УДК 631.4

К.В. Корчагина, А.В. Смагин, Т.В. Решетина

ОЦЕНКА ЗАГРЯЗНЕНИЯ ПОЧВ КАДМИЕМ И МЫШЬЯКОМ С УЧЕТОМ ИЗМЕНЕНИЯ ИХ КОНЦЕНТРАЦИИ И ПЛОТНОСТИ ПОЧВ С ГЛУБИНОЙ

Ключевые слова: оценка загрязнения почв, тяжелые металлы, плотность почв, кадмий, мышьяк, объемные концентрации, запас веществ, почвенные нормативы.

Введение

Способы оценки степени загрязнения почв тяжелыми металлами, используемые экологическими организации в настоящее время, основаны на использовании в качестве главных стандартов ПДК и ОДК [1, 2]. Эти стандарты являются концентрационными и пришли в законодательство из практики работы с более гомогенными средами (водой и воздухом). Применение такого подхода к почвам проблематично, ведь они являются гетерогенными, биокосными единствами, сочетающими живое и неживое, жидкую и газовую фазы [3]. Необходим научно обоснованный подход к оценке почвы, учитывающий ее гетерогенность, существенную вертикальную анизотропию как сложного поликомпонентного, многофазного пространственно-распределенного объекта.

Цель работы — исследовать на нормативном уровне влияние изменения концентрации кадмия и мышьяка, а также плотности городских почв на оценку их техногенного загрязнения.

Задачи: изучить закономерность профильного распределения техногенных поллютантов (в частности тяжелых металлов 1-2-го классов опасности) на территории г. Москвы; проанализировать влияние плотности на результат оценки техногенного загрязнения по объемным концентрациям и запасам поллютанта; проанализировать влияние профильного распределения загрязняющих веществ на результат оценки техногенного загрязнения по объемным поллютанта; концентрациям и запасам обосновать систему нормативов техногенного загрязнения почв тяжелыми металлами 1-2-го классов опасности на базе действующих ПДК и ОДК с учетом физической организации исследуемых объектов.

Объекты и методы

Учет плотности почв и изменения концентрации поллютантов при оценке их техногенного загрязнения в данном исследовании осуществлялся путем использования нетрадиционных концентраций тяжелых металлов (мг/кг) самих по себе, а показателей запаса поллютанта (Γ/M^3). Образцы почв отбирались на территории г. Москвы во всех административных округах. В каждом округе (ЗАО - западный административный округ, ВАО – восточный административный округ и т.д.) выбирались несколько точек для заложения разрезов (ВАО1, ВАО2 и т.д.) и отбора смешанных образцов на определенных глубинах. В почвах определялись содержания кадмия и мышьяка (тяжелые металлы 1-го класса опасности [4]), плотности [5] и были рассчитаны объемные концентрации тяжелых металлов на тех глубинах, где проводился отбор проб на определение их концентрации. Расчет запасов тяжелых металлов осуществляется по первичной информации - данным о профильном распределении концентраций в почве (C), ее плотности (ρ_b) и мощности слоя (h) по формуле:

$$3B = \int_{0}^{H} (\rho_b C) dh.$$

Величина почвенной толщи была принята равной 1 м в соответствии с современным законодательством г. Москвы [6, 7]. Полученные данные сравнивались с нормативными запасами тяжелых металлов г. Москвы, рассчитанными на основе ПДК и ОДК [7] в единицах измерения r/m^2 .

Результаты и их обсуждение

Анализ полученных данных по содержанию кадмия. По нынешней методике оценки степени загрязнения почв самыми загрязненными являются почвы образцов из ЮЗАО (разрезы № 1 и 2) и ЮАО (разрез № 2) с превышением ПДК в 1,5-2 раза. В остальных образцах превышение ПДК не было выявлено (табл. 1).

Таблица 1 Соотношение концентрации Cd и As в поверхностном слое почвы к ПДК

	3AO1	Ю3АО1	Ю3АО2	ЮАО1	ЮАО2	ЮАО3	ЮВАО1	ЮВАО2
Cd	0,46	2,20	1,72	0,48	1,80	0,22	0,60	0,50
As	2,30	2,45	4,60	1,85	2,05	1,30	1,35	0,70
	ЮВАО3	ЦАО1	ЦАО2	ЦАО3	BAO1	BAO2	CBAO1	CBAO2
Cd	0,72	0,64	0,48	0,56	0,54	0,68	0,64	0,42
As	0,49	2,65	1,95	3,55	0,95	1,60	1,90	2,15
	CBAO3	CBAO4	CAO1	CAO2	C3AO1	C3AO2		
Cd	0,42	0,66	0,46	0,26	0,52	0,38		
As	1,75	2,15	0,95	0,75	2,15	1,20		

Если при оценке степени загрязнения почв учитывать запасы кадмия в метровой толще, то картина меняется. Единственным загрязненным образцом оказался ЮВАО2, который по нынешней методике считался чистым. В данном образце содержание кадмия с поверхности невысоко, но с глубиной его количество резко растет и превышает ПДК (рис. 1).

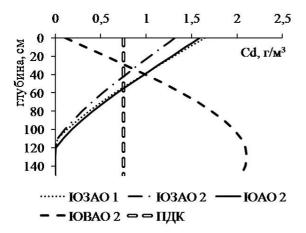


Рис. 1. Распределение кадмия по профилю почвы с учетом изменения ее плотности с глубиной, г/м³

В то же время почвы ЮЗАО и ЮАО содержат значительные количества кадмия лишь с поверхности, а с глубиной его запас резко падает, приближаясь к нулю. Таким образом, данные образцы являются значительно чище, чем в ЮВАО, и запас кадмия здесь не превышает ПДК (табл. 2). Анализ полученных данных по содержанию мышьяка. По нынешней методике оценки степени загрязнения почв 41% образцов содержал мышьяк в количестве, превышающем ПДК более чем в 2 раза. Самым загрязненным оказалась почва ЮЗАО2 с превышением ПДК в 4,6 раза. Самыми чистыми округами были САО и ЮВАО, где содержание мышьяка не превысило ПДК (табл. 1).

Если при оценке степени загрязнения почв учитывать физическую организацию, то лишь 23% образцов превысили значение ПДК более чем в 2 раза.

Самым загрязненным образцом также является разрез № 2 из ЮЗАО. Однако, учитывая, что запас мышьяка постепенно падает с глубиной (рис. 2), общее его содержание не превышает 4ПДК (табл. 3).

Запас мышьяка в ЦАО падает с глубиной более резко (рис. 5). В ЦАО2 запас приближается к значению ПДК (хотя по нынешней методике он составлял 1,95 ПДК), а в ЦАОЗ — 2,3 ПДК (хотя по нынешней методике его содержание превышало 3 ПДК).

В первой ЮЗАО1, а также в ЗАО1 и СВАО1 запас мышьяка в первом метре резко, растет с глубиной (рис. 3). Соответственно растет и соотношение запаса полютанта к ПДК (в ЮЗАО – с 2,5 до 3,2; в ЗАО – с 2,3 до 2,7; в СВАО – с 1,9 до 2,3) (табл. 3).

Следует отметить также, что даже при постепенном росте запаса мышьяка с глубиной (рис. 4) почву в ВАО1 уже нельзя относить к незагрязненной (табл. 2).

Таблица 2 Запас Cd и As в метровой толще почвы, г/м²

	3AO1	Ю3АО1	Ю3АО2	ЮАО1	ЮАО2	ЮАО3	ЮВАО1	ЮВАО2
Cd	0,30	0,84	0,67	0,24	0,85	0,13	0,47	1,14
As	8,21	9,67	11,61	4,86	5,68	4,60	3,91	2,92
	ЮВАО3	ЦАО1	ЦАО2	ЦАО3	BAO1	BAO2	CBAO1	CBAO2
Cd	0,62	0,53	0,22	0,36	0,33	0,41	0,37	0,21
As	2,23	5,96	3,23	6,98	3,16	4,77	6,91	5,37
	CBAO3	CBAO4	CAO1	CAO2	C3AO1	C3AO2	ПДК [7]	
Cd	0,21	0,43	0,47	0,07	0,40	0,35	1,00	
As	4,66	5,42	2,47	1,61	5,26	3,91	3,00	

Соотношение запаса Cd и As в метровой толще почвы к ПДК

	3AO1	Ю3АО1	ЮЗАО2	ЮАО1	ЮАО2	ЮАОЗ	ЮВАО1	ЮВАО2
Cd	0,30	0,84	0,67	0,24	0,85	0,13	0,47	1,14
As	2,74	3,22	3,87	1,62	1,89	1,53	1,30	0,97
	ЮВАО3	ЦАО1	ЦАО2	ЦАО3	BAO1	BAO2	CBAO1	CBAO2
Cd	0,62	0,53	0,22	0,36	0,33	0,41	0,37	0,21
As	0,74	1,99	1,08	2,33	1,05	1,59	2,30	1,79
	CBAO3	CBAO4	CAO1	CAO2	C3AO1	C3AO2		
Cd	0,21	0,43	0,47	0,07	0,40	0,35		
As	1,55	1,81	0,82	0,54	1,75	1,30		

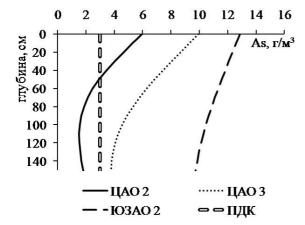


Рис. 2. Распределение мышьяка по профилю почвы с учетом изменения ее плотности с глубиной (ЦАО2, ЦАО3, ЮЗАО2), г/м³

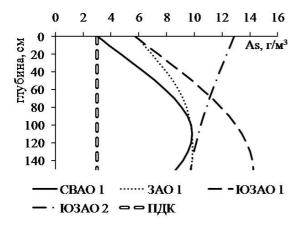


Рис. 3. Распределение мышьяка по профилю почвы с учетом изменения ее плотности с глубиной (CBAO1, 3AO1, ЮЗАО1, ЮЗАО2), г/м³

В образцах с постепенным спадом содержания мышьяка с глубиной отмечается уменьшение соотношения запаса поллютанта к ПДК. Особенно четко это прослеживается в образцах ЦАО, СВАО, СЗАО (рис. 4), где запас мышьяка не превышает 2ПДК в отличие от традиционной методики (табл. 3).

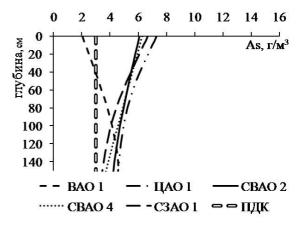


Рис. 4. Распределение мышьяка по профилю почвы с учетом изменения ее плотности с глубиной (BAO1, ЦАО1, CBAO2, CBAO4, CA3O1), г/м³

Выводы

При сравнении результатов оценок техногенного загрязнения почв по нынешней методике и результатов, полученных по данным запаса загрязнителя, прослеживалась следующая тенденция: при увеличении концентрации поллютанта с глубиной наблюдается увеличение общих запасов вещества, в результате чего может происходить изменение степени загрязнения почв. Так, чистая по нынешней методике почва может перейти в категорию загрязненной. Аналогично, при уменьшении концентрации поллютанта с глубиной происходит уменьшение его общего запаса в метровой толще и, как следствие, изменение степени загрязнения почвы в сторону чистой катего-

Таким образом, учет изменения плотности почв по профилю при оценке техногенного загрязнения дает возможность увидеть реальный запас загрязняющего вещества, влияющий и угнетающий растения своими суммарными запасами, а не поверхностными концентрациями. Тем самым экологическая оценка осуществляется в полном соответствии с принятыми нормативами феде-

рального уровня и вместе с тем отражает специфику структурной организации почв как гетерогенных пространственно распределенных объектов, а также принимает во внимание опыт зарубежных стран, где система нормативов учитывает свойства самой почвы.

Библиографический список

- 1. Гигиенические нормативы ГН 2.1.7.2041-06. Предельно допустимые концентрации (ПДК) химических веществ в почве.
- 2. Гигиенические нормативы ГН 2.1.7.2042-06. Ориентировочно допустимые концентрации (ОДК) химических веществ в почве.

- 3. Смагин А.В. Как врачевать городские почвы // Наука в России. 2006. № 6. С. 27-34.
- 4. ГОСТ 17.4.1.02-83 «Охрана природы. Почвы. Классификация химических веществ для контроля загрязнения». М.: Стандартинформ, 2008. 4 с.
- 5. Вадюнина А.Ф., Корчагина З.А. Методы исследования физических свойств почв и грунтов. М.: Высшая школа, 1973. 399 с.
- 6. Закон г. Москвы «О городских почвах» от 04.07.2007 г. № 31.
- 7. Смагин А.В., Шоба С.А., Макаров О.А. Экологическая оценка почвенных ресурсов и технологии их воспроизводства (на примере г. Москвы). М.: Изд-во Московского ун-та, 2008. 360 с.

