РАСПАДАЕМОСТЬ ПРОТЕИНА В РУБЦЕ БЫЧКОВ ПРИ ФИЗИЧЕСКИХ СПОСОБАХ ОБРАБОТКИ КОРМОВ

Ключевые слова: бычки, распадаемость протеина, степень защиты, рубец, барогидротермическая обработка, плющение зерна, экструдирование, корма, кишечник, аминокислоты.

Введение

Физические способы обработки кормов призваны обеспечить высокую переваримость и усвояемость питательных веществ в организме жвачных животных. С помощью физических способов можно влиять на качество протеина в кормах, тем самым регулировать интенсивность ферментативных процессов в рубце и использование азотистых веществ в кишечнике животных. Большинство кормов, применяемых в скотоводстве, отличаются низким качеством белка, вследствие высокой распадаемости протеина в рубце, что сопровождается увеличением потерь азотистых веществ из организма животных. В связи с этим изучение и разработка эффективных способов подготовки концентрированных кормов к скармливанию, позволяющих снизить распадаемость протеина (РП) в рубце животных, считаются актуальными.

Объекты и методы

Физиологический опыт был проведен в условиях вивария ПГСХА на трех бычках черно-пестрой породы, подобранных по принципу аналогов в возрасте 7-8 месяцев и оперированных с наложением канюли рубца. Опыт проводился по методу латинского квадрата и включал три периода. Раздачу кормов осуществляли два раза в сутки, доступ к воде был свободным. Бычки получали сенажно - сено - концентратный рацион, сбалансированный по основным питательным веществам (Нормы и рационы.., 2003). Рационы были рассчитаны для бычков со средней живой массой 270 кг при среднесуточном приросте 1000 г. Суточный рацион животных включал: 2,2 кг бобово-разнотравного сена, 8,3 кг разнотравного сенажа, 2,3 кг комбикорма и 0,4 кг кормовой патоки. С

кормами животные потребляли 7,4 кг сухих веществ, 67 МДж обменной энергии и 1032 г сырого протеина.

Распадаемость сырого протеина (СП) и сухих веществ (СВ) определяли методом in sacco, инкубацией в рубце средних проб отдельных кормов, помещенных в мешочки из синтетической ткани. Инкубацию концентрированных кормов осуществляли в течение 6 ч [1]. В кормах до и после инкубации в рубце определяли содержание общего азота по методу Къельдаля.

Степень защиты (С3) протеина кормов рассчитывали по уравнению:

C3 = (1 - Po6 / Pконт.) x100, где Po6., Pконт. – соответственно, процент распада СП обработанных кормов и контрольных (нативных) кормов [2].

Из физических способов подготовки кормов к скармливанию было изучено: плющение зрелого зерна ячменя, овса и пшеницы; шелушение овса; гранулирование пшеницы; экструдирование гороха и льняного жмыха; сверхвысокочастотная (СВЧ) обработка подсолнечного шрота и барогидротермическая (БГТО) обработка зерна злаковых и бобовых культур.

Результаты и их обсуждение

В проведенных исследованиях было установлено, что при плющении происходило снижение распадаемости сухих веществ на 6,1-7,7% (P < 0,05) по сравнению с дробленым зерном, хотя распадаемость сырого протеина при этом не изменялась (табл. 1). Это позволяет предположить, что в процессе плющения снижение распадаемости сухих веществ происходит в основном за счет снижения распадаемости крахмала в рубце. В процессе умеренного плющения крахмальное зерно, находящееся в раздавленном состоянии, в отличие от дробленого зерна, остается покрытым разорванными слоями, что несколько ограничивает и замедляет скорость его гидролиза в рубце. При потреблении дробленого зерна поверхность соприкосновения частиц крахмала с

микроорганизмами рубца возрастает по сравнению с потреблением плющеного зерна, что, в свою очередь, активизирует его распад.

Шелушение овса сопровождалось увеличением концентрации сырого протеина в зерне на 15-20% и повышением распадаемости протеина с 87,6 до 93,5% (Р < 0,01). Это обусловлено тем, что в овсе на долю шелухи приходилось до 25% от массы цельного зерна, которая мало доступна для переваривания рубцовыми микроорганизмами.

Тепловая обработка зерна пшеницы на установке ABM при температуре 100° C в течение 30 мин. с последующим гранулированием приводило к снижению РП в рубце с 78,9 до 69,5% (Р < 0,01).

Эффективным и в то же время энергозатратным способом повышения качества протеина является экструдирование. При экструдировании гороха и льняного жмыха РП заметно снижалась с 84,9 до 54,7% и с 60,5 до 37,2% (P < 0,001) соответственно. Экструдирование позволило получить высокую степень защиты, которая для изучаемых кормов составила 35,6-38,5%.

Перспективным способом обработки высокобелковых кормов может служить диэлектрический нагрев в электромагнитном поле сверхвысокой частоты. При

СВЧ-обработке происходит бесконтактный нагрев, создаются условия, при которых «взрывное» перемещение происходит влаги по капиллярам в виде пара, что приводит к денатурации белка. СВЧ-обработка предварительно увлажненного подсолнечного шрота в течение 5 мин. при температуре 140° С и излучении 2450 МГц сопровождалось снижением РП 71,8 до 61,1% (Р < 0,01). Данный способ требует детального изучения по поиску оптимальных параметров обработки разных кормов, позволяющих максимально снизить РП в рубце с сохранением переваримости протеина в кишечнике.

Из физических способов существенное влияние на распадаемость протеина кормов оказал новый способ производства вспученного зерна – барогидротермическая обработка. Данная разработка представляет собой высокопроизводительную, энергосберегающую технологию получения легкопереваримого и обеззараживаемого зерна, которая по сравнению с экструдированием и экспандирование, дешевле в 3,5-4 раза и менее энергоемка так, как стоимость обработки сырья в 2 раза ниже. Технология БГТО зерна при производстве комбикормов является наиболее оптимальным вариантом в отношении цена - производительность - технологичность – техническое обслуживание.

Таблица 1

Распадаемость в рубце и степень защиты сырого протеина кормов при физических способах обработки

СП, г/кг	Распадаемость в рубце, %		C3	РΠ,
	сухого вещества	сырого протеина	%	г/кг
98	88,7±1,3	87,6±1,3		12,2
117	93,4±0,5*	93,5±0,7**		7,6
	80,7±1,0**	86,7±1,2		13,0
105	88,2±2,4	85,8±1,4		14,9
_	78,6±0,8*	84,6±0,6		12,0
115	85,9±2,5	78,9±1,4		24,2
_	77,2±0,8*	79,6±1,2		22,4
_	75,4±0,4**	69,5±0,6**	11,9	35,1
382	65,7±2,3	71,8±1,7		108
_	54,0±1,0**	61,1±1,1**	15,4	149
207	75,2±1,3	84,9±1,3		31,3
_	50,4±1,1***	54,7±0,9***	35,6	93,8
324	44,6±0,9	60,5±1,0		128
_	32,6±0,8**	37,2±0,8***	38,5	204
	г/кг 98 117 105 - 115 - 382 - 207	C11,	СП, г/кг сухого вещества протеина 98 88,7±1,3 87,6±1,3 117 93,4±0,5* 93,5±0,7** 80,7±1,0** 86,7±1,2 105 88,2±2,4 85,8±1,4 - 78,6±0,8* 84,6±0,6 115 85,9±2,5 78,9±1,4 - 77,2±0,8* 79,6±1,2 - 75,4±0,4** 69,5±0,6** 382 65,7±2,3 71,8±1,7 - 54,0±1,0** 61,1±1,1** 207 75,2±1,3 84,9±1,3 - 50,4±1,1*** 54,7±0,9*** 324 44,6±0,9 60,5±1,0	СП, г/кг сухого вещества протеина 98 88,7±1,3 87,6±1,3 117 93,4±0,5* 93,5±0,7** 80,7±1,0** 86,7±1,2 105 88,2±2,4 85,8±1,4 - 78,6±0,8* 84,6±0,6 115 85,9±2,5 78,9±1,4 - 77,2±0,8* 79,6±1,2 - 75,4±0,4** 69,5±0,6** 11,9 382 65,7±2,3 71,8±1,7 - 54,0±1,0** 61,1±1,1** 15,4 207 75,2±1,3 84,9±1,3 - 50,4±1,1*** 54,7±0,9*** 35,6 324 44,6±0,9 60,5±1,0

Примечание. С3 – степень защиты; НРП – нераспавшийся в рубце протеин; $^*P < 0.05$; $^{**}P < 0.01$; $^{***P} < 0.01$ к контрольным кормам.

Таблица 2 Распадаемость в рубце и степень защиты сырого протеина кормов при барогидротермической обработке

Корма	СП,	Распадаемост	С3,	НРП, г∕кг	
Корма	г/кг	сухого вещества	сырого протеина	%	ПЕП, Г/КІ
Овёс*	98	88,7±1,3	87,6±1,3		12,2
Овёс*	_	81,8±1,5	65,5±1,3	25,2	33,8
Люпин	306	58,7±2,6	81,4±1,3		56,9
Люпин*	_	42,5±1,4	60,1±0,4	26,2	122,1
Ячмень	105	88,2±2,4	85,8±1,4		14,9
Ячмень*	_	78,0±1,4	52,9±2,6	38,3	49,5
Горох	207	75,2±2,3	84,9±1,3		31,3
Горох *	_	47,4±1,4	48,4±1,5	43,0	106,8
Рожь	108	82,5±2,4	79,5±1,4		22,1
Рожь*	_	70,5±2,3	46,4±0,4	41,6	57,8
Бобы	246	70,9±2,4	74,7 ± 2,4		62,2
Бобы*	_	33,5±0,5	27,4±0,4	63,3	178,5
Пшеница	115	85,9±2,5	78,9±1,4		24,2
Пшеница*	_	71,3±1,3	24,2±1,7	70,3	87,2

^{*} Корма, обработанные барогидротермическим способом.

При барогидротермической обработке зерно, находящееся в реакторе под действием пара с давлением 1 МПа, увлажняется, мгновенно нагревается до 140°C и выдерживается в течение 10-30 с. При переходе зерна из реактора в зону атмосферного воздуха происходит резкое вскипание воды, приводящее к вспучиванию зерна и денатурации белка. Барогидротермическая обработка оказывала неодинаковое воздействие на разные корма. Значительное снижение РП было отмечено для зерна пшеницы с 78,9 до 24,2% и кормовых бобов - с 74,7 до 27,4% (табл. 2). Распадаемость сырого протеина ячменя, ржи и гороха снижалась на 32,9-36,5% и составила, соответственно, 52,9; 46,4 и 48,4%. Менее выражено было денатурирующее действие БГТО на белок люпина и овса, которое приводило к снижению РП с 81,4 до 60,1% и с 87,6 до 65,5% соответственно.

Таким образом, наиболее эффективным способом физической обработки кормов явилась БГТО, в результате которого степень защиты протеина от распада в рубце находилась в широких пределах от 25,2% в зерне овса и до 70,3% в пшенице. Несмотря на разную степень защиты, обработка позволила максимально увеличить количество нераспавшегося в рубце протеина в 1 кг зерна только в кормовых бобах, остальные корма за исключением зерна овса занимали промежуточное положение. С практической точки зрения, учитывая стоимость кормов и затраты на БГТО, более целесообразным можно считать обработку кормовых бобов, гороха и зерна пшеницы.

Положительным аспектом применения БГТО является то, что используемые режимы обработки позволяют снизить содержание антипитательных веществ и ингибиторов протеаз в зерне бобовых культур, а также нейтрализуют токсические вещества в кормах. Это улучшает доступность и использование серосодержащих аминокислот. В результате использования БГТО появляется возможность увеличения норм ввода, в частности зерна нетрадиционных, бобовых культур в комбикормах, предназначенных для жвачных животных. Барогидротермическая обработка не оказывает отрицательного действия на аминокислотный состав кормов. Анализ аминокислотного состава протеина зерна полножирной сои до и после БГТО показал, что состав аминокислот практически не изменяется. Обработка зерна сои позволяет снизить активность уреазы с 2,34 до 0,13 ед. рН, содержание ингибитора трипсина – с 19,16 до 4,47 мг/г, или на 77%, показатель растворимости протеина - с 92 до 82% [3].

Кроме того, в опытах на коровах с канюлями кишечника с помощью метода мобильных мешочков было установлено, что переваримость в кишечнике нераспавшегося в рубце протеина обработанных и нативных кормов не имело различий [4]. Следовательно, БГТО приводит к наиболее умеренной денатурации кормового белка, который становится защищенным от действия протеолитических ферментов микроорганизмов рубца. Защищенный протеин транзитом поступает в кишечник, где активно переваривается и тем самым увеличивает уровень обменных аминокис-

лот в крови, что служит резервом увеличения продуктивности животных.

Преимуществом БГТО также явилось то, что при скармливании бычкам обрабозерна происходило снижение амилолитической активности рубцового содержимого. При этом отмечалось увеличение концентрации глюкозы в крови в 1,5 раза. Выявленные изменения позволили нам предположить, что БГТО зерна приводит не только к снижению РП, но и защищает крахмал от избыточного распада в рубце животных. Это сопровождается увеличением потока крахмала в кишечник, который хорошо гидролизуется и увеличивает поступление глюкозы кровь, что является важным для растущего организма, особенно при интенсивном откорме.

В научно-производственных опытах было установлено, что применение в составе комбикормов барогидротермически обработанного зерна пшеницы и ячменя в кормлении молодняка на откорме и дойных коров способствовало увеличению продуктивности животных на 16,2-17,4% соответственно [5, 6].

Заключение

Наиболее эффективным способом физической обработки кормов для жвачных животных явилась барогидротермическая обработка, которая позволила улучшить качество протеина фуражного зерна за счёт существенного снижения его распадаемости в рубце на 25,2-70,3%.

Библиографический список

- 1. Турчинский В.В. Определение растворимости и распадаемости протеина кормов / В.В. Турчинский, Н.В. Курилов, А.И. Фицев, Ф.В. Воронкова. Боровск, 1987. 12 с.
- 2. Грудина Н.В. Повышение эффективности высококонцентрированных белковых кормов путем применения защищающих агентов, снижающих распадаемость протеина в рубце / Н.В. Грудина, В.И. Луховицкий, Н.С. Алексахин, Б.Д. Кальницкий // Доклады РАСХН. 2005. № 2. С. 33-35.
- 3. Космынин Е.Г. Способ обработки зерна для повышения кормовой ценности / Е.Г. Космынин, С.В. Лунков // Комбикорма. -2006. -№ 4. -C. 57-58.
- 4. Погосян Д.Г. Влияние барогидротермической обработки зерна на качество протеина в рационах для жвачных животных / Д.Г. Погосян, Е.Л. Харитонов, И.Г. Рамазанов // Кормопроизводство. 2008. № 12. С. 23-25.
- 5. Чудайкин В.В. Влияние барогидротермической и химической обработки кормов на мясную продуктивность бычков / В.В. Чудайкин, В.М. Чудайкин // Инновационные идеи молодых исследователей для агропромышленного комплекса России: матер. Всерос. науч.-практ. конф. Пенза, 2011.
- 6. Погосян Д.Г. Влияние «защищенного» протеина на молочную продуктивность коров / Д.Г. Погосян // Молочное и мясное скотоводство. – 2008. – № 6. – С. 31-32.

УДК 619:636.2:613.165.6

Н.В. Симонова

АДАПТОГЕНЫ В КОРРЕКЦИИ ПРОЦЕССОВ ПЕРЕКИСНОГО ОКИСЛЕНИЯ ЛИПИДОВ БИОМЕМБРАН В ОРГАНИЗМЕ ТЕЛЯТ, ИНДУЦИРОВАННЫХ ВОЗДЕЙСТВИЕМ УЛЬТРАФИОЛЕТОВЫХ ЛУЧЕЙ

Ключевые слова: адаптогены, экстракты родиолы, элеутерококка, корня солодки, сок подорожника, ультрафиолетовое облучение (УФО), перекисное окисление липидов биомембран (ПОЛ), продукты пероксидации, компоненты

антиоксидантной системы (церулоплазмин, витамин E).

Введение

Увеличение производства высококачественных продуктов животноводства является одной из основных задач современ-