животноводство

УДК 636.4.082

Т.Ю. Животова, В.А. Бараников, Д.Н. Пилипенко

МЯСНЫЕ КАЧЕСТВА СВИНЕЙ РАЗЛИЧНЫХ ГЕНОТИПОВ И СРОКОВ ОТКОРМА

Ключевые слова: породы свиней, межпородное скрещивание, различные сроки убоя, мясная продуктивность, морфологический состав.

Введение

Для обеспечения продовольственной безопасности России необходимо снижать зависимость страны от импорта продовольствия, в первую очередь мяса. Для этого необходимо увеличивать объемы производства отечественного высококачественного мяса как для перерабатывающей промышленности, так и для населения.

Особая роль в решении данной задачи может быть отведена отрасли свиноводства благодаря многоплодности и скороспелости животных, высокому качеству получаемого мяса [1].

Наиболее важным в свете развития свиноводческой отрасли России является использование генетического материала лучших пород животных отечественного происхождения при чистопородном разведении и скрещивании [2].

Целью наших исследований являлось изучение мясной продуктивности подопытных подсвинков различных генотипов и сроков убоя.

С этой целью решались следующие задачи:

- исследовать влияние генотипа животного и его предубойной массы на убойный выход;
- изучить морфологические показатели полутуш, полученных при убое свиней.

Объекты и методы

Для проведения исследования были сформированы 6 групп поросят, по 30 гол. в каждой (по 15 боровков и свинок).

Исследования проводили на поголовье свиней крупной белой породы (КБ), степно-го типа скороспелой мясной породы

(СТ СМ-1), породы дюрок (Д), а также помесных свиней, полученных от скрещивания свиноматок КБ с хряками СТ СМ-1 и Д, и маток СТ СМ-1 с хряками Д. Научнохозяйственные опыты были проведены в ООО АФ «Топаз» Красносулинского района, ООО «РКЗ-Тавр» и ОАО «Новочеркасский мясокомбинат». Откорм свиней проводился в производственных условиях по технологии, принятой в хозяйстве.

Убой проводился при достижении свиньями 100, 120 и 140 кг живой массы по общепринятым методикам ВИЖ. Для изучения морфологического состава туш была проведена полная обвалка десяти правых полутуш из каждой группы при убое в 100, 120 и 140 кг живой массы.

Результаты исследований и их обсуждение

Основными критериями, характеризующими качество поголовья и наиболее ярко показывающие пригодность его для промышленного производства свинины, являются показатели мясной продуктивности и особенно убойный выход [3]. У свиней всех генотипов убойный выход с возрастом достоверно увеличивался с 76,29-76,62% при убое при 100 кг живой массы, при убое в 120 кг он составил 78,25-79,08%, а в 140 кг — 80,6-81,21% (табл. 1).

Наибольшим содержанием внутреннего жира характеризовались свиньи КБ. Они превосходили по этому показателю при убое в 100 кг животных СТ СМ-1 и Д на 0.45 и 0.47 кг (P<0.01), при убое в 120 кг — на 0.89 и 0.95 кг (P<0.001), а при убое в 140 кг — соответственно, на 0.81 и 0.86 кг (P<0.001). Гибридные свиньи КБхСТ СМ-1, КБхД, СТ СМ-1хД занимали по этому показателю промежуточное положение и достоверно уступали аналогам КБ во все изучаемые периоды.

Свиньи всех генотипов обладали одинаковым убойным выходом.

Таблица 1

Убойные качества свиней, n = 10

Показатели	КБ	CT CM-1	Д	КБхСТ СМ-1	КБхД	СТ СМ-1хД	
При убое в 100 кг живой массы							
Предубойная живая масса, кг	100,0±0,5	100,0±0,5	100,1±0,6	99,9±0,5	100,2±0,6	100,1±0,5	
Убойная масса, кг	76,5±0,5	76,3±0,5	76,5±0,6	76,5±0,5	76,7±0,5	76,7±0,5	
Убойный выход, %	76,5±0,5	76,3±0,5	$76,3\pm0,4$	76,6±0,4	76,5±0,4	76,6±0,4	
При убое в 120 кг живой массы							
Предубойная живая масса, кг	120,0±0,7	119,9±0,9	120,1±1,0	120,0±0,01	120,1±1,05	119,9±0,9	
Убойная масса, кг	99,9±0,5	94,0±1,0	94,0±0,9	94,4±0,9	95,5±1,0	94,1±0,9	
Убойный выход, %	79,1±0,3	78,4±0,3	78,3±0,3	78,6±0,3	78,8±0,3	78,5±0,3	
При убое в 140 кг живой массы							
Предубойная живая масса, кг	139,9±1,5	140,7±1,1	140,4±1,1	140,1±1,3	140,0±1,4	140,1±1,4	
Убойная масса, кг	113,4±1,5	113,4±1,6	113,3±1,9	113,6±1,8	113,7±1,8	113,5±1,8	
Убойный выход, %	81,0±0,4	80,6±0,5	80,7±0,6	81,1±0,5	81,2±0,5	81,0±0,5	

Таблица 2

Мясные качества свиней

	Д	пина полутуши, с	:M	Площадь мышеч. глазка, см²			
Группа	при убое	при убое	при убое	при убое	при убое	при убое	
	в 100 кг	в 120 кг	в 140 кг	в 100 кг	в 120 кг	в 140 кг	
КБ	94,2±0,4	100,6±0,7	103,9±0,7	29,6±0,2	31,3±0,3	35,0±0,8	
CT CM-1	97,6±0,4	105,5±0,7	111,3±0,8	33,9±0,2	36,5±0,3	40,6±0,9	
Д	94,3±0,7	100,6±0,9	104,8±1,5	34,6±0,3	36,8±0,3	41,0±1,0	
КБх СТ СМ-1	96,8±0,7	103,6±0,9	108,7±1,2	32,8±0,2	34,8±0,4	39,2±0,9	
КБхД	96,4±0,8	102,8±1,0	107,8±1,5	33,0±0,3	35,1±0,4	39,2±1,0	
СТ СМ-1 хД	97,4±0,6	104,9±0,9	110,6±0,9	34,7±0,2	36,8±0,2	41,0±0,8	

Наибольшая длина полутуш была во все изучаемые периоды у свиней СТ СМ-1. По этому показателю животные СТ СМ-1 превосходили аналогов КБ при убое в 100, 120 и 140 кг, соответственно, на 3,37 (P<0,01), на 4,99 (P<0,001), 7,42 см (P<0,001). Свиньи Д по длине полутуши не отличались от аналогов КБ. Помесные свиньи КБхСТ СМ-1, КБхД, СТ СМ-1хД превосходили аналогов КБ при убое в 100 кг на 2,55; 2,17 и 3,22 см (P<0,05-0,001), при убое в 120 кг — на 3,10; 2,88 и 4,41 см (P<0,001), а при убое 140 кг — соответственно, на 4,76; 3,90 и 6,67 см (P<0,01-0,001).

Самую большую площадь «мышечного глазка» имели животные Д, на втором месте были животные СТ СМ-1. Помесные свиньи занимали по этому показателю промежуточное положение. Животные Д превосходили КБ по площади «мышечного глазка» при убое подсвинков живой массой 100, 120 и 140 кг, соответственно, на 5,07; 5,56 и 6,08 см² (Р<0,01-0,001). Гибридные свиньи также достоверно превосходили по этому показателю животных КБ во все изучаемые периоды. Среди гибридных животных наибольшую площадь «мышечного глазка» имели свиньи СТ СМ-1хД.

Результаты изучения топографии жироотложения показали, что самый тонкий и выровненный слой шпика среди чистопородных животных имели Д. Они уступали своим аналогам КБ по толщине шпика на холке на 7,4 мм, над 6-7-м грудными позвонками на 6,41, над первым поясничным позвонком — на 4,41, первым крестцовым позвонком на 6,62, вторым крестцовым позвонком — на 5,38, над третьим крестцовым позвон-ком — на 5,47 мм.

При гибридизации прослеживается промежуточный характер наследования толщины шпика. Среди гибридных свиней наименьшие показатели имели подсвинки СТ СМ-1хД.

Отмеченная закономерность сохранилась при убое животных в 120 кг живой массы. Толщина шпика у молодняка Д была меньше, чем у животных КБ в области холки, на 5,67 мм (P<0,001), над 6-7-м грудными позвонками — на 4,31 мм (P<0,01), первым поясничным позвонком — на 4,97 мм (P<0,01), вторым крестцовым позвонком — на 4,54 мм (P<0,01), над третьим — на 7,13 мм (P<0,001).

Помесные свиньи также достоверно уступали по толщине шпика во всех точках измерения аналогам КБ. Наименьшие показатели среди гибридных свиней имели животные СТ СМ-1хД.

При убое в 140 кг живой массы различия по толщине шпика между животными сохранились. Меньшую толщину шпика во всех точках измерения имели свиньи Д. Они незначительно уступали СТ СМ-1 и достоверно — животным КБ. Свиньи Д имели меньшую толщину шпика, чем животные КБ в области холки, на 5,56 мм (P<0,001), над 6-7-м грудными позвонками — на 6,58 мм (P<0,001), первым поясничным позвонком — на 7,73 мм (P<0,001), первым крестцовым позвонком — на 5,75 мм (P<0,01), над третьим крестцовым позвонком — на 6,64 мм (P<0,001).

Морфологический состав полутуш свиней

	Масса охлаж-	Содержится в полутуше						
Группа	денной полу-	мяса		шпика		костей		
	туши, кг	кг	%	кг	%	кг	%	
При убое в 100 кг живой массы								
КБ	33,4±0,4	$18,60\pm0,20$	55,69±0,30	11,10±0,20	$33,23 \pm 0,40$	$3,70\pm0,10$	11,08±0,10	
CT CM-1	33,7±0,3	20,50±0,20	$60,83 \pm 0,40$	$9,40\pm0,10$	$27,89 \pm 0,30$	$3,80\pm0,10$	11,28±0,10	
Д	33,8±0,3	20,70±0,20	61,24±0,60	9,30±0,20	$27,51\pm0,60$	$3,80\pm0,10$	11,24±0,10	
КБхСТ СМ-1	33,7±0,3	19,60±0,20	58,16±0,50	10,30±0,30	$30,56 \pm 0,60$	$3,80\pm0,10$	11,28±0,10	
КБхД	33,8±0,3	19,90±0,20	58,88±0,50	10,10±0,20	29,88±0,40	3,80±0,10	11,24±0,10	
СТ СМ-1хД	33,9±0,3	20,70±0,20	61,06±0,50	$9,40\pm0,50$	$27,73 \pm 0,40$	3,80±0,10	11,21±0,10	
		Прі	1 убое в 100 кг	живой массы				
КБ	41,9±0,3	22,10±0,10	52,74±0,20	15,30±0,10	$36,52\pm0,20$	4,50±0,10	10,74±0,10	
CT CM-1	41,9±0,2	24,30±0,10	58,00±0,20	13,00±0,30	$31,03\pm0,20$	4,60±0,10	10,98±0,10	
Д	41,9±0,3	24,40±0,20	58,23±0,30	12,90±0,20	30,79±0,30	4,60±0,10	10,98±0,10	
КБхСТ СМ-1	41,8±0,4	23,50±0,10	56,22±0,30	13,70±0,10	$32,78 \pm 0,40$	4,60±0,10	$11,00\pm0,10$	
КБхД	41,9±0,5	23,90±0,10	57,04±0,30	13,50±0,10	32,22±0,20	4,50±0,10	10,74±0,10	
СТ СМ-1хД	42,0±0,2	24,40±0,30	58,10±0,20	12,90±0,10	$30,71\pm0,20$	4,70±0,10	11,19±0,10	
При убое в 100 кг живой массы								
КБ	50,4±0,2	$24,70\pm0,40$	$49,01\pm0,90$	$20,40\pm0,20$	$40,48 \pm 0,30$	5,30±0,10	$10,52\pm0,10$	
CT CM-1	50,8±0,3	$27,90 \pm 0,50$	54,92±0,90	$17,40\pm0,30$	$34,25 \pm 0,40$	5,50±0,10	$10,83\pm0,10$	
Д	50,8±0,3	$27,80\pm0,40$	54,72±0,80	17,50±0,30	$34,45\pm0,80$	5,50±0,30	$10,83\pm0,10$	
КБхСТ СМ-1	50,8±0,3	$26,90\pm0,60$	52,95±1,00	$18,50\pm0,40$	$36,42\pm0,60$	$5,40\pm0,20$	$10,63\pm0,10$	
КБхД	50,8±0,3	27,10±0,30	53,35±0,40	18,30±0,20	$36,02\pm0,70$	5,40±0,10	$10,63\pm0,10$	
СТ СМ-1хД	50,9±0,3	27,90±0,40	54,81±0,40	17,50±0,20	$34,38\pm0,30$	5,50±0,10	10,81±0,10	

Гибридные свиньи достоверно уступали своим аналогам КБ по толщине шпика во всех шести точках измерения. На основании проведенных исследований можно заключить, что свиньи Д и СТ СМ-1, а также гибриды СТ СМ-1хД имеют достоверно меньшую толщину подкожного сала, чем свиньи КБ.

Согласно результатам морфологического анализа полутуш наибольшее содержание мяса при убое в 100, 120 и 140 кг имели животные Д. При убое в этих же весовых категориях аналоги КБ по сравнению с Д содержали мышечной ткани меньше на 5,26; 5,46 и 5,86% (P<0,001), жировой ткани — соответственно, больше на 5,54; 5,71 и 6,19% (P<0,001).

Среди гибридных животных наибольшим выходом мяса в туше обладали животные СТ СМ-1хД. Увеличение предубойной массы со 100 до 120 кг способствовало повышению массы полутуши, соответственно, по группам на 8,44; 8,13; 8,12; 8,13; 8,12 и 8,10 кг, в том числе мяса — на 3,37; 3,79; 3,70; 3,94; 3,91 и 3,71 кг.

Увеличение предубойной массы со 100 до 140 кг способствовало увеличению массы полутуши, соответственно, по группам на 16,96; 17,05; 17,03; 17,14; 17,04 и 17,03 кг, в том числа мяса — на 6,04; 7,37; 7,25; 7,35; 7,21 и 7,28 кг.

По индексу мясности при убое в 100, 120 и 140 кг живой массы выгодно отличались животные пород Д, СТ СМ-1 и гибриды СТ СМ-1хД. Общей закономерностью для всех генотипов явилось постепенное снижение индексов мясности и постности с увели-

чением предубойной живой массы. Наибольший индекс постности во все изучаемые периоды имели животные дюрок, СТ и гибриды СТхД. Наименьшие индексы мясности и постности были у животных КБ.

Выводы

Подсвинки всех изучаемых групп при достижении живой массы в 100 кг обладали довольно высоким убойным выходом от 76,3 до 76,6% и небольшой толщиной шпика. При увеличении живой массы всех подопытных подсвинков незначительно увеличивается убойный выход и довольно сильно — толщина шпика, что нежелательно, так как в настоящее время на перерабатывающих предприятиях востребована нежирная свинина.

По морфологическому составу туш лучшими показателями обладали подсвинки вариантов СТ СМ-1, Д и СТ СМ-1хД.

Библиографический список

- 1. Шкаленко В.В., Филатов А.С., Кукушкин И.Ю. и др. Динамика живой массы и мясная продуктивность подсвинков разных пород // Свиноводство. 2011. № 3. С. 23-25.
- 2. Горлов И.Ф., Водянников В.И., Сивко А.И. и др. Способы повышения эффективности производства свинины и улучшения её качества: рекомендации // Вестник РАСХН. 2005. 25 с.
- 3. Кукушкин И.Ю., Филатов А.С. Продуктивность и некоторые биологические особенности свиней канадской селекции в условиях Нижнего Поволжья // Главный зоотехник. 2011. № 6. С. 35-39.

4. Филатов А.С., Шкаленко В.В., Кукушкин И.Ю., Ружейников Ф.В. Динамика живой массы и мясная продуктивность под-

свинков разных пород // Свиноводство. – $2011. - N_{\odot} 3. - C. 22-25.$

УДК 636.294:591.4

В.О. Липовик, Ю.М. Малофеев, А.С. Липовик

ПРОГРАММА УЧЕТА, ИДЕНТИФИКАЦИИ И СТАТИСТИЧЕСКОЙ ОБРАБОТКИ ДАННЫХ О ЖИВОТНОМ «САВА»

Ключевые слова: учёт животных, идентификация животных, статистическая обработка данных о животном, регистрация животных, снятие отпечатков дерматоглифа животных, модернизация регистрации животных.

Введение

Для модернизации технологического процесса идентификации, регистрации животных и создания базы данных о них с подробной информацией нами разработана «Программа учета, идентификации и статистической обработки данных о животных «САВА». Она поможет специалистам разного профиля (зооинженеры, ветеринарные врачи, руководство хозяйства) в условиях производства, поскольку выполняет ряд функций: учет поголовья животных, идентификация и поиск животных по отпечатку носогубного зеркала в созданной базе данных, поиск карточки животного по номеру бирки, просмотр всей имеющейся картотеки и др.

В селекционной работе дерматоглифические особенности носогубного зеркала у маралов и домашнего рогатого скота представляют интерес в связи с индивидуальными особенностями и продуктивностью животных. По рисунку кожи носогубного зеркала возможно прогнозировать продуктивность животного и целенаправленно работать с генетическим материалом [2].

При ведении зоотехнического учета животных программа позволит создавать карточки регистрации животных, автоматически проводить статистическую обработку данных о продуктивности и сопоставлять с факторами влияния на изменение продуктивности, к которым можно отнести изменение условий содержания, кормления, стрессы, ветеринарные обработки, изменения режима дня, заболевания и т.д. [2, 3].

Использование электронных карточек животных разными специалистами и их ведение позволят обеспечить более слажен-

ную работу. Опыт на производстве показал, что при проведении, например, вакцинации снижается продуктивность, и зооинженер сможет вовремя отреагировать и внести некоторые изменения в конкретный период времени. При заполнении карт одним специалистом она в режиме реального времени обновляется и ее может просмотреть другой специалист или руководитель хозяйства.

Ветеринарные специалисты вносят свои записи, отображающие болезни как заразной, так и незаразной этиологии, различные обработки и т.д. Все это обеспечивает слаженную работу и постоянный контроль руководства, не отходя от рабочего места.

Основная часть

В результате наших исследований в области идентификации животных при работе на ферме мы столкнулись с некоторыми неудобствами, касающимися учёта данных о животных, и пришли к выводу, что написание такой программы необходимо. Она позволит создавать базы данных о животных, находящихся на предприятии (маралы, овцы, крупный рогатый скот).

Программный продукт должен выполнять следующие задачи:

- 1.1.1 Регистрация и учет животных.
- 1.1.2 Поиск животных по бирке и дерматоглифу.
- 1.1.3 Прогнозирование продуктивности животных.
- 1.1.4 Учет настрига шерсти, живой массы животного, количества лактаций, надоя молока, количества полученных телят и срезанных пантов.
 - 1.1.1 Регистрация и учет животных.

При добавлении животного в программу она учитывает следующие параметры животного:

- номер бирки;
- пол;