The decaying character of G(x − y, t) as |y| → +∞ and x is fixed allows to
show that the integral in (5.6) is finite (and expresses the solution of the Cauchy
problem (5.1)) also for certain unbounded initial conditions ϕ.

Concerning the uniqueness, it can be proved that there exists only one
bounded solution of the Cauchy problem (5.1). In general, without any condi-
tions at infinity, the uniqueness does not hold true (see, e.g., [11]).

Now, let us mention some fundamental properties of the solution of the
Cauchy problem for the diffusion equation. Relation (5.6) has an integral form
and it can be seen that it cannot be expressed analytically (that is, it cannot
be written in terms of elementary functions) for majority of initial conditions.
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If we are interested in the form of a solution in a particular case, we have to
integrate numerically.

Further, let us notice that, for t > 0, the solution u(x, t) is non-zero at an
arbitrary point x even if the initial condition ϕ is non-zero only on a “small
interval”. It would mean that the heat propagates at infinite speed, and also
the diffusion has infinite speed. But this phenomenon does not correspond to
reality and reflects the fact that the diffusion equation is only an approximate
model of the real process. On the other hand, for small t, the influence of the
initial distribution trails away quickly with growing distance. Thus, we can say
the model is precise enough to be applicable from the practical point of view.

Another property of solution (5.6) is its smoothness. Regardless of the
smoothness of the function ϕ, the solution u is of the class C∞ for t > 0
(that is, infinitely times continuously differentiable in both variables).

Example 5.4. Let us solve the problem
⎧
⎪⎨
⎪⎩

ut = kuxx, x ∈ R, t > 0,

u(x, 0) = ϕ(x) =

�
1 for |x| < 1,
0 for |x| ≥ 1.

(5.7)

It is a Cauchy problem for the diffusion equation with a piecewise continuous
(possibly non-smooth) initial condition. The solution can be determined by
substituting the initial condition into formula (5.6):

u(x, t) =
1√
4πkt

1�

−1

e−
(x−y)2

4kt dy.

If we introduce p = (x− y)/
√
4kt, we obtain the expression

u(x, t) =
1√
π

x+1√
4kt�

x−1√
4kt

e−p2 dp

or
u(x, t) =

1

2

�
erf

�
x+ 1√
4kt

�
− erf

�
x− 1√
4kt

��
.

�
Remark 5.5. The graph of the solution from Example 5.4 is sketched in Fig-
ure 5.3 (for k = 2). Let us mention its basic features. The initial distribution
of temperature was a piecewise continuous function, however, it is immediately
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completely smoothened. After an arbitrarily small time, the solution is non-
zero on the whole real line, although the initial condition is non-zero only on the
interval (−1, 1). Further, it is evident that the solution achieves its maximal
value at time t = 0 and, with growing time, it is being “spread”.

t

x

u(x, t)

Figure 5.3. Solution of Example 5.4 with k = 2.

Example 5.6 (Stavroulakis, Tersian [20]). Let us solve the problem
{

ut = kuxx, x ∈ R, t > 0,
u(x, 0) = e−x.

(5.8)

Let us observe that the given initial condition is not bounded on R (cf. Re-
mark 5.3). If we use formula (5.6), we obtain the solution in the form

u(x, t) =
1√
4πkt

+∞∫

−∞
e−

(x−y)2

4kt e−y dy. (5.9)

The integral on the right-hand side can be calculated and we obtain

u(x, t) = ekt−x (5.10)

(cf. Exercise 2 in Section 5.3). In this case, the solution does not decrease with
growing time, but it propagates in the direction of the positive half-axis x. �
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5.2 Diffusion Equation with Sources

Let us consider the Cauchy problem for the diffusion equation with nonzero
right-hand side

{
ut − kuxx = f(x, t), x ∈ R, t > 0,
u(x, 0) = ϕ(x).

(5.11)

The following basic existence result holds true.

Theorem 5.7. Let f = f(x, t) and ϕ = ϕ(x) be bounded and continuous
functions. The Cauchy problem for the nonhomogeneous diffusion equation
(5.11) has a classical solution given by the formula

u(x, t) =

+∞∫

−∞
G(x− y, t)ϕ(y)dy +

t∫

0

+∞∫

−∞
G(x− y, t− s)f(y, s)dy ds, (5.12)

where G is the diffusion kernel.

Idea of proof. First, we derive formula (5.12) using the operator method (see
Section 4.4) based on the analogue with the solution of ODE

dv
dt

+Av(t) = f(t), v(0) = ϕ, (5.13)

where A is a constant and ϕ ∈ R. We easily find out that the corresponding
solution has the form

v(t) = S(t)ϕ+

t∫

0

S(t− s)f(s)ds, (5.14)

where S(t) = e−tA.
Now, we turn back to the original diffusion problem (5.11). The solution of

the homogeneous diffusion equation can be written in the form

u(x, t) =

+∞∫

−∞
G(x− y, t)ϕ(y)dy.
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Similar to Section 4.4, we set

u(x, t) = S(t)ϕ(x), i.e., S(t)ϕ(x) =
+∞∫

−∞
G(x− y, t)ϕ(y)dy. (5.15)

The operator S(t), called the source operator, transforms the function ϕ into
a solution of the homogeneous diffusion equation and hence is an obvious ana-
logue of the function S(t). If we use this analogue, we can expect that the
solution of the nonhomogeneous diffusion equation will have the form (in ac-
cordance with relation (5.14))

u(x, t) = S(t)ϕ(x) +
t∫

0

S(t− s)f(x, s)ds,

which is (after substituting for S(t)) the derived formula (5.12):

u(x, t) =

+∞∫

−∞
G(x− y, t)ϕ(y)dy +

t∫

0

+∞∫

−∞
G(x− y, t− s)f(y, s)dy ds.

Now, the only point left is to verify that (5.12) really solves problem (5.11).
For simplicity, let us assume ϕ(x) ≡ 0 and consider only the influence of the
right-hand side f . First, we verify that the solution fulfills the equation. We
use the rule for differentiation of the integral with respect to a parameter t,
thus obtaining

∂u

∂t
(x, t) =

∂

∂t

t∫

0

+∞∫

−∞
G(x− y, t− s)f(y, s)dy ds

=

t∫

0

+∞∫

−∞

∂G

∂t
(x− y, t− s)f(y, s)dy ds

+ lim
s→t

+∞∫

−∞
G(x− y, t− s)f(y, s)dy.

The reader should notice that the exchange of differentiation and integration
is not always possible, in particular, we have to be careful of the singularities
of the function G(x − y, t − s) at the time t = s! If, in the first integral, we
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use the fact that G solves the diffusion equation and substitute s = t− � in the
second term, we obtain

∂u

∂t
(x, t) =

t∫

0

+∞∫

−∞
k
∂2G

∂x2
(x− y, t− s)f(y, s)dy ds (5.16)

+ lim
�→0

+∞∫

−∞
G(x− y, �)f(y, t− �)dy.

Now, we can change the order of integration and differentiation in the first term
on the right-hand side. Since for � → 0 the function G(x−y, �) converges to the
Dirac distribution at the point x (as follows from the theory of distributions,
see, e.g., [10]) and f(y, t − �) converges to f(y, t) (due to the continuity of f),
we can write

lim
�→0

+∞∫

−∞
G(x− y, �)f(y, t − �)dy =

+∞∫

−∞
δ(x− y)f(y, t)dy = f(x, t).

Thus, equality (5.16) takes the form

∂u

∂t
(x, t) = k

∂2

∂x2

t∫

0

+∞∫

−∞
G(x− y, t− s)f(y, s)dy ds+ f(x, t)

= k
∂2u

∂x2
+ f(x, t),

which is exactly the nonhomogeneous diffusion equation of problem (5.11).
Further, we have to verify the initial condition. Due to the properties of the

diffusion kernel G, the first term in (5.12) converges for t → 0+ to the initial
condition ϕ(x). The second term is an integral from 0 to 0, thus

lim
t→0+

u(x, t) = ϕ(x) +

0∫

0

· · · = ϕ(x),

which we wanted to prove.

If we substitute the concrete form of diffusion kernel (5.5) into expression (5.12),
we obtain the solution of the Cauchy problem for the nonhomogeneous diffusion
equation (5.11) in the form
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u(x, t) =
1√
4πkt

+∞∫

−∞
e−

(x−y)2

4kt ϕ(y)dy

+

t∫

0

+∞∫

−∞

1√
4πk(t− s)

e−
(x−y)2

4k(t−s) f(y, s)dy ds.

(5.17)

Remark 5.8. The reader should notice that above we have used formally some
assertions like the derivative of the integral with respect to the parameter, pas-
sage to the limit under the integral sign, properties of the Dirac distribution,
etc., without checking carefully the assumptions. Similarly to the case of The-
orem 5.2, the existence result in Theorem 5.7 still holds if ϕ and f are more
general functions.

5.3 Exercises

1. Verify that the function

u(x, t) =
1√
4πkt

e−x2/4kt

solves the diffusion equation ut = kuxx on the domain −∞ < x < +∞,
t > 0. Observe how the diffusion parameter k influences the solution.

2. Show that the solution from Example 5.6 given by (5.9) assumes the simple
form of (5.10).

Here, use 1√
4πkt

+∞∫
−∞

e−
(x−y)2

4kt e−y dy = 1√
4πkt

+∞∫
−∞

e−
(y−x+2kt)2

4kt ekt−x dy and the

substitution s = y−x+2kt√
4kt

.

3. For which values of a and b is the function u(x, t) = eat sin bx a solution of
the diffusion equation ut − uxx = 0?

[a+ b2 = 0]

4. Suppose |ϕ(x)| ≤ M for all x ∈ R (M is a positive constant). Use the fact
that | ∫ f | ≤ ∫ |f | and show that the solution of the Cauchy problem (5.1)
for the diffusion equation satisfies |u(x, t)| ≤ M for all x ∈ R, t > 0.

5. Verify that
+∞∫

−∞
G(x, t)dx = 1, t > 0.
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6. Solve the diffusion equation ut = kuxx with the initial condition

ϕ(x) = 1 for x > 0, ϕ(x) = 3 for x < 0.

Write the solution using the error function erf(x).

[u(x, t) = 2− erf ( x√
4kt

)]

7. Solve the diffusion equation ut = kuxx with the initial condition ϕ(x) = e3x.

[u(x, t) = e3x+9kt]

8. Solve the diffusion equation ut = kuxx with the initial condition

ϕ(x) = e−x for x > 0, ϕ(x) = 0 for x < 0.

[u(x, t) = 1
2e

kt−x(1− erf ( 2kt−x√
4kt

))]

9. Solve the diffusion equation ut = uxx with the initial condition

ϕ(x) =

⎧⎨
⎩

1− x, 0 ≤ x ≤ 1,
1 + x, −1 ≤ x ≤ 0,
0, |x| ≥ 1.

Show that u(x, t) → 0 as t → +∞ for every x.

10. Using the substitution u(x, t) = e−btv(x, t), solve the diffusion equation

ut − kuxx + bu = 0, u(x, 0) = ϕ(x).

Here, b is a positive constant representing dissipation.

11. Using the substitution y = x− V t, solve the heat equation

ut − kuxx + V ux = 0, u(x, 0) = ϕ(x).

Here, V is a positive constant representing convection.

[u(x, t) = 1√
4πkt

+∞�
−∞

e−(x−V t−z)2/(4kt)ϕ(z) dz]

12. Show that the equation ut = k(t)uxx can be transformed into a diffusion
equation by changing the time variable t into

τ =

t�

0

k(η)dη.
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Similarly, show that the equation ut = kuxx − b(t)ux can be transformed
into a diffusion equation by changing the spatial variable x into

ξ = x−
t∫

0

b(η)dη.

13. Find the solution of the problem

ut − kuxx = sinx, x ∈ R, t > 0, u(x, 0) = 0.

[u(x, t) = 1
k (1− e−kt) sinx]

14. Show that the transport equation with diffusion and decay

ut = kuxx − cux − λu

can be transformed into a diffusion equation by a substitution

u(x, t) = w(x, t)eαx−βt

with α = c
2k and β = λ+ c2

4k .
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Chapter 6

Laplace and Poisson Equations in Two
Dimensions

In the previous chapters we have met the basic representatives of hyperbolic
equations (the wave equation) and of parabolic equations (the diffusion equa-
tion). This chapter is devoted to the simplest elliptic equation in two dimen-
sions, that is, the Laplace equation

Δu = uxx + uyy = 0. (6.1)

As we have stated in Section 1.3.7, the Laplace equation can be understood as
a stationary diffusion or stationary wave and its solutions are so called harmonic
functions. A nonhomogeneous analogue of the Laplace equation with a given
function f is so called Poisson equation

Δu = f. (6.2)

6.1 Invariance of the Laplace Operator

The Laplace operator Δ (also called the Laplacian) is invariant with respect to
any transformation consisting of translations and rotations.

The translation in plane by a vector (a, b) is given by the transformation

x′ = x+ a, y′ = y + b.

Obviously, uxx + uyy = ux′x′ + uy′y′ .

The rotation in plane through an angle α is given by the transformation

x′ = x cosα+ y sinα,

y′ = −x sinα+ y cosα.

Using the chain rule, we derive

ux = ux′ cosα− uy′ sinα,

uy = ux′ sinα+ uy′ cosα,

uxx = ux′x′ cos2 α− 2ux′y′ sinα cosα+ uy′y′ sin
2 α,

uyy = ux′x′ sin2 α+ 2ux′y′ sinα cosα + uy′y′ cos
2 α,
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and, summing up, we obtain

uxx + uyy = ux′x′ + uy′y′ .

For these properties, the Laplace operator is used in modeling of isotropic
physical phenomena.

6.2 Transformation of the Laplace Operator into
Polar Coordinates

The invariance with respect to rotation suggests that the Laplace operator could
assume a simple form in polar coordinates (Figure 6.1), in particular, in the
radially symmetric case. The transformation formulas between the Cartesian
and polar coordinates have the form

x = r cos θ, y = r sin θ,

and the corresponding Jacobi matrix J and its inverse J−1 are

J =

�
xr yr
xθ yθ

�
=

�
cos θ sin θ

−r sin θ r cos θ

�
,

J−1 =

�
rx θx
ry θy

�
=

⎛
⎜⎝

cos θ −sin θ
r

sin θ
cos θ
r

⎞
⎟⎠ .

�

�
y

x

• (x, y)

�
�
�
�

�
�
�
�
��

r

θ�

Figure 6.1. Polar coordinates r and θ.
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Written formally in symbols, we easily find out by differentiation that

∂2

∂x2
=

(
cos θ

∂

∂r
− sin θ

r

∂

∂θ

)2

= cos2 θ
∂2

∂r2
− 2

sin θ cos θ
r

∂2

∂r∂θ
+
sin2 θ
r2

∂2

∂θ2
+ 2

sin θ cos θ
r2

∂

∂θ
+
sin2 θ
r

∂

∂r
,

∂2

∂y2
=

(
sin θ

∂

∂r
+
cos θ
r

∂

∂θ

)2

= sin2 θ
∂2

∂r2
+ 2

sin θ cos θ
r

∂2

∂r∂θ
+
cos2 θ
r2

∂2

∂θ2
− 2

sin θ cos θ
r2

∂

∂θ
+
cos2 θ
r

∂

∂r
.

Summing these operators, we obtain

Δ =
∂2

∂x2
+

∂2

∂y2
=

∂2

∂r2
+

1

r

∂

∂r
+

1

r2
∂2

∂θ2
. (6.3)

6.3 Solutions of Laplace and Poisson Equations
in R2

6.3.1 Laplace Equation

Using the similarity to the wave equation (4.1), we can find a “general solution”
of the Laplace equation in the xy-plane. Indeed, the wave and Laplace equations
are formally identical provided we set the speed of wave propagation c to be
equal to the imaginary unit i =

√−1. Thus, according to (4.6), we can conclude
that any function of the form

u(x, y) = f(x+ iy) + g(x− iy)

solves the Laplace equation Δu = 0 in two dimensions. Here f and g are arbi-
trary differentiable functions of a complex variable. Since x − iy is the complex
conjugate number to x + iy, the general solution of the Laplace equation can
be written simply as

u(x, y) = f(x+ iy).

However, further analysis is a subject of the theory of complex functions and
exceeds the scope of this text.

In the radially symmetric case (when the functions considered do not depend
on the angle θ), the Laplace equation in polar coordinates reduces to the ODE

urr +
1

r
ur = 0.
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Multiplying by r > 0, we obtain the equation

rurr + ur = 0,

which is equivalent to
(rur)r = 0.

This is an ODE that is easy to solve by direct integration:

rur = c1

and

u(r) = c1 ln r + c2. (6.4)

Thus, the radially symmetric harmonic functions in R2 \ {0} are the constants
and the logarithm. In particular, the logarithm will play an important role in
subsequent chapters.

6.3.2 Poisson Equation

The same approach can also be applied to the Poisson equation. Consider-
ing again the radially symmetric case (when f = f(

√
x2 + y2)), this equation

reduces to the ODE
urr +

1

r
ur = f(r),

which is equivalent to

rurr + ur = r f(r) or (rur)r = r f(r).

Again, by direct integration, we obtain

rur = c1 +

r∫

0

s f(s)ds

and, finally,

u(r) = c1 ln r + c2 +

r∫

0

1

σ

σ∫

0

s f(s)ds dσ. (6.5)
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6.4 Exercises

1. Verify that the given functions solve the two-dimensional Laplace equation.

(a) u = x+ y.

(b) u = x2 − y2.

(c) u = x
x2+y2

.

(d) u = ln(x2 + y2).

(e) u = ln
√
x2 + y2.

(f) u = ey cosx.

2. Decide whether the following functions satisfy the Laplace equation.

(a) u = y
x2+y2

.

(b) u = 1√
x2+y2

.

(c) u = arctan( yx).

(d) u = arctan( yx)
y

x2+y2
.

(e) u = xy.

[yes for a,c,e]

3. Show that if u and v are harmonic and α and β are (real) numbers, then
αu + βv is harmonic.

4. Give an example of two harmonic functions u and v such that uv is not
harmonic.

5. Show that if u and u2 are both harmonic, then u must be constant.

6. Show that if u, v and u2+v2 are harmonic, then u and v must be constants.

7. If u(x, y) is a solution of the Laplace equation, prove that any partial deriva-
tive of u(x, y) with respect to one or more Cartesian coordinates (for ex-
ample, ux, uxx, uxy) is also a solution.

8. Consider the problem
{

uxx + uyy = 0 in R× (0,+∞),
u(x, 0) = 0, uy(x, 0) =

cosnx
n2 .

Show that un(x, y) =
1
n3 sinhny cosnx is the solution, but

lim
n→+∞ sup

(x,y)∈R×[0,+∞)

|un(x, y)| �= 0.
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9. Functions z2, z3, ez, ln z of a complex variable z = x + iy are analytic.
Rewrite them in the following way:

z2 = (x2 − y2) + i(2xy),
z3 = (x3 − 3xy2) + i(3x2y − y3),

ez = (ex cos y) + i(ex sin y),

ln z = (ln
√

x2 + y2) + i(arg z) = ln r + iθ,

and show that all of them (as functions of x and y) satisfy the Laplace
equation.

10. Show that the function u(x, y) = arctan(y/x) satisfies the Laplace equation
uxx + uyy = 0 for y > 0. Using this fact, try to find a solution of the
Laplace equation on the domain y > 0, that satisfies boundary conditions
u(x, 0) = 1 for x > 0 and u(x, 0) = −1 for x < 0.

11. Show that e−ξy sin(ξx), x ∈ R, y > 0 is a solution of the Laplace equation
for an arbitrary value of the parameter ξ. Prove that the function

u(x, y) =

+∞∫

0

c(ξ)e−ξy sin(ξx)dξ

solves the same equation for an arbitrary function c(ξ) that is bounded and
continuous on [0,+∞). (Assumptions on the function c allow to differenti-
ate under the integral.)

12. Find a radially symmetric solution of the equation uxx+uyy = 1 in the disc
x2 + y2 < a2 with u(x, y) vanishing on the boundary x2 + y2 = a2.

[u(r) = 1
4 (r

2 − a2)]

13. Find a radially symmetric solution of the equation uxx + uyy = 1 in the
annulus a2 < x2 + y2 < b2 with u(x, y) vanishing on both boundary circles
x2 + y2 = a2, x2 + y2 = b2.

[u(r) = r2

4 + b2−a2

4 ln a
b
ln r − b2 ln a −a2 ln b

4 ln a
b

]

14. (a) Show that if v(x, y) is a harmonic function, then u(x, y) =
v(x2 − y2, 2xy) is also a harmonic function.

(b) Using transformation into polar coordinates, show that the transforma-
tion (x, y) �→ (x2−y2, 2xy) maps the first quadrant onto the half-plane
{y > 0}.
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Chapter 7

Solutions of Initial Boundary Value Problems
for Evolution Equations

7.1 Initial Boundary Value Problems on Half-Line

Let us start with the solutions of the diffusion and wave equations on the whole
real line. Notice that if the initial condition for the diffusion equation is an even
or odd function, then the solution of the Cauchy problem is also an even or odd
function, respectively. The same holds in the case of the Cauchy problem for
the wave equation too. (The reader is asked to prove both cases.) We will use
this observation in solving the initial boundary value problems for the diffusion
and wave equations on the half-line with homogeneous boundary conditions.

7.1.1 Diffusion and Heat Flow on Half-Line

First, let us consider the initial boundary value problem for the heat equation

⎧⎨
⎩

ut = kuxx, x > 0, t > 0,
u(0, t) = 0,
u(x, 0) = ϕ(x),

(7.1)

which describes the temperature distribution in the half-infinite bar with heat
insulated lateral surface. The Dirichlet boundary condition corresponds to the
fact that the end x = 0 is kept at the zero temperature. We will solve this
problem using the so called reflection method, which is based on the idea of
extending the problem to the whole real line in such a way that the boundary
condition u(0, t) = 0 is fulfilled by itself. In our case, that is, in the case of the
homogeneous Dirichlet boundary condition, this means to use the odd extension
of the initial condition ϕ(x). We define

ϕ̃(x) =

�
ϕ(x), x > 0,
−ϕ(−x), x < 0,

ϕ̃(0) = 0. (7.2)

Since an odd initial condition corresponds to an odd solution, we obtain
u(0, t) = 0 automatically for all t > 0 (see Figure 7.1). Let us consider the
extended problem �

vt = kvxx, x ∈ R, t > 0,
v(x, 0) = ϕ̃(x),

(7.3)
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�

�

x

ϕ

•

◦

◦

ϕ(x)

−ϕ(−x)

Figure 7.1. The odd extension.

the solution of which can be written in the form

v(x, t) =

+∞∫

−∞
G(x− y, t)ϕ̃(y)dy,

where G is the diffusion kernel (5.5). If we split the integral into two parts
(y > 0 and y < 0), we obtain

v(x, t) =

0∫

−∞
G(x− y, t)ϕ̃(y)dy +

+∞∫

0

G(x− y, t)ϕ̃(y)dy

= −
0∫

−∞
G(x− y, t)ϕ(−y)dy +

+∞∫

0

G(x− y, t)ϕ(y)dy

= −
+∞∫

0

G(x+ y, t)ϕ(y)dy +
+∞∫

0

G(x− y, t)ϕ(y)dy

=

+∞∫

0

(
G(x− y, t) −G(x+ y, t)

)
ϕ(y)dy.

The solution u of the original problem (7.1) is then the restriction of the func-
tion v to x > 0, i.e.

u(x, t) =

+∞∫

0

(
G(x− y, t)−G(x+ y, t)

)
ϕ(y)dy, x > 0, t > 0. (7.4)
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Example 7.1. The reader is asked to verify that the function

u(x, t) = erf
�

x√
4kt

�
,

illustrated in Figure 7.2 for k = 1, solves the initial value problem
�

ut = kuxx, x > 0, t > 0,
u(x, 0) = 1, u(0, t) = 0.

(7.5)

t

x

u(x, t)

Figure 7.2. Solution of problem (7.5) with k = 1.

�
7.1.2 Wave on the Half-Line

The wave equation on the half-line can be solved in the same way. Let us con-
sider a half-infinite string (x > 0) whose end x = 0 is fixed. The corresponding
Cauchy problem takes the form

⎧⎨
⎩

utt = c2uxx, x > 0, t > 0,
u(0, t) = 0,
u(x, 0) = ϕ(x), ut(x, 0) = ψ(x).

(7.6)

We again use the method of the odd extension of both initial conditions to the
whole real line. We introduce

ϕ̃(x) =

�
ϕ(x), x > 0,
−ϕ(−x), x < 0,

ψ̃(x) =

�
ψ(x), x > 0,
−ψ(−x), x < 0,

ϕ̃(0) = 0,
ψ̃(0) = 0,
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and consider the extended problem
{

vtt = c2vxx, x ∈ R, t > 0,
v(x, 0) = ϕ̃(x), vt(x, 0) = ψ̃(x).

(7.7)

Its solution is given by d’Alembert’s formula

v(x, t) =
1

2

(
ϕ̃(x+ ct) + ϕ̃(x− ct)

)
+

1

2c

x+ct∫

x−ct

ψ̃(y)dy.

The solution u of the original problem (7.6) will be obtained as the restriction
of the function v to x > 0.

Let us consider first the region x > ct. In the case of points (x, t) from this
area, the whole bases of their domains of influence lie in the interval (0,+∞),
where ϕ̃(x) = ϕ(x), ψ̃(x) = ψ(x). Thus, the solution here is given by the
“usual” relation

u(x, t) =
1

2

(
ϕ(x+ ct) + ϕ(x− ct)

)
+

1

2c

x+ct∫

x−ct

ψ(y)dy, x > ct. (7.8)

However, in the region 0 < x < ct we have ϕ̃(x− ct) = −ϕ(ct− x) and thus

u(x, t) =
1

2

(
ϕ(x+ ct)− ϕ(ct− x)

)
+

1

2c

x+ct∫

0

ψ(y)dy +
1

2c

0∫

x−ct

(− ψ(−y)
)
dy.

If we pass in the last integral from the variable y to −y, we obtain the solution
in the form

u(x, t) =
1

2

(
ϕ(ct+ x)− ϕ(ct− x)

)
+

1

2c

ct+x∫

ct−x

ψ(y)dy, 0 < x < ct. (7.9)

The complete solution of problem (7.6) is given by formulas (7.8) and (7.9).
This result can be interpreted in the following graphical way. In the xt plane,

we draw the backward characteristics from the point (x, t). If (x, t) lies in the
region x < ct, one of the characteristics crosses the t axis earlier than it touches
the x axis. Relation (7.9) says that there occurs a reflection at the end x = 0
and the solution depends on the values of the function ϕ at the points ct ± x
and on the values of the function ψ on the short interval between these points.
Other values of the function ψ have no influence on the solution at the point
(x, t) (see Figure 7.3).
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(x+ ct, 0)(x− ct, 0)

Figure 7.3. Reflection method for the wave equation.

In the case of problems with the homogeneous Neumann boundary condition
(see Section 2.3), we would proceed analogously. We would use, however, the
method of even extension, which uses the fact that even initial conditions cor-
respond to even solutions. The latter then fulfil the condition ux(0, t) = 0 at
the point x = 0 automatically. The derivation of the corresponding solution
formulas is left to the reader.

Example 7.2. Let us consider the initial boundary value problem
⎧⎨
⎩

utt = c2uxx, x > 0, t > 0,
u(0, t) = 0,

u(x, 0) = e−(x−3)2, ut(x, 0) = 0.

(7.10)

Its solution is sketched in Figure 7.4 (here, c = 2). Notice the reflection of the
initial wave on the boundary line x = 0. �

Example 7.3. Let us consider the initial boundary value problem
⎧⎨
⎩

utt = c2uxx, x > 0, t > 0,
u(0, t) = 0,
u(x, 0) = 0, ut(x, 0) = sinx.

(7.11)

By direct substitution into formulas (7.8) and (7.9) we find that u(x, t) =
1
c sinx sin ct in both regions 0 < x < ct and x > ct. The graph of the solution
is shown in Figure 7.5 for the choice c = 4. (We have seen the same problem
on the real line in Chapter 4, see Example 4.2 and Figure 4.1. We recall that
the solution was called the standing wave, for its properties.) �
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t

x

u(x, t)

Figure 7.4. Solution of problem (7.10) for c = 2.

t

x

u(x, t)

Figure 7.5. Solution of problem (7.11) for c = 4.
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7.1.3 Problems with Nonhomogeneous Boundary Condition

Let us consider an initial boundary value problem for the diffusion equation on
the half-line with a nonhomogeneous Dirichlet boundary condition

⎧⎨
⎩

ut − kuxx = 0, x > 0, t > 0,
u(0, t) = h(t),
u(x, 0) = ϕ(x).

(7.12)

In this case we introduce a new function

v(x, t) = u(x, t)− h(t),

which then solves the problem
⎧⎨
⎩

vt − kvxx = −h′(t), x > 0, t > 0,
v(0, t) = 0,
v(x, 0) = ϕ(x)− h(0).

We have thus transferred the influence of the boundary condition to the right-
hand side of the equation. This means that we solve a nonhomogeneous diffusion
equation with a homogeneous boundary condition. To find a solution of this
transformed problem, we can use again the method of odd extension. If the
compatibility condition (ϕ(0) = h(0)) is not satisfied, we obtain a “generalized”
solution which is not continuous at the point (0, 0) (however, it is continuous
everywhere else).

In the case of a nonhomogeneous Neumann boundary condition ux(0, t) =
h(t), we would use the transformation v(x, t) = u(x, t)−xh(t), which results in
the nonhomogeneous right-hand side −xh′(t), but it ensures the homogeneity of
the boundary condition vx(0, t) = 0. The transformed problem is then solved
by the method of even extension. The reader is invited to go through the
details.

7.2 Initial Boundary Value Problem on Finite
Interval, Fourier Method

In this section, we deal with initial boundary value problems for the wave and
diffusion equations on finite intervals. Boundary conditions are now given on
both ends of the interval considered. Solving these problems can be approached
in various ways. One – apparent – way is to apply the reflection method (which
was discussed in the previous section) on both ends of the interval. In the
case of homogeneous Dirichlet boundary conditions, it means to use the odd
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110 Chapter 7 Solutions of Initial Boundary Value Problems

extension of the initial conditions with respect to both the end-points and,
further, to extend all functions periodically to the whole real line. That is,
instead of the original initial condition ϕ = ϕ(x), x ∈ (0, l), we consider the
extended function

ϕ̃(x) =

⎧⎨
⎩

ϕ(x), x ∈ (0, l),
−ϕ(−x), x ∈ (−l, 0),
2l-periodic elsewhere.

(In the case of Neumann boundary conditions we use the even extension.) Then
we can use the formulas for the solution of the particular problems on the real
line. However, after substituting back for the “tilde” initial conditions, the
resulting formulas become very complicated!

For example, considering the problem for the wave equation, we can obtain
the value of the solution at a point (x, t) in the following way: We draw the
backwards characteristics from the point (x, t) and reflect them whenever they
hit the lines x = 0, x = l, until we reach the zero time level t = 0 (see
Figure 7.6 (a)). Thus we obtain a couple of points x1 and x2. The solution
is then determined by the initial displacements at these points, by the initial
velocity in the interval (x1, x2), and also by the number of reflections. In
general, the characteristic lines divide the space-time domain (0, l) × (0,+∞)
into “diamond-shaped” areas, and the solution is given by different formulas on
each of these areas (see Figure 7.6 (b)).
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Figure 7.6. Reflection method for the wave equation on finite interval.
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In the sequel, we focus on the explanation of another standard method, the
so called Fourier method (also called the method of separation of variables).
Its application in solving the initial boundary value problems for the wave
equation led to the systematic investigation of trigonometric series (much later
called Fourier series).

7.2.1 Dirichlet Boundary Conditions, Wave Equation

First, we will consider the initial boundary value problem that describes vi-
brations of a string of finite length l, whose end points are fixed in the “zero
position”, and whose initial displacement and initial velocity are given by func-
tions ϕ(x) and ψ(x), respectively:

⎧⎨
⎩

utt = c2uxx, 0 < x < l, t > 0,
u(0, t) = u(l, t) = 0,
u(x, 0) = ϕ(x), ut(x, 0) = ψ(x).

(7.13)

We start with the assumption that there exists a solution of the wave equation
in the form

u(x, t) = X(x)T (t),

where X = X(x) and T = T (t) are real functions of one real variable, their
second derivatives exist and are continuous. Variables x and t are thus sepa-
rated from each other. If we now insert this solution back into the equation,
we obtain

XT ′′ = c2X ′′T

and, after dividing by the term −c2XT (under the assumption XT �= 0),

− T ′′(t)
c2T (t)

= −X ′′(x)
X(x)

.

This relation says that the function − T ′′
c2T

, which depends only on the variable
t, is equal to the function −X′′

X , which depends only on the spatial variable x.
This equality must hold for all t > 0 and x ∈ (0, l), and thus

− T ′′

c2T
= −X ′′

X
= λ,

where λ is a (so far unknown) constant. The original PDE is thus transformed
into two separated ODEs for unknown functions X(x) and T (t):

X ′′(x) + λX(x) = 0, (7.14)
T ′′(t) + c2λT (t) = 0. (7.15)
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Further, we are given homogeneous Dirichlet boundary conditions

X(0) = X(l) = 0, (7.16)

since the setting of problem (7.13) implies u(0, t) = X(0)T (t) = 0, u(l, t) =
X(l)T (t) = 0 for all t > 0. First, we will solve the boundary value prob-
lem (7.14), (7.16). Since we are evidently not interested in the trivial solution
X(x) ≡ 0, we exclude the case λ ≤ 0. If λ > 0, equation (7.14) yields the
solution in the form

X(x) = C cos
√
λx+D sin

√
λx

and the boundary conditions (7.16) imply

X(0) = C = 0 and X(l) = D sin
√
λl = 0.

The nontrivial solution can be obtained only in the case

sin
√
λl = 0,

that is,

λn =
(nπ

l

)2
, n ∈ N. (7.17)

Every such λn then corresponds to a solution

Xn(x) = Dn sin
nπx

l
, n ∈ N, (7.18)

where Dn are arbitrary constants. Now, we go back to equation (7.15). For
λ = λn its solution assumes the form

Tn(t) = An cos
nπct

l
+Bn sin

nπct

l
, n ∈ N, (7.19)

where An and Bn are again arbitrary constants. The original PDE of prob-
lem (7.13) is then solved by each of functions

un(x, t) =

(
An cos

nπct

l
+Bn sin

nπct

l

)
sin

nπx

l
, n ∈ N,

which already satisfy the prescribed homogeneous boundary conditions. Let
us notice that, instead of AnDn and BnDn, we write only An and Bn, since
all these real constants are arbitrary. Since the problem is linear, an arbitrary
finite sum of the form

u(x, t) =
N∑

n=1

(
An cos

nπct

l
+Bn sin

nπct

l

)
sin

nπx

l
(7.20)
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is also a solution. The function given by formula (7.20) satisfies the initial
conditions provided

ϕ(x) =

N∑
n=1

An sin
nπx

l
, (7.21)

ψ(x) =

N∑
n=1

nπc

l
Bn sin

nπx

l
. (7.22)

For arbitrary initial data in this form, problem (7.13) is uniquely solvable and
the corresponding solution is given by relation (7.20).

Obviously, conditions (7.21), (7.22) are very restrictive and their satisfaction
is hard to ensure. For this reason, we look for a solution of problem (7.13) in
the form of an infinite sum and we express it in the form of a Fourier series

u(x, t) =
+∞∑
n=1

(
An cos

nπct

l
+Bn sin

nπct

l

)
sin

nπx

l
. (7.23)

The constants An and Bn (or, more precisely, nπc
l Bn) are then given as the

Fourier coefficients of sine expansions of the functions ϕ(x), ψ(x), thus

ϕ(x) =

+∞∑
n=1

An sin
nπx

l
,

ψ(x) =

+∞∑
n=1

nπc

l
Bn sin

nπx

l
.

In other words, the solution of the initial boundary value problem for the wave
equation can be expressed at every time t in the form of a Fourier sine series in
the variable x, provided we are able to express the initial conditions ϕ(x), ψ(x)
in this way. It can be seen that such an expansion makes sense for a sufficiently
wide class of functions. In such cases, we use orthogonality of the functions
sin nπx

l , n = 1, 2, . . . , to calculate the coefficients An, Bn. We obtain the
following expressions:

An =
2

l

l∫

0

ϕ(x) sin
nπx

l
dx,

Bn =
l

nπc

2

l

l∫

0

ψ(x) sin
nπx

l
dx =

2

nπc

l∫

0

ψ(x) sin
nπx

l
dx.
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Remark 7.4. To ensure that this solution of problem (7.13) is mathematically
correct, it is necessary to prove that the series (7.23) converges and that it really
solves (7.13). It depends on the properties of the functions ϕ, ψ and on the kind
of the required convergence whether, for example, we can exchange the order
of the derivative and the infinite sum. These issues are by no means trivial and
it is the role of the Theory of Fourier Series to provide the answers to these
delicate questions (see, e.g., [13], [18]). They lie beyond the scope of this text
and we will not deal with them. In what follows, we automatically assume that
the formal calculations may be performed.

Remark 7.5. Coefficients in front of the time variable in the arguments of
trigonometric functions in expression (7.23) (that is, the values nπc/l) are called
frequencies. If we go back to the string which is described by problem (7.13),
the corresponding frequencies take the form

nπ
√
T

l
√
ρ

for n = 1, 2, 3, . . .

The “fundamental” tone of the string corresponds to the least of these values:
π
√
T/(l

√
ρ). Higher (aliquot) tones are then exactly the integer multiples of

this basic tone. The discovery that musical tones can be described in this easy
mathematical way was made by Euler in 1749.

Example 7.6. Let us solve the initial boundary value problem
⎧⎨
⎩

utt = c2uxx, x ∈ (0, π), t > 0,
u(0, t) = u(π, t) = 0,
u(x, 0) = sin 2x, ut(x, 0) = 0.

(7.24)

Using the above relations, we can write the solution as

u(x, t) =
+∞�
n=1

(An cosnct+Bn sinnct) sinnx.

The zero initial velocity implies zero “sine coefficients” Bn = 0 for all n ∈ N.
The initial displacement determines the “cosine coefficients” An:

u(x, 0) = sin 2x =
+∞�
n=1

An sinnx.

Since the functions sinnx form a complete orthogonal set on (0, π), we easily
obtain

A2 = 1, An = 0 for n ∈ N \ {2}.
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Hence, we can conclude that the solution of (7.24) reduces to

u(x, t) = cos 2ct sin 2x.

�
Example 7.7. Similarly to the previous example, we can show that the func-
tion

u(x, t) =
+∞�
n=1

An sin
nπx

l
cos

nπct

l
(7.25)

with

An =
2

l

l�

0

e−(x−l/2)2 sin
nπx

l
dx

solves the initial boundary value problem
⎧⎨
⎩

utt = c2uxx, x ∈ (0, l), t > 0,
u(0, t) = u(l, t) = 0,

u(x, 0) = e−(x−l/2)2, ut(x, 0) = 0.

(7.26)

Figure 7.7 sketches a partial sum of the series (7.25) up to the term n = 15 with
values c = 6 and l = 8, which is the approximate solution of problem (7.26).

t

x

u(x, t)

Figure 7.7. Graphic illustration of the solution of problem (7.26).

�
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7.2.2 Dirichlet Boundary Conditions, Diffusion Equation

Now let us consider an initial boundary value problem for the heat equation

⎧⎨
⎩

ut = kuxx, 0 < x < l, t > 0,
u(0, t) = u(l, t) = 0,
u(x, 0) = ϕ(x),

(7.27)

which can model a thin bar whose ends are kept at a constant temperature
u = 0. The distribution of the temperature in the bar at time t = 0 is given
by a function ϕ = ϕ(x). To find the distribution of the temperature at time
t > 0 means to find a solution u = u(x, t) of problem (7.27). The same problem
describes the diffusion process of a substance in a tube which is constructed in
such a way that any substance that reaches the ends of the tube flows immedi-
ately out.

Let us proceed in the same way as in the previous example. First, we look for
such a solution of the equation that satisfies only the homogeneous boundary
conditions and has the form

u(x, t) = X(x)T (t).

After substitution into the heat equation and a simple rearrangement, we obtain

− T �(t)
kT (t)

= −X ��(x)
X(x)

= λ,

where λ is a constant. Thus, we have transformed the original equation into
a couple of ODEs

T � + λkT = 0, (7.28)
X �� + λX = 0. (7.29)

Now, we add the homogeneous boundary conditions X(0) = X(l) = 0 to equa-
tion (7.29) and look for such values of λ for which this problem has a nontrivial
solution. Just as in the case of the wave equation, we obtain

λn =
�nπ

l

�2
, n ∈ N, (7.30)

and the corresponding solutions have the form

Xn(x) = Dn sin
nπx

l
, n ∈ N, (7.31)

where Dn are arbitrary constants. If we go back to equation (7.28) and substi-
tute λ = λn, we obtain

Tn(t) = Ane
−(nπ/l)2kt, n ∈ N. (7.32)
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The solution u of the original problem (7.27) can be then expressed in the form
of an infinite Fourier series

u(x, t) =
+∞∑
n=1

Ane−(nπ/l)2kt sin
nπx

l
(7.33)

under the assumption that the initial condition is also expandable into the
corresponding series, that is,

ϕ(x) =

+∞∑
n=1

An sin
nπx

l
. (7.34)

From the physical point of view, expression (7.33) says that, with growing time,
heat is dissipated by the ends of the bar and the temperature in the whole bar
decreases to zero.

Example 7.8 (Logan [15]). Let ϕ(x) = 10x3(l − x), x ∈ (0, l), in (7.27).
Then Figure 7.8 sketches a partial sum of the series (7.33) up to the term
n = 42 with values l = 1 and k = 1.

tx

u(x, t)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.2
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0.8

1

x

u(x, ti)

Figure 7.8. Graphic illustration of the solution of Example 7.8.

�
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7.2.3 Neumann Boundary Conditions

The same method can be used also in the case of homogeneous Neumann bound-
ary conditions

ux(0, t) = ux(l, t) = 0.

In the case of the wave equation, these conditions correspond to a string with
free ends. If we model the diffusion process, then they describe a tube with
isolated ends (nothing can penetrate in or out and the flow across the boundary
is zero). Similarly, when modeling the heat flow, the homogeneous Neumann
conditions represent a totally isolated tube (again, the heat flux across the
boundary is zero).

Let us consider a problem for the wave or diffusion equation in the interval
(0, l). Separation of variables leads this time to the ODE

X �� + λX = 0, X �(0) = X �(l) = 0,

which has a nontrivial solution for λ > 0 and for λ = 0. In particular, we
obtain

λn =
(nπ

l

)2
, n ∈ N ∪ {0},

Xn(x) = Cn cos
nπx

l
, n ∈ N ∪ {0}.

The initial boundary value problem for the diffusion equation with Neumann
boundary conditions has then a solution in the form

u(x, t) =
1

2
A0 +

+∞∑
n=1

Ane
−(nπ/l)2kt cos

nπx

l
, (7.35)

provided the initial condition is expandable into the Fourier cosine series

ϕ(x) =
1

2
A0 +

+∞∑
n=1

An cos
nπx

l
.

In the case of an initial boundary value problem for the wave equation with
homogeneous Neumann boundary conditions on (0, l) we obtain

u(x, t) =
1

2
A0 +

1

2
B0t+

+∞∑
n=1

(
An cos

nπct

l
+Bn sin

nπct

l

)
cos

nπx

l
, (7.36)
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where the initial data have to satisfy

ϕ(x) =
1

2
A0 +

+∞�
n=1

An cos
nπx

l
,

ψ(x) =
1

2
B0 +

+∞�
n=1

nπc

l
Bn cos

nπx

l
.

In both cases, the reader is asked to carry out detailed calculations.

Example 7.9. Let An be the cosine Fourier coefficients of the function ϕ(x) =
1
2 − 200x4(l− x)4 in the interval (0, l). Then the function

u(x, t) =
A0

2
+

+∞�
n=1

Ane
−(nπ/l)2kt cos

nπx

l
(7.37)

solves the initial boundary value problem
⎧⎨
⎩

ut = kuxx, x ∈ (0, l), t > 0,
ux(0, t) = ux(l, t) = 0,
u(x, 0) = 1

2 − 200x4(l − x)4.
(7.38)

Figure 7.9 sketches a partial sum of the series (7.37) up to the term n = 15
with values l = 1 and k = 1.

t
x

u(x, t)

Figure 7.9. Graphic illustration of the solution of problem (7.38).

�
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7.2.4 Robin Boundary Conditions

Together with the wave equation, the Robin boundary conditions describe
a string whose ends are held by springs (obeying Hooke’s law) which pull it
back to the equilibrium. In the case of the heat flow in a bar, these boundary
conditions model the heat transfer between the bar ends and the surrounding
media.

Let us consider the following modeling problem illustrated in Figure 7.10.
Let us take a vertical bar of unit length, whose upper end is kept at zero
temperature while the lower end is immersed into a reservoir with water of zero
temperature. The heat convection proceeding between the lower end and water
is described by the law ux(1, t) = −hu(1, t). The constant h > 0 corresponds
to the heat transfer coefficient. Let us suppose that the initial temperature
of the bar is given by a function u(x, 0) = x. To look for the distribution of
the temperature in the bar means to solve the initial boundary value problem
for the heat equation with mixed boundary conditions (Dirichlet and Robin
boundary conditions):

⎧⎪⎪⎨
⎪⎪⎩

ut = kuxx, 0 < x < 1, t > 0,
u(0, t) = 0,
ux(1, t) + hu(1, t) = 0,
u(x, 0) = x.

(7.39)

�

0

1

u(0, t) = 0

��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��

ux(1, t) + hu(1, t) = 0

water at temperature 0◦C

heat
insulated

x

Figure 7.10. Schematic illustration of problem (7.39).
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Searching for the solution, we proceed in the same way as in the previous
examples. In the first step, we separate the variables, that means, we consider
a solution in the form u(x, t) = X(x)T (t), and after substitution into the
equation, we obtain

− T �

kT
= −X ��

X
= λ,

where λ is a so far unknown constant. Thus we have transformed the original
equation into a couple of independent ODEs

T � + λkT = 0, (7.40)
X �� + λX = 0. (7.41)

Moreover, the function X(x) must satisfy the boundary conditions

X(0) = 0, X �(1) + hX(1) = 0.

By a simple discussion, we exclude the values λ ≤ 0 that lead only to the trivial
solution X(x) ≡ 0. Thus, let us consider λ = μ2 > 0. Then

X(x) = C cosμx+D sinμx,

and after substituting into the boundary conditions we obtain

C = 0, Dμ cosμ+ hD sinμ = 0.

Since we look for the nontrivial solution, i.e. D �= 0, the last equality can be
written in the form

tanμ = −μ

h
. (7.42)

To find the roots of the transcendent equation (7.42) means to find the inter-
sections of the graphs of functions tanμ and −μ

h (see Figure 7.11).
It is evident that there exists an infinite sequence of positive values μn, n ∈ N,

such that the corresponding solutions assume the form

Xn(x) = Dn sinμnx.

The following table specifies the first five approximate values μn for h = 1:

n 1 2 3 4 5
μn 2.02 4.91 7.98 11.08 14.20

If we go back to equation (7.40), we obtain

Tn(t) = Ane
−kμ2

nt
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μ

−μ
h

tanμ

μ1

−μ1 0

μ2

Figure 7.11. Intersections of graphs of functions tanμ and −μ
h .

and hence
un(x, t) = Ane−kμ2

nt sinμnx.

The final result of the original problem is then searched in the form of the
Fourier series

u(x, t) =

+∞∑
n=1

Ane
−kμ2

nt sinμnx. (7.43)

The coefficients An shall be determined in such a way that the initial condition
holds, that is,

u(x, 0) =

+∞∑
n=1

An sinμnx = x.

If we multiply this relation by a function sinμmx and integrate from 0 to 1, we
arrive at

1∫

0

x sinμmx dx =
+∞∑
n=1

An

1∫

0

sinμnx sinμmx dx.
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Since
1�

0

sinμnx sinμmx dx =

⎧⎨
⎩

0, n �= m,
μn − sinμn cosμn

2μn
, n = m,

we obtain, after simplification,

An =
2μn

μn − sinμn cosμn

1�

0

x sinμnx dx.

Figure 7.12 sketches a partial sum of the series (7.43) up to the term n = 55
with values h = 1 and k = 1.

tx

u(x, t)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

x

u(x, ti)

Figure 7.12. Graphic illustration of the solution u(x, t) of problem (7.39) for h = 1,
k = 1.

Remark 7.10. In the previous examples we have seen special types of the
boundary value problem for the second order ODE:

⎧
⎨
⎩

−y′′ = λy, 0 < x < l,
α0y(0) + β0y

′(0) = 0,
α1y(l) + β1y

′(l) = 0.
(7.44)
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We say that any value of the parameter λ ∈ R for which problem (7.44) has
a nontrivial solution, is an eigenvalue. The corresponding nontrivial solution
is called an eigenfunction related to the eigenvalue λ. In the Fourier method,
we used some special properties of eigenvalues λn and eigenfunctions yn(x) of
(7.44), namely that yn(x) form a complete orthogonal set. It means

l∫

0

yn(x)ym(x)dx = 0

provided ym(x) and yn(x) are two eigenfunctions corresponding to two differ-
ent eigenvalues λm and λn. Moreover, many functions defined on (0, l) are
expandable into Fourier series with respect to the eigenfunctions yn:

f(x) =

+∞∑
n=1

Fnyn(x),

where Fn are the Fourier coefficients defined by the relation

Fn =

l∫
0

f(x)yn(x)dx

l∫
0

y2n(x)dx
.

It can be seen that these properties are typical not only for sines and cosines,
which solve problem (7.44), but also for more general functions which arise as
solutions of the so called Sturm-Liouville boundary value problem. The reader
can find basic facts of Sturm-Liouville theory in Appendix A.

7.2.5 Principle of the Fourier Method

The principle of the Fourier method for initial boundary value problems on
a finite interval with a homogeneous equation and homogeneous boundary con-
ditions can be summarized into the following steps:

(i) We search for the solution in the separated form u(x, t) = X(x)T (t).

(ii) We transform the PDE into a couple of ODEs for unknown functions
X(x) and T (t).
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(iii) Considering the ODE for X(x) with homogeneous boundary conditions we
find the eigenvalues λn and the eigenfunctions Xn(x) of the corresponding
boundary value problem.

(iv) We substitute the eigenvalues λn into the ODE for the unknown function
T (t) and find its general solution.

(v) We write the solution of the original PDE in the form of an infinite Fourier

series u(x, t) =
+∞∑
n=1

Xn(x)Tn(t).

(vi) We expand the initial conditions into Fourier series with respect to the
system of orthogonal eigenfunctions Xn(x).

(vii) Comparing the expansions of the initial conditions and the solution
u(x, t), we calculate the remaining coefficients.

The above mentioned technique is formal and the precise justification of
particular steps requires much of mathematical calculus that lies beyond the
scope of this text. The interested reader can find the details, e.g., in [24].

7.3 Fourier Method for Nonhomogeneous Problems

7.3.1 Nonhomogeneous Equation

In the case of linear nonhomogeneous equations we usually solve first the ho-
mogenous equation and then we use the knowledge of its solution to find a par-
ticular solution of nonhomogeneous equation, which reflects the influence of the
right-hand side (let us recall, e.g., the method of variation of parameters for
ODEs). In the Fourier method for initial boundary value problems for nonho-
mogeneous PDEs we use the analogue of this approach. As usual, we search
the solution in the separated form u(x, t) = T (t)X(x) and, consequently, in the
form of the Fourier series

u(x, t) =

+∞∑
n=1

Tn(t)Xn(x).

Functions Xn(x) will be again obtained as eigenfunctions of the corresponding
homogeneous problem, whereas functions Tn(t) will respect the influence of
the right-hand side. We illustrate particular steps on a simple example of the
diffusion equation with homogeneous Dirichlet boundary conditions.
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Let us solve the initial boundary value problem

⎧⎨
⎩

ut − kuxx = f(x, t), 0 < x < 1, t > 0,
u(0, t) = u(1, t) = 0,
u(x, 0) = ϕ(x).

(7.45)

First of all, we determine the eigenvalues λn and the system of eigenfunctions
Xn(x), n ∈ N. We obtain them in the same way as in the previous sections, by
solving the corresponding homogeneous problem

⎧⎨
⎩

ut − kuxx = 0, 0 < x < 1, t > 0,
u(0, t) = u(1, t) = 0,
u(x, 0) = ϕ(x).

Let us recall that, in this case, we have

λn = (nπ)2, Xn(x) = sinnπx, n ∈ N.

Now, we expand all data of the original problem (7.45) into a Fourier series
with respect to the eigenfunctions Xn(x). That is, for a fixed t > 0, we write
the right-hand side f(x, t) as

f(x, t) =

+∞�
n=1

fn(t) sinnπx,

where the components fn(t) are the Fourier sine coefficients of f(x, t):

fn(t) = 2

1�

0

f(x, t) sinnπx dx.

Similarly, we expand the initial condition to

ϕ(x) =
+∞�
n=1

ϕn sinnπx

with coefficients

ϕn = 2

1�

0

ϕ(x) sinnπx dx.

Now, we search for the solution of problem (7.45) in the form of a series

u(x, t) =
+∞�
n=1

Tn(t) sinnπx.
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Substituting all the above expansions into the equation of (7.45), we obtain

+∞∑
n=1

T �
n(t) sinnπx + k

+∞∑
n=1

(nπ)2Tn(t) sinnπx =
+∞∑
n=1

fn(t) sinnπx. (7.46)

Due to the completeness of the system of functions sinnπx, (7.46) is equivalent
to the system of ODEs

T �
n + k(nπ)2Tn = fn(t), n ∈ N.

To fulfil the initial condition

u(x, 0) =
+∞∑
n=1

Tn(0) sinnπx =
+∞∑
n=1

ϕn sinnπx = ϕ(x),

all functions Tn(t) must satisfy Tn(0) = ϕn. Hence, we easily obtain

Tn(t) = ϕne
−k(nπ)2t +

t∫

0

e−k(nπ)2(t−τ)fn(τ)dτ.

The resulting solution of problem (7.45) then assumes the form

u(x, t) =
+∞∑
n=1

ϕne
−k(nπ)2t sinnπx+

+∞∑
n=1

sinnπx

t∫

0

e−k(nπ)2(t−τ)fn(τ)dτ.

The first sum on the right-hand side represents the solution corresponding to
the homogeneous problem with the given initial condition, whereas the other
one describes the influence of the right-hand side.

7.3.2 Nonhomogeneous Boundary Conditions and Their
Transformation

As we could see in the previous paragraphs, the assumption of homogeneity of
boundary conditions is essential for applicability of the Fourier method. That
is why we will now study the problem of transforming the initial boundary
value problem with nonhomogeneous boundary conditions to a problem with
homogeneous conditions.

In the following example we illustrate the simplest model situation.

Example 7.11. Let the heat-insulated bar of length l have its ends kept at
constant temperatures g0 and g1. The initial temperature distribution is given
by a function ϕ = ϕ(x). The development of the temperature u(x, t) in the bar
is thus the solution of the initial boundary value problem

 EBSCOhost - printed on 2/10/2023 4:02 PM via . All use subject to https://www.ebsco.com/terms-of-use



128 Chapter 7 Solutions of Initial Boundary Value Problems

⎧⎨
⎩

ut − kuxx = 0, 0 < x < l, t > 0,
u(0, t) = g0, u(l, t) = g1,
u(x, 0) = ϕ(x).

(7.47)

Physical intuition leads us to the hypothesis that, for t → +∞, the dis-
tribution of temperature u(x, t) in the bar converges to the linear function
w(x) = g0(1 − x

l ) + g1
x
l . It is thus reasonable to assume that the solution of

problem (7.47) will have the form

u(x, t) = g0

�
1− x

l

�
+ g1

x

l
+ U(x, t). (7.48)

Here the term w(x) = g0(1 − x
l ) + g1

x
l represents the stationary part (it does

not depend on time and satisfies the equation wt = kwxx and the boundary
conditions w(0) = g0, w(1) = g1). The term U(x, t) represents the time-
dependent part, which converges to zero for t → +∞. Due to the fact that the
stationary part w(x) is uniquely determined by the constants g0, g1, we can –
instead of the function u(x, t) – look directly for the unknown function U(x, t).
If we insert expression (7.48) into (7.47), we find out that U(x, t) solves the
homogeneous initial boundary value problem

⎧⎨
⎩

Ut − kUxx = 0, 0 < x < l, t > 0,
U(0, t) = 0, U(l, t) = 0,
U(x, 0) = ϕ(x)− �

g0 +
x
l (g1 − g0)

�
,

which can be solved by the standard Fourier method. �
In practice, however, we have more often to deal with boundary conditions

that depend on time. We again illustrate their transformation to the homoge-
neous boundary conditions through an example.

Example 7.12. Let us consider the initial boundary value problem

⎧⎪⎪⎨
⎪⎪⎩

ut − kuxx = 0, 0 < x < l, t > 0,
u(0, t) = g1(t),
ux(l, t) + hu(l, t) = g2(t),
u(x, 0) = ϕ(x).

(7.49)

We look for a solution of the form

u(x, t) = A(t)
�
1− x

l

�
+B(t)

x

l
+ U(x, t),
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where functions A(t) and B(t) will be chosen so that the “quasi-stationary” part
w(x, t) = A(t)

�
1− x

l

�
+ B(t)xl will satisfy the boundary conditions of prob-

lem (7.49). The function U(x, t) must then fulfil the homogeneous boundary
conditions. If we substitute the function w(x, t) into the boundary conditions

w(0, t) ≡ A(t) = g1(t),

wx(l, t) + hw(l, t) ≡ −A(t)

l
+

B(t)

l
+ hB(t) = g2(t),

we obtain
A(t) = g1(t), B(t) =

g1(t) + lg2(t)

1 + lh
,

and thus
u(x, t) = g1(t)

�
1− x

l

�
+

g1(t) + lg2(t)

1 + lh

x

l
+ U(x, t).

Substituting this expression into (7.49), we easily find out that U(x, t) must
solve the initial boundary value problem

⎧⎪⎪⎨
⎪⎪⎩

Ut − kUxx = −wt, 0 < x < l, t > 0,
U(0, t) = 0,
Ux(l, t) + hU(l, t) = 0,
U(x, 0) = ϕ(x)− w(x, 0).

In this case we have transformed the original problem with a homogeneous equa-
tion and nonhomogeneous boundary conditions into a problem with nonzero
right-hand side but with homogeneous boundary conditions, which can be
solved by the Fourier method. �

7.4 Transformation to Simpler Problems

The goal of this section is to point out some transformations that can lead to
simpler PDEs.

7.4.1 Lateral Heat Transfer in Bar

Let us consider the initial boundary value problem

⎧⎨
⎩

ut − kuxx + qu = 0, 0 < x < 1, t > 0,
u(0, t) = u(1, t) = 0,
u(x, 0) = ϕ(x).

(7.50)

This problem describes heat conduction in the bar, where the heat is transferred
to the surroundings by the bar surface. The heat-transfer coefficient is denoted
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by q. We look for a substitution that would simplify the PDE of problem (7.50).
We will base our considerations on the physical properties of the model. The
temperature u(x, t) develops at every point x0 in terms of the following two
phenomena:

1. the diffusion of the heat along the bar (described by the term −kuxx),

2. the heat transfer by the lateral bar surface (described by the term qu).

Let us assume that there is no diffusion along the bar (that is, k = 0). Then
the development of temperature at every point of the bar is given by

u(x0, t) = u(x0, 0)e
−qt

(since for k = 0 the function u(x0, t) solves the ODE ut+qu = 0 with the initial
condition u = u(x0, 0)). Making use of this fact, we try to express the solution
of the initial boundary value problem (7.50) (now, with k �= 0) in the form

u(x, t) = e−qtw(x, t), (7.51)

where w = w(x, t) is an unknown function that should describe the heat transfer
caused only by the diffusion process. If we substitute (7.51) into (7.50), we
obtain the following problem for the required function w(x, t):

⎧⎨
⎩

wt − kwxx = 0, 0 < x < 1, t > 0,
w(0, t) = w(1, t) = 0,
w(x, 0) = ϕ(x).

This is nothing but the classical homogeneous problem for the heat equation,
the solution of which is already known to the reader.

7.4.2 Problem with Convective Term

The PDE

ut − kuxx + cux = 0 (7.52)

describes the so called convective diffusion, where c is a constant representing
the propagation speed of the medium (see Section 1.3.2). Equation (7.52) can
be transformed into the standard diffusion equation by the substitution

u(x, t) = e
c
2k

(x− ct
2
)w(x, t).

(The reader is asked to verify it.) The exponential term in this case reflects the
motion of the medium, w(x, t) corresponds only to the diffusion process.
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7.5 Exercises

1. Prove that if f(x) ∈ C2([0,+∞)), then its odd extension f̃(x) is of the class
C2(R) if and only if f(0) = f ��(0) = 0.

2. Using the method of even extension, derive the formula for the solution of
the diffusion equation on the half-line with homogeneous Neumann bound-
ary condition at x = 0. Consider the general initial condition u(x, 0) =
ϕ(x).

[u(x, t) =
+∞�
0

ϕ(y)(G(x+ y, t) +G(x− y, t))dy]

3. Using the method of even extension, derive the formula for the solution of
the wave equation on the half-line with homogeneous Neumann boundary
condition at x = 0. Consider the general initial conditions u(x, 0) = ϕ(x),
ut(x, 0) = ψ(x).

[u(x, t) = 1
2
(ϕ(x+ ct) + ϕ(x− ct)) + 1

2c

x+ct�
x−ct

ψ(τ )dτ for x > ct,

u(x, t) = 1
2
(ϕ(ct+ x) + ϕ(ct− x)) + 1

2c

ct+x�
0

ψ(τ )dτ + 1
2c

ct−x�
0

ψ(τ )dτ

for 0 < x < ct]

4. Find a solution of the problem
⎧⎨
⎩

utt = uxx, x > 0, t > 0,
u(0, t) = 0,
u(x, 0) = 1, ut(x, 0) = 0.

Sketch the graph of the solution on several time levels.

[u(x, t) = 1 for x > t, u(x, t) = 0 for 0 < x < t]

5. Find a solution of the problem
⎧⎨
⎩

utt = uxx, x > 0, t > 0,
u(0, t) = 0,
u(x, 0) = xe−x, ut(x, 0) = 0.

Sketch the graph of the solution on several time levels. Notice the wave
reflection on the boundary.

[u(x, t) = 1
2
(x+ t)e−x−t + 1

2
(x− t)e−x+t for x > t,

u(x, t) = 1
2
(t+ x)e−t−x − 1

2
(t− x)e−t+x for 0 < x < t]
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6. Find a solution of the problem
⎧⎨
⎩

utt = uxx, x > 0, t > 0,
u(0, t) = 0,
u(x, 0) = ϕ(x), ut(x, 0) = 0,

with
ϕ(x) =

�
cos3 x, x ∈ ( 3π2 , 5π2 ),
0, x ∈ (0,+∞) \ ( 3π2 , 5π2 ).

Sketch the graph of the solution on several time levels.

7. Find a solution of the problem
⎧⎨
⎩

ut = kuxx, x > 0, t > 0,
u(0, t) = 1,
u(x, 0) = 0.

[u(x, t) = 0 for x > t, u(x, t) = 1 for 0 < x < t]

8. The heat flow in a metal rod with an inner heat source is described by the
problem �

ut = kuxx + 1, 0 < x < l, t > 0,
u(0, t) = 0, u(1, t) = 1.

What will be the temperature of the rod in the steady state that will be
achieved after a sufficiently long time? (Realize that in the steady state
u depends only on x.) Does the absence of an initial condition cause any
trouble?

[u(x) = −x2

2k + (1 + 1
2k )x]

9. Consider the case that the heat leaks from the rod over its lateral surface
at a speed proportional to its temperature u. The corresponding problem
has the form

�
ut = kuxx − au, 0 < x < l, t > 0,
u(0, t) = 0, u(l, t) = 1.

Draw the temperature distribution in the steady state and discuss how the
heat flows in the rod and across its boundary.

10. Bacteria in a one-dimensional medium (a tube of a unit cross-section, length
l, closed on both ends) breed according to the logistic law ru(l − u/K),
where r is a growth constant, K is the capacity of the medium, and u =
u(x, t) denotes the density of bacteria per unit length. At the beginning,
the density is given by u = ax(l − x). At time t > 0, the bacteria also
diffuse with the diffusion constant D. Formulate the initial boundary value
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problem describing their density. What will be the density distribution if we
wait long enough? Sketch intuitively several profiles illustrating the density
evolution in time. Consider cases al2 < 4K and al2 > 4K separately.

11. Consider a bar of length l which is insulated in such a way that there is
no exchange of heat with the surrounding medium. Show that the average
temperature

1

l

l�

0

u(x, t)dx

is constant with respect to time t.

[Hint: Integrate the corresponding series term by term.]

12. Solve the problem describing the motion of a string of unit length
⎧⎨
⎩

utt = c2uxx, 0 < x < 1, t > 0,
u(0, t) = u(1, t) = 0,
u(x, 0) = ϕ(x), ut(x, 0) = ψ(x)

for the data given below. Illustrate the string motion by a graphic represen-
tation of a partial sum of the resulting series for various values t. Comparing
the graph for t = 0 and the graph of the function ϕ(x), decide whether the
number of terms in the sum is sufficient.

(a) ϕ(x) = 0.05 sin πx, ψ(x) = 0, c = 1/π.
[u(x, t) = 0.05 sinπx cos t]

(b) ϕ(x) = sinπx cos πx, ψ(x) = 0, c = 1/π.

(c) ϕ(x) = sinπx + 3 sin 2πx − sin 5πx, ψ(x) = 0, c = 1.
[u(x, t) = sinπx cosπt+ 3 sin 2πx cos 2πt− sin 5πx cos 5πt]

(d) ϕ(x) = sinπx + 0.5 sin 3πx + 3 sin 7πx, ψ(x) = sin 2πx, c = 1.

(e) ψ(x) = 0, c = 4,

ϕ(x) =

�
2x, 0 ≤ x ≤ 1/2,
2(1− x), 1/2 < x ≤ 1.

[u(x, t) =
+∞�
k=0

8(−1)k

π2(2k+1)2 sin(2k + 1)πx cos 4(2k + 1)πt]

(f) ψ(x) = 2, c = 1/π,

ϕ(x) =

⎧⎨
⎩

0, 0 ≤ x ≤ 1/3,
1/30(x − 1/3), 1/3 ≤ x ≤ 2/3,
1/30(1 − x), 2/3 < x ≤ 1.

 EBSCOhost - printed on 2/10/2023 4:02 PM via . All use subject to https://www.ebsco.com/terms-of-use



134 Chapter 7 Solutions of Initial Boundary Value Problems

(g) ψ(x) = 1, c = 4,

ϕ(x) =

⎧⎨
⎩

4x, 0 ≤ x ≤ 1/4,
1, 1/4 ≤ x ≤ 3/4,
4(1− x), 3/4 < x ≤ 1.

[u(x, t) =
+∞�
n=1

8
π2n2 (sin(nπ/4) + sin(3nπ/4)) sinnπx cos 4nπt

+
+∞�
k=0

1
π2(2k+1)2 sin(2k + 1)πx sin 4(2k + 1)πt]

(h) ϕ(x) = x sinπx, ψ(x) = 0, c = 1/π.

(i) ϕ(x) = x(1− x), ψ(x) = sinπx, c = 1.

[u(x, t) =
+∞�
k=1

8
π3(2k+1)3 sin(2k + 1)πx cos(2k + 1)πt+ 1

π sinπx sinπt]

(j) ψ(x) = 0, c = 1,

ϕ(x) =

⎧
⎨
⎩

4x, 0 ≤ x ≤ 1/4,
−4(x − 1/2), 1/4 ≤ x ≤ 3/4,
4(x− 1), 3/4 < x ≤ 1.

13. Solve the wave equation on the interval (0, 4π) with c = 1, homogeneous
Dirichlet boundary conditions, zero initial velocity ψ = 0 and the initial
displacement given by

ϕ(x) =

�
cos3 x, x ∈ [3π2 , 5π2 ],
0, x ∈ [0, 4π] \ [3π2 , 5π2 ].

Plot the graph of the solution on several time levels.

14. Solve the wave equation on the interval (0, 4π) with c = 1, homogeneous
Neumann boundary conditions, zero initial velocity ψ = 0 and the initial
displacement given by

ϕ(x) =

�
cos3 x, x ∈ [3π2 , 5π2 ],
0, x ∈ [0, 4π] \ [3π2 , 5π2 ].

Plot the graph of the solution on several time levels.

15. Solve the following initial boundary value problem for the wave equation:
⎧⎪⎪⎨
⎪⎪⎩

utt − uxx = 0, 0 < x < 3, t > 0,
u(0, t) = 0, u(3, t) = 0,
u(x, 0) = 1− cos πx

3 ,
ut(x, 0) = 0.
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16. Solve the following initial boundary value problem for the wave equation:
⎧⎪⎪⎨
⎪⎪⎩

utt − uxx = 0, 0 < x < 1, t > 0,
u(0, t) = 0, u(1, t) = 0,
u(x, 0) = x cosπx,
ut(x, 0) = 1.

17. A string of length 2π with fixed ends is excited by the impact of a hammer
which gives it the initial velocity

ψ(x) =

�
100, π

2 < x < 3π
2 ,

0, x ∈ [0, 2π] \ (π2 , 3π2 ).

Find the string vibrations provided the initial displacement was zero.

18. A uniform string with a fixed end at 0 and free end at 2π has the initial
displacement

ϕ(x) =

� −x, 0 ≤ x < 3π
2 ,

3x − 6π, 3π
2 ≤ x ≤ 2π,

and zero initial velocity. Assume that the string is vibrating in the medium
that resists the vibrations. The resistance is proportional to the velocity
with the constant of proportionality 0.03. Formulate the corresponding
model and find the solution.

19. Solve the problem
⎧⎨
⎩

utt + ut = uxx, 0 < x < π, t > 0,
u(0, t) = u(π, t) = 0,
u(x, 0) = sinx, ut(x, 0) = 0.

[u(x, t) = e−t/2(cos
√
3
2 t+ 1√

3
sin

√
3
2 t) sinx]

20. Solve the problem
⎧⎨
⎩

utt + ut = uxx, 0 < x < π, t > 0,
u(0, t) = u(π, t) = 0,
u(x, 0) = x sinx, ut(x, 0) = 0.

[u(x, t) = π
2 e

−t/2(cos
√
3
2 t+ 1√

3
sin

√
3
2 t) sinx

− 16
π e

−t/2
+∞�
k=1

k
(4k2−1)2

�
cos

�
4k2 − 1

4 t+
1

2
√

4k2−1/4
sin

�
4k2 − 1

4 t
�
sin 2kx]
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21. Solve the problem
⎧⎨
⎩

utt + 3ut = uxx, 0 < x < π, t > 0,
u(0, t) = u(π, t) = 0,
u(x, 0) = 0, ut(x, 0) = 10.

Illustrate by a graph the fact that the solution decreases to zero for t going
to infinity.

[u(x, t) = 16
√
5

π e−3t/2 sinx sinh
√
5
2 t

+ 40
π e

−3t/2
+∞�
k=1

1

(2k+1)
√

(2k+1)2−9/4
sin(2k + 1)x sin

�
(2k + 1)2 − 9/4t]

22. Solve the problem
⎧⎨
⎩

ut = kuxx, 0 < x < l, t > 0,
u(0, t) = u(l, t) = 0,
u(x, 0) = ϕ(x)

for the following data.

(a) l = π, k = 1, ϕ(x) = 78.

[u(x, t) = 312
π

+∞�
k=0

1
2k+1e

−(2k+1)2t sin(2k + 1)x]

(b) l = π, k = 1, ϕ(x) = 30 sin x.

(c) l = π, k = 1, ϕ(x) =
�

33x, 0 < x ≤ π/2,
33(π − x), π/2 < x < π.

[u(x, t) = 132
π

+∞�
k=0

(−1)k

(2k+1)2 e
−(2k+1)2t sin(2k + 1)x]

(d) l = π, k = 1, ϕ(x) =
�

100, 0 < x ≤ π/2,
0, π/2 < x < π.

(e) l = 1, k = 1, ϕ(x) = x.

[u(x, t) = 2
π

+∞�
n=1

(−1)n+1

n e−n2π2t sinnπx]

(f) l = 1, k = 1, ϕ(x) = e−x.

23. Draw the temperature distribution for various t > 0 for the values from
Exercise 22(a). Estimate how long it takes until the maximal temperature
decreases to 50◦C.

24. Solve the problem
⎧⎨
⎩

ut = kuxx, 0 < x < l, t > 0,
ux(0, t) = ux(l, t) = 0,
u(x, 0) = ϕ(x)
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for the following data.

(a) l = π, k = 1, ϕ(x) = 100.
[In this case, the answer can be guessed by physical intuition: u(x, t) = 100.]

(b) l = π, k = 1, ϕ(x) = x.

(c) l = π, k = 1, ϕ(x) =
�

100x, 0 < x ≤ π/2,
100(π − x), π/2 < x < π.

[u(x, t) = 25π − 200
π

+∞�
n=0

1
(2n+1)2

e−4(2n+1)2t cos 2(2n+ 1)x]

(d) l = 1, k = 1, ϕ(x) =
�

100, 0 < x ≤ 1/2,
0, 1/2 < x < π.

(e) l = 1, k = 1, ϕ(x) = cos πx.
[u(x, t) = e−π2t cosπx]

(f) l = 1, k = 1, ϕ(x) = sinπx.

25. Solve the following initial boundary value problem for the diffusion equa-
tion: ⎧⎨

⎩
ut − uxx = 0, 0 < x < 2, t > 0,
ux(0, t) = 0, ux(2, t) = 0,
u(x, 0) = ϕ(x),

where

ϕ(x) =

�
x, 0 ≤ x ≤ 1,
2− x, 1 ≤ x ≤ 2.

26. Solve the following initial boundary value problem for the diffusion equa-
tion: ⎧⎨

⎩
ut − uxx + 2u = 0, 0 < x < 1, t > 0,
u(0, t) = 0, u(1, t) = 0,
u(x, 0) = cosx.

27. Solve the nonhomogeneous initial boundary value problem
⎧⎨
⎩

ut = kuxx, 0 < x < l, t > 0,
u(0, t) = T1, u(l, t) = T2, t > 0,
u(x, 0) = ϕ(x), 0 < x < l

for the following data:

(a) T1 = 100, T2 = 0, ϕ(x) = 30 sin(πx), l = 1, k = 1.

[u(x, t) = 100(1− x) + 30e−π2t sinπx− 200
π

+∞�
n=1

1
ne

−n2π2t sinnπx]
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(b) T1 = 100, T2 = 100, ϕ(x) = 50x(1− x), l = 1, k = 1.

(c) T1 = 100, T2 = 50, ϕ(x) =
�

33x, 0 < x ≤ π/2,
33(π − x), π/2 < x < π,

l = π, k = 1.

[u(x, t) = 100− 50x
π + 132

π

+∞�
k=0

(−1)k

(2k+1)2 e
−(2k+1)2t sin(2k + 1)x

− 100
π

+∞�
n=1

2−(−1)n

n e−n2t sinnx]

(d) T1 = 0, T2 = 100, ϕ(x) =
�

100, 0 < x ≤ π/2,
0, π/2 < x < π,

l = π, k = 1.

28. Solve the following initial boundary value problem for the diffusion equa-
tion: ⎧⎨

⎩
ut − uxx = 0, 0 < x < 1, t > 0,
u(0, t) = 2, u(1, t) = 6,
u(x, 0) = sin 2πx + 4x.

29. Solve the following initial boundary value problem for the nonhomogeneous
wave equation:

⎧⎪⎪⎨
⎪⎪⎩

utt − 4uxx = 2 sin πx, 0 < x < 1, t > 0,
u(0, t) = 1, u(1, t) = 1,
u(x, 0) = 0,
ut(x, 0) = 0.

30. Solve the wave equation

utt − c2uxx = A sinωt, 0 < x < l, t > 0,

with zero initial and boundary conditions. For which ω does the solution
grow in time (the so called resonance occurs)?

31. Consider heat flow in a thin circular ring of unit radius that is insulated
along its lateral surface. The temperature distribution in the ring can be
described by the standard one-dimensional diffusion equation, where x rep-
resents the arc length along the ring. The shape of the domain causes that
we have to consider periodic boundary conditions

u(−π, t) = u(π, t), ux(−π, t) = ux(π, t).

Solve this problem for a general initial condition u(x, 0) = ϕ(x), x ∈
(−π, π).
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32. Separate the following PDEs into appropriate ODEs:

(a) ut = kuxx + u,

(b) ut = kuxx −mux + u,

(c) ut = (k(x)ux)x + u.

33. Determine if the following PDEs are separable. If so, separate them into
appropriate ODEs. If not, explain why.

(a) utt = c2uxx + u,

(b) utt = c2uxx −mux + u,

(c) c(x)ρ(x)utt = (T (x)ux)x − ut + u.

34. Solve the following problem:
⎧⎪⎪⎨
⎪⎪⎩

utt = uxx − ut + ux, 0 < x < 3π
2 , t > 0,

u(0, t) = 0, u(3π/2, t) = 0,
u(x, 0) = cosx,
ut(x, 0) = x2 − (3π/2)2.

Explain its physical meaning.

35. Solve the initial boundary value problem
⎧⎪⎪⎨
⎪⎪⎩

utt − uxx + 2ut = sin3 x, 0 < x < π, t > 0,
u(0, t) = 0, u(π, t) = 0,
u(x, 0) = sinx,
ut(x, 0) = 0.

Here, use the identity sin3 x = 1
4(3 sinx− sin 3x).
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Chapter 8

Solutions of Boundary Value Problems for
Stationary Equations

In this chapter we consider two-dimensional boundary value problems for the
Laplace (or Poisson) equation. The basic mathematical problem is to solve
these equations on a given domain (open and connected set) Ω ⊂ R2 with
given conditions on the boundary ∂Ω:

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

Δu = f in Ω,

u = h1 on Γ1,

∂u

∂n
= h2 on Γ2,

∂u

∂n
+ au = h3 on Γ3,

where f and hi, i = 1, 2, 3, are given functions, a is a given constant, and
Γ1 ∪ Γ2 ∪ Γ3 = ∂Ω. In particular cases, some of the boundary segments can be
empty.

On a rectangle (or on a strip, on a half-plane), the solution of the Laplace
equation can be found using the separation of variables (the Fourier method).
The general scheme is the same as in the case of evolution equations.

(i) The solution of PDE is searched in a separated form.

(ii) We take into account the homogeneous boundary conditions and obtain
the eigenvalues of the problem. It is in this step that the geometry of the
rectangle is very important.

(iii) The solution is written in the form of a series.

(iv) We include the nonhomogeneous boundary conditions.

There are several special domains which can be transformed to a rectangle.
For example, this is the case with the disc or its suitable parts if we use the
transformation into polar coordinates.
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8.1 Laplace Equation on Rectangle

Let us consider the Laplace equation uxx + uyy = 0 on a rectangle R = {0 <
x < a, 0 < y < b} with the boundary conditions illustrated in Figure 8.1.

u = 0 ux = 0

uy + u = 0

u = g

(0, a)× (0, b)

Figure 8.1. The rectangle R and boundary conditions of (8.1).

We thus solve the problem

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

uxx + uyy = 0 in R,

u(0, y) = ux(a, y) = 0,

uy(x, 0) + u(x, 0) = 0,

u(x, b) = g(x).

(8.1)

In the first step, we look for the solution in a separated form: u(x, y) =
X(x)Y (y), X �= 0, Y �= 0. Substituting into the equation and dividing by
XY , we obtain

X ′′

X
+

Y ′′

Y
= 0.

There must exist a constant λ such that X ′′+λX = 0 for 0 < x < a, and Y ′′−
λY = 0 for 0 < y < b. Moreover, the function X must fulfil the homogeneous
boundary conditions X(0) = X ′(a) = 0. By simple analysis, we find out that
a nontrivial solution X = X(x) exists only for

λn = β2
n =

�
(2n− 1)

π

2a

�2
, n ∈ N, (8.2)

and the corresponding solutions are

Xn(x) = Cn sinβnx. (8.3)

Now, we return to the variable y and solve the problem

Y ′′ − β2
nY = 0, Y ′(0) + Y (0) = 0
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(the nonhomogeneous boundary condition for y = b will be considered in the
last step). Since all λn = β2

n are positive, we obtain Y in the form

Y (y) = An coshβny +Bn sinhβny.

Further, we have 0 = Y �(0) + Y (0) = Bnβn + An. Without loss of generality,
we can put Bn = −1 for all n ∈ N, and thus An = βn. Hence, we obtain

Yn(y) = βncoshβny − sinhβny.

The series

u(x, y) =

+∞∑
n=1

Cn sinβnx(βn coshβny − sinhβny) (8.4)

then represents the harmonic function on the rectangle R that satisfies the
homogeneous boundary conditions u(0, y) = 0, ux(a, y) = 0 for y ∈ (0, b), and
uy(x, 0) + u(x, 0) = 0 for x ∈ (0, a). It remains to deal with the boundary
condition u(x, b) = g(x). In order to satisfy it, we must ensure that

g(x) =
+∞∑
n=1

Cn(βn coshβnb− sinhβnb) sinβnx (8.5)

for all x ∈ (0, a). Here we assume that (βn coshβnb−sinh βnb) �= 0 for all n ∈ N.
Then expression (8.5) is nothing but the Fourier series of the function g with
respect to the system of eigenfunctions sinβnx. Hence, we obtain formulas for
the remaining unknown coefficients Cn:

Cn =
2

a
(βn coshβnb− sinhβnb)

−1

a∫

0

g(x) sinβnx dx. (8.6)

If (βn coshβnb− sinhβnb) = 0 for some n ∈ N, then in general the boundary
condition g(x) cannot be expressed as in (8.5). In that case, problem (8.1) can
have either no solution, or infinitely many solutions depending on the relation
between g(x) and the other data. This means that (8.1) is an ill-posed problem.

Remark 8.1 (Nonhomogeneous Boundary Conditions). Let us consider
again the Laplace equation on a rectangle, but this time let all four boundary
conditions be nonhomogeneous. (It does not matter which types of boundary
conditions (Dirichlet, Neumann, or Robin) are given on particular sides.) The
previous example has shown the advantage of the situation when only one
boundary condition is nonhomogeneous and all the other three conditions are

 EBSCOhost - printed on 2/10/2023 4:02 PM via . All use subject to https://www.ebsco.com/terms-of-use



Section 8.2 Laplace Equation on Disc 143

homogeneous. Using the linearity of the problem, we can decompose the totally
nonhomogeneous problem into four partially homogeneous problems which are
easy to solve. Schematically, we illustrate the decomposition in Figure 8.2.

g1 g2

g3

g4

Δu = 0
u = u1 + u2

+u3 + u4

= g1 0

0

0

Δu1 = 0 + 0 g2

0

0

Δu2 = 0

+ 0 0

g3

0

Δu3 = 0 + 0 0

0

g4

Δu4 = 0

Figure 8.2. Decomposition of the nonhomogeneous boundary value problem for the
Laplace equation on a rectangle.

8.2 Laplace Equation on Disc

A much more interesting but classical example deals with the Dirichlet problem
for the Laplace equation on a disc. The rotational invariance of the Laplace
operator Δ indicates that the disc is a natural shape for harmonic functions in
the plane. So, let us consider the problem

{
uxx + uyy = 0 for x2 + y2 < a2,
u = h(θ) for x2 + y2 = a2.

(8.7)

We solve the equation on the disc D with the center at the origin and radius a.
The boundary condition h(θ) is given on the circle ∂D. Note that θ is the polar
coordinate denoting the central angle which is formed by the radius vector of
the point (x, y) and the positive half-axis x.

We again use the method of separation of variables, but this time in polar
coordinates: u = R(r)Θ(θ). If we use the transformation formula (6.3), we
rewrite the equation into the form

0 = uxx + uyy = urr +
1

r
ur +

1

r2
uθθ = R′′Θ +

1

r
R′Θ +

1

r2
RΘ′′.
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Dividing by RΘ (under the assumption RΘ �= 0) and multiplying by r2, we
obtain two equations

Θ�� + λΘ = 0, (8.8)
r2R�� + rR� − λR = 0, (8.9)

where λ is so far unknown constant. Both these ODEs are easily solvable. We
only have to add the appropriate boundary conditions.

For Θ(θ), it is natural to introduce periodic boundary conditions:

Θ(θ + 2π) = Θ(θ) for θ ∈ R

(that is, Θ(0) = Θ(2π), Θ�(0) = Θ�(2π)). Hence, we obtain

λn = n2 and Θn(θ) = An cosnθ +Bn sinnθ, n ∈ N ∪ {0}.
The equation for the function R is of Euler type and its solution must be in

the form R(r) = rα. Since λ = n2, the corresponding characteristic equation is

α(α − 1)rα + αrα − n2rα = 0,

and thus α = ±n. For n ∈ N, we obtain Rn(r) = Ãnr
n + B̃nr

−n and the
solution un can be written as

un =

(
Ãnr

n +
B̃n

rn

)
(An cosnθ +Bn sinnθ). (8.10)

For λ = 0 (n = 0), the functions R = 1 and R = ln r form the couple of linearly
independent solutions of equation (8.9). The corresponding u0 thus assumes
the form

u0 = Ã0 + B̃0ln r. (8.11)

For physical reasons, functions un and u0 must be bounded on the whole
disc D (this means also at the origin r = 0) and thus, in all the cases, we
put B̃n = 0, n ∈ N ∪ {0}. We sum up the remaining solutions and write the
resulting function u as an infinite series

u =
1

2
A0 +

+∞∑
n=1

rn(An cosnθ +Bn sinnθ). (8.12)

Now, we take into account the nonhomogeneous boundary condition on the
boundary r = a. It is fulfilled provided the function h is expandable into the
Fourier series

h(θ) =
1

2
A0 +

+∞∑
n=1

an(An cosnθ +Bn sinnθ).
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Hence, we easily derive

An =
1

πan

2π∫

0

h(φ) cosnφ dφ, n ∈ N ∪ {0}, (8.13)

Bn =
1

πan

2π∫

0

h(φ) sinnφ dφ, n ∈ N. (8.14)

8.3 Poisson Formula

The previous example has an interesting consequence: the sum of the se-
ries (8.12) can be expressed explicitly by an integral formula. If we put (8.13)
and (8.14) into (8.12), we obtain

u(r, θ) =
1

2π

2π∫

0

h(φ)dφ+
+∞∑
n=1

rn

πan

2π∫

0

h(φ) (cosnφ cosnθ + sinnφ sinnθ) dφ

=
1

2π

2π∫

0

h(φ)

(
1 + 2

+∞∑
n=1

(r
a

)n
cosn(θ − φ)

)
dφ.

If we express the cosine function using the complex exponential (that is, cos t =
1
2(e

it+e−it)), we can rewrite the expression in the brackets in the following way:

1 + 2
+∞∑
n=1

(r
a

)n
cosn(θ − φ) = 1 +

+∞∑
n=1

( r
a

)n
ein(θ−φ) +

+∞∑
n=1

( r
a

)n
e−in(θ−φ).

The series in this formulation are geometric series with quotients q = r
ae

±i(θ−φ)

which, for r < a, satisfy the condition |q| < 1. Thus, we obtain

1 + 2
+∞∑
n=1

(r
a

)n
cosn(θ − φ) = 1 +

rei(θ−φ)

a− rei(θ−φ)
+

re−i(θ−φ)

a− re−i(θ−φ)

=
a2 − r2

a2 − 2ar cos(θ − φ) + r2
.

Hence, substituting back into the integral, we arrive at the solution of the
original problem (8.7) in the form

u(r, θ) =
a2 − r2

2π

2π∫

0

h(φ)

a2 − 2ar cos(θ − φ) + r2
dφ, (8.15)
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which is called the Poisson formula in polar coordinates. The expression (8.15)
implies that the harmonic function inside the circle can be described by its
boundary values only.

Now, we go back to the Cartesian coordinates. We denote by x a point inside
the circle with polar coordinates (r, θ), and by x� a point on the boundary with
polar coordinates (a, φ). Then r = |x|, a = |x�| and for |x− x�| we have

|x− x�|2 = a2 + r2 − 2ar cos(θ − φ).

(The reader is asked to draw a picture.) An element of the arc length is, in this
case, ds = adφ. The Poisson formula in polar coordinates (8.15) can be then
rewritten into the Cartesian coordinates

u(x) =
a2 − |x|2

2πa

∫

|x′|=a

u(x�)
|x− x�|2 ds (8.16)

for x ∈ D. Here u(x�) = h(φ) and the integral is considered with respect to
the arc length over the whole circumference.

The above calculations are summarized in the following assertion.

Theorem 8.2. Let h(φ) be a continuous function on a circle ∂D. Then the
Poisson formula (8.16) describes the unique harmonic function on the disc D
with the property

lim
x→x′ u(x) = h(φ),

where φ is the angle corresponding to the point x� ∈ ∂D.

Some important consequences of the Poisson Formula are summarized in
Section 10.7.

8.4 Exercises

In the following exercises, r and θ denote the polar coordinates.

1. Solve the equation uxx + uyy = 1 in the disc {r < a} with the boundary
condition u(x, y) = 0 on the boundary r = a.

[u(r) = 1
4 (r

2 − a2)]

2. Solve the equation uxx + uyy = 1 in the annulus {a < r < b} with the
boundary condition u(x, y) = 0 on both boundary circles r = a, r = b.

[u(r) = r2

4
+ b2−a2

4 ln a
b
ln r − b2 ln a −a2 ln b

4 ln a
b

]
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3. Solve the equation uxx + uyy = 0 in the rectangle {0 < x < a, 0 < y < b}
with the boundary conditions

ux(0, y) = −a, ux(a, y) = 0,
uy(x, 0) = b, uy(x, b) = 0.

Search for the solution in the form of a quadratic polynomial in x and y.

[u(x, y) = 1
2x

2 − 1
2y

2 − ax+ by + c, where c is an arbitrary constant]

4. Find a harmonic function u(x, y) in the square D = {0 < x < π, 0 < y < π}
with the boundary conditions

uy(x, 0) = uy(x, π) = 0,

u(0, y) = 0, u(π, y) = cos2 y =
1

2
(1 + cos 2y).

5. Find a harmonic function u(x, y) in the square D = {0 < x < 1, 0 < y < 1}
with the boundary conditions

u(x, 0) = x, u(x, 1) = 0,

ux(0, y) = 0, ux(1, y) = y2.

6. Let u be a harmonic function in the disc D = {r < 2} and u = 3 sin 2θ + 1
for r = 2. Without finding the concrete form of the solution, determine the
value of u at the origin.

[u(0, 0) = 1]

7. Solve the equation uxx + uyy = 0 in the disc {r < a} with the boundary
condition u = 1 + 3 sin θ for r = a.

[u(r, θ) = 1 + 3 r
a sin θ]

8. Solve the equation uxx+uyy = 0 in the disc {r < a} with the boundary con-
dition u = sin3 θ for r = a. Here, use the identity sin3 θ = 3 sin θ − 4 sin 3θ.

[u(r, θ) = 3 r
a sin θ − 4( ra)

3 sin 3θ]

9. Solve the equation uxx + uyy = 0 in the domain {r > a} (that is, in the
exterior of the disc) with the boundary condition u = 1 + 3 sin θ on the
boundary r = a and with the condition that the solution u is bounded for
r → +∞.

[u(r, θ) = 1 + 3 a
r sin θ]
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10. Solve the equation uxx + uyy = 0 in the disc {r < a} with the boundary
condition

∂u

∂r
− hu = f(θ),

where f(θ) is an arbitrary function. Write the solution using the Fourier
coefficients of the function f .

11. Derive the Poisson formula for the exterior of the disc in R2.

12. Find a steady-state temperature distribution inside the annulus {1 < r < 2}
the outer edge of which (r = 2) is heat insulated and the inner edge (r = 1)
is kept at the temperature described by sin2 θ.

[u(r, θ) = 1
2 (1− ln r

ln 2 ) + ( r
2

30 − 8
15r2 ) cos 2θ]

13. Find a harmonic function u in the semi-disc {r < 1, 0 < θ < π} satisfying
the conditions

u(r, 0) = u(r, π) = 0, u(1, θ) = π sin θ − sin 2θ.

14. Solve the equation uxx + uyy = 0 in the disc sector {r < a, 0 < θ < β}
with the boundary conditions

u(a, θ) = θ, u(r, 0) = 0, u(r, β) = β.

Search for a function independent of r.

15. Solve the equation uxx + uyy = 0 in the quarter-disc {x2 + y2 < a2, x > 0,
y > 0} with the boundary conditions

u(0, y) = u(x, 0) = 0,
∂u

∂r
= 1 for r = a.

Find the solution in the form of an infinite series and write the first two
nonzero terms explicitly.

[first two terms: r2

2a sin 2θ +
r4

4a3 sin 4θ]

16. Solve the equation uxx + uyy = 0 in the domain {α < θ < β, a < r < b}
with the boundary conditions u = 0 on both sides θ = α and θ = β,
u = g(θ) on the arc r = a, and u = h(θ) on the arc r = b.

17. Solve the boundary value problem for the Laplace equation in the square
K = {(x, y); 0 < x < π, 0 < y < π} for the following data:

(a) uy(x, 0) = uy(x, π) = ux(0, y) = 0, ux(π, y) = cos 3y;

[u(x, y) = cosh 3x
3 sinh 3π cos 3y]
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(b) u(0, y) = uy(x, 0) + u(x, 0) = ux(π, y) = 0, ux(x, π) = sin 3x
2 .

[u(x, y) = 3 cosh(3y/2)−2 sinh(3y/2)
3 cosh(3π/2)−2 sinh(3π/2) sin

3x
2

]

18. Solve the Dirichlet problem
{

uxx + uyy = 0 in x2 + y2 < 1,
u(x, y) = x4 − y3 on x2 + y2 = 1.

[u(r, θ) = 3
8
− 3

4
r sin θ + r2

2
cos 2θ + r3

4
sin 3θ + r4

8
cos 4θ]

19. Solve the Poisson equation uxx+uyy = f(x, y) in the unit square {0 < x < 1,
0 < y < 1} for the following data.

(a) f(x, y) = x, u(x, 0) = u(x, 1) = u(0, y) = u(1, y) = 0.

[u(x, y) = 8
π4

+∞∑
k=0

+∞∑
m=1

(−1)m

(m2+(2k+1)2)m(2k+1) sinmπx sin(2k + 1)πy]

(b) f(x, y) = sinπx, u(x, 0) = u(0, y) = u(1, y) = 0, u(x, 1) = x.

[u(x, y) = −4 sin πx
π3

+∞∑
k=0

sin(2k+1)πy
(1+(2k+1)2)(2k+1)

+ 2
π

+∞∑
n=1

(−1)n+1 sinnπx sinhnπy
n sinhnπ ]

(c) f(x, y) = xy, u(x, 0) = u(0, y) = u(1, y) = 0, u(x, 1) = x.

20. Solve the equation uxx + uyy = 3u − 1 inside the unit square {0 < x < 1,
0 < y < 1} with u vanishing on the boundary.

[u(x, y) = 16
π2

+∞∑
l=0

+∞∑
k=0

sin(2k+1)πx sin(2l+1)πy
(2l+1)(2k+1)(3+π2((2l+1)2+(2k+1)2)) ]
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Chapter 9

Methods of Integral Transforms

In this chapter we introduce another class of methods that can be used for
solving the initial value or initial boundary value problems for the evolution
equations. These are the so called methods of integral transforms. The funda-
mental ones are the Laplace and the Fourier transforms.

9.1 Laplace Transform

The reader could probably have seen the Laplace transform when solving linear
ODEs with constant coefficients, where they are used to transform ODEs to
algebraic equations. This idea can be easily extended to PDEs, where the
transformation decreases of the number of independent variables. PDEs in two
variables are thus reduced to ODEs.

Let u = u(t) be a piecewise continuous function on [0,+∞) that “does not
grow too fast”. Let us assume, for example, that u is of exponential order, which
means that |u(t)| ≤ ceat for t large enough, where a, c > 0 are appropriate
constants. The Laplace transform of the function u is then defined by the
formula

(Lu)(s) ≡ U(s) =

+∞∫

0

u(t)e−st dt. (9.1)

Here U and s are the transformed variables, U is the dependent one, s is the
independent one, and U is defined for s > a with a > 0 depending on u(t). The
function U is called the Laplace image of the function u, which is then called
the original. The Laplace transform is a linear mapping, that is,

L(c1u+ c2v) = c1Lu+ c2Lv,

where c1, c2 are arbitrary constants. If we know the Laplace image U(s), then
the original u(t) can be obtained by the inverse Laplace transform of the image
U(s): L−1U = u. Some of Laplace images and their originals can be found in
tables, or the transformation can be done using various software packages.

An important property of the Laplace transform, as well as of other inte-
gral transforms, is the fact that it turns differential operators in originals into
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multiplication operators in images. The following formulas hold:

(Lu�)(s) = sU(s)− u(0), (9.2)
(Lu(n))(s) = snU(s)− sn−1u(0)− sn−2u�(0)− · · · − u(n−1)(0), (9.3)

if the derivatives considered are transformable (that is, piecewise continuous
functions of exponential order). To be precise, we should write limt→0+ u(t),
limt→0+ u�(t), . . . instead of u(0), u�(0), . . . . However, without loss of generality,
we can assume that the function u and its derivatives are continuous from
the right at 0. Relations (9.2), (9.3) can be easily derived directly from the
definition using integration by parts (the reader is asked to do it in detail.).
Applying the Laplace transform to a linear ODE with constant coefficients, we
obtain a linear algebraic equation for the unknown function U(s). After solving
it, we find the original function u(t) by the inverse transform.

The same idea can be exploited also when solving PDEs for functions of two
variables, say u = u(x, t). The transformation will be done with respect to the
time variable t ≥ 0, and the spatial variable x will be treated as a parameter
unaffected by this transform. The reason is the fact that the definition of
the Laplace transform requires the transformed independent variable from the
interval [0,+∞). In particular, we define the Laplace transform of a function
u(x, t) by the formula

(Lu)(x, s) ≡ U(x, s) =

+∞∫

0

u(x, t)e−st dt. (9.4)

The time derivatives are transformed in the same way as in the case of functions
of one variable, that is, for example,

(Lut)(x, s) = sU(x, s)− u(x, 0).

The spatial derivatives remain unchanged, that is,

(Lux)(x, s) =
+∞∫

0

∂

∂x
u(x, t)e−st dt =

∂

∂x

+∞∫

0

u(x, t)e−st dt = Ux(x, s).

Thus, applying the Laplace transform to a PDE in two variables x and t, we
obtain an ODE in the variable x and with the parameter s.

Example 9.1 (Diffusion with Constant Boundary Condition). Using
the Laplace transform, we solve the following initial boundary value problem for
the diffusion equation. Let u = u(x, t) denote the concentration of a chemical

 EBSCOhost - printed on 2/10/2023 4:02 PM via . All use subject to https://www.ebsco.com/terms-of-use



152 Chapter 9 Methods of Integral Transforms

contaminant dissolved in a liquid on a half-infinite domain x > 0. Let us assume
that, at time t = 0, the concentration is zero. On the boundary x = 0, constant
unit concentration of the contaminant is kept for t > 0. Assuming the unit
diffusion constant, the behavior of the system is described by a mathematical
model ⎧⎨

⎩
ut − uxx = 0, x > 0, t > 0,
u(x, 0) = 0,
u(0, t) = 1, u(x, t) bounded.

(9.5)

Here the boundedness assumption is related to the physical properties of the
model and its solution.

If we apply the Laplace transform to both sides of the equation, we obtain
the following relation for the image U :

sU(x, s)− Uxx(x, s) = 0.

This is an ODE with respect to the variable x and with real positive parame-
ter s. Its general solution has the form

U(x, s) = a(s)e−
√
sx + b(s)e

√
sx.

Since we require the solution u to be bounded in both variables x and t, the
image U must be bounded in x as well. Thus, b(s) must vanish, and hence

U(x, s) = a(s)e−
√
sx.

Now, we apply the Laplace transform to the boundary condition obtaining
U(0, s) = L(1) = 1/s. It implies a(s) = 1/s and the transformed solution has
the form

U(x, s) =
1

s
e−

√
sx.

Using the tables of the Laplace transform or some of the software packages, we
easily find out that

u(x, t) = erfc
�

x√
4t

�
,

where erfc is the function defined by the relation

erfc(y) = 1− 2√
π

y�

0

e−r2 dr = 1− erf(y).

�
In the previous example, we were able to find the original u(x, t) to the

Laplace image U(x, s) using tables or software packages. There exists a general
formula for inverse Laplace transform, which is based on theory of functions of
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complex variables (see, e.g., [23]). However, it has a theoretical character, and
from the practical point of view, it is used very rarely. In most cases, it is more
or less useless.

In some cases, instead of above mentioned inverse formula, we can exploit
another useful tool, which is stated in the Convolution Theorem given below.

Theorem 9.2. Let u and v be piecewise continuous functions on the interval
(0,+∞), both of exponential order, and let U = Lu, V = Lv be their Laplace
images. Let us denote by

(u ∗ v)(t) =
t�

0

u(t− τ)v(τ)dτ

the convolution of functions u and v (which is also of exponential order). Then

L(u ∗ v)(s) = (Lu)(s) (Lv)(s) = U(s)V (s).

Remark 9.3. In particular, it follows from Theorem 9.2 that

u ∗ v = L−1(Lu Lv).

Notice that the Laplace transform is additive, however, it is not multiplicative!

Example 9.4 (Diffusion with Non-Constant Boundary Condition). Let
us consider the same situation as in the previous example with the only change
– the boundary condition will be a time-dependent function:

⎧⎨
⎩

ut − uxx = 0, x > 0, t > 0,
u(x, 0) = 0,
u(0, t) = f(t), u(x, t) bounded.

(9.6)

Applying the Laplace transform to the equation, we obtain again the ODE

sU(x, s)− Uxx(x, s) = 0,

the solution of which has the form

U(x, s) = a(s)e−
√
sx.

Here we have used the boundedness assumption. The transformation of the
boundary condition (we assume that the Laplace transform of f does exist)
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leads to the relation U(0, s) = F (s) with F = Lf . Hence a(s) = F (s) and the
solution in images takes the form

U(x, s) = F (s)e−
√
sx.

The Convolution Theorem and Remark 9.3 now imply

u = L−1U = L−1F ∗ L−1
�
e−

√
sx
�
= f ∗ L−1

�
e−

√
sx
�
.

If we exploit the knowledge of the transform relation

L−1
�
e−

√
sx
�
=

x√
4πt3

e−x2/4t,

we obtain the solution of the original problem in the form

u(x, t) =

t�

0

x�
4π(t− τ)3

e−x2/4(t−τ)f(τ)dτ.

�
Example 9.5 (Forced Vibrations of “Half-Infinite String”). Let us con-
sider a “half-infinite string” that has one end fixed at the origin and that lies
motionless at time t = 0. The string is set in motion by acting of a force f(t).
The string behavior is then modeled by the problem

⎧⎨
⎩

utt − c2uxx = f(t), x > 0, t > 0,
u(0, t) = 0,
u(x, 0) = ut(x, 0) = 0, u(x, t) bounded.

(9.7)

We transform both sides of the equation with respect to the time variable
and use the initial condition. Thus we obtain

−c2Uxx(x, s) + s2U(x, s) = F (s).

This is an ODE in the x-variable with constant coefficients and a non-zero
right-hand side. Its solution is the sum of the solution UH of the homogeneous
equation: UH(x, s) = A(s)e−sx/c+B(s)esx/c, and the particular solution UP of
the nonhomogeneous equation: UP (x, s) = F (s)/s2. Hence

U(x, s) = A(s)e−
s
c
x +B(s)e

s
c
x +

F (s)

s2
.

Since we require the original solution u(x, t) to be bounded, the transformed
solution U(x, s) must be bounded for x > 0, s > 0 as well, and thus B(s) = 0.
The transformed boundary condition implies A(s) = −F (s)/s2 and thus

U(x, s) = F (s)
1− e−

s
c
x

s2
.
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To obtain the inverse Laplace transform, we use the Convolution Theorem and
the relations

L−1(1/s2) = t, L−1

�
e−sx/c

s2

�
=

�
t− x

c

�
H

�
t− x

c

�
,

where H is the Heaviside step function, that is, H(t) = 0 for t ≤ 0, H(t) = 1
for t > 0. The solution of the original problem then has the form

u(x, t) = f(t) ∗ L−1

�
1− e−

s
c
x

s2

�
= f(t) ∗

�
t−

�
t− x

c

�
H

�
t− x

c

��

or

u(x, t) =

t�

0

f(t− τ)
�
τ −

�
τ − x

c

�
H

�
τ − x

c

��
dτ.

�
The following example illustrates one particular interesting case of Exam-

ple 9.5.

Example 9.6 (String Vibrations due to Gravitational Acceleration). If
the only acting external force in Example 9.5 is the gravitational acceleration g,
we solve the wave equation in the form

utt − c2uxx = −g.

Under the same initial and boundary conditions as in the previous example
(that is, u(x, 0) = ut(x, 0) = 0 for x > 0, and u(0, t) = 0 for t > 0), the solution
assumes the form

u(x, t) = −g

t�

0

�
τ −

�
τ − x

c

�
H

�
τ − x

c

��
dτ

= −g

⎛
⎝1

2
t2 −

t�

0

�
τ − x

c

�
H

�
τ − x

c

�
dτ

⎞
⎠ .

By simple calculation, we express the integral on the right-hand side and obtain
the final formulation of the solution:

u(x, t) =

⎧⎪⎨
⎪⎩

−g

2

�
t2 −

�
t− x

c

�2
�

for 0 < x < ct,

−gt2

2
for x > ct.
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Figure 9.1 shows the solution on several time levels. This example models
a half-infinite string with one fixed end, which falls from the zero (horizontal)
position due to the gravitation. Recalling that the position of the free-falling
mass point is described by the function −gt2/2, we see that, for x bigger than
ct, the string falls freely. The remaining part of the string (x < ct) falls more
slowly due to the fixed end. Notice that this effect propagates from the point
x = 0 to the right at the speed equal to the constant c (it propagates along the
characteristic x− ct = 0).

0 1 2 3 4 5 6 7 8 9 10
−3

−2.5

−2

−1.5

−1

−0.5

0

x

u(x, ti)

Figure 9.1. A string falling due to the gravitation.

�

9.2 Fourier Transform

The Fourier transform is another integral transform with properties similar to
the Laplace transform. Since it again turns differentiation of the originals into
multiplication of the images, it is a useful tool in solving differential equations.
Contrary to the Laplace transform, which usually uses the time variable, the
Fourier transform is applied to the spatial variable on the whole real line.

First, we start with functions of one spatial variable. The Fourier transform
of a function u = u(x), x ∈ R, is a mapping defined by the formula

(Fu)(ξ) ≡ û(ξ) =

+∞∫

−∞
u(x)e−iξx dx. (9.8)

If |u| is integrable in R, that is,
∫ +∞
−∞ |u|dx < +∞, then û exists. However, the

theory of the Fourier transform usually works with a smaller set of functions.
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mass point is described by the function −gt2/2, we see that, for x bigger than
ct, the string falls freely. The remaining part of the string (x < ct) falls more
slowly due to the fixed end. Notice that this effect propagates from the point
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�

9.2 Fourier Transform

The Fourier transform is another integral transform with properties similar to
the Laplace transform. Since it again turns differentiation of the originals into
multiplication of the images, it is a useful tool in solving differential equations.
Contrary to the Laplace transform, which usually uses the time variable, the
Fourier transform is applied to the spatial variable on the whole real line.

First, we start with functions of one spatial variable. The Fourier transform
of a function u = u(x), x ∈ R, is a mapping defined by the formula

(Fu)(ξ) ≡ û(ξ) =

+∞∫

−∞
u(x)e−iξx dx. (9.8)

If |u| is integrable in R, that is,
∫ +∞
−∞ |u|dx < +∞, then û exists. However, the

theory of the Fourier transform usually works with a smaller set of functions.
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We define the so called Schwartz space S as the space of functions on R that
have continuous derivatives of all orders and that, together with their deriva-
tives, decrease to zero for x → ±+∞ more rapidly than |x|−n for an arbitrary
n ∈ N. It means

S =

{
u ∈ C∞; ∃M ∈ R,

∣∣∣∣∣
dku

dxk

∣∣∣∣∣ ≤
M

|x|n for |x| → +∞, k ∈ N ∪ {0}; n ∈ N

}
.

It can be shown that, if u ∈ S , then û ∈ S , and vice versa. We say that the
Schwartz space S is closed with respect to the Fourier transform.

It is important to mention that there exists no established convention how
to define the Fourier transform. In literature, we can find an equivalent of
the definition (9.8) with the constant 1/

√
2π or 1/(2π) in front of the integral.

There also exist definitions with positive sign in the exponent. The reader
should keep this fact in mind while working with various sources or using the
transformation tables.

The fundamental formula of the Fourier transform is that for the image of
the kth derivative u(k):

(Fu(k))(ξ) = (iξ)kû(ξ), u ∈ S . (9.9)

The derivation of this formula is based on integration by parts where all “bound-
ary values” vanish due to zero values of the function and its derivatives at in-
finity. In the case of functions of two variables, say u = u(x, t), the variable t
plays the role of a parameter and we define

(Fu)(ξ, t) ≡ û(ξ, t) =

+∞∫

−∞
u(x, t)e−iξx dx. (9.10)

The derivatives with respect to the spatial variable are transformed analogously
as in (9.9), the derivatives with respect to the time variable t stay unchanged;
thus, for instance,

(Fux)(ξ, t) = (iξ)û(ξ, t),
(Fuxx)(ξ, t) = (iξ)2û(ξ, t),
(Fut)(ξ, t) = ût(ξ, t).

The PDE in two variables x, t passes under the Fourier transform to an ODE
in the t-variable. By solving it, we obtain the transformed function (the image)
û which can be converted to the original function u by the inverse Fourier
transform
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n ∈ N. It means

S =

{
u ∈ C∞; ∃M ∈ R,

∣∣∣∣∣
dku

dxk

∣∣∣∣∣ ≤
M

|x|n for |x| → +∞, k ∈ N ∪ {0}; n ∈ N

}
.

It can be shown that, if u ∈ S , then û ∈ S , and vice versa. We say that the
Schwartz space S is closed with respect to the Fourier transform.

It is important to mention that there exists no established convention how
to define the Fourier transform. In literature, we can find an equivalent of
the definition (9.8) with the constant 1/

√
2π or 1/(2π) in front of the integral.

There also exist definitions with positive sign in the exponent. The reader
should keep this fact in mind while working with various sources or using the
transformation tables.

The fundamental formula of the Fourier transform is that for the image of
the kth derivative u(k):

(Fu(k))(ξ) = (iξ)kû(ξ), u ∈ S . (9.9)

The derivation of this formula is based on integration by parts where all “bound-
ary values” vanish due to zero values of the function and its derivatives at in-
finity. In the case of functions of two variables, say u = u(x, t), the variable t
plays the role of a parameter and we define

(Fu)(ξ, t) ≡ û(ξ, t) =

+∞∫

−∞
u(x, t)e−iξx dx. (9.10)

The derivatives with respect to the spatial variable are transformed analogously
as in (9.9), the derivatives with respect to the time variable t stay unchanged;
thus, for instance,

(Fux)(ξ, t) = (iξ)û(ξ, t),
(Fuxx)(ξ, t) = (iξ)2û(ξ, t),
(Fut)(ξ, t) = ût(ξ, t).

The PDE in two variables x, t passes under the Fourier transform to an ODE
in the t-variable. By solving it, we obtain the transformed function (the image)
û which can be converted to the original function u by the inverse Fourier
transform
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(F−1û)(x, t) ≡ u(x, t) =
1

2π

+∞∫

−∞
û(ξ, t)eiξx dξ. (9.11)

In comparison with the inverse Laplace transform, where the general inverse
formula is quite complicated, this relation is very simple. Nevertheless, it is
convenient to use the transformation tables or some software packages when
solving particular problems.

It is again important to recall that in the case of modified definition rela-
tion (9.10), it is necessary to modify the inverse relation (9.11) as well.

As in the case of the Laplace transform, the Convolution Theorem holds
true for the Fourier transform and is directly applicable for solving differential
equations. However, the convolution of two functions u and v is now defined in
the following way:

(u ∗ v)(x) =
+∞∫

−∞
u(x− y)v(y)dy.

Theorem 9.7. If u, v ∈ S , then

F(u ∗ v)(ξ) = û(ξ)v̂(ξ).

Example 9.8 (Cauchy Problem for Diffusion Equation). Now we use
the Fourier transform for derivation of the solution of the Cauchy problem for
the diffusion equation which we treated in Chapter 5. Thus, let us consider the
problem {

ut − kuxx = 0, x ∈ R, t > 0,
u(x, 0) = ϕ(x).

(9.12)

Let us assume ϕ ∈ S . Using the Fourier transform, we reduce the diffusion
equation to the form

ût = −ξ2kû,

which is an ODE in the t-variable for the required function û(ξ, t) with the
parameter ξ. Its solution is

û(ξ, t) = Ce−ξ2kt.

The initial condition implies û(ξ, 0) = ϕ̂(ξ) and thus C = ϕ̂(ξ). The solution
in images then assumes the form

û(ξ, t) = ϕ̂(ξ)e−ξ2kt.
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If we use the transformation relation

F
(

1√
4πkt

e−x2/(4kt)

)
= e−ξ2kt

and the Convolution Theorem, we obtain the solution of the Cauchy prob-
lem (9.12) in the form

u(x, t) =

+∞∫

−∞

1√
4πkt

e−(x−y)2/(4kt)ϕ(y)dy, (9.13)

which is exactly formula (5.6) derived in Chapter 5. �
Remark 9.9. When using the Fourier transform, we have obtained the solu-
tion (9.13) under the assumption that the initial condition ϕ belongs to the
Schwartz space. However, once the solution is derived, we can try to show that
it exists even under weaker assumptions on the function ϕ. It can be proved,
for instance, that the function u in (9.13) solves problem (9.12) provided ϕ is
a continuous and bounded function on R.

Example 9.10 (Cauchy Problem for Wave Equation). Let us solve the
Cauchy problem

{
utt − c2uxx = 0, x ∈ R, t > 0,
u(x, 0) = ϕ(x), ut(x, 0) = ψ(x).

(9.14)

We apply again the Fourier transform with respect to the spatial variable
to the equation and both initial conditions. Thus we obtain the transformed
problem {

ûtt(ξ, t) + c2ξ2û(ξ, t) = 0,

û(ξ, 0) = ϕ̂(ξ), ût(ξ, 0) = ψ̂(ξ).

Its solution is the function

û(ξ, t) = ϕ̂(ξ) cos cξt+
1

cξ
ψ̂(ξ) sin cξt.

The solution of the original problem is then found by the inverse Fourier trans-
form:

u(x, t) =
1

2π

+∞∫

−∞

(
ϕ̂(ξ) cos cξt+

1

cξ
ψ̂(ξ) sin cξt

)
eiξx dξ. (9.15)

This integral expression, where the Fourier transforms of the initial conditions
occur, is not very transparent. Nevertheless, it can be converted to d’Alembert’s
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ûtt(ξ, t) + c2ξ2û(ξ, t) = 0,
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formula (4.8) derived in Chapter 4. Indeed, substituting the complex represen-
tation of the sine and cosine functions into (9.15), we obtain

u(x, t) =
1

2π

+∞∫

−∞

1

2
ϕ̂(ξ) (eicξt + e−icξt) eiξx dξ (9.16)

+
1

2π

+∞∫

−∞

1

2icξ
ψ̂(ξ) (eicξt − e−icξt) eiξx dξ.

The first integral on the right-hand side can be written as

1

4π

+∞∫

−∞

(
ϕ̂(ξ) ei(x+ct)ξ + ϕ̂(ξ) ei(x−ct)ξ

)
dξ,

which is (using the definition of the inverse Fourier transform (9.11)) exactly
the first term in d’Alembert’s formula

1

2
(ϕ(x+ ct) + ϕ(x− ct)) .

Similarly, the second integral term in (9.16) equals

1

4πc

+∞∫

−∞

1

iξ
ψ̂(ξ)

(
ei(x+ct)ξ − ei(x−ct)ξ

)
dξ =

1

4πc

+∞∫

−∞
ψ̂(ξ)

x+ct∫

x−ct

eiyξ dy dξ.

Changing the order of integration and using again the inverse Fourier transform,
we obtain the second term in d’Alembert’s formula

1

2c

x+ct∫

x−ct

ψ(y)dy.

�
Remark 9.11. In some cases, the methods of integral transforms are applicable
also to equations with non-constant coefficients. Let us consider, for example,
the Cauchy problem for the transport equation

{
tux + ut = 0, x ∈ R, t > 0,
u(x, 0) = f(x).

Since the varying coefficient is – in this case – the time variable t, we use the
Fourier transform with time playing the role of a parameter. We have

F(tux) = tF(ux) = iξtû.
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Transforming the equation and the initial conditions, we obtain

iξtû+ ût = 0, û(ξ, 0) = f̂(ξ),

and hence
û(ξ, t) = f̂(ξ)e−i t

2

2
ξ.

By the inverse Fourier transform (e.g., using the transformation formulas), we
obtain the solution of the original equation in the form

u(x, t) = f

�
x− t2

2

�
.

Remark 9.12 (Laplace and Poisson Equations). The Laplace and Pois-
son equations can also be solved, in some cases, by the method of integral
transforms.

As an example, let us consider the problem
⎧⎨
⎩

uxx + uyy = 0, x ∈ R, y > 0,
u(x, 0) = f(x),
u(x, y) bounded for y → +∞.

We will search for a solution using the Fourier transform with respect to x. Its
application to our problem leads to the equation

ûyy − ξ2û = 0,

whose general solution is û(ξ, y) = a(ξ)e−ξy + b(ξ)eξy for arbitrary functions
a, b. The boundedness assumption implies

b(ξ) = 0 for ξ > 0,

a(ξ) = 0 for ξ < 0.

Hence, û(ξ, y) = c(ξ)e−|ξ|y with c being an arbitrary function. If we take into
account the boundary condition, we derive c(ξ) = f̂(ξ) and thus

û(ξ, y) = e−|ξ|yf̂(ξ).

The inverse transformation leads to the solution of the original problem in the
form of a convolution:

u(x, y) =

�
y

π

1

x2 + y2

�
∗ f =

y

π

+∞�

−∞

f(τ)dτ
(x− τ)2 + y2

.

The reader should notice that in this convolution y is just a parameter.
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Hence, û(ξ, y) = c(ξ)e−|ξ|y with c being an arbitrary function. If we take into
account the boundary condition, we derive c(ξ) = f̂(ξ) and thus
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9.3 Exercises

1. Derive the following transform relations:

(a) L{1} =
1

s
, s > 0,

(b) L{t} =
1

s2
,

(c) L{tn} =
n!

sn+1
, n ∈ N, s > 0,

(d) L{eat} =
1

s− a
, s > a,

(e) L{sin(at)} =
a

s2 + a2
, s > 0,

(f) L{cos(at)} =
s

s2 + a2
, s > 0.

2. Derive the following basic properties of the Laplace transform (here U =
L{u}):
(a) L{tnu(t)} = (−1)nU (n)(s),

(b) L{eatu(t)} = U(s− a),

(c) L{
� t

0
u(τ)dτ} =

1

s
U(s), s > 0,

(d) L{1
t
u(t)} =

� +∞

s
U(σ)dσ,

(e) L{u(ct)} =
1

c
U(

s

c
), c > 0.

3. Using substitution and Fubini’s Theorem, prove the formulas in Theo-
rems 9.2 and 9.7.

In the following exercises we suppose that all the solutions we search for are
bounded.

4. Using the Laplace transform method, solve the following initial boundary
value problems. Simplify the results as much as possible.

(a)

⎧⎨
⎩

ut = uxx, x > 0, t > 0,
u(0, t) = 70,
u(x, 0) = 0.

[u(x, t) = 70 erfc ( x√
4t
)]
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(b)

⎧⎨
⎩

utt = uxx + t, x > 0, t > 0,
u(0, t) = 0,
u(x, 0) = 0, ut(x, 0) = 0.

[u(x, t) = 1
3!t

3 − 1
3!H(t− x)(t− x)3]

(c)

⎧⎨
⎩

utt = uxx + e−t, x > 0, t > 0,
u(0, t) = 0,
u(x, 0) = 0, ut(x, 0) = 0.

(d)

⎧⎨
⎩

utt = uxx − g, x > 0, t > 0,
u(0, t) = 0,
u(x, 0) = 0, ut(x, 0) = 1.

[u(x, t) = t− (t− x)H(t− x)− g
2 (t

2 − (t− x)2H(t− x))]

(e)

⎧⎨
⎩

utt = uxx + t2, x > 0, t > 0,
u(0, t) = 0,
u(x, 0) = 0, ut(x, 0) = 0.

(f)

⎧⎨
⎩

utt = uxx, x > 0, t > 0,
u(0, t) = sin t,
u(x, 0) = 0, ut(x, 0) = 1.

[u(x, t) = t+ sin(t− x)H(t− x)− (t− x)H(t− x)]

(g)

⎧⎨
⎩

utt = uxx, x > 0, t > 0,
u(0, t) = 0,
u(x, 0) = 0, ut(x, 0) = 1.

5. Using the Laplace transform method, solve the initial boundary value prob-
lem ⎧⎨

⎩
utt = uxx + sinπx, 0 < x < 1, t > 0,
u(0, t) = 0, u(1, t) = 0,
u(x, 0) = 0, ut(x, 0) = 0.

6. Show that the solution of the initial boundary value problem⎧⎨
⎩

ut = kuxx, x > 0, t > 0,
u(0, t) = T0,
u(x, 0) = T1

is given by

u(x, t) = (T0 − T1)erfc
�

x√
4kt

�
+ T1 = (T0 − T1)erf

�
x√
4kt

�
+ T0.
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7. Use the Laplace transform to solve the problem⎧⎨
⎩

utt = c2uxx + cosωt sinπx, 0 < x < 1, t > 0,
u(0, t) = u(1, t) = 0,
u(x, 0) = ut(x, 0) = 0.

Assume that ω > 0 and be careful of the case ω = ct. Check your answer
by direct differentiation.

8. Prove the following transform relations (here û(ξ) = F{u(x)}):

(a) u(x) =

�
1, |x| < a,
0, |x| > a,

û(ξ) = 2
sin aξ
ξ

,

(b) u(x) =

�
1− |x|

a , |x| < a,
0, |x| > a,

û(ξ) = 4
sin2(aξ/2)

aξ2
,

(c) u(x) =
1

x2 + a2
, a > 0, û(ξ) =

πe−aξ

a
,

(d) u(x) = e−ax2
, a > 0, û(ξ) =

√
π√
a
e−ξ2/4a,

(e) u(x) =
sinax
x

, a > 0, û(ξ) =

⎧⎨
⎩

π, |ξ| < a,
π
2 , |ξ| = a,
0, |ξ| > a.

9. Derive the following basic properties of Fourier transform (here û = F{u}):
(a) F{xnu(x)} = inû(n)(ξ),

(b) F{eiaxu(x)} = û(ξ − a),

(c) F{u(x− a)} = e−iaξû(ξ),

(d) F{u(ax)} =
1

|a| û(
ξ

a
), a �= 0.

10. Using the Fourier transform method, solve the following Cauchy problems.

(a)

�
utt = uxx, x ∈ R, t > 0,

u(x, 0) =
1

1 + x2
, ut(x, 0) = 0.

[u(x, t) = 1
2

+∞�
−∞

e−|ξ| cos ξt eiξxdξ]

(b)
�

ut =
1

100uxx, x ∈ R, t > 0,
u(x, 0) = ϕ(x),

where ϕ(x) = 100 for x ∈ (−1, 1) and ϕ(x) = 0 elsewhere.
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where ϕ(x) = 100 for x ∈ (−1, 1) and ϕ(x) = 0 elsewhere.
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(c)

⎧⎨
⎩

utt = c2uxx, x ∈ R, t > 0,

u(x, 0) =

�
2

π

sinx
x

, ut(x, 0) = 0.

[u(x, t) = 50√
πt

+∞�
−∞

1
1+ξ2

e−(x−ξ)2/4tdξ]

(d)
�

ut = uxx, x ∈ R, t > 0,
u(x, 0) = ϕ(x),

where ϕ(x) = 1− |x|
2

for x ∈ (−2, 2) and ϕ(x) = 0 elsewhere.

(e)
�

ut = e−tuxx, x ∈ R, t > 0,
u(x, 0) = 100.

11. Using the Fourier transform, solve the linearized Korteweg-deVries equation

ut = uxxx, x ∈ R, t > 0,

subject to the initial condition

u(x, 0) = e−x2/2.

12. Using the Fourier transform, solve the Cauchy problem⎧⎨
⎩

utt = a2utxx − buxxxx, x ∈ R, t > 0,
u(x, 0) = ϕ(x),
ut(x, 0) = ψ(x).

13. Using the Fourier transform, solve the heat equation with a convection term

ut = kuxx + μux, x ∈ R, t > 0,

with an initial condition u(x, 0) = ϕ(x), assuming that u(x, t) is bounded
and k > 0.

[u(x, t) = 1√
4πkt

+∞�
−∞

ϕ(y)e−(μt+x−y)2/(4kt)dy]

14. Use the Fourier transform in the x variable to find the harmonic function
in the half-plane y > 0 that satisfies the Neumann condition ∂u

∂y = h(x) on
the boundary y = 0.

15. Use the Fourier transform to solve the Laplace equation uxx+uyy = 0 in the
infinite strip {x ∈ R, 0 < y < 1}, together with the conditions u(x, 0) = 0
and u(x, 1) = f(x).

[u(x, y) =
+∞�
0

+∞�
−∞

1
π sinh kf (ξ) sinhky cos(kx− kξ) dξ dk]
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Chapter 10

General Principles

In this chapter we summarize the main qualitative properties of the PDEs we
dealt with in the previous chapters.

10.1 Principle of Causality (Wave Equation)

From d’Alembert’s formula and Chapter 4, we already know the following.

The values of the initial displacement ϕ and the initial velocity ψ at a point x0
influence the solution of the wave equation only in the domain of influence,
which is a sector determined by the characteristic lines x ± ct = x0 (see Fig-
ure 10.1).

Conversely, a solution at a point (x, t) is influenced only by the values from
the domain of dependence, which is formed by the characteristic triangle with
vertices (x− ct, 0), (x+ ct, 0) and (x, t) (see Figure 10.1).

However, these properties follow directly from the wave equation itself and
the knowledge of the formula for the solution is not needed. To prove it, we
proceed in the following way.

x

t

(x0, 0)

x− ct = x0x+ ct = x0

x

t

(x, t)

(x+ ct, 0)(x− ct, 0)

Figure 10.1. Domain of influence of the point (x0, 0) and domain of dependence of
the point (x, t).
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x

t

B

K1K2

(x0, t0)

(x0 + ct0, 0)(x0 − ct0, 0)

F

T

Figure 10.2. Trapezoid of characteristic triangle.

We start with the wave equation utt − c2uxx = 0 and multiply it by ut. The
resulting identity can be written as

0 = uttut − c2uxxut

=
(1
2
u2t +

1

2
c2u2x

)
t
− c2(utux)x

= (∂x, ∂t) ·
(
−c2utux,

1

2
u2t +

1

2
c2u2x

)
. (10.1)

Notice that the last scalar product is a two-dimensional divergence of the vector
f = (−c2utux,

1
2u

2
t +

1
2c

2u2x). Now, we integrate (10.1) over a trapezoid F ,
which is part of the characteristic triangle (see Figure 10.2). If we use Green’s
Theorem, which can be written as

∫∫

F

divf dx dt =
∫

∂F

f · nds

(cf. its other version used in Section 4.4), we obtain
∫

∂F

(
(−c2utux)n1 +

(
1

2
u2t +

1

2
c2u2x

)
n2

)
ds = 0. (10.2)

Here n = (n1, n2) is an outer normal vector to ∂F . The boundary ∂F consists
of “top” T , “bottom” B, and “sides” K = K1 ∪K2. Thus, the integral in (10.2)
splits into four parts

∫

∂F
=

∫

T
+

∫

B
+

∫

K1

+

∫

K2

= 0.
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Now, we consider each part separately. On the top T , the normal vector is
n = (0, 1) and thus

∫

T

f · nds =

∫

T

1

2
(u2t + c2u2x)ds.

On the bottom B, we have n = (0,−1) and thus
∫

B

f · nds =
∫

B

−1

2
(u2t + c2u2x)ds =

∫

B

−1

2
(ψ2 + c2ϕ2

x)ds.

On the side K1, there is n = 1√
1+c2

(1, c) and

∫

K1

f · nds =
1√

1 + c2

∫

K1

(
c
1

2
(u2t + c2u2x)− c2utux

)
ds

=
c

2
√
1 + c2

∫

K1

(ut − cux)
2 ds ≥ 0.

Similarly, on K2, we have n = 1√
1+c2

(−1, c) and

∫

K1

f · nds =
1√

1 + c2

∫

K1

(
c
1

2
(u2t + c2u2x) + c2utux

)
ds

=
c

2
√
1 + c2

∫

K1

(ut + cux)
2 ds ≥ 0.

Putting all these partial results together, we can conclude that
∫

T

1

2
(u2t + c2u2x)ds−

∫

B

1

2
(ψ2 + c2ϕ2

x)ds ≤ 0

or, equivalently, ∫

T

(u2t + c2u2x)ds ≤
∫

B

(ψ2 + c2ϕ2
x)ds. (10.3)

If we now assume that both the functions ϕ and ψ are zero on B, inequality
(10.3) implies u2t + c2u2x = 0 on T , and thus ut ≡ ux ≡ 0 on T . Moreover,
since this result holds true for a trapezoid of any height, we obtain that ut and
ux are zero (and thus u is constant) in the whole characteristic triangle. And
since we have assumed u ≡ 0 on B, we can conclude that u ≡ 0 in the whole
triangle.
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This result also implies uniqueness: if we take two solutions u1 and u2 with
the same initial conditions on B, i.e., in the interval (x0 − ct0, x0 + ct0), then
u1 ≡ u2 in the whole characteristic triangle.

The principle of causality can be obtained also by other (and probably sim-
pler) methods. However, the advantage of this approach is its applicability in
any dimension (see Section 13.4). Notice that the analogue of Green’s The-
orem in two-dimensional case is the so called Divergence Theorem in higher
dimensions.

10.2 Energy Conservation Law (Wave Equation)

Let us start with the infinitely long string described by the equation

ρutt(x, t) = Tuxx(x, t), x ∈ R, t > 0, (10.4)

where ρ, T are constants (we assume the displacements to be small enough).
Moreover, let us consider for simplicity ϕ ≡ ψ ≡ 0 for |x| > R, R > 0 large
enough. We suppose that the Cauchy problem has a classical solution.

The kinetic energy of the string takes the form

Ek(t) =
1

2

+∞∫

−∞
ρu2t (x, t)dx

(cf. the well-known formula Ek = 1
2mv2 for the kinetic energy of the mass

point). The continuity assumption on utt implies

dEk(t)

dt
= ρ

+∞∫

−∞
ut(x, t)utt(x, t)dx,

and, after substituting for utt from equation (10.4), we obtain

dEk(t)

dt
= T

+∞∫

−∞
ut(x, t)uxx(x, t)dx (10.5)

=
[
Tut(x, t)ux(x, t)

]x=+∞
x=−∞

− T

+∞∫

−∞
utx(x, t)ux(x, t)dx.

Since [
Tut(x, t)ux(x, t)

]x=+∞
x=−∞

= 0
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(cf. the assumptions ϕ ≡ ψ ≡ 0 for |x| large enough and the principle of
causality) and

utx(x, t)ux(x, t) =

(
1

2
u2x(x, t)

)

t

,

we obtain, after substituting into (10.5),

dEk(t)

dt
= − d

dt

+∞∫

−∞

1

2
Tu2x(x, t)dx. (10.6)

The potential energy of the string can be expressed as

Ep(t) =
1

2
T

+∞∫

−∞
u2x(x, t)dx (10.7)

(see Remark 10.1 below). Relations (10.6) and (10.7) imply

dEk(t)

dt
= −dEp(t)

dt
.

Since the total string energy is

E(t) = Ek(t) + Ep(t),

we obtain
dE(t)

dt
= 0,

which is – in the language of mathematics – the energy conservation law. In
other words, the total string energy

E(t) =
1

2

+∞∫

−∞

(
ρu2t (x, t) + Tu2x(x, t)

)
dx ≡ E

is constant with respect to t!

Remark 10.1. Formula (10.7) can be derived, for instance, in the following
way. The potential energy represents the product of the force and the extension
caused by this force (cf. the well-known formula Ep = mgh for the potential
energy of the mass point). In our case, the acting force is represented by the
tension T . The extension h of the string of length l is the difference between
the arc length (of deflected string) s and the original length l, thus

h(t) = s(t)− l =

l∫

0

√
1 + u2x(x, t)dx− l.
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If we replace the square root on the right-hand side by the first two terms of
its Taylor expansion, we obtain

h(t) ≈
l∫

0

(
1 +

1

2
u2x(x, t)

)
dx− l =

1

2

l∫

0

u2x(x, t)dx.

The potential energy is then Ep(t) =
1

2
T

l∫

0

u2x(x, t)dx. For the string of infinite

length, we obtain expression (10.7).

Example 10.2. Let us determine the total energy of the infinitely long string,
if the initial velocity at time t = 0 is zero and the initial displacement is given
by the function

ϕ(x) =

{
b− b

a |x| for |x| ≤ a,
0 for |x| > a.

Since the total string energy does not depend on time, we have

E = E(t) = E(0).

So, we need not find the solution at arbitrary time t, since the initial condition
is sufficient for determination of the total energy. Zero initial velocity implies
zero kinetic energy at time t = 0, thus

Ek(0) = 0.

The potential energy is expressed by relation (10.7), i.e.,

Ep(0) =
1

2

+∞∫

−∞
Tϕ2

x(x)dx =
1

2

a∫

−a

Tϕ2
x(x)dx =

1

2

a∫

−a

T
b2

a2
dx =

b2

a
T.

The total energy is then the sum of the potential and kinetic energies:

E = E(0) =
b2

a
T.

�

10.3 Ill-Posed Problem (Diffusion Equation for
Negative t)

First, let us consider the following initial value problem for a “special variant
of the diffusion equation”:

ut = −uxx, u(x, 0) = 1, x ∈ R, t > 0. (10.8)
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Here, the diffusion coefficient k is equal to −1! Obviously, u(x, t) ≡ 1 is the
solution. On the other hand, we can easily verify that the function

un(x, t) = 1 +
1

n
sinnx en

2t

solves the initial value problem

ut = −uxx, u(x, 0) = 1 +
1

n
sinnx, x ∈ R, t < 0, (10.9)

for an arbitrary n ∈ N. The initial conditions in problems (10.8) and (10.9)
differ only in the term 1

n sinnx, which converges to zero uniformly for n → +∞.
However, the difference of the corresponding solutions is

1

n
sinnx en

2t,

which for any fixed x (except integer multiples of π) goes to infinity for n →
+∞. It means that the stability of the constant solution u(x, t) ≡ 1 fails for the
diffusion equation with a negative coefficient and such a problem is ill-posed.

Now, let us consider the initial value problem for the standard diffusion
equation (k > 0) with negative time

ut = kuxx, u(x, 0) = ϕ(x), x ∈ R, t < 0. (10.10)

Using the substitution
w(x, t) = u(x,−t),

wt = −ut, wxx = uxx,

we obtain the problem

wt = −kwxx, w(x, 0) = ϕ(x), x ∈ R, t > 0. (10.11)

However, we have shown above that such a problem (for k = 1) is ill-posed. So,
problem (10.10) is ill-posed as well.

This phenomenon has also its physical explanation:

Diffusion, heat flow, the so called Brownian motion, etc. are irreversible
processes and return in time leads to chaos. On the other hand, the wave
motion is a reversible process and the wave equation for t < 0 is well-posed.
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10.4 Maximum Principle (Heat Equation)

Let us now leave the problems on the whole real line and consider the heat
flow in a finite bar of length l, whose ends are kept at temperatures g(t) and
h(t), respectively, at time t, while the initial distribution of temperature at time
t = 0 is given by a continuous function ϕ(x). We have thus an initial boundary
value problem

⎧⎨
⎩

ut = kuxx, x ∈ (0, l), t > 0,
u(x, 0) = ϕ(x),
u(0, t) = g(t), u(l, t) = h(t).

(10.12)

We introduce a notion of a space-time cylinder �, by which we understand,
in our case, a rectangle in the xt-plane whose one vertex is placed at the origin
(0, 0), and two sides lie on coordinate axes (see Figure 10.3). The length of
side on the x-axis is l, the length of side on the t-axis is T . By the bottom
of the cylinder � we understand the horizontal side lying on the x-axis, by
the cylinder jacket we understand both lateral sides. The upper horizontal line
is then called the top of the cylinder �. The reason why we use these terms
is that the maximum principle can be derived in the same way also for the
diffusion equation in more spatial variables (where the idea of the cylinder is
more realistic).

We will prove the following assertion.

Theorem 10.3 (Maximum Principle). Let u = u(x, t) be a classical solu-
tion of problem (10.12). Then u achieves its extremal values (minimal as well
as maximal) on the bottom or jacket of the space-time cylinder �.

Actually, a stronger assertion holds true (see, e.g., Protter, Weinberger [17]):

The values of the function u inside the cylinder and on the top are strictly
less (or greater) than the maximum (or minimum, respectively) on the rest of
the boundary of the cylinder � (unless the function u(x, t) is constant).

Proof of Theorem 10.3. The proof will be done for the maximum value. In the
case of the minimum value, we would proceed analogously (using the fact that
minu = −max(−u)).

The idea of the proof uses the fact that the first partial derivatives of the
function must be zero and the second derivatives must be non-positive at the
inner maximum point. If we could exclude the case uxx = 0, we would obtain
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x

t

T

g(t) h(t)

0 lϕ(x)

• (x0, t0)

�

Figure 10.3. Space-time cylinder �.

uxx < 0 together with ut = 0 and hence uxx �= ut. This contradiction with the
diffusion equation would imply that the maximum point must lie somewhere
on the boundary. However, since we are not able to exclude the case uxx = 0,
we must proceed in a more careful way.

Let us denote by M the maximal value of the function u(x, t) on the sides
t = 0, x = 0, x = l, and let us put v(x, t) = u(x, t) + �x2, where � is a positive
constant. Our goal is to show that v(x, t) ≤ M + �l2 on the whole cylinder �.

The definition of the function v implies that the inequality v(x, t) ≤ M + �l2

is satisfied on the boundary lines t = 0, x = 0 and x = l. Further, the so called
diffusion inequality vt(x, t)− kvxx(x, t) < 0 holds for all (x, t) ∈ �. Indeed,

vt(x, t)− kvxx(x, t) = ut(x, t)− k(u(x, t) + �x2)xx

= ut(x, t)− kuxx(x, t)− 2�k

= −2�k < 0.

Since v is a continuous function and � is a bounded closed set, the maximum
point (x0, t0) of the function v must exist on �. First, let us suppose that this
point lies inside the cylinder � (0 < x0 < l, 0 < t0 < T ). Now, however, vt = 0,
vxx ≤ 0 must hold at (x0, t0), which contradicts the diffusion inequality. Then,
let (x0, t0) lie on the upper side of the space-time cylinder �, that is, t0 = T ,
0 < x0 < l. Thus vx(x0, t0) = 0, vxx(x0, t0) ≤ 0 and vt(x0, t0) ≥ 0, which again
contradicts the diffusion inequality. Consequently, the maximum point of the
function v must be achieved on the rest of the boundary: on the lines t = 0,
x = 0, x = l. Here, however, we have the inequality v(x, t) ≤ M + �l2. These
facts imply that the relation v(x, t) ≤ M + �l2 holds for all (x, t) ∈ �. If we
substitute for v, we obtain u(x, t) ≤ M + �(l2 − x2). Since � > 0 has been
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chosen completely arbitrarily, it follows that

u(x, t) ≤ M

for any (x, t) ∈ �, which we wanted to prove.

Remark 10.4. We have seen a variant of Maximum Principle also in the case
of the diffusion equation on the whole real line. The maximal as well as minimal
values of the solution were achieved at time t = 0 and, with the growing
time, the solution values were “spread” and tended to some value between those
extremes (see Example 5.4).

Corollary 10.5 (Uniqueness). The initial boundary value problem for the
diffusion equation

⎧⎨
⎩

ut − kuxx = f(x, t), x ∈ (0, l), t > 0,
u(x, 0) = ϕ(x),
u(0, t) = g(t), u(l, t) = h(t),

(10.13)

has at most one classical solution.

Proof. Let u1(x, t) and u2(x, t) be two classical solutions of problem (10.13).
Let us denote w = u1 − u2. Then the function w satisfies

wt − kwxx = 0, w(x, 0) = 0, w(0, t) = 0, w(l, t) = 0.

According to the maximum principle, the function w achieves its maximum
on the sides t = 0, x = 0, x = l, where it is, however, equal to zero. Thus
w(x, t) ≤ 0. The same argument for the minimum value yields w(x, t) ≥ 0.
Hence, we obtain w(x, t) ≡ 0, and thus u1(x, t) ≡ u2(x, t).

Corollary 10.6 (Uniform stability). Let u1, u2 be two classical solutions of
the initial boundary value problem (10.13) corresponding to two initial condi-
tions ϕ1, ϕ2. Then

max
x∈[0,l]

|u1(x, t)− u2(x, t)| ≤ max
x∈[0,l]

|ϕ1(x)− ϕ2(x)|

for each t > 0. In particular, the classical solution of (10.13) is stable with
respect to small perturbations of the initial condition.
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This statement says that a “small” change in the initial condition results in
a “small” change in the solution at arbitrary time.

Proof. Let the solution u1(x, t) corresponds to the initial condition ϕ1(x), the
solution u2(x, t) corresponds to the initial condition ϕ2(x); boundary conditions
as well as the right hand side are the same in both cases. Again, let us denote
by w = u1 − u2 the difference of the two solutions. The function w solves the
problem

wt − kwxx = 0, w(x, 0) = ϕ1(x)− ϕ2(x), w(0, t) = 0, w(l, t) = 0.

The maximum principle then implies

w(x, t) = u1(x, t)− u2(x, t) ≤ max
x∈[0,l]

(ϕ1 − ϕ2) ≤ max
x∈[0,l]

|ϕ1 − ϕ2|.

Similarly, according to the “minimum principle” (i.e., the maximum principle
applied to −w),

w(x, t) = u1(x, t)− u2(x, t) ≥ min
x∈[0,l]

(ϕ1 − ϕ2) ≥ − max
x∈[0,l]

|ϕ1 − ϕ2|.

Consequently,

max
x∈[0,l]

|u1(x, t)− u2(x, t)| ≤ max
x∈[0,l]

|ϕ1(x)− ϕ2(x)|

for each t > 0.

10.5 Energy Method (Diffusion Equation)

We will show another way to prove uniqueness of the classical solution of prob-
lem (10.13) and its stability (now, however, with respect to a more general
norm). The technique of the proof is called the energy method.

Let us consider again two solutions u1(x, t), u2(x, t) of problem (10.13) and
their difference w(x, t). The function w satisfies the homogeneous diffusion
equation with homogeneous boundary conditions w(0, t) = w(l, t) = 0. If we
multiply the diffusion equation in w by the function w itself, we obtain

0 = (wt − kwxx)w =
(1
2
w2

)
t
+ (−kwxw)x + kw2

x.

Integrating over the interval 0 < x < l, we get

0 =

l∫

0

(
1

2
w2(x, t)

)

t

dx− kwx(x, t)w(x, t)

∣∣∣∣∣
x=l

x=0

+ k

l∫

0

w2
x(x, t)dx.
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The second term on the right-hand side vanishes due to the zero boundary
conditions. Changing the order of time differentiation and integration in the
first term, we obtain

d
dt

l∫

0

1

2
w2(x, t)dx = −k

l∫

0

w2
x(x, t)dx ≤ 0.

But this means that the integral depending on the parameter t,
∫ l
0 w

2(x, t)dx,
is – as a function of time t – decreasing, and thus

l∫

0

w2(x, t)dx ≤
l∫

0

w2(x, 0)dx (10.14)

for t ≥ 0. In the case that both solutions u1(x, t), u2(x, t) correspond to the
same initial condition, we obtain w(x, 0) = 0, and hence

∫ l
0 w

2(x, t)dx = 0 for
all t > 0. This means that w ≡ 0 and hence u1 ≡ u2 for all t ≥ 0. In other
words, we obtain again uniqueness of the solution of the initial boundary value
problem (10.13).

If the solutions u1(x, t), u2(x, t) correspond to different initial conditions
ϕ1(x), ϕ2(x), respectively, then w(x, 0) = ϕ1(x) − ϕ2(x) and relation (10.14)
becomes

l∫

0

(
u1(x, t)− u2(x, t)

)2 dx ≤
l∫

0

(
ϕ1(x)− ϕ2(x)

)2 dx,

which expresses stability of the solution with respect to the initial condition in
the L2-norm.

10.6 Maximum Principle (Laplace Equation)

One of the fundamental properties of all harmonic functions is the Maximum
Principle.

Theorem 10.7 (Maximum Principle). Let Ω be a bounded domain (i.e.,
an open and connected set) in R2. Let u(x, y) be a harmonic function in Ω
(that is, Δu = 0 in Ω) which is continuous on Ω = Ω ∪ ∂Ω. Then the maximal
and minimal values of the function u are achieved on the boundary ∂Ω.
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As in the diffusion equation case, we can formulate a stronger assertion. We
will state it later and use the Poisson formula for its proof, see Section 10.7.
For now, however, we put up with the weaker version formulated in Theo-
rem 10.7 and give its elementary proof, which is somewhat similar to that of
Theorem 10.3.

Proof of Theorem 10.7. Let us denote x = (x, y) and |x| = (x2 + y2)1/2. We
introduce v(x) = u(x)+ �|x|2, where � is an arbitrarily small positive constant.
We have

Δv = Δu+ �Δ(x2 + y2) = 0 + 4� > 0

in the whole domain Ω. If the function v achieved its maximum inside Ω, the
inequality Δv = vxx + vyy ≤ 0 would have to hold at such a point, but this
contradicts the previous inequality. Thus the maximum of v must be achieved
at a point on the boundary – let us denote this point x0 ∈ ∂Ω. Then, for all
x ∈ Ω, we obtain

u(x) ≤ v(x) ≤ v(x0) = u(x0) + �|x0|2 ≤ max
y∈∂Ω

u(y) + �|x0|2.

Since � has been chosen arbitrary, we have

u(x) ≤ max
y∈∂Ω

u(y) ∀x ∈ Ω = Ω ∪ ∂Ω.

For the case of minimum, we proceed analogously.

Theorem 10.8 (Uniqueness of the solution of the Dirichlet problem).
The solution of the Dirichlet problem for the Poisson equation in the domain
Ω is uniquely determined.

Proof. Let us assume that
{

Δu = f in Ω,
u = h on ∂Ω,

{
Δv = f in Ω,
v = h on ∂Ω.

If we denote w = u − v, we obtain Δw = 0 in Ω and w = 0 on ∂Ω. The
Maximum Principle (Theorem 10.7) implies

0 = min
y∈Ω

w(y) ≤ w(x) ≤ max
y∈Ω

w(y) = 0 for all x ∈ Ω.

However, this means that w ≡ 0 and thus u ≡ v.
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10.7 Consequences of Poisson Formula (Laplace
Equation)

An important result following from the Poisson formula is the so called Mean
Value Property Theorem.

Theorem 10.9 (Mean Value Property). Let u be a harmonic function on
a disc D, continuous in its closure D. Then the value of the function u at the
center of D is equal to the mean value of u on the circle ∂D.

Proof. We shift the coordinate system so that the origin 0 is placed at the center
of the disc (this can be done because the Laplace operator is invariant with
respect to translations). We substitute x = 0 into the Poisson formula (8.16)
obtaining

u(0) =
a2

2πa

∫

|x′|=a

u(x�)
a2

ds =
1

2πa

∫

∂D

u(x�)ds.

This is exactly the integral mean value of the function u over the circle |x�| = a.

Another important consequence of the Poisson formula is the strong version
of the Maximum Principle.

Theorem 10.10 (Strong Maximum Principle). Let u be a harmonic func-
tion in the domain Ω ⊂ R2, continuous on Ω. Then either u is constant in
the entire closure Ω, or u achieves its maximal (minimal) value only on the
boundary ∂Ω (i.e., never inside Ω).

Idea of proof. Let us denote by xM the point where u achieves its maximal
value M on the closure of the domain Ω (its existence follows from the conti-
nuity of u on Ω and from the Weierstrass Theorem). We shall show that xM

cannot lie inside Ω unless u is constant.
Let xM ∈ Ω. Let us consider a circle centered at the point xM which is the

boundary of a circular neighborhood of xM entirely contained in Ω. According
to the Mean Value Theorem, u(xM) equals the mean value of u over the circle.
Since the mean value of the function cannot be greater than its maximum, we
obtain the inequality

M = u(xM ) = mean value over the circle ≤ M,
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and thus all values of u on the circle must be equal to M as well. Moreover,
the same holds for an arbitrary circle with the center xM and smaller radius.
Thus u(x) = M for all x from the original circular neighborhood. Now, we can
imagine that we cover the whole domain Ω by circular neighborhoods (see Fig-
ure 10.4). Since Ω is connected, we obtain u(x) ≡ M on the whole domain Ω,
and thus u is constant.

Ω•

xM

Figure 10.4. Covering of Ω by circular neighborhoods.

The last consequence of the Poisson formula which we state here is the fol-
lowing differentiability assertion.

Theorem 10.11 (Differentiability). Let u be a harmonic function on an
open set Ω ⊂ R2. Then u(x) = u(x, y) has continuous partial derivatives of all
orders in Ω.

This property of harmonic functions is – in a certain sense – similar to the
property that we have seen when studying the diffusion equation (see Chap-
ter 5).

Idea of proof. First, let us consider an open disc D with the center at the
origin. In the Poisson formula (8.16), the integrand is a function having partial
derivatives of arbitrary orders for all x ∈ D. Notice that x′ ∈ ∂D and thus
x �= x′. Since we can change the order of integration and differentiation, the
function u has partial derivatives of all orders in D as well.

Now, let us denote by D a circular neighborhood of the point x0 ∈ Ω which
is wholly contained in Ω. Using the substitution y = x− x0, we translate the
center of D to the origin. It then follows from above that u is differentiable
in D. Since x0 ∈ Ω is arbitrary, u is differentiable at all points of Ω.
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Remark 10.12 (Laplace Equation in Finite Differences). Let us have
a look at the Laplace equation from the “numerical” point of view. Let us
consider a point (x, y) and its neighbors (x ± h, y), (x, y ± h), where h > 0 is
small enough (see Figure 10.5).

•• •

•

•

(x, y)(x− h, y) (x + h, y)

(x, y + h)

(x, y − h)

Figure 10.5. Point (x, y) and its “neighbors”.

The Taylor expansion yields

u(x− h, y) = u(x, y)− hux(x, y) +
1

2
h2uxx(x, y) +O(h3),

u(x+ h, y) = u(x, y) + hux(x, y) +
1

2
h2uxx(x, y) +O(h3)

and, after summation, we can express the second derivative in the form

uxx(x, y) =
1

h2
(
u(x− h, y)− 2u(x, y) + u(x+ h, y)

)
+O(h2).

Similarly,

uyy(x, y) =
1

h2
(
u(x, y − h)− 2u(x, y) + u(x, y + h)

)
+O(h2).

Notice that the second derivatives are expressed by central differences used,
for instance, in the grid method. If we substitute in the Laplace equation
Δu = uxx + uyy = 0 and neglect the terms of higher orders, we obtain an
approximate value of the function u at the point (x, y) as

u(x, y) ≈ 1

4

(
u(x− h, y) + u(x+ h, y) + u(x, y − h) + u(x, y + h)

)
.

However, it means that the value u(x, y) is approximately the arithmetic aver-
age of the surrounding values. This arithmetic average can be neither greater
nor less than all the surrounding values. Thus, even here, we meet a certain
numerical analogue of the Maximum Principle and the Mean Value Theorem.
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10.8 Comparison of Wave, Diffusion and Laplace
Equations

The above mentioned principles and properties of solutions of initial and bound-
ary value problems yield the following fundamental comparison of all three types
of linear equations of the second order (cf. Strauss [21]):

Property Wave Diffusion Laplace

Speed of propagation Finite (≤ c) Infinite Zero

Singularities Propagate along Disappear Solutions are
characteristics immediately regular
at speed c (solutions are

regular)

Well-posedness Yes for t > 0 Yes for t > 0 Yes
Yes for t < 0 No for t < 0

Maximum principle No Yes Yes

Energy (for IVPs) Energy does not Energy decreases Steady state
decrease (if ϕ is integrable)
(is constant)

10.9 Exercises

1. Show that the wave equation has the following invariance properties:

(a) Any shifted solution u(x− y, t), where y is fixed, is also a solution.

(b) Any derivative of the solution (e.g., ux) is also a solution.

(c) Dilated solution u(ax, at), where a > 0, is also a solution.

2. For a solution u(x, t) of the wave equation (10.4) with ρ = T = c = 1, the
energy density is defined as e = 1

2(u
2
t + u2x) and the momentum density as

p = utux.

(a) Show that et = px and pt = ex.

(b) Show that both e(x, t) and p(x, t) also satisfy the wave equation.
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3. Let u(x, t) solve the wave equation utt = uxx. Prove that the identity

u(x+ h, t+ k) + u(x− h, t− k) = u(x+ k, t+ h) + u(x− k, t− h)

holds for all x, t, k and h. Draw the characteristic parallelogram with
vertices formed by the arguments in the previous relation.

4. Consider a damped infinite string described by the equation utt − c2uxx +
rut = 0, and show that its total energy decreases.

5. Consider two Cauchy problems for the wave equation with different initial
data: {

uitt = c2uixx, x ∈ R, 0 < t < T,
ui(x, 0) = ϕi(x), uit(x, 0) = ψi(x)

for i = 1, 2, where ϕ1, ϕ2, ψ1, ψ2 are given functions. If

|ϕ1(x)− ϕ2(x)| ≤ δ1, |ψ1(x)− ψ2(x)| ≤ δ2

for all x ∈ R, show that |u1(x, t) − u2(x, t)| ≤ δ1 + δ2T for all x ∈ R,
0 < t < T . What does it mean with regard to stability?

6. Using the energy conservation law for the wave equation, prove that the
initial value problem

utt = c2uxx, x ∈ R, t > 0,
u(x, 0) = ϕ(x), ut(x, 0) = ψ(x)

has a unique solution.

7. Consider the diffusion equation on the real line. Using the Maximum Prin-
ciple, show that an odd (even) initial condition leads to an odd (even)
solution.

8. Consider a solution of the diffusion equation ut = uxx, 0 ≤ x ≤ l, t ≥ 0.

(a) Let M(T ) be the maximum of the function u(x, t) on the rectangle
{0 ≤ x ≤ l, 0 ≤ t ≤ T}. Is M(T ) decreasing or as a increasing function
of T ?

(b) Let m(T ) be the minimum of the function u(x, t) on the rectangle {0 ≤
x ≤ l, 0 ≤ t ≤ T}. Is m(T ) decreasing or increasing as a function of T ?

9. Consider the diffusion equation ut = uxx on the interval (0, 1) with bound-
ary conditions u(0, t) = u(1, t) = 0 and the initial condition u(x, 0) = 1−x2.
Notice that the initial condition does not satisfy the boundary condition on
the left end, however, the solution satisfies it at arbitrary time t > 0.
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(a) Show that u(x, t) > 0 at all inner points 0 < x < 1, 0 < t < +∞.

(b) Let, for all t > 0, μ(t) represent the maximum of the function u(x, t)
on 0 ≤ x ≤ 1. Show that μ(t) is a non-increasing function of t.
[Hint: Suppose the maximum to be achieved at a point X(t), i.e., μ(t) =

u(X(t), t). Differentiate μ(t) (under the assumption that X(t) is a differen-
tiable function).]

(c) Sketch the solution on several time levels.

10. Consider the diffusion equation ut = uxx on the interval (0, 1) with bound-
ary conditions u(0, t) = u(1, t) = 0 and the initial condition u(x, 0) =
4x(1− x).

(a) Show that 0 < u(x, t) < 1 for all t > 0 and 0 < x < 1.

(b) Show that u(x, t) = u(1− x, t) for all t ≥ 0 and 0 ≤ x ≤ 1.

(c) Using the energy method (see Section 10.5), show that
� 1
0 u2(x, t)dx is

a strictly decreasing function of t.

11. The aim of this exercise is to show that the maximum principle does not
hold true for the equation ut = xuxx, which has a variable coefficient.

(a) Verify that the function u(x, t) = −2xt − x2 is a solution. Find its
maximum on the rectangle {−2 ≤ x ≤ 2, 0 ≤ t ≤ 1}.

(b) Where exactly does our proof of the maximum principle fail in the case
of this equation?

12. Consider a heat problem with an internal heat source
⎧
⎨
⎩

ut = uxx + 2(t+ 1)x+ x(1− x), 0 < x < 1, t > 0,
u(0, t) = 0, u(1, t) = 0,
u(x, 0) = x(1− x).

Show that the maximum principle does not hold true:

(a) Verify that u(x, t) = (t+ 1)x(1− x) is a solution.

(b) What are the maximum value M and the minimum value m of the
initial and boundary data?

(c) Show that, for some t > 0, the temperature distribution exceeds M at
certain points of the bar.

13. Prove the comparison principle for the diffusion equation: If u and v are
two solutions and u ≤ v for t = 0, for x = 0 and x = l, then u ≤ v for
0 ≤ t < +∞, 0 ≤ x ≤ l.
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14. (a) More generally, if ut − kuxx = f , vt − kvxx = g, f ≤ g and u ≤ v for
x = 0, x = l and t = 0, then u ≤ v for 0 ≤ t < +∞, 0 ≤ x ≤ l. Prove
it.

(b) Let vt − vxx ≥ sinx for 0 ≤ x ≤ π, 0 < t < +∞. Further, let
v(0, t) ≥ 0, v(π, t) ≥ 0 and v(x, 0) ≥ sinx. Exploit part (a) for proving
that v(x, t) ≥ (1− e−t) sinx.

15. Consider the diffusion equation on (0, l) with the Robin boundary conditions
ux(0, t)− a0u(0, t) = 0 and ux(l, t)+ alu(l, t) = 0. If a0 > 0 and al > 0, use
the energy method to show that the endpoints contribute to a decrease in∫ l
0 u

2(x, t)dx. (Part of the energy is lost at the boundary, so the boundary
conditions are called radiating or dissipative.)

16. Let u(x, t) solve the wave equation on the whole real line, and let its second
derivatives be bounded. Define

v(x, t) =
c√
4πkt

+∞∫

−∞
e−s2c2/(4kt)u(x, s)ds.

(a) Show that v(x, t) solves the diffusion equation.

(b) Show that lim
t→0

v(x, t) = u(x, 0).

Notice that here we show the direct relation between the wave and diffusion
equations.

[Hint: (a) Write the formula in the form v(x, t) =
∫ +∞
−∞ H(s, t)u(x, s) ds, where

H(x, t) solves the diffusion equation with constant k/c2 for t > 0. Then differen-
tiate v(x, t).
(b) Use the fact that H(s, t) is a fundamental solution of the diffusion equation
with the spatial variable s.]

17. Show that there is no maximum principle for the wave equation.

18. Let u be a harmonic function in the disc D = {r < 2} and let u = 3 sin 2θ+1
for r = 2. Without finding the concrete form of the solution, answer the
following questions:

(a) What is the maximal value of u on D?

(b) What is the value of u at the origin?

[(a) 4, (b) 1]

19. Prove uniqueness of the Dirichlet problem Δu = f in D, u = g on ∂D by
the energy method.
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20. Let Ω be a bounded open set and consider the Neumann problem

Δu = f in Ω,
∂u

∂n
= g on ∂Ω.

Show that any two solutions differ by a constant.

21. Let Ω be a bounded open set. Show that the Neumann problem

Δu+ αu = f in Ω,
∂u

∂n
= g on ∂Ω

has at most one solution if α < 0 in Ω.

22. Prove that the function u(x, y) = 1−x2−y2

x2+(y−1)2
is harmonic in R2 \ {0, 1}.

Find the maximum M and the minimum m of function u(x, y) in the disc
Dρ = {x2 + y2 ≤ ρ2}, ρ < 1, and show that Mm = 1. Plot the graph of
u(x, y), where (x, y) ∈ D0.9, using polar coordinates.
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Chapter 11

Laplace and Poisson equations in Higher
Dimensions

In this chapter we treat the Laplace operator and harmonic functions in R3.
Unlike in the two-dimensional case, we cannot rely on methods based on direct
computation of the solution, since the situation is much more complicated.
That is why we try to obtain as much information as possible about the solution
and its properties from the equation itself. In particular, we focus on those
aspects that differ from the two-dimensional case. Features that do not depend
on the dimension are stated without details.

11.1 Invariance of the Laplace Operator and its
Transformation into Spherical Coordinates

The Laplace operator is invariant with respect to translations and rotations in
three as well as in all higher dimensions. Let us recall that, using the matrix
notation, rotation in R3 is given by the transformation formula

x′ = Bx,

where x = (x, y, z) and B = (bij), i, j = 1, 2, 3, is an orthogonal matrix (that
is, BBt = BtB = I). Using the chain rule, we derive

ux = b11ux′ + b21uy′ + b31uz′ ,

uy = b12ux′ + b22uy′ + b32uz′ ,

uz = b13ux′ + b23uy′ + b33uz′ .

Further, for uxx we have

uxx = b211ux′x′ + b11b21ux′y′ + b11b31ux′z′ + b21b11uy′x′ + b221uy′y′

+b21b31uy′z′ + b31b11uz′x′ + b31b21uz′y′ + b231uz′z′

and similar formulas for uyy and uzz. Summing up and assuming the symmetry
of second (mixed) partial derivatives, we obtain

uxx + uyy + uzz = (b211 + b212 + b213)︸ ︷︷ ︸
=1

ux′x′

+2 (b11b21 + b12b22 + b13b23)︸ ︷︷ ︸
=0

ux′y′ + 2 (b11b31 + b12b32 + b13b33)︸ ︷︷ ︸
=0

ux′z′

+ · · · = ux′x′ + uy′y′ + uz′z′
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due to the orthogonality of the matrix B. The reader is invited to carry out
all the above calculations in detail.

The rotational invariance of the Laplace operator implies that, in radially
symmetric cases, the transformation into spherical coordinates (r, θ, φ) could
bring a significant simplification.

y

z

x

•
(x, y, 0)

s

•
(x, y, z)

φ

θ
r

z

Figure 11.1. Spherical coordinates.

We will use the notations (see Figure 11.1)

r =
√

x2 + y2 + z2 =
√
s2 + z2,

s =
√

x2 + y2,

x = s cosφ, z = r cos θ,
y = s sinφ, s = r sin θ,

and the knowledge of the transformation of the Laplace operator into the polar
coordinates introduced in Section 6.2:

uzz + uss = urr +
1

r
ur +

1

r2
uθθ,

uxx + uyy = uss +
1

s
us +

1

s2
uφφ.

Summing up and canceling uss, we obtain

Δu = uxx + uyy + uzz = urr +
1

r
ur +

1

r2
uθθ +

1

s
us +

1

s2
uφφ.
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In the last term we insert s2 = r2 sin2 θ. Moreover, us can be written as

us =
∂u

∂s
= ur

∂r

∂s
+ uθ

∂θ

∂s
+ uφ

∂φ

∂s
.

Evidently, ∂φ
∂s = 0. If we use, e.g., the inverse Jacobi matrix of the transforma-

tion into polar coordinates (cf. Section 6.1 with r = r, θ = θ and s = y), we
obtain

∂r

∂s
= sin θ =

s

r
,

∂θ

∂s
=

cos θ
r

,

and thus
us = ur

s

r
+ uθ

cos θ
r

.

Hence, we easily derive

Δu = urr +
2

r
ur +

cos θ
r2 sin θ

uθ +
1

r2
uθθ +

1

r2 sin2 θ
uφφ.

Written in symbols, we obtain the following analogue of the “two-dimensional
formula” (6.3):

Δ =
∂2

∂x2
+

∂2

∂y2
+

∂2

∂z2

=
∂2

∂r2
+

2

r

∂

∂r
+

cos θ
r2 sin θ

∂

∂θ
+

1

r2
∂2

∂θ2
+

1

r2 sin2 θ

∂2

∂φ2
.

(11.1)

In the radially symmetric situation, that is, when u does not depend on the
angles φ and θ, the Laplace equation in spherical coordinates reduces to the
ODE

Δu = urr +
2

r
ur = 0,

which can be, after multiplying by r2, written as

(r2ur)r = 0.

Hence, by simple integration, we obtain ur = c1/r
2 and u = −c1r

−1 + c2. The
fundamental harmonic function in three dimensions is thus the function

u(r) =
1

r
= (x2 + y2 + z2)−

1
2 ,

which can be taken as the analogue of the two-dimensional harmonic function
ln(x2 + y2)1/2, which we discussed in Chapter 6. In electrostatics, for instance,
u(x) = r−1 represents the electrostatic potential at point x with the radius r,
which corresponds to the unit charge placed at the origin.
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11.2 Green’s First Identity

In the sequel, we focus on the three-dimensional case; however, all statements
remain valid even in the two-dimensional case or, generally, in any dimension.

According to the product rule, we write

(vux)x = vxux + vuxx,

(vuy)y = vyuy + vuyy,

(vuz)z = vzuz + vuzz.

Summing up all these three equations, we obtain

∇ · (v∇u) = ∇v · ∇u+ vΔu.

If we integrate this relation and use the Divergence Theorem (see page 4) for
the left-hand side, we obtain Green’s first identity

∫∫

∂Ω

v
∂u

∂n
dS =

∫∫∫

Ω

∇v · ∇u dx+

∫∫∫

Ω

vΔu dx, (11.2)

where ∂u/∂n = n ·∇u is the derivative with respect to the outer normal to the
boundary of the domain Ω. The identity (11.2) can be interpreted as a three-
dimensional version of integration by parts and has a number of consequences.

11.3 Properties of Harmonic Functions

The fundamental property of harmonic functions is the Weak Maximum Prin-
ciple. This property, together with the proof technique, does not depend on the
dimension. We recommend the reader to study Theorem 10.7 and its proof in
order to realize its applicability in higher dimensions. Also the consequence con-
cerning uniqueness of the solution of the Dirichlet problem (see Theorem 10.8)
can be stated without any changes.

11.3.1 Mean Value Property and Strong Maximum Principle

One of the properties of harmonic functions that follows from Green’s first
identity is the three-dimensional version of the Mean Value Property. Let us
recall its two-dimensional variant in Chapter 6 (Theorem 10.9).
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Theorem 11.1 (Mean Value Property). The average value of any har-
monic function in a domain Ω ⊂ R3 over any sphere which lies in Ω is equal
to its value at the center of the sphere.

Proof. Following, e.g., Strauss [21] or Zauderer [24], let us consider a ball
B(0, a) = {|x| < a} ⊂ Ω with radius a centered at the origin (recall the
invariance of the Laplace operator with respect to translations). Further, let
Δu = 0 in Ω, B(0, a) ⊂ Ω. For the sphere, the outer normal n has the direction
of the radius vector, thus

∂u

∂n
= n · ∇u =

x

r
· ∇u =

x

r
ux +

y

r
uy +

z

r
uz

=
∂x

∂r
ux +

∂y

∂r
uy +

∂z

∂r
uz =

∂u

∂r
,

where r = (x2+y2+z2)1/2 = |x| is the spherical coordinate (the distance of the
point (x, y, z) from the center 0 of the sphere). If we use Green’s first identity
for the ball B(0, a) with the choice v ≡ 1, we obtain

��

∂B(0,a)

∂u

∂r
dS =

���

B(0,a)

Δu dx = 0.

We rewrite the integral on the left-hand side into spherical coordinates (r, θ, φ),
that is,

2π�

0

π�

0

ur(a, θ, φ)a
2 sin θ dθ dφ = 0

(on the sphere ∂B(0, a), we have r = a), and divide the equality by the constant
4πa2, which is the measure of ∂B(0, a) (that is, the surface of the ball B(0, a)).
This result holds true for all a > 0, thus we can replace a with the variable r.
Moreover, if we change the order of integration and differentiation (which is
possible under certain assumptions on u), we obtain

∂

∂r

⎛
⎝ 1

4π

2π�

0

π�

0

u(r, θ, φ) sin θ dθ dφ

⎞
⎠ = 0. (11.3)

However, it means that the expression

1

4π

2π�

0

π�

0

u(r, θ, φ) sin θ dθ dφ,
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which represents the average value of u on the sphere {|x| = r}, is independent
of the radius r. In particular, for r → 0 we have

1

4π

2π∫

0

π∫

0

u(0) sin θ dθ dφ = u(0). (11.4)

Relations (11.3) and (11.4) imply the following result for any a > 0:

u(0) =
1

meas ∂B(0, a)

∫∫

∂B(0,a)

u dS. (11.5)

Thus, the proof of the Mean Value Property in three dimensions is completed.
(Observe that the idea of the proof can be applied generally in any dimension.)

Like in two dimensions (see Theorem 10.10), a direct consequence of the
Mean Value Property is the strong version of the Maximum Principle.

Theorem 11.2 (Strong Maximum Principle). Let Ω be an arbitrary do-
main in R3. A non-constant harmonic function in Ω, continuous in Ω, cannot
achieve its maximum (minimum) inside Ω, but only on the boundary ∂Ω.

The proof follows along the same lines as in Theorem 10.10, so we do not
repeat it here.

11.3.2 Dirichlet Principle

Another important theorem that follows from Green’s first identity and which
has also a physical motivation, is the Dirichlet Principle.

Theorem 11.3 (Dirichlet Principle). Let u(x) be the harmonic function on
a domain Ω satisfying the Dirichlet boundary condition

u(x) = h(x) on ∂Ω. (11.6)

Let w(x) be an arbitrary continuously differentiable function on Ω satisfy-
ing (11.6). Then

E(w) ≥ E(u),

 EBSCOhost - printed on 2/10/2023 4:02 PM via . All use subject to https://www.ebsco.com/terms-of-use



Section 11.3 Properties of Harmonic Functions 193

where E denotes the energy defined by the formula

E(w) =
1

2

∫∫∫

Ω

|∇w|2 dx. (11.7)

In other words, the Dirichlet Principle says that, among all functions satis-
fying the boundary condition (11.6), the harmonic function corresponds to the
state with the lowest energy. Expression (11.7) represents just the potential
energy – there is no motion and thus the kinetic energy is zero. One of the
fundamental physical principles says that any system tends to keep the state
with the lowest energy. Harmonic functions thus describe the most frequent
“ground (quiescent) states”.

Proof of Theorem 11.3. Let us denote w = u+ v and substitute in the formula
for the energy (11.7) in the following way:

E(w) =
1

2

∫∫∫

Ω

|∇(u+ v)|2 dx

= E(u) +

∫∫∫

Ω

∇u · ∇v dx+ E(v).

To the middle term we apply Green’s first identity and use the fact that v = 0 on
∂Ω (both u and w satisfy the same Dirichlet boundary condition) and Δu = 0
in Ω. Consequently,

∫∫∫
Ω ∇u · ∇v dx = 0 and

E(w) = E(u) +E(v).

Since, evidently, E(v) ≥ 0, we obtain E(w) ≥ E(u) and the Dirichlet Principle
is proved.

11.3.3 Uniqueness of Solution of Dirichlet Problem

A direct consequence of the Maximum Principle is the uniqueness of the solution
of the Dirichlet problem for the Poisson equation. We refer the reader to
Theorem 10.8 and its proof that can be applied in any dimension. Here we
present another proof based on the so called energy method, which involves the
application of Green’s first identity.

Let us consider the Dirichlet problem Δu = f in the domain Ω, u = h on
the boundary ∂Ω, and assume that there are two solutions u1, u2. We denote
their difference by u = u1 − u2. The function u is harmonic in Ω, vanishing on
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the boundary ∂Ω. Now, we use Green’s first identity (11.2) for v = u. Since u
is a harmonic function (Δu = 0 in Ω), we obtain

��

∂Ω

u
∂u

∂n
dS =

���

Ω

|∇u|2 dx.

Since u = 0 on the boundary ∂Ω, the left-hand side is equal to zero. This yields
���

Ω

|∇u|2 dx = 0,

which implies |∇u| = 0 in Ω. This means that the function u is constant in
the domain Ω. But since it vanishes on the boundary ∂Ω, we obtain u(x) ≡ 0
in Ω, and thus u1(x) ≡ u2(x) in Ω.

In a similar way we can prove that the solution of the Neumann problem is
determined uniquely up to a constant (see Exercise 1 in Section 11.7).

11.3.4 Necessary Condition for the Solvability of Neumann
Problem

If we use a special choice v ≡ 1, Green’s first identity reads
��

∂Ω

∂u

∂n
dS =

���

Ω

Δu dx. (11.8)

Let us consider the Neumann problem in the domain Ω

⎧⎨
⎩

Δu = f in Ω,

∂u

∂n
= h on ∂Ω

(11.9)

and let us substitute for ∂u
∂n and Δu into the relation (11.8). We obtain a nec-

essary condition for the solvability of (11.9) in the form

��

∂Ω

hdS =

���

Ω

f dx. (11.10)

It means that the solution of the Neumann problem can exist only if the in-
put data (functions f and h) are not completely arbitrary but satisfy condi-
tion (11.10). In fact, it can be proved that condition (11.10) is also sufficient for
problem (11.9) to have a solution. Thus, from the point of solvability, the Neu-
mann problem is not well-posed. Concerning uniqueness, we find this problem
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ill-posed as well (if there exists a solution to (11.9) then adding an arbitrary
constant to this solution, we obtain another solution of (11.9)). Nevertheless,
the Neumann boundary value problem makes reasonable sense and occurs very
often in applications.

11.4 Green’s Second Identity and Representation
Formula

If we apply Green’s first identity to the pair of functions (u, v), and then to the
pair (v, u), and subtract the two equations, we obtain the relation

∫∫∫

Ω

(uΔv − vΔu)dx =

∫∫

∂Ω

(
u
∂v

∂n
− v

∂u

∂n

)
dS, (11.11)

which is known as Green’s second identity.

An important consequence of Green’s second identity is the so called repre-
sentation formula. It says that the value of a harmonic function at any point
of a domain Ω can be expressed using only its values on the boundary ∂Ω.

Theorem 11.4 (Representation Formula). Let x0 ∈ Ω ⊂ R3. The value
of any harmonic function on a domain Ω, continuous on Ω, can be expressed
by

u(x0) =
1

4π

∫∫

∂Ω

(
−u(x)

∂

∂n

(
1

|x− x0|
)
+

1

|x− x0|
∂u

∂n
(x)

)
dS. (11.12)

Observe that relation (11.12) contains the fundamental radially symmetric
harmonic function r−1 = |x − x0|−1 that we have already discussed in the
previous sections of this chapter (here it is shifted by the vector x0).

Proof. Relation (11.12) is a special case of Green’s second identity for the choice

v(x) =
−1

4π|x− x0| .

This function is, however, unbounded at x0, thus we cannot use Green’s second
identity on the whole domain Ω. Let us denote by Ωε the domain Ω \B(x0, ε),
where B(x0, ε) ⊂ Ω is the ball centered at the point x0 with radius ε. This
domain is now admissible for the application of Green’s second identity.
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For simplicity, let us shift the point x0 to the origin (we recall again the
invariance of the Laplace operator with respect to translations). Hence, v(x) =
−1/(4πr), where r = |x| = (x2+y2+z2)1/2. If we use the fact that Δu = Δv = 0
in Ωε, Green’s second identity implies

− 1

4π

∫∫

∂Ωε

(
u
∂

∂n

(
1

r

)
− ∂u

∂n

1

r

)
dS = 0.

The boundary ∂Ωε consists of two parts: the boundary of the original domain
∂Ω and the sphere ∂B(x0, ε). Moreover, on this sphere we have ∂/∂n = −∂/∂r.
The surface integral above is thus decomposed into two parts and the equality
can be written as

− 1

4π

∫∫

∂Ω

(
u
∂

∂n

(
1

r

)
− ∂u

∂n

1

r

)
dS (11.13)

= − 1

4π

∫∫

r=ε

(
u
∂

∂r

(
1

r

)
− ∂u

∂r

1

r

)
dS.

This equality must hold true for any (small) ε > 0. Concerning the sphere
|x| = r = ε, we have

∂

∂r

(
1

r

)
= − 1

r2
= − 1

ε2
.

The right-hand side of relation (11.13) can be thus rewritten in the form

1

4πε2

∫∫

r=ε

u dS +
1

4πε

∫∫

r=ε

∂u

∂r
dS = u+ ε

∂u

∂r
,

where u denotes the integral average value of the function u(x) on the sphere
|x| = r = ε, and ∂u/∂r represents the average value of ∂u/∂n on this sphere.
If we now pass to the limit for ε → 0, we obtain

u+ ε
∂u

∂r
−→ u(0) + 0× ∂u

∂r
(0) = u(0)

(note that the function u is continuous and ∂u/∂r is bounded). Hence, from
relation (11.13), we easily get formula (11.12). (The reader is asked to give the
reasons.)

Remark 11.5. In the same way we can obtain the representation formula in
any dimension. The concrete form of this formula in N dimensions depends
on the corresponding fundamental radially symmetric harmonic function which
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for N ≥ 3 has the form r−N+2, and for N = 2 is equal to ln r (see Section 6.3).
In particular, in two dimensions, the representation formula reads

u(x0) =
1

2π

∫

∂Ω

(
u(x)

∂

∂n
(ln |x− x0|)− ∂u

∂n
(x) ln |x− x0|

)
ds,

where Δu = 0 in the plane domain Ω and x0 ∈ Ω. We integrate here along the
curve ∂Ω, and ds denotes an element of the arc length of this curve.

11.5 Boundary Value Problems and Green’s
Function

The main disadvantage of the representation formula (11.12) is that it con-
tains the boundary values of both the functions u and ∂u

∂n . But solving the
standard boundary value problems, we are usually given either the Dirichlet
boundary condition or the Neumann boundary condition, not both at the same
time! The representation formula is based on two properties of the function
v(x) = −1/(4π|x − x0|): it is a harmonic function except the point x0, and
the singularity at this point has a “proper” form. Our goal is to modify this
function in such a way that we could eliminate one term in formula (11.12).
The modified function will be called Green’s function corresponding to the do-
main Ω.

Definition 11.6. Green’s function G(x,x0) corresponding to the Laplace op-
erator, the homogeneous Dirichlet boundary condition, a domain Ω and a point
x0 ∈ Ω is a function defined by the following properties:

(i) G(x,x0) has continuous second partial derivatives with respect to x and
ΔG = 0 in Ω except the point x = x0 (here, the Laplace operator is
considered with respect to x, while x0 is a parameter).

(ii) G(x,x0) = 0 for x ∈ ∂Ω.

(iii) The function G(x,x0) + 1/(4π|x − x0|) is finite at the point x0, has
continuous partial derivatives of the second order in the whole domain Ω,
and is harmonic.

It can be proved that Green’s function exists and is determined uniquely (the
uniqueness proof is based on the Maximum Principle, or on the theorem on the
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unique solvability of the Dirichlet problem; we leave the details to the reader –
see Exercise 2 in Section 11.7).

Theorem 11.7. If G(x,x0) is Green’s function, then the solution of the
Dirichlet problem for the Laplace equation can be expressed by

u(x0) =

∫∫

∂Ω

u(x)
∂G(x,x0)

∂n
dS. (11.14)

Proof. The representation formula implies

u(x0) =

∫∫

∂Ω

(
u
∂v

∂n
− ∂u

∂n
v

)
dS, (11.15)

where again v(x) = −(4π|x−x0|)−1. Now, we define H(x) = G(x,x0)−v(x).
According to the property (iii) of Definition 11.6, the function H(x) is harmonic
on the whole domain Ω. We can thus apply Green’s second identity to the
couple u(x), H(x):

0 =

∫∫

∂Ω

(
u
∂H

∂n
− ∂u

∂n
H

)
dS. (11.16)

Summing (11.15) and (11.16), we obtain

u(x0) =

∫∫

∂Ω

(
u
∂G

∂n
− ∂u

∂n
G

)
dS.

Moreover, according to (ii), Green’s function satisfies G = 0 on the boundary
∂Ω. This directly implies (11.14).

Remark 11.8. Green’s function is symmetric, that is,

G(x,x0) = G(x0,x) for x �= x0.

In electrostatics, G(x,x0) represents the electric potential inside a closed con-
ductive surface S = ∂Ω induced by a charge placed at the point x0. The
symmetry of Green’s function is then known as the Reciprocity Principle, ac-
cording to which the source placed at x0 causes the same effect at the point x
as the source at x causes at the point x0.

Green’s function can be used also for solving the Poisson equation.
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Theorem 11.9. The Dirichlet boundary value problem for the Poisson equa-
tion {

Δu = f in Ω,
u = h on ∂Ω

(11.17)

has a unique solution given by the formula

u(x0) =

∫∫

∂Ω

h(x)
∂G(x,x0)

∂n
dS +

∫∫∫

Ω

f(x)G(x,x0)dx (11.18)

for any x0 ∈ Ω.

It is straightforward to verify that u = u(x) given by (11.18) is a solution
of (11.17) – see Exercise 3 in Section 11.7. Uniqueness of the solution was
discussed in Section 11.3.

The disadvantage of relations (11.14), (11.18) is the necessity to know the
explicit expression of Green’s function. This is possible only on domains with
special geometry. Two such cases are considered in the forthcoming section (cf.
Strauss [21], or Stavroulakis, Tersian [20]).

11.6 Dirichlet Problem on Half-Space and on Ball

The half-space and the ball in R3 are some of the domains for which Green’s
function and, consequently, the solution of the corresponding Dirichlet problem
can be found explicitly. In both cases we use the so called reflection method.

11.6.1 Dirichlet Problem on Half-Space

Although the half-space is an unbounded domain, all assertions stated above
– including the notion of Green’s function – remain valid, provided we add
the “boundary condition at infinity”. By this condition, we understand the
assumption that functions and their derivatives vanish for |x| → +∞.

We denote the coordinates of the point x by (x, y, z) as usual. The half-
space Ω = {x, z > 0} is the domain lying “above” the xy-plane. To each point
x = (x, y, z) ∈ Ω there corresponds the reflected point x∗ = (x, y,−z) that
evidently does not lie in Ω (see Figure 11.2).

We already know that the function 1/(4π|x−x0|) satisfies the conditions (i)
and (iii) imposed on Green’s function. We try to modify it so as to ensure the
validity of condition (ii).
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�
xy-plane

�z

•

•

x∗

x

R3

Figure 11.2. Half-space and reflection method.

We claim that Green’s function for the half-space Ω has the form

G(x,x0) = − 1

4π|x− x0| +
1

4π|x− x∗
0|
. (11.19)

Rewritten into coordinates, this becomes

G(x,x0) = − 1

4π

(
(x− x0)

2 + (y − y0)
2 + (z − z0)

2
)−1/2

+
1

4π

(
(x− x0)

2 + (y − y0)
2 + (z + z0)

2
)−1/2

.

Observe that the two terms differ only by the element (z ± z0). Let us verify
that Green’s function defined by formula (11.19) has the properties of Green’s
function stated in Definition 11.6.

(i) Obviously, G is finite and differentiable except at the point x0. Also
ΔG = 0.

(ii) Let x ∈ ∂Ω, that is z = 0. Figure 11.3 illustrates that |x−x0| = |x−x∗
0|.

Hence, G(x,x0) = 0 on ∂Ω.

(iii) Since the point x∗
0 lies outside the domain Ω, the function −1/(4π|x−x∗

0 |)
has no singularities in Ω. The function G has thus a single singularity
at the point x0 and this corresponds to the claims imposed on Green’s
function.
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xy-plane

z

•

•

x∗
0

x0

•
x

|x− x0|

|x− x∗
0|

R3

Figure 11.3. Verification of the property (ii) of Green’s function.

Thus, we have proved that formula (11.19) determines Green’s function cor-
responding to the half-space Ω.

Now, we can use it for finding the solution of the Dirichlet problem

{
Δu = 0 for z > 0,
u(x, y, 0) = h(x, y).

(11.20)

We use formula (11.14). Notice that ∂G/∂n = −∂G/∂z|z=0, since the outer
normal n has the “downward” direction (out of the domain). Further,

−∂G

∂z
=

1

4π

(
z + z0

|x− x∗
0|3

− z − z0
|x− x0|3

)
=

1

2π

z0
|x− x0|3

for z = 0. Hence, by direct substitution, we obtain the solution of prob-
lem (11.20) in the form

u(x0, y0, z0) =
z0
2π

+∞∫

−∞

+∞∫

−∞

(
(x− x0)

2 + (y − y0)
2 + z20

)−3/2
h(x, y)dx dy

or, in the vector notation,

u(x0) =
z0
2π

∫∫

∂Ω

h(x)

|x− x0|3 dS. (11.21)
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Remark 11.10. We can proceed similarly in any dimension. In particular, let
us have a look at the same problem in two dimensions, that is, let us consider
the Laplace equation on the “upper half-plane”:

{
uxx + uyy = 0, x ∈ R, y > 0,
u(x, 0) = h(x), x ∈ R. (11.22)

The corresponding Green’s function has the form

G(x,x0) =
1

2π
ln |x− x0| − 1

2π
ln |x− x∗

0|.

Here x = (x, y) and |x − x0| =
√

(x− x0)2 + (y − y0)2. The solution of the
Dirichlet problem (11.22) is then given by

u(x0, y0) =
y0
π

+∞∫

−∞

h(x)

|x− x0|2 dx =
y0
π

+∞∫

−∞

h(x)

(x− x0)2 + y20
dx.

Notice that problem (11.22) was solved with the same result also in Chapter 9
by the Fourier transform (see Remark 9.12)!

11.6.2 Dirichlet Problem on a Ball

Another domain where we can solve the Dirichlet problem using the explicitly
found Green’s function, is the ball Ω = {|x| < a} with radius a. Again we use
the reflection method, this time, however, with respect to the sphere {|x| = a}
which forms the boundary ∂Ω (see Figure 11.4). The method is – in this case
– called the spherical inversion.

Let us consider a fixed point x0 ∈ Ω. The reflected point x∗
0 is determined

by the following properties:

(i) x∗
0 lies on the straight line passing through 0 and x0,

(ii) its distance from the origin is given by the relation |x0| |x∗
0| = a2.

It means that

x∗
0 =

a2x0

|x0|2 .

Let x ∈ Ω be an arbitrary point and let us denote ρ(x) = |x − x0| and
ρ∗(x) = |x− x∗

0|. Then, for x0 �= 0, Green’s function on the ball Ω is given by

G(x,x0) = − 1

4πρ
+

a

|x0|
1

4πρ∗
. (11.23)
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•
0
�� �� �� �� �� �� �� ��

•
x0 •

x∗
0

Figure 11.4. Ball Ω and spherical inversion.

We prove this statement by verifying the properties (i), (ii) and (iii) of Defini-
tion 11.6. The case x0 = 0 will be treated separately.

First of all, the single singularity of the function G is the point x = x0, since
x∗
0 lies outside the ball Ω. Functions 1/ρ and 1/ρ∗ are both harmonic in Ω

except at the point x0. Conditions (i) and (iii) are thus fulfilled.
For the verification of condition (ii), we show that ρ∗ is proportional to ρ for

all x lying on the sphere |x| = a. The congruent triangles in Figure 11.5 imply
∣∣∣∣
r0
a
x− a

r0
x0

∣∣∣∣ = |x− x0|, (11.24)

where r0 = |x0|. For the left-hand side of (11.24) we have

r0
a

∣∣∣∣x− a2

r20
x0

∣∣∣∣ =
r0
a
ρ∗.

Hence, we obtain
r0
a
ρ∗ = ρ for all |x| = a.

However, this means that the function G(x,x0) = − 1
4πρ +

a
r0

1
4πρ∗ is zero on the

sphere |x| = a and condition (ii) is satisfied.
Formula (11.23) can be rewritten to the form

G(x,x0) = − 1

4π|x− x0| +
1

4π| r0a x− a
r0
x0| . (11.25)

In the case x0 = 0, Green’s function takes the following form (verify – see
Exercise 4 in Section 11.7):
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ρ

Figure 11.5. Congruent triangles and the proportionality of ρ and ρ∗.

G(x, 0) = − 1

4π|x| +
1

4πa
. (11.26)

Now, we use the knowledge of Green’s function for finding the solution of the
Dirichlet boundary value problem for the Laplace equation in the ball

{
Δu = 0 for |x| < a,
u = h for |x| = a.

(11.27)

We know from Theorem 11.1 (Mean Value Property) that u(0) is the average
value of the function h(x) on the sphere ∂Ω. Let us consider only the case
x0 �= 0. Since we want to use the representation formula (11.14) (see Theo-
rem 11.7), we have to determine ∂G/∂n on |x| = a. We start with the relation
ρ2 = |x−x0|2. Differentiating it with respect to x, we obtain 2ρ∇ρ = 2(x−x0).
Thus, ∇ρ = (x− x0)/ρ and ∇(ρ∗) = (x− x∗

0)/ρ
∗. Now we determine the gra-

dient of the function G from relation (11.23):

∇G = ∇
(
− 1

4πρ
+

a

|x0|
1

4πρ∗

)

=
x− x0

4πρ3
− a

|x0|
x− x∗

0

4πρ∗3
. (11.28)

We recall that x∗
0 = (a/r0)

2x0. In the case |x| = a, we have shown above that

 EBSCOhost - printed on 2/10/2023 4:02 PM via . All use subject to https://www.ebsco.com/terms-of-use



Section 11.6 Dirichlet Problem on Half-Space and on Ball 205

ρ∗ = (a/r0)ρ. If we put these relations into expression (11.28), we obtain

∇G =
1

4πρ3

(
x− x0 −

(r0
a

)2
x+ x0

)

on the sphere ∂Ω, and thus

∂G

∂n
=

x

a
· ∇G =

a2 − r20
4πa ρ3

.

Now, substituting into the representation formula (11.14), we obtain the solu-
tion of problem (11.27) in the form

u(x0) =
a2 − |x0|2

4πa

∫∫

|x|=a

h(x)

|x− x0|3 dS. (11.29)

This is nothing but the three-dimensional version of the Poisson formula. In
the literature, formula (11.29) is often rewritten in spherical coordinates:

u(r0, θ0, φ0) =
a(a2 − r20)

4π

2π∫

0

π∫

0

h(θ, φ)

(a2 + r20 − 2ar0 cosψ)3/2
sin θ dθ dφ,

where ψ denotes the angle between the “vectors” x0 and x.

Remark 11.11. In the same way we can proceed in two dimensions. Let us
consider the problem

{
uxx + uyy = 0, x2 + y2 < a2,
u(x, y) = h(x, y), x2 + y2 = a2.

(11.30)

The corresponding Green’s function has the form

G(x,x0) =
1

2π
ln ρ− 1

2π
ln

(
a

|x0|ρ
∗
)
.

The solution of the Dirichlet problem (11.30) is then given by

u(x0) =
a2 − |x0|2

2πa

∫

|x|=a

h(x)

|x− x0|2 ds,

which is exactly the Poisson formula (8.16) derived in Chapter 6 in a completely
different way.
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11.7 Exercises

In the following exercises, r =
√

x2 + y2 + z2 denotes one of the spherical
coordinates introduced in Section 11.1.

1. Prove that the solution of the Neumann problem for the Poisson equation
is determined in the domain Ω uniquely up to a constant.

2. Prove that Green’s function corresponding to the Laplace operator, a do-
main Ω and a point x0 ∈ Ω is determined uniquely.

3. Prove relation (11.18).

4. Verify formula (11.26) for G(x, 0).

5. Consider the Dirichlet problem
{

Δu = λu, in Ω,
u = 0, on ∂Ω.

Multiply the equation by the function u and integrate it over the domain Ω.
Use Green’s first identity to prove that a nontrivial solution u = u(x, y, z)
can exist only for λ negative.

6. Find radially symmetric solutions of the equation uxx + uyy + uzz = k2u,
where k is a positive constant. Use the substitution v = u/r.

[u(x, y, z) = 1
r (Ae

kr + Be−kr)]

7. Solve the equation uxx + uyy + uzz = 0 in the shell {0 < a < r < b} with
the boundary conditions u = A for r = a and u = B for r = b, where A
and B are constants. Search for a radially symmetric solution.

[u(x, y, z) = B + (A− B)( 1
a
− 1

b
)−1( 1

r
− 1

b
)]

8. Solve the equation uxx + uyy + uzz = 1 in the shell {0 < a < r < b} with
the condition u = 0 on both the outer and the inner boundary.

[u(x, y, z) = 1
6
(r2 − a2)− 1

6
ab(a+ b)( 1

a
− 1

r
)]

9. Solve the equation uxx + uyy + uzz = 1 in the shell {0 < a < r < b} with
the conditions u = 0 for r = a and ∂u/∂r = 0 for r = b. Then consider the
limit as a → 0 and give reasons for the result.

10. Show that the homogeneous Robin problem

Δu = 0 in Ω,
∂u

∂n
+ au = 0 on ∂Ω,
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has only the trivial solution u ≡ 0. Here Ω is a domain in R3 and a is
a positive constant. Using this result, prove the uniqueness of the boundary
value problem

Δu = f in Ω,
∂u

∂n
+ au = g on ∂Ω.

11. Let φ(x) be an arbitrary C2-function defined on R3 and nonzero outside
some ball. Show that

φ(0) = − 1

4π

∫∫∫
1

|x|Δφ(x)dx.

Here we integrate over the domain where φ(x) is nonzero.

12. Find Green’s function on the half-ball Ω = {x2 + y2 + z2 < a2, z > 0}.
Consider the solution on the whole ball and use the reflection method sim-
ilarly to Section 11.6.

[The result is a sum of four terms involving the distances of x to x0, x∗
0, x#

0 and
x∗#
0 , where ∗ denotes reflection across the sphere and # denotes reflection across

the plane z = 0.]

13. Find Green’s function on the eighth of the ball Ω = {x2 + y2 + z2 < a2,
x > 0, y > 0, z > 0}.

14. In the same way as we have defined Green’s function on the domain Ω, we
can define the so called Neumann function N(x,x0) with the only difference
that the property (ii) is replaced by the Neumann boundary condition

∂N

∂n
= 0 for x ∈ ∂Ω.

Formulate and prove the analogue of Theorem 11.7 on the expression for
the solution of the Neumann problem using the Neumann function.

15. Solve the Neumann problem on the half-space:
{

Δu = 0 for z > 0,
∂u
∂z (x, y, 0) = h(x, y), u bounded at infinity.

Consider the problem for the function v = ∂u/∂z.

[u(x, y, z) = C +
+∞∫
−∞

h(x− ξ) ln(y2 + ξ2) dξ]

16. Consider the four-dimensional Laplace operator Δu = uxx+uyy+uzz+uww.
Show that its fundamental symmetric solution is r−3/2, where we denoted
r2 = x2 + y2 + z2 + w2.
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17. Prove the vector form of Green’s second identity
∫∫∫

Ω

(u · rot rot v − v · rot rotu)dx =

∫∫

∂Ω

(u× rot v − v × rotu) · ndS,

where u(x), v(x) are smooth vector-valued functions, Ω is a domain with
smooth boundary, n is the outward normal vector to ∂Ω, u× v means the
vector product of vectors u and v, and rotu = ∇×u is the rotation of the
vector u.

18. Prove Green’s first identity for the biharmonic operator Δ2:
∫∫∫

Ω

vΔ2u dx =

∫∫∫

Ω

ΔuΔv dx−
∫∫

∂Ω

Δu
∂v

∂n
dS +

∫∫

∂Ω

v
∂

∂n
(Δu)dS.

Here Δ2u = Δ(Δu) = uxxxx + uyyyy + uzzzz + 2uxxyy + 2uyyzz + 2uxxzz.

19. A function u satisfying Δ2u = 0 is called biharmonic. Prove the Dirichlet
principle for biharmonic functions: “Among all functions v satisfying the
boundary conditions

v(x) = g(x),
∂v

∂n
(x) = h(x), x ∈ ∂Ω,

where g(x), h(x) ∈ C(∂Ω), the lowest energy

E(v) =
1

2

∫∫∫

Ω

|Δv|2dx

is attained by the biharmonic function.”
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Chapter 12

Diffusion Equation in Higher Dimensions

In the previous chapters we considered only one-dimensional models of evolution
equations. However, majority of physical phenomena occur in the plane, or in
the space. Therefore we now focus on the heat (and diffusion) equation in
higher dimensions, that is, on the equation

ut − kΔu = f, (12.1)

where Δu = uxx + uyy in the case of the two-dimensional model, or Δu =
uxx + uyy + uzz in the case of three-dimensional model, respectively.

12.1 Cauchy Problem in R3

12.1.1 Homogeneous Problem

Let us consider the Cauchy problem

{
ut = kΔu, x ∈ R3, t > 0,
u(x, 0) = ϕ(x).

(12.2)

As usual, we denote x = (x, y, z) ∈ R3.
We already know from the one-dimensional case (see Chapter 5) that we can

express the solution of the Cauchy problem on R in the integral form

u(x, t) =

+∞∫

−∞
G(x− y, t)ϕ(y)dy,

where ϕ is the given initial condition and G the so called fundamental solution
(diffusion kernel)

G(x, t) =
1

2
√
πkt

e−
x2

4kt .

As we will see, the same holds true in higher dimensions. We start with
the following observation. Let u1(x, t), u2(y, t), u3(z, t) be solutions of the
one-dimensional diffusion equation. Then u(x, y, z, t) = u1(x, t)u2(y, t)u3(z, t)
solves the diffusion equation in R3. We recommend the reader to verify it by
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direct substitution. It means that also the function

G3(x, t) = G(x, t)G(y, t)G(z, t)

=
1

8
√

(πkt)3
e−

1
4kt

(x2+y2+z2) =
1

8
√

(πkt)3
e−

1
4kt

|x|2

solves the diffusion equation ut − kΔu = 0 in R3. Since it satisfies∫∫∫

R3

G3(x, t)dx = 1

(the reader is kindly asked to verify this fact using the Fubini Theorem), it is
called the fundamental solution (or diffusion kernel).

Our aim is to show that the solution of the Cauchy problem (12.2) can be
written in the form of a convolution of this fundamental solution G3(x, t) and
the initial condition ϕ(x), that is,

u(x, t) =

∫∫∫

R3

G3(x− y, t)ϕ(y)dy. (12.3)

Here y = (ξ, η, θ) ∈ R3.
We start with a special initial condition with separated variables

ϕ(x) = φ(x)ψ(y)ζ(z).

In this case we have

u(x, t) =

∫∫∫

R3

G3(x− y, t)ϕ(y)dy

=

+∞∫

−∞
G(x− ξ)φ(ξ)dξ

+∞∫

−∞
G(y − η)ψ(η)dη

+∞∫

−∞
G(z − θ)ζ(θ)dθ

= u1(x, t)u2(y, t)u3(z, t),

where u1, u2, u3 are solutions of the one-dimensional diffusion equation. Thus
u(x, t) must solve the three-dimensional diffusion equation. Moreover,

lim
t→0+

u(x, t) = lim
t→0+

u1(x, t) lim
t→0+

u2(y, t) lim
t→0+

u3(z, t)

= φ(x)ψ(y)ζ(z) = ϕ(x)

and the initial condition with separated variables is satisfied as well. Due to
linearity, the same result must hold true for any finite linear combination of
functions with separated variables:

ϕ(x) =
n∑

k=1

ckφk(x)ψk(y)ζk(z). (12.4)
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It can be shown that any continuous and bounded function on R3 can be uni-
formly approximated by functions of type (12.4) on bounded domains. This
follows from the properties of Bernstein’s polynomials, which go beyond the
scope of this book. Nevertheless, this fact is the starting point for the following
existence result (see, e.g., Stavroulakis, Tersian [20]).

Theorem 12.1. Let ϕ(x) be a continuous and bounded function on R3. Then
the solution of the Cauchy problem (12.2) exists and is given by the formula

u(x, t) =

∫∫∫

R3

G3(x− y, t)ϕ(y)dy.

Moreover, we have
lim
t→0+

u(x, t) = ϕ(x)

uniformly on bounded sets of R3.

Remark 12.2. The same result holds true in any dimension. In particular,
the N -dimensional (N ≥ 1) fundamental solution assumes the form

GN (x, t) =
1

2N
√
(πkt)N

e−
1

4kt
|x|2 ,

where x = (x1, x2, . . . , xN ), |x| =
√

x21 + x22 + · · ·+ x2N , and the solution of the
Cauchy problem for a homogeneous diffusion equation on RN is given by the
formula

u(x, t) =

∫

RN

GN (x− y, t)ϕ(y)dy.

12.1.2 Nonhomogeneous Problem

Using the same approach as in Section 5.2, we can solve a diffusion equation
on R3 with sources:

{
ut − kΔu = f, x ∈ R3, t > 0,
u(x, 0) = ϕ(x).

(12.5)

Its solution is given by the following formula (we leave the derivation and
verification to the reader):
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u(x, t) =

���

R3

G3(x− y, t)ϕ(y)dy +

t�

0

���

R3

G3(x− y, t− s)f(y, s)dy ds.

12.2 Diffusion on Bounded Domains, Fourier
Method

In this section we focus on the diffusion equation on a bounded domain and on
its solution. That is, we deal with the problem

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

ut(x, t) = kΔu(x, t), x ∈ Ω, t > 0,

u(x, t) = h1(x, t), x ∈ Γ1,
∂u
∂n (x, t) = h2(x, t), x ∈ Γ2,
∂u
∂n (x, t) + au(x, t) = h3(x, t), x ∈ Γ3,

u(x, 0) = ϕ(x),

where, in general, Ω is a domain in RN , ϕ, hi, i = 1, 2, 3 are given functions,
a is a given constant, and Γ1 ∪ Γ2 ∪ Γ3 = ∂Ω. From the physical point of
view, such a problem describes the heat flow in a body filling the domain Ω
with the initial temperature given by ϕ(x). On Γ1 we keep the temperature on
the values h1(x, t); on the boundary Γ2 we consider the heat flux described by
h2(x, t); and on the third boundary segment Γ3 we consider the heat exchange
with the surrounding medium described by the heat transfer coefficient a and
a function h3(x, t). Usually, h3 = aT0, where T0 is the temperature of the
surrounding medium.

Similarly, the same problem describes the diffusion process of a gas in the do-
main Ω. The function ϕ(x) represents the initial concentration. The Dirichlet
boundary condition on Γ1 describes the concentration kept on Γ1, the Neumann
boundary condition on Γ2 determines the flow of the gas across the boundary,
and the Robin boundary condition on Γ3 describes a certain balance of the gas
concentration and its flow across the third boundary segment. In special cases,
some of the boundary segments can be empty.

One way to solve initial boundary value problems of this type is using the
Fourier Method. We illustrate this in a simpler situation. The following exposi-
tion is very informative and a lot of stated facts would require deep discussion
to make them precise. To make the basic idea clear, we present only formal
calculations.
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12.2.1 Fourier Method

Let us find a solution of the diffusion equation ut = kΔu on a bounded domain Ω
with homogeneous Dirichlet, Neumann, or Robin boundary conditions on ∂Ω,
and a standard initial condition. The idea of the Fourier method is the same as
in the one-dimensional case. First of all, we assume the solution in a separated
form

u(x, t) = V (x)T (t)

which, substituted into the equation, results in the identities

T �(t)
kT (t)

=
ΔV (x)

V (x)
= −λ,

where λ is a constant. Thus, we come to the eigenvalue problem for the Laplace
operator

−ΔV = λV in Ω (12.6)

with general homogenous boundary conditions

V = 0 on Γ1, (12.7)
∂V

∂n
= 0 on Γ2, (12.8)

∂V

∂n
+ a V = 0 on Γ3. (12.9)

It can be shown that the boundary value problem (12.6)–(12.9) has an infinite
sequence of nonnegative eigenvalues

λn → +∞ as n → +∞
and a corresponding complete system of orthogonal eigenfunctions Vn(x). The
reader should notice properties of the eigenvalue problem (12.6)–(12.9) similar
to those of the Sturm-Liouville problem stated in Appendix A. However, it can
be very difficult to find the actual values of λn.

Returning to the ODE in time variable

T �(t) + kλnT (t) = 0,

we obtain a system of time-dependent functions

Tn(t) = Ane−kλnt.

Putting these partial results together, we end up with a solution in the form

u(x, t) =
+∞∑
n=1

Ane
−kλntVn(x) (12.10)
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which satisfies the given initial condition provided ϕ is expandable into the
Fourier series

ϕ(x) =
+∞�
n=1

AnVn(x)

according to the system {Vn}+∞
n=1. Using the orthogonality of the eigenfunctions

Vn(x), we obtain the formula for the coefficients An:

An =

�
Ω

ϕ(x)Vn(x)dx
�
Ω

V 2
n (x)dx

.

(Since Ω is, in general, a domain in RN , the integrals above are also N -dimen-
sional!) We illustrate the previous steps by a concrete example.

Example 12.3. Let us find the temperature distribution in the rectangle
Ω = (0, a) × (0, b) whose boundary is kept on zero temperature; the initial
distribution is given by a function ϕ(x, y). That is, we solve the initial bound-
ary value problem

⎧⎨
⎩

ut = k(uxx + uyy), (x, y) ∈ (0, a) × (0, b), t > 0,
u(0, y, t) = u(a, y, t) = u(x, 0, t) = u(x, b, t) = 0,
u(x, y, 0) = ϕ(x, y).

(12.11)

First of all, we separate the time and space variables:

u(x, y, t) = V (x, y)T (t)

thus obtaining the system of equations

T �(t)
kT (t)

=
Vxx(x, y) + Vyy(x, y)

V (x, y)
= −λ,

where λ is a constant. This yields

T � + kλT = 0, Vxx + Vyy + λV = 0.

Now, we will have a look at the spatial problem in more detail. Since it is
a linear stationary PDE in a rectangle, we can use the separation of variables
again. Thus, we look for its solution in the form

V (x, y) = X(x)Y (y).

After the substitution, we obtain

X ��Y +XY �� + λXY = 0
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and hence, dividing by XY ,

X ��(x)
X(x)

= −Y ��(y)
Y (y)

− λ.

Since the left-hand side depends only on the x-variable and the right-hand side
depends only on the y-variable, we conclude that both sides of the identity
must be equal to a constant, say, −μ. Thus, we obtain two separated ODEs

X �� + μX = 0, Y �� + νY = 0,

where ν = λ− μ. To satisfy the homogeneous boundary conditions in (12.11),
the functions X and Y must satisfy the conditions

X(0) = X(a) = 0, Y (0) = Y (b) = 0.

Starting with the problem in the x-variable, we obtain

μn =
n2π2

a2
, Xn(x) = sin

nπx

a
, n ∈ N.

Similarly, for the problem in the y-variable, we get

νm =
m2π2

b2
, Ym(x) = sin

mπy

b
, m ∈ N.

Thus, the eigenvalues of the Laplace operator form a sequence

λmn = μn + νm =
n2π2

a2
+

m2π2

b2
, m, n ∈ N,

and the corresponding eigenfunctions

Vmn(x, y) = Xn(x)Ym(y) = sin
nπx

a
sin

mπy

b
, m, n ∈ N,

form an orthogonal system on (0, a) × (0, b) (notice the double index!). It can
be proved that this system is complete and hence λmn describe the set of all
eigenvalues of the Laplace operator on (0, a)×(0, b) with homogeneous Dirichlet
boundary conditions. Now, we solve the time problems T � + kλmnT = 0, that
is,

Tmn = Amne−kλmnt.

Hence, the solution of the original two-dimensional diffusion equation can be
written as

u(x, y, t) =

+∞∑
m=1

+∞∑
n=1

Amne
−kλmnt sin

nπx

a
sin

mπy

b
. (12.12)
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Functions of this form already satisfy homogeneous Dirichlet boundary con-
ditions. The remaining unused information is the initial condition. We can
conclude that for all initial conditions which are expandable into a series

ϕ(x, y) =

+∞∑
m=1

+∞∑
n=1

Amn sin
nπx

a
sin

mπy

b
, (12.13)

the solution of problem (12.11) is given by formula (12.12). Using the orthog-
onality of the eigenfunctions, we can determine the constants Amn:

Amn =

a∫
0

b∫
0

ϕ(x, y)Vmn(x, y)dy dx

a∫
0

b∫
0

V 2
mn(x, y)dy dx

.

�
Figure 12.1 depicts the solution of problem (12.11) with the constant initial

condition ϕ(x) = 100 and with the data a = 1, b = 1, k = 1. The first
graph corresponds to the approximated initial condition, the other three graphs
illustrate the approximated solution at times t = 0.01, t = 0.04 and t = 0.09.
We used formulae (12.12) and (12.13) with partial sums up to m = 15, n = 15.

The same approach can be used also for other types of boundary conditions
and for similar problems in higher dimensions.

Example 12.4. Let us solve the initial boundary value problem for the diffu-
sion equation ut = kΔu in the cube Ω = {0 < x < π, 0 < y < π, 0 < z < π}.
This time, consider homogeneous Neumann boundary conditions

ux(0, y, z, t) = ux(π, y, z, t) = 0,

uy(x, 0, z, t) = uy(x, π, z, t) = 0,

uz(x, y, 0, t) = uz(x, y, π, t) = 0,

and initial condition
u(x, y, z, 0) = ϕ(x, y, z).

We proceed in the same way as in the previous example. First, we separate
the time and space variables to obtain

T � + kλT = 0, Vxx + Vyy + Vzz + λV = 0.

Second, we apply the separation of variables to the spatial problem. Thus, we
get three ODEs

X �� + μX = 0,

Y �� + νY = 0,

Z �� + ηZ = 0,
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t = 0.09

Figure 12.1. Graphic illustration of the solution of the initial boundary value problem
(12.11) with constant initial condition on time levels t = 0, 0.01, 0.04, 0.09.

where λ = μ+ν+η. Adding the boundary conditions X ′(0) = X ′(π) = Y ′(0) =
Y ′(π) = Z ′(0) = Z ′(π) = 0 and solving the corresponding ODE problems, we
obtain

μn = n2, νm = m2, ηl = l2, l,m, n ∈ N ∪ {0}
and

Xn(x) = cosnx, Ym(y) = cosmy, Zl(z) = cos lz, l,m, n ∈ N ∪ {0}.

Thus, the eigenvalues of the Laplace operator in the cube Ω = {0 < x < π,
0 < y < π, 0 < z < π} with homogeneous Neumann boundary conditions form
a sequence

λlmn = m2 + n2 + l2, m, n, l ∈ N ∪ {0},
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with the corresponding system of eigenfunctions

Vlmn = cosnx cosmy cos lz, m, n, l ∈ N ∪ {0}.
Notice that in this case the problem has zero eigenvalue with a constant eigen-
function.

Now, we can continue with the time problem. In the same way as in the
previous cases, we obtain

Tlmn(t) = Blmne
−kλlmnt for (m,n, l) �= (0, 0, 0)

and
T000(t) = B000,

and we can conclude that the required solution is given by

u(x, y, z, t) =
+∞�
l=0

+∞�
m=0

+∞�
n=0

Blmne
−kλlmnt cosnx cosmy cos lz,

where the coefficients Blmn follow from the expansion of the initial condition

ϕ(x, y, z) =

+∞�
l=0

+∞�
m=0

+∞�
n=0

Blmn cosnx cosmy cos lz.

That is,

Blmn =
23

π3

π�

0

π�

0

π�

0

ϕ(x, y, z) cosnx cosmy cos lz dx dy dz (12.14)

for n,m, l > 0; for B0mn, Bl0n, or Blm0 we have to use one-half of (12.14), for
B00n, B0m0, Bl00 we use one-fourth, and for B000 we use one-eighth of (12.14).

�
As we can see, the geometry (in particular, the rectangularity) of the do-

main Ω is crucial for easy determination of the eigenvalues and the correspond-
ing eigenfunctions of the problems considered. We already know that other
domains which allow the application of the Fourier method, are a disc and
a ball (or their suitable parts), since they both become rectangular under the
transformation into the polar or spherical coordinates, respectively. Moreover,
in the radially symmetric situations, the problems are considerably simplified.

Example 12.5 (Diffusion in Disc). Let us consider the heat problem in the
disc ⎧⎨

⎩
ut = kΔu, x2 + y2 < a2, t > 0,
u(x, y, t) = 0, x2 + y2 = a2, t > 0,

u(x, y, 0) = ϕ(
�
x2 + y2), x2 + y2 < a2.

(12.15)
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Since the domain is circular, we will transform the problem using polar co-
ordinates (r, θ). Moreover, the problem data (that is, the boundary and initial
conditions) do not depend on the angle θ, thus the solution u is expected to
be radially symmetric and we solve the simplified problem in two variables r
and t: ⎧⎨

⎩
ut = k(urr +

1
rur), 0 < r < a, t > 0,

u(r, t) = 0, r = a, t > 0,
u(r, 0) = ϕ(r), 0 ≤ r < a.

As usual, we separate the variables

u(r, t) = R(r)T (t)

and obtain
T �(t)
kT (t)

=
R��(r) + 1

rR
�(r)

R(r)
= −λ.

The spatial ODE is the so called Bessel equation

R��(r) +
1

r
R�(r) + λR(r) = 0

which has a pair of linearly independent solutions. The first, which is finite at
r = 0, is the Bessel function of order zero

R(r) = J0(
√
λr) =

+∞�
j=0

(−1)j
(
√
λr/2)2j

(j!)2
.

The second solution of the Bessel equation is infinite at r = 0 and thus we are
not interested in it. (For more details, see Appendix B.) Further, we have to
satisfy the homogeneous boundary condition on the boundary r = a, that is,

R(a) = J0(
√
λa) = 0.

Thus we get a sequence of eigenvalues

λn =
1

a2
μ2
n, n ∈ N,

and corresponding eigenfunctions

Rn(r) = J0(
�
λnr) = J0(μn

r

a
), n ∈ N.

Here μn are the roots of the Bessel function J0. (Each Bessel function has an
infinite number of positive roots that go to infinity, cf. Appendix B.)

Now, we go back to the time problem, which has the standard solution

Tn(t) = Ane
−kλnt.
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The solution of the original problem (12.15) then can be written in the form

u(r, t) =

+∞∑
n=1

Ane
−kλntJ0(

√
λnr),

where coefficients An are determined by the initial condition

ϕ(r) =

+∞∑
n=1

AnJ0(
√

λnr).

For ρ = r
a ∈ [0, 1] we have

ϕ(aρ) =
+∞∑
n=1

AnJ0(μnρ)

and the properties of the Bessel functions stated at the end of Appendix B
imply

An =
2

J �2
0(μn)

1∫

0

ρJ0(μnρ)ϕ(aρ) dρ

(the reader is kindly asked to carry out detailed calculations). �
Figure 12.2 depicts the solution of problem (12.15) for the choice a = 1, k = 1

and with the initial condition

ϕ(x, y) = ϕ(r) = J0(μ1r) + J0(μ2r), (12.16)

where J0 is the Bessel function of order zero and μ1, μ2 are its first two roots.
Notice that, for this data, the solution assumes the form

u(x, y, t) = u(r, t) = e−μ2
1tJ0(μ1r) + e−μ2

2tJ0(μ2r).

The particular graphs in Figure 12.2 correspond to the solution at times t = 0,
t = 0.01, t = 0.04 and t = 0.09.

12.2.2 Nonhomogeneous Problems

The idea of solving nonhomogeneous problems for the diffusion equation in
higher dimensions is exactly the same as in the one-dimensional case. If we
solve a nonhomogeneous equation, we find the system of eigenfunctions Vn(x)
corresponding to the homogeneous problem and expand all the problem data
(that is, the right-hand side, the initial condition, as well as the searched so-
lution) to Fourier series with respect to this system. Using its completeness
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Figure 12.2. Graphic illustration of the solution of the initial boundary value problem
(12.15) with initial condition (12.16) on time levels t = 0, 0.01, 0.04, 0.09.

and orthogonality, we split the original PDE problem into an infinite system of
ODEs in the time variable which are easy to solve.

Problems with nonhomogeneous boundary conditions can cause more trouble.
The idea is, again, to split the solution into two parts: the first part corresponds
to the solution satisfying the equation with homogeneous boundary conditions,
while the second “stationary” (or “quasi-stationary”) part respects the nonhomo-
geneous boundary conditions. In one-dimensional cases, we usually “guessed”
the stationary part easily (see Section 7.3). In higher dimensions, it means to
solve the Laplace equation with given nonhomogeneous boundary conditions,
which can be very laborious. Again, the rectangularity of the domain can be
essential.
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222 Chapter 12 Diffusion Equation in Higher Dimensions

12.3 General Principles for Diffusion Equation

The aim of this section is to recall all basic properties of the diffusion equation
which remain unchanged in any dimension.

First of all, the solution formula in Theorem 12.1 implies that diffusion (as
well as heat) propagates at infinite speed. After any short time, the solution is
nonzero everywhere, even if the initial condition was nonzero only on a small
domain. As we have already mentioned in Chapter 5, this fact reflects the
inaccuracy of the diffusion model. However, the incurred error is very small
and the diffusion equation can be used as a good approximation of many real
problems.

Another property which occurs in any dimension is the ill-posedness of the
diffusion problems for t < 0. It is not possible to determine the temperature
of the body backwards in time, neither to find the original concentration of
a diffusing gas, provided we know only the actual state.

A very important property of the diffusion equation on any (bounded or
unbounded) domain in any dimension is the Maximum Principle. Its strong
version says that the maximum and minimum values of the solution are achieved
only on the bottom or jacket of the space-time cylinder, unless the solution is
constant. Here the bottom of the cylinder is the (in general, N -dimensional)
domain Ω at time t = 0, and the jacket represents the boundary ∂Ω at any
time t > 0! See Figure 12.3.

Rn
Ω ∂Ω

t

t = 0

t = T

Figure 12.3. Space-time cylinder Ω × [0, T ].

As in the one-dimensional case, the Maximum Principle has many conse-
quences. The most important ones are the uniqueness and uniform stability of
the solution. Studying the corresponding proofs in Section 10.4, notice their
independence of the dimension.
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The uniqueness and stability properties can be obtained also via the energy
method, which can be applied in any dimension. We again refer to Section 10.5.

12.4 Exercises

1. Solve the following problem for the diffusion equation on the whole space:
�

ut − Δu = 0, (x, y, z) ∈ R3, t > 0,
u(x, y, z, 0) = x2yz.

[u(x, y, z, t) = x2yz + 2tyz]

2. Solve the following problem for the diffusion equation on the whole space:
�

ut − Δu = 0, (x, y, z) ∈ R3, t > 0,
u(x, y, z, 0) = x2yz − xyz2.

[u(x, y, z, t) = y(xz − 2t)(x− z)]

3. Using the reflection method (method of odd extension), find a formula for
the solution of the initial boundary value problem for the diffusion equation
in the half-plane

⎧⎨
⎩

ut − kΔu = 0, x > 0, y ∈ R, t > 0,
u(0, y, t) = 0,
u(x, y, 0) = ϕ(x, y).

[u(x, y, t) =
+∞�
−∞

+∞�
0

(G2(x− ξ, y − η, t)−G2(x+ ξ, y − η, t))ϕ(ξ, η) dξ dη]

4. Using the reflection method (method of even extension), find a formula for
the solution of the initial boundary value problem for the diffusion equation
in the half-space

⎧⎨
⎩

ut − kΔu = 0, (x, y) ∈ R2, z > 0, t > 0,
uz(x, y, 0, t) = 0,
u(x, y, z, 0) = ϕ(x, y, z).

[u(x, y, z, t) =
+∞�
−∞

+∞�
−∞

+∞�
0

(G3(x− ξ, y − η, z − θ, t)−G3(x+ ξ, y − η, z − θ, t))ϕ(ξ, η, θ) dξ dη dθ]

5. Solve the diffusion equation ut = uxx + uyy in the disc x2 + y2 < 1 with
homogeneous Dirichlet boundary condition and with the initial condition
u(x, y, 0) = 1− x2 − y2.

[in polar coordinates: u(r, t) = 8
+∞�
k=1

e−μ2
kt J0(μkr)

μ3
kJ1(μk)

.]

 EBSCOhost - printed on 2/10/2023 4:02 PM via . All use subject to https://www.ebsco.com/terms-of-use



224 Chapter 12 Diffusion Equation in Higher Dimensions

6. Solve the problem
⎧⎨
⎩

ut = a2(urr +
1
rur), 0 < r < R, t > 0,

u(r, 0) = T,
∂
∂ru(r, t)|r=R = q.

[u(r, t) = T +qR(2 a2t
R2 − 1

4
(1−2 r2

R2 )−
+∞�
n=1

2e−(aμn/R)2t

μ2
nJ0(μn)

J0(
μnr
R

), where μn are positive

roots of J1]

7. Consider the problem of cooling of the ball of radius R with a radiation
boundary condition

ur(R, t) = −hu(R, t),

where h is a positive constant and Rh < 1. Assume that the initial tem-
perature u(x, t) = ϕ(r) depends only on the radius r. Solve the radially
symmetric diffusion equation using the Fourier method. (The eigenvalues
λn are obtained as the positive roots of the equation tanRλ = Rλ

1−Rh .)

8. Consider a thin rectangular plate of length a and width b with perfect
lateral insulation. Find the distribution of temperature in the plate for the
following data: a = 2π, b = 4π, k = 1, boundary conditions

ux(0, y, t) = 0, ux(a, y, t) = 0,

uy(x, 0, t) = 0, uy(x, b, t) = 0,

and the initial condition

u(x, y, 0) = cos 3x, 0 ≤ x ≤ a, 0 ≤ y ≤ b.

9. Find the distribution of temperature in a semicircular plate (0 < θ < π)
of radius 1 with the initial condition u(r, θ, 0) = g(r, θ) and the boundary
conditions

(a) u(r, 0, t) = 0, u(r, π, t) = 0, u(1, θ, t) = 0.

(b) uθ(r, 0, t) = 0, uθ(r, π, t) = 0, u(1, θ, t) = 0.

What happens after infinitely long time?
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Chapter 13

Wave Equation in Higher Dimensions

13.1 Cauchy Problem in R3 – Kirchhoff’s Formula

Let us consider the Cauchy problem for the wave equation in R3

�
utt = c2Δu, x = (x, y, z) ∈ R3, t > 0,
u(x, 0) = ϕ(x), ut(x, 0) = ψ(x).

(13.1)

First of all, we state and derive the explicit formula for its solution.

Theorem 13.1 (Kirchhoff’s Formula). Let ϕ ∈ C3(R3) and ψ ∈ C2(R3).
The classical solution of the Cauchy problem for the homogeneous wave equa-
tion (13.1) exists, it is unique and is given by the formula

u(x0, t) =
1

4πc2t

��

|x−x0|=ct

ψ(x)dS +
∂

∂t

⎛
⎜⎝ 1

4πc2t

��

|x−x0|=ct

ϕ(x)dS

⎞
⎟⎠ . (13.2)

Here the integrals are surface integrals over the sphere with its center at x0

and radius ct. This formula is known as Kirchhoff’s formula but its author is
Poisson. For its derivation, we use the so called spherical means.

Let us denote by u(x0, r, t) the mean (average) value of the function u(x, t)
over the sphere |x− x0| = r, that is

u(x0, r, t) =
1

4πr2

��

|x−x0|=r

u(x, t)dS.

Using transformation to spherical coordinates, we can write

u(x0, r, t) =
1

4π

2π�

0

π�

0

u(r, θ, ϕ, t) sinϕdϕdθ,

where

u(r, θ, ϕ, t) = u(x0 + r cos θ sinϕ, y0 + r sin θ sinϕ, z0 + r cosϕ, t).
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Proof of Theorem 13.1 (Derivation of Kirchhoff’s Formula). The main idea of
the derivation of Kirchhoff’s formula consists of two steps. First, we solve the
problem (13.1) for the spherical means, and, second, we pass to the solution of
the original problem using the relation

u(x0, t) = lim
r→0

u(x0, r, t). (13.3)

Let us start with the following observation: if u satisfies the wave equation,
then u satisfies it as well. Indeed, the equality utt = (u)tt is obvious. Fur-
ther, using spherical coordinates and the rotational invariance of the Laplace
operator, we obtain

Δu = Δu = urr +
2

r
ur. (13.4)

(The direct derivation of (13.4) is required in Exercise 3 in Section 13.6.) Thus,
u satisfies the equation

utt = c2(urr +
2

r
ur). (13.5)

Now, we introduce the substitution

v(r, t) = ru(x0, r, t). (13.6)

Since vtt = rutt, vr = rur + u and vrr = rurr + 2ur, equation (13.5) reduces to

vtt = c2vrr (13.7)

for (r, t) ∈ (0,+∞) × (0,+∞). Obviously, we can set

v(0, t) = 0. (13.8)

Moreover, since u solves the original Cauchy problem (13.1), v must fulfil the
initial conditions

v(r, 0) = rϕ(x0, r), vt(r, 0) = rψ(x0, r). (13.9)

However, equation (13.7) with the boundary condition (13.8) and initial condi-
tions (13.9) forms a standard one-dimensional problem for the wave equation
on the half-line. The solution was found in Section 7.1 and for 0 ≤ r ≤ ct it
can be written in the form

v(r, t) =
1

2

(
(ct+ r)ϕ(x0, ct+ r)− (ct− r)ϕ(x0, ct− r)

)
+

1

2c

ct+r∫

ct−r

sψ(x0, s)ds.
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If we rewrite the first term on the right-hand side, we obtain an equivalent
formula

v(r, t) =
1

2c

⎛
⎝ ∂

∂t

ct+r�

ct−r

sϕ(x0, s)ds+
ct+r�

ct−r

sψ(x0, s)ds

⎞
⎠ (13.10)

for 0 ≤ r ≤ ct.
Now we determine the value of u(x0, t). As we have stated above, we use

relation (13.3), that is,

u(x0, t) = lim
r→0

u(x0, r, t) = lim
r→0

v(r, t)

r

= lim
r→0

v(r, t)− v(0, t)

r
=

∂v

∂r
(0, t).

We differentiate (13.10) to obtain

∂v

∂r
=

1

2c

∂

∂t

�
(ct+ r)ϕ(x0, ct+ r) + (ct− r)ϕ(x0, ct− r)

�

+
1

2c

�
(ct+ r)ψ(x0, ct+ r) + (ct− r)ψ(x0, ct− r)

�
.

Putting r = 0, we get

u(x0, t) =
∂v

∂r
(0, t) =

1

2c

∂

∂t

�
(2ct)ϕ(x0, ct)

�
+

1

2c
(2ct)ψ(x0, ct)

=
∂

∂t

�
tϕ(x0, ct)

�
+ tψ(x0, ct)

=
∂

∂t

⎛
⎜⎝ 1

4πc2t

��

|x−x0|=ct

ϕ(x)dS

⎞
⎟⎠+

1

4πc2t

��

|x−x0|=ct

ψ(x)dS,

which is exactly Kirchhoff’s formula (13.2).
The uniqueness of the classical solution is a consequence of the linearity of

the equation and can be proved easily (see Exercise 13 in Section 13.6).

Remark 13.2. Unlike the one-dimensional case when the solution given by
d’Alembert’s formula is as regular as the initial displacement, here the solution
is less regular because of the time derivative in Kirchhoff’s formula. In general,
if ϕ ∈ Cn+1(R3) and ψ ∈ Cn(R3), n ≥ 2, then u is of the class Cn on R3 ×
(0,+∞). If ϕ and ψ are both of class C2, then the second derivatives of u can
be unbounded at some points and the solution is not the classical one. This
fact is known as the focusing effect.
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Huygens’ principle. Let us notice that, according to Kirchhoff’s formula,
the solution of (13.1) at the point (x0, t) depends only on the values of ϕ(x)
and ψ(x) for x from the spherical surface |x − x0| = ct, but it does not
depend on the values of the initial data inside this sphere. Similarly, using
the opposite point of view we conclude that the values of ϕ and ψ at a point
x1 ∈ R3 influence the solution of the three-dimensional wave equation only
on the spherical surface |x − x1| = ct. This phenomenon is called Huygens’
principle.

This principle corresponds to the fact that, in the “three-dimensional world”,
solutions of the wave equation propagate exactly at the speed c. For instance,
any electromagnetic signal in a vacuum propagates exactly at the speed of light,
or any sound is carried through the air exactly at the speed of sound without
any “echoes” (assuming no barriers). This means that the listener hears at
time t what the speaker said exactly at time (t − d/c) (here d is the distance
between the persons), and not a mess of sounds produced at different times.

As we already know from d’Alembert’s formula, this principle does not hold
true in one dimension, and as we shall see later, neither in two dimensions.

13.2 Cauchy Problem in R2

Let us consider now the Cauchy problem for the homogeneous wave equation
in R2

�
utt = c2(uxx + uyy), (x, y) ∈ R2, t > 0,
u(x, y, 0) = ϕ(x, y), ut(x, y, 0) = ψ(x, y).

(13.11)

We can handle it as a “special three-dimensional problem” the solution of which
does not depend on the variable z. Then, according to Kirchhoff’s formula, the
solution u = u(x0, t) = u(x0, y0, 0, t) satisfies

u(x0, t) =
1

4πc2t

��

|x−x0|=ct

ψ(x)dS +
∂

∂t

⎛
⎜⎝ 1

4πc2t

��

|x−x0|=ct

ϕ(x)dS

⎞
⎟⎠ . (13.12)

Here x0 = (x0, y0, 0), x = (x, y, z) and ϕ(x) = ϕ(x, y), ψ(x) = ψ(x, y) for
any z. Relation (13.12) really describes the solution of (13.11) (the reader is
asked to verify it), but we can obtain a simpler formula.
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First of all, both integrals in (13.12) can be written as
��

|x−x0|=ct

· · · =
��

S+

· · ·+
��

S−

· · · = 2

��

S+

. . . ,

where

S+ = {(x, y, z) ∈ R3; z =
�

c2t2 − (x− x0)2 − (y − y0)2},
S− = {(x, y, z) ∈ R3; z = −

�
c2t2 − (x− x0)2 − (y − y0)2}

are the upper and lower hemispheres. On the upper hemisphere, we can rewrite
the surface element dS as

dS =

�
1 +

�
∂z

∂x

�2

+

�
∂z

∂y

�2

dx dy

=

�
1 +

�−(x− x0)

z

�2

+

�−(y − y0)

z

�2

dx dy =
ct

z
dx dy

=
ct�

c2t2 − (x− x0)2 − (y − y0)2
dx dy.

Thus, formula (13.12) can be simplified to

u(x0, y0, t) = 2
1

4πc2t

��

D

ψ(x, y)
ct�

c2t2 − (x− x0)2 − (y − y0)2
dx dy

+2
∂

∂t

⎛
⎝ 1

4πc2t

��

D

ϕ(x, y)
ct�

c2t2 − (x− x0)2 − (y − y0)2
dx dy

⎞
⎠ ,

where D is the disc (x−x0)
2+(y−y0)

2 ≤ c2t2. Thus, we can conclude that the
solution of the Cauchy problem (13.11) for the wave equation on R2 is given by

u(x0, t) =
1

2πc

��

|x−x0|≤ct

ψ(x)�
c2t2 − |x− x0|2

dx

+
∂

∂t

⎛
⎜⎝ 1

2πc

��

|x−x0|≤ct

ϕ(x)�
c2t2 − |x− x0|2

dx

⎞
⎟⎠ .

(13.13)

Here we have x = (x, y) and x0 = (x0, y0).
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Let us notice the main difference between Kirchhoff’s formula (13.2) for the
three-dimensional problem and formula (13.13) for the two-dimensional prob-
lem. This difference concerns the domain of integration: in the former case,
it is just the spherical surface |x − x0| = ct, however, in the latter case, we
integrate over the whole disc |x − x0| ≤ ct. It means that Huygens’ principle
does not hold true in two dimensions! For instance, in the ideal case, waves
caused by a pebble thrown onto the water level propagate at a certain speed c.
At the same time, every point of the water level once reached by the front wave
stays in the wave motion for an infinitely long time. We could see new and
new circles appearing on the water-level forever. However, the wave equation
is only an approximate model and the real situation is more complicated.

Another – fictitious – example considers life in “Flatland”. In such a “world”
(which is only two-dimensional), any sound propagates not at the given speed c,
but at all speeds less or equal to c, and thus it is heard forever. So the listener
hears at one moment a mix of words the speaker has said at different times.

It can be shown that the method of spherical means can be applied in any
odd dimension greater or equal to three, and thus Huygens’ principle holds
true there. Conversely, it is false in any even dimension.

Example 13.3. A simple example that illustrates the different wave propaga-
tion in various dimensions is the “unit hammer blow”. Let us solve the problem

{
utt = c2Δu, x ∈ RN , t > 0,
u(x, 0) = ϕ(x), ut(x, 0) = ψ(x)

with
ϕ(x) ≡ 0, ψ(x) =

{
1, |x| < a,
0, |x| > a,

choosing N = 1, 2 and 3. For N = 1 the solution is given by d’Alembert’s
formula, for N = 2 we use (13.13), and for N = 3 the solution is described by
Kirchhoff’s formula (13.2). We can observe the following behavior:

N = 1: At time t (> a
c ), the front wave reaches the point |x| = ct + a. At

the point |x| = ct− a, the wave achieves its maximal displacement (equal
to a

c ) and stays constant on the whole interval |x| < ct−a. The front wave
propagates at speed c, but its influence is evident at all points |x| < ct+a.
For details, see Example 4.5.

N = 2: At time t, the front wave reaches the point |x| = ct+ a, then the wave
achieves its maximum (of order 1√

t
), and, for |x| → 0, it decreases as

1√
(ct)2−|x|2 . The wave has a sharp front, but it has not sharp tail. As in
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one dimension, the nonzero initial condition at |x| < a results in nonzero
displacement at all points |x| < ct+ a.

N = 3: At time t, again, the front wave reaches the point |x| = ct + a. The
maximal displacement a2

4c2t
is achieved at |x| = ct, and then the wave

decreases again to zero position at |x| = ct−a. The whole wave propagates
at speed c and does not change its shape – a nonzero initial condition at
|x| < a causes a nonzero displacement only at points ct−a < |x| < ct+a.

The different behavior in these three cases is sketched in Figure 13.1.

|x|0 ct

N = 1

�

|x|0 ct

N = 2

�

|x|0 ct ct+ act− a

N = 3

�

Figure 13.1. “Hammer blow” in one, two and three dimensions.

�

13.3 Wave with Sources in R3

Let us consider the non-homogeneous Cauchy problem

{
utt − c2Δu = f(x, t), x = (x, y, z) ∈ R3, t > 0,
u(x, 0) = ϕ(x), ut(x, 0) = ψ(x).

(13.14)

We will use the operator method for its solving. Let us denote by uH(x, t) the
solution of the homogeneous problem (i.e., (13.14) with f ≡ 0). We have found
in Section 13.1 that such a solution can be written in the form

uH(x0, t) = (∂tS(t)ϕ)(x0) + (S(t)ψ)(x0),
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where S is the so called source operator given by the formula

(S(t)ψ)(x0) =
1

4πc2t

��

|x−x0|=ct

ψ(x)dS. (13.15)

The idea of the operator method is exactly the same as in Section 4.4. Again,
it can be shown that the influence of the right-hand side f in problem (13.14)
can be described by the term

uP (x0, t) =

t�

0

S(t− s)f(x0, s)ds.

Hence, after substitution,

uP (x0, t) =

t�

0

1

4πc2(t− s)

��

|x−x0|=c(t−s)

f(x, s)dS ds,

and, using the relation s = t− 1
c |x−x0| on the sphere of integration, we obtain

uP (x0, t) =
1

4πc

t�

0

��

|x−x0|=c(t−s)

f(x, t − 1
c |x− x0|)

|x− x0| dS ds. (13.16)

Here the domain of integration is, in fact, the jacket of a four-dimensional space-
time cone with its vertex at (x0, t) and the base formed by the ball |x−x0| ≤ ct.
Thus, we can rewrite the expression in (13.16) into a triple integral obtaining

uP (x0, t) =
1

4πc

���

|x−x0|≤ct

f(x, t − 1
c |x− x0|)

|x− x0| dx. (13.17)

(The reader is asked to justify it.) Due to linearity of the equation, the final
solution of (13.14) is the sum of uH and uP :

u(x0, t) =
1

4πc2t

��

|x−x0|=ct

ψ(x)dS +
∂

∂t

⎛
⎜⎝ 1

4πc2t

��

|x−x0|=ct

ϕ(x)dS

⎞
⎟⎠

+
1

4πc

���

|x−x0|≤ct

f(x, t− 1
c |x− x0|)

|x− x0| dx.
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Remark 13.4. Let us compare (13.17) with the stationary solution of the same
problem, that is, the solution ustat of the Poisson problem

−c2Δu = f

on the whole space R3. Using formula (11.18) without the boundary term and
with the choice G(x,x0) =

1
4πc|x−x0| , we obtain

ustat(x0) =
1

4πc

∫∫∫

R3

f(x)

|x− x0| dx. (13.18)

(The reader is asked to verify that it really solves the Poisson equation on R3.)
As we can see, evolution formula (13.17) differs from the bounded stationary
solution (13.18) just at its “retarded” time by the amount 1

c |x− x0|.

13.4 Characteristics, Singularities, Energy and
Principle of Causality

Now we focus on the qualitative properties of the wave equation and its solution.
We show how to derive these properties directly from the equation itself but
not from the formula expressing the solution.

13.4.1 Characteristics

Like in one dimension, we can introduce the notion of characteristics, but now
we speak about characteristic surfaces. The fundamental one arises if we rotate
a one-dimensional characteristic line x− x0 = c(t− t0) around the t = t0 axis.
We thus obtain a cone in the four-dimensional space-time (a “hypercone”):

|x− x0| =
√

(x− x0)2 + (y − y0)2 + (z − z0)2 = c|t− t0|. (13.19)

This set is called the characteristic cone or the light cone at the point (x0, t0).
We can imagine it as the union of all (light) rays emanating from the point
(x0, t0) at the speed c, that is |dx/dt| = c. For a fixed t, the light cone reduces
to a sphere and the light rays are all orthogonal to it (see Figure 13.2 for R2

illustration).
The body |x− x0| ≤ c|t− t0| is called the solid light cone ; it consists of the

future and past half cone. The past of the point (x0, t0) is formed by all points
that have influenced the solution at (x0, t0); the future of the point (x0, t0)
contains points that can be affected by the situation at (x0, t0), that is points
that can be reached by a particle traveling from (x0, t0) at a speed less or equal
to c.
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(x0, t0)

·

light ray

tangent

Figure 13.2. Light cone at a point (x0, t0), x0 ∈ R2, and orthogonality of light rays
to the sphere |x− x0| = c|t− t0|.

The fundamental property of characteristic surfaces in any dimension is that
they are the only surfaces that can carry singularities of the solutions of the wave
equation. We only recall that by a singularity we mean a point of discontinuity
of the solution or of some of its derivatives.

13.4.2 Energy

Another property of the wave equation that remains valid in the same way as
in one dimension is the conservation of energy. Indeed, if we multiply the wave
equation by ut and integrate it over R3, we obtain

0 =

∫∫∫

R3

(utt − c2Δu)ut dx (13.20)

=

∫∫∫

R3

(1
2
u2t +

1

2
c2|∇u|2

)
t
dx−

∫∫∫

R3

c2∇ · (ut∇u)dx.

If we rewrite the last integral as
∫∫∫

R3

c2∇ · (ut∇u)dx = lim
r→+∞

∫∫∫

Br(0)

c2∇ · (ut∇u)dx,
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where Br(0) is the ball centered at the origin with radius r, and use the Diver-
gence Theorem, we obtain

∫∫∫

R3

c2∇ · (ut∇u)dx = lim
r→+∞

∫∫

∂Br(0)

c2ut∇u · ndx.

If we assume that the derivatives of u(x, t) tend to zero for |x| → +∞ quickly
enough, then the last integral vanishes. Hence, (13.20) reduces to

0 =

∫∫∫

R3

(1
2
u2t +

1

2
c2|∇u|2

)
t
dx.

Moreover, if we change the order of integration and time differentiation, we
obtain

0 =
∂

∂t

∫∫∫

R3

(1
2
u2t +

1

2
c2|∇u|2

)
dx.

Since the term
∫∫∫

1
2u

2
t dx corresponds to the kinetic energy Ek and the term∫∫∫

1
2c

2|∇u|2 dx represents the potential energy Ep, we can conclude that the
total energy E = Ek + Ep is a constant function with respect to time t.

13.4.3 Principle of Causality

We already know (from Huygens’ principle and the solution formula) that the
solution of the N -dimensional Cauchy problem for the wave equation at a point
(x0, t0) depends on the values of the initial displacement ϕ(x) and the initial
velocity ψ(x) for x belonging to the sphere |x−x0| = ct0 if N is odd (N ≥ 3),
and x belonging to the whole ball |x−x0| ≤ ct0 if N is even. However, a similar
(though a little bit weaker) information follows directly from the wave equation
itself. In particular, we can formulate the so called principle of causality.

Theorem 13.5. The value of u(x0, t0) can depend only on the values of ϕ(x)
and ψ(x) for x from the ball |x− x0| ≤ ct0.

Idea of proof (cf. Strauss [21]). We use the same approach as in one dimension
(see Section 10.1). We consider the three-dimensional case; however, the idea is
applicable in any dimension. We take the wave equation and multiply it by ut.
After standard calculations and assuming that all derivatives make sense, we
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obtain

0 = uttut − c2Δuut

=
(1
2
u2t +

1

2
c2|∇u|2

)
t
− c2∇ · (ut∇u)

=
(1
2
u2t +

1

2
c2|∇u|2

)
t
+ (−c2utux)x + (−c2utuy)y + (−c2utuz)z

= divf ,

where f is a four-dimensional vector

f =
(
− c2utux,−c2utuy,−c2utuz,

1

2
(u2t + c2|∇u|2)

)
.

Now, we integrate the equality divf = 0 over a solid cone frustum F , which is
a piece of the solid light cone in the four-dimensional space-time. If we use the
four-dimensional Divergence Theorem, we can write

0 =

∫∫∫∫

F

divf =

∫∫∫

∂F

f · ndV

=

∫∫∫

∂F

(1
2
n4(u

2
t + c2|∇u|2)− n1(c

2utux)− n2(c
2utuy)− n3(c

2utuz)
)

dV,

where ∂F denotes the boundary of F and n = (n1, n2, n3, n4) is the unit out-
ward normal vector to ∂F with components ni, i = 1, . . . , 4, in directions
x, y, z, t. The rest of the proof is the same as in one dimension (cf. Section 10.1).
Now ∂F is three-dimensional and consists of the top T , the bottom B and the
jacket K (see Figure 13.3 for R2 illustration). Thus, the integral splits into
three parts ∫∫∫

∂F

=

∫∫∫

T

+

∫∫∫

B

+

∫∫∫

K

= 0.

On the top T , the normal vector has the upward direction n = (0, 0, 0, 1) and
the corresponding integral reduces to

∫∫∫

T

(1
2
u2t +

1

2
c2|∇u|2

)
dx.

Similarly, on the bottom B, the normal vector has the downward direction,
that is n = (0, 0, 0,−1) and we have

∫∫∫

B

−
(1
2
u2t +

1

2
c2|∇u|2

)
dx = −

∫∫∫

B

(1
2
ψ2 +

1

2
c2|∇ϕ|2

)
dx.
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On the jacket K, we cannot argue so simply, but it can be proved that the
corresponding integral is positive or zero (see, e.g., Strauss [21]). Using these
facts, we obtain the inequality

∫∫∫

T

(1
2
u2t +

1

2
c2|∇u|2

)
dx ≤

∫∫∫

B

(1
2
ψ2 +

1

2
c2|∇ϕ|2

)
dx. (13.21)

Now, let us assume that the functions ϕ and ψ are zero on B. Inequality (13.21)
implies that 1

2u
2
t +

1
2c

2|∇u|2 = 0 on T , and thus ut ≡ ∇u ≡ 0 on T . Moreover,
since this result holds true for a frustum of an arbitrary height, we obtain that
ut and ∇u are zero (and thus u constant) in the entire solid cone. And since
u = 0 on B, we can conclude u ≡ 0 in the entire cone. In particular, this implies
that if we take two solutions u1, u2 with the same initial conditions on B, then
u1 ≡ u2 in the entire solid cone.

(x0, t0)

T

(x0, 0)·B

KF

Figure 13.3. Solid cone frustum F .

Remark 13.6. We can state the “converse” assertion to the Principle of Causal-
ity: the initial conditions ϕ, ψ at the point x0 can influence the solution only
in the solid light cone with its vertex at (x0, 0). (Notice that this statement as
well as the Principle of Causality hold true even for the nonhomogeneous wave
equation.) We can also meet the terminology which we already know from one
dimension. The past solid cone is called the domain of dependence and the
future solid cone is called the domain of influence of the point (x0, t0).
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13.5 Wave on Bounded Domains, Fourier Method

In the rest of this chapter we study initial boundary value problems for the
wave equation. In general, we consider the problem

⎧
⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

utt(x, t) = c2Δu(x, t), x ∈ Ω, t > 0,

u(x, t) = h1(x, t), x ∈ Γ1,
∂u
∂n (x, t) = h2(x, t), x ∈ Γ2,
∂u
∂n (x, t) + au(x, t) = h3(x, t), x ∈ Γ3,

u(x, 0) = ϕ(x), ut(x, 0) = ψ(x).

As usual, Ω denotes a domain in RN , ϕ, ψ, hi, i = 1, 2, 3 are given functions,
a is a given constant, and Γ1 ∪ Γ2 ∪ Γ3 = ∂Ω.

Fist of all, we recall the physical meaning of the boundary conditions. If we
model a vibrating membrane, u = u(x, y, t) corresponds to the displacement of
the membrane and the Dirichlet boundary condition on Γ1 describes the shape
of the fixed frame on which the membrane is fastened. If h1 is not a constant,
then the frame is warped. The Neumann boundary condition on Γ2 determines
the “slope” of the membrane on the boundary. In particular, the homogeneous
Neumann boundary condition (i.e., h2 ≡ 0) corresponds to the “free rim” of
the membrane, which is free to flap. The Robin boundary condition on Γ3 can
describe a flexible rim of the membrane.

If we use the three-dimensional wave equation as a model of sound waves
in a fluid with u = u(x, y, z, t) being the fluid density, then the most common
boundary condition is the homogeneous Neumann boundary condition. It cor-
responds to the situation when the domain has rigid walls and the fluid cannot
penetrate them.

As in the previous chapters, we search for the solution of the initial boundary
value problems for the wave equation using the Fourier method. Since the main
idea, as well as the basic scheme, coincide completely with those for the case
of the diffusion equation, we do not repeat them here in detail and refer the
reader to Section 12.2. We confine ourselves only to several examples which
illustrate some interesting phenomena or situations which were not treated in
the previous chapter.

Example 13.7 (Rectangular Membrane). We start with a simple situa-
tion. Let us consider a two-dimensional wave equation describing a vibrating
membrane fastened on a rectangular frame which is fixed in zero position. At
the beginning, let the membrane be pulled up at the center point and then
released. The corresponding model can have the form
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⎧⎨
⎩

utt = c2(uxx + uyy), (x, y) ∈ (0, a)× (0, b), t > 0,
u(0, y, t) = u(a, y, t) = u(x, 0, t) = u(x, b, t) = 0,
u(x, y, 0) = ϕ(x, y), ut(x, y, 0) = 0,

(13.22)

where

ϕ(x, y) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

xy, 0 ≤ x < a
2 , 0 ≤ y < b

2 ,

x(b− y), 0 ≤ x < a
2 ,

b
2 ≤ y ≤ b,

(a− x)y, a
2 ≤ x ≤ a, 0 ≤ y < b

2 ,

(a− x)(b− y), a
2 ≤ x ≤ a, b

2 ≤ y ≤ b.

(13.23)

The shape of the initial displacement is depicted in Figure 13.4 for the data
a = 2, b = 3.

x

ϕ

y

Figure 13.4. Initial condition (13.23) with the choice a = 2, b = 3.

To solve this problem, we first of all separate the time and space variables:
u(x, y, t) = V (x, y)T (t). Substituting into the equation in (13.22), we obtain
a couple of separated equations:

Vxx + Vyy + λV = 0, 0 < x < a, 0 < y < b, (13.24)
T ′′ + λc2T = 0, t > 0, (13.25)

where λ is a constant. Moreover, V = V (x, y) satisfies the homogeneous bound-
ary conditions

V (0, y) = V (a, y) = V (x, 0) = V (x, b) = 0, 0 < x < a, 0 < y < b. (13.26)

As we already know from Example 12.3, problem (13.24), (13.26) can be solved
by the Fourier method and it yields the eigenvalues

λmn =
�nπ

a

�2
+

�mπ

b

�2
, m, n ∈ N,
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and the corresponding orthogonal system of eigenfunctions

Vmn(x, y) = sin
nπx

a
sin

mπy

b
.

If we go back to the time equation (13.25), we obtain

Tmn = Amn cos(c
√
λmnt) +Bmn sin(c

√
λmnt).

(Recall that all the eigenvalues λmn are positive!) Hence, the solution of the
original problem can be written in the form of the double Fourier series

u(x, y, t) =
+∞∑
n=1

+∞∑
m=1

(
Amn cos(c

√
λmnt) +Bmn sin(c

√
λmnt)

)
sin

nπx

a
sin

mπy

b
.

This function satisfies the required initial conditions in (13.22) provided these
are also expandable into a Fourier series with respect to the system {Vmn(x, y)}.
In our case, this means

ϕ(x, y) =
+∞∑
n=1

+∞∑
m=1

Amn sin
nπx

a
sin

mπy

b
,

ψ(x, y) ≡ 0 =

+∞∑
n=1

+∞∑
m=1

c
√

λmnBmn sin
nπx

a
sin

mπy

b
.

The latter relation implies Bmn = 0 for all m,n ∈ N. Using the orthogonality
of the eigenfunctions, we can determine the coefficients Amn as

Amn =

a∫
0

b∫
0

ϕ(x, y)Vmn(x, y)dy dx

a∫
0

b∫
0

V 2
mn(x, y)dy dx

.

Substituting for Vmn and for ϕ from (13.23), we can calculate

Amn =
4

ab

a∫

0

b∫

0

ϕ(x, y) sin
nπx

a
sin

mπy

b
dx dy

=
4

ab

4a2b2

n2m2π4
sin

nπ

2
sin

mπ

2
=

16a b

n2m2π4
sin

nπ

2
sin

mπ

2
.

Now we can conclude that the solution of the initial boundary value problem
(13.22) can be expressed in the form

u(x, y, t) =
+∞∑
n=1

+∞∑
m=1

Amn cos(c
√
λmnt) sin

nπx

a
sin

mπy

b
.
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Graph of the solution on several time levels is sketched in Figure 13.5. We
have used the data c = 3, a = 2, b = 3 and the partial summation up to
n = m = 25. The reader is invited to notice the propagation of the singularities
and the reflection of the waves on the boundary.

x

u

y

t = 0

x

u

y

t = 0.2

x

u

y

t = 0.4

x

u

y

t = 0.8

Figure 13.5. Graphic illustration of the solution of the initial boundary value problem
(13.22) for the data c = 3, a = 2, b = 3, on time levels t = 0, 0.2, 0.4, 0.8.

�
The other examples deal with the wave equation on circular domains. We

consider the radially symmetric as well as non-symmetric cases.

Example 13.8 (Circular Membrane – Symmetric Case). This example
is the wave analogue of Example 12.5 for the diffusion equation. This time we
solve the problem
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⎧⎨
⎩

utt = c2Δu, x2 + y2 < a2, t > 0,
u(x, y, t) = 0, x2 + y2 = a2,

u(x, y, 0) = ϕ(
�

x2 + y2), ut(x, y, 0) = ψ(
�

x2 + y2),

(13.27)

which can serve as a model of a vibrating circular membrane with the frame
fixed in zero position. Since the initial conditions depend only on the radius
r =

�
x2 + y2, we can assume the solution to be radially symmetric, and after

transformation into polar coordinates we obtain a simpler problem
⎧⎨
⎩

utt = c2(urr +
1
rur), 0 < r < a, t > 0,

u(r, t) = 0, r = a, t > 0,
u(r, 0) = ϕ(r), ut(r, 0) = ψ(r), 0 ≤ r < a.

(13.28)

If we repeat the steps of Example 12.5, we obtain the solution in the form

u(r, t) =

+∞�
n=1

Tn(t)Rn(r).

The system of eigenfunctions Rn is given by

Rn(r) = J0(
�
λnr),

where J0 is the Bessel function of the first kind of order zero (see Appendix B);
the eigenvalues λn are given by

λn =
1

a2
μ2
n, n ∈ N,

where μn are the zeros of J0. The time functions Tn are now the solutions of
the equation

T ��(t) + c2λnT (t) = 0.

Since all the eigenvalues are positive, we can write

Tn(t) = An cos(c
�
λnt) +Bn sin(c

�
λnt).

Thus, we can conclude that the solution of (13.28) assumes the form

u(r, t) =
+∞�
n=1

�
An cos(c

�
λnt) +Bn sin(c

�
λnt)

�
J0(

�
λnr).

The constants An, Bn can be determined from the initial conditions provided
these are expandable into Fourier series with respect to the system {Rn(r)}:

ϕ(r) =

+∞�
n=1

AnJ0(
�
λnr),

ψ(r) =
+∞�
n=1

c
�
λnBnJ0(

�
λnr).
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Using the orthogonality of the Bessel functions (see Appendix B), we obtain

An =
2

J ′2
0(μn)

1∫

0

ρJ0(μnρ)ϕ(aρ) dρ,

Bn =
2

c
√
λnJ ′2

0(μn)

1∫

0

ρJ0(μnρ)ψ(aρ) dρ.

In particular, let us take a = 1, c = 1 and consider the initial data in the
form

ϕ(r) = J0(μ1r) + J0(μ2r), (13.29)
ψ(r) = 0.

Then, obviously, Bn = 0 for all n ∈ N, and A1 = A2 = 1, An = 0 for n ≥ 3.
The corresponding solution can be then written as

u(x, y, t) = u(r, t) = cosμ1t J0(μ1r) + cosμ2t J0(μ2r).

Figure 13.6 illustrates the initial displacement (13.29). The graph of the func-
tion u = u(x, y, t) on several time levels is depicted in Figure 13.7. (We recall
that x = r cos θ, y = r sin θ, θ ∈ [0, 2π].)

1

ϕ = ϕ(r)

2

1

r

Figure 13.6. The initial displacement (13.29).

�
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t = 0
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u
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t = 0.4

y

u

x

t = 0.8

y

u

x

t = 1.2

Figure 13.7. Graphic illustration of the solution of the initial boundary value problem
(13.27) with initial condition (13.29) on time levels t = 0, 0.4, 0.8, 1.2.

Example 13.9 (Circular Membrane – Non-Symmetric Case). Let us
consider the same problem as in the previous example, but now without any
symmetry. That is, we model a vibrating circular membrane with the frame
fixed in zero position; the initial displacement and initial velocity are now
general functions ϕ = ϕ(x, y), ψ = ψ(x, y):

⎧⎨
⎩

utt = c2Δu, x2 + y2 < a2, t > 0,
u(x, y, t) = 0, x2 + y2 = a2,
u(x, y, 0) = ϕ(x, y), ut(x, y, 0) = ψ(x, y).

(13.30)

As in the previous examples, we find the solution using the Fourier method.
Since the domain is circular, we have to transform the problem again into polar
coordinates, which provides the required rectangularity. However, now we have
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to use the general (non-symmetric) transformation formula (6.3) for the Laplace
operator. Thus, (13.30) becomes

⎧⎪⎪⎨
⎪⎪⎩

utt = c2(urr +
1
rur +

1
r2
uθθ), 0 < r < a, 0 ≤ θ < 2π, t > 0,

u(r, θ, t) = 0, r = a, 0 ≤ θ < 2π, t > 0,
u(r, θ, 0) = ϕ(r, θ),
ut(r, θ, 0) = ψ(r, θ), 0 ≤ r < a, 0 ≤ θ < 2π.

(13.31)

In the first step, we separate the time and space variables:

u(r, θ, t) = V (r, θ)T (t),

and since the spatial problem will be solved again by the Fourier method, we
can also separate V (r, θ) = R(r)Θ(θ). Thus, we have

u(r, θ, t) = R(r)Θ(θ)T (t)

and the standard argument leads to

T ′′

c2T
= −λ and

R′′

R
+

R′

rR
+

Θ′′

r2Θ
= −λ.

The separation in the latter equation results in

Θ′′

Θ
= −ν and λr2 +

r2R′′

R
+

rR′

R
= ν.

Obviously, Θ must satisfy the periodic boundary conditions Θ(0) = Θ(2π),
Θ′(0) = Θ′(2π), which implies

νn = n2, Θn(θ) = An cosnθ +Bn sinnθ, n = N ∪ {0}.

Hence, the radial equation assumes the form

r2R′′ + rR′ + (λr2 − n2)R = 0, (13.32)

which is the Bessel equation of order n. As follows from Appendix B, its
bounded solutions have the form

R(r) = Jn(
√
λr),

where Jn is the Bessel function of the first kind of order n. The boundary
condition in (13.31) gives R(a) = 0, which implies

λmn =
1

a2
μ2
mn, n ∈ N ∪ {0}, m ∈ N,
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where μmn are positive zeros of Jn. Thus, we can write R(r) = Rmn(r) =
Jn(

√
λmnr). Inserting λ = λmn into the time equation, we obtain

Tmn = Cmn cos c
√
λmnt+Dmn sin c

√
λmnt.

Using the expressions for R, Θ, and T , we can conclude that the solution of the
wave equation on the disc with homogeneous Dirichlet boundary condition has
the form

u(r, θ, t) =
+∞∑
n=0

+∞∑
m=1

Jn(
√

λmnr)(Amn cosnθ +Bmn sinnθ) cos c
√
λmnt

+

+∞∑
n=0

+∞∑
m=1

Jn(
√

λmnr)(Amn cosnθ +Bmn sinnθ) sin c
√
λmnt.

Here we write Amn instead of AnCmn, and similarly for Bmn, Amn, Bmn. To
determine these coefficients, we use the initial conditions. We illustrate this
process on a simple example.

Let us consider problem (13.31) with the initial conditions
{

ϕ(r, θ) = (a2 − r2)r sin θ,
ψ(r, θ) = 0.

(13.33)

The zero initial velocity implies that all coefficients in the sine series (with
respect to time variable) are zero, that is, Amn = Bmn = 0 for all n ∈ N ∪ {0},
m ∈ N. Thus the solution formula reduces to

u(r, θ, t) =

+∞∑
n=0

+∞∑
m=1

Jn(
√

λmnr)(Amn cosnθ +Bmn sinnθ) cos c
√
λmnt.

Setting t = 0, we obtain

ϕ(r, θ) =

+∞∑
n=0

+∞∑
m=1

Jn(
√
λmnr)(Amn cosnθ +Bmn sinnθ). (13.34)

Notice that this is a Fourier series of the function ϕ with respect to the system
of functions {Jn(

√
λmnr) cosnθ, Jn(

√
λmnr) sinnθ}mn. Let us rewrite (13.34)

as

ϕ(r, θ) =
+∞∑
m=1

Am0J0(
√

λm0r)

︸ ︷︷ ︸
=:A0(r)

+
+∞∑
n=1

(
+∞∑
m=1

AmnJn(
√

λmnr)

)

︸ ︷︷ ︸
=:An(r)

cosnθ

+

+∞∑
n=1

(
+∞∑
m=1

BmnJn(
√
λmnr)

)

︸ ︷︷ ︸
=:Bn(r)

sinnθ.
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For a fixed r we have

A0(r) =
1

2π

2π∫

0

ϕ(r, θ)dθ,

An(r) =
1

π

2π∫

0

ϕ(r, θ) cosnθ dθ,

Bn(r) =
1

π

2π∫

0

ϕ(r, θ) sinnθ dθ.

Substituting ϕ(r, θ) = (a2 − r2)r sin θ and using the orthogonality of trigono-
metric functions, we obtain A0 = An = 0 for all n ∈ N, and Bn = 0 for
n = 2, 3, . . . . The only nonzero coefficient is B1:

B1 =
+∞∑
m=1

Bm1J1(
√
λm1r) =

1

π

2π∫

0

(a2 − r2)r sin2 θ dθ.

Using the properties of Bessel functions (see Appendix B), we obtain

Bm1 =
2

πa2J2
2 (μm1)

a∫

0

2π∫

0

(a2 − r2)r sin2 θ J1(μm1
r

a
) r dθ dr

=
2

a2J2
2 (μm1)

a∫

0

(a2 − r2)r2 J1(μm1
r

a
)dr. (13.35)

We recall that λm1 = (μm1/a)
2, and μm1 are positive roots of the Bessel func-

tion J1. Hence, we can conclude that the solution of problem (13.30) or (13.31)
with the initial conditions (13.33) is given by

u(r, θ, t) = sin θ
+∞∑
m=1

Bm1 J1

(
μm1

r

a

)
cosμm1

ct

a
(13.36)

with Bm1 given by (13.35).

The solution (13.36) on various time levels is plotted in Figure 13.8. Here we
have put a = 1, c = 1, and used the partial sum up to m = 3. �

In the last example we add another spatial dimension. However, we stick to
the simplest, i.e., radially symmetric, case.

 EBSCOhost - printed on 2/10/2023 4:02 PM via . All use subject to https://www.ebsco.com/terms-of-use



248 Chapter 13 Wave Equation in Higher Dimensions

y

u

x

t = 0

y

u

x

t = 0.4

y

u

x

t = 0.8

y

u

x

t = 1.2

Figure 13.8. Graphic illustration of the solution of the initial boundary value problem
(13.30) with initial condition (13.33) on time levels t = 0, 0.4, 0.8, 1.2.

Example 13.10 (Vibrations in a Ball – Symmetric Case). Let us con-
sider vibrations in a ball with fixed boundary, and let the initial data depend
only on the radius r =

�
x2 + y2 + z2. That is, we solve the initial boundary

value problem for the wave equation with the Dirichlet boundary condition
⎧⎪⎪⎨
⎪⎪⎩

utt = c2Δu, x2 + y2 + z2 < a2, t > 0,
u(x, y, z, t) = 0, x2 + y2 + z2 = a2,

u(x, y, z, 0) = ϕ(
�
x2 + y2 + z2),

ut(x, y, z, 0) = ψ(
�

x2 + y2 + z2).

(13.37)

The geometry of the domain inspires us to transform problem (13.37) into
spherical coordinates r, ϕ, θ. Moreover, since the data do not depend on the
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angles ϕ, θ, we can expect the solution to be radially symmetric as well. Thus,
the Laplace operator reduces to the simple form Δu = urr +

2
rur, and (13.37)

becomes a problem in two variables t and r:
⎧⎨
⎩

utt = c2(urr +
2
rur), 0 < r < a, t > 0,

u(r, t) = 0, r = a, t > 0,
u(r, 0) = ϕ(r), ut(r, 0) = ψ(r), 0 ≤ r < a.

(13.38)

To solve it, we again use the Fourier method. The separation of variables
u(r, t) = R(r)T (t) leads to a pair of ODEs

T ′′ + λc2T = 0, (13.39)

R′′ +
2

r
R′ + λR = 0. (13.40)

The radial equation can be simplified by introducing a new function Y (r):

Y (r) = rR(r).

Then (13.40) becomes
Y ′′(r) + λY (r) = 0

and, for λ > 0, its solutions are Y (r) = C cos
√
λr+D sin

√
λr. Thus, we obtain

R(r) =
1

r
(C cos

√
λr +D sin

√
λr), 0 < r < a.

Further, R must satisfy the boundary conditions

R(0) bounded, R(a) = 0.

Hence C = 0, since 1
r cos

√
λr is unbounded in the neighborhood of r = 0.

(Remember that 1
r sin

√
λr is bounded and tends to

√
λ for r → 0.) The latter

boundary condition implies

D sin
√
λa = 0,

which gives the eigenvalues

λn =
�nπ

a

�2
, n ∈ N

and the corresponding system of eigenfunctions

Rn(r) =
1

r
sin

nπr

a
, n ∈ N.
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The time problem (13.39) has solutions Tn(t) = An cos c
√
λnt + Bn sin c

√
λnt,

and so the radially symmetric solution of the wave equation satisfying the
Dirichlet boundary condition can be written as

u(r, t) =
+∞∑
n=1

(
An cos

nπct

a
+Bn sin

nπct

a

) 1

r
sin

nπr

a
(13.41)

for r > 0. For the evaluation of u(0, t) we use the fact that lim
r→0

1
r sin

nπr
a = nπ

a

and set

u(0, t) =

+∞∑
n=1

nπ

a

(
An cos

nπct

a
+Bn sin

nπct

a

)
.

To satisfy also the initial conditions, we have to ensure

ϕ(r) =

+∞∑
n=1

An
1

r
sin

nπr

a
,

ψ(r) =

+∞∑
n=1

nπc

a
Bn

1

r
sin

nπr

a

for r > 0, which is equivalent to

rϕ(r) =

+∞∑
n=1

An sin
nπr

a
,

rψ(r) =

+∞∑
n=1

nπc

a
Bn sin

nπr

a

for r ≥ 0. Using the standard argument, the coefficients An, Bn can be written
as

An =
2

a

a∫

0

rϕ(r) sin
nπr

a
dr,

Bn =
2

nπc

a∫

0

rψ(r) sin
nπr

a
dr.

Since we cannot easily plot u as a function of all variables x, y, z, t, Figure 13.9
depicts only the values of the solution (13.41) with respect to the radial coordi-
nate r and time t. We have chosen parameters a = 1, c = 1, zero initial velocity
ψ ≡ 0, and the initial displacement given by

ϕ(r) = J0(μ1r) + J0(μ2r). (13.42)

(Here J0 is the Bessel function of the first kind of order zero, see Appendix B.)
We have used the partial sum up to n = 20. �
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t

u

r

Figure 13.9. Graphic illustration of the solution of the initial boundary value problem
(13.39) (symmetric vibrations in a unit ball) with initial condition (13.42) – dependence
on r and t.

t

u

r

Figure 13.10. Graphic illustration of the solution of the initial boundary value
problem (13.27) (symmetric vibrations in a unit disc) with initial condition (13.42) –
dependence on r and t.
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Remark 13.11. In the previous example, we have chosen the initial displace-
ment (13.42) since the same condition was used in Example 13.8 for the problem
of a vibrating membrane (see Figure 13.6). Let us have a detailed look at Fig-
ure 13.9 and compare it with Figure 13.10. The former illustrates the radially
symmetric vibrations in a unit ball (e.g., sound waves), while the latter depicts
radially symmetric vibrations in a unit disc (solved in Example 13.8). In both
cases, we have used the same data, but the behavior is very different (notice,
e.g., the shape of the propagating waves and the time period).

Another example of different behavior in two and three dimensions is illus-
trated in Figure 13.11. There we have again depicted the radially symmetric
solution of the wave equation in a disc and in a ball. This time we have chosen
(in both cases) parameters a = 10, c = 1.5, zero initial displacement ϕ ≡ 0,
and the initial velocity given by

ψ(r) = 1 for 0 ≤ r ≤ 1, ψ(r) = 0 elsewhere.

(We treated the wave equation with the same initial conditions – but on the
whole plane and space – in Example 13.3.) In two dimensions, this corresponds
to the situation when we hit the membrane by a unit circular hammer. We can
see that the signal propagates along the characteristics, and when it reaches
any point, the displacement there never vanishes. On the other hand, in three
dimensions, the signal comes and fades away. This corresponds to the fact that,
in two dimensions, the (non-reflected) solution at a point (x0, t0) is influenced
by the initial values from the whole disc

(x− x0)
2 + (y − y0)

2 ≤ (ct0)
2,

while, in three dimensions, only the initial values from the spherical surface

(x− x0)
2 + (y − y0)

2 + (z − z0)
2 = (ct0)

2

are relevant. Notice also the reflection on the boundary r = a and the effect of
the Principle of Causality, which is valid in any dimension.

Remark 13.12. The radial equation (13.40) is a special case (with n = 0) of
the general equation

r2R′′ + 2rR′ + (λr2 − n(n+ 1))R = 0, (13.43)

which appears in non-symmetric problems in a ball. It can be shown that
solutions of (13.43) have the form

R(r) =

√
π

2
√
λr

Jn+ 1
2
(
√
λr),
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Figure 13.11. Radially symmetric solutions of the Dirichlet problem for the wave
equation in a disc (2D) and in a ball (3D) with the initial condition ψ(r) = 1 for
0 ≤ r ≤ 1 and zero otherwise.
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where Jn+ 1
2

is the Bessel function of the first kind of (non-integer) order n+ 1
2 ,

see Appendix B. Setting n = 0, the solution of (13.40) can be written as

R(r) =

√
π

2
√
λr

J 1
2
(
√
λr).

Using expression (B.5) for Bessel functions, we obtain

J 1
2
(x) =

+∞∑
k=0

(−1)k
(x/2)

1
2
+2k

k!Γ( 12 + k + 1)

=

√
2

πx

+∞∑
k=0

(−1)k

(2k + 1)!
x2k+1 =

√
2

πx
sinx.

Thus, the solution of (13.40) assumes the simple form

R(r) =
1√
λr

sin
√
λr,

as we have already derived in a different way.

13.6 Exercises

1. Find all three-dimensional plane waves; that is, all solutions of the wave
equation in the form u(x, t) = f(k · x− ct), where k is a fixed vector and
f is a function of one variable.

[either |k| = 1 or u(x, t) = a + b(k · x− ct), where a, b are arbitrary constants]

2. Verify that (c2t2−x2−y2− z2)−1 satisfies the wave equation except on the
light cone.

3. Prove that Δ(u) = (Δu) = urr +
2
rur for any function u = u(x, y, z). Here

r =
√
x2 + y2 + z2 is the spherical coordinate.

[Hint: Write Δu in spherical coordinates and show that the angular terms have
zero average on spheres centered at the origin.]

4. Using Kirchhoff’s formula, solve the wave equation in three dimensions with
the initial data ϕ(x, y, z) ≡ 0, ψ(x, y, z) = y.

[u(x, y, z, t) = ty]

5. Solve the wave equation in three dimensions with the initial data ϕ(x, y, z) ≡
0, ψ(x, y, z) = x2 + y2 + z2. Search for a radially symmetric solution and
use the substitution v(r, t) = ru(r, t).
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6. Solve the wave equation in three dimensions with initial conditions ϕ(x) ≡
0, ψ(x) = A for |x| < ρ and ψ(x) = 0 for |x| > ρ, where A is a constant.
This problem is an analogue of the hammer blow solved in Section 4.1.

[u(x, t) = A
4cr (ρ− (r − ct)2) for |ρ− ct| ≤ r ≤ ρ+ ct,

u(x, t) = At for r ≤ ρ− ct, and u(x, t) = 0 elsewhere]

7. Solve the wave equation in three dimensions with initial conditions given
by ϕ(x) = A for |x| < ρ, ϕ(x) = 0 for |x| > ρ and ψ(x) ≡ 0, where A is
a constant. Where does the solution have jump discontinuities?

[Hint: Differentiate the solution from Exercise 6.]

[u(x, t) = A for r < ρ − ct, u(x, t) = A(r − ct)/2r for |ρ − ct| < r < ρ + ct, and
u(x, t) = 0 for r > ρ+ ct]

8. Use Kirchhoff’s formula and the reflection method to solve the wave equa-
tion in the half-space {(x, y, z, t); z > 0} with the Neumann condition
∂u/∂z = 0 on z = 0, and with initial conditions ϕ(x, y, z) ≡ 0 and arbi-
trary ψ(x, y, z).

9. Why doesn’t the method of spherical means work for two-dimensional waves?

10. Suppose that we do not know d’Alembert’s formula and solve the one-
dimensional wave equation with the initial data ϕ(x) ≡ 0 and arbitrary
ψ(x) using the descent method. That is, think of u(x, t) as a solution of
the two-dimensional equation independent of the y variable.

11. Consider the wave equation with the condition ∂u/∂n+b ∂u/∂t = 0, b > 0,
and show that its energy decreases.

12. Consider the equation utt − c2Δu +m2u = 0, m > 0, known as the Klein-
Gordon equation. Show that its energy is constant.

13. Prove the uniqueness of the classical solution of the wave equation on R3.
Use the conservation of energy applied to the difference of two solutions.

14. Find the value u(0, 0, 0, t) of the solution of the wave equation

utt − Δu = g

in three spatial variables if

(a) ϕ(x, y, z) = f(x2 + y2 + z2), ψ ≡ 0, g ≡ 0,

(b) ϕ ≡ 0, ψ(x, y, z) = f(x2 + y2 + z2), g ≡ 0,

(c) ϕ ≡ 0, ψ ≡ 0, g(x, y, z, t) = f(x2 + y2 + z2).
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[If we denote v(t) = u(0, 0, 0, t), then we have a) v(t) = f (c2t2) + 2c2t2f �(c2t2);

b) v(t) = tf (c2t2); c) v(t) =
t∫
0

(t− τ )f (c2(t− τ )2)dτ .]

15. Consider the equation

utt = c2uxx − but + auyy

on the rectangle (0, a)× (0, b) with boundary conditions

u(0, y, t) = 0, ux(a, y, t) = 0,

uy(x, 0, t) = 0, u(x, b, t) = 0.

Find the corresponding separated ODEs and boundary conditions.

16. Separate the PDE

utt = c2(uxx + uyy + uzz)− (ux + uy)

into the corresponding ODEs.

17. Solve the two-dimensional wave equation on the unit square with the coeffi-
cient c = 1

π , homogeneous Dirichlet boundary conditions, and the following
initial conditions:

(a) ϕ(x, y) = sin 3πx sinπy, ψ(x, y) = 0,

[u(x, y, t) = sin 3πx sinπy cos
√
10t]

(b) ϕ(x, y) = sinπx sinπy, ψ(x, y) = sinπx,

(c) ϕ(x, y) = x(1− x)y(1− y), ψ(x, y) = 2 sin πx sin 2πy,

[u(x, y, t) =
+∞∑
l=0

+∞∑
k=0

64 cos
√

(2k+1)2+(2l+1)2t

π6(2k+1)3(2l+1)3 sin(2k + 1)πx sin(2l+ 1)πy

+ 2√
5
sinπx sin 2πy sin

√
5t]

(d) ϕ(x, y) = x(1− ex−1)y(1− y2), ψ(x, y) = 0.

18. Solve the two-dimensional wave equation on a disc of radius a with homo-
geneous Dirichlet boundary condition. Use the following data:

(a) a = 2, c = 1, ϕ(r) = 0, ψ(r) = 1,

[u(r, t) = 4
+∞∑
n=1

J0(μnr/2)
μ2
nJ1(μn)

sin μn

2
t]

(b) a = 1, c = 10, ϕ(r) = 1− r2, ψ(r) = 1,

(c) a = 1, c = 1, ϕ(r) = 0, ψ(r) = J0(μ3r),
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(d) a = 1, c = 1, ϕ(r) = J0(μ3r), ψ(r) = 1− r2.

[u(r, t) = J0(μ3r) cosμ3t+ 8
+∞∑
n=1

J0(μnr)
μ4
nJ1(μn)

sinμnt]

19. Solve the two-dimensional wave equation on a disc of radius a with homo-
geneous Dirichlet boundary condition. Use the following data:

(a) a = 1, c = 1, ϕ(r, θ) = (1− r2)r2 sin 2θ, ψ(r, θ) = 0,

[u(r, θ, t) = 24
+∞∑
n=1

J2(μn2r)
μ3
n2J3(μn2)

sin 2θ cosμn2t]

(b) a = 1, c = 1, ϕ(r, θ) = 0, ψ(r, θ) = (1− r2)r2 sin 2θ,

[u(r, θ, t) = 24
+∞∑
n=1

J2(μn2r)
μ4
n2J3(μn2)

sin 2θ sinμn2t]

(c) a = 1, c = 1, ϕ(r, θ) = 1− r2, ψ(r, θ) = J0(r).

20. Consider a thin rectangular plate of length a and width b and describe its
vibrations for the following data: a = π

2 , b = π, c = 1, boundary conditions

u(0, y, t) = 0, ux(a, y, t) = 0,

uy(x, 0, t) = 0, u(x, b, t) = 0,

and initial conditions

u(x, y, 0) =

{
y sinx, 0 ≤ x ≤ a, 0 ≤ y < b

2 ,

(y − b) sinx, 0 ≤ x ≤ a, b
2 ≤ y ≤ b,

and

ut(x, y, 0) =

{
x(cos y + 1), 0 ≤ x < a

2 , 0 ≤ y ≤ b,
(x− a)(cos y + 1), a

2 ≤ x ≤ a, 0 ≤ y ≤ b.

21. Consider a thin vibrating rectangular membrane of length 3π
2 and width π

2 .
Suppose the sides x = 0 and y = 0 are fixed and the other two sides
are free. Given zero initial velocity and the initial displacement ϕ(x, y) =
(sinx)(sin y), determine the time-dependent solution and plot its graph on
several time levels.

22. Solve the problem of a vibrating circular membrane of radius 1 with fixed
boundary, zero initial velocity, and the initial displacement described by
f(r) sin 2θ.

23. Solve the problem of a vibrating circular membrane of radius π with free
boundary, zero initial velocity, and the initial displacement described by
f(r) cos θ.
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258 Chapter 13 Wave Equation in Higher Dimensions

24. Consider vertical vibrations of a circular sector 0 < θ < π
4 with radius 2.

Determine the solution if the boundary conditions are

(a) u(r, 0, t) = 0, u(r, π4 , t) = 0, u(2, θ, t) = 0.

(b) uθ(r, 0, t) = 0, uθ(r,
π
4 , t) = 0, u(2, θ, t) = 0.

In both cases, assume zero initial velocity and the initial displacement as
a function of the radius and the angle.

25. Solve the problem
⎧⎨
⎩

utt − c2(uxx + uyy) = f(x, y) sinωt, (x, y) ∈ Ω = (0, a)× (0, b), t > 0,
u(x, y, t) = 0, (x, y) ∈ ∂Ω,
u(x, y, 0) = 0, ut(x, y, 0) = 0.

Consider separately the nonresonance case ω �= ωmn = c
�
(mπ

a )2 + (nπb )2

for all m,n ∈ N, and the resonance case ω = ωm0n0 for some (m0, n0).

26. Find all solutions of the wave equation of the form u = eiωtf(r) that are
finite at the origin. Here r =

�
x2 + y2.

[u(r, t) = Ae−iωtJ0(
ωr
c )]
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Appendix A

Sturm-Liouville Problem

When dealing with the Fourier method we have discussed parametric boundary
value problems for the second order ODEs, whose solutions (usually, sines and
cosines) form a complete orthogonal system. This fact plays the crucial role
in finding the solution of the original PDE problem in the form of an infinite
series. These properties are not typical only for sines and cosines, but also for
more general functions which arise as solutions of the so called Sturm-Liouville
boundary value problem

⎧⎨
⎩

−(p(x)y′)′ + q(x)y = λr(x)y, a < x < b,
α0y(a) + β0y

′(a) = 0,
α1y(b) + β1y

′(b) = 0.
(A.1)

Here, α2
0+β2

0 > 0, α2
1+β2

1 > 0 (i.e., at least one number of each pair is nonzero),
and λ is an unknown parameter.

We say that (A.1) forms a regular Sturm-Liouville problem, if [a, b] is a closed
finite interval and the following regularity conditions are fulfilled: p(x), p′(x),
q(x) and r(x) are continuous real functions on [a, b], and p(x) > 0, r(x) > 0 for
a ≤ x ≤ b.

Any value of the parameter λ ∈ R for which the nontrivial solution of prob-
lem (A.1) exists is called an eigenvalue. The corresponding nontrivial solution
is called an eigenfunction related to the eigenvalue λ.

Now, we summarize the main important properties of the eigenvalues and
eigenfunctions of regular Sturm-Liouville problems:

(i) The eigenvalues of problem (A.1) are all real, and form an increasing
infinite sequence

λ1 < λ2 < λ3 < · · · < λn < · · · → +∞.

(ii) To each λn there corresponds a unique (up to a nonzero multiple) eigen-
function yn(x), which has exactly n− 1 zeros in (a, b). (Notice that any
multiple of an eigenfunction is also an eigenfunction.) Moreover, between
two consecutive zeros of yn(x) there is exactly one zero of yn+1(x).
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260 Appendix A Sturm-Liouville Problem

(iii) If yn(x) and ym(x) are two eigenfunctions corresponding to two different
eigenvalues λn and λm, then

b∫

a

r(x)yn(x)ym(x)dx = 0

(i.e., yn and ym are linearly independent and orthogonal with respect to
the weight function r(x)).

(iv) Any piecewise smooth function defined on (a, b) is expandable into Fourier
series with respect to the eigenfunctions yn, that is

f(x) =
+∞∑
n=1

Fnyn(x),

where Fn are the Fourier coefficients defined by the relation

Fn =

b∫
a
r(x)f(x)yn(x)dx

b∫
a
r(x)y2n(x)dx

.

Moreover, the series converges at x ∈ [a, b] to f(x) if f(x) is continuous
at x, and it converges to 1

2 (f(x
+)+f(x−)) if f(x) has a jump discontinuity

at x (here f(x+) and f(x−) are one sided limits at x).

We usually say that the eigenfunctions yn(x) form a complete orthogonal set.

In some cases and under additional conditions, the above mentioned prop-
erties are valid also for the so called singular Sturm-Liouville problems, see,
e.g., [22]. In our text we deal with only one such case: the parametric Bessel
equation (see Examples 12.5, 13.8, 13.9 and Remark B.1 below).
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Appendix B

Bessel Functions

In Chapters 12 and 13 we have seen a special case of the so called Bessel
equation of order n

x2y�� + xy� + (x2 − n2)y = 0 (B.1)

or, equivalently,

y�� +
1

x
y� +

(
1− n2

x2

)
y = 0, x �= 0.

Here n is a nonnegative constant (not necessarily integer; but for our purposes,
we usually consider n ∈ N). Equation (B.1) is a linear second-order ODE
and thus it must have a pair of linearly independent solutions, which can be
searched in the form

y(x) =
+∞∑
k=0

akx
k+α, a0 �= 0.

Below, we find concrete values of ak and α. Substituting back into (B.1), we
obtain

x2
+∞∑
k=0

(k + α)(k + α− 1)akx
k+α−2

+x
+∞∑
k=0

(k + α)akx
k+α−1 + (x2 − n2)

+∞∑
k=0

akx
k+α = 0

or (after a simplification and canceling the term xα)

+∞∑
k=0

(k + α− n)(k + α+ n)akx
k +

+∞∑
k=0

akx
k+2 = 0.

The second sum can be rewritten as

+∞∑
k=0

akx
k+2 =

+∞∑
k=2

ak−2x
k
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and we obtain the equation

+∞∑
k=0

(k + α− n)(k + α+ n)akx
k +

+∞∑
k=2

ak−2x
k = 0. (B.2)

Thus, the coefficients at the particular powers of x must satisfy

k = 0 : (α− n)(α+ n)a0 = 0,

k = 1 : (1 + α − n)(1 + α+ n)a1 = 0,

k ≥ 2 : (k + α− n)(k + α+ n)ak + ak−2 = 0.

Since we require a0 �= 0, the first equation implies

α = n or α = −n.

The second equation must hold for any nonnegative n, and thus a1 = 0. The
third equation leads to the recursive formula

ak =
−1

(k + α− n)(k + α+ n)
ak−2. (B.3)

Since a1 = 0, it follows that

a3 = a5 = · · · = a2k+1 = · · · = 0,

and the only nonzero coefficients can be written as

a2k =
−1

(2k + α− n)(2k + α+ n)
a2k−2 (B.4)

=
(−1)ka0

22kk!(1 + n)(2 + n)(3 + n) . . . (k + n)
.

Thus, making the conventional choice a0 = 2−n/n! and taking α = n, we obtain
the first solution of the Bessel equation

Jn(x) =

+∞∑
k=0

(−1)k
(x/2)n+2k

k!(n+ k)!
, (B.5)

which is called the Bessel function of the first kind of order n. (If n �∈ N, we have
to replace the factorial (n+ k)! by the so called Gamma function Γ(n+ k+1),
see, e.g., Abramowitz, Stegun [1].) Several Bessel functions of the first kind are
sketched in Figure B.1. Notice that all these functions are finite even at the
singular point x = 0!
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x1050

0.5

1

J0(x)

J1(x)

J2(x)

Figure B.1. Bessel functions of the first kind for n = 0, 1, 2.

It can be shown that the second linearly independent solution of the Bessel
equation has the form

Yn(x) = lim
q→n

Jq(x) cos qπ − J−q(x)

sin qπ

and is known as the Bessel function of the second kind (or as the Neumann or
Weber function) of order n. This function is unbounded at x = 0. In fact, it
behaves like − 1

xn near x = 0 for n > 0. In the case n = 0, we can approximate
Y0(x) ≈ 2

π lnx for x → 0. Several Bessel functions of the second kind are
sketched in Figure B.2.

Without proofs, we state here the basic properties of Bessel functions which
we have used in this book.

(i) As we can see in Figures B.1, B.2, each Bessel function has a countable
number of distinct positive roots μk, k = 1, 2, . . . .
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x1050

0.5

−1

−2

Y0(x) Y1(x) Y2(x)

Figure B.2. Bessel functions of the second kind for n = 0, 1, 2.

(ii) For any n ≥ 0, the system of functions {√xJn(μnkx)}+∞
k=1 is orthogonal

on [0, 1]:
1∫

0

xJn(μnkx)Jn(μnjx)dx = 0 for j �= k

and
1∫

0

xJ2
n(μnkx)dx =

1

2
J2
n+1(μnk).

Here μnk, k = 1, 2, . . . , are again the positive roots of Jn(x).

(iii) For any n ≥ 0,

d
dx

(
xnJn(x)

)
= xnJn−1(x) and

d
dx

(
x−nJn(x)

)
= −x−nJn+1(x).

In particular, we have d
dxJ0(x) = −J1(x).
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Remark B.1. In Examples 12.5, 13.8 and 13.9 we have seen the so called
parametric form of the Bessel equation

x2y′′ + xy′ + (λx2 − n2)y = 0 (B.6)

with the boundary conditions

y(0) finite, y(a) = 0. (B.7)

If μnk are positive roots of Jn(x), then problem (B.6), (B.7) is nontrivially
solvable for the values λ = λnk =

μ2
nk
a2

, and the corresponding solutions are
Jn(

μnk
a x).

Notice that equation (B.6) can be written as

−(xy′)′ +
n2

x
y = λxy,

which is (together with the boundary conditions) nothing but the Sturm-
Liouville problem on (0, a) with p(x) = r(x) = x and q(x) = n2

x . Since q(x)
is not defined and p(x) vanishes at x = 0, this problem is a singular one. The
Sturm-Liouville theory then implies some of the above mentioned properties of
Bessel functions, namely, that the functions Jn(

μnk
a x) form a complete orthog-

onal system on (0, a) with respect to the weight function r(x) = x.

More properties of Bessel functions can be found, e.g., in [1].
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Some Typical Problems Considered in this
Book

Transport equation

• transport equation (Chapter 3)

ut + cux = 0

• general PDE of the first order (Chapter 3)

a(x, y)ux + b(x, y)uy + c(x, y)u = f(x, y)

• problem with side condition (Chapter 3)
⎧⎨
⎩

aux + buy + cu = f,

u(x, y) = u0(s), (x, y) ∈ γ :

�
x = x0(s),
y = y0(s),

s ∈ I.

Wave equation

• Cauchy problem on R (Chapters 4, 9)
�

utt = c2uxx + f, x ∈ R, t > 0,
u(x, 0) = ϕ(x), ut(x, 0) = ψ(x)

• initial boundary value problem in R (Chapters 7, 9)
⎧⎨
⎩

utt = c2uxx + f, x ∈ (0, l), t > 0,
u(0, t) = u(l, t) = 0,
u(x, 0) = ϕ(x), ut(x, 0) = ψ(x)

• Cauchy problem in RN (Chapter 13)
�

utt = c2Δu+ f, x ∈ RN , t > 0,
u(x, 0) = ϕ(x), ut(x, 0) = ψ(x)
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• initial boundary value problem in RN (Chapter 13)
⎧⎨
⎩

utt = c2Δu+ f, x ∈ Ω, t > 0,
u(x, t) = 0, x ∈ ∂Ω,
u(x, 0) = ϕ(x), ut(x, 0) = ψ(x)

Diffusion equation

• Cauchy problem on R (Chapters 5, 9)

�
ut = kuxx + f, x ∈ R, t > 0,
u(x, 0) = ϕ(x)

• initial boundary value problem in R (Chapters 7, 9)

⎧⎨
⎩

ut = kuxx + f, x ∈ (0, l), t > 0,
u(0, t) = u(l, t) = 0,
u(x, 0) = ϕ(x)

• Cauchy problem in RN (Chapter 12)

�
ut = kΔu+ f, x ∈ RN , t > 0,
u(x, 0) = ϕ(x)

• initial boundary value problem in RN (Chapter 12)

⎧⎨
⎩

ut = kΔu+ f, x ∈ Ω, t > 0,
u(x, t) = 0, x ∈ ∂Ω,
u(x, 0) = ϕ(x)

Laplace (Poisson) equation

• in R2 or R3 (Chapters 6, 11)

Δu = f, x ∈ R2 or x ∈ R3

• boundary value problems (Chapters 8, 11)

�
Δu = f, x ∈ Ω,
u = 0, x ∈ ∂Ω
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Notation

ODE ordinary differential equation

PDE partial differential equation

R, RN the set of real numbers, N -dimensional Eu-
clidean space

p. 1

∂Ω boundary of the set Ω p. 2

a · b scalar product of vectors a and b p. 2

n(x) outer normal vector at the point x p. 3

divφ(x)
(
= ∇ · φ = ∂φ1

∂x1
+ · · ·+ ∂φN

∂xN

)

divergence of the vector function φ p. 4

ut
(
= ∂u

∂t

)
, φx

(
= ∂φ

∂x

)
, utt

(
= ∂2u

∂t2

)
, φxx

(
= ∂2φ

∂x2

)
, . . .

partial derivatives p. 6

gradu(x) = ∇u
(
= ( ∂u

∂x1
, . . . , ∂u

∂xN
)
)

gradient of the scalar function u p. 11, 38

Δu(x)
(
= ÷(gradu) = ∂2u

∂x2
1
+ · · ·+ ∂2u

∂x2
N

)

Laplace operator p. 11
∂u

∂n
(= gradu · n) derivative with respect to outer normal p. 15

rotE
(
= ∇×E = (∂E3

∂y − ∂E2
∂z , ∂E1

∂z − ∂E3
∂x , ∂E2

∂x − ∂E1
∂y )

)

rotation of the vector field E p. 17

i imaginary unit p. 18

Ck the space of k-times continuously differen-
tiable functions p. 23
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270 Notation

∂x = ∂
∂x , ∂2

x = ∂2

∂x2 , . . .

partial derivatives p. 31

C the set of complex numbers p. 31

erf (z) error function p. 85

ϕ(x−) = lim
t→x−ϕ(t), ϕ(x+) = lim

t→x+
ϕ(t) p. 88

C∞ the set of all functions whose partial deriva-
tives of any order are also continuous p. 89

N the set of positive integers p. 112

L Laplace transform p. 150

L−1 inverse Laplace transform p. 150

F Fourier transform p. 156

F−1 inverse Fourier transform p. 157

u ∗ v convolution of functions u and v p. 153, 158

S Schwartz set p. 157

� space-time cylinder p. 173

L2(M) the space of all functions the second powers
of which are integrable on the set M p. 177

f(t) = O(tn) the ratio f(t)
tn is bounded as t → 0 p. 181

Bt transposed matrix to the matrix B p. 187

meas ∂B(0, a) measure (surface) of the ball B(0, a) p. 192

|∇u|2 = | gradu|2 = u2x + u2y + u2z p. 193

a× b vector product of vectors a and b p. 208

Δ2u = Δ(Δu) biharmonic operator p. 208

We keep the same notation for a function u when applying the transformation
of its independent variables, i.e., u = u(x, y) and u = u(r, θ) for transformation
from Cartesian into polar coordinates etc.
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balance domain, 2
balance law, 3
Bessel equation, 219, 261
Bessel function, 219, 262
boundary condition

Dirichlet, 26, 111, 116
homogeneous, 26
mixed, 26
Neumann, 26, 118
Newton, 26
nonhomogeneous, 26
periodic, 144
Robin, 26, 120

boundary value problem, 26, 140
Sturm-Liouville, 124, 259

Brownian motion, 172
Burgers equation, 19, 20

Cauchy problem, 67, 83
for diffusion equation, 83
for wave equation, 67

Cauchy-Riemann conditions, 18
chaos, 172
characteristic cone, 233
characteristic coordinates, 43
characteristic equation, 144
characteristic lines, 38
characteristic triangle, 74, 166
characteristics, 38, 233

of wave equation, 66
circular membrane, 241
classical solution, 23
Cole-Hopf transform, 20
compatibility condition, 28
condition

boundary
Dirichlet, 26
homogeneous, 26
mixed, 26

Neumann, 26
Newton, 26
nonhomogeneous, 26
periodic, 144
Robin, 26

Cauchy-Riemann, 18
compatibility, 28
initial, 28
side, 51

cone
characteristic, 233
light, 233
solid, 233

conservation
of energy, 234

conservation law
energy, 169
evolution, 3
mass, 13
stationary, 5

constant
diffusion, 9

constitutive law, 6
convection, 5, 7
convective diffusion, 130
convolution, 88
coordinate method, 42
coordinates

characteristic, 43

d’Alembert’s formula, 67
damped string, 183
damped wave equation, 19
damping

external, 14
density, 7

mass, 2, 12
source, 3

differential operator
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linear, 21
diffusion, 9

convective, 130
on half-line, 103

diffusion constant, 9
diffusion equation, 22, 83, 209

with sources, 91
diffusion kernel, 86, 210
Dirac distribution, 86
Dirichlet boundary condition, 26, 111,

116
Dirichlet principle, 192
distribution

Dirac, 86
divergence theorem, 4
domain

balance, 2
space-time, 2

of dependence, 74, 166
of influence, 73, 166

Duhamel’s principle, 79

eigenfunction, 124, 259
eigenvalue, 124, 259
electric charge, 17
electric potential, 17
electrostatic field, 17
electrostatic potential, 189
electrostatics, 17, 189
elliptic type, 29
energy

kinetic, 169, 193, 235
potential, 170, 193, 235
total, 235

energy conservation law, 169
energy method, 176, 193
equation

Bessel, 219, 261
Burgers, 19, 20
characteristic, 144
diffusion, 22, 83, 209
with sources, 91

evolution, 21
Fisher’s, 19
heat, 10
homogeneous, 22
Korteweg-deVries, 165
Laplace, 16, 22, 97, 140, 187

linear, 21
Maxwell, 17
nonhomogeneous, 22
nonlinear, 21
of disperse wave, 23
of the first order, 37
of vibrating beam, 22
partial differential, 1
Poisson, 16, 22, 97, 140, 187, 198
Schrödinger, 23
stationary, 21
telegraph, 20, 82
transport, 7, 8, 22, 37
wave, 11, 15, 65, 225
damped, 19
with interaction, 22
with sources, 74

with constant coefficients, 37
equilibrium state, 16
error function, 85
evolution conservation law, 3
evolution equation, 21
evolution process, 3
external damping, 14
external force, 14

Fick’s law, 9
Fisher’s equation, 19
flow

heat, 10
steady, 17

flow function, 2
flow parameter, 7
flow quantity, 1
focusing effect, 227
force

external, 14
formula

d’Alembert’s, 67
integral, 145
Kirchhoff’s, 225
Poisson, 145, 205
representation, 195

Fourier method, 109, 124, 140, 213
Fourier transform, 150, 156

inverse, 157
Fourier’s law, 10
function
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Bessel, 219, 262
error, 85
flow, 2
Green’s, 86, 197
harmonic, 16
radially symmetric, 100

holomorphic, 18
source, 3, 86
state, 1

fundamental solution, 86, 210

Gauss complex plane, 18
Gaussian, 86
general solution, 23, 25
generic solution, 23, 25
Green’s first identity, 190
Green’s function, 86, 197
Green’s second identity, 195
Green’s theorem, 15, 76, 167
ground state, 193

harmonic function, 16
radially symmetric, 100

heat equation, 10
heat flow, 10

on half-line, 103
heat kernel, 86
heat transfer

lateral, 129
holomorphic function, 18
homogeneous boundary condition, 26
homogeneous equation, 22
Huygens’ principle, 228
hyperbolic type, 29

identity
Green’s first, 190
Green’s second, 195

ill-posed problem, 29, 171
initial boundary value problem, 28,

103
initial condition, 28
initial displacement, 28, 67
initial value problem, 67
initial velocity, 28, 67
inner tension, 12
integral formula, 145
integral transform, 150

inverse Fourier transform, 157
inverse Laplace transform, 150
irreversible process, 172
isotropic, 98

Jacobi matrix, 98

kinetic energy, 169, 193, 235
Kirchhoff’s formula, 225
Korteweg-deVries equation, 165

Laplace equation, 16, 22, 97, 140, 187
Laplace transform, 150

inverse, 150
Laplacian, 97
lateral heat transfer, 129
law

balance, 3
conservation
energy, 169
evolution, 3
mass, 13
stationary, 5

constitutive, 6
Fick’s, 9
Fourier’s, 10
logistic, 19, 132
Newton’s of motion, 12

left traveling wave, 8
light cone, 233

solid, 233
linear differential operator, 21
linear equation, 21
logistic law, 19, 132

mass conservation law, 13
mass density, 2, 12
material relations, 7
mathematical model, 1
mathematical modeling, 1
maximum principle, 173, 177

strong, 179, 192
Maxwell equations, 17
mean value property, 179, 190
membrane, 15

circular, 241
rectangular, 238

method
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coordinate, 42
energy, 176, 193
Fourier, 109, 124, 140, 213
of characteristic coordinates, 43
of characteristics, 38, 66
of integral transforms, 150
operator, 76, 77, 231
reflection, 103, 109, 199, 202

mixed boundary condition, 26
model

traffic, 19

Neumann boundary condition, 26, 118
Neumann problem, 194
Newton boundary condition, 26
Newton’s law of motion, 12
nonhomogeneous boundary condition,

26
nonhomogeneous equation, 22
nonlinear equation, 21
nonlinear transport, 8

operator
differential
linear, 21

factorable, 79
reducible, 79
source, 78, 92, 232

operator method, 76, 77, 231
order of equation, 21
overdetermined problem, 29

parabolic type, 29
parameter

flow, 7
state, 7

partial differential equation, 1
particular solution, 25
periodic boundary condition, 144
Poisson equation, 16, 22, 97, 140, 187,

198
Poisson formula, 145, 205
potential

electric, 17
electrostatic, 189
velocity, 17

potential energy, 170, 193, 235
principle

Dirichlet, 192
Duhamel’s, 79
Huygens’, 228
maximum, 173, 177
strong, 179, 192

of causality, 73, 166, 235
reciprocity, 198

problem
boundary value, 26, 140
Sturm-Liouville, 124, 259

Cauchy, 67, 83
ill-posed, 29, 171
initial boundary value, 28, 103
initial value, 67
Neumann, 194
overdetermined, 29
underdetermined, 29
unstable, 29
well-posed, 28

process
evolution, 3
irreversible, 172

propagator, 86
property

mean value, 179, 190

quantity
flow, 1
state, 1

radial symmetry, 98, 99, 188
reciprocity principle, 198
rectangular membrane, 238
reflection method, 103, 109, 199, 202
relations

material, 7
representation formula, 195
right traveling wave, 8, 39
Robin boundary condition, 26, 120

Schrödinger equation, 23
Schwartz space, 157
side condition, 51
singular point, 70
singularity, 70
sink, 3
solid light cone, 233
solution, 23
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classical, 23
fundamental, 86, 210
general, 23, 25
generic, 23, 25
particular, 25

source, 3
source density, 3
source function, 3, 86
source operator, 78, 92, 232
space

Schwartz, 157
space-time balance domain, 2
space-time cylinder, 173
speed

of wave propagation, 14
spherical means, 225
stability

uniform, 175
standing waves, 68
state

equilibrium, 16
ground, 193
stationary, 5
steady, 5, 16

state function, 1
state parameter, 7
state quantity, 1
stationary conservation law, 5
stationary equation, 21
stationary state, 5
steady flow, 17
steady state, 5, 16
stiffness, 14
string, 12
string vibration, 11
strong maximum principle, 179, 192
Sturm-Liouville boundary value prob-

lem, 124, 259

telegraph equation, 20, 82

theorem
divergence, 4
Green’s, 15, 76, 167

time interval, 2
tone

fundamental, 114
higher, 114

traffic model, 19
transform

Cole-Hopf, 20
Fourier, 150, 156
inverse, 157

integral, 150
Laplace, 150
inverse, 150

transport, 37
nonlinear, 8
with decay, 9, 37
with diffusion, 9

transport equation, 7, 8, 22, 37
type

elliptic, 29
hyperbolic, 29
parabolic, 29

underdetermined problem, 29
uniform stability, 175
uniqueness of solution, 175, 178
unstable problem, 29

velocity potential, 17

wave
left traveling, 8
on half-line, 105
right traveling, 8, 39

wave equation, 11, 15, 65, 225
damped, 19
with interaction, 22
with sources, 74

well-posed problem, 28
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